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I. 

INTRODUCTION 

Black shales from the Pennsylvanian of the Midcontinent have been studied by 

numerous geologists. Dark shales also are found in Lower Permian strata (including the 

Council Grove Group) of the same region. Although they have not been studied as 

extensively as the Pennsylvanian black shales, they appear to have many similarities 

with their older counterparts. 

However, one notable difference is the absence of non-skeletal phosphate in 

Permian shales. Phosphate nodules and laminae in the Pennsylvanian black shales 

suggest that nutrient-rich water upwelled onto the Midcontinent from deep basins. The 

absence of this phosphate in the Lower Permian black shales indicates that either 

different factors affected their formation or that the origin was different altogether. 

Several dark gray to black shales are present in the Council Grove Group, but 

only the Bennett Shale Member of the Red Eagle Limestone (Figure 20) is given a formal 

name. The others are contained within members of the formations in this group. Non

skeletal phosphate is absent from these shales. Some of the shales are laterally

extensive and others are not. 

Purpose 

The purpose of this study was to characterize the paleoenvironment of the 

Lower ·Permian dark gray to black shales described, notably those from the Council 

Grove Group. Different types of black shale were identified, based on their microfauna! 

content and stratigraphic extent. Because megafossils are sparse in dark gray to black 
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shales, study of microfauna should contribute significantly to any paleoecological 

interpretation. 

Methodology 

This study was accomplished by reviewing the literature, measuring and 

collecting selected samples of dark gray to black shales, disaggregating the shales using 

standard laboratory methods, picking microfossils from each collected sample, identifying 

genera of microfossils, interpreting the diversity and abundance of these microfossils and 

comparing paleoecological interpretations with previous interpretations, notably those of 

Pennsylvanian black shales. 

An extensive review of the literature is necessary for understanding current 

views on formation of black shale in the Midcontinent region. This study of mostly Lower 

Permian rock-stratigraphic units draws upon previous work, much of which is concerned 

with Upper Pennsylvanian units of the same region. 

In the field, the selected shale units were measured and selected intervals were 

sampled. In the laboratory, each sample was soaked in kerosene, then in hot water. In a 

few cases the samples soaked in bleach for several weeks or months in order to 

weaken cement. Formic acid was not used in the disaggregation process because it 

would have destroyed calcareous fossils. The samples were sieved through 35-mesh 

and 80-mesh screens. 

Residue from the 35-mesh screen was scanned for its general megafossil 

content. Residue of the 80-mesh screen was examined with a binocular microscope; 

microfossils were extracted. 

Although the standard quantity of 1 000 grams of shale was processed, only half 

of the residue from most of the shale intervals was actually sampled for microfossils. The 

data from intervals where more than half of the residue was picked were adjusted to 

equivalent counts of 500 grams. In this way, the data contain better ratios of microfossils 
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between intervals of one shale and between shales. This method, though 

unconventional, was deemed necessary due to the large amount of residue from most of 

the samples. Raw and adjusted data are included in this report. 

Darwin R. Boardman II assisted considerably in identifying most of the 

conodonts, foraminifers and ostracodes and many megafossils to generic level. Some 

genera were double-checked against sources that contained scanning electron 

microscope (SEM) images (Melnyk and Maddocks, 1988b; Boardman et al., 1995; 

Hoare, 1961; Moore, 1961 ). 

The final counts, especially those of conodont platform elements, foraminiferan 

tests and ostracode carapaces, were used in the paleoenvironmental interpretations of 

data compiled in this study. Recognition of different types of black shale was based on 

microfauna! assemblages and stratigraphy. 

Note on terminology: Black vs. dark gray 

Dark gray or black shale is commonly interpreted as indication of low oxygen and 

toxic conditions in the depositional environment. Black color may be an indication of high 

organic carbon content or pyrite content or both (Twenhofel, 1939). Generally, a lighter 

gray shale is believed to have been deposited where more oxygen was present. The 

average black shale contains about 3% organic carbon (Myrow, 1990; Vine and 

Tourtelot, 1970). 

The Pennsylvanian "black" shales are not completely black; indeed, a lighter 

facies may be present above and below the darkest part of the unit. Nevertheless, 

these units are often referred to as "black shales" throughout the literature. 

The sampled intervals of the shales in this study range in color from grayish 

black to medium gray (range N2 toNS according to Munsell® color charts). Although to 

refer to these shales as "dark gray to black shales" is fairly accurate, it is cumbersome 

and unnecessary to do so continually when an understanding is implied by the one term 
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"black shales." Therefore, the dark gray to black shales referenced or analyzed in this 

study will be referred to as "black shales," regardless of how black they truly are . 



~. 

II. 

GEOLOGIC SETTING 

The Late Paleozoic was a time of general worldwide emergence of land surfaces 

from the oceans as the supercontinent Pangea was being assembled. Gondwana, 

which was moving northward and rotating clockwise, collided with Laurasia in the 

Carboniferous Period forming the Appalachian and Ouachita ranges (Scotese et al., 

1979, pp. 222-223). 

Regions of Gondwana passed through the south polar latitudes during the 

Carboniferous and Permian Periods. These polar regions were covered by ice sheets 

that peaked in areal expansion in the Late Pennsylvanian and Early Permian. This 

period of glaciation waned in the Permian as Gondwana, concurrently a part of Pangea, 

continued to move northward away from the polar latitudes (Veevers and Powell, 1987; 

Scotese et al., 1979; Crowell, 1978). 

During the Pennsylvanian and Early Permian the North American Midcontinent 

region was north of equatorial latitudes in the trade winds belt, between 20 degrees 

north latitude and the equator. Furthermore, the North American continent was oriented 

about 35 to 40 degrees in the clockwise direction from its current orientation with respect 

to the equator (Heckel, 1977) (Figure 1 ). 

The North American Midcontinent is divided by the Wichita Uplift in southern 

Oklahoma. The southern midcontinent incorporates northern Texas and southern 

Oklahoma, and the northern midcontinent includes western and northern Oklahoma, 

Kansas, western Missouri, southern Iowa, southern Nebraska, eastern Colorado and 

parts of the Texas Panhandle. The current study is about part of the northern 
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midcontinent region. Throughout this study the term "Midcontinent'' will refer to "northern 

midcontinent." Additionally, nomenclature of the northern midcontinent Pennsylvanian 

System (Desmoinesian, Missourian, Virgilian) will be used (Boardman et al., 1994b), as 

will modern nomenclature of the Permian System (Asselian and Sakmarian in lieu of the 

older term, Wolfcampian) (Figure 16). 

The Midcontinent was terrain mostly of low relief. An epicontinental sea often 

covered it before the late Early Permian. The tectonically active Anadarko Basin 

occupied western Oklahoma, the Texas Panhandle and parts of southwestern Kansas. 

This basin was connected to a western ocean through West Texas (Rascoe, 1962). 

Throughout the Late Pennsylvanian and Early Permian, the Midcontinent region 

was bounded along the south by the Wichita Uplift and the Appalachian-Ouachita 

foldbelt. The Ozark region was a positive structure at that time. The area north of 

Nebraska and Iowa might have been topographically too high to have been covered by 

marine deposits. Deposits that might have formed there were removed by post-Permian 

erosion. The ancestral Rockies bordered the region in the west (Rascoe and Adler, 1983; 

Rascoe, 1962; Heckel, 1980). 

The Nemaha Uplift is a topographically positive feature that extends from 

southeastern Nebraska to south-central Oklahoma. It is structurally higher in 

southeastern Nebraska and northeastern Kansas (Rascoe and Adler, 1983, p. 981 ). 

Rascoe and Adler (ibid., p. 984) postulated that the structure formed during the Atokan 

"as a product of the ... collision between the North American craton and the northern 

margin of the South American plate." 

Sea level in the Midcontinent fluctuated in response to waxing and waning of 

Gondwanan continental glaciation in the southern hemisphere (Wanless and Shepard, 

1936; James, 1970; Crowell, 1978; Veevers and Powell, 1987). These fluctuations, 

coupled with general subsidence of the entire area, produced numerous cyclic 

sequences of sedimentary rock . 



........ 

8 

Most subsidence was concentrated in the deeper Anadarko Basin. Rascoe 

{1962, p. 1369) divided the time of deposition of Midcontinent sedimentary units into two 

phases that reflect different rates of subsidence of the Anadarko Basin. These rates in 

turn reflect the overall degree of inundation of the Midcontinent shelf region. Rascoe 

noted that the Anadarko Basin subsided at a faster rate during the Morrowan, Atokan, 

Desmoinesian and Missourian Stages. The rate of subsidence decreased in the Virgilian 

Stage and the Early Permian and resulted in overall regression of the sea from the 

Midcontinent and an increased occurrence of non-marine units. Ultimately, the 

Midcontinent region and the Anadarko Basin were filled. 

The current study area incorporates eastern Kansas and southern Nebraska, 

which were on the eastern shelf of the Midcontinent (Figure 2). General subsidence and 

widely fluctuating sea levels during much of the Pennsylvanian resulted in cyclic 

sequences of non-marine shales, thin coals, marine shales, limestones and black shales. 

Many of these units, especially the limestones and black shales, are laterally-continuous 

over much of the Midcontinent (Rascoe, 1962; Heckel, 1977). 

Schenk's {1967) explanation and Heckel's {1977, 1980, 1983) refined model for 

deposition of Pennsylvanian cyclothems, specifically the black shales and associated 

limestone units, apply especially to sequences ranging from upper Desmoinesian to 

lower Virgilian (Figure 3). During transgressive events water was deep enough for a 

thermocline to develop. This prevented oxygenated surface water from reaching the 

bottom. Trade winds blew the surface water westward, and "cold, deep, oxygen-poor, 

phosphate-rich water from the western ocean was drawn in along the bottom through 

the basins of West Texas" to replace that surface water (Heckel, 1977, p. 1045). This 

circulation pattern at high sea-level stand allowed formation of black muds to occur. 

Phosphate-rich water aided the formation of non-skeletal phosphate nodules in the 

shales that formed from these muds (Schenk, 1967; Heckel, 1977) . 
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During regressions, limestones developed as the thermocline was dissipated in 

shallow water. Deltaic and shoreline deposits of clay, sand and peat developed 

between the Appalachians and Kansas. Shales dominate in the Kansas deposits due to 

the great distance from the source areas in the east and south. Coal beds and 

sandstones are less common than shales and limestones. Cyclothems continued to 

develop throughout the Virgilian and the Early Permian; however, the scarcity of black 

shales in these sequences may suggest that water was shallower than it was during 

the Early and Middle Pennsylvanian (Heckel, 1977; Boardman and Nestell, 1993; 

Rascoe and Adler, 1983) (Figure 4). 

Cyclic sedimentation continued in the Early Permian. Calcareous material and 

mud filled the Anadarko Basin while calcareous material, marine muds and non-marine 

deposits, including red muds and silt, were deposited on the Midcontinent shelf (Rascoe 

and Adler, 1983, p. 996). Heckel (1977, p. 1 064) said that "a greater abundance of non

marine deposits in Kansas ... suggests shallower water deposition for the more marine 

phases." 

Shallow water may explain why deep-water black shales are uncommon in the 

Lower Permian sequences. Apparently, the water was deep enough for thermoclines to 

develop at times. The Anadarko Basin was largely filled by this time, and deep basinal 

water from the west did not enter the Midcontinent along the bottom (Rascoe and Adler, 

1983) (Figures 5 and 6). Cool nutrient-rich water that supported deep-water conodont 

species ( Gondolel/a, Neogondolella and ldioprioniodus) apparently did not enter the 

Midcontinent in the Permian. These species are elsewhere in the world in coeval strata. 

The absence of non-skeletal phosphate nodules in the Permian black shales suggests 

that upwelling of deeper water from the west was no longer possible (Boardman et al., 

1995) . 
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Ill. 

PREVIOUS INVESTIGATIONS 

Introduction 

During the Pennsylvanian and Early Permian, the Midcontinental United States 

was covered periodically by epicontinental seas as made evident by marine deposits of 

limestones, shales and, in lesser volumes, sandstones. Among these deposits are dark 

gray to black shales, which lack megafossils or contain few of them. Some are fissile and 

laterally-extensive. These shales, which defy easy explanation of their origins, suggest 

that anoxic to near-anoxic bottom water, unaffected by carbonate deposition and high to 

average sedimentation rates, periodically composed parts of the epicontinental seas. 

Those who studied the stratigraphic occurrence and the paleontological aspects 

of these black shales arrived at different hypotheses concerning their origin. Before such 

a history on the interpretation of black shale formation can be attempted, it is first 

necessary to review the early studies of cyclical sedimentation, which began in Illinois. 

Early studies of cyclical sedimentation 

Early work on Pennsylvanian strata was concentrated predominantly on 

stratigraphy and was born of the economic advantages gained from a better 

understanding of numerous coal deposits in the Eastern Interior Basin of the United 

States. 

Udden (1912) examined rock sequences in Illinois. He was one of the first group 

to suggest an explanation for the cyclical pattern of Pennsylvanian rock units. His cycles 

consisted, from bottom to top, of coal, black shale, limestone, sandstone and shale 



...... 

(Figure 7). The upper shale was usually topped by an erosional surface, overlain by 

coal of the next sequence. Udden (1912, p. 49) attributed these cycles to "recurrent 

interruptions in a progressive submergence" in which sediment from a distant source 

rapidly filled the regioA to sea level, thereby allowing extensive vegetation to 

accumulate before inundation recurred. 

Weller (1930) synthesized data into a comprehensive paper on Pennsylvanian 

cyclical sedimentation. He believed that diastrophism was the predominant controlling 

factor over transgression and regression in the area. He suggested that the 

Pennsylvanian epicontinental seas were most likely connected to the open ocean basin 

through a southwest corridor. According to his theory, rapid subsidence resulted in 

transgression over coal swamps, followed by the deposition of calcareous material, 

sand and mud. Uplift resulted in a regression, which resulted in exposure and 

subsequent erosion of some of these units. 

Weller essentially dismissed Udden's suggestion of steady transgression 

interrupted by aggradation of sediments, and supported the idea of a steady sea level 

that only appeared to fluctuate as the region was subjected to cyclical subsidence and 

uplift. Weller believed that his explanation accounted for the extensive erosional 

surfaces he noted below the coal units. He defended his views in subsequent papers 

(notably, Weller, 1956). 

In the meantime, Moore (1931) studied Pennsylvanian cyclical sequences in the 

Midcontinent region. These units are generally more marine than those in the Illinois 

region, and the pattern of cyclicity is dominated by the alternation of shales and 

limestones. The units form sequences with distinctive divisions, from bottom to top, of 

non-marine shale, massive limestone, clayey shale, compact limestone, black shale, 

fine-grained limestone, sandy shale, another limestone and non-marine shale (Figure 8). 

This general sequence occurs throughout the Middle and Upper Pennsylvanian 

stratigraphic column of the Midcontinent. Although Moore (1931, p. 255) did not propose 
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Figure 7. A typical cycle of deposition in 
Pennsylvanian rocks of Illinois and Indiana 
(Eastern Interior Basin). This cycle 
represents one advance and retreat of the 
sea (after Udden, 1912) . 
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a mechanism to explain the cyclicity of the rock sequences, he did recognize that the 

"repetition of the described succession of beds is not fortuitous and meaningless." 

Wanless and Weller (1932) noted that the Pennsylvanian cycles of the Illinois 

region are extensive enough to be correlatable with cycles in the Midcontinent region. 

The term "cyclothem" was introduced by them to "designate a series of beds deposited 

during a single sedimentary cycle," which represents a single major advance and retreat 

of the sea (Wanless and Weller, 1932, p. 1003). They concluded that whatever 

controlled the cycles was extensive enough to have simultaneously affected both the 

Illinois area and the Midcontinent region. Weller (1958, p. 199) called the unique fissile 

black shale unit of each cyclothem the "key to the cyclical relations of Pennsylvanian 

strata in Illinois and Kansas." 

Moore (1936, 1949), interpreting more than one cyclothem in the repeating set of 

the more complex Midcontinent sequences, introduced the term "megacyclothem" to refer 

to the entire repeated sequence (Figure 8). A cyclothem represents one sea level 

advance and retreat, and Moore's (1936, p. 29) megacyclothem represents a "repeated 

succession of cyclothems of different character." 

Cyclical sedimentation was also observed in rocks of the Late Mississippian and 

the Early Permian. Jewett (1933) noted that Lower Permian units also display cyclical 

sedimentation. Among the rocks he studied are those of the Council Grove Group, 

Asselian and Sakmarian Stages, exposed in Riley County, Kansas. 

Wanless and Shepard (1936) addressed the several hypotheses that were put 

forth to explain the apparent sea level fluctuations of the Late Mississippian, the 

Pennsylvanian and the Early Permian. Their objections to the "alternate subsidence and 

uplift'' hypothesis included the lack of crustal wrinkling that would be present in the case 

of regional diastrophism. Wanless and Shepard favored rhythmic changes in sea level 

to large-scale rhythmic movements of the Earth. 

_....:;:...____,_~-- ~-~~~-
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They were also among the first workers to seriously suggest variation of climate, 

manifested by glaciations, as the controlling factor of Late Paleozoic cyclical 

sedimentation. They noted the approximate time-synchronous glacial deposits in the 

southern hemisphere and cyclic deposits in North America and elsewhere. 

Meanwhile, differences in Lower Permian cyclothems and Pennsylvanian 

cyclothems were documented by Elias (1937, p. 405). These differences include 

(1) still greater persistency and uniformity of ... limestones and shales, (2) 
the nearly total disappearance of sands and conglomerates, (3) the 
disappearance of coals (except a few thin, locally developed beds), (4) 
the prominent development of red and green shales, and (5) the 
introduction of some gypsum and salt 

in the Permian units. The fauna and general character of the Early Permian epicontinental 

seas also differed from those of the Pennsylvanian seas. Faunal diversity decreased, 

indicating a "general decrease in extension or gradual shallowing of the last marine 

invasions" (Elias, 1937, p. 408). 

Weller also commented upon these differences and noted that 

some of the Mississippian and Permian cycles that have been 
recognized differ more or less notably from the ordinary Pennsylvanian 
cyclothems. Good reasons, however, are believed to exist for concluding 
that these are all related in their origin and that they differ mainly because 
they represent somewhat different environments. Any adequate theory 
must take into account whatever evidence is provided by each variety of 
the cycle (Weller, 1964, p. 615). 

Shallow-water interpretations of black shale origin 

Black shales form from black muds, and those of the Pennsylvanian and Permian 

do not appear to have been exceptions. Twenhofel (1939) noted that either poor 

circulation or rapid accumulation of organic material is a prerequisite condition in the 

environment of deposition of original black muds. Analogous modern environments 

indicate that restricted oxygen is the more common condition. These conditions guided 

most workers who made attempts to determine the environment of deposition of Permian 

and, especially, Pennsylvanian black shales. Any study of one or a group of these 
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black shales from either the Midcontinent or around Illinois has proved useful to other 

similar studies because the origin of these shales is believed to be similar. 

Early workers viewed these black shales as shallow-water (i.e. nearshore) 

deposits for two reasons: 1.) The shales, specifically those in Illinois, are associated 

with non-marine deposits and other shallow-water deposits, and 2.) no reasonable 

explanation could account for water having become quite deep within a geologic time

frame inferred to have been brief by such close stratigraphic association. 

