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ABETA

ABETArate

Alpha frequency band

AWARE

Beta frequency band
Bolus

Burst suppression

Corneal reflex
Crisp
Delta frequency band

Defuzzification

EEG

Electroencephalography
Electromyography
EMG frequency band

EMGrate

GLOSSARY
A measure of absolute power in the EEG Beta frequency
band.
Rate of change of ABETA over 5 minute period.
Band of EEG power spectrum between 8 and 13 Hz

Output variable of model developed in this thesis:
Proposed index of anesthetic depth.

Band of EEG power spectrum between 13 and 30 Hz
A dosage of a drug given at once.

EEG phenomenon occurring when EEG voltage is
continuously 0 + 5pV for at least 240 ms. This
phenomenon corresponds to CNS inactivity.
Response of cornea to digital stimulation.

Not ambiguous; having fuzzy set membership of 1.

Band of EEG power spectrum between 0 and 4 Hz.

Conversion of a fuzzy quantity to a crisp value using one of

many conventional methods.

Electroencephalogram: relating to electrical activity of
brain.

Recording of electrical activity of the brain.
Recording of electrical activity of muscles.
Band of EEG power spectrum between 70 and 300 Hz.

Rate of change of EMGLO over S minute period.
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EMGLO

Fuzzification

Fuzzy logic

Fuzzy set

Hypotension

Median frequency

Membership function

Palpebral reflex

Propofol

RBETA

Spectral edge frequency

Suppression ratio

Theta frequency band

TOTPOW

Vasodilator

Vasopressor

Absolute power in the EMG low frequency band (70 - 110
Hz).

Conversion of a crisp input to a fuzzy value via a
membership function.

Formal methodology for performing logical operations with
fuzzy sets.

A set in which an element can belong to some degree rather
than be limited to complete inclusion or exclusion.

Low blood pressure.

Frequency below which 50% of power in the EEG power
spectrum is expressed.

A function that relates a crisp quantity 10 degree of
membership in a fuzzy set.

Response of eyelid to digital stimulation.

Anesthetic agent (2,6-disopropylphenol). Also known by
trade name, Diprivan.

Fraction of EEG total power expressed in the Beta
frequency band.

Frequency below which some specified fraction of power in
the EEG power spectrum is expressed.

Fraction of time during a sampling period that EEG signal
is considered suppressed. See burst suppression.

Band of EEG power spectrum between 4 and 8 Hz

A measure of total absolute power in the 0 - 30 Hz EEG
frequency band.

Drug that dilates blood vessels

Drug that constricts blood vessels
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INTRODUCTION

Anesthesia has made possible many of the surgical advances in modern medicine.
Complicated surgical techniques cannot be used humanely in a non-compliant patient who
feels pain. Anesthesia is also used in critical care environments where the alternative is 10
administer strong, addictive pain relieving agents which may prevent a patient from feeling
much pain, but would probably also prevent the patient from feeling much else. Whether
anesthesia is required for pain relief, muscle relaxation, or general unconsciousness in a
patient, it may be administered for a lengthy period which can be fatiguing for the
personnel involved. The purpose of this work is to propose a means for quantification of
the assessment of anesthetic depth. The modei described in this thesis uses multiple-
variable input obtained from both electroencephalographic and cardiovascular data to yield
a numerical output representing an index of anesthetic depth. This approach of assessing
depth of anesthesia has not been attempted previously. The resulting assessment could be
used as a tool for the anesthesiologist or it could be used as a controlled variable in & closed
loop control system. Although inhalant anesthesia and multiple agent anesthetic regimes
are clinically more common, the experimentation required for model development has been

purposely limited to infusion anesthesia using propofol only.

1.1 INFERENCE OF DEPTH OF ANESTHESIA

Whether an anesthesiologist is attending a human or a canine patient, he relies on
his evaluation of a set of clinical observables to make an inference of anesthetic depth. A

veterinary anesthesiologist infers anesthetic depth of 2 dog by monitoring jaw tone,



palpebral reflex, corneal reflex, heart rate, and blood pressure. Jaw tone is the perceived
stiffness of the jaw muscles. Palpebral and comneal reflexes are the responses of the eyelid
and eyeball to touch. As the plane of anesthesia deepens, jaw tone decreases, and the
palpebral and comeal reflexes become slower. Depending on the anesthetic used, heart
rate and blood pressure decrease as the anesthetic plane deepens. From evaluating these
variables, the anesthesiologist synthesizes an assessment of anesthetic depth based on
training and expertence and adjusts the rate of administration accordingly. This
methodology is applicable for humans as well as dogs. An anesthesiologist working with a
human patient will evaluate a similar set of clinical observables to make an assessment of
anesthetic depth. Therefore a model designed to automate the inference of anesthetic depth
would have broad application within human medicine as well as veterinary medicine,

The methods used by an anesthesiologist to assess depth of anesthesia are difficult
to replicate using an automated system. Meters or other devices to determine the quality of
Jaw tone, palpebral reflex, and corneal reflex do not exist, therefore alternative clinical
observables are necessary to automate the assessment of anesthetic depth. Ideally, these
clinical observables should be easily acquired and also provide information from which the
quality of central nervous system activity can be inferred.

Alternative sets of easily acqujred clinical observables are aveilable and have been
used in anesthesia monitoring and control. Previous efforts to monitor anesthetic depth
have involved blood pressure and electroencephalography (EEG), the analysis of electrical
activity of the brain. These studies have primarily evaluated individual variables for their
suitability as overall indicators of anesthetic depth. Previous efforts to control anesthesia

have focused primarily on the control of blood pressure or an EEG variable, therefore



mplying that adequate control of depth of anesthesia coutd be inferred from adequate
control of one variable.

Although most monitoring and control strategies rely on a single monitoring or
control variable, an accurate assessment requires a multivariable analysis; no single
observable is sufficient for determination of anesthetic depth. Our efforts have been aimed
at developing a model which describes anesthetic depth given cardiovascular and EEG

input: a multivariable approach similar to that used by the anesthesiologist.

1.2 APPLICATION OF FUZZY LOGIC

Two traditional approaches to creating a model to infer depth of anesthesia would
be the regression approach and the expert system approach. The regression approach
would require a precise numerical assessment of anesthetic depth to be correlated to tissue
concentrations of anesthetic agent and determination of mathematical correlations between
EEG data, cardiovascular data, and tissue concentrations. The assessment of anesthetic
depth could then be related parametrically to EEG data and cardiovascular data. The
expert system approach would be to assemble a database of {F-THEN rules that relate EEG
and cardiovascular data with their corresponding numerical assessments of anesthetic depth
to be incorporated into a vast matrix, or look-up table.

There are methodological problems with both of these methods. The regression
method requires a precise numerical assessment of anesthetic depth. A subjective
assessment rendered by an anesthesiologist may be clinically sufficient, but could not be
reasonably described as precise, however. The expert system approach requires a set of I1F-
THEN rules appropriately chained together that satisfy all reasonable clinical scenarios.

The resulting problem in this application is that the [F-THEN rules are difficult to



implement due to the clinical necessity for flexibility. A second problem with the expert
system approach is that it is computationally inefficient.

Our depth-of-anesthesia model was not developed using either the regression
approach or the traditional expert system approach, but was developed using fuzzy set
theory implemented in a fuzzy expert system. Fuzzy logic provides a rigorous and
consistent means of mathematically interpreting uncertainty. Fuzzy logic has been used to
control cement kilns, steam engines, and commuter trains and has been employed in a wide
variety of consumer products. These consumer products include washing machines that
can adjust cycles depending on the weight and relative dirtiness of a load of laundry, video
cameras which can negate the wiggling of images caused by hand-held operation, and
automatic transmissions in automnobiles that shift in a manner more similar to human
drivers.

Fuzzy logic makes it possible for a machine to recognize not only “True” and
“False,” but also the continuum of ambiguity 1n between. Fuzzy logic does not make
machines “think” or “reason” like humans, but provides a mathematical framework which
allows for machine interpretation of multi-valued Jogic in a manner that accommodates
ambiguity. A classic example of ambiguity is the paradox of the heap of sand. One can
remove an individual grain from a heap of sand and the remainder is still a heap. Continue
removing individual grains and eventually the remainder is no longer a heap. If a machine
were to recognize whether sand constituted a heap, binary logic would require the
designation of an arbitrary breakpoint; i.e., N grains constitute “heap,” whereas N-1 grains
constitute “not a heap.” A machine using fuzzy logic can determine that a heap of N grains
of sand is “more of a heap,” while a heap of N-1 grains is “less of a2 heap.” Humans

recognize that the quality of being a heap is determined by a continuum of numbers of



grains of sand. The fuzzy system accommodates this continuum; the binary system does
not.

The accommodation of ambiguity is what makes fuzzy logic useful for model
development and control applications. Fuzzy logic allows for the solution of some control
problems without the development of a rigorous mathematical model of the process, and
allows for the development of models where the processes to be described are complicated
or difficult to quantify. Control or modeling problems that are strong candidates for a
fuzzy solution are those which are mastered by human control and perception. The
determination and control of anesthetic depth falis into that category. Fuzzy logic control
can be applied in other contexts, but the application of fuzzy logic to control of
mathematically well-defined systems, such as control of 2 DC motor, is less practical and

probably has value only as an academic exercise.

1.3 PROPOSED MODEL

When the anesthesiologist synthesizes an assessment of anesthetic depth he relies
on his experience, training, and common sense. He assesses input values, assigns weights
to the inpul values, notes changes in these input values over time, and reflects on training
and experience. He then makes a sensible assessment. The model that has been developed
here has been synthesized similarly. Based on basic physiological tenets and observation
of several anesthetized patients, several processed EEG variables were selected as
algorithm input. During a battery of experiments, these variables were identified as
possibly correlating to the subjective assessment of anesthetic depth provided by our
anesthesiologist. The general trends were noted and a set of rules that linguistically

described these trends in relation to anesthetic depth was developed. Experimental data



were imported into a fuzzy logic software package and processed using the set of rules via
fuzzy logic to provide our model which assesses anesthetic depth. The model was
validated using experimental data obtained from another battery of experiments.

This model has several potential uses. The resulting assessment of anesthetic
depth could be used in a real-time anesthesia monitoring scheme by an anesthesiologist,
either for monitoring or open-loop control. The assessment variable could also be used in
real-time as a variable to be controlled in a closed-loop control scheme. This application
would be analogous to a “cruise control” system for anesthesia delivery. The
anesthestologist could induce and monitor induction, only initiating the automatic control

once he is satisfied with the observed depth of anesthesia in the patient.

1.4 ORGANIZATION OF THESIS

Chapter | provides an overview of the study that was undertaken. Chapter 2
details the motivation for this work and the development of technology used to create the
computer model which is the end product of this endeavor. Chapter 3 provides a
discussion of the methods used 1o develop the model. Chaprer 4 is an experiment-by
experiment summary of results and analysis. Chapter 5 provides an evaluation of the
model and a discussion of mode! limitations. Conclusions and recommendations are

presented in Chapter 6.



2.0

MOTIVATION

The clinical use of anesthesia serves ta accomplish three purposes for a patient:
maintenance of an unconscious state, pain suppression, and muscle relaxation. For these
goals to be satisfied, the administration of anesthesia must be properly monitored by a
trained anesthesiologist. Monitoring is necessary 10 ensure that the patient is maintained
in an anesthetic plane deep enough such that he is both compliant and unaware of noxious
stimuli yet not so deep as to be comatose. Typically, the assessment of anesthetic depth is

determined by evaluating a combination of clinical observables, such as refiex actions,

muscle tone, and patient movement, cardiovascular observables, such as blood pressure and

heart rate, and occasionally electroencephalographic (EEG) observables.

Electroencephalography is used to assess central nervous system activity as a means of
mferring anesthetic depth.

The clinical observables are the source of most information to the anesthesiologist.
Unfortunately, the clinical observables may be obscured when multiple agents such as
vasodilators, vasopressors, beta blockers, calcium channel blockers, and neuromuscular
blockers are employed (Nayak 1994). An alternative means to determine and monitor
depth of anesthesia would therefore be useful o the anesthesiologist.

Certain clinical environments require long-duration administration of anestbesia.
These might include long surgical procedures and long-term relief of pain in an intensive
care environment. A long surgical procedure can be fatiguing for an anesthesiologist and
intensive care monitoring by anesthesiologists would be costly. The introduction of an

automated means of assessment of anesthetic depth would be beneficial in both scenarios.



A systern analogous to an automobile “cruise control” would relieve some tedium for the
attending anesthesiologist. An automated system could improve patient safety and reduce

healthcare costs.
2.1 PROPOFOL ANESTHESIA

Propofol (2,6-diisopropylphenol, Figure 2.1) is used exclusively in this study.
Slightly soluble in water, propofol is formulated as an emuision for clinical use. This
anesthetic agent (s a sedative-hypnotic which produces dose-dependent depression of the
central nervous system. The pharmacokinetics of propofol make it suitable for continuous
intravenous infusion. Patients recover rapidly and experience few adverse side effects
other than occasional pain on injection (Larijani 1989).

Propofol is typically used in combination with narcotics (e.g. fentanyl) and
inhalation anesthetics (e.g. nitrous oxide). In this study, propofol is used alone to ensure
pharmacological simplicity for a pilot investigation of anesthesia monitoring. Exclusive
use of propofol also provides a reference case for the interpretation of future results
involving combinations of anesthetic agents. The broader intent of the project is to prepare

a methodology far studying other anesthetic agents alone and in combination.

| |
CH__
e~ CH,

Figure 2.1: Propofol (2,6-diisopropylphenol)



22 ASSESSMENT OF ANESTHETIC DEPTH

The clinician relies primarily on evaluation of clinical observables, such as
reflexes, muscle tone, and patient movement, to infer depth of anesthesia. Cardiovascular
data are almost always available. EEG data are not routinely available but can be if utility

is demonstrated.

2.2.1 _ Clinical Observables

Jaw tone is a means of determining “sufficiency” of propofol anesthesia in a dog
(Watkins 1987; Weaver 1990; Robertson 1992). Intraocular pressure as determined by
evaluation of corneal reflex is also useful as an indicator of anesthetic depth with propofo!
(Larijani 1989). Palpebral reflex, the reflex of the eyelid in response to digital stimulation,
has also been used as an indicator of anesthetic depth in dogs (Zoran 1993). All three have

been used in our work.

2.2.2  Cardiovascular Observables

Attempts have been made to infer adequacy of anesthesia from blood pressure

(Smith 1972) and heart rate (Suppan 1972). Different anesthetic agents affect these
cardiovascular parameters differently. Intravenous induction of anesthesia with propofol
has been seen to decrease blood pressure 20-30 percent in humans (Larijani 1989). One
study involving dogs indicated that blood pressure variations during prolonged propofol
infusion were minor and transient (Robertson 1992). This study also specified a lowest
permissible limit of mean arterial pressure in a dog of 65 mmHg and suggested that
anesthetic depth during propofol infusion may not be a strong function of blood pressure,

although mean arterial pressure should be maintained above a threshold value. Another



study has reported no clear link between depth of propofol anesthesia and heart rate

(Watkins 1987).

223 EEG Observables

The electroencephalogram provides insight into central nervous system activity in
real-time and has been shown to have utility in monitoring of anesthesia (Donegan 1950:
Stanski 1992). Raw EEG waveforms record summed field potentials resulting from
depolarization of nerve cells (Donegan 1990) and are difficult to interpret without
applying sophisticated signal processing methods. Two broad categories of algorithms,
time domain and frequency domain, are typically used to process the raw EEG signals.
Time domain algorithins analyze data acquired within the pertad of a sampling window, or
epoch, as a function of time. Frequency domain algorithms require Fourier transform
analysis 10 analyze waveform amplitude, or power, as a function of frequency (Figure 2.2).

The result is a power spectrum, analogous to 2 light spectrum separated by a glass prism.

2.2.3.1 EEG Time Domain Variables

An important processed EEG variable calculated in the time domain is the burst
suppression ratio. This value indicates the fraction of an EEG signal being suppressed and
is a useful indicator of metabolic depression with drugs such as thiopental, isoflurane
(Donegan 1990), and propofol (Kanto 1989). A sampling epoch would be considered
suppressed if the value of the measured potential is between £ 0.05 nV for at least 240 ms
(Donegan 1990). An example illustration is provided in Figure 2.3. The suppression ratio
as calculated by the EEG monitor in this work is the fraction of epochs considered

suppressed within the last 123 sampled (Aspect Medical Systems 1996).
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Figure 2.2: Relation of time domain to frequency domain via fast Fourier transform.
(Donegan 1990)
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Figure 2.3: Determination of burst suppression. The EEG signs/| is considered suppressed

if the EEG signal is 0 £ 5 uV for at least 240 ms (Donegan )930). The suppression ratio
calculated by the Aspect EEG monitor is the fraction of suppressed epachs within the last
124 sampled epochs. An Aspect epoch is approximately 0.5 s in duration (Aspect Medical

Systems 1996).
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2.2.1,2 EEG Frequency Domain Variables

Vanasbles that are determined in the frequency domain are the variables that relale
power (waveform amplitude) 1o frequency. These variables include spectral edge
frequency, median {requency, total power, ang power in specific frequency bands.

