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PREFACE

Ceramic bearing balls offer significant advantages when compared to other

bearing materials. Their superior perfonnance is due to special material properties such as

their higher compressive strength, hardness, lower density, higher stifness, higher

operating temperatures, and self lubricating properties. When these exceptional properties

are combined, they provide longer service life and a reliable product. However, their high

hardness together with brittleness is a big disadvantage in tenns ofmanufacturing.

Merely extending the conventional manufacturing technique, namely V-Groove

Lapping, for ceramics is a time consuming and not a cost effective process because of the

higher hardness of these ceramic materials. Use of high polishing loads also produces

surface defects which can reduce the strength and service life of the ceramic bearing

balls. Expensive diamond abrasives and long processing times increase the manufacturing

cost significantly.

Magnetic float polishing (MFP) was introduced and employed to address and

overcome some of the problems faced with conventional polishing. This technique was

initially developed in Japan [Kato and Umehara]. It as a simple technique that utilizes

magnetic fluid, commercially available sub-micron size abrasives, and a driving spindle.

This technique requires magnetic field which can be generated either by pennanent

magnets or an electromagnet, in order to utilize a magnetic buoyancy force of a non-
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magnetic body in a magnetic fluid. Magnetic float polishing technique involves little

capital costs and can be incorporated with existing machine tools.

The magnetic field required for the magnetic float polishing has been typically

generated by using pennanent magnets. It has also been reported and proven in the

literature that bearing balls can be finished to a desired manufacturing quality by using

the permanent magnet polishing apparatus [Raghunandan and Komanduri, 1997 and

Jiang and Komanduri, 1997].

As an alternative to the permanent magnet polishing apparatus, electromagnetic

field assisted polishing apparatus was also designed and fabricated at Oklahoma State

University. Initial design was developed by Dr. Shinmura of Japan at Oklahoma State

University, and later altered to form a ring pole electromagnetic field assisted polishing

apparatus. Eventhough, this new design showed promising results, it did not meet with

the required finish requirements.

In order to address this problem, a modified ring pole design was proposed and

built as an alternative to the ring pole design. During the evaluation of this new design,

FEM analysis was employed to compare and simulate the results with the ring pole

design.

Experimental studies were carried out using the modified ring pole design as well

as the original ring pole design. The experimental studies serve to create the necessary

data base for establishing optimum polishing conditions. Approximately 4.5 ).un/min

material removal rate was accomplished when polishing silicon nitride workpiece

material as compared to 2 ~m/min with the permanent magnet apparatus. Surface
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roughness (RJ of 13 nrn was also observed. The average sphericity with the ring pole

design was 0.45 J..l.rn and with the modified ring pole design was 0.9 J..l.ffi.
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CHAPTER 1

INTRODUCTION

1.1 Ceramic Bearing Balls and Their Advantages

Advanced ceramICS, such as silicon nitride exhibit several umque properties

compared to conventional steels for bearing applications. Their superior performance is

attributed to their higher compressive strength, high hardness, high stiffness, and lower

density, higher speeds, and higher operating temperatures. Consequently, high precision

ceramic bearings can provide longer and more reliable performance in service.

However, ceramic ball bearings manufactured by several weeks polishing

techniques are more expensive and takes considerable time for fmishing. Conventional

grinding and polishing techniques require the use of diamond abrasives, thus increasing

the component cost significantly. Also, because of the use of hard diamond abrasives to

finish brittle silicon nitride by conventional techniques, subsurface damage occurs on the

silicone nitride balls in the form of pits, cracks, etc. as material removal is predominantly

by brittle fracture.

Table 1.1 shows a companson of various properties of two ceramICS and

conventional steel used in bearing applications. It can be seen that silicon nitride has

many superior properties compared to alumina or steel [Kato et aI, i 986]. For example,

silicone nitride has approximately 60% lower density than SUJ2 bearing steel and the



Young's Modulus is nearly 50% higher. Another leading characteristic of silicone nitride

is that it can be operated at higher temperatures and higher speeds. Bearing balls made of

silicone nitride can be used with little or no lubrication, as they are self lubricating. For

these reasons, they have approximately ten times longer service life than steel bearing

balls.

Table 1.1 Comparison of properties among
silicon nitride, aluminum oxide, and SUJ2 bearing steel

Properties Silicon Nitride Aluminum Oxide Steel

Vickers Hardness, kgf/mm2 1532 1783 848

Elastic Modulus, GPa 294 343 190

Poisson's Ratio 0.27 0.25 0.28

Density, g/cm3 3.2 3.8 7.8

Fracture Toughness, MPa m1/2 5.2 4.0 45.0

Thermal Expansion, Coeff. 10-6/oC 3.7 7.1 12.3

Thennal Conductivity, cal.cm/cm2.sec.oC 0.03 0.06 0.13

Even though silicon nitride bearing balls have such distinguished advantages

mentioned above, compared to conventional bearing balls of steel, they also have some

disadvantages. One of the biggest problems is low fracture toughness which for silicon

nitride is approximately 5.2 MPa ml
/2 and for steel bearing materials approximately 45

MFa m1/2. In order for ceramic balls to perform well, the fracture toughness should be as

high as possible. Also, fracture toughness depends on manufacturing quality of these
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ceramic components. This has been one of the biggest challenges for the manufacturers.

At the same time, large forces employed in conventional polishing methods tend to

induce sub-surface damage and is damage may lead to unwanted reliability and shorter

service life.

1.2 Magnetic Field Assisted Polishing Techniques

In the early 1940's, the U.S. saw the development of magnetic field assisted

polishing. The new technique was contrived in order to polish gun barrels [Coats, 1940].

Later this method of polishing was practiced in the former U.S.S.R and used in a variety

of polishing applications in which the workpieces were relatively large and difficllit to

machine [Baron, 1975].

Magnetic field assisted polishing is a process in which a magnetic field is

generated either by permanent magnets, or an electromagnet and abrasives which are

oriented along the generated magnetic field. Polishing processes are utilized by rotating

the workpiece inside the generated magnetic field and oriented toward the abrasive

medium. Magnetic field assisted polishing can be grouped into two principal methods,

the first ofwhich is magnetic float polishing (MFP) and the other is the magnetic abrasive

finishing (MAF). The major difference between these methods is the type of medium

being used.

Magnetic abrasive finishing can be used to polish either flat surfaces or cylindrical

surfaces which can be internal or external. This method can finish both magnetic and

non-magnetic materials [Shinmura 1990, Shinmura 1993 and Fox 1994] (Figure 1.1). In
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this method, material removal may be either by mechanical or chemical action which can

be accomplished by the forces due to the generated magnetic field gradients. Material

removal occurs when the workpiece is rotated inside the magnetic field and the oriented

abrasives along the magnetic field scratch the surface of the workpiece. As mentioned

previously, magnetic abrasive finishing is better suited for flat and cylindrical surfaces,

whereas the magnetic float polishing technique has been developed for spherical surfaces.

l\A9EiIC
JOOSIVES

VIBWIlli
H.IMlI( ffAIlS 0

N

Figure 1.1 Schematic of magnetic abrasive finishing of
cylindrical surface (External)

Magnetic float polishing (MFP) is another type of magnetic field assisted

polishing. In this technique, it is desirable to have non-magnetic workpiece materials,

although magnetic materials can also be finished by this technique. Rollers, flats, internal

surfaces and spherical surfaces can be polished by magnetic float polishing. Since, the

objective of this research is to investigate the possibility of polishing of silicon nitride

bearing balls, primary emphasis will be placed on spherical surfaces.

Even though the concept behind magnetic abrasive finishing (MAF) and magnetic

float polishing (MFP) is similar, there are notable differences. Basically, in magnetic

abrasive finishing (MAF), the abrasive particles are pushed against the workpiece surface
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due to magnetic field orientation; whereas in magnetic float polishing (MFP), abrasive

particles are pressed to the workpiece surface by the generated buoyancy forces. In order

to polish bearing balls, there are three different types of magnetic float polishing

apparatus designed. They are permanent magnets with a concentric shaft, permanent

magnets with an eccentric shaft and an electromagnet with a concentric shaft. Schematics

of these three different magnetic float polishing apparatus are shown in Figures 1.2, 1.3,

and 1.4

--
'1---- DRIVE SHAFT

f--_ ACRYLlC GUIDE RI\G

Figure 1.2 Schematic of permanent magnet apparatus with concentric shaft

Driving shAft

Float

York

Figure 1.3 Schematic of permanent magnet apparatus with eccentric shaft
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Shaft

Chamber

Mag netic fluid
and abrasives

Balls

Float

Electro-magnet

Electric Coil

Figure 1.4 Schematic of electromagnetic apparatus with concentric shaft

In magnetic float polishing, the magnetic field can be generated either by

permanent magnets or an electromagnet. The polishing process can be performed by

immersing the silicon nitride balls inside a chamber which contains the magnetic fluid

with abrasives. The magnetic fluid is a suspension of magnetic iron oxide particles in

water or kerosene as a carrier fluid. Different types of commercial abrasives « 10%

volume) are added to the magnetic fluid to enable the material removal from the silicon

nitride ball surface depending on the process requirements. Due to the magnetic nature of

the iron oxide particles, magnetic fluid can be oriented depending on the design of the

magnetic field. This specifically designed field creates the buoyancy forces by using

magnetic fluid where workpieces can be pushed up against the rotating shaft by the float
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underneath the balls. Hence, material removal can achieved due to rotating motion

between the workpiece surface and the abrasives.

Magnetic field assisted polishing offers several advantages due to its unique

features. These features are lower forces (- 1 Nlball), higher speeds (up to 6000 rpm), use

of conventional abrasives, use of chemo-mechanical polishing and a simple apparatus

which can be incorporated into a conventional machine tool. These features enable

increased removal rates, extremely smooth and microcrack-free surfaces, lower capital

costs, smaller inventory and a economical product.

The main features of the magnetic float polishing technique are magnetic fluid,

abrasives, and the work material being polished. Magnetic fluid is a colloidal suspension

of angstrom size magnetic particles (~ 100 A) which consists mainly of magnetite and the

liquid carrier. This liquid carrier may be either water or hydrocarbon. Generally, magnetic

fluid is characterized by its field strength or magnetization values. When magnetic fluid is

placed under a magnetic field, magnetic particles respond to that field and orient the

carrier fluid. Saturation magnetization of the magnetic fluid is approximately 105 Aim

which corresponds to 600 Gauss. It is also noteworthy that the magnetic field strength (in

other words magnetization) depends upon the concentration of magnetic particles inside

the carrier medium. In magnetic float polishing, due to the magnetic field gradient,

magnetic particles respond to a force which is called the buoyancy force. Buoyancy

forces depend on the gradient and strength of the magnetic field, and the saturation

magnetization of the carrier magnetic fluid.

As mentioned previously, another important feature of the magnetic float

polishing IS the abrasives. These commercially available abrasives are added to the
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magnetic fluid during the polishing process and the amount of abrasives is less than 10%

of the volume. In this research, the abrasives used include:

• Boron carbide (B4C)

• Silicon carbide (SiC)

Density and hardness of these abrasives is presented in Table 1.2 along with the

workpiece material being used, silicon nitride.

Table 1.2 Hardness and Density values of the abrasive and workpiece materials being
used in magnetic float polishing process [Raghunandan 1996].

Material Hardness MPa Density glcc

Silicon Nitride Si3N4 1600-2200 3.2

Boron Carbide B4C 3400 2.5

Silicon Carbide SiC 2500 3.2

Chromiwn Oxide Cr20 3 2000-2200 5.2

Alwninwn Oxide A120 3 2100 4.0

Considering the hardness values of these abrasives and the workpiece materials, it

should be noted that boron carbide and silicon carbide abrasives are generally used for

roughing processes and chromium oxide for the final polishing process.

Yet another important feature of the magnetic float polishing process IS the

workpiece material, silicon nitride. Properties of silicon nitride work material are
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presented in Table 1.1. Basically, silicon nitride is a synthetic raw material and can be

manufactured by means of chemical reactions at high temperatures ranging

approximately from 1000 to 1600 °C [Ault et. al. 1993]. There are essentially three

methods to produce silicon nitride powder, namely:

• Reacting silicon metal powder with nitrogen

• Reacting Si02, carbon, and nitrogen

• Reacting chlorosilanes with a gas containing nitrogen or a nitrogen compound.

Powder metallurgy techniques can be used to fabricate silicon nitride products as

well. These products are then fired in nitrogen to produce a porous silicon nitride raw

material which is called reaction-bonded or reaction-sintered silicon nitride. This type of

manufacturing technique produces lower strength, lower toughness and less oxidation

resistant silicon nitride, also called a-phase silicon nitride. When oxygen and aluminum

are substituted for nitrogen, the product manufactured is ~-phase silicon nitride which is

tougher and more dense than a-phase silicon nitride. In this investigation, the silicon

nitride work material used is fabricated with the technique known as hot isostatically

pressing (HIP). In this technique, silicon nitride powder is heated up to 1700 °C and

subjected to a pressure higher than 300 MPa in a nitrogen atmosphere. This technique

results in greater uniformity and a more dense silicon nitride product.
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CHAPTER 2

LITERATURE REVIEW

2.1 Magnetic Field Assisted Polishing

The magnetic field assisted polishing technique was [lTst introduced by Coats

[1940]. This technique was applied to finish gun barrels as was mentioned previously. In

this process, magnets were placed near the barrels and abrasive particles were placed

inside these barrels. By rotating the barrels, polishing was accomplished. Later, the

magnetic field assisted polishing technique found applications in the finishing of large

nonmagnetic work materials in the former U.S.S.R. and Bulgaria. [Baron of the U.S.S.R.,

1975 and Makedonski of Bulgaria, 1974].

Magnetic field assisted polishing techniques were initially used to polish internal

surfaces. For example, Shinmura [1989] used this technique to finish non-magnetic tubes.

