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DEFINITION OF TERMS

RPM = revolutions per minute

oz = ounces (force)

lb = pounds (force)

in = inches

psi = pounds (force) per square inch

R = electrical resistance (ohms)

P = power (oz-in/s)
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Chapter I

Introduction

Background

The design contest comprising about half the course content of MAE 3033 at

Oklahoma State University has traditionally provided for OSU engineering students a

stimulating insight into engineering design. In fact, perhaps the fundamental intent of the

course is to teach mechanical design. As a major exercise, students are provided the

opportunity to design and build, and finally, to operate a vehicle as it performs against

other students' machines in a contest. The beneficial impact of the experience upon

students in general, including the author, has been enormous.

The objective of the contest changes each semester. The rules do also, of course, but

for each previous contest students have been allowed to use three small DC motors rated

at 100 ounce-inches stall torque. Though rules have never encouraged a specific design,

for every previous contest the vast majority of mechanisms designed by students have

been wheeled, often track-driven, vehicles. A typical vehicle, which was used to collect

data for this project, is shown in Figure 1. This tendency to produce vehicles like this is

perhaps due to several factors such as the size of the playing field, the general objectives,

the configuration of the motors for control via a joystick, and precedence. Wheeled

vehicles are perceived as the simplest, most natural solution to the typical problems.

Cost constraints have led to the necessity of providing inexpensive motors for student

use. In addition, motors are placed under extremely demanding conditions as enthusiastic
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Figure 1. Photograph of a Typical Contest Vehicle
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and often inexperienced students attempt to manipulate their design into a winning

mechanism. As a result deterioration of motor characteristics can be rapid. Since the

quality of a contestant's motors can be the deciding factor in the outcome of the contest a

method of characterizing particular motors accurately and efficiently was needed. In the

course of meeting this need, it was possible to extend the project's objective to provide

students with a general design tool with broad applicability.

The Problem

The problem is to design and produce a system by which MAE 3033 students can

better design, simulate, and evaluate their contest vehicles. The larger ponion of this

problem is addressed by producing a device to measure the power output of the motors

used by students, and the power requirements of the devices they build. The goal

sought by providing this capability is to make the evaluation of any particular motor

convenient, accurate, precise, and quick. In addition, it is desired that a simulation

program provide support in helping students to optimize characteristics of their vehicle

through observing the effects of changes before they are physically made.

Objectives of the Study

The primary objective of the study was to build a useable dynamometer which

students can use as a design tool. In support of this goal, other objectives were to build

the accessory circuitry, to collect and process torque and speed data by computer, to

devise a system to simulate a track-driven vehicle in order to analyze the losses
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typically occurring in student's designs, and to perform an error analysis on the entire

power measuring system.

The dynamometer was then in turn developed with several important objectives in

mind. For example, it was primarily desired that the device enhance and facilitate the

students' exercise of design. It was to be relatively small and light-weight, and as

mechanical in its operation as possible so that the device itself could be educational as

well as easily repairable. It was to be rugged, simple, and have low building and

maintenance costs in terms of time and money. Finally, the device was to be adaptable

and applicable to a variety of potential uses and testing procedures. For example, it

should be possible for future students to design and build interfacing accessory

hardware to measure power train components peculiar to their machines. Students

should then be able to investigate the characteristics of virtually any motor, drive train,

or drive train component they suspect is performing poorly. Furthermore, once the

actual power output of a particular motor and the speed at which that output occurs is

known, then they can use these characteristics to design their vehicles. They can

optimize vehicle weight, center of gravity, wheel radius, traction system, bearing

selection, speed reduction, and any other parameters that may be important.

Finally, the entire project was constrained financially. Preliminary research

indicated that it would be possible to produce a suitable dynamometer for no more than

$300. Final out-of-pocket expenses have totaled about $150. This is lower than

commercial packages which were investigated, which cost from $500 to $3000.

However, the costs of commercially building the torque table dynamometer and its
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associated circuitry, contained in the blacK box, total $3665. This figure does not

include the motor power supply, the computer. or the data acquisition hardware and

software.

Purpos,e of the Study

The purpose of the study is ultimately to increase the educational impact of the course,

and thereby produce better engineers. Through the experience of designing a vehicle

students are confronted often for the first time with a significant problem of thinking

through a power delivery system in order to carry out a specified task wholly through

mechanical means. They are driven not only by the pressure to achieve academically, or to

win the contest. They are also stimulated by a desire to engineer a well-designed

mechanism, and to guide their creation as it performs before their peers. While the design

experience leading up to the contest has always been an extremely effective educational

experience, avenues existed to enhance its impact even more. It is at this point that the

student needs to start understanding basic engineering issues such as power, force,

mechanical advantage, and efficiency. Students often are unaware even of what the design

issues are which face them. For example, the availability of materials, decisions about

wheel and other part dimensions, and weight distribution, can be issues which the student

can not begin to address. Students have been in need of additional design tools to guide

them in these design decisions.

In light of this need, the proposed methodology was twofold: to design measurement

systems, devices, and strategies which will directly improve the quality of the actual
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contest, and at the same time to make the design and building processes more meaningful

for students.

The main approach to these objectives was to build the dynamometer. Its purpose was

to test the torque produced by electric motors, and thereby permit, for the first time in the

history of the course, an objective evaluation of powerplants. In addition, it is hoped that

the dynamometer will help engineering students internalize the concept of power, since the

device can be creatively adapted by them to help design and evaluate their own motors

and drivetrain components.

MAE 3033 should now provide an even greater preparation of students as engineers by

helping them internalize the basic engineering concepts offorce, power, velocity,

acceleration, and inertia. The students should also be provided with a basic instrument

useable in several ways to help further develop decision making tools and skills.

Hopefully, they will use the dynamometer creatively. The project has also provided a

substantial exercise for the author, since considerable use of design, manufacturing,

instrumentation, data acquisition, statistical, writing, organizational and other general

engineering skills have been extensively required.

Outline of Work

The remaining chapters of this paper will contain discussions of existing literature,

theory, and devices, of the methodology used in approaching and solving the problem,

of the results, and, finally, conclusions.
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Chapter Conclusion

The problem of building a useable dynamometer and vehicle simulation system has

been fonnulated. The problem involves dynamic torque measurements and speed

measurements of the motor. The purpose of the study is to enhance the educational

impact of MAE 3033 at Oklahoma State University.
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Chapter II

Review of the Literature

Introduction

This chapter contains a discussion of various methods and devices for measuring the

power transmitted through shafts in general, and the power output of motors. in

particular. A thorough evaluation of existing devices was particularly important

because simply buying a device or system was a distinct possibility.

Various Types of Torque-Measuring Devices

The transmission of torque through a rotating shaft involves a power source and a

power sink. Unfortunately, rotation of the shaft introduces several special problems in

torque measurement. For example, it is not a simple matter to place a measuring

device on a shaft which rotates, not to mention collect and receive infonnation from

that device. This consideration is significant t.o an extent that it defines the two

categories of dynamic torque measurement devices [3, 316]. One category is devices

which measure the strain or deflection of the shaft as torque is induced in it. The other

category includes devices which involve mounting the shaft or source in bearings and

then measuring the reaction force and moment arm.

A common approach to measuring the torque transmitted through a shaft is to

mount strain gages directly on the rotating shaft at a 45-degree angle to its longitudinal

axis, and then route the output signal through slip rings, or collect this data via
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telemetry [3, 420]. A commercial example of this type of transducer which likely uses

slip rings for signal transmission is the Lebow Torque Sensor, Model Number 1102­

100 [9]. It is light weight and small. It features low rotor inertia, and a torque

capacity of 100 oz-in, all of which was ideal for the purposes of the project.

Unfortunately, its cost was $499 for the transducer. Additionally, the device is no

longer stocked by the vendor. Another slip ring device is GSE's Model 2220-1 Torque

Transducer [5a]. It features acceptable characteristics, including a torque range of zero

to 140 oz-in, but has a 'price of $3095.

Another excellent commercial example of the principle of measuring torque in the

transmission shaft is Torquemeters I GP series dynamometers [8]. These dynamometers

feature a visual readout scale of transmitted torque. They have an impressive absolute

accuracy at full torque of +1- 0.25 percent. Importantly, calibration can be carried out

easily and conveniently using a lever arm and weight. The principle of this static

calibration feature was adopted into the dynamometer used in this project and was

found to be very satisfactory. A very linear relationship between torque and readout is

possible, with typical correlation coefficients of 0.999. Unfortunately, the lowest

range offered by Torquemeters' devices is 5 to 300 ft-Ib., which is much higher than

was required for the project. Additionally I it was presumed that the cost of these

particularly high-performance devices was far above that available for the project.

Another interesting application of the principle of determining torque through the

transmitting shaft without the use of slip rings was put to use by Vibrac in their Optical

Torque Transducer series [13]. These devices use an optical encoder disk attached. to
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the shaft to shutter light proportional to the angular displacement of the bar. The

maximum angular deflection of the shaft is 0.50 Other attractive features are a very

low moment of inertia and high accuracy. The devices can also be used for static and

dynamic measurements, which was attractive since it was desired to detennine the stall

torque of the MAE 3033 motors. This device provided a very attractive commercial

option to building a dynamometer. Unfortunately, the cost of the basic device (Part

No. TQ 100) is $2400. Additionally, the necessary accessory circuitry ranges from

$470 to $2475. This placed the device out of the cost range of the project.

The optical phase shift principle had been suggested [11]. This scheme involved

routing the output of optical transducers through logic circuitry. The optical

transducers were to be mounted on toothed disks located some distance apart on the

torque-transmitting shaft. The width of the output pulse would be proportional to the

torque. It was not considered a fully acceptable solution to the problem at hand

primarily because it was incapable of perfonning static measurements.

A final rather fascinating method of measuring torque within the transmitting shaft

is incorporated into GSE's Torkducer torque measuring devices [5b]. Following is an

outline of the device's operation taken from GSE I S catalog.

"This device uses a noncontact magnetoelastic design that eliminates the need

for bonded materials, brushes, slip rings, and their need for maintenance. The

ferromagnetic shaft does not have to be reduced, thereby retaining its full strength in

the sensing area. Two knurled, annular bands are at 45 degrees to the shaft axis, and at

10
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right angles to each other. The preferred magnetic direction fonned by knurling

overwhelms any inhomogeneities and residual stresses in the untreated shaft. A torque

applied to the shaft creates a tensile stress in one knurled region, and a compressive

stress in the second knurled region which results in an overall permeability change in

each region. The permeability changes in each region are respectively transformed into

voltages and detected by excitation and sensing coils. The voltage changes in the two

regions are processed into an output voltage signal that is proportional to the applied

torque. Dynamic and static torques can be measured in either direction of rotation

[5b]. "

The device is ideal for the project. The cost of the transducer, however, is $1495.

In addition, the accessory controller/monitor is $795. These costs placed the device far

outside the expense range of the project.

The second category of torque measuring devices includes those which involve

mounting the shaft or source in bearings and then measuring the reaction force and

moment ann. Doebelin states that the cradling concept is the most commonly used

power dynamometer [3, 416]. However, these devices are mainly useful for measuring

steady torque. Sources of error in the cradled configuration are bearing friction, static

unbalance of the cradled member, fluid friction of air l and forces due to stretching

and/or bending of the electric/hydraulic power lines. Doebelin recommends the torque

table to eliminate these sources of error and to facilitate dynamic torque measurements

[3, 417]. This was the configuration adopted for this project.
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The Torque Table Dynamometer

The torque table dynamometer is basically a platform suspended off the base by

four uniform, slender legs, which are oriented at 45 degree angles. The motor is

mounted on this platform. Figures 2, 3, and 4 show the actual device used for the

project.

The intersection of the planes made by the two pairs of legs lies on the axis of

rotation of the motor shaft. As the motor accelerates a heavy disk from rest to a steady

velocity I the legs deflect an equal amount [4]. The strain in the legs may be measured

by way of strain gages. The strain gages are located on each leg so that the backing

material aligns with the edge of the motor platform. This facilitates accurate and

uniform strain gage placement on each leg. The result is that deflection measurements

are performed on each leg at the same location. Strain gages used were Vishay

Measurements Group CEA-13-240UZ-120 120 ohm gages.

This strain is equivalent to that caused by a single force applied to the top of the

leg, with a moment imposed so that the longitudinal axis of the ends of the leg are

parallel. This corresponding "effective" force applied to the top of the legs may be

determined. Then, knowing the distance from the axis of rotation to the top of the legs

provides a measure of the torque transmitted through the shaft and into the legs.

Doebelin states that angular deflection of the platform is typically less than 1/2 of a

degree. "This cross sprint flexure pivot configuration is very stiff in all directions

except the rotational one desired, just as in an ordinary bearing" [3, 417).

Additionally, the strain gage bridge arrangement reduces the effect of all forces except

12



those related to the torque being measured. The next section contains an analysis of

Wheatstone bridge theory and the canceling effect of both the bridge and the torque

table configuration.

Figure 2. Photograph of the Dynamometer with :\1otor

[3



­,

14

Photograph of the Dynamometer Showing the'
Apparatus and the Inertial Disk

Photograph of tbe Dynamometer Showing Calibration Bar and Track
Drive Simulation Apparatus
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Analysis of Wheatstone Bridge Theory.

Consider the schematic of the actual torque table dynamometer and the Wheatstone

bridge shown in Figure 5. Initially, using variable shunt resistances as shown in the

figure, set R. + R2 = R3 + Rt, where Rt, R2, R3, and R4 are the total resistances in

each leg of the bridge. For example, Rt represents the resistance of the variable pot as

well as the non-variable resistor shown in Figure 5. Then, the currents it = h= i3 =

i4• and eo = O. Since eo is zero, it must be true from Kirchoff's voltage law that R i l =1

R3h, and R
2
h = R

4
i4• Rearranging terms and solving for resistances, it is shown that

the product of R. and R
4

must equal the product of R
2

and R
3

in order to balance the

bridge. It is therefore unnecessary to place four individual shunt resistances in the

bridge in order to balance it. Rather, only two are necessary on opposite arms of the

bridge so that the products of opposing resistors are equal. The next step is to show

that the bridge arrangement helps to offset torques imposed in any orientation other

than the rotational one desired.

