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CHAPTER! 

THE PROBLEM AND ITS SETTING 

INTRODUCTION 

Dr. Walter A. Shewhart introduced the concept of control charts in the 1920' s. 

The control charts were developed as tools for generating a picture of a process. The 

basis of these charts was that there are two types of variation: controlled (common 

cause) variation that is stable and consistent over time and uncontrolled (speci al cause) 

variation which changes over time. Dr. Shewhart made the following conclusions based 

on process variations; limits can be set, based on the natural variations of a process 

(common cause), so that as long as there are fluctuations between these limits only con­

trolled (common cause) variation is present and fluctuations outside these limits indicate 

uncontrolled (special cause) variation . If the process is influenced by only common 

cause variation then it is in a state of statistical control (SOSC) and can be used as a 

predictor of future occurrences; if influenced by speci al cause vari ati ons then it is not in 

a state of statistical control. Dr. Shewhart stated the followin g as concerned with stati s­

tical control: "A phenomenon will be said to be controlled when, through the use of pas t 

experience, we can predict, at least within limits, how the phenomenon may be ex­

pected to behave in the future (4, p. 6)." 

There are many different types of control charts used to study processes. The 

most commonly used control charts are X and R chalts which require meas urable qual­

ity characteristics. The data used in these charts are made up of subgroups (typically 

consisting of about four or five pieces of data) collected from the process in a rat ional 



manner. The X and R values are plotted in series on their respective graph to build 

control charts. These charts are utilized to monitor the process for changes in both loca­

tion and dispersion. The X control chart monitors the location of the process by plot­

ting the process average between subgroups. The R control chart monitors the disper­

sion of the data within the subgroups by plotting the range of data poi nts within each 

subgroup. 

The X chart is a very robust tool although its statistical foundation is based all 

the normal distribution. The robustness of this control charts is best explained by the 

central limit theorem which states that for a random sample of size n, if n is significantl y 

large, the sample averages have approximately a nonna] di stribution. The assumption 

of normality can be made even when the process ' s underlying distribution is 110n­

normal. 

The R chart can also be used to monitor variations in process spread when the 

underlying distribution is non-normal. The robustness of the R chart cannot, however, 

be explained by the central limit theorem. In fact, as sample sizes increa e, the di stribu­

tion of the subgroup ranges become more di ssimilar from normal. Although the prob­

abilities of type I errors for non-normal distributions fall short of those fo r the normal 

distribution, " ... both the Average Chart and the Range Chart can be said to be robust to 

those departures from normality which are likely to be encountered in practice. They can 

be used with confidence. They will work and they will work well even when 'the meas­

urements are not normally distributed' (4, p.76)." 
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The X and R control charts are not suitable for all situations. Someti mes there 

are special circumstances in a process that make subgroups impractical. Natural ub­

groups may not be feasible if there are long periods of time between measurement, a 

single measurement represents one batch, measurements are too time consuming to ob­

tain, or measurements are too expensive to obtain. In cases such as these, where n= I, 

X and R control charts are not applicable . Individual measurement X and moving 

range n=2 mR control charts are commonly applied when only a single measurement is 

taken at a time. An individual measurement X control chart is generated by plotting the 

individual measurements on a graph to evaluate the process' s location. The moving 

range n=2 mR chart is generated by plotting the successive differences between the in­

dividual values . 

The individual measurement X and moving range n=2 mR control charts do not 

possess the robustness of the X and R control charts. The underlying assum ption of 

normality is much more critical when there are no subgroups. Since the central limi t 

theorem does not apply to individual measurements, the quality characteri stic measure­

ments must be approximately normally distributed to easily and accurately generate ex­

isting individual measurement X and moving range n=2 mR control charts. 

In practice, all events cannot be explained by the normal distribution. There are 

many instances where processes represent asymmetrical di stributions. According to 

Irving Burr (1953), " .. . causes of non-normality is that the di stribution may be unable to 

go beyond a certain point, such as zero .... measurement has a physical limitation at zero 
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(5, p.80)." When the underlying distribution is asymmetrical the Pearson type ill family 

of distributions can be used to approximate the data (5, p.67). 

Despite the limitations, individual measurement X and moving range n=2 mR 

control charts are used in applications with non-normal distributions. As stated by 

Schilling and Nelson (1976), "In many applications the chart is applied withou t knowl­

edge of the shape of the underlying di stribution of indi viduals (3, p.1 83)." Conversely, 

Duncan (1986) states, "Control charts for individuals must be very carefully interpreted 

if the process shows evidence of marked departure from normality. In such cases , the 

multiples of cr used to set control limits might be better derived from other distributions 

for which the percentage points have been computed (6, pAOO). " There is only limited 

research concerned with the use of individual measurement X and moving range n=2 

mR control charts in industry when the underlying process distribution is non-normal. 

GENERAL STATEMENT OF THE RESEARCH PROBLEM 

The problem of this research is to create and validate a mathematical model fo r 

determining the location of upper and lower control limits on individual measurement X 

and moving range n=2 mR control charts for asymmetrical distributions . 

The sub-objectives of this study are as follows: 

(I) Develop mathematical models representative of the upper and lower control limits 

for asymmetrical distributions based on the shape parameter (ex.) and the scale pa­

rameter (~) from the Pearson Type ill family of distributions with location parame­

ter c=O (gamma distributions). 
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(2) Evaluate the performance of the individual measurement X and moving range n=2 

mR contra} charts, based on average run lengths (ARL) and vari ation of run length 

(VRL) using the Pearson type ill family of distributions with location parameter c=O 

(gamma distribution) control limits determined from objective I. The performance 

will be evaluated against a level that is acceptable for practical application in indus­

try and compared with methods having symmetrical control limits. A level that is 

acceptable for practical application in industry means that the average run length 

CARL) for both the individual measurement X and moving range n=2 mR control 

charts is a minimum of 100, which is equivalent to a 1 % chance of a type I error, 

when the process is in a state of statistical control. 

(3) Compare the power of the individual measurement X and moving range n=2 mR 

control charts using the Pearson Type ill family of distributions with location pa­

rameter c=O (gamma distribution) asymmetrical control limits with those methods 

having symmetrical control limits. The power in this case refers to the ability of the 

control charts to detect shifts in process location of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 Ox 

units. 

THE DELIMIT A TIONS 

The following limitations pertain to this research: 

• This study is limited to the evaluation of control limits for individual measurement 

X and moving range n=2 mR control charts which apply to non-normal distributions 
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generated by the Pearson type ill family of distribution where c=O (gamma di stribu­

tion). 

• The Pearson type ill family of distributions with location parameter c=O have a 

range of values from (0, +(0); therefore. values of X (quality characteristic) cannot 

take on negative values. 

• The Pearson type ill family of distributions with location parameter c=O will on ly be 

evaluated where the shape parameter alpha (a) is greater than or equal to the value 

of 1. 

• Type I (a') errors are evaluated for points outside the upper and lower control limits. 

Runs rules are not used in the evaluation of these errors. The notation (a') is used to 

distinguish type I error fom the gamma distribution shape parameter (a). 

• The evaluation of average run lengths CARL) do not consider shifts in the process 

standard deviation. Only shifts in the mean are considered. 

DEFINITION OF TERMS 

Average run length(ARL) - The average number of subgroups taken before an out-of­

control condition is given on the control chart. 

Central limit theorem - Let X 1,X2, ••• ,Xn be a random sample from a distribution with 

mean "J.1" and standard deviation "cr" . Then, if "n" is sufficiently large, the 

sample average has approximately a normal di stribution with mean "J.1" and 

standard deviation "cr/">lo". The larger the value of "n" the better the approx ima-

tion. 
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Control chart - A graphical chart with control limits and plotted values of some statisti­

cal measure for a series of samples or indi vidual values. Control charts are tools 

u ed to detect the presence of uncontrolled variation in a proce s in order to in ­

dicate when predictions regarding the future can be made. 

Control limits - Limits on a control chart based on the data or standards given which are 

used as criteria for action or for judging the significance of variations between 

samples or individual values. 

Individual measurement X control chart - A control chart used to evaluate the process 

level in terms of a single observation per sample. These charts are usually used 

when rational subgrouping is not appropriate. 

Moving range - The successive absolute differences between individual values. 

Moving range n=2 mR control chart - A control chart for evaluating the variability 

within a process in terms of the range of the latest two observations in which the 

current observation has replaced the oldest of the previous two observations. 

Pearson Type III family of distributions - A family of distributions that, according to 

Burr (5, p. 67), may be used as a second approximation of the curve shape of the 

distribution if much asymmetry is present. The Pearson Type III family of di stri­

butions with location parameter c=O are gamma distributions which go from bell 

shaped curves with range (0, +00) to J-shaped curves with range (0, +co). 

Process - The set of individuals, items, or data from which a statistical sample is taken, 

usually in time order. 
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Random sample - A sample that contains independent observation selected from the 

same population or universe. 

Range - The distance between the largest and smallest values in a subgroup. The range 

is used as a measure of dispersion. 

Run length - The number of subgroups taken before an out-of-control condition is given 

on the control chart. 

Type I error (ex') - The probability of demonstrating that a process IS out-oF-control 

when it is in control. It is the probability of getting a false alarm. 

ABREVIATIONS AND NOTATIONS 

Symbol Term Definiti on 

ARL Average run length lIP or liP' 

ex' Type I error 

ex. Shape parameter for the gamma di stribu-

tion 

P' Type II error 

P Scale parameter for the gamma di stribu-

tion 

c Location parameter for the Pearson Type 

III distribution 

CLmR Center line for moving range control mR 

charts 
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CLx 

d2 

d3 

D4 

E2 

k 

k' 

LCLx 

mR 

mR 

mR chart 

n 

N 

P 

P' 

Center line for individual control charts 

Bias correction factor 

Bias correction factor 

Control chart constant 

Control chart constant 

Number of subgroups 

Number of subgroups used to set control 

chart limits. 

Lower control limit for individual meas-

urement X control charts 

Mean of theoretical probability distribu-

tion 

Moving range 

A verage moving range 

Moving range n=2 control chart 

Number of items in a subgroup 

Number samples or subgroups 

Probability of detection on an X chart 

probability of detection on an mR chart 

9 

X 

RIO' or mR /a 

aRIa 

1+3 d3 /d2 

3/d2 

X - 3 mR /d2 

IXi+I-Xd 

I mR I(N- I) 

Probability(UCLx<X or 

X<LCLx) 

Probability(mR>UCLrn R) 



R Range of a set of data Xmax-Xlllil1 

R A verage range LR,IN 

s Sample standard deviation for a set of I(x, - X) 2 I(n-I) 

data 

aR Standard deviation of the theoretical dis- d30" 

tribution of ranges 

ax Process standard deviation 

SOSC State of statistical control 

t Multiple of a units the control chart lim-

its are from the center line. 

UCLmR Upper control limit for moving range D4mR 

control charts 

UCLx Upper control limits for individuals C011- X + 3 mR/d2 

trol charts 

VRL Variance of run length expressed as mul-

tiples of standard deviations. 

