
STRUCTURAL GEOMETRY OF THRUST

FAULTING IN THE BAKER MOUNTAIN

AND PANOLA QUADRANGLES,

SOUTHEASTERN OKLAHOMA

By

JUSTIN EVANS

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1995

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

July, 1997



STRUCTIJRAL GEOMETRY OF THRUST

FAULTING IN THE BAKER MOUNTAIN

AND PANOLA QUADRANGLES,

SOUTHEASTERN OKLAHOMA

Thesis Approved:

Thesis Advisor

~-v.-I-- M- f h\\~

------...~-Ml J ~~

j)umzcu C. ~
Dean ·of Graduate College

11



ACKNOWLEDGMENTS

I would like to extend my deepest thanks to my commitlee chair, Dr. Ibrahim

Cemen. His advice, knowledge, and guidance have been a great help throughout this

study. I would also like to thank my other committee members, Dr. Zuhair AI-Shaieb for

his help and expertise as well as for the use of lab equipment to finish this study, and to

Dr. Gary Stewan for advice, guidance, and editing.

My thanks also go out to Jeff Ronck and Syed Mehdi for their help, and

viewpoints when mine got narrow. I also want to thank Dr. Jim Pucketle for his help in

everything from geology to life. Thank you so much. Thanks also to Catherine Price for

help and support with the computers.

Thanks to Neil Suneson for OGS well log information and for unpublished map

interpretations by him, C. A. Ferguson and L. R. Hemish.

Thank you Mom and Dad for your love, moral, and financial support. You always

taught me to push my boundaries and look over the next horizon.

Finally, and most importantly, thank you to my wife Julie. Without your love and

support I never would have been able to finish this work. This is for you.

HI



Chapter

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

Statement of Purpose and Methods of Investigation 3

Previous Investigations 6

Tectonics of the Ouachita Mountains 6

Arkoma Basin 10

Red Oak Gas Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

n. STRATIGRAPHY OF THE ARKOMA BASIN 16

m. DIAGENESIS AND DEPOSITIONAL

ENVIRONMENT OF THE SPIRO SANDSTONE 28

DIAGENESIS 28

Detrital Constituents 28

Cements 30

Diagenetic Clays 30

Porosity 32

IV



Diagenetic Sequence 32

DEPOSITIONAL ENVIRONMENT ' 35

IV. GEOMETRY OF THRUST SySTEMS 36

THRUST SYSTEMS 36

IMBRICATE FANS 36

BREAK-FORWARD THRUST SEQUENCES 38

FAULT-BEND FOLDING 40

BREAK-BACKWARD THRUST SEQUENCES 45

DUPLEX STRUCTURES 49

BACKTHRUSTS 51

TRIANGLE ZONES 51

V. STRUCTURAL GEOLOGY 58

INTRODUCTION 58

MAJOR THRUST FAULTS 73

Winding Stair Fault 73

Choctaw Detachment 74

Ti Valley Fault 74

Pine Mountain Fault 77

Choctaw Fault 77

BASAL DETACHMENTS 79

v



-

DUPLEX STRUCTURES AND THE LOWER ATOKAN DETACHMENT

......................................................... 81

TRIANGLE ZONE 83

NORMAL FAULTS AND STRIKE SLIP FAULTS 84

RESTORED CROSS SECTIONS AND SHORTENING 84

VI. CONCLUSIONS 93

REFERENCES 94

APPENDIX I 99

Vl



Figure

LIST OF FIGURES

Page

1. Geologic Provinces of Oklahoma 2

2. Location Map 4

3. Deviated well depth 7

4. Evolution of southern margin of North America 9

5. Stratigraphy and deposition 11

6. Depositional setting of Atoka time 12

7. Stratigraphic chart for the Arkoma Basin and Ouachita Mountains 17

8. Stratigraphic chart for Atokan time 18

9. Log signature for the Spiro sandstone 22

10. Log signature for the Cecil sandstone 24

11. Log signature for the Panola sandstone 25

12. Log signature for the Red Oak sandstone 26

13. Stratigraphic chart for Desmoinesian Series 27

14. Photomicrograph of Spiro sandstone showing detrital constituents 29

15. Photomicrograph of Spiro sandstone showing chlorite clay 31

16. Photomicrograph of Spiro sandstone showing primary porosity modification 33

17. Photomicrograph of Spiro sandstone showing compaction 34

Vll



--
18. Thrust systems 37

19. Break-forward thrust system 39

20. "S" shaped bending of beds in duplexes 41

21. Fault bend fold over a step in decollement 42

22. Fault end folding 43

23. Fault propagation folding 44

24. Folding styles 46

25. Kink bend folding 47

26. Break-backward thrusting 48

27. Rotation of horses due to a hindrance 50

28. Antiformal stack 52

29. Foreland dipping duplex 53

30. Back-thrust 54

31. Triangle zone (McClay, 1992) 54

32. Three end member geometries of triangle zones 56

33. Simplified triangle zone _ 57

34. Triangle zone from Arbenz (1984) _ _ 59

35. Triangle zone from Arbenz (1989) 59

36. Triangle zone from Hardie (1988) 60

37. Triangle zone from Milliken (1988) _ 60

38. Triangle zone from Camp & Ratliff (1989) _ 62

39. Triangle zone from Reeves et al. (1990) _.. 62

Vlll



--

40. Triangle zone from Perry et al. (1990) 63

41. Duplex structure from Roberts (1992) 63

42. Structural cross-section from Wilkerson and Wellman (1993) 64

43. Simplified map showing location of cross-sections and seismic lines 66

44. Balanced structural cross-section A-A' 67

45. Balanced structural cross-section B-B' 68

46. Balanced structural cross-section C-C' 69

47. Balanced structural cross-section D-D' 70

48. Balanced structural cross-section E-E' 71

49. Seismic line QM5-8 72

50. General geology and tectonic map 75·

51. Northern Choctaw Fault interpretation 78

52. Structural cross-section from Sagnak (1995) 82

53. Restored cross-section A-A' 85

54. Restored cross-section B-B' 86

55. Restored cross-section C-C' 87

56. Restored cross-section D-D' 88

57. Restored cross-section E-E' 89

IX



--

LIST OF PLATES

I. Balanced and Restored Cross-Section A-A' In Pocket

II. Balanced and Restored Cross-Section B-B' In Pocket

m. Balanced and Restored Cross-Section C-C' , In Pocket

IV. Balanced and Restored Cross-Section D-D' In Pocket

V. Balanced and Restored Cross-Section E-E' In Pocket

VI. Seismic line QM5-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. In Pocket

VII. Simplified Geological Map of the Study Area In Pocket

x



Chapter 1

INTRODUCTION

The Arkoma Basin and Ouachita Mountains are tectonic features extending

through southeastern Oklahoma and west-central Arkansas (Figure 1). The mountain

front of the Ouachitas extends from west-central Arkansas to southeastern Oklahoma and

is separated from the Ozark Plateau by the Arkoma Basin. The Arkoma Basin is

considered a foreland basin that developed as a result of compressional tectonics that

fonned the Ouachita Mountains. Based on structural geology and stratigraphy, the

Ouachita mountains are composed of three assemblages: the fronta.! belt, central belt, and

Broken Bow Uplift.

The frontal belt is bounded to the north by the surface exposure of the Choctaw

fault and to the south by the Winding Stair fault. The belt contains imbricately thrusted,

folded, and tilted Morrowan shallow-water sedimentary rocks to Atokan turbidite facies.

The central belt is characterized by broad synclines separated by narrow anticlines.

Mississippian and Lower Pennsylvanian turbidites are exposed throughout the belt, with

the exception of pre-Mississippian rocks in the Potato Hills (Suneson and others, ]990).

The Broken Bow Uplift is composed of Lower Ordovician to Lower Mississippian deep-
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Figure 1: Major geologic provinces of eastern Oklahoma and western Arkansas
(from Johnson, 1988).
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-
water strata. In this uplift, strata are isoclinally folded as well as thrusted (Suneson and

others 1990).

The Arkoma Basin is a mixed assemblage of structural styles ranging from

extensional to compressional (Arbenz, 1989). In Oklahoma, the northern boundary is the

southern limit of the Ozark Uplift. The southern boundary is defined by the trace of the

Choctaw Fault. This bounding fault dies out in western Arkansas, where the northern and

southern boundaries of the basin are defined respectively by the tennination of folding to

the north and the next major thrust fault to the south.

STATEMENT OF PURPOSE AND METHODS OF INVESTIGATION

The study area covers the Panola and Baker Mountain Quadrangles Oklahoma

(U.S. Geological Survey, 1988 and 1989, respectively) (Figure 2). The main purpose of

this study was to delineate the subsurface structural geometry of the area through the

construction of balanced structural cross-sections in the Baker Mountain and Panola

Quadrangles (T3N-6N, R20E) in Latimer County. Oklahoma.

In accordance with the main purpose of this study, the following information was

used to prepare the necessary maps and structural cross-sections:

1) Unpublished areal geologic maps by Neil Suneson. c.A. Ferguson, and LeRoy Hemish

of the Oklahoma Geological Survey were used to prepare a simplified geologic map of the

study area.

2) Spontaneous potential (SP), gamma ray, and resistivity/conductivity logs obtained from

3
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the available well logs in both the Oklahoma City and Tulsa well-log libraries were used 10

locate the stratigraphic positions of the Spiro, Red Oak, Panola, Cecil and Hartshorne

sandstones. These rock-stratigraphic units- were extensively used in construction of the

balanced structural cross-sections.

3) SCOUl tickets were used to iocate and learn the log signatures of the rock units that

were used to construct balanced structural cross-sections.

4) Seismic profiles donated by Amoco and Exxon were the documents for interpretation

of subsurface structural geometry.

These data were employed to construct five balanced structural cross-sections,

which were restored by the key-bed-method, based on thickness of the Spiro sandstone.

The balanced cross-sections were the basis for estimation of the amount of shortening due

to thrusting. Analysis of eleven thin sections from three outcrops of the Spiro sandstone

within the study area were analyzed to determine sediment type, possible source,

diagenesis, and porosity. X-ray diffraction was also performed on these samples to

determine the types of clays in the samples.