Spectral edge frequency (SEF) is the frequency below which some fraction of the
total power is expressed: e.g. the 95% SEF, or SEF9S, is the frequency below which 95
percent of the total power is expressed. The medsan frequency is the 0% SEF (SEFS0).
Figure 2.4 provides an example of both 95% SEF and median frequency. Both the SEF and
the niedian frequency have been used as univariate measures of EEG anesthesia effect
(Stanski 1992). In general, deepening of the anesthetic plane will correspond to a decrease
in spectral edge frequency. Reduced central nervous system activity is reflected in a shift

to 3 lower spectral edge frequency.
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Figure 2.4: Spectral edge and median frequency as determined from EEG power spectrum.
(Donegan 1990)



The adequacy of SEF values as indicators of anesthetic depth has been the source
of some debate, however. Some researchers have found the SEF to be a useful indicator of
anesthetic depth  (Otto 1991; Gurman 1994; Arndt 1995; Gaitini 1995). Other researchers
are more skeptical of the utility of SEF for anesthesia monitoring (Ghouri 1993; Dwyer
1994; Koch 1994; Nayak 1994; Sebel 1995).

Power distribution within frequency bands of the EEG power Spccfrum is another
source of information regarding depth of anesthesia. For ease of categorization, the EEG
spectrum from 0 to 30 Hz has been divided into four frequency bands, delta (0-4 Hz), theta
(4-8Hz), alpha (8-13 Hz), and beta (13-30 Hz) by convention (Donegan 1990). While a
patient is alert or lightly anesthetized, power is expressed predominantly in the higher
frequency beta and alpha bands. As the anesthetic plane deepens, the distribution of power
shifts to the lower frequency bands. Power distribution during propofo! anesthesia in
humans has been shown to shift according to this rule of thumb (Kanto 1989). Other
studies have suggested that variations on this method of analysis in dogs (Nayak 1994) and
horses (Otto 1991) are useful for determination of anesthetic depth. Our proposed

methodology utilizes these known shifts in power distribution.
23 FUZZY LOGIC

One of the goals of this project is to synthesize an assessment of anesthetic depth
from a multivariable set of input as an anesthesiologist would. Rather than using the
traditional expert system approach of employing crisp, “either-or” type rules and database
searches or the traditional mathematical modeling approach requiring correlation studies
and multiple-parameter regression, the approach used in this study is to use fuzzy logic to

synthesize an assessment of anesthetic depth. The anesthesiologist in a clinical



environment is required to make decisions based on quantitatively vague, ambiguous input
data. Fuzzy logic is a rigorous mathematical means to make quantitative decisions given
similarly vague, ambiguous quantitative input data,

Humans process information much differently than digital computers. Humans
communicate in words and make decisions linguistically. Individuals have an
understanding of concepts such as “tall man,” “hot weather,” and “low price,” These
concepts can be communicated with minimal loss of understanding between people.
Computers, however, must have the descriptors “tail,” “hot,” and “low” quantified
somehow. The non-fuzzy method of quantifying these descriptors would be to arbitrarily
define a range of acceptable values. For example, “tall” could be defined as “height
greater than six feet .” The problem with this approach is that a height of 5.9999 feet
would not be classified as “tall” while a height of 6.000] feet would. This poses no real
mathematical problem; the definition is arbitrary. This description does not adequately
describe the way a person would perceive height, however. Fuzzy logic provides a method
to quantify “tall” without resorting to an arbitrary delineation and can be used to quantify
linguistic descriptors such as “tall,” “hot,”” and “low.” In this example. fuzzy logic would
allow for the height of 5.9999 feet to be “tal]” to some degree and "not tall” to some degree
while the height of 6.0001 feet could be “tall” to a greater degree and “not tall” to a lesser

degree.

2.3.1 Basic Fuzzy Set Theory

Traditional set theory is based on the Aristotelian premise that the intersection of
the set “A” and its complement, “not A” is the empty set. Otherwise stated, an element in

the universe containing the sets “A’ and “not A” can belong to either “A” or “not A”



(Figure 2.5). The element is contained entirely within “A™ or “not A." Fuzzy set theory
introduces the concept of degree of set membership. In a fuzzy universe containing the
complementary sets “A™ and “not A,” an element can belong 10 both sets 1o some degree

with the interesting consequence that the intessection of “A” and “not A™ is not necessarily

the empty set.

Naot A

Figure 2.5: Venn diagram illustrating the set “A” and its complement, “Not A"

Anather examople of a fuzzy set would be the set of “hot” temperatures. The
degree of membership of this set as a function of temperature 1s known as a membership
fuaction (Figure 2.6). Other sets could be added, such as “cold,” “cool,” “warm,” and

“hat," sa that an entice temperature range is defined linguistically (Figure 2.7).
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Figure 2.6: Hot temperature membership function
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Figure 2.7: Fuzzy temperature spectrum

Fuzzy set theory is useful because it can provide an interface between human
linguistic and mechanical, quantitative perceptions of the universe. With fuzzy
information processing. machines can be programmed to make decisions within an
environment containing vagueness, much as people do. An example of fuzzy inferencing

and defuzzification is provided in Appendix A.

2.3.2 History of Fuzzy Logic

Fuzzy set theory was proposed in 1964 by Lofti Zadeh (1965). 1t has since evolved
from am academic novelty largely ignored by the scieatific community to a versatile tool
for solving engineering problems. Other philosapher-mathematicians, such as Max Black
and Jan Lukasiewicz, have suggested other rypes of multi-valued logic or vagueness theory
earlier (Black 1937; Lukasiewicz 1970), but Dr. Zadeh's fuzzy set theory is what is used
today in many applications. Fuzzy logic was well received in the Orient and in Europe, but
was slow 1o gain acceptance in the United States. American scientists and mathematicians
were reluctant to accept 8 paradigm that suggested that scieatific and engincering problems

could be 2ddressed vsing approximate reasoning. Japanese scientists and engineers



exploited this technology and provided Japanese consumers with fuzzy dishwashers, fuzzy
camcorders, and fuzzy automatic transmissions. One of the successes of fuzzy logic
control is the train in Sendai, Japan, that operates with the fuzzy predictive control system
presented by Seiji Yasunobu (1985). Many of the consumer products once only available
to Japanese consumers are now available to American consumers, although these products

are often marketed not as “fuzzy” but as “intelligent.”

2,3.3  Fuzzy Logic Applied to Anesthesia Monitoring

Fuzzy logic has been applied to anesthesia monitoring and control with modest
success. Fuzzy logic feedback control of blood pressure has been accomplished by several
groups of researchers (Meier 1992; Ying 1992; Tsutsui 1994; Zbinden 1995). Some have
suggested that the use of fuzzy logic to control blood pressure is probably unnecessary, but
that fuzzy logic may be useful for controlling more ambiguous process variables or as a
“supervising” entity in a multivariable control system (Martin 1994). Another fuzzy
feedback control strategy has been to control inspired oxygen and inhalant anesthesia
concentration (Curatolo 1996). More sophisticated adaptive fuzzy logic control has been
applied to muscle relaxant delivery (Linkens 1991, Linkens 1992; Mason 1994). Fuzzy
logic bas also been used in an intelligent alarm system for cardioanesthetic monitoring
(Rau 1995). None of these applications provide the assessment capabilities we are striving

to achieve.

24 SIGNIFICANCE OF CURRENT WORK

This project is unique in that it proposes a numerical index of anesthetic depth that

incorporates both time domain and frequency domain processed EEG variables related



linguistically with a fuzzy rulebase. Other efforts to create 2 univariate quantitative
measure of anesthetic depth have included bispectral analysis (Ning 1990; Sebel 1995) of
Fourier-decomposed EEG waveforms. Whilte bispectral indices may be useful indicators of
anesthetic depth, the index proposed in this work synthesizes more diverse information in a
more intuitive manner resulting in @ machine-generated assessment of anesthetic depth
comparable to that rendered by an anesthesiologist. A similar qualitative approach has
been proposed by Gurman (1994). He has generated a matrix of crisp rules relating

spectral edge frequency and blood pressure to adequacy of anesthesia. Qur approach is

different in that our rulebase is fuzzy and we use other variables as inputs 1o our system.

24.1 Description

This system described in this thesis monitors changes in power distribution within
the EEG spectrum as well as EEG burst suppression and mean arterial pressure. A matrix
of fuzzy logic rules (fuzzy rulebase) was generated that relate mean arterial pressure, burst
suppression ratio, processed EEG power spectrum variables, and their time rates of change
over multiple time intervals to an index of adequacy of anesthesia. [nput data is converted
to the anesthetic depth index with the fuzzy rulebase via fuzzy logic algorithms. The
resulting index correlates with the assessment of anesthetic depth provided by an

anesthesiologist.

24.2 Application

A monitoring system such as this one could be used in an intensive care
environment and during long surgical procedures to assist the attending anesthesiologist.

especially if this monitoring approach proved applicable to combinations of anesthetic



agents. As discussed previously, common practice in modemn surgical anesthesia is to use
a combination of anesthetic agents such as neuromuscular blockers, beta blockers, and
analgesics. The employment of these multiple agents may tend to mask traditional clinical
observables. A system sismilar to the one proposed could provide insight into the patient's
level of consciousness not available using traditional means of assessing anesthetic depth.
The use of a single index for a gauge of anesthetic depth could also be useful for
feedback control. Rather than attempting to control multiple variables in the control
system, this approach combines the multiple variables into one “set-point” variable,

therefore making possible control schemes much less complex.



3.0

METHOD

The development of our fuzzy anesthesia monitoring model proceeded in three
phases. The data collection phase consisted of experimentation and acquisition of data.
Comparison between acquired data and clinical assessment of anesthetic depth occurred in
the data analysis phase. The assembly of the model using the commercial fuzzy logic

software shell constituted the model development phase.

3.1 DATA COLLECTION

The experiments performed were designed to be of sufficient duration to ensure
that pharmacokinetic phenomena could be observed. These pharmacokinetsc phenomena
could be investigated more efficiently at multiple infusion rates. Due to the high cost of
propofol, limited availability of subject animals, and our desire to keep the experimental
protocol simple, each experiment was conducted using only two infusion rates
administered for one hour each. To minimize complexity, no surgical procedure was
associated with the regular data collection experimental protocol. In the absence of
incision or other painful surgical stimuli, the anesthesiologist applied a hemostat (clamp) to
the base of the tai] of the subject dog 10 evaluate patient awareness of noxious stimuli.

Six mixed-breed dogs were used to acquire initial data for model development.
Each dog was administered a 10 mg /kg bolus infusion dose of propofol, intubated, then
connected to a Harvard Apparatus Model 2400 syringe infusion pump from which
propofol was initially administered at the rate of 0.1 ml/kg/min for one hour. Atthe

beginning of the second hour, the infusion rate was changed to 0.05 ml/kg/min. [nfusion
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was continued for one additional hour. The respiration of the dog was controlled using a
ventilator for the duration of the experiment. Blood pressure was monitored invasively
using a pressure transducer tn a catheter inserted into an artery in a hind leg and either a
Datascope model 2000 or a Datascope Passport EL electrocardiogram (ECG) monitor.
ECG data acquisition commenced immediately following catheterization. The dog was also
connected to an Aspect A-1000 EEG monitor using a four-channe! referential electrode
montage (Figure 3.1) and needle electrodes. The electrodes were inserted immediately
following induction and intubation and both EEG and ECG data were acquired
continuously until the dog would raise its head at the conclusion of the experiment. This
protocol was also used to collect data from six purpose-bred beagle dogs for model
verification. The beagle data were not used for model development. Information regarding
experiment date, dog weight, identification number, and breed is provided in Appendix B.
During each experiment, the attending anesthesiologist would assess depth of
anesthesia in the subject by monitoring jaw tone, and palpebral and corneal reflexes at five-
minute intervals. The assessment for each of these observables was rated on a five-point

“I‘Y

scale where a score of “1” indicates “sufficiently anesthetized” and “5” indicates “awake.”
An example clinical assessment worksheet is provided in Appendix C. The response of the
dog to the 10 second application of a hemostat to the base of its tail (tail clamp) was
monitored every 15 minutes during the infusion period.

Blood samples were taken from the subject every | S minutes during the two-hour
infusion period. After termination of infusion, samples were collected every 2 minutes
untii extubation. Samples were also collected every 30 minutes for two hours following

extubation. These samples were used for pharmacokinetic analysis not discussed in this

thesis. A summary of blood propofol data can be found in Appendix D.
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Figure 3.1: EEG electrode montage
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Data from the infusion pump and EEG were acquired using software running on a
Pentium-90 personal computer. The datz acquisition software was written specifically for
this purpose. Calculations intemal to the EEG monitor were determined using a 0.5125
second epoch duration. Data from the EEG were acquired every S seconds and data from
the pump were acquired every 30 seconds. The ECG monitor was videotaped using a
tripod-mounted Sony 8 mm video camera. Data from the videotaped ECG monitor were
transcribed manually from playback of the videotape. ECG data were transcribed at 30
second intervals. ECG data during tail clamp episodes were transcribed at 2 second
intervals. The configuration of experimental apparatus is illustrated in Figure 3.2. Listings
of the vanables acquired from the EEG, ECG, and pump are presented in Tables 3.1, 3.2,
and 3.3, respectively.

An additional experiment was performed using another mongrel dog and a
modified version of the experimental protocol previously described. This experiment used
only one infusion rate of 0.05 ml/kg for the two-hour duratian of infusion. A 10 mg/kg
bolus injection of propofol was administered after one hour. The purpose of this
experiment was to verify assumptions regarding effect of propofol infusion rate on various

EEG variables.
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Figure 3.2: Experimental schematic diagram
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Table 3.1. EEG data acquired (Aspect Medical Systems 1996). One epoch =0.5125

seconds.

Variable Name

Description

Absolute Delta Power
(ADELTA)

Absolute Theta Power
(ATHETA)

Absolute Alpha Power
(AALPHA)

Absolute Beta Power
(ABETA)

Total Power

(TOTPOW)

Power Band [
(PBT)

Power Band 1]
(PBID)

Relative Delta Power
(RDELTA)

Relative Theta Power
(RTHETA)

Relative Alpha Power
(RALPHA)

Relative Beta Power
(RBETA)

Power Band Ratio
(PBRAT)

Spectral Edge Frequency
(SEF)

A measure of the power in the Delta frequency range (0.5 to
3.75 Hz). Reported in dB.

A measure of the power in the Theta frequency range (4.0
to 7.75 Hz). Reported in dB.

A measure of the power in the Alpha frequency range (8.0
to 13.5 Hz). Reported in dB.

A measure of the power in the Beta frequency range (13.75
to 30.0 Hz). Repored in dB.

A measure of the absolute total power in the 0.5 to 30 Hz
frequency range. Reported in dB.

A measure of the absolute power in the 30.0 to 40.0 Hz
frequency range. Reported in dB.

A measure of the absolute power in the 0.5 to 40.0 Hz
frequency range. Reported in dB.

Percentage of Total Power expressed in the Delta frequency
range.

Percentage of Total Power expressed in the Theta frequency
range.

Percentage of Total Power expressed in the Alpha
frequency range.

Percentage of Total Power expressed in the Beta frequency
range.

The ratio of Power Band | power to Power Band 11 power
expressed as a percentape.

The frequency at which 95% of Total Power is expressed at
lower frequencies.
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Table 3.1. EEG data acquired. (Cont’d)

Variable Name

Description

Median Frequency
(MEDFRQ)

Asymmerry Value
(ASYM)

Bispectral Index
(BIS)

Alternate index
(BISALT)

Suppression Ratio
(SR)

EMG Band |
(EMGLO)

EMG Band 2
(EMGH]I)

Bispectral Signal Quality
(SQN

Power Spectrum Signal
Quality
(PSQN

Asymmetry Signal Quality
(ASYSQI)

Suppression Ratio Signal

Quality
(BSRSQI)

Artifacts
(ARTF)

The frequency at which 50% of Total Power is expressed at
lower frequencies.

Ratio of Channel | (or Channel 3) Total Power to sum of
Total Powers of Channels 1&2 (or Channels 3&4)

Bispectral index calculated via proprietary Aspect Medical
Systems algorithm.

Alternative bispectral index calculated via proprietary
Aspect Medical Systems algorithm.

The percentage of epochs in the [ast 63 seconds in which
the EEG signal is considered suppressed.

The absolute power in the 70-110 Hz frequency range.
Reported in dB.

The absolute power in the 70-300 Hz frequency range.
Reported in dB.

The percentage of good epochs and suppressed epochs in
the last 61.5 seconds that can be used in the Bispectral
Index calculation,

The percentage of good epochs in the last spectral
smoothing period.