In order to show that undesirable torques and forces are offset by the bridge

arrangement, consider again that when the bridge is balanced, i
l

= 12 = i3 = i4 and eo

= O. Furthermore, ei = e
AC

= i.(Rt+R2). Rearranging, then, it = ej/(Rt + R2)' It

can be shown easily in a similar way that iZ = ei/(R3+R4). Now, eo = eB- eD' which

is to say that:

Multiplying the right side by (Rt+R2)(R3+ R.t)/(Rl +R2)(R3+R4) gives:
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Figure 5. Schematics of the Wheatstone Bridge Circuit and Strain Gage Locations

16



-

Clearly then, eo is zero when the bridge is balanced and the numerator is zero. Now,

undesirable torque axes are, referring once again to Figure 5, X and Y. Undesirable

forces are those in any direction. To consider these cases, first assume that the

resistances are very close to equal so that Rl = R2 = R3 = R4 = R, and observe

what happens when the resistances are varied. Also, starting with a balanced bridge eo

is zero, so that:

Aeo = ei[(R+ ARt)(R+ AR4)-

(R + AR2)(R+ AR3)]/[(R + ARt + R + AR2)(R + l\R3 + R+ AR4)]

= ei[R(ARt +AR.4-AR3-AR2)+ARtAR4-

AR2AR3]/[(2R+ARt +AR2)(2R+AR3+ilR4)]

Now, a positive torque about the x axis places strain gages 1 and 2 under tension and 3

and 4 under compression, so that ilR} = ilR2 = (-)AR3 = (-)AR4. The numerator to

the above equation is then zero, and the adverse torque is offset. If a force is applied

to the motor platfonn in the Y direction, then llRl = AR2 = AR3 = AR4' and once

again the numerator is zero. Similar analysis takes care of forces purely in the other

two directions. The final adverse case is torque about the Y axis. The torque table

configuration is extremely stiff in this direction relative to any other direction, so that

offset by bridge circuitry is not necessary, even though it may be reasoned. Torque in

this direction twists the strain gages making an analysis complex. However, the

amount of twist in each gage is likely very nearly equal, and is likely negligible at any

rate.
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Figure 6 shows the complete circuit, with the amplifier in place to produce a

measurable strain gage signal. In this case, resistances Rh R2• R3, and a. correspond

to gages Gl> G2 • G3, and G4, respectively. The resistances are 120 n strain gages.

The bridge is balanced by adjusting the variable 20 n pots shown in the figure. The

output voltage from the bridge (eo in Figure 5) is fed to the non-inverting amplifier to

produce the new eo shown in Figure 6, which has a gain of 1 + (Rv/~)'

Doebelin suggests that speed-torque curves may be generated quickly and automatically

by accelerating an inertia from rest and measuring torque and speed. This was the

approach adopted in the project.

Another quite common method of measuring torque in rotating shafts is the eddy

current dynamometer. This method makes use of the interaction of eddy currents

generated within a rotating metal disk and field coils. This type of dynamometer was

not used because it cannot produce any torque at zero speed [3, 427].

Chapter Summary

Various types of torque measuring devices were considered for the project. It was

necessary to measure torque at speeds from zero up to about 250 RPM. The device

had to be inexpensive, rugged, and fairly accurate. The torque table configuration was

chosen because it featured these attributes. Importantly, it is also very easy to

calibrate. Finally, the device offers the mechanical engineering student a wonderful

array of mechanical elements -- spinning motors, bending beams, inertias and masses.

and stresses and strains.
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Chapter III

Methodology

Chapter Overview

This chapter contains discussions of the both the overall methodology used to solve

th~ problem, and particular methodologies used to solve elements of it.

Overall Research Methodology

The overall research methodology roughly followed basic engineering design

principles. As the decision to develop a torque table dynamometer eventually

crystallized, the research methodology simplified to building and testing the device and

its accessories. Thus, the approach to the problem fell into two general phases.

The first general stage was characterized by brainstonning, research, and

preliminary decision making. At no time were stages definitively tenninated. but were

cycled through regular progressions. Even the initial step of analyzing and defining the

problem was revisited in order to refine the scope of the project. Extensive and

ongoing brainstonning followed, and was refined through library research. In addition

other sources consulted such as periodicals, texts, commercial catalogs, professional

technicians, and professors helped to refine the problem statement as well as to give

shape to possible solutions. Finally, through consultation with the project advisor. a

field of a few devices was selected, and eventually one particular device was chosen for

preliminary trial runs. When it was detennined that the torque table dynamometer
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could fulfill the requirements of the project, then a second device was built with

improvements in sensitivity, durability, and other qualities. Several particular changes

led to these improvements. For example, the second torque table s axis of rotation is

easier to align with the planes of the legs. This is fairly critical in order to transmit the

motor torque to the legs, where the strain gages are located. Another design

improvement was moving the tachometer from its mount on the motor platform to the

base underneath. This simplified the overall design greatly, improved access to the

motor, and eliminated a troublesome direct linkage between the motor and tachometer.

The second device has fewer parts than the first, and they are easier to machine. The

two most important elements affected by the re-design, however, are the increased

sensitivity and the change from a friction brake to the inertial disk now used. The

increased sensitivity results from increasing the leg length and decreasing the arm from

the axis of rotation of the motor to the point at which the leg is clamped into the

platform.

Finally, the device was built, tested, refined, and evaluated. These steps mark the

second general phase of the research effort.

The testing cycle of the dynamometer was progressive and covered almost the entire

course of the project. The methodology perhaps resembled a spiral from very rough

and cursory to fairly rigorous evaluation techniques. For example, very soon after the

torque table design was considered seriously. the first dynamometer was built and

tested using a Vishay Strain Indicator. These tests indicated that the torque table

configuration was promising, that the method of braking would be an important design
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consideration, and that various alterations would greatly enhance the operation of the

dynamometer. For example, the second model features increased leg length and

decreased distance from the axis of rotation of the motor shaft axis to the point of

connection between the legs and the motor platform. Furthennore, the braking system

was greatly altered and eventually abandoned in favor of having the motor accelerate an

inertial disk.

The second dynamometer was also tested extensively using the Vishay Strain

Indicator. These tests quantified the sensitivity of the device to torques induced in all

planes, as well as indicated the quality of data collected under dynamic conditions.

The final qualifying stage for the dynamometer was to compare the performance of

an actual vehicle with a model constructed from measurements made with the

dynamometer. These tests established measures for the reliability, accuracy, precision.

sensitivity, and resolution of the system. Basically, the test involved measuring the

vehicle's speed. The dynamometer was then used to quantify its motor torque

characteristics and to estimate the torque requirements of its power train. This

information was used to simulate the vehicle, and the results were compared to the

actual vehicle's performance.

This broadly characterizes the general experimental procedure. Within this

framework, particular tests and procedures were developed in order to systematically

arrive at a solution to the problem.
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Particular Research Methodologies

Early considerations in the design of the device involved estimating dimensions and

configurations to maximize accuracy, precision, and sensitivity. The two most

important components to size were the legs and the inertial disk. Leg length, width.

and thickness impact deflection. Deflection is important because too small of a

deflection would require excessive gains of the torque signal. On the other hand, too

much flexibility in the legs could lead to vibrational problems. As for the disk, too low

a value of inertia would result in an acceleration so high that too few data readings

could be obtained for a torque-speed curve. If the inertia were too large. an

unnecessarily large number of data points would be generated as the disk slowly

accelerated. The sizing of the disk will be discussed first.

Motor runs consisted of applying a step voltage to the motor, which then

accelerated the disk from rest. The torque applied to the disk decreased from a

maximum value to near zero. The relationship,

T = 10.

where T = torque
I = Moment of inertia of the disk
a = angular acceleration of the disk

was used to approximate the necessary disk dimensions. Since the motors were rated at

100 oz-in, an average torque of 40 oz-in was chosen, though it was understood that

torque should decrease Linearly throughout the test. It was desired that the run time be

23



-

about 2 seconds, so that about 15 data points for speed and 15 data points for torque

could be obtained via the 16 Hz. data acquisition board. Therefore a rough value of

acceleration is

a. = COrnu/t
= (200RPM)(min/60s)(2rc rad/rev)/(2 s)
= 10.5 rad/s2

Choosing a disk diameter of about 8 inches, it is possible to solve for the necessary

thickness of the disk, since

,
I = (W/g)r-12 = T/a.

Solving for the weight, W, gives a necessary disk weight of 11. 5 lb. The thickness is

solved for by using the weight density of steel as .282 Ib/in3
.

thickness = 11.5 Ib/(.282 Iblin3)(rc42 in~)

= .81 inches

Therefore, a disk weighing approximately 11 lb, with a diameter of 8 inches and a

thickness of about 3/4 inches was needed. A machined disk was found in a scrap-pile

which had a diameter of 7.15 inches, a thickness of .60 inches, and weighed 9.5 lb.

The disk was originally a part of a rotary shop machine, and was well-machined. It

had been discarded accidentaHy, and was graciously made available for this project by

the shop manager. The actual run times for motors accelerating this disk from rest

were generally about 1.5 seconds.

The following sections outline the theory and calculations upon which leg

dimensions were based.
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Calculation of Deflection

One of the first considerations was how to configure the leg attachment to the motor

platfonn. Subsequently the legs could be dimensioned. It was desired that sensitivity

and ease of manufacture be maximized. The two options considered were to pin one

end of the legs and clamp the other, versus clamping both ends. For the following

discussion please refer to Figure 7. The clamped-pinned configuration is modeled by

the upper figure as a simple cantilevered beam, and the next lower figure shows the

clamped-clamped condition as a cantilevered beam with a force and moment acting as

shown. It is known that

FL3

8 =­
1 3£1

and

Fl 3

8, =--
.. l2EI'

so that 8 1 =4°2 , The question is whether the clamped-pinned configuration

experiences more or less strain at the joint than the clamped-clamped configuration.

Referring to the shear and moment diagrams for the clamped-clamped condition. and

observing that the middle figure is symmetric, it is clear that the moment at L/2 is

zero, and that sectioning the middle figure at this point results in the lowest figure.

which is equivalent. For the lowest figure. the deflection is

25



r-------L--------\

51__l

Figure 7. Models of Leg Deflection

26



Finally, it is known that the strain at the joint of a cantilevered beam is

310
c=--

2L2

where t is the beam thickness.

clamped condition should feature half the sensitivity of the clamped-pinned

3101Then, C I =--2
2L

. This indicates that the c1amped-

-

configuration. Despite this result, the decision was made to use the clamped-clamped

configuration to reduce the complications of manufacturing a pinned joint. The strain

gages were located at the base of the leg where the leg was clamped into the platfonn.

because this is where the strain is greatest.

The next decision was to size the legs. Constraints were that deflection be around

1/2 of a degree, that the angle between the planes of the legs be 45(1. and that the

device be around 7 inches wide. From geometrical scaled drawings, it was decided

that a leg flexing length of 2.5 inches be practical, with a moment ann from the axis of

rotation of the motor shaft to the leg joint of 1.5 inches. A leg width of 1/4 inch was

also decided upon. The leg width is not as critical in detennining flexure as the

thickness, since the cross sectional moment of inertia for a beam is _1 Wi) , where w is
12

the width and t is the thickness. Then, the 1/2 degree deflection of the motor platfonn

recommended by Doebelin results in a relative displacement 8 2 of 0.0131 inches. The

thickness needed for this deflection may be solved for from the deflection equation
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above, and is 0.078 inches. Therefore, 3/32 inch aluminum sheet was used for the

legs.

The next design consideration was vibrations induced by the DC motor. The next

section contains a discussion of natural frequency.

Estimation of Natural Frequency

It was important to calculate the natural frequency of the dynamometer platform on

which the test motor is mounted because of the possibility of noisy strain gage signals

introduced through excessive vibration. A classical approach is used, in which the

dynamometer legs are modeled as beams. Referring to Figure 8, the reaction of the

motor as it accelerates the inertial disk is transferred to the legs of the dynamometer.

The force due to the torque decreases proportionally to an increase in the distance y

along the length of the leg. This is shown in Figure 8, and is evident from the

definition of torque:

T = Fd,

where F = force, and
d = moment ann from the force to

the reference axis

The dynamometer platfonn is constrained to rotate about the longitudinal axis of

rotation of the motor shaft. Because the angle of deflection is very small and the legs

are clamped, the legs may be modeled as beams supporting a mass constrained to move

in the X direction as shown in Figure 9. The force P is due to the torque acting at Y

= d in Figure 8. The moment Mo in Figure 9 is imposed by clamping the leg to the
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base and motor platform. The masses of the platform, motor, leg clamps, bolts, motor

mount, and calibration bar and post are lumped together to make the total mass M,

shown in Figure 9. As was stated previously, from statics it can be shown for the

system that the static deflection, 0st, is,

where P is the applied force
L is the length of the beam
E is Young's Modulus, and for aluminum

is 107 psi
I is the cross sectional moment of inertia of

the beam and is

width x thickness]

12

Now, the spring constant is:

and

P =T x d

where T = the applied torque of the motor, and
d = the distance from the axis of rotation

of the motor shaft to the attachment
of the leg to the platform.

Finally, the natural frequency is:

OJ ~ ~ K'ff
n M

eff
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where Keff is the total spring constant for all four legs, and M.eff is the total mass

stated above.

The parts comprising the mass M were weighed separately on a Petite model P-l

postal scale which was calibrated using a 1/2 pound weight. The 12-oz weight which

had been designed for calibration of the dynamometer was weighed at 11-3/4 oz. using

this scale. A typical motor (Barber-Colman model FYQM-63410-2-2) was weighed at

6.6 oz, and the platfonn, bolts, clamps, motor mount, and calibration bar and post

were all weighed together at 15.2 oz. One 4-in leg was weighed at 1/4 oz., and about

1 inch of each leg is embedded in the platfonn assembly during operation. Therefore,

the embedded portions of the legs add about 0.2 oz. to the total weight of the platfonn

assembly. The motor, platform assembly, and embedded leg portions weigh together

22.0 oz. This was the weight used in natural frequency calculations.

Substituting the terms for P and 8st into the spring constant equation, and counting

the four legs gives:

41egs x P
K = pe '12EI

I

48EI
=-3-

L

For the legs, the length in flexure is 2.50 inches, the thickness is .090 inches, and the

width is .235 inches, so that the cross sectional moment of inertia is 1.43 X 10-5 in4 .

Finally, then, the natural frequency of the platform expressed in cycles per second is:
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fK:;
v~f =-'----

n 2;r

= 55.8 cycles per second.

Since the gear reduction of the motor's gearbox is 30: 1, the corresponding shaft speed

is:

= (55.8 ~evannaturels)(60 s/min)(Revshaf.t30 Revannature)

= 111.6 RPM.

Because this value is about the middle of the operating range of the motor, this value of

natural frequency would seem to signal trouble with vibration at this speed. It is

possible that some of the scatter of the data is due to this fact.

A design consideration related to sizing the legs involved the calculation of the

strain gage bridge output gain. Additionally, the rather slow sampling rate of the 16

Hz. data acquisition board caused concern. These two considerations are discussed

next.

Calculation of Strain Gage Bridge Output Gain

The output gain was calculated after the first dynamometer was produced. The gain

was calculated from the following relationship for AID boards.

eill FK£
e =-""-­

au/ 4 + 2F£

where eou1 = output voltage
ein = input voltage
F = gage factor
K = bridge constant
E = strain
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The first device was tested with a 4in-lb static torque induced on the Legs. The circuit

was a 1/2-bridge, with a bridge constant of2.06 and a gage factor of2.11. The observed

strain using a Vishay Strain Indicator was 200 jJ.&, so that the output voltage was 1.1 mY.

Therefore, for the 16-bit Keithley-Metrabyte ADC-16, with a range of +/- 5 volts, the gain

needed to be around 5000. A potentiometer was used in the circuit to control the gain.

