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1. Introduction

Global optimization is concerned with the determination of global optima, either

maxima or minima, of a function. Such problems occur frequently in numerous

disciplines which model real world systems. Mathematically, the global optimization

problem can be defined as [15,41]:

Given a set D c 9ln
, and given a real function f: D -) ~, find'

minf(x) .
xeD

Here/is called the objective function, or cost function. Since maximizing/is equivalent

to minimizing to -f, this definition sufficiently includes- the search for global maxima as

well as global minima. Throughout this thesis, the function / will be referred to as, our

cost function, un]ess we mention .otherwise. ,
I ~.

Besides its importance, global optimization is also an extremely difficult problem.

Various methods have been proposed to solv~ global optimization problems. However,

there are no efficient algorithms which solve aU general global optimization problems. In

general, optimization algorithms can be classified as either stochastic or deterministic'. In

this thesis, we mainly consider the stochastic methods, which evaluate the cost function!

at randomly sampled points from the feasible region D.

There are various stochastic methods [43]. We mainly discuss the simulated

annealing method [3,5,27,30] and its variants [16,42]. Two other stoch~ic optimization

algorithms are also discussed. One is the random pattern search algorithm [28,29],

1



which is one of the early stochastic algorithms. The other is the toros algorithm [39],

which is a recent stochastic algorithm.

Originally, the simulated annealing algorithm was based on the analogy between

the simulation of the annealing of solids and the problem of solving large combinatorial

optimization problems [27]. In condensed matter physics, annealing denotes a physical

process in which a solid in a heat bath ]s heated up by increasing the temperature of the

heat bath to a maximum value at which aU particles ofllie solid to some extent randomly

arrange themselves, followed by cooling thiough slowly lowering the temperature of the

heat bath. In this way, all particles arrange themselves in the low energy ground state of

a corresponding lattice, provided the maximum temperature is sufficiently high and the

cooling is carried out sufficiently slowly. At each temperature -value T, the solid is

allowed to reach thennal equilibrium, characterized by a probability of being in a state

with energy given by the Boltzmann distribution [30,32].

As the temperature decreases, the Boltzmann distribution concentrates on the

states with lowest energy and finally, when the temperature approaches zero, only the

minimum energy states have a non-zero probability of occurrence. However, it is 'well

known [26] that if the cooling is too rapid, i.e., if the solid is not allowed to reach thermal

equilibrium for each temperature,. metastable amorphous structures can be re~ched rather

than the low energy crystalline lattice structure.

The above ideas can be applied to combinatorial optimization. problems in the

following way [27]: First, a new point is randomly sampled. If it generates a new
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minimum value, the new point is always accepted. If not, it is accepted provided that a

random number between 0 and I is less than a probability defined by a mathematical

function, usually the Boltzmann equation [32]. Early in the iterative process, the

mathematical function generates values near unity, and most points are accepted. By

adjusting a parameter in the probability function, usually referred to as the temperature,

the probability function generates smaller values across successive iterations (cooling),

and eventually, only pomts that produce better solutions are accepted. The procedure

generates approximately optimal solutions for combinatorial problems, such as the

traveling salesman problem, for which exact solutions are presently mathematically

intractable [27].

Bohachevsky et al. [3], Corana et al. [5], and others extended simulated annealing

ideas from combinatorial problems to. the .optimization of functions defined in a

continuous domain. The mathematical model of the simulated annealing algorithm for

continuous optimization based on the ergodic theory of Markov chains can be found in

[8].

8zu and Hartley [42] introduced a fast simulated annealing. Fast anne.aling (FA)

uses the Cauchy distribution, and is often superior to that of Boltzmann annealing. The

fatter tail of the Cauchy distribution allows it to test states farther from the current local

minima during the search process. In addition, fast annealing has an annealing schedule

exponentially faster than the method ofBoltzmann annealing.
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Boltzmann annealing and fast annealing have distributions which sample infinite

ranges, and there is no provision for considering differences in each parameter-

dimension. Ingber [16] proposed a new probability distribution to accommodate these

desired features. This algorithm is called very fast annealing, and is another variant of

simulated annealing and is exponentially faster than fast annealing. The details are

discussed in Chapter 4.

,
Various other stochastic algorithms have appeared in the literature [43]. Lee [29]

studied a stochastic algorithm, called the random pattern search algorithm, which was

first described by Lawrence and Steiglitz [28]. Rabinowitz [39] presented a stochastic

algorithm called the torus algorithm, for fmding the global optimum of a function of n

variables. The performance of this algorithm was compared to that of the NeIder-Mead

simplex algorithm [34] and the simulated annealing algorithm on a variety of nonlinear

functions.

Many comparisons among different algorithms have been discussed by authors,

for example, see [20,21,24,29,35,39,40]. There is no known optimization algoritlnn

which is better than all other algorithms. For example, if one knows that a cost function

to be optimized is unimodal and smooth everywhere, then a simple Newton iteration [41]

might well be faster than most of the other optimization methods, detez:ninistic or

stochastic. Many stochastic algorithms perform poorly on ill-conditioned smooth

functions, and are most useful on discontinuous, nonsmooth, or multi-modal problems

that are not too ill-conditioned.
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The main purpose of this thesis is to compare the simulated annealing algorithm,

very fast simulated annealing algorithm, random pattern search .algorithm, and torus

algorithm on a variety of multi-modal, discon$luous, and/or iU-conditioned functions. In

particular, we will test the Osborne functions [36], which are moderately ill-conditioned,

smooth practical problems easily solved by deterministic methods [36]. We have not

seen a satisfactory solution of optimizing Osborne functions given by any of the early

stochastic algorithms [3,5]. Our test results show that these problems can be solved by

the very fast annealing algorithm, the random pattern search algorithm, and the torus

algorithm.

In Chapter 2, the random pattern search algorithm and the torus algorithm are

explained. In Chapter 3, we discuss the general simulated annealing algorithms as well as

Boltzmann annealing and fast annealing. In Chapter 4, we discuss very fast annealing in

detail. In Chapter 5, we list the functions which we use to compare the algorithms. The

comparisons, results, and conclusions are smnmarized in Chapter 6 and Chapter 7 of this

thesis.
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2. Some Stochastic Algorithms

In the past decade, simulated annealing algorithms have been studied in detail. In

Chapter 3 and Chapter 4, we discuss the simulated annealing method and its variants.

Besides that, there are various other stochastic programming methods proposed by

various authors. There are collected more than two thousands references in [43], though

it is not exhaustive, in this subject. In this chapter we study two stochastic algorithms,

the random pattern search algorithm [28,29] and the torus algorithm [39].

2.1 Random Pattern Search Algorithm

One of the early stochastic optimization algorithms is the random pattern search

algorithm, which was fIrst described by Lawrence and Steiglitz [28]. It was successfully

applied to the optimization ofa variety of chemical engineering problems [12].

Lee [29J studied the random pattern search, and modified the random search

procedure. He tested this procedure on various functions and compared its perfonnance

with the pattern search method [14] and DFP [6,9] method on several aspects, such as the

final value of the objective fimction, the number of iterations of the algorithm, an~ the

number of times the function is evaluated. Recently, Chandler [4] has tried

unsuccessfully to reproduce Lee's results using Lee's program.

The random search algorithm came from a detenninistic method, called pattern

search, which was devised by Hooke and Jeeves [14].

The pattern search algorithm consists of two major phases, an exploratory move

and a pattern move. The exploratory phase, moving from the base point, is designed to
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explore the local behavior of the objective function. The pattern phase steps along the

approximate negative gradient direction, which is determined from the results of the

exploratory phase.

During the exploratory phase, if there are instances of successive successful

searches, the step size will be extended. Should the next search with this expanded step

size be successful, it is retained; otherwise the step size before extension win be applied

again. If an unsuccessful search is encountered, the step size is decreased; if it becomes

less than some small preset tolerance, then convergence is assumed to be ac~eved.

The random pattern search basically has the same searching procedures as pattern

search, except that it searches in pseudorandom directions uniformly distributed over the

surface of a sphere or hypersphere.

2.2 Torus Algorithm

Rabinowitz proposed a stochastic algorithm, called the torus algorithm, for

fmding the global optimum of a function ofn variables [39].

Three computer functions (Controlling function, Multidimensional function,. and

Single-dimension function) constitute the core of the algorithm. The very detailed

pseudo-codes of these three functions were given (39]. The algorithm is based on using

an adaptive n-dimensional torus to surround and isolate the global minimum. In the

controlling function, an n-dimensional torus moves in n-space and monotonically shrinks

in size over trials, isolating the region containing the global minimum. This shrinkage is

gradual, mimicking slow cooling in a multidimensional function and single-dimension
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function which are repeatedly called from the controlling function; new points are

randomly sampled around the currently best-fitting point. The pennitted range of these

sampled points shrinks logarithmically over iterations (mimicking rapid cooling).

Detailed descriptions of the relevant user-specified parameters were given. However, it

seems that it would be difficult to implement the algorithm independently [33]. The

original program was written in Common Lisp [44]. In fact, there are some differences

between the pseudo-codes in [39] and the Lisp program [44]. We translated the Lisp

program into a FORTRAN program (see Appendix).
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3. Simulated Annealing Algorithms

3.1 General Simulated Annealing Algorithms

In general, simulated annealing consists of three functional relationships [16]:

1. g(x): The probability density function of the state space x = {xi: ;=1,2, ... , D}.

2. hex): The probability density function for accepting a new value given the just

previous value.

3. T(k): An annealing temperature (T) schedule in annealing-time step k.

General simulated armealing optimization methods choose new points at various

distances from their current point x. Each new point Xnew is generated probabilistically

according to a given distribution g. These algorithms calculate the function value E =

.f{x), and then probabilistically decide to accept or reject it. If accepted, the new point

becomes the current point. The new point may be accepted even if it is worse and has a

larger function value than the current point. The criterion for acceptance is determined by

the acceptance function h, the temperature parameter T, and the difference in the function

values of the two points. Initially, the temperature T is large. As the algorithm

progresses, T is reduced, thus lowering the probability that the acceptance function will

accept a new point if its fimction value is greater than that of the current point.

Let Ek = I(x). The acceptance probability is based on the chances of obtaining a

new state with "energy" Ek+\ relative to a previous state with "energy" Ek .

heM) = exp(- E k+1IT)
exp(-Ek+I/T) + exp(-Ek/T)
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1
=-----

1+ exp(M,/T)

:.:::: exp(-MjT), (1)

where !J.E represents the "energy" difference between the present and previous values of

the energies (considered here as cost functions) appropriate to the physical problem, i.e.,

M =Ek +1 - Ek • 1bis essentially is the Boltzmann distribution contributing to the

statistical mechanical partition function of the system [32]. However, one may choose

another function as the acceptance function [22].

Suppose the function g is given. Let the state-generating probability at the

cooling temperature T(k) at the annealing-time k and within a neighborhood be ;:.:: gk; then

the probability ofnot generating a state in the neighborhood is obviously ~ (1- gk). Our

purpose here is to choose suitable T(k) such that it will suffice to give a global minimum

ofthe cost function. In order to statistically guarantee to obtain the global minimum, we

require that any point in x-space can be sampled infinitely often in annealing-time (IOT).

It suffices to prove that the products of probabilities of not generating a state x lOT for all

annealing-times successive to kO yield zero,

co

IT(1- gk) = 0 .
k=ku

This is equivalent to

10
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If the probability density function g is given, then the problem reduces to finding T(k) to

satisfY Equation (3).

3..2 Boltzmann Annealing (BA)

The Boltzmann algorithm chooses a Gaussian probability density function [32],

g(x) = (27CTr.DJ2 exp[-L~.i/(27)], (4)

where~ = X new - x is the deviation ofXnew from the current accepted point x. It has been

proven [10] that it suffices to obtain a global minimum of/if T is selected to be not faster

than

T(k) = To.
Ink

(5)

One can prove that this cooling schedule satisfies Equation (3) in the D-dimensional

neighborhood for an arbitrary size 1Lh"1 and k. In fact we have

~ ~ ~

Lgk ~ :Lexp(- In k) =LYk =00.

~ ~ ~

3.3 Fast Annealing (FA)

(6)

There are sound physical principles underlying the choices of Equations (4) and

(5) [27,32]. It was noted that this method of finding the global minimum in x-space is not

limited to physics examples requiring "temperatures" and "energies". Rather this

methodology can be readily extended to any problem for which a reasonable probability

density can be formulated [42]. It was also noted this methodology' can be readily

extended to use any reasonable generation function g.
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8zu and Hartley [42] introduced a fast annealing method which uses the following

Cauchy distribution as the generation function:

(7)

The Cauchy distribution has some definite advantages over the Boltzmann form [42]. It

has a "fatter" tail than the Gaussian form of the Boltzmann distribution, permitting easier

access far from a local minimum in the search for the desired global minimum.

