THE UNIVERSITY OF OKIAHOMA
 GRADUATE COLLEGE

STRUCTURE THEORY FOR GENERALIZED P-RINGS

A THESIS
SUBNITTED TO THE GRADUATE FACUITY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY. BY

GENE LEVY Norman, Oklahoma

1955

STRUCTURE THEORY FOR GENERALIZED PARINGS

A THESIS
APPROVED FOR TEE DEPARTMENT OF MATHEMATICS

ACKNOWIEDGNENT

I wish to express my deep appreciation to Professor Albert A. Grau for his kind assistance in the preparation of this thesis, and to the members of the Thesis Committee for their helpful suggestions and criticisms.

TABIE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. THE q-RINGS 5
III. RESTRICTED q-RINGS 16
IV. SORE REMARKS ON A THEOREM OF mADE'S 30
V. COMMUTATIVE, ASSOGIATIVE, AND
DISTRIBUTIVE FUNCTIONS ON
$(3,3)-R I N G S$ 35
IIST OF REFERENCES 44

CHAPTER I

INTRRODUCTION

This paper is chiefly concerned with the structure of a certain class of rings. In 1936 stone [1] started the movement in this direction in a paper containing a representation theorem for Boolean rings. In 1937 McCoy and Montgomery [2] published a paper containing a representation theorem for a more general class of rings than the Boolean rings. In the intervening years several results have been obtained by others which aid in amplifying these original results. The best compilation of these results is in a book by McCOy [3] which appeared in 1948.

Before proceeding it might be well to review the definitions of Boolean rings and p-rings and to state some of the principal results contained in aforementioned papers.

Definition 1.1: A Boolean ring is a ring R such that, If $x \in R$, then $x^{2}=x$ 。

Some of the results obtained by stone are:
Theorem 1.1: If R is a Boolean ring, R is commutative. Theorem 1.2: If R is a Boolean ring, $2 x=0$ for all天 ε R.

Before stating the representation theorem of stone it should be mentioned that the symbol I_{p} will be used for the ring of the residue classes of the integers modulo po

Tineorem 1.3: If R is a Boclean ring, then R is isomorphic to a direct sum of the rings I_{2}.

McCoy and Montgomery characterize a generalized Boolean ring, or a p-ring, in the following manner:

Definition 1.2: A paring is a ring R such that $x^{p}=x$ for all $x \in R$ and $p x=0$ for ail $x \in R$.

Some of the results obtained by McCoy and Hontgomery are:

Theorem 1.4: If R is a pering, then R is commatative.
Theorem 1.5: If R is a paring, then R is isomorphic to a subdirect sum of the rings I_{p}.

In this paper a larger ciass of rings is studied. While it is too much to hope that in the more general case the results will be as precise as those listed previonsly, surprisingly good results are obtained.

In Chapter II we introduce the concept of a q-ring. It is shown that every q-ring is isomorphic to a subdirect sum of Galois fields. Within certain sifght limitations, the converse is also shown to be trus. Necessary and sufficient conditions for the existence of a quring are determined. At the end of the chapter examples are given to show that structurally it is very difficult to differentiate between q-rings.

In Chapter III the idea of a (α, C)-ring is advanced. The connection between q and c is fully explored, culminating in the formulation of conditions both necessary and sufficient for the existence of these rings. Representation theorems for the rings are obtained. Fhile there remain certain ambiguities about the structure of such rings, theorems are obtained which enable one to tell for a certain q and c which Galois fields must be included in a representation of the rings and which fields may be included in a representation of some rings with that particuiar a and c, but not included in a representation of other rings with the same q and c. Eramples are given to clarify the theorems at the end of the chapter.

In this chapter considerable space is devoted to a study of those rings for winch $q=c$. A conjecture is ade ranced, and some results are obtained. In the near future the author hopes to be able to prove or disprove the conjecture.

In Chapter IV attention is directed to a recent paper by Wade [4]. In this paper the concept of a paring is generalized; the rings are then connected with Post algebras. It is demonstrated thet many of tine rings studied by Wade are actually (q, c)-rings.

In Chapter V attention once again retums to the original paper by stone. The center of attraction at this time fis: the rather remarkable operations, often called
logical sum and logical product, which enable him to construct Boolean algebras from Boolean rings. These operations have the unusual property of being mutually distributive. It is shown that for the 3-ring the only operation which is mutually distributive with multiplication is one which transforms everything into zero. The comatative, associative functions such that multiplication distributes over them are determined. In conclusion, the commatative, associative functions which distribute over addition are also ascertained.

CHAPTER II

THE q-R:IRGS

Since the q-ring is a generalization of the poring and Boolean ring; we shall first recall the definition of those rings and point out some of the considerations wich led to this particular generalization.

A Boolean ring R is a ring of more than one element with the additional property that, for all $x \in R, x^{2}=x$. From this it follows that, for all $x \in R, 2 x=0$, and R is commutative.

McCoy and Montgomery [2] formulated the concept of a p-ring as a ring R of more than one element such that, for all $x \in R$, (1) $x^{P}=x$, and (2) $p x=0$. It is to be noted that (2) does not follow from (1) as in the case of the Boolean ring. The remark should be also inserted that when $p>2$, (2) has the effect of eliminating the Boolean ring as a trivial example of a p-ring.

Definition 2.1: A ring R of more than one element is called a q-ring, $\dot{q} \geqslant 2$, if
(1) $X^{9}=X$ for all $x \in R$, and
(2) if $1<t<q$, then there is a $x \in R$ such that $x^{\star} \neq x$.

An equivalent formulation of (2) which will be used at various times is
(2) If there exists an $r>1$ such that $x^{N}=x$ for all xeR, then r §

A more natural generalization of the p-ring might appear to be one obtained by replacing (2) by
(3) $\mathrm{qx}=0$ for all $\mathrm{x} \varepsilon \mathrm{R}$.

However, there is stíll an open question as to whother or not the class of rings having properties (1) and (3) includes any rings other than the perings. Some results in this connection appear in Chapter III.

While it was deemed necessary to discard (3), it was imperative that some restriction be included to eliminate various trivial examples of q-rings. (2) accomplishes this; thus, a Soolean ring can not also be a 4-ring.

We shall call q the degree of the ring.
In our investigation of the q-rings we shall depend quite heavily on a theorem due to Jacobson [5] and two theorems due to Birkhoff [6]. These theorems follow.

Theorem 2.1 (Jacobson): If for every element x in a ring R there exists a positive integer $n(x)$ such that $x^{m(x)}=x$, then R is computative.

Theorem 2.2 (Birkhoff): Every ring is isomorphic to a subdirect sum of subdirectly irreducible rings.

Theorem 2.3 (Birkhoff): Every subdirectly irreducible commutative ring without non-zero nilpotent elements is a
fiela.
It should be mentioned that the only elementary proofs of Theorem 2.1 are due to Herstein [7], [8]. In the first paper Herstein offers an elementary proof that R is commutative when n is constant; in the last paper he offers an elementary proof of the more general theorem. Forsythe and McCoy [9] offer an elementary proof in the case n is a prime, while Kaplansky [10] has been able to prove commutativity in a slightly more general case.

Definition 2.2: The characteristic of a ring R is the least positive integer c such that $c x=0$ for all $x \in R$; if no such positive integer exists, we say that the characteristic is infinite.

We first show that the characteristic of a q-ring is finite。

Lemma 2.1: If R is a $\underline{\text { q-ring, the characteristic } c}$ of R is a divisor of $n^{q}-n$.

Proof: Let $x \varepsilon R$. Then $n x \varepsilon R$, and $(n x)^{q}=n \times$. That is, $n q_{x}^{q}-n x=n^{q} q_{x}-n x=\left(n^{q}-n\right) x=0$. Hence, the characteristic is a aivisor of n^{g} - n.

This raises the question as to whether or not, for a fixed q, every divisor of $2^{q}-2$ is the characteristic of some q-ring. Wbile we as yet have no basis for an answer, it is a consequence of Theorem 3.1 that such is not the sase. Some examples will be given at that time.

It follows from Theorem 2.2 that every q-ring is
isomorphic to a subdirect sum of subdirectly irreducible rings, each of which has the property that, for all $x \in R$, $x^{8}=x$. Then, by Theorem 2.1 , these rings are commutative, and, by Theorem 2.3, these rings are actually fields, since these rings can have no non-zero nilpotent elements. It can easily be shown thet these fields are actually the Galois fields.

Lemma 2.2: A field F all of whose elements satisfy the equation $x^{q}=x$, contains not more than q elements.

Proof: Let $p(x)=x^{q}-x$. Every element in F is a root of the equation $p(x)=0$, and has associated with it a Innear factor of $p(x)$. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{N}$ be the eiements of F. Then $\left(x-\alpha_{1}\right),\left(x-\alpha_{2}\right), \ldots,\left(x-\alpha_{几}\right)$ are factors of $p(x)$. Let $f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \ldots\left(x-\alpha_{N}\right)$. Then $p(x)=g(x) f(x)$. Since $f(x)$ is of degree r and $p(x)$ of degree q, it follows that $r \leqslant q$.

Theorem 2.4: A subdirectly irreducible q-ring is a Galois field.

Proof: This follows imediately from Lemmas 2.1 and 2.2 and the discussion preceeding Lemma 2.2.

We now see that if R is a subdirectly irreducible $q-r i n g$, then $q=p^{\omega}$ for some p and some positive integer n.

If R is a q-ring or even a ring with property (1), definition 2.1, and $x \in R$, the element $x^{q^{-1}}$ has properties both interesting and useful in obtaining later results. We shall now estabilsh some of these properties. To simplify
the notation we shell place $\theta_{x}=x^{q-1}$.
Lemma 2.3: If R is a ring with property (I) and $x \varepsilon R$, then $\theta_{x} x=x$.

Proof: $e_{x} x^{-x^{-1}} \cdot x=x^{q}=x$.
Lemme 2.4: If R is a ring with property (1) and $x \in R$, then $e_{x}^{\mu}=e_{x}, n=1,2,3, \ldots$

Proof: This can be proved by induction. First, $e_{x}^{2}=\left(x^{8-1}\right)^{2}=x^{2 q-2}=x^{q} \cdot x^{q-2}=x^{8-2}=x^{q-1}=e_{x}$.
Assume true when $n=k$. Then,

$$
e_{x}^{R+1}=e_{x}^{K} \cdot e_{x}=e_{x} \cdot e_{x}=e_{x}
$$

Lemma 2.5: If R is a ring with property (1) and $x \in R$, tin $e_{X X} X, M=1,2,3, \cdots$.

