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CHAPTERl

INTRODUCTION

L 1 mSTORY OF INDOCYANINE GREEN

Indocyanine green dye (ICG) was developed in the 1950's at the Eastman Kodak

Research Laboratories in New York by Drs. Leslie Brooker and Donald Heseltine and

patented in 1959 []-4]. ICG was quickly distinguish.ed for two unique properties: it has

high optical absorbance in a spectral region where human tissue is relatively transparent

and it has very low toxicity [1-3]. One of the initial uses for ICG was as an indicator for

cardiovascular circulation [1-3]. Indocyanine green has continued to be used in the

medical community for such purposes as blood volume determination, liver function

studies, object localization in tissue and fluorescence probing of enzymes and proteins [5].

More recently, ICG has been used in ophthalmic research and as a selectivity agent in the

delivery oflaser energy to biological tissues [6-20, 32-38].

1.2 OPTICAL PROPERTIES OF INDOCYANINE GREEN

The optical properties of indocyanine green arise from its chemical composition.

The schematic diagram of the indocyanine green molecule seen in Figure 1.1 shows a

chain of atoms, in the center of the lCG molecule, that are bound together by alternating

single and double bonds that form what is called a conjugated chain [31]. This conjugated

1
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chain behaves like an antenna, in that the 1t-orbital electrons in the chain may oscillate

along the chain when excited with the appropriate energy. The strong absorption of light

by ICG is consider,ed to be due to the electrons in this conjugated chain absorbing the

incident light energy [31].

At low concentrations, indocyanine green dye, when dissolved in water, blood

plasma, or methanol, has a peak. absorption near 800 run; the exact location of the peak

absorbance depends on the concentration of leG and the solvent used. At high

concentrations the dominant absorption peak is located near 700 run; the 800 run peak is

still present, but it is no longer the dominant peak [25,26]. The wavelength at which peak:

absorption occurs will thus vary for different concentrations of ICG dissolved in different

solvents. Similarly, the concentration at which the 700 om peak becomes dominant

depends on the solvent used. The change in wavelength at which the dominant peak:

occurs is not due to a shift of the peaks, but from a chemical change in the leG solution

that takes place at higher concentrations.

The change in the maximum absorbance peak. is due to indocyanine green

aggregation, the collection of one or more ICG molecules combining with other ICG

molecules to fonn larger units, called oligorners. An oligomer oftwo molecules is called a

dimer,. an oligomer of three molecules is a trimer, and so on. An oligomer with n number

of molecules is generally referred to as an n-mer. A single molecule of leG can be

considered an oligomer of only one molecuIe and is referred to as a monomer. The

aggr~gation of ICG can occur through different species of oligorners, such as a monomer

to monomer, or dimer to dimer, or monomer to dimer, etc.

Figures 1.2 - 1.4 show how the normalized absorption spectra changes at different
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concentrations for different solvents; the absorbance has been normalized with the

concentration to show the nature of the absorbance spectra at different concentrations on

the same scale. Figure 1.2 shows a maximum absorbance at approximately 780 nrn. for the

36 and 17~ concentrations, with each having a shoulder peak at 715 nm. This shoulder

peak not only becomes the dominant peak at higher concentrations but it is also shifted;

the maximum absorbance peak is located at 700 run at a concentration of 101~. While

the peak at the 700 - 715 run range shifts to lower wavelengths at higher concentrations,

the 780 run peak. remains fixed at low and high concentrations.

Figure 1.3 shows the nonnalized absorbance spectrum for reG in a solution of

water and human serum albumin (water + 3% HSA, by weight). The peak absorbance

remains stationary at approximately 795 om at low and high concentrations, with a barely

visible shoulder peak around 725 nm.

Figure 1.4 shows the normalized absorbance behavior of rCG in methanol. The

dominant absorption peak is located at approximately 787 run, with the shoulder peak in

the 715 nm range showing no change with concentration.

As indicated in Figure 1.2, indocyanine green aggregates will fonn at low

concentrations due to the hydrophobic nature of the dye. The aggregates fonn from the

dipole-dipole interactions and van der Waals forces between the dye and the water

molecules in aqueous solutions [26]. At higher concentrations aggregation dominates

giving rise to the increase of the 700 om absorption peak. When reG is dissolved in either

methanol or a solution of water and human serum albumin (HSA) the dye becomes more

stable and aggregates form less readily. ICG in aqueous solutions with HSA do form

aggregates at high enough concentrations. The concentration at which the absorption
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peak due to aggregate fonnation becomes dominate depends on the ICG concentration

and the amount of HSA present in the solution. However, solutions of leG in methanol,

in concentrations above 120 J,1M, have not demonstrated aggregate formation.

1.3 INDOCYANINE GREEN STABILITY

When in the dry, solid state form, powdered indocyanine green is stable for over a

year when kept at room temperature. However, once indocyanine green has been

dissolved in water, the dye will rapidly degrade, even in the absence of light [1,30].

However, if indocyanine green is in a solution ofwater and protein, such as human serum

albumin (HSA), the degradation rate is greatly reduced [30]. When in the blood, leG is

stable over a period of several days [1].

Indocyanine green dissoIDved in methanol, although ofno use in medical treatments,

has the advantage ofbeing easy to handle and store and, most importantly, being stable for

periods of weeks. In this thesis, the indocyanine green dye samples were either dissolved

in methanol or in a solution ofdeionized water and 3% HSA, by weight.

1.4 CONTRIBUTIONS OF TIllS THESIS

Indocyanine green has long been studied for its absorption properties, fluorescence

properties, and degradation properties when exposed to light or heat [1-5, 23-28, 30, 32

33]. Studies have also been perfonned to detennine the effectiveness of the dye in

medical applications, especially in laser tissue welding [6-20, 22,34-38]. This thesis

expands on the work done by CruU and Schafer that studies the effect that high intensity
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laser irradiation has on the stability/degradation of ICG [29]. This thesis considers the

effect that laser radiation,. which may be typical in laser welding applications, has on the

degradation ofICG in an otherwise stable environment.
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Figure 1.1 The indocyanine green molecule. Unlabeled vertices represent Carbon atoms.
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IleG in Water
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Figure 1.2 Normalized absorbance spectra of leG in water for three concentrations:
17~ (solid line), 36 ~ (dotted tine), and 101 f.IM (dashed line). The
vertical line is at approximately 780 run.
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leG in Water + 3% HSA
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Figure 1.3 Normalized absorbance spectra of leG in water + 3% HSA for three
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IleG in Methanol
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CHAPTER 2

EXPERIMENTAL PROCEDURES

2.1 INTRODUCTION

Before this work, it was believed that indocyanine green dye in methanol solutions

was stable even upon exposure to high intensity laser irradiation. It was also believed that

ICG in solutions with stabilizing proteins were stable while in the body. However, work

done by LaJoie, et a!., has suggested that ICG may photodegrade even in the presence of

stabilizing proteins, if the illumination intensity is high enough [20,29]. To date, no

references are available describing the degradation effects that high intensity laser

irradiation has on ICG while in the body.

This thesis will describe studies of how indocyanine green degrades upon exposure

to high intensity laser irradiation when in methanol solutions and aqueous solutions with

stabilizing proteins pres.ent.

2.2 SAMPLE PREPARATION

2.2.1 AQUEOUS ICG SOLUTIONS

The 538~ stock solution of aqueous ICG was prepared by dissolving 12.5 mg

oflaser-grade indocyanine green (formula weight: 774.97 glmole) in 30 mL of a solution

10
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of deionized water + 3% by weight human serum albumin (HSA). The indocyanine green

was obtained from Kodak under the trade name IR-125; the deionized water was

obtained from a Barnstead NANOpure ultrapure water system; the pipettes used in

measuring the volume of liquid used were Oxford® BenchMate™ continuously adjustable

pipettes. The human serum albumin (HSA) was purchased from Sigma Chemical; the

percentage of HSA-to-water in the solution is 3% by weight, or 4.8482g HSA in 160 mL

water (see section 2.2.3 for measurement uncertainties). The bottle of stock solution was

sealed and shaken by hand for approximately 30 seconds. To allow the indocyanine green

to fully dissolve in solution and to allow the bubbles formed from shaking the container to

diminish, the stock solution was placed in a dark, room temperature (20°C) box for nine

hours. From this stock solution 15 mL of1~ 3 J.lM, 10 J.lM, 30 IlM. and 100 J,1M final

concentrations of ICG were prepar1ed in similar bottles (see Table 2.1 for details); the

above mentioned samples were stirred by grasping the bottles at the neck and swirling the

bottles circularly in the horizontal plane to eliminate the bubble formation encountered

while shaking the stock solution.

Two polystyrene ,cuvettes (Fisher Chemical standard DSP cuvettes) were then

filled with identical concentrations and covered by Parafilm-M to minimize loss due to

evaporation. One cuvette was set aside in a dark box for a control sample while the other

was irradiated with laser energy. This same procedure was followed for all above

mentioned concentrations.
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2.2.2. METHANOL ICG SOLUTIONS

A concentrated solution of ICG in methanol was prepared by dissolving

15.0 mg oflaser-grade indocyanine green, from Kodak (IR-125, I.ot # 0990 103070), and

32.6 mL of HPLC grade methanol, from Fisher Chemical, to create a 595 j.tM stock

solution. The methanol was used without further purification. The lid was securely

tightened on the glass container of ICG stock solution and shaken vigorously for 30

seconds. The solution was then placed in a dark, room temperature (25°C) container for

several hours to allow the dye to fully dissolve in the methanol. Final concentrations of 1

J.1M, 3 J.IM, 10 JJ,M, 30 J.1M, and 100 IJM were prepared in similar containers (see Table

2.2) and placed in a dark, room temperature container for eight hours (overnight) before

use. Two polystyrene cuvettes were each filled with 3.5 mL of the desired concentration;

one cuvette was stored in a dark container for a control while the other was irradiated

with laser energy.

2.2.3 MEASUREMENT UNCERTAINTY

The greatest uncertainty in measuring the concentration of the samples is in

measuring the initial amount of indocyanine green powder to be used in the solutions. The

display on the digital scale used reads to the tenth of a milligram, or 0.0001 g. However,

this digit is not significant. The maximum error for this scale is thus ± 0.5 mg, leading to a

4% and 3.3% error in the mass of the ICG used in creating the stock aqueous and

methanol solutions, respectively. To calculate the molar concentration (moleslliter), the

mass of the leG to be used is divided by the formula weight ofICG (assumed to be exact)
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such that n = mIFW, where n is the number of moles, m is the mass and FW is the fonnula

weight. Thus, the error in the number of moles, ~ is just the error in the mass of leG

divided by the formula weight, or An = ArnIFW.

The uncertainty in the volume of solvent used in making the solutions is

determined from the pipette manufacturer's specifications. The uncertainty varies with the

settings on the pipettes; for example, a setting of 1000 J,.LL has an uncertainty of ± 0..8%.

or ± 81J,L whereas a setting of10 J.,LL has an uncertainty of± 3.0%, or ± 0.3 )JL.

The calculation of the stock solution concentration, C. is determined from the

equation C = n1V, where n is the number of moles of leG and V is the volume of the

solvent. The error in the stock concentration, ~C is

~n n I!V
AC-- -
II - ~V - y2 '

where AY is the error in the volume of solvent.