The stratigraphic position of the "dark laminated shales" immediately above the 

coal deposits in Illinois and Indiana naturally led Udden (1912, p. 48) to assume a 

shallow-water origin for these black shales. "This [black shale] was formed during the 

beginning of the inundation of the swamp while the water was not deep enough to 

prevent vegetable accumulation but allowed a gentle influx of slightly muddy water." 

Moore (1929, p. 466) noted that, while the source of carbonaceous material in the 

Illinois black shales might have been derived from a "reworking of the very shallow sea 

that drowned the coal swamp, ... [reworking] seems scarcely applicable to the numerous 

widely distributed black muds between limestones" in the Midcontinent region. 

Weller (1930, 1956) noted that the black fissile shales contain marine fossils, 

although not abundant, and formed in undisturbed water. A mechanism was needed to 

explain the stillness of the water above the site of black shale deposition. Weller (1930, 

p. 127) suggested that surface-water plants or algae were possibly "present in 

sufficient abundance to prevent the development of waves." This explanation, he 

noted, accounts for both the uniform carbonaceous content of the shale and the fact that 

the plants themselves left practically no trace. 

Other workers continued to assume that these black shales were deposited in 

stagnant shallow water. Moore (1931) noted plant debris and fossil insects in black 

shales of the Midcontinent, and Wanless and Shepard (1936) described the 

==~__l 
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Midcontinent black fissile shales as resembling the black shales above the coal deposits 

in Illinois and Indiana. 

Twenhofel (1939), though not writing specifically about Pennsylvanian black 

shales, stated that, among other possibilities, black shales could develop in shallow, 

extensive epicontinental seas providing that tidal influence was minimal or non-existent. 

It is imperative to note that most workers accepted the idea that the presence of 

fusulinids represented the deepest phase of these cyclothems. Elias' (1937, p. 411) 

idealized cycle of deposition depicted fusulinid-bearing rock units in the middle of the 

cycle with an order of other depth-related phases mirror-imaging each other above and 

below the fusulinid-bearing strata. 

Mudge and Yochelson (1962) did an extensive paleontological and stratigraphic 

study of Upper Pennsylvanian and Lower Permian rocks in Kansas, including units of 

the Council Grove Group, which are part of the current study. Several black shales with 

inarticulate brachiopods near their bases and abundant Crurithyris brachiopods just 

above the bases were noted. Crurithyris, where present with few other kinds of fossils, 

is commonly abundant, suggesting harsh environmental conditions. These brachiopods 

"may have lived under environmental conditions intermediate between brackish and 

marine" (Mudge and Yochelson, 1962, p. 104). 

Each of these dark shales overlies a fusulinid-bearing limestone unit and is 

overlain by a bed of grayer shale that contains a fauna predominantly of brachiopods. 

This led Mudge and Yochelson (1962, p. 11 0) to interpret "a change from marine to 

brackish conditions and back to more marine conditions through the Crurithyris beds." 

McCrone (1963) did a detailed paleontological study of the Red Eagle Formation 

of the Council Grove Group (see Figure 20 for stratigraphic column). The Red Eagle 

Formation contains a black shale, the Bennett Shale Member, which is included in the 

current study. McCrone (1963, p. 56) noted that shallowing of water at the start of 

Bennett Shale deposition "could have left shoals between the area of study [northeast 

_____ l. 
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Kansas] and the open seas to south and west." However, he cautioned that this black 

shale is practically always present above the fusulinid-bearing limestone, and this 

"could indicate that the same basin pattern persisted in the region during the 

accumulation of the two." 

Nevertheless, McCrone (1963, p. 69) was inclined to believe that the sea was 

shallow at the time of Bennett Shale deposition and that "free circulation of water with 

the open ocean was restricted by an unknown barrier." Also, "the sea shallowed quickly 

from 30 or 40 feet [9 or 12 meters] to less than 10 feet [3 meters]." He does not, 

however, imply that sea level necessarily dropped between the formation of the 

limestone and the deposition of the shale. McCrone (1963, p. 57) suggested instead 

that "uplift or climatic change in distant source areas," and not necessarily water depth, 

may have been a major controlling factor of the stratigraphic and paleontological 

changes. 

Mudge and Yochelson (1962, p. 115) made similar comments regarding factors 

(other than water depth) that might have affected the distribution of faunal assemblages: 

"The relation between the rock types and the faunal assemblages of the midcontinent 

area ... might be explained ... by combinations of other physical and chemical factors." 

McCrone (1963) further believed that the upper grayer part of the Bennett Shale 

Member represents a progressive deepening, and thus freer circulation, of water. This is 

evident by a deeper-water fauna of articulate brachiopods and bryozoans (e.g. Moore, 

1964). However, to account for the formation of the limestone above the shale, McCrone 

(1963) believed that sea level dropped once again, although this time without the 

unknown barrier to restrict circulation. 

Above the Red Eagle Formation is the Grenola Formation, which was studied by 

Lane (1958; 1964). The lower part of the Neva Limestone Member of the Grenola 

contains at least one black shale in northern Kansas. This zone is possibly equivalent 

to the gray and dark gray zone in more southern exposures of the lower Neva 

iiiiiiiiiiii:=:O.iiiiiiiii ....... ~ .................... "'""""'~~ ...... ~~~ .................... ~~ ......... ===~""==~~~==='"==-""""""'----~~-c~~-··-·-•··· -··· -=~-l. 
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Limestone (Lane, 1958). Lane (1964, p. 21) analyzed microfossil assemblages in all 

Council Grove Group shales and concluded that "the accumulated data seems [sic] to 

form relatively shallow water deposition for most of the marine rocks." However, he 

cautioned that absolute depth could not be easily determined from the paleoecology of 

Permian beds. 

Zangerl and Richardson (1963) studied many aspects of two black fissile shales 

from the Desmoinesian Stage in the Illinois region: the Logan Quarry Shale from the 

Staunton Formation and the Mecca Quarry Shale from the Linton Formation. They 

measured different facies within the black shales; performed chemical, spectrographic 

and mineralogical analyses on shale samples; studied the microscopic components 

contained in them and documented the flora and fauna horizontally and vertically in the 

shale units. 

Not only did Zangerl and Richardson (1963, p. 228) assume a shallow water 

origin of the black shales, they believed that water depth ranged from a few inches to a 

few feet (less than a meter). Their reasons for such interpretation of shallowness 

included the facts that the marine shales overlie non-marine coals and that evidence for 

tectonic activity was lacking. Other conclusions reached by the authors had already 

been reached by others who had previously studied similar black shales; namely, the 

bottom water was toxic and very still, and water higher in the column was inhabited by 

fauna. Furthermore, Zangerl and Richardson (1963, p. 174) calculated a rapid rate of 

sedimentation, based on biostratonomic evidence, that averaged one millimeter every 

five days. 

However, to account for both the stillness of such widely-extended shallow 

water and the high organic content of the shales, the authors (1963, p. 24) proposed 

"the concept of an intricate archipelago-bayou topography with a cover of vegetation 

(flotan~ on the water." The flotant concept was later supported and expanded by Merrill 

(1975). According to Zangerl and Richardson (1963, pp. 217-219), an initial 
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transgressive thrust, represented by a deposit of pectinid (Dunbarella) shell debris, 

covered the swamp with a blanket of shallow water topped with a vegetative mat. Four 

years of seasonal volumes of rainwater, which fluctuated only slightly due to decreased 

run-off, produced a subtle alternation of four pairs of black and gray layers in the lower 

part of the shale. The water eventually deepened to where seasonal cycles could not 

leave their marks, and a marine assemblage of shells characteristic of dark shales in 

restricted environments was deposited. 

However, the flotant hypothesis is considered unreasonable by some 

investigators. It is unlikely, for instance, that a mat of floating vegetation would allow 

driftwood to accumulate in the water to the extensive degree implied by the findings of 

Zangerl and Richardson (1963, p. 122 and pp. 145-147). Also, the extensive biota 

documented by these authors does not reasonably compare well with their hypothesis 

that only a few feet (about one meter) of water were stratified, from top to bottom, with a 

flotant, a narrow range of habitable water and a narrow range of anoxic bottom water. 

The application of the flotant model to Midcontinent black shales is met with 

further difficulty on account of a dense limestone member that is below the shale. Heckel 

(1977, p. 1 058} noted that "such a shallow-water environment for black shale deposition 

cannot reasonably apply to widespread black shales that are underlain as well as 

overlain by demonstrably fully marine limestones." 

Deep-water interpretations and models of black shale origin 

Up to the mid-1960s, most workers considered a deep-water (i.e. offshore) origin 

of these black shales unlikely and improbable. Even the prospect of water as deep as 

450 feet (140 meters), suggested by Wanless and Shepard (1936) in their glacial control 

theory, was considered improbable by Weller (1956). Moore (1929, pp. 484 and 487) 

believed that depths of Pennsylvanian epicontinental seas never exceeded 600 feet 

(180 meters) and that the seas were "not only very shallow but ... excessively 

-~---=-=---
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fluctuating." Elias (1937) believed that water depth never exceeded 180 feet (55 meters) 

in the Pennsylvanian and 90 feet (27 meters) in the Permian. Most workers believed that 

the fusulinid zone of limestone units represented the deepest phase of the cyclothems 

(Elias, 1937; Mudge and Yochelson, 1962). 

Under the assumption that black fissile shales formed in shallow, undisturbed 

water, the best plausible explanation appeared to rest on the additional assumption that 

a mass of floating vegetation stilled the water and contributed organic material to the 

mud. This explanation, not without its difficulties, did little to elucidate the origin of black 

shales. Deep-water interpretations of the origin of these black shales became plausible 

as more and more studies related cyclothem development to Gondwanan glaciation 

(Heckel, 1977; Crowell, 1978; Heckel, 1980; Watney, 1985; Ross and Ross, 1985; 

Heckel, 1986; Veevers and Powell, 1987; Cecil, 1990; Crowley and Baum, 1991; 

Boardman and Nestell, 1993). 

Schenk (1967) was among the first to suggest that black shales are a deeper-

water facies than the carbonate rocks in Midcontinent sequences. He studied the 

Altamont megacyclothem in the Marmaton Group, Desmoinesian Stage, which contains 

the black Lake Neosho Shale Member of the Altamont Limestone. Schenk based his 

conclusion on the presence of phosphate nodules and fossils. 

Primary phosphorites are marine deposits never associated with lagoonal 
or fresh-water sediments. The phosphorite facies is usually confined to 
the shelf on one side of a large, deep basin which has ample connection 
with the open ocean .... The fauna and lithology of the Lake Neosho 
Shale cannot be confused with those of the deltaic deposits, and 
undoubtedly are not the result of an advance of this detrital complex ... 
The fauna of the black shale is marine with restricted and very tolerant 
forms (Schenk, 1967, pp. 1379-1380). 

Schenk further postulated that maximum water depth was at least 200 meters 

(656 feet) in parts of the basin. He based his calculation on the depth where modern 

phosphate is precipitated, the height of channels cut from overlying formations and the 

gentle westward slope of the shelf edge at the line of outcrop of the studied formation. 

~----~ 



Water circulation must have been from the southwest, upwelling on the 
shelving eastern flank of the Western Interior basin [Midcontinent region]. 
Phosphate was precipitated chemically between depths of 
approximately 50 and 200 m [164 and 656 feet] under conditions of ... 
slow but continuous circulation, and extremely slow sedimentation 
(Schenk, 1967, p. 1379). 

Finally, he suggested that a rapid transgression and a slow regression 

accounted for the differences in the limestones below and above the black shale. 

Whereas Schenk studied several units in a single Middle Pennsylvanian 

megacyclothem, Evans (1967) concentrated only on the black shale unit of an Upper 

Pennsylvanian megacyclothem from the same region. Like Schenk, his conclusions were 

the opposite of the generally accepted idea that black shales were shallow-water 

deposits. 

Evans (1967, p. 49) studied the Heebner Shale Member of the Oread Limestone 

in the Shawnee Group, Virgilian Stage, and noted that it contains phosphorites in the 

form of "discontinuous phosphatic laminae and associated nodules of phosphate." 

He used the conformable stratigraphic occurrence of this shale between two 

marine limestones and its large lateral extent to point out the unlikelihood of paludal 

conditions during deposition. Evans believed that quiet, oxygen-restricted water below 

"wave base" was the condition required. "The black shale represents accumulation in 

the central part of the depositional basin rather than at its periphery" (Evans, 1967, pp. 

120-121 ). 

James (1970) arrived at similar conclusions about a Middle Pennsylvanian black 

shale that overlies coal in Illinois and Missouri. He studied the Excello Shale Member of 

the Calvin Formation of the Cherokee Group, Desmoinesian Stage, which contains an 

interval of dark gray to black, phosphatic, fissile shale. 