Proof: This follows at once from Lemmas 2.3 and 2.4.
Lemma 2.6: If R is a ring with property (I) and $x \in R$, then $e_{X}^{w} X^{m}=X^{m}, n=1,2,3, \cdots$, sw $=1,2,3, \ldots$.

Proof: Lemma 2.5 establishes this for the case $m=1$. When $m>1$, we have
$e_{x}^{m} x^{m}=e_{x}^{n}\left(x \cdot x^{m-1}\right)=\left(e_{x}^{m} x\right)^{m-1}=x \cdot x^{m-1}=x^{m}$.
Lemme 2.7: If R is a during, there is an element $x \in R$ such that if $x^{N}=x$, then $r-1=n(q-1)$ for some positive integer n.

Proof: The definition of a Goring assures us that there is an element $x \in R$ such that $x^{q}=x$, but $x_{f}^{f} x, 1<t<q$.

Let

$$
r-1=n(q-1)+b, \quad b<q-1 .
$$

Then

$$
x^{N}=x^{\mu-1} \cdot x=x^{\mu(q-1)+b} \cdot x=x^{n(q-1)} \cdot x^{-k} \cdot x=e_{x}^{m} x^{b+1}=x^{b+1}=x
$$

Since $b+l<q$, this is impossible unless $b+1=1$. Thus, $r-1=n(q-I)$, and the lemma is established.

Lemma 2.8: If R is a $q-r i n g$ and $x \in R$, then

$$
x^{n g-(x-1)}=x, x=1,2,3, \cdots
$$

Proof: By Lemme 2.5 we have

$$
\dot{\sim} \cdot x=x, \quad \sim=1,2,3, \cdots
$$

But $\theta_{x}=x^{8-1}$, so we have

$$
\left(x^{q-1}\right)^{x} \cdot x=x^{n q-x} \cdot x=x^{x q-x+1}=x^{q-(n-1)}=x .
$$

We are now in a position to prove a theorem which plays an important role in ascertaining the structure of q-rings.

Theorem 2.5: If R is a q-ring, every non-trivial homomorph R^{8} of R is a $q^{\prime}-r i n g$ with $q^{i}=2$ or $q \equiv 1\left(\bmod \left(q^{\prime}-1\right)\right.$).

Proof: From the definition of homomorphism $x^{\prime} \varepsilon R^{\prime}$
 $1<q^{i}<q$, for all $x^{\prime} \varepsilon R^{\prime}$. If there are $q_{1}, q_{2}, q_{3}, \ldots$, $q_{m}, 1<q_{i}<q_{2} i=1,2, \ldots n$, with this property, let

$$
q^{\prime}=\min \left(q_{1}, q_{2}, \cdots, q_{n}\right)
$$

Otherwise, $q^{\prime}=q$. If $q^{\prime} Z^{2}$, it is clear that R^{\prime} is a Boolean ring. If $q^{\prime}>2$, then there is an element $\overline{\mathcal{E}} \mathcal{R}^{\prime}$ such that $\bar{J}^{\prime}=\mathrm{y}$, but $\bar{y}^{t} \neq \mathbb{Z}$ if $1<t<q^{\prime}$. Let $q=r\left(q^{\prime} 1\right)+s, 0 \leqq s<q^{\prime}-1$.

$$
y^{q}=y^{n\left(q^{\prime}-1\right)+A}=\left(y^{\left.q^{\prime}-1\right)^{2}} \cdot y^{N}=\left(e_{y}\right)^{N} \cdot y^{N}=y^{N}=y .\right.
$$

Since $s<q^{9}$, and $y_{\neq y,} l^{\prime}<t<q^{1}$, it must be true that $s=1$. Eence, $q=r\left(q^{i}-1\right) \neq 1$, and $q \equiv 1\left(\bmod \left(q^{1}-1\right)\right)$.

It was established in Lemma 2.1 that the characteristic of a q-iing is finite. A more important result concerning the characterisitic follows.

Theorem 2.5: If R is a q-ring, the characteristic of R contains no repeated prime factors.

Proof: From Theorems 2.2 and 2.4 we know that every q-ring is isomorphic to a subdirect sum of Galois fields. The characteristic of a Galois fiold is a prime. The characteristic of a subdirect sum of Galois fielas is the least conmon multiple of the characteristics of the Galois fielas, that is, the least common multiple of a set of prime numbers. Hence, the characteristic of R will contain no repeated prime factors.

In view of the rather severe restrictions thus imposed on the characteristic of a q-ring, one might naturally ask if there is a ring of degree q for every positive q. That such is not the case is proved in the following theorem.

Theorem 2.7: If R is a q-ring, then either $q=2$ or there exists a prime p and a positive integer n such that $q \equiv 1\left(\bmod \left(p^{n}-1\right)\right)$ 。

Proof: By Theorem 2.2 we know that R is isomorphic to a subdirect sum of sūdirectly irreducible rings. This isomorphism establishes a natural homomorphism between R and the subdirectly irreducible rings. From_Theorem 2.5
we learn that these rings are also q-rings. If the degree of R is greater than two, then the degree of at least one of the subdirectly irreducible rings must be greater than two, for the subdirect sum of a set of rings of degree two is of degree \leqq two. Let T be the ring of degree $q^{\prime}, q^{\prime}>2$. Then, by Theorem 2.5, $q \equiv 1\left(\bmod \left(q^{\prime}-1\right)\right)$. According to Theorem 2.4 T is actually a Galois field; hence, there exists a prime p and a positive integer n such that $c_{i}^{\prime}=p^{2}$. Consequently,

$$
q \equiv 1\left(\bmod \left(p^{*}-1\right)\right) .
$$

While this may appear to be a relatively weak restriction on q, it eliminates as possible values of q such numbers as 6,12 , and 14.

Naturally it is desirable to determine conditions both necessary and sufficient for the existence of a q-ring. Before we can do this, however, it is necessary to prove a theorem which is not only essential to this task but is also of considerable interest in its own right.

Theorem 2.8: The subdirect sum R of the Galois fields
$G F_{p_{1}}^{\alpha_{11}}, \ldots . G F_{1} \alpha_{1 \alpha_{1}}, G F_{p}^{\alpha_{31}}, \ldots, G F p_{2}^{\alpha_{3} n_{2}}, \ldots$.
 q-ring with $q=1+\operatorname{lcm}\left(p_{1}^{\alpha_{11}}-1, \ldots, p_{1}^{\alpha_{1 m}}-1, p_{2}^{\alpha_{21}}-1\right.$, $\left.\ldots, p_{2}^{\alpha_{2 n} n_{2}}-1, \ldots, \rho_{n}^{\alpha_{n 1}}-1, \ldots, p_{n}^{\alpha_{n n} n_{n}}-1\right)$ and with characteristic $c=p_{1} p_{2} \cdots p_{n}$.

Proof: That the subdirect sum of a set of Galois fields is a ring is well-known. We shall now show that it is a $q-x$ ing. Let $x \varepsilon R$. Then $x=\left(x_{11}, \ldots, \ldots, x_{1 m_{1}}, x_{21}, \ldots\right.$,
$\left.x_{2 n_{2}}, \ldots, x_{m 1}, \cdots, x_{m m_{m}}\right), x_{i j} \in G F p \alpha_{i}^{\alpha j} \cdot$ Since $x_{i j} \varepsilon G F p_{i}^{\alpha_{i j}}$, $x_{i j}^{p_{i}^{d_{j}}}=e_{i-1 j} \quad$ Let $q-1=1 c m\left(p_{1}^{\alpha \prime \prime}-1, \ldots, p_{1}^{\alpha(x)}-1\right.$, $\left.p_{2}^{\alpha_{21}-1}, \ldots, p_{z}^{\alpha_{2 m}-1}, \ldots, p_{n}^{\alpha_{m 1}}-1, \ldots, p_{n}^{\alpha_{m m}}-1\right)=\gamma_{i j}$ $\left(p_{i}^{\alpha_{i j}}-1\right)$. Then $x_{i j}^{q-1}=x_{i j}^{\gamma_{i j}\left(p_{i}^{\alpha j} j_{-1}\right)}=\left(x_{i j}^{p_{i}^{\alpha_{i j}}}\right)^{\gamma_{i j}}$ $\left(e_{x_{i j}}\right)^{\gamma_{i j}}=e_{x_{i j}}$. Hence, $x_{i j}^{q}=x_{i j}^{q-1} . x_{i j}=e_{x_{i j}} \cdot x_{i j}=x_{i j}$. So $x^{q}=\left(x_{11}^{q}, \ldots, x_{l n_{1}}^{q}, x_{21}^{q}, \ldots x_{2 n_{2}}^{q}, \ldots, x_{n 1}^{q}\right.$, $\left.\ldots, x_{n x_{n}}^{y}\right)=\left(x_{f 1}, \ldots, x_{1 m_{1}}, x_{21}, \ldots, x_{2 n_{z}}, \ldots, x_{m 1}\right.$, $\left.\ldots, x_{m_{m}}\right)=x$. To show that R is a q-ring we need to show that condition (2:) also holds.

By Lemma 2.7 there exists an element $\nabla_{i j} \varepsilon G_{F} p_{i}^{\alpha_{i j}}$ such that if $\forall_{i j}^{N}=\nabla_{i j}$ then $r-I=I_{i j}\left(p_{i}^{\alpha_{i j}} /\right.$). Let $z_{i j}=(\ldots$, $y_{i j}, \ldots$) and $z^{N}=z$ for all $z \varepsilon R$. Then $Y_{i j}^{N}=y_{i j}$ and $r m=$ $\gamma_{i j}\left(p_{i}^{\alpha i j}-1\right), i=1,2, \ldots, n, j=1,2, \ldots, n$. Hence, $r-1 \geqq \operatorname{lcm}\left(p_{1}^{\alpha_{1 \prime}}-1, \ldots, p_{1}^{\alpha_{11}}-1, p_{2}^{\alpha_{21}}-1, \ldots, p_{2}^{\alpha_{2 m}}-1\right.$, $\left.\ldots, p_{n}^{\alpha_{m}-1}, \ldots, p_{n}^{\alpha_{m \times N}-1}\right)=q-1$, and $r \geqq q$. Consequently, R is a q-ring.