(2.1)

The concentrations used in the experiment are prepared by diluting concentrations

of the stock solution and, therefore, require a different equation that relates the final

concentration to the initial stock concentration. The equation for the diluted

concentration is

V
Cr =C·-

I

Iy
r

(2.2)

where Cr is the final diluted concentration, Ci is the initial (stock) concentration, Vi is the

volume of stock solution, and Yr is the total volume of the final (diluted) solution. The

total volume of the final solution is the sum of the volume of the stock solution used and

the volume of the solvent used, or Vr = Vi + Vs, where V s is the volume of the solvent.
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The uncertainty in the final concentration is therefore dependent on the uncertainty in Ci ,

Vi , and Vs . The formula for the uncertainty in Cr, is

(2.3)

Tables 2.1 (b) and 2.2 (b) show the maximum uncertainties in the measurements

for the data shown in the corresponding Tables 2.1 (a) and 2.2 (a) for aqueous solutions

and methanol solutions, respectively.
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Final Stock Solution Water + 3°./0 HSA
Concentration used (538 ~11M) Solution used

1 JlM 27.9 f..lL 14.9721 mL

31JM 83.6 rll- 14.9164 mL

10 J.1M 0.279 mL 14.721 mL

30 J.LM 0.836 mL 14.164 mL

10O~ 2.788 mL 12.212 mL

5381JM 30.000 mL

Maximum Stock Solution Water + 3% HSA
Concentration Volume Solution Volume

Uncertainty Uncertainty Uncertainty

(1 J.l.M) ± 0.005 IJM ± 0.41J,L ±0.120mL

(3~ ± 0.013 IJM ± 1.04 J,JL ±0.120 mL

(10 pM) ± 0.352 JlM ±3.2~ ±O.120 rnL

(30 JlM) ± 1.006 IJM ±O.008 mL ±0.112 mL

(100~ ± 3.238 J,JM ±0.024mL ±0.099 mL

(538~ ± 17.20 J.lM ±0.240mL

TABLE 2.1. (a) Concentrations of indocyanine green (leG) samples in water + 3%
HSA. Final concentrations are obtained by mixing the given amount of538
IJM stock solution with the given amount ofwater + 3% HSA solution.
(b) Uncertainty in the measurements shown in (a).
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Final 1 Stock Solution Metbanol
Concentration used (595 JJM) used

1 J,1M 25.2 J,1L 14.975 mL

I

311M 75.6 J,JL 14.924mL
I

1O~ 0.336 mL 19.664 mL

30 J.1M 1.010 mL 18.992mL

100 J,LM 3.360 mL 16.640mL

595 IJM I 32.60 mL

Maximum Stock Solution Methanol
Concentration Volume Volume

UDcertaintv Uncertainty Uncertaioty

(1!1M)± 0.033 J,JM ± 0.4 J,1L ±0.120 mL

(3 JlM)± 0.099 J.1M ± 1.2 f.JL ±0.120 mL

(lopMl± 0.312 J..LM ± 4.8 J,JL ±0.160 mL

(30 JlM) ± 0.763 J.LM ± 8.3 J,JL ± 0.152 mL

,I (lOOJ1M)± 2.530 J.1M ±O.028mL ± 0.136 mL

(595 liM) ± 14.98 J.1M ± 0.264rnL

TABLE 2.2. (a) Concentrations ofindocyanine green (ICG) in methanol samples. Final
concentrations are obtained by mixing the given amount of 595 r.JM stock
solution with the given amount ofmethanol.
(b) Uncertainty of the measurements shown in (a).
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2.3. EXPERIMENTAL SETUP

2.3.I.lRRADIATION SETUP

A pulsed Alexandrite laser (Light Age model 10IPAL) was used as the source of

laser radiation. The Alexandrite laser is tunable over a range from approximately 720 om

to 780 nm. The laser output is maximal when the laser is set at a wavelength of 750 nm;

hence, the wavelength chosen for the experiment was 750 nm. The laser operates at a

pulse repetition rate of 20 Hz with each pulse being approximately 60 /..lS long (fuU width

at half maximum, FWHM), henceforth called long pulses. Each long pulse is actually a

packet of multiple, shorter pulses that have individual pulse widths on the order 90 ns

(FWHM).

The laser may also be operated in a Q-switched mode which shortens the pulses,

but keeps the total energy per pulse constant. These Q-switched pulses are a single pulse

with pulse width around 90 ns (FWHM). The experimental setup for both long pulse and

Q-switched irradiations is the same.

In order to acconunodate the laser, all the optics, the sample, and both detectors

on one optics table, the setup required the "U" shape fonn as seen in Figure 2.1. The

beam exits the laser and is redirected to the opposite end of the optics table via two

dielectric coated mirrors (Virgo Optics). A glass microscope-slide is placed in the path of

the beam and is used as a beam splitter. This glass slide reflects approximately 3% of the

incident laser beam.

The diverging lens positioned ,after the first beam splitter and before the leG

sample is used to provide a larger spot size at the surface of the cylindrical lens. The
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cylindrical lens modifies the beam into an. elliptical shape; this enables the expanded beam

to irradiate a broader portion of the sample with minimal loss of laser radiation to the

periphery; the spot size on the cuvette is approximately 0.5 em wide by 2.5 em tall. To

ensure a unifonn distribution ofenergy deposition throughout the ICG sample, a miniature

magnetic stir bar was placed inside the cuvette and driven by a HeUma CUV-O-STIR.il!)

(model 333).

The amount of energy delivered to the leG sample cannot be detected directly,

for the energy of the laser pulses is far greater than the damage threshold of the available

detectors. To calculate the amount of energy delivered to the ICG sample, an alternate

method was devised that entailed measuring a smaller portion of the energy delivered to

the sample. The amount of energy deposited into the leG sample is determined by

measuring the both the amount of energy transmitted and energy reflected by the second

beam splitter; the light that is incident to the second beam splitter is just the light reflected

from the first beam splitter. The s,econd beam splitter is placed at an angle identical to the

first beam splitter (450 ± 10 with respect to the incident beam); therefore, the percent of

light reflected by the second beam splitter should be identical to the percentage of light

reflected by the first beam splitter. The ratio oftransmitted to reflected energy (T:R ratio)

ofthe first beam splitter is then identical to the T:R ratio of the second beam splitter.

The laser pulses from the alexandrite laser vary in shape and position due to

thermal fluctuations of the alexandrite crystal, hence any non-unifonnity of the detector

surfaces (typical of a foreign object on the detector surface or a damaged area of the

detector) can cause the measured T:R ratio to vary from pulse to pulse. To minimize the

fluctuations in the measured T:R ratio, the lens placed before the second beam splitter is

:~

!I
'101
;~

:0
:~
:!01
:~
I'i'l."fJ

;1

il
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used to diverge the beam going to both detectors by the same amount in .order for the

beam to cover the greatest surface area on both detectors. This enlarged beam spot size

(approximately 0.5 em in diameter) is large enough to cover most of the detector surface

without clipping by the detector aperture.

Since the measured T:R ratio varies slightly from pulse toO pulse~ the appropriate

ratio used to calculate the energy delivered to the leG sample is the average of the T:R

ratios for ,each pulse of that irradiation data set. Once the T::R ratio of the second beam

splitter is determined, th,e amount of energy delivered to the ICG sample can be calculated

by multiplying the T:R ratio with the energy detected by Detector A This assumes that

no loss due to surface reflections occur at the lenses, cuvette, back surfaces of the beam

splitters, and the detector heads. To minimize any loss due to these surface reflections, a

minimal amount of optics was used for the irradiation setup.

The detectors (Laser Precision RJP-735) monitor the energy per pulse in real time.

The energy meter (Laser Precision RM-6600) is connected to an ffiM compatible 486

personal computer via a National! Instruments NI-488.2 interface board. A computer

program reads the data from the energy meter, displays the real-time data on a computer

monitor, and saves the data to a local hard disk. The data acquisition software was

written in Microsoft QuickBasic Version 4.5 and was run under DOS 6.20.

The polystyrenecuvettes used in this experiment have 88% transmission in the

700-800 run range and show no signs of any reaction with the methanol solvent for a

period of over one month. The cuvettes show no signs of reaction at all with the aqueous

solutions ofindocyanine green.
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2.3.2 SPECTROPHOTOMETER SETUP

At intervals during irradiation the cuvette containing the leG sample was removed

from the irradiation setup and inserted into the single-beam spectrophotometer shown in

Figme 2.2. The infrared lamp (an electrically-heated platinum wire) emits light in the

wavelength range of interest for ICG optical absorption (approximately 600-930 run).. A

35 mm, fi'8 camera lens is used to focus the light onto the cuvette; the spot size on the

cuvette is approximately 2 mm x 35 rom. After the light passes through the cuvette it

enters the spectrometer (Instruments SA HR320) through a 136 J.1m wide slit. The

transmitted spectrum is then imaged by a thermo-electrically cooled CCD camera

(photometries CH 250; 1317 x 1035 pixels). The camera exposure time for optimal signal

to noise ratio was 15 seconds for the 1, 3, 10 and 30 J.IM concentrations in methanol and

all concentrations in the waterlHSA solution and 20 seconds for the 100 JlM

concentration in methanol. An exposure time that is too long saturates the camera, hence

data in regions with high optical transmittance (low absorbance) is lost. An exposure time

which is set too short loses information in regions with low optical transmittance (high

absorbance) by not coUecting enough data; the signal is then ofthe order of magnitude of

the noise in the system. The optimal exposure time mentioned above was determined by

experiment.

Due to the high optical absorbance of indocyanine green at concentrations of 30

and 100 J,JM, the optical transmission oflCG in the to nun path length cuvettes is too low
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to detect accurately. Th.erefore, for the 30 and 100 J.LM concentrations, a small amount of

the irradiated ICG was transferred from the original 10 mm path length cuvette to a 1 mm

path length quartz cuvette via a syringe. The unexposed ICG and reference solvent was

transferred to similar 1mm path length cuvettes and left in the same cuvettes for the

duration of the experiment. These shorter path length cuvettes were then used in the

spectrophotometer. After data were coUected with the spectrophotometer, the irradiated

dye was transferred back to the longer path length cuvette for further irradiation.

In order to correct for any absorbance or scattering due to the solvent or the

cuvette, a reference sample in a similar cuvette containing the appropriate solvent (either

methanol or water + HSA solution) was imaged as well. For the samples that were

imaged in the Imm path length cuvettes, the reference spectrum was obtained using a

similar I rom path length cuvette. To reduce any errors caused by the drift of the lamp or

errors in the reading of the CCD image, the data was collected following the procedure

described below for all measurements:

1. Reference cuvette

2. Irradiated leG sample

3. Unexposed ICG sample

4. Reference cuvette

5. Irradiated ICG sample

6. Unexposed ICG sample.

7. Reference cuvette

The three reference data images are taken to account for any intensity or spectral drift that

may occur in the lamp during the course of taking data. If any drift is detected in one of
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the irradiated or unexposed images, the images from the second set of images were used.

Fortunately, there were no significant drifts in either the first or second image files.

After one set of these seven images has been taken, the irradiated ICG sample was

then returned to the irradiation setup for further exposures. Another computer then

copied the image files, analyzed the copied files, and calculated the absorbance spectrum

basis by a program written in C-H- that calculated the optical absorbance from the CCD

The images from the CCO camera were then manipulated on a column-by-column

ofboth the irradiated ICG sample and the unexposed ICG sample.

(2.4)A = -IOgIO(IICG{ ) ,/1reference

range of the spectrum from the spectrometer, a resolution of approximately 0.25 om per

image data using the equation

ICG sample or the unexposed ICG sample, and lreference is the measured intensity of the

where A is the optical absorbance, IICG is the measured intensity of either the irradiated

reference cuvette. From the number of pixels in the CCO camera and the wavelength

pixel is achieved using this setup.
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2.4 THEORETICAL PREDICTIONS

Since the first synthe.sis of indocyanine green, attempts have been made to create a

model for the optical absorption properties of ICG as a function of concentration and the

degradation/aggregation of leG as functions of time, temperature, and concentration, to

name a few [5,23,26,28-30]. In order to better understand the degradation process of

indocyanine green, a theoretical model that suitably explains the data to be presented later

in this thesis is required.

The first step in developing this theoretical model is to understand some basic

physical properties of the situation that is to be described. First, it must be noted that the

rate of energy delivered to the sample (the incident laser power, described in Section

2.3.1) remains approximately constant during the experiment, however, the energy

absorption rate does not remain constant due to the decrease in the absorption coefficient

during the course ofirradiating the ICG samples with laser energy. If the degradation rate

is assumed to be proportional to the energy absorption rate and if the absorption

coefficient is assumed to depend on the amount ofundegraded ICG, then it may be shown

that

(2.5)

where 8a is the change in absorption coefficient of the solution, 8E is the delivered

energy, and x is the path length of the cuvette. the quantity 1_e-alC represents the fraction

ofthe incident energy absorbed by the solution.

However, Equation (2.5) ignores some key factors in the degradation process.
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One such factor is that the absorption coefficient increases as the concentration increases,

but the rate of degradation decreases as concentration increases. So if the degradation

rate is not only proportional to the energy deposition rate but aI.so to the ICG

concentration, the Equation (2.5) may be modified such that

where k is a constant ofproportionaJ.ity andf(C) is a function ofthe ICG concentration, C.

