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CEAPTER I
INTRODUCTION

This paper is chiefly conce:ned with the structure
‘of a certain class of rings. In 1936 Stone [i] started the
movement in this direction in 2 paper contalning a repre=-
sentation theorem for Boolean rings. In 1937 McCoy and
Montgomery [?] published a paper containing a representation
thsorsm for a more general class of rings than the Boolean
rings. In the iIntervening years several results have been
obtalined by others which aid in amplifying these original
resulits. The best compllation of these results is in a
book by McCoy (3] which appeared in 1948,

Before proceeding it might be well to review the
definitions of Boolean rings and pe-rings and to state some
of the principal results contained in aforementioned.papers.f

Definition 1.1: & Boolean ring is a2 ring R such that,

1f x€ R, then x%x.
Some of the results obtalned by Stone are:

Theorem l.l: If R is a Boolean ring, R 1s commutative.

Theorem le2: If R is a Boolean ring, 2 x = 0 for all

x € R.
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- Before stating the representation theorem of Stome
i1t should be mentlioned that the symbol IP will be used for
the ring of the residue classes of the integers modulo ps

Theorem 1.,3: If R 1s a Booclean ring, then R 1is

isomorphlc to a direct sum of the rings I,.
MceCoy and Montgomery characterize a generalized
Boolean ring, or a pe-ring, in the following manner:
Definlition 1l.2: A pe-ring is a ring R such that

xf= x for all Xf£R and p x20 for all € R,
Some of the results obtalned by McCoy and Montgomery
are:

Theorem l.4: If R 1s a pe=ring, then R 1s commutative.

Theorem le5: If R is a pering, then R is isomorphic

to a subdirect sum of the rings IP’

In this paper a larger class of rings is studied.
While 1t is too much to hope that in the more general case
the results will be as precise as those listed previously,
surprisingly good results are obtalned. _

In Chapter II we Introduce the concept of a g-ringe.
It is shown that every g-ring is isomorphic to a subdirect
sum of Galois flelds. Within certain slight limitations,
the converse 1s also shown to be trus. Necessary and
sufficient conditions for the existence of a g-ring are
determined. At the end of the chapter examples are given
o show that structurally it is very difficult to differ-

entiate between g-ringse.
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In Chapter III the idea of a (g,c)=ring is advanced.
The connection between q and ¢ is fully explored, culminating
in the formulation of conditions both necessary and sufficient
for the exlstence of these rings. Representation theorems
for the rings are obtained. Whille there remain certain
ambigulities about the structure of such rings, theorems are
obtained which enable one to tell for a certailn q and ¢
which Galois flelds must be includéd-in a representation of
the rings and which flelds may be included in a representa-
tion of some rings with that particular q and c, but not
included in a representation of other rings with the same
q and c. Examples are given to clarify the theorems at the
end of the chapter.

In this chapter considerable space 1s devoted to a
study of those rings for which q = ¢. 4 conjecture is ade
vanced, and some results are obtained. In the near future
the author hopes tc be able to prove or disprove the con=-
Jecture.

In Chapter IV attentlion is directed to a recent paper
by Wade [4]. 1In this paper the concept of a p-ring is
generalized; the rings are then comnected with Post algebras.
It is demonstrated tbat many of the rings studied by Wade
are actually (q,c)=-rings.

In Chapfer'v attention once again returns to the
briginal paper by Stone. The center of attraction at this

time #s> the rather remarkable operations, often called .
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logical sum and logical product, which enable him to con=

struect Boolean algebras from Boolean rings. These operations
have the unusual property of being mutually distributive.

It i3 shown that for the 3-ring the only operation which is
mutually distributive with multiplication is one which trans-
forms everything into zero., The commutative, assoclative
functions such that multiplication distributes over them are
determined. In conclusion, the commutative, assoclative
functions which distribute over addition are also ascertain-

ede




CHAPTER II
THE q-RINGS

Since the q-ring is a generalization of the pe-ring
and Boolean ring, we shall first recall the definition of
those rings and point out some of the consideratioﬁs which
led to this particular generaslization.

A Boolean ring R is a ring of more than one element
with the additional property that, for all x£R, x°= x., TFrom
this it follows that, fbr all x¢R, 2x= 0, and R is commuta-
tive.

- McCoy and Montgomery [';2] formulated the concept of
a p-ring as a ring R of more than ome element such that, for
all x£R, (1) x=x, and (2) p x=0. Tt 1s to be noted that
(2) does not follow from (1) as in the case of the Boolean
ring., The remark should be also inserted that when p» 2, (2)
has the effect of eliminating the Boolean ring as a trivial “
example of a pering.

Definition 2.1: A ring R of more than one element
1s called a g~-ring,q. = 2, if

(1) XY= X for all x¢ R, and

(2) if 1<t <q, then there is a x€R such that x"% x.

5
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- An equivalent formulation of (2) which will be used

at various times is

(2') If there exists an r 2> 1 such that x'":-. x for

all x&R, then r 2 q.

A more natural generalization of the p-ring might
appear to be one obtained by replacing (2) by

(3) gx=0 for all x&Re.
However, there is still an open question as to whsther or
not the class of ringg having properties (1) and (3) in-
cludes any rings other than the p-rings. Some results in
this connection appear in Chapter III.

While it was deemed necessary to discard (3), 1t
was Imperative that some restriction be included to eliminate
various trivial examples of g-rings. (2) accomplishes this;
thus, a Boolean ring can not alsoc be a 4=-ring.

We shall call q the degree of the ring.

In our investigation of the g-rings we shall depend
quite heavily on a theorem due to Jacobson ES] and two
theorems due to Birkhoff EG]. These theorems follow.

Theorem 2,1 {Jacobson): If for every element x in

a ring R there exists a positive integer n (x) such that

- A

x7"= x, then R 1s commutatlve. -

Theorem 2.2 (Birkhqff): Every ring is isomorphic to

a subdirect sum of subdirectly irreducible rings.

Theorem 2.3 (Birkhoff): Every subdirectly irreducible

commutative ring without non-zero nilpotent elements 1is a
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It should be mentioned that the only elementary proofs
of Theorem 2.1 are due to Hersteiln [‘7], LS]. In the first
paper Herstein offers an elementary proof that R is comutae
tive when n 1s constant; in the last paper he offers an
elementary proof of the more general theorem. Forsythe and
McCoy [_9] offer an elementary proof in the case n is a prime,
while Kaplansky D.Cﬂ has been able to prove commutativity
in a slightly more general case.

Definition 2.2: The characteristic of a ring R is

the least positive integer c¢ such that ¢cx =0 for all x gR;
1f no such positive integer exists, we say that the character-
istic 1s infinite.

We first show that the characteristic of a q-ring is
finite.

Iemma 2.1t If R 1s a g-ring, the characterlstlc c
of R 1s a divisor of n¥ - n,

Proof: Iet x€R. Then nx €R, and (nx)z'z nx. That
is, n% xs’- nx:ni’x - nNx = (n%'-n) x=0. Hence, the character-
istic 1z a divisor of n¥- n.

This ralses the question as to whether or not, for
a fixed q, svery dlvisor of 23'- 2 is the characteristic
of some g-ring. While we as yet have no basls for an answer,
.-it is a consequence of Thecrem 3.1 that such is not the case.

. Some examples will be glven at that time.

