
FUZZY MONITORING OF INTRAVENOUS PROPOFOL

INFUSION ANESTHESIA IN DOGS

By

BRENT D. EILERTS

Bachelor of Sc ience
Cellular Biology

University of Kansas
Lawrence, Kansas

1989

Bachelor of Science
Chemical Engineering
University of Kansas

Lawrence, Kansas
1994

Subm itted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1997



FUZZY MONITORING OF INTRAVE OU PROPOFOL

INFUSION ANESTHESIA IN DO

Thesis Approved:

)
?/ / /". --

Dean of the Graduate College

ii



ACKNOWLEDGMENTS

I would like to express my gratitude to my faculty adviser, Dr. Robert Whiteley,

and to Dr. Ron Mandsager for their instruction and assistance during all phases of this

project. I would also like to thank Dr. Cyril Clarke and Dr. David Bourne for their

constructive input into the conduct of this project. I would also like to thank my other

committee members, Dr. Karen High and Dr. Jan Wagner, and the other faculty of the

School of Chemical Engineering from whom I have received superior instruction.

In addition to those who provided intellectual support, I would like to recognize

and express my gratitude to those who have provided financial support. My thanks go to

the family of Dr. Lyman Yarborough, from whom I have received support through a

Distinguished Graduate Fellowship in his name. I also would like to thank the National

Jnstitutes of Health and the School of Chemical Engineering for their financial assisstance.

I would like to thank the staff ofthe Boren Veterinary Medical Teaching Hospital

for their support of our research activities. [would also like to thank our experimental

subjects, Sleepy, Stinky, Squirmy, Timid, Squealy, Stubborn, Squat, Stenchy, Crusty,

Sniffy, Squealy, Speedy, Different, and especially my dog Elmo, who gallantly sacrificed

his reproductive capability in the name of science.

No acknowledgment of academic and financial support could be complete without

mentioning my wife, Nancy, and my parents, without whom none of this would have been

possible. 1 would also like to thank my sister for her support and entertainment.

iii



Chapter

1.0

TABLE OF CONTENTS

INTRODUCTION

Page

1.1
1.2
1.3
1.4

INFERENCE OF DEPTH OF ANESTHESIA .
APPLICATION OF FUZZY LOGIC .
PROPOSED MODEL .
ORGANIZATION OF THESIS .

1
3
5
6

2.0 MOTIVATION 7

2.1
2.2
2.3
2.4

PROPOFOL ANESTHESIA .
ASSESSMENT OF ANESTHETIC DEPTH .
FUZZY LOGIC .
SIGNIFICANCE OF CURRENT WORK .

8
9

13
17

3.0 METHOD 20

3. J

3.2
3.3

DATA COLLECTION .
DATA ANALYSIS .
MODEL DEVELOPMENT .

20
28
33

4.0 RESULTS . 39

4.1

4.2
4.3
4.4

ANALYSIS FROM PHYSIOLOGICAL PRINCIPLES ALONE ..
ANALYSIS FROM CLINICAL ASSESSMENT .
PULSE EXPERIMENT .
SURGICAL EXPERIMENT .

39
51
95
98

5.0 DISCUSSION OF RESULTS 103

5.1
5.2

EVALUATION OF MODEL
IMPLEMENTATION ISSUES

104
108

6.0 CONCLUSIONS AND RECOMMENDATIONS 110

6.1
6.2

CONCLUSIONS .
RECOMMENDATIONS .

110
III

REFERENCES

iv

113



APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

APPENDIX A: FUZZY fNFERENCING AND DEFUZZIFICATION .. 117

APPENDIX B: EXPERIMENTAL SUBJECTS . . . . . . . . . . . . . . . . 123

APPENDIX C: SAMPLE CLINICAL ASSESSMENT WORKSHEET 125

APPENDIX D: SUMMARY OF SERUM PROPOFOL DATA . . . . . . 127

APPENDIX E: EXAMPLE EXPERIMENT PLOTS . . . . . . . . . . . . . 128

APPENDIX F: FUZZY RULEBASE . . . . . . . . . . . . . . . . . . . . . . . 162

APPENDIX G: TILSHELL PROJECT INFORMATION . . . . . . . . . . 164

v



Table

3.1

3.2

3.3

3.4

3.5

3.6

LIST OF TABLES

EEG data acquired

ECG data acquired

Infusion pump data acquired

Scaling methodology for ABETA, TOTPOW, and EMGLO

Model input variables

Calculation of ABETArate and EMGrate

Page

25

27

27

30

31

34

4.1 Physiological consistency of model input and output variables for initial
experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Physiological consistency of model input and output variables for verification
experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Comparison of model with overall clinical assessment for experiment I 55

4.4 Comparison of model with overall clinical assessment for experiment 2 59

4.5 Comparison of model with overall clinical assessment for experiment 3 61

4.6 Comparison of model with overall clinical assessment for experiment 4 64

4.7 Comparison of model with overall clinical assessment for experiment 5 67

4.8 Comparison of model with overaJl clillical assessment for experiment 6 71

4.9 Comparison of model with overall clillical assessment for experiment 7 75

4.10 Comparison of model with overall clinical assessment for experiment 8 78

4.11 Comparison of model with overall clinical assessment for experiment 9 81

4.12 Comparison of model with overall clinical assessment for experiment to 84

VI



4.13 Comparison of model with overall clinical assessment for experiment 11 88

4.14 Comparison of model with overall clinical assessment for experiment 12 9 J

4.15 Comparison of model with overall clinical assessment for initial
experiments .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.16 Comparison of model with overall clinical assessment for verification
experiments .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.17 Event list for surgical experiment

vii

99



Figure

2.1

2.2

2.3

2.4

2.5

2.6

2.7

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

4.5

4.6

LIST OF FIGURES

Propofol (2,6-diisopropylphenol)

Relation of time domain to frequency domain via fast Fourier transform

Determination of burst suppression

Spectral edge and median frequency as determined from EEG power
spectrUin .

Venn diagram

Hot temperature membership function

Fuzzy temperature spectrum

EEG electrode montage

Experimental schematic diagram

Input and output variable mem,bership functions

Comparison of raw and smoothed values of relative Beta power
(Experiment I) .

Dimensionless absolute power in Beta frequency band (Experiment I)

Dimensionless total absolute power in 0 -30 Hz frequency band
(Experi ment 1) ...•..•...................•......

Dimensionless absolute power in EMG low frequency band (Experiment 1)

Model output (Experiment 1)

Relative power in Beta frequency band (Experiment 1)

Dimensionless absolute power in Beta frequency band (Experiment 2)

viii

Page

8

11

11

12

15

15

16

22

24

35

37

40

41

41

41

44

45



4.7

4.8

4.9

Dimensionless total absolute power in 0 -30 Hz frequency band
(Experiment 2) .

Dimensionless absolute power in EMG low frequency band (Experiment 2)

Model output (Experiment 2)

45

45

46

4.10 Dimensionless absolute power in Beta frequency band (Experiment 3) 46

4.11 Dimensionless total absolute power in 0 -30 Hz frequency band
(Experiment 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.12

4.13

4.14

4.15

Model output (Experiment 3)

Model output (Experiment I)

Rescaled clinical assessment (Experiment I)

Model deviation from clinical assessment (Experiment I)

47

53

53

54

4.16 Rate of change ;n absolute Beta power over five minutes (Experiment I) 54

4.17 Rate of change in absolute EMG power over five minutes (Experiment I) 54

4.18 Model output (Experiment 2) 56

4.19 Rescaled clinical assessment (Experiment 2)

4.20 Model deviation from clinical assessment (Experiment 2)

56

57

4.21 Dimensionless absolute power in Beta frequency band (Experiment 2) 57

4.22 Dimensionless total absolute power in 0-30 Hz frequency band
(Experiment 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.23 Dimensionless total absolute power in EMG low frequency band
(Experiment 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.24 Rate of change ill absolute Beta power over five minutes (Experiment 2) 58

4.25 Rate of change in absolute EMG power over five minutes (Experiment 2) 58

4.26 Model output (Experiment 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.27

4.28

Rescaled clinical assessment (Experiment 3)

Model deviation from clinical assessment (Experiment 3)

ix

60

60



4.29 Dimensionless total absolute power in 0-30 Hz frequency band
(Experiment 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.30

4.31

4.32

Model output (Experiment 4)

Rescaled clinical assessment (Experiment 4)

Model deviation from clinical assessment (Experiment 4)

62

62

63

4.33 Dimensionless total absolute power in 0-30 Hz frequency band
(Experiment 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.34

4.35

4.36

Model output (Experiment 5)

Rescaled clinical assessment (Experiment 5)

Model deviation from clinical assessment (Experiment 5)

65

6S

65

4.37 Dimensionless absolute power in Beta frequency band (Experiment 5) 66

4.38 Dimensionless total absolute power in 0-30 Hz frequency band
(Experiment 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.39 Dimensionless total absolute power in EMG low frequency band
(Experiment S) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.40

4.41

4.42

4.43

Model output (Experiment 6)

Rescaled clinical assessment (Experiment 6)

Model deviation from clinical assessment (Experiment 6)

Suppression Ratio (Experiment 6)

68

68

69

69

4.44 Dimensionless absolute power in Beta frequency band (Experiment 6) 69

4.45 Dimensionless total absolute power in 0-30 Hz frequency band
(Experiment 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.46 Dimensionless total absolute power in EMG low frequency band
(Experiment 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.47 Model output (Experiment 7) 73

4.48 Rescaled clinical assessment (Experiment 7) 73

4.49 Model deviation from clinical assessment (Experiment 7)

x

73



4.50 Dimensionless absolute power in Beta frequency band (Experiment 7) 74

4.51 Dimensionless total absolute power in 0-30 Hz frequency band
(Experiment 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.52 Dimensionless total absolute power in EMG low frequency band
(Experiment 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.53

4.54

4.55

Suppression Ratio (Experiment 7)

Model output (Experiment 8)

Rescaled clinical assessment (Experiment 8)

75

76

76

4.56 Model deviation from clinical assessment (Experiment 8) 77

4.57 Dimensionless absolute power in Beta frequency band (Experiment 8) 77

4.58 Dimensionless total absolute power in 0-30 Hz frequency band
(Experiment 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.59 Dimensionless total absolute power in EMG low frequency band
(Experiment 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.60

4.61

Model output (Experiment 9)

Rescaled clinical assessment (Experiment 9)

79

79

4.62 Model deviation from clinical assessment (Experiment 9) 79

4.63 Dimensionless absolute power in Beta frequency band (Experiment 9) 80

4.64 Dimensionless total absolute power in 0-30 Hz frequency band
(Experiment 9) . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.65 Dimensionless total absolute power in EMG low frequency band
(Experiment 9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.66 Model output (Experiment 10) 82

4.67 Rescaled clinical assessment (Experiment 10) 82

4.68 Model deviation from clinical assessment (Experiment 10) 83

4.69 Dimensionless absolute power in Beta frequency band (Experiment 10) 83

4.70 Dimensionless total absolute power in 0-30 Hz frequency band
(Experiment 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xi



4.71 Dimensionless total absolute power in EMG low frequency band
(Experiment 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.72 Model output (Experiment II) 85

4.73 Rescaled clinical assessment (Experiment 11) 86

4.74 Model deviation from clinical assessment (Experiment 11) 86

4.75 Dimensionless absolute power in Beta frequency band (Experiment II) 86

4.76 Dimensionless total absolute power in 0-30 Hz frequency band
(Experiment 1I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.77 Dimensionless total absolute power in EMG low frequency band
(Experiment 11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.78 Model output (Experiment 12) 89

4.79 Rescaled clinical assessment (Experiment 12) 89

4.80 Model deviation from cl inical assessment (Experiment 12) 90

4.81 Dimensionless absolute power in Beta frequency band (Experiment 12) 90

4.82 Dimensionless total absolute power in 0-30 Hz frequency band
(Experiment 12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.83 Dimensionless total absolute power in EMG low frequency band
(Experiment 12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.84 Model output (Pulse experiment)

4.85 Rescaled clinical assessment (Pulse experiment)

95

96

4.86 Model deviation from clinical assessment (Pulse experiment) 96

4.87 Dimensionless absolute power in Beta frequency band (Pulse experiment) 96

4.88 Dimensionless total absolute power in 0-30 Hz frequency band
(Pulse experiment) 97

4.89 Dimensionless total absolute power in EMG low frequency band
(Pulse experiment) 97

4.90 Suppression Ratio (Pulse experiment) . . . . . . . . . . . . . . . . . . . . . . . 97

4.91 Model output (Surgical experiment) 100

xii



4.92

4.93

Rescaled clinical assessment (Surgi.cal experiment)

Model deviation from clinical assessment (Surgical experiment)

100

100

4.94 Dimensionless absolute power in Beta frequency band
(Surgical experiment) 101

4.95 Dimensionless total absolute power in 0-30 Hz frequency band
(Surgical experiment) 101

4.96 Dimensionless total absolute power in EMG low frequency band
(Surgical experiment) 10 f

4.97 Suppression Ratio (Surgical experiment)

xiii

102



ABETA

ABETArate

Alpha frequency band

AWARE

Beta frequency band

Bolus

Burst suppression

Corneal reflex

Crisp

Delta frequency band

Defuzzification

EEG

Electroencephalography

Electromyography

EMG frequency band

EMGrate

GLOSSARY

A measure of absolute power in the EEG Beta frequency
band.

Rate of change of ABETA over 5 minute period.

Band of EEG power spectrum between 8 and 13 Hz

Output variable of model developed in this thesis:
Proposed index of anesthetic depth.

Band of EEG power spectrum between 13 and 30 Hz.

A dosage of a drug given at once.

EEG phenomenon occurring when EEG voltage is
continuously 0 ± 5JlV for at least 240 ms. This
phenomenon corresponds to CNS inactivity.

Response of cornea to digital stimulation.

Not ambiguous; having fuzzy set membership of 1.

Band of EEG power spectrum between 0 and 4 Hz.

Conversion of a fuzzy quantity to a crisp value using one of
many conventional methods.

Electroencephalogram: relating to electrical activity of
brain.

Recording of electrical activity of the brain.

Recording of electrical activity of muscles.

Band of EEG power spectrum between 70 and 300 Hz.

Rate of change of EMGLO over 5 minute period.

xiv



EMGLO

Fuzzification

Fuzzy logic

Fuzzy set

Hypotension

Median frequency

Membership function

Palpebral reflex

Propofol

RBETA

Spectral edge frequency

Suppression ratio

Theta frequency band

TOTPOW

Vasodilator

Vasopressor

Absolute power in the EMG low frequency band (70 - 110
Hz).

Conversion of a crisp input to a fuzzy value via a
membership function.

Formal methodology for performing logical operations with
fuzzy sets..

A set in which an element can belong to some degree rather
than be limited to complete inclusion or exclusion.

Low blood pressure.

Frequency below which 50% of power in the EEG power
spectrum is expressed.

A function that relates a crisp quantity to degree of
mem bersbip in a fuzzy set.

Response of eyelid to digital stimulation.

Anesthetic agent (2,6-diisopropylphenol). Also known by
trade name, Diprivan.

Fraction of EEG total power expressed in the Beta
frequency band.

Frequency below which some specified fraction of power in
the EEG power spectrum is expressed.

Fraction of time during a sampling period that EEG signal
is considered suppressed. See burst suppression.

Band of EEG power spectrum between 4 and 8 Hz

A measure of total absolute power in the 0 - 30 Hz EEG
frequency band.

Drug that dilates blood vessels

Drug that constricts blood vessels

xv



1.0

INTRODUCTION

Anesthesia has made possible many of the surgical advances in modem medicine.

Complicated surgical techniques cannot be used humanely in a non-compliant patient who

feels pain. Anesthesia is also used in critical care environments where the alternative is to

administer strong, addictive pain relieving agents which may prevent a patient from feeling

much pain, but would probably also prevent the patient from feeling much else. Whether

anesthesia is required for pain relief, muscle relaxation, or general unconsciousness in a

patient, it may be administered for a lengthy period which can be fatiguing for the

personnel involved. The purpose of this work is to propose a means for quantification of

tHe assessment of anesthetic depth. The model described in this thesis uses multiple­

variable input obtained from both electroencephalographic and cardiovascular data to yield

a numerical output representing an index of anesthetic depth. This approach of assessing

depth of anesthesia has 110t been attempted previously. The resulting assessment could be

used as a tool for the anesthesiologist or it could be used as a controlled variable in a closed

loop control system. Although inhalant anesthesia and multiple agent anesthetic regimes

are clinically more common, the experimentation required for model development has been

purposely limited to infusion arJesthesia using propofol only.

1.1 INFERENCE OF DEPTH OF ANESTHESIA

Whether an anesthesiologist is attending a human or a canine patient, he relies on

his evaluation ofa set of clinical observables to make an inference of anesthetic depth. A

veterinary anestnesiologist infers anesthetic depth of a dog by monitoring jaw tone,



palpebral reflex, corneal reflex, heart rate, and blood pressure. Jaw tone is the perceived

stiffness of the jaw muscles. Palpebral and corneal reflexes are the responses of the eyelid

and eyeball to touch. As the plane of anesthesia deepens, jaw tone decreases, and the

palpebral and corneal reflexes become slower. Depending on the anesthetic used, heart

rate and blood pressure decrease as the anesthetic plane deepens. From evaluating these

variables, the anesthesiologist synthesizes an assessment of anesthetic depth based on

training and experience and adjusts the rate of administration accordingly. This

methodology is applicable for humans as well as dogs. An anesthesiologist working with a

human patient will evaluate a similar set of clinical observables to make an assessment of

anesthetic depth. Therefore a model designed to automate the inference of anesthetic depth

would have broad application within human medicine as well as veterinary medicine.

The methods used by an anesthesiologist to assess depth of anesthesia are difficult

to replicate using an automated system. Meters or other devices to determine the quality of

jaw tone, palpebral reflex, and corneal reflex do not exist, therefore alternative clinical

observables are necessary to automate the assessment of anesthetic depth. Ideally, these

clinical observables should be easily acquired and also provide information from which the

quality of central nervous system activity can be inferred.

Alternative sets of easily acquired clinical observables are available and have been

used in anesthesia monitoring and control. Previous efforts to monitor anesthetic depth

have involved blood pressure and electroencephalography (EEG), the analysis of electrical

activity of the brain. These studies have primarily evaluated individual variables for their

suitability as overall ind icators of anesthetic depth. Previous efforts to control anesthesia

have focused primari lyon the control of blood pressure or an EEG variable, therefore
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implying that adequate control of depth of anesthesi.a could be inferred from adequate

control of one variable.