Let $m=p, p_{2} \ldots p_{m}$. There exists an element $\nabla_{i j} \varepsilon \mathrm{GFp}_{i}^{\alpha} \alpha_{j}$ such that $p_{i} \nabla_{i j}=0$, but $r \nabla_{i j} \neq 0$ if $r<p_{i}$. Let $x_{i j}=\left(\ldots, J_{i j}, \ldots\right) \varepsilon R$ and let the characteristic of R be c. If $c x_{i j}=0$, then $c \bar{y}_{i j}=0$, and $c \doteq \lambda_{i} p_{i}, i=1,2, \ldots, n$. Hence, $c=\lambda p, p_{2} \ldots p_{n} \geqslant m$.

Let $x=\left(x_{1}, \ldots, x_{1 n_{1}}, x_{21}, \ldots, x_{2 m_{2}}, \ldots, x_{m /}\right.$, $\left.\cdots, 0, x_{m m_{n}}\right) \varepsilon R$. Then $m x=\left(m x_{11}, \ldots, m x_{1 m_{1}}, m x_{21}, \cdots\right.$,
$\left.m_{2 n_{2}}, \cdots, \operatorname{mx}_{n,}, \cdots, \operatorname{mx}_{n n_{n}}\right)=(0,0, \ldots, 0)=0$. According ry, $c \leqq m$ m

Thus, $c=m$.
Conditions both necessary and sufficient for a ring R to be a q-ring can now be established.

Theorem 2.9: There is a ring of degree q if and only if

$$
q=1+\lim _{i=1,2, \cdots, w_{i}}\left(\rho_{i}^{\alpha_{i j}}-1\right), p_{i}^{\alpha_{i j}} \neq p_{k}^{\alpha} k e
$$

if if k or $f \neq 1$.
Proof: Let $q=1+\operatorname{lcm}\left(p_{c}^{\alpha i j}-/\right)$.

$$
\begin{aligned}
& i=1,2 ; \cdots, n \\
& j=1,2, \cdots, x_{i}
\end{aligned}
$$

We wish to show that there is a ring of degree q. Let R be the direct sum of the Galois fields Fp $\alpha_{i}, 1=1,2, \ldots$, $n, j=1,2, \ldots, n_{i}$. By Theorem 2.8 this direct sum is a Goring with

$$
q=1+\operatorname{Lcm}_{\left.i=1, p_{i}^{\alpha i j}-1\right)}^{i=1,2, \cdots, n} \begin{gathered}
j=1,2, \cdots, n_{i}
\end{gathered}
$$

Let R be a q-ring. Then by Theorems 2.2 and 2.4 R Is isomorphic to a subdirect sum of Galois fields, GYp icj. $i=1,2, \ldots, n, j=1,2, \ldots, n_{i}$. Without loss of generality we can assume that $p_{i}^{\alpha i j} \neq p_{k}^{\alpha k}$ if if or $j \neq 1$, since the repetition of a Galois field affects neither the characteristic or degree of the ring. Hence, by Theorem 2.8, $q=1+$ $\operatorname{lcm}\left(p_{i}^{\alpha i j}-1\right)$ 。
$i=1,2, \cdots, m$
$j=1,2, \ldots, x_{i}$

At the conclusion of Theorem 2.7 we cited several numbers which could not serve as possible values of q. We can now ado other numbers to this list. For example, 10 was not eliminated as a possible value of q by Theorem 2.7, but it is elimfnetea by Theorem 2:9.

Wile the results obtained in this chapter give some insight into q-rings, a few examples will suffice to show that the actual structure of the rings is rather indefinite. To illustrate, $13=1+1 \mathrm{~cm}(7-1,5-1), 13=1+1 \mathrm{~cm}(13-1,4-1)$, and $13=1+1 \mathrm{~cm}(13-1,3-1)$. That is, one can construct a $\mathrm{q}-\mathrm{ring}, \mathrm{q}=13$, as the subdirect sum of GF 7 and GF 5 , or as the subdirect sum of GF/s and GF4, or as the subdirect sum Of GFis and GF3. The previous remarks are not intended to exhaust the possible means of constructing q-rings, $q=13$, but only to mention a few. From these we can see that the actual structure of the rings may differ quite widely.

It is of interest to note that the characteristic of the first ring is 35 , the characteristic of the second is 52, and the characteristic of the third is 39. This would seem to indicate that consideration of both the degree and the characteristic of a ring is essential to any attempt to study the structure of these rings. The results obtainable in this fashion comprise the major portion of Chapter III.

CHAPTER III

RESTRICHED q-RINGS

We first define some of the terms used in this chapter.

Definition 3.I. A (q, c)-ring is a q-ring of charactero istic c.

If there exists a ring of degree q and characteristic c, q will be said to belong to c.

Two results obtained in Chapter II are important in establishing relationships between qand c. By Lema 2.1 we find that c must be a divisor of $2^{\mathcal{F}}$. 2 . By Theorem 2.6 We find that c is the product of distinct primes. We are now in a position to prove a more restrictive relationship between q and c.

Theorem 3.1. If q belongs to $c=p_{1} p_{2} p_{3} \cdots p_{n}$, $p_{i} \neq \rho_{j}$ if $1 \neq j$, then either $p_{i}=2$, and/or there are positive integers $\alpha_{i} \geqq /$ such that $q \equiv 1\left(\bmod \left(p_{i}^{\alpha i}-1\right)\right), i=1,2, \ldots$, n.

Prool: Let R be a (q, c)-ring, $c=p, p_{2} \cdots p$, $p_{i \neq} p_{j}$ if ifj. By Theorems 2.2 and 2.4 we kow that R is isomorphic to a subdirect sum of Galois fields, and, by

Theorem 2.8, that the characteristic of R is the least common mitiple of the characteristics of the Galois fields. Hence, there must be at least one Galois field of characteristic p_{1} in this subdirect sum, at least one of characteristic p_{2}, and at least one of characteristic p_{i}. Let $G F p_{i}^{\alpha \dot{i}}$ be the Galois field of characteristic p_{i}. The isomorphism between R and the subdirect sum of Galois fielas establishes a homomorphism between R and $G F p_{i}^{\alpha_{i}}$. If $p_{i}^{\alpha i}>2$, then, by Theorem 2.5, $q \equiv 1\left(\bmod \left(p_{i}^{\alpha i}-1\right)\right)$; if $p_{i}^{\alpha+}=2$, then $p_{i}=2$, and the theorem is established.

Foilowing Lemma 2.1 we raised the question of whether or not every divisor of $2^{q}-2$ was the characteristic of some ring of degree q. We can now cite some examples which show that such is not the case. For, let $q=4$. Then $2^{q}-2=14$. 7 is a divisor of 14. Yet there is no (4,7)-ring, since $4 \equiv I$ (mod 6). However, all the results that we have obtained thus far do not enable us to answer questions about the existence of certain (q, C)-rings. To raise one: Is there a $(5,6)$-ring? 6 is a divisor of $2^{5}-2$, and $5 \equiv 1(\bmod 2)$. Every condition imposed by Lemma 2.1, Theorem 2.0, and Theorem 3.1 has thus been satisfied. Despite this, we have no assurance that there is a $(5,6)$-ring. The next theorem establishes necessary and sufficient conditions for the existence of a (q, c)-ring; these conditions eliminate the possibility of a $(5,6)-r i n g$.

Theorem 3.2. q belongs to $c=p_{1}, p_{2} p_{3} \ldots p_{\pi}, p_{i} \neq p_{j}$
when $1 \neq j$, if and only if there exist $\alpha_{i j} \geqq I$ such that

$$
\begin{gathered}
q=1+1 \mathrm{~cm}\left(p_{i}^{\alpha_{i j}}-1\right) . \\
i=1,2, \cdots, n^{\prime} \\
j=1,2, \cdots, x_{i}, \alpha_{i n}
\end{gathered}
$$

Proor: Let $q=1+1 \mathrm{~cm}\left(p_{i}^{\alpha_{j}}-1\right)$.

$$
\begin{aligned}
& i=1,2, \cdots, n \\
& j=1,2, \cdots, n_{i}
\end{aligned}
$$

Let R be the direct sum of the fielids GFp $p_{i}^{d i j}$. From Theorem 2.8, we know that R is a q-ring with

$$
q=1+\operatorname{lom}_{i=1,2, \cdots, n}^{j=1,2, \cdots, n_{i}} .
$$

and $c=p_{1} p_{2} \ldots p_{n}$. Hence, q belongs to c.
Let R be a (q, c)-ring. Then, as before, R is isomorphic to a subdirect sum of Galois ifelds GF' $p_{i}^{\alpha_{i j}}$. Again using Theorem 2.8 we find that

$$
\mathrm{q}=1+\operatorname{lem}\left(P_{i}^{\alpha_{i j}}-1\right)
$$

and $c=P, P_{2} \ldots P_{N}, P_{K} \neq P_{L}$ if $K \neq L$. Since $c=p, p_{2} \ldots P_{m}$, we have

$$
p_{1} p_{2} \cdots p_{n}=P_{1} P_{2} \cdots P_{N}
$$

Since p_{i} is a divisor of $P, P_{2} \ldots P_{N}$, there is a $P_{K}=P_{i}$. Conversely, since P_{L} is a divisor of $p, p_{2} \ldots p_{n}$, there is a $p_{j}=P_{L}$. Hence, the primes P_{i} are just those primes p_{i}, $i=1,2,3, \ldots, n$, which are the factors of c. Thus we have shown that if q belongs to $c=p, p_{2} \cdots p_{m}$, there exist $\alpha_{i j} \geqslant I$ such that

$$
q=1+\underset{i=1,2,}{l \mathrm{~cm}}\left(p_{i}^{\alpha i j}-1\right)
$$

corollary 3.1: ${ }^{j=}$ If q belongs to $c=p_{1}, p_{2} p_{3} \ldots p_{m}$
then $q \geqq 1+1 \mathrm{~cm}\left(p_{1}-1, p_{2}-1, p_{3}-1, \ldots, p_{n}-1\right)$.
Proof: It follows immediately from Theorem 3.2 that the minimal q which belongs to c is that for which $\alpha_{i j}=1$ for all i and j, i.e., $1+1 \mathrm{~cm}\left(p_{1},-1, p_{2}-1, p_{3}-1, \ldots\right.$, $\left.p_{n}-I\right)$ 。

We now see that there can be no (5,6)-ring since there do not exist $d_{i j}$ such that

$$
\begin{gathered}
5=1+1 \mathrm{~cm}\left(3^{\alpha_{1} j_{1}}-1,2^{\alpha_{2} j_{2}}-1\right), \\
j_{i}=1,2, \cdots, n_{i}
\end{gathered}
$$

In Chapter II we raised the question of rings whose degree and characteristic are equal. We know there are such rings, for the p-rings of meCoy and Montgomery [2] have this property. It is the conjecture of the author that there are no other rings with this property, but the question is still open. A partial answer follows.