All structural cross-sections trend more-or-Jess perpendicular to the axes of the

major structural features. This orientation makes them "parallel" to the inferred tectonic

transport direction, and they should yield the most accurate geometry. The seismic

profiles used in the study had the same orientation. For the construction of the cross­

sections, data concerning the Spiro, Red Oak, Panola, Cecil, and Hartshorne sandstones

were interpreted from well-log signatures. Horizontal scale of the cross-sections is in

1:24,000 map scale; vertical scale is l: 12,000. These cross-sections are included as Plates

5



I-V, which were digitized by the Canvas program.

Oil wells in this study were assumed to have vertical boreholes, unless data about

deviation were available. Where deviations were shown on scout tickets, vertical depths

to fonnations commonly were reported as well. Where vertical depths were not reported,

a simple geometric method was used to plot depths to fonnations (Figure 3).

The term "Spiro" used in this study and on the cross-sections actualJy refers to the

Spiro sandstone-Wapanucka Limestone package. The Spiro sandstone and Wapanucka

Limestone were not differentiated individually.

PREVIOUS INVESTIGATIONS

TECTONICS OF THE OUACHITA MOUNTAINS

The Ouachita Mountains and the Arkoma Basin are tectonic features that fonned

in Early and Middle Pennsylvanian. The Arkoma Basin is an elongate tectonic province

that extends about 250 miles across parts of eastern Oklahoma and western and central

Arkansas (Figure 1). The basin is bounded to the south by the frontal belt of the Ouachita

Mountains, to the southwest by the Arbuckle Mountains, to the north by the Ozark uplift,

and grades onto the Cherokee platfonn to the northwest (Johnson, 1988).

The formation of the Arkoma Basin has been interpreted as the result of the

opening and closing of the Iapetus (the proto-Atlantic) ocean basin (Houseknecht and

McGilvery, 1990). During Late Precambrian-Early Cambrian, a major episode of rifting

opened an ocean basin along the southern margin of North America (Figure 4a). The

6
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-
southern margin of North America became a passive continental margin. The shelf system

that fonned adjacent to this passive margin persisted until Middle Paleozoic (Figure 4b).

Sediments deposited on the shelf 1nclude Cambrian through lower Atokan. These

include deep and shallow marine as well as nonmarine sandstones, shales, and carbonates.

To the south, deeper water environments received sheet sands, dark shales, deep-water

limestones, and some submarine-fan-complex sediments. These deeper-water sediments

can now be found in the Ouachita Mountains with the deepest water sediments in the core

of the frontal Ouachitas as a result of extensive thrusting (Houseknecht and McGilvery,

1990).

During the Devonian or Early Mississippian, the Iapetus ocean began to close as a

subduction zone formed beneath a southern continental mass referred to as Llanoria

(Figure 4c). The presence of the subduction zone is evidenced by the widespread

metamorphic event in the Lower Devonian, and 10caJIy abundant amounts of volcanic

debris in the form of flysch sedimentary rocks within the Mississippian Stanley Shale

(Houseknecht, 1986). Subsurface Mississippian volcanic rocks in the Sabine Uplift to the

south of the Ouachitas suggest a magmatic arc that developed on the northern margin of

Llanoria, as a pan of the subduction zone complex.

The northward advancing accretionary prism scraped sediments off of the

subducting plate during Early Mississippian to earliest Atokan time (Figure 4c).

Continued subduction along the northern margin of Llanoria closed the proto-Atlantic

(Iapetus) ocean by early Atokan time (Figure 4d). The southern margin of the Nonh

American continent underwent flexural bending as the accretionary prism was obducted

8
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onto the continent (Houseknecht, 1986). Although the continent was undergoing

compressional forces, the flex-ure caused nonnal faulting in the foreland.' This faulting can

be explained by tensional forces that resulted from the upwarping of land in response to

loading and compression to the south (Houseknecht, 1986). The normal faults generally

strike subparallel to the Ouachita orogenic belt, and most are downthrown to the south,

offsetting both crystalline basement and overlying Cambrian trough sediments. Due to the

normal faulting, subsidence and sedimentation were ·increased as the Arkoma foreland

basin was formed (Houseknecht and McGilvery, 1990). Contemporaneous subduction

and the deposition of lower through middle Atokan shales and sandstones resulted in

marked variation in thickness across faults (Figure 5) (Houseknecht and McGilvery,

1990).

By late Atokan time, foreland-style thrusting became prevalent as the accretionary

prism moved northward (Figure 4d and 4e). Flysch sediments were shed off of the

accretionary prism and flooded the basin .during its early stages (Sutherland, 1988).

Shallow marine, deltaic, and fluvial sedimentation occurred in this basin (Figure 6). The

structural configuration of the Arkoma-Ouachita system has remained relatively

undisturbed since the Desmoinesian, although minor thrusting and folding did occur after

the Desmoinesian (Figure 4e) (Houseknecht and Kacena. 1983).

ARKOMA BASIN

The Arkoma basin was first classified as a foreland basin by Buchanan and Johnson

(1968). Arbenz (1989) studied the frontal Ouachita belt as well as the Arkoma basin and

documented an assemblage of structural styles. He suggested that the southern two-thirds

10



Boggy Fm
,

~
-..

Savanna Fm •
~

fI) -
W I'

Cl McAlester Fm SR

~
...

Hartshorne Fm SR
~..

:"#1'
.

~ ~
Atoka Fm S

Z <t: Red OakSs R
I ai Spiro Ss R p::;

~
0-

~
Wapanucka Ls R p::.

Cromwell Ss S ~
various limestones S

~

~ ~and shales R
~ IrJ-r

f-- Woodford Sh S 0::

8 ~
,..J..,

I---

~d Hunton Gp R
rJ) ::r:
0 Sylvan Sh Viola Ls S ~a::
0 Simpson Gp R

~~ Arbuckle Gp R

~
.,...

Reagan Ss ~
~

C) granitic basement
0.

S
ARKOMA BASIN

N

"18045 ft 1/
(5.5 km) II

II
II

II
II

II
I /

I /
I I

I
I

/

~1i!&.i2~I&2¥*:*IW 4921 II
'~~-'~='""r'-l:~ (1.5 km)

CAMBRIAN- - - - _
BASAL ATOKAN --

1~<----100km----+~I

Figure 5. General stratigraphy of Oklahoma portion of the Arkoma Basin. Pie
charts indicate percentage of total time for each depositional event
(From Houseknecht and McGilvery, 1990).

11



Figure 6. Reconstruction of depositional system in which Atoka strata were
deposited in the Arkoma basin (from Houseknecht and McGilvery, 1990;
modified from Houseknecht 1986).
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of the basin was dominated by a thin-skinned compressional fold belt detached from the

underlying block-faulted Lower Atokan and older rocks. The northern third of the basin is

dominated by the San Bois Syncline (Figures 44-48 and Plates I-V). Arbenz (1989) also

observed that the Choctaw fault dies out into western Arkansas, leaving an interpreted

boundary between the Ouachita mountains and the Arkoma basin.

.... An extensional fault system that displaced the Atokan and pre-Atokan Paleozoic

rocks has been documented by Buchanan and Johnson (1968) and Berry and Trumbley

(1968). Throw on these faults is generally down-to-the-south and displaces the crystalline

basement (Arbenz, 1989). Abrupt increase in thickness of sedimentary rock, as well as the

presence of turbidite facies suggest that these fault blocks were active during Atokan

sedimentation. However, Arbenz (1989) cited olistostromal (flysch sedimentation)

evidence that the faults could have been active during Mississippian time. Offset along a

nonnal fault would create conditions for gravity-flow sedimentation to fonn. Reactivation

of thrust blocks would have given thrust faults an easy place through which to propagate

(Suneson and Ferguson, 1988). The presence of a triangle zone marking the transition

from the Frontal Ouachitas to the Arkoma Basin was proposed by Hardie (1988), Perry

and Suneson (1990), and Mazengarb (1995).

From 1992-1995, the Spiro sandstone and the structural geology of the Arkoma

Basin in the Wilburton gas field area were studied by a group from Oklahoma State

University with a grant from the Oklahoma Center for Advancement in Science and

Technology (OCAST). The present study is a continuation of the OCAST project. The

structural group in the OCAST project concluded that a triangle zone exists in the

13



Wilburton area. This zone is bounded by the Choctaw Fault to the south, the Carbon

Fault to the north, and is floored by the Lower Atokan Detachment (Al-Shaieb et aI.,

1995; Cemen et aI., 1994, 1995, 1997; Akthar, 1995; and Sagnak, 1996.

Below the Choctaw fault is a system of thrusts called the Gale-Buckeye Thrust

System. Wilkerson and Wellman (1993) suggested that the Gale-Buckeye system was

formed as a break-forward thrust sequence.

RED OAK GAS FIELD

The northernmost section of this study area (T6N-R20E) is located in the Red Oak

gas field (Figure 2). The field was established in 1912 when the Gladys Belle Oil

Company encountered gas within sandstone of the Hartshorne Fonnation. Gladys Belle

Oil did no more drilling in the area after a limited development effort. In 1928, Leflore·

County Gas and Electric Company drilled 55 wells in the Brazil anticline. Production

from these wells was mainly from the Hartshorne sandstone, but also from the Booch

sandstones of the McAlester Formation, which lies next above the Hartshorne. The

deepest weJJs drilled at this time came within a few hundred meters of the Red Oak

sandstone (Houseknecht and McGilvery, 1990).

Several gas fields were developed just to the north of the Red Oak Field along the

Milton anticline. Production in this area came from the Spiro sandstone. In 1959.

Midwest Oil Corporation drilled a discovery well into the deep Atokan Spiro sandstone.

The Midwest Oil Corporation No.1 Orr, in Section 8, T6N, R22E, encountered a

sandstone at 7190 ft and produced 6.3 mmcf of gas per day on a 2 inch choke. The

reservoir was the Red Oak sandstone (Houseknecht and McGilvery, 1990). The Spiro

14



sandstone was encountered at 11,5 10 ft. By 1962, gas reserves of the Red Oak field were

estimated at 1.1 tef (Houseknecht and McGilvery, 1990).

Major structural features within the field include the San Bois normal fault and the

thrust-cored Brazil anticline. In the deeper subsurface are many blind thrust faults. These

are high-angle faults, but become listric with depth, where they grade into bedding planes

within lower Atokan shales.