Although most monitoring and ,control strategies rely on a single monitoring or

control variable, an accurate assessment requires a multivariable analysis; no single

observable is sufficient for determination ofanesthetic depth. Our efforts have been aimed

at developing a model which describes anesthetic depth given cardiovascular and EEG

input: a l11ultivariable approach similar to that used by the anesthesiologist.

I .2 APPLICATION OF FUZZY LOGIC

Two traditional approaches to creating a model to infer depth of anesthesia would

be the regression approach and the expert system approach. The regression approach

would requ ire a precise numerical assessment of anesthetic depth to be correlated to tissue

concentrations of anesthetic agent and determination of mathematical correlations between

EEG data, cardiovascu lar data, and tissue concentrations. The assessment of anesthetic

depth could then be related parametrically to EEG data and cardiovascular data. The

expert system approach would be to assemble a database of IF-THEN rules that relate EEG

and cardiovascular data with their corresponding numerical assessments of anesthetic depth

to be incorporated into a vast matrix, or look-up table.

There are methodological problems with both ofthese methods. The regression

method requires a precise numerical assessment of anesthetic depth. A subjective

assessment rendered by an anesthesiologist may be clinically sufficient, but could not be

reasonably described as precise, however. The expert system approach requires a set of IF­

THEN rules appropriately chained together that satisfy all reasonable clinical scenarios.

The resulting problem in this application is that the IF-THEN rules are difficult to

3



implement due to the clinical necessity for flexibility. A second problem with the expert

system approach is that it is computationally inefficient.

Our depth-of-anesthesia model was not developed using either the regression

approach or the traditional expert system approach, but was developed using fuzzy set

theory implemented in a fuzzy expert system. Fuzzy logic provides a rigorous and

consistent means of mathematically interpreting uncertainty. Fuzzy logic has been used to

control cement kilns, steam engines, and commuter trains and has been employed in a wide

variety of consumer products. These consumer products include washing machines that

can adjust cycles depending on the weight and relative dirtiness of a load of laundry, video

cameras which can negate the wiggling of images caused by hand-held operation, and

automatic transmissions in automobiles that shift in a manner more similar to human

drivers.

Fuzzy logic makes it possible for a machine to recognize not only "True" and

"False," but also the continuum ofambiguity in between. Fuzzy logic does not make

machines "think" or "reason" like humans, but provides a mathematical framework which

allows for machine interpretation of multi-valued logic in a manner that accommodates

ambiguity. A classic example of ambiguity is the paradox of the heap of sand. One can

remove an individual grain from a heap of sand and the remainder is still a heap. Continue

removing individual grains and eventually the remainder is no longer a heap. If a machine

were to recognize whether sand constituted a heap, binary logic would require the

designation ofan arbitrary breakpoint; i.e., N grains constitute "heap," whereas N-l grains

constitute "not a heap." A machine using fuzzy logic can determine that a heap ofN grains

of sand is "more of a heap," while a heap ofN-1 grains is "less of a heap." Humans

recognize that the quality of being a heap is detennined by a continuum of numbers of

4



grains of sand. The fuzzy system accommodates this continuum; th.e binary system does

not.

The accommodation of ambiguity is what makes fuzzy logic useful for model

development and control applications. Fuzzy logic aJlows for the solution of some control

problems without the development of a rigorous mathematical model of the process, and

allows for the development of models where the processes to be described are complicated

or difficult to quantify. Control or modeling problems that are strong candidates for a

fuzzy solution are those which are mastered by human control and perception. The

determ ination and control of anesthetic depth falls into that category. Fuzzy logic control

can be applied in other contexts, but the application of fuzzy logic to control of

mathematically well-defined systems, such as control of a DC motor, is less practical and

probably has value only as an academic exercise.

1.3 PROPOSED MODEL

When the anesthesiologist synthesizes an assessment of anesthetic depth he relies

on his experience, training, and common sense. He assesses input values, assigns weights

to the input values, notes changes in these input values over time, and reflects on training

and experience. He then makes a sensible assessment. The model that has been developed

here has been synthesized similarly. Based on basic physiological tenets and observation

of several anesthetized patients, several processed EEG variables were selected as

algorithm input. During a battery of experiments, these variables were identified as

possibly correlating to the subjective assessment of anesthetic depth provided by our

anesthesiologist. The general trends were noted and a set of rules that linguistically

described these trends in relation to anesthetic depth was developed. Experimental data
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were imported into a fuzzy logic software package and processed using the set of rules via

fuzzy logic to provide our model which assesses anesthetic depth. The model was

validated using experimental data obtained from another battery of experiments.

This model has several potential uses. The resulting assessment of anesthetic

depth could be used in a real-time anesthesia monitoring scheme by an anesthesiologist.

either for monitoring or open-loop control. The assessment variable could also be used in

real-time as a variable to be controlled in a closed-loop control scheme. This application

would be analogous to a "cruise control" system for anesthesia delivery. The

anesthesiologist could induce and monitor induction. only initiating the automatic control

once he is satisfied with the observed depth of anesthesia in the patient.

1.4 ORGANIZATION OF THESIS

Chapter 1 provides an overview of the study that was undertaken. Chapter 2

details the motivation for this work and the development of technology used to create the

computer model which is the end product ofthis endeavor. Chapter 3 provides a

discussion of the methods used to develop the model. Chapter 4 is an experiment-by

experiment summary of resu Its and analysis. Chapter 5 provides an evaluation of the

model and a discussion of model limitations. Conclusions and recommendations are

presented in Chapter 6.
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2.'0

MOTIVATION

The clinical use of anesthesia serves to accomplish three purposes for a patient:

maintenance ofan unconscious state, pain suppression, and muscle relaxation. For these

goals to be satisfied, the administration of anesthesia must be properly monitored by a

trained anesthesiologist. Monitoring is necessary to ensure that the patient is maintained

in an anesthetic plane deep enough such that he is both compliant and unaware of noxious

stimuli yet not so deep as to be comatose. Typically, the assessment of anesthetic depth is

determined by evaluating a combination of clinical observables, such as reflex actions,

muscle tone, and patient movement, cardiovascular observables, such as blood pressure and

heart rate, and occasionally electroencephalographic (EEG) observables.

Electroencephalography is used to assess central nervous system activity as a means of

inferring anesthetic depth.

The clinical observables are the source of most information to the anesthesiologist.

Unfortunately, the clinical observables may be obscured when multiple agents such as

vasodilators, vasopressors, beta blockers, calcium channel blockers, and neuromuscular

blockers are employed (Nayak 1994). An alternative means to determine and monitor

depth of anesthesia would therefore be useful to the anesthesiologist.

Certain clinical environments require long-duration administration of anesthesia.

These might include long surgical procedures and long-term relief of pain in an intensive

care environment. A long surgical procedure can be fatiguing for an anesthesiologist and

intensive care monitoring by anesthesiologists would be costly. The introduction of an

automated means of assessment of anesthetic depth would be beneficial in both scenarios.

7



A system analogous to an automobile "cruise control" would relieve some tedium for the

attending anesthesiologist. An automated system could improve patient safety and reduce

healthcare costs.

2.1 PROPOFOL ANESTHESIA

Propofol (2,6-diisopropylphenol, Figure 2.1) is used exclusively in this study.

Slightly soluble in water, propofol is formulated as an emulsion for clinical use. This

anesthetic agent is a sedative-hypnotic which produces dose-dependent depression ofthe

central nervous system. The pharmacokinetics ofpropofol make it suitable for continuous

intravenous infusion. Patients recover rapidly and experience few adverse side effects

other than occasional pain on injection (Larijani 1989).

Propofol is typically used in combination with narcotics (e.g. fentanyl) and

inhalation anesthetics (e.g. nitrous oxide). In this study, propafol is used alone to ensure

pharmacological simplicity for a pilot investigation of anesthesia monitoring. Exclusive

use of propofol also prov ides a reference case for the interpretation of future resu Its

involving combinations of anesthetic agents. The broader intent of tile project is to prepare

a methodology for studying other anesthetic agents alone and in combination.

Figure 2.1: Propofol (2,6-diisopropylphenol)
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2.2 ASSESSMENT OF ANESTHETIC DEPTH

The clinician relies primarily on evaluation of clinical observables, such as

reflexes, muscle tone, and patient movement, to infer depth of anesthesia. Cardiovascular

data are almost always available. EEG data are not routinely available but can be ifutility

is demonstrated.

2.2.1 Clinical Observables

Jaw tone is a means of determining "sufficiency" of propofol anesthesia in a dog

(Watkins 1987; Weaver 1990; Robertson 1992). Intraocular pressure as determined by

evaluation of corneal reflex is also useful as an indicator of anesthetic depth with propofol

(Larijani 1989). Palpebral reflex, the reflex of the eyelid in response to digital stimulati,on,

bas also been used as all indicator of anesthetic depth in dogs (Zoran 1993). All three have

been used in our work.

2.2.2 Cardiovascular Observables

Attempts have been made to infer adequacy of anesthesia from blood pressure

(Smith 1972) and heart rate (Suppan 1972). Different anesthetic agents affect these

cardiovascular parameters differently. Intravenous induction of anesthesia with propofol

has been seen to decrease blood pressure 20·30 percent in humans (Larijani 1989). One

study involving dogs indicated that blood pressure variations during prolonged propofol

infusion were minor and transient (Robertson 1992). This study also specified a lowest

permissible limit of mean arterial pressure in a dog of65 mmHg and suggested that

anesthetic depth during propofol infusEon may not be a strong function of blood pressure,

although mean arterial pressure should be maintained above a threshold value. Another
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study has reported no clear link between depth ofpropofol anesthesia and heart rate

(Watkins 1987).

2.2.3 EEG Observables

The electroencephalogram provides insight into central nervous system activity in

real-time and has been shown to have utility in monitoring of anesthesia (Donegan 1990;

Stanski 1992). Raw EEG waveforms record summed field potentials resulting from

depolarization of nerve cells (Donegan 1990) and are difficult to interpret without

applying sophisticated signal processing methods. Two broad categories of algorithms,

time domain and frequency domain, are typically used to process the raw EEG signals.

Time domain algorithms analyze data acquired within the period of a sampling window, or

epoch, as a function oftime. Frequency domain algorithms require Fourier transfonn

analysis to analyze waveform amplitude, or power, as a function of frequency (Figure 2.2).

The result is a power spectrum, analogous to a light spectrum separated by a glass prism.

2.2.3.1 EEG Time Domain Variables

An important processed EEG variable calculated in the time domain is the burst

suppression ratio. This value ind icates the fraction of an EEG signal being suppressed and

is a useful indicator of metabolic depression with drugs such as thiopental, isotlurane

(Donegan 1990), and propofol (Kanto 1989). A sampling epoch would be considered

suppressed if the value of the measured potential is between ± 0.05 ~V for at least 240 ms

(Donegan 1990). An exampl.e illustration is provided in Figure 2.3. The suppression ratio

as calculated by the EEG monitor in this work is the fraction of epochs considered

suppressed within the last 123 sampled (Aspect Medical Systems 1996).
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2.2.3.2 EEG Frequency Domain Variables

Variables that are determined in the frequency domain are the variables that relate

power (waveform amplitude) to frequency. These variables include spectral edge

frequency, median frequency, total power, and power in specific frequency bands.

Spectral edge frequency (SEF) is the frequency below which some fraction of the

total power is expressed: e.g. the 95% SEF, or SEF95, is the frequency below which 95

percent of the total power is expressed. The median frequency is the 50% SEF (SEF50).

Figure 2.4 provides an example of both 95% SEF and median frequency. Both the SEF and

the median frequency have been used as univariate measures of EEG anesthesia effect

(Stanski 1992). In general, deepening of the anesthetic plane will correspond to a decrease

in spectral edge frequency. Reduced central nervous system activity is reflected in a shift

to a lower spectral edge frequency.

EEG POWER SPECTRUM
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'C

~
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E
<

-

Frequency (Hz)

Figure 2.4: Spectral edge and median frequency as determined from EEG power spectrum.
(Donegan 1990)
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The adequacy of SEF values as indi.cators of anesthetic depth has been the source

of some debate, however. Some researchers have found the SEF to be a useful indicator of

anesthetic depth (Otto 1991; Gurman J994; Arndt 1995; Gaitini 1995). Other researchers

are more skeptical of the utility of SEF for anesthesia monitoring (Ghouri 1993; Dwyer

1994; Koch 1994; Nayak 1994; Sebel 1995).

Power distribution within frequency bands of the EEG power spectrum is another

source of information regarding depth of anesthesia. For ease of categorization, the EEG

spectrum from 0 to 30 Hz has been divided into four frequency bands, delta (0-4 Hz), theta

(4-8Hz), alpha (8-13 Hz), and beta (13-30 Hz) by convention (Donegan 1990). While a

patient is alert or lightly anesthetized, power is expressed predominantly in the higher

frequency beta and alpha bands. As the anesthetic plane deepens, the distributi.on of power

shifts to the lower frequency bands. Power distribution during propofoJ anesthesia in

humans has been shown to shift according to this rule of thumb (Kanto (989). Other

studies have suggested that variations on this method ofanalysis in dogs (Nayak 1994) and

horses (Otto 1991) are useful for determination of anesthetic depth. Our proposed

methodology utilizes these known shifts in power distribution.

2.3 FUZZY LOGIC

One of the goals of this project is to synthesize an assessment of anesthetic depth

from a multivariable set of input as an anesthesiologist would. Rather than using the

traditional expert system approach of employing crisp, "either-or" type rules and database

searches or the traditional mathematical modeling approach requiring correlation studies

and multiple-parameter regression, the approach used in this study is to use fuzzy logic to

synthesize an assessment of anesthetic depth. The anesthesiologist in a clinical
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environment is required to make decisions based on ,quantitatively vague, ambiguous input

data. Fuzzy logic is a rigorous mathematical means to make quantitative decisions given

similarly vague, ambiguous quantitative input data.

Humans process infonnation much differently than digital computers. Humans

communicate in words and make decisions linguistically. Individuals have an

understanding of concepts such as "tall man," "hot weather," and "low price." These

concepts can be communicated with minimal loss of understanding between people.

Computers, however, must have the descriptors "tall," "hot," and "low" quantified

somehow. The non-fuzzy method of quantifying these descriptors would be to arbitrarily

define a range of acceptable values. For example, "tall" could be defined as "height

greater than six feet." The problem with this approach is that a height of 5.9999 feet

would not be classified as "tall" while a height of 6.0001 feet would. This poses no real

mathematical problem~ the definition is arbitrary. This description does not adequately

describe the way a person would perceive height, however. Fuzzy logic provides a method

to quantify "tall" without resorting to an arbitrary delineation and can be used to quantify

linguistic descriptors such as "tall," "hot," and "low." In this example, fuzzy logic would

allow for the height of 5.9999 feet to be "tall" to some degree and "not tall" to some degree

whi Ie the height of 6.000 J feet could be "taU" to a greater degree and "not taU" to a lesser

degree.

2.3.1 Basic Fuzzy Set Theory

Traditional set theory is based on the Aristotelian premise that the intersection of

the set "A" and its complement, "not A" is the empty set. Otherwise stated, an element in

the universe containing the sets "A" and "not A" can belong to either "A" or "not A"
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(Figure 2.5). The element is contained entirely within "A" or "not A." Fuzzy set theory

introduces the concept of degree of set membership. In a fuzzy universe containing the

complementary sets "A" and "not A," an element can belong to both sets to some degree

with the interesting consequence that the intersection of "A" and "not A" is not necessarily

the empty set.

NotA

Figure 2.5: Venn diagram illustrating the set "A" and its complement, "Not A."

Another example of a fuzzy set would be the set of "l1ot" temperatures. The

degree of membership of this set as a function of temperature is known as a membership

function (Figure 2.6). Other sets could be added, such as "cold," "cool," "warm," and

"hot," so that an entire temperature range is defined linguistically (Figure 2.7).
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Figure 2.6: Hot temperature membership function
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Figure 2.7: Fuzzy temperature spectrum

Fuzzy set theory is useful because it can provide an interface between human

linguistic and mechanical, quantitative perceptions of tile universe. With fuzzy

information processing, machines can be programmed to make decisions within an

environment containing vagueness, much as people do. An example of fuzzy inferencing

and defuzzification is provided in Appendix A.

2.3.2 History of Fuzzy Logic

Fuzzy set theory was proposed in 1964 by Lofti Zadeh (1965). It has since evolved

from an academic novelty largely ignored by the scientific community to a versatile tool

for solving engineering problems. Other philosopher-mathematicians, such as Max Black

and Jan Lukasiewicz, have suggested other types of mu Iti-valued logic or vagueness theory

earlier (Black 1937; Lukasiewicz 1970), but Dr. Zadeh's fuzzy set theory is what is used

today in many applications. Fuzzy logic was well received in the Orient and in Europe, but

was slow to gain acceptance in the United States. American scientists and mathematicians

were reluctant to accept a paradigm that suggested that scientific and engineering problems

could be addressed using approximate reasoning. Japanese scientists and engineers
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exploited this technology and provided Japanese consumers with fuzzy dishwashers, fuzzy

camcorders, and fuzzy automatic transmissions. One of the successes of fuzzy logic

control is the train in Sendai, Japan, that operates with tbe fuzzy predictive control system

presented by Seiji Yasullobu (1985). Many of the consumer products once only available

to Japanese consumers are now available to American consumers, although these products

are often marketed not as "fuzzy" but as "inteHigent."

2.3.3 Fuzzy Logic Applied to Anesthesia Monitoring

Fuzzy logic has been applied to anesthesia monitoring and control with modest

success. Fuzzy logic feedback control of blood pressure has been accomplished by several

groups of researchers (Meier 1992; Ying ]992; Tsutsui ]994; Zbinden 1995). Some have

suggested that the use of fuzzy logic to control blood pressure is probably unnecessary, but

that fuzzy logic may be useful for controlling more ambiguous process variables or as a

"supervising" entity in a l11ultivariable control system (Martin 1994). Another fuzzy

feedback control strategy has been to control inspired oxygen and inhalant anesthesia

concentration (Curatolo 1996). More sophisticated adaptive fuzzy logic control has been

appl ied to muscle relaxant delivery (Linkens 1991; Linkens 1992; Mason 1994). Fuzzy

logic has also been used in an intelligent alarm system for cardioanesthetic monitoring

(Rau 1995). None of these applications provide the assessment capabilities we are striving

to achieve.