On the other hand, we can set the annealing schedule as

T(k) = To.
k

(8)

Then one can prove that this cooling schedule satisfies Equation (3). In fact we have

(9)

The method of FA is thus statistically seen to have an annealing schedule exponentially

faster than the method ofBA. This method has been tested on a variety ofproblems [42].
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4. Very Fast Simulated Reannealing (VFSR) and the ASA Code

In a variety of physical problems, we have a D-dimensional parameter-space.

Different parameters have different finite ranges, fixed by physical considerations, and

different annealing-time-dependent sensitivities. BA and FA have g distributions wlllch

sample infinite ranges, and there is no provision for considering differences in each

parameter-dimension. For example, different sensitivities might require different

annealing schedules.

One might choose a D-product of one-dimensional Cauchy distributions because

the one-dimensional Cauchy distribution has a few quick algorithms. This would also

pennit different Td s to account for different sensitivities

But then we would require an annealing schedule:

T (k) = 1;0
I 1/

kiD

which, although faster than BA, is still quite slow.

(10)

(11)

Motivated by the above considerations, Ingber introduced a very fast simulated

annealing method [16].

4.1 Very Fast Annealing
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As we mentioned previously, different parameters may have different annealing-

time-dependent sensitivities. We consider a parameter a~ in dimension i generated at

annealing-time k with the range

a~ e[A; ,B;J

The pararneter a~+1 can be calculated from the random variable yi

y; E[-l,l].

Defme the generating function

DID . .

gT =TI I il == TIg~(yl),
;=1 2(y + 1;) In(l + 1/1;} ;=1

(12)

where the subscript i on 1; specifies the parameter index, and the k-dependence in 1; (k)

for the annealing schedule has been dropped for brevity. Its cumulative probability

distribution is

D

Y Y D

GT(y) = r·· Jdy'!· ··dy,DgT(Y') == TI G~(yi)" (13)
-I -1 i=1

Gi i = J:. + sgn(y;) In(1 +IiI/I;) (14)
T(Y) 2 2 In(l+ l/r) .

/ is generated from a d from the uniform distribution

ul
E U[O, 1],

/ =sng (u i -J:.rZ;[(l+ 1/T,)12u
l

-II _1].
2

By a straightforward calculation, one can set the annealing schedule for 1; as

14
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T; (k) = 1;0 exp (-cikl/D
). (17)

A global minimum statistically can be obtained; that is, the above annealing schedule

satisfies Equation (3):

(18)

It seems sensible to choose control over Ci such that

Ci =m; exp(-n; ID),

(19)

(20)

(21)

where m; and n; can be considered "fr,ee" parameters to help tune ASA for specific

problems. Here ASA refers to Ingber's adaptive simulated annealing code, which we will

explain briefly in Section 4.3.

It has proven fruitful to use the same type of annealing schedule for the

acceptance function h as is used for the generating function g, i.e., Equations (17) and

(19), but with the number of acceptance points, instead of the number of generated points,

used to detennine the k for the acceptance temperature.

In one implementation of this algorithm, new parameters a~+1 are generated from

old parameters a~ by generating the yi until a set of D is obtained satisfying the range

constraints.

4.2 Reannealing
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Whenever doing a multi-dimensional search in the course of solving a real-world

nonlinear physical problem, inevitably one must deal with different changing sensitivities

of the ai in the search. At any given annealing-time, it seems sensible to attempt to

"stretch out" the range over which the relatively insensitive parameters are being

searched, relative to the ranges of the more sensitive parameters.

It has proven fruitful to accomplish this by periodically rescaling the annealing­

time k, essentially reannealing, every hundred or so acceptance-events (or at some user­

defmed modules of the number of accepted or generated states), in terms of the

sensitivities s; calculated at the most current minimum value of the cost function, f,

In terms of the largest Si =smax' a default rescaling is perfonned for each k, of

parameter dimension, whereby a new index k: is calculated from each kj •

k: =(In(7;0 / I;k' ) / Ci ) D •

I'iO is set to unity to begin the search, which is ample to span each parameter dimension.

Recall that we use the Boltzmann acceptance criterion as the acceptance criterion.

That is, if

exp(- tJ.f/I'coSl ) > v ,

16



the new point is accepted as the new saved point for the next iteration. Otherwise, the

last saved point is retained. Here Tcost is the ''temperature'' used in this test, and v is from

the unifonn distribution

V E U[O,I].

The annealing schedule for the cost temperature (or, acceptance temperature) is

developed similarly to the parameter temperature. However, the Boltzmann acceptance

criterion uses an exponential distribution which is not as fat-tailed as the distribution used

for the parameters. The index for reannealing the cost function, kcost, is determined by the

nmnber of accepted points, instead of the number of generated points as used for the

parameters.

There is still an unanswered question: How to choose the initial acceptance

temperature? Ingber said: "The initial acceptance temperature is set equal to an initial

trial value off' [16,21]. Here and in the following, we understand that only the quantities

of the temperatures and the function values are compared.

The initial trial value of f is "typically very large relative to the current best

minimum, which may tend to distort the scale of the region currently being sampled".

"Therefore, when this rescaling is perfonned, the initial acceptance temperature is reset to

the maximwn of the most current minimum and the best current minimum ofJ, and the

annealing-time index associated with this temperature is reset to give a new temperature

equal to the minimum of the current cost-function and the absolute values of the current

best and last minima" [16,21].
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We discussed the above problem with Chandler [4] and he made the following

comments: "However, the cost function f may have units, such as Mlsec., that are

inappropriate for temperature. Further, the scaling (units) of f is arbitrary. Last, all

values of/could be negative. Therefore, these remarks ofIngber's make no sense to me,

although his prescription no doubt will work in most cases."

Also generated are the "standard deviations" of the theoretical forms, calculated

as [?f /(&i)2 r~, for each parameter a i • This gives an estimate of the "noise" that

accompanies fits to stochastic data or functions. At the end of the nm, the off-diagonal

elements of the "covariance matrix" are calculated for all parameters. This inverse

curvature of the theoretical cost function can provide a quantitative assessment of the

relative sensitivity of parameters to statistical errors in fits to stochastic systems.

4.3 ASACode

The adaptive simulated annealing (ASA) code was first developed by Lester

Ingber in 1987 as Very Fast Simulated Reannealing (VFSR) to deal with the necessity of

performing adaptive global optimization on multivariate nonlinear stochastic systems

"[16]. Since 1993, many features have been added, leading to the current ASA code [22].

"Adaptive" in Adaptive Simulated Annealing refers to adaptive options available to a

user to tune the ASA algorithm to optimize the code for application to specific systems.

While the default options may suffice for many applications, this is not intended to imply

.
that the code will automatically adaptively seek the best tuning options. There are many

user options in the ASA code. Among them, there are only a few options which are very

18



influential [22]. However, it seems that it is not easy to grasp all the user options. In our

testing we only use the most influential option "Temperature_Ratio_Scale". For aU other

options we simply use the default values. Of course, we may not obtain the best results

for some problems.
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5. Test Problems

In this chapter we list the functions which we use to compare SA algorithm,

VFSR algorithm, the random pattern search algorithm, and the torus algorithm. These

functions exhibit moderate ilI-conditioning, nonsmoothness, and multi-modality in

various forms. For the detailed description of these functions, the readers are referred to

[3,12,28,35,36,38]. We specify the range for each variable and the starting point for

each function to be minimized. We also state the actual minimwn or approximate

minimum ofeach function.

1. Rosenbrock function:

f(x) = lOO(x2 - xi)2 + (1- XI)2

variable range: -2000 S xp x2 S 2000 [39].

starting point: x = (-1.2, I).

The actual minimum oftrus function is 0 at (1,1).

2. Modified Rosenbrock's function 1 ("flat-groW1d bent knife-edge function"):

f(x) =100lx2 - x~ 1+ (1- X I )2

variable range: -2000 S X l ,X2 S 2000.

starting point: x = (-1.2, 1).

The actual minimum ofthis function is aat (1,1). This function is not smooth.

3. Modified Rosenbrock's function 2 ("hollow-ground bent knife-edge

function"):

20



variable range: -2000 ~ XI~X2 ~ 2000.

starting point: x = (-1.2, 1).

The actual minimum ofthis function is 0 at (1,1). This function is not smooth.

4. Bohachevsky function:

I(x) = x~ +2x; - 0.3cOS(37lX}) - 0.4cos(47lX2 ) + 0.3+ 0.4

variable range: -2000 ~ Xl 'X2 ~ 2000.

starting point: x = (-1, I).

The actual minimum of this function is 0 at (0, 0).

5. Powell function

starting point: X =(3, -1, 0, 1).

The actual minimum of this function is 0 at (0,0,0,0). The Hessian matrix of this

function is singular at the minimum.

6. Wood function

I(x) =lOO(x2 - X1
2

)2 +(1- X I )2 +90(x4 - X;)2 + (1- X3)2

+lO.l[(x2_1)2 +(x4 -1)2]+19.8(x2-1)(x4 -1).

starting point: x = (-3, -1, -3, -1).

The actual minimum of this function is 0 at (I, 1, 1, 1).

7. Beale Function
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variable range: -2000 ~ x],x2 ~ 2000.

starting point: x = (1, 0.8).

The actual minimum ofthis function is 0 at (3, 0.5).

8. Engvall function

!(x)=x: +x; +2x:xi -4x] +3.

variable range: -2000 ~ xi ,x2 ~ 2000.

starting point: x = (0.5, 2.0).

The actual minimum of this function is 0 at (l, 0).

The following two functions are the Osborne functions [36). Osborne [36]

studied a general method for IIlininrizing a sum of squares which has the property that a

linear least squares problem is solved at each stage and which includes the Gauss­

Newton, Levenberg, Marquardt, and Morrison methods as particular special cases.

The problem ofminimizing a sum of squares arises naturally from the problem of

determining parameters Xi, i = 1,2, ...,p in the model equation

yet) =F(t, x)

from observations

Yi =y(tJ + &;0 (i = 1, 2,...,n ),

where the &i (the experimental errors) are independent, normally distributed random

variables with mean zero and standard deviation cr. In the case n > p the appropriate

maximum likelihood analysis indicates that x should be estimated by minimizing .f(x) =

22



and
n

I(x) = Ilg(x)ll
z

= Lg;(X)2
i=l

This problem will be referred to as the model problem, and it is stressed that we have

offered a statistical justification for minimizing a sum of squares. Osborne's two test

problems are classic practical nonlinear least squares problems.

9. Osborne function 1

In this example, the data values {(t,.,YI)' (l::;; i::;; 33)}, which are given in [36],

are fitted by the model

Osborne's original method is a detenninistic one, which does not have to specify the

range of each variable. Based on the results in each stage of Osborne's problem, we may

choose:

variable range: 0::;; XI ::;; 3, a::;; Xz ~ 3, - 3 ~ x3 ::;; 0, 0 .::;; x4 ::;; 3, 0 ::;; Xs ::;; 3.

starting point: x = (0.5, 1.5, -1, 0.01, 0.02).

The approximate minimum is 0.546E-4 at (0.3753, 1.9358, -1.4647, 0.01287,

0.02212). However, if we choose such a range and starting point, it is very difficult to

obtain the global minimum by using a stochastic method. We cannot figure out what is

the reason for this phenomenon.
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In order to obtain a global minimum of Osborne function 1 by a stochastic

method, we choose the following ranges and starting point to avoid the possible local

lnImmum.

variable range: 0 ~ Xl ~ 3, - 0.95 ~ x2 ~ 1.95, - 3.45 ~ x3 ~ -1.45, 0 ~ x4 ~ 3,

starting point: (0.5, 1.5, -2, 0.01, 0.02).

10. Osborne function 2

In this example, the model has the fonn

F(t ,x) = Xl exp(-xst) + x2 exp[-x6 (t - X 9 )2]

+ X 3 exp[-x7(t - X IO )2] + X 4 exp[-x8(t - XlI )2]

The data values {(t i 'Yi)' 1~ i ~ 65} are also given in [36]. Osborne function 2 is easier

than Osborne function 1 to m:inimize by stochastic methods. Based on the data in [36],

we choose:

starting point: (1.3,0.65,0.65,0.7,0.6,3,5, 7, 2, 4.5,5.5).

The approximate global minimum is 0.0402 at (1.3100,0.4315,0.6336,0.5993,0.7539,

0.9056, 1.3651,4.8248,2.3988,4.5689,5.6754).

24

, i



6. Test Results

In this chapter we run the random pattern search program, the torus program, the

Corana's SA program, and the ASA program on the test functions we list in the previous

chapter, and. compare the results of these four programs.