At this point a digression must be made to consider a law that relates the

: = - k(1- e-ax) f(C) , (2.6)

transmitted intensity of an electromagnetic wave (light) through an absorbing medium to

the incident intensity of that electromagnetic wave and the concentration of that absorbing

medium.[39] This law will be referred to as Beer's Law in this thesis, but it is sometimes

referred to as the Beer-Lambert law.[39]

Beer's law states that the relationship between transmitted and incident light

through an. absorbing medium is

(2.7)

where 1 is the transmitted intensity, 10 is the incident intensity, C is the concentration, x is

the path length, and a is the absorptivity (a new constant).[28]

Combining Equations (2.4) and (2.7), the relationship between absorbance and

concentration becomes

or

I
-A = logio - =-aCx,

10

A=aCx.

(2.8a)

(2.8b)
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The absorption coefficient, a, is defined from the equation

e-ax = IO-A (2.9a)

or

A
a=-ln(lO). (2.9b)

x

Substituting Equation (2.8b) into Equation (2.9b), the relationship between the absorption

coefficient can be seen as a = a C 1n(1O), or a oc C. Based on Beer's law alone, the

relationship between absorbance and ICG concentration is obvious in Equation (2.8b).

However, based on work done by Simmons and Shephard, the absorbance of indocyanine

green deviates from Beer's law, especially at higher concentrations, when in a solution of

either distilled water, whole blood, or blood plasma. [28] This study did verify that the

absorbance oflCG does depend on the concentration ofICG, but did not attempt to find a

corrected form ofEquation (2.8b).

From the above mentioned considerations, it is known that the absorption

coefficient is dependent on concentration, therefore, the function f(C) in Equation (2.6)

may be replaced by a function ofa, orf(e) = g(a). Equation (2.6) may now be expressed

as

: = -k(l- e-ax)g(a),

where g(a) is a function of the absorption coefficient ofICG.

(2.10)

One hypothesis regarding the function g(a) is that this function is also a function

of the number ofICG molecules involved in the degradation process. For the simple case

of no interaction between ICG molecules (no aggregation), Equation (2.10) would
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simplify to

(2.11)

However, it is known that the degradation involves more than just one oligomeric species.

For degradation involving only dimers the function g(a.) will be proportional to a..

constant of proportionality; the units ofK are dependent on the value ofm.

Similarly, if the degradation process only involved trimers then g(a.) would be g(a)

where m is a positive, real number (not necessarily an integer) and K is a new, real

(2.12)do. _ (1 -ax}a.m-l. - -K -e
dE '

proportional to a? Generalizing this relationship, Equation (2.10) may be expressed as



CHAPTER 3

RESULTS AND DISCUSSION

3.1 EXPERJMENTALRESULTS

3.1.1 METHANOL ICG SOLUTIONS

As can be seen in Figure 3.1, a 1% reduction in peak absorbance of the 1 I-lM ICG

solution is indicated after being irradiated with a small dose of energy, 3 J mL- I
. A 17%

reduction in the absorbance peak is observed after a total irradiation of 100 J mL-J
•

Figure 3.1 also shows that the absorbance of the unexposed leG sample does not change

over a period of about two hours, which is to be expected since ICG is stable in methanol

for long periods of time.

The noise that appears in the 600 - 650 nm range of Figure 3.1 is attributed to

many factors that are beyond control. The biggest factors that influence the above

mentioned noise are the position of the cuvette containing the sample and the CCD

efficiency. If the cuvette is tilted at some angle, however slight, the path of the light

traveling through the sample into the spectrophotometer (see Section 2.3.2) is altered. If

the path is altered enough, the transmitted light will no longer be focused to pass through

the center of the slit (see Figure 2.2), which will cause a vertical shift in the absorbance

spectrum. To correct for this shift, a baseline correction was done on the 900 - 950 run

29
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range of the data, since that region provides a more adequate baseline (the details of the

baseline correction are given in Appendix A). The rest of the noise is mostly attributed to

read errors in collecting the image acquired by the CCD and in the pixel-to-pixel

efficiency of the CCD array. The pixel-to-pixel efficiency is best described by two

neighboring CCD pixels that receive the same amount of light but convert that light to

different amount of electrical charg,es which are then read by the computer. This CCD

efficiency error in combination with a slightly tilted cuvette is believed to be the cause of

the noise seen in the data. The intensity of the lamp is lowest in the 600 nm range, which

will also contribute to some of the noise in that region.

The 3 ]1M ICG solution in Figure 3.2 shows a 74% reduction in its peak

absorbance after being irradiated with just 803 J mL-1
• Again, the unexposed ICG in

Figure 3.2 shows no change over a period of two hours.

The 10 11M leG solution in Figure 3.3 shows an 80% reduction in its peak

absorbance after 826 J mL-I. Some minor noise is apparent at the maximum absorbance

peak in Figure 3.3, but the unexposed dye shows to still be stable after a period of about

2.5 hours. This noise is attributed to such a low signal detected by the CCD camera due

to the low transmittance of light through the sample in that spectral region.

In Figure 3.4 the reduction of the maximum absorbance from the 30 11M solution

compared to the 10 11M solution is due to the absorbance of the 30 11M sample being

measured in a 1 mm path length cuvette while the absorbance of the 10 11M solution was

measured in a 10 nun path length cuvette. However, similar results can be seen: a 51 %

reduction of the maximwn absorbance peak is the result of 744 J mL- 1 exposure. The

unexposed dye show some minor deviations from previous concentrations, mainly due to

(I
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o
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" r.1
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.1
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.1
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some of the sample spilling on the outside of the cuvette containing the unexposed lCG

when the samples were being transferred to and from the spectrophotometer setup. The

"unexposed" cuvette then required the addition of more unexposed ICG to restore the

level of solution inside the cuvette to match that of the other cuvettes. The outside of the

cuvette was then wiped down with a KimWipe tissue and the experiment continued. The

increase of the maximum absorbance peak is believed to be due to the extra absorption of

adsorbed lCG on the outside surface of the cuvette from the spilled ICG that was not fully

removed when the cuvette was initially wiped down; however, the data still indicates that

the unexposed rCG does not degrade in the absence of laser irradiation. Since only the

unexposed cuvette was affected by the accident, the data from the irradiated sample are

still reliable.

The 100 11M rCG has a 40% reduction of the peak absorbance after irradiation of

103] J mL-1
, as seen in Figure 3.5. Unfortunately, an accident similar to the one during

the 30 !J.M experiment occurred with the 100 1J.M unexposed cuvette midway through this

experiment. Again, the data still clearly indicates that the leG in the methanol solutions

are stable over the course of the experiment, about 3 hours.

til"
,q

!~q
"
"
I'·
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30 J-lM leG in Methanol
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100 j.l.M leG in Methanol
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3.1.2 AQUEOUS ICG SOLUTIONS

A dramatic change of the absorbance spectrum is visibJ,e for 111M ICG in the

water + 3% HSA solution when irradiated for less than 30 seconds for a total of

13 J mL- I
. After the ICG sample was irradiated for a total of 113 J mCI the peak

absorbance dropped 89% from original, as seen in Figure 3.6. The non-irradiated sample

shows only a 2.6% deviation from the original maximal absorbance value for the duration

of the experiment.

The 3 JlM leG solution in Figure 3.7 shows a 91 % decrease in peak absorbance

due to 149 J mL-1 irradiation. The unexposed ICG shows no change of absorbance

spectrum for the duration of the experiment.

Figure 3.8 shows a 93% reduction in peak absorbance of the 10 JlM ICG solution

after 171 J mL· 1 irradiation. The absorbance spectrum of the unexposed ICG solution

shows no change of the peak absorbance; however, the horizontal shift of the peak

absorbance of one ofthe spectra is attributable to an error in reading the CCD array by the

computer, as discussed in Section 3.1.2. The deviation of another of the spectra along the

outer edges of the spectral peak can be attributed to a similar error in collecting the data

from the CCO array.

The peak absorbance of the unexposed 30 JlM ICG solution diminishes by 78%

after being irradiated by 166 J mL- l of laser energy. The unexposed 30 JlM ICG solution

in Figure 3.9 shows no degradation over the course of the experiment.



3&

The 100 !lM leG solution has a 32% reduction of its peak absorbance after being

irradiated by 198 J mL-1 of laser energy, with no change of the absorbance spectra for the

duration of the experiment, as seen in Figure 3.10.

.....
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1 j.LM leG in Water + 3% HSA solution
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3 !lM leG in Water + 3% HSA solution
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10 JlM leG in Water + 3% HSA solution
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30 IlM IGG in Water + 3% HSA solution
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100 IlM leG in Water + 3% HSA solution
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3.2 DATA ANALYSIS

3.2.1 ANALYSIS PROCEDURES

The data presented in Sections 3.1.1 and 3.1.2 represent the change in absorbance

(and absorption coefficient) as a function of delivered energy. To understand the

mechanics behind the degradation process, the above data must be analyzed. The

themetical predictions in Section 1.4 describe how the change in absorption coefficient

changes as a function of delivered energy, however, as can be seen in the data, the

absorption coefficient is different for different wavelengths, which begs the question: at

which wavelength is the absorption coefficient chosen?

Instead of choosing the absorption coefficient at the wavelength used for the

irradiations, the absorption coefficient for the wavelength at which the initial non

irradiated (0 J mL-1 delivered energy dose) sample had the highest absorbance was chosen

since the degradation behavior is more easily observed when the peak absorbance is used.

The wavelength which produces the highest initial absorbance will be constant for any

given sample regardless of the irradiation wavelength used, which was another factor in

choosing which wavelength at which the absorption coefficient would be calculated. The

absorbance at the irradiation wavelength could have been chosen for the analysis.

Howev1er, since maximum absorbance is not at the irradiation wavelength, the

proportional amount of decrease of the absorbance spectrum at the irradiation wavelength

will be less than the proportional amount of decrease at the maximum absorbance.
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The maximum absorbance for the initial non-irradiated solution can be found by

inspection, but the statistics function in Jandel Sigma PIot was used instead. The

wavelength that corresponded to this maximum absorbance was then considered to be the

wavelength at which the maximum absorbance occurred for the further irradiated samples

for that concentration and solvent. For example, the initial maximum absorbance of the 3

llM ICG in methanol sample is 0.556 (arbitrary units) at 786.9 run; at 786.9 run, the

absorbance for the 16 J mL-J exposure is 0.536, the absorbance for the 48 mL°l exposure

is 0.511 at 786.9 run, and so on. The maximwn absorbance for all further exposures for

the 3 llM ICG in methanol sample was the absorbance at 786.9 run.

Once the maximum absorbance values were found, the values were copied from

the Sigma Plot file and pasted into a Microsoft Excel worksheet. Inside the Excel

worksheet, the absorption coefficient was calculated from the absorbance data. The total

energy ddivered for each exposure was then copied from the appropriate data file

(collected from the computer in Figure 2.1) to corresponding cells in the Excel worksheet.

From this absorption coefficient data and the delivered energy data, the parameters K and

m from Equation (2.12) were then found by Excel's solver function. For a more detailed

explanation of the above mentioned procedure, see Appendix A.

3.2.2 ANALYSIS RESULTS

The calculated values for K and m that best fit the data are presented in Tables 3.1

and 3.2 for solutions of ICG in methanol and water + 3% HSA, respectively. It can be

noted that the values for m increase with concentration, with the only exception occurring

at a jwnp between the 10 llM and 30 11M ICG concentrations in the water + 3% HSA



46

solution. After this jump the trend for m to increase as concentration increases is still

evident, for the 100 .uM concentration has a larger m value than the 30 t-tM. One possible

explanation for this anomaly may be due to the absorbance data being collected with the

samples in a smaller path length cuvette made from a different material or from aggregate

formation at these higher concentrations. The change of cuvette from the 10 m.m plastic

cuvettes to the 1 mm quartz glass cuvette may cause some lCG adsorption to the surface

of the quartz glass cuvette which would change the absorbance of that sample, thus

causing a jump in the values for m.