This technique was also utilized to polish external surf~ces as well. Shinmura [1985]

developed new methods to polish cylinders and flat surfaces where the main concept

behind the process was not much different than that which was initially developed. Use of

the magnetic abrasives in a strong field was the main idea of these methods. In these

processes, polishing was in a completely dry abrasive environment. The abrasives used in

these methods were either mixed with iron particles or sintered to the magnetic particles.

10
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2.2 Magnetic Fluid Assisted Polishing

Use of magnetic fluid as a medium for the polishing process was first introduced

by Tani of Japan [1984J. He used magnetite iron oxide particles inside the magnetic fluid

,

to polish acrylic resin. In his experiments, Tani used the concept of buoyant forces acting

upon a non-magnetic body in a magnetic fluid under a magnetic field. (see Figure 2.1).

This idea was initially introduced by Rosenweig [1966]. He states in his paper that non-

magnetic particles can be oriented in a certain direction in a magnetic fluid under a

specifically designed magnetic field. These non-magnetic particles can be maintained due

to Brownian motion, which also needs the assistance of a surfactant. This surfactant

prevents the magnetic particles from agglomerating under van der Waal forces.

Figure 2.1 Buoyant force acting on non-magnetic body in magnetic fluid
under magnetic field.

Magnetic fluid assisted polishing techniques can be utilized to polish a variety of

shapes. Umehara of Japan has also introduced a method for polishing internal surfaces

with a magnetic fluid [1995]. In this method, the internal surface of a long tube of which

11
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the diameter is less than 20 nun can be polished by means of magnetic fluid polishing. A

schematic of this apparatus is shown in Figure 2.2

"j ube s.:>ecu,:,,~n

U;per mag"'"

Tape'·we tool

Pin
~---...:.~~

Lowe' magnel
lower magnel_~!-';';;p;::.tr hoklE>'

Figure 2.2 Apparatus of internal polishing of tube with magnetic fluid grinding
[Umehara et.al.1995]

In this method, there are two different type of forces applied to the workpiece: one

a normal force which provides the relative motion between the tool and the internal

surface of the tube, and the other a tangential force which provides the finishing action.

With this method, Umehara et al obtained 0.28 Jlm/min removal rate with a 55 J.lm of SiC

abrasive and stainless steel taper type tool, and a surface roughness of 0.04 J.lm R. with a

1 Jlm SiC abrasive and PVA taper type tool.

12



2.3 Magnetic Float Polishing

The magnetic float polishing (MFP) technique was first introduced by Umehara

and Kato [1987] to polish spherical surfaces. In their experiments, they polished cold

pressed and sintered silicon nitride balls of 9 mm diameter using a silicon carbide

abrasive. Water based magnetic fluid with 400 Gauss magnetization and a spindle speed

of 20,000 RPM were used. The required magnetic field was generated using 4 rom square

permanent magnets which were assembled with alternate N and S poles. This magnetic

field design with permanent magnets provided them with a magnetic field strength of

9.2x105 Nm. The main difference when compared to Tani's work was the use of a float.

This float which is generally fabricated from acrylic resin was used to provide the

required support to the balls. Umehara and Kato conducted experiments to detennine the

effect of variables on the surface finish, sphericity and material removal rate in magnetic

float polishing. They identified the following variables as the most influential parameters.

• Effect of the float and the total grinding load

• Effect of abrasive size and concentration

• Effect of the rotational speed

• Effect of the field supporting stiffness

In the following, the effects of these parameters will be briefly reviewed.
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2.3.1 Effect of the float and the total grinding load

The introduction of the float was a major contribution of Kato and Umehara

[1990] in magnetic fluid polishing of bearing balls. The total grinding load was increased

from 2 N without the float to 6 N with a float. Umehara and Kato carried out experiments

to find the effect of the float and grinding load. The results of these experiments are

presented in Figures 2.3, 2.4, 2.5, and 2.6. In Figure 2.3, it can be seen that if the gap

decreases, the magnetic grinding load increases no matter if a float is used or not.

However, it is also obvious that use of a float increases the grinding load (magnetic

buoyancy force) drastically. It can also be seen that the use of a float increases the area

where the magnetic buoyancy forces act and therefore the increase in the magnetic

buoyancy force provides higher grinding loads.
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Figure 2.3 Effect of a float on magnetic grinding load, using permanent magnet design.
[Umehara and Kato, 1990]
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In Figure 2A, the effect of a float on material removal at various rotational speeds

is illustrated. Since the benefit of the float is increased force, increased force leads to an

increase in material removal rates. It should be also noted that an increase in speed also

increases the removal rate. In Figure 2.5, the effect of grinding load on material removal

rate is presented. In this case, an increase in the load augments the material removal rate.

In their experiments, Umehara and Kato used OA Nfball and they polished 11 balls

--

altogether. Use of a float also provides improvement in the shape accuracy of silicon

nitride balls. Figure 2.6 shows that the use of a float decreases sphericity drastically and

helps to achieve the requirements for a bearing ball. It can be concluded that use of a float

leads to an increase in grinding loads, an increase in the material removal rate, and a

16



decrease in the sphericity. It was also found that the use of a float improves surface finish.

All of these parameters for the polishing of silicon nitride bearing balls are very important

and all these improvements can be achieved because use of a float leads to a 3-point

contact which provides a more uniform material removal process.

2.3.2 Effect of Abrasive Size and Concentration

When companng the use of diamond abrasives in conventional polishing

techniques with the use of commercially available abrasives in the magnetic float

polishing method, the advantages of the later technique are two-fold. First, with magnetic

float polishing, it is possible to obtain fracture-free surfaces and secondly the overall cost

can be reduced significantly. Umehara and Kato [1990] also investigated the effects of

abrasive concentration and abrasive size. The results of this investigation are presented in

Figure 2.7 and Figure 2.8. In Figure 2.7, it can be seen that material removal rate reaches

a saturation point when the abrasive concentration is 10% by volume. Therefore, it can be

concluded that 10% by volume abrasive concentration is the optimum condition for

magnetic float polishing. In Figure 2.8, the effect of abrasive grain size on material

removal rate is presented. After approximately 50 J.lm grain size, material removal rate

nearly follows a constant trend. When the abrasive grain size is less than 50 11m, material

removal rate is directly proportional to abrasive grain size; and as the abrasive grain size

decreases, material removal rate also decreases.

17



>-
c..>
'-' 5c
'-

CJ
>
9
6

u
J i a 20 30 t.0

CancenlrUlion p , Valia
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Figure 2.8 Effect of abrasive grain size on material removal rate.
[Umehara and Kato, 1990]
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2.3.3 Effect of Rotational Speed

The effect of rotational speed on material removal rate was also investigated by

Umehara and Kato [1990]. They found the material removal rate to increase with

increasing speed approximately 15,000 rpm, after which it reaches a saturation point

(Figure 2.4). Of course, it should be kept in mind that these experimental values are

obtained by just considering the rotational speed of the driving shaft.

2.3.4 Effect of Field Support Stiffness

In order to find the effect of the field support stiffness, Umehara et al [1994]

carried out several experiments. These experiments were conducted by keeping the

grinding load constant and varying the width of the magnets. The effect of the field

supporting stiffness on material removal rate is presented in Figure 2.9. It shows that

lower stiffness values can be obtained by using smaller size magnets, but use of these

smaller magnets yields lower material removal rates. They also found that an even greater

improvement in material removal rate can be achieved by using higher field support

stiffness. From this, it appears that a lower field support stiffness can result in lower

surface finish.
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Figure 2.9 Effect of the magnetic field support stiffness on material removal rate
[Umehara et al, 1994]

2.4 Magnetic Float Assisted Polishing Mechanics

In order formulate the mechanics of the magnetic float assisted polishing process,

several studies have been carried out mainly by Childs et al. [1994b]. The main purpose

is to predict the motion of the ball as well as the float during the magnetic float polishing

process.

V=(K/H) Ws Vs

Childs et al. found that the model developed and the calculations fit Archard's

wear law where V is mate.rial removal rate, K is the wear coefficient, H is the hardness of

the silicon nitride ball, Vs is the sliding velocity and Ws is the load between the shaft and

a ball.
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The motion of the ball is defined by the ball circulation rate around the chamber,

the spin, and spin direction of a ball about its own axis. The motion of the float is defined

using its rotation rate. In order to establish the kinematics of the ball motion, the grinding

cell geometry and the variables of this motion were defined in Figure 2.10.
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Figure 2.10 Magnetic float polishing model notation for (a) cell geometry and motion and
(b) float forces and torques [Childs et al I994b]

After generating this model, the sliding speed of a ball with respect to the chamber, shaft,

and float, and the volume material removal can be developed and expressed as follows:

Sliding speed of a ball with respect to the chamber,

Sliding speed of a ball with respect to the driving shaft,

Sliding speed of a ball with respect to the float,

Volume material removed = O.54(KIH)(UJb sinp + Of) Wm4/3(Rt,) 113IE
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where:

K is the wear coefficient

H is the hardness of a silicon nitride workpiece

Wm is the contact load

E is Young's modulus of silicon nitride

R.: is the inner radius of chamber

Ru is the radius of ball

~ = R.: -~ is the radius where the ball contacts the float

~ = ~ - ~ sin eis the radius of the shaft

Os is the shaft angular speed

Of is the float angular speed

0b is the ball circulation speed

e is the conical slope of the chamber

'UJb is the ball spin angular speed

~ is the angle of ball spin axis.

The model developed has good reliability as the calculated values agree closely

with the experimental results. Higher contact loads reduce sliding velocity and the motion

of a ball can easily be affected by the changes in the sliding friction coefficient and the

fluid viscosity. It can also be observed that higher sliding speeds yield higher removal

rates thereby improving the efficiency of the polishing process.

22



-

2.5 Tribology and Material Removal Mechanism of Ceramics

As mentioned earlier, high hardness, brittleness, low thennal conductivity and

chemical inertness are the main tribological properties of ceramics; which is quite

different when compared with metals. Tribological properties of ceramics such as the

friction, wear, and tribo-chemical wear of ceramics were investigated by Kato [1990].

Friction coefficients of ceramics in air varies from 0.44 to 0.90 which is not very different

from oxidized metals in the air. However, in a vacuum environment, the coefficient of

friction of all ceramics is less than unity which is quite different when compared to

metals. The reason for that being is the brittleness of ceramics in a vacuwn environment.

The cause for that brittleness is that ceramics do not allow junction growth by plastic

deformation. In his paper, Kato states that oxide film reduces friction because of this lack

of junction growth in ceramics. It is also concluded that friction of ceramics is originally

sensitive to contamination. In ~he same paper, it has been mentioned that wear

mechanisms in ceramics can occur by cracks around the contact zone and these cracks

can be hertzian, lateral, median and radial. It was also found that in dry rolling friction,

the wear process of ceramics is dominated by brittle fracture.

Brittle fracture and ductile regime removal theories In ceramiCS was initially

investigated by Yoshikawa [1967]. Yoshikawa described by expressing the size of the

stress field using working units which are grouped under four main domains. These

domains are characterized by the defect structure as shown in Figure 2.11. In this

analysis, the workpiece material was considered to be a defect free material. It is

suggested that in domain 1, material removal could not be due to mechanical action



because material removal takes place only on the order of an atom or a molecule.

Therefore in this domain, chemical action should be dominant. Since the workpiece is

considered as a defect free material, the material removal takes place like an ideal crystal

in domain 2. In domain 2, it is considered that applied loads help to generate dislocations

which are the dominant material removal factors in domain 3. It is stated that in this

domain initially, plastic deformation occurs, followed by the generation of the cracks.

I
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In the magnetic float polishing process, Childs et al. [1994a] showed that this

Figure 2.11 Stress field classification in terms of working units (Yoshikawa, 1967)

fracture formation occurs due to 2-body abrasion. Umehara and Komanduri [1994] also
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reported that the material removal in magnetic float polishing takes place due to 2-body

abrasion. Komanduri et al. [1996] state that the material removal mechanism by this
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fracture fonnation depends on the nature of bonding, which is either ionic or covalent.

bonding in the case of ceramics. Akazawa and Kato [1988) also show that material

removal is observed due to tribo-chemical action in ceramics. Bhagavatula and

Komanduri [1996) also provided some evidence of chemo-mechanical material removal

in magnetic float polishing. They show that, by using a chromium oxide abrasive, a

surface finish (RJ of less than 10 nm can be obtained which is believed to be due to a

chemo-mechanical material removal. Eventhough, aluminum oxide and chromium oxide

have almost the same material hardness, material removal rates on silicon nitride balls

with chromium oxide abrasive are found to be higher than aluminum oxide abrasive,

which also indicates that chemo-mechanical might be dominant with chromium oxide.

2.6 Electromagnetic Float Polishing

In order to polish ceramic bearing balls, Umehara's design [1990] was presented

earlier. In his design, the magnetic field is generated by using permanent magnets. As an

alternative to the permanent magnet polishing apparatus, an electromagnetic float

polishing apparatus design was proposed by Shinmura and Komanduri [1992). By using

similar features of a permanent magnet polishing apparatus, an electromagnet polishing

apparatus design was carried out (Figure 2.12). Umehara's permanent magnet design has

a magnetic field strength of 0.6T, and this magnetic field strength value is incorporated in

the design of an electromagnetic field assisted polishing apparatus (EMFP). This new

design is called the straight field electromagnetic polishing apparatus. This equipment

was built and used by Dock [1994). During the evaluation of straight field
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electromagnetic polishing equipment by using the finite element method it was found

that this new design does not provide a unifonn magnetic field orientation; and the balls

polished with this equipment do not meet the surface finish and sphericity requirements.
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Figure 2.12 Straight field electromagnetic polishing apparatus designed by
Shinmura and Komanduri[1992]

Because the results achieved with the straight field design were not satisfying, the

parameters were reevaluated and a ring pole electromagnetic polishing apparatus design

proposed and built (Figure 2.13) by Dock [1994]. Although, with this new design,

promising results (surface finish of 0.171 jlID with Cr20 3 1200 grit and sphericity of2.9

jlm) were obtained, it is yet to meet with the requirements that are essential for a ceramic

bearing ball.