6.1 Results ofRandom Pattern Search Algorithm

The random pattern search program in the M.S. report of Daniel Lee does not

solve the modified Rosenbrock 1 and 2 problems, and it is clear that the algorithm used

by Lee should not be able to handle nonsmooth problems. Perhaps Lee used some other

version of his program to solve these two problems.

Lee's algorithm takes random steps only parallel to the coordinate axis. This is

not consistent with the random pattern search algorithms of Lawrence and Steiglitz [28]

and ofBeltrami and Indusi [2], on which Lee's algorithm is supposed to be based.

Chandler [4] has programmed random pattern search [2,28]. Without trying many

more search directions than prescribed, this algorithm should not be able to solve the two

modified Rosenbrock problems, and it does not. The results of this algorithm on the

other t,est problems are shown below.

Table 6-1 Results of Random Search Algorithm

Function NF j{x)
Rosenbrock 443 4.6398068E-9

Bohachevsky 237 2.287497
Powell 8093 1.5708663E-8
Wood 13587 2.5537496E-7
Beale 365 1.1568832E-15

Engvall 299 4.3298698E-14
Osborne1 23151 5.4730076E-5
Osbome2 30403 4.0137737E-2
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Explanations:

j{x): The minimum value we obtained.

NF: Number of function evaluation.

Random pattern search cannot be recommended in general for constrained or

nonsmooth problems, which are the kinds of problems for which it was designed.

6.2 Results ofTorus Algorithm

The toms algorithm can nm on parallel processors. As the author pointed out, this

approach is more of a Monte Carlo approach, and results are given by conducting

function evaluations in a group to simulate parallel performance, rather than by actually

running on a parallel computational system. For easily comparing with other algorithms,

we only consider one processor.

We set all parameters to the default values except the parameters "scalar2" and

"exit". "Exit" is a stopping criterion with the default value 10.6. For some problems we

need to set "exit" to be smaller to get more accurate results. "Scalar2" is the weighting

factor for the number of multiple-variable iterations per trial. The user controls the

number of function cans of j{x) made on each pass in multidimensional functions by

.adjusting the "scalar2" parameters. The "scalar2" parameter has the greatest impact on

the outcome, and it should be increased for difficult problems.

There are four stopping criteria in the torus algorithm:

1. The number of trial blocks ,exceeds a pre-defined number "counter2". The

default value of "counter2" is 40.
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2. The number of successive failures exceeds a pre-defined number "Flagz". The

default value of "F}agz" is 36.

3. The nwnber of consecutive successes exceeds a pre-defined number "flag-

count". The default value of "flag-count" is 24.

4. The difference "last-minimum - best-minimum" is between zero and "exit"

(success). Here, "last-minimum" refers to the smallest values returned by all prior calls

of the single-dimension function, while "best-minimum" refers to the value returned by

the current call of the single-dimension function.

The third criterion was not stated in the paper [39], but was actually coded in the

author's Lisp program [44].

We ran our FORTRAN torus program on our test functions and list the results in

the following table:

Table 6-2 Results ofTorus Program

Function scalar2 exit .f{x) NF' Stop Type
Rosenbrock 4 1.0E-6 1.62542E-8 11120 4

Rosenbrockl 5 LOE-6 1.6606£-7 15220 4
Rosenbrock2 6.5 1.0E-6 8.71213E-3 27680 1
Bohachevsky 1 1.0E-6 3.67665E-7 3880 4

Powell 1 1.0E-6 4.51138E-7 9800 4
Wood 8 1.0E-6 3.19705E-7 73400 4
Beale 6 1.0E-6 7.30086E-8 11220 4

Engvall 8 1.0E-6 8.22563E-7 10720 4
Osbomel 14 1.0E-8 5.46544E-5 110450 ' 4
Osbome2 6 1.0E-6 0.0401409 140030 4

I

Explanations:

Rosenbrockl and 2 mean modified Rosenbrock function 1 and 2.

Stop type: Stopping type of the problem, as we explained before.
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From the results in Table 6.2, we see that the torus problem converges for all test

functions except the modified Rosenbrock function 2. The results are satisfactory. In

particular, it converges for both Osborne functions.

Roughly speaking, for certain problem, the larger the value of "scalar2", the larger

the number of function evaluations, and the more accurate the results. However, if

"scalar2" is set too large for a fixed problem, we may not get a more accurate answer, or

may even not get the correct answer. In the following tables we list the results of the

Osborne functions 1 and 2 for different values of "scalar2".

_ Table 6-3 Results on Osborne Function 1

scalar2 j(x) NF stop type
13 5.67855E-5 73000 4
14 5.46544E-5 110450 4
15 5.46579E-5 110650 4
16 5.58468E-5 85400 4
20 5.48989E-5 152000 4

Table 6-4 Results on Osborne Function 2

scalar2 j(x) NF stop type
1 0.0413549 50490 4
2 0.107364 68310 3
3 0.0401507 63910 4
4 0.0401473 94820 4
5 0.0401482 154000 3
6 0.0401409 140030 4
7 0.0401395 231990 4
8 0.0401401 176550

I

4[

9 0.0401428 187330 4
10 0.041452 183700 4
15 0.0401839 256190 4
20 0.0401398 389290 4
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From the above tables we see that we get our best results for Osborne function I

and Osborne function 2 when "scalar2" equals 14 or 7, respectively.

6.3 Results of SA

In [35], Ohm compared Bohachevsky's simulated annealing algorithm and

Corana's simulated annealing algorithm on several test functions. The author concluded

that the results of Corana's program are more accurate than the results of Bohachevsky's

program.

In this section we only test Corana's program on our test functions. The results

are listed in following table. In the table, To and ~ are starting temperature and starting

step vector, respectively.

As the author of [35] suggest,ed, we choose best parameters To and Vo for each

:function. The first four functions were also tested in [35]. Since we use different ranges

of the variables, our results are slightly different than the results in [3?l

Table 6-5 Results of Corana's Algorithm

Function ~ Vo NF .f{x)

Rosenbrock 1000 0.01 220000 1.2776709E-8
Rosenhrock1 1000 0.01 216000 8.434226E-7
Rosenbrock2 1000 0.7 368000 5.6360820E-2
Bohachevsky 1000 0.7 180000 1.0778106E-8

Powell 1000 0.01 440000 5.2603830E-7
Wood 1000 0.01 500000 2.228336E-5
Beale 1000 0.01 124000 4.8416447E-9

Engvall 1000 0.01 152000 4.7172453E-8

The results are satisfactory except for the modified Rosenbrock function 2.

6.4 Results of ASA
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The ASA code and its related documents are updated ·continually by the author,

Lester Ingber. We use the most recent version, Version 15.10, which was released on

June 20, 1997, to test our functions.

To use the ASA code, one has to set up the ASA interface. The program should

be divided into two basic modules. (1) The user calling procedure, containing the cost

function to be minimized, is contained in user.c, user.h and user_cst.h. (2) The ASA

optimization procedure is contained in asa.c and asa.h. The file asa user.h contains

definitions and macros common to both asa.h and user.h. We simply defined our cost

function in user cst.h.

There are many user options in the ASA code, which allow the user to minimize

very different functions. However, we cannot grasp all of the options. One of the very

influential options is Temperature_Ratio_Scale, which determines the scale of parameter

annealing. The default value of Temperature_Ratio_Scale is 10-5
. One may set a larger

value than the default to slow down the annealing, or set a smaller va1ue than the default

to speed up the annealing.

In our test, we set different values of Temperature_Ratio_Scale for different

functions to be minimized. For all other options, we simply use the default values.

For convenience, the author used a Makefile in the ASA code. In Makefile we

set the following options:

DASA TEST = FALSE

DOPTIONS FILE =TRUE

DOPTIONS FILE DATA =TRUE
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The fitst option tells the program to run our cost function, not the author's test

function. The other two options tell the program to read the parameter values from the

We list our ASA test results for some functions in the following table.

Table 6-6 Results ofASA Program
I Function TRS j{x) NF

Rosenbrock . 0.2 1.136695E-9 59613
Rosenbrock. 0.1 1.598384E-7 34217

Rosenbrockl 0.9 2.144271E-2 132875
Rosenbrock2 0.9 8.271849 125141

Beale 0.1 3.034363E-17 32202
Beale 0.08 6.620662E-18 26832
Beal,e 0.07 1.978987E-18 25760

EngvaU 0.001 4.88498E-15 3704
EngvaU 0.00001 5.52931E-11 1265

Osborne} 0.0001 5.4658E-5 86731
Osborne2 1.0E-1O 0.04013813 312260

In the above table TRS means Temperature_Ratio_Scale.

For some functions the results are satisfactory. In particular., the ASA program

also converges for both Osborne functions.

We also ran the program on the Osborne functions using different values of

Temperature_Ratio_Scale, and list the results in the following tables:

Table 6-7 Results on Osborne Function 1

TRS j{x) NF
1.0E-2 5.474716E-5 268714
1.0E-3 5.464924E-5 147654
1.0E-4 5.4658E-5 86731
1.0E-5 5.465131E-5 59560
1.0E-6 5.468168E-5 33289
1.0E-7 8.742937E-5 12967
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Table 6-8 Results on Osborne Function 2

TRS fix) , NF
1.0E-5 1.04042136 !l 360069
1.0E-6 0.04017192 247986

I 1.0E-7 0.04020761 203693i

1.0E-8 0.0402596 148501
1.0E-9 0.04017329 166660

1.0£-10 0.04013813 312260
1.0E-11 0.04017536 68672
1.0E-12 0.0405114 17414
1.0E-13 0.05284764 7848

Roughly speaking, the smaller the value of Temperature_Ratio_Scale, the smaller

the number of function evaluations. However, if we set the value of

Temperature_Ratio_Scale too small or too large for any particular problem, the results

may not be correct.

From the above tables we see that the best TRS for Osborne function 1 is 10'3,

which is larger than the default value, while the best IRS for Osborne function 2 is 10-1°,

which is much smaller than the default value.

6.5 Comparisons

In this section, we compare the results of the four programs.

For all the functions we tested, the simulated annealing program is much slower

than the other three programs. Hence, in the foHowing we mainly compare the results of

the random pattern search program, the torus program, and the ASA program.

Since we do not know very well how to tune the ASA program, we cannot get

satisfactory results for some functions, and we simply omit them in our comparisons.

Table 6-9 Results on Rosenbrock Function

Program j{x) NF
Random Pattern Search 4.6398068E-9 443
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Torus 1.62542E-8 11120
CoranaSA 1.2776709E-8 220000

ASA 1.136695E-9 59613

For the Rosenbrock function, the fom programs have the similar accuracy. The

random pattern search program is faster than the other three programs, while the Corana

SA program is much slower than others. It seems that the torus program is faster than the

ASA program on the Rosenbrock function. On one hand, the author of [39] tuned his

program mainly based on the Rosenbrock function. On the other hand, we did not tune

all the option parameters in the ASA code to get the best result for the Rosenbrock

function. Actually, we do not know how to tune ASA optimally. These two reasons may

explain why the torus program is superior to ASA on the Rosenbrock function.

Table 6-10 Results on Modified Rosenbrock Function 1

Program j{x) NF
Torus 1.6606E-7 15220

Corana SA 8.434226E-7 216000

For the modified Rosenbrock function I, the torus program and the Corana SA

program have the similar accuracy. The torus program is much faster than the Corana SA

program.

All four programs do not solve the modified Rosenbrock function 2 very well.

Table 6-11 Results on Bohachevsky Function

Program j{x) NF
Random Pattern Search 2.287497 237

Torus 3.67665E-7 3880
CoranaSA 1.0778106E-8 180000
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The random pattern search program does not solve the Bobachevsky function,

which has several local minimum. It may stops at local minimum. Both the torus

program and Corana SA program so,lve the Bohachevsky function with the similar

accuracy. But the tours program is much faster than the Corana program.

Table 6-12 Result on Powell Function

Program j{x) NF
Random Pattern Search 1.5708663E-8 8093

Torus 4.51138E-7 9800
CoranaSA 5.2603830E-7 440000

For the Powell function, the random pattern search program, the torus program,

and the Corana SA program have the similar accuracy. The first two programs are much

faster than the Corana SA program.

Table 6-13 Results on Wood Function

Program j{x) NF
Random Pattern Search 2.5537496E-7 13587

Torus 3.1 9705E-7 73400
CoranaSA 2.228336E-5 500000

For the Wood function, the random pattern search program and the torus program

are more accurate and much faster than the Corana SA program. The random pattern

search program is even faster than the torus program.

Table 6-14 Results on Beale Function

Program j(x) NF
Random Pattern Search 1.1568832E-15 365

Torus 7.30086E-8 11220
SA 4.8416447£-9 124000

ASA 1.978987E-18 2576u
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For the Beale function, the results of the random pattern search program and the

ASA program are much more accurate than the results of the other programs. The

random pattern search program is much faster than the other three programs. The torus

program was tuned. to produce median final function values in the range of the other

algorithm, for example, NeIder-Mead simplex method and Corana SA algorithm [39].