15



CHAPTER 2

STRATIGRAPHY OF THE ARKOMA BASIN

The Arkoma Basin is composed of a thick assemblage of strata ranging in age from

Cambrian to Pennsylvanian (Figure 7). As Cambrian through Mississippian rocks are

related to the pre-foreland basin history~ they will be covered briefly. The Pennsylvanian is

represented by Morrowan, Atokan, and Desmoinesian strata. Exposed within the basin in

Oklahoma are strata of Atokan and Desmoinesian age. In this chapter, descriptions of

Cambrian through Mississippian rocks are based on descriptions of these systems in the

Arbuckle Mountains by Ham (1978) and by Johnson (1988). Whether rocks younger than

Pennsylvanian were deposited in the Arkoma basin is unknown.

Proterozoic granite. rhyolite, and metamorphic rocks are believed to make up the

basement of the basin (Figure 7). The Upper Cambrian Timbered Hills Group overlies the

basement. It is composed of the Reagan Sandstone and the Honey Creek Limestone. The

Reagan Sandstone is a transgressive sandstone that was widespread, but not deposited on

local "highs" (Johnson, 1988). The Honey Creek Limestone is a thin bedded, trilobite-rich,

pelmatdzoan limestone (Ham, 1978).

The Arbuckle Group conformably overlies the Timbered Hills Group. The

16
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Arbuckle ranges in age from Upper Cambrian to Lower Ordovician (Ham, 1978). The

lower part of the Arbuckle Group is composed of the Fort Sill Limestone, Royer

Dolomite, and Signal Mountain Limestone (Figure 7). The upper part of the Arbuckle

Group contains the Butterly Dolomite, McKenzie Hill Formation, Cool Creek Formation.

Kindblade Formation, and West Spring Creek Formation. These are all shallow-marine

sedimentary rocks, and are rich in fossils, including trilobites, brachiopods, mollusks,

pelmatozoans, sponges, and near the top, graptolites (Ham, 1978).

Overlying the Arbuckle Group is the Simpson Group of the Middle Ordovician

(Figure 7). The Simpson Group records a fundamental change in depositional

environment from that of the Arbuckle Group. The group is predominantly composed of

skeletal calcarenites, skeletal carbonates, mudstones, sandstones, and shales. In ascending

order, rock stratigraphic units of the Simpson Group are the Joins Formation, Oil Creek

Formation, McLish Formation, Tulip Creek Fonnation, and Bromide Formation. In shelf

areas the group is composed mostly of limestones (Ham, 1978).

The Viola Group conformably overlies the Simpson Group and is composed of the

Viola Springs Formation and the Welling Formation (Figure 7). The Viola Group consists

of several limestone facies. including nodular chert-rich mudstones. packstones, porous

grainstones, wackestones, and dolomitized wackestones (Sikes, 1995). The Upper

Ordovician Sylvan Shale unconformably overlies the Viola Group. It is greenish gray

shale with well developed laminations, and it contains graptolites and chitinozoans (Ham.

1978).

The !"iunton Group of Lower Silurian to Lower Devonian age conformably

19



overlies the Sylvan Shale (Figure 7). The base is characterized by Ordovician oolites. The

Chimneyhill Subgroup and Henryhouse Formations are Silurian skeletal mudstones and

skeletal calcarenties. Overlying these are the Devonian Haragan, Bois d' Are, and Frisco

Limestones which are predominantly skeletal mudstones and calcarenites (Ham, 1978).

The Upper Devonian to Lower Mississippian (Kinderhookian) Woodford Shale

unconformably overlies the Hunton Group (Figure 7). The Hunton is composed of dark

fissile shale, beds of vitreous chert, and siliceous chert (Ham, 1978).

The Caney Shale, which overlies the Woodford Shale, is Lower and Middle

Mississippian dark gray fissile shale that contains phosphatic nodules at some localities.

The lowermost occurrence of siderite or clay-ironstone beds within the sequence marks

the boundary between the Caney and the informal Springer Shale unit. Based on spores

and pollens within the Springer, it is Late Mississippian (Chesterian) in age (Ham, ]978).

Pennsylvanian (Morrowan) strata unconformably overlie Mississippian rocks.

Morrowan strata in the Arkoma basin are shelf-like sediments even though they contain

large amounts of sandstone. Time-equivalent units within the Ouachita frontal belt are the

Jackfork Group and the Johns Valley Shale (Figure 7) which were deep marine flysch

sediments (Johnson, 1988). Within the Arkoma basin, Morrowan rocks are the Cromwell

sandstone. Union Valley Limestone, and the Wapanucka Formation. The Cromwell

sandstone and Union Valley Limestone were deposited during a series of transgressions

and regressions and are composed of several discontinuous limestones and sandstones

separated by shales (Sutherland, 1988). The Wapanucka Formation conformably overlies

the Union Valley Limestone. It is composed of shale and limestone. The Wapanucka is
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--
marked by continuous sedimentation in a shallowing-upward sequence that is marked by

reversals. Within the eastern half of the study area, the Wapanucka is exposed at some

places along the Choctaw fault.

The Atoka Formation of the Atokan Series was deposited unconformably on the

Wapanucka Formation. The Atoka Formation is, by far, the thickest formation within the

basin, ranging from several hundreds of feet to about 20,000 feet (Johnson, 1988). The

division between lower, middle and upper Atokan is based on the effects of

syndepositiona1 normal faults within the basin (Johnson, 1988). Deposition in the basin

from Cambrian to Mississippian time resulted in only about 1.5 km of deep-water

sediments. During the Atokan, nearly 5.5 km of sand, limestone. and shale were deposited

as the result of increase in accommodation space within the basin due to normal faulting

(Houseknecht and McGilvery, 1990). Shale composes most of the Atokan rocks.

Sandstone, siltstone, and some thin coal beds comprise the rest of the Atokan Formation.

Most sandstone units are not continuous, being the result of fluvial and deltaic processes

across the sometimes exposed shelf (Sutherland, 1988).

The lower Atokan is represented by the Spiro sandstone (Figure 8) and a thin

marine shale. An example of the well-log signature of the Spiro is shown in Figure 9.

Faunal evidence suggests that the boundary between Morrowan and Atokan ages lies

..
~•

y

I
5

within this 20-40 foot shale (Houseknecht and McGilvery. (990). The Spiro sandstone is

the record of deposition in a broad delta complex with distal channels, tidal channels, and

shallow water with interfingered marine sandstone bars and carbonates (Houseknecht,

1983). Detrital constituents of the Spiro were derived from the north and northeast.
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Figure 9. Log signature of the Spiro Sandstone.
(AnSon Corp., NO.1-28 Turney, Sec 28,
T5N R20E)
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The Middle Atokan section is composed of the Shay, Cecil, Panola, Red Oak. and

Fanshawe sandstones within a thick shale sequence. Examples of wire-line log signatures

of the Cecil, Panola, and Red Oak sandstones are shown in Figures 10-12 respectively.

According to Vedros and Fisher (1978), the Red Oak sandstone was deposited as gravity-

flow sediments and possibly formed a submarine fan at the base of the slope caused by the

San Bois growth fault (shown in Figure 6) (Houseknecht and McGilvery, 1990).

Sediments were derived from the eastern uplift of the Ouachita orogenic belt (Figure 6)

(Houseknecht and McGilvery, 1990). Upper Atokan strata are not cut by the normal

faults that controlled sedimentation patterns within the middle Atokan. The lower shales

could have compacted and absorbed the displacement along the fault, rendering the upper

Atokan unfaulted (Sutherland, 1988). A cessation of normal faulting due to decreased

bending of the loaded lower plate also could have left the upper Atokan unfaulted.

Predominant lithologies within the upper Atoka are shallow shelf and deltaic rocks

(Sutherland, 1988).

The Desmoinesian Series within the Arkoma basin comprises the Krebs, Cabaniss,

and Marmaton Groups (Figure 13). Within the study area only the Krebs Group crops

out. The Krebs Group is composed of the Hartshorne, McAlester, Savanna. and Boggy

Formations. The Hartshorne Formation was deposited gradationally on the Atoka

Formation and was deposited as a high-constructive, tidally influenced deltaic system.

The overlying McAlester to Boggy Formations are comprised of fluvial/deltaic sediments

deposited during a series of transgressions and regressions (Sutherland, 1988).
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Figure 10. Log signature of the Cecil sandstone. (Austin
Production Co., NO.1 Colvard Lm. ,
Sec. 10, T5N, R20E.)
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Figure 12. Log signature of the Red Oak sandstone
(Unit Drilling and Exploration Co. No.1,
Hawthorne, Sec. 4, T5N, R20E).
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CHAPTER 3

DIAGENESIS AND DEPOSITIONAL ENVIRONMENT

OF THE SPIRO SANDSTONE

DIAGENESIS

Extensive diagenetic studies on the Spiro sandstone have been done by Al-Shaieb

et al. (1995). Akhtar (1995), and Sagnak. (1996). The results of these studies, as well as a

study of eleven thin-sections within the project area, will be given here.

DETRITAL CONSTITUENTS

Major detrital constituents of the Spiro sandstone are quartz. metamorphic rock

fragments, glauconite, and skeletal fragments. Minor constituents include zircon,

phosphate, muscovite, and biotite (AI-Shaieb et al.. 1995). The major constituent is

monocrystalline quartz. comprising approximately 90-95% of the detrital constituents of

the thin sections (Figure 14). The grains exhibit straight to slightly undulose extinction,

indicating compaction of the grains. The quartz grains are medium grained and

moderately well sorted with rounded to subrounded shapes. The other 5-10% of detrital

constituents are metamorphic rock fragments and glauconite grains.

AI-Shaieb et al. (l995) and Sagnak (1996) reported skeletal debris in a study of

the Pan-American No. 1 Reusch core. These bits of debris included echinoderm plates
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and spines. bryozoans, and trilobites. These debris have been mostly replaced by calcite.

Some of the skeletal debris altered to collophane, but that was uncommon. Percentages of

fossils ranged from 1 to 25%. Al-Shaieb et al. (1995) and Sagnak (1996) documented

ostracodes, fusulinids, and coral fragments as well.

