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CHAPTER 1
INTRODUCTION

Artificial Intelligence, a Perspective

Philosophers throughout human history have written about the “mind™ and
theorized about its méchanism& but only recently has progress been made in
understanding intelligence. Artificial Intelligence (Al) is an area of computer science that
involves understanding intelligence and its automation. Much of the motivation and
energy of this field is devoted to the replication of intelligent traits in machines. Many of
these traits have human characteristics, such as the ability to recognize speech or perform
the complicated task of launching a space shuttle. Television and film have propagated
the notion that the field of Al has achieved great technological advances by portraying
imaginary computers and robots that act with human intelligence and self will. This has
led to the misconception that Al is only concerned with the re-invention of humans.
Currently, the only way known of re-inventing the human is to have and to rear a child.
Al should be thought of as a tool applied to machines that produces a degree of

intelligence traditionally found in biological organisms.




Useful Artificial Intelligence

Robots that explore the surface of other planets are a classic example of where Al
tools should be applied. Machines with Al characteristics, modeled after biological
organisms with a central nervous system, could function independently without the need
for constant human supervision. Without intelligence, the next pictures received from a
roving robotic probe on the edge of a crater might be from the bottom. Although human
intelligence is ideally suited for space exploration and other equally challenging jobs. it
may not be in the best interest of human resources to do this type of work. A robotic
probe must employ aspects of intelligence so that it may [ulfill mission objectives. It
must learn and make independent decisions based on information gained from its
environment. The interaction of a probe with its environment is similar to that of a
biological organism and its environment. Both organism and probe must monitor, react
to. and control aspects of existence with regard to the various environments. Scientific
evidence supports the idea that biological organisms developed central nervous systems
as a means of survival, contrasted with bacteria, viruses, and other simplistic organisms
that rely on fast replenishing rates and sheer numbers to insure survival. A nervous
system provides a biological organism with an ability to react and to affect its
environment [KohonenT89]. Neurological systems are especially adept at motor control.
processing sensory data, and higher levels of control forming complex behaviors. Many

features we wish to automate have already been designed by nature in the central nervous

system.




Origins of Neural Research

Neurocomputing, the modeling of biological neural networks using digital
computers, is a technique for dealing with problems. such as those discussed above, that
are not readily solvable using traditional Al methods [MarkowitzJ94 and Lawrencel90].
In 1943, shortly before the development of the first commercial computer,
neurocomputing was first proposed by McCulloch-Pitts [McCullochW43]. Neuro-
computing forms the basis for the field of neural modeling, which is a sub-field of Al that

seeks o understand and automate behaviors of the biological nervous system.

Neural Modeling

Currently, there seems to be a two-tiered approach to neural modeling. The first
approach is concerned with understanding the neuro-biological machine from the macro
(physical structure) and micro (electro-chemical structure) levels. Research in this area is
theoretical and is motivated by discovery and its goals are to learn how the neuro-
biological systems work. The second approach is neurocomputing, and its focus is the
modeling of the phenomena and function of their biological ncural networks by using
computer programs called Artificial Neural Networks (ANNs). ANNs are simulations
designed to emulate aspects of the biological equivalent. There is an ongoing debate
between the theoretical and applied research groups as to the need for a precise model and
obtaining useful results. The neurocomputing approach is analogous to manned flight in
which, “an airplane does not have to flap its wings to fly,” meaning that neural network

models may have little or no basis in biological reality except for the idea. The




backpropagation training method used to train feedforward and multilayered networks is
one of the most common training techniques used and is a classic example of an ANN
technique that has no resemblance to any natural structure within the brain, but produces
results that arc comparable [McClellandJ86].

Even though the foundations of neurocomputing were developed before the first
commercial computer, neurocomputing has not always been a hot topic within computer
science. Research in this area went through a period of disenchantment and lack of
direction due in part to skepticism about the neural network as a viable and useful
technique. Neurocomputing research was revitalized during the mid-1980’s, and much of
the renewed interest was brought about by the multi-layered, feed-forward network, and
the backpropagation trained network [MarenA90]. The backpropagation trained
networks’ continued popularity is a result of its ability to solve a varicty of problems that
preceding networks could not [McClellandJ86]. Many researchers were diligent through
the lean years by continuing to lay the foundations which would later be used for the
resurgence of neural networks. Teuvo Kohonen is a researcher who pursued associative
and topology-preserving neural networks during this time [MarenA90]. His development

of the Self-Organizing Maps, or SOMs, is an important achievement in neurocomputing

research.

Self Organizing Maps (SOMs)

The research emphasis of this paper focuses on artificial neural networks, and in
particular, a variation of a Self-Organizing Map [KohonenT89]. Chapter Il describes the

self-organizing map architecture in detail. Generally, the self-organizing map is a




competitive network in which the winner takes all. Self-organizing maps are good at
solving problems that consist of data containing relationships that are hidden due to the
complexity of the problem or to irrelevant information (noise) obscuring the
relationships. The pool of data that contains these relationships is called the dataspace.

A hypothetical weather dataspace may include temperature, humidity, wind speed, dew
point, pressure, etc. A self-organizing map could classity the relationship of these factors
and map how they relate (o the formation of different cloud types.

Generally, a SOM can be represented as a two-layer network consisting of
“neurodes,” the simplest processing component in the neural network: neurodes of a
SOM are modeled after the neurons in the biological nervous system. The SOM uses
input signals to compute an output value designating the winner [KohonenT89]. An
input signal (also called an input vector) is an ordered sequence of numbers called an n-
tuple. Each element of the tuple represents a single trait, such as humidity, from the
dataspace. ldentifying hidden relationships among vectors in the dataspace is the goal of
applying the neural network.

[Each neurode contains an n-tuple, called the weight vector. The cardinality and
ordering of weight vector values correspond to those in the input vector. In a SOM an
input vector is distributed to each neurode simultaneously where it is matched with the
corresponding weight vector. An activation function is used as a metric to gauge the
similarity between the input vector and the weight vector of the neurode. Each neurode
uses the same activation function to calculate the activation values. The neurode with the
highest activation value is selected as the winner, and the minimum value may be selected

if a different activation function is used. When a neurode is selected as the winner, it




means that the values of its weight vector most closely approximate the values of the
input vector. The weight vector of the winning neurode is modified during the training
period [CaudillM93 and KohonenT89].

The input vectors that most generally represent the dataspace become the training
set for the neural network. However, in practice, the selection of the training sets is often
inconclusive. Self-organizing maps should be trained using a dataset that represents well
the relationships found in the problem domain. Using the weather example, the training
set should contain a wide variety of atmospheric conditions that can be associated with
known cloud types, even though not all conditions will be available for training. As
discussed earlier, the training process involves modifying the weights of the winning
neurode. Once training is complete, the training set is used to create a map of cloud types
in relation to the winners. When new data are input to the SOM, they are classified to the
best-matching neurode, even though the new input vectors may not duplicate or have

existed the in training set.

Problems with SOMs

One problem with SOMs is the fixed size of their input vectors, which limits
SOM s to classification of static signal patterns. A standard SOM processes each input
vector as a single unit of data. As a result, standard SOMs cannot deal effectively with a
collection of input vectors of differing sizes, which is necessary for processing data that
has sequential or contextual components. The research herein describes a variation of the
traditional SOM that properly handles sequential data and liberates the fixed size

constraint on input vectors. This variation is called the Sequential Self-Organizing Map




or SegSOM. A SeqSOM partitions each input signal and uses feedback to process the
portions sequentially to achieve a categorization mapping similar to that produced by
standard SOM [BoydstunR95]. A full description of the SegSOM architecture and

process is given in Chapter I1I.




CHAPTER I

LITERATURE REVIEW

Biological Neural Networks

The brain’s neocortex is the site where information processing and intelligence
occurs in advanced biological organisms. The human neocortex is a convoluted, layered
structure of interconnected neurons, folded repeatedly to accommodate the vast number
of neurons, estimated at one hundred thousand million [RitterH91]. Organizational
complexity and information processing capabilities of the central nervous system

distinguish one species from another.

\% Axon

S YSynapse

Cell Body/Soma

Dendrite

Figure 1. Biological Neuron [McClelland]86].




A neuron is the simplest functional component and, in general, is similar across
species. The typical biological neuron has four major components: dendrites, a soma, an
axon, and synapses. A typical neuron resembles the branches, trunk, and roots of a tree.
Figure 1 is an artist’s representation of a neuron [McClellandJ86].

Dendrites. The dendrites are physically shaped as branch-like extensions of the
cell body, and provide the input functions for the neuron. among other activities. The
dendrites receive electro-chemical stimuli from other neurons. These input signals are
propagated through the dendrite structure and are brought together at the soma, or cell
body.

Soma. The soma is where the “processing” occurs in the neuron. The strength of
the input signals at the soma is dependent on the distance and attenuation present during
the transmission through the dendrites. The processing that occurs can be characterized
as a summation of the dendrite inputs. If the calculated sum exceeds a set threshold, then
an output signal is generated. This signal is similar to an electrical spike and is
transferred through the axon to other neurons [RitterH91].

Axon. The axon is a long wire-like structure that carries the signal away from the
soma to other neurons. Like the dendrites, an axon has an outgrowth of branches at its
end. These branches come together with the dendrites of other neurons to form synapses.

Synapse. The synapse is the small space between an axon branch of one neuron
and a dendrite of another. A signal pulse is transmitted across a synapse via a chemical
process. The axon secretes neurotransmitter chemicals, which create an electrical

potential difference between the axon and the dendrite. Synaptic connections may be




excitatory (Type 1) or inhibitory (Type II), in that the signal-forwarding may be enhanced
or reduced at the target neuron [RitterH91].

The physical shape of a neuron identifies it as having a specific type of synaptic
connection. Neurons that are shaped like a pyramid are called pyramidal cells and have

Type I synaptic connections. Stellate cells are star-shaped neurons having Type 11

synapses. Pyramidal neurons have a well-defined axon and a large number of synapses,
and like all Type I neurons, they can extend long distances to other regions of the brain
and nervous system. Stellate cells are more localized, with the axon branching into
synapses limited to the immediate area. Stellate cells act to “corral” the Type I neurons
during excitation; that is, it is believed that the stellate cells stabilize the excitation site
by inhibiting activity around the stimulated region (lateral inhibition) [RitterH91].