Tt _follows from Theorem 2.2 that every q-ring is
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isomorphic to a subdirect sum of subdirectly irreducible
rings, each of whlch has the property that, for all x£& R,
z%.'-:. x. Then, by Theorem 2.1, these rings are commutative,
and, by Theorem 2.3, these rings are actually fields, since
these rings can have no non-zero nilpotent elements. It

can easily be shown that these fields arse actually the Galois

fieldse.

Lemma 2.2: A field F all of whosse elements. satisfy
the equation xi':.: x, contains not more than q elements.

Proof: ILet p(x)= =¥.- x. Every element In F is a
root of the equation p(x) =0, and has assocliated with it a
linear factor of p(x). Iet dc,“;,‘(,,...,dhbe the elements
of Fo Then (x =d,), (x =&;), «es, (x «4n) are factors
of p(x). Let £(x) = (x =&,) (x -%p) ... {(x -4n). Then
p(x) = g (x)f(x). Since f(x) 1s of degree r and é(x) of
degree g, it follows that r £ q. |

Theorem 2.4:¢ A subdirectly irreducible g-ring is a
Galois field.,

Proof: This follows immediately from Lemmas 2.1 and
2.2 ard the discussion preceeding Lemma 2.2. |

We now see that if R is a subdirectly irreducible
g=-ring, then q = p“" for some p and some positive lnteger n.

If R 13 a ge=ring or even a ring with property (1},
definition 2,1, and xg R, the element ‘ir has proPerties
i:bm:h interesting and useful in obtaining later results. We
;smll_ngg_q_sjngii_sh_ﬁsgmg_Qf__thewsp_p_zzgpﬁe_rﬁ,e_sﬁ.#mﬁo“s_i_mp_lif_yu
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the notation we shall place s, =

Lemms 2.3: If R is a ring with property (1) and
x€R, then e, x = x, ’

Proof s exx=x$"a x = x%:-_ Xe

Lemma 2.,4: If R is a ring with property (1) and
x€ER, then e™= ey> 1 = 1,2,3,e0.0

Proof: This can be proved by induction. First,

O = (x¥7)= XF A W a2 . 872 L8

Assume true when nz k. Then,

¢
e:+ - e“.ex: Gx.@x= ex.

:ex.

Lemma 2.5¢ If R is a ring with property (1) and

oA
X &R, then ex&)( , m=102395, "

Proof: This follows at once from Lemmas 2.3 and 2.4.
Lemma 2.6: If R is a ring with property (1) and
"W -~ :
XER, then ex x :X IW: 1'2'3' 000} m:/[}lgl e

Proof: Iemma 2.5 establishes this for the case

m =1l When m>1l; we have , ,
e e (xx ™) = (€ XV KT = XX = X

Lemme. 2.,7: If R is a g=-ring, there is an element

)

x€R such that 1if x~_-: x, then r-1= n(g-1l) for soms positive
integer n.

Proof: The definition of a ge-ring assures us that

% z

there is an element X &R such that x°= x, but x % 1<tqa.
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Lot _ :
Mol = g+ £, L<g-y,
Then
XVz XMk = xHEIHE o By ok DALy,

Since bt 1<g, this is impossible unless b+1=1. Thus,
r=l1=n{q-1), and the lemma is established.
Lemma 2.,8:¢ If R 1s a g-ring and x€ R, then
xmg—-(frtﬂ)

Proof: By Lemme 2.5 we have

=X, =23
Cxw'Xz X, ~~=/4233"
But e,\zxg", so we have

() x = XMk = XEL (#

We are now in a position to prove a theorem which
plays an important role in ascertaining the structure of
g-rings.

Theorem 2.5: If R is a gering, every non-trivial

homomorph R? of R 18 a q'=ring with q'=2 or g=1 (mod (q'-l))

Droof: From the definition of homomerphism x'E R
implies that x’%'-_—-_ x!'e Yet it may also be true that x'?"x'
l<qgt< q, for all x'ER', If there are 95 9,5 Qs eos,
q,.s 1< Q:,<q, 1=1,2, ... n, with this property, let

g5 i (FoFar oo gou)

Otherwise, q'=q. If q'=2, 1t 1is clear that R! 1s a Boolean
ring. If q’72 then thers 1s an element yé‘R' such that
v¥=y, but A Tty 1f 1<t 4q's Let g= r (gl ta, 05 acp L
y &= iMS' e, ( g~ ')"‘3_"’: (ez)’”}"": ?f":?

(]
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‘Since s <qj‘}andy*€5y, l1<t<q'!, it must be true that s=1.
Hence, Q= x"(q'-].)‘-f l, and g =1 (mod (qt'«~l)).

It was established in Lemmea 2.1 that the character-
istic of a g-ring is finite. A more important result con-
cerning the characteristic foilows,.

Theorem 2.5: If R 1s a gering, the characteristic

of R contains no repeated prime factors.

Proof: Trom Theorems 2.2 and 2.4 we know that every
g=ring is isomorphic to a subdirect sum of Galois flelds,

The characteristic of-é Galols field 1s a prime. The charac-
terlistic of a subdirect sum of Galois fields is the least
common multiple of the cbéracteristics of the Galols flelds,
that 1s, the least common multliple of a set of prime numbers.
Hence, the characteristic of R will contaln no repeated
prime factorse. ,

In view of the rather severe restrictions thus im-
posed on the characteristic of a q-ring, one might naturally
ask if there 1is a ring of degree q for every positive q.

That such is not the case 1s proved in the following theorem.

Theorem 2.7t If R is a g=ring, then either q=2 or

there exists a prime p and a poslitive integer n such that
a=1 (mod (p"=1)).

Proof: By Theorem 2.2 we know that R is isomorphic
to a subdirect sum of subdirectly irreducible rings., This

?isomorphism.establishes a natural homomorphism between R

and the subdirectly irreducible rings. From Theorem 2.5
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we learn that these rings are also g-rings. If the degree

of R 1= greater than two, then the degree of at least one

of the subdirectly irreducible rings must be greater than two,

for the subdirect sum of a set of rings of degree two is of

degree £ two. Let T be the ring of degree gq', q'>2. Then,

by Theorem 2.5, g=1 (mod{(q!'-l)). According to Theorem 2.4

T is actually a Galois field; hence, there exists a prime

p and a positive integer n such that g'= p - Consequently,
-ZL = | (‘4n41La(77-l)),

While this may appear to be a relatively weak re-
striction on q, it eliminates as possible wvalues of q such
numbers as 6, 12, and 14.

Naturally it is desirable to determline conditions both
necessary and sufficlent for the existence of a g-ring. BRe=
fore we can do thils, however, 1t 1s necessary to prove a‘
theorem which is not only essential to this task but is also
of considerable interest in its own right.

Theorem 2.8: The subdirect sum R of the Galols fields

GFg=i 5 sosy 'GFf“m,, GFf"‘ﬂ s eves GF 232, 0o,
CF LA™, eee, GFglnnm , 70”“J'¢/&“1f ;;{-L oréf,é,
g-ring with q = [+ ,&W(f,""’ cees 7(; fzd’"—
...,70;‘""‘?—/ s eves /j”"_-/ , ...,/zf"”‘w__ /) and with
gharacteristic e = 74702 vee 7”«, .