2.4 SIGNIFICANCE OF CURRENT WORK

This project is un ique in that it proposes a numerical index of anesthetic depth that

incorporates both time domain and frequency domain processed EEG variables related
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linguistically with a fuzzy ndebase. Other efforts to create a univariate quantitative

measure of anesthetic depth have included bispectral analysis (Ning 1990; Sebel 1995) of

Fourier-decomposed EEG wavefonns. While bispectral indices may be useful indicators of

anesthetic depth, the index proposed in this work synthesizes more diverse infonnation in a

more intuitive manner resulting in a machine-generated assessment of anesthetic depth

comparable to that rendered by an anesthesiologist. A similar qualitative approach has

been proposed by Gurman (1994). He has generated a matrix of crisp rules relating

spectral edge frequency and blood pressure to adequacy of anesthesia. Our approach is

different in that our rulebase is fuzzy and we use other variables as inputs to om system.

2.4.1 Description

This system described in this thesis monitors changes in power distribution within

the EEG spectrum as well as EEG burst suppression and mean arterial pressure. A matrix

of fuzzy logic rules (fuzzy rulebase) was generated that relate mean arterial pressure. burst

suppression ratio, processed EEG power spectrum variables, and their time rates of change

over multiple time intervals to an index of adequacy of anesthesia. Input data is converted

to the anesthetic depth index with the fuzzy rulebase via fuzzy logic algorithms. The

resulting index correlates with the assessment of anesthetic depth provided by an

anesthesiologist.

2.4.2 Application

A monitoring system such as this one could be used in an intensive care

environment and during long surgical procedures to assist the attending anesthesiologist.

especially ifthi,s monitoring approach proved applicable to combinations of anesthetic
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agents. As discussed previously, common practice in modern surgical anesthesia is to use

a combination of anesthetic agents such as neuromuscular blockers, beta blockers, and

analgesics. The employment of these multiple agents may tend to mask traditional clinical

observables. A system similar to the one proposed could provide insight into the patient's

level of consciousness 110t available using traditional means of assessing anesthetic depth.

The use of a single index for a gauge of anesthetic depth could also be useful for

feedback control. Rather than attempting to control multiple variables in the control

system, this approach combines the multiple variables into one "set-point" variable,

therefore making possible control schemes much less complex.
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3.0

METHOD

The development of our fuzzy anesthesia monitoring model proceeded in three

phases. The data collection phase consisted of experimentation and acquisition of data..

Comparison between acquired data and clinical assessment of anesthetic depth occurred in

the data analysis phase. The assembly of the model using the commercial fuzzy logic

software shell constituted the model development phase.

3.1 DATA COLLECTION

The experiments performed were designed to be of sufficient duration to ensure

that pharmacokinetic phenomena could be observed. These pharmacokinetic phenomena

could be investigated more efficiently at multiple infusion rates. Due to the high cost of

propofol, limited availability of subject animals, and our desire to keep the experimental

protocol simple, each experiment was conducted using only two infusion rates

administered for one hour each. To minimize complexity, no surgical procedure was

associated with the regular data collection experimental protocol. ]n the absence of

incision or other painful surgical stimuli, the anesthesiologist applied a hemostat (clamp) to

the base of the tail of the subject dog to evaluate patient awareness of noxious stimuli.

Six mixed-breed dogs were used to acquire initial data for model development.

Each dog was administered a 10 mg!kg bolus infusion dose of propofol, intubated, then

connected to a Harvard Apparatus ModeJ 2400 syringe infusion pump from which

propofol was initially administered at the rate of 0.1 ml/kglmin for one hour. At the

beginning of the second hour, the infusion rate was changed to 0.05 ml!kglmin. Infusion
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was continued for one additional hour. The respiration of the dog was controlled using a

ventilator for the duration of the experiment. Blood pressure was monitored invasively

using a pressure transducer in a catheter inserted into an artery in a hind leg and either a

Datascope model 2000 or a Datascope Passport EL electrocardiogram (ECG) monitor.

ECG data acquisition commenced immediately following catheterization. The dog was also

connected to an Aspect A-I 000 EEG monitor using a four-channel referential electrode

montage (Figure 3.1) and needle electrodes. The electrodes were inserted immediately

following induction and intubation and both EEG and ECG data were acquired

continuously until the dog would raise its head at the conclusion of the experiment. This

protocol was also used to collect data from six purpose-bred beagle dogs for model

verification. The beagle data were not used for model development. Information regarding

experiment date, dog weight, identification number, and breed is provided in Appendix B.

During each experiment, the attending anesthesiologist would assess depth of

anesthesia in the subject by monitoringjaw tone, and palpebral and corneal reflexes at five­

minute intervals. The assessment for each of these observables was rated on a five-point

scale where a score of"1" indicates "sufficiently anesthetized" and "5" indicates "awake:'

An example clinical assessment worksheet is provided in Appendix C. The response of the

dog to the 10 second application ofa hemostat to the base of its tail (tail clamp) was

monitored every] 5 minutes during the infusion period.

Blood samples were taken from the subject every l5 minutes during the two-hour

infusion period. After term ination of infusion, samples were collected every 2 minutes

until extubation. Samples were also collected every 30 minutes for two hours following

extubation. These samples were used for pharrnacokinetic analysis not discussed in this

thesis. A summary of blood propofol data can be found in Appendix D.
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Figure 3.1: EEG electrode montage
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Data from the infusion pump and EEG were acquired using software running on a

Pentium-90 personal computer. The data acquisition software was written specifically for

this purpose. Calculations internal to the EEG monitor were determined using a 0.5125

second epoch duration. Data from the EEG were acquired every 5 seconds and data from

the pump were acquired every 30 seconds. The ECG monitor was videotaped using a

tripod-mounted Sony 8 Inm video camera. Data from the videotaped ECG monitor were

transcribed manually from playback of the videotape. ECG data were transcribed at 30

second intervals. ECG data during tail clamp episodes were transcribed at 2 second

intervals. The configuration ofexperimental apparatus is illustrated in Figure 3.2. Listings

of the variables acquired from the EEG, ECG, and pump are presented in Tables 3.1, 3.2,

and 3.3, respectively.

An additional experiment was performed using another mongrel dog and a

modified version of the experimental protocol previously described. This experiment used

on Iy one infusion rate of 0.05 mI/kg for the two-hour duration of infusion. A 10 mg/kg

bolus injection ofpropofol was administered after one hour. The purpose of this

experiment was to verify assumptions regard ing effect of propofol infusion rate on various

EEG variables.
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Table 3.1. EEG data acquired (Aspect Medical Systems 1996). One epoch =0.5125
seconds.

Variable Name Description

Absolute Delta Power A measure of the power in the Delta frequency range (0.5 to
(ADELTA) 3.75 Hz). Reported in dB.

Absolute Theta Power A measure of the power in the Theta frequency range (4.0
(ATHETA) to 7.75 Hz). Reported in dB.

Absolute Alpha Power A measure ofthe power in the Alpha frequency range (8.0
(AALPHA) to 13.5 Hz). Reponed in dB.

Absolute Beta Power A measure of the power in the Beta frequency range (13.75
(ABETA) to 30.0 Hz). Reponed in dB.

Total Power A measure of the absolute total power in the 0.5 to 30 Hz
(TOTPOW) frequency range. Reported in dB.

Power Band I A measure of the absolute power in the 30.0 to 40.0 Hz
(PBI) frequency range. Reported in dB.

Power Band II A measure ofthe absolute power in the 0.5 to 40.0 Hz
(PBII) frequency range. Reported in dB.

Relative Delta Power Percentage of Tota I Power expressed in the Delta frequency
(RDELTA) range.

Relative Theta Power Percentage of Total Power expressed in the Theta frequency
(RTHETA) range.

Relative Alpha Power Percentage of Total Power expressed in the Alpha
(RALPHA) frequency range.

Relative Beta Power Percentage of Total Power expressed in the Beta frequency
(RBETA) range.

Power Band Ratio The ratio of Power Band I power to Power Band II power
(PBRAT) expressed as a percentage.

Spectral Edge Frequency The frequency at which 95% of Total Power is expressed at
(SEF) lower frequencies.
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Table 3.1. EEG data acquired. (Confd)

Variable Name Description

Median Frequency The frequency at which 50% of Total Power is expressed at
(MEDFRQ) lower frequencies.

Asymmetry Value Ratio of Channel 1 (or Channel 3) Total Power to sum of
(ASYM) Total Powers of Channels 1&2 (or Channels 3&4)

Bispectral Index Bispectral index calculated via proprietary Aspect Medical
(BIS) Systems algorithm.

AIternate index Alternative bispectral index calculated via proprietary
(BISALT) Aspect Medical Systems algorithm.

Suppression Ratio The percentage of epochs in the last 63 seconds in which
(SR) the EEG signal is considered suppressed.

EMG Band 1 The absolute power in the 70-110 Hz frequency range.
(EMGLO) Reported in dB.

EMG Band 2 The absolute power in the 70-300 Hz frequency range.
(EMGHI) Reported in dB.

Bispectral Signal Quality The percentage of good epochs and suppressed epochs in
(SQI) the last 6 i.5 seconds that can be used in the Bispectral

Index calculation.

Power Spectrum Signal The percentage of good epochs in the last spectral
Quality smoothing period.
(PSQl)

Asymmetry Signal Quality The percentage of good epochs in the last spectral
(ASYSQI) smoothing period. Represents lowest of the Power

Spectrum Signal Qualities for the hemispheric channel
paIrs.

Suppression Ratio Signal Percentage of good epochs in the last 63 seconds that can be
Quality used for calculati.on of Suppression Ratio.
(BSRSQI)

Artifacts Hexadecimal code for signal anomalies recognized by
(ARTF) Aspect proprietary Artifact Detection Algorithm.
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Table 3.2. ECG data acquired.

Variable Description

Systolic Arterial Pressure Blood pressure during systolic phase of heartbeat.
(SAP) Expressed in mmHg.

Diastolic Arterial Pressure Blood pressure during diastolic phase of heartbeat.
(DAP) Expressed in mmHg.

I

Mean Arterial Pressure Mean arterial blood pressure time-averaged from pressure
(MAP) readings acquired during a sampling interval. Expressed in

mmHg.

Heart Rate The rate at which the heart of the patient beats. Expressed
in beats per minute.

Table 3.3. Infusion pump data acquired.

Variable Description

Infusion Rate Rate at which propofol is administered. Expressed in
ml/min.

I

Infused Volume Cumulative volume ofpropofol infused. Expressed in m I.

Data were also collected during the neutering of a male German shepherd. The

anesthesia protocol during this procedure was the same as in the previous experiments

except that the propofol infusion rate was changed according to clinical requirements at the

discretion of the attending anesthesiologist. Blood samples were not taken during this

experiment, however. The purpose ofthis experiment was to evaluate both the model and

equipment configuration in a surgical environment.

As mentioned previously, data were also collected from six beagles for the

purposes of model verification. The protocol for data collection remained the same as for
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the six initial experiments. One potential anomaly must be noted, however. Not only were

these dogs all of the same breed, but several of the dogs were of sim ilar age, size, and

markings, suggesting the possibility that these dogs were from the same litter. If this is the

case, the results might be affected by the lack of genetic variability in the sample being

studied.

A summary of information regarding the individual dogs used as experimental

subjects is provided in Appendix D.

3.2 DATA ANALYSIS

The ECG, EEG, pump, and clinical assessment data for each experiment were

written into a Microsoft Excel spreadsheet. The acquired data and the clinical assessments

were plotted as a function oftime. For ECG data, heart rate was plotted individually and

systolic, mean, and diastolic blood pressure were plotted together. The EEG data collected

represented 25 variables for four EEG channels and two channel pairs (Channels I & 2 and

Channels 3 & 4). Therefore data representing a total of 150 EEG variables were collected

at five-second intervals for approximately 2.5 hours, or nominally 270,000 data points for

each experiment from the EEG alone. For each EEG variable, the four channels of data

were plotted together on the same plot. Data from the channel pairs were omitted on this

series of plots. Pump data (infusion rate and infused volume) were plotted individually.

Clinical assessments (jaw tone, corneal reflex. palpebral reflex, and overall clinical

assessment) were plotted individually as well. One entire set of plots for one experiment

are presented in Appendix E.

Plots of EEG and ECG data as functions oftime were visually compared to plots of

the clinical assessments as functions oftime to detennine which variables correlated
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significantly. Particular emphasis was placed on analysis of variables traditionally used in

assessment of anesthetic depth, such as spectral edge frequency, median frequency,

bispectral index, and power in the delta (0-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta

(13-30) power bands. The high-frequency electromyograph ic (EMG) bands were selected

for further analysis as well. These EEG data were rescaled linearly without regard to units

so that the final values were roughly on a scale of 1 to 5. This rescaling was executed for

the purpose of facilitating direct comparison ofttle EEG variables to the I to 5 scale of the

clinical assessments. The scaling equations and parameters are presented in Table 3.4.

The scaling parameters were determined from values of ABETA, EMGLO, and TOTPOW

observed during the high-infusion rate period of each experiment. These variables tended

to approach a steady-state value within the first hour of each experiment. This baseline

value of each variable was determined by visualization and used as the lower sca.ling

parameter for each experiment. The upper scaling parameter represents an average

maximum value of each variable for all experiments as determined by visualization.

3.2.1 EEG Input

The plots of the rescaled data provided insight into which EEG variables would be

suitable for inclusion in our fuzzy model. Comparisons were made visually rather than

through use of statistical correlation analysis. Given the relatively small sample size in

our experiments, the subjective nature of the clinical assessments, and our proposed

method of model development, the statistical correlation study would not be justified. The

variables chosen for inclusion into the model are listed in Table 3.5. Note that not all of

the variables traditionally monitored for assessing anesthetic depth are included in the set

of variables. In general, the power distribution variables, and suppression ratio were
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Table 3.4. Scaling Methodology for ABETA. TOTPOW. and EMGLO.

() I = Transfonned (rescaled) variable value.

() = Original value (ABETA. TOTPOW, or EMGLO).

(}-p
() '= 4.--+1

q-p

q = Upper scaling parameter (dB)

p = Lower scaling parameter (dB)

where:

Transfonnation equation:

ABETA EMGLO TOTPOW

Experiment p
I

q p I q p
I

q

1 (0502) 38 65 30 64.3 46 65

2 (0608) 44 65 21 64.3 53 65

3 (0615A) 52 65 40 64.3 62 65

4 (0615P) 44 65 32 64.3 57 65

5 (0616) 47 65 31 64.3 56 65

6 (0811) 40 65 30 64.3 48 65

7 (0l07A) 45 65 32 64.3 52 65

8 (0107P) 46 65 32 64.3 55 65

9 (0108A) 45 65 30 64.3 54 65

10 (0108P) 45 65 30 64.3 56 65

11 (OI09A) 45 65 31 64.3 56 65

12 (0109P) 47 65 31 64.3 57 65

Pulse Experiment (0911) 44 65 32 64.3 54 65

Surgical Experiment (1213) 45 65 28 64.3 55 65
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TABLE 3.5. Model Input Variables.

Variable Definition Physiological Significance

Absolute Beta Power A measure of the power in the As propofol anesthesia
(ABETA) Beta frequency band. deepens, Beta activity

(13.75-30.0 Hz) decreases.

Absolute Beta Power Rate Rate of change of Absolute Provides quantification of
(ABETArate) Beta Power over five minute Absolute Beta Power trends.

period.

Total Power A measure of the absolute As anesthesia deepens, total
(TOTPOW) total power in the Delta, power decreases.

Theta, Alpha, and Beta
frequency bands.
(0.5 to 30 Hz)

Relative Beta Power The fraction oftotal power As anesthesia deepens, power
(RBETA) that is due to Beta activity. in the Beta frequency band

, decreases, but relative power
. in other frequency bands

increases. Provides indication
of power distribution within
0.5 - 30 Hz frequency band.

EMG Low Band Power The absolute power in the low EMG power is a measure of
(EMGLO) EMG band. muscle activity. As anesthesia

(70-1 10 Hz) deepens. EMG activity
decreases.

EMG Low Band Power Rate Rate of change of EMG Low Provides quantification of
(EMGrate) Band Power over five minute EMG Low Band Power

period. trends.

Suppression Ratio The percentage of epochs Provides an indication of
(SR) within a sampling window periods of relative brai n

that are considered inactivity. Usually indicative
"suppressed." of deep anesthesia.
(i.e., generating a potent,ial of
less than ± 5J.!.V for greater
than 240 ms)
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chosen. The power distribution variables were selected to provide a gauge of power

distribution throughout the 0-30 Hz spectrum. Suppression ratio was included because it

provides a reliable ind icator of when the brain is electrically "quiet." For ease of analysis,

data from only one channel, Channel 2, were considered.

3.2.2 Mean Arterial Pressure

With most anesthetic agents, hypotension (low blood pressure) is a key concern.

Typically, blood pressure decreases with increasing depth of anesthesia. With propofol,

however, we have observed no meaningful correlation between depth of anesthesia and

blood pressure at surgically adequate infusion rates. Therefore blood pressure was not

included in the set of input variables for fuzzy model development. Any application of this

modeling methodology to drugs other than propofol should not initially exclude blood

pressure as an input, however.

During the experiments, the anesthesiologist would typically be concerned if the

mean arterial pressure would drop below 65 mmHg: the minimum pressure required to

keep tissues adequately perfused (Robertson 1992). Early attempts at model development

included mean arterial pressure as an input, with the 65 mmHg pressure as a "tripwire."

The final form of the model as it will be discussed here does not include mean arterial

pressure or any other cardiovascular input. lfthe mean arterial pressure were to be

included in a monitoring system to serve as a control variable used to activate a "tripwire,"

it can be included independently of the fuzzy system.
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3.3 MODEL DEVELOPMENT

A model was developed using the set ofi.nput variables listed in Table 3.3. The

model was constructed lIsing the commercially available fuzzy logic programming shell,

TILSheli version 3.0, from Togai Infralogic, Inc., Irvine, CA. (now incorporated into

Ortech Engineering, Houston, TX). The output of the model is the variable AWARE,

which is an index of anesthetic depth. The goal of this model is to approximate the clinical

determination of anesthetic depth as determined by an anesthesiologist.

Once the variables for fuzzy system input were selected, membership functions

were defined for all input variables and for the output variable (Figure 3.3). Note that the

membership functions for Absolute Beta Power (ABETA), Total Power (TOTPOW), and

power in the low EMG band (EMGLO) are scaled using the scaling methodology

previously discussed. These input variables are scaled using patient-specific parameters.