CEMENTS

Silica and carbonate cements are the primary cements in the Spiro. Silica forms as

syntaxial quartz overgrowths. These are marked by dust rims on the quartz grains. Al-

Shaieb et al. (1995), Akthar (1995), and Sagnak (1996) indicate the dust rims to be

chlorite or chamosite (iron chlorite). Thin-section and x-ray diffraction analysis indicated

that chlorite, and not chamosite, was the clay type within this study area (Figure 15). In

the footwall of the Choctaw fault, chamosite acts to prevent the formation of quartz

overgrowths and preserves primary porosity. Samples examined in this study were from

locations at the surface, within the hanging wall of the Choctaw fault. Absence of

chamosite in the hanging wall resulted in cementation and destruction of primary porosity.

Where calcite is present, it is the dominant carbonate cement (Sagnak. 1996).

Quartz grains and skeletal fragments commonly were replaced by calcite or dolomite.

Dolomite is the second-most-abundant carbonate cement. If calcite were originally

present in the rocks that were studied by me, it has been removed by solution.

DIAGENETIC CLAYS

Chlorite is the most abundant diagenetic clay. it occurs as grain-coatings and as

individual pellets. Chlorite is typically green to brownish green. Chlorite is also present in

thin sections as a pore-filling mineral.
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Figure I S. Photomicrograph showing chI rite a a grain-coating clay. From the
piro "landslOne.. W SW E. ec 20, TS ,R20E.
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Montmorillonite, smectite, vennicuJite, and illite also were identified in thin

sections and in x-ray diffractions. These clays probably result from the breakdown of

feldspars and possibly glauconite. The clay forms a pseudomatrix, indicating compaction

of the grains.

POROSITY

Both primary and secondary porosity were observed in the Spiro sandstone.

Primary porosity is the main porosity type, although it was modified by compaction,

cementation and dissolution (Figure 16). Primary porosity was preserved in areas with

clay coatings. The primary porosity provided pore-fluid migration pathways within the

sandstone. Primary porosity of the Spiro sandstone in the study area is approximately

11 %. The fluids partially or completely dissolved metastable constituents to produce

secondary porosity (AI-Shaieb et al., 1995. Akthar, 1995, and Sagnak, 1996).

Secondary porosity is significant in the Spiro sandstone. It appears as moldic

porosity and as oversized and elongated pores. Secondary porosity was documented by

Al-Shaieb et al. (1995) as being volumetrically as significant as primary porosity.

DIAGENETIC SEQUENCE

Diagenesis of the Spiro sandstone in the Arkoma Basin of Oklahoma was studied

in depth by Lumsden et al. (1971), AI-Shaieb (1988), AI-Shaieb et al. (1995), Akthar

(1995), Sagnak (1996), and was also dealt with in this study. Diagenesis of the Spiro

sandstone began shortly after deposition, just below the sediment-sea water interface. In

chamosite-rich
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Figure 16. Primary porosity modified by compaction. cementation, and di' olution.
From the Spiro <;andstone, W SW E, Sec 20, T5 , R20E.
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areas, quartz grains were coated thickly with diagenetic chamosite. With increasing depth

of burial, primary porosity was diminished slightly due to compaction (Figure 17) (Al­

Shaieb et al., 1995).

In areas with little chamosite, quartz overgrowths significantly decreased primary

porosity. The formation of calcite cement further decreased porosity. Deeper burial

allowed for thermal maturation of organic materials into hydrocarbons. Fluids, rich in

hydrogen ions and acidic (Al-Shaieb et al., 1995), moved through pore spaces, dissolving

metastable constituents and forming secondary porosity.

DEPOSITIONAL ENVIRONMENT

Studies of outcrops and cores, and documentation of sedimentary structures by

Akhtar (1995) and Sagnak (1996) resulted in the interpretation that the Spiro sandstone

was deposited in a shallow marine environment (Figure 5). The Spiro is marked by

medium scale trough cross-bedding with flow structures. Glauconite within the unit

suggests shallow marine deposition. AI-Shaieb et al. (1995) and Sagnak (1996) indicated

that burrows exist within a sub-Spiro shale. Houseknecht (1987), Lumsden et al. (1971),

and others suggested that sedimentary structures within the Spiro indicate a fluvial

depositional environment. Chamosite Jed Porrenga (1967) to suggest a shallow marine

environment. Sutherland (1988) concluded from this evidence as well as from his own

findings that the Spiro sandstone was deposited in a tidal-flat environment; other evidence

included interchannel deposits of fine grained sand and shale organized into ripple-bedded

and thoroughly bioturbated sequences.
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CHAPTER 4

GEOMETRY OF THRUST SYSTEMS

THRUST SYSTEMS

Where several thrust faults form in the same area they are collectively tenned a

"thrust system". Individual thrusts can be linked by connecting splays. Thrust systems are

composed of individual thrust sheets that stack on top of each other. Thrust faults in a

thrust system branch off a common sole thrust. According to Boyer and Elliott (1982),

the thrust sheets stack like "roof tiles" that all dip in the same general direction. The

branching thrusts will take one of two general structures: imbricate fan or duplex structure

(Figure 18).

IMBRICATE FANS

"Imbricate fan" refers to the shape of the thrust faults as they branch off the sole

thrust. Fans form either in front, or towards the foreland, of the leading thrust or behind

the leading thrust, towards the hinterland. If the maximum slip is toward the foreland, the

fan is said to be a "leading imbricate fan". If the maximum slip is toward the hinterland,

the fan is called a "trailing imbricate fan" (Figure 18). Boyer and Elliott (1982) stipulated

that all imbricate fans are of the leading type. They suggested that when a thrust sheet
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Figure 18. Thrust systems (from Boyer and Elliott, 1982).
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forms, it will slip upwards until strain is no longer strong enough to push it. At this point.

a new thrust sheet forms in front of it. This is termed a "break-forward thrust sequence"

Boyer and Elliott (1982). As subsequent thrusts fanned, each would be located farther in

the foreland than the previous fault. This model works well in most cases. However,

exceptions have been pointed out in the literature, notably by Butler (1987).

BREAK-FORWARD THRUST SEQUENCES

A break-forward sequence begins as a leading imbricate system. Faulting follows

the ramp and flat geometry proposed by Rich (1934). Thrust faults will propagate almost

horizontally through incompetent strata (evaporites, shales, etc.). Where the thrust

encounters a competent bed (sandstone, limestone, etc.) it forms a ramp at about 30 0 to

the horizontal. The thrust continues at this angle until it has cleared the competent bed

(Rich, 1934). Where the footwall ramp ends and the thrust sheet is pushed onto the flat,

the thrust sheet folds into an anticlinal fonn. Commonly, beds within a horse form an

anticline-syncline pair with the anticline in the headwall and the syncline in the footwall.

The term for the overlapping of duplex structures is "piggy-back" thrusting (Boyer and

Elliott, 1982). Therefore, break-forward sequences are also referred to as piggy-back

thrust equences. Figure 19 shows the evolution of the simplest case of break-forward

thrusting. As the thrust propagates upward through the competent bed it forms a ramp

structure. The resulting horse "rides" up the ramp and slips along the flat at the top of the

ramp. The horse d1velops an anticlinal form on its leading edge as the original hanging

wall bends over onto the flat (Figure) 9b). With folding comes increased friction along

the thrust. When the coefficient of friction overcomes the thrusting force, the thrust

38



L' , ,. bd'" 8.... ~ . . ..
. 53"

5,+5 2 +5 3

~ I .

~

:'S''':'''

,.

·.(:~~x.:;S:f..?

'----'-'1"

8 5

---

50+51+52-
·;·h~»~1m-~~\.-:::'~~:

UPPER & LOWER
GLiOE HORIZONS

-•.:..:: •...:.:.; : :.~ ~:.•: :.:.:.:.: .•..; :::, ..~ ::.-•. :.=.: :; ,.;

84

8 4

So + 51

83

82 • I . 83

FLOOR THRUST

8 3

82~

8i

I 81
I

5 --"12

8,

~

---~\ . , I 4 8
INCIPIENT

FRACTURE
FOOTWALL

RAMP

8

S1 + 52 ----"0..

So + 5 1__"

Stage 1

I

Stage 2

Stoge 3

50+ 5 1+ 5 2+53 ___

Ok- ~,

:TI
OQ
~..,
nl
~

\.0

tTl
<
0
~::.
0
::3
0.......
P'
0-....,
nl

~
I

0'..,
nl
~

~p..
.....

W ::T
\.0 2

V1.....
V1
(b

.D
c:
nl
::3
(")
nl

,.......
:;"
0
3
to
0
'<
(b..,
P'
::3p..

~..-
0.....
:-
..-
\.0
00
N



becomes inactive. At this point a new ramp fonns in the foreland. This stacking of

duplexes continues throughout the thrust sheet (Figure 19d).

FAULT-BEND FOLDlNG

Suppe (1983) proposed that if a fault surface is not planar, one of the fault blocks

must be distorted as it slips past the other. As the thrust sheet moves over a ramp and

onto the flat, folding of the horse results in a rollover (Figure 19d). Folding can also occur

after the horse fonns. As the hanging wall slides along the footwall, the areas of the beds

that contact the faults tend to bend in the direction of the motion. As the imbricate thrusts

overlap, the truncated pieces of the beds will fold on both ends causing an "S" shape

(Figure 20). Folding can also occur beyond the tip line in a blind imbricate thrust. The

stresses that cause faulting get dissipated over the length of the thrust in order to

overcome friction and the strength of unbroken rock. Eventually the strain is not great

enough to overcome the strength of the rock into which the fault is propagating. At this

point, it is common for elastic and plastic deformation to occur. The result is an anticlinal

fold around the tip line of the thrust sheet (Figure 22).

Suppe (1983) tenned this folding style fault-bend folding. Fault bend folding is the

process of bending of hanging wall fault blocks as they ride over a non·planar fault surface

(Woodward et aI., 1985). Suppe recognized three classes of fault-related folds. These

include: "( I) buckling caused by compression above a bedding-plane decollement" (Figure

21), "(2) fault-bend folding caused by bending of a fault-block as it rides over a non-planar

fault surface" (Figure 22), and "(3) fault-propagation folding caused by compression in

front of a fault tip during fault propagation" (Figure 23) (Suppe, 1983).
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Roof Thrust

Sole Thrust

Figure 20. A duplex represented as "an imbricate family of horses," as
described by Boyer and Elliott (1982).
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Figure 21. Schematic progressive development of a fault-bend fold
as a thrust sheet rides over a step in decollement.
(From Suppe, 1983.)
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Figure 23. Schematic progressive development of a fault­
propagation fold (from Suppe, 1983).