The percentage of good epochs in the last spectral
smoothing period. Represents lowest of the Power
Spectrum Signal Qualities for the hemispheric channel
pairs.

Percentage of good epochs in the last 63 seconds that can be

used for calculation of Suppression Ratio.

Hexadecimal code for signal anomalies recognized by
Aspect proprietary Artifact Detection Algorithm.
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Tabie 3.2. ECG data acquired.

Variable

Description

Systolic Arterial Pressure
(SAP)

Diastolic Arterial Pressure
(DAP)

Mean Anrterial Pressure
(MAP)

Heart Rate

Blood pressure during systolic phase of heartbeat.
Expressed in mmHg,

Blood pressure during diastolic phase of heartbeat.
Expressed in mmHg.

Mean arterial blood pressure time-averaged from pressure
readings acquired during a sampling interval. Expressed in
mmHg,

The rate at which the heart of the patient beats. Expressed
in beats per minute.

Table 3.3. Infusion pump data acquired.

Variable

Description

Infusion Rate

Infused Volume

Rate at which propofol 1s administered. Expressed in
ml/min.

Cumulative volume of propofol infused. Expressed in ml.

Data were also collected during the neutering of a male German shepherd. The

anesthesia protocol during this procedure was the same as in the previous experiments

except that the propofol infusion rate was changed according to clinical requirements at the

discretion of the attending anesthesiologist. Blood samples were not taken during this

experiment, however. The purpose of this experiment was to evaluate both the model and

equipment configuration in a surgical environment.

As mentioned previously, data were also collected from six beagles for the

purposes of model verification.

The protocol for data collection remained the same as for
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the six initial experiments. One potential anomaly must be noted, however. Not only were
these dogs ali of the same breed, but several of the dogs were of similar age, size, and
markings, suggesting the possibility that these dogs were from the same litter. 1f this is the
case, the results might be affected by the lack of genetic variability in the sample being
studied.

A summary of information regarding the individual dogs used as experimental

subjects is provided in Appendix D.

3.2 DATA ANALYSIS

The ECG, EEG, pump, and clinical assessment data for each experiment were
written into a Microsoft Excel spreadsheet. The acquired data and the clinical assessments
were plotted as a function of time, For ECG data, heart rate was plofted individuvally and
systolic, mean, and diastotic blood pressure were plotted together. The EEG data collected
represented 25 variables for four EEG channels and two channel pairs (Channels | & 2 and
Channels 3 & 4). Therefore data representing a total of |50 EEG vartables were collected
at five-second intervals for approximately 2.5 hours, or nominally 270,000 data points for
each experiment from the EEG alone. For each EEG variable, the four channels of data
were plotted together on the same plot. Data from the channel pairs were omitted on this
series of plots. Pump data (infusion rate and infused volume) were plotted individually.
Ciinical assessments (jaw tone, comeal reflex, palpebral reflex, and overalil clinical
assessment) were plotted individually as well. One entire set of plots for one experiment
are presented in Appendix E.

Plots of EEG and ECG data as functions of time were visually compared to plots of

the ¢linical assessments as functions of time to determine which variables correlated
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significantly. Particular emphasis was placed on analysis of variables traditionally used in
assessment of anesthetic depth, such as spectral edge frequency, median frequency,
bispectral index, and power in the delta (0-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta
(13-30) power bands. The high-frequency electromyographic (EMG) bands were selected
for further analysis as weil. These EEG data were rescaled linearly without regard to units
so that the final values were roughly on a scale of | to 5. This rescaling was executed for
the purpose of facilitating direct comparison of the EEG variables to the 1 to 5 scale of the
clinical assessments. The scaling equations and parameters are presented in Table 3.4.
The scaling parameters were determined from values of ABETA, EMGLO, and TOTPOW
observed during the high-infusion rate period of each experiment. These variables tended
to approach a steady-state value within the first hour of each experiment. This baseline
value of each variable was determined by visualization and used as the lower scaling
parameter for each experiment. The upper scaling parameter represents an average

maximum value of each variable for all experiments as determined by visualization.

3.2.1 EEG Input

The plots of the rescaled data provided insight into which EEG variables would be
suitable for inclusion in our fuzzy model. Comparisons were made visually rather than
through use of statistical correlation analysis. Given the relatively small sample size in
our experiments, the subjective nature of the clinical assessments, and our proposed
method of model development, the statistical correlation study would not be justified. The
variables chosen for inclusion into the model are listed in Table 3.5. Note that not all of
the variables traditionally monitored for assessing anesthetic depth are included in the set

of variables. In general, the power distribution variables, and suppression ratio were
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Table 3.4. Scaling Methodology for ABETA, TOTPOW, and EMGLO.

6-p
g-p

Transformation equation: 6’ = 4 +1

where:
6 = Original value (ABETA, TOTPOW, or EMGLOQ).
6 ° = Transformed (rescaled) variable value.
p = Lower scaling parameter (dB)

q = Upper scaling parameter (dB)

ABETA EMGLO TOTPOW
Experniment p q p q P q
1(0502) 38 65 30 64.3 46 65
2 (0608) 44 65 21 64.3 53 65
3 (0615A) 52 65 40 64.3 62 65
4 (0615P) 44 65 32 64.3 57 65
5 (0616) 47 65 31 64.3 56 65
6 (0811) 40 65 30 64.3 48 65
7 (0107A) 45 65 32 64.3 52 65
8 (0107P) 46 6S 32 64.3 55 65
9 (0108A) 45 65 30 64.3 54 65
10 (0108P) 45 65 30 64.3 56 65
11 (0109A) 45 65 31 64.3 56 65
12 (0109P) 47 65 31 64.3 57 65
Pulse Experiment (0911) 44 65 32 64.3 54 65
Surgical Experiment (1213) 45 65 28 64.3 55 65
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TABLE 3.5. Model lnput Variables.

Variable

Definition

Physiological Significance

Absolute Beta Power
(ABETA)

Absolute Beta Power Rate
(ABETArate)

Total Power

(TOTPOW)

Relative Beta Power
(RBETA)

EMG Low Band Power
(EMGLO)

EMG Low Band Power Rate
(EMGrate)

Suppression Ratio
(SR)

A measure of the power in the
Beta frequency band.
(13.75-30.0 Hz)

Rate of change of Absolute
Beta Power over five minute
period.

A measure of the absolute
total power in the Delta,
Theta, Alpha, and Beta
frequency bands.

(0.5 to 30 Hz)

The fraction of total power
that is due to Beta activity.

The absolute power in the low
EMG band.
(70-110 Hz)

Rate of change of EMG Low
Band Power over five minute
period.

The percentage of epochs
within a sampling window
that are considered
“suppressed.”

(i.e,, generating a potential of
less than £ SpV for greater
than 240 ms)

As propofol anesthesia
deepens, Beta activily
decreases.

Provides quantification of
Absotute Beta Power trends.

As anesthesia deepens, total
powery decreases.

As anesthesia deepens, power
in the Beta frequency band
decreases, but relalive power
in other frequency bands
increases. Provides indication
of power distribution within
0.5 - 30 Hz frequency band.

EMG power is 8 measure of
muscle activity. As anesthesia
deepens, EMG activity
decreases.

Provides quantification of
EMG Low Band Power
trends.

Provides an indication of
periods of relative brain
inactivity. Usually indicative
of deep anesthesia.
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chosen. The power distribution variables were selected to provide a gauge of power
distribution throughout the 0-30 Hz spectrum. Suppression ratio was included because it
provides a reliable indicator of when the brain is electrically “quiet.” For ease of analysis,

data from only one channel, Channel 2, were considered.

3.2.2 Mean Arterial Pressure

With most anesthetic agents, hypotension (low blood pressure) is a key concern.
Typically, blood pressure decreases with increasing depth of anesthesia. With propofol,
however, we have observed no meaningful correlation between depth of anesthesia and
blood pressure at surgicaily adequate infusion rates. Therefore blood pressure was not
included in the set of input variables for fuzzy model development. Any application of this
modeling methodology to drugs other than propofol shouid not initially exclude blood
pressure as an input, however.

During the experiments, the anesthestologist would typically be concerned if the
mean arterial pressure would drop below 65 mmHg: the minimum pressure required to
keep tissues adequalely perfused (Robertson 1992). Early aftempts at model development
included mean arterial pressure as an input, with the 65 mmHg pressure as a “tripwire.™
The final form of the model as it will be discussed here does not include mean arterial
pressure or any other cardiovascular input. Jf the mean arterial pressure were to be
included in a monitoring system to serve as a control variable used to activate a “tripwire,”

it can be included independently of the fuzzy system.



3.3 MODEL DEVELOPMENT

A model was developed using the set of input variables listed in Table 3.3. The
model was constructed using the commercially available fuzzy logic programming shell,
TILShell version 3.0, from Togai Infralogic, Inc., Irvine, CA. (now incorporated into
Ortech Engineering, Houston, TX). The output of the model is the variable AWARE,
which is an tndex of anesthetic depth. The goal of this model is to approximate the clinical
determination of anesthetic depth as determined by an anesthesiologist.

Once the variables for fuzzy system input were selected, membership functions
were dehned for all input variables and for the output variable (Figure 3.3). Note that the
membership functions for Absolute Beta Power (ABETA), Total Power (TOTPOW), and
power in the low EMG band (EMGLO) are scaled using the scaling methodology
previously discussed. These input variables are scaled using patient-specific parameters.
This allows for ease of model development and implementation. The use of scaled input
pravides for more efficient use of programming resources. Two other input variables used
in the model are the rate of change of absolute beta power (ABET Arate) and the rate of
change of power in the EMG low frequency band (EMGrate). These rates of change are not
instantaneous, but determined over a time interval of five minutes. The method of

calculating ABETArate and EMGrate is illustrated in Table 3.6.
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Table 3.6: Calculation of ABETArate and EMGrate.

Variable Formula ( Az = 5 minutes)
ABETArate T Py .
A BETArarels) = 2ABETAU) — ABETAG - 81)
Al
EMGrate EMGLOU)  EM .
EMGrate(t) = o) = GLO(1 - A!)
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Membership functions for ABETA, EMGLO, and TOTPOW (dimensionless)
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Figure 3.3: Input and output variable membership functions.
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Membership functions for RBETA (percentage)
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Figure 3.3 (Cont'd): Input and output variable membership functions.
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A marrix of 38 rules relating the membership functions of the input variables was
generated basad on physiological heunstics. An example of & typical rule would be, "I
ABETA is low and 1 ABETArate )s negative, then AWARE (s low.” Each rule is
physiologically based and enumerated in Appendix F.

Slsght efectrode movement, patient movement, or non-continuaus clecromagnetic
interference would occasionally generate spurious dafa. T.oese spurious dala would be the
source of “noise.” Rather than incorporate physically meaningless data . to the model,
some data were smoothed using a MATLAB program that uses wavelet smootaing (CGanti,
1996) to remove “noise” from the original signal.  An example comparison of raw and
smoathed data is provided in Figure 3.4. The data sets selected for wavelet smoothing
wece Absolote Beta Power (ABETA), Relative Beta Power (RBETA), Total Power
(TOTPOW), and power in the low EMG band (EMGLO). Each of these data sets for each
experiment were smoothed using the default smoothing level available with the program
used. The resulting sets of smoothed data wece eoncatenated 8nd assembled into data files

for each experiment using Micrasoft Excel Version 7.0,

Qim Outs Scroobed Dals
ws o
- - e
~ - ,\ - . o [
a - ) 3
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» w ] P L )
° P B8 R [ T i B e e y
a a 00 -3
A U1, 1Y

Figure 3 4: Comparison of raw and smoothed values of relative beta power (experiment )),
The simulations using the model were executed within TILShell. A block of code

was wriften 10 3 TILShell simulation module which designated the data file to be read, the



scaling parameters to be used, and performed the scaling caleulations, The resulting output
was written to another data file for each simulation. Details regarding the generation and

execution of TILShell simulations are provided in Appendix G.
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4.0

RESULTS

The output resulting from the fuzzy model was analyzed in two ways. The trends
evident in the model output were compared with those that would be expected based on
physiological principles alone. Also, the output from the model was compared agginst the

overall clinical assessment determined by the anesthesiologist.

4.) ANALYSIS FROM PHYSIOLOGICAL PRINCIPLES ALONE

The first iteration of data analysis was to determine if the EEG input and model
output were physiologically consistent. What is meant by physiological consistency is that
none of the inputs and outputs contradict one another based on current understanding of
EEG principles. As anesthesia deepens, a patient would be expected to exhibit less high
freguency EEG activity. Consequently, physiological consistency would require that the
variables used in this model, ABETA, EMG, and TOTPOW, would decrease as anesthesia
deepens. The expectations for RBETA are unclear because it is the quotient of ABETA
and TOTPOW. Rates of change of RBETA are therefore related to the comparative rates of
change of ABETA and TOTPOW.

Consider the example of a patient subject to a “lightening” of anesthesia. One
would expect that as anesthesia lightens, both ABETA and TOTPOW would increase. If
one considers also the rule of thumb that a lighter plane of anesthesia generally implies
more high frequency (BETA) activity than low frequency activity, one might conclude that
RBETA would also increase. This is not the case, however, when TOTPOW increases

faster than ABETA. ]n this case, RBETA should decrease: a somewhat counterintuitive
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result. For the purposes of this analysis, however, the rate of ABETA increase is assumed
to be generally faster than the rate of TOTPOW increase. The expected trend would
therefore be an increase in RBETA as anesthetic depth lightens.

The data from experiment 1 provide an excellent example of what s meant by
physiological consistency. Note the trends in ABETA (Figure 4.1). Immediately
following induction, ABETA decreases to a relatively constant level for the first hour, thea
increases slightly following the infusion rate change at the beginning of the second houe,
then increases rapidly to a high level following termination of infusion. The dip in the
ABETA level at t = 72005 corresponds ta 2 data smaothing artifact  The nput variables
EMG and TOTPOW also show the trends that would be expected (Figures 4.2 and 4.3).
The model output also corresponds 1o what would be intuilively expected (Figure 4.4).
Note that the values for model output sppesr to be two parallel (ines after t = 3600 s.
Although the plot may appear to be hine plot, it 1s actually a scatter plot with many data
ponts close together. Consequently, very rapid changes sn model autput appear to form

parallel lines and are not immediately obvious as rapid discoatiauities.
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Figure 4.1: Dimensionless absolute power in Beta frequency band (Experiment 1).
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Figure 4.3: Dimensionless absafute power in EMG low frequency band (Experiment V).
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4.1.1 _Initial Six Experiments

Results of the physiological consistency analysis for the first six experiments are
presented in Table 4.1. For the first hour of each experiment when propofo! was
administered at the high infusion rate (1 ml/ kg/min), the expected trend would be either a
Jow level or a decrease to a low level in each of ABETA, EMG, TOTPOW, and RBETA
measurenients. As a reflection of its input, the model output should also show either a Jow
level or a decrease to a low level during the first hour. All six experiments yielded this
trend as expected.

For the second hour of each experiment at half the original infusion rate (0.5
ml/kg/min), the values of ABETA, EMG, and TOTPOW should show an increase shortly
after the infusion rate change. These values should either rise to a plateau or increase as
the experiment proceeds. Interpretation of these results is more subjective, however.
While subject to the lower infusion rate, the patients are more likely to show responses to
external stimuli such as the application of tail clamps. The consequence is that a clean,
monotonic trend in one of the input variables or the model output is not likely to be
evident. Local minima, maxima, and other oscillatory behavior with periodicity
corresponding to tail ciamp application was evident. Nonetheless, consistency was
observed.

Trends in ABETA were consistent for 3 of the 6 experiments, trends in EMG were
consistent for 6 of the 6 experiments, and trends in TOTPOW were consistent for 5 of the 6
experiments. The model yielded consistent trends for 4 of the 6 experiments. What
intuitively appears to be contrary behavior of RBETA is not (Figure 4.5). What has been
observed with RBETA is a slight decrease or maintenance of a relatively constant level

ducing the second hour of the experiment. Therefore either TOTPOW increases slightly
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TABLE 4.1 Physiological consistency of model input and output variables for initial

experiments.

High Infusion Rate
O<t<1hr

Low Infusion Rate
{hr<t<2hr

Infusion Pump Off
2hr <t

Expected Trends
ABETA, EMG,
TOTPOW, MODEL

Low level or decrease
10 constant low level

Increase shortly after
2 hr mark to higher
level, or continuous
increase to 2 hr mark.