Proof: That the subdirect sum of s set of Galols flelds
is a ring is well-known. We shall now show that it is a
g=ring. Iet XER. Then X= (X, , eees Xim 5 Xajsoos

Y L 4
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kz*g ,A cesy xﬂ' .oe, 3 ‘n“ ), X £G’qu‘]— . Since x‘a-e G'Ff“"} s
4"
7% Er e I 1 A A
x,_-J. = ':"'J; e Let g-1l=lcm (f, “1 5 eoey DTy,
2 Hamy, Amy Amm
p: ”"/ 3 06y, p 2 / 3 e e, p —-I’ L I p M"‘l = <7‘J—
< -l Yeyg ( :'(‘: ._l A Yeq
(Bt -7 ) Thenxgj = =gt FE-0 - (xf R
(e )q“} Lot Hence 'xz-—x - X:.=f - X s
X.:a‘ x‘g_ 3 :.f —_— (.} ‘} - l‘.&:o ILJ.—- 6} [ ]
So ng (X?f 3 ®ecy x,f, 3 XJS,J 9 vee xz;‘z 9 eeay X o, »

Z _
ee ey XAM«“)_ (x,l y evey X,MI 9 Ka49 eeey XZML’ ey XMI’
coes Xpy ) =Xe ' To show that R is a g-ring we need to show

thet conditicn (2!) also holds.
By Lemme 2.7 there exlsts an element y?: 3 GFﬂf“Ji such

that if y‘-;: Vi then r-l=n &(p"“&_/ )o Iet zoi= (eees

y,;a:, eeo) and zV= z for all z € R. Then y‘;;z y.-)-_ and r-1l =

Wi}(?"-“.&"-/ ), 1=1,2, eee, n, 3=1,2, eee, n . Hence,

’ f) “M
I’-l joverd 1cm (de I ee oy p?r“'-—l s p““_l 3 ey p 2 z——! ()

cee, P:(. "2l s eees Pd"‘"“"—-l )= g~1, and r2q. Consequently,

R i1s a g=-ringe.
Let m=Dp, P, eeeP,, ¢ There exists an element

y‘:} £ GFpZ“f such that p¢ y,:a; = 0, but r y,;&';{ 0 if r< p.. Iet
X Cq

T |
c. If ch.&:: O, then ¢ y‘-}: 0, and ¢ ’:2‘74‘-, 1=1,2, e0ey, 2o

= (eee, yia_- , ess) £R and let the characteristic of R be

—

Hence, ¢=Ap, P eeeD Z me

2

Let X: (x,, [ ) s e g X,,n’ ¥ xl, ’ [ N ] x‘zﬂz’, ...’ X,,w,

sceyp X M“‘:) £Re Then mx = (mx SRR XX P " _ 3 MX 2y 5 eeey
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W ys ooes mxm;,"“,';;’"inx%;z—:(050, «ees 0)=0. Accord=
ingly, (o] é M,

Thus, c=m.

Conditions both necessary and sufficient for a ring
R to be a g-ring can now be established.

Theorem 2.9:¢ There is a ring of degree q if and
only if

= 14 Lo (PFF-1) | p4T% 2 0

ifif xor jx 1.
LN
Proof: Let q=1+ lem (p.¢-/).

L= [, 2 -, MU
Fhh e
We wish to show that there 1s a ring of degree gq. Iet R

be the direct sum of the Galois flelds GFp_ # , 1=1,2,...,
n, j=1,2,e¢ey, n,; « By Theorem 2.8 this direct sum is a
g-ring with

= [+ /Zo*ru(f"c(‘o‘f—I)
? L=z - AR
a;: La o, N

Let R be a g-ring. Then by Theorems 2.2 and 2.4 R
is isomorphic to a subdirect sum of Galois fields, GFp :-"'J; ’
1=1,2,¢0e5n, J=1,2,00.,n, « Without loss of generality we
can assume that p:/*?“ #;pz‘*" 1f 14Xk or j#1, since the
repetition of a Galols field affects neither the character-
lstic oF degree of the ring. Hence, by Theorem 2.8, q=1 4
lem (p:“J"-—/ Ye

(':' I,ﬂ, oo, U

PRI NI
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- At the conclusion of Theorem 2.7 we cited several
numbers which could not serve as possible values of gq. We
can now add other numbers to this list. For example, 10 wes
not eliminated as a possible value of q by Theorem 2.7, but
1t 1s eliminsted by Theorem 2,9.

While the results obtained in thils chapter give some
insight into gq-rings, a few examples will suffice to show
that the actual structure of the rings is rather indefinite.
To 1llustrate, 13 =1 +lem (7-1,5-1}, 13=1+1lem (13-1,4-1),
and 13=1+41lem (13-1,3=1)., That is, one can construct 2
g-ring, g=13, as the subdirect sum of GF7 and GFs;, or as
the subdirect sum of GF,zand GF¢, or &s the subdirect sum
of GF/z and GFz. The previous remarks &re not Iintended to
exhaust the possible means of constructing g-rings, q= 13,
but only to mention & few. From these we can see that the
actual structure of the rings may differ quite widely.

It is of interest to note that the characteristic of
the first ring 3s 35, the characteristic of the second is
52, and the characteristic of the third 1s 39. This would
seem to indicate that consideration of both the degree and
the characteristic of a ring is essential to any attempt to
study the structure of these rings. The results obtainable
in this fashion comprise the major portion of Cpapter III.




CHAPTER III
RESTRICTED q-RINGS

We first define scme of the terms used in this
chaptere.

Definition 3.l A (q,c)-ring is a g-ring of charactere

istic ce.

If there exlsts & ring of degree g and characteristic
¢, q will be sald to belong to c.

Two results obtained in Chapter II are important in
establishing relationships between q ard ¢. By Lemma 2.1
we find that ¢ must be a divisor of 23;— 2. By Theorem 2.6
we £ind that ¢ 1s the product of distinct primes. We are
now in a position to prove a more restrictive relationship}
between q and c.
| Theorem 3.l If q belongs to C=P, P, Py ecePpy

p";ﬁfg’- ir 1 # j, then either p,.= 2, and/or there are positive
integers &« 2 [such that @=1 (mod(p -/ )), 1=1,2, «..,
Ne o

Proof:s Let R be a {g,¢)=-ring, c=zp, P, soepiiy
Pc# pa: if 1# 5. By Theorems 2.2 and 2.4 we know that R is
;isomorphic to & subdirect sum of Galols filelds, and, by

16
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Theorem 2.8, that the characteristic of R is the least common
multiple of the characteristics of the Galois fields. Hence,
there must be at least one Galols field cf characteristic

p, in this subdirect sum, at least one of characteristic P,
and at least one of characteristic P, » Let GFf‘?‘" be the
Galols field of characteristic p_. . The isomorphism between
R and the subdirect sum of Galois fields esteblishes a
homomorphism between R and GF P <, TIf p:.{‘. > 2, then, by
Theorem 2.5, q = lk(mod(p‘-'“' -/ ));s if pf‘: 2, then p, = 2,
and the theorem is established.

Followlng Lemma 2.1 we ralsed the question of whether
or not every divisor of 2% -2 was the characteristic of some
ring of degree q. We can now clte some examples which show
that such is not the case. For, let gq=4. Then 2¥ 2=14,
7 is a divisor of 14. Yet there 1is no (4,7)-ring, since 4£1
(mod 6). However, all the results that we have obtalned
thus far do not enable us to answer questions about the
exlistence of certain (q,c)-rings. To ralse one: Is there
a (5,6)-ring? 6 is a divisor of 2° -2, and 5= 1 (mod 2).
Every éondition imposéd by Lemma 2.1, Theorem 2.8, and |
Theorem 3.1 has thus been satisfied. Despite this, we have
no assurance that there is a (5,6)-ring. The next iLheorem
establishes necessary and sufficient conditions for the ex-
istence of a (q,c)-ring; these conditions eliminate the
possibility of a (5,6)-ring.