26



J

J

/

/

J

I

J

/
I

I,
- - --

Figure 2.13 Ring pole electromagnetic field assisted PoliShing apparatus Proposed by
Dock [1994]
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CHAPTER 3

PROBLEM STATEMENT

3.1 Magnetic Float Polishing

The magnetic float polishing technique has been showing promising results for

finishing silicon nitride bearing balls. Longer manufacturing time, high cost, and creation

subsurface damage are the main disadvantages of the conventional polishing techniques.

In order the eliminate these problems, the magnetic float polishing technique was

proposed as an alternative process to finish advanced ceramics.

In the early stages of the magnetic float polishing investigation, researchers

generated the necessary magnetic field by using pennanent magnets. In order to provide

the desired magnetic field orientation, these pennanent magnets are arranged with

alternating N and S poles. With this pennanent magnet design, it is possible to generate

buoyancy forces up to 7 N, depending on the size and residual magnetization of the

magnets. Since the size of the magnet and the magnetic field strength are fixed in a

certain design, buoyancy forces cannot be altered for that particular design. This is the

biggest limitation of the permanent magnet polishing apparatus; however satisfactory

results can be obtained.
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3.2 Electromagnetic Float Polishing

The electromagnetic field assisted polishing apparatus designed by Shinmura and

Komanduri and built by Dock [1994] was another important step in finishing ceramic

bearing balls. The process is very similar to the permanent magnet design. The biggest

difference is the way the magnetic field orients. The theoretical considerations of the

electromagnetic field design were based on the field strength values that a permanent

magnet provides. Magnetic field is generated by using a 1018 low carbon steel core and a

copper coil around this core. It is possible to provide a magnetic field strength of 1.8 T

which is approximately three times larger than the field strength obtained from permanent

magnets. The theoretical advantage of this higher magnetic field strength is the possibility

of higher material removal rates and improvement in the form errors.

Dock [1994] obtained promising results from the etectromagnetic field assisted

polishing apparatus (a surface finish of 0.171 j.1m with Cr20 3 (1200 grit) abrasive and a

sphericity of 2.9 j.1m). These values, however do not meet the requirements for a bearing

ball for high precision applications. Also, the database created for the effect of various

polishing parameters on the process (namely, surface finish, sphericity, material removal

rate) should be completed. Modifications should also be made to provide as much

uniformity in magnetic field generation as possible to improve sphericity and surface

finish using the electromagnetic float polishing process. The finite element analysis

package of ANSYS was employed to determine the most influential parameters in the

polishing process. An effective force measurement method should also be developed to
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have a better control of the process. Also numerous characterization tests were conducted

to discover the potential and performance of the electromagnetic float polishing apparatus

by considering material removal rate, surface finish and sphericity.
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CHAPTER 4

ANALYSIS OF THE

ELECTROMAGNETIC FIELD ASSISTED POLISHING

(EMFP) APPARATUS

4.1 Initial Design of the Electromagnetic Field Assisted Polishing

Apparatus

Electromagnetic field assisted polishing was first proposed by Tani [1984].

Although, the proposed electromagnet was not for balls, it showed a great deal of

reliability in terms of use of electromagnets for the polishing process. In order to polish

the balls, the fust electromagnetic design was developed by Shinmura and Komanduri

[1992]. In the initial step of designing equipment for polishing balls, Shinmura and

Komanduri used the design parameters of Umehara's permanent magnet design which

had a magnetic field strength of 0.6 T. In order to reach the specific magnetic field

strength, the required current and the number of wire turns were calculated. A schematic

of this initial design was presented in Figure 2.12 in Chapter 2. In this design most of the

elements were fabricated out of AISI 1018 low carbon steel, except for the aluminum

base and side supporter and the copper coil. It should also be mentioned that the chamber

and the drive shaft are made of a nonmagnetic material, namely type 304 seamless

stainless steel.
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Anticipated magnetic field orientation from Shinmura's design is presented in

Figure 4.1. As can be seen from this figure, the magnetic field passes tlrrough all of the

low carbon steel parts of the design and eventually through the polishing chamber. The

lower intensifier was found to be the most important element in the generation of the

magnetic field insid~ the polishing chamber; while the gap between the lower and upper

intensifier also played an essential role in terms of the magnetic field strength. It was also

found that the shape of the lower intensifier determines the field gradients.
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Figure 4.1 Magnetic field orientation through the straight pole design of
Shinmura and Komanduri [Dock, 1994]
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lIDs initial shape of the lower intensifier was proposed to generate similar

magnetic field gradients, but the design produced strong and weak areas in the orientation

of the magnetic field, see Figure 4.2 (a). This variation in the magnetic field strength was

found to have a negative effect on the shape of the balls, and therefore to bad sphericity.

The alternating distance from the top portion of the magnetic field intensifier leads to a

negative stiffness and the lower parts of the intensifier pull the balls from the driving

shaft instead of pushing, see Figure 4.2(b). Another problem with the lower intensifier

was the heat generated by the magnetic coiL This heat was found to be transferred to the

polishing chamber by the lower intensifier causing the evaporation of the magnetic fluid,

which leads to a higher viscosity of the magnetic fluid and irregular sliding speeds of the

balls. Therefore, a modified lower intensifier with a water cooling system (see Figure 4.2

(c» was proposed and fabricated by Dock [1994].
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Figure 4.2 (a) Initial design of the lower intensifier, (b) Magnetic field gradients
generated by the initial lower intensifier design, (c) Modified lower intensifier design

with the water cooling system. [Dock, 1994]
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4.2 Elements of the Electromagnet Polishing Apparatus (Initial Design).

As mentioned previously, the electromagnetic field assisted polishing apparatus

was designed by incorporating the magnetic field strength used in the permanent magnet

polishing apparatus. In order to provide the same magnetic field strength of 0.6 T as in

the permanent magnet, the required current and number of turns in the coil was calculated

by Shinmura and Komanduri [1992J. The electromagnetic coil was constructed of three

separate coils each of which had 1800 turns of lOAWG insulated copper wire, (see

Figure 4.3) and 3 Q of resistance. Each coil was excited with a power supply which

generates 24 V, 6 A continuous current. There were also 3 separate Apex PAl2 power

amplifiers that were used per coil to regulate the voltage sent to these coils. The output

power from these power amplifiers was controlled with a potentiometer which adjusted

the current that goes into the coils. Also, three ampere meters were used to monitor the

current. After the current passed through these power amplifiers and the potentiometer,

the current then went to three separate full wave bridges per coil. These full wave bridges

prevented the direction change in the current and therefore provided a fixed polarity for

the coils. And also these full wave bridges protected the power amplifiers from the

voltage backlash which occured when the power is removed from the magnetic coils.

As already pointed, out the main parts of the electromagnetic field assisted

polishing apparatus, were manufactured from 1018 low carbon steel (Figure 2.12) with

the base plate and one of the risers was made from 6061 aluminum. This aluminum base

plate served to prevent linkage of the field to a machine table where the aluminum riser
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was used to reduce the cantilever effect of the top plate. The chamber and the drive shaft

were made of type 304 seamless stainless steel so that the magnetic field did not leak

through the chamber and link the drive shaft to the Bridgeport machine tool.
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Figure 4.3 Schematic of the power system for
electromagnetic field assisted polishing apparatus

The rationale behind Shirunura's design as a straight pole field was that the

magnetic field conduction through the lower intensifier to the upper intensifier was found

to be varying linearly inside the polishing chamber. The magnetic buoyancy forces which

were measured with a 3-axis Kistler piezoelectric dynamometer and Kistler charge

amplifier; were found to reach a saturation point where the bottom part of the float

contacts with the polishing chamber. And at that point, the maximum buoyancy force

obtained was 3.5 N which is not even close to what is obtained with the permanent
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magnet. This was the major drawback of the straight field electromagnetic float polishing

apparatus.

4.3 Finite Elements Analysis of the Straight Field Polishing Apparatus

In the initial stages of designing the magnetic float polishing apparatus, each

parameter was established by trial and error since an FEM package was not available. It

was especially difficult to determine the dimensions of the equipment and generate the

required magnetic field orientation in order to provide reliable polishing equipment. The

finite element method (FEM) was found to be a good tool to overcome this problem in

the design stage. In the case of electromagnetic field assisted polishing, finite element

analysis was used to determine buoyancy forces, stiffness of the magnetic field, the

magnetic field strength and to estimate the magnetic field orientation inside the polishing

chamber. In this investigation, the FEM package used was ANSYS 5.0. The ANSYS

package uses Maxwell's equations for magnetic field analysis, and the magnetic flux

density B, magnetic field intensity H; and magnetic forces can be obtained from this

program. During the evaluation of the electromagnetic field design, a 20 static magnetic

analysis type of the solution was used. Even though the electromagnetic field assisted

polishing apparatus has a three dimensional nature, by using the rules of symmetry and

axisymmetry, FEM analysis can be conducted using 20 type magnetic field analysis.

During the evaluation of the straight field electromagnetic field assisted polishing

apparatus, the main objective was to determine the optimum position of the upper

magnetic intensifier and to find the maximum possible buoyancy forces. Figure 4.4
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shows the geometry data entered into the ANSYS package in terms of real dimensions of

the straight field design. The material properties of each element is also entered;

including the permeability of air and steel. Material properties of the magnetic fluid were

not taken into account which is an important feature for the equipment during the

analysis. The relative permeability of air, which is 1, was also used to for the copper coil.

The current density in the analysis was 1.5x106 Nm2 which is calculated using the

number of turns times the current passing through the coil over the cross-sectional area of

the coil which is shown as area 7 and 9 (A7, A9) in Figure 4.4.
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Figure 4.4 ANSYS model for straight field
electromagnetic field assisted polishing apparatus [Dock, 1994]

The ANSYS model script generated by Dock [1994] is presented in Appendix A
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including the geometry, meshing, material properties and solution script files. At the end,

by running the solution script file, the variation in the magnetic field in terms of B and H

are presented in Figures 4.5 and 4.6. Since the mesh generation depends upon the user in

the ANSYS package, square elements of equal size were used inside of the polishing

chamber in order to incorporate the results from the theoretical solution. After obtaining

the theoretical solution from ANSYS, the magnitude of magnetic flux density, B, versus

the height inside the polishing chamber can be plotted as presented in Figure 4.7. Also,

by using magnetic field intensity, H, the buoyancy forces can be calculated usmg

Equation (1) which is an integration over the surface of the immersed body.

1 H
F~ =-f(-Mn+~ fM1H)ndS

fly s 2 0 (1)

Figure 4.7 Magnetic Flux Density, B, versus the height inside the polishing chamber for
straight field electromagnetic polishing apparatus [Dock, 1994]
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As can be seen from Figure 4.8, the maximum calculated theoretical buoyancy

force is approximately 2 N, which is found to be slightly over the experimental force
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values (- 1.5 N). This variation is due to the effect of the magnetic fluid type which was

not specified during the analysis, and the difference in the float material density. As

shown in Figure 4.8, the obtained buoyancy forces are not even close to what was

achieved in Umehara's permanent magnet design which is 7 N. This finding lead to a

modification in the design of the electromagnetic field assisted polishing apparatus to

obtain higher magnetic field strength and higher magnetic field gradients.
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Figure 4.8 Variation in calculated theoretical buoyancy forces with height in straight
field electromagnetic polishing apparatus [Dock, 1994)
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Apparatus and Modifications in the Analysis

4.4 Finite Element Analysis for Ring Pole Electromagnetic Polishing

OIl
• I

~ .

,
~ ,
~ 'J

In order to achieve the same magnetic field strength and magnetic field gradients

as in the pennanent magnet design of Umehara, modifications had to be made in the

Shinmura's straight pole electromagnetic polishing apparatus. A ring pole

electromagnetic polishing apparatus design was proposed by Dock [1994] in order to

overcome the problems experienced in the straight pole electromagnetic polishing

equipment. The rationale behind the proposition of this new design was understanding the

importance of the magnetic field strength which increases as the gap between the lower

and upper intensifier decreases. As the gap decreases between these intensifiers, magnetic

field shorts in a smaller distance and therefore, provides higher magnetic field strength

inside the polishing chamber. As the upper intensifier descends closer to the lower

intensifier, the upper intensifier must be expanded so that the polishing chamber is

encircled by a stronger magnetic field. Also, the low carbon steel plate conductors placed

bilaterally of the magnetic core completes ring pole design.

Since the importance of the gap between the lower and upper intensifiers was

recognized, the ANSYS analysis were carried out by varying the gaps between the

bottom of the ring pole which functions as the upper intensifier and the lower intensifier.

During the initial fmite element analysis, material properties (B-H Curve) of the

magnetic fluid (which is an essential element in the polishing process) were not taken

into account. Therefore, FEM analysis for the ring pole electromagnetic polishing

apparatus was redone by considering magnetic flux density, B, and magnetic field
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intensity, H, of the magnetic fluid that has been used during the polishing process. A

similar approach was used to generate the geometry script file as was perfonned during

the analysis of the straight pole design. The ANSYS geometrical model for the ring pole

design is given in Figure 4.9, and the script files can be found in Appendix A.

Al2

I " -x y I'--

A7
~~3

A9

All AIO

Y

Lx

Figure 4.9 ANSYS geometrical model for the
ring pole electromagnetic float polishing apparatus

Figures 4.1 0 and 4.11 show the magnetic flux density, B, and the magnetic field

strength, H, plots for the modified ANSYS analysis results. These results clearly present

the differences between the straight field and the ring pole designs in terms of the field
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Figure 4.10 Modified magnetic flux density, B, results with A SYS analy
ring pole electromagnetic polishing apparatus
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Figure 4.11 Modified magnetic field strength, H, results with A SYS analysis for the
ring pole electromagnetic polishing apparatus
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strength and the field gradients. Figure 4.12 shows the magnetic field strength for a 6 mID

ring pole, a 10 rom ring pole and the straight field designs. This figure clearly indicates

; I,
I :

I
I
I

: .
that the 6 rom gap between the ring pole and the lower intensifier provides the strongest

I 1..
magnetic field strength.

2

1.5
a Straight
U')

cu 1 -w-
~

~
Ring 6-...