James interpreted the shale as an offshore deposit that formed during maximal 

high-water stand brought about by the melting of Gondwanan glaciers to the south. 

~~~_J, 



28 

James (1970, pp. 37-38) suggested that a thermocline developed in the waters of the 

Excello sea. This density gradient, a contrast between high surface water temperatures 

and cold, deep water, inhibited circulation of bottom water and resulted in the 

development of anoxic bottom water conditions. Organic decomposition was 

accomplished with nitrates and was followed by sulfate reduction, which resulted in 

acidic conditions and sulfide toxicity. According to James (1970, pp. 80-81), this 

restricted the diversity and abundance of organisms capable of living on the bottom and 

inhibited their decay. 

Heckel and Baesemann (1975) developed a paleoecological model for the 

deposition of the units of Midcontinent sequences, based on the distribution of conodont 

genera throughout the megacyclothem. Their model closely follows the ecological model 

for conodonts proposed by Seddon and Sweet (1971 ), who studied Ordovician and 

Devonian conodont faunas in eastern North America and Western Australia in order to 

understand the ecological preferences of different species. 

The model Seddon and Sweet developed is based on the assumption that most 

conodonts are planktonic or nektonic. Their reasoning is based on "the occurrence of 

representatives of the same species in a variety of lithofacies, including black shales of 

various ages that otherwise yield the remains only of planktonic or nektonic organisms" 

(Seddon and Sweet, 1971, p. 869). 

Furthermore, their model ''views conodonts as small planktonic organisms .... with 

different species segregated by vertical stratification" (ibid., p. 879). This model implies 

that knowing the depth preferences of certain conodont species, to determine the general 

depositional environment of units containing these conodonts would be fairly simple. 

According to the model, a shallow-water deposit contains only shallow-water conodont 

species, whereas a deep-water deposit contains both deep-water and shallow-water 

conodont species (Figure 9). 

- " ---- ------ -----"'---- ----~ 
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Heckel and Baesemann (1975, p. 490) believed that the black shale units of 

Missourian sequences were the deepest-water deposits, based on vertical distribution 

of conodont species throughout the megacyclothem. The authors refer to the black shale, 

and sometimes also to the limestone members above and below it, as the "core" of the 

Midcontinent megacyclothem (Figure 10). The core contains a diverse conodont fauna 

with Streptognathodus (called ldiognathodus in their paper) species being most 

abundant. Species of Gondo/el/a and ldioprioniodus are associated with and almost 

exclusive to the core. 

When Heckel's and Baesemann's data are applied to Seddon's and Sweet's 

conodont ecology model, the core of the megacyclothem is recognized as the deepest

water deposit of the sequence (Figure 11 ). Likewise, other members of the sequence fit 

well with the conodont model. The shale members away from the core (called "outside 

shales" by the authors) "are characterized by either absence or low abundance of 

conodonts ... and low diversity of conodonts" (Heckel and Baesemann, 1975, p. 491 ). 

Some of these outside shales and some parts of the limestones closer to the core "have 

conodont faunal characteristics transitional between those of the core and those of the 

outside shales." In these units species of Adetognathus are generally dominant where 

conodonts are present. Streptognathodus species are present, too; however, their 

number per unit volume of rock decreases away from the core. 

As a matter of course for the remainder of this discussion, the "megacyclothem" 

sequence of rocks defined by Moore (1936) and referred to by Heckel and Baesemann 

(1975) will be referred to simply as a "cyclothem." Heckel (1977) proposed this change 

because he and other workers believed that the "megacyclothem" sequence actually 

represented only one major advance and retreat of the sea (Figures 10 and 11 ). 

Heckel (1977) expanded Heckel's and Baesemann's (1975) paleoecological 

model to account for oceanic circulation, the occurrence of phosphate nodules in the black 

shales, lateral variation of major Pennsylvanian cyclothems and the rarity of black shales 

- --- ---- -_ ---- ----~---~--- ------~-~1 
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Figure 10. Ideal Upper Pennsylvanian megacyclothem (=cyclothem) of 
Midcontinent. Dotted sea-level curve (1) based in part on Moore (1936); 
solid sea-level curve (2) based in part on Evans (1967) and Schenk 
(1967) with black shale interpreted as the deepest-water deposit (from 
Heckel and Baesemann, 1975, p. 487). 
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in slightly younger Midcontinent cyclothems. Whereas the earlier model essentially 

revolves around water depth and the depth-preference of certain conodont species, the 

newer model centers on the factors that controlled oceanic circulation and oxygenation of 

bottom waters in the Pennsylvanian Midcontinent epeiric seas (Figure 12). 

Heckel (1977) suggested that a thermocline developed during high sea-level 

stand. The Pennsylvanian Midcontinent was located north of the paleoequator in the 

trade wind belt, and prevailing wind direction was from the east. This westward flow of 

surface water pulled deeper oceanic water eastward from West Texas basins. This 

deeper oceanic water was colder, lower in oxygen, and richer in phosphate than the 

surface water, and the temperature contrast produced a thermocline in waters deeper 

than 50 meters (164 feet). The thermocline did not develop during low sea-level stand. 

According to the model (Heckel, 1977, p. 1054), the thermocline "was strong 

enough to prevent local wind-driven cells of vertical circulation from replenishing oxygen 

to the sea bottom." The phosphate-rich bottom water surfaced nearer the eastern 

shorelines and produced planktonic blooms that ultimately generated more organic 

matter. The organic matter was carried westward on surface currents and eventually 

settled below the thermocline where it removed even more of the already sparse 

oxygen as it decayed (Figure 12). 

An alternative model of black shale deposition in Pennsylvanian strata of the 

Midcontinent invokes a sill in West Texas that restricted circulation of bottom water in the 

Midcontinent region. Evans (1967, p. 123) suggested that detrital sedimentation at the 

mouth of the Midcontinent sea may have "constituted a shallow sill which effectively 

blocked normal circulation between the inland sea and a more open marine environment 

... to the south." A sill in the Baltic Sea of today results in salinity stratification, greater 

stagnation of deeper water and the accumulation of fine-grained black organic mud 

(Manheim, 1961 ). Although a sill might explain low-oxygen conditions in the Midcontinent 

during high sea-level stands, its effectiveness as a barrier to free circulation with open 
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sea water would have increased during regressions until the Midcontinent sea became a 

closed basin, evidence of which has not been observed. Heckel (1977, p. 1 058} 

addressed this scenario and added that "black shale members are overlain conformably 

by thick limestone members with diverse marine biotas that record continued good 

connection with the open sea." 

The bottom water of a high sea-level stand, therefore, remained low in oxygen 

and rich in phosphate and organic matter. Conditions did not favor formation of calcite

rich sediment, perhaps due to acidity from organic decay or to very low oxygen 

conditions in the water. In any case, only fine detritus and organic debris reached the 

quiet bottoms of Pennsylvanian Midcontinent seas during maximal sea-level stand to 

produce black mud. Phosphate in the water apparently reached concentrations high 

enough to precipitate directly or, possibly, to replace any carbonates that might have 

formed. 

Modern examples of phosphorite formation off the coast of Peru (Veeh et al., 

1973; Manheim et al., 1975) tend to support Heckel's upwelling model despite 

differences in oceanic sea-floor topography. Recent phosphate nodules were found in 

"laminated anaerobic sediments associated with coastal upwelling off Peru and Chili" 

and were dated by uranium-series methods (Veeh et al., 1973). Manheim et al. (1975) 

listed four requirements necessary for phosphorite formation: organic-rich sediment, low 

oxygenated waters, low sedimentation rates and low calcium carbonate concentration. 

Veeh et al. (1973) found that the phosphate nodules seem to form at the upper 

and lower limits of the oxygen minimum layer, between 100 and 400 meters (328 and 

1312 feet). Although the sea-floor topography is much steeper off Peru than it was 

beneath the Pennsylvanian Midcontinent epicontinental seas, it is conceivable that 

similar conditions, though at lesser depths, affected the Pennsylvanian seas. 

Black shales of the Illinois region are analogous and correlatable with black 

shales of the Midcontinent region. However, the absence of an underlying limestone unit 

________ l 



in the cyclothems of the Illinois region, where coal is present, required an explanation. 

Heckel (1977, pp. 1059 and 1061) noted that. rapid transgression over Illinois coal 

swamps, coupled with cut-off of detrital sources, could result in deep water without 

significant deposition. Low pH or low-oxygen conditions may have contributed to "an 

environment unfavorable to carbonate production." Although coals are uncommon in 

Midcontinent sequences, the limestones underlying the black shales are thin, implying 

conditions that were not as unfavorable for the production of calcium carbonate sediment 

as conditions in the Illinois region. 

Heckel (1983) used his earlier model in conjunction with diagenetic data to 

develop a diagenetic model for formation of limestones above and below black 

phosphatic shales of the Midcontinent. Heckel {1986, 1991) applied his models to more 

of the Midcontinent cyclic record and supported their correlation with Illinois cyclothems. 

He also supported Gondwanan glaciation as the ultimate cause of eustatic sea-level 

fluctuations in the Pennsylvanian. 

Boardman et al. (1984) summarized arguments supporting a deep-water origin of 

these black shales. These shales are continuous over most of the Midcontinent and 

underlying relief is preserved after the shales were compacted by overlying deposits. 

The authors pointed out that the symmetry of cyclothemic sequences would be 

compromised if a shallow-water interpretation of these shales were accepted. As 

shallow-water deposits, "the black, fissile, phosphatic shales should be present in at 

least two other positions within the cyclothem" (Boardman et al., 1984, p. 151). 

Furthermore, such shales have never been found "in regions that can be conclusively 

demonstrated to represent shallow, nearshore environments" (ibid., p. 153). 

These black shales grade updip (i.e. in the direction of the paleoshoreline) into 

fossiliferous offshore marine deposits. Boardman et al. (1984) regarded this observation 

to be the strongest evidence that these shales are deep-water deposits. The authors 

' 
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Individual black shales merge basinward and thicken upon the shelf toward the 

paleoshoreline and the source of clastic material (ibid.). Facies within these black shales 

record oxygen gradients ranging from anoxic to dysaerobic to aerobic, based on faunal 

communities defined by Boardman et al. (1984) (see following section "Paleontological 

studies of black shales" and associated Figure 14 for more detail). Phosphate nodules 

are more abundant where black fissile shales grade into dark gray, clay-rich shales. In 

the regressive phase, the paleogeography of prograding deltas influenced the 

composition of shales deposited over the black muds. These units ranged from 

carbonate sediment, uninfluenced by the deltas, to thick fossiliferous clay, adjacent to 

the deltas, to thick deltaic sequences of various facies (Boardman and Malinky, 1985). 

The transgressive sequences studied by Boardman and Malinky (1985) 

correlate with sequences of the Midcontinent. The correlation of sea-level curves 

developed from north-central Texas strata and from Midcontinent strata supports 

glaciation as the driving mechanism of sea-level fluctuations in the Pennsylvanian 

(Boardman and Heckel, 1989; Boardman et al., 1984). These laterally-continuous, 

phosphatic, fissile black shales were deposited in deep water during maximal sea-level 

highstand. 

Watney (1985) noted that the marine shales which overlie thin transgressive 

limestones of four Midcontinent Missourian cyclothems completely cover the western 

Kansas study area. The black facies of this shale, which is developed in only three of 

the four cyclothems studied, may by interpreted as the deepest-water facies because it 

did not develop over structurally-positive areas. 

Geochemical studies indicate that the black phosphatic shales of the 

Midcontinent, as well as some non-phosphatic black shales of the Illinois basin (Mecca 

Quarry and Logan Quarry shales), "are universally enriched in organic matter and trace 

elements including such heavy metals as molybdenum, vanadium, zinc, and uranium" 

(Coveney, 1985, p. 247; also Coveney et al., 1991 ). Cubitt (1979) identified a number 

------~ 



of trace elements associated with Upper Pennsylvanian and Lower Permian black 

shales. These elements include cadmium, chromium, copper, molybdenum, nickel, lead, 

vanadium and zinc. Hatch and Leventhal (1985) also observed high heavy metal 

contents in laminated offshore shales of Middle and Upper Pennsylvanian rocks of the 

Midcontinent. 

Adlis et al. (1988) studied oxygen isotopes in the calcite of Crurithyris 

p/anoconvexa, a brachiopod that is found in all levels of the studied shales in north 

Texas. Maximum oxygen-18 isotopes were recorded in shale levels representing "the 

deepest faunal zone, defined by the occurrence of the conodont Gondo/ella" (ibid., p. 

487). These values could mean one of two opposing interpretations: 1.) low bottom 

temperatures associated with greater depth from a high sea-level stand, or 2.) oxygen-

18 isotope concentration in seawater from the tie-up of the lighter oxygen isotopes in 

continental glaciation. The latter interpretation necessitates a low sea-level stand and 

shallow depths, which are conditions opposite the first interpretation. Despite these two 

opposing interpretations, the authors supported the interpretation of cold, deep-water 

based upon supporting fossil evidence. 

Using studies of modern sea temperatures, they further postulated a minimum 

depth change of 70 meters (230 feet) within the history of one of the north Texas cycles 

studied. "The data indicate even larger depth changes if a glacial effect on the isotopic 

composition of the ocean occurred" (ibid., p. 501 ). Greater depth changes would have 

been necessary to counter the lower oxygen-18 isotope concentrations that would have 

been present during interglacial periods. 

Coveney et al. (1991) used abundances of molybdenum to differentiate 

between nearshore and offshore black shales. Their model accounts for some of the 

differences between black shales of the Midcontinent region and those of the Eastern 

Interior Basin. Non-skeletal phosphate and molybdenum-rich black shales of the 

Desmoinesian Stage in Indiana contain fish fossils and abundant terrestrial organic 

- -----· ______ J_ 



matter. According to the authors, deposition occurred in a nearshore environment 

influenced by a wet climate, high sedimentation rates and a high influx of terrestrial 

organic debris. This made the bottom water acidic and promoted molybdenum fixation. 

Coeval black shales of the Midcontinent contain more phosphate and less molybdenum. 

Upper Pennsylvanian black shales of Indiana, on the other hand, are more transitional in 

nature and contain more phosphate and less molybdenum than their older counterparts 

of the same area. The climate was drier during this time, and some transgressive events 

reached higher sea-level stands (Coveney et al., 1991; Heckel, 1986; Cecil, 1990) 

(Figure 13). 

Teo (1991, pp. 104-107) noted that the total organic carbon {TOC) content of 

Pennsylvanian Midcontinent core shales varied due to redox conditions in the original 

sedimentary environment. Core shales with a high TOC also contain abundant 

vanadium, zinc and chromium. These elements accumulate in low redox conditions and 

suggest that the original sedimentary environment was anaerobic. Core shales with low 

TOC do not show correlation between TOC and certain essential transition metals (V, 

Zn, Cr, Ni, Cu, Co). This may be due to some oxidation on the sediment-surface layer in 

a dysaerobic environment. Marine-marginal shales also show no correlation between 

TOC and these elements; however, this is due to several factors, including fluctuating 

quantities of original organic carbon and essential transition metals and fluctuating redox 

conditions. 

Baker (1995) related elemental and microfauna! distributions to redox conditions 

and rates of sedimentation in a section of Upper Pennsylvanian units in southeastern 

Kansas. The core of the Haskeii-Cass cyclothem is the lower part of the Robbins Shale 

in the Lawrence Formation of the Douglas Group. This shale contains high 

concentrations of vanadium, Gondo/ella conodonts, some trace elements, a greater 

abundance of TOC than much of the cyclothem and a limited benthic fauna. A gray-to

black transition, which corresponds with differences in geochemistry and faunal 
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distributions, occurs forty centimeters (16 inches) above the base of the shale. This 

interval is enriched in sulfide and contains a greater abundance of TOC and trace metals 

than the core of the cyclothem. "Conodont abundances decrease, with offshore faunas 

dominating. Holothurian sclerites completely disappear, and the overall fauna is restricted 

to only those organisms that tolerate dysoxic conditions" (Baker, 1995, p. 111 ). Baker 

believes this interval, which "is not a typical phenomenon described in Heckel's 

cyclothem model, ... probably was deposited during a pulse of humic organic matter'' 

which lowered redox conditions and concentrated certain trace metals (ibid.). 

Baker concluded that "faunas seem to be affected by the same conditions 

affecting elemental distributions," and that both elemental and faunal sources should be 

studied when original depositional and diagenetic conditions are sought (ibid., p. 114). 

The purpose behind reviewing models of Pennsylvanian black shale deposition 

is to apply these models to interpretation of Lower Permian black shales, which are the 

central subject of the current study. 

Miller and West (1993, p. 2) recognized the problem of applying Heckel's (1977) 

model to explanation of Lower Permian black shales of the Midcontinent. Heckel's model 

relies heavily on the black shale for "defining the position of transgressive maxima on 

cyclothemic sea-level curves ... " 

As pointed out previously, the absence of phosphatic nodules and laminae in 

the few widespread black shales in Lower Permian strata suggests that Heckel's (1977) 

model is not completely applicable even to those apparent deep-water deposits {i.e. to 

those widespread Permian black shales). Nevertheless, several dark gray to black 

shales are in the Lower Permian of the Midcontinent; some of these shales are laterally

extensive and others are much less widespread or only local. 

Miller and West {1993) concentrated on discontinuity surfaces and meter-scale 

cycles bounded by flooding surfaces and concluded that eustatic factors that affected 

Pennsylvanian rocks no longer dominated facies development in Permian rocks. The 



authors suggested that regional climatic change, coupled with lower amplitude glacio

eustatic sea-level fluctuations which affected facies development less strongly, 

produced the Lower Permian cyclic sequences they studied in northeastern Kansas 

(Miller and West, 1993, p. 22). The climate-control portion of their model, adapted from 

Cecil (1990), predicts that clastics were generally deposited during wet climates when 

salinity was low and terrigenous debris was high due to excess runoff, and that 

carbonates were generally deposited during arid climates for opposite reasons (Miller 

and West, 1993, p. 20). 

The common occurrence of limestone-shale sequences in the Lower Permian 

strata, bounded by paleosols and flooding surfaces, suggested to Miller and West 

(1993) that the sequences might have formed from shallowing upward cycles. The 

authors analyzed units in the Council Grove and Chase Groups, including black shales 

of the following members of the Grenola Formation used in the current study: Legion 

Shale, Burr Limestone, Salem Point Shale and Neva Limestone. When applied to 

limestone-black shale cycles, "the limestones would represent deepest water conditions 

with the overlying black to dark-gray shales deposited during subsequent shallowing." 

These shales are interpreted as "lagoonal or estuarine" deposits, and the presence of 

"lingulid brachiopods, pectinid and myalinid bivalves, and ostracodes in these shales is 

also consistent with a nearshore, possibly brackish-water setting" (ibid., p. 18). 

The conclusions of Miller and West (1993) bring the interpretations of black shale 

origin to a full circle. The black shales of the Pennsylvanian were first viewed as 

shallow-water deposits and then later as deep-water deposits. Those of the Lower 

Permian were believed to have formed in conditions similar to those of the 

Pennsylvanian. Miller and West (1993) recently proposed that the black shales of the 

Lower Permian are shallow water deposits. 

..l 
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Paleontological studies of black shales 

Since the focus of this study essentially is paleontological, it is appropriate to 

review exclusively this aspect of studies of Pennsylvanian and Lower Permian black 