Determination of the Sufficiency of Board Sampling Speed

It was desired to detennine the effect on data of sampling the motor shaft speed

fITst, followed by a sampling of the torque I versus sampling the two signals in the

reverse order. This determination was important because it was suspected that the top

sampling rate of 16 Hz of the ADC-16 board was too slow to gather useable data

during the dynamic test. The data acquisition board was used despite its slow sampling

rate because it was available. The purchase of a faster apparatus was avoided because

of the cost.

The disk accelerates fairly smoothly from zero up to approximately 250 revolutions

pe~ minute in about 3 seconds during the span of the dynamic test, while the torque

decreases fairly linearly from a maximum value at low RPM to nearly zero. This

behavior is shown in Figure 10. The arrows show the locations on the actual torque

and speed curves at which samples are made for motor run 'T16LM'. Figure 11

shows the erroneous shift that the data acquisition system performs on the samples. In

the case where torque is sampled first, speed reading 1. 81• for example. is assigned by

the computer code to correspond in time with torque reading 1, T b even though 1116
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seconds have passed between the measurements. As a result, the speed curve is

erroneously shifted to the left, as is shown in Figure 11. The effect is that SI assigned

to T1 is greater than the actual speed at the time T1 was made by an amount 01' From
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Figures 10 and 11, 01 appears to be about 5 RPM. Since power is the product of speed

and torque, the effect of this condition is that the power curve generated will be higher

than the actual power output by an amount equal to the product of T j and 0.. This is

shown in Figures 12 and 13. Conversely, if speed is sampled first then each torque

reading will be assigned to a speed reading made 1/16 seconds prior. The torque

reading T j assigned to 8i is lower than the actual torque at the time Sj was made by an

amount 02' In this case the generated power curve is lower than the actual power by an

amount equal to the product of 8 j and 0,.

A simple test was designed and carried out to examine the effects of the order of

sampling motor speed and torque output. First, ten motor runs were made sampling

speed prior to torque. For each run, a polynomial second degree curve fit of calculated

power versus speed was used to evaluate the maximum fitted power and the speed at

which this point occurred. The program "DCMOTR33.C" was used to generate the

data and to build the MATLAB M-file, which then perfonned the plotting, the

polynomial curve fit, and the evaluation routines. Then, ten runs were made sampling

torque prior to speed, and the same data treatment was carried out as was done for the

first ten runs. These data sets, with the computed averages and standard deviations. are

included in Table 1. It is evident from comparing the two power averages that the

order of sampling does, indeed, significantly impact the fitted curves in the manner

which was expected. Furthennore, the effect of the order was correctly anticipated.

The maximum power from the fitted curves is 39 oz-in/s higher for torque sampled

first than for speed sampled first. Not surprisingly, there is only 0.3 percent difference

37



Motor Torque vs. Motor Speed
60.------r-----.----..:..---.,.-------,-------,

. 55~--7"""::~·__t_--""';:>O"~""'ci------___t-----+_---___l

50 -Aet~m_-_+-~~-~~""'----'---''----__+_----__1

_45~-----+-----~---~~-+------;-----~
c:
.~

- 40I-------_+_------+-----~Ir:_---_+----___l
G)

!35 ·eJeous
....
~ + Un hifted Data

~ 30!-------+-------t-----+------''t-T----+-------!

25

20 ----·--+-----+-------+-------\-!:Ir-------I.

151.-----....L..-------I.-------I.-----..------"
o 50 100 150 200 250

Motor Speed (RPM)

Figure 12. Comparison of Erroneous and "Un-shifted" Torque-Speed Curves

38



.---+--.--------'1r---------r---.------.

Motor Power Output vs. Motor Speed

..---.----i!-

I * Erroneou I

~---H---i------~---Re:Sbiftefrnata._--+-------
, \ \I : I

--L-----i-·~--+---
1------ I

700..------r-----,..-----,-----,------,

600

-:3a.- 300:3
0
'-

~a 200a..
L-a-a
~

100

I
.--.-+-----+-.r~ ---+-~""'

I
~ 500 --_.---t-
~ 1
.~ 400 - .-~_____jL-..---+--------+-------'rr_----____j
a-

-10001.-----5.LO-----1.L00-----1~5-=-0-------:2:-:0:-=0---~2::50

Motor Speed (RPM)

Figure 13. Comparison of Erroneous and "Un-shifted" Power-Speed Curves

39



between the average speeds at which maximum power occurs for the two conditions.

This is because the calculated power values are fitted to the speed for both cases. It

may be argued that the average power outputs shown in the chan provide an upper and

a lower bound on the actual power output of the motor. Therefore, a student could

TABLE 1
A COMPARISON OF TEST RUNS MADE WITH SPEED SAMPLED

PRIOR TO TORQUE AND VICE-VERSA TO DETERMINE THE
SUFFICIENCY OF BOARD SAMPLING SPEED
Speed Sampled First TorQue Sampled First

Run Number Max Power Speed Max Power Speed
(oz-in/s) (RPM) (oz-in/s) (RPM)

1 613 143 671 136
2 617 147 685 138
3 633 131 628 139
4 636 135 588 144
5 579 147 687 143
6 668 136 708 137
7 669 133 698 137
8 620 136 739 132
9 617 145 699 147
10 704 135 642 140

Average 635.6 138.8 674.5 139.3
Standard 33.9 5.7 41.7 4.1

Dev.
-

conservatively use the lower bound as a design parameter. However, it was felt that

the range of about 40 oz-in/s was too broad. Since it was known that the actual power

curve fell between the upper and lower curves, and that the upper and lower curves

were established simply by swapping the order of sampling, it seemed reasonable that

the generated curve most closely approximating the actual behavior of the motor would

be obtained simply by artificially adjusting one of the variables to accommodate for the
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1/8 of a second elapsing between the torque and the speed measurements. This was

accomplished in the following way using a methodology encapsulated in the sample

Matlab 'M' file 'T161.M' included in Appendix D. First, time arrays for spe~d and

torque data are created. The speed and torque array values are incremented by 1/8

seconds, with the initial times staggered so that the speed array begins at zero plus 1/16

seconds. This accounts for the fact that torque is sampled first (at time zero) in the

computer code, followed by an alternate sample of speed and torque every 1/16

seconds. It was then necessary to create a large array with fine increments in order for

Matlab to plot a smooth, continuous curve of torque vs. speed. An initial array size of

300 was tuned down to 270, with increments of 0.0065 seconds. This arrangement

conveniently spans a total time of 1.7485 seconds, which is greater than the total

duration of the torque test. Matlab commands were then used to fit a spline curve

relating the computer speed data points to the speed time array. The expression for the

resulting curve was evaluated at time elements from the torque time array. This

artifil;ially shifted the speed data to correspond with respective torque readings. This is

shown with the arrows in Figure 14. In effect, speed data points were chosen off the

spline which correspond in time to the torque data points. and the measured speed data

points could then be 'discarded'. This is shown by the "+" marks in Figure 15. The

arrows show alignment of the sampled speed data points with the sampled torque data

points. The next step was to fit a curve relating the corrected speed values to the

torque time array elements. A final evaluation of the fit at the 'absolute' time elements

yielded an array of 270 speed data points which had been corrected to account for the
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speed and order of data acquisition. Torque data was plotted in the same way, except

that it was not necessary to shift the curve. A polynomial curve fit was generated

relating the torque to the corrected speed values. This fit was evaluated at 'absolute'

times to give 270 points which could be plotted. These torque and speed data points

were used to produce the Matlab graphs of computer runs. Again, Figure 13 is a

typical comparison between computer data "un-shifted" in this way, and erroneously

shifted data.

Research Instruments

Research instruments used may be broadly categorized according to phases of the

project. For example, the dynamometer was built largely in the MAE North

Laboratory at OSU. Instruments included standard machine shop articles such as

industrial lathes and mills, grinders, band saws, drill presses, calipers, and many other

tools and instruments. During the laboratory phase instruments included an analog

Tektronix oscilloscope and a Hewlett-Packard 54501 A digitizing oscilloscope. three

different brands of digital multimeters, soldering irons, drills, a 486 computer (OSU II

171128), a Keithly-Metrabyte ADC-16 Analog to Digital data acquisition board,

calculators, and miscellaneous tools.

Strain gages used were Vishay Measurements Group CEA-13-240UZ-120 120 ohm

gages. These gages feature +/- 0.3 % error at 24°C. Lot number R-A48AF84 was

used.
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Data CoUection Plan. and Recording

Data was recorded in two I50-page lab notebooks dedicated to the project. These

notebooks also were used to record experimental procedures, hypotheses, brainstorming

sessions, interviews, photocopies, and other pertinent infonnation. The notebooks contain

records of all data files used in the project. Generally, the data collection plan for raw

data generated by the dynamometer was simply the construction ofMatlab files within the

C program, with Matlab code and raw data.

Error Analysis

Error Reduction

Considerable effort was expended in reducing various types of error. Main sources

of error which were anticipated were in the inherent design and construction of the

dynamometer, and in speed measurements, torque measurements, and data acquisition

board measurement of voltage.

It-is important to note that the accuracy of the device is based upon torque readings,

that the reported value of precision is based upon power measurements, and that the

estimated value of resolution is based on strain measurements made with a Vishay

Strain Indicator. It would be more desirable if accuracy, resolution, and precision were

based on one output -- power, for instance.

Torque Table Stiffness

The inherent stiffness of the torque table configuration is an extremely important

factor in the quality of measurements made by the device. The following experiment
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was intended to demonstrate that the configuration does, indeed, posess high degrees of

stiffness in every direction except the rotational one. The experiment consisted of

simply recording strain gage output while loading the calibration bar as it was oriented

off the back of the platform, so that the torque imposed on the platform was along an

axis perpendicular to the axis of rotation of the platform. Table 2 shows the data

recorded for this test.

Table 2

Strain Gage Output for Loading of the Calibration Bar
along Axes Perpendicular and Longitudinal

to the Axis of the Motor Shaft

Torque Perpendicular Longitudinal to
(oz-in) to motor shaft motor shaft

axis axis
0 0.05 0.08

24 1.03 0.10
36 1.53 0.10
48 2.04 0.11
60 2.54 0.12
72 3.03 0.12
84 3.51 0.15
96 4.02 0.13
0 0.07 0.07

Range 3.97 0.05

Quite significantly, the range of voltage change induced by torque non-coincident with

the axis of rotation of the platform is less than 1.8% of the range of voltage induced by

torque acting about the axis of rotation of the platform. When a line is fit to the data

generated by loading off the back of the platform, it is seen that the slope is very small,

on the order of magnitude of 10-4. Additionally, the intercept is 0.08, which is the

value of the initial data point. Perhaps most importantly. the value of (1-r1)112 is 0.274.
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This value is roughly the ratio of the vertical standard deviation of the data about the

line to the total vertical variation of the data [1, 112]. In other words, not only is the

line nearly flat, but the majority of the data points vary vertically about the line by

almost 30 percent of the total vertical movement of the line. This means essentially

that there is at poor relationship between undesirable torque and strain gage output. The

effect of undesirable torque is statistically insignificant.

Torque Calibration

Torque calibration of the dynamometer is simple. A calibrating bar is oriented

horizontally off the platfonn, so that a vertical force acting on it imparts a torque to the

platfonn to which it is attached. This torque is transferred to the legs, where the strain

gages are located. The calibrating bar is notched every inch so that a weight may be

located fairly precisely. The weight is moved and strain gage output is noted so that a

relationship between actual torque and strain gage output may be established. As has

been discussed, these relationships were very linear. Typical correlation coefficient

values were on the order of 0.999.

Data Acquisition Board Calibration

The Keithley-Metrabyte ADC-16 data acquisition board is basically a voltmeter.

The manual for the device included instructions for calibrating it. Though the specified

calibrating power supply was not available, calibration was perfonned using a military

spec power supply. The AID board was accurate within about 0.5 percent.
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Tachometer Calibration

It was necessary to calibrate the tachometer. especially since it was obtained in the used

condition. with little recorded infonnation about its age or prior conditions of use. The

circuit used to perfonn the calibration is shown in Figure 16. The calibration

procedure was to tape a tab onto the shaft of the dynamometer and run the motor. so

that the tab triggered an optical interrupter once per revolution. The transducer was an

Optek 880 Opto Interrupter. The output signal from the transducer was seen on an

I
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HP54501 Digitizing oscilloscope as a series of pulses representing the frequency of

interruption, and therefore the speed of the motor. The frequency was displayed

directly using the frequency readout feature of the oscilloscope. The tachometer

voltage at each frequency data point was read off a digitizing multimeter. The speed of

the motor was controlled with a laboratory power supply. Table 3 shows the observed

frequencies and corresponding tachometer output voltage values. In addition, a line

fitted through the data points yields a slope of 53.78 RPM per volt, with an intercept of

-1.2. This is shown graphically in Figure 17. Table 3 shows calculated values of RPM

v Ito t
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Table 3
d T hdFObserve reQuencyan ac ometer utput o age

Voltage Frequency (Hz) Frequency Line Fit of Calculated Error
(RPM) Frequency (RPM)

3.70 3.27 196 197.8 -1.8
3.25 2.89 173 173.6 -0.6
2.79 2.48 149 148.9 0.1
2.40 2.10 126 127.8 -1.8
2.10 1.85 111 111.7 -0.7
1.55 1.37 82 82.1 -0.1
1.07 0.95 57 56.3 0.7
0:55 0.49 30 28.4 1.6
2.15 1.90 114 114.4 -0.4
2.60 2.32 139 138.6 0.4
3.01 2.66 160 160.7 -0.7
3.47 3.13 188 185.4 2.6
3.85 3.45 207 205.8 1.2
4.28 3.80 228 229.0 -1.0
4.75 4.25 255 254.2 0.8
5.15 4.60 276 275.7 0.3
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at measured voltages using the least squares line fit, and also the error between the

measured and calculated values of RPM. The average for absolute values of error is

0.9. The standard deviation of the signed values of error is 1.1 RPM, which is about

0.4 percent of the full range of 250 RPM of the motors. This indicates a strong linear

relationship between tachometer speed and voltage output, which is reflected visually in

Figure 17, and in a correlation coefficient of 0.99987.

In conclusion, the calibration of the tachometer yields a strongly linear slope of

53.78 RPM/volt, with a relatively small offset at zero RPM of -1.2. The data

acquisition system performs calculations involving speed using this calibrated

tachometer factor and intercept value. Both of these values can easily be changed

throughout the computer program by entering any new value at the "#define" statement

near the beginning of the program code.

Resolution and Sensitivity

The resolution and sensitivity of the system are of great interest because they can be

indications of the quality of the measurement system [1, 53]. This section contains a

discussion of the methodology employed in quantifying the system I s resolution and

sensitivity. It is shown that the resolution of the system is less than 0.5 oz-in of torque.

which is about 0.5 % of the expected range of torque measurement.