X An individual measurement 

X A verage of a set of data Ix, In 

X chart Individual measurement control chart 

X(u, P) Gamma distribution with parameters 0: 

and p 
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THE ASSUMPTIONS 

The following assumptions pertain to this research: 

• The use of individual measurement X and moving range n=2 mR control chart will 

continue to have widespread use in industry in the future . 

• The individual measurements are not correlated. 

• The acceptable minimum average run length (ARL) in industry for the combination 

of control charts (X and mR) is 100 when the process is in a state of statistical con­

trol (SOSC). An ARL of 100 is equivalent to a 1 % risk of having a type I (a') error. 

THE IMPORTANCE OF THE STUDY 

The purpose of this research is to create a method of determin ing control limits 

for non-normal distributions which will support the widespread use of indi vidual meas­

urement X and moving range n=2 mR control charts in industry. 
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CHAPTER 2 

REVIEW OF RELATED LITERATURE 

HISTORY 

Throughout history, quality has been built into products . The early colonists and 

immigrants in the United States fan owed the concepts of craftsmanship that were prac­

ticed in their countries of origin. At an early age, a boy would become an apprentice and 

learn a skilled trade from a master. One of the lessons learned from the master was to 

control the quality of the product through inspection before sale. The quality of the 

products was essential because the craftsman had a large stake in meeting customer 

needs. Product quality was a reflection of the craftsman's skill. 

The industrial revolution, which began in Europe, brought changes to controlling 

the quality of products. The factory system of manufacturing products was becoming 

increasingly popular. The trades that the craftsman practiced were divided into many 

specialized tasks that could be performed by semiskilled or unskilled workers. The 

skilled craftsman were no longer needed and the ability of a person to self-inspect a 

product's quality throughout its entire ma.nufacture was lost. To maintain quali ty under 

the factory system, fu n time inspectors would report to departmental production sllper­

visors. Product was either "good" or "bad" based on specification limits. 

In the 1920' s, Dr. Walter A. Shewhart introduced the concept of stati st ical qual­

ity control to American industry. According to Dr. Shewhart, statistical tools could be 

applied in a manufacturing setting to control the quality of manufactured product. One 

of the tools of statistical quality control was the Shewhart control chart. The purpose of 
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Shewhart's control charts was to determine if a sequence of data may be u ed for pre­

dictions of what will occur in the future and to warn of instability. These control charts 

develop a picture of the process which aids in the evaluation of the process's perform­

ance. The history of quality can be found in part or in full in numerous texts such as 

Burr 1953 (5), Duncan 1986 (6) , Joiner 1994 (11), and Juran 1995 ( I I) . 

SHEWHART CONTROL CHARTS 

The basis of the Shewhart control charts is variation. There are two types of 

variation that can affect a process; chance cause (common cause) variation and assign­

able cause (special cause) variation. Chance cause variation, also referred to as con­

trolled or common cause, is present in the process all the time. It is characterized by a 

stable and consistent pattern of variation over time. Assignable cause variation, also re­

ferred to as uncontrolled or special cause, is not always present in the process . This 

variation changes over time and comes from outside the process . References for process 

variation and the basis of Dr. Shewhart' s control charts can be fOllnd in many texts il1-

eluding Burr 1953 (5), Duncan 1986 (6), Wheeler 1992 (4), Deming 1993 (9) , and 

Joiner 1994 (11 ). 

Dr. Shewhart made the following conclusion based on process variations: 

"Limits can be set, based on the natural variations of a process, so that as long as there 

are fluctuations between these limits only controlled variation is present, and tluctua­

tions outside these limits indicate uncontrolled (special cause) variation. If the process is 

influenced by only common cause variation then it is in a state of statistical control 
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(SOSC) and can be used as a predictor of future occurrences, if influenced by special 

cause variations then it is not in a state of statistical control. Dr. Shewhart stated the 

following as concerned with statistical control: "A phenomenon will be said to be con­

trolled when, through the use of past experience, we can predict, at least within limi ts , 

how the phenomenon may be expected to behave in the future (4, p. 6)." 

X AND R CONTROL CHARTS 

There are many different types of control charts used in industry. The most 

commonly used control charts are the X ancl R control charts. According to Juran. 

"Where the characteristic under study can be measured along a scale of measurement, 

the X and R charts have proved to be of great value and should be ll sed in place of p 

and c charts (7, p.389)." There are two requirements for using X and R charts. First , the 

quality characteristic must be measurable, and second, these control charls require that 

data be collected in subgroups. The subgroups should be collected in a rational manner. 

In other words, the subgroups should be such that if special causes are present they will 

show up in the differences between subgroups instead of within the subgroups. 

The X control charts are used to monitor variation between subgroups. This is 

accomplished by monitoring the differences between subgroup averages . According to 

ANSVASQC Standard A 1- 1978, "Averages are generall y used for the purpose of de­

termining whether there are differences between subgroup levels ( 12, p.3)." 

The X chart has a center line and control limits. The center line of the X con­

trol chart is set at: 

14 
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CL x = x 

where X is the average Xof all the data (or the average of the subgroup averages). 

The control1imits DCL x and LCL x are set +/- 3 cr x units away from X. 

UCL x = X +36 x 

LCL x = X -36 x 

where 6 x is an estimate of cr x derived from the data. 

The estimate, 6 x ,depends on the subgroup size, n, and is calculated as follows: 

6 x = dx /-Vn 

where d x is an estimate of the process standard deviation crx derived from the data. 

The range (R) control charts monitor the variation within subgroups. This is ac­

complished by monitoring the range of data points that are collected for each subgroup. 

According to ANSI/ASQC Standard AI-I978. "Ranges of the indiv idual observation 

within the subgroup or sample are used to estimate the vari ability from chan ce cause 

within short time intervals and ordinarily should not include assignable causes. These 

ranges serve to estimate the inherent variability within all essenti ally unchang ing proc­

ess (12, p.3)." Although standard deviation is a more common measure of variability in 

most applications, ranges are used because they are easier to compute. The range should 

not be used, however, for subgroup sizes greater than 10 (n> 1 0). 

The range control chart has a center line and control limits based solely on sub­

group ranges. The center line of the R control chart is set at: 

15 



-

CL R = R 

where R is the average of all the subgroup ranges. 

The control limits UCLRand LCLRare set +/- 3 aR units away from R . 

UCLlF R + 3d-I{ 

LCLIF R - 36R 

where d-Ris an estimate of the range standard deviation aRderived from the data. 

The X and R control charts are considered very robust tools although their sta­

tistical foundation is based on the normal distribution. The robustness of the X control 

chart is best explained by the central limit theorem. The central limit theorem states: 

"Let X"X2, ... ,Xn be a random sample from a distribution with mean "11" ancl standard 

deviation "a". Then, if "n" is sufficiently large, the sample average has approximately a 

normal distribution with mean "Jl" and standard deviation "a/-Vn". The larger the value 

of "n" the better the approximation." From the above definition of the central limit theo­

rem, the X chart can be used without having concern about lhe underlyin g distribution 

of the process as long as the subgroup size is sufficiently large. According to Dr. She­

whart, "Such evidence ... Ieads us to believe that in almost all cases in pract ice we may 

establish sampling limits for averages of samples of four or more on the basis of normal 

law theory (13)," 

The R chart can also be used to monitor vari ations in process spread when the 

underlying distribution is non-normal. The robustness of the R chart cannot, howeve r, 

be explained by the central limit theorem. In fact, as sample sizes increase, the di stribu­

tion of the subgroup ranges may become more dissimilar to the parent distribution. In a 
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study perfonned by Wheeler and Chambers (4, 1992), the subgroup ranges of five nOI1-

normal distributions were evaluated for type r errors using the common limit of 3aR 

units from the center line. The evaluation was performed for sample sizes of n= 2, 4, 

and 10. The resulting probabilities of a type r error for a highly skewed distribution were 

0.026, 0.026, and 0.04, respectively. Although the probabilities fall short of the 0.0 I, 

0.005, and 0.005 probability of a type I error for the normal di stribution, " ... both the 

A verage Chart and the Range Chart can be said to be robust to those departures from 

nonnality which are likely to be encountered in practice. They can be used witb confi­

dence. They will work and they will work well, even when 'the measurements are not 

normally distributed' (4, p.76)." 

INDIVIDUAL MEASUREMENT X AND MOVING RANGE n=2 mR CONTROL 

CHARTS 

The X and R control charts are not suitable for all industrial situations. Some­

times there are special circumstances in a process that make subgroups impractical. 

Natural subgroups may not be feasibl e if there are long periods of time between meas­

urements, a single measurement represents one batch, measurements are too time con­

suming to obtain, or measurements are too expensive to obtain. In cases such as these, 

where n=l, X and R control charts are not applicable. Individual measurement X and 

moving range n=2 mR control charts are commonly applied when only a singl e meas­

urement is taken at a time. According to Wadsworth, et aI., "Their use is generally re­

served for process and product characteristics for which it is impractical or unreasonable 
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to rep licate observations and to form subgroups of observations to aid the study of proc­

ess variation (14, p.143)." 

The individual measurement X control chart monitors the process level. T hi s 

control chart has a center line and control limits based on the indi vidual value X. T he 

center line on this control chart is set at 

CLx= X 

where X is the average of all the individual metl-,>ures. 

The control limits UCLx and LCLx are set at +/- tax from X (22, p. 275-7) 

UCLx = X + td-x 

LCLx = X - td"x 

where d- x is an estimate of the process standard deviation ax derived from the indi­

vidual measurements X. 

The common form of the individual measurement X con trol chart has an unde r­

lying process distribution that is normal. In common form, the mul tiple of standard de­

viations, t, the limits are from the mean is equal to 3 (4, p. 60). The control limits UCLx 

and LCLx become 

UCLx = X + 3d-x 

LCLx = X - 3d-x 

The moving range n=2 mR con trol chart monitors the variation within th e proc­

ess . T his control chart has a center line and control I imits based on the range between 

the two latest individual measurements X. The center line on this control chart is set at 
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CLR = mR 

where mR is the average of k-l moving ranges formed from consecutive n=2 observa­

tions. 

The upper control limit UCLmR is set at t<JmR above the center line mR (22. p. 275-7 ) 

UCLmR = mR + td"rnR 

The common form of the moving range n=2 mR control chart has an underlying 

process distribution that is normal. In the common form, the multiple of standard devi a­

tions, t, the limit is away from the mean is equal to 3 (4, p. 60). The control limit 

UCLrnR becomes 

UCLmR = mR + 3d-JIll{ 

The individual measurement X and moving range n=2 mR control charts do not 

possess the robustness of the X and R control charts. The underlying assumption of 

normality is much more critical when there are no subgroups (5, p. 266-7). S ince the 

central limit theorem does not apply to individual measurements, because n= I. the 

quality characteristic measurements must be approximately normally distributed to eas­

ily and accurately generate existing individual measurement X an d moving ran ge n=2 

mR control charts . When the process distribution is not approximately normally di s­

tributed, the value of t=3 may not produce control limits that are acceptable for use in 

industry . 
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APPLICATION OF X & mR CONTROL CHARTS 

In practice, all events cannot be explained by the normal di stribu tion. Many of 

the distributions encountered in every day experiences are non-normal. Economical, 

physical, chemical, and biological factors typically have distributions that are skewed. 

