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CHAPTER 1

INTRODUCTION

Artit~cia] Intelligence, a Perspective

(>hiJosophers throughout human history have written about the "mind" and

theorized about its mechanisms, but only recently has progress been made in

understanding intelligence. Artificial Intelligence (AI) is an area of computer science that

involves understanding intell igence and its automation. Much ofthe motivation and

energy of this field is devoted to the replication of intelligent traits in machines. Many of

these traits have human characteristics, such as the ability to recognize speech or perfonll

the complicated task of launching a space shuttle. Television and film have propagated

the notion that the field of Al has achieved great technological advances by portraying

imaginary computers and robots that act with human intelligence and self will. This has

led to the misconception that Alis only concerned with the re-invention of humans.

Currently, the only way known ofre-inventing the human is to have and to rear a child.

AI should be thought of as a tool applied to machines that produces a degree of

intelligence traditionalJy found in biological organisms.



.!Jseful Artificial Intelligence

Robots that explore the surface ofother planets are a classic example of where Al

tools should be applied. Machines with AI characteristics, modeled after biological

organisms with a central nervous system, could function independently without the need

for constant human supervision. Without intelligence, the next pictures received from a

roving robotic probe on the edge of a crater might be from the bottom. Although human

intelligence is ideally suited for space exploration and other equally challenging jobs,it

may not be in the best interest of human resources to do this type of work. A robotic

probe must employ aspects ofintelligence so that it may fulfill mission objectives. It

must learn and make independent decisions based on information gained from its

environment. The interaction of a probe with its environment is similar to that of a

biological organism and its environment. Both organism and probe must monitor, react

to, and control aspects ofexmstence with regard to the various environments. Scientif'1c

evidence supports the idea that biological organisms developed central nervous systems

as a means of survival, contrasted with bacteria, viruses. and other simplistic organisms

that rely on fast replenishing rates and sheer numbers to insure survival. A nervous

system provides a biological organism with an ability to react and to affect its

environment [KohonenT89]. Neurological systems are especially adept at motor control,

processing sensory data, and higher levels of control fonning complex behaviors. Many

features we wish to automate have already been designed by nature in the central nervous

system.

2



Origins of Neural Research

NCUfocomputing, the modeling of biological neural networks using digital

computers, is a technique for dealing with problems, such as those discussed above, that

are not readily solvable using traditional Al methods [MarkowitzJ94 and LawrenceJ90].

In 1943, shortly before the development of the first commercial computer,

neurocomputing was first proposed by McCuHoch-Pitts [McCullochW43]. Neuro­

computing forms the basis for the field of neural modeling, which is a sub-field of Al that

seeks to understand and automate behaviors ofthe biological nervous system.

Neural Modeling

Currently, there seems to be a two-tiered approach to neural modeling. The first

approach is concerned with understanding the neuro-biological machine from the macro

(physical structure) and micro (electro-chemical structure) levels. Research in this area is

theoretical and is motivated by discovery and its goals are to learn how the neuro­

biological systems work. The second approach is neurocomputing, and its focus is the

model ing of the phenomena and function of their biological neural networks by using

computer programs called Artificial Neural Networks (ANNs). ANNs are s'imulations

designed to emulate aspects of tbe biological equivalent. There is an ongoing debate

between the theoretical and applied research groups as to the need for a precise model and

obtaining useful results. The neurocomputing approach is analogous tu manned flight in

which, "an airplane does not have to flap its wings to ny," meaning that neural network

models may have little or no basis in biological reality except for the idea. The
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backpropagation training method used to train feedforward and multilayered networks is

one of the most common training techniques used and is a classic exampie of an ANN

technique that has no resemblance to any natural structure within the brain, but produces

results that arc comparable [McCleHandJ86].

Even though the foundations of neurocomputing were developed before the first

commercial computer, neurocomputing has not always been a hot topic within computer

science. Research in this area went through a period of disenchantment and lack of

direction due in part to skepticism about the neural network as a viable and useful

technique. Neurocomputing research was revitalized during the mid-1980's, and much of

the renewed interest was brought about by the multi-layered, feed-forward network, and

the backpropagation trained network [MarenA90}. The backpropagation trained

networks' continued popularity is a result of its ability to solve a variety of problems that

preceding networks could not [McClelJandJ86]. Many researchers were diligent through

the lean years by continuing to lay the loundations which would later be used tor the

resurgence of l1euralnetworks. Teuvo Kohonen is a researcher who pursued associative

and topology-preserving neural networks during this time [MarenA901. His development

of ~he Self-Organizing Maps, or SOMs, is an important achievement in neurocomputing

research.

Self Organizing Maps (SOMs)

The research emphasis of this paper focuses on artificial neural networks, and in

particular, a variation ofa Self-Organizing Map [KohonenT89]. Chapter II describes the

self-organizing map architecture in detail. Generally, the self-organizing map is a

4



competitive network in which the winner takes all. Self-organizing maps are good at

solving problems that consist of data containing relationships that are hidden due to the

complexity of the problem or to irrelevant information (noise) obscuring the

relationships. The pool of data that contains these relationships is called the dataspace.

A hypothetical weather dataspace may include temperature, humidity, wind speed, dew

point, pressure, etc. A self-organizing map could classify the relationship of these factors

and map how they relate to the formation of different cloud types.

Generally, a SOM can be represented as a two-layer network consisting of

"neurodes," the simplest processing component in the neural network~ neurodes of a

SOM are modeled after the neurons in the biological nervous system. The SOM uses

input signals to compute an output value designating tbe winner [KohonenT89]. An

input signal (also called an i.nput vector) is an ordered sequence of numbers called an n­

tuple. Each element of the tuple represents a single trait, such as humidity. from the

dataspace. Identifying hidden relationships among vectors in the dataspace is the goal of

applying the neural network.

Each neurode contains an n-tuple, called the weight vector. The cardinality and

ordering of weight vector values correspond to those in the input vector. (n a SOM an

input vector is distributed to each neurode simultaneously where it is matched with the

corresponding weight vector. An activation function is used as a metric to gauge the

similarity between the input vector and the weight vector of the neurode. Each neurode

uses the same activation function to calculate the activation va~ues. The neurode with the

highest activation value is selected as the winner, and the minimum value may be selected

if a different activation function is used. When a neurode is selected as the winner, it

5



means that the values of its weight vector most closely approximate the values of the

input vector. The weight vector of the winning neurode is modified during the training

period [CaudillM93 and KohonenT89].

The input vectors that most generally represent the dataspace become the training

set for the neural network. However, in practice, the selection of the training sets is often

inconclusive. Self-organizing maps shouLd be trained using a dataset that represents well

the relationships found in the problem domain. Using the weather example, the training

set should contain a wide variety of atmospheric conditions that can be associated with

known cloud types, even though not all conditions will be available for training. As

discussed earlier, the training process involves modifYing the weights of the winning

neurode. Once training is complete, the training set is used to create a map ofcloud types

in relation to the winners. When new data are input to the SOM, they are classified to the

best-matching neurode, even though the new input vectors may not duplicate or have

existed the in training set.

Problems with ~OMs

One problem with SOMs is the fixed size of their input vectors, which limits

SOMs to classification of static signal patterns. A standard SOM processes each input

vector as a single unit of data. As a result, standard SOMs cannot deal effectively with a

collection of input vectors of differing sizes, which is necessary for processing data that

has sequential or contextual components. The research herein describes a variation of the

traditional SOM that properly handles sequential data and liberates the fixed size

constraint on input vectors. This variation is called the Sequential Self-Organizing Map
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OT SeqSOM. A SeqSOM partitions each input signal and uses feedback to process the

portions sequentially to achieve a categorization mapping similar to that produced by

standard SOM [BoydstunR95]. A full description of the SeqSOM architecture and

process is given in Chapter III.
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CHAPTER n

LITERATURE REVIEW

Biological Neural Networks

The brain's neocortex is the site where infonnation processing and intelligence

occurs in advanced biological organisms. The human neocortex is a convoluted, layered

structure of interconnected neurons, folded repeatedly to accommodate the vast number

of neurons, estimated at one hundred thousand million [RitterH91]. Organizationa'

complexity and information processing capabilities of the central nervous system

distinguish one species from another.

\. SynaD".&y Axon

I

Figure 1. Biological Neuron [McClellandJ86].

8



A neuron is the simplest functional component and, in general, is similar across

species. The typical biological neuron has four major components: dendrites, a soma. an

axon. and synapses. A typical neuron resembles the branches, trunk, and roots of a tree.

Figure 1 is an artist's representation of a neuron [McClellandJ86].

Dendrites. The dendrites are physically shaped as branch-like extensions of the

cell body, and provide the input functions for the neuron, among other activities .. The

dendrites receive electro-chemical stimuli from other neurons. These input signals are

propagated through the dendrite structure and are brought together at the soma, or cell

body.

Soma. The soma is where the "processing" occurs in the neuron. The strength of

the input signals at the soma is dependent on the distance and attenuation present during

the transmission through the dendrites .. The processing that occurs can be characterized

as a summation of the dendrite inputs. If the calculated sum exceeds a set threshold, then

an output signal is generated. This signal is similar to an electrical spike and is

transferred through the axon to other neurons [RitterH91].

Axon. The axon is a long wire-like structure that carries the signal away from the

soma to other neurons. Like the dendrites, an axon has an outgrowth of branches at its

end. These branches come together with the dendrites of other neurons to tonn synapses.

Synapse. The synapse is the small space between an axon branch of one neuron

and a dendrite of another. A signal pulse is transmitted across a synapse via a chemical

process. The axon secretes neurotransmitter chemicals, which create an electrical

potential difference between the axon and the dendrite. Synaptic connections may be

9



excitatory (Type 1) or inhibitory (Type II), in that the signal-forwarding may be enhallced

or reduced at the target neuron [RitterH91 l

The physical shape ofa neuron identifies it as having a specific type of synaptic

connection. Neurons tbat are shaped like a pyramid are caned pyramidal cells and have

Type I synaptic connections. Ste.llate cells are star-shaped neurons having Type n

synapses. Pyramidal neurons have a well-defined axon and a large number of synapses,

and like all Type I neurons, they can extend long distances to other regions of the brain

and nervous system. Stellate cells are morc localized, with the axon branching into

synapses limited to the immediate area. Stellate cells act to "corraJ" the Type I neurons

during excitation; that is, it is believed that the stellate cells stabilize the excitation site

by inhibiting activity around the stimulated region (lateral inhibition) [RitterH91].

Microcolumns. Neurons in the regions ofexcitation are thought to form

functional groupings called microcolumns. Microcolumns are cylinders of neurons that

extend vertically inward from the neocortical surface. Microcolumns generally have

Type I cells at the center and Type 1I cells at the boundary and serve as higher level

processing elements. Microcolumns have no real borders but gradually transform to olher

functional regions.

Some microcolumns are grouped to form still higher organizational structures

known as "cortical areas". According to [RitterH91] cortical areas provide specialized

functions for specific tasks such as aspects of speech comprehension, spatial orientation,

planning and execution of movements. analysis of edge orientation and of color shades,

etc. Over eighty cortical areas have been identified in the human cortex. Cortical

arrangement is so regular and so correlated to sensory receptors throughout the body that

10
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the cortical surface almost mirrors the anatomical and physiological relationships of the

sensory organs. For example, the cortical areas that stimulate the finger lie "atop" the

area that stimulates the palm, reflecting the "shape" of the hand.

The neocortex is a layered structure that typically consists ofsix distinguishing

bands of neurons as in Figure 2.

VI lofr.striate 'ayer

Subconical wh i·te matter

Weigert

,,-------------_._._---------'

Figure 2. Six layers of the neocortex [CotteriIIR88].

Evidence suggests that variation in the number and thickness of layers is

dependent on the region and its function [McClelJandJ86 and CotterillR88].

Layers. Input signals from the outside world enter the neocortex by passing

t.hrough the thalamus. The thalamus is responsible for forwarding and distributing input.