0.5 Ring 10

0
0 10 20 30 40

Height mm

Figure 4.12 Magnetic flux density for the straight and ring pole designs

Figure 4.13 shows the variation in the buoyancy forces with the 0 and 3 mm ring

pole and the straight field design. It can be seen from this figure that the straight field

provides approximately 3 N at the bottom of the polishing chamber. On the other hand,

the ring pole design shows different characteristics as the height decreases inside the

polishing chamber. Especially when the trend of the 3 mm gap is noticed, it can be seen

that the buoyancy force gradually increases toward the bottom of the polishing chamber,

but then a decrease in the force followed by an increase at the bottom of the chamber

occurs. This variation in the buoyancy force is due to the negative stiffness inside the
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magnetic field. As far as the experimental results are concerned, this negative stiffness

occurs when the gap is higher than 6 mm. If the gap is less than 6 mm, the balls inside the

polishing chamber are pushed to the bottom rather than being pushed away from the

bottom of the chamber. This negative stiffness region causes an increase in the sphericity

of the balls. Hence, a zero gap between the ring pole and the lower intensifier must

therefore be present in order to polish balls with the required quality of sphericity.
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u
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0 5 10
Height, mm

15 20

1--- 0 --3 --- Str.Fld .1
Figure 4.13 Variation in buoyancy forces with height for the

straight field and ring pole designs

In Figure 4.14 illustrates the situation of the polishing chamber filled with the

magnetic fluid. After analyzing the magnetic fluid generation inside the polishing

chamber, it has been thought that the thickness of the ring pole has an effect on the

magnetic field strength. After the current is applied to the coils, the magnetic fluid

orients to a half donut shape. The magnetic fluid aligns itself due to magnetic field

orientation, along the
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Figure 4.14 . he. ituation of th poli hing chamber filled with th ma netic fiuicl.

I ngth f ri 19 pol ,neither oing above nor elaw the thickwss r th ring rol '. ,hich

surrounds the poli,hing chamber. Therefore, A Y," analysi.' was carrie out i order to

eterminc he thickne . of th steel ring pole. Durin th analysis, rour different ring

p Ie thicknes ewer u d to determine the effect. In Figures 4.J5, 4.]6, 4.J7 and 4.18.

the variation among the different ring pole thiekne es in terms of magneti flux d nsit ,

B, are presented. In the initial ring pole design th thickne s that as used was 8.1 111m.

As can be seen from these magnetic flux den itics of differ nt thickness s, th ring p I

thickness doe not have a significant effect n til magnetic fi Id trength. In oth r w rd.,

magnetic field shorts from the closest place from the lo er intensifier to ring ole
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ind pendent a h n 19 t ickne ,and thi h rt ha th m r mman

effect on th magn ti field tr nth.
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Figure 4.]6 Magnetic flux density, B, of the ring pole with a thickness of25.4 rom
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Figure 4.17 Magnetic flux density, B, of the ring pole with a thickne 0['")8.1 mm
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Figure 4.18 Magnetic flux density, B, of the ring pol with a thicknes of 50.8 mrn
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4.5 Modified Ring Pole Electromagnetic Polishing Apparatus

While the ring pole electromagnetic polishing apparatus provides the closest

magnetic field strength values to Umehara's pennanent magnet design, it should also be

noticed that the magnetic flux density, B, results inside the polishing chamber are far

from reality. Inside that region, ANSYS analysis shows that the magnetic flux density

values reach up to 1.6 Tesla, which is nearly the saturation point for magnetization in

steel. It should be noted that the area filled with magnetic fluid has a permeability very

close to that of air cannot provide this much magnetic flux density. When the magnetic

flux density values are measured on the bottom of the ring pole, the average value of B is

~ 0.28 Tesla. It is almost 1/6 of the theoretical solution obtained from ANSYS analysis.

Part of this difference comes from the ANSYS analysis itself. Since the analysis carried

out is a 2D analysis, the ANSYS package assumes that the magnetic coil and the

surrounding parts such as the core, side plates and the ring pole steel plate are infinitely

long elements. Yet, since the ring pole electromagnetic polishing apparatus has a three

dimensional nature, it would be better to approach the problem in a more realistic fashion.

The axi-symmetric analysis option in ANSYS package was found to be a better approach

to the design problem. It is assumed that the magnetic coil is surrounded by a low carbon

steel pipe with a thickness of 1.5 inch; and during the analysis, one fourth of this cross

sectional area is used as the total elements for the electromagnetic polishing apparatus.

Area plot for the electromagnetic polishing apparatus in the axi-symmetric analysis

option in ANSYS can be seen in Figure 4.19.
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Figure 4.19 Area plot for electromagnetic poli hing apparatus in
axi-symmetric analysis option in ANSY

It should be noted, that during the ANSYS analysis, the polishing chamber area

was not taken into account. Because most of the FEM packages hav th ir own mesh

generators and depending on the mesh size specified, the packages mesh the ar as

automatically. Sometimes these mesh generators may cause problems which yield

different kinds of problems in the solution. Even though, the polishing chamber area was

initially defined, this lead to a negative value in t.he main diagonal of the stiffness matrix

generated by the ANSYS package. This negative stiffness value can not be acceptable in

the [mite element solution. Another problem to be faced with ANSYS analysis is that the
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BH curve, which must be entered as a material property of steel shown as in Figure 4.20.

As mentioned earlier, steel has a magnetic flux density saturation value of 1.75 Tesla.

1.8

1.6 .

co

1.4

1.2

1

....... ; -.- - ~ .. - ,. . .

.......... :- : :- : .. .

0.8
o 2000 4000

H
6000 8000

Figure 4.20 B-H curve for low carbon steel

During the solution process and after the magnetic field strength values exceeds

10000, the package extrapolates the corresponding values for magnetic flux density; and

this leads to an incorrect solution. Therefore, during the definition of material properties

(B-H Curve) for steel, the last data point was interpolated and entered as H=1000000 and

B=2.85. The rationale behind this is that the basic magnetic field equation is B=~oxH, and

the relative penneability (~o) can be found from the slope of the B-H curve of steel.

Magnetic flux lines inside the modified electromagnetic polishing apparatus are

presented in Figure 4.21 from the ANSYS solution. Magnetic flux density, B, and

magnetic field strength, H, are presented in vector form and shown in Figure 4.22 and
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4.23 sequentially. Also, total magnetic flux den ity and magn tic fi ld tr ngth can b

seen in Figures 4.24 and 4.25.
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Figure 4.2] Magnetic flux lines inside the modified electromagn tic poli hing apparatlls.

In order to match with the results obtained from the axi-symmetric AN Y analysis two

conductor low carbon steel plates are placed with a 90 degree turn from th steel

conductor plates. Even though this modified design does not meet the same conditions

that were used in the ANSYS analysis, it was found that it would be a very close

assumption in terms of theoretical analysis from the ANSYS package. It was also found

that each of the three coils do not have the same resistance. Therefore, the current
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Figure 4.22 Vector form of magnetic flux density, B, in the
modifi.ed electromagnetic polishing apparatus
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Figure 4.24 Total magnetic flux den ity, B, in the
modified electromagnetic polishing apparatus
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density which is applied to the coil area should have been modified during the theoretical

analysis. Even though these three coils have the same number of turns and supposedly

should have the same amount of resistance; this variation does not affect the overall

magnetic field. That is because the magnetic field generated by these three coils is

basically a summation of the field provided by a particuJar coil. After aU, this variation

was found to be not much in terms of resistance of a single coil.

After obtaining the theoretical solution from the ANSYS package, the results were

compared with the experimental setup. As can be seen from the magnetic flux density, B,

results from the theoretical solution (Figure 4.24), the magnetic flux density is

approximately 0.46 Tesla in the region corresponding to the bottom of the ring pole.

After adding two more conductor side plates, magnetic flux density was measured in the

same region with the same Tesla meter. These measurements were carried out by

obtaining B values from four points with a 90 degree angle around the bottom of the ring

pole. The average of the magnetic flux density was found to be 0.45 Tesla which is 0.01

Tesla less than what was obtained form the ANSYS analysis. This result proves that the

assumption of adding two more conductor side plates can be adequate. Figure 4.26 shows

the schematic ofthe modified ring pole electromagnetic polishing apparatus.

The only difference between the ring pole design and the modified ring pole

design should be the magnetic field distribution on the ring plate. Three-dimensional

ANSYS analysis is the only way to simulate this distribution on the ring pole plate. But

when the size of the electromagnetic polishing apparatus is considered, the limited

number of elements in the ANSYS package comes into the picture as a big problem.

Since the mesh size plays a significant role on the accuracy of theoretical solution, a
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limited number of element sizes may lead to an unrealistic result. On the other hand,

three-dimensional analysis in the ANSYS analysis was found to be very difficult and

tricky in terms creating the geometry and mesh. Since, the axi-symmetric analysis is not

much different than a three-dimensional analysis, it is found to be the more realistic

solution.
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Figure 4.26 Modified ring pole electromagnetic polishing apparatus
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4.6 Modifications in Force Measurement for the Electromagnetic

Polishing Apparatus

In the case of the pennanent magnet polishing apparatus, force measurements can

be carried out by using a three-axis Kistler piezoelectric dynamometer hooked up to a

charge amplifier and a voltmeter. This setup gives quite accurate results for the

permanent magnet polishing apparatus in terms of force measurements. On the other

hand, there are several restrictions that apply to the electromagnetic field assisted

polishing apparatus. These restrictions are mainly due to the equipment's bulk and heavy

nature. The electromagnetic field assisted polishing apparatus weighs approximately 400

pounds. As one can imagine, it is extremely difficult to place a dynamometer under the

entire polishing equipment. Even if a dynamometer can be placed under the polishing

apparatus, then the problem of locating the apparatus right at the center of the

dynamometer comes into the picture. As stated earlier, polishing experiments were

conducted on a Bridgeport NC milling center. The maximum length of the Bridgeport

milling machine tool for the z axis is 411 rom. The height of the electromagnetic

polishing apparatus is 300 rom. After placing the drive shaft in the tool holder, there is

not enough space to place a dynamometer under the equipment due to limitation of the z

axis in the Bridgeport milling machine. Since the polishing force was recognized as an

important parameter for the polishing process by the previous researchers, utilizing a

force measurement system became also an essential challenge.

A uniforce sensor was placed between the polishing chamber and the lower

intensifier to measure the forces applied to the silicon nitride balls (Figure 4.27 and
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Figure 4.27 Dimensions of the uniforce 'ensor that was used to monitor th fore applied
to the silicon nitride balls in the electromagnetic fi ld a isted polishing apparatu .

Figure 4.28 Uniforce sensor used in th electromagn tic float p lishing

In order to protect the force sensor from cratche by the metallic urface of the

lower intensifier and the polishing chamber, a transparency sheet was glued to the lower

intensifier; and the force sensor was held on top of this sheet, and a 'he t of rubber wa

placed on the force sensor. Then the sensor was connected to a multi-meter to monitor the

force by basically reading the re istance values.
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Force measurements were carried out by placing weights on top of the polishing

chamber, then the resistance value was read and noted from the multimeter. The driving

shaft then was brought down until the same resistance value read from the multimeter.

Since the Bridgeport machine tool has an advantage of displaying the axis movements,

force values can be monitored and compensated for, depending upon the wear on the edge

of the drive shaft. Therefore, the difference of the z-axis value between two polishings

was found to vary approximately between 0.020-0.040 of an inch, depending on the edge

machining depth of cut. A calibration curve was also developed to monitor the buoyancy

forces inside the polishing chamber in terms of the height from the bottom of the chamber

for the ring pole design (Figure 4.29).
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Figure 4.29 Experimental and theoretical buoyancy forces for the
ring pole electromagnetic float polishing apparatus

This calibration curve was developed to determine the effectiveness of the

ANSYS analysis and to compare the buoyancy forces obtained from the ring pole and the

modified ring pole designs. The same procedure was followed to calculate the theoretical
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buoyancy forces as in the straight field design. The difference between the ANSYS

solution and the experimental results is attributed to varying density of the float material

and the limited magnetic fluid volwne and density when mixed with the abrasives. The

same type of calibration curve was also developed for the modified ring pole design

(Figure 4.30). In the case of the modified ring pole design, theoretical buoyancy forces

could not calculated because of meshing problems, which were discussed earlier in this

chapter, experienced with the ANSYS package.
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Figure 4.30 Experimental buoyancy force for the modified ring pole design

As can be seen from Figure 4.30, higher buoyancy forces can be obtained from

the modified ring pole design. These higher buoyancy forces are due to the higher

magnetic flux density obtained from the modified ring pole design. It should also be

noted that these experimental bouyancy forces are averaged over 6 mm which is the

thickness of the float used in the polishing process.
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5.1 Experimental Details and Procedure

r

Table 5.1 shows the variables involved in magnetic float polishing. Throughout

the experimental studies, a standard producer was used in order the characterize the

silicon nitride bearing balls and determine the effect of a particular experimental

sequence. During the polishing tests, HIPped silicon nitride balls with diameters of $1/2",

$3/8" were used. All the tests were conducted using water based ferrofluid (W-40). A

Bridgeport NC milling machine was utilized throughout the research. Ball diameter

measurements were carried out using a digital micrometer (Mitutoyo 293 Series) with an

accuracy of 3 flm. Also, to monitor material removal rate; the ball weights were

measured with a weighing instrument (Brinkmann Instruments Company Model 1712)

with a resolution of 0.001 mg. Surface finish measurements were conducted with a stylus

type measuring instrument (Rank Taylor Hobson Inc. from Talysurf 120 L).