According to Irving Burr" ... cause of non-normality is that the distribution may be un­

able to go beyond a certain point, such as zero .... measurement has a physical limitation 

at zero (5, p.80)." When the underlying distribution is asymmetrical, the Pearson type 

III family of distributions can be used to approximate the data (5, p.67). 

Despite the limitations, individual measurement X and movi ng range n=2 mR 

control charts based on the normal distribution are used in applications with non-normal 

distributions. As stated by Schilling and Nelson, "In many applications the ch art is ap­

plied without knowledge of the shape of the underlyin g distribution of ind ividu als (3 , 

p.183)." Conversely, Duncan states, "Control charts for individuals mllst be very care­

fully interpreted if the process shows evidence of marked departure from normality_ In 

such cases, the multiples of (j' used to set control limits might be better derived from 

other distributions for which the percentage points have been computed (6, pAOO). " By 

Duncan's statement above, the value of "t" used in setting control limits on individual 

measurement X and moving range n=2 mR control charts for skewed distribution s 

should be ba<;ed on a distribution more accurately representing the process. As stated in 

the previous paragraph, the Pearson type III family of distributions with location pa­

rameter c=O can be used to approximate asymmetrical distributions. 
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Individual measurement X and moving range n=2 mR control charts are com­

monly used in industry. Unfortunately, they may produce inaccurate representations of 

the process if the underlying process distribution is non-normal. To use indivi iual 

measurement X and moving range n=2 mR control charts appropriately there must be a 

method for setting control limits that more accurately predict the stability of the process . 

Research concerned with these control limits has been limited. although the need is jus­

tified. 

CURRENT RESEARCH 

The only research found that addresses non-normal individual measurement X 

and moving range n=2 mR control chart limits was performed by Jose Oyon, 1995. 

Oyon (8), in an unpublished master of science thesis, studied the effect of non-normality 

on individual measurement X and moving range n=2 mR control charts. In thi s thes is, 

Oyon did the following: 

I. Evaluated the performance of the individual measurement X and moving range n=2 

mR control charts using t.he constants d2, d3, and D4 under the assu mption of' nor­

mality when the underlying distribution was Pearson type III family of di stri butions 

with location parameter c=O. 

2. Determined empirical functions for the control chart constants d2, d:;, and D4 when 

the process distribution was approximated by the above distribution. 
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3. Compared the performance of the individual measurement X and moving range n=2 

mR control charts with control limits based on the normal distribution to those 

based on the Pearson type III family of distributions with location paramete r c=O. 

Oyon made the following conclusion from his research: 

1. The individual measurement X and moving range n=2 mR control charts based on 

the normal distribution do not work well when the underlying process distribution 

shows a marked departure from normality . 

2. Control chart constants based on the gamma distribution perform better than those 

based on the normal distribution when the process distribution is nOIl-noTmal and 

perform approximately the same when the process distribution is normal. 

Although the gamma control chart constants perform better than the normal 

control chart constants, the false alarm rate produced from the gamma control ChaJ1 con­

stants does not meet industry standard of I % when the process is in SOSc. On e possible 

reason for the high false alarm rates is that the gamma control cha rt constants are used 

to produce symmetrical control limits for process distributions that are asymmetrical 

(skewed). It may be poss ible to improve the performance of indiv idu al measurement X 

and moving range n=2 mR control charts for skewed distributions if asymmetrical COI1-

trollimits are developed. 

No other work was found that addresses the effects of non-normality on individ­

ual measurement X and moving range n=2 mR control charts. 
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CHAPTER 3 

THE RESEARCH METHOD 

Section 1: INTRODUCTION 

The following sections of Chapter Three explain the methodology for 

performing this research. The sections of this chapter are outlined below: 

1. Introduction 

2. General Data 

2.1 The Data 

2.2 Criteria for Admissibility 

2.3 The Research Methodology 

3. Specific Treatment of the Data for Each Sub-objective 

3.1 Sub-objective One 

3.1.1 Individual Measurement X Control Chart Limits 

3.1.1 .1 The Upper Control Limit 

3.1.1.2 The Lower Control Limit 

3.1.2 Moving Range n=2 mR Control Chart Limits 

3.2 Sub-objective Two 

3.3 Sub-objective Three 

Section one of Chapter Three is intended to clarify the methodology of this 

research. Section two is intended to characterize the data that is used to devclop the 

asymmetrical control limits. The Data describes the primary source of the data used to 

develop the control limits. The Criteria for Admissibility defines the established limits 
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and standards that the data must meet to be admitted into this research. The Research 

Methodology classifies the methodology of thi s research. 

Section three of this chapter explains (he specific steps for each sub-objecti ve of 

this research. The flowchart on the following page (Figure 3-1) is included as a guide 

for the research methodology. Section three is broken into three main sub-sections; sub-

objective one, sub-objective two, and sub-objective three. The statement of the sub-

objectives is found in their respective sub-sections. The following is an overvi ew of the 

main sub-sections: 

Sub-section 3.1 overview 

Sub-section 3.1 develops mathematical models representative of the upper and 

lower control limits for asymmetrical distributions based on the shape parameter (a) and 

the scale parameter (~) from the Pearson Type III family of di stri butions with locati on 

parameter c=O (gamma distributions). These mathematical models are for the multi ple 

of standard deviations the control limits are from the mean (t values) . The mathematical 

models are generated in two different sections. One section is for the generation of the 

mathematical models for the individual measurement X control chart (tl and t2) and the 

other for the moving range n=2 mR control chart (t3 ). 

Section 3 .t. I develops the mathematical models for the upper and lower control 

limits of the individual measurement X chart. To develop these mathematical models an 

upper control limit is foulld which leaves 0.00135 of the area under the Pearson type III 

(c=O) distribution beyond the upper control limit and a lower control I imit is found 

which 
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Determine lt1e UCL for the x­
chart based on the Gamma 
d ib' I d'ff I • Istn ullon or I erent va ues 

1'01 a and 13· (Section 3.1 .1.1 
step 1) 

~ 
Create a mathematical model for 
the UCL < t1> based on the 
predictors a and 13 (Section 
3.1.1 .1 steps 2 & 3) 

~ 
Determine the LCL lor the X· 
chart based on the Gamma 
distribution for different values of 
ex and 13. (Section 3.1.1 .2 step 1) 

~ 
Create a mathematical model for 
the LCL < 12 > based on the 
predictors a and 13. (Section 
3.1.1.2 steps 2 & 3) 

~ 
Locate the UCllor the mR ehart 
based on tile Gamma distribution for 
diNerent values 01 a , Parameter ~ is 
shown to have no effect, (Section 
3.1,2 steDs 1-6) 

~ 
Create a mathematical model lor 
the UCL <b> based on the 
predictors (l and ~, (Section 3,1,2 
steps 7 & 8) 

1 
Produce 50 random variates 
from a distribution. (Section 
3.2 step 6) 

~ 
Calculate the Normal 
conlrollimits based on 
the 50 random variates. 
(Section 3.2 step 7) 

~ 
Fit the 50 random variates to 
the gamma distribution's a 
parameter. (Section 3.2 step 
7) 

Calculate the d'2, d'l, and D'4 
values from Oyan (1995). ~ 
(Section 3.2 step 8) 

! 
Calculate control limits based on 
Oyan's "d" values. (Section 3.2 step 
8) 

l 
Calculate the tl, \2 , and values 
from the mathematical models found 
in previous steps of this research. 
(Sect ion 3.2 step 10) 

~ 
Calculate the asymmetrical control 
limits based upon the "r values, 
(Section 3,2 step 11) 

~ 
Adjust the previous controllimils 
(Normal, Oyon, and Asymmelrical) to 
simulate a shift in the mean 01 0.5, 
1.0, 1.5, 2.0, 2.5, and 3.0 standard 
deviations. (Seelion 3.3 steps 1 & 2) 

~ 
For each control chart, produce 
random variates until a value lalls 

Repeat 
outside of the control limits, (Section 

1000 
3,2 step 12 & Section 3.3 step 3) 

times ~ 
Calculate the ARL & VRl lor the 
control charts based on the 1000 runs 
and build Rl histograms.(Section 3.2 
slep 13 & Section 33 step 4) 

1 
Place ARLs in Tables for analysis. 
(Section 3.2 step 14 & Section 3.3 
step 5) 

! 
( END ) 

Figure 3-1: Research Methodology Flow Chart 
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leaves 0.00135 of the area below the lower control limit. In this section the area is found 

by integration. Control limits are located for diffe rent combinations of the shape 

parameter (a) and the scale parameter (~) of the Pearson type III (c=O) di stribut ion. The 

control limits are expressed as multiples of the standard deviation from the mean. The t l 

value represents the multiple of standard deviations for the upper control limit and the t2 

value represents the multiple of standard deviations for the lower control limit. 

The next step in developing the mathematical models for tl and t2 is to use the 

"t" values (from the different a's and ~'s) to develop the actual mathematical 

expressions. Multiple regression models are developed which predict the "t" values 

using the (a) and (~) parameters as the predictors. There are different mathematica l 

models which can represent the behavior of the "t" values, so, by trial and error, mode ls 

are found which do a good job of predicting tl and t2 but may not be the only mode ls 

that can be used. A global F test is used to test the va,lidity of the multipl e regression 

models selected. 

Section 3. 1.2 develops the mathematical model for the upper control Ii mil of" the 

moving range n=2 mR control chart. In this section of the research, two streams of 

random numbers are generated from the Pearson type III (c=O) distribution and the range 

for the corresponding values of those streams are found. The ranges for subgroups n=2 

are used instead of moving range values for two reasons: 

1. There is correlation between the moving range values . 

2. Current methods for setting control I imits on the moving range charts are 

based on the range of n=2 . 
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The next step is to find an upper control limit which leaves 0.0027 of the ranges 

beyond the limit. The area of 0.0027 is used because it is consistent with the 

probabilities of the individual measurement X chart when the subgroup size is Ie than 

seven (since only an upper control limit exists on the range chart). Control limits are 

found for different shape parameters (a) of the Pearson type ill (c=O~ di stribution. 

Previous analysis of the individual measurement X control charts indicate that ~ does 

not have an effect on the control limit of the moving range chart. Appendix A 

demonstrates that ~ has little or no effect on the control limits ; therefore, ~ is 110t 

included in the development of the moving range n=2 mR control limit. The control 

limit is stated as a multiple (t3) of the standard deviation of the i ndi vi dual ranges . A 

mathematical model for t3 is found in the same manner as for the individual 

measurement X control1imits . 