The thalamus neurons project into Layer IV where they provide inputs to other cortical

areas. Neurons in the middle layer extend upward to Layers II and IU. Layers II and III

connect to other cortical areas either on the same side of the brain or on the opposite

11
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hemisphere. Layer [ has few neurons. Layers V and VI, or deep layers, are considered

the output layers. The neurons in these layers tenninate away from the neocortex in other

subcortial areas.

This discussion of biological neural networks is meant to show their relationship

to an Artificial Neural Network (ANN) called the self-organizing map. Further

discussion ofthe biological aspects is beyond the scope of this thesis. For additional

information on biological neural networks, consult the references at the end of this thesis.

Self-Organizing Maps (SOM)

The study of biological neural networks provides a foundation for artificial neural

network (ANN)m.odeling. This relationship is evident in the design of the sdf­

organizing map, because as an artificial neural network model it was formulated from

empirical evidence gained in the observation and study of biological neural networks.

Self-organizing maps provide tile ii.melional processes of topological map formation and

dimensional or information reduction that naturally occur in biological neural networks.

This section will show the similarity between the biological model discussed in the

previous section and the self-organizing map.

As a caveat, artificial neural network models, including SOMs, are incomplete

implementations because the fundamental research is either insufficient or undiscovered

[KohonenT89]. These gaps in understanding biological neural networks are due in part to

moral considerations that limit direct experimentation; therefore, artificial neural

12



networks are coarse representations of the architectural and behavioral aspects of

biotogical neural networks.

ANN Architecture.

An artificial neural network is an organized collection of artificial neurons. An

artificial neuron is analogous to a biological neuron. It is the simplest functional

component of a1tificial neural networks, including the self-organizing map. An artiticial

neuron is also called a "processing element" and a "neurode", which is the concatenation

of neur from "neuron" and ode from "node".

An artificial neural network architecture is comprised of processing elements and

their connections to other processing elements. The architecture of many arti ficial neural

networks is simi lar to that of their biological counterparts in the arrangement of neurons

into layers. In the previous section, Figure 2 illustrates the layeling of a biological

networks. A simpler structure, shown in Figure 3, illustrates a layered architecture of an

artificial neural network. Figure 3 iHustrates a feed-forward ANN consisting of three

layers: the input layer, the hidden layer, and the output layer. The input layer contains no

Output Layer

Hidden Layer

Input Layer

Figure 3. Illustration of layered organization of an Artificial Neural Networks

[RitterH91 ].
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neurodes; its purpose is simply to broadcast the input signal to each of the hidden-layer

neurodes so their activation vaJues may be calculated. Once the activation values are

computed for the hidden layer, they are forwarded to the output layer. Next, the

activation values of the output layer neurodes are computed. The activation values ofthe

output form the network's response to a given input. To train the network, an error value

is calculated tor each output layer neurode by comparing its activation value against its

target value. Once all the error values are calculated, they are distributed back to the

hidden layer, where these values are used to update the intemal weights. The feedforward

network is a popular ANN and just one of many different types [FausettL94J. The

network architecture for this paper is the self-organizing map.

Self-Organizing Map Architecture

A self-organizing map is a two-layer ANN consisting of an input and output layer

rCaudilJM93, DayhoffJ90. KohonenT88a, and KohonenT89]. The output layer is

typically arranged as a two-dimensional array of neurodes that are not interconnected

[DayhoffJ90, FausettL94, KohonenT88b, and KohonenT891. Self-organizing maps with

output layers of higher dimensions are useful for applications such as robot path planning

[RitterH91] .

One of the desired behaviors of SOMs is that they can produce some of the map

structures that are found in biological neural networks [KohonenT89]. The ability to

reproduce these naturally occurring mapping behaviors is unique to the SOM and is not

found in other artificial neurai network techniques even though other ANN architectures

can categorize as well [FausettL94].

14

o



Input and Output Layers

A pattern that is received by the input layer of an ANN is amalogous to the input

received at the dendrites of a collection of neurons. The input layer of a self-organizi ng

map consists of a tuple of non-computational elements. The input layer is completely

connected to the output layer and delivers the input signal to each neurode in the output

layer. An input signal is a vector or k-tuple:

where 1 ::<=;; j ~ the number of neurodes in the· output layer. The weight vector is the same

size as each input vector. That is for each input vector element, k, there is a

corresponding weight vector element, k.

Each neurode in the input layer is connected to the output layer via a weight vector:

Wi = (Wjl,Wj2"",Wjk)

(I)

(2)

L

The weights associated with the connections between neurodes represent the

strength, or signal capacity, of connections between the output of one neurode and input

ofanother. They are similar to the synaptic gaps of a biological network. Weights are

used to calculate the response of a neurode to a given input signal and may be modified

during the training, as described below. The modification is based on a training function

that provides the learning property.

The neurode weights are "plastic features" that enable a SOM to organize itself

through competitive learning and match the topology of the input signal space. Output

15



neurodes maintain their positional relationships with their neighbors, but as training takes

place, their topological relationships are changed.

The property ofweight modification gives rise to the desirable learning behaviors

of neural networks. In competitive networks, such as the self-organizing map, the

neurodes compete for the privilege of representing an input signal. The training function

rewards the winner by changing its weights to lllOre closely match the input signal.

Competition occurs among the neurodes based on their activation values, which result

from the activation function.

Activation Function.

In a biological neuron the activation function is very complex and can be

generalized only for small areas of the brain. Likewise, ANNs have the same activation

fllnction for each layer, since they are meant only to represent specific areas

[KohonenT95]. The activation function can be described as a mechanism that controls

the state of excitation of the cell. When a neuron "fires", it is not due to chance, but is

due to a defined behavior within the cell.

In a SOM the value of this function for each neurode is calculated as either the

Euclidean distance or the dot product between the input vector and the weight vector.

The winning neurode is determined by calculating the activation values of aU neurodes in

the output layer and then choosing the neurode that has the minimum (for Euclidean

distance) or maximum (for dot product) activation value. Neurodes in the vicinity (or

neighborhood) of the winning neurode, including the winning neurode itselC are

rewarded by having their weight vectors modified to bring them closer to the input

16



training vector; this reinforces the ability of neurodes in the neighborhood to successfully

approximate similar input vectors. The categorization that results from this process may

seem "intelligent", but it is merely the application of an activation function and the

adjustments of the appropriate weights [BoydstunR95]. The process ofweight

modification is called training.

Training

A collection of vectors used to train an ANN is caHed the training set, and each

member of this set is presented to the ANN during the training process. Used with

learning rules, the weights may be modified to more closely match the input cases. An

ANN may be trained using a supervised method or an unsupervised method. In

supervised training, both the input (training sets) and output (desired categorization) are

known in advanoe. During training the learning algorithm will take these known

quantities into account by adjusting the weights to map the input cases to the output

cases.

Unsupervised training is similar to supervised training, except the output vector is

not specified as part of the training data. That is, the network is presented with a set of

input vectors, but no output classification is known in advance. Once training has

occurred, the training set is used to categorize the sample cases. More training may be

required for the unsupervised training method.

A training set should consist of a wide variety ofexample cases; however, the

training set selection and its quality may not be conducive to ones wants or needs. After

the training set is chosen, the weight vectors of the SOM are initialized to random values;

17
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however, if preliminary knowledge ofneurode weights is available or previous training

hac; taken place, then weights may be loaded from a file. Overtraining is not a problem

with SOM networks as it is with other neural network techniques [HiotisA93]. During

training, the SOM "learns" to classify the t.raining set of input vectors. After training is

complete the SOM is ready to classify new input vectors. These new input vectors are

classified according to the best-matching neurode.

ToJ2.QlQ1:,ry-Preserving Mapping

Topology is defined as "the study of properties of geometric f01111 that remain

invariant under certain transtormations such as bending or stretching" [AmericanH92].

Topology-preserving mappings maintain the ordering associated with multidimensional

signal data while reducing the dimension using an onto relationship [KohonenT89). The

signal data can be thought of as meaningful information mixed with noise or extraneous

data. The noise and high dimensionality of the data obscure topological relationships.

Topology-preserving mappings serve to remove the superfluous data so that the

relationships can be seen. Thus, the complexity ofthe high-dimensional data is

"abstracted away", leaving only the most basic relationships.

Lateral Feedback

The neurons of the outet· layer of the brain have both input connections and lateral

interconnections. A single neuron can have as many as ten thousand lateral

interconnections to surrounding neurons and as many returning to it [KohonenT&9]. As

discussed earlier in this chapter, biological lateral feedback is associated with neurons of

18



the brain's ollter layers (Layers II and III), called the neocortex. The physical evidence

suggests that the degree oflateral interaction is related to the distance at which excitation

occurs. Neurons that are physically closest to active cells have positive lateral feedback.

The positive feedback diminishes outward from the center of excitation. Further out from

the excitation point a region of negative lateral feedback is surrounded by another region

ofminimal positive feedback [KohonenT89). The overall physical structure of the outer

layer is arranged as a two-dimensional layer, hence the layer alTangernent of the SOM

model.

Neuron Interaction

"Mexican Hat" Function

Point of Excitation

. .~

Lateral Distance of Neurons from
the point of excitation

Figure 4. "Mexican Hat" function illustrating positive and negative lateral
interaction of neurons as a function of distance from the point of excitation.
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The "Mexican Hat" function (Figure 4) iUustrates the relationship between the

lateral distance of neurons from the excitation point and the strength of lateral. feedback.

The "Mexican Hat" function corresponds to activity in microcolumns and is analogous to

structures of the SOM.

Tn biological systems, the effect of lateral feedback is that similar signal patterns

"cluster" around a winning neuron. Clustering is essential for map fonnation. The

resultant size of the cluster region depends on how the lateral feedback is applied.

Increasing positive feedback broadens the cluster, using negative feedback tends to

sharpen its edges, and omitting feedback does not allow clusters to form [KohonenT89].

The SOM model differs from biological systems in that it does not directly

implement lateral feedback. As mentioned earlier, the neurodes of the SOM's output

Jayer are not interconnected; there are no lateral connections. However, since lateral

feedback is necessary for the formations of clusters, it is indirectly implemented during

the training process through the use ofneighborhoods [KohonenT89].

Neighborhoods

A neighborhood includes all neurodes within a given radius of a winning neurode.

It represents the lateral distance between neurons [KohonenT89]. This corresponds to the

center region of the "Mexican Hat" function. Only the weight vectors of neurodes within

the neighborhood are modi.fied [KohonenT89], which simplifies the "Mexican Hat" to a

step function (Figure 5).
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Step Function

Positive Feedback

+

.,--------.Lateml Dislance of Neurons
fromlhe point of excUalion

Figure 5. Step function illustrating the neighborhood region and neighborhood
radius as related to the lateral distance of neurodes.

The use ofthis simplified feedback function does not affect the self-organization

The neighborhood radius gradually decreases as training progresses. Kohonen suggests

process. Kohonen states that there are other lateral feedback functions that also produce

(3)'1'je.. = f'lIJ'd(J - ~Jl
maK
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may be necessary for other functions such as autoassociative memory [KohonenT89].

using the foUowi ng l'inearly decreasing function:

the dusteting effect. The inhibiting feedback is ignored for the basic SOM model, but it

neighborhood radius over time sharpens the response of winners while creating clusters

where 11 is neighborhood radius and r is elapsed training time and Tm~x is the maximum

allowable training time IDayhoffJ90, FausettL94, and KohonenT89]. Decreasing the

-



of similarity. A neighborhood that includes only the winning neurode (a neighborhood

radius of zero) does not develop clusters that characterize similarity pattems.

Learning Rate

The learning rate can be thought of as the rate at which weight vectors are

changed. As training progresses, the learning rate is decreased gradually using the

linearly decreasing function [DayhoffJ90, FausettL94, and KohonenT89]

vectors. The first phase uses larger a values for major convergence or overall ordering,

training time. Kohonen states tbat a geometrically decreasing function produces similar

(4)

(5)

a,,"W =aold(l- _T_)
r max

Modifying only those neurodes inside the neighborhood, the weights within the

Typically a SOM is trained in two phases hefore it is used for classifying input

results [FausettL94 and KohonenT89]. The effect of decreasing the learning rate over

where a is learning rate and T is elapsed training time and T",,,,, is maximum allowable

time causes convergence of similar patterns or formation of clusters [KohonenT89]. A

large a value will cause the weight vector of the winning neurodes to vary greatly.