Increase to
constant high level

Consistency with expected trends

High Infusion Rate

Low Infusion Rate

[nfusion Pump Off

0<t<lhr The<t<2hbr 2hr<t

Experiment ]

ABETA Yes Yes Yes
EMG Yes Yes Yes
TOTPOW Yes Yes Yes
MODEL Yes Yes Yes
Experiment 2

ABETA Yes Yes No
EMG Yes Yes No
TOTPOW Yes Yes No
MODEL Yes Yes Yes
Experiment 3

ABETA Yes No No
EMG Yes Yes No
TOTPOW Yes Yes No
MODEL Yes Yes Yes
Experiment 4

ABETA Yes No Yes
EMG Yes Yes(tot=1.9 hr) Iniconclusive
TOTPOW Yes Yes (Oscillatory) Yes
MODEL Yes No Yes
Experiment §

ABETA Yes No Inconclusive
EMG Yes Yes Yes
TOTPOW Yes No Inconclusive
MODEL Yes No Yes
Experiment 6

ABETA Yes Yes Yes
EMG Yes Yes Yes
TOTPOW Yes Yes Yes
MODEL Yes Yes Yes
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faster than ABETA or ABETA and TOTPOW increase at the same rate. This is not in

opposition to what would be expected physiologically.
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Figure 4 S Relative power in Beta frequency band (Experiment ).

When the infusion pump is turned off, the input variables and the madel output
should inceease to a relatively high level, perhaps to the highest levels observed. The
relatively short duration of this period makes trend analysis somewhat speculative,
however For experiments 2 and 3 (Figures 4.6 - 4.8, 410 - 4.11) during this non-infusion
period after t = 7200 s. most of the input variables are physiologically inconsistent, but
consistent model output valucs are obtained for the duration of this period (Figures 4.9 2ud
4.12). This phenomenon is possibly attributable to the taclusion of rules in the rulebase
which address rates of change of EMG and ABETA. A more likely explanation s that the

magnitudes of ABETA and RBETA were sufficiently great to counteract the decrease.
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Figure 4.12 Model output (Experiment 3)

4.1 2  Verification Experiments

To validate the model constructed using the data collected ducing the first six
experiments, six more experimeants were conducted using the same experimental protocol.
The results of this seres of experiments did not show the same degree of physiological
consistency A summary of these results is presented in Table 4.2, Tn general, the mput
varjables were consistent for the first hour of each experiment, but model output values
osciflated for the first 40 minutes of cach experiment, providing no proof of agreement
with expected trends.

For the second hour doring administration of the lower infusion rate, the input
variables for the verification experiments were generally contradictory. Expertment 7
yielded increases of ABETA, EMG, and TOTPOW shortly after the 3600 s mark as
expected, but all three vartables dropped off after the 6000 s mark contracy to expectation.
Experiment 8 showed physiologically consistent EMG trends, but also showed a decrease

in ABETA after 36005 and a decrease in TOTPOW after 6000 5. Values of ABETA and



TOTPOW for experiment 9 showed no obvious consistent wrend between 3600 s and 7200s.
The EMG values might be considered to follow the expected trend, but the magnitude of
the post-infusion-change increase coupled with the existence of two relative maxima within
the interval between 3600s and 7200s makes the assessment of consistency speculative.
Experiment 10 yields a general decrease in ABETA for the interval between 3600s and
7200s and TOTPOW decreases in the interval from 5400s to 7200s; both results are
thoroughly inconsistent with the expected result. For experiment 11, ABETA essentially
hovers around a constant value as do ABETA and EMG for experiment 12. The model
output for verification experiments 1, 2, and 5 do seem to be physiologically consistent,
however.

Results far the infusion-off period (t > 7200s) for each verification experiment
showed that, in general, if the inputs were inconsistent, the outputs were incansistent.
Verification experiments |, 4, and 6 were inconsistent in all input and output variables

while the remaining experiments were generally consistent.



TABLE 4.2 Physiological consistency of model input and output variables for verification

experiments.
High Infusion Rate Low Infusion Rate | Infusion Pump Off
O<t<Ihr lhr<t<2hr 2hr<t
Expected Trends
ABETA, EMG, Low level or decrease  Increase shortly after  Increase to
TOTPOW, MODEL | 10 constant low level 2 hr mark to higher constant high level

level, or continuous
increase to 2 hr mark.

Consistency with expected trends

High Infusion Rate

Low Infusion Rate

Infusion Pump Off

0<t<1hr [ hr<t<2hr 2hr<t
Experiment 7
ABETA Yes No No
EMG Yes No No
TOTPOW Yes No No
MODEL No Yes No
Experiment 8
ABETA Yes (after 0.25 hr) No Yes
EMG Yes Yes Yes
TOTPOW Yes (after 0.25 hr) No Inconclusive
MODEL No Yes Yes
Experiment 9
ABETA Yes (after 0.25 hr) No Yes
EMG Yes (after 0.25 hr) No Yes
TOTPOW No No Yes
MODEL No No Yes
Experiment 10
ABETA Yes No No
EMG Yes Yes No
TOTPOW No No No
RBETA Yes No No
MODEL No No No
Experiment 1]
ABETA Yes {after 0.4 hr) No Yes
EMG Yes Yes Yes
TOTPOW Yes (after 0.4 hr) Yes No
MODEL No Yes Yes
Experiment 12
ABETA Yes (afier 0.4 hr) No No
EMG Yes No No
TOTPOW Yes (after 0.4 hr) Yes No
MODEL No No No




4.2 ANALYSIS FROM CLINICAL ASSESSMENT

The limitation of the preceding method of analysis is that it is based on
physiological principles alone. Comparisons of the model with the assessments rendered
by our anesthesiologist provide 2 more detailed and meaningful method of analysis by
noting subtle patient-specific and experiment-specific responses to anesthesia. In this light,
the model can be viewed as a sort of non-linear function approximator with the
anesthesiologist assessment of anesthetic depth as the function being approximated. The

llIH

clinical assessments were originally scaled between (indicating deep anesthesia) and
“S” (indicating awake). These values were rescaled linearly to correspond to maximum
and minimum values that would result from the model. The span of model output ranges
from 0 to 1.56. The rescaling methodology used transformed an assessment of 1™ to 0 and
an assessment of “4” to 1.56 (the assignment of an assessment of ““5” was rare). After the
transformation, the model output can be compared directly to the anesthesiologist-
determined clinical assessment.

The vectors of model output values and clinical assessments were of different
dimensions. To make direct comparisons, the number of model output values was reduced
to the aumber of clinical assessments by parametrically matching clinical assessment
values with model output values obtained at the same time or as close to the same time ax
possible. The mode] outpat values were determined for a time interval of S seconds and
the clinical assessments were determined every 5 minutes. The uncertainty introduced by
comparing a clinical assessment with a model output value not exactly concurrent would
therefore be negligible. especizlly considering that each ¢linical assessment would take at

least 15 to 30 seconds to determine. Each experiment was analyzed by time interval

according to infusion pump rate. The number and percentage of model output values
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within three possible clinical assessment uncertainties were determined and are presented
in Tables 4.13 through 4.16.

The input variables and model output for each of the experiments will be analyzed
experiment by experiment in the sections that follow. Observations regarding both
adherence to physiological consistency and correspondence to the veterinarian clinical

assessment will be discussed.

4.2.1 Initial Six Experiiments

‘The six experiments which are described in the following sections were the
experiments used for model development. These experiments used mixed-breed dogs as

subjects.

4.2.1.1 Experiment |

The deviations between the clinical assessment and the mode] are generally small
for experiment 1 (Table 4.3). In Table 4.3 and subsequent similar tables, the spread of
data is presented as the number and percentage of data points from the infusion period
designated 1n the leftmost column within the specified rescaled clinical assessment
uncertainty in the top row. The column headed by “n™ represents the total number of data
points from the specified infusion period. For example, the values in the “Low Infusion
Rate” row of Table 4.3 should be read as follows: 8 of || data points are within £ 0.26
clinical assessment units of the actual clinical assessment, 11 of 12 data points are within
+0.52 clintcal assessment units, and 12 of 12 are within £ 0.78 clinical assessment units.

Two deviations of significant magnitude occur at the beginning of the experiment
until t = 1000s and shortly after the cessation of infusion at t = 7200s (Figures 4.13, 4.15).

At the beginning of the experiment, the veterinarian immediately assessed the subject as
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being deeply anesthetized while the model suggested light anesthesia for the first 15
minutes followed by a five-minute decrease to a leve) indicative of deep anesthesia (Figure
4.14). The second significant deviation occumaog between t = 7200s (termination of
infusion) and ¢  8100s is the result af the model determining a rafe of anesthetic lightening
greater than that determined by the anesthesiologist. The greater rate jndicated by the
model is likely due 1o the increased rales of change of ABETA and EMG during this

mterval (Figures 4.16, 4.17).
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Figure 4.14 Rescaled clinical assessment (Experiment 1),
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TABLE 4.3 Comparison of model with overall clinical assessment for experiment 1.

Uncertainty expressed in rescaled clinical assessment units.

Teend agreement (Yes / No)
and number and percentage of data

within specified uncertainty of

rescaled clinical assessment

Description of deviations

Trend Uncertainty
s t * n
0.26 | 0.52 | 0.78
Experiment |
High Infusion Rate | Yes 9 9 9 11 | Model values greater for first
0<t<l1hr 82% 82% 82% 0.25 hr.
Low Infuston Rate | Yes 8 I 12 12 | Oscillations may correspond
thr<t<2hr 67% 92% 100% to tail-clamp events.
Infusion Pump Off | Yes 0 0 ] 3 Rate of increase to maximum
2hr<t 0% 0% 33% value greater for model

In Figure 4.4, experiment | model output, the model shifts back and forth rapidly

between two levels during the low infusion rate hour, resulting in what appears to be two

parallel levels. This phenomenon is actually due to discontinuities caused by rapid rule-

shifting withio the fuzzy rulebase.

4.2.1.2 Experiment 2

The model showed a much slower rate of anesthetic deepening than the clinical

assessment for the first 45-50 minutes (Figures 4.18 - 4.20). This is attributable to a

relatively slow rate of decrease in ABETA, EMG, and TOTPOW (Figures 4.21-4.23). The

second hour at the lower infusion rate shows some oscillation in the model, but this is

likely due to tail clamping episodes. The model deviates from the clinical assessment 45

minutes into the second hour, increasing to its highest levels before cessation of infusion
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and t5 minutes prior to the clinical assessment at the higher levels (rescaled clintcal
assessmeat values greater than or equal to 1.6). This phenomenon is attributable to the rte

of increase in EMG and ABETA (Figures 4.24 and 4.25).
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Figure 4.18: Model output (Experiment 2).
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Figure 4.21: Dimensionless absolute power in Bets frequency band (Experiment 2).
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Figure 4.24: Rate of change in absalute beta power over five minotes: Experiment 2.
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Figure 4.25: Rate of change in absolute EMG power over five minutes; Experiment 2.
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TABLE 4.4 Comparison of model with overall clinical assessment for experiment 2.

Uncertainty expressed in rescaled clinical assessment units.

Trend agreement (Yes / No)

and number and percentage of data
within specified uncertainty of
rescaled clinical assessment

Description of deviations

Trend Uncertainty
+ pa + n

0.26 | 0.52 | 0.78
Experiment 2
High Infusion Rate = Yes 1 3 3 11 Model values greater for first
D<t<}hr 9% 27%  27% 0.8 hr. Model requires 0.5 hr

longer to record Jowest levels

Low Infusion Rate | Yes 4 8 9 12 Oscillations may correspond
I hr<t<2hr 3%  67% 5% to tail-clamp events.
Infusion Pump Off | Yes 4 4 4 4
2 hr<t 100% 100% 100%

4.2.1.3 Experinent3

Deviation is significant for the first 20 minutes of experiment 3 (Figures 4.26 -

4.28). The rate of anesthetic deepening suggested by the model is slower than that

observed by the anesthesiologist. This is attributable to a slow rate of decrease in

TOTPOW for this interval (Figure 4.29). For the second hour at the lower infusion rate the

model and the clinical assessment compare favorably (Table 4.5). Although data are

incomplete for the period following cessation of infusion, figures 4.26 and 4.27 suggest

that the model and clinical assessment would compare favorably for this interval as well.
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Figure 4.26: Model output (Expériment 3).

0615A Clinician Assessment

Infusion on Infusian change Infusion off
1.5 1
1 |-
o -
0.5 FAT—
0 = ooeo Ll bote— - :
0 1000 2000 3000 4000 5000 §000 2000 8000 9000

Time (s)

Figure 4.27: Rescaled clinical assessment (Experiment 3).
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Figure 4.28: Madel deviation from clinical assessment (Experiment 3).
Deviation = clinical assessment - model
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Figure 4.29: Dimensionless total absolute power in 0-30Hz frequency band (Experiment 3).

TABLE 4.5 Comparison of model with overall clinical assessment for experiment 3.
Uncenaimty expressed i rescaled clinical assessment units.

“Trend agreement (Yes / No)
and number and percentage of dats
within specified uncertainty of
rescaled clinical assessment
Description of deviations

Trend Uncertainty
+ 4 n

026 | 052 | 0.78

Expenment 3

High Infusion Rate | Yes 2 5 6 1] Model values greater fos first

0<t<)hr 18%  45%  S5% 0.3 hr. Model requires 0.5 he
longer to record towest Jevels

Low Infusion Rate | Yes 8 10 12 12 Oscillations may correspond

) hr <t<?2hr 67% 83% 100% to tail-clamp evenis.

lnfusion Pump Off | N/A ] 1 1 |

2 br <t 100% 100% 100%




4.2.1.4 Experiment 4

The model 2nd clinical assessment compare favorably for most of the data from
experiment 4 (Figures 4.30-4.32, Table 4.6). A significant deviation occurs at
approximately 20 minutes into the second hour (low infusion rate). This deviation is due to
a corresponding decrease in TOTPOW (Figure 4.13), causing a dip in the model output
suggesting an overprediction of anesthetic depth. The experiment was terminated shostly

after infusion was stoppad.
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Figure 4.30: Model output (Experiment 4).
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Figure 4.31: Rescaled clinical assessment (Experiment 4).
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Figure 4.32: Model deviation from clinical assessment (Experiment ¢).
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Figure 4.33: Dimensionless 1otal absolute power in 0-30Bz (requency band (Experiment 4)
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TABLE 4.6 Comparison of model with overall clinical assessment for experiment 4.

Uncertainty expressed in rescaled clinical assessment units.

Trend agreement (Yes / No)

and number and percentage of data
within specified uncertainty of
rescaled clinical assessment

Description of deviations

Trend Uncertainty
+ + t fl
026 | 0.52 | 0.78
Experiment 4
High [nfusion Rate | Yes 5 10 10 )1
0<t<l|hr 45% 91% 9%
Low Infusion Rate | Yes 9 {0 11 12
I hr<t<?2hr 75% 83% 92%
Infusion Pump Off | N/A | ] i !
2hr<t t00% 100% 100%

4.2.1.5 Experiment 5

The clinical assessment and model output for experiment S do not compare quite as

favorably as for some of the other experiments (Figures 4.34-4.36, Table 4.7). This

experiment s unique among the first six experiments in that the anesthesiologist did not

span the clinical assessment range of “1” to “4” (0 to 1.6 rescaled), but instead only

spanned “|” to “3”. (0to [.07 rescaled). The patient was obviously not as responsive to

stimuli. This was reflected in the EEG input as well, however. The inputs, ABETA and

EMG did not show much variation as a function of time (Figures 4.37 and 4.38). Also,

ABETA and TOTPOW appeared to be inconsistent 40 minutes after the infusion rate

change (Figures 4.37 and 4.39).
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Figure 4.34: Model output (Experiment $)
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Figure 4.35° Rescaled chinical assessment (Experiment 5).
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Figure 4.36: Model deviation from clinical assessment (Experiment 5).
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TABLE 4.7 Comparison of model with overall clinical assessment for experiment 5.

Uncertainty expressed in rescaled clinical assessment units.

Trend agreement (Yes / No)
and number and percentage of data
within specified uncertainty of
rescaled clinieal assessment

Description of deviations

Trend Unecertainty
* x + n
026 | 0.52 | 0.78

Experiment 5

High Infusion Rate | Yes 2 6 9 11 Model values greater for first

0<t<lhr 18% 55% 82% 0.3 hr. Model requires 0.5 hr
longer than clinician to record
towest levels

Low Infusion Rate | Yes |4 6 [0 12| Oscillations may correspond

1 hr<t<2hr 3% 50%  83% to tajl-clamp events.

Infusion Pump Off | N/A [ O i [ |

2hr<t 0% 100% 100%

4.2.1.6 Experiment 6

For the first hour of experiment 6 during administration at the high infusion rate,

model output indicated anesthetic depth that deepened faster than that observed by the

anesthesiologist. Model output levels indicated slightly deeper anesthesia than that

observed by the anesthesiologist for the first hour of the experiment (Figures 4.40 - 4 42,

Table 4.8). The depth of anesthesia inferred by the model output is kept low by the

substantial burst suppression in the first hour (Figure 4.43). The end of this period of burst

suppression is the likely source for the five-minute period of rapid rule shifting beginning

at t = 4000 s (Figure 4.43). The rate of anesthetic lightening during the period of low

67




infusion in the second haur was slower for the model than that observed by the
snesthesiologist after t =5100 s. The relatively slow rate of lightening is aaributable to the
corresponding trends evident in the inputs ABETA, TOTPOW, and EMG (Figures 4.44 -

4.46).
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Figure 4.40: Mode) output (Experiment 6).
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Figure 4.41: Rescaled clinical assessment (Experiment 6).