Microcolumns. Neurons in the regions of excitation are thought to form
functional groupings called microcolumns. Microcolumns are cylinders of neurons that
extend vertically inward from the neocortical surface. Microcolumns generally have
Type I cells at the center and Type I cells at the boundary and serve as higher level
processing elements. Microcolumns have no real borders but gradually transform to other
functional regions.

Some microcolumns are grouped to form still higher organizational structures
known as “cortical areas”. According to [RitterH91] cortical areas provide specialized
functions for specific tasks such as aspects of speech comprehension, spatial orientation,
planning and execution of movements, analysis of edge orientation and of color shades,
etc. Over eighty cortical areas have been identified in the human cortex. Cortical

arrangement is so regular and so correlated to sensory receptors throughout the body that

10




the cortical surface almost mirrors the anatomical and physiological relationships of the
sensory organs. For example. the cortical areas that stimulate the finger lie “atop™ the
area that stimulates the palm, reflecting the “shape™ of the hand.

The neocortex is a layered structure that typically consists of six distinguishing

bands of neurons as in Figure 2.

b : G l_ . m I Tangential layer

Il Dysfibrous layer

Il Suprastriate layer

IV Ext, band of Baillarger

~Interstriate layer
“Int. band of Baillarger

VI Infrastriate layer

Subcortical white matter

Golgi Nissl Weigert

Figure 2. Six layers of the neocortex [CotterilIR88].

Evidence suggests that variation in the number and thickness of layers is
dependent on the region and its function [McClellandJ86 and CotterillIR88].

Layers. Input signals from the outside world enter the neocortex by passing
through the thalamus. The thalamus is responsible for forwarding and distributing input.
The thalamus neurons project into Layer IV where they provide inputs to other cortical
areas. Neurons in the middle layer extend upward to Layers II and III. Layers II and III

connect to other cortical areas either on the same side of the brain or on the opposite

11




hemisphere. Layer I has few neurons. Layers V and VI, or deep layers, are considered
the output layers. The neurons in these layers terminate away from the neocortex in other
subcortial areas.

This discussion of biological neural networks is meant to show their relationship
to an Artificial Neural Network (ANN) called the self-organizing map. Further
discussion of the biological aspects is beyond the scope of this thesis. For additional

information on biological neural networks, consult the references at the end of this thesis.

Self-Organizing Maps (SOM)

The study of biological neural networks provides a foundation for artificial neural
network (ANN) modeling. This relationship is evident in the design of the self-
organizing map, because as an artificial neural network model it was formulated from
empirical evidence gained in the observation and study of biological neural networks.
Self-organizing maps provide the functional processes of topological map formation and
dimensional or information reduction that naturally occur in biological neural networks.
This section will show the similarity between the biological model discussed in the
previous section and the self-organizing map.

As a caveat, artificial neural network models, including SOMs, are incomplete
implementations because the fundamental research is either insufficient or undiscovered
[KohonenT89]. These gaps in understanding biological neural networks are duc in part to

moral considerations that limit direct experimentation; therefore, artificial neural

12




networks are coarse representations of the architectural and behavioral aspects of

biological neural networks.

ANN Architecture.

An artificial neural network is an organized collection of artificial neurons. An
artificial neuron is analogous to a biological neuron. It is the simplest functional
component of artificial neural networks, including the self-organizing map. An artificial
neuron is also called a “processing element” and a “neurode”, which is the concatenation
of neur from “neuron” and ode from “node”.

An artificial neural network architecture is comprised of processing elements and
their connections to other processing elements. The architecture of many artificial neural
networks is similar to that of their biological counterparts in the arrangement of neurons

into layers. In the previous section, Figure 2 illustrates the layering of a biological

networks. A simpler structure, shown in Figure 3. illustrates a layered architecture of an
artificial neural network. Figure 3 illustrates a feed-forward ANN consisting of three

layers: the input layer. the hidden layer, and the output layer. The input layer contains no

Output Layer :-'.
Hidden Layer L4l

Input Layer

Figure 3. Illustration of layered organization of an Artificial Neural Networks

[RitterH91].
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neurodes; its purpose is simply to broadcast the input signal to each of the hidden-layer
neurodes so their activation values may be calculated. Once the activation values are
computed for the hidden layer, they are forwarded to the output layer. Next, the
activation values of the output layer neurodes are computed. The activation values of the
output form the network’s response to a given input. To train the network, an error value
is calculated for each output layer neurode by comparing its activation value against its
target value. Once all the crror values are calculated, they are distributed back to the
hidden layer, where these values are used to update the internal weights. The feedforward
network is a popular ANN and just one of many different types [FausettL.94]. The

network architecture for this paper is the self-organizing map.

Self-Organizing Map Architecture

A self-organizing map is a two-layer ANN consisting of an input and output layer
[CaudillIM93, Dayhoff]90. KohonenT88a, and KohonenT89]. The output layer is
typically arranged as a two-dimensional array of neurodes that are not interconnected
[Dayhoff]90, Fausettl.94, KohonenT88b, and KohonenT89]. Self-organizing maps with
output layers of higher dimensions are useful for applications such as robot path planning
[RitterH91].

One of the desired behaviors of SOMs is that they can produce some of the map
structures that are found in biological neural networks [KohonenT89]. The ability to
reproduce these naturally occurring mapping behaviors is unique to the SOM and is not

found in other artificial neural network techniques even though other ANN architectures

can categorize as well [Fausettl.94].
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Input and Output Layers

A pattern that is received by the input layer of an ANN is analogous to the input
received al the dendrites of a collection of neurons. The input layer of a self-organizing
map consists of a tuple of non-computational elements. The input layer is completely
connected to the output layer and delivers the input signal to each neurode in the output

layer. An input signal is a vector or k-tuple:
B (AR (1
Each neurode in the input layer is connected to the output layer via a weight vector:
W, =(w”,w_f.2,---,wﬁ) (2)
where 1 < j < the number of neurodes in the output layer. The weight vector is the same

size as each input vector. That is for each input vector element, &, there is a

corresponding weight vector element, k.
Weights

The weights associated with the connections between neurodes represent the
strength, or signal capacity, of connections between the output of one neurode and input
of another. They are similar to the synaptic gaps of a biological network. Weights are
used to calculate the response of a neurode to a given input signal and may be modified
during the training, as described below. The modification is based on a training function
that provides the learning property.

The neurode weights are “plastic features” that enable a SOM to organize itself

through competitive learning and match the topology of the input signal space. Output
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neurodes maintain their positional relationships with their neighbors, but as training takes
place. their topological relationships are changed.

The property of weight modification gives rise to the desirable learning behaviors
of neural networks. In competitive networks, such as the self-organizing map, the
neurodes compete for the privilege of representing an input signal. The training function
rewards the winner by changing its weights to more closely match the input signal.
Competition occurs among the neurodes based on their activation values, which result

from the activation function.

Activation Function.

In a biological neuron the activation function is very complex and can be
generalized only for small areas of the brain. Likewise, ANNs have the same activation
function for each layer, since they are meant only to represent specific areas
[KohonenT95]. The activation function can be described as a mechanism that controls
the state of excitation of the cell. When a neuron “fires”, it is not due to chance, but is
due to a defined behavior within the cell.

In a SOM the value of this function for each neurode is calculated as either the
Euclidean distance or the dot product between the input vector and the weight vector.,
The winning neurode is determined by calculating the activation values of all neurodes in
the output layer and then choosing the neurode that has the minimum (for Euclidean
distance) or maximum (for dot product) activation value. Neurodes in the vicinity (or
neighborhood) of the winning neurode, including the winning neurode itself, are

rewarded by having their weight vectors modified to bring them closer to the input
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training vector; this reinforces the ability of neurodes in the neighborhood to successfully

approximate similar input vectors. The categorization that results from this process may

seem “intelligent”, but it is merely the application of an activation function and the £
adjustments of the appropriate weights [BoydstunR95]. The process of weight

modification is called training.
Training ;

A collection of vectors used to train an ANN is called the training set, and each
member of this set is presented to the ANN during the training process. Used with
learning rules, the weights may be modified to more closely match the input cases. An
ANN may be trained using a supervised method or an unsupervised method. In
supervised training, both the input (training sets) and output (desired categorization) are

known in advance. During training the learning algorithm will take these known

quantities into account by adjusting the weights to map the input cases to the output
cases.

Unsupervised training is similar to supervised training, except the output vector is
not specified as part of the training data. That is, the network is presented with a set of
input vectors, but no output classification is known in advance. Once training has
occurred. the training set is used to categorize the sample cases. More training may be
required for the unsupervised training method.

A training set should consist of a wide variety of example cases; however, the
training set selection and its quality may not be conducive to one’s wants or needs. After

the training set is chosen, the weight vectors of the SOM are initialized to random values;
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however. if preliminary knowledge of neurode weights is available or previous training
has taken place, then weights may be loaded from a file. Overtraining is not a problem
with SOM networks as it is with other neural network techniques [HiotisA93]. During
training, the SOM “learns” to classify the training set of input vectors. After training is
complete the SOM is ready to classify new input vectors. These new input vectors are

classified according to the best-matching neurode.

Topology-Preserving Mapping

Topology is defined as “the study of properties of geometric form that remain
invariant under certain transformations such as bending or stretching” [ AmericanH92|.
Topology-preserving mappings maintain the ordering associated with multidimensional
signal data while reducing the dimension using an onto relationship [KohonenT89]. The
signal data can be thought of as meaningful information mixed with noise or exiraneous
data. The noise and high dimensionality of the data obscure topological relationships.
Topology-preserving mappings serve to remove the superfluous data so that the
relationships can be seen. Thus, the complexity of the high-dimensional data is

“abstracted away”, leaving only the most basic relationships.

Lateral Feedback

The neurons of the outer layer of the brain have both input connections and lateral
interconnections. A single neuron can have as many as ten thousand lateral
interconnections to surrounding neurons and as many returning to it [KohonenT89]. As

discussed earlier in this chapter, biological lateral feedback is associated with neurons of
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the brain’s outer layers (Layers II and I1I), called the neocortex. The physical evidence
suggests that the degree of lateral interaction is related to the distance at which excitation
occurs. Neurons that are physically closest to active cells have positive lateral feedback.
The positive feedback diminishes outward from the center of excitation. Further out from
the excitation point a region of negative lateral feedback is surrounded by another region
of minimal positive feedback [KohonenT89]. The overall physical structure of the outer

layer is arranged as a two-dimensional layer, hence the layer arrangement of the SOM

model.