Table 5.1 Variables involved magnetic float polishing

VAErrABLES TYPES

Rotational Speed 1000 rpm-6000 rpm

Abrasive Concentration 5-30 % by Volume

Abrasive Grain Size 1-40 mm

Abrasive Type B4C, SiC, Cf203, Ce02

Polishing Load 0.5-1.5 NlBall
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It is possible to measure both surface roughness and waviness with this

instrument. Talysurf 120 L has a vertical resolution of 10.0 nm and a horizontal

resolution of 0.25 Ilm. Several surface characterization parameters can be obtained, such

as Ra (average surface roughness), Rt (maximum surface roughness), amplitude

distribution, etc, with different cut-off lengths and filters. Another instrument used to

characterize the surface fInish was a laser interference microscope (Zygo Corporation,

Zygo Maxim 3D) with a variety of resolutions depending upon the magnification and

power used. With 400X system magnification, the lateral resolution is 1.68 ~m, with

800X system magnifIcation, the later resolution is 1.10 Ilm, and fInally with 2000X

system magnifIcation, the lateral resolution is 0.82~m. Sphericity measurements were

conducted using a stylus based form accuracy measuring instrument (Rank Taylor

Hobson Inc. Talyround 250). It is possible to measure roundness, vertical straightness,

squareness, parallelism, flatness, cylindricity and concentricity. The gage has a range of

± lrnm and a resolution of 0.05 ~m. Surface roundness calculations were performed

using the least squares circle method.

Experimental studies were conducted using both the ring pole electromagnetic

field assisted polishing apparatus and the modifIed ring pole electromagnetic field

assisted polishing apparatus. Since material removal rate, surface finish, and sphericity

are the main characteristics of a bearing ball, each of these characteristics and the

variables that affect these characteristics are presented separately in this chapter. Test

conditions for each experiment will be presented while discussed. Each test was

performed two times to check the repeatability. For surface roughness and sphericity
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three balls were selected and each ball was measured three times. The average values

presented in this chapter are the results of these measurements. One also should

understand that each parameter namely material removal rate, surface finish and

sphericity is matter of the polishing stages. In other words material removal is the most
,

parameter in the initial stages, where as sphericity is in the middle stages and the surface

finish is in final stages. For example, the parameters namely speed, abrasive

concentration, etc, involved during the in the initial stages may not be suitable for the

fmal stages of polishing.

5.2 Effect on Material Removal Rate

As stated earlier, bearing balls made from silicon nitride have approximately two

times higher Vickers hardness when compared to a SUJ 2 steel bearing ball. Therefore

removal rates for silicon nitride are quiet low. In the conventional polishing techniques, it

takes about 12-24 weeks to finish a batch of silicon nitride balls with the desired

qualities. It has been reported by using a permanent magnet polishing apparatus, one

batch of balls (15) can be finished in 16 hours [Raghunandan, 1996]. In the

electromagnetic field assisted polishing apparatus, due to the orientation of the magnetic

fluid under the generated magnetic field, it is possible to obtain material removal rates

almost twice as much the permanent magnet design. As can be seen from Figure 5.2,

because of the magnetic field orientation, balls are surrounded by the magnetic fluid and

the abrasives; balls have greater chance to contact with the abrasives in the
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electromagnetic field assisted polishing apparatus when compared to permanent magnet

polishing apparatus. Consequently this leads to higher material removal rates.

Drive Shall

olishing Chamber

Ring Pole

weT Intensifier

SiliconNitri

Magnetic Field OrientaioD
and Abrasiv

Figure 5.2 Orientation of the magnetic fluid and the abrasives under the applied magnetic
field in the electromagnetic field assisted polishing apparatus.

5.2.1 Material Removal Rates in the Ring Pole Design

Various tests were conducted to investigate the best removal rate conditions in the

ring pole electromagnetic field assisted polishing apparatus. In Figure 5.3, the effect of

the rotational speed of the driving shaft on material removal rate can be seen. In order to

determine the effect of the rotational speed, all other variables that are involved in the

polishing process were kept constant for each experiment. Boron carbide (B4C) 500 grit

(17 f.l.m) size was used as the polishing abrasive. In each experiment, the abrasive
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concentration was 10% by volume, and the polishing load was 1.2 Nlball. The drive shaft

was re-machined periodically due to the wear which occurred on the edge of the shaft. 50

ml of magnetic fluid was used as the polishing medium. All experiments were conducted

on a Bridgeport NC milling center.
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Figure 5.3 Effect of the rotational speed on material removal rate per ball in the
ring pole electromagnetic field assisted polishing apparatus.

It can be seen from Figure 5.3 that the material removal rate increases linearly as

the rotational speed of the driving shaft increases and reaches a saturation around 4000

rpm. When the material removal rates are compared with the permanent magnet polishing

apparatus, it can be noted that the ring pole electromagnetic field assisted polishing

apparatus provides almost two times higher removal rates [Raghunandan, 1996]. This is

due to the difference in the magnetic field orientation as explained earlier. Another

important factor that affects the material removal rate is the abrasive concentration. In

Figure 5.4, the effect of abrasive concentration on material removal rate can be seen.
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Figure 5.4 The effect of abrasive concentration on material removal rate per ball in the
ring pole electromagnetic field assisted polishing apparatus.

Boron carbide (B4C) 500 grit size (17 j.lm) was used as the polishing abrasive in

all the experiments that were conducted in order to detennine the affect of the abrasive

concentration. 1.2 Nfball was used as the polishing load. Like the previous

characterization tests for rotational speed, the edge of the drive shaft was re-machined for

each test. In order to find the maximum material removal rate achievable in the ring pole

electromagnetic field assisted polishing apparatus, 4000 rpm was used as the rotational

speed of the driving shaft due to th.e fact that this is the optimum speed found. Even

though material removal rate seemed to be increasing with an increase in abrasive

concentration, further tests were considered to be unnecessary because the achieved high

removal rates were considered as sufficient for a polishing process. Another important

parameter that affects the material removal rate is the abrasive type used during the
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polishing process. In order to demonstrate this, the same set of balls with identical

conditions were polished with silicon carbide (SiC) 400 grit size. Since the hardness of

the silicon carbide is approximately 25% less than boron carbide, material removal rates

obtained with silicon carbide were less with boron carbide (see Figure 5.3). Figure 5.5

shows the material removal rates that can be achieved by using silicon carbide 400.
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Figure 5.5 Material removal rate per ball with different rotational speeds by using
SiC 400 grid size as the polishing abrasive in the

ring pole electromagnetic field assisted polishing apparatus

As expected, when the abrasive hardness decreases, material removal rates

decrease as well. It should be noted that the material removal rates accomplished by using

silicon carbide 400 grit size were almost half of that with boron carbide 500 grit size. Of

course, varying the grain size also affects the material removal rate; but there is not much

of a difference when 400 grit size results and 500 grit size results were compared.
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Surface morphology of the silicon nitride balls was also examined after the

maximum material removal rate had been accomplished. Figures 5.6 (a) and (b) show the

scanning electron microscope (SEM) images of a ball surface. Ball surface was found to

be covered with pits and parallel scratches. These pits are caused by microfracture and

also due to higher rotational speed (4000 rpm) parallel scratches fonned due to higher

sliding rates at the ball/shaft interface.
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(b)

Figure 5.6 (a) Pits dominant SEM micrograph of a ball polished by using 4000 rpm and
30% volume abrasive concentration of B4C 500 grit (17 ~m). (b) Scratches dominant

SEM micrograph of a ball polished by using 4000 rpm and 30% volume abrasive
concentration of B4C 500 grit (17 ~lm).

5.2.2 Material Removal Rates in Modified Ring Pole Design

In order the find the effect of the rotational speed on material removal rate, several

experiments were conducted with the modified ring pole electromagnetic field assisted

polishing apparatus. The results of these tests are shown in Figure 5.7. In all of these

experiments the same test conditions were used as in the previous section to have a better

comparison between the ring pole design and the modified ring pole design.
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Figure 5.7 The effect of the rotational speed on material removal rate per ball in the
modified ring pole electromagnetic field assisted polishing apparatus.

As shown in the Figure 5.7, material removal rates were relatively smaller in the

modified ring pole design when compared with the original ring pole design (see Figure

5.3). As discussed in Chapter 4, magnetic field strength is smaller in the modified ring

pole design due to the fact that the modified ring pole design's magnetic field strength

generated by the coil was divided into 4 areas, whereas it was 2 areas in the ring pole

design. Therefore, this reduced magnetic field strength leads to smaller material removal

rates in the modified ring pole electromagnetic field assisted polishing apparatus.

The effect of abrasive concentration on material removal rates was discussed in

the previous section for the ring pole design. The same type of effect on material removal

rates can also be observed for the modified ring pole design. Figure 5.8 shows the effect
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of abrasive concentration on the material removal rate m the modified nng pole

electromagnetic field assisted polishing process.
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Figure 5.8 The effect of abrasive concentration on material removal rate per ball in the
modified ring pole electromagnetic field assisted polishing apparatus

B4C 500 grid (17 J.lm) was used as the polishing abrasive during the evaluation of

the effect of abrasive concentration on the material removal rate. The rotational speed of

the drive shaft was 2000 rpm, which was 4000 rpm in the case of the ring pole design.

The reason for the lower rotational speed is to keep the sphericity in an acceptable range

which will be discussed later in detail in this chapter.

Another important factor affecting the material removal rate is the grain size of

the abrasive used during the polishing process. In order to find the effect of grain size on

the material removal rate, boron carbide (B4C) was used as the polishing abrasive with

varying grain sizes (500, 800, and 1500). All experiments were carried out by using 2000

rpm as the rotational speed of the drive shaft, and 1.2 Nlball was used as the polishing
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load. In all experiments, the abrasive concentration was 5% by volume. The results of this

study can be seen in Figure 5.9.

As shown in Figure 5.9, as the grain size of the abrasive mcreases, material

removal rates increase, as can be anticipated.
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Figure 5.9 The effect of abrasive grain size on material removal rate per ball in the
modified ring pole electromagnetic field assisted polishing apparatus.

5.3 Effect on Surface Finish

Surface roughness of a finished bearing ball is one of the most important

parameters in terms of its quality requirements. In order to find out the parameters that

affect surface finish, tests were conducted both with the ring pole design and the modified

ring pole design.

One of the parameters that has an effect on surface roughness is the rotational

speed of the driving shaft. The effect of the rotational speed on the surface roughness in

74

c



the ring pole design can be seen in Figure 5.10. All of these tests were conducted using

B4C 500 (l7mm) grid size as the polishing abrasive. Results of these tests are presented

in terms of R.a (average surface roughness) and ~ (maximum surface roughness).
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Figure 5.10 The effect of the rotational speed on surface roughness in the
ring pole electromagnetic field assisted polishing apparatus.

As can be seen from Figure 5.10, as the rotational speed of the drive shaft

increases, surface roughness of the silicon nitride ball also decreases in terms of average

roughness (RJ and maximum roughness (~). In Figure 5.11, surface traces obtained from

Talysurf surface measurement instrument can be seen with different rotational speeds. In

Figure 5.12 the effect of the rotational speed on surface roughness in the modified ring

pole design is presented. Other parameters that are involved in polishing were kept

constant the same as for the ring pole design characterization.
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Figure 5.11 Surface traces obtained from Rank Taylor Hobson 120L Talysurf instrument

of the silicon nitride balls with varying rotational speed of the driving shaft in the
ring pole design

77



-
Like the ring pole design, the modified ring pole also has same kind of effect on

surface roughness with an increase in the rotational speed of the drive shaft, as expected.
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Figure 5.12 The effect of the rotational speed on surface roughness in the
modified electromagnetic field assisted polishing apparatus.

Surface roughness traces with the effects of varying rotational speeds of the

driving shaft which are in the modified ring pole electromagnetic polishing apparatus can

be seen in Figure 5.13.

Of course one should realize that the desired quality of a ball is not limited to the

surface roughness. Therefore, other considerations such as material removal rate and

sphericity should be taken into account. Even though the higher rotational speeds of the
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Figure 5.13 Surface traces obtained from Rank Taylor Hobson 120L Talysurfinstnunent

of the silicon nitride balls with varying rotational speed of the driving shaft in the
modified ring pole design
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drive shaft provide a better surface finish this does not necessarily mean that these

conditions yield optimum manufacturing quality.

Another important factor that affects the surface finish is the grit size of the
,

abrasive used during the polishing process. In order to find the effect of the abrasive grain

size, tests were carried out using boron carbide 500 grit (17 ~m) size and boron carbide

800 grit (9 ~m) size and boron carbide 1500 grit (1-5 /lm) size. The effects of the grain

size on the surface finish can be seen in Figure 5.14.

E
::1.

ro
0::

0.2

0.15

0.1

.9

. >-. : R . : :.........•... ;1=:1-(- .
o --- R-. : a

........... . - .- .

2

1.5

1

0.05
2 4 6 8 10 12

Grain Size (Ilm)
14 16

0.5

o
18

Figure 5.14 Effect of abrasive grain size on surface finish in the
modified ring pole electromagnetic field assisted polishing apparatus.

As can be seen from Figure 5.14, as the grain size decreases, surface roughness

also decreases as expected. These results are also in agreement with the results presented

by Raghunandan [1996]. Surface traces with varying grain size can be seen in Figure

5.15.
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Figure 5.15 Surface traces obtained from Rank Taylor Hobson 120L Talysurfwith

varying grit sizes in the modified ring pole electromagnetic polishing apparatus.
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5.3.1 Optimum Surface Finish Sequence

In order to achieve the optimum surface finish, it was found that there is a specific

operations sequence that should be followed. With this sequence, it is possible to obtain

approximately 13 nm of Ra, surface roughness. The optimum sequence that needs to be

followed is presented in Table 5.2.

Table 5.2 Polishing process sequence for optimum surface finish in the
electromagnetic field assisted float polishing

STEP ABRASIVE GRAIN POLISHING POLISHING AVERAGE AVERAGE

NUMBER TYPE SIZE LOAD TIME RA RT

I B4C 500, 17 11m 1.25 Nfball 45 min. 167.7 nm 1529.1nm
I

5% Vol.

,
2 SiC 1000, 5 11m 1.25 Nfball 90 min. 65.7 nm 803.3 nm

5% Vol.
,

3 SiC, 111m 1.25 NfbalJ 90 min. 35 om 352.8 nm
,

5% Vol.

4 Cr20 3 1-5 11m 1.25 Nfball 90 min. 13.6 nm 220.3 nm

10% Vol.