Several types of folding styles were studied by Suppe (1983). These included

folds with constant bed thickness (Figure 24a), kink bend folds (Figure 24b), chevron

folds (Figure 24c), box folds (Figure 24d), and concentric folds (Figure 24e). Kink and

chevron folds form in brittle rock units (Suppe, 1983). Concentric folds would form in

areas composed of thick shales with few structurally competent layers. This is the case

within the study area. The Atoka shales comprise a very thick column of strata interJain

by thin sandstones (Spiro, Cecil, Panola, Red Oak, and others). Folds have the general

appearance of kink-bend or chevron folds if the entire rock sequence behaves in a brittle

fashion. For this reason, Suppe (1983) stated that even concentric folds can be

characterized as a nearly infinite series of kink folds (Figure 25). Suppe devised a method

to analyze mathematically the dip angle of duplexes, to determine the angle of the thrust

fault that fanned them. This angle can be very useful in building balanced cross-sections.

Duplexes have multiple angles to be measured after they fold over earlier duplexes.

Analysis of the changes in angles can tell something about the shortening and shearing of

the horse as it rode over the thrust.

BREAK-BACKWARD THRUST SEQUENCES

Butler (1987) examined the break-forward sequence of thrusting and pointed out

that foreland-forming imbricate fans do form, but he also studied imbricate fans that he

believed formed to the hinterland of the original fault. He termed these fans "break­

backward thrust sequences." When the fault reaches its maximal displacement due to the

changed slope of the thrust. the new thrust will form towards the hinterland (Figure 26).

Subsequent thrusts will continue to form in the hinterland, due to the resistant forces in the
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Figure 25. Folding characterized as a series of kink-bend
folds, according to Suppe (1983).
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foreland (Butler, 1987). Break-backward regimes form in areas where a propagating

thrust sheet cannot be moved forward (Figure 27). This could be the result of a thrust

encountering a resistive up-thrown block, a fault escarpment, a resistive landform, or some

other unmovable object (Butler, 1987). The fact that the thrust cannot propagate forward

does not stop the stresses that are pushing the sheet. Where the thrust sheet encounters

the hindrance, horses begin to develop. It is possible that the horses will rotate with the

pressure of continued thrusting. If this happens the thrust will become deformed and

motion along it ceases. The internal structures of the beds will also become deformed.

Localized folding and shortening are to be expected (Butler, 1987). Eventually, as strains

build, faults will form. These thrusts form in a direction opposite that of the break­

forward sequence of thrusting discussed by Boyer and Elliott (1982) and Suppe (1983)

(Figure 19). The ramp will orient itself in such a way as to allow the thrust sheet to

undercut the horse (Figure 26). However, these duplexes will dip to the foreland, while

break-forward duplexes normally dip towards the hinterland. There is still an active sole

thrust, but the roof thrust is not active. Stacked duplexes and antifonnal stacks are

commonly in areas that have undergone break-backward thrusting (Butler, 1987).

DUPLEX STRUCTURES

Duplex structures are the other form of branching thrust faults. Boyer and Elliott

(1982) defined a duplex as "an imbricate family of horses" (Figure 20). If a thrust sheet is

completely bounded by branch lines the resulting form is a horse. According to Boyer and

Elliott (1982), horse is an "old and useful tenn" that indicates a "pod" ofrock or strata

that is bounded by thrust faults.
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Figure 27. Rotation of horses as a propagating thrust sheet
encounters a hinderance (from Butler, 1987).
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If the slip along the thrust is approximately equal to the length of the horse then

the branch lines will bunch up and the horses will stack (Figure 28). This is referred to as

an antiformal stack (Butler, 1987). The antiformal stack derives its name from its

resemblance to an anticline. As the horses are moved into position they undergo some

amount of folding. In some foreland-dipping duplexes, horses do not stack neatly.

Forward motion of the horse along the thrust surface may not stop when the horse

overrides the ramp. If this occurs, the horse will rotate so that the part of the horse that

was the hanging wall of the ramp will lie against the sole thrust. As new horses are

formed and progress up the ramp, they overturn. In this model the common "shingle­

stacking" of the duplexes is restored (Figure 29).

BACKTHRUSTS

Some thrust faults form in the direction opposite to regional thrust sheet­

movement (Figure 30). They are termed "backthrusts"" or out-of-sequence thrust faults"

by Boyer and Elliott (1982). New thrust faults either propagate upward into the thrust

sheet as a breakback structure, or forward and down into the footwall in an imbricate

formation (Butler, 1987). Whether backthrusts form as the result of localized binding of

the thrust sheet or by some other means is still undetermined (Butler, 1987).

TRIANGLE ZONES

Near the foreland termination of a thrust sheet conflicting stresses can build up and

form a backthrust (Tearpock and Bischke, 1991). McClay (1992) proposed that a triangle

zone is a combination of two thrusts with opposing vergence that form a triangular zone

between them (Figure 3 l). Price (1986) further stipulated that a triangle zone is bounded
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Figure 30. Displacement and propagation of a single back-thrust
(a) After displacement; (b) before displacement.
(Modmed from Butler. 1987).

Figure 31. Triangle zone (from McClay, 1992).
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below by a floor thrust. Defonnation of the thrust sheet tenninates at the triangle zone

(Johns, 1987 and Tearpock and Bischke, 1991). Thrusting extends into the basin until

stresses are weakened to the point where no new thrust fonns. This commonly occurs

because of a hindrance. Where the thrust sheet becomes hindered. a backthrust can fonn.

The place where the backthrust forms on the fore-thrust is called the "zero-displacement

point" (Figure 32b and 32c). Couzens and Wiltschko (1994) studied triangle zones at

many places in the world, and proposed three basic types. Type one has "opposed thrusts

with a symmetrical distribution above a single detachment level" (Figure 32a). Type two

features "opposing thrusts with an asymmetrical distribution above a single detachment"

(Figure 32b). In this case, duplexes of the propagating thrust sheet are in the footwall of

the backthrust. Type three (Figure 32c) has "opposed thrusts with an asymmetrical

distribution and two detachment levels" (Couzens and Wiltschko, 1994). The type two

triangle zone is most commonly found in areas with no "strong structural-lithic unit," such

as triangle zones in forearc basins. The triangle zone that is defined in the Wilburton area

by Al-Shaieb et a1. (1995), Cemen et a1. (1994,1995,1997), Akthar (1995), and Sagnak

(1996) (from Sagnak, 1996) is similar to the type three triangle zone of Couzens and

Wiltschko (1994) (Figure 32c). Figure 33 shows a sole thrust as the base of the triangle

zone whereas the final imbricate fault and the backthrust are the legs of the triangle.
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Figure 32. Three-end-member geometries of triangle zones
(from Couzens and Wiltschko, 1994).
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Figure. 33. The simple formation of a triangle zone. The backthrust forms in response to some resistance
to thrusting. The sole thrust forms the base of the triangle and the imbricate thrustforms the third leg.



CHAPTER 5

STRUCTURAL GEOLOGY

INTRODUCTION

Structural geometry of thrust faults in the transition zone between the Ouachita

Mountains and the Arkoma Basin has been debated for some time. The main debate

concerning structural geometry has been over the imbricate thrusts and the presence of a

triangle zone. Suneson (1995) summarized structural interpretations of the transition

zone. The following paragraphs dealing with triangle zones are based on this summary.

Arbenz (1984) was the first to recognize south-dipping thrust faults, blind

imbricate thrusts branching from the exposed thrust system, and deep decollement

surfaces that served as the floor thrusts for the imbricate thrusts that extend into the basin

(Figures 34 and 35). Arbenz interpreted the detachment surface as rising gradually

nonhward.

Hardie (1988) was the first to apply the term "triangle zone" to the geometry of

the basinward side of the transition zone (Figure 36). Based on areal geologic maps,

Hardie (1988) identified the Blanco thrust. located southwest of the town of Hartshorne

(east of1he study area), as the "basinward roof of a relatively thick triangle zone." His

cross-sections showed blind imbricate thrusts and backthrusts in the footwall of the
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Fig ure 34. Triangle zone, de'collement, and bl ind
imbricate faults (From Arbenz, 1984).

N CHOCTAW FAULT

,
BASAL DECOLLEMENT

Figure 35. Triangle zone from Arbenz (1989)
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BACKTHRUSTS

Figure 36. Sketch cross-section showing styles of deformation in the.
subsurface at the transition zone between the Arkoma Basin
and Ouachita Mountains, as proposed by Hardie (1988)
(after Suneson, 1995).

N
CARBON FAULT
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DETACHED
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Figure 37. Sketch cross-section showing styles of deformation in the
subsurface at the transition zone between the Arkoma Basin
and Ouachita Mountains, as proposed by Milliken (1988)
(after Suneson, 1995).
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Choctaw Fault. He also mapped a basal detachment surface at the base of the

'Pennsylvanian Springer Fonnation.

Milliken (1988) interpreted a thin triangle zone floored by north-directed imbricate

thrust fault (Figure 37). He also interpreted deeper structures that he termed "detached

bi-vergent imbricates."

Camp and Ratliff (1989) identified a thick triangle zone floored by blind imbricate

thrusts and backthrusts (Figure 38). They also suggested a deep, north-directed

detachment that climbs from Mississippian shales in the south to Middle Pennsylvanian

strata to the north. Their cross-section also shows imbricate backthrusts splaying off the

roof backthrust of the triangle zone.

Reeves et al. (1990) interpreted a thin triangle zone floored by two north-directed

duplex structures (Figure 39). They suggested that the decollement actually lies within

lower Atokan strata instead of the fonnerly proposed Mississippian to Morrowan strata.

They also showed a complex series of blind imbricate thrust faults, similar to the

"detached bi-vergent imbricates" of Milliken (1988).

Perry et al. (1990) proposed a shanow triangle zone overlying a deeper triangle

zone. They revised their interpretation to show that the deep triangle zone consisted of

north-directed duplexes with a floor thrust and a north-directed roof thrust that gradually

gets shallower within the Atoka Formation (Figure 40).

Roberts (l 992) interpreted the structural geometry near Heavener, Oklahoma to

be the result of underlying duplex structures instead of a triangle zone (Figure 41). He

made his interpretations with seismic data and little well control. He proposed a basal
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IMBRICATE
BACKTHRUSTS

Figure 38. Triangle zone with imbricate backthrusts
(from Camp and Ratliff, 1989).