Neuron Interaction
-
A
P "Mexican Hat" Function
b4
[
n
S Point of Excitation
3 S
°T
Q)
L]
w
+ v + +
- =1
- >
Lateral Distance of Neurons from
the point of excitation

Figure 4. "Mexican Hat" function illustrating positive and negative lateral
interaction of neurons as a function of distance from the point of excitation.
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The “Mexican Hat” function (Figure 4) illustrates the relationship between the
lateral distance of neurons from the excitation point and the strength of lateral feedback.
The “Mexican Hat™ function corresponds to activity in microcolumns and is analogous to
structures of the SOM.

In biological systems, the effect of lateral feedback is that similar signal patterns
“cluster” around a winning neuron. Clustering is essential for map formation. The
resultant size of the cluster region depends on how the lateral feedback is applied.
[ncreasing positive feedback broadens the cluster, using negative feedback tends to
sharpen its edges, and omitting feedback does not allow clusters to form |KohonenT89].

The SOM model differs from biclogical systems in that it does not directly
implement lateral feedback. As mentioned earlier, the neurodes of the SOM’s output
layer are not interconnected; there are no lateral connections. However, since lateral

feedback is necessary for the formations of clusters, it is indirectly implemented during

the training process through the use of neighborhoods [KohonenT89].

Neighborhoods

A neighborhood includes all neurodes within a given radius of a winning neurode.
It represents the lateral distance between neurons [KohonenT89]. This corresponds to the
center region of the “Mexican Hat” function. Only the weight vectors of neurodes within

the neighborhood are modified [KohonenT89], which simplifies the “Mexican Hat™ to a

step function (Figure 5).
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Figure 5. Step function illustrating the neighborhood region and neighborhood
radius as related to the lateral distance of neurodes.

The use of this simplified feedback function does not affect the self-organization
process. Kohonen states that there are other lateral feedback functions that also produce
the clustering effect. The inhibiting feedback is ignored for the basic SOM model, but it
may be necessary for other functions such as autoassociative memory [KohonenT89].
The neighborhood radius gradually decreases as training progresses. Kohonen suggesis

using the following linearly decreasing function:

T
Mhew = [O,,,‘;(l = KJ‘I (3)

where 7 is neighborhood radius and 7 is elapsed training time and 7, is the maximum
allowable training time [DayhoffJ90, Fausett.94, and KohonenT89]. Decreasing the

neighborhood radius over time sharpens the response of winners while creating clusters
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of similarity. A neighborhood that includes only the winning neurode (a neighborhood

radius of zero) does not develop clusters that characterize similarity patterns.

Learning Rate

The learning rate can be thought of as the ratc at which weight vectors are
changed. As training progresses, the learning rate is decreased gradually using the

linearly decreasing function [DayhoffJ90, Fausett].94, and KohonenT89]

am‘w = amfd(l = ;] (4)

4 max

where «a is learning rate and 7 is elapsed training time and 7, is maximum allowable
training time. Kohonen states that a geometrically decreasing function produces similar
results [FausettL94 and KohonenT89]. The effect of decreasing the learning rate over
time causes convergence of similar patterns or formation of clusters [KohonenT89]. A
large a value will cause the weight vector of the winning neurodes to vary greatly.
Typically a SOM is trained in two phases before it is used for classifying input
vectors. The first phase uses larger a values for major convergence or overall ordering,

then the weight vectors can be “fine tuned” with smaller a values |[Fausett[.94].

Weight Adjustment

Modifying only those neurodes inside the neighborhood, the weights within the

winner’s neighborhood, are modified according to the following adaptive function:

W, =w, + a(;'n - wm) (5)
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where w, is the a new weight value, & is the current learning rate and i, is the current

input value.

Sequential Processing Using Self-Organizing Maps

Unprocessed human speech is an example of high-dimensional data containing
temporal information that is successfully processed by biological neural networks. Every
day human brains demonstrate that artificial neural network models require more
refinement to emulate them more effectively [KohonenT89]. Kohonen questions whether
the temporal components are part of processing or a result of a higher level of
organization. Some standard techniques currently being used for handling temporal
aspects of human speech include: Hidden Markov models (HMM), Hidden Control
Neural Networks (HCNN), and Time Delay Neural Networks (TDNN), [Markowitz]94,

KohonenT88a]. These techniques tend to use the artificial neural networks as a

OKLAHOMA STALE UNIVERS PPV

preprocessing layer [MarkowitzJ94| rather than as a direct implementation of temporal
processing within the ANN.

Speech recognition is a difficult task. It is time-dependent; that is, information
content is occurring over some period of time. The modifications to self-organizing maps
discussed below are directed at speech recognition and processing. Speech processing
and recognition are not within the scope of this paper; however, these topics will be

discussed as they relate to the methods of temporal processing.
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Input Sequence Averaging

Self-organizing maps can be used to classify phonemes (the basic elements of
speech) by using discrete samples of the input signal [KohonenT88a]. Jeri Kangas
describes several modifications to the self-organizing map that attempt to deal with the
time dependencies of input signals. One of these is input sequence averaging
[Kangas]90].

[nput sequence averaging is a two-stage method consisting of a preprocessing
front-end (input vector averaging) and a self-organizing map (ANN). The preprocessing
front-end step combines the current input vector and a running weighted average of
previous input vectors to compute the input to the SOM. Kangas describes how the
weighted average stores the historical contribution of input vector sequences in the
resulting contribution from a recursively calculated average [KangasJ90]. This means
that the average can be computed as each input vector is fed into the network. Kangas

states that the average being used is called a “backward exponentially weighted sum™, as

shown in Equation 6 [KangasI90].

x, (1) = B W)+ (10 B)-x, (1 1) (6)

For each input signal in the time sequence the average is calculated. The
contribution that the historical information makes to the average is determined by the

weighting factor, #. The parameter ¢ designates the time within the sequence. The
parameter () is the current input vector; the weighting factor 8 will determine the

contribution of the current input vector. The remaining portion of the equation,
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(]-0 - /3) -x,(r=1), is responsible for the historical contribution. Once the average is
calculated, the x, (1) vector is used as input to a traditional self-organizing map

[KangasJ]90].

The averaging allows the network to tolerate noise by acting as a low-pass filter
for the input signal. However, this method is not without problems. If the weight factor
is too small, the contribution of the current input is forgotten; and a large factor parameter

will cause historical contributions to be lost. This method is modified to deal with

shadowing of previous input values.

Response Integration Model

This neural network, as shown in Figure 6, consists of two SOM layers with
averaging. The first layer is a traditional Kohonen self-organizing map. A speech signal
is fed into the first layer where it is processed. The input is fed as a sequence of vectors.
As they are processed, the sequences provide a set of responses from the first layer.

These responses are combined using Equation 6.

x(t) > Map I _y@ . Meml xt) N Map 11 y.(t)j

Figure 6. Architecture for the Response Integration Model [KangasJ91a].

The purpose of the first map is to reduce the problem of input values shadowing

with previous input values. The second map is then used to average the inputs from the

first map [KangasJ91al].
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Pattern Concatenation Model

In the pattern concatenation model a series of shift registers saves the current
input vector and a small historical set of input vectors. The contents of the shift registers
are concatenated and used as input to the SOM where it is classified. Figure 7 illustrates
the architecture of this network. The input samples are moved forward through the shift
registers in a First-In-First-Out (FIFO) manner so that the next input sample can be
incorporated. Each new input sample causes the oldest sample to be discarded. The shift

registers provide historical information in the classification of signals with time

dependencies.

l Mem .
T

I Mem l x(t) Map I y(t) >
) —

x( t]\>l Mem
P

I'igure 7. Architecture of the Pattern Concatenation Neural Network [KangasJ91b]|.

This method does not have the advantage of eliminating the noise as does the
Input Sequence Averaging method discussed above; however, there is no diminishing of

data values due to a weighting factor. The contents of the shift register x (1) at time ¢

can be described by the following equation.
x,(0)= e, = 1)ox(t = 2).c..ox(t — (- 1))} (7)

Each of these methods described by Kangas require no changes to the basic self-

organizing map architecture. However, training times and parameter values may require

adjustment [KangasJ91b].
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Trace Feature Maps

Trace Feature Map (TFM) is a neural network algorithm intended for processing
elements of speech. The TFM network is proposed as a subcomponent of a larger speech
recognition system. TFM uses self-organizing maps to store speech data that is invariant
of time. The purpose of TFM is the storage of short acoustic sequences and the reduction
of stored data within the map. Zandhuis makes the assumption that within a spoken word
there are series of events that can be processed more naturally than breaking them into
discrete phonetic components. The events of speech rather than the passage of time drive

the TFM network [Zandhuis]92].

A TFM neural network has a hierarchical architecture consisting of two layers, the
C layer (feature classifier layer) and T layer (sequence storing layer), as shown in Figure

8. The first tier classifies features of an input signal onto a two-dimensional self-

i 4
[ T-layer I
Crr) 4
[ C-layer

X(r)

Figure 8. Trace Feature Map Architecture [Zandhuis]92].

organizing map. The first layer differs from the traditional SOM by its use of a threshold

activation function, F(z, ¢). This means a neurode will only be active if its calculated
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"Irace Feature Maps

Trace Feature Map (TFM) is a neural network algorithm intended for processing
elements of speech. The TFM network is proposed as a subcomponent of a larger speech
recognition system. TFM uses self-organizing maps to store speech data that is invariant
ol time. The purpose of TFM is the storage of short acoustic sequences and the reduction
of stored data within the map. Zandhuis makes the assumption that within a spoken word
there are series of events that can be processed more naturally than breaking them into
discrete phonetic components. The events of speech rather than the passage of time drive
the TFM network [Zandhuis]92].

A TEFM neural network has a hierarchical architecture consisting of two layers. the
C layer (feature classifier layer) and T layer (sequence storing layer), as shown in Figure

8. The first tier classifies features of an input signal onto a two-dimensional self-

Y(r) f
[ T-layer [
Cry) f

L C-fayer l

X(t)

Figure 8. Trace Feature Map Architecture [Zandhuis]92].

organizing map. The first layer differs from the traditional SOM by its use of a threshold

activation function, F(z. ¢). This means a neurode will only be active if its calculated
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Euclidean distance is over a particular threshold level, ¢. This method is known as coarse
coding. It has the advantages of accurately classifying inputs while maintaining a smaller
map size and maintaining the neighborhood relationships [ZandhuisJ92].