The ASA program can produce final function values with arbitrary accuracy. If we adjust

the related parameter in ASA, then ASA can produce a result similar to that of the torus

program, but ASA is faster than the torus program on the Beale function.

Table 6-15 Results on Engvall Function

Program j{x) NF
Random Pattern Search 4.3298698E-14 299

Torus 8.22563E-7 10720
CoranaSA 4.7172453E-8 152000

ASA 5.52931E-ll 1265

For the Engvall function, the random pattern search program is more accurate and

faster than the other three programs. The ASA is much more accurate and much faster

than the torus program.. This may be an example where ASA is more robust than the

torus program.

Table 6-16 Results on Osborne Function 1

Program fix) NF
Random Pattern Search 5.4730076E-5 23151

Torus 5.46544E-5 110450
ASA 5.4658E-5 86731

We are particularly interested in solving both Osborne functions. Except for the

Corana SA program, all other three programs solve the Osborne function 1. The random
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pattern search program is not aocurate as the other two programs, but is faster than them.

ASA and the torus program have similar accuracy, but ASA is faster than the torus

program.

Table 6-17 Results on Osborne Function 2

Program .f{x) NF
Random Pattern Search 0.040137737 30403

Torus 0.0401409 140030
ASA 0.04013813 312260

Except for the Corana SA program, all other three programs also solve the

Osborne function 2 with similar accuracy. The random pattern search program is faster

than the other two programs.

Finally, we mention again that, for the modified Rosenbrock function 2, all four

programs do not find satisfactory results. Actually, the modified Rosenbrock function 2

is a very difficult function to minimize by a stochastic algorithm [35]. We do not know if

we can solve this problem using ASA, even if we tune it accordingly. ~ortunately,

Rosenbrock 2 is not similar to functions that arise often in practical problems.

Minimizing the Lp-norm of the residuals in a fitting problem, for p=O.5, would yield a

problem similar to the modified Rosenbrock function 2. Values ofp less than 1.0 seem

never to have been used in the statistical literature, as far as we know.
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7. Conclusions

To solve the global optimization problems, many stochastic optimization

algorithms have been proposed in the past decades. In this thesis, we compare four such

algorithms: the random pattern search algorithm, the torus algorithm, the Corana

simulated annealing (SA) algorithm, and the ASA program. Brief explanations of these

algorithms are given. Ten functions are chosen to test these algorithms. In particular, we

test these algorithms on both Osborne functions.

AIl four programs fail to solve th.e modified Rosenbrock function 2, which is a

very difficult function to minimize by any algorithm. In the remaining comments, we

only consider the other nine functions.

The random pattern search program solved seven functions, but not the modified

Rosenbrock function I and Bohachevsky function. The Corana simulated annealing

program solved the seven functions, but solved neither Osborne function. Both the torus

program and the ASA program solve nine functions.

For all functions it solved, the random pattern search program is faster or much

faster than the other programs.

The torus program, the Corana simulated annealing program, and ASA program

use the annealing principle and can jump out of a local minimum of a function.

Theoretically, simulated annealing algorithm and the very fast annealing algorithm can

find a global minimum of a function, and very fast simulated annealing is much faster

than simulated annealing. The mathematical foundations of the torus algorithm. were not

given.
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In our testing, the Corana simulated annealing program is much slower than the

torus program and the ASA program, as one predicted. Since we do not know very wen

how to tune the ASA program, we failed to solve some of our test functions. For some

functions, like the Rosenbrock function, the torus program is faster than the ASA

program. For some other functions, like the Engvall function, the ASA program is much

faster than the torus program. However, we believe that if one tuned the ASA program

accordingly, the ASA program may be more rebust and faster than the torus program.

In particular, the random pattern search program, the torus program, and the ASA

program, solved both Osborne functions. The random pattern search program is much

faster than the torus program and the ASA program on both Osborne functions. The torus

program is faster than the ASA program on Osborne :function 2, while the ASA program

is faster than the torus program on Osborne function 1.

Suggestions for further study:

Design and/or find a stochastic optimization algorithm to solve the modified

Rosenbrock function 2.

Give a mathematical foundation for the torus algorithm.

Find the reason we should specify the variable ranges when we use the torus

program and the ASA program to test the Osborne function 1.
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APPENDIX: Program List for TORUS.F

C
C
C
C
C
C
C

C
C
C

C

*

*
*
*
*

*
C

ALGORITHM 744: A STOCHASTIC ALGORITHM FOR GLOBAL OPTIMIZATION
WITH CONSTRAINTS, BY MICHAEL RABINOWITZ. PUBLISHED IN ACM
TRANSACTIONS ON MATHEMATICAL SOFTWARE, VOL 21, NO.2, JUNE
1995, PAGES 194-213.

PROGRAM MAIN

THIS MAIN PROGRAN IS A DRIVER OF THE TORUS ALGORITHM.

IMPLICIT REAL*S(A-H,O-Z)

INTEGER N,II,COUNT1,COUNT2,FUNCNU,MAXFUN,SDITER,MDITER,
SDCONT,MDCONT,LOGSNG,LOGMUL,SEED,LP

DOUBLE PRECISION BUMP, EPS, HIT, TRIAL, TORUS, SCALI,
SCAL2,DATAN, START (20) ,UPPER (20) ,LOWER(20),
CUTOFF (20) ,PI,Y1,Y2,SI,TI,CR,DI2,DI4,CUTALT(20},
MINTRS(20) ,CUT(20),RANGE(20) ,NRANGE(20),BSTSET(20),
LSTSET(20) ,BMPSET(20) ,TM1SET(20) ,TMPSET(20) ,TMP2(20) ,
VAR2(20),VARSET(20) ,DELTAS(20),TEMP(20)

COMMON /AO/LP
COMMON /A1/COUNT1,COUNT2,BUMP,EPS,HIT,TRIAL,TORUS,SCAL1,SCAL2
COMMON /A2/FONCNU, MAXFUN, PI
COMMON /A3 / SDITER, MDITER, SDCONT, MDCONT , LOGSNG, LOGMUL
COMMON /COR2/SI,TI,CR,DI2(2) ,DI4(4)
COMMON /OSB/Y1 (33) , Y2 {65)

C

C CALL TRSET TO SET PARAMETER VALUES IN TABLE 1.
C

CALL TRSET
C

C CALL OSBSET TO SET THE PARAMETERS OF THE TWO OSBORNE FUNCTIONS.
C

CALL OSBSET(Y1,Y2)
C
C MAXIMUM NUMBER OF FUNCTIONS TO BE MINIMIZED.
C

MAXFUN = 13
C

C SET THE UNIT NUMBER FOR THE PRINTING.
C

LP = 6
C

PI=4.0DO*DATAN{1.0DO)
C

DO 10 11=1,13
C
C SET THE VALUE OF THE SEED.
C
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SEED=567~

~O CONTINUE

C

C

*
*

FUNCNU = II
CALL INIT (N, START, LOWER, UPPER, CUTOFF)
CALJ., CONTRO (SEED, START, N, LOWER, UPPER, CUTOFF, CUTALT, MINTRS ,

CUT, RANGE,NRANGE, BSTSET, LSTSET,BMPSET,TM1SET,TMPSET,
TMP2,VAR2,VARSET,DELTAS,TEMP)

C
STOP
END
SUBROUTINE OSBSET(Y~,Y2)

C
C THIS SUBROlITlNE IS USED TO SET THE PARAMETERS OF THE TWO
C OSBORNE FUNCTIONS.
C

IMPLICIT REAL*8(A-H,O-Z)
INTEGER J
DOUBLE PRECISION Y~(33),Y2(6S) ,YY1(33) ,YY2(65)

C
C DATA OF OSBORNE FUNCTION 1.
C

DATA YY~/0.844DO,O.908DO,O.932DO,O.936DO/O.925DO,O.908DO,

* O.88~DO,O.B50DO,O.818DO,O.784DO,O.751DO,O.71BDO,O.685D0,

* O.6SBDO,O.628DO,O.603DO,O.S80DO,O.558DO , 0.538DO,O.522D0,
* 0.S06DO,O.490DO,O.478DO,O.467DO,O.457DO,O.448DO,O.438D0,
* 0.43~DO,O.424DO,O.420DO,0.414DO,O.4~IDO,O.406DO/

C
C DATA OF OSBORNE FUNCTION 2.
C

DATA YY2/~.366DO,l.191DO,1.~12DO,I.013DO,O.991DO/0.BB5DO,

* O.831DO,O.847DO,O.786DO,O.725DO,O.746DO,O.679DO,O.608D0,
* O.6S5DO,O.6~6DO,O.606DO,O.602DO,O.626DO,O.6S~DO,O.724D0,

* O.649DO,O.649DO,O.694DO,0.644DO,O.624DO,O.66~DO,0.612D0,

* O.S5BDO,O.533DO,O.495DO,O.SOODO,O.423DO,O.395DO,O.37SD0,
* 0.372DO,O.391DO,0.396DO,O.40SDO,O.42BDO,O.429DO,O.523D0,
* O.562DO,O.607DO,O.6S3DO,O.672DO,O.70BDO,O.633DO,~.668Da,

* 0.645DO,O.632DO,O.S91DO,O.559DO,O.597DO,0.625DO,O.739D0,
* O.710DO,O.729DO,O.720DO,O.636DO,O.581DO,0.428DO,O.292D0,
* 0.162DO,O.098DO,O.OS4DO/

C
DO 10 J=l,33

Yl (J)=YYl (J)
10 CONTINUE

C
DO 20 J=I, 65

Y2 (J) =YY2 (J)
20 CONTINUE

RETURN
END
SUBROUTINE TRSET

C
C THIS SUBROUTINE SET THE DEFAULT VALUES OF THE PARAMETERS IN
C TABJ.,E ~ (PAGE 197) .
C
C THIS PROGRAM CAN SIMULATE THE PARALLEL PROCESSORS.
C HOWEVER, WE RUN OUR PROGRAM ONLY FOR ONE PROCESSOR. HENCE, WE
C SET COUNTl=1 AND SCAL2=4.
C
C THESE DEFAULT VALUES CAN BE ADJUSTED FOR EACH FUNCTION TO BE
C MINIMIZED IN THE SUBROUTINE INIT.
C
C FOR MOST OF THE PROBLEMS, WE HAVE TO ADJUST SCAL2. FOR A FEW
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C PROBLEMS WE NEED TO ADJUST EPS.
C

IMPLICIT REAL*S(A-H,O-Z)
INTEGER COONI'l, COUNT2
DOUBLE PRECISION BUMP, EPS, HIT, TRIAL, TORUS, SCALI, SCAL2

C

C

C

COMMON!A1!COUNT1,COUNT2,BUMP,EPS,HIT,TRIAL,TORUS,SCAL1,SCAL2

BUMP = 5.0D-l
COUNTl = 1
COUNT2 = 40
EPS = 1.OD-06
SCAl..l = 1. ODO
SC1I.L2 = 4.0DO
HIT = 1.5DO
TRIAL 1.SDO
TORUS 4.0D+3

RETURN
END
SUBROUTINE INIT (N,X,LOWER,UPPER,CUTOFF)

C
C IN THIS SUBROUTINE WE SET THE DIMENSION I START POINT, LOWER
C BOUND, UPPER BOUND, AND CUTOFF FOR EACH FUNCTION TO BE MINIMIZED.
C WE ALSO CHANGE THE DEFAUTE VALUES IN SUBROUTINE TRSET IF NESESSARY.
C HOWEVER, IF THE VALUE OF A PARAMETER IN TRSET IS CHANGED FOR ONE
C FUNCTION, WE HAVE TO RESET THIS VALUE FOR THE NEXT FUNCTION.
C

IMPLICIT REAL*8 (A-H,O-Z)
C

INTEGER N, J, MAXFUN, FUNCNU,LP,COUNTI,COUNT2
DOUBLE PRECISION X(20),LOWER(20) ,UPPER(20) , CUTOFF (20) ,PI,

* SI,TI,CR,DI2,DI4,BUMP,EPS,HIT,TRIAL,TORUS,SCAL1,SCAL2
C

COMMON !AO!LP
COMMON !A1/COUNT1,COUNT2,BUMP,EPS,HIT,TRIAL,TORUS,SCALl,SCAL2
COMMON !A2!FUNCNU, MAXFUN, PI
COMMON !COR2/ SI,TI,CR,DI2(2),DI4(4)