N

SHALLOW

Figure 39. Triangle zone with shallow and deep duplex
structures and higher level of basal detachment
(from Reeves et aI., 1990).
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Figure 41. Note absence of triangle zone and presence of
thick duplex structure (From Roberts 1992).

Figure 40. Note passive roof duplex and shallow and deep
triangle zones (From Perry and others 1990).
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Figure 42. Schematic structural cross-section illustrating the transition
from the Ouachita fold and thrust belt to the Arkoma foreland
basin (after Wilkerson and Wellman, 1993).

64



decollement in the lower part of the Atoka Formation that extends deep into the basin.

Wilkerson and Wellman (1993) suggested a thin triangle zone and duplex

structures (Figure 42). They also included oblique ramps, tear faults and blind imbricate

thrusts in their interpretation (Suneson, 1995).

AI-Shaieb et al. (1995), Cemen et a1. (1994, 1997) Akhtar (1995), and Sagnak

(1996), in the OCAST project, suggested imbricate thrusts within the Wilburton gas field

area. They concluded that duplex structures and a triangle zone exist in the area. They

proposed a triangle zone that is bounded by the Choctaw fault to the south, by the Carbon

fault to the north, and that is floored by the Lower Atokan Detachment surface. They also

concluded that the footwall of the Choctaw fault contains duplexes fonned in a break­

forward sequence of thrusting. They reported about 60% shortening of the Spiro

sandstone in the Wilburton area.

This study is concerned with changes eastward from the Wilburton gas field area

to the Panola and Baker Mountain quadrangles (Figures 44-48, and Plates I-V). As part

of the study of structural geometry, five balanced structural cross-sections were

constructed. This was done by the key-bed method, using the Spiro sandstone as the

marker. The locations of the cross-secitons and seismic lines used in this study are shown

in Figure 43. Cross-section D-D' (Figure 47) is based on the best well-log data control,

and is positioned directly on seismic line QM5-8 (Figure 49, Plate 6). For these reasons,

cross-section D-D' was used as a model to aid in the interpretation of the other four cross­

sections. The cross-sections were restored to estimate the amount of shortening within

the study area.
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Figure 44. Balanced structural cross-section A-A'. Location of cross-section shown in Figure 43.
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Figure 46. Balanced structural cross-section C-C'. Location of cross-section shown in Figure 43.
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Figure 48. Balanced cross-section E-E'. Location of cross-section shown in Figure 43.



Figure 49. Seismic line QM5-8 donated by Amoco
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MAJOR THRUST FAULTS

Figure 50 is a simplified geologic map of the study area that shows several south­

dipping thrust faults to the southward from the trace of the Choctaw fault zone. Some of

these are major thrusts, whereas others are splay faults off major faults (Figures 44-48).

These faults are interpreted as branches from the Choctaw detachment (in the subsurface)

(Figures 44-48, Plates I-V).

The Spiro sandstone of the subsurface is used to delineate the structural geometry

of the thrust system. The Atokan Cecil, Panola, and Red Oak. sandstones are also used to

solve the complex geometry of the footwall of the Choctaw fault.

The Choctaw fault is the boundary between two different structural geometries.

The hanging wall block has many listric thrust faults in an imbricate fan structure (Figures

44-48, Plates I-V). The footwa)) block contains a lower and upper detachment surface,

duplex structures, normal faults, and a triangle zone.

WINDING STAIR FAULT

The Winding Stair fault is the southernmost surface fault within the study area.

Areal geologic maps by Suneson, Ferguson, and Hemish (1987, 1988) indicate 70 to 80

degrees of southward dip along the fault. The Winding Stair fault juxtaposes the Jackfork

Formation and the younger Atoka Formation. The amount of displacement along the fault

is unknown. This is due to the lack of a piercing point. which would permit location of a

bed in the hanging wall and footwall of the fault. The Winding Stair fault is located near

the southern ends of the cross-sections (Figures 44-48 and Plates I-V).

73



CHOCTA"WT DETACHMENT

Cross-sections within the study area indicate that a detachment exists in the

southern part of the study area. Figures 44-48 and Plates I-V show the dips of the Ti

Valley fault, the Pine Mountain fault, and the Choctaw fault are less steep at depth. This

variation in dip along the faults is indicated from seismic data (Figure 49). Wells in the

southern part of the study area cut the Spiro sandstone at "two to three places (Figures 44­

48 and Plates I-V). Cross-section B-B' (Figure 45) contains two indications of horizontal

Spiro sandstone; one just below the Ti Valley fault and the other at approximately -16,000

to -17,000 feet. The horizontal nature of the two Spiro units indicates that a detachment

surface must cut between them. According to the interpretation of faulting in Figures 44­

48 (Plates I-V), a horizontal fault would have to connect the Pine Mountain and Choctaw

faults. Since the Choctaw fault is the leading thrust, the detachment is named the

Choctaw Detachment. The Choctaw and Pine Mountain faults are branches from this

detachment (Figures 44-48 and Plates I-V). Akthar (1995) proposed that the Ti Valley

fault also branches from this detachment surface. He also proposed that the Choctaw

Detachment was a branch off the Woodford Detachment. This branch occurs to the south

of the study area.

TI VALLEY FAULT

The Ti Valley fault is located to the north of the Winding Stair fault. It extends

about 240 miles, from near Atoka. Oklahoma to near Jacksonville, Arkansas (Suneson,

1988). The hanging wall of the Ti Valley fault contains several overturned folds within

the Johns Valley Formation (Figure 50, Plate 7). Thrusts are interpreted as forming the
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Figure 50. Generalized geology and tectonic map of the study area.
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cores of these anticlines. Evidence for this is shown in cross-sections D-D' and E-E'

(Figures 47-48) for the thrust cored anticline just to the north of the Winding Stair fault.

Folding of the Johns Valley Formation was determined largely from surface geology.

The footwall of the Ti Valley fault contains the first identifiable location of the

Spiro sandstone from the south in the subsurface. The Spiro formed a hanging wall'

anticline in the subsurface as it was thrust over underlying strata (Figure 19). This

thrusted block was rotated as the Pine Mountain fault formed. Within the footwall of the

Pine Mountain fault, the Spiro was folded as the imbricate fan propagated into the basin.

The Ti Valley fault (Figures 44-48 and Plates I-V) is a thrust fault of the leading

imbricate fan in the hanging wall of the Choctaw fault. The Ti Valley fault and the blind

splays to the north are the cores of anticlines (Figures 44-48 and Plates I-V). On the

surface, this is manifested by the folding of the Johns Valley Shale (Figures 44-48 and

Plates I-V).

At the surface, the Ti Valley fault dips about 70 to 80 degrees, based on seismic

and well-log data. The fault is interpreted as having "flattened out" at depth (Figures 44­

48 and Plates I-V). Hendricks (1959) estimated the "minimum dispJacement"along the Ti

Valley fault to have been 20 miles.

Stratigraphy of the hanging wall and footwall of the Ti Valley fault is different. In

the hanging-wall, the Lower Atokan is represented by the uppermost part of the Johns

Valley Shale. In the footwall block, the Lower Atokan is represented by the Spiro

sandstone. The transition zone between these time-equivalent units is very difficult to

locate. Suneson and others believe that a surface expression of the transition zone is at
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Hairpin Curve (Sec 3, T3N R 19E to Sec 2, T3N R20E (Suneson, 1990). Within this

study area, the hanging wall of the Ti Valley fault contains the Johns Valfey Shale whereas

the footwall contains the Atoka Fonnation (Figures 44-48 and Plates I-V). It is unclear

whether the transition occurs in the extreme south end of the cross-section in the footwall

block, was thrusted up and subsequently eroded or occurs to the south of the study area.

PINE MOUNTAIN FAULT

The Pine Mountain fault is located between the Ti Valley and Choctaw faults and

is sub-parallel to them (Figures 44-48 and Plates I-V). The fault dips southward between

65 and 80 degrees, becoming less steep with depth. The Pine Mountain fault is interpreted

as a splay from the Choctaw Detachment surface at depth (Figures 44-48 and Plates I-V).

The Spiro sandstone is in the hanging wall and footwall blocks. The footwall Spiro

sandstone breaches the surface in a faulted zone just south of the surface trace of the

Choctaw fault (Figure 48 and Plate V).

CHOCTAW FAULT

The Choctaw fault is the boundary between the Ouachita Mountains and the

Arkoma basin in Oklahoma. The fault extends more than 120 miles within Oklahoma and

trends west-southwest to east-northeast. To the southwest. the Choctaw fault fonns a

splay, the southernmost unit of which is the main fault. This splay was named as the

Choctaw fault by Suneson, Hemish. and Ferguson (1989). In the Wilburton area, Akhtar

(1995) and Sagnak (1996) showed the Spiro at the surface along the Choctaw fault. In

the study area, in the hanging wall of the Choctaw fault, there is a fault zone that contains

an outcrop of the Spiro sandstone. This fault zone was infonnally named the "Ridge
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Thrust" by Cemen (personal comm., 1997). In this study. the "Ridge Thrust" is named the

.Choctaw Fault Zone and the Choctaw fault is referred to as the Northern Choctaw fault.

When a cross-section is constructed using the placement of the Choctaw fault by Hemish,

Suneson, and Ferguson (1988), there is a thick fault block basinward of the Choctaw Fault

Zone that contains no Spiro sandstone (Figure 51). However, the fault block does contain

both the Red Oak and Panola sandstones. It would be impossible to restore the cross­

sections where a fault block does not contain the Spiro sandstone. The absence of the

Spiro sandstone in this block suggests that the leading-edge thrust in the study area is the

Choctaw Fault Zone. The splay that is now termed the Northern Choctaw Fault must be

younger than the Choctaw Fault Zone since it does not cut the Spiro sandstone.

In the hanging-wall block of the Choctaw Fau~t Zone are several secondary

thrusts. These are between the Choctaw and Pine Mountain faults. These southward­

dipping thrusts are interpreted as joining the Choctaw Fault Zone where it begins to

"flatten out" to the south. They fonn a leading imbricate fan structure with the Choctaw

Fault Zone as the leading thrust. Perry and Suneson (1990) suggested about 6 miles of

shortening along the Choctaw Fault.