Weight Adj;ustment

then tbe weight vectors can be "fine tuned" with smaller a values [FausettL94].

winner's neighborhood, are modified according to the following adaptive function:
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where WII is the a new weight value, a is the current learning rate and ill is the current

input value.

Sequential Processing Using Self-Organizing Maps

Unprocessed human speech is an example of high-dimensional data containing

temporal information that is successfully processed by biological neural networks. Every

day human brains demonstrate that artificial neural network models require more

refinement to emulate them more effectively [KohonenT89]. Kohonen questions whether

the temporal components are part of processing or a result of a higher level of

organization. Some standard techniques currently being used for handling temporal

aspects of human speech include: Hidden Markov models (HMM), Hidden Control

Neural Networks (HCNN), and Time Delay Neural Networks (TDNN), [MarkowitzJ94,

KohonenT88a]. These techniques tend to use the artificial neural networks as a

preprocessing layer fMarkowitzJ94] rather than as a direct implementation of temporal

processing within the ANN.

Speech recognition is a difficult task. It is time-dependent; that is, information

content is occurring over some period of time. The modifications to self-organizing maps

discussed below are directed at speech recognition and processing. Speech processing

and recognition are not within the scope of this paper; however, these topics will be

discussed as they relate to the methods of temporal processing.
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Input Sequence Averaging

Sdf-organizing maps can be used to classify phonemes (the basic elements of

speech) by using discrete samples of the input signal [KohonenT88a]. Jeri Kangas

describes several modifications to the self-organizing map that attempt to deal with the

time dependencies of input signals. One of these is input sequence averaging

[KangasJ90] .

Input sequence averaging is a two-stage method consisting ofa preprocessing

front-end (input vector avemging) and a self-organizing map (ANN). The preprocessing

front-end step combines the current input vector and a running weighted average of

previous input vectors to compute the input to the SaM. Kangas describes how the

weighted average stores the historical contribution of input vector sequences in the

resulting contribution from a recursively calculated avefalge [KangasJ90]. This means

that the average can be computed as each input vector is fed into the network. Kangas

states that the average being used is caned a "backward exponentially weighted sum", as

shown in Equation 6 [KangasJ90].

(6)

For each input signal in the time sequence the average is calculated. The

contribution that the historical. information makes to the average is determined by the

weighting factor, f3. The parameter t designates the time within the sequence. The

parameter y(t) is the current input vector; the weighting factor p will determine the

contribution of the current input vector. The remaining portion of the equation,
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Response Integration Model

Figure 6. Architecture for the Response Integration Model [KangasJ91 aJ.

Map I ~~__M_a_J>_I_I--J~$>1

(1.0 - p) .X It' (1 - 1), is responsible for the historical contribution. Once the average is

calculated, the X".(f) vector is used as input to a traditional self-organizing map

[KangasJ901.

The averaging allows the network to tolerate noise by acting as a low-pass filter

for the input signal. However, this method is not without problems. If the weight factor

is too small, the contribution of the current input is forgotten; and a large factor parameter

will cause historical contributions to be lost. This metbod is modified to deal with

shadowing of previous input values.

This neural network, as shown in Figure 6, consists of two SOM layers with

averaging. The first layer is a traditional Kohonen self-organizing map. A speech signal

is fed into the first layer where it is processed. The input is fed as a sequence of vectors.

As they are processed, the sequences provide a set of responses ti'om the first layer.

These responses are combined using Equation 6.

The purpose of the first map is to reduce the problem of input values shadowing

with previous input values. The second map is then used to average the inputs from the

first map [KangasJ91a).



Pattern Concatenation Model

Figure 7. Architecture of the Pattern Concatenation Neural Network [KangasJ91 bJ.

(7)

Map I

Mem

Mem

xc(t)= {x(t),x(t -l),x(t - 2), . .. ,x(t- (n - t))}

X(ti>L......-_M_e_m_-,

In the pattern concatenati.on model a series of shift registers saves the current

input vector and a small historical set of input v,ectors. The contents of the shift registers

are concatenated and used as input to the SOM where it is classiti.ed. Figure 7 illustrates

the architecture of this network. The input samples are moved forward through the shift

registers in a First-In-First-Out (FIFO) manner so that the next input sample can be

incorporated. Each new input sample causes the oldest sample to be discarded. The shift

registers provide historical information in the classification of signals with time

dependencies.

Each of these methods described by Kangas require no changes to the basic self..

OlI'ganizing map architecture. However, training times and parameter values may require

adj ustment [KangasJ91 b].

This method does not have the advantage ofeliminati.ng the noise as does the

Input Sequence Averaging method discussed above; however, there is no diminishing of

data values due to a weighting factor. The contents of the shift register x,(t) at time'

can be described by the following equation.
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Trace Feature Maps

Trace Feature Map (TFM) is a neural network algorithm intended for processing

elements of speech. The TFM network is proposed as a subcomponent of a larger speech

recognition system. TFM uses self-organizing maps to store speech data that i.s invariant

of ti me. The purpose of TFM is the storage of short acoustic sequences and the reduction

of stored data within the map. Zandhuis makes the assumption that within a spoken word

there are series of events that can be processed more naturally than breaking them into

discrete phonetic components. The events of speech rather than the passage of time drive

the TFM network [ZandhuisJ92].

A TFM neural network has a hierarchical architecture consisting of two layers, the

C layer (feature classifier layer) and Tlayer (sequence storing layer), as shown in Figure

8. The first tier classifies features of an input signal onto a two-dimensional self-

Y(t) t
I T-/ayer I

C(r) t
I C-Iayer I

t
X(O

'I

Figure 8. Trace Feature Map Architecture [ZandhuisJ92].

organizing map. The first layer differs from the traditional SOM by its use of a threshold

activation function, F(z, <p). This means a neurode will only be active if its calculated
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Trace Feature Maps

Trace Feature Map (TFM) is a neural network algorithm intended for processing

elements of speech. The TFM network is proposed as a subcomponent of a larger speech

recognition system. TFM uses self-organizing maps to store speech data that is invariant

of time. The purpose of TFM is the storage of short acoustic sequences and the reduction

of stored data within the map. Zandhuis makes the assumption that within a spoken word

there are series of events that can be processed more naturally than breaking them into

discrete phonetic components. The events of speech rather than the passage of time drivc

the TFM network [ZandhuisJ92].

A TFM neural network has a hierarchical architecture consisting of two layers, the

C layer (feature classifier layer) and T layer (sequence storing layer), as shown in Figure

8. The first tier classifies features of an input signal onto a two-dimensional self-

y(O t
I T-Iayer I

C(t) f
I G-Iayer I

f
X(O

Figure 8. Trace Feature Map Architecture [ZandhuisJ92].

organIZIng map. Thenrst layer di ffers from the traditional SOM by its use of a threshold

adivation function, F(z. <1». This means a neurode will only be active ifits calculated
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Euclidean distance is over a pat1icular threshold level, q.. This method is known as coarse

coding. It has the advantages of accurately classifying inputs while maintaining a smaller

map si7.:e and maintaining the neighborhood relationships [ZandhuisJ92].

The T-Iayer is a SOM that uses lateral feedback based on the "Mexican HaC'

function to implement excitatory and inhibitory responses. The neurodes of the T-layer

seek a state of equilibrium. A neuron will stay at its cUlTent state until the next steady

state is reached. T'he effect of these state changes can be seen in the path diagrams

produced as the input signal is processed [ZandhuisJ92].

As an acoustical signal is processed by a TFM. a path will form on the second tier

that is representative of a signal's activity within a time window. The size of this time

window is variable because ,1T. the utterance time. is dependent on signal changes rather

than on time changes. This means that the path of activity for a given signal is

independent of duration. This allows utterances to be fast or slow [Zandhuis.r92].

The research presented in Chapter ITI takes the processing approach or

incorporating sequential processing components as part of the self-organizing map neural

network. The addition of sequential processing was developed after studying Kohonen's

work on the Phonic Typewriter and his use of input vectors and the resultant paths lor

continuous speech recognition [KohonenT88aj. The sequential Kohonen neural network

algorithm, Figure J J. is a modification to the Kohonen self-organizing map algorithm as

shown in Figure 10 [FausettL94].
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CHAPTER III

METHODS

Introduction

The Kohonen self-organizing map is well suited to capturing the static

relationships of an input signal space; however~ standard Self-Organizing Maps (SOMs)

are noL able to process signals that have contextual or temporal components. If a

sequence of input vectors is fed into a standard SaM, the SOM is unable to capture and

identi fy the sequential relationships between the input vectors of the sequence.

Variations of self-organizing maps have been developed that have the capacity 10 dcal

with contextual and temporal data: these are described in Chapter II. The research

presented here describes a new variation of a self-organizing map for processing

contextual data. The Sequential Self-Organizing Map (SeqSOM) uses feed hack to relate

a sequence of input vectors.

Feedhack is used in many electrical systems, and one such example is the linear

amplifier. [n the case of the linear amplifier, a portion of the output is used as feedback

with the input signal. Likewise, ScqSOM uses a portion of its output as feedback with

the next input vector. The Sequential Self-organizing map is somewhat similar to work

done by Ghosh and Karamcheti with tbe artificial neural network called Simple Recurrent
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Network (SRN) IGhoshJ92 and ElmanJ90]. Ghosh and Karamcheti use a modified

feedforward network with feedback to provide the contextual processing needed. More

information regarding the SRN network architecture can be found by investigating the

research of [GhoshJ92 and ElmanJ90] listed in the reference section.

SegSOM Architecture

The SeqSOM architecture, as illustrated in Figure 11, is similar to that of a

traditional self.-organizing map; for a comparison, see the SOM architecture shown in

Figure 9. Both network architectures have the same basic grid structure of neurodes. In

both the SeqSOM and SOM networks, an input vector is distributed to each neurode in

the grid for cCllculation of activalion values. The winning neurode is determined from

these activation values, and the weight vectors of the winning neurode and its neighhors

are modified.

The major di ITerence between the SeqSOM and the SOM architectures is the usc

or reedback in SeqSOM. In the SeqSOM architecture, a vector is distributed 10 each

neurodc in the grid and the activation values are calculated. When the winning ncurodc is

determined, information about the winning neurode is then used as feedback along with

the next input vector. 'The feedback information consists of the spatial coordinates of the

winning neurocle (i.e., the row, column, and plane coordinates of the winning neurodc).

The new vector that is formed by the concatenation of l:eedback coordinates and the next

input vector is called an input bundle. The feed hack tor the first input bundle of each

sequence of input vectors is set to zero. All subsequent input bundles for the sequence

are formed using the coordinates of the winning neurode from the previous input bundle.
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The input bundles are processed sequentmally until the complete sequence of input vectors

is consumed.

Also. to accommodate the feedback. three additional values must be added to the

weight vector of each neurode. The size of the new weight vector matches the size of the

input bundle.

The SeqSOM program used for this research can support output layers of up to

three dimensions; however, typical applications involving SOMs use a two-dimensional

output layer arranged as rows and columns. A two-dimensional network can be viewed

as a three-dimensional network consisting ofa single plane.

Research results indicate that the feedback values need to be scaled so that they do

not skew the activation values in favor of the feedback.

Colum05

Figure 9. Illustration of the Self-Organizing Map Architecture.
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Example of Input Bundle }:;'ormation

Consider the SeqSOM example shown in Figure 11. It has an input vector size of

six and uses a three-dimensional grid. When the input vector and the feedback are

concatenated. they form an input bundle of size nine. The weight vector size for each

neurode is also nine. The first input bundle is a considered a special case because it has

no feedback values available; therefore, the feedback values of the tirst input bundle are

initialized to zero. As in traditional SOMs, a winning neurode is identified for each input

bundle processed, but unlike the traditional SOM, the SeqSOM uses the coordinates of

the winning neurode to construct the next input bundle.