C
IF(FUNCNU .LT.1 .OR. FUNCNU .GT. MAXFUN) STOP
GO TO (10,40,70,100,130,160,190,220,250,280,310,340,370) ,FUNCNU

C
C FUNCNU = 1
C ROSENBROCK FUNCTION
C

10 N=2
DO 20 J=l, N

LOWER(J)=-2.0D3
UPPER{J)=2.0D3
CUTOFF(J)=1.0D-7

20 CONTINUE
X(1)=-1.2DO
X (2) =1. 000
WRITE (LP,30)

30 FORMAT(!' ROSENBROCK TEST FUNCTION')
GO TO 400

C
C FUNCNU = 2
C MODIFIED ROSENBROCK FUNCTION WITH OBLIQUE CREASE
C

40 N = 2
DO SO J=l, N

LOWER(J)=-2.0D3
UPPER(J)=2.0D3
CUTOFF(J)=1.0D-7
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50 CONTINUE
X(l) =-1.2DO
X(2)=1.0DO

C
C SET SCAL,2 IN TRSET.
C

SCAL2 = 5.0DO
WRITE (LP, 60)

60 FORMAT(/' MODIFIED ROSENBROCK TEST FUNCTION WITH
* OBLIQUE CREASE')

GO TO 400
C
C FUNCNU = 3
C MODIFIED ROSENBROCK WITH CUSP
C

70 N=2
DO 80 J=.l, N

LOWER(J)=-2.0D3
UPPER(J)=2.0D3
CUTOFF (J) =1. OD-7

80 CONTINUE
X(l) =-1.2DO
X(2)=1.0DO

C
C SET SCAL2 IN TRSET.
C

SCAL2 = 6.5DO
WRITE (LP, 90)

90 FORMAT(/' MODIFIED ROSENBROCK TEST FUNCTION WITH CUSP')
GO TO 400

C
C FUNCNU = 4
C BOHACHEVSKY FUNCTION
C

100 N=2
DO 110 J=l, N

LOWER(J)=-2.0D3
UPPER(J)=2.0D3
CUTOFF(J)=1.0D-7

110 CONTINUE
X (1) =1. ODD
X(2)=1.0DO

C
C SET SCAL2 IN TRSET
C

SCAL2 = 1.000
WRITE (LP,120)

120 FORMAT(/' BOHACHEVSKY TEST FUNCTION')
GO TO 400

C
C FUNCNU = 5
C OSBORNE 1 FUNCTION
C THE MINIMUM IS APPROXIMATELY F(0.3754,1.9358,-1.4647,O.01287,
C 0.02212)=0.546D-4

130 N=S
C

LOWER (1) =0. ODD
UPPER(l)=3.0DO
LOWER(2)=-O.95DO
UPPER (2) =1. 95DO
LOWER (3) =-3.4500
UPPER (3) =-1.45DO
LOWER(4)=O.ODO
UPPER(4)=3.0DO
LOWER(S)=O.ODO
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UPPER(5)=3.0DO
C

DO 140 J=l,N
CUTOFF(J)=1.OD-7

1.4 0 CONTINUE
C

X(I)=0.5DO
X(2)=1.5DO
X(3)=-2.0DO
X(4)=1.0D-2
X(5)=2.0D-2

C
C SET SCAL2 AND EPS IN TRSET
C

SCAL2 = 14.0DO
EPS = 1.0D-08
WRITE (LP, 150)

150 FORMAT{j fIX, I TEST FUNCTION OF OSBORNE 1')
GO TO 400

C
C FUNCNU=6
C OSBORNE 2 FUNCTION
C
C THE MINIMUM IS APPROXIMATELY F(I.3100,O.4315,O.6336,
C 0.5993,0.7539,1.3652,4.8248,2.3988,4.5689,5.6754)=0.0402
C

160 N=ll
C

LOWER(I)=O.ODO
UPPER(I)=3.0DO
LOWER (2) =0. ODD
UPPER(2)=3.0DO
LOWER(3)=0.ODO
UPPER (3 ) =3 .. ODO
LOWER(4)=0.ODO
UPPER(4)=3.0DO
LOWER(5)=O.ODO
UPPER(5)=3.0DO
LOWER (6) =0. ODO
UPPER(6)=3.0DO
LOWER(7)=O.ODO
UPPER(7)=5.0DO
LOWER(8)=4.0DO
UPPER(8)=7.0DO
LOWER(9)=0.ODO
UPPER(9)=3.0DO
LOWER{lO)=2.0DO
UPPER(20)=5.0DO
LOWER (IJ.) =3 . DDO
UPPER(1l)=6.0DO

C
DO 270 J=I, N

CUTOFF(J)=1.0D-7
170 CONTINUE

C
X(I)=1.3DO
X(2)=6.5D-2
X(3)=6.SD-2
X {4) =7. OD-I
X(S)=6.0D-I
X(6)=3.DDO
X(7)=5.0DO
X(8)=7.0DO
X(9)=2.0DO
X(10)=4.5DO
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X(1l)=5.5DO
c
C SET SCAL2 AND EPS IN TRSET
C

SCAL,2 = 6. 000
EPS = 1.0D-06
WRITE (L,P, 180)

180 FORMAT (j I TEST FUNCTION OF OSBORNE 2 I )

GO TO 400
C
C FUNCNU = 7
C CORANA FUNCTION WITH DIMENSION N=2
C

190 N=2
SI = 2.00-1
TI = 5.00-2
CR = 1.50-1
DI2(1) = 1.0D+0
DI2(2) = 1.00+3
DO 200 J=l, N

LOWER (J) =-1. 004
UPPER(J)=1.0D4
CUTOFF(J) =1.00-4

200 CONTINUE
X(l)=1.1D+3
X(2)=1.1D+3
WRITE (LP, 210)

C
C SET SCAL2 AND EPS IN TRSET
C

SCAL2 = 4.0DO
EPS = 1. 00- 06

210 FORMAT (//lX, I CORANA FUNCTION, N=2')
GO TO 400

C
C FUNCNU = 8
C CORANA FUNCTION WITH DIMENSION N=4
C

220 N=4
SI = 2.0D-1
TI = 5.00-2
CR = 1.50-1
DI4 (1) 1. OD+O
DI4(2) = 1.0D+3
DI4 (3) = 1. OD+2
014(4) = l.OD+1
DO 230 J=l, N

LOWER(J)=-1.0D4
UPPER(J)=l.OD4
CUTOFF(J) =1.00-4

230 CONTINUE
X(1)=-1.0D+03
X(2)=1.0D+03
X(3)=-1.0D+3
X (4) =1. OD+03
WRITE (LP,240)

C
C SET SCAL2 AND EPS IN TRSET
C

SCAL2 = 6.5DO
EPS = 1.0D-06

240 FORMAT (//lX, ' CORANA FUNCTION, N=4')
GO TO 400

C
C FUNCNU = 9
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C POWELL'S SINGULAR TEST FUNCTION
C
C THE MINIMUM IS F(O.O,O.O,O.O,O.O)=O.O
C

250 N=4
X(I)=3.0DO
X (2) =-1. ODO
X(3)=O.ODO
X(4)=1.0DO

C
C SET SCAL2 AND EPS IN TRSET
C

SCAL2 = 1.0000
EPS = 1.0D-06
WRITE (LF, 260)

260 FORMAT (' SINGULAR· TEST FUNCTION OF POWELL I )

DO 270 J=I, N
LOWER(J)=-2.0D3
UPPER(J)=2.0D3
CUTOFF(J)=1.0D-7

270 CONTINUE
GO TO 400

C
C FUNCNU=lO
C WOOD'S TEST FUNCTION
C
C THE MINIMUM IS F(l.0,1.0,1.0,1.0)=0.0
C

280 N=4
X(l)=-3.0DO
X(2) =-1.0DO
X(3)=-3.0DO
X (4) =-1. ODO

C
C SET SCAL2 AND EPS IN TRSET
C

SCAL2 = 8.00DO
EPS = 1.0D-06

C
WRITE (LP ,290)

290 FORMAT (I TEST FUNCTION OF WOOD I )
DO 300 J=1, N

LOWER(J)=-2.0D3
UPPER (J) =2 .. OD3
CUTOFF(J)=1.0D-7

300 CONTINUE
GO TO 400

C
C FUNCNU=ll
C HELICAL VALLEY TEST FUNCTION OF FLETCHER AND POWELL
C THE MINIMUM IS F(l.0,0.O,O.ol=0.0 .
c

310 N=3
X (1) =-1.. ODO
X(2)=0.ODO
X(3)=0.ODO

C
C SET SCAL2 AND EPS IN TRSET
C

SCAL2 = 1. OODO
EPS = 1.0D-06

C
WRITE (LP, 320)

320 FORMAT (' HELICAL VALLEY TEST FUNCTION OF FLETCHER AND POWELL I)
DO 330 J=1, N

49



LOWER (J) =-2. OD3
UPPER(J)=2.0D3
CUTOFF (J) =1. OD-7

330 CONTINUE
GO TO 400

C
C FUNCNU=12
C BEALE'S TEST FUNCTION
C
C THE MINIMUM IS F(3.0,O.5)=0.0
C

340 N=2
X(l)=O.lDO
X(2)=0.lDO

C
C SET SCAL2 AND EPS IN.TRSET
C

SCAL2 = 6.00DO
EPS = 1. OD- 06

C
WRITE(LP,350)

350 FORMAT (I BEALE TEST FUNCTION')
DO 360 J=l, N

LOWER(J)=-2.0D3
UPPER(J)=2.0D3
CUTOFF(J)=1.0D-7

360 CONTINUE
GO TO 400

C
C FUNCNU =13
C ENGVALL TEST FUNCTION
C

370 N = 2
X(l) = S.OD-l
X(2) = 2.0DO

C
C SET SCAL2 AND EPS IN TRSET
C

SCAL2 = 8.00DO
EPS = 1. OD- 06

C
WRITE (LP,380)

380 FORMAT(' ENGVALL TEST FUNCTION')
DO 390 J=l, N

LOWER(J)=-2.0D3
UPPER(J)=2.0D3
CUTOFF(J)=1.0D-7

390 CONTINUE
GO TO 400

C
C PRINT FINAL RESULT
C

400 WRITE (LP, 410)
410 FORMAT (j 21X,' THE INITIAL VALUES ARE ',20X)

WRITE (LP, 420)
420 FORMAT (21X, '====================',20X)

WRITE{LP,430) (X(J) ,J=l,N}
430 FORMAT(' X =',lPG14.6,4G14.6/(4X,5G14.6})

C
RETURN
END
DOUBLE PRECISION FUNCTION TESFNC(N,X)

C
C FUNCTION TESFNC IS USED TO SET THE FUNCTIONS TO BE MINIMIZED
C
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IMPLICIT REAL*S(A-H,O-Z)
C

INTEGER N, FUNCNU, MAXFUN, KI (10) , INDEX, I, J
DOUBLE PRECISION X(N} ,PI,TEMP(4} ,Y1,Y2,T(65} ,DABS,DATAN,IDINT,

* DCOS,DEXP,DSQRT,R,S,FTX,SI,TI,DI2,DI4,ZI(10) ,CR
C

C

COMMON /A2/FUNCNU, MAXFON, PI
COMMON /COR2/ SI,TI,CR,DI2(2) ,DI4(4)
COMMON /OSB/Y1(33),Y2(65}

IF{FUNCNU .LT.1 .OR. FUNCNU .GT. MAXFUN} STOP
GO TO (10,20,30,40,50,80,120,190,260,270,280,290, 300), FONCNU

C
C FUNCNU = 1
C ROSENBROCK'S TEST FUNCTION
C

10 TESFNC=1.0D2*{X(2)-X(l}**2)**2+(1.ODO-X(1»**2
RETURN

C
C FUNCNU = 2
C MODIFIED ROSENBROCK WITH OBLIQUE CREASE
C

20 TESFNC=1.0D2*DABS(X(2}-X(l}**2)+(1.0DO-X(1»**2
RETURN

C
C FUNCNU = 3
C MODIFIED ROSENBROCK WITH CUSP
C

30 TESFNC=1.0D2*DSQRT(DABS(X(2)-X(1)**2})+(1.ODO-X(1»**2
RETURN

C
C FUNCNU = 4
C BOHACHEVSKY FUNCTION
C

40 TESFNC=X(1)**2+2*X(2}**2-3.0D-l*DCOS(3.0DO*PI*X(l}}
* -4.0D-l*DCOS(4.0DO*PI*X(2»+3.0D-1+4.0D-l

RETURN
C
C FUNCNU=5
C OSBORNE FUNCTION 1
C

50 TESFNC = O.ODO
DO 60 J=l, 33

T(J)=lO.ODO*(J-l)
Ii 0 CONTINUE

DO 70 J=1,33
R=DEXP«-1)*X(4)*T(J}}
S=DEXP({-1)*X(5}*T(J)}
FTX=X(I)+X{2)*R+X(3)*S-Yl(J)
TESFNC = TESFNC+FT'X* *2

70 CONTINUE
RETURN

C
C FUNCNU=6
C OSBORNE FUNCTION 2
C

80 TESFNC=O.ODO
DO 90 J=l, 65

T(J)=O.lDO*(J-l)
90 CONTINUE

DO 110 J=l, 65
TEMP (I) -X(5)*T(J)
TEMP (2) -X(6)*(T{J}-X(9»**2
TEMP(3) -X(7)*(T(J)-X(lO»**2
TEMP (4) -X(B)*{T(J)-X(11)}**2