Geometry of the footwaIJ block of the Choctaw thrust is different from that of the

hanging-wall block. Where the hanging wall had imbricate fans, the footwall block has

duplexes between two main detachment surfaces, normal faults, and a triangle zone.

BASAL DETACHMENTS

The two basal detachments in the footwall block of the Choctaw fault are the

Woodford and Springer Detachments. The Woodford Detachment is named for the
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Woodford Shale which is the "host" forthe fault (Hardie, 1988). It is a gently northward-

sloping detachment that is 17,000 to 18,000 feet below sea level. In the southern areas of

the cross sections (Figures 44-48 and Plates I-V), the Woodford Detachment acts as a

floor thrust for a duplex system called the Gale-Buckeye thrust-system (Wilkerson and

Wellman, 1993). The Woodford rises gently northward and is the detachment surface for

thrusts that cut the Spiro and Cecil sandstones. Northward along the Woodford

Detachment, the decollement rises to the level of the "Springer" Shale (Figures 44-48 and

Plates I-V). At this location, the decollement is named the Springer Detachment. The

Springer Detachment is approximately 16,000 to 17,000 feet below sea level. The

Springer Detachment forms the floor thrust of a set of horses that contain the Spiro and

Cecil sandstones.

The detachment that forms the roof of the horses is named the Lower Atokan

Detachment (Akhtar, 1995), which is difficult to place on the cross-sections. Evidence for

the detachment is in cross-sections (Figures 44-48 and Plates I-V) and on seismic line

QM5-8 (Figure 49 and Plate 6). The Red Oak and Panola sandstones in the footwall of

the Choctaw Fault are folded gently, as are units of the San Bois Syncline above them.

Several thousand feet below this syncline, the Spiro and Cecil sandstones are included in a

duplex structure (Figures 44-48 and Plates I-V). The seismic line (Figure 49 and Plate 6)

also shows different attitudes in dip between the Spiro and Red Oak sandstones. This

change in geometry suggests that some barrier must separate them. This proposed barrier

is the Lower Atokan Detachment (LAD). The Lower Atokan Detachment branches off

from the Woodford Detachment and propagates northward into the basin and thrusts
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under the San Bois Syncline. The San Bois Syncline marks a change in tectonic styles in

the basin from faulting to folding.

The placement of these detachments was based on available data. The Springer

and Woodford Shales are at depths such that only a few welllogs encountered them.

Where no data were available the detachments were placed by interpolation. The vertical

distance between the base of the Spiro sandstone and the top of the Springer or Woodford

Shales was recorded from logs of nearby wells and extrapolated to the cross-sections to

approximate the depth to detachments.

DUPLEX STRUCTURES AND THE LOWER ATOKAN DETACHMENT

In the study area, duplex structures exist in the footwall of the Choctaw fault. The

floor thrust is the Springer Detachment. Correlation of the Spiro sandstone between wells

in Figures 44-48 suggests that the duplexes dip to the south forming a hinterland-dipping

duplex. This duplex structure results in the formation of horses (Boyer and Elliott, 1982).

These horses cause repeated sections of the Cecil and Spiro sandstones that are contained

in each horse. The LAD is approximately 12,000 feet below sea level. It has a gradual

ramp to the north of the leading duplex and dies into a backthrust somewhere above the

Cecil sandstone.

The placement of horses within this study area is inferred from cross-sections that

contain many data points (A-A', B-B', D-D') (Figures 44, 45. and 47). The geometry of

thrusting is slightly different from that described by Akthar (1995) and Sagnak (1996)

(Figure 52). The Choctaw fault and the backthrust are much closer together in the study

area than the,Y are in the Wilburton area. This could be caused by a change in aspect of
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either fault. Another change from the Wilburton area is evidenced by the duplex structure

in the footwall of the Choctaw fault. The duplex structure is compressed between and

below the Choctaw fault and the backthrust. There are also fewer horses indicated in the

Wilburton area (Figure 52) than are indicated on cross-section in the study area (Figures

44-48 and Plates I-V).

TRIANGLE ZONE

This study suggests that the triangle zone that was delineated in the OCAST

project (Al-Shaieb et aI., 1995, Cemen et aI., 1994, 1995, 1997, Akthar, 1995, and

Sagnak, 1996) continues into the study area. This triangle zone is floored by the Lower

Atokan Detachment. The LAD surface propagated under the San Bois Syncline until

stresses were no longer great enough to create a new fault, at which point, the detachment

reached the zero displacement point and a backthrust formed. The backthrust is believed

to be the subsurface equivalent to the Carbon fault that can be mapped at the surface in

the Wilburton area. The presence of the backthrust is evidenced by relatively flat-lying

Spiro and Cecil units and increasingly steeply dipping Panola and Red Oak sandstones

above them (Figures 44-48 and Plates I-V). Cross-section B-B' and cross-section D-D'

(Figures 45 and 47) indicate a flat lying Cecil sandstone below an upraised northward

dipping section of Red Oak and Panola sandstones. The backthrust, along with the LAD

and the leading thrust of the Choctaw Fault Zone forms a triangle zone that is similar in

aspects to the ones proposed by Arbenz (1989) (Figure 35) and Camp and Ratliff (1989)

(Figure 38). and is something of a hybrid between the two.

Whether this thrust intersects the Choctaw Fault is unknown. Lack of well contro)
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in the proposed intersection zone makes it impossible to place the intersection. Likewise,

the exact location of the zero displacement point along the LAD-backthrust zone is

difficult to place with accuracy.

NORMAL FAULTS AND STRIKE SLIP FAULTS

Normal faults are in the footwall of the duplex structure and below the triangle

zone. These normal faults are evidenced by a drop in subsea elevation of the Spiro

sandstone in cross-sections A-A' and D-D' (Figures 44 and 47). The faults are interpreted

to be remnant structures from the breakdown of the continental shelf during the

Pennsylvanian and are therefore older than the thrust faults. Cross-sections indicate that

the normal faults displace the Spiro sandstone, but their displacement does not reach into

Middle Atokan units such as the Cecil. Ferguson and Suneson (1988) proposed that the

growth faults acted as barriers that deflected the thrust faults upward.

Strike-slip faults are shown on the base maps (Hemish, Suneson, and Ferguson,

1988, 1989) (Figure 50). These faults have right-lateral movement and can be classified as

tear faults. The tear faults are oriented in two directions. Faults in the footwall of the

Choctaw Fault (Figure 50) are oriented in a northeast-southwest direction. These could

be the result of differential stresses caused by the thrust sheet to the south. Faults in the

hanging wall of the Choctaw Fault are oriented with a southeast-northwest trend.

RESTORED CROSS-SECTIONS AND SHORTENING

The cross-sections are restored using the key bed restoration method to calculate

the amount of shortening for the Spiro sandstone (Figures 53-57). The Spiro sandstone

was chosen as the key bed because it is an easily discemable and continuous unit within
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the very thick Atoka Formation.

The pin lines for the restored cross-sections are located between the leading edge

of the duplex structure and the normal fault where the strata was not affected by the

shortening in the frontal zone. The loose lines are located in the south where there is no

piercing point for the Spiro.

Calculations suggest about 63'70 shortening for the Spiro sandstone. Shortening

amounts were calculated from 1:24,000 geologic maps. The scales for the cross-sections

and the restorations are not the same. Restorations had to be scaled down in order to

make them fit on the plates (Plates I-V). Lengths used in the restorations are measured

lengths at the original I :24,000 scale of the geologic maps. The calculations of shortening

are as follows:

Cross-section A-A':

Lf = 31.625 in =11.98 mi

Lo =84.5 in =32.0 mi

dL = Lf-Lo= -20.02

e =-dULo =.625

e =62.5%
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Cross-section B-B':

Lf = 31.375 in = 11.88 rni

Lo =81.75 in =30.97 rni

dL = Lf-Lo = -19.09

e =-dULo =.6164

e =61.64%

Cross-section C-C':

Lf = 30.68 in = I 1.62 rni

Lo =83.0 in =31.44 rni

dL = Lf-Lo = -19.82

e = -dllLo = .6304

e = 63.04%

Cross-section D-D':

Lf = 27.625 in = 10.46 mi

Lo = 85.25 in =32.29 mi

dL = Lf-Lo =-21.83

e =-dllLo =.6761

e =67.61%
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Cross-section E-E'

Lf =30.06 in = 11.38 mi

La = 83.0 in = 31.44 mi

dL =Lf-Lo = -20.06

e =-dULo =.6380

e = 63.8%
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CHAPTER 6

CONCLUSIONS

The major accomplishments of this study are listed below.

1) The study area contains two different geometries. One above and the other below the

Choctaw Fault.

2) The hanging wall of the Choctaw Fault contains a southward dipping imbricate fan

complex that displaced the Spiro Sandstone.

3) The footwall of the Choctaw Fault contains a duplex structure floored by basal

detachment surfaces at two different depths (Woodford-Springer Detachment).

4) A floor (Springer detachment) thrust and a roof thrust (Lower Atokan detachment)

fonn the lower and upper boundaries of the duplex structure.

5) The leading edge of the Ouachita fold and thrust belt terminates into a shallow triangle

zone that is bounded by the Choctaw fault, the Lower Atokan detachment, and the Carbon

fault.