. Theorem 5.-2_-_,_Lbﬁe_lgng_smt_o_c_»—::_p.,_p‘z_p_.;_A._.,.pkw,p‘-_f,p};_
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when 1 # J, if and only if there exist ié( Z 1 such that
a=1+1lem (p,_J‘-—/ Ve

L ’,3 ,MI
J-‘/z vy ML
Proof: ILet q=1+1lem (p,_ ¢ [)e

eshd, ey
]':521 ey Ay
Let R be the direct sum of the fields G}?f:"'&' . From

Theorem 2.8, we know that R 1s a g-ring with
qQ=1l+lem (pXF-1).

V& /2 cy M

a{:l,z, e, n
and ¢e=p, P, ee<Ppe Hence, q belongs to c.
Iet R be a (q,¢c)-ring. Then, as before, R is iso-
morphic t0 a subdirect sum of Galols flelds GFP:"-',}' e« Again
using Theorem 2.8 we find that

a=1+1em (PTG — 1 )

£=1,a, -, N
1%, 7

a::l,g' I/;L
and C:P' ono. N 2 Pxi PL if K# L. Since O:p, pzooopm,

we have

ﬁfa ey fM: Fla .-.P,{
Since p, 1is a divisor of P, P, ...P,, there is a Py-D o
Conversely, since P, is a divisor of p D, oesB,, there 1is

a pj_: P « Hence, the primes P, are just those primes p,,

1=1,2,3,¢es, n, which are the factors of ¢. Thus we have
shown that if q belongs to c¢=p, P, **eD,» there exist or;&- z1l
such that

q= 1+ lem (p‘ F—1).
c-,a

=ia,
C.Onollal’_y__a_.l _?:_If.*c b elOng s_to ¢c= .p_ P z-_p 3- e e sD, V) S—




19

"t"héﬁ"'"i?':"l“-i-—'l‘.?ﬁ”(§,'"f5'1;' P z. -1, Pz =1, <., B, =1).

Proof: It follows Immedliately from Theorem 3.2 that
the minimal q which belongs to ¢ 1s that for which 9)’:‘]::1
for all i and J, i.e., 1+1cm (p, -1, Py =1, Py =1, e.o,
Pw -1). .

We now see that there can be no (5,6)-ring since
there do not exist a(z&' such that

5=1+4lem (3%F_1, 2™F2_;),

J:,:: 1, 2, M

In Chapter II we raised the question of rings whose
degree and characteristic are equal. We know there are
such rings, for the p=-rings of McCoy and lontgomery [2] have
this property. It 1is the conjecture of the author that
there are no other rings with this property, but the question
1s sti11l open. A partial answer fcllows.
All rings whose degree g and characteristic c are
equal have the following properties:
(1) a=p, P, B; ++sD , P; #P?_ it i# 3,
(8) p,Pp, 5y eeep =1+lcm (p, “F -1,

c=ha - R
]ltll:)')«

(3) q is a dlvisor of 2¥ -2,
Lemma 3.1t If n>1, then lem (p, =1, D, =1, eco,
Pac=1) <P, D, Dy ee<B,, =1
Proof: Lem (p, =1, p, =1, c.e, B, =1)=(p =1} (p, -1)
eeelp =1} (p, -1) <2, p, eeep, (p -1=P, P, e, B
Pz ...pm_,<p' P, e+<B, -1
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 Lemma 3.2: If p #D,, then p, p, =1#lem (p%% -1,
}22 (2,00 Mg

Pt =1).
Proof: Assume there exlist d;a: such that p, p, -1=
. Lz .
lem (pf“# =1, p_“#* =-1). Since p, -1 divides pT'f -1,

it divides p , P

2 «1l. Likewise, P, -1 divides p, P, -1,

Hence,

(1) p, p,=1 (mod(p, -1)),

(2) p, p,=1 (mod(p, -1)).
The above  can be written in the followlng form

(1') p,=1 (mod(p, -1)),

(2') p, =1 (mod(p, =1)).
From these we obtain

(3) p,=1+r (p -1),

(4) p,=1+s (p, -1},
These lead us to

P, -,z_z;'i.’ +1=1+r (p ~1).

Hence,
p, =1 _ r (p, -1),
P .
p, =1 = rs{p, -1),

l = rs.
But r and s are both positive integers, so that r=-s=1.
Conseguently, we find that p, = p, in contradiction, and the
lemma is established.
Lemma 3.3: If n>1 and there is an 1 such that p;=2,

then
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p‘pzps.. ."13/);;& 1+1lcem (i&‘f"“"{- -1)
(}‘:!I, 2,”-,40
430y
Proof: For definlteness assume that p,= £. Then
P, P, Pyeeel,, 1s even. Since p, % p]; it 1 # 3, then P,
will be 0dd and pZ% will be odd. Accordingly, pz‘zgl -1

will be even, and
X4 -
l'l'l_cm (p‘, F =1)

L:{,Q “oe AU

}.:('21.";’"'9'
will be odde This proves the lemma,

Hardy and Wright @.g list only 6 composite numbers
q less than 2,000 which are divisors of 2% -2, These are
341, 561, 645, 1387, 1729, and 1905, Each of these can be
eliminated as a possible value of the degree and character-
istic of a ring by one of the preceding lemmas or by showing'
directly that it can not be written in the form

P' pz oo-p~= 1+ ?.cm (p:(‘a- -l)o
Azl d e v :

a:,zl, 2,000,

We now know that 1f there is a (q,q)-ring,q composits,
that g must be greater than 2,000, that it must be the product
of at least three odd primes, and, furthermore, that 1in the
representation of q as |

1+lem (p; ¢ -1)
LT 2, 0, W .
j‘=‘| 2, "’l’”""

at least one of the d;a-_ is grsater than one.
: An example will show that fhe technique used in
proving; Lerma Z:2 is inadequate in the general case., Iet
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p,=8, p.=17, and p, = 13« Then p, p, p, -1 is divisible
by p, =1, p, -1, and pP; =l. By considering all Kﬂﬁ such
that p7¢< p B, b, =1, 1t can be shown that there are no

A
«i; such that p, p, p; -l=lem (p’“} «1).
. ¢ = ,3
}"2

We are at present left in the position-of nelther being
able to prove that there is no (q,q)-ring, g composite, nor
belng able to exhibit such a ring.

Definition 3.,2: If q belongs to ¢, the cemaximal

divisor set of (g=-1l) is the set of all divisors of (g=-1) of
the form p:“7 -1, p, a prime factor of c.

Note that Theorem 3.2 assures us that there 1is at
least one divisor of §-1 of the form p/“ -1 for each prime

factor of c.

Definition 3.3: A subdirect sum T of Galois fields

is & representation of a (qg,c)=ring R if T is isomorphic to
Re '

Definition 3.4: A Galols fleld GFp" 1s a component

of a (q,c)=ring R if there exists a representation of R which
includes GFf‘*

Definition 3.5: The Galois field Gi?ﬁ“ i1s an esgsential

component of 2 (g,c)=-ring R 17 every representation of R in-
cludes Giygw.