Au;()WTlfM I

initialize all neurodes ' weiRht vectors to random values:
initialize neighborhood radius;
initialize training fime;
while remaining traininl{ time is nof zero
hegin

fhr ail vee/ors in the input training set
hegin

calculate the activation value for each new'ode;
locate the minimum activation value;
adjust the weil{hts ofwinner and ifs neighbors;

end
adjust neighborhood radius:
adjust learning rate:
decrement training time:

end

Figure 10. Algorithm of Kohonen's Self·Organizing Map.
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The Sequential Self-Organizing Map Algorithm

The SOM and SeqSOM training algorithms are shown in Figure 10 and Figure

12, respectively. The SeqSOM algorithm is an extension of the SOM algorithm: these

extensions are shown in bold, in Figme 12.

<II

SeqSOM Output Layer

Input Vector Sequence

DTTTIJ· ~''-I'-'l"I"L"l

Input Bundle

",---_/\.... __ . '\

i

~IU

Feedback Coordinates

Figure J 1. Illustration of the SeqSOM Architecture.
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II UiOl?l7H:\ f 2

initialize all neurodes ' weighl vee/aI's 10 random values:
initialize neighborhood radius:
initialize the trainin~ lime:
while remaining training lime is not zero
hegin

fOI" ail input sequences in the training set
begin

set feedback to zero;
for ellch input ,'ector in tlte sequence
hegin

form an input bundlefrom input vector am/feedback;
calculate the aelivation value for each neu/'ode:
locale the minimum activaIion value:
adjust the weights (?fwinner and its neighhors:
setfeedback to coordinates of winner;

end
end
adjllsl neighborhood radius:
adjusl learning rate:
decrement training time:

end

Figure 12. Sequential SeJf-Organizi,ng Map Algorithm.
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CHAPTER IV

IMPLEMENTATION AND TESTING

Algorithm Implementation

Early in the development phase of tile SeqSOM project, software implementations

of standard self-organizing maps were examined for potential modification to include

feedback. One such package, called SOM_PAK. is available to the public via anonymous

FTP: it is Tcuvo Kohonen's own implementation of the self-organizing map. SOM_PAK

includes all the source code files necessary to compile the program cxecutables for a SOM

network with supporting programs. The idea of using an existing application or modifying

existing code was impractical due to the extensive changes that would have been required.

Rather, SeqSOM was implemcnted first as a standard self-organizing map based all

pseudo code provided by [FausettL94] and then modified to support spatial feedback.

Spatial feedback is a new term and refers to the use of the spatial coordi.nates of a winning

ncurode as feedback into the next pass through the network. From its beginning, the

SeqSOM project had the goal of providing feedback in traditional self-organizing maps.

The SeqSOM program is capable of supporting the usc of fixed length input

vectors in the same way that they arc used in traditional self-organizing maps. In addition

SeqSOM supports the use of variable length input vectors. A control file that contains
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parameters is used to detennine the behavior of a SeqSOM network. This means that by

setting parameters within the control file, SeqSOM can be made to behave like a standard

SOM.

Development Envirollment

The SeqSOM program is implemented in the C++ object-oriented programming

language. The program was designed as a single executable program for both the training

and usage phas,es. Command line options are specified to control the operation of

SeqSOM. These command line options are listed in Appendix A. A control file

containing parameters is used to control the behavior of SeqSOM, The execution time of

the program varies according to the input vector sizes. length of training time, and number

ofneumdes in the network. Training time can range from a few minutes to many hours.

Using a trained SeqSOM network is much faster than the time involved in training the

network. Caching of the activation values is perfonned by Kohonen's SOM_PAK

programs to speed the training process [KohonenTR9]. Efficiency considerations of the

SeqSOM application are discussed in Chapter V; however, improvement of its efficiency is

left as future work.

Testing Environment and Platform

The SeqSOM program was developed for the platforms of Microsoff" Wi ndows

NT® and AT&T UNIX System V operating systems. Using conditional compiles, a single

copy of the source code will compile on the different operating environments. The
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complete source code for the SeqSOM project is not included in this thesis but it may be

obtained for research purposes by contacting the author.

Test Data Domain

Once the SeqSOM algorithm was implemented as a program, selection of

appropriate testing data occurred next. Many types of data were examined for possible

use. Since SeqSOM is designed to use feedback, only data sets consisting of strings (i.e ..

ordered sequences of symbols) were considered. Some examples of data considered are

encoded speech IKohonenT88a] and waveform generation (FausettL941. These were not

chosen because of their complexity and were not needed to show the valid Iy of the

SeqSOM algorithm. The data that was finally chosen is described by Ghosh and

Karamcheti lIsing Elman's fecdforward recurrent neural network [GhoshJ92 and

ElmanJ901. Elman describes a neural network application that builds a representation of

a Finite State Automaton (FSA) from a suhset of the language generated by the FSA

[ElmanJ901. For their tests. Ghosh and Karamcheti used strings generated from a regular

grammar [Gh08hJ921.

Selection of Test FSAs.

For the Ghosh and Karamcheti tests, strings were generated from the FSA shown

in Figure J3. The strings that were chosen initially to test SeqSOM were generated by the

same FSA as used by [Ohosh.l92]. It was decided to use the same FSA because the

results obtained from SeqSOM could be compared readily with the results obtained by

rGhosh.l92]. They chose 60.000 to 80.000 strings with a length constraint of 32, but the
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data chosen for ScqSOM consisted of all strings of length 10 or less (a total of 103

stIings). Other FSAs were chosen later to extend the testing of SeqSOM. These are

included in Appendix C.

x
3

END
Q.

v

+

Figure 13. The FSA state diagram used for the Ghosh and Karamcheti research.

The focus of the Ghosh and Karamcheti research was to examine the j ntcrnal

representation of an FSA in an ANN called a Simple Recurrent Network (SRN)

[GhoshJ92]. In contrast, thc SeqSOM research makes no attempt at explaining how an

FSA is represented within an ANN. Instead, the goal was to show that feedback can be

used within a Kohonen network.
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Generation of Test Data

Four FSAs were used to test ScqSOM, but a single FSA will be used to

demonstrate the test process in this section. The other FSAs arc included in Appendix C.

The FSA used for this discussion was taken from Ghosh and Karamcheti and is illustrated

in Figure 13 [OhoshJ92]. Ghosh and Karamcheti were able to show that a fecdfOlward

network with recurrence (i.e. feedback) could embody the behavior of an FSA if it were

trained using strings from the language generated from that FSA.

Strings from the language were also used in thc SeqSOM rescarch, with thc goal

of showing that a SeqSOM network could be made to embody the behavior of an FSA.

Therefore, strings had to be gencrated for training a SeqSOM nctwork. All strings up to

length ten from the language wcre generated; this is becausc the training time was morc

manageablc with a set of strings of shorter lengths. As latcr discovered, the smaller set of

shorter strings produccd bcttcr results than [GhoshJ92] obtaincd using a significantly

larger set orlonger strings [FausettL94].

A program was written to generate the stringsli'0l11 the language defined by an

FSA. Thc C++ programming languagc was not chosen to implement thc string generator

even though the rest of the project was written in C++. The advisor to this research, Dr.

Blayne Mayfield, recommended using the Prolog programming language because it was

more suited to generating strings from a language. Since the principle researcher for this

project was not familiar with Prolog, Dr. Mayfield provided a Prolog program to generate

strings. The Prolog program is presented in Appendix B.
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The string generator program is written such that it does not have to be changed

fOIl" each new FSA. Rather, an FSA is described as a set of Prolog lists that is used as

input to the program. The lists are manually constructed and include the stalt state, final

states, and state transition function of the FSA. Another list item specifYing the maximum

string length constraint is also included. It is used to obtain strings from the language up

to a given length and to terminate execution oCtne generator program.

% Prolog lists describing the FSA used by Ghosh and
% Karamcheti.

%The foJlowing list contains the Maximum Length, Start State,
%and the set of Final States.

[10, stateD, [stateS]].

%The following lists describe the state transition function.
%Each list includes the beginning state, ending state and
%output of the transition.

[stateO, statel, t].
[stateD, stiJ.te2, p]

[statel, statel, s]
[statel, state3, x].

[state2, state2, t]
[state2, state4, v]

[state3, state2, x].
[state3, stateS, sJ

[state4, state3, p]
[state4, stateS, v].

Figure 14. l1Iustrates an FSA (from Figure 13) transformed to a set of Prolog lists
statements wh ieh are used as input for FSA string generator program (GhoshJ921.

Figure 14 contains the Prolog lists thatdcscribcs the FSA pictured inFigure 13.
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Four other FSAs were also chosen for expeiimentation. The Prolog lists that describe

these FSAs used fm testing SeqSOM are Listed in Appendix C.

Figure 15 contains a sample of the strings generated using the Prolog lists shown

in Figure 14; the strings have a length constraint often characters, not including the

beginning ("b") and ending ("e") sentinel characters. The sentinel characters are used to

designate the begi.nning and ending points of a string and are used in this rcscarch as an

the two sentinel values are represented as two separate textual characters, they arc not

encoded as separate values but are mapped onto a single representation. The encoding

attcmpt to retain, where applicable, the testing techniques of[GhoshJ92]. Even though

btxxtvpse
btxxtvpxvve
btxxtvpxvpse
btxxtvpxtvvc
btxxttvvc
btxxttvpsc
btxxttvpxvvc
btxxtttvve

btxse
btxxvve
btxxvpsc
btxxvpxvvc
btxxvpxvpse
btxxvpxtvve
btxxvpxtvpsc
btxxvpxttvve
btxxtvvc

process is described below. A complete listing of all strings generated for each FSA tested

can be found in Appendix C.

Figure 15. Paliiallist of strings up to tcn characters in length.

The character strings produced by the generator arc not used directly as input to

SeqSOM; rather they were encoded as bit strings. The length of the bit strings is equal to

the alphabet size plus onc. (The additional bit is used to represent the sentinel value.) The

bit strings chosen to represent the characters are O1thogonal to one another. Thls means

that there is a single I-bit in each bit string, and that the I-bit is in a different position for
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each bit string. This is illustrated in Figure 16 for the fSA shown inFigure 13. The

alphabet for that FSA contains six characters, including the sentinel character.

Output Character Bit Vector Representation
B (Begin) - Sentinel => 100000
T => 000001
p => 000010
X => 000100
V => 001000
S => 010000
E (End) - Sentinel => 100000

Figure 16. Bit vector assignment for the FSA.

A separate "quick-and-ditty" C program was written to encode the strings for each

FSA. To illustrate the encoding concept, the bit strings that correspond to the character

stlings shown in Figure 13 arc given in Figure 17. Once the strings arc encoded and saved

to a file they arc ready for use by the SeqSOM program. The training set for Figure 13,

consisted of 103 vectors.