All rings whose degree q and characteristic c are equal have the following properties:
(1) $q=p_{1} p_{2} p_{3} \ldots p_{n}, p_{i} \neq p_{j}$ if $i \neq j$,
(2) $p, p_{2} \bar{z}_{3} \cdots p_{r}=I+I c m\left(p_{i}{ }_{i j}-1\right)$, $i=1,2, \cdots, n$
(3) q is a divisor of $2^{\gamma}-2$.

Lemma 3.1: If $n>1$, then $\operatorname{lcm}\left(p,-1, p_{z}-1, \ldots\right.$, $\left.p_{n}-1\right)<p_{1} \quad p_{2} p_{3} \cdots p_{n}-1$.

Proof: $\operatorname{Lcm}\left(p,-1, p_{2}-1, \ldots, p_{n}-1\right) \leqq(p,-1)\left(p_{2}-1\right)$
$\cdots\left(p_{n-1}-1\right)\left(p_{n}-1\right)<p_{1} p_{2} \cdots p_{n-1}\left(p_{n}-1\right)=p, p_{2} \cdots p_{n}-p_{1}$ $p_{2} \cdots p_{n-1}<p_{1} p_{2} \cdots p_{n}-1$.

Lemma 3.2: If $p_{1} \neq p_{2}$, then $p_{1} p_{2}-I \neq 1 \mathrm{~cm}\left(p_{1} \alpha_{1}-I_{3}\right.$ $j_{i}=1,2, \cdots, n_{i}$

$p_{2}^{\alpha_{2 j}}-1$).
Proof: Assume there exist $\alpha_{i j}$ such that $p, p_{2}-1=$
lcm ($p_{1}^{\alpha_{1 j}} \quad-1, p_{2}^{\alpha_{2 j}}-1$). Since $p,-1$ divides $p_{1}^{\alpha_{j}},-1$, it divides $p_{1} p_{2}-1$. Likewise, $p_{2}-1$ divides $p, p_{2}-1$. Hence,
(1) $p, p_{2} \equiv 1(\bmod (p,-1))$,
(2) $p, p_{2} \equiv 1\left(\bmod \left(p_{2}-1\right)\right)$.

The above can be written in the following form
(I') $\mathrm{p}_{2} \equiv 1(\bmod (\mathrm{p},-1))$,
(2') $p_{1} \equiv 1\left(\bmod \left(p_{2}-1\right)\right)$.
From these we obtain
(3) $p_{2}=1+r\left(p_{1}-1\right)$,
(4) $p_{1}=1+s\left(p_{2}-1\right)$.

These lead us to

$$
p_{2}=\frac{\rho_{1}-1}{N}+1=1+r\left(p_{1}-1\right) .
$$

Fence,

$$
\begin{aligned}
\frac{p,-1}{2} & =r(p,-1), \\
p,-1 & =r s(p,-1), \\
1 & =r s
\end{aligned}
$$

Bat r and s are both positive integers, so that $r=s=1$. Consequently, we find that $p_{1}=p_{2}$ in contradiction; and the lemma is established.

Lemma 3.3: If $n>1$ and there is an i such that $p_{i}=2$, then

$$
\begin{aligned}
p_{1} p_{2} p_{3} \cdots p_{n} \neq 1+1 c m\left(p_{i} \alpha_{i j}-1\right) \\
i=1,2, \cdots, n \\
j=1,2, \cdots, n_{i}
\end{aligned}
$$

Proof: For definiteness assume that $p_{1}=2$. Then $p_{1} p_{2} p_{3} \cdots p_{n}$ is even. Since $p_{i} \neq p_{j} \quad$ if $i \neq j$, then p_{z} will be odd and $p_{2}^{\alpha_{2} j}$ will be odd. Accordingly, $p_{2}^{\alpha_{2}} j-1$ will be even, and

$$
\begin{gathered}
1+\operatorname{lom}_{\operatorname{con}}\left(p_{i}^{\alpha} j\right. \\
i=1,2, \cdots, n \\
j=1,2, \cdots, n_{i}
\end{gathered}
$$

will be odd. This proves the lemma.
Hardy and Wright [1] list only 6 composite numbers q less than 2,000 which are divisors of $2^{8}-2$. These are 341, $561,645,1387$, 1729, and 1905. Each of these can be eliminated as a possible value of the degree and character. istic of a ring by one of the preceding lemmas or by showing directly that it can not be written in the form

$$
p_{1} p_{2} \cdots p_{m}=1+\underset{\substack{\text { lem } \\ i=1,2, \cdots, \cdots, m_{i} \\ j=1,2, \cdots, m_{i}}}{\alpha_{i} j} \text {-1). }
$$

We now know that if there is a (q,q)-ring, q composite, that q must be greater than 2,000 , thet it must be the product of at least three odd primes, and, furthermore, that in the representation of q as

$$
\begin{gathered}
1+1 \mathrm{~cm}\left(p_{i}^{\alpha_{i j}}-1\right) \\
i=1,2, \cdots, w \\
j=1,2, \cdots, n_{i}
\end{gathered}
$$

at least one of the $\alpha_{i j}$ is greater than one.
An example will show that the technique used in proving Lema $3:$ is inadequate in the general case. Let
$p_{1}=5, p_{s}=17$, and $p_{3}=13$. Then $p_{1} p_{2} p_{3}-1$ is divisible by $p_{1}-1, p_{2}-1$, and $p_{3}-1$. By considering all $\alpha_{i j}$ such that $p_{\alpha}^{\alpha_{i j}}<p_{1} p_{2} p_{3}-1$, it can be shown that there are no $\alpha_{i j}$ such that $p_{1} p_{2} p_{3}-1=1 \mathrm{~cm}\left(p_{i}^{\alpha_{i j}}-1\right)$.

$$
\begin{aligned}
& i=1,2,3 \\
& j=1,2, \cdots, k_{i}
\end{aligned}
$$

We are at present left in the position of neither being able to prove that there is no (q, q)-ring, q composite, nor being able to exhibit such a ring.

Definition 3.2: If q belongs to c, the c-maximal divisor set of ($q-1$) is the set of all divisors of ($q-1$) of the form $p_{i}^{\alpha_{i}}-1, p_{i}$ a prime factor of c.

Note that Theorem 3.2 assures us that there is at least one divisor of $q-1$ of the form $p_{c}^{\alpha \dot{c}}$-l for each prime factor of c.

Definition 3.3: A subdirect sum. T of Galois fields is a pepresentation of a (q, c)-ring R if T is isomorphic to R.

Definition 3.4: A Galois field GFp $\rho_{i}^{\alpha i}$ is a component of a (q, c)-ring R if there exists a representation of R which includes GFp $p_{i}^{\alpha i}$.

Definition 3.5: The Galois ifield GFpit is an essential component of $a(q, c)-r i n g ~ R$ if every representation of R includes GFpici.

Lemma 3.4: If $\mathrm{GFp}_{i}^{\alpha_{j} j}$ is a component of a (q, c)-ring, then $c=\lambda p_{i}$.

Proof: Let R be a ($q-c$)-ring with GFpajas a_com-
ponent. Then R is isomorphic to a subdirect sum of Galois fields, $G F p_{1}^{\alpha_{1}}, \ldots, G p_{q}^{\alpha_{1}, \alpha_{1}}, \ldots ., G F p p_{i}^{\alpha_{i}}, \ldots, \operatorname{GFp}_{i}^{\alpha_{i j}}$, $\ldots, \mathrm{GFP}_{l}^{\alpha_{i m_{i}}}, \ldots, \mathrm{GFp}_{n}^{\alpha_{m 1}}, \ldots . \mathrm{GFp}_{n}^{\alpha_{m m_{m}}}, \mathrm{GFp}_{k}^{\alpha_{k l}} \neq \mathrm{GFp}_{m}^{\alpha_{m n}}$ if $k \neq m$ or $l \neq n$. Hence, by Theorem 2.8, $c=p_{1} p_{2} \ldots p_{2} \ldots p_{n}$ $=\lambda p_{i}$ 。

Lemma 3.5: If $\mathrm{GFp}_{c}^{\alpha i j}$ is a component of a (q, c)-ring, then $\left(p_{l} \alpha_{j}-1\right)$ is a member of the c-maximal divisor set of (q-1).

Proof: Let F be a (q, c)-ring with $\mathrm{GFp}_{\text {a }}^{\alpha j}$ as a component. That is, R is isomorphic to a subdirect sum of
 $\mathrm{GFp}_{i}^{\alpha_{i j}}, \ldots, \mathrm{GFp}_{i}^{\alpha_{i n}}, \ldots, \mathrm{GFp}_{n}^{\alpha_{n 1}}, \ldots, \mathrm{GFp}_{n}^{\alpha_{n n_{n}}}$. By Theorem 2.8, $q-1=\operatorname{lem}\left(p_{1}^{\alpha_{1}}-1, \ldots, p_{1}^{\alpha_{1}} x_{1}-1, \ldots, p_{i}^{\alpha_{i 1}}-1\right.$, $\left.\ldots, p_{i}^{\alpha_{j}}-1, \ldots, p_{i}^{\alpha_{i} m_{i}}-1, \ldots, p_{m}^{\alpha_{m i}}-1, \ldots, p_{m}^{\alpha_{m m}}-1\right)$. By Lemma $3.4 p_{i}$ is a prime factor of c. Hence, ($p_{i}^{\alpha_{i j}}-1$) is a member of the c - maximal divisor set of q - .