Another trend which is evident after inspection of the data is that slower

degradation rates lead to a higher m values; again, the only exception occurs at a jump

between the 10 ./lM and 30 IlM lCG concentrations in water + 3% HSA. Even with this

one exception, the slower degradation of the 100 /lM versus the 30 /lM concentration (the

100 JlM has a higher m value than the 30 /lM) indicates that a higher m value causes less

degradation for a given amount of delivered energy (slower degradation).

Figures 3.11 through 3.20 show graphs of Equation 2.12 fitted to the maximum

absorption coefficient data. The hypothesis on the significance of m is as follows: m is

the mean number of lCG molecules involved in the degradation. For example, if m = 2,

then there would be an average of two molecules involved in the degradation process.

Therefore, for a value of m = 1.35, the degradation process involves many different

numbers of molecules, say mainly monomers and dimers, with contributions from higher

oligomers.

Another hypothesis is that m indicates the mean. number of photons that interacts

with each indocyanine green molecule. For example, with m = 1, one photon interacts
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with one molecule. With m = 3, then the energy from three photons are absorbed by each

ICG molecule. A solution with a higher m value will require a greater number ofphotons

to be absorbed for the degradation process, leaving fewer photons available for other ICG

molecules; therefore, a solution with a higher value of m will degrade slower fuan a

solution with a lower value of m. Figure 3.21 shows a plot ofthe calculated m values as a

function of concentration for both the methanol solutions and the water + 3% HSA

solutions.

The values for K are not directly comparable since the units for K depend on the

value of m. If two concentrations of leG were to have equal values of m, or

approximately equal values of m, then a different value of K represents a different decay

constant: the higher the value of K the faster the degradation, and the lower the value of K

the lower the degradation, for a given m.

As mentioned in Section 3.2.1, the proportional amount of decrease of the

absorption coefficient at a wavelength other than the wavelength which produces the

highest absorbance. Therefore, the value of m at a different wavelength will be slightly

lower than those calculated above.

--- .........
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1 JIM leG in Methanol
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FIGURE 3.11 Photodegradation of 1~ leG in methanol. Best-fit parameters are
a.o = 0.0403, m = 1.46, K = 3.10 * 10-4.
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3 JiM leG in Methanol
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FIGURE 3.12 Photodegradation of 3 ~ leG in methanol. Best-fit parameters are
~. = 0.128, m = 1.63 , K = 3.49 * 10-4.
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10 ~M leG in Methanol
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FIGURE 3.13 Photodegradation of 1OJlM leG in methanoL Best-fit parameters are
a.o = 0.450, m = 1.89, K = 5.18 * 10-4.
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30 liM leG in Methanol
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FIGURE 3.14 Photodegradation of 30 ~ leG in methanol. Best-fit parameters are
ao = 1.38, m = 2.31 , 1( = 4.59 * 10-4:.



52

100 J.1M leG in Me1llanol
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FIGURE 3.15 Photodegradation of 100 ~ leG in methanol. Best-fit parameters are
a.o = 4.93, m = 4.75 , K = 3.93 * 10~.
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1 JiM ICG in Water+3% HSA solution
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FIGURE 3.16 Photodegradation of 1~ leG in Water + 3% HSA solution. Best fit
parameters are <Xo = 0.0385, m = 1.07, 1C = 8.20 * 10-4 .
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3 ~M leG in Water + 3% HSA solution
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FIGURE 3.17 Photodegradation of 3 J.lM leG in Water + 3% HSA solution. Best fit
parameters are ao =0.105, m = 1.14, 1( = 8.98 * 10-4 .
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10, J.1M leG in Water + 3% HSA solution

0.4 .-------------------------------,

0.35

0.3

E 0.25
g
a::
ell

8 0.2
c
o
i.,..
o
~ 0.15
ot

0.1

0.05

700600500400300200100

0+----+----+---------< ----.-,1---------<----+----1
o

Delivered Energy(J)

FIGURE 3.18 Photodegradation of 10 JlM leG in Water + 3% HSA solution. Best fit
parameters are a.o = 0.356 ) m = 1.35 ) 1C = 1.69 * 10-3
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30 J.1M leG in Water + 3% HSA solution
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FIGURE 3.19 Photodegradation of 30~ leG in Water + 3% HSA solution. Best fit
parameters are ao = 1.13 , m = 0.597 , K = 2.75 * 10-3
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100 111M ICG in Water + 3% HSA solution
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FIGURE 3.20 Photodegradation of 100~ leG in Water + 3% HSA solution. Best fit
parameters are ao =3.62, m =0.782, K =2.24 * 10-3 .
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Concentration <X.o
II mI 1C

(~ (mm-I
) (* 10-4 .r1.mmm

-
2
)

1 0.0403 1.46 3.10 !

3 0.128 1.63 3.49

10 0.450 1.89 5.18

30 1.38 2.31 4.59
~

100 4.93 4.75 0.0393 I
I, I
!

TABLE 3.1 leG in methanol values calcultated for m and K for the given ao (initial
absorption coefficient). Units for m are dimensionless and the units for 1C

are r l • rnrn m-2.
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Concentration an m 1C

(~M) (mm-I) (*10-4 dIemmm-1)

1 0.0385 1.07 8.20
,

3 0.105 1.14 8.98

10 0.356 1.35 16.9

30 1.13 0.597 27.5

100 3.62 0.782 22.4

TABLE 3.2 leG in water + 3% HSA values calculated for m and 1C for the given ao
(initial absorption coefficient). Units for m are dimensionless and the units
for 1C are r1 • mm m.2.
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Parameter m VS. Concentration
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FIGURE 3.21 Plot of parameter m as a function of lCG concentration. Solid circles
indicate lCG solutions in methanol, hollow circles represent leG in
waterlHSA solution.



CHAPTER 4

SUMMARY AND CONCLUSIONS

In Chapter 1 a brief history of the dye indocyanine green (ICG) was given, along

with some examples of its many uses in the medical field. ICG is well suited for its use in

medical applications due to its low toxicity and high absorbance in a range where

biological tissues have low absorbance. The only dwsadvcmtage of ICG is that when it does

degrade (degrading into at least a dozen different products), the toxicity of tne

degradation products is not known [26].

Using the irradiation and data collection techniques described in Chapter 2, the

absorption spectra of indocyanine green was obtained for the amount of laser light energy

delivered to the sample. From the data presented mChapter 3, it is clearly seen that lCG

exposed to high intensity laser irradiation degrades more rapidly than samples left in a dark

container (which .show no signs of degradation during the course of the experiment).

Higher concentrations of ICG degrade more slowly than lower concentrations of ICG.

Also, ICG dissolved wn methanol degrades much more slowly than ICG dissolved in a

solution of deionized water and human serum albumin (HSA).

When the data collected in Chapter 3 was fitted to the theoretical model developed

in Chapter '2, a correlation between the rate of degradation and the paramet!er m given in

Equation (2.12) is observed: higher concentrations of ICG, which degrade more slowly,
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have higher m values, which indicate that at higher concentrations there are more and

more molecules involved in the degradation process. The proportionality constant, 1(, also

given in Equation (2.12), is a decay constant whose units are dependent on m. The values

for K from one concentration to the next are not directly comparable, since different

concentrations have different m values.

In a previously published article by the author, which was a preliminary study of

the material presented in this thesis (see Appendix B) , a few other interesting properties

of ICG were also discovered [29]. The first was that leG exhibits saturable absorption

properties when exposed to Q-switched laser pulses (described in Chapter 2). In this

preliminary study, the pulse width (FWHM) of the direct laser was 94 ns; when a 10~

solution ofICG in methanol was placed in the beam pat~ the pulse width of the beam that

was transmitted through the ICG sample decreased to 77 ns.

During the course of the saturable absorption study, the ICG sample was observed

to fluoresce with the laser in Q-switched mode, but ceased to fluoresce when the laser

operated in the long pulse mode, indicating fluorescence due to multiphoton absorption.

Due to the saturable absorption of ICG as described above, the decay rate of the ICG

sarnpl,e irradiated with Q-switched pulses is lower than samples irradiated with the long

pulses. The value of m for the Q-switched irradiated samples were approximately three

times larger than the value of m for a sample of equal concentration (10 J.lM leG in

methanol) that was irradiated with the long pulses; this lower degradation rate for the Q

switched irradiated samples giving a larger value of m is consistent with the observations

in this thesis.
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Studies involving irradiation ofICG samples at different wavelengths for both long

pulses and Q-switched pulses have yet to be done on both methanol solutions and

water/HSA solutions. Studies that have yet to be done include the determination of the

degradation products of ICG, the toxicity of these degradation products, and the

degradation of ICG irradiated with high intensity Iaser energy while in human tissue,

blood, or blood plasma.
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APPENDIX A

SOFTWARE FOR DATA
ACQUISITION AND ANALYSIS

A 1 DATA ANALYSIS

The first step in analyzing the data is to obtain the maximum values for the

absorption coefficient for all degradation curves for each concentration; this was

accomplished by the use of the statistics tool in SigmaPlot (Version 3.0). The statistics

tool in SigmaPlot finds and displays the maximum value from the absorbance data from all

irradiated samples of each concentration. The wavelength at which the maximum

absorbance occurs for the unexposed "irradiated" sample (the sample that has been

exposed to 0 JemL-1 energy dosage) for a given concentration is then used for the

wavelength the peak absorbance occurs for all other irradiated samples of the same given

concentration. For example., the maximum absorbance for the 3 ~ ICG in methanol

sample before exposure to laser radiation (0 Joules delivered energy) occurs at 786.9 nm;

this absorbance at this. wavelength for all the following irradiated absorbance spectra is

then used as the maximum absorbance for subsequent irradiated samples--but only for the

3~ ICG in methanol sample. Due to slight shifts of the maximum spectral peak which

can occur from one concentration to the next from aggregate fonnation or from simple

background noise in the CCD camera, the wavelength which produces the maximum

absorbance is re-calculated fOT each concentration in each solvent.
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Tbe maximum absorbance data is then copied to Microsoft Excel worksheet,

where the absorption coefficient is calculated from the absorbance data (the absorption

coefficient is the absorbance divided by the path length of the cuvette used). The

absorption coefficients are then used with the laser irradiation data collected by the

computer in Figure 2.1.

The amount of energy delivered to a sample before removal from the irradiation

setup (removed for absorption data collection in the spectrophotometer setup), henceforth

called an exposure, is calculated from the data file from the above mentioned computer.

The appropriate transmitted to reflected ratio (described in Section 2.3.1) for a particular

exposure is calculated by importing the data collected by a computer program (source

code in Section A2) into Sigma Plot. The raw Detector A data is then divided by the raw

Detector B data (AB ratio), with the results posted in another Sigma Plot column using

Sigma Plot's user defined transforms. The average of the A:B ratio is then the average of

the transnritted to reflected (T:R) ratio. Since the program that collects the Detector A

and B data automatically sums aU ofthe collected Detector A and B data, the T:R ratio is

multiplied with the final sum of the total energy collected by Detector A This then

becomes the total amount of energy delivered to the lCG sample.

The experimentally obtained values for the absorption coefficient, a., and delivered

energy, E, are now placed in the appropriate Excel worksheet cells, which are now to be

used for the detennination ofthe l( and m parameters given in Equation (2.12). Figure Al

shows a sample of an Excel worksheet that was used to calculate the K and m values for

the 10!JM lCGin the water + 3% HSA solution.
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In order to solve for the values of lC and m numerically, Equation (2.12) is

modified slightly, which now becomes

which is then approximated by

Ao: = -lC(1- e-ax )ex. m-l AE .

(A. 1)

(A2)

For the numerical computations, AE = 1 Joule. Since AE =1 and .10: = <Xi - O:i-!, then

Equation (A2) takes on the form

(1 -0;. IX) m-l
<X.i =O:i-l -lC . - e 1- <X.i-l (A.3)

The initial value of the absorption coefficient, no, is the initial absorbance of the

unexposed "irradiated" sample (a.o is labeled as aO in the Excel worksheet). Initial guesses

for the values of lC and m are chosen and placed in two Excel worksheet cells (cells B 15

and B 16, respectively, in Figure AI) and labeledk and m, for obvious reasons.

Initially, row 21 in the Excel worksheet has the value of Eo and no , then row 22

has values for Eland 0:1, row 23 has values for~ and a2, and so on. Since AE = 1, then

in a generalized form, E j = £;-1 + AE = i, where i runs from 1 to 600 (for this particular

concentration, since the total energy delivered in the experiment was 600 J, and Eo is just

zero. The value for no is also given, so that the value for <Xi is O:i = Ui-l - An , where Aa. is

given by Equation A.2. The values for CLi are then calculated by Equation A.3 by using the

previously calculated value of<Xi.} and the values ofk and m given in the worksheet.