Resolution is "the smallest increment of change in the measured value that can be

detennined from the instrument's readout scale [1, 53]." Sensitivity, on the other

hand, is "the change of a transducer's output per unit change in the measured quantity
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[1,53]." In other words, resolution is the smallest increment reliably discernible from

the readout scale. Sensitivity refers to the smallest increment of change in the

measured quantity which the transducer is capable of transmitting. For example, a

high-quality transducer with exceptional sensitivity should feature a readout device -- a

dial, indicator, screen, or whatever -- with. equally good resolution. Conversely, fine

readout device resolution is wasted on a transducer which has comparatively low

sensitivity. The sensitivity and resolution of the dynamometer and its readout system

were found to be of the same order.

The sensitivity of the dynamometer is about that of the overall system resolution.

Table 4 contains data recorded using a Vishay Strain Indicator. At the time the test

was made, the dynamometer legs were 0.05 inches thick, and were slightly wider than

those currently supporting the platform. As a result, that configuration was more

sensitive than is the current configuration. However, the stiffnesses of the two

configurations may be compared using the strain equation.

6Fx
£=--

Ebt 2 '

where F = force
x = strain gage location
E = Young's Modulus
b = width of beam
t = thickness of beam

Therefore, the data in Table 4 has some use in indicating the sensitivity of the

dynamometer itself. In Table 4, the relationship between torque and microstrain output

is quite linear (r = 0.99928), with 6.08 microstrain per ounce-inch. The strain
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Table 4
Dynamometer Microstrain Output vs. Torque

Weight Radius (in) Torque (oz- Microstrain (JlE)
in)

0 0 -1
1 16 127
2 32 225
3 48 319
4 64 416
5 80 510
6 96 605
7 112 700
8 128 790
0 0 4
8 128 792
7 112 700
6 96 606
5 80 514
4 64 420
3 48 323
2 32 230
1 16 132
0 0 5

equation above shows that doubling the thickness reduces the microstrain output by

four times, so that an expected relationship between microstrain and torque for the

new, thicker legs used on the second device which was built is about 1.5 microstrain

per ounce inch of torque. One microstrain, then, should result in about 0.67 ounce-

inches of torque. Since the Vishay readout unit increment is one microstrain. and

furthennore, since the Vishay readout was quite stable especially at the lower radiuses

in Table 4, the sensitivity of the dynamometer may be estimated at about 0.7 ounce-

inches.
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Regarding the overall system resolution, two situations exist, corresponding to the

two modes available while the data acquisition program is running. The first mode

involves either single analog-to-digital conversions or a relatively quick averaging of a

few conversions. The data points used in the torque-speed and power-speed graphs are

single conversions. Real time readouts of torque provided by the data acquisition

program are actually averages of a few samples of torque. While real time readout is

potentially of some use to the student, it is anticipated that greater benefit from a design

standpoint can be obtained from both the dynamic torque tests, and the second general

mode of operation. This mode features the capability of the system to average a

relatively large number (say, 25) of data points to measure a supposedly static value of

torque. For example, it is useful to know the power consumption of a drive belt. of

various bearings and bushings, and of different configurations of bearing arrangements

(cantilevered vs. simply supported). These measurements can be made at a steady state

speed by averaging many conversions as the belt drive simulation runs. It became

evident that two different methodologies were needed to estimate the system resolution

of the two modes of utilizing the torque measuring capability of the system.

The methodology used to estimate the resolution of torque in the real time mode is

as follows. The program was begun and calibrated, and placed in the real time read

out mode. The 12-ounce weight was placed on the calibration bar at a distance of 6

inches. Small unifonn aluminum tabs, 12 of which weighed 1.0 ounces, were placed

on the weight one at a time while observations of the real time torque read out were

recorded. Each incremental addition of a tab resulted in an increase in torque of about
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0.5 ounce inches. The real time readout fluctuated generally by about one ounce inch

of torque, due to the increase of gain of the noise generated by the bridge circuit. Table

5 contains the data generated by this test, while Figure 18 shows the general fluctuation

ranges, and shows a line fit through the averages of the ranges. It can be seen from the

graph that the readout resolution is more closely 1 oz-in of torque than 0.5 oz-in.

However, the resolution determined for the second mode of data acquisition operation

is finer than that of the real time read out mode. The methodology for obtaining the

resolution of the second mode of data acquisition operation is as follows. The program

another test was run. Average values and standard deviations were then obtained on

each aluminum tab was added to the weight (once again placed at 6 inches radius),

Table 5
R d f Add d W . htR IT" T

motor, however, a static torque test comprising 25 torque data was perfonned. As

mode, the dynamic testing mode of the program was entered. Rather than runmng the

was run and calibrated. However, rather than using the real time readout

ea Ime orQue ea out 0 e elg! s
Weight (oz) Actual Torque (oz- Measured Torque Average Measured

in) Ran~e (oz-in) Torque (oz-in)
12 72 71/72 71.5

12.083 72.5 72/73 72.5
12.167 73 72/73 72.5
12.25 73.5 73/74 73.5
12.333 74 73/74 73.5
12.417 74.5 , 74/75 74.5

12.5 75 74/75 74.5
12.583 75.5 74/76 75
12.667 76 75/76 75.5
12.75 76.5 76/77 76.5

I

12.833 77 76/77 76.5
12.917 77.5 76/78 77

13 78 77/78 77.5
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the torque measurement data sets using Matlab. The radius selected was 6 inches, so

that the addition of each tab incremented the torque by 0.5 ounce inches. The data for

this test are included in Table 6 and are plotted in Figure 19. It can be seen that the

The percent error in Table 6 provides a measure of the accuracy of the system.

resolution of the system in this mode is at least 0.5 ounce inches of torque.

The average percent error is 1.8, with a standard deviation of 0.1. It is imponam to

Table 6
Average Static Torque Over Many Data Readings

FAD· f S· In h S . A I T f 72 0 I )or Istance 0 IX C es ( tartm~ ctua orque 0 z- n
Weight Actual Average Standard Difference Percent

(oz) Torque (oz- Measured Deviation of Between Error
in) Torque(oz- Measured Actual and Between

in) Torque Average Actual and
(oz-in) Torque Measured

12.0 72.0 70.84 0.45 1.16 1.6
12.0 72.0 70.94 0.43 1.06 1.5
12.0 72.0 70.73 0.44 1.27 1.8
12.08 72.5 71.32 0.48 1.18 1.6
12.17 73.0 71.77 0.44 1.23 1.7
12.25 73.5 71.99 0.42 1.51 2.1
12.33 74.0 72.74 0.44 1.26 1.7
12.42 74.5 73.12 0.45 1.38 1.9
12.50 75.0 73.63 0.45 1.37 1.8
12.58 75.5 74.19 0.47 1.31 1.7
12.67 76.0 74.70 0.49 1.30 1.7
12.75 76.5 75.02 0.49 1.48 1.9
12.83 77.0 75.52 0.41 1.48 1.9
12.92 77.5 76.07 0.44 1.43 1.8
13.0 78.0 76.68 0.49 1.32 1.7
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Figure 18. Torque Resolution - Real Time Screen Readout Vs. Actual for Static
Measurement
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consider, however, that the error of the system is closely related to the offset, which is

controlled by the bridge balance adjustment. For example, the average measured data

values in Table 6 are offset from the actual torque by an average of 1.32 ounce inches,

with a standard deviation of 0.12 ounce inches. This offset is consistently lower than

the actual torque, which suggests that the accuracy of the system is presently greatly

improved by eliminating the offset in the measurements. The argument that the system

resolution is at least 0.5 ounce inches of torque rests on the nearly 1-to-l relationship

between actual and measured torque for each addition of 0.5 ounce inches of torque. A

line fit through the measured torque values produces the following relationship.

Tmeas = 0.9596 Tact + 1.70

where

Tmeas = Average measured torque (oz-in)

Tact = Actual torque (oz-in)

The line fit has a correlation coefficient of 0.998, which is quite linear.

In conclusion, it has been suggested that the sensitivity of the system is about that

of the resolution of the system, where sensitivity is defined as the smallest increment of

change in the measured quantity which the dynamometer itself is capable of detecting,

and resolution is the smallest increment of change discernible by the system's data

acquisition system. The resolution of the system is at least 0.5 ounce inches of torque

when an averaging procedure of static torque is used. The resolution of computer

screen real time torque readouts of static torque is about +/- 0.5 ounce inches, so thar

a fluctuation of about 1 ounce inch is typical. Though improvements in both the
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system resolution and accuracy are possible, the existing levels are adequate for the

design purposes of MAE 3033 students.

Repeatability

An important criteria for evaluating the dynamometer was precision. Precision is

basically how well the device repeatedly measures the same quantity. The procedure

for evaluating the precision of the dynamometer was simply to obtain torque vs. speed

and power vs. speed curves for a particular motor over a period of time. From these

curves values for maximum power and the speed at which maximum power occurs can

be compared. Table 7 contains this data. In addition, the curves are superimposed in

Figures 20 and 21. The conservative assumption, of course, is that the variation of the

actual motor characteristics was insignificant. In other words, it is unknown how much

of the scatter in Figures 20 and 21 is due only to motor variation.

From Table 7 it can be seen that the standard deviation of maximum power of 21.6

is 4.0 percent of the average value of 543.1 oz-in/sec. This means that for one

standard deviation, the precision of the device is 8.0 percent of the 'full-scale' reading.

The two-sigma precision is 15.6 percent of full-scale reading. However, perhaps as

important from a design standpoint, the standard deviation of the speed at which

maximum power occurs is only 2.2 percent of the average value. The two-sigma

precision of the speed at which the maximum power occurs is 6.8 percent of the full­

scale value. Finally, from observing the superimposed torque vs. speed and power vs.
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speed curves for the 17 runs, the precision of the dynamometer was judged sufficient

for the design purposes of MAE 3033 students.

Table 7
Maximum Power and Speed at Maximum Power

for 17 Motor Trials
Run File Name Maximum Power Speed at Max Power

(oz-in/sec) (RPM)
s713 1 502.1 121.6
s713 2 523.5 124.8
5713 3 523.5 130.4
s713 4 522.2 122.0
s713 5 539.2 121.3
s713 6 533.7 125.0
s713 37 553.6 127.2
s713 38 561.8 125.1
s713 39 538.9 . 126.3
s713 40 546.6 126.3
s713 41 559.0 128.1
s713 42 528.7 125.0
s713 43 531.2 126.5
s713 44 536.3 125.6
1712 9 588.5 131.0
t712 11 568.6 128.6
1712 12 575.8 129.5
Average 543.1 126.1

Standard Deviation 21.6 2.8

Accuracy

Perhaps one of the single most attractive features of the dynamometer is that it can

be calibrated conveniently using physical weights. The high value of linearity of the

relationship between induced torque and strain gage output has already been remarked

upon. The ramification of this feature is that the accuracy of the system is verified
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physically before measurements are made. To observe the effect of this note in'Iable

6 the values of the percent error between torque readings and the product of weight

added and radius. The average percent error is 1.76. Also, note in Table 10 (p.73)

that after running the data acquisition mode of the program 12 times, the dynamometer

was tested with weights for torques of 96 and 48 oz-in. The percent errors are 0.8 and

1. 9, respectively. These observations are typical. It may be conservative to say that

the dynamometer features an error of less than 2 percent.

Final System Qualification--Vehicle Simulation

Overview

It seemed reasonable that the best indication of the quality of the entire system.

including the dynamometer, circuitry, data acquisition system, and data treatment in

Matlab, was simply to simulate an existing vehicle and compare the model with an

actual vehicle. A close approximation of an actual vehicle should qualify the

dynamometer as a useful design tool for MAE 3033 students.

The experimental outline was to select an existing vehicle and determine its time to

traverse some distance. A distance of 48 inches was chosen, since this is typical of a

contest requirement. Next, a simple model of the vehicle was designed using Newton's

laws and kinematics. This model requires an expression for torque. This expression

was provided by using the dynamometer to obtain a torque-speed relationship for one

of the vehicle's motors. Additionally, the torque requirements of a belt drive and a

loaded driven wheel supported by cantilevered ball bearings were obtained at constant

63



speed. This torque requirement was subtracted from the value of the motor output

torque found by solving the motor's torque-speed .relationship. The solution of the

model using the Runge-Kutta method provided a comparison between actual vehicle

perfonnance and a simulated run using vehicle characteristics obtained with the

dynamometer.

Vehicle Selection and Speed Measurement

The experimental procedure began with selecting an existing vehicle with a drive

system and bearings comparable to what could be tested on the dynamometer. A

vehicle was selected which weighed 7 lb., 14 oz and featured a belt drive. The rear

wheels, which were the powered wheels, were supported by cantilevered ball bearings.

The front wheels rotated on simply supported ball bearings. New belts were made for

this vehicle which were the same width and of the same material as was used on the

dynamometer for simulation. This was done to reduce torque differences due to the

belt. This vehicle was timed using a stopwatch as it traversed 48 inches of flat surface

starting from a standstill. Weight was added to the vehicle for subsequent runs so that

the behavior of the simulation could be compared. The final run was made with the

vehicle transporting 33.4 pounds of payload. The total weight driven by the motors

was 41.3 pounds. The time data is included in Table 8.

The relationship between added weight and measured average run time is somewhat

linear with a correlation coefficient of 0.99404. Figure 22 shows the relationship
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graphically. The vehicle loads shown in Figure 22 include the total vehicle loads

including the weight of the vehicle itself. The graph shows that the total time of

Table 8
Actual Times for Loaded Vehicle Traverses of 48 Inches
Run No. Car 9.9 14.9 Lb.. 41.3 Lb..

Alone Lb.. (S) (S)
7.9 Lb. (S)

(S)
1 1.73 1.93 2.06 2.41
2 1.65 1.80 1.84 2.53
3 1.65 1.78 1.84 2.46
4 1.79 1.71 1.68 2.41
5 1. 71 1.84 1.74 2.50

Average 1.71 1.81 1.83 2.46
Standard 0.005 0.07 0.13 0.05
Deviation

traversal is fairly linear with load. This means that the vehicle spends a small portion

of its run time accelerating, with the majority of the time spent at full speed. The

model supports this observation. The speed is effected mainly by the additional torque

requirement of the drive train.

The Model of the Vehicle

The vehicle is modeled as a mass with one wheel, as shown in Figure 23.

Assumptions are no slipping of the wheel, rigidity of the mass and wheel. and that the

mass is a point mass M located at the center of gravity of the wheel. The problem is to

. find the acceleration of the mass.
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The summation of forces in the x-direction yields:

LMo = Ia. = Tw - Ffr

The summation of moments about the point 0 yields:

I
•; I

:1
I.

= Inertia of the wheel
1 M 2

=- r2 w

= Angular acceleration of the wheel
= Torque supplied to the wheel
= radius of the wheel

where: Mc = Mass of the vehicle
Mw = Mass of the wheel
a = Acceleration in the x-direction
Ff = The force of static friction between

the wheel and the ground

where: I

Solving the two equations for F f and equating the result gives:

Since a = ra., the expression for inertia can be substituted into the above equation to

give:

Eq. A

where Tw is a function of motor speed. The relationship for torque as a function of

motor speed was a second order polynomial created by performing a least squares curve

fit on torque vs. speed data. The data was obtained by the data acquisition system, and
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treated as described elsewhere. Equation A was broken into 2 first order differential

equations for use in Matlab's Runge-Kutta function "ODE23" . This was done in the

following way.