Lemma 3.6: If q belongs to c, the least common multiple of the c - maximal divisor set of ($q-1$) is ($q-1$).

Proof: Let S be the c-maximal divisor sat of $q-1$. The icm $\{S\} \leqq q-1$, since every member of S is a divisor of q-1.

Since q belongs to c, we have, from Theorem 3.2

$$
q=1+\underset{\substack{i=1,2, \cdots, n \\ j=1,2, \cdots, n_{i}}}{\left.\operatorname{com}_{i}^{\alpha j j}-1\right),}
$$

where p_{i} is a prime divisor of c. Hence, $\left(p_{i}^{\alpha j}-1\right) \varepsilon \mathrm{S}$, and

$$
\text { Icm } \left.\{s\} \geqq I_{\substack{i=1,2, \cdots, m_{2} \\ j=1,2, \cdots, n_{i}}}^{\alpha_{i} j}-1\right)=q-1 .
$$

Accordingly, lem $\{\mathrm{S}\}=\mathrm{q}-1$.
The preceding lemmas place us in position to develop our fundamental structure theorems. We shall first prove that every member of the c-maximal divisor set of ($q-1$) is a component of a (q, c)-ring.

Theorem 3.3: If $p_{i}^{\alpha i}-1$ is a member of the c-maximal divisor set of ($q-1$), then $G F p_{i}^{\alpha_{i}}$ is a component of a (q, c)ring.

Proof: Let $p_{k}^{\alpha_{k}}-I$ be a member of the e-maximal divisor set of ($q-1$). Since q belongs to $c=p, p_{2} \ldots p_{n}, p_{i \neq}$ p_{j} if $i \neq j$, then, following Theorem 3.2, there exist $\alpha_{i j} \geqq 1$ such that

$$
\begin{gathered}
q=1+I_{\mathrm{cm}}\left(p_{i}^{\alpha_{i j}}-1\right) . \\
i=1,2, \cdots, n^{2} \\
j=1,2, \cdots, n_{i}
\end{gathered}
$$

It may be that $p_{k}^{\alpha k}-1$ is incluaded in the set $\left\{p_{i}^{\alpha j j}-1\right\}$. If it is, let R be the subdirect sum of $G F p_{i}^{\alpha_{i j}}$. According to Theorem 2.8, R is a (q, c)-ring with

$$
\begin{gathered}
a=1+1 \mathrm{~cm}\left(p_{i}^{\alpha_{i j}}-1\right) \\
i=1,2, \cdots, n_{1} \\
j=1,2, \cdots, m_{i}
\end{gathered}
$$

and $c=p, p_{2} \cdots p_{n} \cdot$
If $p_{k}^{\alpha_{k}}-1$ is not included in the set $\left\{p_{i}^{\alpha_{i j}}-1\right\}$, let R be the subdirect sum of $G F p_{i}^{\alpha_{i j}}$ and $G F p_{k}^{\alpha}$. Again using Theorem 2.8, R is a (q^{\prime}, c^{\prime})-ring with

$$
q^{1}-1=1_{\substack{i=1 \\ i=1,2, \cdots, n \\ j=1,2, \cdots, n_{i}}}^{\left.\alpha_{\lambda}-j, p_{k}^{\alpha}-1\right)=1 \operatorname{cin}\left(q-1, p_{k}^{\alpha}-1\right) .}
$$

$=q-1$. It also follows that $c^{\prime}=p, p_{2} \ldots p_{n}=c$. Hence, R is a (q, c)-ring. In either case, $G_{F} \mathcal{O}_{k}$ is a component of a (q, c)-ring.

Of even more interest is the theorem which follows, dealing with the essential components of a (q, c)-ring. The representation theorems of Stone [1] and McCoy and Montgomery [2] are special cases of this theorem.

Fileorem 3.4: GFP: is an essential component of a (q, c)-ring if and only if p_{i} is a factor of $c,\left(p_{i}-1\right)$ is a member of the c-maximal divisor set of ($q-1$), but ($p_{i}^{\alpha i}-1$) is not a member if $\alpha_{i}>1$.

Prool: Let S be the e-maximal divisor set of ($q-1$). Let $\left(p_{i}^{j}-I\right) \varepsilon s$, but ($\left.p_{i}^{\alpha i}-1\right) \notin S$ if $\alpha_{i}>1$. Since p_{i}^{i} is a factor of c, every representation of a ($q_{5} c$)-ring must include a Galois field of characteristic p_{x}^{*}. Suppose some representation includes $G F p \alpha_{i}, \alpha_{i}>1$. Then, by Lemma 3.5, ($p_{i}^{\alpha i}-1$) is a member of S in contradiction. Therefore, every representation will include GFpi.

Let $G F p_{i}$ be an essential component of a ($q, 0$)-ring. Then $\left(p_{i}-1\right) \varepsilon s$ and p_{i} is a factor of c. Suppose ($p_{<}^{\alpha i}-1$) $\varepsilon_{S}, \alpha_{i}>1$. Then, by Theorem 3.3, there is a (q, c)-ring R Whose representation includes GF $\rho_{i}^{\alpha i}$. Let the representation
 Let T be the direct sum of all the fielas appearing in the \qquad
representation of R except GFp_{i} : Then T is a ($\mathrm{q}^{9}, \mathrm{c}^{\mathrm{p}}$)-ring with $q^{1}-1=1 \mathrm{~cm}\left(p_{1}^{\alpha_{11}}-1, \ldots, p_{6}^{\alpha_{i}}-1, \ldots, p_{m}^{\alpha_{m \times N}}-1\right)=1 \mathrm{~cm}$ ($p_{1}^{\alpha_{11}}-1, \ldots, p_{i}-1, \ldots, p_{\alpha}^{\alpha_{i}}-1, \ldots, p_{n}^{\alpha_{m m \sim}^{\prime}}-1$) $=q-1$ since $p_{i}-1$ is a divisor of $p_{i}^{\alpha i}$-1. Also $c^{\dagger}=p_{i} \ldots p_{i} \ldots p_{n}=c$. We have thus constructed a (q, c)-ring with a representation not including GFP_{i} in contradiction. Hence, ($\left.\mathrm{p}_{\kappa}^{\alpha_{i}}-1\right) \neq \mathrm{s}$, $\sigma_{i}>1$.

Corollary 3.2: If q belongs to $c=p_{1} p_{z} \ldots p_{n}, p_{i} \neq$ p_{j} if $i \neq j$, and $p_{i}-1, i=1,2, \ldots, n$, is a member of the c-maximal divisor set of $q-1$, but $p_{\alpha}^{\alpha_{i}}-1, \alpha_{i}>1, i=1,2, \ldots$, n, is not a member, then every ($q, 0$) -ring is iscmorphic to a subdirect sum of $G a l o i s$ fields $G F p_{i}, i=1,2, \ldots, n$.

Proof: This follows immediately from the previous theorem.

The McCoy-Montgomery representation theorem, which includes the Stone representation theorem, is actually a special case of this corollary. The hypotheses of this theorem restrict the rings to those for which $q=c=p$ and the only member of the c-maximal divisor set is p-1. Accordingly, the rings are isomorphic to a subdirect sum of Galois fields GFp.

Theorem 3.5: $\operatorname{GFP}_{i} \alpha_{i}, \alpha_{i}>1$, is an essential component of a (q, c)-ring if and only if p_{c} is a factor of $c,\left(p_{c}^{\alpha_{c}}-1\right)$ is a member of the c-maximal divisor set S of ($q-1$), and Icm $\left\{s-\left(p_{i}^{\alpha i} \quad-1\right)\right\}<q-1$.

Proof: Suppose $p_{i}^{\alpha i}-1$ is a member of the c-maximal
divisor set S of $(q-1)$ and lem $\left\{S-\left(p_{i} ;-1\right)\right\}<q-2$. Suppose the representation of the (q, c)-ring R does not include $G F p c_{c}^{\alpha,}$, that is, R is isomorphic to a subdirect sum of Galois fields GFp $\alpha_{i}^{\alpha j}$ which does not include GFp ${ }_{c}^{\alpha i}$. Then, by Theorem 2.8, the degree of R is

$$
q^{\prime}=1+1 \mathrm{~cm}\left(p_{<}^{\alpha_{i} j} \begin{array}{c}
i=1,2, \cdots, n \\
j=1,2, \cdots, n_{i}
\end{array}\right.
$$

in contradiction. Hence, the representation of R inust include GFpeic .

Let R be a (q, c)-ring with $G F p_{i}^{\alpha i}$ as an essential component. By Lemma 3.4, p_{c} is a factor of c , and, by Lemma 3.5, ($p_{\infty}^{\alpha i}-1$) is a member of the c-maximal divisor set S of $(q-1)$. $\operatorname{Icm}\left\{s-\left(p_{i}^{\alpha_{i}}-1\right)\right\} \leqq \operatorname{Icm}\{s\}=q-1$. Suppose $\operatorname{lcm}\left\{\mathrm{S}-\left(p_{i}^{\alpha i}-1\right)\right\}=q-1$. Since $\left(p_{i}^{\alpha-1}\right) \varepsilon \mathrm{S}$ and $\left(p_{i}-1\right)$ is a divisor of $\left(p_{i}^{\alpha \dot{*}}-1\right),(p ;-1) \varepsilon S$. Let T be the direct product of the Galois fields $G F p_{i}^{\alpha-j}$ such that $\left(p_{i}^{\alpha i j}-1\right) \varepsilon\left\{S-\left(p_{i}^{\alpha i}-I\right)\right\}$. Then, by Theorem 2.8, the degree q^{2} of T is $q^{\prime}=1+1 \mathrm{~cm}$ $\left\{S-\left(p_{i}^{\alpha i}-1\right)\right\}=q$. The characteristic of T is c, so T is a (q, c)-ring with a representation which does not include $\operatorname{GFP}_{i}^{\alpha i}$ in contradiction. Hence, $1 \mathrm{~cm}\left\{\mathrm{~S}_{\mathrm{L}}\left(\mathrm{p}_{i}^{\alpha i}-1\right)\right\}<\alpha-1$.