Sub-section 3.2 overview 

Sub-section 3.2 evaluates the performance of the individual rneasurement X and 

moving range n=2 mR control charts based on average run lengths (ARL) . Despite 

limitations, individual measurement X and moving range n=2 mR control charts based 

on the normal distribution are used in applications with underlyin g process di stributions 

that are non-normal. As stated by Schilling and Nelson, "In many applications the chart 

is applied without knowledge of the shape of the underlying distribution of individuals 

(3, p.l83)." The idea of this sub-section is to evaluate the performance of individual 

measurement X and moving range n=2 mR control charts having asymmetrical co ntrol 

limits based on the Pearson Type III family of distributions with location parameter c=O 
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(gamma distribution) to those having symmetrical control limits based on the ame 

distribution. The asymmetrical control limits are also compared to those based on the 

normal distribution since control chart limi ts based on normality are commonly used in 

industry. 

The evaluation is performed by generating random variates from a parent 

distribution which is assumed to be unknown. Control limits are calculated for Normal 

Shewhart limits, symmetrical control limits based on the Pearson type III (c=O) 

distribution (Oyon 1995), and the asymmetrical control limits based on the Pearson type 

ill (c=O) distribution. In order to calculate the latter two sets of control limits , the 

randomly generated variates are fit to the Pearson type ill (c=O) distribution. The 

method of fit used in this research generates (ex) and (~) values which are used in the 

mathematical models for calculating the "d" values (needed for Oyon 's limits) and the 

"t' values from this research . 

Next, random variates are generated from the same parent di stribution until an 

out-of-control signal is detected on each of the three individual measurement X and 

three moving range control charts. A run length (RL) is recorded for each control chart 

(both X and mR) and the above steps (setting control limits and determining RL' s) are 

repeated 1000 times. An average run length CARL) and variance of run length (YRL) is 

found for each control chart (6 total) and recorded for analysis ill Chapter Four. The run 

lengths are stored and presented as a histogram. The chart in Appendix J demonstrates 

the logic used in the evaluation of sub-objectives 3.2 and 3.3. 
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Sub-section 3.3 overview 

Sub-section 3.3 compares the power of the individual measurement X and 

moving range n=2 mR control charts using the Pearson Type III c=O asy mmetrical 

control limits with those methods having symmetrical control limits (Normal and 

Oyon). The power, in this case, refers to the ability of the control charts to detect shifts 

in process location of 0.5, 1.0, 1.5. 2.0, 2.5, and 3.0crx units. A type II error (~') is the 

probability of concluding a process is in-control when it is actually out-of-control. The 

power of a control chart is a function of a type II error. The power is equal to 1 - ~ and 

is the probability of detecting an out-of-control condition. Generally, type I and type 11 

errors are negatively correlated. As the type I errors are reduced, the type n errors 

increase which in turn decreases the power of the control charts. Di scussions of these 

types of errors can be found in many texts including Hayes (17), Savage (18), Hair ( 19), 

and Miller (20). Previous sub-objectives of this research attempt to find control limits 

which have smaller type I errors than existing methods, therefore, it is important to 

evaluate the effect of asymmetrical limits on the power of the individual measurement X 

control charts. 

Section 2: GENERAL DATA 

2.1: The Data 

The primary source of data used to develop asymmetrical control limits consist 

of values generated from the Pearson Type ill fam ily of distributions with location 
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parameter c=O (gamma distributions). Random variates are generated from the normal 

distribution, the log-normal distribution, and the gamma distribution to evaluate the 

performance of the asymmetrical control limits developed from the Pearson Type liT 

family of distributions. 

2.2: The Criteria for the Admissibility of the Data 

The criteria for the admissibility of the data used for this research is as follows: 

• Only values generated from the Pearson Type III family of distributions with 

location parameter c=O (gamma distributions) are utilized in the development of the 

mathematical models for t I, t:2, and t~. 

• Only a (shape parameter) values greater than or equal to the value of 1.0 are applied 

to the Pearson Type III family of distributions with location parameter c=O (gamma 

distributions). 

• Only ~ (scale parameter) values equal to I, 2, and 5 are applied to the Pearson Type 

III family of distributions with location parameter c=O (gamma distributions). 

2.3: The Research Methodology 

The method of research used in this study is based on numeri cal data. Since the 

data are numeric, quantitative methodology is utilized to conduct this research. 

Section 3: SPECIFIC TREATMENT OF THE DATA FOR EACH SUB-OBJECTIVE 

3.1: Sub-objective one: 

Statement of the Sub-O~jective: Develop mathematical models representative of 

the upper and lower control limits for asymmetrical distributions based on the shape 
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parameter (a) and the scale parameter (~) from the Pearson Type ill family of 

distributions with location parameter c=O (gamma distributions) so often encountered in 

industry. 

The Data Needed: The data needed for this sub-objective consist of values 

generated from the Pearson Type ill family of distributions with location parameter c=O 

(gamma distributions). The values generated from this distribution include individual 

measurements X, as taken from integrating the distribution, and range values, as 

produced from randomly generated observations. 

The Location of the Data: The Pearson Type ill family of di stribut ions with 

location parameter c=O (gamma distributions) have the following probability density 

function (pdf): 

All data needed in generating mathematical models representative of the upper and 

lower control limits for individual measurement X and moving range n=2 mR control 

charts are produced from this function. 

The Means of Obtaining the Data: The control limits required for sllb-obj ective 

one are obtained by integrating the above function (the specific treatment of the functi on 

is explained in the steps below). Mathcad for windows release 4.02 is utilized to 

perform the necessary integration of the Pearson Type m family of distributions with 

location parameter c=O (gamma distributions) and Minitab for Windows release 10.5 is 

used to generate random variates. 
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Treatment of the Data: The treatment of the data is explained separately for the 

individual measurement X control limits and the moving range n=2 mR control limits . 

The explanations are as follows on sub-sections 3.1.1 and 3.1.2. 

3.1.1: Individual measurement X control chart limits: 

Individual measurement X control charts based on the normal distribution have 

upper and lower control limits set at +/- 3Gx units above and below the average of a set 

of data. When these control limits are applied to a process having a normal distribution , 

there is a probability of approximately 0.00135 that a point will fall beyond the upper 

control limit and a probability of 0.00 135 that a point will fall below the lower control 

limit. To stay consistent with normal probabi Iity theory of statistical process control, the 

Pearson Type III family of distributions with location parameter c=O (gamma 

distributions) is evaluated against the same probabilities of a point fa lling outs ide 

control limits. This evaluation is described in the fo llowing paragraphs. 

3.1.1.1: The upper colltrollimif 

The following steps describe the methodology for generating a mathematical 

model for the asymmetrical upper control limit on the individual measureme nt X control 

chart. 

1) The value of the upper control limit for the Pearson Type III family of distributions 

with location parameter c=O (gamma distribution ) is located by integrating the 

distribution on Mathcad. An upper control limit (UCL) is generated which leaves a tail 

area of 0.00 135 beyond the limit. The UCL for the Pearson Type III family of 

distributions with location parameter c=O (gamma distribution) is denoted by (UCL) in 
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the equations below. The limit is evaluated in this manner for all combinations of 0: 

(shape parameter) = 1, 5(5) 135 and P (scale parameter) = 1, 2, and 5. As demonstrated 

in Appendix I, the a values represent a range of skewed distributions from exponential 

to approximately normal (since the gamma distribution cannot generate an exact normal 

distribution). The UCL's are expressed as a multiple of ax units (tl ) to the right of the 

mean of the distribution. The following equations are used to generate the limits: 

"OU r ", ,[il 
-.00135 = [ r(a) * x *e dx - I ~ (g iven a and ~. find UCLJ 

O"x = Ja * f3 2 

X(mean) = a* f3 

UCL-a*!3 
11 = multipl e of ax units from the mean = r:.:.::;:(i 2 

va * f3 

(eq.3-1) 

(eq. 3-2) 

(eq. 3-3) 

(eq.3-4) 

The multiple of ax units from the mean (lJ) generated in this step are paired with the ir 

associated a and P values and recorded as demonstrated in the table (Table 3-1) on the 

following page. 

2) A statistical software package (Minitab for Windows release 1 O.S)' which fea tures 

regress ion software, is used to generate different multiple regress ion models for 

predicting the tl value with the predictors a and ~. There are differe nt mathematical 

models which can predict the 11 values, so, by trial and error, a model is found which 

does a good job of predicting tl but may not be the only model that can be used. A 

mode] is chosen that has a high adjusted multiple coefficient of determi nation R 2, 
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Table 3-1: ax Units From the Mean (tl) 

ax units from the mean (t l ) 

ex ~ = 1 ~=2 ~=5 

1 5.6080 ).6080 ).6080 

5 4.2005 4.2005 4.2005 

135 3.2305 3.2305 3.2305 I 
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The adjusted multiple coefficient of detennination (R 2) is a sample statistic that 

demonstrates how well the mathematical model fits the data; therefore, it represents a 

measure of adequacy of the model. The R2 is defined as: 

3) A global F test is used to test the validity of the multiple regression model selected. 

The null hypothesis of this F test is: 

where An is the distance from the integrated 11 value to the cOITesponding tl value 

calculated from the multiple regression equation. The n = I, 2, 3, ... , k represent the A 

for the respective a.. = 1,5(5) 135. 

The null hypothesis is tested against the alternative hypothesis 

Ha : at least one of the A parameters does not equal zero 

The test statistic is defined by 

F = (R2!k)! { (l_R2 )![n-(k+ I)]} 

and the rejection region by 

F > Fa'. (k, n-(k+l» 

where 

k is the number of A parameters in the multiple regression model excluding the 

constant term ~. 

n is the number of integrated tl values used to generate the multiple regress ion 

model. 
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A/S are the distances from the integrated t[ value to the corresponding t[ values 

calculated from the multiple regression equation. 

a' is the significance level. 

3.1.1.2: The lower control limit 

The following steps describe the methodology for generating a mathematical 

model for the asymmetrical lower control limit on the individual measurement X control 

chart. 

1) The value of the lower control limit for the Pearson Type ill family of distributions 

with location parameter c=O (gamma distribution) is located by integrating the 

distribution on Mathcad. A lower control limit (LCL) is generated which leaves <l lail 

area of 0.00] 35 below the limit. The LCL of the Pearson Type 1II family of 

distributions with location parameter c=O (gamma distribution) is denoted by (LCL) in 

the equations below. The limit is evaluated in this manner for all combinalions of a 

(shape parameter) = 1,5(5)135 and ~ (scale parameter) = 1,2, and 5. The LCL's are 

expressed as a multiple of ax units (t 2) to the let'l of the mean o f the distri hution. T he 

following equations are used to generate the limits: 

(eq. 3-5) 

(eq. 3-2) 

mean = a* f3 (eq. 3-3) 
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a*13 - LCL 
t2 = Ox units away from the mean = ~2 

"a* [3 
(eq . 3-6) 

The t2 values are placed in a table similar to Table 3-1 in step I of section 3. 1. 1. 

Steps 2) and 3) are the same for the lower cont.rol limit as staled earlie r for the 

upper control limit. 