68



0811 Model Devlation

Infusion on Infusion change Infusion off
16
1.2 ~
0.8 4= . -
0.4 : - -
0 o 5 AN A ~ : o T ;-a-'n-. i
04 4510002000 —3000-}a¢ 7 08000 —-90ha

=

08 |- ~mE - gad S
1.2 | i PN U W N — - s . ]
Ry S -} |

(£

TIme (s)

Figure 4.42: Model deviation from clinical assessment (Experiment 6).

0811 SR

Infusion on Infusion change In‘usion off
700 B 1:;1':"," r £ = B *‘ r N

ﬂo . -\ ._I h. . -I “:.:'\ - .'ﬂ.

=5 WS - .,

60 - . 3

40 S L

20 | -

0

a 10600 2000 3000 4000 5000 6000 7000 BDOO 8000
Time (s)

Figure 4.43: Suppression Ratio (Experiment 6).
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Figure 4.44: Dimenssonless absolute power in Beta frequency band (Experiment 6).
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Figure 4.45: Dimensionless total absolute power in 0-30t12 frequency band (Experiment
6).
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TABLE 4.8 Comparison of model with overall clinical assessment for experiment 6.
Uncertainty expressed in rescaled clinical assessment units.

Trend agreement (Yes / No)

and number and percentage of data
within specified uncertainty of
rescaled clinical assessment
Description of deviations

Trend Uncertainty
t t t n
026 | 052 | 0.78

Experiment 6

High Infusion Rate | Yes |2 9 9 11

0<t<lhr 18% 82%  82%

Low Infusion Rate | Yes 6 11 12 12 Oscillations may correspond
1 hr<t<2hr 50% 92%  100% to tail-clamp events.
Infusion Pump Off | N/A | 0 2 2 2

2 he <t 0% 100% 100%

4.2.1.7 Summary of results of first six experiments

The agreement between the model and the data from the first six experiments is
quite good. Although good agreement should be expected between the model and the data

used to develop it, the high quality of the agreement for all six experiments was a surprise.
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4.2.1  Six validation experiments

The six experiments which are described in the following sections were the
experiments used for model verification. These experiments used beagles bred for

laboratory use as subjects.

4.2.2.1 Experiment 7

In general, for this experiment there appears to be little correspondence between
the model and the clinical assessiment (Figures 4.47-4.49, Table 4.9). The mode! output
makes some sense intuitively in that deep anesthes:a is suggested for the first hovr during
the period of high infusion. Compared to the clinical assessment, however, correlation
seems coincidental and rare. The clinical assessment is initially very deep, whereas the
model 1s not. The times during which the deepest levels of anesthesia are observed by the
anesthesiologist do not correspond to the times during which the model suggests deep
anesthesia. The model suggests light anesthesia at the beginning of the experiment and
deep levels 40 minutes into the hour of high infusion. After the infusion rate change, depth
of anesthesia rapidly lightens according to the model. The clinical assessment is not in
agreement, however. The deviation at the beginning of the experiment and shortly after the
infusion rate change can be traced to the inputs ABETA, TOTPOW, and EMG (Figures
4.50-4.52). Burst suppression was evident toward the end of the first hour which accounts
for the model output indicating deep anesthesia at this time (Figure 4.53). These input
values show trends corresponding to similar trends in the model output. Some of these
trends seem physiologically inconsistent. After infusion is ceased, ABETA, TOTPOW,
and EMG decrease: contrary to what is expected. This physiclogica) inconsistency is the

likely explanation for the significant deviation between t = 8400 s and t = 9000 s.
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Figure 4.47: Model output (Experiment 7).
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Figure 4.48: Rescaled clinical assessment (Experiment 7).
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Figure 4.49: Model deviation from clivical assessment (Experiment 7).
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Figure 4.50: Dimensionless absolute power in Beta frequency band (Experiment 7).
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Figure 4.51: Dimensionless total absolute power in 0-30Hz frequency band (Experiment
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Figure 4.52: Dimensionless absolute power in EMG low frequency band (Experiment 7).
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Figure 4.53: Suppression Ratio (Experiment 7).

TABLE 4.9 Comparison of model with overall clinical assessmeat for experiment 7.

Uncertainty expressed in rescaled clinical assessment units.

Teend agreement (Yes / No)

and number and percentage of data
within specified vncertainty of
rescaled clinical assessment

Description of deviations

Trend Uncertainty
4 T o n
026 | 0.52 | 0.78

Experiment 7

High Infusion Rate | No 2 7 R 1 Model values greater for firsy

O<t<lbr 18% 64%  73% 0.5 hr.

Low Jnfusion Rate | Yes 0 0 4 12 Moadel values significantly

I he<t<?2hr 0% 0% 33% geeatec.

Infusion Pump Off | Yes |3 3 3 3
| 2hr<t 100% 100% 100%

4.2.2.2 Experiment 8§

For experiment 8, the initial clinical assessments indicated deep anesthesia. The

model output, however, did not indicate deep anesthesia for the first 40 minutes at the high
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infusion rate (Figures 4.54-4.56, Table 4.10). Afier the infusion rate change, a slight
increase in the mean level of model output is observed, bt (lse rate of incresse is not &s
rapid as that observed by the anesthesiologist. The input variables ABETA, TOTPOW, and
EMG are peculiar in that they show little variation between the hour of high infusion and
the haur of tow infusion (Figures 4.57-4.59). The levels of ABETA and EMG increase

immediately once infusion is terminated at t = 7200 s, however.

0107P todel

Infusion on infusion change Infusion off
1 L
15 I " P — 7 T — " —
W TRCHE L TSR %
S L |h . 1 3 A
LI R S -
*"\ ! E: i, - J 1;?*
os |3 2 G __:._g! ; BN | S
K T ¥
i | e <|8 & s
0 q o @ m : I\J:" 4 ‘?r.' L. |
0 1000 2000 3000 4000 S000 6000 7000 8000 89000
Yime (8)

Figure 4.54: Mode) output (Experiment 8).
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Figure 4.55: Rescalted clinical assessment (Experiment 8).
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Figure 4 56: Model devianon from clinical assessment (Expeciment 8).
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Figure 4.57: Dimensionless ahsolute power in Beta frequency band (Experiment 8).
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Figure 4.58° Dimensionless total absolute power in 0-30Hz frequency band (Experiment
8).
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Figure 4.59: Dimensionless absolute power in EMG low frequency band (Experiment 8)

TABLE 4.10 Comparison of model with overall clinical assessment for experiment 8.
Uncertainty expressed in rescaled clinical assessment units.

Trend agreement (Yes / No)
and number and percentage of data
within specified uncertainty of

rescaled clinical assessment

Descrption of deviations

Trend Uncertainty |
R T no
. 026 | 0.52 | 0.78 .
Experiment 8 { | |
High [nfusion Rate | No | 2 6 9 1 Model oscillates for ficst 0.6
0<t<)hr 18% S5%  82% br araund mean (evel greater
than clinccal assessment.
Low Infusion Rate | Yes |3 8 12 12 Rate of model increase slower.
| hr<t<2hr 1 25%  671%  100%
Infusion Pump Off | N/A ) t 1 ¢
2 hr <1 )00% J00% Y00%

4.2.2.3 Experimen( 9

There is significan{ deviation during both the high and low infusion rate intervals

(Figures 4.60-4.62, Table 4.11). The input variables appear 10 be featureless (Figures 4.63-

4.65) resulting in similarly featureless model outpul.
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Figure 4.60: Model output (Experiment 9).
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Figure 4.61: Rescaled clinical assessment (Experiment 9).
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Figure 4.62: Model deviation from clinica! asscssment (Experiment 9).
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Figure 4.63: Dimensionless absolute power jn Bets frequency band (Experiment 9).
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Figure 4.64: Dimensionless total absolute power in 0-3013z frequency band (Experiment
9).
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Figure 4.65: Dimensionless absolute power in EMG low frequency band (Experiment 9).
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TABLE 4.11 Comparison of model with overall clinical assessment for experiment 9.

Uncertanty expressed in rescaled clinical assessment units.

Trend agreement (Yes / No)

and number and percentage of data
within specified uncertainty of
rescaled clinical assessment

Trend Uncertainty

026 | 052 | 0.78

* + + n

Description of deviations

Experiment 9

High Infusion Rate
0<t<!thbr

Low Infus(an Rate
| hr<t<2hr

Infusion Pump Off
2hr<t

No 4 10 ) [
36% 91%  100%

No 2 4 8 12
67% 33% 67%

N/A | 0 \ ! |
0% 100% 100%

Model values greater than
clinician values for first 0.3 hr.
Model requires 0.5 hr longer
to record lowest levels

Increase in clinical assessment
obvious but no obvious trend
in modef observed.
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4.2.2.4 Experiment 10

Like experiment 9, this experiment shows significant deviation berween the
climical assessment and the model (Table 4.12). Afier 30 minutes 21 the bigh infusion rate,
the mode! and clinical assessment diverge (Figures 4.66 - 4.68). Again, this puzzling lack
of obvious trends in the output are due to relatively featureless (Figures 4.6 and 4.71) of

physiologically inconsistent input (Figure 4.70).
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Figure 4.66: Model output (Experiment 10).
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Figure 4.67: Rescaled clinical assessment (Experiment 10).
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Figure 4.68: Model deviation from clinical assessment (Experiment 1 0).
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Figure 4.69: Dimensionless absolute power in Beta frequency band (Experiment 10).

w
Infusion on In!us?gn-cnmc aEg;FPO Infusion off

a5 | | , : . o
4 . .
35 (= B W L4
k) B ; o
2.8 — — ' ! X —
2 )
15 |—R. |
'
0.5
6 1=
4] 1060 20600 000 4000 500D 6000 7000 8000 3000
Time (s)

Figure 4.70: Dimensionless tota) absolute power in 0-30H2 frequency band (Experiment
10).



. 010BP EMG

Insfusmn on infusion change Infusion off
. ] i

4.5 |y <

[ Quy E— . e

35— S

Al 1 -
25 |- SR 1

2 — ——

15 S U S

1 — . i
a.s
0

0 1000 2000 3000 4000 S000 G000 7000 8OO0 300D
Time (s}

Figure 4.71: Dimensionless absolute power in EMG low frequency band (Experimeat 10)

TABLE 4.)2 Compsrison of model with overall clinjcal asscssment for experiment 1.
Uncertainty expressed in cescaled clinical assessment units.

Trend agreement (Yes / No)
angd number and percentage of data
within specified uncertainty of
rescaled ¢linical assassment
Description of deviations

Trend Uncertainty |
* T h 4 0
026 | 052 | 0.78

Experimeat 10

High Infusion Rate | Yes 3 8 11 11
0<t<]he 2% 13%  100% i
Low Jnfusion Rate | No 2 9 1] 12 | Mode) output yields maximum
I hr<t <2 he 17% 75%  92% att=1.5 hr
Infusion Pump Off | No 0 2 3 3 Clinica) assessrment selatively
2 hr<t 0% 67% 100% constant, Model has
maximum at t = 2.2 hr.
_ |
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4.2.2.5 Experiment 1)

This experiment showed some correlation berween the clinicsl assessment and the
model (Table 4.13). Ahhough the model output values for the fisst hoor at the bygh
infusion rate do not show anesthesia as deep as that observed by the anesthesiologist, they
appear 10 be hovering azround a baseline suggesting deep anesthesis (Figures 4.72 - 4.74).
The deviations for the first 20 minutes of the experiment are attributable to TOTPOW
(Figure 4.76). Although ABETA appears 10 be relatively featureless for the first ewo hours
of the experiment (Figure 4.75), TOTPOW registers a significant change cosresponding (o
the change tn infusion rate. A similar but more subtle change in EMG oceurs as well
(Figure 4.77). These changes observable in the input variables manifest themselves in the
madel autput. Fram the infusion rate change to the 90 minute mack, the clinical
assessment was much deeper than the assessment suggested by the model. For the next 30

minutes there was little deviation.
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Figure 4.72: Mode! output (Experiment 11),
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TABLE 4.13 Comparison of model with overall clinical assessment for experiment 11.
Uncertainty expressed in rescaled clinical assessment units.

| Trend agreement (Yes / No)
and number and percentage of data
within specified uncertainty of
rescaled clinical assessment
Description of deviations

Trend Uncertainty
t b + n
026 | 0.52 | 0.78
Experiment 1]
High Infusion Rate | Yes 3 8 11 1]
0<t<!hr 27%  73%  100%
Low [nfusion Rate | Yes 4 7 (2 2 Rate of model increase slower
I hr<t<2hr 33%  58%  100% beginning at infusian rate
change. Clinical assessment
increase begins 0.4 hr ater.
Infusion Pump Off | Yes 0 3 3 3
2 hr <t 0% 100% 100
Y

4.2.2.6 Experiment 12

This experiment is another example of an experiment in which the anesthesiologist
did not apply a broad span of assessments for the duration of the experiment. The first 40
minutes of the experiment provided examples of significant deviation between maode! and
clinical assessment due to osciliatory behavior in ABETA and TOTPOW and a relatively
slow decrease in EMG (Figures 4.78 - 4.83). Levels of ABETA and EMG remained
relatively constant from the 40 minute mark during the high mfusion pesiod to the
termination of infusion. No signiftcant change was observed as a result of the change to
the low infusion rate at the end of the first hour. There was a slight change at the infusion

rate change in TOTPOW, however. During the second hour at the low infusion rate, model
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output values oscillated and hovered around 8 mean level slightly higher than the lowest
level attained during the first hour. At the termination of infusion, there were significant

changes in ABETA, TOTPOW, aad EMG follawed by 2 peculiar decrease approximately

12 minutes later.
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Figure 4.79: Rescaled clinical assessment (Experiment 12).
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Figure 4.81: Dimensionless absolute power in Beta frequency band (Expeciment [2).
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Figure 4.83: Dimensionless absolute power in EMG low frequency band (Experiment 12).

TABLE 4.14 Comparison of model with overall clinical assessment for experiment 12,
Uncertainty expressed in rescaled elrnieal assessment units.

Trend agreement (Yes / No)

and number and percentage of data
within specified uncertaingy of
rescaled clinjcal assessment
Description of deviations

Trend Uncertainty
* t a
026 | 0.52 | 0.78

1+

Expersment 12

High Infusion Rate | Yes |3 6 8 1 Oscillatory model decrease
0<t<Ihr 2%  55% 13% slower for first 0.6 hr.
Low Infysion Rate | Yes |5 10 12 12

) hr <t <2 hr 2%  83% 100%

Infusion Pump Off | N/A | 1 L ]
2 hr <t 100% 100% 100%
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4.2.3 Comparison of initia| experiments with verification experiments.

In general, the model output from the verification experiments did not agree with
the clinical assessment to the same extent that the model output from the initial six
experiments agreed with the corresponding clinical assessment (Tables 4.15 and 4.1 6).
This is certairly not surprising considering that the initial experiments were used to
develop the model. Also. laboratory beagles were used for the verification experiments
whereas mixed breed dogs were used for the model development experiments. The
verification experiments demonstrated slightly greater agreement with clinical assessment
during the high infusion rate regime than the initial experiments. The initial experiments
were closer to the clinical assessments during the low infusion rate, however. Existence
and quality of data for the post-infusion period limits the validity of any analysis or

comparison of data for this interval.
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TABLE 4.15. Comparison of Model with Overall Clinical Assessment for Initial
Experiments. (Experiments | - 6)

Trend agreement (Yes / No)

and number and percentage of data
within specified uncertainty of
rescaled clinical assessment

Trend Uncestainty

T t + n
0.26 0.52 0.78

Description of deviations

TOTALS

High Infusion Rate
0<t<lhr

Low Infusion Rate
[ hr<t<?2hr

Infusion Pump Off
2 hr <t

6 Yes | 21 42 46 66
2%  64% 70%

6Yes | 39 56 66 72
S4%  78%  92%

2Yes | 6 9 10 12
AN/A | 50% 75% B3%

GRAND TOTALS

66 107 122 150
44% 7% B81%
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TABLE 4.16. Comparison of Model with Overall Clinical Assessment for Verification
Experiments. (Experiments 7 - 12)

Trend agreement (Yes / No)
and number and percentage of data
within specified uncertainty

Description of deviations

Trend Uncertainty
s * + n
026 | 052 | 0.78
TOTALS
High Infusion Rate | 3 Yes | 17 45 58 66
O<t<lhr 3No |[26% 68% 8§8%
Low Infusion Rate | 4 Yes | 16 38 58 72
1hr<t<2hr 2No [22% 53% 81%
Infusion Pump Off | 2 Yes | 5 I 12 12
2hr<t INo [42% 92% 100%
3 N/A
GRAND TOTALS
38 94 128 150
25% 63% 8%
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43 PULSE EXPERIMENT

The purpose of this experiment was to determine the response of EEG vanables to
changes in infusian rate. This was accomplished by inducing anesthesia in 3 mixed-breed
dog using the same protocol as used in the other expesimenls, but rathes than immediately
infusing the subject with 0.1 mi/kg of propofol, the fower wnfusion rate of 0.05 ml/kg was
used This infusion rate was maintained for one hour to obtaio a nominally “steady state”
anesthetic depth, then 2 10 mg/kg bolus dose of propofo! was administered and EEG data
were collected for one more hour The infusion was maimained during the second hour at
the 0 0S5 ml/kg infusion rate

The expectations for this experiment were that ABETA, TOTPOW, and EMGLO
would decrease immediately following the bolus injection and then increase as the propofol
was cleared. Modest burst supperession was expected immediately following the bolus
injection as well. The expectation for the model was that it shoold indicate light anesthesia
for the first hoor with a relatively shon penod of deeper anesthesia immediately following
admunistcatian of the bolus, then progressive lightening of the anesthesia as the experiment

continued. The resolts are shown in Figores 4.84 - 4.90.
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Figure 4.84: Model output (Pulse experiment).
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Figure 4.85: Rescaled clinical assessment (Pulse experiment).
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Figure 4.88: Dimensionless total absolute power in 0-30Hz frequency band (Pulse
experiment).