The T-layer is a SOM that uses lateral feedback based on the “Mexican Hat™
function to implement excitatory and inhibitory responses. The neurodes of the T-layer
seek a state of equilibrium. A neuron will stay at its current state until the next steady
state is reached. The effect of these state changes can be seen in the path diagrams
produced as the input signal is processed [Zandhuisl92].

As an acoustical signal is processed by a TFM. a path will form on the second tier
that is representative of a signal’s activity within a time window. The size of this time
window is variable because AT, the utterance time, is dependent on signal changes rather
than on time changes. This means that the path of activity for a given signal is
independent of duration. This allows utterances to be fast or slow [Zandhuisl]92].

The rescarch presented in Chapter 111 takes the processing approach ol
incorporating sequential processing components as parl of the self-organizing map ncural
network. The addition of sequential processing was developed after studying Kohonen's
work on the Phonic Typewriter and his use of input vectors and the resultant paths for
continuous speech recognition [KohonenT88a]. The sequential Kohonen neural network

algorithm, Figure 11, is a modification to the Kohonen self-organizing map algorithm as

shown in Figure 10 [Fausettl.94].
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CHAPTER I
METHODS

Introduction

The Kohonen self-organizing map is well suited to capturing the static
relationships of an input signal space; however. standard Self-Organizing Maps (SOMs)
are nol able to process signals that have contextual or temporal components. [ a
sequence of input vectors is fed into a standard SOM, the SOM is unable to capture and
identify the sequential relationships between the input vectors of the sequence.
Variations of self-organizing maps have been developed that have the capacity to deal
with contextual and temporal data; these are described in Chapter 1. The research
presented here describes a new variation of a self-organizing map for processing
contextual data. The Sequential Self-Organizing Map (SeqSOM) uses feedback to relate
a sequence of input vectors.

Feedback is used in many electrical systems, and one such example is the lincar
amplifier. In the case of the linear amplifier, a portion of the output is used as feedback
with the input signal. Likewise, SeqSOM uses a portion of its output as feedback with
the next input vector. The Sequential Self-organizing map is somewhat similar to work

done by Ghosh and Karamcheti with the artificial neural network called Simple Recurrent
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Network (SRN) |Ghosh]92 and ElmanJ90]. Ghosh and Karamcheti use a moditied
feedforward network with feedback to provide the contextual processing needed. More
information regarding the SRN network architecture can be found by investigating the

research of [GhoshJ92 and ElmanJ90] listed in the reference section.

SeqSOM Architecture

The SeqSOM architecture, as illustrated in Figure 11, is similar to that of a
traditional self-organizing map; for a comparison, see the SOM architecture shown in
Figure 9. Both network architectures have the same basic grid structure of neurodes. In
both the SeqSOM and SOM networks, an input vector is distributed to each neurode in
the grid for calculation of activation values. The winning neurode is determined from
these activation values, and the weight vectors of the winning neurode and its neighbors
are modified.

The major difference between the SeqSOM and the SOM architectures is the usc
of leedback in SeqSOM. In the SeqSOM architecture, a vector is distributed (o cach
neurode in the grid and the activation values are calculated. When the winning neurode is
determined. information about the winning neurode is then used as feedback along with
the next input vector. The feedback information consists of the spatial coordinates of the
winning neurode (i.e., the row, column, and plane coordinates of the winning neurode).
The new vector that is formed by the concatenation of feedback coordinates and the next
input vector is called an input bundle. The feedback for the first input bundle of each
sequence of inpul vectors is set to zero. All subsequent input bundles for the sequence

are formed using the coordinates of the winning neurode from the previous input bundle.
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The input bundles are processed sequentially until the complete sequence of input vectors

1s consumed.

Also. to accommodate the feedback, three additional values must be added to the
weight vector of each neurode. The size of the new weight vector matches the size of the
input bundle.

"The SeqSOM program used for this research can support output layers of up to
three dimensions; however. typical applications involving SOMs use a two-dimensional
output layer arranged as rows and columns. A (wo-dimensional network can be viewed
as a three-dimensional network consisting of a single plane.

Research results indicate that the feedback values need to be scaled so that they do

not skew the activation values in favor of the feedback.

R KO OR
9.0 0.0.0.0.0
O 0.0.0.0.0.@
9.0.0.0.0.0.0;
9.0.0.0.0.0.0,
O.0.0.0.0. 0.0
@,9,9,0,0.8.0,

Columns | {

Rows

Figure 9. lllustration of the Self-Organizing Map Architecture.
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Example of Input Bundle Formation

Consider the SeqSOM example shown in Figure 11. It has an input vector size of

six and uses a three-dimensional grid. When the input vector and the feedback are
concatenated. they form an input bundle of size nine. The weight vector size for cach
neurode is also nine. The first input bundle is a considered a special case because il has
no leedback values available: therefore, the feedback values of the first input bundle are
initialized to zero. As in traditional SOMs. a winning neurode is identitied for each input

bundle processed. but unlike the traditional SOM. the SeqgSOM uses the coordinates of

the winning neurode to construct the next input bundle.

Avcgoririing 1

initialize all neurodes ' weight vectors to random values,
initiclize neighborhood radius:
initialize training time;
while remaining training time is nol zero
hegin
Jor all vectors in the inpul training set
hegin
calculate the activation value for each neurode,
locate the minimum activation value,
adjust the weights of winner and its neighhors,
end
adjust neighborhood radius,
adjust learning rate,
decrement (raining time;
end.

@ &
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Figure 10. Algorithm of Kohonen's Self-Organizing Map.
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The Sequential Self-Organizing Map Algorithm

The SOM and SeqSOM training algorithms are shown in Figure 10 and Figure

12, respectively. The SeqSOM algorithm is an extension of the SOM algorithm: these

extensions are shown in bold. in Figure 12.

Raws

Inpul Bundle
SeqSOM Output Layer — N \

COWI’IS

l
LLT]
Input Vector Sequence
il ) D () e - I G o TTTTT]

Feedback Coordinates
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N et
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Iigure 11. Illustration of the SeqSOM Architecture.
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ALGORITHAL 2

initialize all neurodes ' weight vectors to random values;
initialize neighborhood radius;
initialize the training time:
while remaining training time is not zero
hegin
for ail input sequences in the training set
begin
set feedback to zero;
Sor each input vector in the sequence
hegin
JSorm an input bundle from input vector and feedback;
calculate the activation value for each neurode.
locate the minimum activation value;
adjust the weights of winner and its neighbors;
set feedback to coordinates of winner;
end
end
adjust neighborhood radius:
adjust learning rate;
decrement (raining time,
end.

gl

FFigure 12. Scquential Self-Organizing Map Algorithm,
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CHAPTER IV
IMPLEMENTATION AND TESTING

Algorithm [mplementation

Early in the development phase of the SeqSOM project, software implementations
of standard sclf-organizing maps werc examined for potential modification to include
feedback. Onc such package, called SOM_PAK, is available to the public via anonymous
FTP: itis Teuvo Kohonen’s own implementation of the sclf-organizing map. SOM_PAK
includes all the source code files necessary to compile the program executables for a SOM
network with supporting programs. The idea of using an existing application or modifying
existing code was impractical duc to the extensive changes that would have been required.
Rather, SeqSOM was implemented first as a standard sclf-organizing map based on
pscudo code provided by [FauscttL.94] and then modificd to support spatial feedback.
Spatial feedback is a new term and refers to the use of the spatial coordinates of a winning
ncurode as feedback into the next pass through the network. From its beginning, the
SeqSOM project had the goal of providing feedback in traditional self-organizing maps.

The SeqSOM program is capable of supporting the use of fixed length input
vectors in the same way that they are used in traditional sclf-organizing maps. In addition

SeqSOM supports the usc of variable length input vectors. A control file that contains
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parameters is used to determine the behavior of a SeqSOM network. This means that by
setting parameters within the control file, SeqSOM can be made to behave like a standard

SOM.

Development Environment

The SeqSOM program is implemented in the C++ object-oriented programming
language. The program was designed as a single exccutable program for both the training
and usage phases . Command line options arc spccified to control the operation of
SeqSOM. These command linc options are listed in Appendix A. A control file
containing parameters is used to control the behavior of SeqSOM. The exccution time of
the program varics according to the input vector sizes, length of training time, and number
of ncurodes in the network. Training time can range from a few minutes to many hours,
Using a trained SeqSOM network is much faster than the time involved in training the
network. Caching of the activation valucs is performed by Kohonen’s SOM PAK
programs to spced the training process [KohonenT&9]. Efficiency considerations of the
ScqSOM application are discussed in Chapter V; however, improvement of its cfficicncy is

left as future work.

Testing Environment and Platform

The SeqSOM program was developed for the platforms of Microsoft” Windows
NT® and AT&T UNIX System V operating systems. Using conditional compiles, a single

copy of the source code will compile on the different operating environments. The
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complete source code for the SeqSOM project is not included in this thesis but it may be

obtained for research purposes by contacting the author.

Test Data Domain

Once the SeqSOM algorithm was implemented as a program, selection of
appropriate testing data occurred next. Many types of data were examined for possible
use. Since SeqSOM is designed to use feedback, only data sets consisting of strings (i.e..
ordered sequences ol symbols) were considered. Some examples of data considered are
encoded speech [KohonenT88a] and waveform generation [Fausettl.94]. These were not
chosen because of their complexity and were not needed to show the validly of the
SeqSOM algorithm. The data that was finally chosen is described by Ghosh and
Karamcheti using Elman'’s feedforward recurrent neural network [GhoshJ92 and
Elmanl90]. Elman describes a neural network application that builds a representation of
a Finite State Automaton (FSA) from a subset of the language generated by the IFSA
[Elmanl90]. For their tests. Ghosh and Karamcheti used strings generated from a regular

grammar [GhoshI92].

Selection of Test FSAs.

For the Ghosh and Karamcheti tests, strings were generated from the FSA shown
in Figure 13. The strings that were chosen initially to test SeqSOM were generated by the
same IF'SA as used by [Ghoshl92]. It was decided to use the same FSA because the
results obtained from SeqSOM could be compared readily with the results obtained by

[Ghosh)92]. They chose 60.000 to 80.000 strings with a length constraint of 32, but the
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data chosen for SeqSOM consisted of all strings of length 10 or less (a total of 103

strings). Other FSAs were chosen later to extend the testing of SeqSOM. These arce

included in Appendix C.