This allows for ease of model development and implementation. The use of scaled input

provides for more efficient use of programming resources. Two other input variables used

in the model are the rate of change of absolute beta power (ABETArate) and the rate of

change of power in the EMG low frequency band (EMGrate). These rates of change are not

instantaneous, but determined over a time interval of five minutes. The method of

calculating ABETArate and EMGrate is illustrated in Table 3.6.
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Table 3.6: Calculation of ABETArate and EMGrate.

Variable Formula (M :::: 5 minutes)

ABETArate ABETA(t) - ABETA(t - ~t)
ABETArate(t) =

~(

EMGrate
EMGrate(t) =

EMGLCXt) - EMGLCXt - IJ.t)

!J.!
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Membership functions for ABETA, EMGLO, and TOTPOW (dimensionless)
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Figure 3.3: Input and output variable membership functions.
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Membership functions for RBETA (percentage)
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Figure 3.3 (Cont'd): Input and output variable membership functions.
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A matrix of38 rules relating the membership functions of the input variables was

generated based on physiological heuristics. An example of a typical rule would be, "If

ABETA is low and if ABETArate is negative, then AWARE is low." Each rule is

physiologically based and enumerated in Appendix F.

Slight electrode movement, patient movement, or non-continuous electromagnetic

interference would occasionally generate spurious data. These spurious data would be the

source of "noise." Rather than incorporate physically meaningless data in to the model,

some data were smoothed using a MATLAB program that uses wavelet smoothing (Ganti,

J996) to remove "noise" from the original signal. An example comparison of raw and

smoothed data is provided in Figure 3.4. The data sets selected for wavelet smoothing

were Absolute Beta Power (ABETA), Relative Beta Power (RBETA), Total Power

(TOTPOW), and power in the low EMG band (EMGLO). Each of these data sets for each

experiment were smoothed using the default smoothing level available with the program

used. The resulting sets of smoothed data were concatenated and assembled into data files

for each experiment using Microsoft Excel Version 7.0.

RBwOal1 Smoothed Dolo

Tlm4!I'I

l1OOO3000

o

•

': .------,·~':':'I#,f""'-$oo.":"•• --...,------:,....--."""1!.i'::--"'""'.:""-'!<t
eo .. ", I , ?'\' :'f.!'., 'j,-,

.0 I"'. ~~ I'··f.r;
20 I nl ;!il ....1· I .:. 1",',

J. ""'I Af;

Figure 3.4: Comparison of raw and smoothed values of relative beta power (experiment I).

The simulations using the model were executed within TILShell. A block of code

was written in a TILShel1 simulation module which designated the data file to be read, the
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scaling parameters to be used, and perfonned the scaling calculations. The resulting output

was written to another data file for each simulation. Details regarding the generation and

execution of TILShell simulations are provided in Appendix G.
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4.0

RESULTS

The output resulting from the fuzzy model was analyzed in two ways. The trends

evident in the model output were compared with those that would be expected based on

physiological principles alone. Also, the output from the model was compared against the

overall clinical assessment determined by the anesthesiologist.

4.1 ANALYSIS FROM PHYSIOLOGICAL PRINCIPLES ALONE

The first iteration of data analysis was to determine if the EEG input and model

output were physiologically consistent. What is meant by physiological consistency is that

none of the inputs and outputs contradict one another based on current understanding of

EEG principles. As anesthesia deepens, a patient would be expected to exhibit less high

frequency EEG activity. Consequently, physiological consistency would require that the

variables used in this model, ABETA, EMG, and TOTPOW, would decrease as anesthesia

deepens. The expectations for RHETA are unclear because it is the quotient of ABETA

and TOTPOW. Rates of change of RHETA are therefore related to the comparative rates of

change of ABETA and TOTPOW.

Consider the example of a patient subject to a "I ightening" of anesthesia. One

would expect that as anesthesia lightens, both ABETA and TOTPOW would increase. If

one considers also the ru Ie ofthumb that a lighter plane of anesthesia generally implies

more high frequency (BETA) activity than low frequency activity, one might conclude that

RBETA would also increase. This is not the case, however, when TOTPOW increases

faster than ABETA. In this case, RBETA should decrease: a some.what counterintuitive
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result. For the purposes ofthis analysis, however, the rate of ABETA increase is assumed

to be generally faster than the rate of TOTPOW increase. The expected trend would

therefore be an increase in RBETA as anesthetic depth lightens.

The data from experiment 1 provide an excellent example of what is meant by

physiological consistency. Note the trends in ABETA (Figure 4.1). Immediately

following induction, ABETA decreases to a relatively constant level for the first hour, then

increases slightly following the infusion rate change at the beginning of the second hour,

then increases rapidly to a high level following termination of infusion. The dip in the

ABETA level at t = 7200s corresponds to a data smoothing artifact. The input variables

EMG and TOTPOW also show the trends that would be expected (Figures 4.2 and 4.3).

The model output also corresponds to what would be intuitively expected (Figure 4.4).

Note that the values for model output appear to be two parallel lines after t = 3600 s.

Although the plot may appear to be line plot, it is actually a scatter plot with many data

points close together. Consequently, very rapid changes in model output appear to form

parallel lines and are not immediately obvious as rapid discontinuities.
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Figure 4.1: Dimensionless absolute power in Beta frequency band (Experiment 1).
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Figure 4.2: Dimensionless total absolute power in 0-30Hz frequency band (Experiment 1).

Infusion off
0502 EMG

Infusion changeInfusion on
5r----,.~-=~~--:--~r--1"""""=-""':"T-~~~-"T'+-~ ...-.....,

1 .I-..",.-----+~

a I---....J...,;

o 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time (5)

Figure 4.3: Dimensionless absolute power in EMG low frequency band (Experiment 1).
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Figure 4.4: Model output (Experiment I).
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4.1.1 Initial Six Experiments

Results of the physiological consistency analysis for the first six experiments are

presented in Table 4.1. For the first hour of each experiment when propofol was

administered at the high infusion rate (I mil kg/mi.n), the expected trend would be either a

low level or a decrease to a low level in each of ABETA, EMG, TOTPOW, and RBETA

measurements. As a renection of its input, the model output should also show either a low

level or a decrease to a low level during the first hour. All six experiments yielded this

trend as expected.

For the second hour of each experiment at half the original infusion rate (0.5

mllkg/min), the values of ABETA, EMG, and TOTPOW should show an increase shortly

after the infusion rate change. These values should either rise to a plateau or increase as

the experiment proceeds. Interpretation of these results is more subjective, however.

While subject to the lower infusion rate, the patients are more likely to show responses to

external stimuli such as the application of tail clamps. The consequence is that a clean,

monotonic trend in one of the input variables or the model output is not likely to be

evident. Local minima, maxima, and other oscillatory behavior with periodicity

corresponding to tail clamp application was evident. Nonetheless, consistency was

observed.

Trends in ABETA were consistent for 3 of the 6 experiments, trends in EMG were

consistent for 6 of the 6 experiments, and trends in TOTPOW were consistent for 5 of the 6

experiments. The model yielded consistent trends for 4 of the 6 experiments. What

intuitively appears to be contrary behavior ofRBETA is not (Figure 4.5). What has been

observed with RBETA is a slight decrease or maintenance of a relatively constant level

during the second hour of the experiment. Therefore either TOTPOW increases slightly
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TABLE 4.1 Physiological consistency of model input and output variables for initial
experiments.

High Infusion Rate

I
Low Infusion Rate I Infusion Pump Off .

0< t < 1 hr I hr < t < 2 hr 2 hr< t
Expected Trends
ABETA. EMG. Low level or decrease Increase shortly after Increase to
TOTPOW, MODEL to constant low level 2 hr mark to higher constant high level

level, or continuous
increase to 2 hr mark.

Consistency with expected trends
High Infusion Rate

I
Low Infusion Rate I [nfusion Pump Off

0< t < 1 hr 1 hr < t < 2 hr 2 hr < t

Experiment 1
ABETA Yes Yes Yes
EMG Yes Yes Yes
TOTPOW Yes Yes Yes
MODEL Yes Yes Yes
Experiment 2
ABETA Yes Yes No
EMG Yes Yes No
TOTPOW Yes Yes No
MODEL Yes Yes Yes
Experiment 3
ABETA Yes No No
EMG Yes Yes No
TOTPOW Yes Yes No
MODEL Yes Yes Yes
Experi ment 4
ABETA Yes No Yes
EMG Yes Yes (to t = 1.9 hr) Inconclusive
TOTPOW Yes Yes (Oscillatory) Yes
MODEL Yes No Yes
Experiment 5
ABETA Yes No Inconclusive
EMG Yes Yes Yes
TOTPOW Yes No Inconclusive
MODEL Yes No Yes
Experiment 6
ABETA Yes Yes Yes
EMG Yes Yes Yes
TOTPOW Yes Yes Yes
MODEL Yes Yes Yes
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faster than ABETA or ABETA and TOTPOW increase at the same rate. This is not in

opposition to what would be expected physiologically.
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Figure 4.5 Relative power in Beta frequency band (Experiment I).

When the infusion pump is turned off, the input variables and the model output

should increase to a relatively high level, perhaps to the highest levels observed. The

relatively short duration of this period makes trend analysis somewhat speculative,

however. For experiments 2 and 3 (Figures 4.6 - 4.8, 4.10 - 4.11) during this non-infusion

period after t = 7200 s, Illost of the input variables are physiologically inconsistent, but

consistent model output values are obtained for the duration of this period (Figures 4.9 and

4.12). This phenomenon is possibly attributable to the inclusion ofrules in the rulebase

which address rates of change of EMG and ABETA. A more likely explanation is that the

magnitudes of ABETA and RBETA were sufficiently great to counteract the decrease.
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Figure 4.6 Dimensionless absolute power in Beta frequency band (Experiment 2).
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Figure 4.7 Dimensionless total absolute power in 0-30Hz frequency band (Experiment 2).
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Figure 4.8 Dimension less absolute power in EMG low frequency band (Experiment 2).
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Figure 4.9 Model output (Experiment 2)
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Figure 4.10 Dimensionless absolute power in Beta. frequency band (Experiment 3).
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Figure 4.11 Dimension less total absolute power in 0-30Hz frequency band (Experiment 3).
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Figure 4.12 Model output (Experiment 3)

4.].2 Verification Experiments

To validate the model constructed using the data collected during the first six

experiments, six more experiments were conducted using the same experimental protocol.

The results of this series of experiments did not show the same degree of physiological

consistency. A summary of these results is presented in Table 4.2. In general, the input

variables were consistent for the first hour of each experiment, but model output values

oscillated for the first 40 minutes of each experiment, providing no proof of agreement

with expected trends.

For the second hour during administration of the lower infusion rate, the input

variables for the verification experiments were generally contradictory. Experiment 7

yielded increases of ABETA, EMG, and TOTPOW shortly after the 3600 s mark as

expected, but all three variables dropped off after the 6000 s mark contrary to expectation.

Experiment 8 showed physiologically consistent EMG trends, but also showed a decrease

in ABETA after 3600s and a decrease in TOTPOW after 6000 s. Values of ABETA and
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TOTPOW for experiment 9 showed no obvious consistent trend between 3600 sand 7200s.

The EMG values might be considered to follow the expected trend, but the magnitude of

the post-infusion-change increase coupled with the existence of two relative maxima within

the interval between 3600s and 7200s makes the assessment of consistency speculative.

Experiment 10 yields a general decrease in ABETA for the interval between 3600s and

noos and TOTPOW decreases in the interval from 5400s to noos~ both results are

thoroughly inconsistent with the expected result. For experiment 11, ABETA essentially

hovers around a constant value as do ABETA and EMG for experiment 12. The model

output for verification experiments 1, 2, and 5 do seem to be physiologically consistent,

however.

Results for the infusion-off period (t> 7200s) for each verification experiment

showed that, in general, if the inputs were inconsistent, the outputs were inconsistent.

Verification experiments 1,4, and 6 were inconsistent in all input and output variables

while the remaining experiments were generally consistent.
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TABLE 4.2 Physiological consistency of model input and output variables for verification
experiments.

High Infusion Rate

I
Low Infusion Rate IInfusion Pump Off

0< t < 1 hr I hr < t < 2 hr 2 hr <t
Expected Trends
ABETA, EMG, Low level or decrease 1ncrease shortly after Increase to
TOTPOW, MODEL to constant low level 2 hr mark to higher constant high level

level, or continuous
increase to 2 hr mark.

Consistency with expected trends
High Infusion Rate

I
Low Infusion Rate I Infusion Pump Off

0< t < 1 hr I hr < t < 2 hr 2 hr<t
Experiment 7
ABETA Yes No No
EMG Yes No No
TOTPOW Yes No No
MODEL No Yes No
Experi ment 8
ABETA Yes (after 0.25 hr) No Yes
EMG Yes Yes Yes
TOTPOW Yes (after 0.25 hr) No Inconclusive
MODEL No Yes Yes
Experiment 9
ABETA Yes (after 0.25 hr) No Yes
EMG Yes (after 0.25 hr) No Yes
TOTPOW No No Yes
MODEL No No Yes
Experiment 10
ABETA Yes No No
EMG Yes Yes No
TOTPOW No No No
RBETA Yes No No
MODEL No No No
Experiment 11
ABETA Yes (after 0.4 hr) No Yes
EMG Yes Yes Yes
TOTPOW Yes (after 0.4 hr) Yes No
MODEL No Yes Yes

Experiment 12
ABETA Yes (after 0.4 hr) No No
EMG Yes No No
TOTPOW Yes (after 0.4 hr) Yes No
MODEL No No No

49



4.2 ANALYSIS FROM CLINICAL ASSESSMENT

The limitation of the preceding method of analysis is that it is based on

physiological principles alone. Comparisons of the model with the assessments rendered

by our anesthesiologist provide a more detailed and meaningful method of analysis by

noting subtle patient-specific and experiment-speci.fic responses to anesthesia. In this light,

the model can be viewed as a sort of non-linear function approximator with the

anesthesiologist assessment of anesthetic depth as the function being approximated. The

clinical assessments were originally scaled between '']'' (indicating deep anesthesia) and

"5" (indicating awake). These values were rescaled linearly to correspond to maximum

and minimum values that would result from the model. The span of model output ranges

from 0 to 1.56. The rescaling methodology used transformed an assessment of" 1" to 0 and

an assessment of "4" to 1.56 (the assignment of an assessment of"5" was rare). After the

transformation, the model output can be compared directly to the anesthesiologist­

determined clinical assessment.

The vectors of model output values and clinical assessments were of different

dimensions. To make direct comparisons, the number of model output values was reduced

to the number of clinical assessments by parametrically matching clinical assessment

values with model output values obtained at the same time or as close to the same time as

possible. The model output values were determined for a time interval of 5 seconds and

the clinical assessments were determined every 5 minutes. The uncertainty introduced by

comparing a clinical assessment with a model output value not exactly concurrent would

ttlerefore be negligible, especially considering that each clinical assessment would take at

least IS to 30 seconds to detemline. Each experiment was analyzed by time interval

according to infusion pump rate. The number and percentage of model output values
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within three possible clinical assessment uncertainties were determined and are presented

in Tables 4.13 through 4.16.

The input variables and model output for each of the experiments will be analyzed

experiment by experiment in the sections that follow. Observations regarding both

adherence to physiological consistency and correspondenc,e to the veterinarian clinical

assessment will be discussed.

4.2.1 Initial Six Experiments

The six experiments which are described in the following sections were the

experiments used for model development. These experiments used mixed-breed dogs as

subjects.

4.2.1.1 Experiment 1

The deviations between the clinical assessment and the model are generally small

for experiment] (Table 4.3). In Table 4.3 and subsequent similar tables, the spread of

data is presented as the number and percentage of data points from the infusion period

designated in the leftmost column within the specified rescaled clinical assessment

uncertainty in the top row. The column headed by "n" represents the total number of data

points from the specified infusion period. For example, the values in the "Low Infusion

Rate" row of Table 4.3 should be read as follows: 8 of 11 data points are within ± 0.26

clinical assessment units of the actual clinical assessment, 11 of 12 data points are within

±O.S2 clinical assessment units, and 12 of 12 are within ± 0.78 clinical assessment units.

Two deviations of significant magnitude occur at the beginning of the experiment

unti I t = 1ODDs and shortly after the cessation of infusion at t =7200s (Figures 4.13, 4.15).

At the beginning of tile experiment, the veterinarian immediately assessed the subject as
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being deeply anesthetized while the model suggested light anesthesia for the first 15

minutes followed by a five-minute decrease to a level indicative ofdeep anesthesia (Figure

4.14). The second significant deviation occurring between t =7200s (termination of

infusion) and t = 8100s is the result of the model determining a rate of anesthetic lightening

greater than that determined by the anesthesiologist. The greater ra!e indicated by the

model is likely due to the increased rates of change of ABETA and EMG during this

interval (Figures 4.16,4.17).
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Figure 4.13 Model output (Experiment I).
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Figure 4.14 Rescaled clinical assessment (Experiment 1).
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0502 Model Deviation
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Figure 4.15 Model deviation from clinical assessment (Experiment I).
Deviation = clinical assessment - model
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Figure 4.16 Rate of change in absolute beta power over five minutes: Experiment 1. (dB/s)
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Figure 4.17 Rate of change in absolute EMG power over five minutes: Experiment 1.
(dB/s)

54



TABLE 4.3 Comparison of model with overall clinical assessment for experiment 1.
Uncertainty expressed in rescaled clinical assessment units.

Trend agreement (Yes I No)
and number and percentage of data
within specified uncertainty of
rescaled cl inical assessment I

Description of deviations I

Trend Uncertainty

0~6 I0~2 I ±
I

n
0.78

I Experiment 1
I

High Infusion Rate Yes 9 9 9 11 ' Model values greater for first
0< t < 1 hr 82% 82% 82% 0.25 hr.

Low Infusion Rate Yes 8 11 12 12 Oscillations may correspond
I hr < t < 2 hr 67% 92% 100% ' to tail-clamp events.

Infusion Pump Off Yes 0 0 1 3 Rate of increase to maximum
2 hr <t 0% 0% 33% value greater for model

In Figure 4.4, experiment 1 model output, the model shifts back and forth rapidly

between two levels during the low infusion rate hour, resulting in what appears to be two

parallel levels. This phenomenon is actually due to discontinuities caused by rapid rule-

shifting within the fuzzy rulebase.