3.1.2: Moving range n = 2 mR upper control chart limits: 

The moving range 11=2 mR control charts are commonly used in indus try. 

Unfortunately, they may produce inaccurate representations of the process if the 

underlying process distribution is non-normal. As seen from previolls research by Oyon 

(1995), moving range n = 2 mR control chalts fall well sho rt of achieving ARLs of 100 

(the assumed ARL for industry acceptance in the research) for moving ranges of skewed 

distributions. The result of the poor performance of these charts is the appearance of 

many false out-of-control signals. To llse the movi ng range n=2 mR control charls 

appropriately, there must be a method for setting control limits that more accurately 

predicts the stability of the process. This portion of the research sets control limits based 

on the location (t3) of the upper control limits as a multiple of the standard deviation of 

the ranges. The (t3) values for the moving range n=2 mR control charts for skewed 

distributions are evaluated as follows : 

I) The value of the upper control limit for the moving range n = 2 mR control charl~ 

based on the Pearson Type III family of di stributions with location parameter c=() 

(gamma distribution) is located by simulating values of the distribution from 

Minitab. Two columns of k = 60,000 randomly generated observations are produced 

for aU values of a (shape parameter) = 1, 5, 10. 15, 20, ... , 135. The selection of the 
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number of subgroups, k = 60,000, is found in Appendix B. The scale parameter is 

not evaluated in generating this mathematical model for the ranges because it does 

not affect the value (t3) as demonstrated in Appendix A. 

The upper control limit for the mR chart is based on ranges of subgroup size two as 

is common with Shewhart 's mR control charts. Ranges of subgroup size 11=2 can be 

used instead of mR values. This is demonstrated in Appendix H. 

2) The observations are grouped in the following manner: 

Where Xi represents the first column of k = 60,000 observations and Y j represents the 

second column of k = 60,000 observations. 

3) The range for each pair of data is found using the following equation: 

4) The average range, R, is found wi th the equation: 

LR, 
R = -'--

k 

where k = 60,000. The value of R is found for each value of a (shape parameter) = I, 

5(5) 135. 

5) The standard deviation of the ranges, O'R, is found with the following equation: 

(j -R -

where k = 60,000. The value of (j R is found for each value of ex. (shape parameter) = I, 

5(5)135. 
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6) An upper control limit is generated for each a which leaves a tail area of 0.0027 (see 

introduction) outside the limit. In order to accomplish this step, the following equation 

is used: 

(eq.3-7) 

To locate the upper control limit, the values from steps 4 and 5 are applied to 

this equation and an appropriate (t3) value is found. This is accomplished by increas ing 

the value of (t3) by 0.0001 until 0.27% of the ranges are outside the control limits. 

The limit is evaluated in this manner for all values of a (shape parameter) = I, 5. 

10, 15,20, ... , 135. The results are expressed as a multiple of (jR units (t:l) to the right 

of the mean range of the distribution. The multiple of (jR unils from the mean (( 3) 

generated in this step are paired with their associated a values as demonstrated in the 

table (Table 3-2) on the following page. 

Steps 7) and 8) are the same as steps 2) and 3) for the upper ancl lower control 

limits of the individual measurement X control chart. 

3.2: Sub-objective two: 

Statement of the Sub-Objective: Evaluate the performance of the individual 

measurement X and moving range n=2 mR control charts , based on the average run 

length CARL) using the Pearson type In family of distributions with location parameter 

c=O (gamma distribution) control limits dete rmined from suh-objective I. The control 

charts are evaluated against an ARL that. is acceptable for practical application in 

industry and compared with methods having symmetrical control limits. An ARL that is 

acceptable for practical application in industry means that the average run length CARL) 
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Table 3-2: (j'x Units From the Mean (t3) for the UCL of the Range Chart 

(j'x units from the mean (t3) for the 

UCL of the range c hart 

a ~=I 

I 4.9826 

5 4.11 26 

10 3.9821 

135 3.6919 

40 

• • 
i · 
• • 
I 
I 



-

for each control chart is a minimum of 100 observations. An ARL of 100 i equ ivalent 

to a 1 % chance of a type I error when the process is tn a state of statisti cal control. 

The Data Needed: The data for sub-objective two consist of randomly generated 

variates from the normal, log-normal. and gamma distributions. Indi vidual measurement 

X and moving range n=2 mR control limits are also needed for the normal Shewhart, 

Oyon's symmetrical Pearson type ill (c=O), and asymmetrical Pearson type ill (c=O) 

control charts. 

The Location of the Data: The location of the data for sub-objective two is as 

follows: 

• A random variate generator is utilized to generate values from the norm al, log-

normal, and gamma distributions. 

• Symmetrical individual measurement X and moving range n=2 mR control limit 

equations based on the normal distribution produced by Dr. Shewharl are rOlln d ill 

various quality control texts including Wheeler and Chambers (1992), Burr ( 1(53), 

and Duncan (1986). These equations can be found in step 6 be low. 

• Symmetrical individual measurement X and moving range 11=2 mR control limi t 

equations are produced using the d ' ~ , d'3 , and D'4 values approximated by the 

Pearson Type ill family of distributions with location paramete r c=O (gamma 

distribution) from previolls research by Jose Oyon (1995). These equations can be 

found in step 8 below. 

• Asymmetrical individual measurement X and moving range n=2 mR control limit 

equations are produced using the mathematical models generated for the "t" values 
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approximated by the Pearson Type ill family of distributions with location 

parameter c=O (gamma di stribution). The mathematical models are produced in sub-

objective one above. 

Means of Obtaining the Data: The lndividuaI measurement X and moving range 

n=2 mR control limits are obtained through the calculation of the symmetrical and 

asymmetrical control limit equations. Equations 3-11 through 3-13 are for the normal 

control limits, equations 3-18 through 3-20 are for the Oyon control limits, and 

equations 3-21 through 3-23 are for the asymmetrical control limits. 

Treatment of the Data: The following is a detailed procedure to achieve sub-

objective two: 

1) Fi ve process distributions are selected to reprcsen t unknown parent d istri bu tions. 

The distributions are chosen to represent a variety of process distributions that occur in 

industry . The five process distributions selected are as follows : 

• Normal (40, 102) 

• Log-normal (0, 12) 

• Gamma(a= 1.5, ~ = 1) 

• Chi-square (df = 4) 

• Exponential (~ = 1) 

2) One set of k' = 50 observations IS gellerated from one of the five distributions 

selected in the previous step. 
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3) The average (X) is calculated for the 50 observation (the 50 observations for which 

the control limits are calculated are referred to as k'). The average is obtained us ing the 

following equation: 

(eq. 3-8) 

4) The moving range n=2 is calculated for the k' = 50 observations. The moving range 

n=2 is calculated by grouping the observations into subgroups of two consecuti ve 

measurements and then applying those subgroups to the following equation: 

mR. =IX 1 -Xl J 1+ I 
(eq. 3-9) 

5) The average moving range is calculated from the 49 moving ranges calculated in slep 

4 for the k' = 50 observations using the following equation: 

k -I 

ImRy 
- . y= 1 
mR = -'-(--,-)­

k'-J 

(eq.3-10) 

6) Control limits based on the normal distribution are calculate l. The individual 

measurement X and moving range n=2 mR control chart limits are calculated with the 

following equations: 

UCLx = X+2.66(mR) (eq.3-11) 

LCL. = X - 2.66(mR) (eq . 3-12) 

(eq.3-13) 

7) In order to calcu late the control chart constants based on the Pearson Type III family 

of distributions with location parameter c=O (gamma di stribution), the shape parameter 
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(a) has to first be estimated. The following was written by Jose Oyon (1995) in regards 

to estimating the parameters a and ~ for the Pearson Type ill family of distributions 

with location parameter c=O (gamma distribution): 

"In order to get the Pearson type III with c=O (gamma) control 

chart constants d2, d3, and D4 to be used in setting control iii-nits f or 

each run of (k') observations, Pearson type III parmneters ex and f3 have 

to be estimated from the (k') observations generated. 

"Since the process distribution is supposedly unkn own, the idea 

is to fit the data with a Pearson type III with c=O distribution hv 

estimating the parameters ex and f3 from the (k ') data values (gamma 

distribution assumption as the underlying process distribution). 

According to Fisher (I, p.332), the method of moments is inefficient to 

estimate parameters of a gamma distribution, except f or (I disfrihllfion 

closely resembling the normal distribution. Kendall and Stuart (2, p.3R) 

show that the efficiency of the estimated shape parameter ex 0/ a !!,mnma 

distribution In the method of moments mav be as low 22 percent. 

Therefore, Fisher (I, p .332) and Law and Kelton (I 5, p.331) recornmend 

the method of maximum likelihood estimation (MLE) in order to estimate 

the parameters ex and f3 of type If! from the data. 

"The difficulty in applying the method of maximum likelihood 

estimation to estimate the parameters ex and f3 of the gamma distrihution 

is that closed expressions for the maximum likelihood estimators a and 
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f3 cannot be obtained analytically. Therefore, numerical methods must 

be used to estimate the parameters a and [3 of the gamma distribution . 

"Choi and Wette (9, p.683) developed a numerical technique of 

fhe maximum likelihood method to estimate the parameters of the 

gamma distribution. This method is recommended by Law and Kelton 

(15, p. 331) to estimate a and [3. Therefore, this method is the one to be 

used in this (sub-objective two) to estimate a and f3 from the data ill 

order to fit a Pearson type III distribution with location parameter c=O 

(gamma distribution). " 

The maximum likelihood method stated above utilizes a T stati stic to estinlate 

the parameters (J. and ~ (15 , p.331). The T statistic is obtained with the following 

equation as given by Law and Kelton (15, p.410): 

[ 
_ LlnXj ]-J 

T= InX - k (eq.3-14) 

Using the T stati stic from the above equation, the estimator a can be obtai nec! 

using Table 6.19 in Law and Kelton (15, p. 411) . A reproduction of this table is 

included in Appendix C of this research. 

8) The control chart constants d'2, d' ,) , and 0'4 based on the Pearson Type ill family of" 

distributions with location parameter c=O (gamma distribution) are calculated for the k' 

= 50 observations. The following mathematical models (as produced by research from 

Jose Oyon (1995)) are used to generate the constants: 
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d'2 = 0.64282+0'(1J77~1-e-{).5a ) +0.3573~ l_e-2(1) +o.024S~ l_e-D.'(1) (eq. 3-15) 

d') = 0.859457 +O.2%4{e-{l) +O.2~e-{)·5<I ) +O.475~e-2(1) (eq.3-16) 

0 4 = 3.28976+ 1. 87(x)7( e --a) + O.l366~ e -o.l(1 ) (eq.3-17) 

9) Symmetrical control limits based on the Pearson Type m family of distributions 

with location parameter c=O (gamma distribution) are calculated. The individual 

measurement X and moving range n=2 mR control chart limits are calculated using the 

following equations: 

(eq . 3-18) 

(eq . 3-19) 

(eq. 3-20) 

10) The tl, t2, and t3 values are calculated for the Pearson Type III family of 

distributions with location parameter c=O (gamma distribution) for the k' = 50 

observations. The parameter (ex) designated from step 7 of sub-objective two is used (0 

estimate the tl, t2, and 13 values using the mathematical models generated from s ub-

objective one of this research. 
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11) Asymmetrical control limits based on the Pearson Type III family of distribution:; 

with location parameter c=O (gamma distribution) are calcul ated. The individual 

measurement X and moving range n=2 mR control chart limits are calculated with the 

following equations: 

(eq. 3-21) 

(eq. 3-22) 

(eq. 3-23) 

where D',=(l+t,(:::) 
12) For the three sets of control limits (normal, Oyon, and asymmetrical), random 

variates are generated until a value falls outside each set control limits. A run lengtil 

(number of values generated before an ooe sign al) is recorded for each cont rol chart. 