. 0911 EMG )
Insfuswn on Bolus Dose Infusion off

™

45 | |- —
4 oo — :
35 |- -
3l WA _E
t
]
)

2.5 | | —

20— — g i

1.5 - g T
1 =
05 |[— —A——n— j
0 < [ f r -

0 1000 2000 3000 4000 5000 600D 7000 AODO 5000
Time (s)
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Figure 4 90: Suppression Ratio (Pulse experiment).

97



As expected, ABETA, EMGLO, and TOTPOW all attain their minimum values
immediately afier the bolus injection. Suppression occurs immediately after the bolus
injection as well. Both the model and clinical assessment indicate the deepest anesthetic
plane immediately after the bolus injection. Model trends generally agree with clinical

assessment trends, panticularly at and immediately following the bolus injection.

4.4 SURGICAL EXPERIMENT

This experiment was intended to fulfill three purpases. First, it provided another set
of data for fine tuning and further development of the fuzzy model. Second, it provided
assurance 1o (he anesthesiclogist that the infusion rates used in the other experiments were
adequate and consistent with those used in a surgical scenario. Third, it provided ap

opportunity to test the compatibility of surgery with data acquisition.

4.4.1 Data Analysis

Induction dosage and initial infusion rates were set as they were in the previous
experiments at 10 mg /kg and 0.1 mi/kg/min, respectively. The infusion rate was changed
afterward at the discretion of the anesthesiologist. An event (ist for the experiment is
provided in Table 4.17. Due to the nature of this experiment, expected trends were difficult
to predict. Plots of selected input and mode! output are provided in Figures 4.91 - 4.97.
Trends in ABETA seem only slight, but low values in EMGLO and TOTPOW correspond
with jastances of suppression. The application of the monopolar cautery at ¢ = 1138 5
caused a EEG data acquisition interruplion of approximately 4 minutes. The values

obtained in this window are therefore specious. Low values in the model output
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correspond with instances of burst suppression, during the beginning of the experiment at

the high infusion rate and at the end of the experiment immediately following the

administration of the second bolus propofol dose.

Table 4.17. Event list for surgical experiment: neutering of 6 month old male German

Shepherd.
Elapsed Time Event
s hh:mm:ss
0 0:00:00 | Infusion pump on (3.0 ml/min)

146 0:19:06 | Incision

1138 0:18:58 | Use of monopolar cautery (EEG signals interrupted)
1225 0:20:25 | Infusion decrease to 2.0 ml/min

1697 0:28:17 | Cutting of scrotal ligament

1746 0:29:06 | Clamps applied

1857 0:30:57 | Infusion increase to 2.5 ml/min

2087 0:34:47 | Clamps applied

2342 0:39:02 | Reduce infusion to 2.0 ml/min

2667 0:44:27 | Bolus propofol injection (same as induction dose)
3260 0:54:20 | Application of Bipolar Cautery

3297 0:54:57 | Application of Bipolar Cautery
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Figure 4.91: Model output (Surgica) experiment).
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Figure 4.92: Rescaled clinical assessment (Surgical experiment).

1213 Model Deviation

1.6
1.2
0.8
0.4

—Jrger [ ¥

-0.4
0.8
-1.2
-1.6

Time (s)

Figure 4.93: Model deviation from ¢linical assessment (Surgical experiment).
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Figure 4.95: Dimensionless total absolute power 1o 0-30Hz frequency band (Surgical
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Figure 4.97: Suppression Ratio (Surgical experiment).

442 Verification of Appropriateness of Infusion Rate

The anesthesiologist was satisfied with the infosion rates used in the previous
experimental protocol. The 0.1 mi/kg/min infusion rate is representative of 2 propofol

infusion rate adequate for surgical use.

4.4.3  Surgical Applicanon of Data Acquisition Techniques

The use of the monopolar cautery prevented four minotes of data acquisinon. The
bipolar cautery intercupted data acquisition for a much shoaer pesiod, but interrupted the
EEG signal nonetheless. A more fypical surgical environment in human medicine would
have many mare soorces of electromagnetic fields and other sourees that would likely
interfere with data acquisition as it was done in this experimeat. Also, moving the patient

may distupt EEG acquisifion as well.
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5.0

DISCUSSION OF RESULTS

Although the analysis provided in the previous chapter has been primarily
quantitative, the significance of the model is best shown qualitatively. The essence of
assessing anesthetic depth is qualitative; the distilled purpose of this work is to generate a
computer program that can reproduce a person’s opinion. Consequently, we believe
statistical regression analysis or other typical quantitative techniques are less meaningful
and potentially misleading as a means of assessing the quality of the proposed model.

Considering that the clinical assessment and the model require different sets of
input data, a meaningful interpretation of the differences between them may be difficult to
elucidate. When the clinician observes the reflexes and muscle tone of a patient, he infers
depth of anesthesia. He cannot explicitly see how deep his patient is anesthetized; he can
only base his opinion on the observables he can monitor. The model prediction is an
assessment based on ancther set of observables. Again, depth of anesthesia is inferred and
not measured explicitly. The physiological processes that cause subtle changes in the
observables used by the clinictan to assess anesthetic depth are temporally different from
the processes that cause subtle changes in the observables monitored by the computer
program. The philosophical question that lurks behind all of the analysis comparing these
assessments is whether the anesthesiologist and the computer program are actually
assessing the same thing.

Perhaps a more reasonable interpretation is that the index generated by the model
is a comparable and complimentary assessment of anesthetic depth. Clearly, some of the

experiments showed a distinct change in the output index corresponding to change in
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infusion rate while the anesthesiologist reported no such change. In other instances, the
anesthesiologist observed drastically different indicators of anesthetic depth that resulted in
assessments very different from those generated by the model. At any rate, the assumption
that the clinician’s assessment based on one set of observables can be duplicated by a
system mmonitoring a completely different set of observables is debatable. The two
assessments are comparable, however,

Although the coinparison of the clinical assessments based on physical observables
and the model output based on EEG observables may not be valid as a means of
quantitatively evaluating the model, this comparison has probative value for model
evalvation. The validity of the comparison could be enhanced by using multiple clinicians
and requiring less resolution in the continuum between light and deep anesthesia for both
the clinical and model-determined assessments. Another means of qualitatively verifying
the model would be to test it on-line in real time with an anesthesiologist evaluating the

model-determined assessment.

5.1 EVALUATION OF MODEL

The determination of whether the proposed model accurately assesses depth of
anesthesia is difficult to answer. 1f the question to be answered is whether the model
exactly mimics the assessment of an anesthesiologist, the answer is no. But if the question
is whether the model assessment identifies the same trends identified by the
anesthesiologist within a comparable time, the answer would be a qualified yes. For the
initial six experiments used to develop the model, the general trends observed by the
anesthesiologist were reproduced by the model. Although the set of verification

experiments did not yield the same degree of trend agreement, the differences and
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deviations between the model and the clinical assessments are generatly the result of
physiologically inconsistent or contradictory input data. The quality of the model can only
be as good as the quality of the mode! input.

The model clearly provides some indication of anesthetic depth. Developing a
model that would reproduce the assessments given by the anesthesiologist exactly would be
extremely difficult. In this light, the true indicators of the clinical value of the model
would be its response to variations in infusion rate and whether it distinctly differentjates
deep anesthesia from light anesthesia. Responses of the model to changes in infusion rate
are consistent with those expected. Furthermore, model predictions corresponding to deep
anesthesia are clearly distinct from those corresponding to light anesthesia.

Although the model as presented appears to have value as a means of assessing
anesthetic depth, and that the relationship between model output and anesthetic depth can
be described and evaluated qualitatively, what follows is a discussion of the limitations of

the model regarding quantitative comparison with clinical assessment of anesthetic depth.

5.1.1 Limitations of Expertmental Procedure

The experimental procedure made data analysis more difficuit than necessary. The
results of most of the experiments during the second hour at the low infusion rate indicate
oscillatory behavior in the model output. This oscillation may be due to the application of
tail clamps at 15 minute intervals. Some of the experiments show very clearly a
corresponding 15 minute periodicity in these oscillations. For the kind of analysis being
performed, the oscillations make the determination of conclusions difficult.

The breed and age of dog used as a subject were also not controlled. All the dogs

studied were considered “young adults,” but no more specific information regarding age
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was available. The six dogs used for the first experiment were medium-sized mixed breed
dogs, but the six dogs vsed in the verification experiments were laboratory purpose-bred
beagles. Differences in EEG response to anesthesia by breed have been noted (Zoran
1993). Therefore, the experimental methodology could have removed a potential bias
either by examining only one breed or examining a larger, statistically significant sample
of mixed breed dogs.

The subject dogs for the verification experiments appeared similar in age and
appearance. The appearance was so similar that two dogs weighed approximately the same
and shared similar markings, suggesting that they may have come from the same litter. If
several of these dogs were related, one might expect that the results from the experiments

may be subject to some bias.

5.1.2  Limitations of Model Development

Many assumptions were used to develop this model. The input variables ABETA,
TOTPOW, and EMG were rescaled and made dimensionless using patient-specific
parameters, The parameters used to define the input membership functions were assigned
using the best judgment of the author. No major effort was extended to optimize either the
scaling parameters or membership function parameters either to minimize deviation {from
the clinical assessment or to enhance the physiological consistency of the model. These
issues are fundamental in the development of all fuzzy systems, however, and not
particular to this system. These are limitations of design and can therefore be mitigated to
improve the model.

The development of the fuzzy rulebase was hindered by the inability of the fuzzy

logic sofrware, TILShell, to easily accommodate complicated rules. The software was
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originally designed to accelerate the design of fuzzy control systems and not for
implementing fuzzy expert systems. A superior fuzzy logic software shell would allow for
rules containing multiple conjunctive premises (e.g. “'if A and B and C and D, then X").
The software as it exists now is only capable of using rules containing no more than two
conjunctive premises conveniently (e.g. “if A and B then Y"). Cenasnly the logical
equivaient of the multiple conjunctive argument could be determined using De Morgan’s
Laws and arbitrary Jogical intermediate vanables, but this is nnnecessarily complicated.
The rulebase would be easier to comprehend if rules containing multiple conjunctive

premises were used.

5.1.3  Limitations of Clinjcal Assessment

Our anesthesiologist assessed anesthetic depth using a subjective five point scale
which was rescaled and compared to the model output. In practice, only values ranging
from *“1” to “'5™ were used. Examination of the experimental results indicates that these
assessments appear to be consistent, but considering that they are subjective and
determined by a human, some bias will exist, regardless of the training and expertise of the
clinician. The endpoints of the anesthetic depth spectrum, “deep” anesthesia and “awake”
are easily identifiable by objective analysis, but the continuum between these endpoints is

apr

less well defined to the clinician. [t may be relatively simple to identify and assess a or
a “4”, but less easy to assess a “2” or a “3”. Consequently, a more straightforward and less
subjective analysis comparing the model and the clinical assessment could have been

performed with a scale requiring less differentiation among the values intervening between

“deep” anesthesia and “awake”.
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5.1.4  Limitations of Comparison

To compare the model output and the clinical assessment, a linear relationship was
assumed to exist between themn so that the clinical assessment could be rescaled and
compared directly with the model. The fundamental relationship between these two
variables, if one exists, inay not be linear, however. The direct comparisons presented in
the Tables 4.3 to 4.16 are therefore somewhat speculative. What the entries in those tables
represent is not necessarily the quality of the agreement between the model and the clinical
assessment, but the quality of a linear correlation berween the model and the clinical

assessment.

5.2 IMPLEMENTATION ISSUES

The possibility of implementing this model as it currently exists is himited. The
EEG is very sensitive to electromagnetic disturbances and the modern health-care milieu
generates many electromagnetic disturbances. The quality of the EEG signal is often
questionable even in the most optimum circumstances and the introduction of an
electrocautery can rapidly destroy the ability of the monttoring system to acquire data.
This is a hardware limitation and therefore restricts the quality and robustness of the
monitoring system to the quality and robustness of the hardware used to implement it.

Another Jimiting aspect of this work is that it was done using propofol alone as an
anesthetic agent. For this or a similar model to be implemented, is must be validated for
the appropriate pharmaceuticals to be used. The general rules as defined in the rulebase
showld apply, but the patient specific parameters would likely need adjustment.

These patient-specific parameters used for scaling the input values are also a

potential source of difficulty regarding model implementation. Prior to the use of this
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system, these parameters must be determined. This may require calibration while the

patient is anesthetized which may not be practical.
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6.0

CONCLUSIONS AND RECOMMENDATIONS

The anesthesia inonitoring system developed in this psoject provides a previously
unavailable means for the quantitative assessment of anesthetic depth. Although it does
nat provide an assessment identical to that determined by an anesthesiologist, it provides a
complimentary assessinent which may on occasion provide a more sensitive determination
of anesthetic depth than that provided by a elinician. This system also assesses anesthetic
depth continuously. If the implementation issues are resolved, this system or a similar one

may be useful in the operating rooms or critical care wards of the futuse.

6.1 CONCLUSIONS

Specific conclusions drawn from this work are listed below.

L. The index generated by this model reflects depth of anesthesta.

2. Agreement between model and clinical assessments very good considering that this
approach to model development has not been attempted in the context of anesthesia
monitoring.

3. Fuzzy logic provides a viable method of modeling complex, non-linear processes.

4 Use of fuzzy linguistic variables made model development intuitive.

S. Incorporation of EEG variables from both the time domain (Suppression Ratio) and
frequency domain (power distribution) provides an extra dimension of useful clinical
information to the model.

6. Experimental observations suggest that propofo! anesthesia does not elicit a strong

hypotensive effect at surgicatly adequate infusion rates, therefore supporting the
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reputation of propofol as a safe anesthetic agent. However, this model should be
considered propofol-specific due to the exclusion of blood pressure as a model input.
The model yields good results with mixed-breed dogs, but inconsistent results with
pure-bred beagles.

The model could be optimized by adjusting membership functions and related scaling
parameters.

Use of EEG presents enormous data handling requirements.

. In a surgical environment, & bipolar caulery is preferred to a monopotar cautery

because it causes less EEG signal disruption.

6.2 RECOMMENDATIONS

Although this model holds promise as a means of assessing anesthetic depth,

certain issues must be addressed to improve the means of evaluating and implementing the

model. The limitations previously discussed would need 10 be overcome or otherwise

accounted for: particularly the items which make interpretation of the results difficult. 1t is

very possible that both qualitative and quantitative agreement berween the clinical

assessment and the model are shrouded behind noisy inputs and irregular experimentation

due 10 the variabshity mentioned previously. A comprehensive list of recommeadations

follows.

An alternative to evaluating the model by directly comparing it to a clinical assessment
after the fact would be 10 evaluate it online in a clinical setting in real time. Clinical
trials could be performed so that multiple anesthesiologists could gauge the adequacy

of the model assessment relative to their own clinical assessment.
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Alternative fuzzy logic software or problem-specific code may provide greater model
development flexibility.

The automation of ECG data acquisition would make the extension of this model to
other anesthetic agents considerably easier.

Future experiments stiould either use the tail clamp more infrequently or not at all. The
use of the tail clamp resulted in spiking and other oscillations in the EEG signal which
tended to complicate the inlerpretation of results.

The use of a larger sample of mixed breed dogs would provide a superior means of
determining the existence of spurious or questionable data.

The assessments delivered by several veterinarians rather than one would provide a
means of reducing the bias introduced by subjective assessment.

The model could be improved further if scaling parameters and membership functions
were optimized and more complicated conjunctive rules could be used in the rulebase.
Optimization of the model could be made simpler with more flexible software. The
generation and use of model specific code may be preferable to the use of commercial
fuzzy logic software.