In view of Theorems 3.4 and 3.5 , one might ask if there are any (q, c)-rings, q composite, whose structure is uniquely determined. The answer is yes. As an example, consider the $(21,55)-r i n g$. The c-maximal divisor set of $20=$ 21-1 includes only $4=5-1$, and $10=11$.1. By Theorem 3.4,
GF_{5} and $G \mathrm{~F}_{4}$ are essential components of a (21,55)-ring; they are the only components, so every (21,55)-ring is isomorphic to a subdirect sum of the fields GFs and GF"/ .

There remain other (q, c)-rings whose structure is not so definite. Consider the $(25,195)-$ ring. The c-maximal divisor set of $24=25-1$ includes $2=3-1,8=3^{2}$-1, $4=5-1$, $24=25-1$, and $12=13-1$. An examination of Theorems 3.4 and 3.5 shows that the only essential component is GF_{13}. It is possible to exhibit (25,195)-rings which do not have a particular member of the set $\mathrm{GF}_{3}, \mathrm{GF}_{9}, \mathrm{GF}_{5}$, and GF_{25} as a component. The direct sum of GFF, GFq, and GFisis a (25, 195)-ring which does not have either GF3 or GFzsas a component. The direct sum of GF25, GF3, and GF/3 is a (25,195) ring which does not have either $G F s$ or $G F g$ as a component.

As an appifation of Theorem 3.5, let us examine a $(25,39)-r i n g$. The c-maximal divisor set of $24=25-1$ includes $2=3-1,8=3^{2}-1$, and $12=13-1$. Essential components of a $(25,39)$-ring are $G F_{q}$ and $G F_{13}$. There are some (25-39)rings which include GFi as a component and others which do not include GF_{3}. The direct sum of GF_{3}, GF 9 , and $\mathrm{GF} / 3$ is an example of the former, while GF9 and GFis is an example of the latter.

In sumary, it appears that there are essential ambiguities in the structare of many (q, c)-rings. We can say that in any represontation of a particular (qra)-ring only certain Galois fields may be used, but we can not \qquad
guarantee that in every representation all permissible Galols flelds will be used.

CHAPTER IV

SOME REMARKS ON A THEOREM OF WADE'S

Wade [4] considers a slightly more general class of rings than the p-rings, namely, commutative rings R with the following restrictions:
(A) There exists an integer m such that for $x \in R$, $\operatorname{mix}=0$.

It is not assumed that R necessarily has characteristic m. In that which follows p denotes any prime divisor of \bar{m}, and $p^{\boldsymbol{N}}$ the maximum power of p dividing m.
(B) For every $x \in \mathrm{R}$, there is a $\bar{y} \varepsilon \mathrm{R}$ such that $x^{\boldsymbol{f}}-x$ $=\mathrm{py}$ 。
(C) If $p x=0$, there is a y such that $x=p^{n-1} y$.

We sha 11 show in this chapter that, for certain values of m, commutative rings with properties (A), (B), and (C) are actually (q, c)-rings. To do this we consider a representation theorem obtained by Wade and prove that the rings used In this representation are (q, c)-rings.

Let I_{m} denote the residue class ring of the integers modulo m . Then the theorem of Wade's can be stated in the following forms

Theorem 4.I (Wade): A ring R with properties (A), (B), (C) is a subring of the direct sum of rings $I_{\text {me }}$.

We shall first restrict ourselves to dealing with the rings $I_{m b}$ where m is the product of distinct primes. In order to establish that these rings are (q, c)-rings we need the following theorem.

Theorem 4.2: If $n=a r, m=b r,(a, b)=1, m=p, p_{2} p_{3}$ $\ldots p_{n}, p_{i} \neq p_{j}$ if $i \neq j, \alpha=1 c m\left(p_{1}-1, p_{z}-1, \ldots, p_{m}-1\right)$, then

$$
\begin{aligned}
& n^{\alpha} \equiv 1 \quad(\bmod b), \\
& n^{\alpha+1} \equiv n(\bmod \pi) .
\end{aligned}
$$

Proof: Since $m=p_{1}, p_{z} p_{3} \cdots p_{m}, p_{i} \neq p_{j}$ if $1 \neq j$, and $m=b r$, it follows that $(b, r)=1$. Also, $(b, a)=1$, so $(b, n)=1$. Now, $b=p_{1}^{\prime} p_{2}^{\prime} \ldots p_{m c}{ }^{\prime}$, where $p_{i}^{\prime}, i=1,2, \ldots$, m, is one of the set $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$. For convenience, arrange the factors $p_{1}, p_{2}, \ldots, p_{n}$ in such a manner that $b=p, p_{2} \cdots p_{m}$ and $r=p_{m+1} \cdots p_{n}$. By Fermat:s theorem
(1) ${ }_{n} f_{i-1} \equiv 1\left(\bmod p_{6}\right), 1=1,2, \ldots, m$,
(2) $n^{\alpha} \equiv 1\left(\bmod p_{j}\right), i=1,2, \ldots, m$.

That is,
(3) $n^{\alpha}=1+I_{i} p_{i}, i=1,2, \ldots, m$,
(4) $n^{\alpha}=1+1 p_{1} p_{2} p_{3} \cdots p_{* 2}=1+1 b$ 。
consequentiy,

$$
\text { (5) } n^{\alpha} \equiv 1(\bmod b) .
$$

If we multipiy (4) by $n=a r$ we obtain
(6) $n^{\alpha+1}=n+1$ a m_{2}
(7) $\quad n^{\alpha+1} \equiv n(\bmod m)$.

Corollary 4.1: If $(n, i m)=1, m=p, p_{2} \ldots p_{n}$,
$p_{i} \neq p_{j}$ if if $j, \alpha=1 \mathrm{~cm}\left(p,-1, p_{2}-1, \ldots, p_{\infty}-1\right)$, then $\mathrm{n}^{\alpha} \equiv 1(\bmod m)$

Proof: This follows easily from Theorem 4.2, since we now have $r=1$ and $m=b$.

We are now in a position to prove our assertion that, under certain restrictions, the rings $I_{\text {m }}$ are ($q, 0$)-rings.

Theorem 4.3: If $m=p, p_{2} \ldots p_{n}, p_{i} \neq p_{j}$ if $i \neq j$, then the rings I_{m} are (q, c)-rings with $c=m$ and $q=1+1 \mathrm{~cm}$ ($p,-1, p_{2}-1, p_{3}-1, \ldots, p_{n}-1$).

Proof: That the integers modulo m form a ring is well known. Clearly the characteristic of the ring is m. If $n \varepsilon I_{m}$, from Theorem 4.2 we know that $n 8=n$, where $q=I t$ lI ($p_{1}-1, p_{2}-1, p_{3}-1, \ldots, p_{n}-1$). Hence, I is a (q^{1}, c)- ring for some q^{1}. It follows immediately from Corollary 3.1 that $q^{\prime} \geqq q$; hence, I_{m} is a (q, c)-ring.

Let us replace property (A) of wade by the following:
(A^{\prime}) There exists an integer $m=p_{1} p_{2} \ldots p_{n}, p_{i} \neq$ p_{j} if if j, such that for $x \in R, m x=0$.

We may now rewrite Theorem 4.1 as follows:
Theorem 4.4: A ring R with properties (A^{\prime}), (B),
(C), is a subring of the direct sum of (q, c)-rings with $c=m$ and $q=1+1 \mathrm{~cm}\left(p,-1, p_{2}-1, p_{3}-1, \ldots, p_{n}-1\right)$.

Proof: This follows immediately from Theorems 4.1
and 4.3 .
This leads to the following cheorem.
Theorem 4.5: A ring R with properties (A^{\prime}), (B), (C), is a (q, e)-ring with

$$
m \equiv 0(\bmod c)_{2}
$$

$q=2$ or $1 \mathrm{~cm}\left(p,-1, p_{2}-1, \ldots, p_{n}-1\right) \equiv 0(\bmod (q-1))$.
Proof: The direct sum of (q, c)-rings is a (q, c)-ring. Hence, by Theorem 4.4, a ring R with properties (A^{\prime}), (B), and (c) is a subring of $a(q, c)$-ring with $c=m$ and $q=1+1 c m$ ($p_{1}-1, p_{2}-1, \ldots, p_{m}-1$). A subring of $a(q, c)$-ring is another (q, c)-ring. Let c be the characteristic of the subring. Then we can write $m=r c+s$, where $s<c$. Let x be any element of the subring. Then $c x=0$. Since x is an element of the original ring we also have

$$
m x=(r c+s) x=r c x+s x=s x=0
$$

This is impossible unless $s=0$, hence

$$
m \equiv 0 \quad(\bmod c)
$$

Let q be the degree of the subring. If $q=2$, we are through. If $q \neq 2$, then let x be any element of the subring. Then $x^{g}=x$. Since x is an element of the original ring we also heve

$$
\dot{x}^{1+\operatorname{lcm}\left(p_{1}-1, p_{2}-1, \cdots, p_{x}-1\right)}=x_{0}
$$

By Lemma 2.7

$$
1 \mathrm{~cm}\left(p,-1, p_{2}-1, \ldots, p_{n}-1\right)=n(q-1),
$$

and

$$
1 \mathrm{~cm}\left(p_{1}-1, p_{2}-1, \ldots, p_{n}-1\right) \equiv 0(\bmod (q-1))
$$

The next theorem illustrates the difficulty encountered when mis divisible by a power of a prime.

> Theorem 4.6: If $m=p_{1}^{\alpha} p_{2} \ldots p_{n}, \alpha>1$, then $p_{1}^{\beta} \neq p_{1}(\bmod m)$ for all $\beta>1$.

Proof: Assume $p_{1} \beta_{1}, p,(\bmod m)$ for some $\beta>1$. Then, p_{1}^{β}-kmep1. Then, $p_{1}^{\beta-1}-k n=1$, where $n=p_{1}^{\alpha-1} p_{2} \ldots p_{n}$ • NOW, p, is a divisor of the left-hand side of this equation, and, consequently, p, must be a divisor of the right-hand side. But this is impossible, and the theorem is proven.

Corollary 4.2: If $m=p_{1}^{\alpha} p_{2} \ldots p_{\mu}, \alpha>1$, then the rings $I_{m u}$ are not (q, c)-rings.

Proof: Since $p^{\beta} \neq p,(\bmod m)$ for $a l l \beta>1$, there is no $q>1$ such that, for all $x \varepsilon I_{m}, x^{q}=x$.