Figure 13. The FSA state diagram used for the Ghosh and Karamcheti rescarch.

The focus of the Ghosh and Karamcheti rescarch was to cxaminc the internal
representation of an FSA in an ANN called a Simple Recurrent Network (SRN)
[GhoshJ92]. In contrast, thc ScqSOM rescarch makes no attempt at explaining how an

FSA is represented within an ANN. Instead, the goal was to show that feedback can be

used within a Kohonen network.
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Generation of Test Data

Four FSAs were used to test SeqSOM, but a single FSA will be used to
demonstrate the test process in this section. The other FSAs are included in Appendix C.
The FSA used for this discussion was taken from Ghosh and Karamcheti and is illustrated
in Figure 13 [GhoshJ92]. Ghosh and Karamcheti were able to show that a feedforward
network with recurrence (i.e. feedback) could embody the behavior of an FSA it it were
trained using strings from the language generated from that FSA.

Strings from the language were also used in the SeqSOM rescarch, with the goal
of showing that a SeqSOM network could be made to embody the behavior of an FSA.
Therefore, strings had to be generated for training a SeqSOM nctwork. All strings up to

length ten from the language were generated; this is because the training time was morce

managcable with a set of strings of shorter lengths. As later discovered, the smaller sct of

shorter strings produced better results than [GhoshJ92] obtained using a significantly
larger sct of longer strings [FauscttL94].

A program was written to generate the strings from the language defined by an
FSA. The C++ programming language was not chosen to implement the string generator
cven though the rest of the project was written in C++. The advisor to this rescarch, Dr.
Blayne Mayficld, reccommended using the Prolog programming language becausc it was
morc suited to generating strings from a language. Since the principle rescarcher for this
projcct was not familiar with Prolog, Dr. Mayfield provided a Prolog program to generale

strings. The Prolog program is presented in Appendix B.
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The string gencrator program is written such that it does not have to be changed
for each new FSA. Rather, an FSA is described as a sct of Prolog lists that is used as
input to the program. The lists are manually constructed and include the start state, final
states, and state transition function of the FSA. Another list item specifying the maximum
string length constraint is also included. It is used to obtain strings from the language up

to a given length and to terminate execution of the generator program.

% Prolog lists describing the FSA used by Ghosh and
% Karamcheti.

%The following list contains the Maximum Length, Start State,
%and the set of Final States.

[10, state0, [stateb]].
%The following lists describe the state transition function.
%Each list includes the beginning state, ending state and

%output of the transition.

[statel, statel, t].
[statel, state2, pl.

[statel, statel, s].
[statel, state3d, x].

[state2, state2, t].
[state2, stated, v].

[state3, state2, x].
[state3, state5, s].

[stated, stateld, p]l.

T Y
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[stated, stateb, v].

Figurc 14. Ilustrates an FSA (from Figure 13) transformed to a sct of Prolog lists
statements which arc used as input for FSA string generator program [GhoshJ92].

Figure 14 contains the Prolog lists that describes the FSA pictured inFigure 13,
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Four other FSAs were also chosen for experimentation. The Prolog lists that describe
these FSAs used for testing SeqSOM are listed in Appendix C.

Figure 15 contains a sample of the strings generated using the Prolog lists shown
in Figure 14; the strings have a length constraint of ten characters, not including the
beginning (“b™) and ending (*¢”) sentinel characters. The sentinel characters arc used to
designate the beginning and ending points of a string and are used in this rescarch as an
attempt to rctain, where applicable, the testing techniques of [Ghosh]92]. Even though
the two sentinel values are represented as two scparatce textual characters, they arc not
encoded as scparate values but are mapped onto a single representation. The encoding
process is described below. A complete listing of all strings gencrated for cach FSA tested

can be found in Appendix C.

btxxtvpse

btxsc

btxxvve btxxtvpxvve
btxxvpsec btxxtvpxvpsec
btxxvpxvve btxxtvpxtvve
btxxvpxvpsc btxxttvve

btxxltvpsec

btxxvpxtvve
btxxttvpxvve

btxxvpxtvpsc
btxxvpxttvve btxxtttvve

btxxlvve

Figurc 15. Partial list of strings up to ten characters in length.

The character strings produced by the generator arc not used dircctly as input to
SeqSOM; rather they were encoded as bit strings. The length of the bit strings is equal to
the alphabet size plus onc. (The additional bit is used to represent the sentinel value.) The
bit strings choscn to represent the characters are orthogonal to one another. This means

that there is a single I-bit in cach bit string, and that the 1-bit is in a different position for
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cach bit string. This is illustrated in Figure 16 for the FSA shown inFigure 13. The

alphabet for that FSA contains six characters, including the sentinel character.

r?)utput Character Bit Vector Representation
B (Begin) - Sentinel — 100000
T = 000001
P = 000010
X = 000100
\% = 001000
S = 010000
E (End) - Sentinel — 100000

Figure 16. Bit vector assignment for the FSA.

A separate “quick-and-dirty” C program was written to encodc the strings for cach
FSA. To illustratc the encoding concept, the bit strings that correspond to the character
strings shown in Figure 13 are given in Figurc 17. Once the strings arc encoded and saved
to a file they arc ready for use by the SeqSOM program. The training set forFigure 13,

consisted of 103 vectors.

Training a ScqSOM Network

Chapter [l contains a complete description of the SeqSOM algorithm and its
training process. Once a user-specified training session is complete, the weights arc saved
to a file. The weights embody the knowledge of the network. Thesce weights can later be

loaded into an untrained SeqSOM network to recreate the network in its trained state.
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1474

100000000001000L00010000100000 bixse
LOOO00OND00001000100000100001000001000100000 brxxvve
100000000001000100000L000010000000100100001030000 bexxvpse
10000000000100010000010000100000001600010000100000106010000 0 btxxvpxvve
100000000001000100000100001000000010000100001L000000010010000100¢ 00 bixxvpxvpse
10000060000010001000001000010000000100001000000010010000010001000 00 btxxvpxtvve
1000000000010001000001000010000000L000010000000100100000001001600010020 00 bxxvpxtvpse
1000000000010001000001000010000000100001000000010000G100100000100010000 0 btxxvpxttvve
100000000001000100000100000001001000001000100000 bxxivve
100000000001000100000100000001001000000010010000100000 bxxtvpse
1000000000010001000001000000010010000000100001000010000010001000 00 btxxtvpxvve
1000000000010001000001000000010010000000100001000010000000100100001000 00 btxxtvpxvpse
1000000000010001000001000000010010000000100001000000010010000010001000 00 bixxtvpxivve
1000000000010001000001000000010000010010000010001000 00 btxxttvve
10000000000100010000010000000100000100100000001001000010000 0 bxxttvpse
10000000000100010000010000000100000100100000001000010000100000100010000 0 bixxttvpxvve
10000000000100010000010000000100000100000100100000100010000 0 boxxtitvve

Figure 17. Sample of the encoded vectors for Figure 15.
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Once a SOM (including SeqSOM) is trained, the training set is reused to create a
map of the behavior of the nctwork. In the case of SeqSOM, the map of behavior is
transformed into a new FSA that may be equivalent to the FSA that generated the training

set.

Buildingan FSA from a Trained SegSOM Network

The training set is used to map the behavior of a trained SeqSOM network to an
FSA that rccognizes the strings in the training set. As the characters of cach string are
processed by the network, the sequence of winning neurodces corresponding to those
characters is collected. The winning neurode sequences and their associated strings arc
written to a file for further processing by yet another program. Figurc 18 shows the lines
written to the file for the strings shown inFigure 15. Each winning ncurode in a scquence
1s treated as a state in the new FSA. Transition from onc winning ncurode to the next in
the sequence results from processing a particular character in the string. Thus, transition
from onc state to the next in the new FSA results from processing the same character.

Notc in Figurc 18 that cach winning ncurodc is referenced by a single number even
though the network of ncurodes is viewed in ScqSOM as a three dimensional matrix, as
described in Chapter [11. The reason for this is that it is casier to dynamically allocate and
manipulate a 1-dimensional array in C++ rather than a 3-dimensional array. The (++
programs in ScqSOM arc written to transform the 1-dimensional array addresscs to 3-
dimensional ncurode addresses, and vice versa. The |-dimensional array address does not

affect the results produced by ScqSOM.
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The next step is to convert the file illustrated inFigure 18 into a sct of Prolog facts
that is used by the FSA string gencrator program. The program that performs this

conversion is called BUILDTABLE.EXE. The output of BUILDTABLE.EXE is a file

(0224 129 212 4 bixsc

0224129 174 150 140 66 btxxvve

0224 129 174 150 12 210 4 btxxvpse

0224 129 174 150 12 204 150 140 66 btxxvpxvve
0224129 174 150 12 204 150 12 210 4 btxxvpxvpsc
0224129 174 150 12 204 70 60 140 66 btxxvpxtvve
0224129 174 150 12 204 70 60 11 210 4 btxxvpxtvpse
0224129 174 150 12 204 70 119 105 140 66 btxxvpxttvve
0224 129 174 70 60 140 66 btxxtvve

022412917470 60 11 210 4 btxxtvpse

0224129 17470 60 11 204 150 140 66 btxxtvpxvve
0224129 1747060 11204 150 12 210 4 btxxtvpxvpsc
0224129 174 70 60 11 204 70 60 140 66 btxxtvpxtvve
0224129 174 70 119 105 140 66 btxxttvve
022412917470 119 105 12 210 4 btxxttvpse

0224129 174 70 119 105 12 204 150 140 66 bixxttvpxvve
0224129 174 70 119 74 90 140 66 btxxtttvve

Figurc 18. Samplc output from ScqSOM using the fraining set as input.

that consists of a singlc Prolog fact on cach linc. The output produced by
BUILDTABLE.EXE for the data in Figurc 18 is shown in Figure 19.

Duplicate transitions may occur, but this is expected since many strings share
common sub-strings. Next, the UNIX sort command is used to remove duplicate Prolog
lists, and this file is saved. An additional Prolog list containing the start state, ending
states, and maximum string length is then added to the file; this Prolog list is nceded for
the string generator program. The maximum string length contained in this list matches

that of the original FSA, as shown inFigurc 13. Finally. all Prolog lists that contain cither
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the sentinel character “b™ or “¢” are commented out; this is done becausc those lists do not
contribute to the string generation process. The result of applying the modifications listed
above to the file shown inFigure 19 is illustrated in Figure 20. This edited file is called
SeqSOM FSA file, and it will be used to compare the FSA produced by SeqSOM to the

original FSA.