4.2.1.2 Experiment 2

The model showed a much slower rate of anesthetic deepening than the clinical

assessment for the first 45-50 minutes (Figures 4.18 - 4.20). This is attributable to a

relatively slow rate of decrease in ABETA, EMG, and TOTPOW (Figures 4.21-4.23). The

second hour at the lower infusion rate shows some oscillation in the model, but this is

likely due to tail clamping episodes. The model deviates from the clinical assessment 45

minutes into the second hour, increasing to its highest levels before cessation of infusion
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and 15 minutes prior to the clinical assessment at the higher levels (rescaled clinical

assessment values greater than or equal to 1.6). This phenomenon is attributable to the rate

of increase in EMG and ABETA (Figures 4.24 and 4.25).
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Figure 4.18: Model output (Experiment 2).
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Figure 4.19: Rescaled clinical assessment (Experiment 2).
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Figure 4.20: Model deviation from clinical assessment (Experiment 2).
Deviation = clinical assessment - model
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Figure 4.21: Dimensionless absolute power in Beta frequency band (Experiment 2).
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Figure 4.22: Dimensionless total absolute power in 0-30Hz frequency band (Experiment
2).
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Figure 4.23: Dimensionless absolute power in EMG low frequency band (Experiment 2).
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Figure 4.24: Rate of change in absolute beta power over five minutes: Experiment 2.
(dB/s)
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Figure 4.25: Rate of change in absolute EMG power over five minutes: Experiment 2.
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TABLE 4.4 Comparison of model with overall clinical assessment for experiment 2.
Uncertainty expressed in rescaled clinical assessment units.

Trend agreement (Yes / No)
and number and percentage of data
within specified uncertainty of
rescaled clinical assessment

Description of deviations
Trend Uncertainty

0.~6 I O.~2 I 0~8 I n

Experiment 2

High Infusion Rate Yes 1 3 3 II Model values greater for first
0< t < 1 hr 9% 27% 27% 0.8 hr. Model requires 0.5 hr

longer to record lowest levels

Low Infusion Rate Yes 4 8 9 12 Oscillations may correspond
1 hr < t < 2 hr 33% 67% 75% to tail-clamp events.

Infusion Pump Off Yes 4 4 4 4

2 hr <t 100% 100% 100%

4.2.1.3 Experiment 3

Deviation is significant for the first 20 minutes of experiment 3 (Figures 4.26 -

4.28). The rate of anesthetic deepening suggested by the model is slower than that

observed by the anesthesiologist. This is attributable to a slow rate of decrease in

TOTPOW for this interval (Figure 4.29). For the second hour at the lower infusion rate the

model and the clinical assessment compare favorably (Table 4.5). Although data are

incomplete for the period following cessation of infusion, figures 4.26 and 4.27 suggest

that the model and clinical assessment would compare favorably for this interval as well.
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Figure 4.26: Model output (Experiment 3).
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Figure 4.27: Rescaled clinical assessment (Experiment 3).

Infusion on

0615A Model Deviation

Infusion change Infusion off

Time (5)

Figure 4.28: Model deviation from clinical assessment (Experiment 3).
Deviation = clinical assessment - model
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Figure 4.29: Dimensionless total absolute power in 0-30Hz frequency band (Experiment 3).

TABLE 4.5 Comparison of model with overall clinical assessment for experiment 3.
Uncertainty expressed in rescaled clinical assessment units.

Trend agreement (Yes I No) Iand number and percentage of data
within specified uncertainty of I

rescaled clinical assessment
Description of deviations

Trend Uncertainty

O.~6 I 0~2 I 0~8 I
n

Experiment 3

High Infusion Rate Yes 2 5 6 II Model values greater for first
0< t < 1 hr 18% 45% 55% 0.3 hr. Model requires 0.5 hr

longer to record lowest levels ,

Low Infusion Rate Yes 8 10 12 12 Oscillations may correspond
I hr < t < 2 hr 67% 83% 100% to tail-clamp events.

Infusion Pump Off N/A I 1 1 I
I

2 hr <t 100% 100% 100%
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4.2.1.4 Experiment 4

The model and dinical assessment compare favorably for most of the data from

experiment 4 (Figures 4.30-4.32, Table 4.6). A significant deviation occurs at

approximately 20 minutes into the second hour (low infusion rate). This deviation is due to

a corresponding decrease in TOTPOW (Figure 4.33), causing a dip in the model output

suggesting an overpred iction of anesthetic depth. The experiment was terminated shortly

after infusion was stopped.

Infusion on
0615P Model

Infusion change Infusion off

0.4

O·f-_.....;0;;;.-1='""""'"

o 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time (51

Figure 4.30: Model output (Experiment 4).
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Figure 4.31: Rescaled cl inical assessment (Experiment 4).
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Figure 4.32: Model deviation from clinical assessment (Experiment 4).
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Figure 4.33: Dimensionless total absolute power in 0-30Hz frequency band (Experiment 4).
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TABLE 4.6 Comparison of model with overall clinical assessment for experiment 4.
Uncertainty expressed in rescaled clinical assessment units.

Trend agreement (Yes I No)
and number and percentage of data
within specified uncertainty of
rescaled clinical assessment

Description of deviations
Trend Uncertainty

±
I 0~2 I 0~8 I

n
0.26

Experiment 4

High Infusion Rate Yes 5 10 ]0 11
0< t < I hr 45% 91% 91%

Low Infusion Rate Yes 9 10 1] 12
I hr < t < 2 hr 75% 83% 92%

Infusion Pump Ofr N/A 1 1 1 I
2 hr < t 100% 100% 100%

4.2.1.5 Experiment 5

The clinical assessment and model output for experiment 5 do not compare quite as

favorably as for some of the other experiments (Figures 4.34-4.36, Table 4.7). This

experiment is unique among the first six experiments in that the anesthesiologist did not

span the clinical assessment range of" I" to "4" (0 to 1.6 rescaled), but instead on Iy

spanned" I" to "3". (0 to 1.07 rescaled). The patient was obviously not as responsive to

stimuli. This was reflected in the EEG input as well, however. The inputs, ABETA and

EMG did not show much variation as a function of time (Figures 4.37 and 4.38). Also,

ABETA and TOTPOW appeared to be inconsistent 40 minutes after the infusion rate

change (Figures 4.37 and 4.39).
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Figure 4.34: Model output (Experiment 5).
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Figure 4.35: Rescaled clinical assessment (Experiment 5).
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Figure 4.36: Model deviation from clinical assessment (Experiment 5).
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Figure 4.37: Dimensionless absolute power in Beta frequency band (Experiment 5).
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Figure 4.38: Dimensionless total absolute power in 0-30Hz frequency band (Experiment
5).
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Figure 4.39: Dimensionless absolute power in EMG low frequency band (Experiment 5).
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TABLE 4.7 Comparison of model with overall. c1inica.1 assessment for experiment 5.
Uncertainty expressed in rescaled clinical assessment units.

Trend agreement (Yes I No)
and number and percentage of data
within specified uncertainty of
rescaled clinical assessment

Description of deviations
Trend Uncertainty

± I 0~2 I 0.~8 I n
0.26

Experiment 5

High Infusion Rate Yes 2 6 9 11 Model values greater for first
0< t < I hr 18% 55% 82% OJ hr. Model requires 0.5 hr

longer than clinician to record
lowest levels

Low Infusion Rate Yes 4 6 10 12 Oscillations may correspond
1 hr < t < 2 hr 33% 50% 83% to tail-clamp events.

Infusion Pump Off N/A 0 I I I
2 hr <t 0% 100% 100%

4.2.1.6 Experiment 6

For the first hour of experiment 6 during administration at the high infusion rate,

model output indicated anesthetic depth that deepened faster than that observed by the

anesthesiologist. Model output levels indicated slightly deeper anesthesia than that

observed by the anesthesiologist for the first hour of the experiment (Figures 4.40 - 4.42,

Table 4.8). The depth of anesthesia inferred by the model output is kept low by the

substantial burst suppression in the first hour (Figure 4.43). The end of this period of burst

suppression is the likely source for the five-minute period of rapid rule shifting beginning

at t = 4000 s (Figure 4.43). The rate of anesthetic lightening during the period of low
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infusion in the second hour was slower for the model than that observed by the

anesthesiologist after t =5100 s. The relatively slow rate of lightening is attributable to the

corresponding trends evident in the inputs ABETA, TOTPOW, and EMG (Figures 4.44-

4.46).
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Figure 4.40: Model output (Experiment 6).
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Figure 4.41: Rescaled cI inical assessment (Experiment 6).
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Figure 4.42: ModeJ deviation from clinical assessment (Experiment 6).
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Figure 4.43: Suppression Ratio (Experiment 6).
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Figure 4.44: Dimensionless absolute power in Beta frequency band (Experiment 6).
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Figure 4.45: Dimensionless total absolute power in 0-30Hz frequency band (Experiment
6).
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Figure 4.46: Dimensionless absolute power in EMG low frequency band (Experiment 6).
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TABLE 4.8 Comparison of model with overall clinical assessment for experiment 6.
Uncertainty expressed in rescaled clinical assessment units.

Trend agreement (Yes I No) Iand number and percentage ofdata
within specifi.ed uncertainty of
rescaled clinical assessment

Description of deviations
Trend Uncertainty

0~6 I 0~2 I 0~8 I n

Experiment 6

High Infusion Rate Yes 2 9 9 II
0< t < I hr 18% 82% 82%

Low Infusion Rate Yes 6 11 12 12 Oscillations may correspond
I hr < t < 2 hr 50% 92% 100% to tail-clamp events.

1nfusion Pump Off N/A 0 2 2 2
2 hr <t 0% 100% 100%

4.2.1.7 Summary of results of first six experiments

The agreement between the model and the data from the first six experiments is

quite good. Although good agreement should be expected between the model and the data

used to develop it, the high quality of the agreement for all six experiments was a surprise.
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4.2.1 Six validation experiments

The six experiments which are described in the following sections were the

experiments used for model verification. These experiments used beagles bred for

laboratory use as subjects.

4.2.2.1 Experim"ent 7

In general, for th is experiment there appears to be Iittle correspondence between

the model. and the clinical assessment (Figures 4.47-4.49, Table 4.9). The model output

makes some sense intuitively in that deep anesthesia is suggested for the first hour during

the period of high infusion. Compared to the clinical assessment, however, correlation

seems coincidental and rare. The clinical assessment is initially very deep, whereas the

model is not. The times during which the deepest levels of anesthesia are observed by the

anesthesiologist do not correspond to the times during which the model suggests deep

anesthesia. The model suggests light anesthesia at the beginning of the experiment and

deep levels 40 minutes into the hour of high infusion. After the infusion rate change, depth

of anesthesia rapidly lightens according to the model. The clinical assessment is not in

agreement, however. The deviation at the beginning of the experiment and shortly after the

infusion rate change can be traced to the inputs ABETA, TOTPOW, and EMG (Figures

4.50-4.52). Burst suppression was evident toward the end of the first hour which accounts

for the model output indicating deep anesthesia at this time (Figure 4.53). These input

values show trends corresponding to similar trends in the model output. Some ofthese

trends seem physiologically inconsistent. After infusion is ceased, ABETA, TOTPOW,

and EMG decrease: contrary to what is expected. This physiological inconsistency is the

likely explanation for the significant deviation between t = 8400 sand t =9000 s.

72



Infusion on

1.5

0.5 i-"....,..'-1

0107A Model
Infusion change Infusion off

o ..~-L:=----~~~~--G..---J~-U--.:.J~..i
o 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time (5)

Figure 4.47: Model output (Experiment 7).
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Figure 4.48: Rescaled cl inical assessment (Experiment 7).
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Figure 4.49: Model deviation from clinical assessment (Experiment 7).
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Figure 4.50: Dimensionless absolute power in Beta frequency band (Experiment 7).
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Figure 4.51: Dimensionless total absolute power in 0-30Hz frequency band (Experiment
7).
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Figure 4.52: Dimensionless absolute power in EMG low frequency band (Experiment 7).
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Figure 4.53: Suppression Ratio (Experiment 7).

TABLE 4.9 Comparison of model with overaU clinical assessment for experiment 7.
Uncertainty expressed in rescaled clinical assessment units.

Trend agreement (Yes / No)
and number and percentage of data
within specified uncertainty of
rescaled clinical assessment

Description of deviations
Trend Uncertainty

0~6 I 0~2 I 0.~8 I
n

Experiment 7

High Infusion Rate No 2 7 8 11 Model values greater for first
0< t < I hr 18% 64% 73% 0.5 hr.

,

Low Infusion Rate Yes 0 0 4 12 Model values significantly
1 hr < t < 2 hr 0% 0% 33% greater.

Infusion Pump Off Yes 3 3 3 3
2 hr <t 100% 100% 100%

4.2.2.2 Experiment 8

For experiment 8, the initial clinical assessments indicated deep anesthesi.a. The

model output, however, did not indicate deep anesthesia for the first 40 minutes at the high
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infusion rate (Figures 4.54-4.56, Table 4.10). After the infusion rate change, a slight

increase in the mean level of model output is observed, but the rate of increase is not as

rapid as that observed by the anesthesiologist. The input variables ABETA, TOTPOW, and

EMG are peculiar in that they show little variation between the hour of high infusion and

the hour oflow infusion (Figures 4.57-4.59). The levels of ABETA and EMG increase

immediately once infusion is terminated at t = 7200 s, however.
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Figure 4.54: Model output (Experiment 8).
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Figure 4.55: Rescaled clinical assessment (Experiment 8).
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Figure 4.56: Model deviation from clinical assessment (Experiment 8).
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Figure 4.57: Dimensionless absolute power in Beta frequency band (Experiment 8).
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Figure 4.58: Dimensionless total absolute power in 0-30Hz frequency band (Experiment
8).

77



-

r
I'

, - ..
,-,-,=- = ......... ,

'It. ,~'
s;i. ~:

Infusion off
0107P EMG

Infusion changeInfusion on

5

4

3

2

1

o
o 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time (s)

Figure 4.59: Dimensionless absolute power in EMG low frequency band (Experiment 8).

TABLE 4.10 Comparison of model with overall cl inical assessment for experiment 8.
Uncertainty expressed in rescaled clinical assessment units.

Trend agreement (Yes / No)
and number and percentage of data
within specified uncertainty of
rescaled clinical assessment

Description of deviations
Trend Uncertainty

0~6 I 0~2 I 0.~8 I
n

Experiment 8

High Infusion Rate No 2 6 9 II Model oscillates for first 0.6
0< t < 1 hr 18% 55% 82% hr around mean level greater

than clinical assessment.

Low lnfusion Rate Yes 3 8 12 12 Rate of model increase slower.
I hr < t < 2 hr 25% 67% 100%

Infusion Pump Off N/A I 1 1 I

2 hr < t 100% 100% 100%

4.2.2.3 Experiment 9

There is significant deviation during both the high and low infusion rate intervals

(Figures 4.60-4.62, Table 4.11). The input variables appear to be featureless (Figures 4.63-

4.65) resulting in similarly featureless model output.
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Figure 4.60: Model output (Experiment 9).
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Figure 4.61: Rescaled clinical assessment (Experiment 9).
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Figure 4.62: Model deviation from clinical assessment (Experiment 9).
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Figure 4.63: Dimensionless absolute power in Beta frequency band (Experiment 9).
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Figure 4.64: Dimensionless total absolute power in 0-30Hz frequency band (Experiment
9).
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Figure 4.65: Dimensionless absolute power in EMG low frequency band (Experiment 9).
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TABLE 4.11 Comparison of model with overall clinical assessment for experiment 9.
Uncertainty expressed in rescaled clinical assessment units.

Trend agreement (Yes / No)
and number and percentage of data
within specified uncertainty of
rescaled clinical assessment

Description of deviations
Trend Uncertainty

0.~6 I 0~2 I 0~8 I
n I

Experiment 9

High Infusion Rate No 4 10 II II Model values greater than
0< t < I hr 36% 91% 100% clinician values for first 0.3 hr.

Model requires 0.5 hr longer
to record lowest levels

Low Infusion Rate No 2 4 8 12 Increase in clinical assessment
I hr < t < 2 hr 67% 33% 67% obvious but no obvious trend

in model observed.

Infusion Pump Off N/A 0 1 I I
2 hr < t 0% 100% 100%
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4.2.2.4 Experiment 10

Like experiment 9, this experiment shows significant deviation between the

clinical assessment and the model (Table 4.12). After 30 minutes at the high infusion rate,

the model and clinical assessment diverge (Figures 4.66 - 4.68). Again, this puzzling lack

of obvious trends in the output are due to relatively featureless (Fjgures 4.69 and 4.71) or

physiologically inconsistent input (Figure 4.70).
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Figure 4.67: Rescaled clinical assessment (Experiment 10).

Figure 4.66: Model output (Experi ment 10).
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Figure 4.70: Dimensionless total absolute power in 0-30Hz frequency band (Experiment
10).
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Figure 4.69: Dimensionless absolute power in Beta frequency band (Experiment 10).

83



TABLE 4. 12 Comparison of model with overall clinical assessment for experiment 10.
Uncertainty expressed in rescaled clinical assessment units.
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Figure 4.71: Dimensionless absolute power in EMG low frequency band (Experiment 10).

Trend agreement (Yes INa)
and number and percentage of data
within specified uncertainty of
rescaled clinical assessment

Description of deviations
Trend Uncertainty

±
I O~2 I 0.~8 I

11

0.26
Experiment 10

High Infusion Rate Yes 3 8 11 II
0< t < I hr 27% 73% 100%

Low Infusion Rate No 2 9 II 12 Model output yields maximum
I hr < t < 2 hr 17% 75% 92% at t = 1.5 hr

Infusion Pump Off No 0 2 3 3 Clinical assessment relatively
2 hr<t

I
0% 67% 100% constant. Model has

I maximum at t =2.2 hr.

I

84



4.2.2.5 Experiment II

This experiment showed some correlation between the clinical assessment and the

model (Table 4.13). Although the model output values for the first hour at the high

infusion rate do not show anesthesia as deep as that observed by the anesthesiologist, they

appear to be hovering around a baseline suggesting deep anesthesia (Figures 4.72 - 4.74).

The deviations for the first 20 minutes of the experiment are attributable to TOTPOW

(Figure 4.76). Although ABETA appears to be relatively featureless for the first two hours

of the experiment (Figure 4.75), TOTPOW registers a significant change corresponding to

the change in infusion rate. A similar but more subtle change in EMG occurs as well

(Figure 4.77). These changes observable in the input variables manifest themselves in the

model output. From the infusion rate change to the 90 minute mark, the clinical

assessment was much deeper than the assessment suggested by the model. For the next 30

Infusion off
0109A Model

Infusion change

0.5

Infusion on

o.~~~~.:.4E~~~¥~;':::
o 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time (5)

Figure 4.72: Model output (Experiment II).

minutes there was little deviation.
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Figure 4.73: Rescaled clinical assessment (Experiment II).
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Figure 4.74: Model deviation from clinical assessment (Experiment II).
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Figure 4.75: Dimensionless absolute power in Beta frequency band (Experiment 11).
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Figure 4.76: Dimensionless total absolute power in 0-30Hz frequency band (Experiment
II ).