13) Steps 2) through 12) are repeated 1,000 times for each of the five parent 

distributions stated in step one of thi s sub-objecti ve. An average run length (ARL) ror 

each of the five distributions is calculated using the following equation: 

ARL= LCRL) 
1,000 

(eq.3-24) 

14) A variance of the run length (VRL) for each of the five distribu tions is calcul ated 

with the following equation: 
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(eq.3-25) 

VRL= ;=1 

999 

15) The J 000 run lengths are stored and presented on a histogram for each of the five 

parent distributions. The data from steps 13) and 14) of sub-objective two are 

grouped according to the parent distributions of the random vari ates and pl aced in a 

table for easy reference. The table (Table 3-3) is illustrated on the following page . 

3.3: Sub-obj1ective three: 

Statement of the Sub-Objective: Compare the power of the individual 

measurement X and moving range n=2 mR control charts using the Pearson Type HI 

c=O asymmetrical control limits with those methods having symmetrical control limits . 

The power, in this case, refers to the ability of the control charts to detect shifts in 

process location of 0.5, 1.0, 1.5, 2.0,2.5, and 3.0crx units. 

The Data Needed: The data for sub-objective two consist of randomly generaLed 

variates from the normal, log-normal, and gamma distributions. Individual measurement 

X and moving range n=2 mR control limits are also needed for the normal Shewhart. 

symmetrical Pearson type III (c=O), and asymmetrical Pearson type m (c=O) control 

charts. 

The Location of the Data: The location of the data for sub-objecti ve two is as 

follows : 

• A random variate generator is utilized to generate values from the normal , log-

normal, and gamma distributions. 
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Table 3-3: Control Chart ARLs and VRLs 

Individual Measurement X Moving Range 

Parent 
Distribution Shewhan Symmetrical Asymmetrical Shewhnn Symmetrical Asymmetrical 

Normal ARL 
(40, 102) 

VRL 
as 51. dey " 

Log-normal ARL 
(0. ]2) 

VRL , 

as 51. dev . II 

Gamma ARL 
(1.5,1) 

VRL 
as 51. dev. 

Chi-square ARL 
(df = 4) 

VRL 
as SI. dey" 

Exponential ARL 
( 1 ) 

VRL 
as st. dev. 
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• Symmetrical individual measurement X and moving range n=2 mR control limit 

equations based on the normal di stribution produced by Dr. Shew hart are found in 

various quality control texts including Wheeler and Chambers (1992), BUIT (1953), 

and Duncan (1986). These equations can be found in step 6 of section 3.2. 

• Symmetrical individual measurement X and moving range n=2 mR control limit 

equations are produced using the d' 2, d' 3, and D' 4 values approximated by the 

Pearson Type III family of distributions with location parameter c=O (gamma 

distribution) from previous research by lose Oyon (1995). These equations can be 

found in step 8 of section 3.2. 

• Asymmetrical individual measurement X and moving range n=2 mR control limit 

equations are produced using the mathematical models generated for the tJ, t2, and t1 

values approximated by the Pearson Type ill family of distributions with location 

parameter c=O (gamma distribution), The mathematical models are produced in sub­

objective one above. 

Means of' Obtaining the Data: All data used for this sub-objective are obtained 

from the data generated in sub-objective two. The normal, Oyon, and asymmetrical 

control limits calculated in sub-objective two are adjusted to represent a mean shift in 

sub-objective three. The random variates generated in sub-objective two are used to 

evaluate the adjusted control limits. 
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Treatment of the Data: This sub-objective evaluates the ability of the control 

charts to detect shifts in the mean on the individual measurement X control charts. The 

following is a detailed procedure to achieve sub-objective three: 

I) The theoretical standard deviation is found for each of the five parent di stributions 

listed in step one of sub-objective two. The following equations are used to find the 

standard deviations: 

Exponential, Gamma, and Chi-square: 

(eq. 3-26) 

Log-normal: 

(eq.3-27) 

Normal: The standard deviation for the normal distribution is taken from the definition 

of the distribution's parameters. The normal distribution used in this research is a N(40, 

102) ; therefore, the mean is 40 and the standard deviation is 10. 

2) Shifts in the process mean of +/- 0.5, 1.0. 1.5, 2.0, 2.5, and 3.0ax are simul ated by 

adjusting the individual measurement X control chart limits generated in sub-objective 

two. The control limits are adjusted as follows: 

UCL(adjusted) = UCL - Ll * (ax ) 

LCL(adjusted) = LCL- Ll * (ax ) 

where Ll is the process mean shift as a multiple of ax. 
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3) For the set of ten adjusted control limits, random variates are generated until a value 

falls outside each set of control limits. The number of values generated before the value 

faU outside the limits (run length (RL») is recorded. 

4) Steps 2) and 3) are repeated 1 ,000 times for each of the five parent distributions 

stated in step one of sub-objective two. An average run length CARL) for each of the 

shifts in the five distributions is calculated using the following equation: 

L,CRL) 
ARL= 0 0 I, 0 

(eq. 3-30) 

5) The data from step 4 of sub-objective three are grouped according to the parent 

distributions of the random variables and placed in a table for easy reference. The 

table (Table 3-4) is illustrated on the following page. 
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Table 3-4: ARLsNRLs for Shifts in the Process Mean 

A RLs for Shifts in the Process Mean 

Parent +0.5 + 1.0 + I.S +2.0 +2.5 +3.0 -0.5 -1.0 - 1.5 -2.0 -2.5 -3.0 

Distribution 

Nonnal Nonna] 

(40,102) 

Symme trical 

Asymmetrical I 
Log-normal Normal 

, 

(0. 12) 

Symmetrical , 

Asymmetrical 

Gamma Normal 

(J .5, 1) 
Symmetrical 

I Asymmetrical 

Chi-square Normal 

(df = 4) 
Symmetrical 

Asymmetrical 

Exponential Normal 

(I) 

Symmetrical , 

A. ym metrical 
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CHAPTER 4 

RESULTS AND ANALYSIS 

The results of this thesi s research are presented following the three sub­

objecti ves described in chapter 1. 

Section 1: SUB-OBJECTIVE ONE 

The first sub-objective is to develop mathematical models representative of the 

upper and lower control limits for asymmetrical distributions based on the shape 

parameter (a) and the scale parameter (P) from the Pearson Type ill family or 

distributions with location parameter c=O (gamma distributions) so often encountered in 

industry. 

1.1: Individual Measurement X Control Chart Limits: 

Following the steps in Section 3.1.1.1 and 3.1.l.2, described in detail in Chapter 

3 ( pg. 3-8), the values of the individual measurement X upper and lower control I il11il5 

for the Pearson Type III family of distributions with location parameter c=O (gamma 

distribution) are located by integrating the distribution on MathCad for Windows re lease 

4.02. The value of the upper control limit is expressed as a multiple of O"x units from the 

mean. An upper and lower control limit is generated which leaves a tail area of 0.00135 

beyond each limit. The limit is evaluated in thi s manner for all combinations of a 

(shape parameter) = 1, 5(5) 135 and P (scale parameter) = I, 2, and 5. 

The table on the following page, Table 4.1: Gamma Distribution Upper & Lower 

Control Limits, demonstrates the results of integrating the gamma distribution. As can 

be seen from Table 4. J, the values for ~ appear to have I ittle or no effl'ct 011 the upper 
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Table 4-1: Gamma Distribution Upper & Lower Control Limits 

Sigma units from Sigma units from 
average on the average on the Total sigma 
skew (upper) tail non-skew (lower) tail spread 

for 0.00135 for 0.00135 for 0.0027 

Alpha Sigma /3 = J /3 = 2 f3 = 5 f3 = J f3 = 2 f3 = 5 
135 11.6190 3.2305 · 2.7718 . · 60023 .................. 
130 11.4018 3.2350 . · 2.7675 2.7675 · 6.0025 

• ••• • •••••••••••• r 

125 11.1803 3.2395 . · 2.7630 2.7630 6.0025 ·.·.·· r·.··· .. · ... 
120 10.9545 3.2445 3.2445 · 2.7582 2.7582 · 6.0027 .................. 
115 10.7238 3.2497 3.2497 · 2.7530 2.7530 2.7530 60027 .................. 
110 10.4881 3.2555 3.2555 · 2.7475 2.7475 27475 6.0030 ................... 
105 10.2470 3.2615 3.2615 3.2615 2.7416 2.7416 2.7416 60031 .............. .. .. 
100 10.0000 3.2680 3.2680 3.2680 2 .7354 2.7354 2.7354 60034 ............. , .... 

95 9.7468 3.2750 3.2750 3.2750 2.7285 2.7285 2.7285 6 0035 .................. 
90 9.4868 3.2825 3.2825 32825 2.7211 2.7211 2.7211 6 0036 .................. 
85 9.2195 3.2908 3.2908 3.2908 2.7132 2.7132 2.7132 6.0040 ........ .......... 
80 8 .9443 3.2997 3.2997 3.2997 2.7045 2.7045 2.7045 6.0042 

, ..... ......... . .. 
75 8.6603 3.3095 3.3095 3.3095 2.6949 2.6949 2.6949 6.0044 .............. .... 
70 8.3666 3.3205 3.3205 3.3205 2.6843 2.6843 2.6843 6.0048 ........... ... .... 
65 80623 3.3328 3.3328 3.3328 2.6725 2.6725 2.6725 6 .0053 .. , ............ .... 
60 7 .7460 3.3464 3.3464 3.3464 , 2.6594 2.6594 2 .6594 6.0058 ..... ... ........... 
55 7.4162 3.3617 3.3617 3.3617 ' 2.6444 2.6444 2.6444 6.0061 .......... ........ 
50 7.0711 3.3795 3.3795 3.3795 2.6273 2.6273 2.6273 6.0068 ..... , .. ...... -- ... 
45 6 .. 7082 3.4000 3.4000 3.4000 2.6075 2.6075 2.6075 6.0075 .... .............. 
40 6.3.246 3.4245 3.4245 3.4245 2.5840 2.5840 2.5840 6.0085 , .............. ... 
35 5.9161 3.4540 3.4540 3.4540 2.5559 2.5559 2 .5559 6.0099 .................. 
30 5A772 3.4905 3.4905 3.4905 2.5211 2.5211 2.5211 6.0116 ............. .. .... 
25 5.0000 3.5375 3.5375 35375 2.4765 2.4765 2.4765 6.0140 .................. 
20 4.4721 3.6010 3.6010 3.6010 2.4166 2.4166 2A166 6.0176 .. , ............... 
15 3.8730 3.6940 3.6940 3.6940 2.3297 2.3297 2. 3297 6 .0237 .... ... .. ......... 
10 3 .1623 3.8505 3.8505 3.8505 · 2.1870 2,1870 21870 6.0375 

, .. ........ , ....... 
5 2 .2361 4.2005 4.2005 4.2005 1.8820 1.8820 1.8820 6.0825 ................... 
1 1.0000 5.6080 5.6080 5.6080 0.9986 0 .9986 0.9986 6. 6066 ............. , .... 