The question of equivalence ariscs once the second FSA is constructed from a
trained ScqSOM. To comparc the original FSA (M,,) to the SeqSOM FSA ( M), the
scts of strings generated by the FSAs must be compared. This is impractical for many
FSAs since they have an infinite number strings in their language. Howcver, an alternative
discussed in the next section shows that a limited number of strings can be compared to
show FSA cquivalency. For convenience, an initial test is run in which a small subsct of
the two languages (7, and L) are compared; the reason for this is to reduce run time
and storage space. The subsct choscn for the initial test uscs the same string length
constraint used to train ScqSOM. If the comparison shows that the two subscts arc not
cqual then it is immediately obvious that the two machines M, and M arc not
cquivalent. But if the subsets arc the same, additional comparisons must be madc to

determine the cquivalency of M,, and M. The question then becomes, what is the
minimum length constraint nceded for a comparison to show that M, and M, arc
cquivalent? The minimum length constraint and the question of equivalence between two
finite statc automata can be decided by using an algorithm given by Aho and Ullman as

discussed in the next scetion [AhoA72].
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[state0. statc0, b].
[state0. state224, 1).

[state224, stael29. x).
[statel29. statel 74. x].
[state] 74, state150. v].

[state 150, state]2. p].
[statel 2, state210. s].
[state2 10, stated. e].
[stateD, state0, b].
[stateQ. state224 (].

[state224, state129. x].
[statc129. statel174. x].
[state] 74, state 150, v].

[state150. statel 2, p].
[statel2. state204. x].

[state204, stale 150, v].
[state]50, state140. v].

[state140. state66. ¢].
[state0, state0, b].
[state0, state224, 1].

[state224, state129,x].
[state129, statel1 74, x].
[state174. state150. v].

[state 150, statel2, p].
[statel2. stale204. x].

[state204. state150, v].

[state 150, state12. p].
[statel2, state210. s].
[state210. stated. e].
[state0, state(, b].
[state0. state224, 1].

[state224 state129, x].

[state129, state174. x].
[state 174, state150, v].

[state150, state12, p].
[state 2, stac204, x].
[state204, stae70, 1].
[state70. state60. v].
[state60. state140, v1.
[state 140, stale66, ¢].
[state0, state0, b].
[state0. state224, t].

[state224, state 129, x].
[state 129, state174. x].
[state |74, state 150, v].

[state 150, staiel2, p].
[state12, state204, x].
[state204, state70. t].
[state70. state60, v].
[state60. statel 1, p].
[statel1, state210, s].
[state210, stated. e].
[state0, state0, b].
[stateQ. state224, (].

[state224, state 129, x].
[state 129, staie 1 74, x].
[state174. state150. v].

[state150, statel2, p].
[statel2, state204, x].
[state204, state70, 1].
[state70. staie119. t].

[state] 19, state105. v].
[state 103, state 140, v].

[state 140, stale66. e].

[state0, state0, b].
[state(. state224.1].

[state224. staie129, x].
[state129, state174. x].

[state] 74, state70. t].
[state70, state60. v].
[state60. state 140, v].
[state 140. state66. e].
[state0. state0. b].
state(. stale224, t].

(
[staie224, state 129, x].
[stae]129, state 1 74. x].

[state]74, state70. t].
[state70, state60, v].
[state60. statel 1, p].
[statel 1. state210, s].
[state210, staled, e].
[state0. state0, b].
[stateD, state224, 1].

[state224, state 129, x].
[state]29, state]174, x].

[state174, state70. t].
[state70. state60. v].
[state60. statel 1, p].
[statell, state204, x],

[state204. state130, v].
[state150. state140. v].

[state140. state66. e].
[state0. state0. b).
[state0, state224,1].

[state224. state129, xJ.
[stalc]129. state174. x].

Figure 19. Sample output from building of new FSA.

MANATLL R A S d s

[statel74, state70, t].
[state70. state60, v].
[state60, state! 1, p].
[statel1, state204, x].

[state204, state150. v].

[state] 50. statel2, p].
[statc]2, state210, s].
[state210, stated. e].
state(, state(. b].
state(). state224. 1],

state! 74. state70, 1].
state70. state60, v].
[state60, statel], p].
[statel I, state204, x].
[state204, state70, ].
[state70. state60, v].
[state60, state 140, v].
[state140. state66, e).
[state0, state(, b].
[state0, state224, 1].

[ e M B B s B o B s

[state224, state 129, x].
[statel29, state174, x].

[state]74, state70, t].
[state70. state119, 1].

[state119, state 105, v].
[state105. state140. v].

[state]40, state66, e].
[state0, state0. b].
[state0, state224, 1},

[state224. state 129, x].

TLVNLASEIEL Y

state224, state129. x).
state 129, state 174, x].

[state]129. state174, x].
[state 174, state70, 1],
[state70, statel 19, (].
[statel19. state105. v].
[state105. statel2, p].
[statel2, state210., s].
[state210, stated. e].
[state0, state(, b].
[stateD. state224. ].
[state224. state129. x].
[state129, state174, x].
[state] 74, state70, t].
[state70, state119, t].
[state]19, state103, v].
[state! 05, state12, p).
[statel2, state204, x].
[state204, staie]150. v].
[state]50, state140. v].
[state140, state66, e].
[stateD, state0, b].
[stateD, state224, t].
[state224. state] 29, x].
[state129, state 174, x].
[state]74. state70, 1].
[state70, state119, 1].
[state119, state74, 1].
[state74, state90, v].
[s1a1€90, state140, v].
[state 140, state66, e].



[10, state0, [state140, state2 10, state2 12]].

Yo[state0, state(, b},
[statcO, state224. ().
[stateO, state8, p).
[state 105, state 12, p].
[state 105, state 140, v].
[statel |, state204, x].
[state 1 1, state21Q, s]
[state] 19, state 05, v]
[state] 19, stale74, 1]
[state12. state204, x].
[state 12, state210), s|
[state 129, statel74, x].
|state |29, state212, s,
[state 135, state 12, p|
[state 135, state 140, v].

Y| state 140, state66, c.
[state |50, state 12, p].
|state 150, statc 140, v].
[state] 63, state!35, v].
[state 163, state71, 1.
[state 174, state 150, v].

[state 74, state70, t].
| state200, state 129, x].
[statc200, state200, s].
[statc204, state150, v].
[state204, state70, t].
%o[state2 10, stated, e].
Y%[state2 12, stated, e].
[state224, state]29, x].
[state224, statc200, s].
[statc60, statel |, p].
[state60, state 140, v].
[state70, statel 19, t].
[state70, state60, v].
[state71, statel 19, t].
[state71, state60, v].
[state74, state89. t].
[state74, state90, v].
[state8, state 163, t].
[state8, state6(), v].
| stateB9, state74, t].
[state89, state90, v|.
[statc90, statcl |, p].
[state90, state 140, v].

Figure 20. Prolog lists describing new FSA generated from a Trained SeqSOM.

Testing For Equivalence

AL ATAL R A B d s L

The algorithm [rom Aho and Ullman listed in Figure 23 determines i’ two linite
state automala are equivalent. To aid this discussion, a supporting definition and
lemma—also from Aho and Ullman—are given in Figure 21 and Figure 22, respectively
[AhoA72]. In the following discussion M,, (the original FSA) and M (the SeqSOM
FSA) play the roles of M, and M, , respectively.

The application of Algorithm 3, Definition |, and Lemma | to this research can be
summarized as follows. The two machines M, and M, are combined to construct a

new machine M . The alphabets for M, and M are the same; i.c., £, = Z,. Thus, the
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DEFINITION

Let M= (Q, X, 8, qo, F) be a finite automaton, and let ¢, and ¢, be distinct states.
We say that x in 5 distinguishes ¢y from g if (g1, x) Y (g3, €), (g2. x) =ty (qq. €).
and exactly one of g5 and g4 is in /*. We say that g, and g, are k-indistinguishable,
k
writlen g, = ¢», il and only if there is no x, with x| < 4 , which distinguishes g, from ¢;.
We say that the two states ¢, from ¢; are indistinguishable, written g, = ¢, if and only if

they are k-indistinguishable for all & > 0.
A state g € ( is said to be inaccessible if there is no input string x such that

(Gor X) ——> (g3, €).

Figure 21. Definition of indistinguishable states [AhoA72].

LEMMA 1

Let M= (0, Z, 6, go, F) be a finite automaton with » states. States ¢ and g are
indistinguishable if and only if they are (n - 2) - indistinguishable.

Figure 22. Aho’s and Ullman's Lemma on determining if two states in a finite
automata are indistinguishable [AhoA72].

ALGORITHM 3

Input. Two hinite automata M, =(Qy, X1, 8y, g1, I) and My = (O, X1, 82, ¢2, [) such that

O " =D
Output. “YES il L(M,) = L(M>), “NO” otherwise.
Method. Construct the finite automaton

M= (0w 0, XU X, 81U 8y, g1, FIVUF).

b

Using Lemma | determine whether ¢, =q,. If so, say “YES”; otherwise, say “NO”.

Figure 23. Aho's and Ullman's algorithm for testing equivalence between (wo [inite
automata [AhoA72].
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alphabet £ for the combined machine M isequal lo £, and £;. Theset 2" * < " of
all strings of length n—2 or less is needed by the algorithm, where » is the number of
states in the combined machine M ;i.e., n = ’Qu uQsl. Let g, and g be the start states
for M, and M, respectively. According to Definition I, il g,1s (n—2) -
indistinguishable from ¢, in machine M if they are indistinguishable for each string in
" Ifthe two states ¢, and g, are (#—2) - indistinguishable, then by Lemma | they
are indistinguishable. If ¢, and g are indistinguishable, then according to Algorithm 3
M, and M are equivalent.

The implication of this is that not all strings in £" * need to be generated; instead,

"2 that is

only the subset of £" that is recognized by M, and the subset of
recognized by M, need to be generated. If the two subsets are equal then M, and M

are equivalent.