Questions regarding the robustness of the system could be resolved by multiple system

trials in a surgical environment.
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APPENDIX A

FUZZY INFERENCING AND DEFUZZIFICATION

To illustrate the process of fuzzy inferencing and defuzzification, consider an
example fuzzy optimization problem of selecting automobile tires based on cost and
warranty The cost of a tire and the duration of its warranty are both ¢risp inputs. The
goal of this optirization 15 10 map these crisp inputs to a ¢risp oufput, 2 “tire desirability

index.” This process consists of three steps: fuzzification, inferencing, 2nd defuzzification.

A | FUZZIFICATION

Tire cost and tire warranty must both be defined in terms of fuzzy sets. This
definition is accomplished with membership functions. Tire cost will be defined as either
“LOW or “HIGH" according to the membership function shown in Figure A.l. Tire
warranty will be defined as either “LOW" or “HIGH" according to the membership

function shown in Figure A2,

Tira Cost Membership

Membershlp

o] 40 £0 100
Cost ($/Tiro)

Figure A.l: Tire cost membership functions
The linguistic descriptars “LOW™ and “HIGH” are actually fuzzy sets (e.g. “Tire

cost 15 LOW"™ would constitute a fuzzy set). Note that a particular value for cost or



warTanty may be both "LOW"* and “HIGH.” For example. a tire warranty of 57,500 would
be “LOW" with a membership of 0.75 and “BIGH™ with a membership of 0.25 (Figure

A2).

Tire Warranty Membershjp

o

= fo oo -
§ LOW
£ RIGH
[**]

=

0 50000 [:{s sT0]a} 100000

Tire Warranty (miles)

Figure A.2: Tire warranty membesship functions

A2 INFERENCING

The inputs of tire cost and tire warranty must be mapped onto an output variable.
the “Tire desirability index." Before proceeding, membership functions must be defined
for this output variable. For this example, “LOW.” “MEDIUM,” and “HIGH” will suffice

(Figure A 3).

Tire Desirabllity Index Membership

Ve

- ‘/. - e ————— e —
z - L7 Low
g Sl 7 leoeonn MEDIUM
§ PN T hieH
- . .

P

/. ~
0 2 4 6 B 10

Desirabllity Index

Figure A.3. Tire desirability index membership functions.
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A matrix of rules relating the inputs to the outputs must be established. These rules
will describe the linguistic relationship between the input variables and the output

variables. For this example, four rules will be used and they are enumerated in Table A.1.

Table A.1. Rules relating tire cost and warranty to tire desirability.

Rule t. If tire cost is “LOW” and tire warranty is “LOW" then
tire desirability is “MEDIUM.”

Rule 2. If tire cost is “HIGH™ and tire warranty is “LOW?” then
tire desirability is “LOW.”

Rule 3. If tire cost is “LOW" and tire warranty is “HIGH” then
tire desirability is “HIGH."

Rule 4. If tire cost is “HIGH” and tire warranty is “HIGH” then
tire desirability is “MEDIUM”

Now consyder a specific tire costing $43.00 with a warranty of 55,000 miles. For
tire cost, this tire is “LOW™ with a membership of 0.85 and “HIGH™ with 2 membership of
0.15. For tire warranty, this tire is “LOW” with a membership of 0.8333 and “HIGH" with
a membership of 0.1667. The consequence of non-zero membership in all input fuzzy sets
is that all of the rules in Table A.l will apply to some degree. To determine to what degree
each rule applies, a decision must be made regarding the particular implication rule to be
used. For this example, Mamdani’s Rule (Mamdani 1976) will be used. This rule, also
known as correlation-minimum implication (Ross 1995) is very common and easy to

implement. In general, for a fuzzy relation R defined on the Cartesian product space X x
Y. Mamdani’s rule can be expressed as 4, (x,) = min(yA (), 1y, (y)) where u,(x)

represents the membership of x in the domain X in the fuzzy set A, u, (y) represents the
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membership of y in the domain Y in the fuzzy set B, and yk(x,y) represents the
membership of the mapping of x.y to the fuzzy set R.

In this example. consider Rule 2. (Tabte A.1): [f tire cost is “HIGH" and tire
warranty is “LOW?" then tire desirability is “LOW.” For our specific tire, the membership
value of an output fuzzy set resulting from this rule is determined as follows: with tire cost
“HIGH" membership of 0.15 and tire warranty “LOW” membership of 0.1667, the
resulting tire desirability “LOW” membership would be the minimum of 0.15 and 0.1667,
which is 0.15. A membership value in an output fuzzy set is determined for each of the
four rules in this manner. These values are shown in Table A 2.

Table A.2. Membership values resulting for example tire (Cost = $43, Warranty = 55,000)
using Mamdani implication.

Warranty is LOW Warranty 1s HIGH

1,0 (55,000) = 0.8333 Ly (55,000) = 0.1667
Cost is LOW Desirability is MEDIUM Desirability is HIGH
Hy o (43) = 085 Hygonng (43,55,000) = 08333 u,,.,,(43,55,000) = 01667
Cost is HIGH Desirability is LOW Desirability is MEDIUM
Mg (43) = 015 1y (43,55,000) = 015 Hupmng (43,55,000) = 015

Note that there are two membership values expressed for “MEDIUM™ desirability. To
determine the membership in the “Desirability is MEDIUM” fuzzy set, determine the
logical union of the fuzzy sets defined by the two membership values. The resulting
membership would be the maximum of these two values. Consequently, the degree of

membership in all three output fuzzy sets is as follows: “Desirability 1s LOW”™
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membership = 0.15, “Desirability is MEDIUM” membership = 0.8333, and *‘Desirability is
HIGH membership is 0.1667.

A commonly used alternative to Marndani’s rule, or maximum of minimums (max-
min) inferencing is maximum of products (max-dot) inferencing. With this inference
method, the composition of two membership functions is not determined by the logical

intersection of the two functions, but by determining the product of the two functions. For
this example, for “Warranty is HIGH" and “Cost is LOW,” 2,5, (55,000) = 0.1667 and

1, (43) = 0.85, the resulting membership in the “Desirabitity is High” fuzzy set would

be the product of the “Warranty is High™ and “Cost 1s LOW” membership functions, i.e..

L (43,55,000) = 42, (43) - 11,/ (55,000) = 0.85-0.1667 = 0.1417 .

As in the case with max-min inferencing, multiple instances of a rulebase
consequent, such as the two cases of “Desirability is Medium™ in the example above, are
resolved by determining the logical union {(maximum membership) of the multipie
memberships within the fuzzy set. Max-dot inferencing is the method used in TILShell, the
commercial fuzzy logte software used to develop the model proposed in this thesis (Togai
[nfralogic, Inc. 1995). Many other methods of implication and inference exist in addition

to max-min and max-dot methods, but these methods are the most common (Ross 1995).
A3 DEFUZZIFICATION

Now that the degrees of membership for the output fuzzy sets have been
determined, a method must be chosen to convert the fuzzy output to crisp output. Multiple
methods can be used, but for this example the centroid method (Ross 1995) will be the

method of choice. The centroid method of defuzzification is also the method used in
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TiLShell (Togai Infralogic, Inc. 1995). Determination of a crisp value is accomplished by
determining the Jogical union of the output membership functions and calculating the
centroid of the area under the resultant unified membership function. The centroid is the
defuzzified crisp output value,

In this example. the union of the output membership functions is presented in
Figure A.4. The logical union is determined by the maximum membership value for all
fuzzy sets for the domain of output. Note that the individual membership functions which
can be inferred by comparison with Figure A.3 are bounded by the maximum values

determined in the inferencing step.

Tire Desirabllity Output Membership:
Union of Output Fuzzy Sets

0.8
0.6
0.4
0.2

Membership

0 2 4 B 8 10
Deslirability Index

Figure A4: Logical union of tire desirability membership functions.

[n this example, the centroid of the area bounded by the function in Figure A.4

(output value) occurs at a Desirability Index of 4.9. Thus crisp inputs have been converted

to crisp outputs.
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Table B.]

APPENDIX B

EXPERIMENTAL SUBJECTS

Experimental subject information: experiments used for model development.

Exp. No.

Date

Dog

Weight

Notes

02 May 1996

08 June 1996

15 June 1996 (AM)

15 June 1996 (PM)

16 June 1996

Il August 1996

11 September 1996

13 December 1996

#2785
i‘SIeepy5)
Heeler mix

#2644

“Stinky"”
Brittany-Heeler
mix

#2807
“Squirmy”
Lab mix

#1090
“Timid”
Rat Terrier

#2806
“Squealy”
Beagle mix

#2858
“Stubbomn”
Border Collie
mix

#2807(b)
“Different”
Generic mix

“Elmo”
German
Shepherd

144 kg

11.8 kg

12.7kg

113 kg

9.1 kg

22.1 kg

16.8 kg

297 kg

Experiments | - 6 are the
source of data for mode]
development,

Pulse experiment (bolus
equivalent to induction
dose administered at t = |
hr)

Surgical experiment
(neutering)
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Table B.2.

Experimental subject information: experiments used for model verification.

Exp. No. | Date Dog Weight | Notes
7 07 January 1997 #2910 14.5 kg | Experiments 7 - 12 are the
(AM) “Squat” verification experiments.
Beagle
8 07 lanuary 1997 #2912 134 kg
(PM) “Stenchy”
Beagle
9 08 January 1997 #2916 155 kg
(AM) “Crusty”
Beagle
10 08 January 1997 #2917 13.8kg | Possible sibling of
(PM) “Sniffy” “Speedy”
Beagle
I 09 January 1997 #2909 11.4 kg
(AM) “Squeaky™
Beagle
12 09 January 1997 #2911 13.8 kg | Possible sibling of
(PM) “Speedy” “Sniffy”
Beagle
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APPENDIX C

SAMPLE CLINICAL ASSESSMENT WORKSHEET
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Pilot Project: Clinical Assessment of Anesthetic Depth
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APPENDIX D

SUMMARY OF SERUM PROPOFOL DATA

Table D.1: Serum propofol data. Concentrations expressed in pg / ml.

Dog#
Time (min)| #2806 #1090 #2807 #2644 #2785 #2858 | MEAN  SD
Pre-admin. | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15 14.1 15.78 14 1494 1889 27.04 | 1746  5.02
30 2124 2033 1802 1605 2444 3470 | 2246 6.64
45 1988 2243 1925 2607 23.16 3895 | 249 728
60 2409 2728 2402 2807 21.78 4013 | 27.56  6.58
75 1541 1157 1539 17.5 16.88 2685 | 1734  5.06
90 1443 1238 1584 1509 1411 2475 | 16.10  4.39
105 1463 1229 11.89 929 1215 2344 | 1395 495
120 1406 11.75 1415 1281 1409 2352 | 15.06 42§
122 9.46 7.6 10.9) 9.09 1368 1484 | 1093 23]
124 8.06 6.56 9.12 8.31 12,12 17019 | 1023 3.88
126 6.41 5.03 1.77 7.37 9.58 1395 | 835 3.13
128 3.14 6.39 1076  7.58 8.63 1175 | 8.04 3.0
130 5.4 7.59 6.19 7.67 1329 | 8.03 3.09
132 4.49 3.51 8.67 .04 6.43 2.84
134 3.63 8.22 9.48 711 3.08
136 4.52 9.47 5.01 6.33 2.73
138 4.63 4.78 4.7 0.11
140 4.62 6.12 5.37 |.06
142 495 4.95
144 5.17 517
146 3.64 3.64
148 2.68 2.68
150 4.55 2.43 435 437 5.67 427 .17
152
166 42] 4.2]
180 1.42 2.4 3.16 2.36 3.2 2.51 0.73
182
166 3.12 3.12
210 0.45 1.7 225 1.73 3.08 1.84 0.96
212
226 2.81 2.81
240 0.08 1.46 1.82 0.47 1.51 1.07 0.75
242
256 233 2.33
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APPENDIX E

EXAMPLE EXPERIMENT PLOTS

These are the cxperimental data obtained from Experiment | (02 May 1996).
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APPENDIX £

FUZZY RULEBASE

Table F.I Rules used for fuzzy model in TILShell. Model output variable s AWARE

Rule

IF

AND

THEN

‘vl

ABETA is HIGH

ABETA is HIGH

ABETArate is POSITIVE

ABETArate is POSITIVE

ABETArate is POSITIVE

ABETArate is ZERO

EMG is HIGH

EMG is HIGH

EMG is LOW

EMGrate is POSITIVE

EMGrate is ZERO

RBETA is HIGH

RBETA is HIGH

TOTPOW is HIGH

ABETA is HIGH

ABETA is LOW

ABETA is LOW

ABETA is LOW

EMG is HIGH

TOTPOW is HIGH

ABETA is HIGH

ABETA 1s LOW

TOTPOW is HIGH

TOTPOW is HIGH

EMGrate 1s POSITIVE

TOTPOW is HIGH

EMGrate is POSITIVE

TOTPOW is HIGH

TOTPOW is HIGH

ABETA is HIGH

EMG is HIGH

RBETA is HIGH

SR is HIGH

ABETArate is NEGATIVE

ABETArate is ZERO

EMG is LOW

AWARE is HIGH

AWARE is HIGH

AWARE is HIGH

AWARE is HIGR

AWARE is HIGH

AWARE is HIGH

AWARE i1s HIGH

AWARE is HIGH

AWARE 1s HIGH

AWARE is HIGH

AWARE is HIGH

AWARE is HIGH

AWARE is HIGH

AWARE is HIGH

AWARE is LOW

AWARE is LOW

AWARE is LOW

AWARE is LOW
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Table F.1 (Cont'd). Rules used for fuzzy model. Model output variable is AWARE

Rule | [F AND THEN

19 ABETA is LOW SR is HIGH AWARE is LOW
20 ABETA is LOW TOTPOW is LOW AWARE is LOW
21 ABETArate is NEGATIVE | SR s HIGH AWARE is LOW
a2 ABETArate s POSITIVE | SR is HIGH AWARE is LOW
23 ABETArate 1s ZERO SR is HIGH AWARE is LOW
2y EMG 35 HIGH SR is HIGH AWARE is LOW
25 EMG is LOW EMGrate is NEGATIVE AWARE is LOW
26 EMG is LOW EMGrate is ZERO AWARE is LOW
27 EMG is LOW SR is HIGH AWARE is LOW
28 EMG is LOW TOTPOW is LOW AWARE is LOW
29 EMGrate 1s NEGATIVE SR is HIGH AWARE 1s LOW
50 EMGrate 1s POSITIVE SR is HIGH AWARE ;s LOW
31 EMGrate 1s ZERO SR 1s HIGH AWARE js LOW
32 RBETA 1s LOW ABETA is LOW AWARE 15 LOW
33 RBETA 1s LOW EMG is LOW AWARE s LOW
34 SR s HIGH RBETA is HIGH AWARE 1s LOW
35 SR is HIGH RBETA is LOW AWARE is LOW
36 TOTPOW is HIGH SR is HIGH AWARE is LOW
37 TOTPOW is LOW RBETA is LOW AWARE is LOW
38 TOTPOW is LOW SR 1s HIGH AWARE is LOW
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APPENDIX G

TILSHELL PROJECT INFORMATION

In this appendix. the code for the TILShel} project is provided. The TILShell
project filename is “MODEL.FPL" and requires an input file “INPUT.TXT." The
pacameters used for scaling the variables ABETA, EMGLO, and TOTPOW are manually
entered in the code by the user, The locations of these entries within the code are identified
by comments. The variable names of the scaling parameters are identified according to
Table G.1. Values for scaling parameters may be found in both Table 3.4 and in comments
within the TILShell project code that follows.

Table G.i: Variable names of scaling parameters for ABETA. EMGLO, and TOTPOW as
found in TILShell file "MODEL FPL.”

[nput Variable

Upper scaling parameter

Lower scaling parameter

ABETA gl pl
EMGLO g2 p2
TOTPOW q3 p3

The input filename must be manually entered in the code by the user. The code as wrinten

calls the file “INPUT.TXT." The variables required for input are listed in Table G.2 as

well as the order of input. The input data file must be in ASCII format and may be space

or tab delimited. Any input file name other than “INPUT.TXT” must be entered directly

into the project code. The location of this entry within the code is identified by comment.

A sample of the proper input file format is provided in Table G.3. A listing of input files

containing experimental data is provided in Table G.4. The project code listing follow

thereafter.




Table G.2: Variables required in input file.

Inpul Order Description

Variable (Column #)

ABETA ] Absolute beta power at current sample time

oldABETA 2 Absolute beta power 5 minutes prior to current sample time

TOTPOW 3 Absolute total power at current sample time

RBETA 4 Relative beta power a1 current sample time

EMGLO 5 Absolute EMG low band power at current sample time

ofdEMG 6 Absolute EMG low band power S minutes prior to current
sample time.