Training £! SegSOM Network

Chapter HI contains a complete description of the SeqSOM algorithm and its

training process. Once a user-specified training session is complete, the weights are saved

to a file. The weights embody the knowledge of the network. These weights can later be

loaded into an untrained SeqSOM network to recreate the network in its trained state.
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[ I 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 I 0 0 0 0 1 0 0 0 0 0 btxse
, 1 0 0 0 0 0 () 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 00 0 0 10 () 0 0 0 10 0 0 I 0 0 0 0 0 btxwvc
1 0 0 0 0 0 () 0 0 0 0 I 0 0 0 1 0 0 0 0 0 1 0 0 0 0 I 0 0 0 0 0 0 0 I 0 0 I 0 0 0 0 1 0 0 0 0 0 btxxvpse
10 00 00 0 0 00 () 1 00 0 I 00 000 I 00 0;) I 0 0 0 0 0 0 0 10 0 0 0 I 00 0 0 I 00000 1 0 0 0 I 0 0 0 0 0 btxxvpxvvc
I 0 0 0 0 0 () 0 0 0 0 1 00 0 1 00 000 I 00 00 I 0 0 0 0 0 0 0 1 000 0 1 00 00 1 00000 0 0 1 00 1 0000 I 00 n00 blXXvpxvpse
I 0 0 0 0 0 0 0 000 1 00 0 1 00 00 0 1 0000 I 0000000 I 000 0 1 00 0 0 000 I 00 1 0 0000 I 000 l 00000 btxxvpxtvve
10 0 0 0 0 0 0 0 0 0 1 0 0 0 I 0 0 0 0 0 I 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 I 0 0 1 0 0 0 00 0 0 1 0 0 I 0 0 0 0 1 0 0 0 0 0 btxx\1Pxtvpsc
10 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 I 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 btxxvpxllvve
1 0 0 0 0 0 0 0 0 0 n I 0 0 0 1 0 0 0 0 0 I 0 0 0 0 0 0 0 ] 0 0 10 0 0 0 0 1 0 0 0 1 0 0 0 0 0 blXXi\;ve

I 0 0 0 0 0 0 0 0 0 0 I 0 0 0 1 0 0 0 0 0 I 0 0 0 0 0 0 0 1 0 0 1 (1 I) 0 0 0 0 0 10 0 I 0 0 0 0 10 0 0 0 0 blXxtvpse
1 0 0 0 00 0 0 0 0 0 1 00 0 1 00 000 I 00 0 0 0 0 0 I 00 I 000 0 0 00 I 0 000 I 00 () 0 1 0 0 0 00 1 0 0 0 1000 0 0 btxxtvpxvve
I 0 0 0 0 0 0 0 0 0 0 1 0 0 0 I 0 0 0 0 0 I 0 0 0 0 0 0 0 I 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 00 ] 0 0 I 0 0 0 0 I 0 0 0 0 0 btxxtvpxvpse
I 0 0 0 0 0 0 0 0 0 0 I 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 I 0 0 I 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 blxxtvpxtvve
10 0 0 0 0 0 0 0 0 0 I 0 0 0 1 0 0 0 () 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 () 1 0 0 0 10 0 0 0 0 btxxltvve
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 10 0 0 0 0 0 0 1 0 0 1 0 0 0 0 I 0 0 0 0 0 btxxttvpse
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 I 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 10 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 I 0 0 0 0 0 I 0 0 0 10 0 0 0 0 btxxttvpxvve
I 0 0 0 0 0 0 0 0 0 0 1 0 0 0 I 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 I 0 0 10 0 0 0 0 10 0 0 10 0 0 0 0 btxxtttvve

Figure 17. Sample of the encoded vectors for Figure 15.
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Once a SOM (including SeqSOM) is trained, the training set is reused to create a

map of the behavior ofthe network. In tbe case ofSeqSOM, the map of behavior is

transformed into a new FSA that may be equivalent to the FSA that generated the training

set.

Building an FSA from f! Trained SegSOM Network

The training set is used to map the behavior of a trained SeqSOM network to an

FSA that recognizes the strings in the training set. As the characters of each string are

processed by the network, the sequence of winning neurodes corresponding to those

charactcrs is collected. The winning neurode sequences and their associated strings arc

written to a file for further processing by yet another program. Figure 18 shows the lines

written to the file for the strings shown inFigure 15. Each winning neurodc in a sequcnce

is treated as a state in the new FSA. Transition from one winning neurode to the next in

the sequence results from processing a particular character in the string. Thus, transition

from one st<ltc to the next in the new FSA results from processing the same character.

Notc in Figure 18 that eaeh winning ncurodc is referenced by a single numbcr CVCIl

though the network ofneurodcs is viewed in SeqSOM as a threc dimensional matrix, us

describcd in Chapter 1.11. The reason for this is that it is easier to dynarnically allocate and

manipulate a I-dimensional array in C++ rather than a 3-dimensional array. The C++

programs in SeqSOM are written to transform the I-dimensional array addresses to 3-

dimensional ncurode addresses, and vice versa. The I-dimensional array address docs not

affect the results produced by SeqSOM.
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The next step is to convert the file illustrated inFigure 18 into a set of Prolog facts

that is used by the FSA string generator program. The program that performs this

conversion is called BUILDTABLE.EXE. The output of BUILDTABLE.EXE is a file

0224 1292124 btxse
o224 129 174 150 14066 btxxvve
0224 129174 150 122104 btxxvpsc
o224 !29 174 150 12 204 150 140 ,66 btxxvpxvvc
o224 129 174 150 12 204 150 12 210 4 btxxvpxvpse
o224 129 174 150 12 204 70 60 140 66 btxxvpxtvvc
o224 129 174 150 12 204 70 60 II 2104 btxxvpxtvpsc
0224129 1741501220470119105 140 66btxxvpxUvve
o224 129 174 70 60 140 66 btxxtvve
o224 129 174 70 60 11 2104 btxxtvpse
o224 129 17470 60 II 204 ISO 14066 btxxtvpxvve
0224 129 1747060 II 204150 122104 btxxtvpxvpsc
o224 J 29 174 70 60 [ I 204 70 60 140 66 btxxtvpxtvvc
0224 129 17470 119 105 14066 btxxttvve
o224 129 174 70 I 19105 122104 btxxttvpsc
o224 129 174 70 119 105 12 204150 140 66 btxxttvpxvvc
o224 129 17470 11974 90 140 66 btxxtttvve

Figure 18. Sample output from SeqSOM using the training set as input.

that consists of a single Prolog fact on each line. The output produced by

BUILDTABLE. EXE for the data in Figure IRis shown in Figure 19.

Duplicate transitions may occur, but this is expected since many strings sharc

com mOil sub-strings. Next, the UNIX sOli command is used to remove duplicate Prolog

lists, and this file is saved. An additional Prolog list containing the start state, ending

states, and maximum stting length is then added to the file; this Prolog list is needed for

the string generator program. The maximum string length contained in this list matches

that of the original FSA, as shown in Figure J3. Finally, all Prolog lists that contain either
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the sentinel character "b" or "e" are commented out this is done because those lists do not

contribute to the string generation process. The result of applying the modifications listed

above to the file shown in Figure 19 is i:11ustrated in Figure 20. This edited ti.1e is called

ScqSOM FSA file, aodit will be used to compare the FSA produced by SeqSOM to the

original FSA.

The question of equivalence arises once the second FSA is constructed from u

trained SeqSOM. To compare the original FSA (Mo ) to the SeqSOM FSA ( M,I')' the

scts of strings generated by the FSAs must be compared. This is impractical for many

FSAs since they have an infinite number strings in their language. However, an alternative

discussed in the next section shows that a Iimitcd number of strings can be compared to

show FSA equivalency. For convenience, an initial test is run in which a small subset of

the two languages ( 1'0 and L I,) are compared; the reason for this is to reduce run time

and storage space. The subset chosen for the initial test uses the same string length

constraint used to train SeqSOM. [fthe comparison shows that the two subsets arc not

equal then it is immediately obvious that the two maehinesMuand M,I' arc 110t

equivalent. But if the subsets are the same, additional comparisons must be made to

determine the equivalency of M o and Ms. The question then becomes, what is the

minimum length constraint needed for a comparison to show that M() and M. I, are

equivalent? The minimum length constraint and the question of equivalence hctwcen two

finite state automata ean be decided by using an algorithm given by Aho and Ullman as

discussed in the next section [AhoA 72].
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[stateO. slatcO. b].
[slaleO. stale224, l].
[state224. state 129, x].
[slatcI29. slate174.x].
[slate 174. state 150. v].
[state 150. state 1.2. p].
[slate 12, state21 O. s].
[stale210. statc4. c].
[slateO. sl,neO, b].
[slateO. stale224. l].
[slalc224. state 129. x].
[slate 129. statd 74. x].
[state 174. slate150. v].
[stale ISO. slate12. pl.
[staleI2. Slale204. x].
[stale204, slate 150. v].
[slaleI50. stale140. v].
[stale 140. slate66, e].
[stalcO. stateO, b].
[stateO, state224, t].
[statc224, slate129. x].
[slale 129, state 174, x].
[state 174. Slate ISO. v].
[slatd50. slatel2, p].
[state 11. slale204. x].
[slate204. slate150. v].
[stale 150, stale12. p].
[statel2, state210. s].
[stale210. state4. e].
[stateO, stateO, b].
[slaleO. state224. t].
[state224. slate129. x].

[stalcI29. stalel74. xl.
[stat.eL74. state150. v].
[Slate 150, stale 12. p].
[state12, statc204. x].
[slale204, slate70, t].
[state70. slate60, \'].
[state60. stale140. v].
[state 140, stale66. e].
[stateO, stateO. b].
[stateO. state224. t].
[state224, state129, x].
[state L29. state174. x].
[stateI74, statel50. v].
[state L50, Slale 12. p].
[Slate 12, state204, x].
[state204, stale70. t].
[state70. state60, v].
[state60. statell, p].
[slale 1I, state2l O. s].
[state2 LO, state4. e].
[stateO, stateO, b].
[stateO, state224. t].
[state224, state 129. x].
[state 129, stalel7-L x].
[state 174. state150. v].
[statel50, statel2, p].
[state 12, state204, x].
[state204, state70, t].
[state70. Stale 119. r].
[state 119. state 1OS. v].
[statel05. state 140. v].
[state 140. state66. e].

[slaleO. stateO. b].
[stateO. state224. r].
[slale22.::!. stare 129. x].
[state 129, state 174. x].
[state 174, state70. t].
[stale70. state60. v].
[state60. Slate 140. v].
[state 1~W. state66. e].
[stateO. staleO. b],
[staleO, stale224, t].
[state224. stale 129, x].
[slale129. state174.x].
[state 174. state70. 1].
[state70, state60, v].
[state60. statel L p].
[Slale 1L state210, s].
[stale21 0, slale4, e].
[stateO, stateO, b].
[stateO. state224, t],
[state224. stale 129, x].
[state 129. Slate 174, x].
[Slate 174, state70. t].
[state70. state60. \'].
[statc60. state II, PJ.
[stale1!. stalel04. x].
[stale204. state 150, v],
[Slate 150. state 140. v].
[state 140. stale66. e],
[slateO, slateO, b].
[stateO, state224, t].
[srale214. statel29. x].
[statcI29. slate 174. x].

[state 174, state70, t].
[state70. state60. v].
[state60, state 1L p].
[state II, state204, x].
[state204, stale 150. v].
[state150. statel2, pl.
[statel2, state210. s).
[state210, state4, e].
[stateO, stateO. b].
[stateO. state224. t].
[state224, stale 129. x].
[Slate 129. statel74. x].
[stale 174. slate70, l].
[slate70. state60, v].
[state60. state I 1, pl.
[statel!. state204, x].
[state204, state70, t]'
[state70. slate60, v].
[state60, state 140, v].
[state140, state66, e].
[stateO, slateO, bl
[stateO, state224, 1].
[state224, state 129, x].
[statel29, statel74, x].
[state 174, state70, t].
[slate70. state119, t].
[slaleI19. state 105. v].
[slale 105. state 140. v].
[staleI40, stale66, e].
[stateO, stateO, b).
[stateO, state224, l].
[stale224. statel29. x].

[state129. statel74. x].
[state 174, state70, l].
[stare70, state119. l].
[state 119. Slate 105. v].
[state 105. stale 12. pl
[slalel2, stale210. s].
[slate210, state4, e].
[stateO, stateO, b].
[slateO. state224. t].
[state224. state 129, x].
[stale 129. stale174, xl
[stateI74, state70, l].
[state70. slale 119, t],
[state I19, stalel05, v].
[stateI05, statc12, pl.
[state12, state204, x],
[state204, state150, v].
[stale150, state140, v].
[stateI40, state66, e].
[stateO, stateO, b].
[stateO, Slale224, t].
[state224. stateJ29. x].
[state129, state174, xl
[state 174. state70, t].
[state70, state119, t].
[stateI19, state74, 1].
[state74. state90. v].
[state90, state140, v].
[state 140, state66, e].