As can be seen from Table 5.2, surface roughness continuously improves with

each stage of the polishing process. In the first polishing step with boron carbide (B4C),

surface waviness can be eliminated, so that real average surface roughness can be
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obtained properly. In the second and third steps, due to use of the smaller grain sizes of

silicon carbide (SiC), surface roughness shows improvement compared to larger grain

size boron carbide (B4C). Even though the abrasive grain size is similar in step four when

compared to step three, due to chemo-mechanical polishing action with the chromimn

oxide (Cr20 3) an optimum surface ftnish can be obtained. Surface roughness traces of this

specific sequence can be seen in Figure 5.16.
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Figure 5.16 Surface roughness traces from Rank Taylor Hobson 120L Talysurfin

optimwn surface finish sequence in the electromagnetic field assisted polishing apparatus

In order to compare and evaluate this specific polishing sequence several

experiments were conducted. The results of these tests can be seen in Table 5.3.

Eventhough, all the other variables were kept constant, it can be seen that the final

surface roughness is approximately 10 nm worse when compared with the optimum

surface polishing sequence. Among these two set of experiments, the only difference is
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the elimination of the third step in the polishing order. These final surface roughness

results obtained by using the electromagnetic field assisted polishing apparatus results are

in agreement with what is accomplished and reported for the permanent magnet polishing

equipment [Raghunandan, 1996].

Table 5.3 Comparison of the optimum surface polishing sequence with
another set of polishing tests.

STEP ABRASIVE GRAIN POLISHING POLISHING AVERAGE AVERAGE

NUMBER TYPE SIZE LOAD TIME RA RTI

1 B4C 500, 17 J.lm 1.25 Nlball 45 min. 185.4 nm 1672.6 nm

5% Vol.

2 SiC 1000, 5J.lrn 1.25 Nlball 90 min. 64.9 nm 709 ron

5% VoL

3 CrZ0 3 1-5 Jlm 1.25 Nlball 90 min. 22.8 nm 338.8 nrn

10% Vol.

In order to obtain the best results with electromagnetic field assisted polishing

apparatus in terms of surface finish, chromium oxide (Cr20 3) was used as the polishing

abrasive. Even though the hardness of the chromium oxide is very close to the workpiece

material silicon nitride, it has been reported that material removal is due to chemo-

mechanical action rather than abrasion. In Figures 5.17 and 5.18, ZYGO plots at different

magnifications of a ball polished with silicon nitride (SiC 1-5 11m) can be seen. Then in

Figures 5.19 and 5.20, ZYGO plots at different magnifications of a ball polished with

chromium oxide (Cr20 3 1-5 11m) can be seen. As reported in the literature, the best
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surface finish values in the electromagnetic field aSSl t d polishing apparatus were also

obtained by using chromium oxide.
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Surface morphology of the finished balls was also examined and compared with a

conventionally finished silicon nitride bearing ball by using a scanning electron

microscope (SEM) at different magnifications (Figure 5.21 and Figure 5.22). These

micrographs show deep surface damages and fractures in the case of the conventionally

finished silicon nitride with hard diamond abrasives, whereas in the case electromagnetic

float polishing, the surface appears to be covered with relatively less deep pits and is

smoother when polished with chromium oxide abrasives. These pits are believed to be

due to previous polishing tests which were conducted with larger size abrasives.

Figure 5.21(a) SEM micrograph at 2000X magnification polished with
conventional polishing methods
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Figure 5.21(b) SEM micrograph at SOOOX magnification polished with
conventional polishing methods

Figure S.22(a) SEM micrograph at 2000X magnification polished with l-Sflm Cr20 3 in
the electromagnetic float polishing apparatus

92



-

Figure 5.22(b) SEM micrograph at 5000X magnification polished with 1-5).lm Cr20 3 in
the electromagnetic float polishing apparatus

Cerium oxide (ec02) 3 ).lm grit was also found to be effective in the final stage

for the polishing process in terms of surface finish. Even though the hardness of the

cerium oxide (625 MPa) is Jess that both silicon nitride (l600-2200 MPa) and chromium

oxide (2000-2200 MPa), it provides as good surface finish roughness in the

electromagnetic field assisted polishing process. Surface morphology of the balls was

also examined at different magnifications by using the scanning electron microscope

(SEM) as shown in Figure 2.23. Comparing to a silicon nitride ball finished by

conventional polishing techniques, ball surface was found to be much smoother and as

good as that with a ball polished by using chromium oxide abrasive with the

electromagnetic field assisted float polishing apparatus.
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Figure 5.23(a) SEM micrograph at 1OOOX magnification polished with 3 11m
Ce02 in the electromagnetic float polishing apparatus

Figure 5.23(b) SEM micrograph at 5000X magnification polished with 3 11m
Ce02 in the electromagnetic float polishing apparatus
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Similar test conditions wer used during the evaluation of the surface roughne s

obtained with cerium oxide. Zygo plots of a ball finished by using cerium oxide at

different magnifications are presented in Figure 5.24 and surface traces obtained from

Talysurf in Figure 5.25.

-229.952
0.329

+56.583

n.,

il.3G3

,
o.•u

Pol "hln. of 5'3 ~ bur'n b.II••1Ih Co02

Re 9.J298
dCrv 5893722.6882 no

,",!At
i I I ,

0.001 a. ... O.Ul "."1
e,urc Cont,. Ipv I01 re Coni 86.6~ no IRIo ~1.12

U,iu Ir.s 12,'13 n. I IRo 8.96
Ideo Monl \0 R.dC,..y 3,36I3E+ll9

ff:ASURE
An,1 u

Ke,k Dall
Seve Oetl
Laid Dati
l:.llbret.

Re,et

20X ~ i teeu

~

ton'rol.1 I-;P"'V-==::";';:;~~'-'-~

Peek

lile lot II I~\

bit UQ Plot Rz 158.0000 on El.0ee
30 Plot R3, 158.1993 no

Rt.1I 150.8262 n.
H 31.~392 n. ~I~.~.o~v~.d,,-:-21=W I';===!"'::::"=
r.!I 12.8968

rollleAnltl It. '%lJ9O Surface Profile

Profile Plo1

• Zl;t90

I~; Ils/H: I I I
(Tho Ito, IS 17:53:28 1997 I ""-""-1;:;;:00:7,.:=7.5'=90=:===;:;:No=r.=.:;=''1-...JI~Qb:'7Jo:'7c7:t1:O=y.=: ==;;ZSitiK7,7':,,'::..=ul'--;;lea;:::.=er=.::;;R=..=:==::;;0:;.0;;=6:::::::.,71 ;1 1

Figure 5.24 (a) ZYGO plots at low magnification (20X Fizeau) of a ball polished with
Ce02 (3 I-lm) with the ring pole electromagnetic field assisted polishing apparatus.
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Figure 5.25 Talysurftrace of a silicon nitride bearing ball polished with Ce02 (3 J..tm) in
the ring pole electromagnetic field assisted polishing apparatus

5.4 Sphericity

In a bearing ball, sphericity (roundness) is defined as the maximum deviation

from the minimum sphere diameter. The roundness of a bearing ball is an important

factor in terms of its quality, and it is an important challenge for the magnetic float

polishing technique. There are several other factors which have a significant effect on

sphericity in the electromagnetic field assisted polishing apparatus. These factors were

determined and grouped by Raghunandan [1996]. Although these factors are defined for

the permanent magnet polishing apparatus, they are also found to be applicable to the

electromagnetic field assisted polishing apparatus with some minor differences. These

factors can be seen in Figure 5.26.
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Figure 5.26 Factors affecting the ball sphericity in magnetic float polishing
[Raghunandan, 1996].

Apparatus and setup related problems can be addressed and solved relatively

easily when compared to the machine tool and process related problems. In the case of

the electromagnetic field assisted polishing apparatus, there are three important process

related parameters found to affect the ball sphericity most. These parameters are the

abrasive concentration, the rotational speed of the driving shaft and the polishing force

applied to the balls. Several characterization tests were conducted in order to find out

how these parameters affected the ball roundness.

The effect of the rotational speed on the ball sphericity in the modified ring pole

electromagnetic field assisted polishing apparatus can be seen in Figure 5.27.
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Figure 5.27 Effect of the rotational speed on the ball sphericity in the
modified ring pole electromagnetic field assisted polishing apparatus.

These experiments were carried out by using boron carbide (B4C) 500 grit size as

the polishing abrasive. Figure 5.27 indicates that a rotational speed of 2000 rpm is the

optimum polishing speed in tenus of the best sphericity in the case of the electromagnetic

field assisted polishing apparatus. A similar result was also reported for the permanent

magnet polishing apparatus.

As stated earlier, the abrasive concentration was also found to have an important

effect on the sphericity. Figure 5.28 shows the effect of the abrasive concentration on

sphericity in the ring pole electromagnetic field assisted polishing apparatus.
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Figure 5.28 Effect of abrasive concentration on sphericity in the
ring pole electromagnetic field assisted polishing apparatus.

As can be seen from Figure 5.28, sphericity shows improvement as the abrasive

concentration decreases. During the experiments, the speed of the drive shaft was 4000

rpm. The polishing abrasive was boron carbide (B4C) 500 grid size and the polishing load

was 1.2 N/baU. Talyround roundness traces of these tests can be seen in Figure 5.29.

100



-

..
..

..
...

taB

~

,.
'.

'"--

'~~~:~.:

.. ...
:';"8

,,:
1
?--

--..J

,.
..

:: .....

3.~1l " •

(a) 30% Vol. Abrasive Concentration

...
..

..
.•• ,. o

..
..

..

.
27.

,.

~ ....

(b) 20%Vol. Abrasive Concentration

101



--

2.'111 ...o

..
..

..

.••
~ T 1 ~ • .

.. I •

,-~y I "'/--"~_ ~
r : '''. "",-- A

./ \ ~

.~ (/ \ ....
• I ) 0

19. +_---'-""---------;-------"-----+0 •
('

{,
"--.

,~

..

(c) 10%Vol. Abrasive Concentration

.••

• o'7.

1. S8 UM

(d) 5%Vol. Abrasive Concentration
Figure 5.29 Talyround roundness traces of a ball with different abrasive concentrations in

the ring pole design.
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The same characterization tests were also conducted by using the modified ring

pole design. The results of these tests can be seen in Figure 5.30.
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Figure 5.30 Effect of abrasive concentration on sphericity in the
modified ring pole electromagnetic field assisted polishing apparatus.

A similar behavior was also observed in the modified ring pole design when the

abrasive concentration was altered. It should be noted that the average sphericity values

are less when they are compared with the ring pole design. This is because during the

tests, the rotational speed of the drive shaft was set to 2000 rpm. In other words, the

results presented in Figure 5.27 are also in agreement with the optimum speed for good

sphericity discussed earlier. Talyround roundness traces of these tests can be seen in

Figure 5.31 for the modified ring pole design.

103



-- -

..
.. o 3.75 ~ •

... ..
..

\

'"

.. z ......
2711

(a) 30% Vol. Abrasive Concentration

2.78 ...o

..

..
..

.••..,
i
l

~.~~ ..
... -~-;?<-_ ~J'\./ ""-.... - '\, ...

r . ._- .....r; "_
"'J / i .'\\

... ( / . '('

.. i ( \
\ ~. / i -',I:a..........:..,..-;- '--_.::....-'-_...

' .. '

.. .' i
.' \

/ /

..,
'-. .-
"",- I ,..::..-- .....~~'

.. .. ..
279 ~

.. , ..

(b) 20% Vol. Abrasive Concentration

104



~ .'

.••
.. 1 ~

: :
/__ I

~ I
, /

z.ee ...

•

...
no

...

~ .....

(c) 10% Vol. Abrasive Concentration

o 1. ze u"

-.
-.'. ,/'~ /.- ;-
'-~ ; ----::_.>~-----.:......------ ~

.. .. ..
..

8.!; ...

(d) 5% Vol. Abrasive Concentration
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the modified ring pole design.
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Another important factor that affects the sphericity is the polishing load applied to

the balls during the polishing process. In order to determine the effect of the polishing

load, tests were conducted by varying the force applied. During these tests, boron carbide

(B4C) 500 grit was used as the polishing abrasive and a 2000 rpm rotational speed was

used. The abrasive concentration was 5% by volume during the tests. Results of these

experiments are shown in Figure 5.32.
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Figure 5.32 Effect of the polishing load on sphericity in the
modified ring pole electromagnetic field assisted polishing apparatus.

It can be seen from Figure 5.32 that optimum polishing load is found be 0.65

Nlball in terms of obtaining a better sphericity in the modified ring pole design.

It should also be realized that obtaining better sphericity is also a function of the

polishing time. By applying the optimum conditions discussed earlier, longer polishing

times lead to better sphericity values. In order to illustrate the importance of the polishing
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time, Figure 5.33 is presented for the ring pole design and Figure 5.34 is for the modified

ring pole design.
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Figure 5.33 Change in sphericity with time in the ring pole design
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Figure 5.34 Change in sphericity with time in the modified ring pole design

In Figure 5.35, Talyround traces for the initial and the final average sphericity

values obtained with the ring pole design can be seen.
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•

In Figure 5.36 Talyround traces for the initial and the final average sphericity

values obtained with the ring pole design can be seen.
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CHAPTER 6

DISCUSSION

A straight field electromagnetic field assisted polishing apparatus was concieved

and designed by Shirunura and Komanduri incorporating Umehara's permanent magnet

design and built by Mr. M. Dock. The initial design was evaluated by Dock and found to

provide less buoyancy forces (3.5 N) when compared to permanent magnet apparatus (7

N), as discussed earlier. Therefore, modifications were made to the upper intensifier in

order to obtain better and improved magnetic field strength and buoyancy forces (lO N).