SR 7 Suppression ratio

Table G.3. Example input file format. From left to right, columns contain values for the
variables ABETA, oldABETA, TOTPOW, RBETA. EMGLO, oldEMG, SR. Input values
may be either space or tab delimited. These values excerpted from data taken during
Experiment 1, 02 May 1996.

£3.951313 54.059605 55.761661 66.906656 54.72%9064 56.018039
£3.924128 54.071529 55.73134 66.79769 54.704548 56.004449
£3.894915 54.083388 55.700124 66.677256 54.680287 55.889927
33.863527 54.095017 55.667963 66.544676 54.656117 55.974863
53.830044 54.10644 55.634B72 66.400206 54.632289 55.959811
£3.794668 54.117724 55.60093 66.244974 54.608855 55.944762
53.757403 54.128782 55.566122 66.078818B 54.586062 55.930776
53.71833%9 54.13957 55.530453 65.901918 54.564309 55.919071
53.677462 54.15002 55.493934 65.714382 54.543389 55.908383
53.634655 54.160006 55.456537 65.515826 54.522984 55.8969

53.59004 54.169495 55.418306 65.306866 54.503215 55.8840714
53.54373 54.17845 55,379288 65.088192 54.48405 55.86849
£3.495535 54.186775 55.339391 64.85857)2 54.465659 55.850756
£3.445236 54.194387 55.298489 64.6164 54.448432 55.8325%82
53.392709 54,201204 55.25653 64.360966 54.4323%1 55.813068
$3.337723 54.207124 55.213407 64.09087 54.417614 55.781707
£3.280344 54.212257 55.169135 63.B06365 54.404259 55.7639084
53.220765 54.216797 55.123793 63.508548 54.392379 55.745237

QOO0 O0OO0OO0COOOCODOCOCOOOO
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Table G.4: Input files and corresponding initial times.

Experiment Input Time at input file start | Parent Spreadsheet File
Filename

I ex0l.mxt 10:40:04 050296.xls

(050296) 342

) ex02.0a 9:44:54 060896.xls

(060896) 478

3 ex03.txt 9:44:38 061596A .x[s

(061596A) 552

4 ex04.txt 13:22:53 061596P.xls

(061596P) 299

5 ex05.ax¢ 9:22:18 061696 .xls

{061696) 453

6 ex06.rxt 9:49:39 081196.xls

(081196) 525

7 ex07.txt 9:34:48 010797A xls

(010797A) 306

8 ex08.txt 14:17: 11 010797P.xis

(010797P) 307

9 ex09.txt 9:13:49 0108%7A xls

(010897A) 305

10 ex10.txt 14:03:15 010897P.xls

(010897P) 335

Il ex|1.oxt 8:58:35 010997A .xis

(010997A) 315

12 ex|2.txt 13:09:39 010997P.xls

(010997P) 287

13 exi3.txt 9:33:47 091196.xls

(091196) 451

14 ex 4.t 9:40:20 121396.xls

(121396) 300
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TILSHELL PROJECT CODE

PROJECT ANESTRESI~
OPTIONS
ICONCOLOR=12632256
MODE="NORM~L"
CHANGEID=3958014928
VIEWORIGIN:=3,95,0.65

END
VAR AWARE
OPTIONS
ICONPCS=10,2.5
GRIDSHOW="QOFF"
GRIDSW~P="0OFF"
GRIDSFACE=0.4,0.2
NUMBER=3
SHAPE="TRAPAR20QID"
TOUCHED="ON"
END
TYPE float
MIN -2
MAX 2
MEMBER LOW
OPTIONS
TCONCCLOR=65407
END
POINTZ -1.25,0 -1,1 1,1 1.25,0
END
MEMBER HIGH
OPTIONS
JCONCOLOR=255
END
POINTS 1,0 1.25,1 2,1
END
END
VAR EMGLO
OPTIONS
ICONPOS=5.5,0.5
GRIDSHOW="OFF"
GRIDSNAP="OFF"
GRIDSPACE=0.8,0.2
NUMBER=2
SHAPE="TRAPAZOID"
TOUCHED="0ON"
END
TYPE float
MIN O
MAX 8
MEMBER LOW
.OPTIONS
ICONCOLOR=16711680
END

POINTS 0,1 1,1 2,0
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END

MEMBER HIGH

OPTICNMN_
TCONCOLOR=255
END
POINTS 1,0 2,1 8,1
END

END

VAR EMGrarte
OPTIONS

ICONPC ™ =3.5,0.5
GRIDSHOA="0OFf™"
GRIDSNAP="OFF"
GRIDSP~ACE=0.0016,0.2
NUMBER=3
SHAPE="TRAPAZOID"
TOUCHED2="CON"

END
TYPE floart
MIN -C.0C€
MAX (0.008
MEMBER N
OPTIONS
ICCNCOLOR=16711680
END
POINTS -0.0808.1 -0.001,1 0,0
END
MEMBER Z
OPTIONS
ICONCOLOR=65407
END
POINTS -0.001,0 0,1 0.001,0
END
MEMBER P
OPTIONS
TCONCOLOR=255
END
POINTS 0,0 0.001,1 0.008,1
END
END
VAR ABETA
OPTIONS
ICONPOS=2,0.5
GRIDSHOW="OFF"
GRIDSNAP="OFF"
GRIDSPACE=0.8,0.2
NUMBER=2
SHAPE="TRAPAZOID"
TOUCHED="0ON"
END
TYPE float
MIN O
MAX B
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MEMBER LOU

OoPTICNC
1CONCOLOR=16711680

END

POINTS 7,1} 1,1 2.0

END

MEMBER HIGh

OPTIONS
I7ZHNCOLOR=255

END

POINTS 1,0 2,1 8,1

END

VAR ABETArate

OPTIONS
ICONPCS5=0.5,2
GRIDSRCW="0OFF"
GRIDSNAP="OFFE"
GRIDSFACE=0.0016,0.2
NUMBZAR=3
SHAPE="TRAPAZOID"
MINCL:ZP=0
MAXCLEMP=0
TOUCHEL="ON"

END

TYPE floac

MIN -0.00¢

MAX 0.008

MEMBER N
OPTICNS
ITTNCOLOR=16711680
END
pPOINTS -0.008,1 -0.001,1 0,0
END

MEMBER 2
OPTIONS
:CONCOLOR=65407
END
POINTS -0.001,0 0,1 0.001,0
END

MEMBER P
OPTIONS
ICONCOLOR=255
END
POINTS 0,0 3.001,1 0.008,1
END
END

VAR TOTPOW
OPTIONS
ICONPOS=0.5,3.5
GRIDSHOW="OFr"
GRIDSNAP="0OFF"
GRIDSPACE=0.8,0.2
NUMBER=2
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SHRAPE="TRAPAZOID"
TOUCRED="0ON"

END

TYPE floax

HMIN O

MAX 8

MEMBER LCw
OPTICONE
TCONCOLOR=16711680
END
POINTS 0,1 1,1 2,90
END

MEMBER HIGH
OPTIONZ
ICONCOLOR=255
END
POINTS 1,0 2,1 8,1
END
END

VAR SR

CPTIONS
ICONPDS=7.5,4.5
GRIDSROW="0FF"
GRIDSNAP="0OFr"
GRIDSP~CE=10,0.2
NUMBER=3
TOUCHED="ON"

ENOD

TYPE float

MIN O

MAX 100

MZMBER LOW
OPTIONS
ICINCOLOR=16711680
END
POINTS 0,1 1,¢C
END

MEMBER RHIGh

OPTIONS
TCONCOLOR=65407
END
POINTS 0,0 1,1 100,1
END
END
VAR RBETA
OPTIONS

ICONPOS=7,0.5
GRIDSRHOW="OQOFE"
GRIDSNAP="OFF"
GRIDSPACE=10,0.2
NUMBER=2
SHAPE="TRAPRZOID"
TOUCHED="0ON"

END
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TYPE floac
MIN O
MAX 100

MEMBER LCW
OPTION:

ITONCOLOR=16711680

END
POINTS 0,1 3C,0
END

MEMBER HIGH
OPTIOMG
ICCNCOLOR=255
END

POINTS 0,0 30,1 100,1

END
END

SIMULATE Simulatel
OPTIONS

WINPOS=258,83,516,166

SAMPLETIME=300
END

MODEL Modell

§CODE
'+ Constants */

/--v-t--attttvt--w--&itit‘itl&t--it-wi/

/- Upper scaling parameters
/* ABETA: ql
/* EMGLO: g2
. ° TOTPOW: a3

;-

AN PR NEEENE RN AR R E AT ENEEEE X E IR NN Y

gi=65;
J<=64.3;
33=65:
Initvial conditions </

rimestamp = 0;
timing = 0;
#END_CODE

iCODE

/.-'t‘b'-it&*kiitﬁ--.v‘&t«tiatiii*vw#w

/* Lower scaling parameters
/% ABETA: pl
/- EMGLO: p2
/= TOTPOW: p3

/* These parameters are presented in

/* tabular form by experiment.

s
‘

;-

/

/-~ Experiment

/ 1 2 3 4 S
s

/* pl 38 44 52 44 47
/v p2 30 21 40 32 31

40
30
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>/
v/
*/
*/
*/
v/

*/
v/
>/
v/
>/
v/
-/
-/
-/
“/

*/
>/
v/



/° p3 46 53 62 57 56 48 v/
/" */
/-’ Srpeviment v/
/* 7 3 8 10 11 12 </
/ */
/* pl 45 46 1S 45 4S5 47 “/
/* pz 32 32 30 30 31 31 ./
’* p3 52 ST 34 56 56 57 >/
VA */
/" Zuperiment =/
’ 13 14 s
/* -/
/+ pl 44 45 -/
J0p2 32 28 v/
/7 p3 54 55 </
/" ~/
/ ....... * bbb wd s s~ -y w *'I.'*'*""/
=45

©2=28

£ 3=55

Read input dat: from input data file */
READ "input.txt", AZETA, 01dABETA, TOTPOW, RBETA, EMGLO, 01dEMG, SR;
/* Rescale ABETA and calculate ABETArate */
ABETA

<1dABETA
ABETArate

4 * {ABETA - pl) / (gl - pl} + 1:
4 * (o dABETA - pl) / (gl - pl} + 1.
(ABETA - olaRBETA) /300;

I

Rescale EMGLO ard caliculate EMGrate «/

IMZLO 4 * (ZMGLO - p2) / (g2 - p2) + 1
~LdEMG 4 * {(01dEMG - p2)y / (g2 - p2)y + 1;
“MGracte = {(EMGLO-0ldEMG) /300;

Rescale TOTPOW */

TOTPOW = 4 s {TOTPOW - p3) / (g3 = p3) + X;
IND CODE

B £END

END

u

RULEBASE Rulekrasel
OPTIONS
ICONPOS=7,2
END

RULE Rule0!
IF (EMGLO IS LOW) AND (EMGrate 1S N) THEN
AWARE = LOW
END

RULE Rule0:z
IF (EMGLO IS LOW) AND (EMGrate IS Z) THEN
AWARE = LOW
END
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RULE Rulei:
IT (EIGLO 1S LOW) AND (EMGrate IS P) THEN
~wsARE = KRIGH
END

RULE Rule03
IF (RECTRrate IS N) AND (ABETA IS LOW) THEN
AWARE = LOW
END

RULE Rule. ©
IF (RBETArate 1S Z) AND (ABETA IS LOW) THEN
AVW~RE = LOW
END

ROLE Ruleu:
IF (EMGLO IS LOW) AND (SR IS HIGH) THEN
AWARE = LOW
END

RULE Rulec?
IF (EMGLO IS HIGH) AND (SR IS HIGH) THEN
ARWARE = LOuW
END

RULE RuleGx
IF (EMGrate IS N) AND (SR IS HIGH) THEN
AWARE = LOW
END

RULE RuleU3
IF (EMGrate IS Z) AND (SR IS RIGH) THEN
AWRRE = LOW
END

RULE Rulelt¢
IF (EMGrate IS P) AND (SR IS HIGH) THEN
AWARE = LOW
END

RULE Ruleli
IF (ABETA IS LOW) AND (SR IS HIGH) THEN
AWARE = LOW
END

RULE RulelZ
IF (ABETA IS HIGH) AND (SR IS HIGH) THEN
AWARE = LOW
END

RULE Rulel3
IF (TOTPOW IS LOW) AND (SR IS HIGH) THEN
AWARE = LOW
END

RULE Ruleld
IF (TOTPOW IS HIGH) AND (SR IS HIGH) THEN
AWRRE = LOW
END
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RULE Rulel®
IF (ABETArate 1S N) AND (SR 1S KHIGH) THEN
AWARE = LOW
END

RULE Rulelsn
If (BREZTArate IS Z) AND (SR IS HIGH) THEN
ARWIRE = LOW
END

ROLE Rulel?
If (ABEETArace IS P) AND (SR IS HIGR) THEN
AWARE = LOW
END

RULE Ruleil-
IF (TOTPOW 1S HIGH) AND (RBETA IS HIGH) THEN
AWARE = HIGH
END

RULE Rulei -
IF (TOTPOW IS LOW) AND (RBETA 1S LOW) THEN
AWRRE = LOW
END

RULE Rule2.
IF (5K IS HIGH) AND (RBETA IS LOW) THEN
AWARE = LOW
END

RULE Rule:z:
IF (SR IS HIGR) AND (RBETA IS HIGH) THEN
AWARE = LOW
END

RULE Rulel2
IF {(ABETArate IS P} AND (ABETA IS LOW) THEN
AWARE = HIGH
END

RULE RuieZ3
IF (ABETArate IS P) AND (ABETA IS HIGH) THEN
AWARE = HIGH
END

RULE Rule24
I (ABETA IS LOW) AND (TOTPOW IS LOW) THEN
AWARE = LOW
END

RULE Rule2f
IF (ABETA 1S HIGH) AND (TOTPOW IS HIGH) THEN
AWARE = HIGH
END

RULE Rule26
IF (EMGLO IS LOW) AND (TOTPOW IS LOW) THEN
AWARE = LOW
END
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END

RULE Rulez?
I® (EMGLO IS HIGH) AND (TOTPOW 1S HIGR) THEN
AWARE = HIGH
END

RULE RuleZ8
IF (EMGrate IS P) AND (TOTPOW 1S HIGH) THEN
AWARE = HIGH
END

RULE Rule2%>
Ir (2i45rate IS Z) AND (TOTPOW IS HIGH) THEN
AWARE = HIGH
END

RUOLE Rule:
IF (ASETArate IS 2) AND (TOTPOW IS HIGH) THEN
AWARE = HIGH
END

RULE Rule:Z
I¥ {ABETArate IS5 P} AND (TOTPOW IS HIGH) THEN
AYARE = HIGH
END

RULE Rule3Z
1IF (EMGLO 1S HIGH) AND (EMGrate IS P) THEN
ANARE = HIGH
END

RULE Rule3:Z
IF (AS=TA IS LOW) AND (EMGLO IS LOW) THEN
AWARE = LOW
END

RULE Ruleli
IF (AREZTA IS HIGH) AND (EMGLO IS HIGHK) THREN
AVARE = HIGH
END

RULE Rulels
IF (RBCTA IS LOW) AND (EMGLO IS LOW) THEN
AWARE = LOW

END
RULE Rulelg
IF (RBETA IS HIGH) AND (EMGLO IS HIGH) THEN
WARE = HIGH
END
RULE Rule3’

IFE (RBETA IS LOW) AND (ABETA IS LOW) THEN
AWDARE = LOW
END

RULE Rule38
IF (RBETA IS HIGH) AND (ABETA 1S HIGH) THEN
AWARE = HIGH
END
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DEBUG Debugl
TXEPL AWARE
WATCH AWARE

CHART Char<l
OPTIONS
TITLE="Inputs"
YAXIS=EMGrate
YMINVAL=-0.008
Y¥AXVAL=0.008
YCOLOR=255
YA IS=ABETArate
YMINVAL=-0.008
YMAXVAL=0.008
YCCOLOR=65280
YANIS=AWARE
YIHINVAL=-2
YHAXVAL=?
YCOLOR=16711835
YAXIS=TOTPOW
YMINVAL=0
YMIXVAL=8
YCZLCR=0
YLNIS=RBETA
YMINVAL=0
YMAXVAL=8
¥~ LOR=10485760
YA TS=EMGLO
YMINVAL=0
YMAXVAL=8
YCOLOR=33023
DATAPOINTS=190C
END
END
END

CONNECT
FROM EMGLO
TO Rulebasel
END

CONNECT
FROM EMGrs*e
TO Rulebasel
END

CONNECT

FROM SR

TO Rulebasel
END

CONNECT
FROM Rulebasel
TO AWARE

END

CONNECT

FROM EMGrarte
TO Rulebasel
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END

CClIINECT
FROM ABETE
TO Rulebas-1
END

CCHNECT
FROM TOTPCw
TO Rulebas=<1
END

CONNECT
FROM ABETRrace
TO Rulebas=
END

CONNECT
FROM RBETA
TO Rulebas=l
END
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