Lemma 3.4: If GFp/Y} 1s a component of a (g,c)-ring,
then c::)f;. '

Proof: Iet R be a (Q:Ql:?igsm!ithmﬁEpzjias_a_cgmg___;
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ponent. Then R is izomorphic to a subdirect sum of Galois
fields, GFP[" , esey GFPIar , ees, GFDIY , o.,, GPDTY

cery GFPTme yo00y GFpial, ase, GFpZmmw GFp  4£ 4 GFpA~~

iIf x #mor 1 # n. Hence, by Theorem 2.8, c= P, ByeesD o

::Bﬁ;.

Lemma 3.5: If GFpZ“}: 1s a component of a (q,c¢)-ring,
then (p’4 -1) is a member of the c-maximal divisor set
of (g=1).

Proof: Tet R Ye a (q,c)=ring with Gpr‘ai as a come
ponent., That 1s, R is isomorpﬁic to a subdirect sum of
Galols fields GFDPT' , «eey GFPT™ , eoe, GFDTY , eos,
GFDIF 5 eeey GFD M , oes, GFP*', eee, GFp ™"~ . By

~

Theorsm 2.8, g=l=1lem (P <1, eee, D™ =1, ses, D7 =1,

cees Di'd =1, ceey DIM =l, ceey DI =1, ees, PO =1)e
By Lemma 3.2 p, is a prime factor of c. Hence, (p;“J: -15
is a member of the ce maximal divisor set of Qe
Lenma 3.6: If q belongs to ¢, the least commen
multiple of the c- maximal divisor set of (g=-1) is (g-1).
Proof: Iet S be the c-maximal divisor sst of g-l.

The icm {5 &

g-1l, since every member of S is a dlivisor of
q-1l. _
Since q belongs to ¢, we have, from Theorem 3.2

q=1+1lem (p7% =1},
C=4,7’ e,
J.‘zllal...’ ~e

Aq
where p;1s & prime divisor of ce. Hence, (p, + «1) € s, and
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T lem {8) Z lem (p7°F -1)= o-1.
=, 2, .
J:_: L2, .- gy ML
Accordingly, lem {s} = qel,

The preceding lemmas place us in position to develop
our fundamental structure theorems. We shall first prove
that every member of the cemaximal divisor set of (g-1) is
a2 component of a (q,c)-ring.

Theorem 3.3: If p7< -1 is a member of the c-maximal

divisor set of (q-1), then Gpr_.{“" is a component of a (qg,c)-

ring.

Proof: ILet pz," -1 be a member of the c-maximal
divisor set of (q-1). Since q belongs to ¢=D, D, «e.D,, P.#
pal; if 1 # J, then, followlng Theorem 3.2, there exist a{:j__z_ 1

such that
g= 1+ lem (p:{‘} -1).

‘;: /,2, ”'IW
J‘:llzl”']"(&‘

It may be that p;:"' «1 1s included 1n the set {p,_- ‘¢ -1} « If
it is, let R be the subdirect sum of GFp:{“J:‘ e According to
Theorem 2.8, R is a (g,c)~-ring with
a=1+1lem (pJ% -1)

L=22 oy

j.:r,:,---,»t‘;
and C=P, P, eceB0 *

AL ooy }
If py# -1 is not included in the set JooF =1f , let

R be the subdirect sum of GFp{‘f and GFp,% . Again using

Theorem 2.8, R is a (q',c!)-ring with
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St =1z lem (p7F =L p,* -1)=1lcm (g-1, p ¥ -1).
ey 2 see - ) 4‘
"SRy v )
a‘z"a""l”‘v' »
=9~-1l. It also follows that ¢'z p, p..p=c. Hence, R is a
{g,c)=ring. In either case, Gszb is a component of a
(q’ 0)-1‘ing.
0f even more interest is the theorem which follows,
dealing with the essentlal components of a (q,c)-ring. The
representation theorems of Stone El] and MeCoy and Montgomery
{2] are special cases of this theorem.

Tneorem 3.4: GFp. 1s an essentlal component of a

(q;e)=ring 1f and only if p,  is a factor of c,(p; ~1) is a
member of the cemaximal divisor set of (a=1), bu’c(pi-‘“ -1)
is not a member iIf «.>1. |

Proof: ILet S be the c-maximal divisor set of (g-1).
Let (pi-1) €5, buﬁ (p:“' «1) §S if di> 1. Since pi is a _
factor ofc, every representation of a (q-,-c)-riné must in-
clude a Galcls fleld of characterlstic pg. .Suppose some
representation includes GFp%®“ , «;>1le Then, by Lemma 3.5,
‘(pz“' «1l) is a member of S in contradiction. Therefore,
every representation will Include GF;&- .

Let GF!a,_- be an easential component of a (q,c)-ring.
Then {p,; =1) £€ S amd p, is a factor of ¢c. Suppose (151‘" «1l)
€S, «;>1s Then, by Theorem 3.3, there is a (q,c)-ring R
whose representation includes GF /of"- . Let the representation
Of R include GFP' , eee, GFPYS eeuy GFD; , esey GFpI™"w,
i‘,et T be the direct sum of all the fiselds appearing in the
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representation of R except GFp;,. Then T is & (q',c')=ring
with q'=1=1cm (vp‘,"" =1, «os, p‘:" “1l, eeey p°"’"‘~" «1) = lem
(P =1, eeey Dc=l, oee, DI =1, ees, P*™"~ _1)= g-1 since
p;~-1 is & divisor of p7* -1, Also c! =f, ees P ees D, =Co
We have thus constructed a2 (g,c)-ring with s representation
not including GFp, in contradiction. Hence, (p’f" -1) & s,
a:> 1.
Corollary 3.2: If q belongs to C=D, Pyese Dy P £
p&‘_ if 1 # J, and p,=1, 1=1,2, ec., n,is a member of the

c-maximal divisor set of g=-1, but p:{". =1, 4c71, 1=1,2, ceey
n, is not a member, then every (q,c)~ring is 1scmorph:lc’ to
a subdirect sum of Galols flelds GFp;, 1=1,2, «¢s, Do

Prcof: This follows immediately from the previous
theorem.

The McCoy-Montgomery representation theorem, which
includes the Stone representation theorem, 1s actually a
special case of this corollary. The hypotheses of this
theorem restrict the rings to those for which q =c=p and
the only member of the c-maximal divisor set is p-l. Accord-
ingly, the rings are isomorphlc to & subdirect sum of Galols
flelds GFpe

Theorem 3.5¢2 C:I-Fp:f’~ s 471, is an essential component

of a (gq,¢c)=ring if and only if p_  1s a factor of ¢, (p".‘" -1)
is a member of the c-maximal divisor set S of (q-l), and
lem is-(pt -l)l‘ < qg=l.

Proofs Supp_ose_pl.' -1 is a member of the c-maximal
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‘divisor set S of (q-I) and lem §S=(p 1)} < g-1.
Suppose the representatlion of the (q,c)-ring R does not in-
,clude"Gij“', that is, R is isomorphic to a subdirect sum of
Galois fields GFp J“F which does not include GFp¥* + Then,
by Theorem 2.8, the degree of R is

Q' =1l+lem (pJF -1)Z1+1em {S-(p % -1} < q
(:?/,-?, oy '
3::92‘---,/,(‘:

in contradiction. Hence, the representation of R must in-
clude GFpZ© .