shales. Numerous authors studied the paleontology of black shales and related gray 

shales (Moore, 1929; Mudge and Yochelson, 1962; McCrone, 1963; Zangerl and 

Richardson, 1963; Evans, 1967; Grenda, 1969; Heckel and Baesemann, 1975; Schutter, 

1983; Schram, 1984; Malinky, 1984; Boardman et al., 1984; Boardman et al., 1995). 

Moore (1929) noted conodonts, a few species of foraminifers and brachiopods 

including Derbyia, productids and lingulids in his early studies of the Midcontinent 

Pennsylvanian black shales. "Poorly preserved plant fragments" and "a few fossil 

insects" were also noted by Moore (1931, p. 253). Moore's (1936, p. 34) general 

description of the black shale unit in a typical Missourian megacyclothem (cyclothem of 

today) was as follows: "shale, black fissile, contains conodonts, scanty brackish water 

molluscan fauna and abundant macerated plant fragments." 

Moore's (1936) descriptions of Pennsylvanian rocks in Kansas contain cursory 

paleontological descriptions. The lower black portion of the Stark Shale Member of the 

Dennis Formation of the Bronson Group, Missourian Stage, contains conodonts, plant 

debris, and phosphatic nodules. The upper lighter portion of the Stark commonly 

contains the brachiopod Derbyia crass a and the pelecypod A vicu/opectin. The upper 

grayer portion of the Muncie Creek Shale Member of the lola Limestone of the Kansas 

City Group, Missourian Stage, contains phosphatic specimens of the conulariid 

Conularia crustu/a. The lower black portion of the Heebner Shale Member of the Oread 

Limestone of the Shawnee Group, Virgilian Stage, "contains conodonts but mostly lacks 

megascopic fossils." The upper grayer part of the Heebner "contains numerous fossils, 

chiefly molluscoids" (Moore, 1936, p. 166). Only conodonts are mentioned in connection 

with the Queen Hill Shale Member of the Lecompton Limestone and the Larsh-Mission 

Creek Shale Member of the Deer Creek Limestone, both of the Shawnee Group; 
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however, the upper lighter portion of the Larsh-Mission Creek contains brachiopods and 

bryozoans in some places. The Holt Shale Member of the Topeka Limestone of the 

Shawnee Group contains "conodonts and some corneous brachiopods in the lower part 

and in places pelecypods and some calcareous brachiopods and bryozoans in the 

upper part" (ibid., p. 198). The Aarde Shale Member (Shanghai Creek) of the Howard 

Limestone of the Wabaunsee Group, Virgilian Stage, despite the presence of some coal, 

does contain a black fissile shale in some places "with very abundant ostracodes [and] 

some corneous brachiopods and pelecypods" (ibid., p. 206). 

Mudge and Yochelson (1962), when describing paleontology of the Lower 

Permian strata, excluded algae, bryozoans, ostracodes and conodonts. They also 

excluded all foraminifers except fusulinids. The inarticulate brachiopods Lingula 

carbonaria and Orbiculoidea missouriensis are also in these black shales. Crurithyris 

expansa, an articulate brachiopod, is common in argillaceous beds and is "commonly 

abundant in thin layers just below or just above unfossiliferous beds" (Mudge and 

Yochelson, 1962, p. 77). This suggested to the authors that these brachiopods may 

have lived in brackish water. Several Lissochonetes geronticus and Wei/ere/fa 

osagensis specimens are in black shales; however, these brachiopods are more 

common in the calcareous shales. 

McCrone's (1963) study of the Red Eagle Limestone of the Council Grove 

Group included a detailed analysis of the black Bennett Shale Member. McCrone (1963, 

p. 23) noted abundant Orbiculoidea missouriensis and rarer Lingula sp. brachiopods in 

the lower part of the Bennett. Conodonts, dominantly Streptognathodus, are in the black 

shale and are accompanied by minute fish teeth. Ostracodes are absent. Crurithyris is 

throughout the Red Eagle Limestone, including parts of the Bennett Shale Member. 

Lane (1964) analyzed microfossils in shales of the Council Grove Group in 

northern Kansas. However, his data are difficult to apply to the current study because 

he identified fossil assemblages with little regard for shale type or color, properties that 
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can be indicators of paleoenvironment. Nevertheless, Lane (1964, p. 1 0) noted "a fauna 

restricted to fragments of Orbicu/oidea, fish teeth and scales, and conodonts" in black 

shale in the upper half of the Hughes Creek Shale Member. He observed fish remains 

and inarticulate brachiopods, but no conodonts, in the lower part of the Bennett Shale 

Member, and holothurian sclerites and Bairdia ostracodes in the upper part. Fish 

remains, orbiculoid brachiopods and a few Tetrataxis foraminiferans were recorded from 

the black part of the Legion Shale Member. The upper part of the Legion contains 

several ostracode genera, including Hollinella. The Salem Point Shale Member includes 

Carbonita and Geisina ostracodes and fish teeth and scales. A lower black shale in the 

Neva Limestone Member, "contains abundant conodonts, fish teeth, and orbiculoid 

fragments similar to the assemblage in the black shales in the Hughes Creek'' (ibid., p. 

11 ). 

As described previously, Zanger! and Richardson (1963) completed an 

extensive paleontological analysis of two black shales from the Pennsylvanian Eastern 

Interior Basin. Above a transgressive shell breccia composed of innumerable productid 

brachiopods, the basal Mecca Quarry Shale "consists of countless individuals of the 

pectinoid Dunbarel/a, a very few orbiculoid and linguloid brachiopods, fairly abundant 

conodonts," some cephalopods and some vertebrates. (Zanger! and Richardson, 1963, 

p. 184). The grayer facies above the basal shale is dominated by vertebrates, including 

shark fossils. Similarly, the corresponding grayer facies of the Logan Quarry Shale 

contains many vertebrate fossils. 

In the Midcontinent, the Ammovertella foraminiferan biofacies of the Altamont 

Limestone of the Marmaton Group, Desmoinesian Stage, observed by Schenk (1967, 

p. 1377) "includes the phosphate-bearing black shale interval of the Lake Neosho 

[Shale]." It consists of the foraminiferans Ammovertel/a and Ammodiscus, conodonts, 

ostracodes and minor echinoid debris. Fragments of Orbiculoidea missouriensis 

brachiopods form the nuclei of many phosphatic nodules. 

i 
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The Heebner Shale in Kansas, studied in detail by Evans (1967), contains black 

fissile shale, with a sparse fauna, that separates two lighter calcareous shale units that 

contain more abundant fauna. Fossils in the black fissile shale "are generally limited to 

numerous ... conodonts, fair numbers of orbiculoid brachiopods, and a few scolecodonts 

and thin-shelled pectinoid clams" (Evans, 1967, p. 61 ). The calcareous shales contain 

productid brachiopods, crinoid columnals, bryozoans, a few corals, abundant 

pelecypods and gastropods and many foraminifers. 

Heckel and Baesemann (1975) and Heckel (1977; 1991) concentrated primarily 

on conodonts when they studied the Midcontinent black shales from the Upper 

Desmoinesian to the Lower Virgilian. They noted that conodont faunas are most diverse 

in the black fissile shale sequences of the Midcontinent cyclothems and "are dominated 

strongly in numbers of individuals by species of ldiognathodus ... which equals 

Streptognathodus spp. of [other] authors." ldioprioniodus and Gondolella conodonts 

occur exclusively in shales "closely associated with the black shale facies" (Heckel and 

Baesemann, 1975, p. 490). 

shales: 

Later, Heckel presented a more detailed description of the fauna within the 

The grey facies contains an abundant to sparse benthic fauna dominated 
by crinoid debris and brachiopods, particularly Crurithyris and Chonetes, 
and an abundant conodont fauna that ranges from hundreds to 
thousands of elements per kilogram of rock ... The black facies, which is 
typically sandwiched within the grey facies, contains mainly conodonts of 
similar high abundance, fish debris, conularids in places, radiolarians ... , 
and ammonoids (Heckel, 1991, pp. 261-262). 

Schram (1984) noted benthic crustaceans from three Pennsylvanian black 

shales, including the Heebner Shale, in outcrops along the Nebraska-Iowa border. 

These "bottom-dwelling types" of crustaceans are marine organisms that are "not 

completely compatible with the interpretation of stagnant, poisonous deep-water 

habitats envisioned in the Heckei-Baesemann [1975] model" (Schram, 1984, p. 199). 
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Compatibility could be possible if the creatures had "additional tolerance for low oxygen 

conditions" and occupied a part of the basin where the edge of the anoxic bottom waters 

fluctuated. Schram concluded that these crustaceans "lived in some proximity to anoxic 

conditions" and "may represent a catastrophic kill" (ibid., pp. 199-200). 

If Schram is correct, the fauna he observed in outcrops along the Nebraska-Iowa 

border is representative of the northern, shallower tract of the Midcontinent region during 

maximal transgression. Furthermore, one might expect to find benthic fossils in black 

shale outcrops in southern Kansas and northern Oklahoma along the corresponding 

southern tract of the Midcontinent region. 

Malinky (1984) studied extensively the macrofauna of Pennsylvanian black 

shales across their lines of outcrop from Nebraska to Oklahoma. Essentially, he sampled 

the dark gray facies of these units to determine diversity trends and document 

"stratigraphic and geographic changes among faunas" (Malinky, 1984, p. 2). 

Because his data are excessive, the faunas from only three shales are treated 

here. The Eudora Shale of the Stanton Limestone of the Lansing Group, Missourian 

Stage, contains "common Crurithyris, Chonetinel/a and less common Derbyia, 

Composita, Rhipidomel/a, spiriferids [all brachiopods], bryozoans and corals" in 

Nebraska and Iowa. Mollusks are absent (ibid., pp. 70-71). The Eudora contains only a 

''few fragmentary brachiopods and crinoid columnals" in the central part of the basin, in 

northwestern Missouri and northern Kansas (ibid., p. 71 ). The Nebraska-Iowa fauna re

occurs in southern Kansas along with gastropods and bivalves. The Heebner Shale 

contains rare Crurithyris, spiriferids and crinoid columnals in Nebraska and is 

unfossiliferous in northern Kansas. Fauna are present but unidentifiable in southern 

Kansas, and molluscan faunas are present in northern Oklahoma (ibid., p. 72). The 

Queen Hill Shale is unfossiliferous in northern Kansas. Rare Crurithyris, derbyid and 

productid brachiopods, bryozoans and crinoid columnals are present in southwestern 

Iowa. Mollusks of the sort that are in the Eudora Shale are absent (ibid., p. 73). 

~ ~·-- ·---~ 



Schutter (1983) ~tudied two Pennsylvanian black shales and associated 

calcareous shales above and below them. The black Stark Shale Member of the Dennis 

Formation of the Bronson Group, Missourian Stage, contains a basal gray transitional 

shale which "typically includes myalinid pelecypods, fish fragments, and inarticulate and 

a few articulate brachiopods" (Schutter, 1983, p. 75). The phosphatic fissile black 

facies, which is prominent throughout the Stark Shale, almost exclusively contains fish 

fragments, inarticulate brachiopods and conodonts. The upper grayer facies contains 

Crurithyris and pectinoids. 

The black Eudora Shale contains "inarticulate brachiopods, pectinoids, 

conodonts, Conularia [a conulariid], low-spired gastropods, and land plants," but 

whether this fauna comes from the black phosphatic facies or from the gray facies or 

represents the entire Eudora Shale is unclear (ibid., 1983, p. 1 08). 

Boardman et al. (1984) recognized several deep-water communities in the 

Pennsylvanian cyclothemic sequences of the Midcontinent (Figure 14). The deepest

water community, which is in the fissile black shales, "is characterized by Caneyella and 

Dunbarel/a bivalves, ammonoid and nautiloid cephalopods, sharks, conodonts, 

radiolarians and conulariids" (Boardman et al., 1984, p. 141). These organisms are 

believed to have been pelagic, epipelagic, nektonic and nektobenthic; no benthic 

organisms are present. 

The community of the dark to medium gray, clay-rich, non-fissile shales, which 

are more developed in Oklahoma, consists of "the same taxa that are prominent 

[above], plus a high diversity of molluscan and nonmolluscan stenohaline benthic 

invertebrates" (ibid., p. 160). This suggests that more-oxygenated conditions were 

present in the environment of deposition of these shales than were present in the 

environment of deposition of black fissile shales. 

The above-mentioned biofacies model is concerned primarily with megafossils, 

specifically ammonoids and mollusks. However, Boardman et al. (1995) recently 

-=-·----J 
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described a depth-related biofacies model based upon distribution of microfossils (Figure 

15). 

According to this model, deep-shelf marine strata of the Midcontinent generally 

contain Gondo/el/a, ldioprioniodus and Neogondolella conodonts, Hea/dia and 

Mammoides ostracodes, and Reophax and Ammodiscus foraminifers. Although these 

biofacies are independent of lithology, they are common in black shales of the 

Midcontinent. Intermediate depths are represented by ldiognathodus and 

Streptognathodus conodonts, Amphissites ostracodes, and Tetrataxis, G/obivalvulina 

and Endothyranella foraminifers. These biofacies are also independent of lithology, but 

are common in carbonate and siliciclastic rocks. Nearshore normal marine strata contain 

Adetognathus and Sweetognathus conodonts, Gavel/ina ostracodes and Ammodiscus 

foraminifers. finally, marginal marine facies contain no conodonts, Geisina ostracodes 

and rare foraminifers (Boardman et al., 1995). 

Some of the shale units of the Council Grove Group addressed in this study 

were described by Miller and West (1993). A black shale within the Burr Limestone 

Member of the Grenola Formation "is bounded below by a thin lag of skeletal and 

phosphatic debris and above by a skeletal lag including abundant tiny pyramidellid 

gastropods and fish teeth" (Miller and West, 1993, p. 7). The black shale in the lower 

Neva Limestone Member of the Grenola Formation "contains lingulid brachiopods and 

plant debris and is marked at its base by a condensed phosphatic bed ... containing 

brachiopod shell debris and abundant fish bone and conodonts" (ibid., p. 8). 
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IV. 

STRATIGRAPHY 

Pennsylvanian and Permian rocks that outcrop in eastern Kansas and 

southeastern Nebraska dip gently to the west. The units sampled for this study were 

taken from outcrops across this area. One sample was from a black shale of the 

Shawnee Group of the Pennsylvanian Virgilian Stage, and the remaining eight samples 

were from the lower portion of the Council Grove Group of the Pennsylvanian Virgilian 

Stage and the Permian Asselian Stage (Figure 16). However, because the recently 

proposed change of the Pennsylvanian-Permian boundary is still unofficial, the Council 

Grove Group has been and will be referred to as Lower Permian strata for this study. 

Stratigraphic descriptions of sampled units 

Shawnee Group: Oread Limestone 

The type locality of the Shawnee Group is in Shawnee County, Kansas. In 

ascending order, it contains the following formations: Oread Limestone, Kankawa Shale, 

Lecompton Limestone, Tecumseh Shale, Deer Creek Limestone, Calhoun Shale and 

Topeka Limestone (Figure 17). The Oread Limestone formation is about 45 feet (14 

meters) thick near its type locality in the town of Lawrence in Douglas County, Kansas. 

It forms a prominent escarpment, traceable across much of eastern Kansas in a 

southerly trend. In ascending order, this formation contains the following members: 

---- ---~--- ---~ --l 
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Figure 16. Stratigraphic column (including groups) of 
Middle Pennsylvanian to Lower Permian units of the 
Midcontinent. Asterisks(*) indicate groups from which 
black shales were sampled for the current study. 
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Snyderville Shale 
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Figure 17. Stratigraphic column of the Shawnee Group, 
Virgilian Stage. Asterisk(*) indicates black shale. 
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Toronto Limestone, Snyderville Shale, Leavenworth Limestone, Heebner Shale, 

Plattsmouth Limestone, Heumader Shale and Kereford Limestone (Moore, 1936). 

Black Heebner Shale 

The black Heebner Shale Member of the Oread Limestone is about 5 feet (1.5 

meters) thick throughout Kansas and Nebraska. Its type locality is along Heebner Creek 

west of Nehawka, Nebraska, in Cass County. Although it was first described by 

Condra (1927), Moore (1936, p. 166) describes it as "black, carbonaceous, hard and 

very fissile" in the lower portion, and "bluish to yellowish gray" and clayey in the upper 

portion. For the current study, the Heebner was sampled in southeastern Kansas in 

Chautauqua County just west of Sedan where its thickness and its description do not 

differ significantly from Moore's (ibid.) thickness and description (Figures 18 and 19). 

Evans (1967) divided this shale into three units: a thin lower calcareous shale 

with numerous small brachiopods and pelecypods, a distinctive black fissile shale with 

many phosphatic laminae and nodules and a well-developed upper calcareous shale 

that generally resembles the lower calcareous shale and contains phosphatic nodules at 

its base. The intervals sampled for this study are described in Appendix A. 

Council Grove Group: Foraker Limestone 

The Council Grove Group of the Upper Pennsylvanian and Lower Permian is 

about 320 feet (98 meters) thick across the Kansas outcrop area. In ascending order, it 

contains the Foraker Limestone, Johnson Shale, Red Eagle Limestone, Roca Shale, 

Grenola Limestone, Eskridge Shale, Beattie Limestone, Stearns Shale, Bader 

Limestone, Easly Creek Shale, Crouse Limestone, Blue Rapids Shale, Funston 

Limestone and Speiser Shale (Zeller, 1968). The remaining eight samples for this study 

were taken from the Foraker, Red Eagle and Grenola Limestone formations of this group 

(Figure 20). The Nemaha Uplift is higher in Nebraska and northern Kansas; 

- ·-·- --------- ____ __J, 
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Figure 19. Locations of intervals sampled in 
the Heebner Shale. Further descriptions are 
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1 



FORMATIONS OF 
COUNCIL GROVE 

GROUP 

Speiser Shale 

Funston Limestone 

Blue Rapids Shale 

Crouse Limestone 

Easly Creek Shale 

Bader Limestone 

Stearns Shale 

Beattie Limestone 

Eskridge Shale 

Grenola Limestone 

Roca Shale 

Red Eagle Limestone 

Johnson Shale 

Foraker Limestone 

j 

It 

It 

L .... 

MEMBERS OF 
1 GRENOLA LIMESTONE 

I Neva Limestone* 

I Salem Point Shale * 

I Burr Limestone * 

I Legion Shale* 

I Sallyards Limestone 

I 

I 
I 

I I 
I I 

I I 
I I 

II 
II 

I 

/ 

........ 

/ 

,. 

MEMBERS OF 
RED EAGLE 
LIMESTONE 

Howe Limestone 

Bennett Shale * 

Glenrock Limestone 

........ 
MEMBERS OF 

FORAKER LIMESTONE 

' ' 
Long Creek Limestone 

Hughes Creek Shale* 

' j Americus Limestone* 

Figure 20. Stratigraphic column of the Council 
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consequently, some of the units that outcrop over this positive structure are thinner 

along this uplift. 

The Foraker Limestone is about 70 feet (21 meters) thick in southern Kansas and 

about 30 feet (9.1 meters) thick in northern Kansas. The type section of the Foraker is in 

Osage County, Oklahoma. In ascending order, this formation contains the following 

members: Americus Limestone, Hughes Creek Shale and Long Creek Limestone (Mudge 

and Yochelson, 1962). 

Black shale unit of Americus Limestone 

The Americus Limestone Member is named for exposures near Americus in Lyon 

County, Kansas. It ranges in thickness from 1.5 to 20 feet (0.5 to 6.1 meters) and 

averages 4 feet (1.2 meters) thick in northern Kansas. The member is essentially "two 

gray to bluish-gray limestone beds separated by a medium-gray to very dark-gray 

shale bed" (Zeller, 1968, p. 45; also Mudge and Yochelson, 1962). The separating dark 

shale unit was sampled from an outcrop in Richardson County, Nebraska, several miles 

south of Humboldt, along the crest of the Nemaha Uplift where the Americus is less than 

2 feet (0.6 meter) thick (Figures 21, 22 and 23). Intervals sampled are described in 

Appendix A. 

Two black shale units of Hughes Creek Shale 

The Hughes Creek Shale Member grades from mostly limestone in southern 

Kansas to mostly shale in northern Kansas. It ranges from 20 to 36 feet (6.1 to 11 

meters) in thickness and generally thickens southward. Typically it is a thick dark gray 

shale with thin beds of fusulinid-rich limestone. The type locality for this member is along 

Hughes Creek in Nemaha County, Nebraska (Mudge and Yochelson, 1962; Zeller, 

1968). This member contains two black shales that were sampled in the Tuttle Creek 

spillway near Manhattan in Pottawatomie County, Kansas (Figures 24, 25, 26 and 27). 



61 

Figure 21. Map locality of Americus Limestone. Roadcut on east side 
of Highway 105, 0.2 miles south of Highway 8 intersection. 
NW/4, NW/4, sec. 15, T1 N, R13E, Falls City, Nebraska-Missouri 
(30 x 60 minute series}, 1986. (Figure enlarged 2x from 

original.} 
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Figure 22. Stratigraphic section of Highway 1 OS outcrop in 
southeastern Nebraska at location shown in Figure 21. 
Marked section is the black shale of the Americus and is 
expanded in Figure 23. Black shale of basal Hughes Creek 
was not used in this study. Diagram courtesy of Darwin R. 
Boardman II. 
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Hughes Creek and are expanded in Figures 26 and 27, 
respectively. Diagram courtesy of Darwin R. Boardman II. 
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Only about 21 feet (6.4 meters) of the upper Hughes Creek was exposed at this 

locality (Boardman et al., 1994a). The two sampled units grade from thick cherty 

limestone in southern Kansas to thin dark gray shale in northern Kansas. These shale 