Now the experimentally obtained values ofthe absorption coefficient are compared

to the theoretically obtained values of a. that were calculated using Equation (A3). In
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column E, under the heading "Theoretical," the theoretically obtained value of a. (for

which the "Theoretical Energy" value matches the "Total Delivered Energy (alb)" value)

is pasted in the cell next to the experimental value of a for the same delivered energy

value. For example, cell E3 contains the value of cell B21 (corresponding to the

theoretical value for 0 Joules delivered energy), cell E4 contains the value of cell B55

(corresponding to the theoretical value for 34 Joules ofdelivered energy), and so Oft.

Once the theoretical values are next to the experimental values, the absolute

difference between the experimental and theoretical values are calculated in column F of

the Excel worksheet under the labei "Sqrt(R1\2)." The values in this column are the square

root of the square of the difference between the experimental data and the calculated

values. Cell D 14 represents the sum of each absolute difference calculated in cells F3

through F 11. Using the Solver tool in Microsoft Excel, the value of cell D14 is minimized

by changing the values ofk and m given in cells B15 and B16, respectively. The initial

values of k and m were usually taken to be 0.001 and 1, respectively, or values obtained

from a previous fitting (i.e. the values for k and m for the 10 J.IM ICG in methanol may

have been initially guessed to be the value for k and m obtained for the 3 ,..tM ICG in

methanol solution).
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Individual EnerglY Total Delivered Absorbance Absorption Theoretfcal SqItfRA2'
(alb) EneligY fa/b) coemclent (/mm)

0 0 1.547176401 0.356250532 0.356250532 0
34.42390419 34 1.353806344 0.311725431 0.318356984 0.006631553
42.3197,6053 77 1.190696759 0.27416B061 0.273443695 0.000724365
52.52638521 129 0.969122311 0.223148659' 0.224073513 0.000924854
64.0853'634 193 0.744837602 0.171505196 0.171508314 3. 11756E-06
77.0553931 270 0.527460327 0.121452228 0.121009449 0.00044278
91.20933732 362 0.346762162 0.079844939 0.07809'0459 0.001754479
108.5709793 470 O.20352349B 0.046863017 0.04686292 9.74268E-08
130.1179673 600 0.10810637 0.024892411 0.026477603 0.001585192

Sum(Sqrt(RA2»
aO = 0.356250532

,
0.012066438

k= 0.00169123
m= 1.351873593
x= 10 mm

Theoretical theoretical
Energy Absorption eoetf.

0 0.356250532
1 0.355107708

I
2 0.353966559
3 0.352827088
4 0.351689299
5 0.350553196

,

6 0.349418782
7 0.348286062
8 0.347155038
9 0.346025716
10 0.344898099
11 0.34377219
12 0.3426479'94
13 0.341525514
14 0.340404755
15 0.33928572
16 0.338168414
17 0.33705284
18 0.335939001
19 0.334826903
20 0.333716549
21 0.332607944
22 0.33150109
23 0.330395992
24 0..329292655
25 0.328191082
26 0.327091277
27 0.325993244
28 0.324896988
29 0.323802512
30 0.322709821
31 0.321618918
32 0.320529808
33 0.319442495
34 0.318356984

FIGURE A.I. Microsoft Excel worksheet used for calculating the 1<: and m values for the
]0 J,AM leG in water + 3% HSA solution.
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A2 DATA ACQUISITION

The following is a listing of the Microsoft QuickBasic program written by the

author used for collecting the energy delivered to the leG sample. The data collected was

for both the adjusted Detector A value (with an estimated average T:R ratio already

multiplied to the data) and for the raw Detector A data so that the correct T:R ratio for

that exposure could be calculated. The program was also written for a single detector

setup that was not used for the experiments described in this thesis. The source code has

a few "user friendly" implementations that were inserted to keep the author and other

users of the program from performing such acts as inadvertently over-writing an existing

data filIe or using an illegal file name that DOS 6..0 does not recognize. These lines ofcode

along with the code that formats the data displayed on the computer monitor were added

to simplify the use of the program, but are unnecessary for the overall collection ofdata.

'PROGRAM NAME: detectjc.bas

'OESC: This program tests the iRm-6600 GPIB bus using the iNl AT-GIPIB card.
, The instrument must be set to Device Addr:ess 15 (factory defau")
, and the GPIB device name must be DEV15 (NI defau").
, The program will then collect and store data in a file and print

the data, on screen.
•======-===,============,========,========.==::============.=============-=====

This program works ONLY with the RM-6600 Universal Radiometer
by Laser Precision Copr.

"='='===========:=====.=====:==========================c-===============
'SYNTAX: nla, main program

'INPUT: keyboard, Gpib,

'OUTPUT: screen, Gpib, disk,

'INCLUDE FILES: qbdecl4.bas, NI supplied OuickBasic 4.014.5 subprogram calls,

'OTHE~R ACTIONS: none

'PROGRAMMER: Jason Crull

'previoUS revisions on:8-.2~96, 7-11-96, 5-7-96, 9-5-95, 9-26-95, 6-~97



'$INCLUDE: 'c:\at-gpib\qbasic'lqbdecl.bas·

DIM 1hepath(20) AS STRING
DECLARE SUB Fi:ndErr 0 'wbptrogr:am to report board/device errors
DECLARE SUB Dev15Error 0 'SUbpt'ograrR to report instnlment errors
DECLARE SUB SetRange (Channel$, j$, rangeS, Jou!es$) 'subprogram to set detector range
DECLARE SUB Namecheck (name$, pathS, noCfound%, errcode%)
'NameCheck is a SUbprogram to check validity of filename of data file
DECLARE SUIB PathCheck (pathS, errcode%) 'check validity of file directory

AD$ ="AD" + CHR$(13) 'ASCII tr:ansfer without nn6600 screen updates
SD$ = "SD" + CHR$(13) 'ASCII transfer wiItI Rm6600 screen updates
CMDS =~' 'ASCII tlransfer command string
v% = 11 'variable that changes the minimum tlmeool

StartingPt:

ON KEY(5) GOSUB Stoplt 'F5 key will stop program
KEY(5) ON
ON KEY(1) GOSUB StartingPt 'F1 key to go backooe step in program
KEY(1) ON
CLS 'clear screen of all text and graphics
LOCATE 24, 1
PRINT "Hit <F5> to terminate program."
LOCATE 5, 5 'position cursor
PRINT "AD is ASCII transfer WITHOUT rm6600 screen updates (faster)."
LOCATE 6,5
PRINT "SD is ASCII transfer WITH rm6600 screen updates (Slower)."
LOCATE 8,5
PR.INT "Enter type of transfer A(D) or S(O) { default is A }: (AtS) "
DO

Type$ = UCASE$(INKEY$)
LOOP UNTIL (TypeS ="A") OR (Ty;pe$ ="5")
CMD$ = AD$ 'This is the default setting. (jwc)
IF (LEFT$(Type$, 1) = "A") THEN

CMD'$ = AD$ 'if first letter is A then AO
END IF
IF (LEFT$(Type$, 1) = "S") THEN

CMD$ = SD$ 'if first letter is S then SD
ENDIF
KEY(1) OFF

GetNumberOfProbes:

CLS
LOCATE 23, 1
PRINT "Hit <F1 > to go back one level in 1he program."
LOCATE 24, 1
PRINT "Hit <F5> to terminate program."
ON KEY(1) GOSUB startingPt 'F1 key to go back one step in program
KEY(1) ON
numProbes% = 1
LOCATE 15, 1
PRINT "How many probes are you using with your detector ( 1 or 2 )"
DO
numPJobes% =VAl(INKEY$)

LOOP UNTIL «numProbes% =1) OR (numProbes% =2»
IF numProbes% = 1 THEN
ch$ ="A"
DO

LOCATE20,1
INPUT "Is your probe connected to Ctlannel A or B (A or B, default is At; ch$
ch$ = UCASE$(ch$)

LOOP UNTIL «ch$ = "A") OR ~ch$ = "8"»
END IF

TestTheRadiometer:
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CLS 'clear screen of all text and graphics
, Assign a unique identifier to the first Gpib board (GPIBO) and sto.re in
, variable GpO%.

PRINT'"
PRINT "Testillg the radiometer......"
PRINT""
BONAME$ = "GPIBO" 'put board name in string
CALL IBFIND(BONAME$, GpO'll» 'filld board, return number
IF GpO'll> < 0 THEN CALL FindErr 'if board not found, then call the error routine
PRINT "The value returned in GpO% was ", GpO%
CALL IBSIC(GpO%) 'Send Inteface Clear to b<II.
CALL IBSRE(GpO%. 1) 'Set Remote EnaJ:)le ON (1)

OName$ = "OEV1S" 'put device name in string
CALL IBFINO(DName$. Oev15%) 'find de\(jce, return number
IF 0ev15% < 0 THEN CALL FindErr 'if device not found, then <:all error routine
PRINT "The value returned in Oev15%", Dev15%
CPL% =&H100 'mask# for end of 11/0 transmission
EO% = &H2000 'mask # for end of a transmission
TIM% =&H4000 'mask # for time limit exceeded
CALL IBWAIT(GpO%. CPL%) 'wait for end of 1/0 transmission

, Write the Identify instrument (10) instruction to the Rm-6600 (OEV15).
, This string is meaningful to Laser Precislon instruments OJIlly.
, (Note: the <CR> is optional. EOI must be sent with last byte on send.)

16

Write$ ="10· + CHR$(113)
CALL IBWRT(Oev15%, Write$)

'build string to send
'Send command to Rm-6600

, If the data is valid, readtlrle linstrument identifier.

rd$ = SPACE$(25) 'create reply string for read
CALL IBRD(0ev15%, rd$) 'Read data from Rm-6600
PRINT "This is an Rm"; LEFT$(rd$. ibcnt%) 'Print string
CALL IBWAIT(GpO%, CPL%)
PRINT~'

IF (ibcnt% = O) THEN
PRINT "The detector is not responding. Please make sure that the"
PRINT "detector is on. 'If that is not the problem, run the program"
PRINT "STOP.EXE or tum off the detector and tum it back on again."
PRINT ....
PRINT "If none of the above steps correct the problem then you are just out of luck'"
PRINT""
PRINT""
END

ENOIF
PRINT 'The test has been a success'"

KEY(1} OFF

'start here when "Going Again" ,in the program

OPEN "c:\rm6600\filepafl'l.dat" FOR INPUT AS #1 'File containing pre-set directories
;=0
DO
i=i+1
LINE INPUT #1, thepath~i)

LOOP UNTIL EOF(1) OR (:i = 10)
CLOSE #1

PathTable:

KEY(5)OFF
00 This loop continues while ans$ ="Y" (Do you want to go aga.in?)
ans$ = 'm

DO
KEY(5) ON
CLS
LOCATE 23,1
PRINT "Press <f5> to terminate program"



errcode%=O
notfound% = 1
LOCATE 3, 1
PRINT "Choose a directory location to save your data,"
PRINT "or choose("; i + 1; '1 to enter you own customiZed directory."
FORj= 1 TO i

LOCATE 5 + j, 4
PRINT or: j; ") "; thepath(j)

NEXTj
LOCATE 6 + i, 4
PRINT "r; i + 1;") <Enter your own directory-NO FLOPPY DRIVES> "
LOCATE 8 + j, 10
PRINT "Enter the number corresponding to the directory of your choice: "
ON !<EY(1} GOSUB PathTable
KEY(1) ON
DO

pathchoice% = VAL(INKEY$)
LOOP UNTIL (pathchoice% >= 1) AND (pathchoice% <= i + 1)
IF pathclloice% = i + 1 TH!EN

ClS
DO
LOCATE 22, 1
PRINT "Press <F1 > then <RETURN> to go back one level."
LOCATE 23, 1
PRINT "Press <F5> then <RETURN> to terminate program"
LOCATE 10,1
PRINT "Type in the directory of your choice: "
errcode% =0
LOCATE 11,2
PRINT"
LOCATE 11,2
INPUTpath$
CALL PalhCheck(path$, esrcode%)

LOOP UNTIL errcode% = 0
ELSE

path$ = thepath(pathchoice%)
CALL PathCheck(path$, errcode%)

END IF
LOOP UNTIL errcode% = 0
CLS
LOCATE 22, 1
PRINT "Press <F1 > then <RETURN> to go back one level."
LOCATE 23, 1
PRINT "Press <F5> then <RETURN> to, terminate program"
DO
CLOSE
LOCATE 9, 1
PRINT "Current directory "; path$
LOCATE 10,1
PRINT "Enter filename tor data storage: ..
LOCATE 10, 35
INPUT narne$ 'Store data
CALL NameCheck(name$, path$, notfound%, errcode%)
LOCATE 10, 35
PRINT"
IF errcode% <> 1 THEN

IF LEN(path$) = 3 THEN
filename$ = path$ + name$
ELSIE

filename$ = path$ + "'" + name$
END IF
OPEN filename$ FOR OUTPUT AS #2

END IF
LOOP WHILE errcode% = 1

SelRange:

ON KEY(1) GOSUB PathTabie
KEY(1) ON
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CLS
LOCATE23,1
PRINT "Hit <F1 > to, go back one level in the program."
lOCATE24,1
PRINT "Hit <F5> to terminate program."
LOCATE 2. 5
PRINT" If an over-range is detected during the experiment, the detectors wilr
PRINT" automaticallY reset and continue taking data using tile same ranges; however,"
PRINT" duril'\g the short time it takes to reset the detectors, data will not be taken."