In the evaluation stage of the ring pole design, FEM analysis was employed. Even

though ANSYS analysis provided valuable design optimization characteristics without

multiple construction iterations, theoretical results obtained from the ANSYS package

were found to be far from reality in terms of magnetic flux density and magnetic field

strength. The main reason for the difference between the theoretical and experimental

results was due to the 2D analysis option in the ANSYS solution. ANSYS analysis was

also employed to detennine the effect of the ring pole thickness on the magnetic field

strength. It was found that magnetic field shorts from the closest distance from the lower

intensifier to ring pole. Therefore, the thickness of the ring pole steel plate does not

affect the overall magnetic field strength insid(' the polishing chamber. Axi-symmetric

solution in the ANSYS package provided more realistic results and lead to a modified

ring pole design which yielded experimental results comparable to the theoretical
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solution. Since the polishing load was found to be an important factor in magnetic float

polishing, a new force monitoring system was developed. In the case of the permanent

magnet, force measurements were perfonned using a 3-axis dynamometer. Due the

heavy size of the electromagnetic polishing apparatus, difficulty in balancing the

apparatus on the dynamometer and limited z-axis distance in the Bridgeport NC milling

machine necessitated a different force measurement system. Even though the developed

system is not as accurate as the Kistler piezoelectric dynamometer in the permanent

magnet apparatus, it provides adequate force measurement results which can also be

monitored using the calibration curve in tenns of height inside the polishing chamber.

Due to the higher buoyancy forces and the donut shaped magnetic field

orientation inside the polishing chamber (Figure 6.1), higher material removal rates (up

to 4.5 !-un/min) were accomplished with the ring pole design. This donut shaped

magnetic field orientation was found to be the key factor in tenns of high material

removal rates. During the polishing process, silicon nitride balls are fully covered with

the magnetic fluid mixed with the abrasives. Since the ball surfaces are covered with the

magnetic fluid and the abrasives, the balls have a greater possibility to contact with the

abrasives and therefore higher rates of abrasion occurs.. In the case of permanent magnet

apparatus, the balls have less chances of contacting the abrasives due its specific

magnetic field orientation (Figure 6.2). Hard abrasives, such as boron carbide (B4C)

provide higher material removal rates for a given grain size as compared to softer

abrasives namely, silicon

I I I



Figure 6.1 S'tuation of th magnetic fluid and th abrasives under the magn tic field in
the electromaonetic float polishing apparatu .

Figure 6.2 ituation ofthe magnetic fluid and the abrasive under the magnetic field in
the permanent magnet float poli hing apparatus.
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carbide (SiC) and chromium oxide (Cr20 3). Also, higher rotational speeds for the drive

shaft lead to higher material removal rates but also showed signs of vibrational

instabilities. Higher rotational speeds also lead to higher evaporation rate of the magnetic

fluid which caused irregularities in the shape of the silicon nitride balls. Higher abrasive

concentrations provided higher material removal rates but 10% by vohune concentration

is considered as adequate in terms of desired material removal rates.

Material removal mechanisms in the electromagnetic polishing apparatus were

found to be similar to the permanent magnet apparatus. Microfracture, scratch formation

due to abrasion, and chemo-mechanical action are the three material removal

mechanisms in the case of electromagnetic polishing apparatus. In the literature, the

material removal mechanism was reported to be a 2-body abrasion process, but this may

not be so in practice.

The surface finish obtained in the electromagnetic field assisted polishing

apparatus was found to be similar to ones obtained using a permanent magnet design. By

using chromium oxide (Cr20 3) and chemo-mechanical action, it is possible to achieve

fracture free and sub-surface damage free bearing balls. Cerium oxide (Ce02) was also

employed as a final stage polishing abrasive and found to provide excellent surface finish

(average surface roughness R,. of 8 nm). Since the hardness of the cerium oxide is

significantly less than silicon nitride work material, it is also believed that chemo

mechanical action is the dominant mechanism of material removal.

In the electromagnetic field assisted ~olishing apparatus, it is also possible to

obtain similar sphericity values when compared to permanent magnet apparatus.

Abrasive concentration was found to have a significant effect on sphericity in the case of
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electromagnetic field assisted polishing apparatus. Less abrasive concentration (5% by

volume) leads to a better sphericity. Since less abrasive concentration provides lower

viscosity for the magnetic fluid, surface traction forces are believed to be decreasing and

therefore providing more uniform rolling and sliding action for the balls inside the

polishing chamber. As mentioned earlier, all of the experiments were conducted on a

Bridgeport CNC milling machine. A PI air bearing spindle was employed for the

reported sphericity values obtained with pennanent magnet design. Comparing with the

PI spindle, the Bridgeport spindle was found to have relatively higher lateral vibrations

which has a significant effect on sphericity. Sphericity values would have been better if

the PI spindle had been used in the case electromagnetic polishing apparatus.

Repeatability in sphericity values was another problem faced with the electromagnetic

polishing apparatus which is believed to have been caused by the magnetic field

generation and the power system.

Diameter deviation was found to be around 4-5 J.lm in a particular batch. This

variation is also believed to be due to the lateral vibration of the Bridgeport spindle.
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CHAPTER 7

CONCLUSIONS

• The straight field electromagnetic field assisted polishing apparatus proposed and

designed by Shinmura and Komanduri was reviewed. The ring pole design

proposed by Dock was reanalyzed and modified using the ANSYS FEM package

and a modified ring pole design was introduced using the axi-symmetric solution

of the ANSYS package

• A new force monitoring system was developed for the electromagnetic field

assisted polishing apparatus

• Experimental tests were conducted using the modified ring pole electromagnetic

field assisted polishing apparatus as well as the ring pole design to determine the

important process parameters in the electromagnetic float polishing apparatus.

• An average sphericity of 0.45 ~m with the ring pole design and 0.95 ~m with the

modified ring pole design was obtained. An average surface roughness of 13 nm

was produced using chromium oxide (Cr20 3) abrasive with both of the designs

and 8 nm with cerium oxide (Ce02). Variation in diameter of 4-5 /lm in a batch

was obtained.

• Up to 4.5 ~rnJmin material removal rate was accomplished using both the ring

pole design and the modified ring pole design.
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• Higher buoyancy forces were obtained using the electromagnetic design (12 N)

than by the permanent magnet polishing apparatus (7 N).

7.1 Future Work

A high precision spindle needs to be used in conjunction with the electromagnetic

float polishing apparatus to reduce the sphericity and variation in diameter among the

balls in a batch.

To determine the fuH potential of the electromagnetic float polishing apparatus,

further work needs to be done. In order to provide a more uniform magnetic field inside

the polishing chamber, possible design alterations should be considered to have better

control on the polishing process and to achieve the desired qualities of a bearing ball.

Material removal mechanisms should also be clearly identified to have a better

understanding for the process. The effect of the magnetic fluid viscosity on sphericity

should also be investigated. Even though the magnetic field provided by the three coils is

the summation of all of them, it would be better to have a new coil system, since each

coil has a different resistance.

Cerium oxide was also found be performing well in the final stages of the

polishing process. It would be better to investigate the actual material removal

mechanism with this abrasive.

Since it is possible to alter the current passing through the coils, the effect of

different current densities should also be investigated. By increasing the magnetic field

116



gradients, stiffness of the magnetic polishing apparatus could be improved to obtain

better sphericity values. It would be also a better comparison with the permanent magnet

design if the polishing process was carried out by using the PI air bearing spindle.

Using the 3D analysis option in ANSYS package, might give a better idea to see

the distribution of the magnetic field on the ring pole steel plate.
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APPENDIX A

Straight Field Geometry Script for ANSYS
/CLEAR
lfilnam,str_fld
/prep7

IPNUM,AREA,ON
reetan,-.127,.2,-.O 19,.019
RECTAN,-.0457,.0457,.019+.1016,.Ol9+.0203+.1016
RECTAN,-.0508,.0508,.019,.019+.1016
AADD,ALL

RECTAN,.0508,.12,.019,.019+.1016
RECTAN,-.0508,-.12,.019,.019+.1016
RECTAN,.2381,.2,-.019,.26
RECTAN,.2381,-.1,.26,.26+.0381
RECTAN,-.1,-.02,.23,.26
RECTAN,.02,.1,.23,.26
A.ADD,3,6,7,5,4

RECTAN,-.05,.05,.1409,.1409+.05
RECTAN,-.2,.3,-.05,.3
P~-.0254,.1409,-.0152,.1282,.0152,.1282,.0254,.1409

POLY
!RECTAN,.0254,.0457,.1409,.1409+.03
AOVLAP,ALL
AGLUE,ALL
finish
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!Base
!Lower Intensifer
!Core

lCOILRIGill
!COIL LEFT
!RIGillRISER
!UPPER YOKE
1upper intensifier
I " "

!FINE AIR POCKET
!EXTERNAL AJR
!CUTOlIT



! Straight Field Mesh Script for A.L~SYS

/prep7
/COM, **** MATERIAL PROPERTY DEFENITION **n
NiP, MURX, 1, 1 I. MATL. 1 IS AIR

TB, BH, 2 l MATL. 2 IS Mll..,D STEEL
TBPT,,303, 0.8
TBPT,,333.3, 0.9
TBPT,,378.75, 1.0
TBPT,,492.4, 1.1
TBPT,,530.25, 1.2
TBPT,,621.15,1.3
TBPT,,833.25, 1.33
TBPT" 1000, 1.4
TBPT" 1287.25, 1.45
TBPT" 1666.5, 1.5
TBPT,,2121, 1.55
TBPT,,3000, 1.6
TBPT,,4000, 1.63
TBPT" 5000, 1.645
TBPT,,6000, 1.669
TBPT,,7000, 1.685
TBPT" 8000, 1.7
TBPT,,9000, 1.73

ET,1,9
ET,2,13

asel,all
ac!ear,all
ldear,all

!illFIl'HTY
IFINITE

I Clea.r all nodes and elements

eshape,O
Isel,s",31,32
Isel,a.,,,24,25
type, 1
mat, 1
esize,.025
lmesh,all

I select & mesh outer lines

asel,s,area" 12 !select & mesh fine air

esla
type,2
rnat,l
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ESHAPE,2
esize,O.OO 1
amesh,all
ESHA.PE,O

asel,s,area l1 10 !select & mesh fine air
esla
type,2
mat, 1
esize,O.005
amesh,all
/wait, 10

asel,s,are3. 11 9 ISe!ect & mesh rough air
ase!,a,area.,,6,7
esla
type,2
mat, 1
esize,O.025
amesh,3.11

ase!,s,3.rea" 11 !Selec: & mesh rough steel
esla
type)
mat,:2
esize,O.025
amesh.all

allsel
save
finish
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! Straight Field Solution Script for ANSYS
Isolv
ntype, static
Dropt,auto

asel,s,area,,9 !select and load left coil
esla
bfe,all,j s,3, 1.5e6

asel,s,area"7 !select and load right coil
esla
bfe,all,j s,3,-1.5e6
allsel

nsubst,5
kbc,O
neqit, 1
lswrite,1

nsubst, 1
neqit,20
save
lswrite,2
lssolve,1,2

finish
Ipostl
save
Ishow
plnsol,b,y
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GEOMETRY SCRIPT FILE FOR THE RING POLE DESIGN

!NEW DESIGN FOR ELECTROMEGNET

/CLEAR
IFILNAM,EM_1
/PREP7

/PNUM,AREA,ON
RECTAN,-0.2921,0.2921,0,0.0389 !ALUMINUM BASE
RECTAN,-0.2397,O.2397,0.0389,0.077 !STEEL BASE
RECTAN,-0.191 1,-0.1531,0.077,0.241 1 !LEFT SUPPORT
RECTAN,O.l531,O.191l,0.077,0.2411 !RIGTH SUPPORT
RECTAN,-0.1333,-0.0407,0.077,O.l951 !LEFT COIL
RECTAN,0.0407,O.1333,0.077,0.1951 !RIGTH COIL
RECTAN,-0.0407,O.0407,0.077,0.2411 !CORE
RECTAN,-0.1911,-0.0508,O.2411,0.2792 ~TOP PLATE LEFT
RECTAN,0.0508,0.1911,0.2411,0.2792 !TOP PLATE RIGTH
RECTAN,-O.0508,0.0508,O.2411,0.2892 !MAGNETIC FLUID
RECTAN,-0.35,O.35,-0.15,0.4292 !EXTERNAL AIR
AOVLAP,ALL
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MATERIAL SCRIPT FILE FOR THE RING POLE DESIGN

AGLUE,ALL/COM, ****MATERIAL PROPERTY DEFENITION ****
MP,MURX,l,1 !MATL.l IS AIR
TB,BH,2 !MATL.2 IS MILD STEEL
TBPT,,303,0.8
TBPT,,333.3,O.9
TBPT,,378.75,1.0
TBPT,,492.4,I.1
TBPT,,530.25,1.2
TBPT,,621.15,1.3
TBPT,,833 .25,1.33
TBPT"1000,1.4
TBPT,,1287.25,1.45
TBPT,,1666.5,1.5
TBPT,,2121,1.55
TBPT,,3000,1.6
TBPT,,4000,1.63
TBPT,,5000,1.645
TBPT,,6000,1.669
TBPT"7000,1.685
TBPT,,8000,1.7
TBPT,,9000,1.73

CONST = 12.6E-7
TB,BH,3 !MATL. 3 IS FERROFLUID
TBPT"O,O
TBPT,,10000, CONST* 16000
TBPT,,20000, CONST*31000
TBPT,,40000, CONST*57000
TBPT,,60000, CONST*80500
TBPT,,80000, CONST* 102000
TBPT" 100000, CONST* 123000
TBPT,,120000, CONST*143500
TBPT,,140000, CONST*164200
TBPT,,160000, CONST*184500
TBPT,,200000, CONST*225000
TBPT,,280000, CONST*305500
TBPT,,360000, CONST*386000
TBPT,,400000, CONST*426000
TBPT,,500000, CONST*526000