55 



and lower control limits for the gamma distribution when expressed as a multiple of O'x 

units. Following step 2 in 3.1.1.1 and 3.1 .1.2. regression models are generated in 

Minitab for Windows release 10.5. This statistical software package is used to generate 

different multiple regression models for predicting the t) and t2 values with predictors ex 

(shape parameter) and ~ (scale parameter). There are different mathemat ical models 

which can predict the t) and t2 values. By trial and error, a model is found which does a 

good job of predicting tJ and t2' The models found may not be the only models that can 

be used. 

The output from Minitab can be found in Appendix D: Regressi on Output For 

Control Limits. The best t1 and t2 regression models, based on R2, for the upper and 

lower control limits are as follows: 

t1 = 3.23 + 3.19*e('CX) + 0.852*e(·oICX) + 0.442*e(·O.2S(x) 

t2 = 2.77 - 1.81 *e(·a) - 0.751 *e(·OJ a) - 0.438* e(·O.025a) 

A global F test is used to test the validity of the multiple regress ion models. The F tes ts 

for the upper and lower control limits are shown in sections 1.1.1 and 1.1.2. 

1.1.1: The upper control limit 

The model for t) has a multiple coefficient of determin ation R2 of 99.9%. The 

global F test is used to test the validity of the upper control (tJ) limit mUltiple regression 

model as indicated in Chapter 3 section 3.1.1.1 step 3. 

From the Minitab output (Appendix D - Regression Output For Control Li mits 

the value for the test statistic F is: 

F = 6935.38 
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Using a significance level a' = 0.0 I , the rejection region for the test is defined by the 

critical value Fc a'(k. n-(k+ I». From an F table, this critical value is : 

Fc 0.01 (3. 23) = 4.765 

Clearly the null hypothesis Ho: Al = 1..2 = A3 = ... = Ak =0 is rejected since the 

value of the F statistic is greater than the critical value Fc: 

F > FCa'(k. n-(k+I)) 

6935.38 > 4.765 

Therefore, it is concluded that one can be very confident that this model is useful 

in predicting tl. 

1.1.2: The lower control limit 

The model for t2 bas a multiple coefficient of determination R2 of 99.8 %. The 

global F test is used to test the validity of the lower control (t2) limit multiple regression 

model as indicated in Chapter 3, section 3.1. 1.2, step 3. 

From the Minitab output (Appendix D - Regress ion Output For Control Limits) , 

the value for the test statistic F is: 

F = 5465.84 

Using a significance level a' = 0.0 I. the rejection region for the test is defined by the 

critical value Fc a ' (k. n-(k+l )} From all F table , this critical value is : 

Fc 001 (3 .23 ) = 4.765 

Clearly the null hypothesis Ho: AI = A2 = Al = ... = Ak =0 is rej ected since the 

value of the F statistic is greater than the critical value Fc: 
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F> FCu'(k. n-(k+l») 

5465.84> 4.765 

Therefore, it is concluded that one can be very confident that thi s model is useful in 

predicting t2' 

1.2: Moving Range n = 2 Upper Control Chart Limits: 

Following the steps in Section 3.1.2, described in detail in Chapter 3 ( pg. 3- J 5\ 

the values of the moving range n = 2 upper control chart limit for the Pearson Type III 

family of distributions with location parameter c=O (gamma distribution) are located by 

simulating values in MathCad for Windows release 4.02. The value of the upper control 

limit is expressed as a multiple of (jR units from the average range. An upper contro[ 

limit is generated which leaves a tail area of 0.0027 beyond the upper limit. The limit is 

evaluated in this manner for all combinations of a (shape parameter) = 1, 5(5) 135. As 

demonstrated in Appendix A, the values for ~ appear to have little or 110 effect all the 

upper control limit for the gamma distribution when expressed as a mulliple of (jl{ units. 

The table on the following page, Table 4.2: Gamma Distribution Upper Control Limits 

For Moving Range, demonstrates the results of simulating the gamma distribution. 

Following step 7 in 3.1.2, a regression model is generated in Minitab for 

Windows release 10.5. This statistical software package is used to generate different 

multiple regression models for predicting the t, values with the predictor ex (shape 

parameter). There are different mathematical models which can predict the t3 values , so, 

by trial and error, a model is found which does a good job of predicting t , but may not 

be the only model that can be used. 
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Table 4-2: Gamma Distribution Upper Control Limits For Moving Range 

I a t3 @ ~ = 1 I 
1 4.9826 
5 4.1126 
10 3.9821 
15 3.8825 
20 3.8271 
25 3.7939 
30 3.7458 
35 3.7430 
40 3.7119 
45 3.7168 
50 3.7105 
55 3.7103 
60 3.6884 
65 3.7213 
70 3.7091 
75 3.7065 
80 3.7155 
85 3.6922 
90 3.6955 
95 3.6603 
100 3.7005 
105 3.7107 
110 3.6967 
115 3.7065 
120 3.6903 
125 3.6927 
130 3.6614 
135 3.6919 
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The output from Minitab can be found in Appendix D: Regression Output For 

Control Limits. The best t3 regression model, based on R2, for the upper control limits is 

as follows: 

t~ = 3.68 + 1.88*e(-U) + O.564*el -OIU) + O.0969*e(·0025U) 

A global F test is used to test the validity of the muhiple regression models. The F test 

for the upper and lower control limits are as follows : 

The model for t3 has a multiple coefficient of determination R2 of 99.7%. The 

global F test is used to test the validity of the upper control (t3) limit multiple regress ion 

model as indicated in Chapter 3 section 3.1.2, step 8. 

From the Minitab output (Appendix D - Regression Output For Control Limits) , 

the value for the test statistic F is: 

F = 2892.98 

Using a significance level a' = 0.01, the rejection region for the test is defined by the 

critical value Fc u·(k. n-(k+ I )) . From an F tabl e. thi s critical value is: 

Fc (Jom. 23 ) = 4.765 

Clearly the null hypothesis Ho: AI = 1~2 = A.'. = ... = Ak =0 is rejected since the 

value of the F statistic is greater than the critical value Fc: 

F> FCU· Ck. n-(k+ l» 

2892.98 > 4.765 

Therefore, it is concluded that one can be very confident that this model is useful 

in predicting t3. 
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Section 2: SUB-OBJECTIVE TWO 

The second sub-objective is to evaluate the performance of the individual 

measurement X and moving range n=2 mR control charts, based on the average run 

length (ARL) using the Pearson type III family of distributions with location parameter 

c=O (gamma distribution) control limits determined from sub-objective 1. The control 

charts are evaluated against an ARL that is acceptable for practical application in 

industry and compared with methods having symmetrical control limits. An ARL that is 

acceptable for practical application in industry means that the average run length (ARL) 

for each control chart is a minimum of LOO observations. An ARL of 100 is equivalent 

to a I % chance of a type I error when the process is in a state of stati stical control. 

Following the steps in section 3.2, five process distributions were selected to 

represent unknown parent distributions. The distributions were chosen to represent a 

variety of process distributions that occur in industry. The five process distributions 

selected are as follows: 

• Normal (40, 102) 

• Log-nomlal (0, 12) 

• Gamma (ex = 1.5, ~ = 1) 

• Chi-square (df = 4) 

• Exponential (~ = I) 

A Turbo Pascal (version 6.0) program was written to perform steps 2 through 13 

of section 3.2 (Chapter 3) . The Turbo Pascal program for the Chi-square (dr = 4) 
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distribution can be found in Appendix E. To generate random variates from each of the 

five parent distributions, random variates were first generated from the unifo rm 

distribution. The random uniform variates were generated according to M arse and 

Roberts' random number generator found In Appendix F. Based on the numbers 

generated from the unjform di stribution, random vari ates for each of the parent 

distributions were then generated according to the following al gorithms, as 

recommended by Law and Kelton (lS, p. 484-93): 

2.1: Normal (40, 102) Algorithm: 

The algorithm used to generate Normal (40, 102) random variates is known as 

the polar method. 

Algorithm: 

2.1.1 Generate U J and U2 as lID U(O,l), let Vi = 2Ui -I for i = 1,2, . . . and let W = 

2.1.2 If W > 1, go back to step I . Otherwise, let Y = ~( -2 In W IW) , XI = 

V I Y, and X2 = V 2 Y. Then X I and X2 are lID N(O, 1) rando l11 vari ates. 

2.1.3 Given that Y - N(O, I), X - N(!l,cr2) can be obtained by using X = ~ + crY . 

2.2: Log-normal (0, 12) Algorithm: 

A special property of the log-normal di stribution is that if Y - N(!l,cr2) then 

e Y - LN(~,cr\ Therefore, Log-normal variates can be generated based o n Normal 

variates from the algorithm above (Chapter 4 , section 2 . 1) . 

Algorithm: 
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2.2.1 Generate Y ~ N (~,cr\ 

y 
2.2.2 Return X = e . 

2.3: Gamma (a = 1.5, B = 1) Algorithm: 

Random Gamma variates are typically generated according to three cases : 0 < a 

< 1; a = 1; and a> 1. Since a = 1.5, the case for a > 1 will be used. According to Law 

and Kelton (5, p. 489), ''There are several good algorithms for the case 0: > I ." 

However, they recommend a method due to Cheng (22) referred to as the GB 

algorithm. 

Algorithm: 

2.3.1 Generate U, and U2 as IID U(O, I ). 

y 7 
2.3.2 Let V = a In [U,/(l-U ,)j, Y = ae , Z = U,-U2, and W = b + qV - Y. 

2.3.3 If W + d - 8Z >= 0, return X = Y. Otherwise, proceed to step 4. 

2.3.4 If W >= In Z, return X = Y. Otherwise, go back to step I. 

where: 

a=l/.j(2a- 1) 

b = a - In 4 

q = a + 1Ia 

e =4.5 

d = I + In 8 

2.4: Chi-square (df = 4) Algorithm: 

The Chi-square distribution is a Gamma distribution with shape parameter a = 

df/2 and scale parameter ~ = 2. Therefore, the algorithm used to generate Gamma (a = 
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2, ~ = 2) will be used to generate the Chi-square distribution. The algorithm in section 

4.2.3 for the case ex> 1 will be the one used for Chi-square (df = 4). 