Determining Equivalency of SeqSOM and Original FSA

To generate the sets of strings necessary for proving the equivalence of M, and
M, the string generator program is used to produce the scts of strings [rom the files (as
described earlier) that describe the original FSA and the SeqSOM FSA. (Each FSA file
specifies the same maximum string length.) The two files created by the string generator
program are each sorted using the UNIX sort command and are saved as new files. The
final step is comparing the two sorted files. The UNIX compare command is used to
compare the two [iles. [f there are no discrepancies between the two files, then the two

FSAs are cquivalent in accordance with Algorithm 3.
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Discussion of the Experimental Results

There are four original finite state automata that were used for testing SeqSOM.
The number of states in these FSAs ranged from 3 to 6, and their alphabet sizes range
from 2 to 5 distinct characters. For each of the original FSAs, an new FSA was generated
from a trained SeqSOM using a subset of strings as defined by the original FSA.
Equivalence was shown in two of the test cases in accordance with Algorithm 3.
However, FSA Test Case 2 and FSA Test Case 3 the number of strings necessary to show
equivalence was beyond the current storage capacity of the available computing
resources. FSA reduction is discussed in Chapter V as a possible means for reducing the
number of strings needed to show equivalence. Table | lists a summary of the test results

for each FSA.

Origional IF'SA New FSA

States | Strings | Length § States Strings | Length § Equivalent
Test FSA | 6 103 10 29 76955 | 27 Yes
Test FSA 2 3 510 9 37 Y 35 Likely
Test FSA 3 5 19 20 43 40 4] Yes
Test FSA 4 5 511 12 90 =)™ 88 Likely

Table 1. Results for SeqSOM.

Since SeqSOM can generate equivalent FSAs, it can be concluded that a SegSOM
neural network captures in its internal representation the contextual relationship of the
input data.

As can be seen from Table |, the original FSAs all have a small number of states.

Once SeqSOM is trained, the number of states needed to define the new FSA is larger in
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all cases. The maximum string length needed to prove equivalence using algorithm as

shown in Figure 23 is defined as the Max(|Qol,|Qs]) - 2.

Failures to produce an Equivalent FSA

Sometimes SeqSOM fails to generate an equivalent FSA. The generated FSA

may produce a set of strings that is a superset of the training set. What observations can

be made when SeqSOM fails to produce an equivalent FSA?

(2 .
)o. A=)

// l /
) .{/m:.:}./\ | , '{/;y

SRR VORI S

Figure 24. Equivalent FSA generated after training the SeqgSOM network for FSA

Test Case 1.
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During experimentation with SeqSOM several observations were made about the
ability of this technique to build an equivalent FSA. One such observation suggests that
shrinking the neighborhood size can increase the likelihood that an equivalent FSA will
be captured by SeqSOM. In Test Cases 3 and 4, shrinking the neighborhood had the
effect of generating an equivalent machine. A possible explanation is that as clusters are
formed with a smaller neighborhood they have sharper edges, so the states are more well-
defined. In general when a SOM or SeqSOM type network is trained, a smaller
neighborhood reduces the area in which clusters are formed and the subsequent
transitional regions between clusters. Setting training parameters can be dubious if the
original FSA is unknown since a new FSA generated by SeqSOM and can be only
partially verified with the training strings. The selection of training parameters and their
impact on FSA generation using a SeqSOM network is left as future work and is
discussed in the Conclusions and Recommendations section.

SeqSOM also will fail to generate an equivalent machine if there is an insufTicient
number of strings for training. Increasing the training time does not secem lo alleviale this
problem. This behavior might be accounted for by the fact that there are not enough
strings to capture the FSA that generated them. This is evident in FSA Test Case 2. In
Test Case 2, the first training set consisted all strings from the language of length seven or
less, and after training the SeqSOM failed to produce an equivalent machine. When a
larger subset of the language was used, the SeqSOM training session produced an
equivalent FSA.

[f the training time is insufficient (i.e. if the network is undertrained) then the

ANN will not have had enough time to learn. SeqSOM also is prone to under-training
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and will fail like other artificial neural networks. Over-training is not a problem for the
SOM technique [HiotisA93]. Over-training should not be an issue with SeqSOM since
the learning method used is the same as for SOM. Since over-training is not an issue,
training for an extended period will help guarantee the there is sufficient training to

capture the desired behavior in the network.

S5eqSOM as Compared to Simple Recurrent Network

The intent of this research is to show that SeqSOM is a technique for processing
contextual data by using feedback. Several observations can be made when comparing
SeqSOM to the Simple Recurrent Network (SRN) as reported by [FausettL.94 and
GhoshlJ92]. |

The training sets used by [GhoshJ92] to train an SRN were chosen [rom the subsct
of the language with a maximum length of 32 characters; the size of this subset is greater
than 355,000 strings. The size of the training sets ranged from 60,000 to 80,000 distinct
strings. SeqSOM uses a complcte subset for training and for showing the equivalency of
the FSA representations (1.e. prool of equivalence).

The research presented by [GhoshJ92] shows that the accuracy of a trained SRN
network to be less than perfect. The incomplete training set should raise the question as
to whether an ANN trained with these strings will encompass the compete behavior ol the
original FSA. Ghosh and Karamcheti report accuracy results ranging from .48 to .999,
while [FausettL.94 and Ghoshl92] reports that other rescarchers were able to obtain
perfect accuracy for the SRN technique. Less than perfect accuracy could be a problem 1f

the ANN were being used in a control system. However with SegSOM, 100% accuracy 1s
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obtainable. Further, [GhoshJ92] did not show how they would produce an FSA from a
trained SRN. In contrast an FSA can be produced from a trained SeqSOM network.
SeqSOM has the advantage of using a small, complete subset for training (e.g.
103 strings for the FSA in Figure 13 as compared to Ghosh and Karamcheti's partial
subset of 60,000 to 80,000 strings) [Ghoshl92]. Even though run times for the two
methods were not evaluated, it is possible that the reduction in the training set size for

SeqSOM could be beneficial in improving performance.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

The research presented in this thesis discusses the integration of feedback into a
Self-Organizing Map to create a new Artificial Neural Network (ANN) architecture
called a Sequential Self-Organizing Map (SeqSOM). The experiments performed show
that SeqSOM can successfully capture the contextual nature of input data. In this
research the language from an FSA was used to test the SegSOM architecture. This type
of test data had been used for another network architecture called the Simple Recurrent
Network (SRN) [GhoshJ92]

Like the SRN research, a SeqSOM network was trained with strings from the
language given by an FSA. Once the SeqSOM network is trained, a new FSA can be
constructed from it and compared to the original. Equivalency of the two FSAs is shown

by directly comparing strings generated from the language of both FSAs [AhoA72].

Observations

The results of this research show that the FSA generated from a trained SeqSOM
network can successfully and completely capture the behavior of the original FSA. Four
different FSAs were tested, and this result was observed in all cases. In general, SeqSOM

performed with a higher level of accuracy than SRN.
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One of the drawbacks with SeqSOM is that it tends to produce a large numbers of
states in the generated FSAs. Because the number of states 1s used to determine the
necessary string length for showing equivalence to the original FSA, there can be

difficuity due to the storage space needed for the of strings being generated.

Future Work

This research should be pursued further to show that SeqSOM has more
applications than simply building an internal representation of an FSA. SeqSOM, being a
new architecture for contextual information, has raised as many questions as were
answered. The main question answered in this research was that SeqSOM is a viable
ANN architecture. However, much work remains as to its efficiency, behavior, and
potential applications.

Efficiency Concerns. One of the limitations of using SeqSOM is the amount of

time required for training. The SeqSOM programs implemented for this rescarch
recalculate all activation values during each pass through the training set. Many times
these activation values do not need to be recalculated because the weight vectors used to
calculate them do not change. This inefficiency could be reduced by storing the
activation values for each neurode as was implemented in Kohonen’s SOM application
[KohonenT92]. Along with the activation values, an extra valuc called the dirty bit could
be used to 1dentify the weight vectors modified during the previous pass through the
training set. With each pass through the training set, the activation values are

recalculated only for those neurodes that have their dirty bit set. From among the new
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activation values and the ones saved in prior passes through the training set, the winning
neurode is chosen.

Complications of implementing the dirty bit mechanism as described above are
that the feedback values in SegSOM do not remain static even though the training vectors
do and the weight vectors may. A possible solution to this problem is to calculate and
store a partial activation value and finish the calculation once the feedback values are
known. This could have the effect of reducing the number calculations required, thus
reducing the overall training time. The dirty bit technique may not be plausible for all
training sets, but in the case of the FSAs used in this research, it would have been
beneficial.

With the advent of multiprocessor personal computers and operating systems (hat
support them (e.g., Microsoft Windows NT), an obvious means for speeding up the
SeqSOM architecture is the use of parallel processor coding techniques (i.c. threads).
The calculation of ncurode activation values is the first logical candidate lor
parallelization since this value is calculated independently for each neurode.

FSA Issues. Since FSAs were the main focus of testing SeqSOM in this research,
there are many questions with regards to this problem domain that should be investigated.
These include, but are not limited to, the following: establishing the optimal training
time, learning rate, neighborhood size, network size, etc.

Even though the FSAs used for this research had small training sets, more
complicated FSAs exist and may require an excessive number of strings in the training
sel. This could overwhelm the capacity of available computing power to train and to

show equivalence. Therefore, it would be beneficial to establish the lower bounds for the
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size of the training set necessary to produce an equivalent FSA. The advantage of
knowing this information would be a reduction in time and other resources necessary for
training.

A way of dealing with excessive numbers of states is the reduction algorithm for
FSAs [AhoA72]. This algorithm could be used to reduce the number of states in the
generated FSA, which should help reduce the time and other resources required to show
equivalence to the original FSA.

Test with other data domains. Other “Real-World” applications should be

investigated using the SeqSOM architecture. Future work should include different kinds
of data that have a contextual and time dependencies. As discussed in the literature
review, other SOM architectures have been modified for speech analysis, and the

SeqSOM architecture could be applicable to this area.
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APPENDIX A

PROGRAM PARAMETERS
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Processing Mode Description

-1 Training Places SeqSOM in a training mode.

-a Apply Places SeqSOM in Application mode.

-| Label Label SOM neurodes with a text label

Additional Flags Modes Deseription

-V Version t a Print current version of SeqSOM executable.

-r Random t Use Random

-fvtr  Vector File L a Filename for retrieval of input vectors.

-fwts  Weight File t a Filename for storage or retrieval of weight
veetors.

-fprm  Parameter Files t a Filename for parameter file.

-fxls  Coma Delimited a Filename for output of coma delimited file.