Equation A can be written as

where

and the remainder of the equation is torque expressed as a second order polynomial

function of motor speed with coefficients 30, aI, and a2' Cz is a conversion factor to

convert the linear velocity Xl to angular velocity. The coefficients are returned from

Matlab's polyfit routine, which performs a least squares fit of the data. Then.

and

These are the two first order differential equations passed to Matlab's Runge-Kutta

routine.

The next step in the procedure was to use the dynamometer to obtain the motor

output torque/speed relationship.
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Motor Torque/Speed Relationships

Torque-speed curves for the motor were obtained using the procedure described in

Appendix B, Section 3. Torque data was also obtained for the shaft bearings, belt and

loaded idler wheel using the procedure described in the same section. A schematic of

the setup for obtaining this data is shown in Figure 24. The shaft bearing torque

requirement was subtracted from the value of the torque obtained by evaluating the

I
I.
11
:1

torque function at each speed in the Runge-Kutta routine. The data are shown in Table

9. Three motor runs were made, with the data saved to files "M221.M" I "M222.M".

and "M223.M". The motor runs were made by holding the inertial disk as stationary

as possible for about 1/2 seconds after the relay was triggered. This allowed the torque

to develop to its stall value before the disk was allowed to accelerate. However. the

data files had to be specially treated to obtain the polynomials shown in Table 9. The

torque data ppints at zero RPM weighted the polynomial so that eliminating them

R s
Table 9

.al C ffi' f Th MP Iolynonu oe IClents or ree otor un
File Name Polynomial Coefficients

of Run

30 al a2
M221 -0.0004 -0.1491 67.1674
M222 -0.0003 -0.177 68.4822
M223 -0.0005 -0.1119 62.9176

produces a curve which more closely shows the behavior of nonzero RPM torque data

points. The varying values for 32 in Table 9 reflect the sensitivity of the intercept to

the torque values which become the initial ones after the zero RPM torque values are
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eliminated. The effect of the torque curves to the selection of the initial value is also

evident in Figure 20. This effect has no bearing on power vs. speed curves, however.

since they occur at zero speed. Table 10 lists the torque requirements of a belt and

loaded cantilevered ball-bearing driven wheel at various Loads. The average torque

requirement of the shaft bearings was calculated as 3.3 oz-in. This value was

subtracted from the torque deducted from the torque generated by the polynomial, since

this torque was due to the function of the dynamometer itself. The torque data in Table

10 was used to generate a linear relationship between the load placed on the idler wheel

and the torque requirement of the cantilevered bearings. The relationship is not

dependent on speed because when one part rolls on another without sliding there is little

variation of rolling friction with velocity [7]. The correlation coefficient of 0.98854

supports this. The relationship is:

Torque required (oz-in) = 1.34964 x Load (lb.) + 5.12

Eq. B

The data is graphed in Figure 25, with the extrapolated point at a load of 20.6 pounds.

This is 1/2 the combined total load of the vehicle and the 33.4 pounds added to the

machine in the timing run. One-half the combined load was used since the

dynamometer simulates only one of the vehicle's two belt drives. The extrapolated

pqint had to be extrapolated since the dynamometer's idler ann was not capable of

supporting this much actual weight. Please note that Figure 26 is the lower left corner

of Figure 25. These are the actual weights added to the vehicle.
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Equation B was used to interpolate torque requirements at loads corresponding to

the actual loads placed on the vehicle during the measured time trials. From these

interpolated values the shaft torque requirement was deducted. Then, this adjusted

; I

1
5.

sd A C
Table 10

dS f,RTorque eqUlrements an ~peeds or Various Loa s t onstant ipeed
Condition File Name Load Speed Std Torque Std

of Run (lb.) (RPM) Deviation Req (oz- Deviation
in)

No Belt rn224 NA 258.6 1.8 3.6 1.28
m225 NA 258.9 1.9 3 0.92

Belt Only m226 NA 251.5 1.3 5.5 1
m227 NA 250.4 1.6 4.8 1.4

Idler Only m228 1.8 244.5 0.9 7.7 1.3
on

Driven m229 1.8 244.7 1.1 7.1 1.1
Wheel

Idler + m2210 4.3 236.4 1.2 10.5 1.1
1.22lb

I

m2211 4.3 236.3 0.8 10.3 1.6

Idler + m2212 6.5 218 4.8 15 .. 7 1.6
2.221b

m2213 6.5 219.4 2.8 i 14.5 1.5

idler + m2214 8.8 210.6 7 15.9 2.4
3.221b

m2215 8.8 207 4.8 16.8 2
Calibration
960z-in m2216 NA NA NA 95.2 0.4
480z-in m2217 NA NA NA 47.1 0.4
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value was in turn deducted from the torque output of the motor calculated from the

torque-speed relationship within Matlab's Runge-Kutta routine. In this way, simulated

vehicle run times were generated which could be compared with the actual times.

Figure 27 shows how students can use the information generated by the

dynamometer to simulate vehicle performance. The coefficients from the torque vs.

speed curve obtained with the dynamometer are passed to Matlab's Runge-Kutta

routine, with the wheel diameter, wheel weight, and vehicle weight entered into

Equation A. At least one item of interest can be seen in Figure 27. The vehicle spends

only about the first 1/4 second accelerating. This supports a similar observation made

when loading a vehicle with successive weights, described in an earlier section. The

code which generates Figure 27 is found in the Matlab script files 'MYSIM17.M' and

'TESTW03B.M', which calls the former. These codes are in Appendix D.

Simulation Results

Table 11 shows the results of the comparison between measured vehicle run times

and simulated times for traversing 48 inches. It is evident from the data that the

predicted torque for this test is lower than the actual drive train torque requirements for

payloads up to 7 pounds, but higher than the actual values for the 33.4 pound payload. In

other words, the line fitted through the data in Figure 24 would better approximate the

measured vehicle performance if the line were flatter. However, the data demonstrates

that the model approximates the observed behavior of the vehicle. The percent error

between the estimated and actual vehicle speed times ranges between 5 and I5 percent.
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Table 11
f S· uIACompanson 0 1m ated and Measured Vehicle Speed

File Load Simulated Measured Error (S) Percent
Name Condition Time (S) Time (S) Error

m221 Vehicle only 1.6 1.71 0.11 6.4
+2 lb.. 1.64 1.81 0.17 9.4
+7 lb.. 1.78 1.83 0.05 2.7

+33.4 lb.. 2.74 2.46 -0.28 11.4

m222 Vehicle only 1.59 1.71 0.12 7
+2 lb .. 1.63 1.81 0.18 9.9
+7 lb .. 1.78 1.83 0.05 2.7

+33.4 lb.. 2.76 2.46 -0.3 12.2

m223 Vehicle only 1.62 1.71 0.09 5.3
+2 lb .. 1.66 1.81 0.15 8.3
+7 lb.. 1.8 1.83 0.03 1.6

+33.4 lb .. 2.82 2.46 -0.36 14.6

Effect of Wheel Diameter on Predicted Vehicle Speed

Having performed a vehicle simulation, it is interesting to now observe the effect of

wheel diameter on the model's predicted vehicle speed. Figure 25 shows that simulated

speed is very sensitive to changes in wheel diameter in the range ofup to about four

inches. This is the range in which students typically design their wheel diameters.

. The data for Figure 28 was generated by the model for an unloaded vehicle, and is

found in the Matlab file "M221.M". The wheel diameter was incremented by one inch

from one to 15 inches, and the resulting simulated speeds were recorded. Assumptions

made were no slipping of the wheel and no increase in vehicle or wheel weight with
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increasing wheel diameter. The range of diameters resulting in the fastest traverse is from

about 3.5 up to 7 inches. Because the curve flattens out somewhat in this region,

however, lower values may be better destgn choices for various reasons. Interestingly. a

wheel diameter ofabout 3.5 to 4 inches has come to be the ongoing buzzword passed

down from class to class. It is interesting to speculate on whether this is a result of some

mechanical natural selection, or if it is simply the easiest, simplest wheel to build given the

tools available to the student.

Figure 28 illustrates the capability of the system to aid students in making significant

design decisions. Not only does using the dynamometer help to highlight which elements

of the vehicle constitute important design considerations, but it can also be used to

optimize these elements and understand them better.

Adaptability-Model Rocket Motor Characterization

There is an interesting side note on the success of the dynamometer in

characterizing motors. One of the original objectives for the dynamometer was that it

be adaptable to a variety of situations. The dynamometer was very successful in

characterizing solid propellant model rocket engines. The engines were rated at 4 to 6

Newtons (14.4 to 21.5 oz) of thrust, with distinctive thrust/time plots. Several motors

w~re tested on the dynamometer using an adaptation which consumed less than an hour

of shop time to manufacture. The adaptation consisted of a Delrin tube in which the

cylindrical rocket motors were held. The tube was screwed onto a six-inch bar of

screw stock, which was inserted and fixed to the calibration post. The rocket motor
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and tube were oriented verticaHy so that the thrust imposed a torque on the

dynamometer platfonn, which could be detected by the strain gages. The dynamometer

was then calibrated by placing a I-Kg. mass on the Delrin cylinder, and observing a

voltage change on the oscilloscope screen of 4.0 volts. The motor was then fired, and

its thrust-time plot was recorded on the oscilloscope. Oscilloscope printouts of the

experimental thrust/time plots are shown in Figures 30 and 31. A close

correspondence in plot shape may be observed between the experimental data and

vendor infonnation provided with the rocket engines, which is shown in Figure 29.

However, a peak thrust of 2.5 pounds was recorded by the dynamometer, while the

rated peak thrust of the motor is 3.0 pounds. Furthermore, vendor infonnation

provided with the rocket motors reports a "shelf" value of about 1 pound. The

measured shelf value is slightly less than 1/2 pounds. Repeated tests indicate

substantial variation in rocket motor perfonnance.

Description of Some Dynamometer Components

The Tachometer

The tachometer is a Servo-Tek Model Number SD-740B DC tachometer generator

(catalog number TG-234). Its catalog rated output is 20 VDC/lOOO RPM. Linearity is

0.1 %, and ripple is 3% RMS. The body is 1-1116 inches in diameter by 2-3/16 inches

long. The shaft is 0.120 inches in diameter by 1/2 inches long. Its retail price was

$65.00 at the time it was incorporated into the project. (1995-96 Servo Systems catalog

Montville, NJ (800-922-1103))
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Construction Material

The dynamometer is made primarily of aluminum. This decision was made because

the material was free. The MAE North Lab Manager thoughtfully maintains a scrap

pile of various plate and bar stock readily available for research purposes.

Additionally, assorted Grade 8 bolts were made available through the Lab Manager.

The dynamometer was made almost entirely of this available aluminum. Other less

compelling but strong reasons for using aluminum in the construction were its excellent

machinability, its aesthetic quality, its corrosion-resistant properties, and its light

weight.
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CbapterIV

Results

This chapter contains a discussion of the results of the project in terms of the design

objectives and the financial constraints. Additionally, some assumptions underlying the

operation and testing of the device, as well as the scope and limitations of the system

are discussed.

The result of the project is a system represented by the schematic in Figure 32.

The black box containing the circuitry is the central routing component of the system.

Through it, the computer collects speed and torque signals from the tachometer and the

strain gages, both of which are located on the dynamometer. The dashed line between

the motor and the torque table represents the interaction between the motor and the

dynamometer as the motor transfers torque through the motor platfonn and legs.

Costs

The approximate out of pocket costs and estimated rebuild costs for the project are

shown in Table 12. The rebuild cost is the cost of commercially rebuilding the torque

taqle and the black box. This price does not include the power supply for the motor,

the computer, or the data acquisition hardware and software.
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~ooo

20
40
150
240
65
90
50

3655

Rebuild

25
25
o
o
90
10

150

B
loaAcquidlan]

Table 12
Approximate Out of Pocket and Rebuild Project Costs

Costs ($)
Out of
Pocket

o

f\
Motor

\

~/
I
I
I

/I

I

Black Box I
I

Circuitry \~/

Torque Table

Machinist ($60/hr. for 50 hrs.)
Aluminum
Screws and Bolts
Circuitry
Instrument Assembly ($60/hr. x 4 hr.)
Tachometer
St~in Gages
Miscellaneous
Totals

Power Supply

Figure 32. System Schematic

87



Motor Characterization

Figures 26 and 27 show values for torque and speed derived directly from voltage

values collected by the computer for two typical runs. The data has been processed by

shifting speed values, as discussed previously. It can be seen that the speed.

represented by the' +' marks, remains at zero while the torque climbs to a maximum.

The torque falls off as the speed increases. For these runs the disk was held stationary

for about I second after power was relayed to the motor. This was an attempt to

capture true stall torque. Figures 28 and 29 show second order curve fits relating

torque to motor speed. Figure 30 then shows a second order curve fit relating motor

power to motor speed. The relatively small amount of scatter about the torque/speed

and power/speed curves indicates the success of the design.

Conc.eptual Assumptions

Several assumptions have been made. Technically, it is assumed that dynamometer

components other than the legs and shaft are perfectly stiff, particularly the inertial disk

and the platform. These assumptions are reasonable considering the thickness of these

components, and, indeed, the robustness of the entire mechanism. The effect upon the

operation of the dynamometer if, for example, the disk behaved with significant

elasticity is that this component would perform as an energy-absorbing spring. As the

motor accelerated the disk, it would initially absorb energy, which would be released at

a time dependent upon the spring constant of the disk and the torque of the motor. The
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early part of the torque/speed curve should be flattened, and the power/speed curve

should perhaps be shifted to the right and flattened as well. If the platfonn behaved

elastically, then the most significant effect would be that the legs would not deflect

equally. Bridge output would be effected and torque readings would be in error. Once

again, the thickness of the platfonn and the motor mount bracket, and the tight joint

made possible because of the grade 8 bolts makes the assumption of stiffness

reasonable. Another assumption is that the legs are built-in to the platfonn and the

base plate. The built-in condition for beams is nonnally difficult to achieve in practice.

In this case, the 3/8-inch leg clamps, the strength and number of leg clamp bolts, and

the relative flexibility of the legs makes an assumption of the built-in condition

reasonable. If the legs in fact perfonned as if there were pinned connections with the

platfonn and the base, then the effect of the rotation of the platfonn under induced

torque would not be accurately reflected by the strain gages located on the legs. Once

again, the torque and power curves would be flattened if the legs behaved as pinned

beams.

It is assumed that the legs, which are machined to the same dimensions with small

tolerances, will deflect equally. This assumption is based on other assumptions of

similarity of leg material properties. To reduce the possibility of unequal leg

deflection, legs were cut adjacently from the same sheet of aluminum stock, and with

the same orientation with regard to the direction of rolling.

Other assumptions made are that the O-ring tachometer drive belt behaves

inelastically, that electro-magnetic interference between the motor, strain gages, lead
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wires, and circuitry is negligible, and that the oscilloscope data reflects the actual

behavior of the dynamic test. This last assumption appears reasonable., since the

Hewlett-Packard 54501A samples at 10 MHz, which is quite fast.