Figure 4.77: Dimensionless absolute power in EMG low frequency band (Experiment 11).
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TABLE 4.13 Comparison of model with overall clinical assessment for experiment 11.
Uncertainty expressed in rescaled clinical assessment units.

Trend agreement (Yes / No)
and number and percentage of data
within specified uncertainty of
rescaled clinical assessment

Description of deviations
Trend Uncertainty

O.~6 I O~2 I 0~8 I
n

Experiment II

High Infusion Rate Yes 3 8 11 1I
0< t < I hr 27% 73% 100%

Low Infusion Rate Yes 4 7 12 12 Rate of model increase slower
1 hr < t < 2 hr 33% 58% 100% beginning at infusion rate

change. Clinical assessment
increase begins 0.4 hr later.

Infusion Pump Off Yes 0 3 3 3
2 hr <t 0% 100% 100

%

4.2.2.6 Experiment 12

This experiment is another example of an experiment in which the anesthesiologist

did not apply a broad span of assessments for the duration ofthe experiment. The first 40

minutes of the experiment provided examples of significant deviation between model and

cl inical assessment due to oscillatory behavior in ABETA and TOTPOW and a relatively

slow decrease in EMG (Figures 4.78 - 4.83). Levels of ABETA and EMG remained

relatively constant from the 40 minute mark during the high infusion period to the

termination of infusion. No significant change was observed as a result of the change to

the low infusion rate at the end of the first hour. There was a slight change at the infusion

rate change in TOTPOW, however. During the second hour at the low infusion rate, model
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Figure 4.78: Model output (Experiment 12).
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Figure 4.79: Rescaled clinical assessment (Experiment 12).

level attained during the first hour. At the termination of infusion. there were significant

output values oscillated and hovered around a mean level slightly higher than the lowest

12 minutes later.

changes in ABETA. TOTPOW, and EMG followed by a peculiar decrease approximately
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Figure 4.80: Model deviation from clinical assessment (Experiment 12).
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Figure 4.81: Dimensionless absolute power in Beta frequency band (Experiment 12).
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Figure 4.82: Dimensionless total absolute power in 0-30Hz frequency band (Experiment
12).
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Figure 4.83: Dimensionless absolute power in EMG low frequency band (Experiment 12).

TABLE 4.14 Comparison of model with overall clinical assessment for experiment 12.
Uncertainty expressed in rescaled clinical assessment units.

Trend agreement (Yes / No)
and number and percentage of data
within specified uncertainty of
rescaled clinical assessment

Description of deviations
, Trend Uncertainty
I ± I ± I ± I,

n

0.26 0.52 0.78 I'

Experiment 12

High Infusion Rate Yes 3 6 8 II Oscillatory model decrease
0< t < I hr 27% 55% 73% slower for first 0.6 hr.

Low Infusion Rate Yes 5 10 12 12
1 hr < t < 2 hr 42% 83% 100%

Infusion Pump Ofr N/A I I I I
2 hr< t 100% 100% 100%
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4.2.3 Comparison of initial experiments with verification experiments.

In general, the model output from the verifi,cation experiments did not agree with

the clinical assessment to the same extent that the model output from the initial six

experiments agreed with the corresponding clinical assessment (Tables 4.15 and 4.16).

This is certainly not surprising considering that the initial experiments were used to

develop the model. Also, laboratory beagles were used for the verification experiments

whereas mixed breed dogs were used for the model development experiments. The

verification experiments demonstrated slightly greater agreement with clinical assessment

during the high infusion rate regime than the initial experiments. The initial experiments

were closer to the clinical assessments during the low infusion rate, however. Existence

and quality of data for the post-infusion period limits the validity of any analysis or

comparison of data for this interval.
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TABLE 4.15. Comparison of Model with Overall Clinical Assessment for Initial
Experiments. (Experimellts I - 6)

Trend agreement (Yes / No)
and number and percentage of data
with in specified uncertainty of
rescaled clinical assessment

Description of deviations
Trend Uncertainty

0~61 0~21 0.~8 I n

TOTALS

High Infusion Rate 6 Yes 21 42 46 66
0< t < 1 hr 32% 64% 70%

Low Infusion Rate 6 Yes 39 56 66 72
1 hr < t < 2 hr 54% 78% 92%

Infusion Pump Off 2 Yes 6 9 10 12
2 hr < t 4 N/A 50% 75% 83%

GRAND TOTALS

66 107 122 150
44% 71% 81%
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TABLE 4.16. Comparison of Model with Overall Clinical Assessment for Verification
Experiments. (Experiments 7 - 12)

Trend agreement (Yes / No)
and number and percentage of data
within specified uncertainty

Description of deviations
Trend Uncertainty

O.~6 I O~2 I O.~8 I 11

TOTALS
High Infusion Rate 3 Yes 17 45 58 66
0< t < I hr 3 No 26% 68% 88%

Low Infusion Rate 4 Yes 16 38 58 72
1 hr < t < 2 hr 2No 22% 53% 81%

1nfusion Pump Off 2 Yes 5 11 12 12
2 hr< t 1 No 42% 92% 100%

3 N/A

GRAND TOTALS

38 94 128 150
25% 63% 85%
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4.3 PULSE EXPERIMENT

The purpose of this experiment was to determine the response of EEG variables to

changes in infusion rate. This was accomplished by inducing anesthesia in a mixed-breed

dog using the same protocol as used in the other experiments, but rather than immediately

infusing the subject with 0.1 ml/kg of propofol, the lower infusion rate of 0.05 ml/kg was

used. This infusion rate was maintained for one hour to obtain a nominally "steady state"

anesthetic depth, then a 10 mg/kg bolus dose of propofol was administered and EEG data

were collected for one more hour. The infusion was maintained during the second hour at

the 0.05 ml/kg infusion rate.

The expectations for this experiment were that ABETA, TOTPOW, and EMGLO

would decrease immediately following the bolus injection and then increase as the propofol

was cleared. Modest burst suppression was expected immediately following the bolus

injection as well. The expectation for the model was that it should indicate light anesthesia

for the first hour with a relatively short period of deeper anesthesia immediately following

administration of the bolus, then progressive lightening of the anesthesia as the experiment

continued. The results are shown in Figures 4.84 - 4.90.

..

Infusion on
0911 Model

Bolus Dose Infusion off

1000 2000 3000 4000 5000 6000 7000 8000 9000
Time (5)

Figure 4.84: Model output (Pulse experiment).
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Figure 4.85: Rescaled clinical assessment (Pulse experiment).
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Figure 4.86: Model deviation from clinical assessment (Pulse experiment).
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Figure 4.87: Dimensionless absolute power in Beta frequency band (Pulse experiment).
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Figure 4.88: Dimensionless total absolute power in 0-30Hz frequency band (Pulse
experiment).
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Figure 4.89: Dimensionless absolute power in EMG low frequency band (Pulse
experiment).
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Figure 4.90: Suppression Ratio (Pulse experiment).
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As expected, ABETA, EMGLO, and TOTPOW all attain their minimum values

immediately after the bolus injection. Suppression occurs immediately after the bolus

injection as well. Both the model and clinical assessment indicate the deepest anesthetic

plane immediately after the bolus injection. Model trends generally agree with clinical

assessment trends, particularly at and immediately following the bolus injection.

4.4 SURGICAL EXPERlMENT

This experiment was intended to fulfill three purposes. First, it provided another set

of data for fine tuning and further development of the fuzzy model. Second, it provided

assurance to the anesthesiologist that the infusion rates used in the other experiments were

adequate and consistent with those used in a surgical scenario. Third, it provided an

opportunity to test the compatibility of surgery with data acquisition.

4.4.1 Data Analysis

Induction dosage and initial infusion rates were set as they were in the previous

experiments at 10 mg Ikg and 0.1 mllkglmin, respectively. The infusion rate was changed

afterward at the discretion of the anesthesiologist. An event list for the experiment is

provided in Table 4.17. Due to the nature of this experiment, expected trends were difficult

to predict. Plots of selected input and model output are provided in Figures 4.91 - 4.97.

Trends in ABETA seem only slight, but low values in EMGLO and TOTPOW correspond

with instances of suppression. The application of the monopolar cautery at t = 1138 s

caused a EEG data acquisition interruption of approximately 4 minutes. The values

obtained in this window are therefore specious. Low values in the model output
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correspond with instances of burst suppression, during the beginning of the experiment at

the high infusion rate and at the end of the experiment immediately following the

administration of the second bolus propafol dose.

Table 4.17. Event list for surgical experiment: neutering of6 month old male German
Shepherd.

Elapsed Time Event
s hh:mm:ss

0 0:00:00 Infusion pump on (3.0 ml/min)

1146 0:19:06 Incision

1138 0:18:58 Use of monopolar cautery (EEG signals interrupted)

1225 0:20:25 Infusion decrease to 2.0 ml/min

1697 0:28:17 Cutting of scrotal ligament

1746 0:29:06 Clamps applied

1857 0:30:57 Infusion increase to 2.5 ml/min

2087 0:34:47 Clamps applied

2342 0:39:02 Reduce infusion to 2.0 ml/min

2667 0:44:27 Bolus propofol injection (same as induction dose)

3260 0:54:20 Application of Bipolar Cautery

I

3297 0:54:57 Application of Bipolar Cautery
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Figure 4.91: Model output (Surgical experiment).
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Figure 4.92: Rescaled clinical assessment (Surgical experiment).
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Figure 4.93: Model deviation from clinical assessment (Surgical experiment).
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Figure 4.94: Dimensionless absolute power in Beta frequency band (Surgical experiment).
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Figure 4.95: Dimensionless total absolute power in 0-30Hz frequency band (Surgical
experiment).
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Figure 4.96: Dimensionless absolute power in EMG low frequency band (Surgical
experiment).
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Figure 4.97: Suppression Ratio (Surgical experiment).

4.4.2 Verification of Appropriateness ofInfusion Rate

The anesthesiologist was satisfied with the infusion rates used in the previous

experimental protocol. The 0.1 mI/kglmin infusion rate is representative of a propofol

infusion rate adequate for surgical use.

4.4.3 Surgical Application of Data Acquisition Techniques

The use of the monopolar cautery prevented four minutes of data acquisition. The

bipolar cautery interrupted data acquisition for a much shorter period, but interrupted the

EEG signal nonetheless_ A more typical surgical environment in human medicine would

have many more sources of electromagnetic fields and other sources that would likely

interfere with data acquisition as it was done in this experiment. Also, moving the patient

may disrupt EEG acquisition as well.
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5.0

DISCUSSION OF RESULTS

AIthough the analysis provided in the previous chapter has been primarily

quantitative, the significance of the model is best shown qualitatively. The essence of

assessing anesthetic depth is qualitative; the distilled purpose of this work is to generate a

computer program that can reproduce a person's opinion. Consequently, we believe

statistical regression analysis or other typical quantitative techniques are less meaningful

and potentially misleading as a means of assessing the quality of the proposed model.

Considering that the clinical assessment and the model require different sets of

input data, a meaningful interpretation of the differences between them may be difficult to

elucidate. When the cl inician observes the reflexes and muscle tone of a patient, he infers

depth of anesthesia. He cannot explicitly see how deep his patient is anesthetized; he can

only base his opinion on the observables he can monitor. The model prediction is an

assessment based on another set of observables. Again, depth of anesthesia is inferred and

not measured explicitly. The physiological processes that cause subtle changes in the

observables used by the clinician to assess anesthetic depth are temporally different from

the processes that cause subtle changes in the observables monitored by the computer

program. The philosophical question that lurks behind all ofthe analysis comparing these

assessments is whether the anesthesiologist and the computer program are actually

assessing the same thing.

Perhaps a more reasonable interpretation is that the index generated by the model

is a comparable and complimentary assessment of anesthetic depth. Clearly, some of the

experiments showed a distinct change in the output index corresponding to change in
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infusion rate while the anesthesiologist reported no such change. In other instances, the

anesthesiologist observed drastically different indicators ofanesthetic depth that resulted in

assessments very different from those generated by the model. At any rate, the assumption

tbat the clinician's assessment based on one set of observables can be duplicated by a

system monitoring a completely different set of observables is debatable. The two

assessments are comparable, however.

Although the comparison of the clinical assessments based on physical observables

and the model output based on EEG observables may not be valid as a means of

quantitatively evaluating the model, this comparison has probative value for model

evaluation. The validity of the comparison could be enhanced by using multiple clinicians

and requiring less resolution in the continuum between light and deep anesthesia for both

the clinical and model-detennined assessments. Another means of qualitatively verifying

the model would be to test it on-line in real time with an anesthesiologist evaluating the

model-determined assessment.

5.1 EVALUATION OF MODEL

The detennination of whether the proposed model accurately assesses depth of

anesthesia is difficult to answer. If the question to be answered is whether the model

exactly mimics the assessment of an anesthesiologist, the answer is no. But if the question

is whether the model assessment identifies the same trends identified by the

anesthesiologist within a comparable time, the answer would be a qualified yes. For the

initial six experiments used to develop the model, the general trends observed by the

anesthesiologist were reproduced by the model. Although the set of verification

experiments did not yield the same degree of trend agreement, the differences and
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deviations between the model and the clinical assessments are generally the result of

physiologicalJy inconsistent or contradictory input data. The quality of the model can only

be as good as the quality of the model input.

The model clearly provides some indication of anesthetic depth. Developing a

model that would reproduce the assessments given by the anesthesiologist exactly would be

extremely difficult. In this light, the true indicators of the clinical value of the model

would be its response to variations in infusion rate and whether it distinctly differentiates

deep anesthesia from light anesthesia. Responses of the model to changes in infusion rate

are consistent with those expected. Furthermore, model predictions corresponding to deep

anesthesia are clearly distinct from those corresponding to light anesthesia.

Although the model as presented appears to have value as a means of assessing

anesthetic depth, and that the relationship between model output and anesthetic depth can

be described and evaluated qualitatively, what follows is a discussion of the limitations of

the model regarding quantitative comparison with clinical assessment of anesthetic depth.

5.1.1 Limitations of Experimental Procedure

The experimental procedure made data analysis more difficult than necessary. The

results of most of the experiments during the second hour at the low infusion rate indicate

oscillatory behavior in the model output. This oscillation may be due to the application of

tai I clamps at 15 minute intervals. Some of the experiments show very clearly a

corresponding 15 minute periodicity in these oscillations. For the kind ofanalysis being

performed, the oscillations make the determination of conclusions difficult.

The breed and age of dog used as a subject were also not controlled. All the dogs

studied were considered "young adults," but no more specific information regarding age
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was available. The six dogs used for the first experiment were medium-sized mixed breed

dogs, but the six dogs used in the verification experiments were laboratory purpose-bred

beagles. Differences in EEG response to anesthesia by breed have been noted (Zoran

1993). Therefore, the experimental methodology could have removed a potential bias

either by examining only one breed or examining a larger, statistically significant sample

of mixed breed dogs.

The subject dogs for the verification experiments appeared similar in age and

appearance. The appearance was so similar that two dogs weighed approximately the same

and shared similar markings, suggesting that they may have come from the same litter. If

several of these dogs were related, one might expect that the results from the experiments

may be subject to some bias.

5.1.2 Limitations of Model Development

Many assumptions were used to develop this model. The input variables ABETA,

TOTPOW, and EMG were rescaled and made dimensionless using patient-specific

parameters. The parameters used to define the input membership functions were assigned

using the best judgment of the author. No major effort was extended to optimize either the

scaling parameters or membership function parameters either to minimize deviation from

the clinical assessment or to enhance the physiological consistency of the model. These

issues are fundamental in the development of aU fuzzy systems, however, and not

particular to this system. These are limitations of design and can therefore be mitigated to

improve the model.

The development of the fuzzy rul.ebase was hindered by the inabiJity of the fuzzy

logic software, TILShell, to easily accommodate complicated rules. The software was
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originally designed to accelerate the design of fuzzy control systems and not for

implementing fuzzy expert systems. A superior fuzzy logic software shell would allow for

rules containing multiple conjunctive premises (e.g. "if A and Band C and 0, then X").

The software as it exists now is only capable of using rules containing no more than two

conjunctive premises conveniently (e.g. "ifA and B then Y"). Certainly the 10gica.1

equivalent of the multiple conjunctive argument could be determined using De Morgan's

Laws and arbitrary logical intermediate variables, but this is unnecessarily complicated.

The rulebase would be easier to comprehend if rules containing multiple conjunctive

premises were used.

5.1.3 Limitations of Clinical Assessment

Our anesthesiologist assessed anesthetic depth using a subjective five point scale

which was rescaled and compared to the model output. In practice, only values ranging

from" 1" to "5" were used. Exam ination of the experimental results indicates that these

assessments appear to be consistent, but considering that they are subjective and

determined by a human, some bias will exist, regardless of the training and expertise of the

clinician. The endpoints oftbe anesthetic depth spectrum, "deep" anesthesia and "awake"

are easily identifiable by objective analysis, but the continuum between these endpoints is

less well defined to the cl inician. It may be relatively simple to identify and assess a "I" or

a "4", but less easy to assess a "2" or a "3". Consequently, a more straightforward and less

subjective analysis comparing the model and the clinical assessment could have been

performed with a scale requiring less differentiation among the values intervening between

"deep" anesthesia and "awake".
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5.1.4 Limitations of Comparison

To compare the model output and the clinical assessment, a linear relationship was

assumed to exist between them so that the clinical assessment could be rescaled and

compared directly with the model. The fundamental relationship between these two

variables, if one exists, may not be linear, however. The direct comparisons presented in

the Tables 4.3 to 4.16 are therefore somewhat speculative. What the entries in those tables

represent is not necessarily the quality of the agreement between the model and the clinical

assessment, but the qual ity of a linear correlation between the model and the c1ini.cal

assessment.

5.2 IMPLEMENTATION ISSUES

The possibility of implementing this model as it currently exists is lim ited. The

EEG is very sensitive to electromagnetic disturbances and the modern health-care milieu

generates many electromagnetic disturbances. The quality ofthe EEG signal is often

questionable even in the Illost optimum circumstances and the introduction of an

electrocautery can rapidly destroy the ability of the monitoring system to acquire data.