Let R be a (g,c)-ring with GFpY* as an essential
component. By Lemme 3.4, p- 1s a factor of ¢, arnd, by

Lemme 3.5, (p7

~l1) is a member of the c-maximal divisor set
S of (g=1), Lem {S-(pf"'-l)l‘ < lem Es} = gq-l. Suppose
lem {S-(p:."" -l)j' = g-1l. Since (pj’" -1l)£S and (p. =1) 1is &
divisor of (P‘»"-l), (pc =-1) €S. Let T be the direct product
of the Galois filelds GFp'# such that (p7F -1} €{S-(p’j"' -l)}.
Then, by Theorem 2.8, the degree q' of T 1s q'=z 1 +1lem "
‘{S-(p‘-"-l)}:q. The cheracteristic of T is ¢, so T is a
(g,c)=ring with a representation which does not include
GFp?«" in contradiction. Hence, lcm {S-(p‘." ol)} < g-1l.

In view of Theorems 3.4 and 3.5, one miéht agk if
there are any (q,c)-rings, q composite, whose structure is
uniquely determined. The answer 1s yes. As an example, cocne

sider the (21,55)-ring. The c-maximal divisor set of 20 =
21-1 includes only 4= 5«1, and 10 =1lsl, By Theorem 3.4,




28

GF, and GF, are essentlal components of & (21,55)-ring;

they are the only components, so every (21,55)-ring is
isomorphic to a subdirect sum of the fields GFs and GFu

There remaln other (q,c)-rings whose structure is not
so definite. Consider the {25,195)=ring. The ce-maximal
divisor set of 24=25-1 includes 2=3-1, 8=3% =1, 4=5-1,
24 25-1, and 12=13-1. An examination of Theorems 3.4 and
3+5 shows that the only essentlal component 1s GF,z. It 1s
possible to exhibit (25,195)-rings which do not have a
particular member of the get GF3, GFﬁ, GF5 s and GFs-as a
component. The direct sum of GFs, GFg, and GF.,3is a (25,
195)-ring which does not bave elther GFz or GFasyas & com-
ponent. The direct sum of Gks, GFz, and GFrz is a (25,195)
ring wﬁich does not bave either GFs or GFg as a component;
_ As an application of Theorem 3.5, let us examine a
(25,39)-ring. The ce-msximal divisor set of 24— 25«1 in=
cludes 2= 3~1, 8::52'-1, and 12=13~1l., Essential components
of a (25,39)-ring are GF4 and GF;3 « There are some (25-39)-
rings which include GF3 as a component and others which do’
not include GFz. The direct sum of GFy, GFg, and GF,zis an
example of the former, while GF¢9 and GF,z 1s an example of
the latter.

In summary, it appears that there are essential
ambiguities in the structure of many (q,c)-rings. We can
:say that in any representation of a particular (g;c)-ring

only certain Galois fields may be used ,__b_ut.__w,emc.an_no,t_ o
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guarantee that in every representation all permissible Galois

flelds will be used.




CEAPTER IV
SOME REMARKS ON A THEOREM OF WADE'S

Wade [4] considers a slightly more general class of
rings than the p-rings, namely, commutative rings R with the
following restrictions: _

(A) There exlsts an integer m such that for xER,
wx =0.

It i1s not assumed that R necessarily has character-
istic m¢ In that which follows p denotes any prime divisor.
of i , and p”Ythe maximum power of p dividing m.

(B) PFor every x& R, therse 13 a y€R such that e x

= PY.

(C) If px=0, there is a y such that x=p™!y.

We shall show in this chapter that, for certaln values
of m, commutative rings with properties (&), (B), snd (C)
are actually (q,c)=-rings. To do thls we consider a représenta-
tion theorem obtained by Wade and prove that the 'rings used
in this representation are (g,c)=-rings.
| Let I, denote the resldue class ring of the 1nt§gers
modulo m. Then the theorem of Wade's can be stated in the

following form:

30




31

- Theorem 4.1 {Waede): A ring R with properties (4),
(B), (C) 1s a subring of the direct sum of rings I, .
. We shall first restrict curselves to dealing with
the rings I, where m 1s the product of distinct primes. In
order to establish that these rings are (q,cj-rings we need
the following theorem.

Theorem 4.2: If n=ar, ma=br, (a,bl=1, m=p, p, p,

eeeBps P P: 1f 1 £ J, A=1cm fp, -1, P, =1, ¢ees Pop=1),

¥
then

n*=1 (mod b),

"= n (mod m).

Proof: Since mzp, p; Dyeeel.s P, # p}- ir 1 £ 3,
and m=br, it follews that (b,r)=1. Also, (b,a)=1, so
(b,n)=1, Now, b=p ' P,' e ', where p;', 1=1,2, «.o,
m, 1s one of the set {D,, B, » eess Prfe For convenience,

arrange the factors p,, P, eees B, in svuch a manner that

b= p, pz ...pmand r= pM-'l'

(1) nf*'z 1 (mod p:), 1=1,2,.0., m,

I...pw. By Fermat#s theorem

(2) n* = 1 (mod p;), 1=1,2,.0., me
That 1is, ' '

(3) n®=1+1; p;, 1= 1,2,...,m,

(4) n*=1+1p, p, Dy eeeR, =141 Do
Consequent ly,
| (5) n*z1 (mod b).
If we multiply (4) by n=ar we obtaln
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T(8) nL nFia m,
(7) n‘“'g n (mod m).
Corollary ¢.1: If (n,m)=1, m=p, P, seeCpus
P, # pj' if 1 £ J,k=1lcm (p, =1, Py =1, eee; p,, =1), then
%z 1 (mod m) |

Proof: This follows easily from Theorem 4.2, since

we Nnow have r =1 and m=Dbe.

We are now in a position to prove our assertion that,

under certaln restrictlons, the rings I, are (q,c)=-rings.

Theorem 433 If m=p, P, eee D, P;# pj_ it 1 # 3,
then the rings I,, are (q,c)=-rings with ¢c=m and q=1+lcm
(p, =1, P, =1, b3 =1, ¢ee;, D, -1},

Proof: That the integers meduloc m form a ring is
well known., Clsarly the characteristic of the ring is m,
If nel ,, from Theorem 4.2 we know that nfzn, where g=1+
lem (pl i, p, -1, P, “1, ceey, pw-l). Hence, I

wis a

(q',c)= ring for some g's It follows irmmediately from
Corollary 3.1 that q' 2 q; hence, I_, is a (g,c)-ring.
Iet us replace property (A) of Wade by the following:
(A') There exists ar integer m=Dp, D, eee D, D, £

p .

i if 1 # j, such that for x £€R, mx=0.

We may now rewrite Theorem 4.1 as follows:

Theorem 4.4: A ring R with properties (A'), (B),

(C), is a subring of the direct sum of (g,c)-rings with c=m
and gq= 1+1°m (pl 1 PZ -l P .“'1, ovoo, p "'l)o
Proof: This follows immedistely from Theorems 4,1
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and 4.3. -
This leads to the following theorem.

Theorem 4.5: 4 ring R with propertles (A!), (B), (C),
is 8 (g,e)=ring with

m=0 (mod ¢},
q=2 or lem (p, =1, p, =1, eee, P, =1)= 0 (mod (g-1)).

Proof: The direct sum of (q,c)-rings is a (q,c)-ring.
Hence, by Theorem 4.4, a ring R with properties (A'), (B),
and (C) is a subring of a {q,c)=ring with ¢ m and q=- 1+ lem
(p, =1, P, =%, eee, P,,~1)e A subring of a (q,c)-ring is
another (g,c)-ring. Iet c be the characteristic of the sube
ring. Then we can write m=rc+ s, where s<c¢. Let x be any
element of the subring. Then ¢x=0. Since x ls an element
of the original ring we also have

mx= (rc+ s)x=rcx+ sx=8x=0.
This is impessible unless s= 0, hence
m=0 (mod c).