6) The average amount of shortening in the Panola and Baker Mountain quadrangles is

approximately 63%.
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APPENDIX I

WELL LOG DATA SHEETS
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WeilL Dat

2

3
4

...... 5
o
o 6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

Operator Well Location Sec. Field K.B. TODRO Top Spiro X·Section
3N·20E
II&H S1llr Energy HOlle 111-4 FJ2 WI2 SE 4 Buffalo Mountllin 785 18736 B-B'

4N-20E
Mobil ExPl. & Prod Lon!!. Creek III-I 500 FSL 2240 FWL 1 Wildcat 867 NR NR R·E'

H&H Star Energy Dipping Vot 111-4 CSE 4 DamonEasl 1028 10620 / 16060 B-B'

H&H Star Enerll.Y Lucky Strike Ii 1-5 SENESW 5 Panola South 902 NR 14112 A-A'

Anadarko Pd.. Barnes 111-9 "A" SENWSE 9 Damon South 1145 12280 16286 B-B'

Anson Corp. Golden 111-10 NWNE8W 10 Diooina. Vat 1061 14914 c-C'

Aroo Oil &. Gas Prentice"A" II H 1 N/2 N/2 8/2 11 Panola South 1245 15910 D-D'

H&H Star Ener2V Devils Hollow 111-13 NE8ESW 13 Panola South 1618 16147 BoB'

Mobil Oil Willdina. Stair II IA·14 SWSWSE 14 Panola South 1582 1474S / 16234 D-D'

H&H Star Ener2V DiDPina. Vat 111-15 NWNESW 15 Panola South 1385 11300 C-e'
H&H Star Fnergy Coooers Hollow 111-16 NENW8E 16 Panola South 1232 17197 B-B'

Amoco Prod. Green Bav 111-17 1840 FSL 1600 FWL 17 South Wilburton 1224 17992 A-A'

SCUIla ExPloration Green Bav 1#2·17 565 FSL 840 FWL SE 17 South Wilburton 1188 NOB NDB A-A'

H&H Star FnerllV Bear Suck Knob 111-20 SWNESW 20 Eiilrt Miles Mountain 1486 NR NOB A-A'

H&H Star Enermr Bear Suck Knob 111-20 "An SWNESW 20 Eill.ht Mile Mountain 1532 NR 11200 A-A'

H&H St.ar FnerllV Eill.htl\'liIe Motn. 111·21 NWSENW 21 Wildcat 1512 17600 8-8'

H&H Star EnerRY Green Bay 111-34 SESWNE 34 Wildcat 1135 NOB e-c'
H&H Star Energy Buffalo Creek 111-]5 SWNWSE 3S Buffalo Mountain 976 NR NR 0-0'
Chesapeake ()Per. Inc. Hsuy 111.35 2400 FNL 2100 FWL 35 Wildcat 1119 NR NR J).O'

H&H Star Ener2V Middle Mountain 111-]6 SWSENW ]6 WindinR Stair 1045 NOE NDE BoB'



5N-20E
Kaiser-Frnncis Oil Miranda Ifl SWNENW I AtokA 622 NDE NDE E-E'

GulfOil EllPl. & Prod Co. Booth #1·1 CNW I PUloia 62~ E-E'

D. C. Slawson Foster #1-1 CSW I PUloia 6~0 73~1 13188 E-E'

MustanR. Production Adams 111-2 WI2 El2 SW 2 Panola 607 7101 NOE 0-0'

MUslanR. Production Booth 1/1-2 NWNWSENW 2 PUloia 610 7~~3 12~40 0·0'

MuslanR. Production Cathey /#1-3 NENESWNE 3 PUlol. S96 7828 12646 O-D'

Mustanlt Production Co. Cash-Mitchell /# 1-3 CSW 3 Panola 601 7290 NOE COC'

Unit Drillinll. Hawthomc If 1 El2 El2 NWSE 4 Panola 623 7987 NOE CoCo

Unit DrillinR. Maxey /#1-4 SWSE 4 Panola 653 NDE NOE 8_8'

Unit OrillinR. Maxey /#I-~ 1090 FSL 172~ FWL SE 5 Panola 648 830S NOE B-B'

D.C. Slawson McKee N/2SWSW 5 PUloia 659 8542 NOE A-A'

Meclnc. Lively /12 CSESW 6 Panolli 616 8472 NOE A-A'

Williford Enerll.Y Wiltinton #1-7 SWNENE 7 Panola 675 7550 NOE A-A'

Williford Enerll.Y Butzer /#1-7 CSE 7 Panola 574 6090 NOE A-~

Unit DrillinR. Coxfll NWNESWNE 8 Panola 659 6774 NDE 8-B'

Unit Drillin~ Oear/#1 SENWNW 8 Panola 697 7490 NOE A-A'

Unit Drillinll. 00 Liihtl\' /#1 NI2SENW 9 Panola 648 6339 14320 8-B'/C-C'

Austin Production Co. Colvard Lm /# I CNW 10 Panola 626 652~ NOE COC'

Austin Production Co. Robinson /I 1-11 NESWNW 11 PUloia 672 6200 NOE 0.0'

MustanR. Production Co. Robinson /11-11 CN/2 SE 11 Panola ~8S 6420 13710 E-E'

D. C. Slawson Abbott #1-12 NWSENW 12 Panola 764 6508 NOE E-E'

Anson COI1l. Collev#I-13 SESWSW 13 Panola 640 9100 10600/12750 E-E'

Arco Oil & Oaa Rock bland Ill-IS SWSESE 1~ PUloia South 613 7296 NOE 0-0'

Humble Oil & RefmiDR. Shay III SWNESW 17 Wildcat 626 62~0 14348 A·A'

Edwin L. Cox Shay 1#1 CS/2NW 17 Wildcat 616 63~6 NOE A_A"

Unit DrillinR HardinR. #1 EI2 NE 18 Panola 57S 6855 NOE A-A'
I Amon Corp. Buzzard Oap /I 1-19 SENESW 19 Panola South 833 8889 13790 A_A'

I Ansoo Corp. Hardcastle /# 1-20 N/2 N/2 SE 20 Wildcat 684 83~0 13940 B-B'

21
22
23

24

25

26

27

28

29

~

31

32
33-o 34....
35

36

37

3B
39

40

41

42

43

44

45

46

4

48



......
o
N

49

SO

51

52
53

54
55

56

57
58

59

00
61

62

63
64
65
66

67
68

69
70
71

72

73

74

Amooo Production Cindy 1#1-21 SESWSW 21 PWlOia South 717 2160/13S46 B·B'

Anson Corp. Sinner #1-23 SWSESW 23 Pnnola South 683 IS2S3 D-O'

Anson Corp. Boykin 111·24 SESWSW 24 Panola South 6~2 160 R-E'

Anson Corp. LaIR Creek II 1-2S 10SO FSL 270 FWL 2S Panola South 861 ISS80 E-E'

Amoco Production Raymond Smith II I SENESW 26 Bear Suck Knob 710 l3286 113740 114086 0-0'
Anadarko Paroleum Nicflolson "A" 111-22 300 FNL 2400 FEL 27 Cravens 748 1986/13920/1'378 0-0'

Amooo Production Jack Bauman #1 SESESE 27 Wilburton NIA S774 394S 11J7S0 1 13840 0-0'
Anson Corp. Tumey #1·28 SENWSW 28 WildCllt 1111 4310/14173/1'000 B-B'

Anson Corp. Cox 111-28 S20 FNLJIO FEL 28 Pnnola South 887 14200 C-C'

AIlIlOI1 Corp. Blakely 111-28 NENE 28 Pnnola South 992 4700 NOE C-C'

Anson Pr(lduuion Clear Creek #1-29 190 FSL 1S70 FWL 29 Cravins 876 112601 132S3 A-A'

Anadarko Paroleum H&H Cattle Co. It 1-31 N/2 SE SE 31 Wilburton East 869 7900 1'248 A-A'

Anson COil). Turner 111-33 NWSESE 33 Panola South 1048 S614/1 S344 B-B'

Aroo Oil & Gas Norman /I 1-]4 SESESE 34 Wilburton East 941 14S00 1 IS360 1 IS9SS D-D'

6N-20E
Midwest Oil Corp. OalTatlll SENWSE 14 Red Oak-Norris 1019 9034 NOE E-E'

Amooo ProdUdion OalTat 112 SWSENW 14 Red Oak-Norria NlA E-E'

BalTdl Resource< OalTat #3 SWSWNE 14 Red Oak 1468 9032 NOE E-E'

Shell Oil Co. Fosl« III-IS SESWNE IS Red Oak-NolTis 1'27 8927 NOE 0-0'
I)voo PetroleuRl Com. Parsons II A-I CEl2 NE 16 Red Oak IS54 100SO NOE C-C'

Texas Oil & Gas COlli. Parsons IIA-I CNWSE8E 16 Red Oak-Norris 1416 9070 NOE C-C'

Shell Oil Co. Parsons #1-16 8/28/2 N/2 16 Red Oak-Norris 1497 10110 NOE C-C'

l..eben DrillinR Inc. Parsons Unit 111-17 El2 Wi2 E/2 17 Red Oak-Norris 1344 9961 NOB B-B'

Leben Drilling Inc. Jankowsky 111·18 1000 FEL 1300 FSL 18 Red Oak-Norria 1298 9842 NOE A-A'

Tenneco Oil Co. Cccillll-19 SWSWNESW 19 Panola IOS8 NOE 13600 A-A'
TaUleco Oil Co. SwartHI-20 CSW 20 Kinta 1210 10212 138S8 A-A'
l)Yco Petroleum Musiclf.l W/2 W/2 F12 NW 23 Red Oak-Norria 1'13 NDE NOE D-D'



......
ow

75
76
77

78
79
80

81
82
83

84
85

MUslJlng Production Younll. & Cooper /I 1-26 CSW 26 Pallola 1663 933~ 1364~ 0-0'

D. C. Slawson PJIII-'].? CE/']. 27 P8Iloia 1570 .. 9330 13571 0-0'
Tenneco Oil Co. Pieroe 1/ 1-29 S/2 N/2 S/2 NW 29 Panola l1S6 10'1.33 13480 A.A'

Santa Fe Minerals Pierce 111·30 E/2NE 30 P8Ilola 1500 10~20 1410~ A·A'
Leede Oil & Oas Co. Wilburton Mounl4in 1/1 NENWNWSE 31 Wildcat 1498 9400 13940 A·A'

Mobil Oil Co. Parks ~ 1 SESWSW 33 Wildcat 672 $380 13080 B-B'
MUslJlng Production Co. Parks 111-33 W/2 WI2 E/2 SE JJ P8Ilola 1068 87S0 13290 C·C'

S\ll1setlnt. Petroleum Co. Fisherm8ll III 1000' NE ofCcntcr 34 RedOnk 977 8704 13042 0-0'
Mustang Production Metcalfe /I 1-34 N/2 NJ:z S/2 SE 34 RedOnk 6~4 8274 ... 12642 D·D'

Mustal1g Production Follter 111·;15 1170' S 820' W SW 33 P8Iloia 6$2 821~ 1'1.630 0·0'
Mustanll. Production Austin 111-36 SWSWSENW 36 Panola 695 8260 12S42 E-E'



Plates I, 2, 3 , 4, 5,
There is a Plate 61isted, but it was not

accompanying the other plates; however, there are
two Plate 7/s and they are both represented here as:

7 and 7a.
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