units are likely the same Orbicu/oidea I Crurithyris zones (Units 2 and 4) identified by 

Mudge and Yochelson (1962, p. 34). Intervals sampled from each shale are described in 

Appendix A. 

Council Grove Group: Red Eagle Limestone 

In Kansas, the Red Eagle Limestone ranges in thickness from 6 to 33 feet (1.8 to 

10 meters). It was named for a school (Red Eagle) near Foraker in Osage County, 

Oklahoma. The formation mostly is limestone in northern Oklahoma and southern 

Kansas. It contains a distinctive black shale unit in northern Kansas and southern 

Nebraska. In ascending order, the Red Eagle is composed of the following members: 

Glenrock Limestone, Bennett Shale and Howe Limestone (Mudge and Yochelson, 1962; 

Zeller, 1968; McCrone, 1963) (Figures 20 and 28). 

Black Bennett Shale 

In northern Kansas the Bennett Shale is dark gray, fissile shale, but in southern 

Kansas this "shale" is light gray limestone with common fossils. This member was 

named for exposures south of Bennet (spelling correct) in Lancaster County, Nebraska. 

The member ranges from 4 to 27 feet (1.2 to 8.2 meters) thick and generally thins toward 

the north (Mudge and Yochelson, 1962; Zeller, 1968). Mudge and Yochelson (1962) and 

Condra (1927) observed the same Orbicu/oidea I Crurithyris zone in the lower part of 

this member in northern Kansas and southern Nebraska, respectively. The Bennett was 

sampled in the Tuttle Creek spillway in Pottawatomie County, Kansas, where it is just 

over 4 feet (1.2 meters) thick (Boardman et al., 1994a) (Figures 24, 28 and 29). Intervals 

sampled are described in Appendix A. 

--- -~-- ----~J. 
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Figure 28. Upper stratigraphic section of outcrop in Tuttle 
Creek spillway at location shown in Figure 24. Marked sections 
are the Bennett Shale and the black shale of the Burr, and are 
expanded in Figures 29 and 33, respectively. The black shale 
in the Legion at this locality was not used in this study. 
Diagram courtesy of Darwin R. Boardman II. 
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Council Grove Group: Grenola Limestone 

The Grenola Limestone was named for exposures west of Grenola in Elk 

County, Kansas. It ranges in thickness from 32 to 54 feet (9.8 to 16 meters). In 

ascending order, the following members make up the formation: Sallyards Limestone, 

Legion Shale, Burr Limestone, Salem Point Shale and Neva Limestone (Mudge and 

Yochelson, 1962). The latter four members each contain a black shale unit that was 

sampled for this study (Figures 20 and 31 ). 

Black shale unit of Legion Shale 

The Legion Shale Member generally is gray and clayey and contains some black 

fissile shale. It ranges in thickness from 1.4 to 13 feet (0.4 to 4.0 meters) and generally 

thickens southward. This member was named for exposures southwest of the American 

Legion grounds in Manhattan in Riley County, Kansas (Mudge and Yochelson, 1962). 

The type section describes black fissile shale near the top of the member; however, 

Miller and West (1993) depict black shale at the base of the Legion in a stratigraphic 

section along Highway 18 southwest of Manhattan. Because the same Miller and West 

(1993) outcrop was used for the current study, this shale unit was sampled from the 

base of the Legion where it is mostly light olive gray (Figures 30, 31 and 32). Dark fissile 

shale was not found at this locality. Intervals sampled are described in Appendix A. 

Black shale unit of Burr Limestone 

The Burr Limestone Member was named for exposures northwest of Burr in 

Otoe County, Nebraska. It ranges in thickness from 2.3 to 15 feet (0.7 to 4.6 meters) 

and generally thickens southward. This member is described as two limestone units 

separated by gray clayey shale that is black and fissile in some exposures. This middle 

shale unit is in Nebraska and northern Kansas but is less distinctive in southern Kansas 
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Figure 31. Stratigraphic section of Highway 18 outcrop southwest 
of Manhattan, Kansas, at location shown in Figure 30. Marked 
sections are black shales of the Legion, the Salem Point and the 
Neva and are expanded in Figures 32, 34 and 35, respectively. 
The black shale of the Burr at this locality was not used in this 
study. Diagram courtesy of Darwin R. Boardman II. 
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(Mudge and Yochelson, 1962). This dark shale unit was sampled in the Tuttle Creek 

spillway in Pottawatomie County, Kansas, where it is about 1.5 feet (0.5 meter) thick 

(Figures 24, 28 and 33). Intervals sampled are described in Appendix A. 

Black shale unit of Salem Point Shale 

The Salem Point Shale Member averages about 8 feet (2.4 meters) in thickness 

across Kansas with greatest thickness in the southern half of the state. The Salem Point 

was named for exposures northwest of Salem in Richardson County, Nebraska. This 

member "is mostly silty, calcareous gray to olive-drab to gray-green shale" and 

generally is thin-bedded to blocky with fissile beds at some places (Mudge and 

Yochelson, 1962, p. 45). At the sampled locality along Highway 18 in Riley County, 

Kansas, the Salem Point contains a middle limestone unit which is 1 foot (0.3 meter) thick 

(Miller and West, 1993) (Figure 30 and 31 ). The dark shale sampled for this study lies 

immediately above this middle limestone at this locality. The upper shale is 3 feet (0.9 

meter) thick and is topped by a calcareous paleosol. The dark gray shale is mottled with 

olive and brown (Figures 34). Intervals sampled are described in Appendix A. 

Black shale unit of Neva Limestone 

The Neva Limestone Member was named for exposures near Neva in Chase 

County, Kansas. The Neva is composed of limestone beds interbedded with gray and 

grayish-green shales. It averages about 17 feet (5.2 meters) thick and thickens to the 

south (Zeller, 1968; Mudge and Yochelson, 1962). The lower part of this member 

contains a dark gray shale traceable across most of Kansas. This shale unit averages 

1.2 feet (0.4 meter) thick and thickens toward the north. An Orbicu/oidea I Crurithyris 

zone is noted in the lower part of this shale at some exposures (Mudge and Yochelson, 

1962). This dark shale was sampled at the same Highway 18 locality in Riley County, 

==iiiiiiii-............................................. ~ ............... -= -··· .. ~--- . _.,...L 
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Kansas, where it is less than 2 feet (0.6 meter) thick (Figures 30, 31 and 35). Intervals 

sampled are described in Appendix A. 

Lateral uniformity I variation of sampled units 

The line of outcrop of Midcontinent Pennsylvanian and Permian units extends 

roughly north and south and, notwithstanding proximity to paleoshorelines, represents a 

cross-section of more or less equal depth across the Midcontinent region. The ancient 

seas deepened westward and shallowed eastward from the line of outcrop. The 

northern paleoshoreline was generally passive, and the southern paleoshoreline was 

affected by the Ouachita Uplift in Oklahoma. Thicker deposits in the southern part of this 

region indicate that subsidence was an additional factor there. 

Assuming that the line of outcrop represents an ancient seafloor of roughly equal 

depth during the deposition of any unit, it follows that water depth controlled the lateral 

variation or the lateral uniformity of that unit. In other words, shallow-water deposits are 

less consistent across a large area than deep-water deposits are, because shallow 

water is less prevalent. Conversely, deep water deposits remain persistent over a 

wide area. 

Shale deposited in shallow water would either pinch out locally or grade into 

shoreline and terrestrial deposits, and shale deposited in deep water would grade into 

fossiliferous offshore marine deposits before pinching out (Boardman et al., 1984). The 

latter situation has indeed been observed among many of the Pennsylvanian black 

shales of the Midcontinent that are considered deep-water deposits, as based upon 

other evidence. 

The black Heebner Shale is continuous over an extensive area. It changes little 

in thickness or lithology from its type locality in southeastern Nebraska to southern 

Kansas where it was sampled for this study (Moore, 1936; Evans, 1967). This 

suggests that the Heebner is a deep-water deposit. 

---- - --- _j_ 
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The black Bennett Shale and both black shale units of the Hughes Creek Shale 

grade from thin black shales in northern Kansas to thick limestones in southern Kansas 

(Mudge and Yochelson, 1962). This suggests that the shales formed in a deep-water 

environment far from shoreline while the limestones concurrently formed closer to the 

southern paleoshoreline in shallower, more oxygenated, water. The lower black shale 

unit of the Hughes Creek Shale grades into limestone upon the Nemaha Uplift in 

Richardson County, Nebraska (where the Americus was sampled for this study). This 

suggests that the shallower depth over this structurally positive feature resulted in the 

formation of limestone instead of black shale (Boardman, personal communication). 

The black shale unit of the Neva Limestone does not grade into limestone in 

southern Kansas; however, it does grade from a non-calcareous, clayey shale in the 

north to a calcareous, silty shale in the south. Furthermore, an Orbiculoidea I Crurithyris 

faunal zone is in this shale unit. This same faunal zone is in the Bennett Shale and the 

two thin black shales of the Hughes Creek Shale (Mudge and Yochelson, 1962). This 

evidence suggests a similar origin for all four shales. 

The black shale of the Americus Limestone is continuous across the outcrop 

area. It varies from a featheredge to 2.5 feet (0.76 meters) thick and varies from silty to 

clayey. In southern Kansas the Americus Limestone Member thickens, and the upper 

and lower contacts of the separating shale are gradational with the limestones above 

and below (ibid.). This stratigraphic information by itself is insufficient to determine 

whether this shale was deposited in deep water or in shallow water. 

The black shale of the Burr Limestone, like the shale of the Neva Limestone, is 

mostly clayey, though silty in some places, and is calcareous in southern Kansas. 

Unlike the shale of the Neva, however, the shale of the Burr contains pelecypods, 

bryozoans, gastropods and some stromatolites in southern Kansas (ibid.). Stromatolites 

indicate very shallow water, and this suggests that the shale of the Burr Limestone was 

deposited in shallow water. 

....J., 
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The black shales within the Legion and the Salem Point Shales may be limited to 

exposures in northern Kansas. The Legion Shale contains various facies across the 

outcrop area. The Salem Point Shale consists of red shale in parts of Oklahoma (ibid.). 

The local occurrence of black shales, the lateral variation of lithologies within the Legion 

Shale and red shale in the Salem Point Shale suggest that these two shale members, 

and therefore the black shales locally contained within them, are shallow water deposits. 

In conclusion, stratigraphic data can be used to make initial-depth assessments 

for most of the black shales of this study. According to that data, deep-water shales 

include the Heebner Shale, both black shales of the Hughes Creek Shale, the Bennett 

Shale and the black shale of the Neva Limestone. Shallow-water shales include the 

black shales of the Legion Shale, the Burr Limestone and the Salem Point Shale. 

Stratigraphic data for the black shale of the Americus Limestone are inconclusive to make 

an assessment of relative water depth . 
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v. 

PALEOECOLOGIC INTERPRETATIONS 

Three groups of microfossils {conodonts, foraminifers and ostracodes) are 

important in the interpretation of paleoecology of the black shales. Background 

information concerning each group's optimal environment supports the interpretation of 

the origins of black shales from which each group is recorded. Other microfauna were 

picked or simply noted, and the sparse megafossils were only noted. However, the 

paleoecology of these fossils provides only ancillary support to the interpretations 

suggested by the presence of the three major groups of microfossils. 

In this study, depth is stressed as the environmental condition with the most 

influence on distribution of microfossils in black shales. Low dissolved oxygen is 

assumed from the start. In lagoons salinity and perhaps nutrient availability further 

affected the microfauna. Offshore, at depths below the zone of carbonate production, 

cold temperatures prevailed and the degree of oxygenation affected the distribution of 

species. Although phosphate nodules in black shales decreased from Upper 

Pennsylvanian to Lower Permian, presence or absence does not indicate conditions that 

affected microfauna as much as difference in ages of shales. Nevertheless, presence or 

absence of non-skeletal phosphate is used as a criterion to differentiate shales. 

Class Ostracoda 

Ostracodes belong to Class Ostracoda of the Superclass Crustacea, Phylum 
I 

Arthropoda. They range from Cambrian to Holocene. Jointed appendages and the 



capability to molt during growth stages, are evident in living specimens. The bivalved, 

calcareous carapace that protected each ostracode is all that remains in the fossil record. 

Most ostracode carapaces are less than one millimeter in diameter. The 

carapaces are hinged on the dorsal side, and in life the organism extends its 

appendages through the ventral opening to feed, walk or swim. Although sexual 

dimorphism is evident, fossil species are identified based on the shape and 

ornamentation of the carapace, the type of hinge line each possesses and the nature of 

muscle scars. 

Some ostracodes are terrestrial, but most are aquatic and can be found in 

environments ranging from freshwater to hypersaline. They commonly live on or within 

bottom sediments, and since they are also capable of swimming, their mode of life 

ranges from nektobenthic to infaunal. 

The ostracodes picked from the black shales of this study were identified to 

generic level and include Geisina, Hollinella, Gavel/ina, Kegelites, Bairdia, Healdia and 

Amphissites. 

Paleoecological interpretations made here are based upon the work of Melnyk 

and Maddocks (1988a), who studied marine ostracodes of the Permo-Carboniferous in 

central and north-central Texas, and the work of Boardman et al. (1995) who identified 

biofacies of ostracodes and other microfauna in Upper Pennsylvanian - Lower Permian 

strata of north Texas and the Midcontinent. It is assumed that the paleoenvironments of 

Midcontinent ostracode genera are not much different from those of the same genera that 

lived contemporaneously in Texas. Melnyk and Maddocks (1988a, p. 14) believed that 

paleoecological characterizations of ostracodes are more useful for interpreting nearshore 

environments than for interpreting offshore environments, because ostracodes tend to 

dominate nearshore facies. 

Geisina species lived in nearshore environments ranging in zones from near the 

paleoshoreline to carbonate banks. This was the only ostracode genus found to occupy 

-= -~___,l 



solely a shallow-water environment (ibid.). Boardman et al. (1995, p. 1 06) identified a 

Geisina Biofacies that "occurs in dark gray to black non-phosphatic shales ... " and that 

"probably [represents] lagoons of variable salinity regimes from brackish to 

hypersaline." 

According to Melnyk and Maddocks (1988a), Healdia and Gavel/ina species are 

generally good indicators of nearshore conditions although some species occupied 

deeper offshore environments. Boardman et al. (1995), however, contended that most 

species of Healdia occur in offshore environments. Their Healdia Biofacies occurs in 

"dark gray pyritic, slightly phosphatic shales that overlie and underlie the black 

phosphatic shales." Furthermore, this biofacies is "restricted to the Oklahoma and north 

Texas region with higher siliclastic influx than northward" (ibid., p. 1 07). This 

interpretation is applicable only to the Heebner Shale of this study, which was sampled 

in southernmost Kansas. 

Species of Hollinella range from near the paleoshoreline to much deeper 

conditions where diversity increased. Overall, this genus is a poor indicator of 

paleoenvironment (Melnyk and Maddocks, 1988a). 

According to Melnyk and Maddocks (1988a), Amphissites was generally 

restricted to offshore environments, although a species of Amphissites and a species of 

Kegelites appear to have preferred shallower water. Boardman et al. (1995) described 

an Amphissites Biofacies characterized by a high diversity of ostracode species and 

associated with a high diversity of megafossils. This biofacies inhabited offshore 

environments; it is represented in the gray core shales of Midcontinent cyclothems. 

Species of Bairdia commonly indicate offshore conditions, according to Melnyk 

and Maddocks (1988a). This genus attained highest diversity in offshore environments 

with slow sedimentation rates, but a few species of Bairdia are in shallow-water facies. 

In summary, Geisina most likely indicates an environment near the 

paleoshoreline. Bairdia and Healdia, on the other hand, are likely indicators of offshore 
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terrain. Although the remaining genera occupy a wide range of paleoenvironments, 

Gavel/ina is more common in shallow-water environments and Amphissites is more 

common in deep-water environments. Hollinella and Kegelites do not dominate any 

paleoenvironment and are, therefore, poor indicators of relative paleo-depth. 

Finally, strict reliability of environmental interpretations based on ostracodes from 

this study is somewhat compromised because these ostracodes were identified only to 

generic level, whereas previous environmental interpretations were based on ostracode 

species. 

Order Foraminiferida 

All foraminifers belong to Order Foraminiferida of the Class Granuloreticulosa of 

the Subphylum Sarcodina (which also includes radiolarians), Phylum 

Sarcomastigophora. Unlike the other two major groups of the current study (conodonts 

and ostracodes of Kingdom Animalia), foraminifers belong to the Kingdom Protista 

because they are single-celled eukaryotes. Foraminifers are in rocks ranging from 

Cambrian to Holocene. 

Foraminifers possess a skeleton called a test. These organisms either secrete a 

test of calcium carbonate or build one from sand grains, sponge spicules, other 

organisms and whatever else is available. The test is the hard part preserved in the 

fossil record. The tests of some species contain only one chamber; those of other 

species contain chambers that are added throughout the life of the organism. Their final 

form varies from coiled to elongate to globular. 

Living forms extend their cell into elongated structures called pseudopods in order 

to gather food particles. These organisms exhibit dimorphism between the sexual forms 

and the more common assexual forms. 

----~-----·------ . --~ 
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The classification of smaller foraminifers is based on external features such as 

the nature of the test and the walls. Internal characteristics are used to identify and 

classify larger foraminifers such as the fusulinids. 

Prior to the Middle Jurassic all foraminifers were benthic and lived in or upon the 

sediment or lived attached to other objects on the seafloor. Fossil foraminifers are in rocks 

representing a wide range of marine depositional environments. Foraminifers are quite 

useful for dating subsurface rocks brought to the surface by drilling. 

More than 3,000 genera and 40,000 species have been described in the 

literature. The foraminifers picked from the black shales of this study are identified to 

generic level and include Ammodiscus, Endothyranella, Tetrataxis, G/obivalvulina, 

Climacammina and Triticites (a fusulinid). 

Boardman et al. (1995, pp. 107-1 09) noted the difficulties associated with 

interpretation of paleoenvironments based on various foraminiferan species. 

Environmental distribution data of Upper Pennsylvanian - Lower Permian foraminifers in 

the context of modern cyclic interpretation are unavailable. Nevertheless, the authors 

drew a correlation between two species and water depth. A species of Thurammina 

occurs in marginal marine brackish water environments, and a species of Reophax is 

associated with deep-water core shales. Unfortunately, neither genus was found in the 

shales of the current study. 

Ammodiscus and Tetra~axis are in a wide variety of depth-related environments. 

Endothyranella, G/obivalvulina, Climacammina and some fusulinids (perhaps Triticites?) 

are in bioassemblages of intermediate depth. Endothyranella and Ammodiscus are also 

in deeper environments (Boardman et al., 1995). 

In summary, foraminifers are poor indicators of paleoenvironments. Within the 

black shales of this study, their absence or rarity suggests either a stressed shallow

water environment or an unusually stressed deep-water environment. A moderate 

diversity of foraminifers indicates a reasonably oxygenated environment for microfauna 



87 

in offshore conditions. In this latter situation, Ammodiscus and/or Endothyranella tend to 

dominate the foraminiferan fauna of these shales. 

Phylum Conodonta 

Conodonts are an extinct group of animals of uncertain affinity. They are 

classified as invertebrates and are in their own phylum, Conodonta. Their geologic range 

is from Late Proterozoic to the end of the Triassic. Only microscopic hard parts are all 

that remains of conodonts. 

These hard parts, called elements, are composed of calcium phosphate mineral 

called francolite and range in shape from coniform to ramiform to pectiniform. The function 

of these elements is unknown, but paleontologists believe they may have served as 

support to the conodont animal or as food-gathering apparatuses. The consistent 

recurrence of assemblages of certain conodont elements is believed to represent one or 

a few species of conodonts. Each conodont animal contained several kinds of elements. 

Throughout this paper these elements have been and will be referred to as "conodonts" 