Let q be the degree of the subring., If q=2, we are
through. If q#2, then let x be any element of the subring.
Then xP-=x. Since x is an element of the original ring we
also have

iI‘x"f-’“"-(l"" y puty ey il x.
By Lemma 2.7
lem (p, =1, p, =1, eeey B, «1l)=n (g=1),
and |

lem (.21_':;:’__.9‘_'3}:3_,_!32_)#9”\ «1)= 0 (mod(q=1))._
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The next theorem illustrates the difficulty encounter-

ed when m 1s divisible by a power of a prime,

Theorem 4.,6: If m=p D, ess P, » x> 1, then

pla ¢ P, (mod m) for all g>1.

Proofs Assume p;ﬁ: P, (mod m) for some f>1l. Then,
plg-jnqzﬁo Then, pf"_,(m_.-.l, where n::pf("l P, e+ P, e+ Now,
P, is a dlvisor of the left-hand side of this equation, and,
consequently, p, must be a divisor of the right-band side.
But this 1s impossible, and the theorem is proven.

Corollary 4.2: If m:pf( Y

2 *° pw, - 04 1, then the

rings I, are not {(g,c)-rings.

Proof: Since pl'g-; p, (mod m) for all > 1, there
is no ¢ > 1 such that, for all x€I__ , x ¥= x.

While the rings I, ,6 are not (q;c)-rings, certain sube
rings are (q,c)-rings. If m=p ™ D, eee D, , 4> 1, & ring
having properties (4), (B), and (C), 1s then a subring of
the direct sum of rings which are not (g,¢)-rings. This
subring, however, can be a (q,c)=-ring. No results of general

interest in this connection have been obtalnede.




CHAPTER V

COMMUTATIVE, ASSOCIATIVE, AND DISTRIBUTIVE
FUNCTIONS OFW (3,3)-RINGS

Initially, let us remark that a (3,3)-ring is in the
notation of McCoy and Montgomery [2] a p-ring with p=3.

In his paper on Boolean algebras Stone [1] was able
to start with a Boolean ring and, by introducing two new
operations U, N1 defined in terms of the ring operations,
construct & Boolean algebra. Conversely, he was able to
start with a Boolean algebra, define his ring operations in
terms of the operations of the algebra, and construct a
Boolean ring. In this manner he was able to establish an
isomorphism between Boolean algebras and Boolean rings.

The two operations of the Boolean algebra are rather
‘remarkable. Not only are they both commutative and assocla-
tive, but they are also mutually distributive.

Jacobson also introduced a quasi-addition in his
papers [12], [l:g treating the structure of algebras and rings.
Actually, this is the same operation Stone used in his study
1of Boolean algebras, but Jacobson uses 1t in connection with

a wider class of ringse. S

35
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~ This immediately raises the question: 1Is it possible

to define on rings other than Boolean two operations each of
which is comnutative and assoclative end which are mutually
dlstributive? In this chapter we answer that question for
rings whose degree end characteristic are both 3.
Let us first recall the definltions of the operations
of the Boolsan algsbra used by Stone:
av b=za+b+ab,
anb=a-b.
Note that the algebraic "multiplication" is in no sense
unusual, but that the "addition" is a little out of the
ordinary.
Accordingly, we seek to determine the most gensral
polynomial function having the following properties:
(A) £ {a,b)=1r (b,a)
(B) £ f{a,f(b,c))=f (f(a,b),c)
(6) a f£{b,c)=f(ab,ac) |
(D) fla,bec)=r(a,b). £(a,c).
Theorem S.1: A polynomial function defimad on all

{3,3)=rings and having properties (&), (B), (C), and (D) 1s
idenﬁically 26roe. ‘ |
Proof: The most general functlon possibie is
(1) £{a,b)= A,8 +A;b +A5 abiAa®+Ab* 2,8 b+Aal +Agdboise
‘ From (C) 1t foliows that £(0,0)=0f(b,c)=0. But
£(0,0)=A4,, henceds=0, |
| Fpom (A) 1t follows that
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(2)A, (a=b) #A, (b-a) +A,(a" -v* ) 41 (b =a*) £A_(a%b-at™) £y (a0 >=
a%p) =0,
“ This must hold when a=1, b= 0. Thus we obtain

(3) A, = A, +Ay=Ac=0, |

Likewlse (2) must hold when 2 =2, b=0, This ylelds
(4) 2A,=23;+34 =As= 0.

Subtracting (4) from (3) one finds

A, = Az
Using this result in (3) leads to
A 4 =As

(2) may now be written as
(5) A, (a“b=ab’) + Ay (ab®=a®b) = O.

When a =1, b=2, it follows that

A, = Ay

We now write (1) in the following form
(6) £(a,b) =2 (a+Db)+A3 a b + Ay (a®+ b*) A (a°p #ab?)
+Aga® p™, |

Using properties (4), (D), (A), and (D) in that order
we £ind that £(a%,0)=£(0,a") =£(0,a) - £(0,a) = £(a,0) - £(a,0)
= £(a,0).

However, f(az,o) = A az—}—a,; a*, and £(a,0)=2,a +a4 2™,
Hence, |
(7) A, at = A, a.

When a=2, A, =2A, , and' A, =0,

If we now use (C) we find that af(a,0)= f(az,O).

As a_consequence, R _




38

(8) Aga = agal

As before, when a=2, 2 Ay=A4, and Ay = O,

Using (C) once agsin we have af(a,f:): £(a*,ab).
Accordingly,

(9) A;(a*b=-2b) =Ag(a b -abd®).
If a=2, b=2, it follows that A;=-A43,
It is now possible to write (é) as
10) £(a,b)=A; (ab=s"b" ) +A (a*b+2a b*).

Another use of (C) leads to
(11) 2A;(c & b = ¢ 2°b“~ abc®+ &P e*)=0.

When a =1, b=2, ¢=%, we find thatAz;= 0.

Using only ths demands that the operations be commuta~
tive and that the operatlions be mutually distributive, we
have found that the functlion must be of the following form
(12) £(a,b) = A (a*b+2a b°).

Use of (D) at this time yields
(13) A_(a®be+ab*c® )=l (a*be +abe® + ab“c +a*b“e*).

 Ifa=b=2, ¢=1, we £ind that A,= O. .
This proves the theorem,

May we agaln emphasize that in the above proof we
did not demand that tbe- function be associative.
| Having failed in our quest for an "addition" which
would be distributive with respect to "multiplication”, we
A now sseek to determine those functions which have propérties
(A), (B), and (C). These properties are those of ordinary

addition, so we know thet there is at least one such function.
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There may be others. Thls search leads to the following
theorem. |
Theorem 5.2: The only non-zero polynomial functions
on (3,3)-rings having properties (&), (B), and (C), are
f£(a,b)=a + b,
and £(a,b) = 2a% b+2ab%.