, these' are the default settings used to display status, during data acqulsftlon, JWC
Arange$= " Inactive "
Brange$ = "Inactive"

• Set the range of tile detectolJ'S

IF numProbes% = 2 THIEN
PRINT ....
PRINT· With what ral'\ge do you wish to begin? •
CALL SetRange("A", JA$, AralIlge$, AJouIes$)
RANA$ = "RA " + JA$ + CHR$(13)
CALL IBWRT(Oev15%, RANA$) 'seoo range to detector
CALL IBWAIT(GpO%, CPL%)
CLS
LOCATE23,1
PRINT "Hit <F1> to go back one level in the program,"
lOCATE24,1
PRINT "Hit <F5> to terminate Pfogram."
lOCATE 6,5
CALL SetRangef'B", JB$, Brange$, BJoules$)
RANB$ = "RB" + JB$ + CHR$(13)
CALL IBWRT(Dev15%, RANB$) 'send range to detector
CALL IBWAIT(GpO%, CPL%)
CLS
ELSE

, Set I3nge for only one Probe (A or B) present

IF ch$ = "A" THEN
CALL setRange(ch$, JA$, Arange$, AJoules$)
RANA$ = "RA " + JA$ + CHR$(13)
CALL IBWRT(Dev15%, RANA$) 'send range to detector
CALL IBWAIIT(GpO%, CPL%)

ELSE
CALL SetRange(ch$, JB$, Brange$, BJoules$)
RANB$ = "RB " + JB$ + CHR$(13)
CALL IBWRT(Oev1S%. RANB$) 'send range to detector
CALL IBWAIT(GpO%, CPL%)

END IF
END IF
KEY(1) OFF

GetTheCal:

ON KEY(1) GOSUB SetRange
KEY(1) ON
ClS
LOCATE23,1
PRINT "Hit <F1 > to go back one level in the program."
LOCATE 24,1
PRINT "Hit <F5> to terminate program.·
LOCATE4,1
PRINT "Do you wish to multiply one or both detectors by a"
PRINT "calibration factor (YIN) "
DO
cal$ = UCASE$(INKEY$)

LOOP UNTIL (cal$ = "V") OR (cal$ = "N")
Aeal! = 1
Beal! = 1
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IF cal$ ='Y" THEN
LOCATE 8,4
IF numProbes% = 2 THEN

LOCATE 10,6
PRINT 'What is the calibration factor for Probe A "
LOCATE 11, 6
INPUT" (Enter '1' for no calibration) "; AcaI!
LOCATE 13, 6
PRINT 'What is the calibration factor for Probe B "
LOCATE 14.6
INPUT" (Enter '1' for no calibration)"; Bcal!

ELSEIF ch$ = "A" THENIINPUT "What is the calibration factor for Probe A "; AcaI!
ELSEIF ch$ = "S" THEN INPUT "What Is the calibration factor for Probe S"; Beat!

ELSE
PRINT "You made a mistake"
GOTO GetTheCal

END IF
END IF
KEY(1) OFF

Setup the screen to display the data

CLS
ON KEY(1) GOSUS GetTheCaJ
KEY(1) ON
LOCATE 22, 1
PRIHT "Hit <F1 > to go back one level In the program."
LOCATE 23, 1
PRIINT "Hit <F5> to terminate :program."
LOCATE 4, 20
PRINT" Filename: "; filename$
LOCATE 5, 20
PRIIINT " A Range: "; Arange$
LOCATE 5, 44
PRINT "X"; Acall
LOCATE6,20
PRINT" B Range: "; Brange$
LOCATE 6, 44
PRINT "X"; BcaI'!
LOCATE 9, 10
PRINT "The displayed data Is In Joules (J). "
LOCATE 11, 1
PRINT "Hit any key to start collecting data" '\
DO ' > wait until a key is pressed to begin
LOOP WHILE INKEY$ =.... ,I
KEY(1) OFF
KEY(S) OFF
•The following 6 lines clear previous data on screen

LOCATE 22, 1
PRINT"
LOCATE 23, 1
PRINT"
LOCATE 11, 1
PRINT"
LOCATE 11, 1
PRINT "Collecting data"
dotO%= 17
dot1% = 0
LOCATE 13,6
PRINT" Current Data" 'display data ama
LOCATE 13,40
PRINT "Total Accumulated"
lOCATE 13, 65
PRINT"OR?"
IF numProbe$% = 2 THEN
LOCATE 14,4
PRINT "Oetector A Detector B "
LOCATE 14, 36
PRINT "Detector A Detector B "
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, resetting value for raw data from detector A
, resetting val'ue for raw data from detector B
, resetting value for calibrated d~ta from detector A
, resetting value for calibrated data from detector B

PRINT #2, "Filename: ", filename$
PRINT #2, "Detedor A range: ", Arcmge$
PRINT #2, "Detector B range: ", Brange$
PRINT #2, "The 'calibration' factor (which has already been applied to the data) is:"
PRINT #2, "A_data· "; Acall
PRINT #2,"B data· "; Beal!
PRINT #2, "The data (with calibration factor applied) is printed (in Jou1es) as follows: "
PRINT #2, "A_data, B_data, accumulated_A_data, accumulated_B_data, raw_A_data. raw_A_accumulated_data

'l,ovemmge A &lor B)"
PR:INT#2, "-------------------------
energyA! =0
energybl =0
calEnsgyA! = 0
calEnergyBI = 0

ELSE
LOCATE 14,4
PRINT "Detector" + ch$
LOCATE 14, 35
PRINT "Detector" + ch$
PRINT #2, "Filename: ", filename$
PRINT #2, "Detector "; ch$; "range: ". Arange$
PRINT #2, 'The 'calibrat,ion' factor (whioll has already been applied to the data) is:"
PRINT #2, "A:....data .. "; Acal!
PRINT #2, "The data (with calibration factor applied) is printed (in JOlJles) as follows: "
PRINT #2, "data, accumulated:-.data, (,overrange)"
PRINT #2, "--------------

END IF

CALLibtmo(Dev15%, 11) 'changes default timeout in IBRD to 1s
'----------------
, This loop is for the actual collection of data
, for TWO (2) Probes present

IF numProbes% = 2 THEN

" This DO loop takes data until a key is pressed
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DO
CALL IBWRT(Dev15%" CMD$)
CALL IBRD'(Dev15%, rd$)

Write command to Rm-6600
'read energy lmeter

LOCATE 11, (dolO% + dot1 %)
PRINT ".- ' This prints a '.' at every collection of data or timeout for visual reference

, this prints a blank over energy A & B data to get rid,c' the old values and to print nolling when no data Is taken
'---------------
LOCATE 16, 5
PRINT"
LOCATE 18, 5
PRIINT"
LOCATE 16, 62
PRIINT" , gets. rid of X's which indicates over-range
overrangeA$ ::" "
overrangeB$ :c" ..

This IF statement executes only if data is taken

IF (ibent'*' <> 0) THEN

, 00 this if OR is detected

IF (INSTR(rd$, "OR") <> 0) THEN 'Check If Probe A or B has OR
leftrd$ :: MID$(rd$, " ibent% 12)
rightrd$ :: MID$(~d$, ibcnt% I 2, ibent% - 11)
IF (INSTROeftrd$, "OR") <> 0) THEN 'Check if OR is in Probe A

leftrd$ :: AJoules$ 're.pla.ce OR with max value of the cUlTent range
overrangeA$ = "AX "

ENDIF



'send ran.ge to detector
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IF (INSTR(rightrd$, "OR") <> 0) THEN 'Check if OR is in Probe B
rightrd$ = BJoules$ 'replace OR with ITIm( value of the current range
overrangeB$ = "BX"

ENDliF
AvaI! = VAL(leftrd$) , the data rehJmed from the RM6600 is actual a text string
Bval! = VAL(rightrd$} , this converts the appropriate part of the text to numbers
CalEnergyAI = CaIEnergyA! + Aeall • Avail
energyAI = energyAI + Aval!
CaJEnergyBl = CalEnergyB! + Beal!· Bval!
energyb! =energyb! + Bval!
betterA! =Aeal! • Avan
betterB! = Beal! • Bvall

Print Data to Screen and Disk when OR detected

LOCATE 1,6, 62
PRINT overrangeA$
LOCATE 16, 65
PRINT overrangeB$

'Store the data to disk when OR detected

PRINT #2, betterA!; ","; betterBl;. ";; CalEnergyAI; ","; CaIEnergyB; ","; Aval!; ","; energyAI; ";; overrangeA$; overrangeB$
LOCATE 16,5
PRINT USING "#.####AAM"; betterAl
LOCATE 16, 20
PRINT USING "#.####AAM"; betterB!
LOCATE 16,35
PRINT USING "#.####/lAM"; CalEnergyA!
LOCATE 16, 50
PRINT USING ',#.####AA/\A"; CalEnergyB!
'-----------
, Now reset the detector to clear the Over-Range
, and reset the range values and timeout

CALL ibonl(Dev15~, 1)
CALL ibtmo(Dev15%. 11) 'changes default timeout in IBRD to 1s
CALL IBWRT(Dev15%, RANA$) 'send range to detector
CALL IBWAIT(GpO%, CPL%)
CALL IBWRT(Dev15%, RANIB$)
CALL IBWAIT(GpO~,CIPL%)

ELSE
Finished handling OR "problem"

Ieftrd$ =MID$(rd$, 1, ibcnt% 12)
rightrd$ = MID$(rd$, lbcnt% 12, lbcnt% - 12)
Aval! = VAL(leflrd$)
Bval! =VAL{rightrd$)
energyA! =energyA! + Avail
energyb! =energyb! + Bval!
betterAI = Aeall • Aval!
bettelBI =Beall· Bvall
eatEnergyA! =CaIEn8f9YA! + Aeall • Avail
CalElnergyBl = CalEnergyB! + Beall' Bval!