While the rings I_{m} are not ($q ; c$)-rings, certain subrings are (q, c)-rings. If $m=p_{1}^{\alpha} p_{2} \ldots p_{n}, \alpha>1$, a ring having properties (A), (B), and (C), is then a subring of the direct sum of rings which are not (q, c)-rings. This subring, however, can be a (q, c)-ring. No results of general interest in this connection have been obtrined.

CHAPTER V

GOMMUTATIVE, ASSOCIATIVE, AND DISTRIBUIIVE FUNCTIONS ON $(3,3)-R I M G S$

Initially, let us remark that a (3,3)-ring is in the notation of McCoy and Montgomery [2] a p-ring with $p=3$.

In Gis paper on Boolean algebras Stone [I] was able to start with a Boolean ring and, by introducing two new operations U, \cap defined in terms of the ring operations, construct a Boolean algebra. Conversely, he was able to start with a Boolean algebra, define his ring operations in terms of the operations of the algebra, and construct a Boolean ring. In this manner he was able to establish an isomorphism between Boolean algebras and Boolean rings.

The two operations of the Boolean algebra are rather remarkable. Not only are they both commutative and associative, but they are also mutually distributive.

Jacobson also introduced a quasi-addition in his papers [12], [13] treating the structure of algebras and ringse Actually, this is the same operation Stone used in his study of Boolean algebras, but Jacobson uses it in connection with a wider ciass of rings.

This imediately raises the question: Is it possible to define on rings other than Boolean two operations each of which is comnutative and associative and which are mutually distributive? In this chapter we answer that question for rings whose degree and characteristic are both 3.

Let us first recall the definitions of the operations of the Eoolean algebra used by Stone:

$$
\begin{aligned}
& a \cup b=a+b+a b, \\
& a \cap b=a \cdot b .
\end{aligned}
$$

Note that the algebraic "multiplication" is in no sense unusual, but that the "addition" is a little out of the ordinary.

Accordingly, we seek to determine the most general polynomial function having the following properties:
(A) $f(a, b)=f(b, a)$
(B) $f(a, f(b, c))=f(f(a, b), c)$
(C) $a f(b, c)=f(a b, a c)$
(D) $f(a, b c)=f(a, b), f(a, c)$.

Theorem 5.1: A polynomial function definiod on all (3,3)-rings and having properties (A), (B), (C), and (D) is identically zero.

Proof: The most general function possible is $f(a, b)=\lambda_{1} a+\lambda_{2} b+\lambda_{3} a b+\lambda_{4} a^{2}+\lambda_{5} b^{2}+\lambda_{6} a^{2} b+\lambda_{7} a b^{2}+\lambda_{8} a^{2} b^{2}+\lambda_{9} \cdot$ From (c) it foliows thet $f(0,0)=O f(b, c)=0$. But $f(0,0)=\lambda_{q}$, hence $\lambda_{q}=0$.

From (A) it follows that
(2) $\lambda_{1}(a-b)+\lambda_{2}(b-a)+\lambda_{4}\left(a^{2}-b^{2}\right)+\lambda_{5}\left(b^{2}-a^{2}\right)+\lambda_{6}\left(a^{2} b-a b^{2}\right)+\lambda_{7}\left(a b^{2}-\right.$ $\left.a^{2} b\right)=0$ 。

This must hold when $a=1, b=0$. Thus we ootain
(3) $\lambda_{1}-\lambda_{2}+\lambda_{4}-\lambda_{5}=0$.

Likewise (2) must hold when $a=2, b=0$. This yields
(4) $2 \lambda_{1}-2 \lambda_{2}+\lambda_{4}-\lambda_{5}=0$.

Subtracting (4) from (3) one finds

$$
\lambda_{1}=\lambda_{2}
$$

Using this result in (3) leads to

$$
\lambda_{4}=\lambda_{5}
$$

(2) may now be written as
(5) $\lambda_{6}\left(a^{2} b-a b^{2}\right)+\lambda_{7}\left(a b^{2}-a^{2} b\right)=0$.

When $a=1, b=2$, it follows that

$$
\lambda_{6}=\lambda_{7}
$$

We now write (1) in the following form
(6) $f(a, b)=\lambda_{1}(a+b)+\lambda_{3} a b+\lambda_{4}\left(a^{2}+b^{2}\right)+\lambda_{6}\left(a^{2} b+a b^{2}\right)$ $+\lambda_{8} a^{2} b^{2}$.

Using properties (A), (D), (A), and (D) in that order we find that $f\left(a^{2}, 0\right)=f\left(0, a^{2}\right)=f(0, a) \cdot f(0, a)=f(a, 0) \cdot f(a, 0)$ $=f(a, 0)$.

However, $f\left(a^{2}, 0\right)=\lambda_{1} a^{2}+\lambda_{4} a^{2}$, and $f(a, 0)=\lambda_{1} a+\lambda_{4} a^{2}$. Hence,
(7) $\lambda_{1} a^{2}=\lambda_{1}, a$.

When $a=2, \lambda_{1}=2 \lambda_{1}$, and $\lambda_{1}=0$.
If we now use (C) we find that $a f(a, 0)=f\left(a^{2}, 0\right)$.
As a consequence,
(8) $\lambda_{4} a=\lambda_{4} a^{2}$

As before, when $a=2,2 \lambda_{4}=\lambda_{4}$, and $\lambda_{4}=0$.
Using (C) once again we have $a f(a, b)=f\left(a^{2}, a b\right)$.
Accordingly,
$\lambda_{3}\left(a^{2} b-a b\right)=\lambda_{g}\left(a^{2} b^{2}-a b^{2}\right)$.
If $a=2, b=2$, it follows that $\lambda_{3}=-\lambda_{8}$.
It is now possible to write (6) as
$f(a, b)=\lambda_{3}\left(a b-a^{2} b^{2}\right)+\lambda_{6}\left(a^{2} b+a b^{2}\right)$.
Another use of (C) leads to
$\lambda_{3}\left(c a b-c a^{2} b^{2}-a b c^{2}+a^{2} b^{2} c^{2}\right)=0$.
When $a=1, b=2, c=2$, we find that $\lambda_{3}=0$.
Using only the demands that the operations be commatative and that the operations be matually distributive, we have found that the function must be of the following form (12) $f(a, b)=\lambda_{6}\left(a^{2} b+a b^{2}\right)$.

Use of (D) at this time yields
$\lambda_{6}\left(a^{2} b \varepsilon+a b^{2} c^{2}\right)=\lambda_{6}^{2}\left(a^{2} b c+a b c^{2}+a b^{2} c+a^{2} b^{2} c^{2}\right)$.
If $a=b=2, c=1$, we find that $\lambda_{b}=0$.
This proves the theorem.
Hay we again emphasize that in the above proof we did not demand that the function be associative.

Having failed in our quest for an "addition" which would be distributive with respect to "multiplication", we now seek to determine those functions wilich have properties (A), (B), and (C) o These properties are those of ordinary addition, so we know that there is at least one such function.

There may be others. This search leads to the following theorem.

Theorem 5.2: The only non-zero polynomial functions on (3,3)-rings having properties $(A)=(B)$, and (C), are
and

$$
\begin{aligned}
& f(a, b)=a+b \\
& f(a, b)=2 a^{2} b+2 a b^{2}
\end{aligned}
$$

Proof: Using those results of Theorem 5.1 whicin depend only on (A) and (C), we find that it is possible to mrite.
(1) $I(a, b)=\lambda_{1}(a+b)+\lambda_{3} a b+\lambda_{4}\left(a^{2}+b^{2}\right)+\lambda_{6}\left(a^{2} b+a b^{2}\right)+\lambda_{8} a^{2} b^{2}$.

As before it follows from (c) that af $(a, 0)=f\left(a^{2}, 0\right)$. This yields

$$
\begin{equation*}
\lambda_{4} \mathrm{a}=\lambda_{4} \mathrm{a}^{2} . \tag{2}
\end{equation*}
$$

When $a=2,2 \lambda_{4}=\lambda_{4}, \lambda_{4}=0$.
We now write
(3) $f(a, b)=\lambda_{1}(a+b)+\lambda_{3} a b+\lambda_{6}\left(a^{2} b+a b^{2}\right)+\lambda_{8}\left(a^{2} b^{2}\right)$. $a f(1,-1)=f(a,-\varepsilon)$ by use of (C). Therefore,
(4) $a\left(-\lambda_{3}+\lambda_{8}\right)=-\lambda_{3} a^{2} \div \lambda_{8} a_{6}^{2}$

When $a=2, \lambda_{8}=\lambda_{3}$.
Again rewriting $f(a, b)$ we have
(5) $f(a, b)=\lambda_{1}(a+b)+\lambda_{3}\left(a b+a^{2} b^{2}\right)+\lambda_{6}\left(a^{2} b+a b^{2}\right)$. Use of (C) again leads to af(l, 1$)=f(a, a)$.

This yields
(6): $2 \lambda_{3} a=2 \lambda_{3} a_{0}^{\alpha}$

If $a=2, \lambda_{3}=2 \lambda_{3}, \lambda_{3}=0$.
The last result onables us to write
(7) $f(a, b)=\lambda_{1}(a+b)+\lambda_{6}\left(a^{2} b+a b^{2}\right)$.