Figure 19. Sample output from building of new FSA.
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[10, stateO, [slate 140, l;tate21 0, state212]].

%[staleD, stateO, bJ.
[slateO, state224, I).
[stateD, stateS, pl
[state 105, statel2, pl.
[state 105, state 140, Ii).
[state I I, state204, x].
[slate 1 !, state2) 0, s]
[st<Jte119, state 105, v]
[state 119, stale74, t]
[state 12, state204, x].
Istat.e 12, stalc21 0, s I
[state 129, state 174, x I.
[state 129, statc212, s].
[slateI35, state 12, pJ
Ist.ate 135, state 140, Ii].

%[stale 140, state66, e J.
rstate 150, slate 12. p].
Istate 150, state 140, Ii].
[state 1hJ, state 135, vi.
Istate) 03, state71, II·
[state 174. state 150, Ii].

[state 174, state70, Ij.
[state200, stale 129, x].
[state200, slate200. s).
[state204, state J50, v).
[state204, stale70, I)'

%[state21 0, state4, e].
%[sta te2 12, statc4, e].

[state224, statel29, x).
[state224, state200, s].
[state60, state I I, p].
[state60, stale 140, v).
[state70. stale 119, t).
[state70, stale60, v].
[state71, stale 119, t).
(state7!. state60, v].
[stale74, slate89, I).
[state74, state90, v].
[state8, statel63, I).
[state8, state60, v].
[st<lte89, state74, t).
[st<lte89, state90, v].
Istate90, st<lle 1I, p].
[slatc90, slatel4D, v].

.1..
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Figure 20. Prolog lists describing new FSA generated from a Trained SeqSOM.

T~~.i.!lE; For fuLuivalcnce

The algorithm from Aho and Ullman listed in Figure 23 determines i r two lillite

state automata are equivalent. To aid Ihis discussion, a supporting definition and

lemma-also from Aho and Ullman--are given in Figure 21 and Figure 22, respectively

[Al1oA72]. In the following discussion Mo (the original FSA) and M s (the SeqSOM

FSA) play the roles of M] and M 2' respectively.

The application of Algorithm 3, Definition I, and Lemma 1 to this research can be

summarized as follows. The two machines M 0 and M s are combined to construct a

new machine M. The alphabets for M o and M.I· are the same; i.e., L() == l:s' Thus, the
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.QUI NJTlON

Let M == (Q, ~,o, qo, F) be a finite automaton, and let ql and qz be distinct states.

We say that x in I* distinguishes ql from q2 if(ql, x) -"-> (q.h e), (qZ, x)~ (q4, e),
and exactly one ofq3 and q4 is in F. We say that ql and q2 are k-indistinguishable,

k

1written ql =- q2, if and only if there is no x, with Ixl::::; k , which distinguishes ql from q2·

We say that the two states ql from qz are indistinguishable, written q I =- qz, if and only if
they are k-indistinguishable for all Ie ~ O.

A state q E Q is said to be inaccessible if there is no input string x such that

I(qo, x) ---'---> (q3, e).

Figure 21. Definition of indistinguishable states [AhoA72].

LEMMA 1-----

Let M = (Q, I, 0, qo, F) be a finite automaton with 11 states. States ql and q2 are
indistinguishable if and only if tbey are (/1 - 2) - indistinguishable.

Figure 22. Aho's and Ullman's Lemma on determining if two states in a finite
alltomata are indistinguishable [AhoA72].

Ii/put. 1"\'0 finite automata 111, =(Q" II, 01, ql, Fj) and M2 = (Qz, LZ, oz, qz, Fz) such that

QI n Q2 =0.
Output. "YES ifL(MI ) =L(M2), "NO" otherwise.
Method. Construct the finite automaton

Using Lemma 1 determine whether ql =-q2' If so, say "YES"; otherwise, say "NO".

Figure 23. Aho's and Ullman's algorithm for testing equivalence between two finite
automata [AhoA72].
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alphabet :E for the combined machine M is equal Lo :Eo and :Es . The set :E,,-2 c :E* of

all strings of length 11- 2 or less is needed by the algorithm, where 11 IS the number of

states in the combined machine M; i.e., n = IQo U Qsl. Let qo and qs be the start states

for M o andM.,., respectively. According to Definition 1, if qn is (17 - 2) -

indistinguishable from q", in machine M if they are indistinguishable for each string in

:E"-2
. If the two states qo and qs are (n-2) - indistinguishable, then by Lemma I they

are indistinguishable. If q() and qs are indistinguishable, then according to Algorithm 3

Mo and A!/., are equivalent

The implication of this is that not all strings in :E" 2 need to be generated; instead,

only the subset of L,,-2 that is recognized by M o and the subset of 1:,,-2 that is

recognized by M., need to be generated. If the two subsets are equal then M() and M,\

are equivalent

Determinillg Equivalency of SegSOM and Original FSA

To generate the sets of tilrings necessary for proving the equivalence of Moand

M s ' the string generator program is used to produce the sets of strings Ii'om the files (as

described earlier) that describe the original FSA and the SeqSOM FSA. (Each FSA file

specifies tbe same maximum string length.) The two files created by the string generator

program are each sorted using the UNIX sort command and are saved as new files. The

final step is comparing the two sorted files, The UNIX compare command is used to

compare the two files. If there are no discrepancies between the two files, tben the two

FSAs are equivalent in accordance with Algorithm 3.
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Discussion of the Experimental Results

There are four original finite state automata that were used for testing SeqSOM.

The number of states in these FSAs ranged from 3 to 6, and their alphabet sizes range

from 2 to 5 distinct characters. For each of the original FSAs, an new FSA was generated

from a trained SeqSOM using a subset of strings as defined by the original fSA.

Equivalence was shown in two of the test cases in accordance with Algorithm 3.

However, FSA Test Case 2 and FSA Test Case 3 the number of strings necessary to show

equivalence was beyond the current storage capacity of the available computing

resources. FSA reduction is discussed in Chapter V as a possible means for reducing the

number of strings needed to show equivalence. Table I lists a summary of the test results

for each FSA.

Origional FSA New FSA

States Strings Length States Strings Length Equivalent
F== - -

Test FSA I 6 103 10 29 76955 27 Yes
Test FSA 2 3 510 9 I 37 <2J ) 35 Likely
Test FSA 3 5 19 20 43 40 41 Yes

~.

<i~xTest FSA 4 5 511 12 90 R8 Likely

Table I. Results for SeqSOM.

Since SeqSOM can generate equivalent FSAs, it can be concluded that a SeqSOM

neural network captures in its internal representation the contextual relationship of the

input data.

As can be seen from Table I, the original FSAs all have a small number of states.

Once SeqSOM is trained, the number of states needed to define the new FSA is larger in
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all cases. The maximum string length needed to prove equivalence using algorithm as

shown in Figure 23 is defined as the Max(IQol,IQsl) - 2.

Fail~Lres to produce an Equivalent FSA

Sometimes SeqSOM fails to generate an equivalent FSA. The generated FSA

may produce a set of strings that is a superset of the training set. What observations can

be made when SeqSOM fails to produce an equivalent FSA?

'-_,:,/

Figure 24. Equivalent FSA generated after training the SeqSOM network for FSA
Test Case I.
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During experimentation with SeqSOM several observations were made about the

ability of this technique to build an equivalent FSA. One such observation suggests that

shrinking the neighborhood size can increase the likelihood that an equivalent FSA will

be captured by SeqSOM. In Test Cases 3 and 4, shrinking the neighborhood had the

effect of generating an equivalent machine. A possible explanation is that as clusters are

fOlmed with a smaller neighborhood they have sharper edges, so the states are more well-

defined. In general when a SOM or SeqSOM type network is trained, a smaller

neighborhood reduces the area in which clusters are fonlled and the subsequent

transitional regions between clusters. Setting training parameters can be dubious if the

original FSA is unknown since a new FSA generated by SeqSOM and can be only

partially verified with the training strings. The selection of training parameters and their

impact on FSA generation using a SeqSOM network is left as future work and is

discussed in the Conclusions and Recommendations section.

SeqSOM also will Fail to generate an equivalent machine if there is an insufficient

number of strings for training. Increasing the training time does not seem to alleviate this

problem. This behavior might be accounted for by the fact that there are not enough

strings to capture the FSA that generated them. This is evident in FSA Test Case 2. In

Test Case 2, the first training set consisted all strings from the language of length seven or

less, and after training the SeqSOM failed to produce an equivalent machine. When a

larger subset of the language was used, the SeqSOM training session produced an

equivalent FSA.

If the training time is insufficient (i.e. if the network is ulldertrained) then the

ANN will not have had enough time to learn. SeqSOM also is prone to under-training
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and will fail like other artificial neural networks. Over-training is not a problem for the

SOM technique [HiotisA93]. Over-training should not be an issue with SeqSOM since

the learning method used is the same as for SOM. Since over-training is not an issue,

traini.ng for an extended period will help guarantee the there is sufficient training to

capture the desired behavior ill the network.

SegSOM as Compared to Simple Recunent Network

The intent of this research is to show that SeqSOM is a technique for processing

contextual data by using feedback. Severa! observations can be made when comparing

SeqSOM to the Simple Recurrent Network (SRN) as reported by [FausettL94 and

GhoshJ92].

The training sets used by [GhoshJ92] to train an SRN were chosen Ii'om the subset

of the language with a maximum length of 32 characters; the size of this subset is greater

than 355,000 strings. The size of the training sets ranged fi'olll 60,000 to 80,000 distinct

strings. ScqSOM uses a complete subset for training and for showing the equivalency of'

the FSA representations (i.e. proof of equivalence).

The research presented by [GhoshJ92] shows that the accuracy of a trained SRN

network to be less than perfect. The incomplete training set should raise the question as

to whether an ANN trained with these strings will encompass the compete behavior of the

original FSA. Ghosh and Karamcheti report accuracy results ranging from .48 to .999,

while [FausettL94 and GhoshJ92] reports that other researchers were able to obtain

perfect accuracy for the SRN technique. Less than perfect accuracy could be a problem if

the ANN were being used in a control system. However with SeqSOM, 100% accuracy is
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obtainable. Further, [GhoshJ92] did not show how tbey would produce an FSA from a

trained SRN. In contrast anFSA can be produced from a trained SeqSOM network.

SeqSOM has the advantage of using a small, complete subset for training (e.g.

103 strings for the FSA in Figure 13 as compared to Ghosh and Karamcbeti' s partial

subset of 60,000 to 80,000 strings) [GhoshJ92], Even though nm times for the two

methods were not evaluated, it is possible that the reduction in the training set size for

SeqSOM could be beneficial in improving performance.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

The research presented in this thesis discusses the integration of feedback into a

Self-Organizing Map to create a new Artificial Neural Network (ANN) architecture

called a Sequential Self-Organizing Map (SeqSOM), The experiments perfonned show

that SeqSOM can successfully capture the contexh131 nature of input data. In this

research the language from an FSA was used to test the SeqSOM architecture. This type

of test data had been used for another network architecture called the Simple Recurrent

Network (SRN) [GhoshJ92]

Like the SRN research, a SeqSOM network was trained with strings from the

language given by an FSA. Once the SegSOM network is trained, a new FSA can be

constructed from it and compared to the original. Equivalency of the two FSAs is shown

by directly comparing strings generated from the language of both FSAs [AhoA721.

Observations

The results of thi s research show that the FSA generated from a trained SeqSOM

network can successfully and completely capture the behavior of the original FSA. Four

different FSAs were tested, and this result was observed in all cases. In general, SeqSOM

performed with a higher level of accuracy than SRN.
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One of the drawbacks with SeqSOM is that it tends to produce a large numbers of

states in the generated FSAs. Because the number of states is used to determine the

necessary string length for showing equivalence to the original FSA, there call be

difficulty due to the storage space needed for the of strings being generated.