Scope and Limitations

The scope of the project is quite broad. Since the project involves designing a

system by which students can both design and evaluate their own mechanisms from

start to finish, successful completion required that at least five major components of the

project be brought together. The dynamometer is the main component of the project,

and its operation is integrated with a data acquisition system by way of the appropriate

circuitry. The data then must to be processed into a meaningful form of plots, charts,

and tables using the appropriate software. Finally, a simulation software system

provides a method of using the data meaningfully, so that better contest machines can

be designed. The five main components of the project, then, are:

1) the dynamometer
2) data acquisition hardware and software
3) circuitry
4) data generation, treatment, and analysis
5) simulation.

As a result of the broad scope of the project, several limitations are imposed upon

the study. For example, suggestions on how students can fully utilize the entire system

are not exhaustive. The dynamometer has been made a general design too] basically to

provide a measure of the maximum power of a motor, the shaft speed at which

maximum power is available, and power requirements of various bearings, belts, and
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loadings. Physically, the dynamometer is limited to the power measurement of motors

with dimensions similar to those used in the MAE 3033 contests, though modifications

may easily be made to accommodate motors of different dimensions and power ranges.

As a side note, about one hour of time was required in a machine shop to adapt the

dynamometer so that home-kit rocket motors could be characterized. These tests are

discussed more fully in another section.

The dynamometer itself is limited to providing a measure of power output. Though

circuitry is in place to measure power input, this aspect of the project has not been fully

developed.

Another limitation of the project is that an exhaustive consideration has not been

given to the dynamics of the motor, shaft, bearings, and disk during the dynamic test.

On occasion when the relay actuates the motor, initially high torque and speed

measurements were observed. These are believed to be due to the 'slop' which can

exist between the motor shaft roll-pin slot in the shaft, and between the motor armature

and the motor housing. When a motor is activated it is often possible to see the

armature kick against the motor housing as the motor starts. This initial kick-in may

result in very high initial torque and speed readings. Shaft deflection and natural

frequency calculations are based upon these high torque values.
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Conclusion

The result of the project is a fairly rugged, suitably accurate dynamometer. The

device features adjustable gain, a manual coarse offset adjustment, automatic fine offset

adjustment, excellent calibration capability I and fairly consistent, accurate measurement

of motor power under dynamic conditions.
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Chapter V

Summary, Conclusions, and Recommendations

Summary

The objective of the project was to develop a system which would assist students in

designing MAE 3033 contest vehicles. The system includes a torque table

dynamometer suitable for measuring not only motor characteristics, but power train

components, as well. Procedures were carried out to detennine the accuracy,

sensitivity, resolution, and precision of the system. The system is fairly convenient to

calibrate and use. It has been demonstrated that simulation of contest vehicles is

worthwhile, with percent errors between actual and simulated results ranging between 5

and 15 percent. The accuracy of the device under dynamic conditions is about 1.8 % of

full-scale. Furthennore, under dynamic conditions the precision of the system is about

4 % of full-scale, and the system resolution is about 1.4% of full scale. Data

acquisition software and circuitry were developed to support the collection of data.

Conclusions

The project was successful in several areas. First, a system was developed by

which students can obtain empirical data upon which they can base decisions affecting

the design of their contest vehicles. Second, the system should enhance the educational

impact of the course by making engineering concepts such as power, torque, and speed
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more visceral for students. Third, the project provided a substantial challenge to the

author, and a tremendous learning experience.

Recommendations for Further Improvement

A number of significant improvements may be considered to enhance the dynamometer

as a design tool. First, a number ofaccessory exercises could be devised to develop

students' skills in experimental methodology, statistics, numerical analysis, mechanics of

mechanisms, instrumentation, and data acquisition. A short report in which students

defend their chosen configuration and dimensions could provide practice in report writing,

as well.

An interesting project evaluation could be provided in the design, administration,

evaluation, and interpretation of pre- and post tests to determine the development of

students' general comprehension of quantities of speed, acceleration, force, inertia, and

power.

Additionally, several improvements could be made in the design of the

dynamometer.

1) Heavy duty bearings, so the disk need not be removed for storage.

2) Refinement of the precision of the device, so that finer elements of the
drivetrain could be evaluated.

3) Extension of applicability to real-time readout of actual power
consumption while the student is operating his device.

4) Development of Capability to read power in and thereby find efficiency of the
motor.

5) Refinement of the software.
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Concluding Comment

The effort of the many individuals responsible for the success of this project has

had one focus: better engineers for the future. It is the author's hope and desire that

students use the dynamometer creatively.
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Appendix B - User's Manual and Helpful Suggestions

1) To Set The Torque Table Dynamometer Platform Position

Unbolt and remove the shaft housing assembly from the base of the dynamometer.

Loosen the leg screws so that the motor platform may be shifted. Make sure that each

leg is positioned in its platform clamp groove so that the top edge of the strain gage

backing is just free from being pinched between the platform body and the leg to which

the gage is mounted. Finger tighten the platform leg bolts so that the legs may be

shifted for positioning the platform in an axial direction. Now, set the platform in

place on the base so that it is supported by the legs. Measure the distances from the

back of the dynamometer to the attachments of the legs in the base and in the platfonn.

Though these distances are not critical, tolerances should be within 1/16 inches or so.

The next step is to position the legs.

To position the legs in the planes of the 45-degree surfaces, choose one side to align

first. From the back of the dynamometer, sight towards the front of the dynamometer

along the inside of the legs. Place a ruler on the 45-degree surface of the base beyond

the legs, near the very front of the dynamometer. Align the inside of the two legs with

the edge of the ruler so that the legs truly lie in the plane made by the 45-degree

surface. Tighten the base leg bolts when the alignment is made, and re-sight using the

ruler. Perform this same operation for the other side of the dynamometer. The legs

should now lie in the planes made by the 45-degree surfaces. Perfonn a final sighting

using the ruler to verify this. The next step is to align the axis of rotation of the motor

with the intersection of the planes of the 45-degree surfaces.
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To align the axis of rotation of the motor with the intersection of the planes, first

fasten a motor in the motor mount so that the axis of rotation of the motor shaft is both

horizontal, and is located directly on the center line of the motor mount clamp. Make

sure that the motor mount bolts are loose enough so that the motor mount may be

shifted by bumping it. Next, using a ruler, align the center of the motor shaft with one

of the 45-degree surfaces on the base. Remember that the centerline of the motor shaft

must be aligned with the centerline of the legs, and not simply with the 45-degree

surfaces of the base. It is helpful to scribe a clear ruler 1/2 the thickness of the legs

from the edge. Then this scribe mark may be used to align the centerline of the motor

shaft. Next, align the remaining side using the ruler, and tighten the motor mount

screws. At this point, the motor has been positioned so that its axis of rotation

coincides with the intersection of the planes made by the 45-degree surfaces of the

base. The next step is to attach the shaft assembly onto the base so that the motor shaft

fits into the larger torque transmitting shaft.

To position the shaft assembly, first loosen the two bolts which clamp the shaft

bearing housings to the shaft housing stand, so that the shaft may be able to fit onto the

motor shaft as the shaft housing stand is bolted back onto the base. Then, if the shaft is

not in place in the bearings, place it in at this point. Its position may be roughly

adjusted so that the motor shaft fits into the hole and the roll pins fit well into the roll

pin slots in the shaft. A finer adjustment may be made later. Bolt the shaft housing

stand firmly in place while the motor is running. If the motor audibly loads

substantially while the stand is being bolted, loosen the stand bolts and re-position the
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stand. It may be necessary to loosen the two bolts clamping the shaft bearing housings

even more. Next, continue running the motor as the two shaft bearing housing bolts

are tightened. If appreciable motor loading is evident, re-position the shaft bearing

housings as the bolts are tightened. Remove the motor and check the position of the

shaft by sliding a slender ruler between the motor shaft socket and the motor mount. It

is fairly easy to check the alignment of the motor shaft socket with the 45-degree

surfaces on the base in this way.

2) Connect the Computer, Power Supply, Dynamometer, and Circuit Box

Connect the line from the power supply labeled "To Car" to the inport into the

black circuit box. Connect the bundle of colored outlet lines from the circuit box to the

acquisition board's port in the back of the computer. Connect the gray cable from the

circuit box to the port on base of the dynamometer. Turn on the computer and go to

the appropriate directory containing the computer program. Turn on the power supply

and the circuit box.

3) Run the Program to Collect Motor Data

Make sure that the tachometer drive belt is in place. Place a motor in the motor

bracket by inserting the motor until the roll pin fits into the appropriate slot in the end

of the shaft. Attach the clip leads from the circuit box to the motor leads. Preferably,

run the motor by tilting the joystick as the motor bracket bolts are tightened by hand.

If the motor audibly loads as it is run, or if variation of speed due to misalignment is

judged to be significant, then adjustment needs to be made to the motor alignment in

the bracket, or to the alignment of the steel shaft. Run the motor using the joystick.
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noting how direction corresponds to joystick position. The direction of the motor can

be reversed simply by changing the clip lead position.

Run the program. A series of brief instructions is displayed. Following this is a

continuous real-time readout of torque voltages. The operator should press lightly on

the calibration bar to observe a change in the voltage printed on the screen. If a change

is not observed, make sure the power supply and the circuit box are on, and that all

connections are good. Zero the reading as well as possible by adjusting the bridge

balance. RougWy check the range by placing the 12-oz. weight at 8 inches on the

calibration bar. Adjust the gain adjust on the circuit box until the voltage is below

about 4.5 volts. Also, a voltmeter can now be used to check the accuracy of the

computer's data acquisition board.

Next is the calibration mode. At each prompt the user should place the 12-ounce

weight at any marked location on the calibration bar and enter this distance into the

computer. Four data points are chosen in order to perform a least squares fit between

the torque imposed upon the platform and the strain gage bridge circuit output. The

slope of this line, in oz/inches per strain gage bridge output volt, the intercept, and the

correlation coefficient are calculated and printed to the screen for the user to see. The

program features a flag which alerts the user if the correlation coefficient is below

0.995. It had been experimentally determined that reporting a weight position which

was off by one inch results in a coefficient below 0.995. After the flag is triggered,

the user is prompted to fe-calibrate the dynamometer. Following the calibration is

another real-time screen readout of torque in ounce-inches, and speed in RPM. This
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mode can be used to check the calibration and to observe the motor speed and

direction. The calibration can be checked simply by placing the weight at some

location on the calibration bar without the motor running. The error between the actual

torque and the reported torque can be calculated.

The final feature of the program is the fIle data collection mode. Place the inertial

disk on the steel shaft and tighten the set screw. Set the relay switch on the circuit box

to "ENGAGED", and hold the joystick fully in one direction. Hold the disk firmly,

and press "ENTER". About 1/2 seconds after the motor is activated, let go of the disk.

and allow the motor to accelerate the disk freely. The torque and speed data are

printed to the screen, and the user is prompted to enter a file name for the data. One

fIle is output to Matlab for graphing, and another general output file is created

containing torque and speed data. The Matlab files can be used to generate torque vs.

speed and power vs. speed curves for the motor. These curves can then be used for

design and diagnostic purposes. Additional files can be generated to determine the

torque requirements of belts and bearings. Getting additional torque data is simple.

For example, to get torque data for the dynamometer's shaft bearings, flip the RELAY

switch to "DISENGAGED" and run the motor without the disk at constant speed.

Press ENTER at the prompt to collect 25 torque readings. Name the file at the prompt.

In Matlab this file can be opened and the mean torque reading can be found, along with

the standard deviation of all the readings. In order to get belt friction, perform the

same operation with the belt in place. Torque requirements of bearings at any load can

be obtained by positioning the center of the idler wheel directly over that of the driven
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wheel and running the constant-speed test. The idler wheel ann should be loaded with

an appropriate weight to simulate one half the weight of the vehicle.

Suggestions for installing strain gages

The following procedure has been proven to produce acceptable strain gage bonding

to flat surfaces. Cleanliness of the surface is very important. It is also important that

the strain gage not be handled or contaminated before application.

1) Wet sand the surface using alcohol and 320 grit sandpaper until the surface is

smooth and free of scratches. Wipe off the surface, bathe it with alcohol, and clean it

with a clean cotton ball.

2) Using the alcohol and a cotton ball, clean a small area on a work table. Tear

apart the clear plastic cover sandwiching a strain gage, and position the gage on the

clean work area with the taps facing up. Tear off a strip of scotch tape about 1 inch in

length, and stick the tape lightly to the strain gage. Pick up the strain gage by peeling

the tape off the table (if any portion of the tape stuck to the table). Make sure that the

tape is not peeled back at a sharp angle, so that the gage is not bent at an angle.

3) Now, position the strain gage by sticking the tape so that the gage is in the

desired location. If the position needs adjustment, simply peel the tape off the surface

at a low angle. Once the gage is positioned properly, peel enough of one end of the

strip of tape off the surface so that the entire underside of the gage is exposed, but no

more. One end of the strain gage should be almost touching the surface. Place a small

drop of super glue at this point. Squeeze the strain gage back down onto the surface so
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that the glue is forced up the entire length of the gage. Press the gage against the

surface for 20 seconds or so. Peel back the tape at a very sharp angle so that the strain

gage is not subjected to a vertical force. At this point, you may examine the bond for

bubbles or improper bonding. If the gage must be reseated, it is best to take the time

to re-sand the surface.

4) You should now be ready to solder leads to the strain gage tabs. First. place a

small drop of solder on the tabs. Next, tin the lead wires and then cut them to very

short stubs, perhaps 1/16 inches. Bend the tips of the lead wires into a small radius of

perhaps 1/8 inches, and tape the lead wire to the surface so that the tinned tips contact

the beads of solder on the tabs. Then, simply touch a solder iron to the lead wire tips

to connect the tabs. At this point it is a good idea to test the gage and your connections

with an ohm meter.