This is a hardware limitation and therefore restricts the quality and robustness of the

monitoring system to the quality and robustness ofthe hardware used to implement it.

Another limiting aspect of this work is that it was done using propofol alone as an

anesthetic agent. For this or a simiJar model to be implemented, is must be validated for

the appropriate pharmaceuticals to be used. The general rules as defined in the rulebase

should apply, but the patient specific parameters would likely need adjustment.

These patient-specific parameters used for scaling the input values are also a

potential source of difficulty regarding model implementation. Prior to the use of this
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system, these parameters must be detennined. This may require calibration while the

patient is anesthetized which may not be practical.
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6.0

CONCLUSIONS AND RECOMMENDATIONS

The anesthesia monitoring system developed in this project provides a previously

unavailable means for the quantitative assessment of anesthetic depth. Although it does

not provide an assessment identical to that determined by an anesthesiologist, it provides a

complimentary assessment which may on occasion provide a more sensitive determination

of anesthetic depth than that provided by a clinician. This system also assesses anesthetic

depth continuously. If the implementation issues are resolved, this system or a similar one

may be useful in the operating rooms or critical care wards of the future.

6.1 CONCLUSIONS

Specific conclusions drawn from this work are listed below.

I. The index generated by this model reflects depth of anesthesia.

2. Agreement between model and c inical assessments very good considering that this

approach to model development has not been attempted in the context of anesthesia

mon itoring.

3. Fuzzy logic provides a viable method of modeling complex, non-linear processes.

4. Use of fuzzy linguistic variables made model development intuitive.

5. Incorporation ofEEG variables from both the time domain (Suppression Ratio) and

frequency domain (power distribution) provides an extra dimension of useful clinical

information to the model.

6. Experimental observations suggest that propofol anesthesia does not elicit a strong

hypotensive effect at surgically adequate infusion rates, therefore supporting the
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reputation of propofol as a safe anesthetic agent. However, this model should be

considered propofol-specific due to the exclusion of blood pressure as a model input.

7. The model yields good results with mixed-breed dogs, but inconsistent results with

pure-bred beagles.

8. The model could be optimized by adjusting membership functions and related scaling

parameters.

9. Use of EEG presents enormous data handling requirements.

10. In a surgical environment, a bipolar cautery is preferred to a monopolar cautery

because it causes less EEG signal disruption.

6.2 RECOMMENDAnONS

Although this model holds promise as a means of assessing anesthetic depth,

certain issues must be addressed to improve the means of evaluating and implementing the

model. The limitations previously discussed would need to be overcome or otherwise

accounted for: particularly the items which make interpretation of the results difficult. It is

very possible that both qualitative and quantitative agreement between the clinical

assessment and the model are shrouded behind noisy inputs and irregular experimentation

due to the variability mentioned previously. A comprehensive list of recommendations

follows.

I. An alternative to evaluating the model by directly comparing it to a clinical assessment

after the fact would be to evaluate it online in a clinical setting in real time. Clinical

trials could be performed so that multiple anesthesiologists could gauge the adequacy

of the model assessment relative to their own clinical assessment.
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2. Alternative fuzzy logic software or problem-specific code may provide greater model

development flexibility.

3. The automation of ECG data acquisition would make the extension of this model to

other anesthetic agents considerably easier.

4. Future experiments should either use the tail clamp more infrequently or not at all. The

use of the tail clamp resulted in spiking and other oscillations in the EEG signal which

tended to complicate the interpretation of results.

5. The use of a larger sample of mixed breed dogs would provide a superior means of

determining the existence of spurious or questionable data.

6. The assessments del ivered by several veterinarians rather than one wou Id provide a

means of reducing the bias introduced by subjective assessment.

7. The model could be improved further if scaling parameters and membership functions

were optimized and more complicated conjunctive rules could be used in the rulehase.

8. Optimization ofthe model could be made simpler with more flexible software. The

generation and use of model specific code may be preferable to the use of commercial

fuzzy logic software.

9. Questions regarding the robustness ofthe system could be resolved by multiple system

trials in a surgical environment.
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APPENDIX A

FUZZY INFERENCING AND DEFUZZIFICATION

To illustrate the process of fuzzy inferencing and defuzzification, consider an

example fuzzy optimization problem of selecting automobile tires based on cost and

warranty. The cost of a tire and the duration of its warranty are both crisp inputs. The

goal of this optimization is to map these crisp inputs to a crisp output, a "tire desirability ~,
index." This process consists of three steps: fuzzification, inferencing, and defuzzification.

A.I FUZZIFICATION

Tire cost and tire warranty must both be defined in terms of fuzzy sets. This

definition is accomplished with membership functions. Tire cost will be defined as either

"LOW" or "HIGH" according to the membership function shown in Figure A.I. Tire

warranty will be defined as either "LOW" or "HIGH" according to the membership

function shown in Figure A.2.

Tire Cost Membership
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Figure A.I: Tire cost membership functions

The linguistic descriptors "LOW" and "HIGH" are actually fuzzy sets (e.g. "Tire

cost is LOW" would constitute a fuzzy set). Note that a particular value for cost or
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warranty may be both "LOW" and "HIGH." For example a tire warranty of 57,500 would

be "LOW" with a membership of 0.75 and "HIGH" with a membership of 0.25 (Figure

A.2).

Tire Warranty Membership
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Figure A.2: Tire warranty membership functions

A.2 INFERENCING

The inputs of tire cost and tire warranty must be mapped onto an output variable,

the "Tire desirability index." Before proceeding, membership functions must be defined

for this output variable. For this example, "LOW," "MEDIUM," and "HIGH" will suffice

(Figure A.3).

Tire Desirability Index Membership
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Desirability Index

Figure AJ. Tire desirability index membership functions.
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A matrix of rules relating the inputs to the outputs must be established. These rules

will describe the linguistic relationship between the input variables and the output

variables. For this example, four rules will be used and they are enumerated in Table A.I.

Table A.I. Rules relating tire cost and warranty to tire desirability.

Rule 1.

Rule2.

Rule 3.

Rule4.

Iftire cost is "LOW" and tire warranty is "LOW" then
tire desirability is "MEDIUM."

If tire cost is "HIGH" and tire warranty is "LOW" then
tire desirability is "LOW."

If tire cost is "LOW" and tire warranty is "HIGH" then
tire desirability is "HIGH."

Iftire cost is "HIGH" and tire warranty is "HIGH" then
tire desirability is "MEDIUM"

Now consider a specific tire costing $43.00 with a warranty of 55,000 miles. For

tire cost, this tire is "LOW" with a membership of 0.85 and "HIGH" with a membership of

0.15. For tire warranty, this tire is "LOW" with a membership of 0.8333 and "HIGH" with

a membership of 0.1667. The consequence of non-zero membership in all input fuzzy sets

is that all of the rules in Table A.I will apply to some degree. To determine to what degree

each rule applies, a decision must be made regarding the particular implication rule to be

used. For this example, Mamdani's Rule (Mamdani 1976) will be used. This rule, also

known as correlation-minimum implication (Ross 1995) is very common and easy to

implement. In general, for a fuzzy relation R defined on the Cartesian product space X x

Y, Mamdani's rule can be expressed as,ul/(x,y) = min(,uAx),,uJJ(Y)) where ,uA(X)

represents the membership ofx in the domain X in the fuzzy set A, ,uH(Y) represents the
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membership ofy in the domain Y in the fuzzy set B, and J.1/1 (x, y) represents the

membership of the mapping ofx,yto the fuzzy set R.

In this example, consider Rule 2. (Table A.l): rftire cost is "HIGH" and tire

warranty is "LOW" then tire desirability is "LOW." For our specific tire, the membership

value of an output fuzzy set resulting from this rule is determined as follows: with tire cost

"HIGH" membership of 0.15 and tire warranty "LOW" membership of 0.1667, the

resulting tire desirability "LOW" membership would be the minimum of 0.15 and 0.1667,

which is 0.15. A membership value in an output fuzzy set is determined for each of the

four rules in this manner. These values are shown in Table A.2.

Table A.2. Membership values resulting for example tire (Cost:::: $43, Warranty:::: 55,000)
using Mamdani implication.

Warranty is LOW Warranty is HIGH

J.1ww(55,000):::: 0.8333 J.1HJ(iH (55,000) = 0.1667

Cost is LOW Desirability j's MEDIUM Desirability is HIGH

J.1ww(43) = 0.85 J.1MEDlIIM (43, 55,000) = 0.8333 J.1H/(j1{ (43,55,000) = 0.1667

Cost is HIGH Desirability is LOW Desirability is MEDIUM

J.1N1GH(43):::: 0.15 J.1ww(43, 55,000) = 0.15 J.1MI:'IJ/I/M (43,55,000) = 0.15

Note that there are two membership values expressed for "MEDIUM" desirability. To

determine the membership in the "Desirability is MEDIUM" fuzzy set, determine the

logical union of the fuzzy sets defined by the two membership values. The resulting

membership would be the maximum of these two values. Consequently, the degree of

membership in all three output fuzzy sets is as follows: "Desirability is LOW"
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membership == 0.15, "Desirability is MEDIUM" membership == 0.8333, and "Desirability is

HIGH" membership is 0.1667.

A commonly used alternative to Mamdani's rule, or maximum of minimums (max­

min) inferencing is maximum of products (max-dot) inferencing. With this inference

method, the composition of two membership functions is not determined by the logical

intersection of the two functions, but by detennining the product of the two functions. For

this example, for "Warranty is HIGH" and "Cost is LOW," ,uHIGH(55,000) =0.1667 and

,uww(43) =0.85, the resulting membership in the "Desirability is High" fuzzy set would

be the product of the "Warranty is High" and "Cost is LOW" membership functions, i.e.,

,uHfGH(43,55,000) = ,uww (43) . ,uHJGH (55,000) =0.85·0.1667 =0.1417 .

As in the case with max-min inferencing, multiple instances of a rulebase

consequent, such as the two cases of "Desirability is Medium" in the example above, are

resolved by determining the logical union (maximum membership) of the multiple

memberships within the fuzzy set. Max-dot inferencing is the method used in TILShell, the

commercial fuzzy logic software used to develop the model proposed in this thesis (Togai

InfraLogic, Inc. 1995). Many other methods of implication and inference exist in addition

to max-min and max-dot methods, but these methods are the most common (Ross 1995).

AJ DEFUZZIFICATION

Now that the degrees of membership for the output fuzzy sets have been

determined, a method must be chosen to convert the fuzzy output to crisp output. Multiple

methods can be used, but for this example the centroid method (Ross 1995) will be the

method of choice. The centroid method of defuzzification is also the method used in
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TrLShel1 (Togai InfraLogic, Inc. 1995). Determination of a crisp value is accomplished by

determining the logical union of the output membership functions and calculating the

centroid of the area under the resultant unified membership function. The centroid is the

defuzzified crisp output value.

In this example, the union of the output membership functions is presented in

Figure A.4. The logical union is determined by the maximum membership value for all

fuzzy sets for the domain of output. Note that the individual membership functions which

can be inferred by comparison with Figure A.3 are bounded by the maximum values

determined in the inferencing step.

Tire Desirability Output Membership:
Union of Output Fuzzy Sets

1 .

a. 0.8·
:2
~ 0.6
QI
.0 0.4E
QI
~ 0.2

0

0 2 4 6 8 10

Desirability Index

Figure A.4: Logical union of tire desirability membership functions.

In this example, the centroid of the area bounded by the function in Figure A.4

(output value) occurs at a Desirability Index of 4.9. Thus crisp inputs have been converted

to crisp outputs.
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APPENDIXB

EXPERIMENTAL SUBJECTS

Table B.l Experimental subject infonnation: experiments used for model development.

Exp. No. Date Dog Weight Notes

1 02 May 1996 #2785 14.4 kg Experiments 1 - 6 are the
"Sleepy" source of data for model
Heeler mix development.

2 08 June 1996 #2644 11.8 kg
"Stinky"
Brittany-Heeler
mix I

I

,

3 15 June 1996 (AM) #2807 12.7 kg
I

"Squirmy"
Lab mix

4 15 June 1996 (PM) #1090 11.3 kg
"Timid"
Rat Terrier

5 16 June 1996 #2806 9.1 kg
"Squealy"
Beagle mix

6 11 August 1996 #2858 22.1 kg
"Stubborn"
Border Collie
mIx

1] September 1996 #2807(b) 16.8 kg Pulse experiment (bolus
"Different" I equivalent to induction
Generic mix dose administered at t = ]

hr)

13 December 1996 29.7 kg Surgical experiment
"Elmo" (neutering)
Gennan
Shepherd
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Table B.2. Experimental subject information: experiments used for model verification.

Exp. No. Date Dog Weight Notes

7 07 January 1997 #2910 14.5 kg Experiments 7 - 12 are the
(AM) "Squat" verification experiments.

Beagle

8 07 January 1997 #2912 13.4 kg
(PM) "Stenchy"

Beagle

9 08 January 1997 #2916 15.5 kg
(AM) "Crusty"

Beagle

10 08 January I997 #2917 13.8 kg Possible sibling of
(PM) "Snifry" "Speedy"

Beagle

11 09 January 1997 #2909 11.4 kg
(AM) "Squeaky"

Beagle

12 09 January 1997 #2911 13.8 kg Possible sibling of
(PM) "Speedy" "Sniffy"

Beagle
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APPENDIX C

SAMPLE CLINICAL ASSESSMENT WORKSHEET
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APPENDIX D

SUMMARY OF SERUM PROPOFOL DATA

Table 0.1: Serum propofol data. Concentrations expressed in Ilg I ml.

Dog#
Time (min) #2806 #1090 #2807 #2644 #2785 #2858 MEAN SO

Pre-admin. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15 14.1 15.78 14 14.94 18.89 27.04 17.46 5.02
30 21.24 20.33 18.02 16.05 24.44 34.70 22.46 6.64
45 19.88 22.43 19.25 26.07 23.16 38.95 24.96 7.28
60 24.09 27.28 24.02 28.07 21.78 40.13 27.56 6.58
75 15.41 11.97 15.39 17.5 16.88 26.89 17.34 5.06
90 14.43 12.38 15.84 15.09 14.11 24.75 16.10 4.39
105 14.63 12.29 11.89 9.29 12.15 23.44 13.95 4.95
120 14.06 11.75 14.15 12.81 14.09 23.52 15.06 4.25
122 9.46 7.6 10.91 9.09 13.68 14.84 10.93 2.81
124 8.06 6.56 9.12 8.31 12.12 17.19 10.23 3.88
126 6.41 5.03 7.77 7.37 9.58 13.95 8.35 3.13
128 3.14 6.39 10.76 7.58 8.63 11.75 8.04 3.11
130 5.4 7.59 6.19 7.67 13.29 8.03 3.09
132 4.49 3.51 8.67 9.04 6.43 2.84
134 3.63 8.22 9.48 7.11 3.08
136 4.52 9.47 5.01 6.33 2.73
138 4.63 4.78 4.71 0.11
140 4.62 6.12 5.37 1.06
142 4.95 4.95
144 5.17 5.17
146 3.64 3.64
148 2.68 2.68
150 4.55 2.43 4.35 4.37 5.67 4.27 1.17

152
166 4.21 4.21

180 1.42 2.4 3.16 2.36 3.2 2.51 0.73

182
196 3.12 3.12

210 0.45 1.7 2.25 1.73 3.08 1.84 0.96

212
226 2.81 2.81

240 0.08 1.46 1.82 0.47 LSI 1.07 0.75
242
256 2.33 2.33
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APPENDIXE

EXAMPLE EXPERIMENT PLOTS

These are the experimental data obtained from Experiment I (02 May 1996).
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APPENDIX F

FUZZY RULEBASE

Table F.I Rules used for fuzzy model in TILShel1. Model output variable is AWARE

Rule IF AND THEN

I ABETA is HIGH EMG is HIGH AWARE is HIGH

'1 ABETA is HIGH TOTPOW is HIGH AWARE is HIGH

.,
ABETArate is POSITIVE ABETA is HIGH AWARE is HIGHj

4 ABETArate is POSITIVE ABETA is LOW AWARE is HIGH

5 ABETArate is POSITIVE TOTPOW is HIGH AWARE is HIGH

6 ABETArate is ZERO TOTPOW is HIGH I AWARE is HIGH

7 EMG is HIGH EMGrate is POSITIVE AWARE is HIGH

8 EMG is HIGH TOTPOW is HIGH AWARE is HIGH

9 EMG is LOW EMGrate is POSITIVE AWARE is HIGH

10 EMGrate is POSITIVE TOTPOW is HIGH AWARE is HIGH

11 EMGrate is ZERO TOTPOW is HlGH AWARE is HIGH

12 RBETA is HIGH ABETA is HIGH AWARE is HlGH

13 RBETA is HIGH EMG is HIGH AWARE is HIGH

14 TOTPOW is HIGH RBETA is HIGH AWARE is HIGH

IS ABETA is HIGH SRismGH AWARE is LOW
,

16 ABETAisLOW ABETArate is NEGATIVE AWARE is LOW

17 ABETA is LOW ABETArate is ZERO AWARE is LOW

18 ABETA is LOW EMG is LOW AWARE is LOW
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Table F.I (Cont'd). Rules used for fuzzy model. Model output variable is AWARE

Rule IF AND THEN

19 ABETA is LOW SR is HIGH AWARE is LOW

20 ABETA is LOW TOTPOW is LOW AWARE is LOW

21 ABETArate is NEGATIVE SR is HIGH AWARE is LOW

22 ABETArate is POSITIVE SR is HIGH AWARE is LOW

23 ABETArate is ZERO SR is HIGH AWARE is LOW

24 EMG is HIGH SR is HIGH AWARE is LOW

25 EMG is LOW EMGrate is NEGATIVE AWARE is LOW ,

26 EMG is LOW EMGrate is ZERO AWARE is LOW

27 EMG is LOW SR is HlGH AWARE is LOW

28 EMG is LOW TOTPOW is LOW AWARE is LOW

29 EMGrate is NEGATIVE SR is HIGH AWARE is LOW

30 EMGrate is POSITIVE SR is HIGH AWARE is LOW

3\ EMGrate is ZERO SR is HIGH AWARE is LOW

"'') RBETA is LOW ABETA is LOW AWARE is LOW-'-

33 RBETA is LOW EMG is LOW AWARE is LOW

34 SR is HIGH RBETA is HIGH AWARE is LOW

35 SR is HIGH RBETA is LOW AWARE is LOW

36 TOTPOW is HIGH SR is HIGH AWARE is LOW

37 TOTPOW is LOW RBETA is LOW AWARE is LOW

38 TOTPOW is LOW SR is HIGH AWARE is LOW
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APPENDlXG

TILSHELL PROJECT INFORMATION

In this appendix. the code for the TILShell project is provided. The TILShell

project filename is "MODEL.FPL" and requires an input file "INPUT.TXT:' The

parameters used for scaling the variables ABETA, EMGLO, and TOTPOW are manually

entered in the code by the user. The locations of these entries within the code are identified

by comments. The variable names of the scaling parameters are identified according to

Table G.I. Values for scaling parameters may be found in both Table 3.4 and in comments

within the TILShell project code that follows.