Future Work

This research should be pursued further to show that SeqSOM has more

applications than simply building an intemal representation of an FSA. SeqSOM, being a

new architecture for contextual information, has raised as many questions as were

answered. The main question answered in this research was that SeqSOM is a viable

ANN architecture. However, much work remains as to its efficiency, behavior, and

potential applications.

Efficiency Concerns. One of the limitations of using SeqSOM is the amount of

time required for training. The SeqSOM programs implemented for this research

recalculate all activation values during each pass through the training seL. MallY times

these activation values do not need to be recalculated because the weight vectors lIseo to

calculate them do not change. This inefficiency could be reduced by storing the

activation values for each neurode as was implemented in Kohonen's SOM application

[KohonenT92J. Along with the activation values, an extra valuc called thc dirty bi t could

be used to identify the weight vectors modified during the previous pass through the

training set. With each pass through the training set, the activation values are

recalculated only for tbose neurodes that have their dirty bit set. From among tbe new
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activation values and the ones saved in prior passes through the training set, the winning

neurode is chosen.

Complications of implementing the dirty bit mechanism as described above are

that the feedback values in SeqSOM do not remain static even though the training vectors

do and the weight vectors may. A possible solution to this problem is to calculate and

store a partial activation value and finish the calculation once the feedback values are

known. This could have the effect of reducing the number calculations required, thus

reducing the overalJ training time. The dirty bit technique may not be plausible f()r all

tra ining sets., but in the case of the FSAs lIsed in this research, it would have been

beneficial.

With the advent of multiprocessor personal computers and operating systems that

support them (e.g., Microsoft Windows NT), an obvious means for speeding up the

SeqSOM architccture is the use of parallel processor coding techniques (i.e. threads).

The calculation of Ilcurode activation values is the first logical candidate lor

paralJelization since this value is calculated independently for each neurodc.

FSA Issues. Since FSAs were the main locus of testing SeqSOM in this research,

there are many questions with regards to this problem domain that should be investigated.

These include, but are not limited to, the following: establishing the optimal training

time, learning rate, neighborhood size, network size, etc.

Even though the FSAs used for this research had small training sets, more

complicated FSAs exist and may require an excessive number of strings in the training

set. This could overwhelm the capacity of available computing power to traln and to

show equivalence. Thercf"ore, it would be beneficial to establish the lower bounds for the
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size of the training set necessary to produce an equivalent FSA. The advantage of

knowing this information would be a reduction in time and other resources necessary for

training.

A way of dealing with excessive numbers of states is the reduction algorithm for

FSAs [AhoA 72]. This algorithm could be used to reduce the number of states in the

generated FSA, which should help reduce the time and other resources required to show

equivalence to the original FSA.

Test with other data domains. Other "Real-World" applications should be

investigated Llsing the SeqSOM architecture. Future work should include different kinds

of data that have a contextual and time dependencies. As discussed in the literature

review, other SOM architectures have been modified for speech analysis, and the

SeqSaM architecture could be applicable to this area.

59



BlBLIOGRAPHY

[AmericanH92] American Heritage Electronic Dictionmy. Standard Edition, Version
3.0A. Houghton Mifflin Company, 1992.

[AhoA 72] Aho, Alfred V. and Ullman, Jeffrey D. The TheOlY o./Parsinj?
Translation and Compiling. Volume J: Parsing. Prentice-Hall,
Englewood Cliffs, NJ. 1972.

[BoydstunR95} Boydstun, Roger and Mayfield, Blayne E. "Tnvestigatiol1ofSequential
Self-Organizing Maps." Proceeding o.lthe Ninth Mid-America
Sympo.y;um on Emerging Technologies 1995, MASECT 95.

[CaudiIIM93] Caudill, Maureen. "A Little Knowledge is a Dangerous Thing" AI
Expert. June 1993. Volume 8, Number 6. pages 16-22.

[CotterilJR88] Cottelill, Rodney. Computer Simulation in Brain Science.
Cambridge: Combridge University Press, 1988.

[DayhoffJ90] Dayhoff, Judith E. Neural Network Architecfur(!s. New York: Van
Nostrand Reinhold, I9<JO.

[ElmanJ90J Elman, J. L. "Finding Structures in Time." Cognitive Science,
14:179-211,1990.

[FausettL94] Fausett, Laurene. Fundamentals ofNeural Networks: Architectures,
Algorithms, and Applicafions. 1994. Prentice Hall, Englewood Cliffs,
NJ 07632.

[GhoshJ92] Ghosh, Joydeep and Karamcheti. "Sequence Learning and Recurrent
Networks: Analysis oflnternal Representation." SPIE Vol 17/0
Science ofArt~ficalNeural Networks (1992). pp.449-460.

[HiotisA93] Hiotis, Andre. "Inside a Self-Organizing Map." AI Expa{. April
1993. Volume 8, Number 4. pp. 38-42.

[KangasJ90] Kangas, Jeri. "Time-Dependent Self-Organizing Maps." Proc.
!JCNN-90-Sall Diego, International Joint Conference on Neural

60



Nellmrks. pp. 331-336. IEEE Computer Society Press, Los Alamitos,
CA 1990.

[KangasJ91 a] Kangas, Jeri. "Time-Dependent Self-Organizing Maps for Speech
Recognition." Artijical Neural Networks, Kohonen, T., Makisara, K.,
Simula. O. and Kangas, J. Editors. pp. 1591-1594. Elsevier Science
Publisher: B.V. Nortb-HoUand. 1991.

[KangasJ91 b] Kangas, Jeri. "Phoneme Precognition Using Time-Dependent Versions
of Sel f-Organizing Maps." ICASSP 91: 199/ International
Conference on Acoustics, Speech and Signal Processing. IEEE:
Piscataway, NJ. pp. 10] -I 04.

(KohonenTRRa] Kohonen, Teuvo. "The 'Neural Phonetic' Typewriter." IEEE
Computer. March 1988. Volume 21, Number 3.

[KohonenT88b] Kohonen, Teuvo. "Self-Organizing Formation of Topologically
Correct Feature Maps." Neurocompuling: Foundations qlResearch.
Edited by James A. Anderson and Edward Rosenfeld. Cambridge,
Massachusetts: MIT Press, 1988.

[KohoncnT89] Kohonen, Teuvo. Self-Organization and Associative Memo':!', (Third
Edition). New York: Springer-Verlag, 1989.

[KohonenT92] Kohonen, Teuvo, Kangas, Jeri, and Laaksonen, Jonna. SOM_PAK:
The Self-Organizing Map Program Package. Version 1.2. Helsinki
University of Technology. November 1992.

[KohonenT95] Kohonen, Teuvo. Sell-Organizing Maps. New York: Springer-Verlag,
1995.

[LawrenccJ90] Lawrence, Jeannatte. "Untangling Neural Nets." Dr. Do/)!J 's ./oul'I1al.
April 1990. Volume 15.

[MarenA90] Marcn, AJinna, Harston, Craig, and Par, Robert. Handbuok olNeural
Computing Applications. San Diego: Academic Press, 1990.

[MarkowitzJ94] Markowitz, Judith. "Networks for Speech." PC AI. May/June 1994
Volume 8, Number 3.

[McClellandJ86] McClelland, James, Rumelhart, David, el. al. "Psychological and
Biological Models." Explorations in Parallel Distributed Processing
Cambridge, Massachusetts: The MIT Press, 1986.

61



[McCullochW43] McCulloch, Wan-en S. and Pitts, Walter. "A Logical Calculus of the
Ideas Immanent in Nervous Activities." Bulletin ofMathmatical
Biophysics. Volume 5. pp. 115-133.

L

[RiUerH91]

[ZandhuisJ92]

Ritter, Hedge, Martinetz, Thomas, and Schulten, Kaus. Neural
Computation and Se!f-Organizing Maps: An Introduction. Reading,
Massachusetts: Addisol1-Wesley, t991.

Zandhuis, J. "Storing Sequential Data in Self-Organizing Feature
Maps." internal Report MPf-NL-TG-4/92. Max Planck Institute/or
P.\)'cholinguistics. Wlllldtlaan Nij megen.

62



APPENDIXES

63



APPENDIX A

PROGRAM PARAMETERS
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-t Training Places SeqSOM in a training mode.
-a Apply Places SeqSOM in Application mode.
-I Label Label SOM neurodes with a text label
=======================~===;= ~===========
J\ddjij~l,ial'{~ l
-v Version
-r Random
-Fvtr Vector File
-fwts Weight File

L

-fprm
-fxls
-tout
-d

-z

-n

-'1

Parameter Files
Coma Delimited
Output File
Display Training
Grid
Random

Normal ization

Help

t a Print current version of SeqSOM executable.
t Use Random
t a Filename for retrieval of input vectors.
t a Fi lename for storage or retrieval of weight

vectors.
a Filename for parameter file.
a Filename for output of coma delimited flle.
a Filename for other output

t Currently Not Implemented

t Randomize weights using the time of day as
seed to random number generator.

a Normal ize weight and vectors. (See code for
current implementation of nonnalization
routines.

a Print help on command line options.
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APPENOlX B

STRfNG GENERATOR PROGRAM
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,== Build a finite State Generator ===========================================

~ Last updated 07/19/95 09:30 by Blayne Mayfield

Input file format:
• Line 1 specifies maximum string length (not including band

the start state name, and a list of the final state names.
fMaxStringLength, StartStateName, [finaIStateName, ... 11.

• Line 2-n specify transition and output information. format:
[fromThisState, ToThisState, ProducingThisOutput].

e) ,

Format:

~============~~=========~==============:===~=====~===================~========~

buildFSGllnFile, Outfile)
% Open the input file.
seellnfile) ,
, Read the max string length, start state, and list of tinal states.
read( [MaxLength, StartState, FinalStates]),
; assert the necessary facts relating to that input.
assert(maxLength(MaxLength)),
% read the first state/state/output line.
readl[State, State2, Output)),
% Assert the rules that define the machine.
build2(State, State2, Output),
I Close the input file.
seen,
t Generate a stopping rule for each final state.
final(finalStates), I

, Generate the rule that stops execution properly.
Head = .. IStartState, I,
asse.rt (Headl,
% Open the output file.
tell (OutF'lie),
% Run the program tn generate the output.
Ca11Form = .. IStartState, Ib]J,
cali (Ca 11 form) ,
, Close the oUlput file.
told.

build2 (St.atel, State2, Output)
% Assert a rule for this input.
Head ~ .. I~:!tiltel, List.] ,
RecursiveCalJ ~ .. [State2, [Output I Listl],
a 5sert ( ('·Iead :-

ma:-:Length IML), length (L:lst, L), L =< ML,
HecurslveCall) I,

". read t.he next state/scate/outpul line.
read( [Statela, Stale2a, Output,!]),
* ~ontinue to assert the rules that define the machine.
build2(Statela, State2a, Outputal.

budd2 ( , , I.

[inal([]).
final ([~jtateITail] J

Head = •• [State, List],
assert ((Heael - printList (Ie IList]), nl, fall) J,
tinal (Ta.1.l).

printLlst ([ I).
prinr.List([HIT)1

printI,ist IT),
write(H), writer' 'I.
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APPENDIXC

FINITE STATE AUTOMATA

USED FOR TESTING THE SEQSOM APPLICATION
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BEGIN L(-'
-~O

FSA Test Case 1

/

+

v
4

-~

O~~END
\. 5) - ..

-,.-'"

%Prolog Lists for FSA Test Case I
[10, stateO, [state5]l

[stateO, state I, t].
rstateO, state2, pl·

[statel, state!, sl.
lstate I, statc3, xl·

[state2, state2, t].
[state2, state4, vi.

[state3, state2, xl.
[state3, state5, s].