LOCATE 16, 5
PRINT"
LOCATE 16, 5
PRINT USING ',#.####AMA"; betierA!
LOCATE 16, 20
PRINT" "
LOCATE 16, 20
PRINT USIING "#.####MAA"; betterB!
LOCATE 16, 35
PRINT"' "
LOCATE 16, 35
PRINT USING "#.####/lAM"; CalEnergyA!
LOCATE 16, 50
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PRINT"
LOCATE 16, 50
PRINT USING ,,#.####MAA"; CaJEnergyB!
PRINT #2. betterA!; "."; betterS!; ";; CaIEnergyA!; ","; CalEnergyBl; ",a; Aval,l; ","; energyA! 'store reading to d"lSk.JWC

END IF
END IF 'End of "IF (ibcnt% <>0)......
IF (dot1 % < 20) THEN ·this IF statement makes the dots following

dot1 % = dot1 % + 1 '''Collecling data" to appear one after another to indicate ~llecling data
ELSE

dot1 % = 1 'after 20 pulses tile dots are cleared and start
LOCATE 11. doto% ... 1 'over again
PRINT"

END IF

LOOP WHILE INKEY$ = ""

This loop is the actual collection of data
for ONE (1) probe present

Write ~mmandto Rm-6600
'read energy meter

'Use variables for probe A even
'if actually using probe B (JWC)

'after 20 pulses the dots are cleared and start
'over again

• \ this prints a blank over energy A & B data to get rid
'I of the old values and to print nothing when no data is taken

'this IF statement makes the dots fol[owing
'''Collecting data" to appear one ·after another to indicate collecting data

ELSE
IF ch$ ="B" THEN
AJooles$ =BJoules$
Acal!=Bcall
RANA$ = RANB$

END IF
DO
CALL IBWRT(Dev15%. CMOS)
CALL IBRD(Oev15%. rd$)
LOCATE 11 • (dotO% + dot1 %)
PRINT"."
LOCATE16.5
PRINT"
LOCATE16.5
PRINT"
LOCATE 16, 60
PRINT" " , gets rid of X's which indicates over-range
overrangeA$ =" "
IF (ibcnt% <> 0) THEN 'Check if any data was taken

IF (INSTR(rdS, "OR") <> 0) THEN
rd$ =" .. + AJoules$ +" "
overrangeA$ = ch$ + "X"
energyA! = energyA! + VAL(rd$)
CaIEner9¥AI = CalEne-rgyAI ... Acal! * VAL(rd$)
CALL ibonl(Dev15%. 1)
CALUbtmo(Dev15%, 11) 'changes default timeout in IBRD to 1s
CALL IBWRT(Dev15%, RANA$) 'send range to detector
CALL IBWAIT(GpO%. CPL%)

ELSE
rd$ = LEFT$(rcl$. ibcnl%)
energyA! = energyA! ... VAL(rd$)
CaiEnergyA! = CaIEnergyA!'" VAL(fd$)

END IF
Avail = VAL(rd$)
betterA! =Acal! * Avail
LOCATE 16.62
PRINT overrangeA$

LOCATE 16.5
PRINT USING ,,#.####MAA"; betterA!
LOCATE 16, 35
PRINT USING "#.####AMA"; CalEnergyA!
PRINT #2, betterA!; .....; CalEneT9¥A!; .....; overrangeA$

ENOIF
IF (dot1% < 20) THEN

dot1% = dol1% + 1
ELSE

dol1% =1
LOCATE 11, dolO% + 1
PRINT"

ENOIF
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LOOP WHILE INKEYS = 
END If

'set timeout to longer lime
'stop writing to disk

'this line and the next line erases "Collecting Data ...."
"

CALL ibtmo(Dev15%, 14)
CLOSE #2
LOCATE 11,1
PRINT"
LOCATE 23, 1
INPUT "Dalacolleclion complete. Do you want to go again (YIN) r; ans$
ans$ = UCASES(ans$)

LOOP WHIIILE anS$ ="Y"
PRINT-

, To end the program, call the Ibclr routine to Clear the device and put
, it in Local mode. Call the lbonl function to disable the hardware and
, software.

Stoplt:

"---
CALL IBClR(Dev15%)
CALL Ibonl(Dev15%, (0»
LOCATE25,1
ENID

'Clear the device, go local
'Place device offline (0)

'The folbwing handles file naming/access errors

"------------
Handler:

SELECT CASE ERR
CASE 52

PRINT "Bad file namel Please try again!"
errcode% = 1
CLOSE
RESUME NEXT

CASE 53
notfound% = 0
RESUME NEXT

CASE 64
PRINT "Bad file namel Please try again'"
errcode% = 1
CLOSE
R'ESUME NEXT

CASE 76
PRINT pathS;" is an invalid path!!"
PRINT "Please try again!"
errcode% =1
CLOSE
RESUME NEXT

CASE 55

PRINT "File already openl Do you wish to close that file"
PRINT "and write over it (YIN)? "
DO

closeit$ = UCASES(INKEYS)
LOOP UNTIL (closeit$ ="Y") OR (closeit$ ="N")
IF cl'oseit$ = "Y" THEN

CLOSIE#2
RESUME NEXT

ELSE
CLOSE #2
,errcode% = 1
RESUME NEXT

END IF

CASE 58



PRINT "File already existsl Do you wish to overwrite it (YIN)? "
DO
overwrite$ = UCASE$(INKEY$)

LOOP UNTIL (overwrite$ ="Y") OR (overwrite$ ="N")
IF overwrite$ = "N" THEN
errcode% = 1
CLOSE #2

ENDIF
RESUME NiEXT

CASE ELSE
RESUME

END SELECT

, A ~outine at this location would analyze the fault code returned in the
, Oev1 Ss (Rm..660() status byte and take appropriate action.

SUB Dev15Error STATIC
PRINT "Device 15 GPIB Error, Call LPC at 315-797-4492"

END SUB

, A routine at this location would notify you that the Ibfind caD failed,
, and refer you to the handler software configuration procedures.

SUB FlndErr STATIC
PRINT "Ibfind ERROR consult Nationallnslruments' manual for installation"

END SUB

SUB NameChei:k (name$, pathS, notfound%, errcode%)
name1 $ = name$
LOCATE 1,1
PRINT"
PRINT"
LOCATE 15,1
PRINT"
LOCATE 16,1
PRINT"
LOCATE 18, 1
PRINT"
errcode% =0
temp% =0

Seperate the path and the fi:lename
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ON ERROR GOTO Handler
'eldsting filename

LOCATE 1,.1

, Check if file already exists

'enable error trapping when checking for

CHOIR pathS
IIF LEN(path$) = 3 THEN
filename$ = pathS ... name$

ELSE
fifename$ = pathS ... "\" + name$

END IF
FILES filename$ 'if the fife is. not found,notfound% =0 in Handler:

CLS
IF notfound% = 1 THEN
PRINT "The file "; name$;" already exists in the directory"
PRINT pathS
INPUT "00 you wish to over-'Mite the existing file (YIN) "; overwriteS
overwrite$ = UCASE$(overwrite$)
IF overwrite$ <> "Y" THEN
errcocle% = 1
EXIT SUB

END IF
END IF
dot% = INSTR(name$, ".") 'chei:kto,see if extension added
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IF (dot% > 9~ THEN errcode% '" 1 'iUhe lposition of ': is past 9, then ttle filename is too long,
IF (dot% <> 0) THEN
ext$ '" MID$(name$, dot'lb + 1)
IF (LEN(ext$) > 3) THEN errcode% '" 1 'check if extension is 100 long
nameS =MID$(name$, 1, dot% - 1) 'let the name be only the pan tip to the '.'

END IF
IF (LEN(nameS) > 8) THEN errcode% = 1 'if no extension, checl< the length of the name
IF {LEN(name$} =0) THEN

LOCATE 15, 1
PRINT ''YOU FOOLl You were supposed to enter a filename! Try again!"
er:rcode% = 1
EXIT SUB

END IF

, this is a partial cl'lec1c for invalid characters in a filename
IF INSTR(name$, a 0) THEN
LOCATE 16,1
IPRINT "Spaces are not allowed in filenames! Try again'"
er:rcode% = 1

END IF
IF er:roode% = 1 THEN
LOCATE 18,1
PRINT "The filename you selected was too klng, please by again·
PRINT ''You may o.nly have 8 characters plus a 3 letter extension"
PRINT""
PRINT "Example: lOOOOOOO(JOlX a

EXIT SUB
END IF
nameS = name1 $ 'if everything is OK, set filename back to original, before I messed with it.

END SUB

SUB PathCheck (pathS, errcooe%)
ON ERROR GOTO Ha.ndler
IF LCAS:E$(LEFT$(path$. 1» = "a" OR LCASE$(LEFT$(path$, 1» = "b" THEN

CLS
LOCATE 1,1
PRINT "I DON'T SAVE TO flOPPY DIRVES, YOU DOLT!I! "
PRINT""
PRINT" Hit any key to try again... "
DO
LOOP WHILE INKEY$ =""
errcode% =1
EXIIT SUB

END IF
CHOIR pathS

END SUB

SUB SetRange (Channel$, j$., rangeS, Joules$)
PRINT~'

PRINT" This is for detector "; Channel$
PRINT~'

lOCATE to, 15
PRINT "a) 30" + CHR$(230) + "J" 'CIHR$(230) is a 'mu'
LOCATE 11,15
PRINT "b) 300" + CHR$(230) + "J" 'CHR$(230) is a 'mu'
lOCATE 12, 15
PRINT "c) 3mJ"
LOCATE 13, 15
PRINT "d) 3OmJ·
LOCATE 14, 15
PRINT "e) 3OOmJ"
LOCATE 15, 15
PRINT "f) 1J"
lOCATE 16,20
PRINT "Enter choice (a,b,c,d,e,f) "
100

ohoice$ = lCASE$(INKEY$)
lOOP UNTIL (choice$ ="a") OR (Choice$ = "b") OR (choice$ ="c") OR (choice$ = "d") OR (ctwice$ ="e1 OR (choice$ =

"r')



IF (choice$ = "a") THEN
j$= ~1"

range$ ="30" + CHR$(230) + "J"
Joules$ =wO.OOOO30"

ELSEIF (choioe$ ="b") THEN
j$ = "2"
range$ = "300" + CHR$(230) + "J"
Joules$ ="0.000300"
ELSEIF (choice$ =Pc") THEN

j$ c"3"
range$ c "3mJ"
Joules$ = "0.003"
ELSEIF (choice$ = ~d") THEN

j$ = "4"
range$ = "30mJ"
Joules$ = "0.030"
ELSEIF (choice$ = "e") THEN

j$="S'
range$ = "3OOmJ"
Joules$ ="0.300"
ELSEIF (cholce$ ='r) THEN

j$ ="6"
range$ ="1 J"
Joules$ = "1"
ELSE

j$ ="1"
range$ ="30" + CHR$(230) +"J"
Joules$ = "0.000030"
ENDIF

END SUB
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APPENDIXB

PREVIOUS PUBLICATION

This appendix contains a reprint of the paper written by the author and published

in the 1996 SPIE Proceedings, volume 2671, pages 243-250, titled "Indocyanine green

degradation during high-intensity laser irradiation." The text in this paper has been

reformatted and the graphs and figures have been reprinted to fit the specifications of the

thesis. Other than the above mentioned fonnatting changes, the content of the article has

been preserved, along with the original references.
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IndocyanIDe green degradation during high-intensity laser irradiation

Jason Crull and Steven A. Schafer

Oklahoma State University
Department ofPhysics
145 Physical Sciences

Stillwater OK 74078-3072

ABSTRACT

It is known that aqueous so]utions of indocyanine green (lCG) are not stable-the dye degrades
over time, especially in the presence of light. Addition of protein or other partially-hydrophobic
compounds (e.g., surfaetants) to the solution act to stabilize th.e ICG, presumably by binding the
dye and preventing occurrence of the degradation reaction. Solutions of leG in other, less polar
solvents, such as methanol, are also stable under normaJ cooditions of handling and storage. We
have discovered, however, that both protein-stabilized and methanol solutions of ICG will degrade
when exposed Ito high-intensity monochromatic illumination. We irradiated 10 IJM aqueous
solutions of ICG, containing human serum albumin (HSA) as a stabilizer, with light from an
alexandrite laser (wavelength: 750 nm; pulse energy: lOOmJ; pulse repetition rate: 20 Hz). While
the HSA did act to slow the degradation process somewhat, even concentrations as high as 3%
were not sufficient to prevent measurable degradation after as little as 30 seconds of irradiation.
We obtained similar results with. methanol solutions. Our results suggest that it is important to
consider the type of illumination used during tissue welding in order to control lOG degradation.
We present our measurements of the mtensity dependence of ICG degradation in the presence of
stabilizers. In addition., we discuss nonJiinear effects (saturable absorption and multi-photon
absorption and fluorescence) exhibited by ICG during high-intensity pulsed irradiation.