instead of "conodont elements." 

Less data is available on the conodont animal itself; however, a Lower 

Carboniferous soft-bodied fossil found in Scotland contains conodont elements in the 

head portion. This small, elongate creature somewhat resembles modern arrowworms or 

amphioxus, two worm-like organisms of different phyla, yet appears different enough to 

justify belonging in a separate phylum (Briggs et al., 1983). 

To determine whether conodonts were benthic or pelagic or nektobenthic 

organisms has been difficult. Since some genera appear to have been restricted to 

certain depth zones, depth is believed to have been a major factor in the environmental 

distribution of conodonts. Furthermore, the occurrence of the same genera in different 

lithologies suggests that conodonts were not limited to a benthic mode of life or, at least, 

were not dependent on the substrate. 



Seddon and Sweet (1971) viewed conodonts as pelagic organisms that lived at 

various depths. The deepest facies would therefore contain the widest variety of 

conodonts since a larger number of depth zones lay above. Other workers argued that 

conodonts were nektobenthic organisms because some genera exhibit lateral 

segregation (Barnes and Fahraeus, 1975). Klapper and Barrick (1978) concluded that 

the mode of life of conodonts is difficult to determine based on distribution patterns alone. 

In other words, either mode of life could have produced the conodont distribution 

observed in the fossil record. 

Nevertheless, known benthic foraminifers in all shales of this study that contain 

conodonts lends credence to the explanation that conodonts were benthic or 

nektobenthic. Also, the observed lack of diversity of conodonts in most of these shales 

suggests that conodonts probably were not solely pelagic organisms. The explanation 

favored in this study holds that conodonts are the remains of nektobenthic organisms 

and that different genera of conodonts preferred different conditions (i.e. depth, 

temperature, etc.). Because conodonts are rarely in nearshore facies and are practically 

absent from the proposed shallow-water black shales of this study, most of the 

conodonts discussed here represent offshore conodonts that inhabited environments of 

different degrees of temperature and oxygenation. 

The pectiniform elements, also known as platform elements, were used for 

identification and counts of the Late Pennsylvanian and Early Permian conodonts within 

this study. All conodonts of this time frame belong to the Order Hibbardellina of the 

Class Conodontophorida. These conodonts are identified to generic level and include 

Streptognathodus, ldiognathodus, ldioprioniodus, Adetognathus, Hindeodus and 

Ellisonia. Conodont counts include only identifiable platform elements. 

Boardman et al. (1995) recognized three major conodont biofacies: 

Adetognathus Biofacies, ldiognathodus-Streptognathodus Biofacies and Gondolella

ldioprioniodus Biofacies. The Adetognathus Biofacies is characterized by the dominance 

-- ..... ·---·· ____ .l 



of Adetognathus and represents nearshore conditions. Adetognathus is not found above 

the Red Eagle Limestone in the Midcontinent. This biofacies was replaced by the 

Sweetognathus Biofacies. Neither the Adetognathus Biofacies nor (above the Bennett 

Shale) the Sweetognathus Biofacies is identified in this study. Adetognathus species 

are significantly less prevalent in deeper biofacies. 

The ldiognathodus-Streptognathodus Biofacies, in addition to the nominate taxa, 

contains some Hindeodus and Aethotaxis (Boardman et al., 1995). This biofacies is 

perhaps the most widespread and diverse of conodont biofacies. Merrill and von Bitter 

(1984) also recognized this biofacies and used it as the standard to which other 

conodont biofacies were compared. 

Boardman et al. (1995) recognized several subfacies of the ldiognathodus

Streptognathodus Biofacies, ranging from open marine offshore conditions to low

oxygen offshore conditions. It is important to note that many genera identified as 

ldiognathodus have been renamed as Streptognathodus. In addition, ldiognathodus is 

not in Permian rocks. This biofacies is represented in Pennsylvanian rocks by a 

combination of both nominate taxa, dominating the conodont microfauna. 

Streptognathodus dominates this biofacies where it occurs in Permian rocks. This 

Permian version of the ldiognathodus-Streptognathodus Biofacies is present in several 

of the black shales of the current study. 

The third major biofacies recognized by Boardman et al. (1995) is the Gondolella

ldioprioniodus Biofacies. It is characterized by representatives of the nominate taxa as 

well as by many Streptognathodus and ldiognathodus. This biofacies represents 

offshore deep-water environments of low oxygen and cold water and is common in, but 

not restricted to, black phosphatic shales of the Midcontinent and other areas. Gondolella 

became extinct near the end of Carboniferous time and was replaced by Neogondolella. 

Nevertheless, this biofacies (with or without Neogondolella) is not present in 

Midcontinent rocks younger than Late Virgilian. Boardman et al. (1995) believe that the 

-"·~- __ ___:::.-______ _ 
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infilling of the Anadarko Basin in Late Virgilian greatly reduced the upwelling of deep, 

phosphate-rich basinal waters from the west, which supported this biofacies. 

Gondolella and Neogondolella are not present in the shales of the current study; 

however, ldioprioniodus is in the Heebner Shale. It indicates either a shallower 

subfacies of the Gondolella-ldioprioniodus Biofacies or a deeper subfacies of the 

ldiognathodus-Streptognathodus Biofacies. In either case, ldioprioniodus suggests an 

environment influenced by cold, phosphate-rich waters (Boardman et al., 1995). 

Two minor genera in shales of this study but not discussed are Hindeodus and 

Ellisonia. Hindeodus lived in a wide range of paleoenvironments. It is in the shallower 

two of three biofacies identified by Boardman et al. (1995). Merrill and von Bitter (1984) 

noted that it is less common where ldioprioniodus is more common. Some question 

remains as to the environmental preference of El/isonia, but it appears to have been 

associated with a euryhaline biofacies identified by Merrill and von Bitter (1984). 

In summary, the conodont genera in the shales of this study lived in deep-water 

environments of low-oxygen conditions. All of the shales that contained conodonts were 

dominated by Streptognathodus or, in the case of the Heebner Shale, both 

Streptognathodus and ldiognathodus. ldioprioniodus indicates the influence of cold, 

nutrient-rich basinal waters; the absence of Gondolel/a, Neogondolella and 

ldioprioniodus implies the opposite condition. Other taxa that are fewer in the shales do 

not affect the paleoenvironmental interpretations made in this study. 

Other microfossils 

Microfossils other than conodonts, foraminifers and ostracodes are in the black 

shale samples; however, they were not identified to generic level. Furthermore, their 

paleoecology does not provide the crux upon which the black shale interpretations are 

based. These other microfossils include vertebrate teeth, fish scales, scolecodonts, 

holothurian sclerites, brittle star fragments and microgastropods. 



The teeth and fish scales are the remains of pelagic vertebrates (Phylum 

Chordata) that lived above the muddy bottom. Because they are exotic to the shales, 

they imply very little about the paleoenvironment. Small phosphatic teeth, especially 

those of cartilaginous fishes (Class Chondrichthyes of Phylum Chordata) like sharks, 

are common in the fossil record because sharks continually lose teeth as they grow and 

feed on other organisms. Bony fishes (Class Osteichthyes of Phylum Chordata) also 

contribute teeth to the fossil record. Additionally, some bony fishes possessed scales 

that are preserved in the shales. 

Scolecodonts are the hardened organic jaw elements of polychaete worms 

(Class Polychaeta of Phylum Annelida). The elements resemble conodonts to some 

degree but differ in chemical composition and microstructure. Scolecodonts are more 

abundant in shallow marine deposits. 

Holothurian sclerites are the endoskeletal remains of echinoderms, such as sea 

cucumbers of modern seas. The sclerites are calcitic plates that have a small variety of 

forms ranging from round wheels to elongated hooks. Each individual holothurian (Class 

Holothuroidea of Phylum Echinodermata) contains ten to twenty million sclerites. Modern 

holothurians are benthic organisms that move slowly on the muddy bottoms of offshore 

environments. Sclerites are absent in nearshore deposits where sedimentation rates are 

higher, salinity is variable and currents are stronger. 

Brittle star fragments belong to another mobile, benthic echinoderm (Class 

Ophiuroidea of Phylum Echinodermata). Like holothurians, brittle stars are more common 

in deep-water environments. 

Microgastropods are the shells of certain mollusks (Class Gastropoda of Phylum 

Mollusca). Because gastropods live in all marine environments, they are not useful for 

analyzing paleoenvironments. However, most gastropods are benthic. 

In summary, microfossils other than conodonts, foraminifers and ostracodes 

supply only general information about the black shales. The remains of benthic 
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organisms such as holothurians, brittle stars, scolecodonts and most gastropods refutes 

the contention that anoxic conditions prevailed in the original environment of deposition 

of these black shales. Nevertheless, conditions may have been dysoxic, based on the 

low abundance and low diversity of microfauna in most of these shales. Vertebrate 

debris (teeth and fish scales) give no useful information about the black shales. 

Megafossils 

Although generally rare, megafossils are throughout the black shales of this 

study. They were noted in the 35-mesh residue after each shale sample was broken 

down. They support the contention that these shales contained some oxygen. 

Nevertheless, because this study focused on microfossils, the relatively few 

megafossils were not introduced into the paleoenvironmental analysis of the black 

shales. 

Megafossils included numerous genera of brachiopods ( Crurithyris, Orbiculoidea, 

Wellerella, Chonetinella, Rhipidomella, Derbyia, Hustedia, Juresania(?) and 

Hystricu/ana), echinoid spines, crinoid fragments, larger gastropods, larger fusulinids, 

bryozoans, a rugose coral and a bivalve. 

Phosphate 

The association of phosphatic concretions with deep-water environments is 

documented in the literature regarding Pennsylvanian deposits (Schenk, 1967; Heckel, 

1977; Kidder, 1985) and modern environments (Veeh et al., 1973; Manheim et al., 1975). 

In contrast, Bushinski (1964) contends that phosphate-rich formations are common in 

shallow-water deposits. Some of this phosphate is reworked material. 

Kidder (1985) studied the unreworked phosphate nodules of the Pennsylvanian 

Midcontinent and added to Heckel's (1977) upwelling model. Additional phosphorous 

was released to the interstitial water by the decay of dead organisms. Nodules were 

~__l 
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cemented before compaction of the shale, based on evidence of deformation around the 

nodules. 

Phosphate is concentrated in the deepest basinal water from decay of pelagic 

organisms that have settled to the bottom. As described elsewhere, westward blowing 

trade winds resulted in a vertical circulation pattern that brought this phosphate-rich 

basinal water from the deeper Anadarko Basin onto the Midcontinent during highstands 

of sea level. Phosphate concretions in Pennsylvanian black shales appear to indicate 

the influence of basinal upwelling beneath a thermocline in deep water of an 

epicontinental sea (Heckel, 1977). The absence of these concretions in analogous 

Permian shales suggests that upwelling no longer occurred during similar highstands. 



VI. 

DISCUSSION 

Five types of black shale are identified, based upon general and relative 

abundance of three groups of microfossils: conodonts, foraminifers and ostracodes. Non

skeletal phosphate is also a factor to differentiate shales. These five shale types are 

summarized in Table 1. Stratigraphic evidence supports the interpretations of relative 

depths, as discussed in Chapter IV (Stratigraphy). 

Two types of shale are shallow-water varieties and three are deep-water 

varieties. Black shales from intermediate depth are not represented by any shale in this 

study. Shales of intermediate depth represent well-oxygenated conditions (i.e. light in 

color) and contain abundant macrofauna. Black shales, as indicated by their sparse 

macrofauna, formed in stressed environments, which include deep offshore marine areas 

of low oxygen and marginal marine areas influenced by extreme salinity and low 

oxygen. 

In general, this study indicates that where conodonts and foraminifers are absent 

or extremely rare, a low diversity of ostracodes is either in small amounts or in great 

numbers. These shales are the shallow-water types. 

Likewise, where conodonts (and foraminifers, except in one type of shale 

identified) are numerous, ostracodes are typically less abundant. The conodont and 

foraminiferan genera that occur typically represent genera associated with deep-water 

assemblages. These shales, therefore, are the deep-water types. 
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Tables 2 and 3 list the counts of all microfossils picked from each interval of the 

nine shales of this study. Tables 4 through 12 in Appendix B summarize the same data 

on a shale-by-shale basis. A more detailed description of each shale is in Appendix A. 

Raw data are in Table 2 and adjusted data are in Table 3. Although 1000 grams 

of each shale interval were originally broken down in the lab, not all of the residue was 

picked. This was due either to incomplete disaggregation (as with the Bennett) or to an 

excessive amount of residue. The amount of residue picked for microfossils represents 

either half of the original amount (i.e. equaling residue from 500 grams of a shale interval) 

or more. Many counts were adjusted downward for Table 3 so that each interval of 

shale represents microfossil counts equivalent to 500 grams of shale. Interpretations 

made in this study remain valid whether raw data or adjusted data are used. 

With exception of conodonts, counts of each microfossil category that equal or 

exceed 300 implied that this microfossil was abundant in the shale and therefore it was 

no longer picked from the residue. Several thousand microfossils of one category were 

estimated to be in some samples, but only around 300 of that category were picked. 

Types of shallow-water black shales 

Three of the shales studied are of shallow-water origin. The major basis for this 

assessment is the absence or rarity of conodonts and foraminifers in these shales. Their 

localized stratigraphic extent or gradation to a non-marine deposit also supports this 

shallow-water interpretation, as discussed in Chapter IV (Stratigraphy). Another 

characteristic of these shales is their lack of non-skeletal phosphate. These shales are 

divided into two types, based on the abundance of low-diversity ostracodes. 

Type One black shales contain no conodonts and no foraminifers. Ostracodes of 

low diversity are few. Type One shales include the black shale of the Burr Limestone 

Member. 
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Type Two black shales contain extremely rare quantities of conodonts and 

foraminifers and a large quantity of ostracodes representing very few genera. Type Two 

shales include the black shale of the Legion Shale Member and the black shale of the 

Salem Point Shale Member. 

Geisina, a shallow-water ostracode genus, is in all three shales. It is, in fact, the 

only ostracode genus in black shale of the Burr and the upper half of the black shale of 

the Salem Point. It occurs, but not dominantly, in black shale of the Legion where another 

ostracode genus, Hollinella, dominates the assemblage. Unidentified ostracodes in the 

lower half of black shale of the Salem Point may have been affected by diagenetic 

processes that stripped their outer surface of detail. Although these unidentified 

ostracodes may belong to the Geisina genus, which is found above it in the same shale, 

their general shapes suggest that they belong to only one or two genera and represent 

a low-diversity assemblage. 

Absence of deep-water microfaunas, presence of a shallow-water ostracode 

genus and narrow lateral extent of these three black shales point to a marginal marine 

environment of quiet deposition, such as an expansive lagoon. The faunal assemblage 

in these shales was influenced by shallow depth, low oxygen, variable salinity and, to 

a lesser degree, nutrient availability and sedimentation rate. 

An initial interpretation suggests that Type One black shales formed in a 

hypersaline lagoon where evaporation was greater than freshwater runoff, and that 

Type Two black shales formed in a brackish-water lagoon where freshwater runoff 

mixed with marine water in a shallow bay. 

Rare gypsum crystals in a sample of black shale of the Burr from a nearby 

section not used in this study (Highway 18 of Chapter IV, Stratigraphy) suggests that 

Type One black shales formed in a hypersaline environment. Although gypsum was 

not seen in this shale where it was sampled for this study, Boardman (personal 

communication) has noted gypsum crystals at other localities of this dark shale. Rare 
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sand grains in the residue of this shale indicate that the shoreline was nearby and that 

the rate of sedimentation might have been greater than that of other black shales 

studied. An increased rate of sedimentation might lower the apparent concentration of 

microfossils. Microgastropods (Dona/dina) are abundant in the lower half of this shale 

where it was sampled but not in the nearby section of Burr mentioned above. 

Abundant plant debris in black shale of the Salem Point indicates a nearshore 

environment influenced by freshwater runoff from nearby terrestrial sources. Brackish 

conditions are more likely to have existed in the environment of this Type Two black 

shale than hypersaline conditions, based upon this evidence. Evidence of nearshore 

conditions is further supported by a paleosol immediately above the dark shale interval 

of the Salem Point. Carbon residue and some rare pyrite in the Salem Point samples are 

evidence of reducing conditions. Abundant ostracodes in this shale and in black shale of 

the Legion indicate optimal conditions for them. It is more likely that certain organisms 

would thrive, at least from time to time, in the less hostile environment of brackish 

conditions than those of hypersaline conditions. Rare sand grains in the Legion sample 

support a nearshore interpretation for this shale. Stratigraphically, the Legion Shale 

contains very light-colored shale zones. This observation is compatible with an 

interpretation of brackish-water conditions, where a shifting delta might have 

occasionally changed salinity conditions. 

An alternative interpretation suggests that these two shales formed in the same 

harsh environment and that the difference between them simply is due to episodes that 

favored temporary, exponential growths in ostracode populations. The suggestiion for 

this interpretation is the manner in which ostracodes appear to be found in some field 

samples. 

Ostracode carapaces ( Geisina where identified) litter one or more surfaces of 

black shale samples in the Salem Point, and Hollinella carapaces litter one or more 

surfaces of black shale samples in the Legion. The remaining surfaces in these samples 
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are essentially barren of ostracodes. This suggests that ostracodes periodically 

"bloomed" in large numbers but commonly were rare. Furthermore, this interpretation 

implies that the three shallow-water shales of this study formed in similar environments 

and that only two of the shale were affected by ostracode blooms. 

Assuming a large lagoonal depositional environment of unknown salinity, 

conditions favoring ostracode blooms were apparently caused by one or more factors. 

The salinity may have been "normalized" temporarily by excess runoff of freshwater 

into a hypersaline lagoon or by decreased freshwater runoff and/or increased 

evaporation in a brackish lagoon. In any event, it seems unlikely that a large lagoon 

could maintain an extreme salinity for a period of time equivalent to its depositional 

history. Perhaps an unusual increase in runoff water favorably altered the nutrient 

supply in the lagoon until the nutrients were consumed by an increased abundance of 

certain organisms. Evidence that changes in salinity or nutrient abundance or any other 

factor might have initiated an organic (ostracode) bloom was not detected in the shale 

samples of this study. In any case, these rare blooms affected only a limited biota and 

possibly arose in only a portion of the lagoon. 

The lower half of the black shale of the Legion resembles much of the black shale 

of the Burr Limestone in low diversity and low abundance of ostracodes. However, the 

upper half of the black shale of the Legion contains an abundance of a single genus 

(here Hollinella) as in the black shale of the Salem Point (here Geisina where identified). 

Type One and Type Two traits in the Legion samples supports the episodic, and 

therefore unpredictable, nature of ostracode blooms in these lagoonal environments. 

This same pattern of paucity and proliferation representing a similar organic 

bloom yet involving microgastropods is recorded in the black shale of the Burr. 

Dona/dina is abundant in the lower half of this shale but practically absent in the upper 

half. Littering of microgastropods on the field samples was not observed; however, the 

texture of the sample was highly crumbly, making an examination for such an occurrence 

...l 
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difficult. Furthermore, Dona/dina may be localized because the nearby section of the Burr 