ET,1,9
ET,2,13

!INFINITY
!FINITE
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MESIDNG SCRIPT FILE FOR THE RING POLE DESIGN

ESHAPE,O
ASEL,S",3
MAT,2
TYPE,2
ESIZE,O.Ol
AMESH,ALL

ASEL,S",4
MAT,2
TYPE,2
ESIZE,O.Ol
AMESH,ALL

ASEL,S",13
MAT,2
TYPE,2
ESIZE,O.01
AMESH,ALL

ASEL,S",14
MAT,2
TYPE,2
ESIZE,O.Ol
AMESH,ALL

ASEL,S",15
MAT,2
TYPE,2
ESIZE,O.Ol
AMESH,ALL

ASEL,S,,, 19
MAT,2
TYPE,2
ESIZE,O.01
AMESH,ALL
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ASEL,S,,,5
MAT, 1
TYPE,2
ESIZE,O.OI
AMESH,ALL

ASEL,S,,,6
MAT, 1
TYPE,2
ESIZE,O.OI
AMESH,ALL

ASEL,S",12
MAT, 1
TYPE,2
ESIZE,O.1
AMESH,ALL

ASEL,S",16
MAT,l
TYPE,2
ESIZE,O.Ol
AMESH,ALL

ASEL,S,,, 17
MAT, 1
TYPE,2
ESIZE,O.Ol
AMESH,ALL

ASEL,S",20
MAT, 1
TYPE,2
ESIZE,O.1
AMESH,ALL

ASEL,S",18
MAT,3
TYPE,2
ESIZE,O.OOI
AMESH,ALL
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LSEL,S",41
LSEL,A",42
LSEL,A",43
LSEL,A",44
MAT,1
TYPE,1
ESIZE,O.l
LMESH,ALL
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SOLUTION SCRIPT FILE FOR THE RING POLE DESIGN

ALLSEL,ALL
FINISH
lSOLUTION SCRIPT
/soLv
ANTYPE,STATIC
NROPT,AUTO

ASEL,S,AREA,,5 !LEFT COIL
ESLA
BFE,ALL,JS,3,1.5E6

ASEL,S,AREA,,6 !RIGTH COIL
ESLA
BFE,ALL,JS,3,- L.5E6
ALLSEL

NSUBST,S
KBC,O
NEQIT,1
LSWRITE,1

NSUBST,L
NEQIT,20
SAVE
LSWRITE,2
LSSOLVE,1,2

FINISH
/POST 1
/SHOW
PLNSOL,B,SUMlBATCH
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AXI-SYMMETRIC SOLUTION SCRIPT FILE FOR THE MODIFIED RING
POLE DESIGN

/COM,ANSYS RELEASE 5.3 UP071096
/input,menust,trnp """",,,,,,,,, 1
ITITLE,Deneme
r*
KEYW,PR_SET,l
KEYW,PR_STRUC,O
KEYW,PR_THERM,O
KEYW,PR_ELMAG,l
KEYW,PR_FLUID,O
KEYW,PR_MULTI,O
KEYW,PR_CFD,O
KEYW,LSDYNA,O
/PMETH,OFF

'*
/PREP7
!*
ET,1,PLANE13

'*
KEYOPT,l,l,O
KEYOPT,1,2,0
KEYOPT,1,3,1
KEYOPT,1,4,0
KEYOPT,1,5,0
KEYOPT,1,6,0
1*

1*

UIMP,l,EX, , , ,
UIMP,l,DENS, , , ,
UIMP,l,ALPX, , , ,
UIMP,l,REFT, , , ,
UIMP,l,NUXY", ,
UIMP,l,PRXY, , , ,
UIMP,l,GXY", ,
UIMP,l,MU", ,
UIMP,l,DAMP, ",
UIMP,l,KXX", ,
UIMP,l,C, , , ,
UIMP,l,ENTH, , , ,
UIMP,l,HF, , "
UIMP,l,EMIS, , "
UIMP,l,QRATE" "
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UIMP,l,MURX" ,1,
UII\1P,l,MGXX", ,
UIMP, 1,RSVX, , , ,
UIMP, 1,PERX, , , ,
UIMP,l,VISC, , , ,
UIMP, 1,SONC, , , ,

'*
1*

UIMP,2,EX, , , ,
UIMP,2,DENS", ,
UIMP,2,ALPX, , , ,
UIMP,2,REFT, , , ,
UIMP,2,NUXY, , , ,
UIMP,2,PRXY, , , ,
UIMP,2,GXY, , , ,
UIMP,2,MU, , , ,
UIMP,2,DAMP, , , ,
UIMP,2,KXX, , , ,
UIMP,2,C, , , ,
UIMP,2,ENTH, , , ,
UIMP,2,HF, , , ,
UIMP,2,EMIS", ,
UIMP,2,QRATE", ,
UIMP,2,MURX, , ,1,
UIMP,2,MGXX", ,
UIMP,2,RSVX, , , ,
UIMP,2,PERX, , , ,
UIMP,2,VISC, , , ,
UIMP,2,SONC", ,
1*

TB,BH,3, , , ,

'*
TBMODIF,1,1,303
TBMODIF,1,2,0.8
TBMODIF,2,1,333.3
TBMODIF,2,2,0.9
TBMODIF,3,1,378.75
TBMODIF,3,2,1
TBMODIF,4,1,492.4
TBMODIF,4,2,1.1
TBMODIF,5,1,530.25
TBMODIF,5,2,1.2
TBMODIF,6,1,621.15
TBMODIF,6,2,1.3
TBMODIF,7,1,833.25
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TBMODIF,7,2,1.33
TBMODIF,8,1,1000
TBMODIF,8,2,1.4
TBMODIF,9,1,1287.25
TBMODIF,9,2,1.45
TBMODIF,1O,1,1666.5
TBMODIF,lO,2,1.5
TBMODIF,11,1,2121
TBMODIF,11,2,1.55
TBMODIF,12,1,3000
TBMODIF,12,2,1.6
TBMODIF,13,1,4000
TBMODIF,13,2,1.63
TBMODIF,14,1,5000
TBMODIF, 14,2,1.645
TBMODIF,15,1,6000
TBMODIF,15,2,1.669
TBMODIF,16,1,7000
TBMODIF, 16,2,1.685
TBMODIF,17,1,8000
TBMODIF,17,2,1.7
TBMODIF,18,1,9000
TBMODIF,18,2,1.73
RECTNG,O,23.97,3.89,7.7,
IPNUM,KP,O
IPNUM,LINE,O
IPNUM,AREA,l
IPNUM,VOLU,O
IPNUM,NODE,O
IPNUM,SVAL,O
INUM,O
r*
IPNUM,ELEM,O
/REPLOT
r*
RECTNG,15.31,19.11,7.7,24.11,
RECTNG,4.07,13.33,7.7,19.51,
RECTNG,O,4.07,7.7,24.11,
RECTNG,5.08,19.1 1,24.1 1,27.92,
RECTNG,O,31.11,-5,35.92,
FLST,2,6,5,ORDE,2
FITEM,2,1
FITEM,2,-6
AOVLAP,P51X
NUMCMP,AREA
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/REPLOT
SAVE
CM,_Y,AREA

ASEL"" 6
CM,_Yl,AREA
CMSEL,S,_Y
1*

CMSEL,S,_Yl
~llf,l,l,l,O,

CMSEL,S,_Y
CMDELE,_Y
CMDELE,_Yl
1*

CM,_Y,AREA
ASEL"" 2
CM,_Yl,AREA
CMSEL,S,_Y

'*
CMSEL,S,_Yl
~1lf,2,1,1,O,

CMSEL,S,_Y
CMDELE,_Y
CMDELE,_Yl

'*
FLST,5,4,5,ORDE,3
FITEM,5,1
FITEM,5,3
FITEM,5,-5
CM,_Y,AREA
ASEL, , , ,P51X
CM,_Yl ,AREA
CMSEL,S,_Y
1*

CMSEL,S,_Yl
~TT,3,1,1,O,

CMSEL,S,_Y
CMDELE,_Y
CMDELE,_Yl
1*

SAVE
SMRTSIZE,5
FLST,5,6,5,ORDE,2
FITEM,5,1
FITEM,5,-6
CM,_Y,AREA
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ASEL, , , ,P51X
CM,_Yl ,AREA
CHKMSH,'AREA'
CMSEL,S,_Y
1*

AMESH,_Yl

'*
CMDEL,-Y
CMDEL,_Yl
CMDEL,_Y2
!*
IPNUM,KP,O
IPNUM,LINE,O
IPNUM,AREA,l
IPNUM,VOLU,O
IPNUM,NODE,O
IPNUM,SVAL,O
INUM,O

'*
IPNUM,MAT,1
/REPLOT

'*
SAVE
ALLSEL,ALL
! THE FOLLOWING SELECT COMMANDS WERE GENERATED BY THE ALLSEL
COMMAND
VSEL,ALL
ASEL,ALL
LSEL,ALL
KSEL,ALL
ESEL,ALL
NSEL,ALL
FLST,2,6,5,ORDE,2
FITEM,2,1
FITEM,2,-6
ARSCAL,P51X, , ,.01,.01,1, ,0,1
SAVE
EPLOT
/SOLU
FINISH
/SOLU
FLST,2,28,2,ORDE,2
FITEM,2,23
FITEM,2,-50
BFE,P51X,JS,1, , ,1500000"
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LPLOT
FLST,2,7,4
FITEM,2,33
FITEM,2,23
FITEM,2,22
FlTEM,2,21
FITEM,2,32
FITEM,2,4
FITEM,2,26
DL,P51X, ,ASYM
SAVE
/STAT,SOLU
SOLVE
/POSTI
FINISH
/POST1
PLF2D,27,0,10,1
SAVE
1*

NSCALE,I,I,O
!
!*
PLVECT,B", ,VECT,ELEM,ON
/GRAPHICS,POWER
1*

RSYS,O
AVRES,2
AVPRlN,O
1*

PLNSOL,B,SUM,O
PLNSOL,H,SUM,O
rrITLE,Modified Design of Electromagnetic Float Polishing Apparatus
PLNSOL,B,SUM,O
PLNSOL,H,SUM,O
PLNSOL,H,Z,O
PLNSOL,H,Y,O
PLNSOL,H,X,O
PLNSOL,H,SUM,O
PLNSOL,B,SUM,O
FINISH
! IEXIT,ALL
/BATCH
/COM,ANSYS RELEASE 5.3 UP071096 22:58:05 04/19/1997
linput,menust,tInp ",,,,,,,,,,,,,,, I
RESUME
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/reswne,emdeneme
/POSTl
PLNSOL,B,SUM,O
PLF2D,27,O,lO,1
PLNSOL,B,SUM,O
PLNSOL,H,SUM,O
PLNSOL,B,SUM,O
/SOLU
FINISH
ISOLU
EPLOT
/PNUM,KP,O
/PNUM,LINE,O
/PNUM,AREA,l
/PNUM,VOLU,O
/PNUM,NODE,O
/PNUM,SVAL,O
INUM,O
1*

/PNUM,MAT,l
/REPLOT
!*
/PREP?
FINISH
/PREP7
ISOLU
FINISH
ISOLU
FLST,2,28,2,ORDE,2
FITEM,2,23
FITEM,2,-50
BFE,P51X,JS,1, , ,2302700, ,
LPLOT
FLST,2,7,4
FITEM,2,33
FITEM,2,23
FITEM,2,22
FITEM,2,21
FITEM,2,32
FITEM,2,4
FITEM,2,26
DL,P5lX, ,ASYM
ISTAT,SOLU
SOLVE
/POSTl
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FINISH
/POSTI
PLF2D,27,0,10,1
PLNSOL,B,SUM,O
PLNSOL,H,SUM,O
/PREP7
FINISH
/PREP7
1*

TBMODIF,19,1,1000000
TBMODIF,19,2,2.85
r*
TBLIST,BH,ALL
EPLOT
/PNUM,KP,O
/PNUM,LINE,O
/PNUM,AREA,1
/PNUM,VOLU,O
/PNUM,NODE,O
/PNUM,SVAL,O
INUM,O
!*
/PNUM,MAT, 1
/REPLOT
1*

/SOLU
FINISH
ISOLU
ISTAT,SOLU
SOLVE
/POSTI
FINISH
/POSTI
PLNSOL,B,SUM,O
PLNSOL,H,SUM,O
PLF2D,27,0,10,1
SAVE
FINISH
! IEXIT,ALL
!BATCH
ICOM,ANSYS RELEASE 5.3 UP071 096
linput,menust,tmp """"""",,, 1
RESUME
/POSTI
PLF2D,27,O,10,1
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Ishow,halo,on
halo,print,on
! halo,print,on
PLF2D,27,O,10,1
PLNSOL,B,SUM,O
PLNSOL,B,SUM,O
/PREP7
FINISH
/PREP7
/POSTI
FINISH
/POSTI
PLNSOL,H,SUM,O
PLNSOL,B,SUM,O
FINISH
! IEXIT,NOSAV
/BATCH
ICOM,ANSYS RELEASE 5.3 UP071096

linput,menust,trnp '"''''''''''''''1
RESUME,EMDeneme,db,..\,O
ERASE
/POSTI
PLNSOL,B,SUM,O
PLNSOL,H,SUM,O
PLF2D,27,O,1O,1
PLNSOL,B,SUM,O
/REPLOT,RESIZE
/REPLOT,RESIZE
PLNSOL,H,SUM,O
t*

NSCALE,I,1,O
r

'*
PLVECT,B, , , ,VECT,ELEM,ON
1*

NSCALE,I,1,O,
1*

PLVECT,H", ,VECT,ELEM,ON

'*
NSCALE,I,I,O
1

1*

PLVECT,D", ,VECT,ELEM,ON

'*
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NSCALE,l,l,O,
'*
PLVECT,EF, , , ,VECT,ELEM,ON
1*

NSCALE,l,l,O
I

'*
PLVECT,B, , , ,VECT,ELEM,ON
IREPLOT,RESIZE
PLF2D,27,O,lO,1
IREPLOT,RESIZE
,*
NSCALE,l,l,O,
'*
PLVECT,H, , , ,VECT,ELEM,ON
APLOT
1*
NSCALE,l,l,O,
1*

PLVECT,H, , , ,VECT,ELEM,ON
IREPLOT,RESIZE
PLNSOL,H,SUM,O
IREPLOT,RESIZE
FINISH
! IEXIT,ALL
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