Table G.I: Variable names of scaling parameters for ABETA, EMGLO, and TOTPOW as
found in TILShell file "MODEL.FPL."

Input Variable Upper scaling parameter Lower scaling parameter

ABETA ql pI

EMGLO q2 p2

TOTPOW q3 p3

The input filename must be manually entered in the code by the user. The code as written

calls the file "INPUT.TXT." The variables required for input are listed in Table G.2 as

well as the order of input. The input data file must be in ASCII fonnat and may be space

or tab delimited. Any input file name other than "INPUT.TXT' must be entered directly

into the project code. The location of this entry within the code is identified by comment.

A sample of the proper input file fonnat is provided in Table G.3. A listing of input files

containing experimental data is provided in Table GA. The project code listing follow

thereafter.
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Table G.2: Variables required in input file.

Input Order Description
Variable (Column #)

ABETA I Absolute beta power at current sample time

oldABETA 2 Absolute beta power 5 minutes prior to current sample time

TOTPOW 3 Absolute total power at current sample time

RBETA 4 Relative beta power at current sample time

EMGLO 5 Absolute EMG low band power at current sample time

oldEMG 6 Absolute EMG low band power 5 minutes prior to current
sample time.

SR 7 Suppression ratio

Table G.3. Example input file format. From left to right, columns contain values for the
variables ABETA, oldABETA, TOTPOW, RBETA, EMGLO, oldEMG, SR. Input values
may be either space or tab delimited. These values excerpted from data taken during
Experiment 1,02 May 1996.

53.951313 54.059605 55.761661 66.906656 54.729064 56.018039 0
53.924129 54.071529 55.73134 66.79769 54.704548 56.004449 0
53.894915 54.083388 55.700124 66.677256 54.680287 55.989927 0
53.863527 54.095017 55.667963 66.544676 54.656117 55.974863 0
53.830044 54.10644 55.634872 66.400206 54.632289 55.959811 0
53.794668 54.117724 55.60093 66.244974 54.608855 55.944762 0
53.757403 54.128782 55.566122 66.078818 54.586062 55.930776 0
53.718339 54.13957 55.530453 65.901918 54.564309 55.919071 0
53.677462 54.15002 55.493934 65.714382 54.543389 55.908383 0
53.634655 54.160006 55.456537 65.515826 54.522984 55.8969 0
53.59004 54.169495 55.418306 65.306866 54.503215 55.884074 0
53.54373 54.17845 55.379288 65.088192 54.48405 55.86849 0
53.495535 54.186775 55.339391 64.858571 54.465659 55.850756 0
53.445236 54.194387 55.298489 64.6164 54.448432 55.832592 0
53.392709 54.201204 55.25653 64.360966 54.432391 55.813069 0
53.337723 54.207124 55.213407 64.09087 54.417614 55.791707 0
53.280344 54.212257 55 .. 169135 63.806365 54.404259 55.769084 0
53.220765 54.216797 55.123793 63.508548 54.392379 55.745237 0
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Table G.4: Input files and corresponding initial times.

Experiment Input Time at input file start Parent Spreadsheet File
Filename

I cxO I.txt 10:40:04 050296.xls
(050296) 342

.,
ex02.txt 9:44:54 060896.xls

(060896) 478

"' ex03.txt 9:44:38 061 596A.xls.>

(061596A) 552

4 ex04.txt 13:22:53 061 596P.xls
(061596P) 299

5 ex05.txt 9:22: 18 061696.xls
(061696) 453

6 ex06.txt 9:49:39 081 196.xls
(081196) 525

7 ex07.txt 9:34:48 010797A.xls
(010797A) 306

8 ex08.txt 14:17:11 01 0797P.xls
(010797P) 307

9 ex09.txt 9:13:49 010897A.xls
(0 I0897 A) 315

10 ex IO.txt 14:03: 15 010897P.xls
(010897P) 335

II exll.txt 8:58:35 010997A.xls
(0 I0997A) 315

12 ex 12.txt 13:09:39 01 0997P.xls
(010997P) 287

13 exl3.txt 9:33:47 091196.xls
(091196) 451

14 exl4.txt 9:40:20 121396.xls
(121396) 300
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TILSHELL PROJECT CODE

PROJECT ANESTHESI'::'
OPTIONS

ICONCOLOR= 2632256
MODE="NORMJl.L"
CHANGEID=3958014928
VIEWORIGIN=3.95,O.65

END

VAR AWARE
OPTIONS

ICONPOS=10,2.5
GRIDSHm'l="OFF"
GRIDSN':'.P="OFF"
GRIDSPACE=0.4,0.2
NUMBER=3
SHAPE="TRAPAZOID"
TOUCHED="ON"

END
TYPE float
MIN -2
MAX 2

MEMBER LOW
OPTIONS

ICONCOLOR=65407
END
POINTS -1.25,0 -1,1 1,1 1.25,0

END

MEMBER HIGH
OPTIONS

ICONCOLOR=255
END
POINTS 1,0 1.25,1 2,1

END
END

VAR EMGLO
OPTIONS

ICONPOS=5.5,0.5
GRIDSHOW="OFF"
GRIDSNAP="OFF"
GRIDSPACE=0.8,0.2
NUMBER=2
SHAPE="TRAPAZOID"
TOUCHED="ON"

END
TYPE float
MIN 0
MAX 8

MEMBER LOW
_OPTIONS

ICONCOLOR=167116BO
END
POINTS 0,1 1,1 2,0
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END

MEMBER HIGH
OPTIOl'

ICONCOLOR=255
END
POINTS 1,0 2,18,1

END
END

VAR EMGrate
OPTIONS

ICONPOS=3.5,O.5
GRIDSHOW="OFF"
GRIDSNAP="OFF"
GRIDSpnCE=O.0016,0.2
NUMBER=3
SHAPE="TRAPAZOID"
TOUCHEJ="ON"

END
TYPE float
MIN -0.008
MAX 0.008

MEMBER N
OPTIONS

ICONCOLOR=16711680
END
POINTS -0.008,1 -0.001,1 0,0

END

MEMBER Z
OPTIONS

ICONCOLOR=65407
END
POINTS -0.001,0 0,1 0.001,0

END

MEMBER P
OPTIONS

ICONCOLOR=255
END
POINTS 0,0 0.001,1 0.008,1

END
END

VAR ABETA
OPTIONS

ICONPOS=2,0.5
GRIDSHOW="OFF"
GRIDSNAP="OFF"
GRIDSPACE=0.8,0.2
NUMBER=2
SHAPE="TRAPAZOID"
TOUCHED="ON"

END
TYPE float
MIN 0
MAX 8
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MEMBER Lm}
OPTIOl·1S

ICONCOLOR=16711680
END
POINT~ 0,1 i,l 2,0

END

MEMBER HIGi-l
OPTIO

ICClNCOLOR=255
END
POINTS 1,0 2,1 8,1

END
END

VAR ABETAratE
OPTIONS

ICONPOS=0.5,2
GRIDSHOW="OFF"
GRIDSNAP="OFF"
GRIDSFACE=0.0016,0.2
NUMBER=3
SHAPE="TRAPAZOID"
MINCL";,·lP=O
MAXCLAMP=O
TOUCHED="ON"

E.ND
TYPE float
MIN -O.OOS
MAX 0.008

MEMBER N
OPTIONS

:CONCOLOR=16711680
END
POINTS -0.008,1 -0.001,1 0,0

END

MEMBER Z
OPTIONS

ICClNCOLOR=65407
END
POINTS -0.001,0 0,1 0.001,0

END

MEMBER P
OPTIONS

ICONCOLOR=255
END
POINTS 0,0 0.001,1 0.008,1

END
END

VAR TOT POW
OPTIONS

ICONPOS=0.5,3.5
GRIDSHOW="OFF"
GRIDSNAP="OFF"
GRIDSPACE=0.8,0.2
NUMBER=2
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SHAPE="TRAPAZOID"
TOUCHED="ON"

END
TYPE float
MIN 0
MAX 8

MEMBER LOW
OPTION

ICONCOLOR=16711680
END
POINTS 0,1 1,1 2,0

END

MEMBER HIGH
OPTION~

ICONCOLOR=255
END
POINTS 1,0 2,1 8,1

END
END

VA?. SR
OPTIONS

ICONPOS=7.5,4.5
GRIDSHOW="OFf"
GRlDSNAP="OfF"
GRIDSPACE=10,0.2
NUMBER=3
TOUCHED="ON"

END
TYPE float
MIN a
MAX 100

MEMBER LOW
OPTIONS

ICONCOLOR=16711680
END
POINTS 0,1 1,0

END

MEMBER HIGH
OPTIONS

ICONCOLOR=65407
END
POINTS 0,0 1,1 100,1

END
END

VAR RBETA
OPTIONS

ICONPOS=7,0.5
GRIDSHOW="OFF"
GRIDSNAP="OFF"
GRIDSPACE=10,0.2
NUMBER=2
SHAPE="TRAPAZOID"
TOUCHED="ON"

END
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TYPE float
MIN a
MAX 100

MEMBER LOVi
OPTIONS

ICONCOLOR=167ll680
END
POINTS 0,1 30,0

END

MEMBER HIGH
OPTIONS

ICONCOLOR=255
END
POINTS 0,0 30,1 100,1

END
END

SIMULATE Simulatel
OPTIONS

WINPOS=258,83,516,166
SAMPLETIME=300

END

MODEL Modell

;CODE
l .. Constants */
/*********** •• *.*~~***********+*******/

/~ Upper scaling parameters
,' .. ABETA: ql
/* EMGLO: q2
;+ TOTPOW: q3
/ ..

* /
*/
*/
.. /
*/

ql=65i
q>64.3;
q3=65;
/* IniLial conditions */

timestamp = 0;
Liming = 0;
if END CODE

:!CODE
1*************************************/

/* Lower scaling parameters */
i * ABETA: pI */I

I ,* EMGLO: p2 */

/* TOTPOW: p3 */
/* These parameters are presented in */
/ .. tabular form by experiment. */
I
' . */

I
I~ */
/+ Sxperiment */
/* 1 2 3 4 5 6 */
/ .. */
/" pl 38 44 52 44 47 40 */
/" p2 30 21 40 32 31 30 */
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I- p3
1*
I·
1+
1+
1* p1
1+ p2
1+ p3
1+
I·
I-
1+

1* pI

" * p2
j* p3
I •

46 53 62 57 56 48 *1
*1

E:<periment *1
7 8 9 10 11 12 *1

*1
45 46 ~ 5 45 45 47 *1
32 32 30 30 31 31 *1
52 55 54 56 56 57 "I

"I
::::<periment *1

13 14 *1
*1

44 45 -I
32 28 *1
54 55 *1

*1

p1=45;
p2=28;
[:3=55;

,'" Read input dat3 from input data file *1

READ "input.txt",ABETA,oldABETA,TOTPOW,RBETA,EMGLO,oldEMG,SR;

; .. Rescale ABETA and calculate ABETArate *1

.J,BETA
cldABETA
.J,aETArate

4 * (.A.BETA - pI) I (ql - p1) + 1;
4 .. (o":"dABETA - pI) I (ql - p1) + Ii
(ABETA - oldABETA)/300i

:+ Rescale EMGLO and calculate EMGrate *1

:::MGLO
cldEMG
2MGrate

4 * (EMGLO - p2) I (q2 - p2) + 1;
4 * (oldEMG - p2) I (q2 - p2) + 1;
(EMGLO-oldEMG) 1300;

.• Rescale TOTPOW

TOTPOW 4 * (TOTPOW
:lEND CODE

END
END

RULEBASE Rulebase1
OPTIONS

ICONPOS=7,2
END

*1

- p3) / (q3 - p31 + 1;

RULE RuleD':'
IF (EMGLO IS LOW) AND (EMGrate IS N) THEN

AWARE = LOW
END

RULE Rule02
IF (EMGLO IS LOW) AND (EMGrate IS Z) THEN

AWARE = LOW
END
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RULE RuleG2
IF (EMGLO IS LOW) AND (EMGrate IS P) THEN

;'J";':"RE = HIGH
END

RULE Rule04
IF (ASETArate IS N) AND (ASETA IS LOW) THEN

AIVF,.RE = LOW
END

RULE RuleO::'
IF (ABETArate IS Z) AND (ASETA IS LOW) THEN

m-Ji'-.RE = LOW
END

RULE Ruleuo
IF (EMGLO IS LOW) AND (SR IS HIGH) THEN

AWJI.RE = LOW
END

RULE RuleO:
IF (EMGLO IS HIGH) AND (SR IS HIGH) THEN

AWARE = LOW
END

RULE RuleO
IF (EMGrate IS N) AND (SR IS HIGH) THEN

AW.D.RE = LOW
END

RULE Ruleu9
IF (EMGrate IS Z) AND (SR IS HIGH) THEN

AWARE = LOW
END

RULE RulelO
IF (EMGrate IS P) AND (SR IS HIGH) THEN

AWl\RE = LOW
END

RULE Rulell
IF (ASETA IS LOW) AND (SR IS HIGH) THEN

AWARE = LOW
END

RULE Rule12
IF (ASETA IS HIGH) AND (SR IS HIGH) THEN

AWARE = LOW
END

RULE Rule13
IF (TOTPOW IS LOW) AND (SR IS HIGH) THEN

AWARE = LOW
END

RULE Rule14
IF (TOTPOW IS HIGH) AND (SR IS HIGH) THEN

AWARE = LOW
END
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RULE Rulel;
IF (ABETArate IS N) AND (SR IS HIGH) THEN

AWp.RE = LOW
END

RULE Rulel6
IF (ABETArate IS Z) AND (SR IS HIGH) THEN

A~·J.;RE = LOW
END

RULE Rulel7
IF (ABETArate IS P) AND (SR IS HIGH) THEN

AWARE = LOW
END

RULE Rulel8
IF (TOTPOW IS HIGH) AND (RBETA IS HIGH) THEN

AWJl.RE = HIGH
END

RULE Rulel~

IF (TOTPOW IS LOW) AND (RBETA IS LOW) THEN
AW':'.RE = LOW

END

RULE Rule20
IF (SR ~S HIGH) AND (RBETA IS LOW) THEN

AW.;;RE = LOW
END

RULE Rule21
IF (SR IS HIGH) AND (RBETA IS HIGH) THEN

AWARE = LOW
END

RULE Rule22
IF (ABETArate IS P) AND (ABETA IS LOW) THEN

A\'JARE = HIGH
END

RULE Rule23
IF (ABETArate IS P) AND (ABETA IS HIGH) THEN

AWARE = HIGH
END

RULE Rule24
IF (ABETA IS LOW) AND (TOT POW IS LOW) THEN

AWARE = LOW
END

RULE Rule25
IF (ABETA IS HIGH) AND (TOTPOW IS HIGH) THEN

AWARE = HIGH
END

RULE Rule26
IF (EMGLO IS LOW) AND (TOTPOW IS LOW) THEN

AWARE = LOW
END
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RULE Rulen
IF (EMGLO IS HIGH) AND (TOTPOW IS HIGH) THEN

AWJl..RE = HIGH
END

RULE Rule28
IF (EMGrate IS P) AND (TOTPOW IS HIGH) THEN

AWj:..RE = HIGH
END

RULE Rule29
IF (E~Grate IS Z) AND (TOTPOW IS HIGH) THEN

Alr.JARE = HIGH
END

RULE Rule:30
IF (ABETArate IS Z) AND (TOTPOW IS HIGH) THEN

AWARE = HIGH
END

RULE Rule:3~

IF (ABETArate IS P) AND (TOTPOW IS HIGH) THEN
A;\ARE = HIGH

END

RULE Rule32
IF (EMGLO IS HIGH) AND (EMGrate IS P) THEN

AtoiARE = HIGH
END

RULE Rule33
IF (ABETA IS LOW) AND (EMGLO IS LOW) THEN

AWARE = LOW
END

RULE Rule:3.J
IF (ABETA IS HIGH) AND (EMGLO IS HIGH) THEN

A\'iARE = HIGH
E.ND

RULE Rule35
IF (RB2TA IS LOW) AND (EMGLO IS LOW) THEN

AWARE = LOW
END

RULE Rule36
IF (RBSTA IS HIGH) AND (EMGLO IS HIGH) THEN

AW;I"RE = HIGH
END

RULE Rule37
IF (RBETA IS LOW) AND (ABETA IS LOW) THEN

AWARE = LOW
END

RULE Rule38
IF (RBETA IS HIGH) AND (ABETA IS HIGH) THEN

AWARE = HIGH
END

END
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DEBUG Debugl
TXFPL AWAR~

WATCH AWARE

CHART Char':l
OPTIONS

TI:'LE="Inputs"
YAXIS=EMGrate
YMINVAL=-O.008
YI-1AXVAL=0.008
YCOLOR=255
Y,ll.:US=ABETArate
Yt-1!NVAL=-O.008
YI-lAXVAL=0.008
YCOLOR=65280
YP..xI S=AWARE
YHINVAL=-2
YM.:\XVAL=2
YCOLOR=16711935
YAXIS=TOTPOW
YM_NVAL=O
YIvL:l..XVAL=8
YCOLOR=O
YJ..XIS=ABETA
YM!NVAL=O
YM.;.xVAL=8
YCJLOR=10485760
Y,;:,:rS=EMGLO
Yt-!!NVAL=O
YMAXVAL=B
YCOLOR=33023
DATAPOINTS=1900

END
END

END

CONNECT
FROM EMGLO
TO Rulebasel

END

CONNECT
FROM EMGrate
TO Rulebasel

END

CONNECT
FROM SR
TO Rulebasel

END

CONNECT
FROM Rulebasel
TO AWARE

END

CONNECT
FROM EMGrar:e
TO Rulebasel
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C::ND

END

CONNECT
FROM ABETP.
TO Rulebasel

END

CONNECT
FROM TOT PO: .
TO Rulebas",l

END

CONNECT
FROM ABETJI.rate
TO Rulebasel

END

CONNECT
FROM RBETi".
TO Rulebasel

END
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