shale unit (mentioned previously) does not contain an extraordinary abundance of 

Dona/dina. 

If this alternative interpretation of periodic ostracode blooms is correct, then the 

more barren Type One shale is representative of conditions that prevailed in the lagoon 

during the shale's depositional period. Type Two shales then represent a combination 

of Type One conditions and rare ostracode-favorable conditions. Rarity of these 

conditions suggests that ostracode abundance in Type Two shales does not represent 

the normal environment of deposition, and their abundance in the shale residue only 

distorts the interpretation by making one type of shale appear as two. Nevertheless, 

the fact remains that two shallow-water shale types are identified; one contains rare 

ostracodes and the other contains a plethora of ostracodes. 

Caution is advised when interpreting shallow-water black shale types based on 

a variable (such as relative ostracode abundance) that may not be the product of the 

normal depositional environment of the shale. Furthermore, this variable may change 

locally over short distances, and the two shale types may grade into each other. Other 

localities of these same shale units should be examined to determine whether ostracode 

abundance is localized or widespread across the shale's range of deposition. Further 

evidence will refine or broaden the above interpretation of shallow-water black shales. 

Types of deep-water black shales 

The remaining six shales studied are deep-water types. The abundance of 

deep-water conodonts is the major basis for this assessment. Other fossil and 

stratigraphic data support this contention. These deep-water shales are divided into 

three types, based on the presence or absence of non-skeletal phosphate and the 

presence or near-absence of foraminifers and other benthic microfossils. 
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Type Three black shales contain abundant conodonts of moderately high 

diversity, abundant foraminifers of moderately high diversity and nodules of non-skeletal 

phosphate. Type Three shales include the black Heebner Shale. 

Type Four black shales contain abundant conodonts of low diversity (mostly 

Streptognathodus) and abundant foraminifers of moderately high diversity. Non-skeletal 

phosphate nodules are absent from these shales. Type Four shales include the black 

shale of the Americus Limestone, the lower and upper black shales of the Hughes Creek 

Shale and the black shale of the Neva Limestone. 

Type Five black shales contain abundant conodonts of low diversity 

(Streptognathodus) and little else. Other benthic microfossils are rare to absent, and 

non-skeletal phosphate nodules are absent. Type Five black shales include the black 

Bennett Shale. 

None of these deep-water shales contains the shallow-water ostracode Geisina. 

Although this is negative evidence (i.e. the absence of an indicator genus does not 

necessarily suggest an absence of the condition of which it is indicative) its absence 

does suggest that different factors were involved in the formation of these shales. 

Likewise, Streptognathodus conodonts in all of the deep-water shales and its absence 

from all of the shallow-water shales is reciprocal evidence of similar factors having 

influenced the paleoenvironment of different black shales. 

It is no surprise that the one Pennsylvanian shale of this study is in a class by 

itself. Indeed, the Heebner Shale was selected to represent a typical, well-studied 

example of a Pennsylvanian black shale, for comparison with Lower Permian black 

shales from the same region. A similar microfauna! analysis of other Pennsylvanian black 

shales might identify different types, of which the Heebner may or may not be 

representative. Nevertheless, the Heebner is established as a deep-water black shale 

affected by upwelling of cold, phosphate-rich basinal water and overall low-oxygen 

conditions (Heckel, 1977). 



The Heebner Shale samples of this study contain more or less equal numbers of 

Streptognathodus and ldiognathodus conodonts and a few /dioprioniodus conodonts. All 

are genera associated with deep-water environments. Ammodiscus and Endothyranella 

foraminifers are abundant, and Bairdia and Healdia ostracodes and holothurian sclerites 

are present. These benthic organisms inhabited deep-water environments and suggest 

that at least low-level oxygen conditions existed there. ldioprioniodus and phosphate 

nodules indicate that cold, phosphate-rich water was in the paleoenvironment. This 

water upwelled onto the Midcontinent from deep basins in the west as described in 

Chapter Ill (Previous Investigations). 

The Heebner Shale section's location closer to the southern paleoshoreline may 

indicate that water was shallower and more oxygenated there. Schram (1984) 

suggested a similar scenario for outcrops of the same shale believed to be located closer 

to the northern paleoshoreline. Malinky (1984) observed geographic changes in the 

fauna of the Heebner Shale; northern and southern outcrops of this shale are more 

fossiliferous than outcrops from the central portion. Such changes may represent 

different types of shale, and such differences may be applicable to Permian shale types 

as well. 

Type Four shales are the Lower Permian equivalents of Type Three shales; 

however, Type Four shales differ from them mostly by the absence of phosphate 

nodules. The additional absence of ldioprioniodus suggests that the cold, phosphate

rich basinal water did not upwell on the Midcontinent in the Lower Permian as it did in the 

Pennsylvanian. 

Another difference in Type Four shales is the absence of ldiognathodus 

conodonts in Permian black shale biofacies. The conodont fauna is dominated almost 

exclusively by Streptognathodus in Type Four shales; equal numbers of the two 

genera are in Type Three shales. This difference is a reflection in the age difference of 
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the two shale types, because ldiognathodus became extinct prior to the end of the 

Pennsylvanian. 

Microfossils that are present or abundant in various combinations within these 

Type Four shales include Ammodiscus and Endothyranella foraminifers, Bairdia and 

Amphissites ostracodes and holothurian sclerites. These deep-water benthic organisms 

suggest that at least low oxygen conditions prevailed in the paleoenvironment of these 

shales. 

Type Five black shales (only the Bennett Shale of this study) differ from Type 

Four shales with respect to most microfossils except conodonts. Streptognathodus 

conodonts are abundant, similar to those of Type Four shales; however, ostracodes and 

holothurian sclerites are absent. Foraminifers are nearly absent, except for a few 

Ammodiscus and Globivalvulina in the lower portion of the Bennett Shale. Absence of 

phosphate nodules and ldioprioniodus conodonts suggests that upwelling did not occur. 

In the absence of other studies, the reason for greater stress in the 

paleoenvironment of Type Five shales can only be surmised. The water may have 

been deeper than that of Type Three and Type Four black shales. Greater depth is 

typically associated with colder temperatures and lower oxygen conditions. This 

explanation might account for the near-absence of known benthic organisms; however, it 

fails to explain why Streptognathodus abundance was unaffected by these different 

paleoenvironmental factors. 

Once more, the conodont mode of life comes into question. If conodonts were 

pelagic, like the phosphatic fish remains in the same shale, then their presence in the 

near-absence of benthic microfauna is plausible. Yet, as discussed in Chapter V 

(Paleoecologic Interpretations), pelagic lifestyle could have resulted in a high diversity of 

conodonts, and this is not the case. The nektobenthic mode of life of conodonts is still 

supported here, although the reason for their continued remains unclear. 
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One point to consider regarding Type Five shales is calcite dissolution. Low pH 

conditions may have inhibited the growth of calcitic organisms and at the same time 

allowed organisms with phosphatic hard parts, such as conodonts, to tolerate the 

stressed environment. If this was the case, however, it was not completely effective as 

the few foraminifers indicate. 

Black shale of the Neva Limestone has characteristics transitional between shale 

Types Four and Five. With exception of fossiliferous lag deposit at the base, most 

intervals of this shale are like the Type Five Bennett Shale. However, instead of 

absence of holothurian sclerites and ostracodes, there are a couple of specimens of 

each present. Nevertheless, the Neva black shale is characterized as a Type Four 

shale based on total abundance of foraminifers and ostracodes. The possibility of 

transitional conditions of stress during the shale's deposition, however, is compatible 

with the transitional nature of the abundances of microfauna in the Neva black shale. 

Similar microfauna! studies of Pennsylvanian black shales are deficient. Surely, 

the greater stress conditions which differentiate the Permian Type Five shales from the 

Permian Type Four shales affected Pennsylvanian black shales as well. Such studies 

might lead to the discovery of Pennsylvanian black shales that have equivalent 

microfauna! characteristics as Type Five shales, yet contain phosphate nodules. 

On the other hand, most of the Pennsylvanian black shales may be like the 

Heebner Shale (Type Three). Previous studies of these shales centered upon 

conodonts and mostly ignored known benthic microfauna, either because it was not 

present or because it was destroyed in the process of disaggregating the shales. 

Paleoenvironmental interpretations thus assumed that anoxic conditions existed in the 

shales. This interpretation was supported by dark color and fissility of these shales. 

However, Maples (1986) showed that in at least one Indiana black shale, horizons of 

bioturbation are preserved in calcareous concretions and are absent in the surrounding 

shale. This suggests that fissility does not necessarily prove that bioturbation was 

--~--0~1 



.........._ 

107 

absent. The diversity of benthic microfossils seen in the current study overturns the 

baseline anoxic assumption for a large number of black shales. Future inquiries in black 

shale paleoecological studies should account for at least minimal levels of oxygen in the 

paleoenvironment. 

Earlier, the idea of geographical change in fauna was introduced regarding the 

Heebner Shale. Additional work at the level of microfossils in the Permian shales may 

identify whether shale Types Four and Five grade into each other. If so, gradations may 

occur relative to paleodepth, due to distance from the paleoshoreline or to location over 

structurally positive areas. In this scenario, Type Five shales would represent deeper 

environments than Type Four shales, and Type Four shales might grade into Type Five 

shales in subsurface units to the west and south where paleodepth was greater. 

Phosphate concretions in Pennsylvanian black shales suggest that upwelling 

occurred beneath a thermocline in the deep water of an epicontinental sea, according to 

Heckel (1977). The absence of these concretions in analogous Permian shales suggests 

that upwelling no longer occurred during similar highstands. The Anadarko Basin, from 

where the basinal water upwelled onto the Midcontinent in the Pennsylvanian, was 

nearly filled with sediment by the Lower Permian. Deep phosphate-rich water from the 

open oceans no longer flowed from the west into the now shallow Anadarko Basin in the 

Lower Permian. Although vertical circulation as proposed for the Pennsylvanian 

epicontinental seas may have also occurred in the Permian, there was no phosphate

rich water to upwell onto the Midcontinent region during similar highstands. 

Overall, it appears that the epicontinental seas were not as deep during Permian 

highstands as during Pennsylvanian highstands and, therefore, the Permian black 

shales should contain a richer fauna. The evidence of this study does not assuredly 

demonstrate that this is the case; however, only one Pennsylvanian black shale was 

studied. Nevertheless, similar studies that take calcareous microfossils into account 

should be performed on other Pennsylvanian black shales. 

_j_ 
-----
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Finally, other studies should address problems associated with the 

interpretations made in this study. Geochemical studies would detect trace metals and 

phosphate that would yield clues to rates of sedimentation and origin of the sediments. 

Also, such studies might shed light on the black coloration that these shales share in 

common. This coloration, as pointed out in Chapter I (Introduction), could be caused by 

factors that indicate different conditions in the paleoenvironment. Grain-size studies may 

also yield valuable information about the black shales. An analysis of silt and sand 

abundance might determine which shale deposits were deposited near paleoshorelines 

and whether any relationship exists between relative water depth and grain-size 

distribution in these black shales . 
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VII. 

CONCLUSIONS 

• Black shales are in repetitive sequences of sedimentary rocks in the Pennsylvanian 

of both the Eastern Interior Basin and the Midcontinent region. Black shales are also 

in similar sequences in the Lower Permian Midcontinent. 

• Early cyclical sedimentation studies addressed questions regarding differences 

between the Illinois and Kansas cyclothems and the origin of these repeating 

sequences. 

• Pennsylvanian black shales have been regarded as both shallow-water deposits 

and deep-water deposits. Shallow-water interpretations of black shale origin 

dominated the literature throughout most of this century. Extreme sea-level 

fluctuations were deemed impossible by most workers. Hypotheses invoked to 

explain widespread, fissile, shallow-water black shales include the existence of 

barriers that restricted water circulation and the covering of the shallow sea surface 

by a vegetative flotant or algal mat. 

• Deep-water interpretations of black shale origin gained support with the acceptance 

of the glacial-control theory. Late Paleozoic glaciation in southern polar regions of 

Gondwanaland caused extreme sea-level fluctuations worldwide. Deposition within 

the framework of these fluctuations amid a regional subsidence produced the 

cyclothemic sequences of mostly limestone and shale seen in Midcontinent outcrops. 

~--l 
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• Many workers accept the interpretation that these black shales formed during high 

sea-level stands beneath a thermocline that restricted circulation of oxygenated 

surface water. Upwelling of cold, phosphate-rich water from the deeper Anadarko 

Basin to the west produced the phosphate nodules found in situ in the 

Pennsylvanian shales of the Midcontinent. The abundance of certain conodont 

genera ( Streptognathodus, ldiognathodus, ldioprioniodus and Gondolella) in these 

shales provides paleontological evidence of the deep-water origin of these shales. 

• Additional studies supporting the deep-water origin of Pennsylvanian black shales 

include 1.) correlation of units and cycles from the Midcontinent to both the Eastern 

Interior Basin and north-central Texas, 2.) lateral continuity of these shales over 

many hundreds of miles, 3.) assymetry of cyclothemic sequences, reflecting rapid 

transgression and slow regression rates as inferred from studies of Pleistocene 

glaciation, 4.) gradation of these black shales into fossiliferous offshore deposits in 

the direction of paleoshorelines, 5.) stratigraphic placement of these shales over 

prograded deltaic sequences in north-central Texas shelf strata, 6.) absence of the 

black facies of some dark shales over structurally positive features and 7.) 

enrichment of organic matter and certain trace elements in these shales. 

• The lateral uniformity or lateral variability of many black shale units can be used to 

make initial depth assessments. Widespread black shales were deposited beneath 

an epicontinental sea during highstand and include the Heebner Shale Member, the 

lower and upper black shale units of the Hughes Creek Shale Member, the Bennett 

Shale Member and the black shale of the lower Neva Limestone Member. Dark 

shales that occur over a limited geographic range were deposited in nearshore 

environments during lowstands of sea level and include the dark shale of the Legion 
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Shale Member, the black shale of the Burr Limestone Member and the black shale of 

the Salem Point Shale Member. Lateral stratigraphic data for the black shale of the 

Americus Limestone Member does not give enough information to infer an initial depth 

assessment. 

• Previous paleoecologic work with ostracodes, foraminifers and conodonts suggested 

that certain genera of microfossils preferred particular environmental conditions. For 

ostracodes, Geisina was a shallow-water genus, and Bairdia and Healdia (and often 

Amphissites) were deep-water genera. Foraminifers are poor indicators of paleo

depth; however, abundant Ammodiscus and/or Endothyranella strongly suggest a 

deep-water environment. For conodonts, abundant Streptognathodus and/or 

ldiognathodus suggest a deep-water environment, and the presence of 

ldioprioniodus indicates the influence of phosphate-rich water in a deep-water 

environment. 

• Five types of black shale are identified, based upon the presence or absence of 

phosphate nodules and the abundance and distribution of certain microfossils. 

Shallow-water types and deep-water types are clearly differentiated, based on 

distribution of microfauna. 

• Type One black shales are interpreted as shallow-water shales possibly deposited 

in a hypersaline lagoon. They contain no conodonts and no foraminifers. A low 

diversity of ostracodes (typically Geisina) are few. Phosphate nodules are absent. 

Type One shales include the black shale of the Burr Limestone Member. 

• Type Two black shales are interpreted as shallow-water shales possibly deposited 

in a brackish lagoon. They contain few conodonts and few foraminifers. Ostracodes 
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of low diversity (typically Geisina and Hollinel/a) are abundant. Phosphate nodules 

are absent. Type Two shales include the dark shale of the Legion Shale Member 

and the black shale of the Salem Point Shale Member. 

• Type Three black shales are interpreted as deep-water shales affected by 

upwelling of colder, phosphate-rich basinal water from the west. They contain 

abundant conodonts (typically Streptognathodus, ldiognathodus and 

ldioprioniodus), abundant foraminifers (typically Ammodiscus and Endothyranella) 

and some ostracodes (Bairdia and Healdia). Phosphate nodules are present. Type 

Three shales include the Heebner Shale Member of the Pennsylvanian. 

• Type Four black shales are interpreted as deep-water shales unaffected by 

upwelling conditions. They contain abundant conodonts (mostly Streptognathodus), 

abundant foraminifers (typically Ammodiscus and/or Endothyranella) and some 

ostracodes (typically Amphissites and/or Bairdia). Phosphate nodules are absent. 

Type Four shales include the black shale of the Americus Limestone Member, the 

lower and upper black shales of the Hughes Creek Shale Member and the black 

shale of the Neva Limestone Member. 

• Type Five black shales are interpreted as deep-water shales unaffected by 

upwelling conditions, yet affected by greater environmental stress than Type Four 

black shales. They contain abundant conodonts (Streptognathodus) and little else. 

Foraminifers (typically Ammodiscus) may be few. Phosphate nodules are absent. 

Type Five shales include the Bennett Shale Member. 

• Instead of representing two environments of deposition, shallow-water shale Types 

One and Two may represent the same lagoonal environment where the only 
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difference is low-diversity ostracode lag deposits in Type Two shales. It is possible 

that the two shale types grade into each other within the same unit if these lag 

deposits represent localized phenomena. 

• Type Four shales appear to be the Lower Permian equivalents of Pennsylvanian 

Type Three shales; however, the influence of upwelling phosphate-rich water was 

not in the depositional environment of the Lower Permian shales. This cessation of 

upwelling is the result of a decreased rate of subsidence in the Anadarko Basin. 

Additionally, this basin was nearly filled by the Lower Permian and therefore did not 

possess deep water as cold or nutrient-rich as it was in the Pennsylvanian. 

• Type Five shales probably formed in an environment more stressed (perhaps less 

oxygenated) than those of Type Four shales. These two shale types may grade 

into each other within the same black shale unit. 

• Geochemical studies of the shales used in this study are lacking. The detection and 

measurement of phosphate and trace metals would shed light on the differences 

between the shale types identified in this study. Similar microfauna! studies 

conducted laterally across several outcrops of a single black shale might reveal clues 

about the gradational nature of shale types or about the localization of low-diversity 

microorganism abundance. Finally, grain-size distribution studies would help 

determine which shale types were affected by greater sedimentation rates. 
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Descriptions of sampled intervals 
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This appendix includes a listing of the raw data of this study. It contains data 

that were used and data that were not used in the text and interpretations of this report. 

The data are included so that readers can make their own conclusions, based on the 

abundance of faunas and other data. 

Each shale is described beginning with the oldest (i.e. stratigraphically lowest) 

first. Each shale contains more than one sample interval. Its location and thickness are 

also noted. Data listed for each sampled interval include the field code used, the 