[state4, state3, p].
[state4, state5, v].
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bplttlttlvve
bpttllttvpse
bpllttttvve
bplltltvpse
bpllltlvvC
bpltllvpse
bpttttvpxvve
bpltllvve
bplllvpse
bpttlvpxtvve
bpttlvpxvpse
bpltlvpxvve
bplltvve
bpttvpse
bpttvpx llvve
bpttvpxtvpse
bpttvpxtvve
bpttvpxvpse
bpttvpxvve
bptlvve
bptvpse
bptvpxlltvve
bptvpxltvpse
bptvpxttvve
bplvpxlvpse
hptvpxtvve
bptvpxvpse
hptvpxvpxvve
bplVpXVVC

bptvvc
bpvpsc
bpvpxttltvve
bpVpXlllvpse
bp"pxlllvve
bpVpXllvpse
bpvpxltvvc
bpvpxtvpse
bpvpxlvpxvve
bpvpxtvve
bpvpxvpse
hpvpxvpxtvve
bpvpxvpxvpse
bpvpxvpxvve
bpvpxvve
hpvve
btsssssssxse
btssssssxse
blsssssxse
blsSsssxxvve
btssssxse
btssssxx\vve

Complete Training Set for Test Case 1

blssssxxvpse
btssssxxvve
btsssxse
btsssxxtlvve
btsssxxtvpse
btsssxxtvve
blSSsxxvpse
btsssxxvve
blssxse
btssxxttlvve
btssxxltvpse
hlssxxttvve
btssxxlvpse
blssxxlvve
btssxxvpse
blssxxvpxvve
btssxxvve
blsxse
btsxxttttvve
btsxxlltvpse
btsxxtllvve
btsxxtlvpse
blsxxtlvve
btsxxtvpse
btsxxtvpxvve
blsxxtvve
btsxxvpse
blSXXVPX(VVl.:

btsxxvpxvpse
blsxxvpxvvc
btsxxvve
blxse
btxxtttllvve
btxxtttlvpse
blxxltttvve
btxxtltvpse
btxxlltvve
btxxttvpse
btxxttvpxvve
btxxttvve
btxxlvpse
btxxlvpxlvve
btxxlvpxvpse
btxxlvpxvve
blxxlvve
btxxvpse
btxxvpxttvve
btxxvpxtvpse
btxxvpxtvve
btxxvpxvpse
btxxvpxvve
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%Pro]og Lists for FSA Test Case 2
[9, stateP, [stateR]].

[stateP, stateQ, 0].
[stateP, stateQ, 11.

[stateQ, statcQ, 0].
[stateQ, stateR, 1].

[stateR, statcQ. OJ.
[stateR, stateR, 11.

FSA Test Case 2

(1

'-::~ t--_
E
_
N

_
D
_.
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bOOOOOOOOle
bOOOOOOOll e
bOOOOOOOle
bOOOOOOIOle
bOOOOOOll1 e
bOOOOOO I Ie
bOOOOOOle
bOOOOO I 00 Ie
bOOOOOIOlle
b0000010Ie
bOOOOOllOle
bOOOOOlllle
bOOOOOllle
bOOOOOlle
bOOOOOle
bOOOOIOOOle
bOOOOlOOJ Ie
bOOOOIOOle
bOO 001 0 101 e
b000010Jlle
b000010lie
bOOOOIOle
bOOOOllOOle
bOOOOllOlle
bOOOOI10le
hOOOOlllOle
bOOOOI I I I Ie
bOOOOlille
bOOOOl 1 Ie
bOOOOlle
bOOOOle
bOOO I 0000 Ie
bOOOIOOOlle
b0001000le
bOOOJ0010le
bOOOIOOllle
bOOOIOOlle
bOOOIOOle
bOOOIOIOOle
bOOOIOIOl Ie
b0001010Ie
b000101 lOle
b000101ille
bOnOIOI I Ie
bOOOIOlle
bOOOIOle
bOOOll000le
bOOOllOOlle
bOOOll00le
bOOOl JOIOle

Partial Training Set for Test Case 2

bOOOllOllie
bOOOll01le
bOOOllOle
bOOOlllOOle
bOOOlllOlle
hOOOlliOle
bOOOllllOle
bOOOlllllle
bOOOllllle
bOOOI I I Ie
bOOOllle
bOOOlie
bOOOle
bOOlOOOOOle
bOOIOOOOlle
bOOIOOOOle
bOOIOOOIOle
bOOIOOOll Ie
bOOIOOOlle
bOOlOOOle
bOOJOOlOOle
b00100lOIle
bOOl0010le
bOOlOOllOle
bOOIOOlllle
bOOIOOllle
bOOIOOllc
bOOIOOlc
bOOl01000Ic
bOOlOIOOllc
bOOIOIOOle
b0010lOl0Ie
bOOIOIOlllc
b0010lOlle
b0010l0Ie
b0010liOOle
bOOIOllOlle
bOOIOllOJe
bOOlOI I IDle
bOOJOllllle
bOOlOlllle
bOOIOll Ie
bOOIOlle
bOOIOle
hOOllOOOOJe
bOOllOOOlle
bOOllOOOle
bOOllOOIOle
bOOI 1001 lIe
bOOllOOlle
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bOOI100le
bOOI10l00le
bOOllOl0lle
hOOI lOIOle
bOOI10Il0Ie
hOOllOlllle
bOOllOllle
hOOllOlle
bOOllOlc
bOOlllOOOle
bOOliiOOlle
bOOlllOOle
bOOlii010Ie
bOOlllOllle
bOOlllOlle
b0011101e
bOOllllOOle
bOOllllOlle
bOOllllOle
bOOlllllOle
bOOllllllle
hOOlllllle
bOO I I I I Ie
bOOlllic
bOO I I Ie
bOO I Ie
bOOlc
bOIOO()OOOlc
bOIOOOOOlle
bOIOOOOOlc
bOIOOOOlOle
bOIOOOOllle
bOIOOOOllc
bOIOOOOle
bOl000100le
hO]OOOlOI Ie
bOIOOOIOle
bOIOOOllOle
bOIOOOll I Ie
bOIOOOllle
bOIOOOI Ie
bOIO(JOle
b0100lOOOle
bOIOOIOOI Ie
b0100JOOIe
bOl0010lOIe
bOIOOIOllle



FSA Test Case 3

__BEGIN 0-~--0-__z_

%Prolog Lists for FSA Test Case 3
[50, statel, [stateF]].

Istatel, stateP, y].
[statel, stateR, y].

rstateP, stateQ, zl·
[stateP, stateR .. y].

!stateQ, stateQ. z].
[stateQ. stateR, yl.
[stateR, stateF, z]
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Complete Training Set for Test Case 3

byzzzzzzzzzzzzzzzzzyze
byzzzzzzzzzzzzzzzzyze
byzzzzzzzzzzzzzzzyze
byzzzzzzzzzzzzzzyze
byzzz7.zZZZzzzzzyze
byzzzz7.7.ZZzzzzyze
byzzzzzzzzzzzyze
byzzzzzzzzzzyze
bY7.ZZZ7.Z7.Zzyze
bY7.'/.'/.zzzzl.yze
byzzzzZ7,Z.yze
byzzzzzzyze
byzzzzzyze
byzzzzy:r.e
byzzzyze
byzzyze
byzyze
byyze
by 7. e
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BE~J:~ 0
-- ---~-------.l

%Prolog Lists for FSA Test Case 4
[10, stateO, Istate4]].

[stateO, stateL 0].

[stale), state2, OJ.

[state2, state2, OJ.
[state2, state3, 1].

[state3, state2, 0].
[state3, state4, J].

[state4, state2, 0].
[state4, state4, 1].

FSA Test Case 4

o
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bOOOOOOOOOO 11 e
hOOOOOOOOO 1 I Ie
bOOOOOOOOO I Ie
bOOOOOOOOIOI Ie
bOOOOOOOOlllle
bOOOOOOOO II Ie
bOOOOOOOO I Ie
hOOOOOOO 100 I Ie
bOOOOOOOIOllle
bOOOOOOO I 011 c
bOOOOOOOllOlle
bOOOOOOOI II I Ie
bOOOOOOOI I 1 Ie
bOOOOOOa J 11 e
bOOOaOOa II e
bOOOOOO I 000 I Ie
bOOOOOOIOOI LIe
bOOOOOO I 00 I Ie
bOOOOOO I 0 10 II e
bOOOOOOIOI LI Ie
bOOOOOOIOllle
bOOOOOOIOlle
bOOOOOOL 1001 Ie
bOOOOOOII.Ollle
bOOOOOOI 101 Ie
bOOOOOOlllOlle
hOOOOOO I I I I I Ie
bOOOOOOI 1 1 1 Ie
bOOOOOOlllle
bOOOOOO I lie
bOOOOOO I Ie
bOOOOO 1 000011 c
bOOOOOIOOOllle
bOOOOO I 000 I Ie
bOO 0 () 0 I 0 0 I 0 I I e
bOOOOOIOOI 1 I Ie
bOOOOOIOOllle
bOOOOO I 00 lie
bOOOOOIOIOOlle
bOOOOOIOIOllle
bOOOOOIOIOl Ie
bOOOOOl0110Ile
bOOOOOIOIIllIe
bOOOOOIOI J 1 Ie
bOOOOOl0111e
bOOOOOIOIJe
bOOOOOL 10001le
bOOOOOll001lJe
\)00000110011e
bOOOOOll0101 \e
bOOOOOll011 LIe

Pmiial Training Set tor Test Case 4

bOOOOOllOllle
bOOOOOllOlle
hOOOOOlllOOlle
bOOOOO\ 110l11e
bOOOOOlI10\ Ie
bOOOOOI LI 101le
bOOOOOl I I I 1 I Ie
bOOOOOl I I II Ie
bOOOOO) 11 I Ie
bOOOOO)Llle
b00000111e
bOOOOOl Le
bOOOO 100000 II e
b000010000111e
bOOOO 10000) Ie
bOOOOIOOOIOlle
b000010001111e
bOOOOI 000 II Ie
bOOOOIOOOlle
bOOOOl00l001le
bOOOOl00l011le
bOOOOIOOIOlle
bOOOOIOOllOlle
bOOOOIOOllllle
bOOOOIOOlllle
bOOOOIOOllle
bOOOOlOOlle
bOOOOIOIOOOllc
b000010100llie
bOO 0 0 1 0 1 0 () II e
bOOOOIOIOIOlle
b0000101011lle
bOOOOIOIOllle
bOOOOIOIOlle
bOOOOIOllOOlle
bOOOOIOllOllle
bOOOOIOllOlle
bOOOOIOI I 101 Ie
bOO 0 0 I 0 I I I 1 1 I e
bOOOOIOI I I lIe
bOOOOIOlllle
bOOOOIOllle
bOOOOIOlle
bOOOOll00001le
bOOOOllOOOllle
b0000110001le
b00001100101le
bOOOOl 10011 I 1e
hOOOOll00111e
bOOOOllOOlle
bOOOOllOIOOlle
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bOOOOllOIOllle
b0000110101le
bOOOOI 101 101 Ie
b00001101111ie
bOOOOI 101 1 1 Ie
bOOOOllOllle
bOOQOIIOlle
bOOOOlllOOOlle
bOOOOlllOOllle
bOOOOlll0Qlle
b00001110101le
bOOOO] 1 101 1 I Ie
bOOOOI I 101 I Ie
b00001110Jle
bOOOOll L1001le
bOOOOI I I 10J I Ie
bOOOOllllOlle
bOOOOlllllOlle
bOOOOllllllile
bOOOOllllllle
bOOOOllIllle
bOOOOI I I I Ie
bOOOOllllc
bOOOOI I Ie
bOOOOlle
b00010000001 Ie
b000100000111<.:
bOOO 100000 I It'
bOOOIOOOOIOllc
bOOOIOOOOlllle
bOOOIOOOOIII<.:
bOOOIOOOOlle
bOOOIOOOIOOlle
bOOOIOOOIOlllc
bOOOIOOOIOllc
bOOOIOOOIIOII<.:
bOOOIOOOlllllc
bOOOIOOOl1 ~ Ie
bOOOIOOOI I Ie
bOOOIOOOlle
bOOOIOOIOOOlle
bOOOIOOIOOllle
bOOOIOOIOOlle
bOOOIOOIOlOI Le
bOODIOOIOlllle
bOOOIOOIOllle
bOOOl0010111;;
bOOOIOOI 1001 Ie
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