It is the author's experience that while the above procedure is not exactly that

reconunended by the vendor, it produces very good, long lasting bonds between the

gages and the aluminum legs.
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Appendix C -- Data Acquisition Computer Code
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I····················································· ...••··················1- -I···· ..../I···· DC MOTOR ANALYSIS ..··1I···· .·..1
I····················································· ···..•.··.1
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <graphics.h>
#include <conio.h>
#include <dos.h>
#include "nr.h"
#include "nrutiI.h"

float setup(float ·offset};
float power_curve(float torque_caIJactor,float offset);
float torque_calibration(int number_of.J)oints, float ·correlation_coeff,float ·offset);
float read_AD_motor_on(int channel);
float create_outfile(float *rpm, float *torque, float ·power_out, int i);

/. delay time (*20 mS) for amp to settle*/
50

0,,00
I

1* ADC 16 Board Base Adress
I· Data Register Adress

I· Data Register Adress
I· MUXlGain Adress

1* Status Register Adress

1* Maximum number of channels *1
I· Number of channels in use *1

10 1* Number of AD conversions to *1
I· get a good voltage avg reading *1
4 /. number of torque calibration points ./
12.0 I· weight of calibrating weight in oz */
53.78 1* RPM/volts ./
0.0 /. Add this to the tachometer value"/
6.0 I· voltage division in circuit *1
141.6115 I·conversion from watts to oz-in/s ./

3.141592654
1.00 1* A board calibration factor·/

230.0 /. Cutoff rpm for power curve */
OX30

2

0x300
BASE
BASE+l
BASE+2

BASE+3
0,,80

8

#define NUM_READINGS
#define WEIGHT
#define TACH]ACTOR
#define TACH_INTERCEPT
#define VOLTAGE_FACTOR
#define WATTS_TO_OZ
#define PI
#define BOARDJACTOR
#define STOP_RPM
#define CLOSE_RELAY
#define OPEN_RELAY
#define AMP_DELAY
#define DATA_ARRAY_SIZE

#define BASE
#define DATREG
#define LDATREG
#define MUXGREG
#define STATREG
#define CMDMSK
#define MAXCH
#define NUMCH
#define NP 9
#define STRING 80
#define BIG le31
#define TRUE 1
#define NMAX 30
#define NUM_AVERAGING_RUNS
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#define NUM_DATA]OINTS
#define TIME_STEP 0.125
#define ORDER POWER FIT- -
#define ORDER_SPEED_FIT
#define ORDER_TORQUE_FIT

25
/. time step related to board speed·'
3
3
2

#define TACH CHAN
#define TORQUE_CHAN
#define VOLTS CHAN
#define CURRENT CHAN

mainO
{

o
I
2
3

float torque_cal_factor.offset;
char junk;

torque_cal_factor = setup(&offset);

power_curve(torque_cal_factor,offset);

printf("\n\n Hit any key and enter to exit now.\n");
scanf("\n%c%c",&j unk);

}

float setup(float ·offset)
{

int

float

char

i, k, again=TRUE, restan=TRUE, sameJacror,
ok_cal, number_o(points=4,1·user input later·'
message_l_flag=O, do_cal, channel, input_flag;
reading, torque_factor, torque_reading, tach_reading,
current_reading, power, voltage_reading, correlation_coeff;
junk;

'./

clrscrO;
printf("\n\n Welcome to the dynamometer program. To start out,");
printf("\n please make sure the RELAY switch is DISENGAGED, and that\n");
printf(" the system power and the bridge power are on. Now you must \n");
printf(" first adjust the bridge balance and then the gain.\n");
printf("\n To balance the bridge, after momentarily pressing some key and ENTE~");
printf(" adjust the dials to get a voltage reading as");
printf("\n close to zero as possible. Then, adjust the gain by\n");
printf(" placing the weight at 8 inches, and dialing the GAIN ADJUST\n");
printf("until about +/- 4.5 volts is displayed. Also, now you could use a DMM\n");
printf("to see if the computer's voltage reading is accurate.\n");
printf("\n Now, hit some key and press enter to continue.\n");
scanf("%c",&junk);
c1rscr();
do

151



gotoxy( 1.5); /·This is necessary to keep the screen from scrolling·'
printf(tI\n \t% Voltage (V)\n");
reading =0.0;
fore i=O; i<NUM_AVERAGING_RUNS;i++)
{

reading += read_AD_motor_on(TORQUE_CHAN);
}
reading = readingINUM_AVERAGING_RUNS;
printf("\t %5.3 f' ,reading);
printf(tI\n\n\n Hit the space bar to stop ... \n");

} while(!kbhit());

while(restan = TRUE)
{

if(message_1_flag)
{

printf("\n Would you like to re-calibrate the torque? ( I=yes,
O=no)\n");

printf(tI The present torque factor is %5.3f.\n",torque_factor);
}
else

printf("\n Would you like to calibrate the torque? (1 =yes, O=no)\n");
}
message_1_flag++;
scanf("%d" ,&ok_cal);

/.

input_flag = scanf("%d",&ok_cal);
printf("\n input flag = %d\n",input_flag);
while(input_flag &&(ok_caJ > '49')II(ok_cal < '48'»
{

printf(tI\n Incorrect entry. Please enter either a I or a O.\n");
scanf("%d",&ok_cal);
if«ok_cal = '49')II(ok_cal = '48'»

input_flag = I;
printf("\n input flag =%d\n",input_flag);

./

do_cal = I;
while(do_cal)
{

torqueJactor=torque_calibration(number_o(yoints,&correlation_coeff,offset);
printf("\ncorrelation coefficient = %5.5f, offset =

%5.2f\n",correlation_coeff, ·offset);
if(correlation_coeff < 0.995)
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1");

ENTER.\n");

{

}
else

-
printf("\n ALERT!!! Your data is not very linear. Press

printf("\nto re-calibrate, or 0 to continue, then

scanf{"%d",&do_cal);
scanf("%c",&junk);

do cal = O·- ,

}
else
{

}
printf("\n The torque factor is %f oz-inNolt.\n",torqueJactor);
printf("\n Hit some key and press enter to continue.\n");
scanf("%c%c",&junk);

printf("'o Do you want to input a calibration factor,(O)\n");
printf(" or use the same one you may have been using? (1 )'0");
scanf("%d II ,&same_factor);
if(!sameJactor)
{

printf("\nEnter your calibration factor\n");
scanf("%f",&torqueJactor);

}
else

printf("\n You will use the same factor of%f\n",torque_factor);
same_factor = 0; It reset the test variable *1

/.... This ponion ofthe program provides real-time readout from the ADC 16 board .... /
while(CMDMSK & inportb(STATREG»; It While Board isn't Busy */
again=TRUE;
while(again=TRUE)
{

clrscr();
do
{

gotoxy( I,5); /*This is necessary to keep the screen from- _
scrolling·I

Done ./

printf("\n%8s %12s \nil, "Speed (RPM)","Torque (oz-in)");

for(channel=O; channel<NUMCH; channel++) /* While not

reading = read_AD_motor_on(channel);
switch(channel)
{
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case 0: -
tach_reading =

reading·TACHJACTOR + TACH_INTERCEPT;
printf("\n %4.1 f',tach_reading);
break;

case I:
torque_reading = reading·torque_factor

+ ·offset;
power =

2.0·PI·torque_reading·tach_reading/60.0;

case 2:

printf("
break;

%5.1 f' ,torque_reading);

reading·VOLTAGE_FACTOR;

%5.1 f" ,voltage_reading);

./

case 3:

voltage_reading =

printf(1t

break;

currentJeading =reading;
printf(1t %5.3f',current_reading);
break;

}
/.... This concludes one AID conversion for each channel ..../

printf("\n\n\n Hit the space bar to stop ... \n lt );
} while(!kbhit());
printf(It\n\nDo you want to try another motor now using the same \nit);
printf("calibration factors? (1 for yes/O for no) : It);
scanf("%d" ,&again);

}
printf(lt\n\nDo You Want To Restart (with the option to re-calibrate)? It);
printf(It\nPlease enter 1 for yes, or 0 for no. ---> ");
scanf(lt%d",&restart);

}
retum(torque_factor);

float torque_calibration(int number_o(...p0ints, float ·correiation_coeff, float ·offset)
{

int radius[NUM_READINGS], i, j, k;
float sum_xy, sum_x, sum'y, sum_xsq, sum_x_sq, denom,

numerator,s_sq,torque_avg,sum_torque,intercept,
torque_array[NUM_READrNGS],sum;

float voltage[NUM_READINGS], average_array[NUM_AVERAGrNG_RUNS],slope.v;
char junk:
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while(CMDMSK & inportb(STATREG»;
-

1* While Board isn't Busy ./

/* printf("\n number of points = %d\n",number_of.Jloints);
*/

printf("\nPlease calibrate the torque measurement. At each prompt, place the\n");
printf(" calibration weight at the desired radius on the calibration bar,\n");
printf(" enter this value, and then press enter. Remember to check for hysteresis.\n\n\n");
for{i=O;i<NUM_READrNGS;i++)
{

printf("\n Place the weight where you want it,");
printf("\n enter this value (inches) and press enter.\n");
scanf("%d",&radius[i]);

1* Now take a whole bunch of voltage readings */
for G=O;j<NUM_AVERAGING_RUNS;j++)
{

average_array[j] = read_AD_motor_on(TORQUE_CHAN);
}
sum = 0;
for G=O;j<NUM_AVERAGING_RUNS;j++)
{

sum += average_array(j];
}
voltage[i] = sumINUM_AVERAGING_RUNS; /. Now get a good average of

voltage readings. */
printf(" Voltage = %6.4f at radius = %d (inches).\n\n",voltage[i],radius[i));

}
I· Now, find the voltage-torque calibration factor */

sum_x)'=O; sum_x=O; sum...,Y=O; sum_xsq=O; sum_x_sq=O;
for(i=O;i<NUM_READINGS;i++)
{

sum_xy += voltage(i] ... (radius[i] • WEIGHT);
sum_x += voltage[i];
sumy += (radius[i] • WEIGHn;
sum_xsq += (voltage[i]*voltage(i]);

}

sum_x_sq = sum_x • sum_x;
slope = (NUM_READINGS*sum_xy - sum_x * sumy)/CNUM_READINGS·sum_:\sq •

sum_X_sq);
1* Now, find the correlation coefficient */

intercept=(sum....Y.sum_xsq-suffi_x.sum_xy)/(NUM_READINGS·sum_xsq-sum_x_sq);
sum_torque = 0;
for (i=O; i<NUM_READINGS; i++)
{

/*
*/

torque_array[i]=intercept+slope*voltage[ i];
sum_torque += torque_array[i];
printf("\ntorque %d = %f, sum=%f',i,torque_array[i),suffi_lorque);
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torque_avg = sum_torqueINUM_READINGS;
numerator = 0;
s_sq = 0;
for (i=O; i<NUM_READINGS; i++)
{

numerator += «torque_array[i]-torque_avg)*(torque_array[i]-torque_avg));
s_sq += «(radius[i] *WEIGHn-torque_array[i])*«radius[W WEIGHT)-

torque_array[i)));
}
denom = s_sq + numerator;
*correlation_coeff = numerator/denom;
*offset = intercept;
printf("\n corr coeff= %5.5f, intcpt = %4.2f, slope=%4.3f, offset =

%4.2 f.\n ",*correlation_coeff,intercept,slope,• offset);
retum(slope};

}
float power_curve(float torque_cal_factor,float offset}
{

float speed, torque_reading, rpm[DATA_ARRAY_SIZE],
torque(DATA_ARRAY_SIZE],

power_out(DATA_ARRAY_SIZE], power_in[DATA_ARRAY_SIZE],
current[DATA_ARRAY_SIZE],volts[DATA_ARRAY_SIZE];

int i,j, k, mark, keep_testing=l, loop_flag=O;
char trash;

/* may need scanf%c here while debugging to throwaway previous CR*/
scanf("%c",&trash};

outportb(STATREG,OPEN_RELAY); /* make sure the relay is open */
printf("\n Flip the RELAY switch to ENGAGED, hold the joystick at\n");
printf(" full throttle either direction, then press ENTER to start the dynamic test.\n");
scanf("%c",&trash); /* Throwaway the carriage return. */
printf("%c",'\007');

while(keep_testing)
{

scanf("%c".&trash);
printf("\n Hold the joystick at full tilt as before and press ENTER.\n"); _
scanf("%c",&trash);

}
loop_flag++;
printf("%c",'\OO7');
c1rscr();

/* delay(5000);
*/

outportb(STATREG,CLOSE_RELAV); /* Close the relay to run the motor *'
/* delay( I0);
*f

156



i=O; speed =0.0;
while (i<NUM_DATA_POINTS)
{

torque[i]=«read_AD_motor_on(TORQUE_CHAN»"'torque_caIJactor +
offset};

rpm [i]=«read_AD_motor_on(TACH_CHAN»·TACH_FACTOR +
TACH_INTERCEPT);

i++;
}

outportb(STATREG,OPEN_RELAV); /'" Open the motor relay to stop the motor .,
,. Print the data *'

printf("\nRPM\tTorque\n");

for U=O; j<i; j++)
(

printf("\n %5.1 t\t%4.1 f',rpm[j],torque[j]);
}

create_outfile(&rpm,&torque.&power_out,i);
printf(It\nWould you like to run another dynamic test?\n");
printf(" Press 1 for yes, 0 for no.\n");
scanf("%d",&keep_testing);

}
}

float create_outfile(float ·rpm, float ·torque, float ·power_out, int i)
(

intj,k;
char outfilename(80), prefix(80), trash;
FILE "'out;

strcpy(outfilename,"e:\\matlab\\");

printf("\n Enter the output file name.\n lt
);

scanf(It%s",prefix);
scanf("%e",&trash); ,. Get rid of the earriage return *'
strcat(outfilename,prefix);
strcat(outfilename,".mIt);
out =fopen(outfilename,"w rl

);

fprintf(out,"\n rpm = [");

for (k=O; k<i; k++)
{

,. begin the first matlab array·'
''''make horizontal rows of data for matlab·'

fprintf(out,"%5.3 f\t",fabs(rpm[k)));
}
fprintf(out,"];\0");
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'* End the matlab array and
advance to a ~ew line */

fprintf(out,"'o torque = [");
for (k=O; k<i; k++)
{

fprintf(out,"%5.1 f\t" ,fabs(torque[k]));
}
fprintf(out,"];'0");

/* now build the rest of the M file*/
fprintf(out,''\n num_data.J'oints = %d;",i);
fprintf(out,''\n rpm_t = O.0625:0.125:(num_data.J'oints-1 )*0.125+0.0625;");
fprintf(out,''\n torque_t = 0:0.125:(num_data.J'oints-l)*O.125;");
fprintf(out,''\n time = O:(num_data.J'Oints-l )*0.125/269:(num_dataJ>Oints-1)*0.125;");
fprintf(out,''\n'o rpm_cl = spline(rpm_t,rpm,torque_t);");
fprintf(out,"'o end_rpm_cl = rpm_cl(num_data.J'oints);");
fprintf(out,''\n x_axis = O:end_rpm_cl/269:end_rpm_cl ;");
fprintf(out,''\n polyrpm = polyfit(torque_t,rpm_cl,3);");
fprintf(out,"\n val.J'olyrpm =polyval(polyrpm,time);");
fprintf(out,''\n % then plot torque and speed as functions of time");
fprintf{out,"\n plot(torque_t,torque,'0',torque_t,rpm_c1/2,'+');");
fprintf(out, "\n xlabel('Time (S)');ylabel('Torque (oz-in) and Speed (RPM)/2');grid;");
fprintf(out,"'o figure \% then plot torque as a function of speed ");
fprintf(out,''\n'o polytorque_c = polyfit(rpm_cl,torque,%d)",ORDER_TORQUE_F1n;
fprintf(out,"\n val.J'Qlytorque_c = polyval(polytorque_ctx_axis);");
fprintf(out,"\n\n plot(x_axis,val.J'olytorque_c,'-' ,rpm_c l,torque,'+');");
fprintf(out, "\n ritle('Motor Torque vs. Motor Speed');");
fprintf(out,''\n xlabel('Motor Speed (RPM)');");
fprintf(out, "\n ylabel('Motor Torque (oz-in)');\n grid;");
fprintf(out,"\n\n figure \% then plot the power speed curve");
fprintf{out,"\0'0 power_c = 2*pil60 .* torque.* rpm_cl;");
fprintf(out,''\n polypower_c = polyfit(rpm_cl,power_c,%d);",ORDER_POWER_FIT);
fprintf(out, "\n val.J'Qlypower_c = polyval(polypower_c,x_axis);");
fprintf(out, ''\n\n plot(x_axis,va1.J'o Iypower_c,'--' ,rpm_c1,power_c,'o');");
fprintf(out,''\n title('Motor Power Output vs. Motor Speed');");
fprintf(out,''\n xlabel('Motor Speed (RPM)');");
fprintf(out,''\n ylabel('Motor Power Output (oz-inlsec)');");