percentage of the original1000 grams picked in the laboratory, a physical description of 

the sample, the quantity of each microfossil picked and an estimate of the microfossils 

and macrofossils not picked. "Microdata" refers to data from the residue of the 80-mesh 

screen, and "macrodata" refers to data from the residue of the 35-mesh screen. (See 

Chapter I, Introduction, for more details of the shale processing techniques.) For each 

shale, the oldest sampled interval is described first. 

Field codes were assigned to shale samples and any limestones above, below 

or within sampled intervals. However, because many of the limestones were not broken 

down in the laboratory, and because none were used in this study, limestone data are 

not included. 

The colors used to describe the shales are based on Munsell® color charts. 

Colors were described in the laboratory beside a window beneath a combination of 

natural sky light and artificial lighting. 
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Verbal estimates used here are strictly arbitrary and are based on an apparent 

visual abundance in the residue. The use of "rare," "common" or "abundanf' is meant to 

be taken more relatively than absolutely and may depend on whether there is a lot of 

residue or a small amount. 

Orbiculoid brachiopods, when present in unprocessed shale samples, are often 

absent in the residue data. Apparently this brachiopod breaks up easily and contributes 

to the "shell debris" of the microdata and macrodata. 

Heebner Shale 

Kansas: SW/4, SE/4, sec.33, T33S, A11 E. 

Roadcut on east side of Highway 99, 0.4 miles north of Highway 166 intersection. 

4 feet, 0 inches thick; black interval is lower 26 inches. 

1.) Field code R2; 67 percent picked. 

Grayish black (moist), clayey, massive with relict bedding, calcareous, some iron 

oxide staining, no easily apparent fossils. 

Microdata: 

Conodonts: 

Streptognathodus 

ldiognathodus 

ldioprioniodus 

ramiform elements 

Foraminifers: 

Ammodiscus 

Ostracodes: 

Bairdia 

35 

11 

2 

8 

40 

8 
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indeterminate forms 3 

other microdata: 

microgastropods 7 

productid spines abundant 

shell debris rare 

Macrodata: 

brachiopods: 

Rhipidomella abundant 

Derbyia rare 

Crurithyris rare 

Hustedia rare 

productid spines rare 

Chonetinella very rare 

2.) Field code R3; 50 percent picked. 

Grayish black, clayey, fissile, non-calcareous, iron oxide staining on many 

bedding surfaces, no easily apparent fossils. 

Microdata: 

Conodonts: 

Streptognathodus 

ldiognathodus 

ldioprioniodus 

ramiform elements 

Foraminifers: 

Ammodiscus 

Ostracodes: 

other microdata: 

36 

32 

3 

17 

31 

none 
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Macrodata: 

shell debris 

quartz grains 

larger quartz grains 

productid spines 

large Streptognathodus 

3.) Field code R4; 50 percent picked. 

very rare 

very rare 

common 

very rare 

very rare 
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Grayish black, clayey, thin-bedded but not sheety, non-calcareous, some iron 

oxide staining, no easily apparent fossils. 

Microdata: 

Conodonts: 

Streptognathodus 

/diognathodus 

ldioprioniodus 

ramiform elements 

Foraminifers: 

Ammodiscus 

G/obivalvulina 

Ostracodes: 

other microdata: 

quartz grains 

Macrodata: 

hematite(?) 

larger quartz grains 

8 

7 

2 

8 
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35 

none 

very rare 

present 

very rare 
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4.) Field code RS; 50 percent picked. 

Brownish black to olive black, clayey, massive with relict bedding, slightly 

calcareous, some iron oxide staining, no easily apparent fossils. 

Microdata: 

Conodonts: 

Streptognathodus 

ldiognathodus 

ramiform elements 

Foraminifers: 

Ammodiscus 

Endothyranel/a 

Ostracodes: 

Healdia 

other microdata: 

holothurian sclerites 

microgastropods 

productid spines 

crinoid debris 

quartz grains 

Macrodata: 

hematite(?) 

larger quartz grains 

shell debris 

crinoid debris 

gastropods 

brachiopods: 

Wellerella 

9 

16 

6 

56 

126 

41 

13 

55 

abundant 

rare 

rare 

present 

rare 

rare 

rare 

rare 

rare 

_____..1... 
--~~----



----

Chonetinella 

Crurithyris 

productid spines 

Juresania(?) 

rare 

rare 

rare 

very rare 

Black shale of Americus Limestone 

Nebraska: NW/4, NW/4, sec.15, T1N, R13E. 

126 

Roadcut on east side of Highway 105, 0.2 miles south of Highway 8 intersection. 

1 foot, 0 inches thick. 

1.) Field code N6; 50 percent picked. 

Mottled brownish black to olive black and brownish gray to olive gray, clayey, 

fissile, lightly calcareous, lag deposits. 

Microdata: 

Conodonts: 

Streptognathodus 

Adetognathus 

ramiforrn elements 

Foraminifers: 

Ostracodes: 

Bairdia 

Gavel/ina 

Amphissites 

Hollinella 

Kegelites 

other microdata: 

559 

5 

31 

none 

3 

3 

3 

3 

3 

___ _l 
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holothurian sclerites 1 

microgastropods 41 

vertebrate teeth 80 

productid spines abundant 

shell debris abundant 

Macrodata: 

brachiopods: 

Crurithyris common 

productid spines common 

Orbicu/oidea rare 

crinoid debris rare 

vertebrate teeth rare 

gastropods very rare 

2.) Field code N7; 50 percent picked. 

Moderate yellowish brown with dark gray lenses, clayey, massive but highly 

broken, calcareous, brachiopods. 

Microdata: 

Conodonts: 

Streptognathodus 

ramiform elements 

Foraminifers: 

Endothyranel/a 

Ostracodes: 

Gavel/ina 

Amphissites 

other microdata: 

206 

8 

210 

2 

2 

........__ ~-- ~ ...... .... ···---·· .. -----~-,J.. 
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holothurian sclerites 7 

microgastropods 6 

vertebrate teeth 41 

productid spines common 

shell debris common 

crinoid debris rare 

Macrodata: 

shell debris common 

crinoid debris common 

brachiopods: 

Welle rei/a common 

Crurithyris rare 

productid spines rare 

Hustedia very rare 

productid fragments very rare 

turbiniform gastropods rare 

3.) Field code N8; 50 percent picked. 

Medium dark gray but weathers yellowish brown, clayey, massive but highly 

broken, calcareous, brachiopods (including productids) and other fossils. 

Microdata: 

Conodonts: 

Streptognathodus 

ramiform elements 

Foraminifers: 

Endothyranella 

G/obivalvulina 

167 

4 

283 

11 

·---~---- _______ ...J., 
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Climacammina 1 

Ostracodes: 

Bairdia 18 

Healdia 2 

Amphissites 3 

Hollinella 18 

other microdata: 

holothurian sclerites 74 

microgastropods 21 

productid spines abundant 

shell debris common 

crinoid debris common 

Macrodata: 

shell debris common 

crinoid debris common 

brachiopods: 

productid spines common 

Chonetinella rare 

Wellerella rare 

Crurithyris rare 

productid fragments rare 

Hustedia very rare 

Derbyia very rare 

turbiniform gastropods rare 

ramiform bryozoans rare 

----- ,-----~ 



Lower black shale of the Hughes Creek Shale 

Kansas: SE/4, SW/4, sec. 18 and NE/4, NW/4, sec. 19, T9S, ABE. 

Tuttle Creek spillway, north of Manhattan. 

0 foot, 7 inches thick, lower 2 inches is black interval, 3.5 inches limestone interval in the 

center. 

1.) Field code A2; 100 percent picked. 

Dark gray, clayey, somewhat fissile, calcareous, Orbiculoidea and Crurithyris 

brachiopods 

Microdata: 

Conodonts: 

Streptognathodus 

ramiform elements 

Foraminifers: 

Endothyranella 

Tetra taxis 

Ostracodes: 

Bairdia 

other microdata: 

Macrodata: 

holothurian sclerites 

microgastropods 

vertebrate teeth 

productid spines 

shell debris 

pyrite 

crinoid debris 

307 

23 

320+ 

5 

23 

71 

12 

103 

common 

common 

rare 

abundant 

.........____ --~-~--~--- ---- ____..,1. 
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brachiopods: 

Crurithyris 

Chonetinella 

Wellerella 

Rhipidomella 

Derbyia 

abundant 

rare 

rare 

rare 

rare 

2.) Field code A4; 50 percent picked. 

Medium gray, clayey, massive and crumbly, calcareous, brachiopods including 

productids. 

Microdata: 

Conodonts: 

Streptognathodus 11 0 

Hindeodus 4 

Emson~ 1 

ramiform elements none 

Foraminifers: 

Endothyranella 211 

G/obivalvulina 12 

Tetrataxis 53 

Ostracodes: 

Bairdia 330+ 

Amphissites 9+ 

other microdata: 

holothurian sclerites 302 

scolecodont 1 

Dona/dina gastropod 1 

~~..--.-::....--·- -~ 
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vertebrate teeth 25 

productid spines abundant 

shell debris common 

pyrite common 

Macrodata: 

brachiopods: 

Crurithyris abundant 

productid spines abundant 

Derbyia rare 

crinoid debris common 

fusulinids common 

echinoid spines rare 

encrusting bryozoans rare 

Upper black shale of the Hughes Creek Shale 

Kansas: SE/4, SW/4, sec. 18 and NE/4, NW/4, sec. 19, T9S, R8E. 

Tuttle Creek spillway, north of Manhattan. 

1 foot, 11 inches thick. 

1.) Field code A 11; 50 percent picked. 

132 

Dark gray to grayish black, clayey, somewhat fissile but crumbly, calcareous, 

some Orbiculoidea and Crurithyris brachiopods. 

Microdata: 

Conodonts: 

Streptognathodus 

ramiform elements 

583 

13 

·-··-~-~ 



Foraminifers: 

Ammodiscus 130 

Endothyranel/a 45 

Tetra taxis 4 

Ostracodes: 

Bairdia 16 

Amphissites 16 

other microdata: 

holothurian sclerites 19 

microgastropods 45 

vertebrate teeth 60 

productid spines abundant 

shell debris abundant 

glauconite common 

echinoid spines rare 

Macrodata: 

brachiopods: 

Crurithyris abundant 

Orbiculoidea abundant 

productid spines abundant 

productid fragments rare 

We/Jere /Ia rare 

vertebrate teeth common 

ramiform bryozoans common 

fenestrate bryozoans rare 

crinoid debris rare 

echinoid spines rare 

---- -~------~ 



.........__ 

gastropods very rare 

2.) Field code A12; 50 percent picked. 

Dark gray to grayish black, clayey, fissile, lightly calcareous, abundant 

Orbiculoidea and Crurithyris brachiopods. 

Microdata: 

Conodonts: 

Streptognathodus 

ramiforrn elements 

Foraminifers: 

Ammodiscus 

Endothyranella 

Ostracodes: 

Bairdia 

other microdata: 

vertebrate teeth 

productid spines 

shell debris 

Macrodata: 

shell debris ( Orbicu/oidea?) 

brachiopods: 

Crurithyris 

productid spines 

vertebrate teeth 

ramiform bryozoans 

crinoid debris 

288 

10 

179 

1 

1 

16 

abundant 

abundant 

abundant 

abundant 

common 

rare 

rare 

rare 

134 

- _ _l 
--------· --~---·--



3.) Field code A13; 50 percent picked. 

Medium dark gray to dark gray, clayey, somewhat fissile, calcareous, 

Orbiculoidea brachiopods, productid spines. 

Microdata: 

Conodonts: 

Streptognathodus 

ramiform elements 

Foraminifers: 

Endothyranella 

Ostracodes: 

Bairdia 

other microdata: 

vertebrate teeth 

productid spines 

shell debris 

crinoid debris 

echinoderm plates 

Macrodata: 

brachiopods: 

Crurithyris 

Chonetinella 

productid spines 

Orbiculoidea debris 

Wel/erel/a 

Hystricu/ana 

Hustedia 

Rhipidomella fragment 

145 

7 

33 

7 

18 

abundant 

common 

rare 

rare 

abundant 

abundant 

common 

rare 

rare 

very rare 

very rare 

very rare 

135 

----- -·- - - -----·-"""'" 
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crinoid debris 

bivalve 

Bennett Shale 

common 

very rare 

Kansas: SE/4, SW/4, sec. 18 and NE/4, NW/4, sec. 19, T9S, R8E. 

Tuttle Creek spillway, north of Manhattan. 

3 feet, 0 inches thick; sampled at 6-inch intervals. 

1.) Field code A31; 99 percent picked. 

136 

Dark gray to grayish black, clayey, massive and dense, lightly calcareous, 

Orbicu/oidea brachiopods. 

Microdata: 

Conodonts: 

Streptognathodus 

ramiform elements 

Foraminifers: 

Ammodiscus 

Ostracodes: 

other microdata: 

vertebrate teeth 

shell debris 

Macrodata: 

brachiopods: 

Orbicu/oidea debris 

vertebrate teeth 

85 

1 

4 

none 

4 

very abundant 

abundant 

rare 

---~l 



--

2.) Field code A32; 99 percent picked. 

Grayish black, clayey, mostly fissile, slightly calcareous, Orbiculoidea 

brachiopods. 

Microdata: 

Conodonts: 

Streptognathodus 

ramiform elements 

Foraminifers: 

Ammodiscus 

G/obiva/vulina 

Ostracodes: 

other microdata: 

vertebrate teeth 

shell debris 

Macrodata: 

brachiopods: 

26 

none 

14 

6 

none 

7 

common 

Orbiculoidea debris rare 

vertebrate teeth rare 

3.) Field code A33; 91 percent picked. 

Grayish black, clayey, somewhat massive with some thin bedding, lightly 

calcareous, Orbicu/oidea brachiopods. 

Microdata: 

Conodonts: 

Streptognathodus 

ramiform elements 

Foraminifers: 

50 

3 

137 

----~ 



.........____ 

138 

Globivalvulina 3 

indeterminate form 1 

Ostracodes: none 

other microdata: 

vertebrate teeth 19 

shell debris abundant 

Macrodata: 

brachiopods: 

Orbicu/oidea debris rare 

4.) Field code A34; 93 percent picked. 

Grayish black, clayey, somewhat massive with some thin bedding, lightly 

calcareous, Orbiculoidea brachiopods. 

Microdata: 

Conodonts: 

Streptognathodus 

ramiform elements 

Foraminifers: 

Ostracodes: 

other microdata: 

vertebrate teeth 

shell debris 

Macrodata: 

brachiopods: 

62 

3 

none 

none 

29 

abundant 

Orbicu/oidea debris rare 

""" ·--~ ~ --- ----~-----------

____ ___)_ 
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5.) Field code A35; 97 percent picked. 

Grayish black, clayey, fissile, lightly calcareous, abundantOrbicu/oidea 

brachiopods. 

Microdata: 

Conodonts: 

Streptognathodus 

ramifonn elements 

Foraminifers: 

Ostracodes: 

other microdata: 

vertebrate teeth 

shell debris 

Macrodata: 

brachiopods: 

Orbicu/oidea debris 

Crurithyris 

6.) Field code A36; 97 percent picked. 

131 

2 

none 

none 

40 

very abundant 

abundant 

very rare 

139 

Grayish black, clayey, fissile, calcareous, common Orbiculoidea brachiopods. 

Microdata: 

Conodonts: 

Streptognathodus 

ramifonn elements 

Foraminifers: 

Ostracodes: 

other microdata: 

vertebrate teeth 

58 

8 

none 

none 

32 



----~ 

shell debris 

Macrodata: 

brachiopods: 

Orbiculoidea debris 

Crurithyris 

vertebrate teeth 

very abundant 

abundant 

common 

rare 

Black shale of Legion Shale 

Kansas: E/2, SW/4, sec. 23, T1 OS, R7E. 

Roadcut on north side of Highway 18, southwest of Manhattan. 

4 feet, 8 inches thick; second sample is 32 inches above base of first sample. 

1.) Field code 82; 100 percent picked. 

140 

Light olive gray, clayey, mostly fissile, calcareous, no easily apparent fossils. 

Microdata: 

Conodonts: 

indeterminate piece 1 

Foraminifers: none 

Ostracodes: 

Geisina 4 

Gavel/ina 4 

other microdata: 

brittle star fragments 5 

microgastropods 2 

vertebrate teeth 1 

productid spines (short) rare 



---

Macrodata: 

shell debris 

crinoid debris 

quartz grains 

2.) Field code 83; 100 percent picked. 

rare 

rare 

very rare 

none 

Pale yellowish brown, clayey, fissile but crumbly, calcareous, no easily 

apparent fossils except ostracode lag deposits on some surfaces. 

Microdata: 

Conodonts: 

Foraminifers: 

indeterminate form 

Ostracodes: 

Geisina 

Hollinella 

other microdata: 

microgastropods 

vertebrate teeth 

ostracodes (still) 

productid spines 

echinoid spines 

quartz grains 

Macrodata: 

none 

1 

30+ 

320+ 

2 

6 

very abundant 

common 

rare 

rare 

larger ostracodes common 

turbiniform gastropods (Dona/dina ?) rare 

crinoid debris 

echinoid spines 

rare 

very rare 

141 



-----

Black shale of Burr Limestone 

Kansas: SE/4, SW/4, sec. 18 and NE/4, NW/4, sec. 19, T9S, R8E. 

Tuttle Creek spillway, north of Manhattan. 

1 foot, 6 inches thick. 

1.) Field code A51; 50 percent picked. 

142 

Dark gray to grayish black, clayey, massive but highly crumbly, non-calcareous, 

no easily apparent fossils. 

Microdata: 

Conodonts: 

Foraminifers: 

Ostracodes: 

Geisina 

other microdata: 

Macrodata: 

Dona/dina gastropods 

vertebrate teeth 

productid spines 

shell debris 

quartz grains 

Dona/dina gastropods 

other turbiniform gastropods 

quartz grains 

brachiopods: 

productid spines 

Juresania(?) 

larger ostracodes 

none 

none 

15 

118 

23 

common 

common 

common 

abundant 

common 

common 

common 

very rare 

rare 

==~===,..... 
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crinoid debris 

vertebrate teeth 

echinoid spines 

2.) Field code A52; 100 percent picked. 

rare 

rare 

very rare 

143 

Dark gray, clayey, fissile, very slightly calcareous, no easily apparent fossils. 

Microdata: 

Conodonts: none 

Foraminifers: none 

Ostracodes: 

Geisina 9 

other microdata: 

scolecodont 1 

Dona/dina gastropod 1 

vertebrate teeth 6 

Macrodata: 

shell debris rare 

Black shale of Salem Point Shale 

Kansas: E/2, SW/4, sec. 23, T1 OS, R7E. 

Roadcut on north side of Highway 18, southwest of Manhattan. 

2 feet, 1 inch thick; color change 1 0 inches above base; capped by limey paleosol. 

1.) Field code 821; 50 percent picked. 



............___ 

144 

Mottled dark gray and moderate yellowish brown, clayey(?), fissile with thin 

alternations of dark and light colors, calcareous, abundant plant debris, no other 

easily apparent fossils. 

Microdata: 

Conodonts: 

Foraminifers: 

Ostracodes: 

indeterminate forms 

other microdata: 

vertebrate teeth 

fish scales 

carbon debris 

fish debris (vertebrae) 

Macrodata: 

larger ostracodes 

shell debris 

2.) Field code 822; 50 percent picked. 

none 

none 

300+ 

7 

8 

rare 

very rare 

abundant 

rare 

Mottled light olive gray and medium dark gray, clayey(?), massive with thin 

alternations of two colors, calcareous, no easily apparent fossils except 

ostracode lag deposits on some surfaces. 

Microdata: 

Conodonts: none 

Foraminifers: none 

Ostracodes: 

Geisina 300+ 

other microdata: 

1 



.........___. 

Macrodata: 

vertebrate teeth 

fish scales 

pyrite 

quartz crystals 

larger ostracodes 

vertebrate teeth 

4 

11 

rare 

very rare 

abundant 

very rare 

Black shale of Neva Limestone 

Kansas: E/2, SW/4, sec. 23, T1 OS, R7E. 

Roadcut on north side of Highway 18, southwest of Manhattan. 

145 

1 foot, 8 inches thick; tan lag deposit 2 inches above base; color change 1 foot, 3 inches 

above base. 

1.) Field code 831; 50 percent picked. 

Pale yellowish brown with streaks of dark yellowish orange and dark gray, 

clayey but with coarse fossil debris, massive with some thin bedding, 

calcareous, phosphatic lag deposit included in sample, many brachiopods 

including Orbicu/oidea and Wellerel/a, pectinid mollusks(?). 

Microdata: 

Conodonts: 

Streptognathodus 

Ellisonia 

ramiform elements 

Foraminifers: 

Ammodiscus 

179 

1 

none(?) 

44 



.....-..___ 
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Tetra taxis 2 

Triticites (or Leptotriticites ?) 299 

Ostracodes: 

Amphissites 131 

indeterminate forms 15 

other microdata: 

microgastropods 63 

vertebrate teeth 197 

shell debris abundant 

productid spines common 

bryozoan debris common 

Macrodata: 

fusulinids (mostly Triticites) abundant 

brachiopods: 

Crurithyris common 

productid spines common 

Wei/ere/fa rare 

winged spiriferid fragment very rare 

bryozoans (all kinds) common 

shell debris common 

crinoid debris common 

crinoid calyx fragment very rare 

2.) Field code 832; 100 percent picked. 

Dark gray to grayish black, clayey, massive with thin bedding, calcareous, 

Crurithyris and flattened Wellerel/a brachiopods. 

Microdata: 



----

Conodonts: 

Streptognathodus 

ramiform elements 

Foraminifers: 

Ostracodes: 

other microdata: 

Macrodata: 

vertebrate teeth 

shell debris 

hematite 

gypsum crystals 

shell debris 

brachiopods: 

Wel/erella 

3.) Field code 833; 100 percent picked. 

8 

5 

none 

none 

14 

abundant 

common 

common 

very abundant 

rare 

147 

Medium dark gray to dark gray, clayey, mostly massive but somewhat fissile in 

parts, calcareous, no easily apparent fossils. 

Microdata: 

Conodonts: 

Streptognathodus 

ramiform elements 

Foraminifers: 

Ammodiscus 

G/obiva/vulina 

Ostracodes: 

other microdata: 

90 

22 

13 

3 

none 

~---~ 



............__ 

vertebrate teeth 

shell debris 

Macrodata: 

brachiopods: 

Wellerel/a debris 

shell debris 

quartz grains 

4.) Field code 834; 100 percent picked. 

47 

common 

rare 

rare 

very rare 

Medium dark gray to dark gray, clayey, massive, non-calcareous, some plant 

debris, no other easily apparent fossils. 

Microdata: 

Conodonts: 

Streptognathodus 

ramiform elements 

Foraminifers: 

Ammodiscus 

Ostracodes: 

other microdata: 

microgastropods 

Macrodata: 

5.) Field code 835; 50 percent picked. 

5 

2 

8 

none 

4 

none 

Pale yellowish brown with rare grayish orange pink and medium dark gray, 

clayey, massive with some traces of thin bedding, very slightly calcareous, plant 

debris(?), no other easily apparent fossils. 

Microdata: 

----------'-
~-----·-----· ·--------· 
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Conodonts: 

Streptognathodus 66 

Hindeodus 2 

ramiform elements 11 

Foraminifers: 

Ammodiscus 1 

Ostracodes: 

Amphissites 2 

other microdata: 

holothurian sclerites 1 

vertebrate teeth 37 

shell debris common 

productid spines common 

crinoid stems common 

Macrodata: 

crinoid debris common 

shell debris rare 

brachiopods: 

Crurithyris very rare 

rugose coral very rare 

.........._ 
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APPENDIX B 

Microfauna! summaries of each shale 

This appendix contains the microfauna! data that is summarized in Table 2; 

however, the data are contained on one page for each of the nine shales of this study. 

The data for each shale are condensed and are easier to read than in Table 2. 

Only the conodont data, foraminiferan data, ostracode data and other selected 

microfauna! data are included in the tables. The shale type that was identified based 

upon this study is also noted. 

The raw data of Table 2 was used as opposed to the adjusted data of Table 3 

as discussed in Chapter VI (Discussion). 
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Sample number 

Field code 

Total conodonts 

Streptognathodus 

ldiognathodus 

ldioprioniodus 

Total foraminifers 

Ammodiscus 

Endothyranella 

Globivalvulina 

Total ostracodes 

Bairdia 

Healdia 

indeterminate 

holothurian sclerites 

microgastropods 
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Sample number 

Field code 

Total conodonts 
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