51



100

110

IF (TEMP (1) . LT. -69)
IF (TEMP (2) . LT. -69)
IF (TEMP (3) . LT. -69)
IF (TEMP (4) .LT. -69)
TEMP(l)=DEXP(TEMP(l»
TEMP(2)=DEXP(TEMP{2»
TEMP (3) =DEXP (TEMP (3) )
TEMP(4)=DEXP(TEMP(4»
FTX=O.ODO
DO 100 1=1, 4

FTX=FTX+X(I) *TEMP (I)
CONTINUE
FTX=FTX-Y2(J}
TESFNC = TESFNC+FTX**2

CONTINUE
RETURN

TEMP (1)
TEMP (2)
TEMP (3)
TEMP (4)

-69
-69
-69
-69

C
C FUNCNU=7
C CORANA FUNCTION, N=2
C

120 TESFNC = O.ODO
INDEX = 2
DO 130 1=1, 2

IF(X(I) .GT. O.ODO) THEN
KI(I)=IDINT(X(I)/SI + O.5D+0}

ELSE IF(X(I) .LT. O.ODO) THEN
KI(I)=IDINT(X(I)/SI - 0.5D+0)

ELSE
KI(I)=O

END IF
IF(KI(I) .EQ. 0) INDEX= INDEX-1

130 CONTINUE
c

IF (INDEX .EQ. 0) THEN
DO 140 I = 1,2

TESFNC = TESFNC+DI2(I)*X(I)**2
140 CONTINUE

GO TO 180
END IF

C
INDEX = 2
DO 150 1=1, 2

IF(DABS(KI(I)*SI - XII»~ .LT. TI) INDEX=INDEX - 1
150 CONTINUE

IF (INDEX .EQ. oj THEN
DO 160 I = 1,2

IF(KI (I) .LT. 0) THEN
ZI(I) = KI(I)*SI + TI

ELSE IF(KI(I) .GT. 0) THEN
ZI(I) KI(I)*SI -TI

ELSE
ZI{I) = O.ODO

END IF
TESFNC TESFNC+CR*DI2{I)*ZI(I)**2

160 CONTINUE
ELSE

DO 1.70 I = 1,2
TESFNC = TESFNC+DI2{I)*X(I)**2

170 CONTINUE
END' IF

1.80 RETURN
C
C FUNCNU=B
C CORANA FUNCTION, N=4
C
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190 TESFNC = 0.000
INDEX = 4
DO 200 1=1, 4

IF(X(I) .GT. O.ODO) THEN
KI(I)=IDINT(X(I)/SI + 0.5D+0)

ELSE IF{X(I) .LT. 0.000) THEN
KI(I)=IDINT(X(I)/SI - 0.5D+0)

ELSE
KI(I)=O

END IF
IF(KI(I) .EQ. 0) INDEX= INDEX-l

200 CONTINUE
c

IF (INDEX .EQ. 0) THEN
DO 210 I = 1,4

TESFNC = TESFNC+DI4(I)*X(I)**2
210 CONTINUE

GO TO 250
END IF

C
INDEX = 4
DO 220 1=1, 4

IF(DABS(KI(I)*SI - XCI»~ .LT. TI) INDEX=INDEX - 1
220 CONTINUE

IF (INDEX .EQ. 0) THEN
DO 230 I = 1,4

IF(KI(I) .LT. 0) THEN
ZI(I) = KI(I)*SI + '1'1

ELSE 1F(KI(1) .GT. 0) THEN
ZI (I) KI (I) *SI -'1'1

ELSE
ZI(I) = O.ODO

END IF
TESFNC TESFNC+CR*DI4(I)*ZI(I)**2

230 CONTINUE
ELSE

DO 240 I = 1,4
TESFNC = TESFNC+DI4(I)*X(I)**2

240 CONTINUE
END IF

250 RETURN
c
C FUNCNU=9
C POWELL'S SINGULAR TEST FUNCTION
C

260 TESFNC=(X(1)+lO.ODO*X(2»**2+5.0DO*(X(3)-X(4»**2+
* (X(2)-2.0DO*X(3»**4+10.DDO*(X(1)-X(4»**4

RETURN
C
C FUNCNU=lO
C WOOD'S TEST FUNCTION
C

270 TESFNC=100.0DO*(X{2)-X(1)**2)**2+(1.0DO-X(1»**2+
* 90.0DO*(X(4)-X(3)**2}**2+(1.ODO-X(3)}**2+
* 10.lDO* «X(2) -1.0DO)**2+(X(4) -1.000) **2)+
* 19.8DO*(X(2)-1.ODO}*(X(4)-1.0DO)

RETURN
C
C FUNCNU=ll
C HELICAL, VALLEY TEST FUNCTION OF FLETCHER AND POWELL
C

280 R=DSQRT(X(1)**2+X(2)**2)
c

1F(X(l) .EQ.O.ODO) THEN
S=0.25DO
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ELSE
S=DATAN(X(2)/X(1»/(2.0DO*PI)

ENDIF
C

IF(X(l) .LT.O.ODO) S=S+O.SDO
TESFNC=100. ODO* ( (X (3) -10. ODO*S) **2+ (R-l. ODO) **2) +X {3) **2
RETURN

C
C FUNCNU=12
C BEALE'S TEST FUNCTION
C

290 TESFNC =(1.5DO-X(I)*(1.ODO-X(2»))**2+
* (2.2SDO-X(1)*(1.0DO-X(2)**2»)**2+
* (2.62SDO-X(1)*(I.DDO-X(2)**3})**2

RETURN
C
C FUNCNU = 13
C ENGVALL FUNCTION
C

300 TESFNC = (X(I)**2+X(2)**2)**2-4.0DO*X(1)+3.0DO
RETURN

C
END
DOUBLE PRECISION FUNCTION RAND(SEED)

C
C THIS FUNCTION IS USED TO GENERATE A RANDOM NUMBER BETWEEN -1 AND 1.
C

IMPLICIT REAL*S(A-H,O-Z)
C

BUMP ---- *BUMP*. USED TO DISPLACE A VARIABLE FROM THE BEST-

THIS IS THE CONTROLLING FUNCTION (PAGE 199) .

THE ORIGINAL PROGRAM WAS WRITTEN IN COMMON LISP.
WE TRANSLATE IT INTO A FORTRAN PROGRAM.

VARIABLES:
THE FOLLOWING VARIABLES ARE GIVEN IN TABLE 1 (PAGE 197) :

AND FUNCTIONS:
SET THE PARAMETERS OF THE TWO OSBORNE FUNCTIONS.
SET THE PARAMETERS.
SET THE DIMENSION, LOWER, UPPER, CUTOFF, START
POINT FOR EACH FUNCTION TO BE MINIMIZED.
DEFINE THE FUNCTIONS TO BE MINIMIZED.
GENERATE A RANDOM NUMBER BETWEEN -1 AND 1.
THE DRIVER OF THE MULTIDlMENSION FUNCTION.
MULTIDIMENSION FUNCTION.
SINGER-DIMENSION FUNCTION.
THE INNER LOOP OF THE SINGER-DIMENSION FUNCTION.

INTEGER SEED
SEED = 2045*SEED + 1
SEED = SEED - (SEED/I048576)*1048576
RAND = 2*(SEED+l)/104B577.0 -1.0
RETURN
END
SUBROUTINE CONTRO (SEED, START', N, LOWER, UPPER, CUTOFF, CUTALT,

* MINTRS, CUT, RANGE,NRANGE, BSTSET, LSTSET, BMPSET,TMISET, TMPSET,
* TMP2,VAR2,VARSET, DELTAS, TEMP)

ALGORITHM 744: A STOCHASTIC ALGORITHM FOR GLOBAL OPTIMIZATION
WITH CONSTRAINTS, BY MICHAEL RABINOWITZ. PUBLISHED IN ACM
TRANSACTIONS ON MATHEMATICAL SOFTWARE, VOL 21, NO.2, JUNE
1995, PAGES 194-213.

SUBROUTINES
OSBSET( )
TRSET ()
INIT()

TESFNC ()
RANDO
MULTDM()
MULTI ()
SINGER{)
SNG10

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
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THE FOLLOWING VARIABLES ARE GIVEN IN TABLE 3 (PAGE 201) :

FITTING VALUE ON THE LAST ITERATION
PROPORTION OF THE RANGE.

*COUNTERI*. THE NUMBER OF PARALLEL PROCESSORS
SIMULAT.

*COUNTER2*. MAXIMUM NUMBER OF TRIAL BLOCKS.
*EXIT*. EXIT CRITERION.
*SCALAR1*. WEIGHTING FACTOR FOR THE NUMBER OF

SINGLE-VARIABLE ITERATIONS PER TRIAL.
*SCALAR2*. WEIGHTING FACTOR FOR THE NUMBER OF

MULTIPLE-VARIABLE ITERATIONS PER TRIAL.
*SHRINK-HIT*. RATE THE TORUS COLLAPSES AFTER A HIT.
*SHRINK-TR.IAL*. RATE THE TORUS COLLAPSES AFTER A

TRIAL BLACK.
*TORUS*. USED TO PARTIALLY DETERMINE THE SIZE OF

THE HOLE IN THE TORUS.

COUNT1

COUNT2
EPS
SCALl

SCAL2

CUTALT

RANGE

MINTRS

TORUS

HIT
TRIAL

START

N
SDI'TER
MOlTER

LSTMIN
BSTSET
INTRAL
INTRCT
COUNT
NEXTVA
FLGDIR
CUT
NRANGE
DOWNUP
BUMPV
BMPSE'T
BSTMIN
BSTSET
FLAGZ
FLGZCT

LAST-MINIMUM.
BEST-SET.
WITHIN-TRIAL.
WITHIN-TRIAL-COUNT.
COUN'I'.
NEXT-VARIABLE.
FLAG-DIRECTION.
CUT.
NEW-RANGE.
DOWN-UP.
BUMP.
BUMP-SET.
LAST-SCORE.
LAST-SET.
FLAGZ.
FLGZCT. (WAS NOT DEFINED IN THE PAPER, BUT WAS

DEFINED IN LISP PROGRAM) .

IMPLICIT REAL*8lA-H,O-Z}
INTEGER N,I,COUNTI,COUNT2,SDITER,MDITER,LP,MOD,

* SDCONT,MDCONT,LOGSNG,LOGMUL,SEED,INTRAL,INTRCT,
* FLAGZ, FLGZCT, FLGDIR, COUNT,NEXTVA, TOTAL,STPVAR

DOUBLE PRECISION BUMP, EPS, HIT, TRIAL, TORUS, SCALI, SCAL2,
* START(N),UPPER(N),LOWER(N),
* CUTOFF(N) , CUTALT(N) ,MINTRS(N) , BSTMIN,
.. CUT(N),RANGE(N) ,NRANGE(N) ,BUMPV,

RANGE. FOR EACH VARIABLE, THE UPPER-LOWER BOUND
SUPPLIED BY THE USER.

CUTOFF-ALT. FOR EACH VARIABLE, THE LARGER OF THE
RANGE/*TORUS* AND THE MINIMUM MEANINGFUL VALUE
SUPPLIED BY. THE USER.
MINlMUM-OUTSIDE-OF-THE-TORUS. IF THE VARIABLE IS AN
INTEGER, THEN TWICE THE MINIMUM SPECIFIED BY THE
USER. IF THE VARIABLE IS A SINGLE FLOAT, THEN 32
TIMES THE MINIMUM SPECIFIED. IF THE VARIABLE IS
A DOUBLE FLOAT, THEN 64 TIMES THE MINIMUM
SPECIFIED. HOWEVER, IN THIS FORTRAN PROGRAM, WE
ONLY CONSIDER THE DOUBLE FLOAT.
START-VALUE. FOR BACH VARIABLE, T.HE STARTING VALUE
SUPPLIED BY THE USER.
NUMBER-OF-VARIABLES. NUMBER OF VARIABLES.
SINGER-DIMBNSION-ITERATIONS. ROOND(10 *SCALAR1*).
MULTIPLE-DIMENSION-ITERATIONS. ROUND(10 *SCALAR2*

TIMES NUMBER-OF-VARIABLES SQUARED) .