| Proof: TUsing those results of Theorem 5.1 which de-
pend only on (A) and (C), we £ind that it is possible to
wite. | ‘
(1) £(=,b) =, (atb) +A;ab +A, (8% b*) + A, (a®b+ab®)+aa*t".
As before it follows from (C) that af(sa,0)=£(a%,0).
This yields -
(2) Aqa = Ay a%.
- Then 8 =2, 2 Ay=2A4, A4=0,
We now write
(3) £la,b) =2 (a+b) +A; ab +2,(a*b +ab*) #24(a*b*).
‘ af(l,-l):_f(é,-a) by use of (C). Therefore, |
(4) al=A; +Ag) = —Aga" + Aza% ‘
Wher a =2, Ag=Asz .
Again rewriting f(a,b) we have
(5) £(a,b)= A, (a+b)+2z (ab+ &*b°) +Ac(a*b +at¥).
| Tze of (C) again leads to af(l,1)=f(a,a).
This yields -
(6): 2A3a=2 Ay a%
If a=2, /=247, A=0,
| ___The last result enables us to write
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(7) f£(a,®) = A, (a+d) +A_(a%D +ab?). o
We now use (B) to obtain
£(a, A (bte) +A,(b2c+ be*)) =£( A, (atd) +a (a*btad?),c).
That 1is,
A& +A(bre)+2,(b e+ be?)) + h{@z(}\. {v+e)+A,(b*c+bec*)]
+a LA (L% 2 Be+ A+ 224, (28 +2L239+ A, (2 L5242 Zoﬂ}:

A [+ L) +a (@ 04a g2+ T 42 {[2F (a*+2ad+ £7%)+ 2 AiAd
(2a 4 +2a282)+Ac @a 2+ 2:249] <+ [2, @+ L) +3 (E84al?)]
<*1,
This in turn gives X z
A @+ 2 4+e) 12,2 (L% + 4P 424 (& Ltare) + A

2
(0* L% + a*4 ™t WA (Gl* 420l ctac)FAAN (2a8e+248%)
HA, (2 2 8Pe? t 2ade) = A2(G+ L) +R,A (CE4at?)+A <

42,3, @e*+ 8 ) +AL (LIt 2 475,

Simplification of above leads to -

(8) A@+27 e 422 (Bret a®e) +Ac &85 +AR @t 0 &
+23A2 (2 o £%2) +3, (Za d*P) =A% 44,3, (@ d4 ac?)
PR e $AA (et L) 22,70 (2 aP 4% ) 42 CaLNAAS)
If we place a=1l, b=¢=0, we find

(9) " A=A
We use this result to write (8) as

(10) Ao a° Bl +A,AF & BAF 4 2R, G LR AT a BP A K 22l

+ 23, a"L%

If we now let a=2;, b=c=1, we obtain

(11) AL = AT 43, =0 .
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- The simplest (3,3)-ring is the ring of the residuse
‘classes of the integers modulo 3. If we select A, and A
from:the elements of this ring, the values of A, which
satisfy (9) are 1 and O. If A,= 1, we £ind from (1l) that
A= 0. If A =0, then?\i—lﬂfo and A = 2, Thus the only
functions having the desired properties are

f(a,b) = a+b,
f(a,b)= 2a?Db+2abv*.

We bhad hoped that the above investigation would lead
us to a "quasi-addition™ having properties both interesting
and useful. However, the only aliternative to ordinary
addition has a rather serious defect-namely, the "quasi-gum"
of any element and zero is zerc. This makes further study
uninteresting.

There yet remains the possibillity of generalizing
the concept of "multiplication®™. Accordingly, we seek those
polynomial functions having properties (A), (B), and

() f(a,b+c)=f(a,b)+f(a,c).
:Ordinary multiplication‘has these three properties, but there
may be other functions having these properties. |

Theorem 5.3: On {3,3)-rings the only polynomial

function having properties (A), (B), and (E) is
f(a,b) = Aab. |
Proof: We ageain start with the most general functlion.

possible, namely
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(1) £(a,b)=A a+a,b +3; ab +3,8%+2:b% +A_8%b +A; ab* 2, a%b%
| From (E) we obtain f£(a,0)= £(a,5)+ £(a,0)
and f£(a,0)= 0. Thig leads to
(2) A= +I/'l.f a"'-/—;l(,:-o.

If we plé.ce a=0, ,17:'-0.

Placing a=1, we find A +A,=0,

Placing a =12, we find 2X,+A,=0.

Ag a result, }M:&,:O.

Using (A) and (E) ylelds £{0,b)=f(b,0)=0,
Hence,
(3) A b+As b°=0.
Placing b =1 results in A, #A.=0. Placing b=2 glves
2 A, + As= 0. Consequently,A; <=Ags= O

We now use (1) to obtain
AL+ 2) 42, & *(B+e) +a, a( L2 ket 2) A& “(@%24c 4c?)

_,13434.,76. 24 +a, a8 42y "L"+d3,ac+ﬂ‘a,c+a RS AWy

This reduces to
(4) 2 A, abo+22; a“bc=0.

If in (4) we let a=b=c =1, we find 2A,+ 24d9=0.
If we let a =2, b=c=1, we find A,+2A,= 0. Consequently,

Aq=dg = 0.

The results obtained enable us to write
(5) f(a,b)= Aaab +A, a%b.

(A) says that f£{a,=-2)=f(+a,a). This is used to ob-




(6) 2 A,a=0. o
Placing a= 2 in (6) yields A,=0. Hence,
(7) £(a,b)=2a; ab.

Agein 1t 1s of interest to note that the proof of
this theorem in no place uses the demand that our function
be associative. |

We have shown 1n this chapter that it is impossible
to parallsl the concepts of loglcal sum and logical produect
In (3,3)=rings. If one retains the idea of ordinary mule-
tiplication, then addition must be defined in the usual sense
or in a %rivial fashion; i1f the 1dea of ordinary addition
1s retained, then one must define multiplication as usual

or as a maltiple thereof.




LIST OF REFERENCES

l. . He Stone, The theory of representations for Boolean
Alz2brag, Transactlions ¢f the American Mathematical
Soclety, Vol. 40 (1936}, pp. 37-11l.

2. N. He. ¥eCoy and D. Montgomery, A representation of
generalized Boolean rings, Duke Mathematical Journal,
Vol, 3 37,ppo 455=-4259.

3. N. H. McCoy, Rings and Ideals, Baltimore, 1948,

4, L. I. Wade, Post Algebras and rings, Duke Mathematical
Journal, Vol. 12 (1945), pp. 389=395.

5. N. Jacobson, Structure theory for algebralc algebras of
bounded deéree, Annels of Wathematics, Vole. 46 (1945),
PDe -7 ) v

8. Ge. Birkhoff, Subdirect unions in universal aligebras,
Bulletin of tne American Mathematical Society, vol.
50 (1944), pp. 764-768,

7« I. N. Hersteln, A generallization of a theorem of Jacobson,
American Journal Of WAthematics, VOl. 76 (1951),
Pp. 756-762.

8. I. N. Herstein, & generalization of a theorem of Jacobson,
American Journa% of Mathematlcs, VOl. 75 (1953),
pp. 105-111,

9. 4. Forsythe and N. H. McCoy, On the commutativity of
certain rings, Bulletin of the American Mathematical
Soclety, Voi. 52 (1946), pp. 523=-526.

10, I. Kaplansky, Commutativity of generalized Boolean rings,
(Abstract) Bulletin o the American Nathematlcal
Soclety, Vol. 51 (1945), p. €60.

1l. Hardy and Wright, Theory of Numbers, Oxford, 1938.

12. F. Jacobson, Structure Theory of simple rings without &
: finlteness assumptions, Transactions Of the American:
Mathematical society, Vole. 57 (1945), pp. 228=245.

44




ST TRR T TR A ST AR AR

45

, Dp. 300-320,

13. N. Jacobson, The radical and semi-simplicity for
arbitrag% r!gﬁs, American Journal of MEEEem’Eics ’
Odl,

Be