We now use (B) to obtain

$$
f\left(a, \lambda_{1}(b+c)+\lambda_{6}\left(b^{2} c+b c^{2}\right)\right)=f\left(\lambda_{1}(a+b)+\lambda_{6}\left(a^{2} b+a b^{2}\right), c\right)
$$

That is,

$$
\begin{aligned}
& \lambda_{1}\left(a+\lambda_{1}(b+c)+\lambda_{6}\left(b^{2} c+b c^{2}\right)\right)+\lambda\left\{\left[a^{2}\left(\lambda_{1}(b+c)+\lambda_{6}\left(b^{2} c+b c^{2}\right)\right]\right.\right. \\
& \left.+a\left[\lambda_{1}^{2}\left(b^{2}+2 b c+c^{2}\right)+2 \lambda_{1} \lambda_{6}\left(2 b c+2 b^{2} c^{2}\right)+\lambda_{6}^{2}\left(2 b^{2} c^{2}+2 b c\right)\right]\right\}= \\
& \lambda_{1}\left[\lambda_{1}(a+b)+\lambda_{6}\left(a^{2} b+a b^{2}\right)+c\right]+\lambda_{6}\left\{\left[\lambda_{1}^{2}\left(a^{2}+2 a b+b^{2}\right)+2 \lambda_{1} \lambda_{6}\right.\right. \\
& \left.\left(2 a b+2 a^{2} b^{2}\right)+\lambda_{6}^{2}\left(2 a b+2 a^{2} b^{2}\right)\right] c+\left[\lambda_{1}(a+b)+\lambda_{6}\left(a^{2} b+a b^{2}\right)\right] \\
& \left.c^{2}\right\} .
\end{aligned}
$$

This in turn gives

$$
\begin{aligned}
& \lambda_{1} a+\lambda_{1}^{2}(b+c)+\lambda_{1} \lambda_{6}\left(b^{2} c+b c^{2}\right)+\lambda_{1} \lambda_{6}\left(a^{2} b+a^{2} c\right)+\lambda_{6}^{2} \\
& \left(a^{2} b^{2} c+a^{2} b c^{2}\right)+\lambda_{1}^{2} \lambda_{6}\left(a b^{2}+2 a b c+a c^{2}\right)+2 \lambda_{1} \lambda_{6}^{2}\left(2 a b c+2 a b^{2} c^{2}\right) \\
& +\lambda_{6}\left(2 a b^{2} c^{2}+2 a b c\right)=\lambda_{1}^{2}(a+b)+\lambda_{1} \lambda_{6}\left(a^{2} b+a b^{2}\right)+\lambda_{1} c \\
& +\lambda_{1}^{2} \lambda_{6}\left(a^{2} c+2 a b c+b^{2} c\right)+2 \lambda_{1} \lambda_{6}^{2}\left(2 a b c+2 a^{2} b_{c}^{2}\right)+\lambda_{6}\left(2 a b c+2 a^{2} b_{c}^{2}\right) \\
& +\lambda_{1} \lambda_{6}\left(a c^{2}+b c^{2}\right)+\lambda_{6}^{2}\left(a^{2} b c^{2}+a b^{2} c^{2}\right) .
\end{aligned}
$$

Simplification of above leads to

$$
\begin{align*}
& \lambda_{1} a+\lambda_{1}^{2} c+\lambda_{1} \lambda_{6}\left(b^{2} c+a^{2} c\right)+\lambda_{6}^{2} a^{2} b^{2} c+\lambda_{1}^{2} \lambda_{6}\left(a b^{2}+a c^{2}\right) \tag{8}\\
& +2 \lambda_{1} \lambda_{6}^{2}\left(2 a b^{2} c^{2}\right)+\lambda_{6}\left(2 a b^{2} c^{2}\right)=\lambda_{1}^{2} a+\lambda_{1} \lambda_{6}\left(a b^{2}+a c^{2}\right) \\
& +\lambda_{1} c+\lambda_{1}^{2} \lambda_{6}\left(a^{2} c+b^{2} c\right)+2 \lambda_{1} \lambda_{6}^{2}\left(2 a^{2} b^{2} c\right)+\lambda_{6}\left(2 a^{2} b^{2} c\right)+\lambda_{6}^{2}\left(a b^{2} c^{2}\right) .
\end{align*}
$$

If we place $a=1, b=c=0$, we find

$$
\begin{equation*}
\lambda_{1}=\lambda_{1}^{2} . \tag{9}
\end{equation*}
$$

We use this result to write (8) as

$$
\begin{align*}
& \lambda_{6}^{2} a^{2} b^{2} c+\lambda_{1} \lambda_{6}^{2} a b^{2} c^{2}+2 \lambda_{6} a b^{2} c^{2}=\lambda_{6}^{2} a b^{2} c^{2}+\lambda_{1} \lambda_{6}^{2} a^{2} b^{2} c \tag{10}\\
& +2 \lambda_{6} a^{2} b^{2} c .
\end{align*}
$$

If we now let $a=2, b=c=1$, we obtain

$$
\begin{equation*}
\lambda_{6}^{2}-\lambda_{1} \lambda_{6}^{2}+\lambda_{6}=0 \tag{II}
\end{equation*}
$$

The simplest (3,3)-ring is the ring of the residue classes of the integers modulo 3 . If we select λ_{1} and λ_{6} from the elements of this ring, the values of λ_{1} which satisfy (9) are 1 and 0 . If $\lambda_{1}=1$, we find from (11) that $\lambda_{6}=0$. If $\lambda_{1}=0$, then $\lambda_{6}^{2}+\lambda_{6}=0$ and $\lambda_{6}=2$. Thus the only functions beving the desired properties are

$$
\begin{aligned}
& f(a, b)=a+b \\
& f(a, b)=2 a a^{2} b+2 a b^{2}
\end{aligned}
$$

We had hoped that the above investigation would lead us to a "quesi-addition" having properties both interesting and useful. However, the only aiternative to ordinary addition has a rather serious defect-namely, the "quasi-sum" of any element and zero is zero. Tizis makes further study uninteresting。

There jet remains the possibility of generalizing the concept of "inultiplication". Accordingly, we seek those polynomiai functions having properties (A), (B), and

$$
\text { (E) } \quad f(a, b+c)=f(a, b)+f(a, c)
$$

Ordinary multiplication has these three properties, but there may be other functions having these properties.

Theorem 5a3: on $(3,3)$-rings the only polynomial
function having properties (A), (B), and (E) is

$$
f(a, b)=\lambda a b
$$

Proof: We agein start with the most generai function possible, namely
(1) $f(a, b)=\lambda_{1} a+\lambda_{2} b+\lambda_{3} a b+\lambda_{4} a^{2}+\lambda_{5} b^{2}+\lambda_{6} a^{2} b+\lambda_{7} a b^{2}+\lambda_{8} a^{2} b^{2}+\lambda_{9}$. From (E) We obtain $f(a, 0)=f(a, 0)+f(a, 0)$
and $f(a, 0)=0$. This leads to
(2)
$\lambda_{1} a+\lambda_{4} a^{2}+\lambda_{4}=0$.
If we place $a=0, \lambda_{9}=0$.
Placing $a=1$, we find $\lambda_{1}+\lambda_{4}=0$.
Placing $a=2$, we find $2 \lambda_{1}+\lambda_{4}=0$.
As a result, $\lambda_{1}=\lambda_{4}=0$.
Using (A) and (E) yields $f(0, b)=f(b, 0)=0$.
Fence,
(3) $\lambda_{2} b+\lambda_{5} b^{2}=0$.

Placing $b=1$ results in $\lambda_{2}+\lambda_{5}=0$. Placing $b=2$ gives $2 \lambda_{2}+\lambda_{5}=0$. Consequentiy, $\lambda_{2}=\lambda_{5}=0$.

We now use (S) to obtain
$\lambda_{3} a(b+c)+\lambda_{6} a^{2}(b+c)+\lambda_{7} a\left(b^{2}+2 k_{c}+c^{2}\right)+\lambda_{8} a^{2}\left(b^{2}+2 b c+c^{2}\right)$ $=\lambda_{3} a b+\lambda_{6} a^{2} b+\lambda_{7} a b^{2}+\lambda_{8} a^{2} b^{2}+\lambda_{3} a c+\lambda_{6} a^{2} c+\lambda_{7} a c^{2}+\lambda_{8} a^{2} c^{2}$.

This reduces to
(4) $2 \lambda_{7} a b c+2 \lambda_{8} a^{2} b c=0$.

If in (4) we let $a=b=c=1$, we find $2 \lambda_{1}+2 \lambda_{8}=0$. If we let $a=2, b=c=1$, we find $\lambda_{7}+2 \lambda_{8}=0$. Consequently, $\lambda_{7}=\lambda_{8}=0$.

The results obtained enable us to write
(5) $f(a, b)=\lambda_{3} a b+\lambda_{6} a^{2} b$.
(A) says thet $f(a,-a)=f(-a, a)$. This is used to obtain
(6) $2 \lambda_{6} a=0$.

Placing $a=2$ in (6). yields $\lambda_{6}=0$. Hence,
(7) $f(a, b)=\lambda_{3} a b$.

Again it is of interest to note that the proof of this theorem in no place uses the demand that our function be associative.

We have shown in this chapter that it is impossible to parallel the concepts of logical sum and logical product in (3,3)-rings. If one retains the idea of ordinary multiplication, then addition must be defined in the usual sense or in a frivial fashion; if the idea of ordinary addition is retained, then one must define multiplication as asual or as a multiple thereof.

IIST OF REFERENCES

1. Ii. H. Stone, The theory of representations for Boolean Alsebras, Transactions of the American Mathematical Society, Vol. 40 (1936), pp. 37-111.
2. N. H. FicCoy and D. Montgomery, A representation of generalizea Boolean rings, Duke Mathem\&ical Journal, Vol. 3 (1937), pp. 455-459.
3. N. H. McCoy, Rings and Ideals, Baltimore, 1948.
4. L. I. Wade, Fast Algebras and rings, Duke Mathematical Journal, Vol. 12 (1945), pp. 389-395.
5. N. Jacoison, Structure theory for algebraic algebras of bounded degree, Annals of watheratics, Vol. 46 (1945), pp. 695-707.
S. G. Birkhoff, Subiirect unfons in universal aigebras, Bulletin of the American Nathematical Society, Vol. 50 (1944), pp. 764-768.
6. I. N. Herstein, A generalization of a theorem of Jacobson, American Journal of Niathematics, VOl. 73 (1951), pp. 756-762.
7. I. N. Herstein, A generalization of a theorem of Jacobson, American Journal of Mathematics, Vod. 75 (1953), pp. 105-111.
8. A. Forsythe and N. H. McCOy, On the commutativity of certain rings, Bulletin of the American Mathematical Soclety, vol. 52 (1946), pp. 523-526.
9. I. Kapiansky, Commutativity of generalized Boolean rings, Soclety, Vol. 51 (1945), p. 60.
10. Hardy and Wright, Theory of Numbers, Oxforà, 1938.
11. In Jacobson, Structure Theory of simple rings without finiteness assumptions, Transactions of the American Mathematical Societए. Vol. 57 (1945), pp. 228=245.....
12. N. Jacobsor, The radical and semi-simplicity for arbitrary rings, American Joumal of Mathematics, Vo1. 57 (1945), pp. 300-320.