PARAMETERS IN CONTROLLING FUNCTION (PAGE 199-200) :

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
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C

C

BSTSET{N),LSTSET{N),BMPSET(N),TMP2(N) ,
LSTMIN, DFMIN, DATAN, TM1SET (N) , TMPSET (N) ,
VAR2(N) ,VARSET(N) ,DELTAS(N) ,TEMP{N) ,
DLOG, DMAX1, DTEMP

LOGICAL DOWNUP

*
*
*
*

COMMON /AO/LP
COMMON /~/COUNTl,COUNT2,BUMP,EPS,HIT,TRIAL,TORUS.SCAL1,SCAL2

COMMON / A3 / SDITER, MOlTER, SDCONT ,. MDCONT , LOGSNG, LOGMUL

DO 10 1=1, N
MINTRS{I) = 64*CtITOFF{I)
RANGE (I) = UPPER(I)-LOWER(I}
CUTALT(I) = DMAX1(RANGE(IJ/TORUS,CUTOFF(I»

10 CONTINUE
C
C ROUND TO NEAREST INTEGER.
C

SDITER = 10.0DO*SCALI +O.SDO
MDITER = 10.0DO*SCAL2*N**2 + O.5DO

C
C NUMBER OF FUNCTION EVALUATIONS IN EACH CALL OF
C SINGER-DIMENSION FUNCTION.
C

SDCONT = N*COUNT1*SDITER
c
C NUMBER OF FUNCTION EVALUATIONS IN EACH CALL OF
C MULTIDlMENSION FUNCTION.
C

MDCONT = COUNTl*MDITER
C
C SET LOG-CONSTANTS:
C SDITER = LN(SINGLE-DIMENSION-ITERATIONS} (TABLE 5, PAGE 204)
C MDITER = LN(MULTIPLE-DIMENSION-ITERATIONS) (TABLE 4, PAGE 203)
C

DTEMP=SDITER
LOGSNG=DLOG(DTEMP)
DTEMP=MDITER
LOGMUL=DLOG(DTEMP)

C
C PASS START-VALUE TO THE MULTIDIMENSION FUNCTION, AND GET
C THE FIRST LAST-MINIMUM AND THE FIRST BEST-SET.
C

CALL MULTDM{N,START,BSTMIN,BSTSET, LOWER,UPPER,
* RANGE, CUTALT, SEED, TMPSET,VARSET, DELTAS, TEMP)

LSTMIN = BSTMIN
C
C SET THE STARTING VALUES OF EACH VARIABLE IN THE LOOP.
C

INTRAL = 1
INTRCT = 0
FLGZCT = 0
COUNT = 0

C
C IN LISP, THE INDEX OF THE FIRST ELEMENT OF AN ARRAY IS O.
C IN FORTRAN, THE INDEX OF THE FIRST ELEMENT OF AN ARRAY IS 1.
C SO, THE STARTING VALUE OF NEXTVA IS 1, NOT O.
C

NEXTVA = 1
FLGD1R = 0

C
DO 20 1=1, N

BMPSET(I} = BSTSET(I)
LSTSET(I} = BMPSET(I)
CUT (I) = CUTALT (I)
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NRANGE(I) = RANGE (I)
20 CONTINUE

c
DOWNUP = . FALSE.

C
CALL SINGER (N, BMPSET, BSTMIN, LSTSET, LOWER, UPPER, NRANGE,

* CUT,SEED,NEXTVA,FLGDIR,TMP2,VAR2)
C

IF(BSTMIN .LT. LSTMIN} THEN
FLAGZ 0

ELSE
FLAGZ = ~

END IF
C

TOTAL = MDCONT + SDCONT
C
C LOOP
C

30 CONTINUE
C
C STEP ~. SET THE WITH-TRIAL PARAMETER (STARTING VALUE=1 ) .
C

IF(FLAGZ .EQ. 0 .AND. INTRAL .GT. 1) THEN
INTRAL = INTRAL

ELSE IF (IN'I"RAL . EQ. 3 THEN
INTRAL ~

ELSE
INTRAL = INTRAL + 1

END IF
C
C STEP 2. SET THE WITHIN-TRIAL-COUNT PARAMETER (STARTING VALUE 0).
C

IF (INTRAL .GT. ~) THEN
INTRCT INTRCT + ~

ELSE
INTRCT = 0

END IF
C
C STEP 2+ IN THE PSEUDOCODE [PAGE 199] I THIS STEP WAS MISSING.
C SET THE FLGZCT PARAMETER (STARTING VALUE = 0).
C

IF(FLAGZ .EQ. 0) THEN
FLGZCT FLGZCT + ~

ELSE
FLGZCT = 0

END IF

'I
I'I;

C
C STEP 3. SET THE COUNT PARAMETER (STARTING VALUE
C

oj .
r

I
i

IF(INTRAL .EQ. ~) COUNT = COUNT + 1
C
C STEP 4. SET THE NEXT-VARIABLE PARAMETER (STARTING VALUE = 1) .
C

NEXTVA = MOD (COUNT, N) + 1
C
C STEP 5. SET THE FLAG-DIRECTION PARAMETER (STARTING VALUE 0) .
C

IF{FLGDIR .EQ. OJ THEN
FLGDIR 1

ELSE
FLGDIR = 0

END IF
C
C STEP 6 AND STEP 7.
C SET THE CUT PARAMETER (STARTING VALUE
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C
C

SET THE NEW-RANGE PARAMETER (STARTING VALUE RANGE)

DO 40 1=1, N
IF(INTRCT .GT. 1 .AND. FLAGZ .EQ. 0) THEN

CUT(I) = DMAX1(CUT(I)!HIT, CUTOFF(I»
NRANGE(I) = DMAX1(NRANGE(I)!HIT, MINTRS(I»

ELSE IF(INTRAL .EQ. 1) THEN
CUT(I) = DMAX1(CUT(I)/TRIAL, CUTOFF(I»
NRANGE(I) = DMAXl{NRANGE (I) !TRIAL, MINTRS(I»

END IF
40 CONTINUE

C
C STEP 8. SET THE DOWN-UP PARAMETER (STARTING VAL:uE = 0).
C

IF{FLAGZ .EQ. 0 .AND. INTRCT .GT. 1) THEN
IF (BSTSET (NEXTVA) . LT. LSTSET (NEXTVA) J THEN

DOWNUP . FALSE.
ELSE

DOWNUP = .TRUE .
END IF

ELSE IF(INTRAL .EQ. 2) THEN
DOWNUP = .TRUE .

ELSE IF (DOWNUP) THEN
DOWNUP . FALSE.

ELSE
DOWNUP = . TRUE .

END IF
C
C STEP 9. SET THE BUMP PARAMETER (STARTING VALUE 0) .
C

IF (DOWNUP) THEN
BUMPV NRANGE (NEXTVA) * BUMP

ELSE
BUMPV - NRANGE (NEXTVA) * BUMP

END IF
c
C IN LISP PROGRAM, STEP 10 IS AFTER STEP 11 AND STEP 12.
C IT SEEMS IT WORKS BETTER.
C
C STEP 11 AND STEP 12.
C SET THE LAST-MINIMUM PARAMETER (STARTING VALUE = FIRST
C LAST-MIN ).
C SET THE BEST-SET PARAMETER (STARTING VALUE= FIRST
C BEST-SET) .
C

IF{FLAGZ .EQ. 0) THEN
LSTMIN = BSTMIN
DO SO 1=1, N

BSTSET (I) =LSTSET(I}
SO CONTINUE

END IF
C
C STEP 10. SET THE BUMP-SET PARAMETER (STARTING VALUE =
C FIRST BEST-SET)
C

DO 60 1=1., N
BMPSET(I) = BSTSET(I)

60 CONTINUE
IF (INTRAL . NE. 1) THEN

IF(BSTSET(NEXTVA)+BUMPV .LT. UPPER (NEXTVA) .AND.
* BSTSET (NEXTVA) +BUMPV . GT. LOWER (NEXTVA) ) THEN

BMPSET(NEXTVA) = BSTSET(NEXTVA)+BUMPV
ELSE IF(BSTSET(NEXTVA)-BUMPV .LT. UPPER (NEXTVA) .AND.

* BSTSET (NEXTVA) - BUMPV . GT. LOWER (NEXTVA) ) THEN
BMPSET (NEXTVA) = BSTSET (NEXTVA) -BUMPV
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*

*

*

END IF
END IF
TOTAL ~ TOTAL + SDCONT

C
C STEP l3. SET THE LAST-SCORE AND LAST-SET PARAMETERS (STARTING
C VALUES RETURNED BY A CALL, TO THE SINGLE -DIMENSION FUNCTION) .
C

IF(INTRAL .EQ. l) THEN
CALL SINGER (N,BMPSET, BSTMIN,LSTSET, LOWER,UPPER,NRANGE,

CUT,SEED,NEXTVA,FLGDIR,TMP2,VAR2)
ELSE

CALL MULTDM(N,BMPSET,BSTMIN,TMISET, LOWER, UPPER,
NRANGE,CUT,SEED,TMPSET,VARSET,DELTAS,TEMP)

CALL SINGER(N,TMlSET,BSTMIN,LSTSET,LOWER,UPPER,NRANGE,
CUT, SEED, NEXTVA,FLGDIR,TMP2,VAR2)

TOTAL = TOTAL + MDCONT
END IF

C
C
C
C
C

STEP 14. SET THE FLAGZ PARAMETER (STARTING VALUE = 0 IF NEW
LAST-MIN OBTAINED BY THE FIRST CALL TO THE
SINGLE-DIMENSION FUNCTION OTHERWISE, STARTING VALUE

IF(BSTMIN .LT. LSTMIN) THEN
FLAGZ 0

ELSE
FLAGZ ~ FLAGZ + 1

END IF

1) .

C
C STEP 15.
C
C l.
C 2.
C 3.
C
C 4.
C

EXIT TEST: RETURN TO THE BEGINING OF THE LOOP UNLESS ONE
OF FOLLOWING CRITERIA IS MET:
COUNT=COUNT2 (TOO MANY COMPLETE TRIALS) .
FLAGZ=36 (TOO MANY SUCCESSIVE FAILURES) .
FLGZCT=24 (TOO MANY CONSECUTIVE SUCCESSES) .

THIS THIRD CRITERION WAS NOT STATED IN THE PAPER.
O<LSTMIN - BSTMIN<EPS (SUCCESS).

C

STPVAR ~ 0
IF(COUNT .E.Q. COUNT2) STPVAR 1
IF(FLAGZ .EQ. 36) STPVAR 2
IF(FLGZCT .EQ. 24) STPVAR=3
DFMIN = LSTMIN-BSTMIN
IF(DFMIN .GT. 0 .AND. DFMIN .LT. EPS)
IF (STPVAR .G'T. 0) GO TO 70

GO TO 30

STPVAR 4

C

c

70 WRITE(LP,80)
80 FORMAT(j// 21X, 'THE FINAL RESULT IS ',20X)

WRITE (LP, 90)
90 FORMAT (21X, I~==~==========~=~=~=',20X)

WRITE(LP,100) BSTMIN,DFM.IN
lOO FORMAT (' FUNCTION VALUE =', IG14 .6, 2X, 'DFMIN= ' , IG14 . 6)

WRITE (LP, 110) TOTAL, STPVAR,COUNT,FLAGZ,FLGZCT
110 FORMAT (' NF=', 16, 3X, 'STPVAR=' ,12, 3X, I COUNT=' ,12, 3X,

* ,FLAGZ= I, 12, 3X, 'FLGZCT=' , 12)
WRITE(LP,120) (LSTSET(I) ,I=I,N)

120 FORMAT(' X =',IPGI4.6,4GI4.6/(4X,5G14.6»

RETURN
END
SUBROUTINE MULTDM(N,BMPSET,BSTVAL,BSTSET,LOWER,UPPER,

* NRANGE,CUTALT,SEED,TMPSET,VARSET,DELTAS,TEMP)
C
C THIS SUBROUTINE IS A DRIVER OF THE FOLLOWING MULTIDIMENSION
C FUNCTION. COUNTI IS THE NUMBER OF PARALLEL PROCESSORS SIMULATED.
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C
IMPLICIT REAL*S (A-H,O-Z,)
INTEGER N,I,J,SEED,COONT1,COUNT2
DOUBLE PRECISION BUMP, EPS, HIT, TRIAL, TORUS, SCALI, SCAL2,

* BMPSET (N) , BSTVAL, BSTSET (N) ,NRANGE (N) , UPPER (N) ,
* LOWER (N) ,CUTALT (N) , TMPBST, TMPSET (N) ,
* VARSET(N),DELTAS(N),TEMP(N)