-fout  Output File a Filename for other output

-d Display Training t Currently Not Implemented

Grid

-7 Random { Randomize weights using the time of day as
seed to random number generator.

-n Normalization t a Normalize weight and vectors. (See code for
current implementation of normalization
routines.

-7 Help t a Print help on command line options.
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“== Build a Finite State Generator ====

&

F oA o

buildFSG(InFile,

buildZ(Statel,

buildz (Statela, StateZa,
build2{ , , ).
final(([1).
final ([State|Tail]ll :-
Head =.. [State, List],

Last updated 07/19/25

Input file format:
* Line 1 specifies maximum string length (not including b and e),
and a list of the final state names.

the start state name,

[MaxStringLength,

* Line 2-n specify transition and output information.
[FromThisState,

ToThisState,

09:30

StartStateName,

OutFile)

% Open the input file.
see(InFile},

* Read the max string length, start state, and list of
read([MaxLength, StartState,
% assert the necessary facts relating to that input.

assert (maxLength (MaxLength)),

% read the first state/state/outpul line.

read([State, Statel, Outputr]),

% Assert the rules that define
buildz(State,

Statel,

% Close the input file.

seen,

% Generate a stopping rule for

final {(FinalStates), !,

% Generate the rule that stops

Head =..

CallForm

% Close the outpuk [ile.

told.

[StartState, )
assert (Head),
% Open the output file.
Fell (Outfile),
% Run the program to generate the ouatput.
=.. |StartState; [b]l,
call{CallForm),

State2,

output),

3

Output) :-

% Assert a rule for this input.

Head =..

[Statel,

RecursiveCall =..
assert({(Head :-

read([Statela,
“ Continue to assert

assert ( (Head

maxLeng

List],

[State2, [Output |

thi{ML),

length (List,

RecursiveCall)),
“ read the next stale/state/outpul line.

tinal (Tail).

printLast([]).
printList([HIT]) :-
printList(T),

write (H),

write(*

Stalela,
the rules that define the machine.

e |8

Outputal),

Outputa) .

- printList([elList]),

[FinalStateName,

PreducingThisOutput].

FinalStates]},

the machine.

each [inal state.

execution properly.

List] ],

LY,

nl,

L =< ML,

farl)),
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APPENDIX C

FINITE STATE AUTOMATA

USED FOR TESTING THE SEQSOM APPLICATION
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FSA Test Case 1

%Prolog Lists for FSA Test Case 1
[10, state0, [state5]].

[state0, statel. t].
[state0. state2. p].

[statel. statel. s].
[statel. state3, x|.

[state2. state2. t].
[state2, state4. v|.

[state3, state2, x}.
[state3, states, s|.

[state4, state3, p].
[stated, state5. v].
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hptitttttvve
bptititivpse
bpttttttvve
bplttttvpse
bptittivve
bpttitvpse
bpttttvpxvve
bptittvve
bptitvpse
bptitvpxtvve
bptttvpxvpse
bpltivpxvve
bplltvve
bpttvpse
bpttvpxtlvve
bpttvpxtvpse
bpttvpxtvve
bpttvpxvpse
bptitvpxvve
bpttvve
bptvpse
bptvpxttivve
bptvpxttvpse
bptvpxitvve
bptvpxtvpse
hplvpxtvve
bptvpxvpse
bptvpxvpxvve
bptvpxvve
bptvve
bpvpse
bpvpxtittvve
bpvpxttitvpse
bpvpxtttvve
bpvpxtivpse
bpvpxtivve
bpvpxtvpse
bpvpxtvpxvve
bpvpxtvve
bpvpxvpse
bpvpxvpxivve
bpvpxvpxvpse
bpvpxvpxvve
bpvpxvve
bpvve
bisssssssxse
bissssssxse
blsssssxse
blsssssxxvve
blssssxse
bissssxxtlvve

Complete Training Set for Test Case 1

blssssxxvpse
bilssssxxvve
blsssxse
blsssxxtlvve
blsssxxtvpse
blsssxxtvve
bisssxxvpse
blsssxxvve
bissxse
bissxxtttvve
blssxxllvpse
bissxxllvve
blssxxlvpse
blssxxlvve
btssxxvpse
bissxxvpxvve
bissxxvve
bisxse
btsxxtttivve
btsxxtttvpse
btsxxtttvve
btsxxttvpse
btsxxttvve
btsxxtvpse
btsxxtvpxvve
blsxxtvve
bisxxvpse
bisxxvpxtivve
bisxxvpxvpse
bisxxvpxvve
bisxxvve
btxse
bixxtttttvve
bitxxttttvpse
bilxxtitlvve
bixxlittvpse
bitxxttlvve
btxxltvpse
bixxttvpxvve
btxxttvve
bixxtvpse
btxxtvpxlvve
bixxlvpxvpse
bixxtvpxvve
blxxlvve
blxxvpse
bixxvpxttvve
bixxvpxtvpse
bixxvpxtvve
bilxxvpxvpse
bixxvpxvve
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FSA Test Case 2

%Prolog Lists for FSA Test Case 2
[9, stateP, [stateR]].

[stateP. stateQ, 0].
|stateP, stateQ. |].

[stateQ, stateQ, 0O].
[stateQ. stateR, 1].

[stateR, stateQ. 0].
[stateR. stateR. 1].
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bOO0O0ODOOO 1 e
bOO0DOOOODILT1e
hOo0OOOOOOD e
b0O00O00O101e
bO0O0O0OOTLT1e
bOOOOOO! Le
bOOOOODOTe
bOOBOOO1001 e
bOODOOOTIO! 1e
bOOOOOTO01e
bOOODODOT1101e
bOOOOOT I 1e
b000OO111e
bOOOO0O11e
b0000OO0T1e
boOOODIOODIe
bOOOOTOO1 T e
bOOOO100T1e
bOOOOTO1O1e
bOOOOTOL 1 le
bOOOOTOIl le
bOOOOIOIe
bOOODOLIT00T1 e
00001101 1e
bOO0DOIT01e
OO0 11 ]
bOOOOT 1
hOOOO1 [
LOOOOT
hbOOOOT 1
bOO0OO1 e
bOOO1T0000O 1 e
bOOOTO0OO01 1e
bOOO1000O e
bOOO1TOOTO1e
booOrToOI T 1e
bOODOTOOTN 1e
bOOO100T1e
bOOGIOI0O0!] e
b0OOOI10OI0T1e
bOOOTOT101e
bOOOTO1101e
bOOO101111e
boOOTO1 I 1e
bOOO10T e
bOOO101e
bOOO110001e
bOOO110011e
bOOO11001e
bOOOTT010te

O1le
lle
e
e

|
1
1
1
e

Partial Training Set for Test Case 2

bOOO110111le
b00011t011le
b0001101e
b000O111001e
bOOOT11011e
bOOO1110T1e
hOOOT1 1
bOOOT1 1
bOOOT1
bOoOO1 1
bOOOTI
b0ooOT1 1
b000Ole
b001000001e
b0010000TI1e
bO0D100001e
BOOIOOOLO1e
bOOI1000OLYT e
bOOIO0OOTITe
bOO1000Te
h001001001e
b00O100101 le
b0OO100101e
bOOT001101e
b0OOI1I0O0OTIT11le
bOO1I00OT 1 1e
bOO10O0I le
bOO100 e
hOOT0T0001 ¢
bOO101001 1e
bOOLOIT0OO1e
bOOIO10101e
bOO1010T 1 1e
bOO101O0OI e
bOO10101le
bOO10T1001 ¢
bOO10O1I10T e
bOOIOT10]e
bOOIO11101e
bOOIOILT11e
bOO1OI111le
bOO10111e
bO0OIO1l e
bDO10O1e
hOoOT10000Te
BOOT10001Te
bOO110001e
bOO1100101e
bOO1100111e
b00110011e

Ole
lle
le
e

M ot ot —
o 7= G P e
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bOoO11001Te

bOO110100Te
b00O1101011e
b0OI1010T1e
bOO110110Te
hOOlILOL LT e
b0OI1O0O111e
bO0O1101le

bOOT10Le

bOOIT10001e

bOOIT110011e
bOOT11001e
bOOITTO101e
bOO1110I11e
bOO1IT10l1le
bOO11101e¢
bOO1T11001e
boO1L11011le
bOO1IT11101e
bOOITTTLTIO0Le
bOOILTT11Il1le
boolilllle
boO1TT 11 le
bOOII1T1le
bOODI11le
bOoOIlle
bOOI1e

HOTOOOODOO T ¢
BOTOOOOOL T e
bO100O0OOO 1 e
hO1TOODOTO!1 e
bOl1OOOOI T 1e
bO1OOOOIL T
bO10OOOO e
bO10OOODTI0O0Te
bO1OOOTO1 Te
bO1000101e
bO1000TTO!1e
bO1000OT1T11e
hol1000OT 1 1le
bO100011e
bOIOOOT ¢
bO100OI00O01C
bO1001001 I¢
bO10O0O100]e
bOo10010101e
bOl1OOIOT 1 le



FSA Test Case 3

M

BEGIN /1\ . f _END
—{ ) ) Q)

%Prolog Lists for FSA Test Case 3
[50, statel, [stateF]].

| statel, stateP. y].
[statel. stateR. y].

[stateP. stateQ, z].
[stateP. stateR. y].

[stateQ, stateQ. z].

[stateQ. stateR. y].
|stateR, stateF, z]
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Complete Training Set for Test Case 3

byzzzzzr222724222227y7¢€
TR B A A0 A 0 B B e L A S A o g ey
byzzzzerrizerrr iy se
byrzrzzzerrzzzzezyze
B 25 i A T A e i R i A
byzrrrzrrrrrzrzyze
byzzzzzerzzzzyve
byzzzzzzzrzz2zyzZe
byzzzzzzrrzyze
byvzrzzzzzvryze
byzzzzzzzyze
byzzzzzzyze
byzzzzzyze

byzzzzyre

byzzzyze

byzzyze

byrzyve

byyze

byze
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FSA Test Case 4

_E%,G;\ i (’81\10

%Prolog Lists for FSA Test Case 4
[10, stateQ, [state4]].

[state(). statel. 0].
[statel, state2, O].

[state2, state2, 0].
[state2, state3. 1].

[state3, state2, 0].
[state3. stated. 1].

[stated, state2, 0].
[state4, state4, 1].
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Partial Training Set for Test Case 4
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