Keywords: indocyanine green, tissue welding, photothermolysis, photodegradation

1. INTRODUCTION

In recent yecus, indocyanine green (lCG) bas been used as a selectivity agent in the delivery of
laser energy to biological tissues. 1

•
15 While solutions of ICG in methanol or ethanol are stable,

aqueous ICG solutions are unstable, and the ICG degrades over time and especially upon exposure
to light. 16.17 It has been found that the degradation of .aqueous ICG is slowed and even elimina1ed
when globular pmtein, such as human s,erum albwnin (lISA), or a surfactant is added to the
solution. Because leG used as a selective energy absorber in biomedical applications is always
associated with abundant free protein, the dye has been presumed to be stable under these
conditions. However, the results of a l'ecent study by Lajoie et al.U suggest that ICG may
photodegrade even in the presence of stabilizing protein, if the illumination intensity is high
enough.

We have investigated this phenomenon by irradiating ICG solutions with hitgh-intensity laser light.
We have found that both methanol and aqueous + HSA solutions of ICG do photodegrade
significantly when exposed to high-intensity illumination. We have also observed multi-photon
absorption and fluorescence, as well as saturable absorptioneffeets, in these solutioDS.
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2. MATERIALS AND METHODS

2.1. Sample Preparation

Aqueous ICG solutions were prepared by dissolving laser-grade indocyanine green (IR-125,
Kodak) and human senun albumin (Sigma) in distilled water to obtain a :final concentration of 10
,.aM leG and 3% HSA by weight. Approximately 3.5 ml of the solution was placed in a 4.5 mI
capacity acrylic cuvette having a 10 rom optical path length. A 3 x 6 rom magnetic stir bar was
then placed inside the cuvette and the cuvette sealed with Parafilm-M to retard evaporation.

Methanol solutions were prepared by dissolving IR-125 in methanol to obtain a concentration of 10
~M. As with the aqueous solutions, a magnetic stir bar was inserted along with the solution into a
cuvette, and the cuvette sealed with Parafilm-M.

2.2. Experimental Setup-IrradiatioDS

Figure 1 depicts the experimental setup used to expose the leG solutiollS to a controlled amount of
laser energy. The energy source is a pulsed alexandrite laser (Light Age PAL-lOl; wavelength:
750 nm; pulse repetition rate: 20 Hz; pulse energy: -100 rnJ; pulse width: -60 IJS). A fraction of
the beam from the laser is split off using a glass slide as a beam splitter; this side beam is directed
to a radiometer (Laser Precision RJP-735) which monitors the energy delivered by the laser during
sample irradiation.

laser

sample

1""------......

detector

computer oscilloscope 1--_.....

Figure 1. Experimental setup for irradiation of ICG solutions. The components enclosed by the
dashed line are used only for the saturable absorption measurement.

The main portion ofthe beam proceeds through a diverging lens (to increase the spot size) and then
through a cylindrical lens which collimates the beam into an elliptical shape. The elliptical beam
then strikes the sample; the incident beam spot size is approximately 5 x 20 mm. Care is taken to
enslilfe that aU of the light strikes the leG solution, and none is lost around the periphery. A
magnetic stirrer mixes the leG solution during the irradiation to ensure that all of the solution is
unifonnly exposed to the laser light. The accwnuIated delivered energy is monitored in real time
using the radiometer, and the irradiation is terminated when the desired energy dose has been
delivered.
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The effect of shorter laser pulses on ithe degradation of ICG was investigated using the same setup
as above, with the only change being that the laser's Q-switch was enabled. With the Q-switch on,
the pulse width is reduced from 60 J.lS to 100 05; however, the total energy per pulse is unchanged.
Thus, the peak optical power is --600x higher during Q-switched irradiation.

The energy delivery tate was 2W for all irradiations; the maximum energy dose was ~6 kJ. Thus,
the maximum irradiation time was -3000 s.

Saturable absorption measurements were also performed using the setup in Figure 1, with the
addition of a high-speed photodetector (New Focus J801) placed behind the ICG sample. The
output of the detector was fed to an oscilloscope (Hewlett-Packard 5450A); the laser pulse width
(fuD-width half-maximum) was measured using the oscilloscope's built-in measurement functions.

2.3. Experimental Setup-Spectrophotmetry

At roughly equal intervals during irradiation, the cuvette containing the ICG sample was removed
from the irradiation setup and inserted into the single-beam spectrophotometer shown in Figure 2.
The infrared lamp (an electrically-heated wire) emits light in the wavelength range of interest for
ICG optical absorption (600-900 nrn). A condenser lens and a rectangular aperture (16 x 5 nun)
focus the light onto the cuvette; the spot size at the cuvette is approximately 4 mm x 15 mm. After
passing through the cuvette, the light enters the spectrometer (Instruments SA HR320) through a
50 !JID slit. The spectrum is imaged by a thennoelectrically cooled CCD camera (photometries CH
250; 1317 x 1035 pixels).

Camera exposure time for optimum signal/noise ratio was ~5 s. Immediately after measurement of
the light intensity passing through the ICG solution, the cuvette was replaced with one containing
only the corresponding solvent (either water or methanol), and a second exposure made. The image
obtained from the second exposure served as a reference-at a given wavelength, the ratio of the
leG signal to the reference signal is directly related to the optical absorbance by

(1)

where A is the optical absorbance, and l]cG and lreference are the measured intensities of the signal
and reference, respectively.

A part of the entrance slit is masked off to provide a "dark zone» in the CCD image. Any residual
signal in this dark zone can be attributed to stray light and CCD dark curreDt; this infonnation is
used to correct the data and significantly improve the signal/noise ratio of the resulting absorption
spectra. Using this correction technique, the instrument is capable ofmeasuring absorbance values
as high as approximately 3.5.

After completion of an irradiation experiment (during which time several: CCD images have been
acquired), the images ofthe light transmitted through the ICG solutions are processed by computer
to obtain absorbance spectra, as presented below.
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lamp CCD
spectrometer II------y-....I

computer

Figure 2. Experimental setup for spectrophotometric measurement ofICG
solution optical absorbance.

3. RESULTS AND DISCUSSION

Figures 3-5 show the reduction in optical absorbance of three leG solutions (aqueous + HSA,
methanol, and methanollQ-switched laser) as a consequence of laser irradiation. As can be seen,
even small exposures (~50 J mJol) lead to measurable degradation ofthe leG.

900

2.0

3.0

1.0

0.01-----.:-....:...:.---:--------:--------;"-1

600 700 BOO
Wavelength (nm)

Figure 3. Optical absorbance spectra ofphotodegraded 10 JAM aqueous ICG
+ HSA solution. From highest to lowest absorbance, delivered energy dose
is 0, 12,28, 58, 101, 146, 207, 280, 376 and 496 J ml-!.
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Figure 4. Optical absorbance spectra of photodegraded 10 J.lM methanol
ICG solution. From highest to lowest absorbance, delivered energy dose is
0,91,211,343,493,674,861, 1059, 1269, 1480 and 1696 J mI·l .
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Figure 5. Optical absorbance spectra of photodegraded 10 IlM methanol
ICG solution; Q-switehed irradiation. From highest to lowest absorbance,
delive:r;ed energy dose is 0,60, 151,253,374,494,644 and 766 J mI-l

.

In order to model the degradation behavior, we first note that wile the energy delivery rate (i.e.,
incident power) remains constant during an irradiation, the energy absorption rate does not,
because the absorption coefficient decreases significantly during the course of the irradiation. Ifwe
assume that the degradation rate is proportional to the energy absorption rate, we can write

(2)



where a is the absorption coefficient of the solution, E represents delivered energy, x is the path
length of the cuvette, and k is a constant of proportionality. The quantity l~-ax represents the
fraction ofthe Jincidentene~gyabsorbed by the solution.

We find, however, that Equation 2 does not accurately fit the experimental data. One possible
explanation for the discrepancy would be that the degradation rate is oot simply proportional to the
energy absorption rate, but contains other factors as weD. For example, ifthe degradation reaction
involves ICG dimers, the degradatioo rate would be proportional to the leG concentration as well
as to the energy deposition rate,

da. ( )dE=-kl-e-a.x C, (3)

where C is the ICG concentration. From Beer's Law, we know that a ex: C, so we can rewrite
Equation 3 as

(4)

Similarly, if the degradation involves ICG trimers, then dahiE = -k-(l~-a X)a2
, and so on. The

generalized fonn ofthis relationship is ofcourse

(5)

where we have dropped the prune superscripts on k, and m represents the number of ICG
molecules involved in the degradation feaction.

Since leG is known to exist in various oligomerized fonns in solution,J7 it is not unreasonable that
one or more of these oligomers might participate in the degradation reaction. Indeed, we find that
the in.clusion of the additional factor am-I in Equation 5 dramatically improves the agreement
between the model and the experimental data. The degradation rate data, derived from the spectra
shown in Figures 3-5, are shown along with the best-fit curves calculated using Equation 5, in
Figures 6-8, respectively.

For photodegradation oflCG in aqueous + HSA solution (Figure 6) and methanol solution (Figure
7), the "oligomerization exponent," m, is -1.5. Thus, it appears that the degradation reaction
involves at least monomer and climer forms of ICG, with possible contribution from higher
oligomers. Because the units of k depend on m, different values of k obtained under different
experimental conditions are oot directly comparable, unless the corresponding values of m are
equal. Nevertheless, since the values of m are similar in the two cases, we can conclude from the
model fit that the degradation rate of leG in aqueous + HSA solution is roughly four times larger
than in methanol solution.

In the case of Q-switched irradiation, the oligomerized exponent is much larger, m ~ 4.3. While
this may be partly the result of the oligomeric characteristics of the degradation reaction, it is also
undoubtedly related to nonlinear (multi-photon) absorption of the incident light. to first order, the
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factor (1-e-a X) is .approximately ax; thus, for example, a two-photon absorption/degradation

process, which would ~equire that the degradation rate be proportional to (l-e-O. X)2, would increase
the apparent oligomerization exponent by 1.

Figure 8 also shows that the degradation rate of a methanol solution of ICG when exposed to Q
switched laser pulses is much lower than when exposed to longer pulses. Using the saturable
absorption observation setup shown in Figure 1, we measured the pulse width of the Q-switched
pulses after they bad traversed the sample. The pulse width of the light directly from the laser
(sample removed) was 94 ns; however, when a 10 J.lM methanol solution ofICG was placed in the
beam path, the pulse width decreased to 77 os. This pulse-shortening behavior is indicative of
saturable absorption. A 100 mJ pulse of 750 om light contains 41 x 1019 photons, while 3.5 mI of a
10 !J.M ICG solution contains only 2x 1016 ICG molecules. Thus, ifthe excited singlet state lifetime
of ICG is long compared to the laser pulse widt:h, it is expected that absorption saturation would
occur.

We also observed substantial visible fluorescence during irradiation with Q-switched laser pulses.
this fluorescence was easily seen by the naked eye, and through protective laser gogg~es designed to
block 750 nm light. since the fluorescence emission is at wavelengths shorter than that of the
incident radiation, a multi-photon absorption phenomenon must be involved. Most likely, the
fluorescence is a result of two-photon absorption (375 om equivalent) into the weak leG
absorption band centered near 350 om.

Both saturated absorption and fluorescence act to reduce the amount of light energy available for
photodegradation, thus explaining the much lower degradation rate observed during Q-switcbed
irradiation.
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Figw;e 6. Photodegradation of 10 f,LM leG in aqueous + HSA solution.
Best-fit parameters are ao =0.57 mm-I, k =0.0011, m = 1.67.
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Figure 7. Photodegyadation of 10 JlM ICG in methanol solution. Best-fit
parameters are <:x.o =0.43 rom-I, k =0.00024, m = 1.52.
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Figure 7. Photodegradation of 10 ~ ICG in methanol solution; Q
switched irradiation. Best-fit parameters are <:x.o =0.38 rom- l

, k =0.0027, m
=4.33.

4. SUMMARY

We have demonstrated that aqueous + HSA and methanol solutions of ICG will photodegrade
when exposed to intense laser radiation, and that aqueous + HSA solutions degrade significantly
more rapidly than do methanol solutions. We have also observed two nonlinear optical phenomena,
saturable absorption and multi-photon absorption and fluorescence, during very high-intensity
irradiation of ICG solutions. All three phenomena need to be taken into consideration by
researchers contemplating the use of high-intensity pulsed laser light to excite ICG in biological
tissues.
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We plan to continue our investigation of these phenomena and to fully characterize the
photodegradation of lOG solutions as a function of solvent, deposited light energy, and energy
deposition rate.
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