. fprintf(out, ''\n grid; If);

'* foHowing is for building a vehicle simulation in matlab */

/* fprintf(out,''\n figure");
fprintf(out," \% Last, graph speed-time and distance-time data. ");
fprintf(out,''\n \% It is necessary to manually enter the coefficients for the");
fprintf(out,''\n \% Matlab file 'mysim.m'.");
fprintf(out,''\n to =0; tf= 1.5; '0 xO = [0 0]';");
fprintf(out,"\n [t,x] = ode23('mysim',tO,tf,xO);");
fprintf(out,"\n plot(t,x);");
fprintf(out,"\n title('Calculated Vehicle Speed and Distance Traversed vs. Time');");
fprintf(out, ''\n xlabel('Time (Seconds)');");
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*'

fprintf(out,"\n ylabel('Speed (in/s), and Distance (in)');\n grid;");
fprintf(out,"\n grid;"); -
fprintf(out,"\n all = [t,x]");

fclose(out); '* close the file *'
'* Now, open a general data file *'

strcat(prefix,".dat");
out =fopen(prefix,"w");
fprintf(out,"\n Time ($)\t Torque (oz-in)\t Speed (RPM)\n\n");
forU=OJ<iJ++)
{

fprintf(out," %5.3f\t %5.1 f\t %5.0f\n"j*TIME_STEP,torque[j),rprn[j]);
}
fclose(out);

float read_AD_motor_on(int channel)
{

int polarity;
unsigned char zero=O.O,low_byte,high_byte,overrange;
float return_value;

outportb(MUXGREG, channel*S); ,. Write Channel Number .,
delay(AMP_DELAY); ,. Let amplifier settle .,
outportb(DATREG, zero); ,. Start AID Conversion by writing to BASE*I
while(CMDMSK & inportb(STATREG»; '·Wait for not busy signal*'

'* outportb(STATREG,Ox50); */ /·Set overrange read bit to 'on'·'
1* overrange =inportb(LDATREG);

if (CMDMSK & inportb(DATREG»
printf("\n Over range on Channel %d\n\n\n",channel);

outportb(STATREG,Ox10);*' /* Reset overrange read bit to 'off,
•• but keep relay closed *'

'* Now check the polarity ./
if (CMDMSK & inportb(DATREG»

polarity = 1;
else

(polarity = 0);

low_byte = inportb(LDATREG);
high_byte = inportb(DATREG);
high_byte =(high_byte & Ox7t);

return_value =«256'" high_byte) + [ow_byte)*S.O/(32767*BOARDJACTOR);

if (polarity = 0)
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return_value = (-I.O)·return_value;

/* printf("\n %5.lf', return_value);
*/

retum(retum_value);
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Appendix D -- Matlab Code
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Calibl.m

K=O: .1:25;
lbs '" [ 0 . 0 1. 8 4. 3 6. 5 B. 8] ;
y-[S.2 7.4 10.4 15.1 16.4 I;

polyf - polyfit(lbs,y,1)
vals '" polyval(polyf,xli
torque'" spline(x,vals, (33.4+7+14/16)/2)

plot(K,vals, '--',lbs,y, '+', (33.4+7+14/16)/2,torque, '0');
title('Torque Required vs. Added Vehicle Load');
Klabel('Added Vehicle Load (Lbs.) ')i
ylabel('Required Torque (oz-io) ')i
grid;
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T161.M

rpm = [ 16.633 34.288 54.346 74.610 95.042 11
3.208 129.620 144.604 158.S82 172.216
181. 997 189.924 196.715 202.101 l;

torque = [ 53.9 51. 9 53.8 56.0 55.9 5
3.9 48.8 44.7 39.2 31. 7 31.0 26.3 17.9 1
9.7 ] ;
% rpm : [0.153 5.989 1. 099 0.015 0.023 0.008 0.031 O.
000 0.015 0.000 2.113 16.633 34.288 54.346 74.610 95
.042 113.208 129.620 144.604 158.582
172.216 181. 997 189.924 196.715 20
2.101 ] ;

% torque '" [ 0.1 42.1 59.8 90.0 104.0 104.4 10
4.0 102.9 102.0 102.4 95.5 53.9 51. 9 53.8 5
6.0 55.9 53.9 48.8 44.7 39.2 31.7 31. 0 2
6.3 17.9 19.7 ] ;

num_data-points = 14;
rpm_t ~ 0.0625:0.125: (num_data-points-l)*0.125+0.062S;
torque_t = 0:0.125: (num_data-points-l) *0.125;
time", 0: (num_data-points-l) *0.125/269: (num_data-points-l)*0.12S;

rpm c1 = spline(rpm t,rpm,torque t);
end=rpm_cl ~ rpm_cl(num_data-points) ;
x axis'" O:end rpm c1/269:end rpm c1;
polyrpm '" polyfit(torque_t,rpm_c1~3);
val-polyrpm ~ polyval(polyrpm.time);
torquefit_to_time ~ polyfit(torque_t.torque,3);
val torquefit = polyval(torquefit to time,time);

- \ then plot torque and speed as functions of time

--

shifted_spline'" spline(torque_t.rpm,time);
neous spline
sec time = 0: .0625:1.625;
set(gca, 'XTick', [sec_time]);
set (gca, 'XTickLabels', []) ;hold on;

\ This is the erro

plot (time , val_torquefit , '-. ',torque_t,torque, 'a' ,time,val-polyrpm
12. '--' ,rpm t,rpm/2, '*');
xlabel('Time in 1/16th Second Increments') ;ylabel(ITorque (oz-in)
and Speed (RPM)/2');
title('Torque and Speed Sampled at 16 Hz') ;grid;
figure

sec time = 0:.0625:1.625;
setTgca, 'XTick'. [sec_time]);
eet(gca, 'XTickLabels', []) ;hold on;

163



....

T161.M

plot (time,val_torquefit, '-. ',torque_t,torque, 'o',time.val-polyrpm
/2, '-. " ...

rpm_t.rpm/2, '*',time,shifted_spline/2, '--' , torque_
t. rpm/2, '. 1 ) ;

xlabel('Time in 1/16th Second Increments') ;ylabel('Torque (oz-inl
and Speed (RPM)/2');
title('Torque, Actual Speed, and Time-Shifted Speed') ;grid;
figure

sec time = 0: .0625:1.625;
set{gca, 'XTick', [sec time]);
set(gca, 'XTickLabels', []) ihold on;

Points'

(oz-in)
t,rpm/2, '.') ;
xlabel('Time in 1/16th Second Increments') iylabel('Torque
and Speed (RPMl/2')j
title('Torque, Time-Shifted Speed, and Interpolated Speed

) ;grid;
figure

plot(time.val torquefit, '-.' ,torque t,torque, 'o',time,val-polyrpm
/2, '-.',torque-t,rpm C1/2, '+', ... -

- rpm_t,rpm/2, '*',time,shifted_spline/2, '--' ,torque_

sec time = 0:.0625:1.625;
set{gca, 'XTick', [sec_time]);
set (gca, 'XTickLabels ' , []) ;hold oni

plot (time,val_torquefit, '-.' ,torque_t,torque, '0' ,time,val-polyrpm
/2, '--',rpm_t,rpm/2, '.',torque_t,rpm_cl/2, '+');
xlabel('Time in 1/16th Second Increments') iylabel{'Torque (oz-in)
and Speed (RPMl/2');
title('Torque, Measured Speed, and Interpolated Speed') ;gridi

figure \ then plot torque as a function of speed

polytorque_c 2 polyfit{rpm_cl, torque, 21 ;
val-polytorque_c 2 polyval{polytorque_c,x_axis);

wrong-polytorque ~ polyfit{rpm,torque,2);
val_wrong-polytorque ~ polyval{wrong-po1ytorque,x_axis)

plot (x_axis,val-polytorque_c, '--' ,rpm_c1,torque, '+',x_axis,val_wr
ong-polytorque, , : ',rpm,torque, '*'1;
title{'Motor Torque VB. Motor Speed');
xlabel ('Motor Speed (RPM) ');
ylabel{'Motor Torque (oz-inl ') i

grid;

figure \ then plot the power speed curve

power_c 2*pi/60 * torque .* rpm_cl;
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T161.M

polypower c = polyfit(rpm cl,power c,3);
val-polypower_c = polyval(polypower_c,x_axis) ;

wrong-power = 2*pi/60 .* torque .* rpm;
wrong-po1ypower ,., polyfit (rpm,wrong-power, 3) ;
val_wrong-po1ypower = polyval(wrong-polypower,x_axis);

plot (x_axis,val-polypower_c, '--',rpm_cl,power_c, '+', ...
x_axis,val_wrong-po1ypower,': ',rpm,wrong-power , '.'

) ;
title(IMotor Power OUtput VB. Motor Speed');
xlabel('Motor Speed (RPM) I);
ylabel('Motor Power Output (oz-in/sec) ');
grid;
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MYSIM17.M

function xdot=myeim17 (t,x)
%polytorque c = [-0.0006 -0.1132 71.2B];
%polytorque=c ~ [-0.0009 -0.0174 65.03B];
.m
polytorque_c = [-0.0004 -0.1682 73.54);

\torque speed for t171.m
% torque speed for t172

ttorque speed for t173.m

%offset 2 0.8; % this is the torque loss with no belt due
to shaft bearing or offset

toffset 2 11.9~0.B; % this is the torque loss due to a
belt. no load

offset 2 27.3 - O.B; t this is the torque losa due to t
he driven wheel being loaded
toffset .. 1B.7 - O.B; % this is the torque losa due to t
he drive being loaded

wc=7 + 2/16;
ww..2/16;
dw..2.5;
coef static frict = 0.8;
coef-sliding frict 2 0.5;
% set up a conditional statement so that if T/(dw!2) > coef_static
frict x N. then

\ the car is powered by the force of the sliding wheel, T/(dw/2) -
coef sliding frict x N.

a = 386.4; ­
const=60/(pi*dw) ;
Ib to oz 2 16;
xdot ~ zeros (2, 1) ;
xdot 2 (2*a*(polytorque_c(1)*const-2.*x(1) .-2 + polytorque_c(2)*co
nst.*x(1)+polytorque_c(3) - offset) ...

/(dW*(WC+l.5*ww)*lb_to_ozl ; x(i)];
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r

dia = 1:1:15;
time ~ [4.17 1.94 1.39
61.401.451.50];
xaxis ~ 0:.1:15;

p=polyfit(dia,time,8);
vals=polyval(p,xaxis) ;
points (diameters) on

low ~ min (vals) ;
low_val = polyval(p,4)

WHEELDIl.M

1.18 1.12 1.12 1.14 1.18 1.22 1.27 1.31 1.3

% (X,Y,N)
% Evaluate p for times at each of 150

the x axis

plot (dia,time, '+',xaxis,vals, ' __ ')
xlabel('Wheel Diameter (Inches) 'I;
ylabel('Calculated Time To Traverse 48 Inches');
title('The Effect of Wheel Diameter on Simulated Vehicle Speed');
grid;

%all = [valsl
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TESTW03B.M

\ graph speed-time and distance-time data.
% It is necessary to manually enter the coefficients for the
% Matlab file 'mysim17.m'.

to =< 0; tf = 1.5;
xO = [0 0]';
[t,X] 2 ode23('mysim17',tO,tf,xO);
plot(t,x) ;
title('Calculated Vehicle Speed and Distance Traversed vs. Time')

(Seconds) ') ;
(in/s), and Distance (in)');

xlabel ( 'Time
ylabel ( , Speed
grid;
all = [t,xl
expl=< (r Time (8) Vel (in/sl
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Ac~wt1.m

x-O: .1: 45;
lbs ~ [7. 9 9. 9 14. 9 41. 3 ) ;
y-[1.71 1.81 1.83 2.46];

polyf - polyfit(lbs,y,l}
vals ~ polyval(polyf,x};

plot (x,vals, , __ , ,lbs, y, '+');

title('Measured Vehicle Time VS. Vehicle Load');
xlabel('Vehicle Load (Lbs.I'I;
ylabel('Measured Vehicle Time (5) 'J;
grid;
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Appendix E - Black Box Circuit Diagram and Filtering

Figure 75 shows the general layout for the black box circuitry. Perhaps one of the

greatest challenges encountered in the project involved processing the output signal from

the wheatstone bridge circuit. A variable potentiometer was used to set the gain as the

signal was amplified through the non-inverting amplifying circuit. Experimentation was

made with filtering after amplification using many different capacitors. Currently, no

filtering after amplification is in place. However, a 100 ~ capacitor placed between

locations 1 and 3 in the Wheatstone Bridge shown in Figure 75 provides filtering prior to

amplification. The experiments consisted of observing torque output on an oscilloscope

with various capacitors in place. Judgements were made in regard to the degree of

filtering of each capacitor, and the location of filtering.

Note in Figure 75 that location 1 of the Wheatstone Bridge circuit is the strain gage

input. Location 2 is the bridge output which is fed to the non-inverting amplifying circuit.

Location is the 18 VDC power supply ground, which is separate from the Main Power

Supply ground. Location 4 is connected to the Main Power Supply ground.

Figure 76 is a wiring schematic of the torque table, the black box, and the computer

data acquisition cord. The main power supply was purchased as a unit, and its circuitry is

not detailed. Additionally, not shown are the waH transformer circuitry, the motor power

supply circuitry, and the data acquisition board circuitry.
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Figure 75. Black Box Layout
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Appendix F - Strain Gage Location on Leg

Figure 77 shows how the strain gages are located immediately adjacent to the joint

made by the leg and the motor platform. This location is the most attractive because

stress at this point is greatest. Furthermore, reasonably uniform placement of the gage on

each leg was obtained simply by attaching the gage on the leg in the general position

which would allow the gage to be located as shown. Fine measurements can be made by

adjusting the legs within their clamps so that the backing material just touches the bottom

of the motor platform. In this way it was not necessary to maintain fine tolerances as

gages were glued onto the legs.

Please note that the platform and base are modelled as simple surfaces, and that the

damping mechanism is not shown for simplicity.

MOTOR PLATFORM

STRAIN GAGE

BASE

Figure 77. Strain Gage Location With Respect to the Motor Platform
and the Base
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