COMMON /Al/COUNTl., COUNT2, BUMP, EPS, HIT, TRIAL, TORUS, SCALI, SCAL2
C

*

10

20

DO 30 1=1, COUNT1
CALL MULTl(N,BMPSET,TMPBST,TMPSET,LOWER,UPPER,NRANGE,

CUTALT,SEED,VARSET,DELTAS,TEMP)
IF(I .EQ.l) THEN

BSTVAL = TMPBST
DO 10 J=l, N

BSTSET(J) = TMPSET(J)
CONTINUE

ELSE IF(TMPBST .LT. BSTVAL) THEN
BSTVAL = TMPBST
DO 20 J=l, N

BSTSET{J) = TMPSET(J)
CONTINUE

END IF
30 CONTINUE

RETURN
END

C
SUBROUTINE MULTI (N,BMPSET,BSTVAL,BSTSET,LOWER,UPPER,

* NRANGE,CUTALT,SEED,VARSET,DELTAS,TEMP)
IMPLICIT REAL*S(A-H,O-Z)

C

C
C THIS IS A MONTE CARLO ALGORITHM FOR CHANGING THE VALUES OF
C ALL THE VARIABLES. ANNEAL,ING PRINCIPLES ARE USED IN
C CALCULATING THE MAXIMUM RANGE OF THE VARIABLES ON EACH
C ITERATION. FAST COOLING IS IMPLEMENTED AS THE RANGE IS
C LOGARITHMICALLY REDUCED. RANDOMNESS IS INTRODUCED INTO THE
C FIT BY MULTIPLYING THE MAXIMUM RANGE OF THE FIT VARIABLE BY
C A RANDOM NUMBER BETWEEN -1. AND 1 TO COMPUTE THE DEL-TA VALUE
C FOR EACH ITERATION. THE BEST FITTING SCORE AND RELATED
C VARIABLE SET ARE RETURNED BY THE FUNCTION.
C

INTEGER I, N, ITER, FUNCNU, MAXFUN , SDITER,MDITER,
* SDCONT,MDCONT,LOGSNG,LOGMUL,SEED

DOUBLE PRECISION VALUE,TESFNC,RAND,BSTVAL,BMPSET(N),
* BSTSET (N) ,NRANGE (N) , UPPER (N) , LOWER (N) ,
* CUTALT (N) , VARSET (N) , ITERDT ,
* DELTAS(N), TEMP(N),DTEMP

LOGICAL VARFLG,VALFLG

COMMON /A3/SDITER,MDITER,SDCONT,MDCONT,LOGSNG,LOGMUL
C

ITER=O
VARFLG = .FALSE.
VALFLG = . FALSE.

C
DO 10 1=1, N

BSTSET(I) BMPSET(I)
VARSET(I) = BSTSET(I)

10 CONTINUE
C
C LOOP. IN THE FIRST ITERATION (ITER=O), WE SET THE STARTING VALUES
C OF EACH VARIABLES. SOME VARIABLES, SUCH THAT ITERATE-DELTA,
C DELTA, ARE NOT NECESSARILY TO BE INITIALIZED.
C

20 CONTINUE
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C
C STEP 1: SET THE ITERATE PARAMETER TO COUNT THE NUMBER OF ITERATION
C

IF(.NOT. VARFLG) ITER=ITER+1
IF(ITER .EQ. 1) GO 'TO 50

C
C STEP 2: SET THE ITERATE-DELTA PARAMETER TO WEIGHT THE VALUES
C OF THE VARIABLES.
C

DTEMP=ITER
ITERDT=1.0DO-DLOG(DTEMP}/LOGMUL

C
C STEP 3: SET THE DELTA PARAMETER TO CALCULATE A SET OF BOUNDED
C STOCHASTIC VALUES BY WHICH THE VALUES IN VARIABLE-SET
C CAN BE MODIFIED.
C THERE IS A·SLIGHT DIFFERENCE BETWEEN PSEUDOCODE AND
C LISP PROGRAM.
C

DO 30 1=1, N
DELTAS (I) = I TERDT*NRANGE (I) *RAND (SEED)
IF (DABS (DELTAS (I)} .LT. CUTALT(I» THEN

DELTAS (I) = 4 * CUTAL~(I) * RAND (SEED)
IF(DABS(DELTAS(Ill .LT. CUTALT(I)} THEN

IF (DELTAS (I) .LT. 0) THEN
DELTAS (I) -CUTALT (I)

ELSE
DELTAS (I) = CUTALT (I)

END IF
END IF

END IF
C
C STEP 4: SET THE VARIABLE-SET PARAMETER TO CALCULATE A SET
C OF BOUNDED STOCHASTIC VALUES BY WHICH THE VALUES
C IN VARIABLE-SET CAN BE MODIFIED.
C

TEMP (I) = BSTSET(I) + DELTAS (I)
IF (TEMP (I) .GT;LOWER(I) .AND. TEMP (I) .LT.UPPER(1») THEN

VARSET(I) = TEMP (I)
ELSE

VARSET(I) = BSTSET(I)
END IF

30 CONTINUE
C
C STEP 5: SET THE VARIABLE-FLAG PARAMETER TO FLAG IF THE VALUES
C IN VARIABLE-SET AND VALUE-SET ARE IDENTICAL FOR ALL
C VARIABLES.
C

DO 40 1=1, N
IF (VARSET(I) .NE. BSTSET(I» THEN

VARFLG = . FALSE.
GO TO 50

END IF
40 CONTINUE

C
C IF THE VALUES IN VARIABLE-SET AND VALUE-SET ARE IDENTICAL FOR
C ALL VARIABLES, THE FOLLOWING STEPS ARE NOT NECESSARY.
C

VARFLG = . TRUE.
GO TO 20

C
C STEP 6: SET THE VALUE PARAMETER TO COMPUTE A VALUE FOR EACH
C FUNCTION CALL.
C

50 VALUE = TESFNC(N,VARSET)
C
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C STEP 7-STEP 9:
C STEP 7: SET THE VALUE-FLAG PARAMETER TO FLAG IF A NEW MINIMUM
C OBTAINED.
C STEP S: SET THE BEST-VALUE PARAMETER TO STORE THE MINIMUM
C VALUE OBTAINED ACROSS ITERATIONS.
C STEP 9: SET VALUE-SET PARAMETER TO STORE THE VALUES OF 'THE
C VARIABLE SET THAT GENERATES THE BEST VALUE.
C

IF (ITER . EQ. 1) BSTVAL = VALUE
IF (VALUE . LT. BSTVAL) THEN

VAL,FLG = . TRUE .
BSTVAL = VALUE
DO 60 1=1, N

BSTSET(I) VARSET(I)
60 CONTINUE

END IF
C
C STEP 10: EXIT TEST: RETURN TO THE BEGINING OF THE LOOP UNLESS
C MULTIPLE-DIMENSION-ITERATIONS = ITERATE.
C

IF{ITER .LT. MDITER) GO TO 20
C

RETURN
END

C
SUBROUTINE SINGER(N,START,BSTVAL,BSTSET,LOWER,UPPER,

* NRANGE, CUT, SEED, NEXTVA, FLGDIR, TMP2, VAR2)
C
C THIS IS A MONTE CARLO ALGORITHM FOR CHANGING THE VALUES OF
C ONE VARIABLES. ANNEALING PRINCIPLES ARE USED IN
C CALCULATING THE MAXIMUM RANGE OF THE VARIABLES ON EACH
C ITERATION. FAST COOLING IS IMPLEMENTED AS THE RANGE IS
C LOGARITHMICALLY REDUCED. RANDOMNESS IS INTRODUCED INTO THE
C FIT BY MULTIPLYING THE MAXIMUM RANGE OF THE FIT VARIABLE BY
C A RANDOM NUMBER BETWEEN -1 AND 1 TO COMPtITE THE DELTA VALUE
C FOR EACH ITERATION. THE BEST FITTING SCORE AND RELATED
C VARIABLE SET ARE RETURNED BY THE FUNCTION.
C
C THIS IS THE OUTER LOOP OF THE SINGER-DIMENSION FUNCTION.
C

IMPLICIT REAL*S(A-H,O-Z)
C

C

C

C

INTEGER I,J,N,COUNT1,COUNT2,CNT1,CNT2,NEXTVA,FLGDIR,MOD,
* SDITER,MDITER, SDCONT,MDCONT, LOGSNG,LOGMUL, SEED

DOUBLE PRECISION BUMP, EPS, HIT, TRIAL, TORUS, SCAL1, SCAL2,
* BSTVAL, START (N) , BSTSET (N) , NRANGE (N) , VAR2 (N) ,
* UPPER(N), LOWER(N) ,CUT(N) ,TMP2(N) ,TMPBST

LOGICAL VARFLG,VALFLG

COMMON /A1/COUNT1,COUNT2,BUMP,EPS,HIT,TRIAL,TORUS,SCAL1,SCAL2
COMMON /A3/SDITER,MDITER,SDCONT,MDCONT,LOGSNG,LOGMUL

DO 50 J=l, COUNT1
DO 20 CNTl=l, N

IF( FLGDIR .EQ. 0) THEN
CNT2 MOD ( (NEXTVA+CNT1), N) + 1

ELSE
CNT2 = MOD ( (NEXTVA-CNT1+N), N) + 1

END IF

CALL SNG1{CNT2,N,START,TMPBST,TMP2,LOWER,UPPER,
* NRANGE,CUT,SEED,VAR2)

DO 10 1=1, N
START(I)=TMP2{I)

10 CONTINUE
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20 CONTINUE
IF(J .EQ.1) THEN

BSTVAL = TMPBST
DO 30 1=1, N

BSTSET(I) = TMP2(I)
30 CONTINUE

ELSE IF (TMPBST . LT. BSTVAL) THEN
BSTVAL = TMPBST
DO 40 1=1, N

BSTSET{I) = TMP2{I)
40 CONTINUE

END IF
SO CONTINUE

RETURN
END
SUBROUTINE SNG1(CNT2,N,START,BSTVAL,BSTSET,LOWER,UPPER,

* NRANGE,CUT,SEED,VAR2)
C
C THIS IS THE INNER LOOP OF THE SINGLE-DIMENSION FUNCTION. IT IS
C IDENTICAL TO THE MULTIDIMENSION FUNCTION EXCEPT THAT LOG-CONSTANT
C IS SET TO LN(SINGLE-DIMENSION-ITERATIONS), AND ONLY THE VARIABLES
C DESIGNATED BY CNT2 IS CHANGED ON EACH PASS.
C

IMPLICIT REAL* 8 (A-H,O-Z)
C

INTEGER I,N,CNT2,ITER,FUNCNU,MAXFUN,SDITER,
* MDITER,SDCONT,MDCONT,LOGSNG,LOGMUL,SEED

DOUBLE PRECISION VALUE, TESFNC, RAND/ BSTVAL, START (N) ,
* DABS, BSTSE'T IN) ,NRANGE (N) , UPPER (N) , LOWER (N) ,
* DLOG,CUT (N) ,VAR2(N) ,ITERDT/DELTA,TEMP,DTEMP

LOGICAL VARFLG,VALFLG
c

COMMON /A3jSDITER,MDITER/SDCONT,MDCONT,LOGSNG,LOGMUL
C

ITER = 0
VARFLG = . FALSE.
VALFLG = . FALSE.

C
DO 10 1=1, N

BSTSETII) = START (I)
VAR2(I} = BSTSET(I)

10 CONTINUE
C

20 CONTINUE
1F(.NOT. VARFLG) ITER = ITER + 1
IF(ITER .EQ. 1) GO TO 30

c

C

C

DTEMP=ITER
ITERDT=1.0DO-DLOG(DTEMP)/LOGSNG

DELTA = ITERDT * NRANGE(CNT2} * RAND(SEED)
IF((DABS(DELTA» .LT. CUT(CNT2)} THEN

DELTA = 1.6 * CUT (CNT2) * RAND (SEED)
IF(DABS(DELTA» .LT. CUT(CNT2}) THEN

IF(DELTA .LT. 0) THEN
DELTA -CUT (CNT2)

ELSE
DELTA = CUT (CNT2 )

END IF
END IF

END IF

TEMP = BSTSET(CNT2) + DELTA
IF (TEMP.GT.LOWER(CNT2) .AND. TEMP.LT.UPPER(CNT2}) THEN

VAR2(CNT2) = TEMP
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C

C

C

C

ELSE
VAR2(CNT2) = BSTSET(CNT2)

END IF

IF (VAR2 (CNT2) .NE. BSTSET(CNT2)) THEN
VARFLG = . FALSE.
GO TO 30

END IF
VARFLG = .TRUE .
GO TO 20

30 VALUE = TESFNC(N,VAR2)
IF(ITER .EQ. 1.) BSTVAL = VALUE
IF (VALUE . LT. BSTVAL) THEN

VALFLG = . TRUE .
BSTVAL = VALUE
BSTSET(CNT2) = VAR2(CNT2)

END IF

IF(ITER .LT. SDITER) GO TO 20

RETURN
END
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