2.5: Exponential <B = 1) Algorithm: 

The Gamma distribution with shape parameter ex = 1 and scale parameter ~ is an 

exponential distribution with mean ~ . The algorithm used to generate Gamma variates 

(ex = I, ~) is based on the inverse transform method. 

Algorithm: 

2.5.1 Generate U ~ DCO, I), 

2.5.2 Return X = -~ In (U). 

Based on the algorithms above and steps 2 through 13 from section 3.2 (Chapter 

3), 1000 run lengths were generated for each of the five parent distributions. The 

program output for the Normal distributions can be found in Appendix G. The output 

consists of 1000 run lengths based on the individual measureme nt X and moving ran ge 

n=2 mR control charts for Shewhart, Oyon's symmetrical, and Ankn ey's asymmetri cal 

control limits. 

Average run lengths (ARLs) and variance of run lengths (VRLs) were calculated 

for each of the distributions. The ARLs and VRLs can be found in Table 4.3: Control 

ChaJ1 ARLs and VRLs on the following page. The 1000 run lengths are also presented 

on a histogram for each of the five parent distributions according to the ir relative control 

limits. These histograms, figures 4-1 through 4-15, are on the following pages. 
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Table 4-3: Control Chart ARLs and VRLs for No Mean Shift 

Ideal ARL = 00 Individ ual Measuremenl X Moving Range 
Acceptable ARL = 100 

Parent 
Distribution Shewhar Oyon Asymmetrical Shewhar Oyol1 Asymmetrical 

t I 

Normal ARL 1118.9 1427.2 141.9 213.4 277.0 4011.7 
(40,102) 

VRL 4693.9 6783.5 224.0 495.9 817.4 33429.5 
as sl. dey. I 

Log-normal ARL 33.0 40.7 161.0 33.9 56.0 148.2 
(0. 12) 

VRL 45.0 58.6 285.8 48.1 87.2 273 .2 
as Sf.. dey. 

Gamma ARL 58.3 80.1 1885.7 57.0 130.1 1418.9 
(1.5, I) I 

VRL 83.3 126.2 12566.5 78.4 284.7 5256.1 
as 51. dey. 

Chi-square ARL 72.2 99.0 2079.1 70.1 144.1 1550.9 
(df = 4) 

VRL Imu 192.2 9075 .6 108 .0 :'127.3 7198. 2 
as 51. dev. 

Exponenlial ARL 49.7 77.8 1758 .0 49.1 143.0 1713.9 
( I ) 

VRL 75.7 136.5 8897.2 73.8 3 18.1 6846.8 
as 51. dey. 
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2.6: Analysis of the Normal Distribution; No Mean Shift: 

Individual measurement X control chart limits: 

The data in Table 4.3: Control Chart ARLs and VRLs for No Mean Shift 

indicate that the asymmetrical individual measurement X control limits are acceptable 

for practical use in industry when the underlying process distribution is normal and 

there is no shift in the process mean. An ARL that is acceptable for practical application 

in industry means that the average run length for the controJ chart is a minimum of 100 

observations. Although the asymmetrical controJ limits are acceptable, they do not work 

as well as individual measurement X controJ limits produced by Shewhart or Oyon. 

When the underlying process distribution is normal and there is no shift in the process 

mean, the ARLs for Shewhart and Oyon individual measurement X control limits are 

approximately 1119 and 1427 observations, respectively. The asymmetrical control 

limits have an ARL of 141.9 observations. 

Based on the histograms in Figures 4.1, 4.2, and 4.3 for individual measurement 

X control limits, the difference in the performance between the asymmetrical an d 

symmetrical control limits is not so prevalent. The median run length for Shewharl 

limits is between 200 and 300 observations, Oyon is between 200 and 300 observations, 

and the asymmetrical limits are between 100 and 150. The differences in nlll lengths 

between the symmetrical and asymmetrical control charts are much smaller than when 

comparing ARLs. The median run length for the asymmetricaI limits is only 150 to 200 

observations less than that of the symmetrical limits. The symmetrical individual 
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measurement X control limits perform better than those that are asymmetrical whether 

comparing ARLs or median RLs . 

Moving range (n=2) mR control chart limits: 

The data in Table 4.3 also indicate that the movi ng range (n=2 ) mR con trol chart 

limits based on the Pearson type ill family of distributions work we ll when the 

underlying process distribution is Normal. The ARL for the asymmetrical control chart 

limits perform better than the Shewhart and Oyon limits. When the underlying process 

distribution is normal and there is no shift in the process mean, the ARLs for Shewhart 

and Oyon mR control limits are approximately 213 and 277 observations, respectively. 

The asymmetrical mR control limits have an ARL of 4012 observations. 

The median RLs also indicate that the asymmetrical mR limits exceed the 

performance of the Shewhart and Oyon limits. From Figures 4.1, 4 .2, and 4 .3 for mR 

control limits, the median run length for Shewhart limits is between 75 and 125 

observations, Oyon is approximately 100 obse rvations. anclthe as ymmetrical limits are 

between 500 and 700 observations . The differences in median run lengths between the 

symmetrical and asymmetrical control charts are smaller than when comparing ARLs. 

The median run length for the asymmetrical limits is 425 to 575 observations greater 

than that of the symmetrical limits. The asymmetrical mR control limits perform better 

than those that are symmetrical whether comparing ARLs or median RLs with no shift 

in the mean. 
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2.7: Analysis of Non-Normal Distributions; No Mean Shift: 

The data in Table 4.3 for the log-normal, gamma, chi-square, and exponenti al 

distributions indicate that the asymmetrical control chart limits perform better than the 

Shewhart and Oyon limits when the underlying distribution is non-normal with no mean 

shift. The asymmetrical limits out-perform the other limits on both the individual 

measurement X and mR control charts. In all cases, the asymmetrical ARLs exceed 100 

observations when there is no shift in the mean. For the highly skewed distributions. 

log-normal and exponential, the Shewhart and Oyon limits fall well short of 100 

observations. In these cases, the Shewhart and Oyon individual measurement X limits 

have ARLs of 33 and 41 for the log-normal distribution and 50 and 78 observation s for 

the exponential distribution. 

The median run lengths follow the same pattern as the ARLs when there is no 

shift in the process mean. The median RLs for the asymmetrical limits exceed 100 

observations in all but one instance. The medi an RL for the log-normal mR 

asymmetrical control limits falls between 75 and 105. The median run length comes 

very close to 100 but falls short. The median RLs for the Shewhart and Oyon limits are 

less than 30 observations when the underlying distribution is log- normal. The 

asymmetrical limits perform better than the symmetrical limits when there is 11 0 shift in 

the process mean, even though the median RL fall s short of 100 observati ons. 
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Section 3: SUB-OBJECTIVE THREE 

The third sub-objective is to compare the power of the individual measurement 

X and moving range n=2 mR control charts using the Pearson Type III c=O 

asymmetrical control limits with those methods having symmetrical control limits. The 

power, in thi s case, refers to the ability of the control charts to detect shifts in process 

location of 0.5, J .0, 1.5 , 2.0, 2.5, and 3.0crx units. 

To perform the third sub-objective, a Turbo Pascal (version 6.0) program was 

written to perform steps 1 through 5 of section 3.3 (Chapter 3). The Turbo Pascal 

program is the same program referred to in section 4.2, page 4-9. The program for the 

Chi-square (df = 4) distribution can be found in Appendix E and the program output for 

the Normal distribution is in Appendix G. The output consists of 1000 run lengths based 

on the individual measurement X and moving range n=2 mR control charts for 

Shewhart, Oyon's symmetrical, and Ankney's asymmetrical control limits at process 

mean shifts of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0crx units . 

Average run lengths CARLs) were calculated for each of the distributions 

according to the shift in the process mean . The ARLs can be found in Tahl e 4.4: 

ARLsNRLs for Shifts in th Process Mean on the following page. 
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Table 4-4: ARLs/VRLS for Shifts in the Process Mean 

Ideal ARL = I ARLs NRLs for Shifts in the Process Mean 

Parent Shifl --7 +0.5 +1.0 +1.5 +2.0 +2.5 +3.0 -0.5 - 1.0 - 1.5 -2.0 -2.5 -:1.0 
Distributio 

Nonnal 
(40. 10' ) Normal 437.51 84.2/ 25.3/ 9.)1 4.31 2.3/ 402.21 91.1 1 25.4/ 83/ 4. 1/ 2.21 

1476.9 205.4 86.7 15.6 7,6 2.3 1490.9 230. 1 63 .9 12.9 5.6 2. 1 

Symmelric.1 485.9/ 93.31 28.3/ 9.71 4.51 2.41 450.61 98 .01 28.4/ 9.91 4.31 231 
1582.4 217.3 104.6 16.1 7.7 2 .9 1571.6 239 .0 72 .4 31.8 6. 1 :l .O 

Asymmetrical 518.2/ 11 55.9/ 764.01 122.91 25.3/ 10.61 39.21 12.11 5.21 2.81 1.71 1.31 
1059.6 4846.4 6946.3 698.4 106.5 59J 66.7 14.S 5.7 2 .6 1.2 0 .7 

Log-normal 
(0. I' , Nonn.1 13.21 4.31 1.51 1.01 1.01 1.01 58 .71 19.21 2. 1/ 1.01 1.01 1.01 

IS.6 7.4 2.4 0.4 0.0 0 .0 82.4 99.9 31.8 0.2 0.1 0 . 1 

Symmetrical 18. 11 6.41 2. 11 1.21 1.01 1.01 76.71 54 .61 1211 '201 101 1.01 
31.7 I U 4.2 14 0.2 0.0 110.5 203 .9 119.9 31 8 0.1 01 

Asymmetrical 96.51 5411 26.31 12.71 551 2.RI 1.21 1.11 1.01 1.0/ 1.01 1.01 
214.6 170.8 94.0 51.0 28.9 21.7 0.6 0 .2 0.2 01 0. 1 on 

Gamma 
(1.5.1) Normal 33.91 21.01 11.91 6.91 4.11 2.51 103.41 185.51 255.81 19201 7931 4.71 

49.5 31.7 17.2 10.8 5.2 3.3 16R.9 3 11.7 500.0 K'i14 8.'14.4 <)6. 7 

Symmetrical 45.91 2~ . 51 16.61 9.61 5.51 :UI 147.11 265 .31 4.12.111 459.61 362.91 229.51 
67.1 45.0 25.0 15 .0 9.5 4 .4 250 463.3 BK4.6 129 1.4 2165. 1 2470.2 

Asymmetri cal 105901 639.61 W'J.()f 194 .21 117.21 65 .01 5.81 2.11 1.51 1.21 1. 11 1.11 
.' 806A 26-19.8 13K 1.9 733.4 538.9 26H.J 6.6 1.6 0.8 0.5 0.4 0.2 

Chi·square 
(dr = 4) Normal 40.21 24.91 13.SI 7.41 4.31 2.61 118.11 2501 327.91 2 IH . ~1 '15 . 11 1.71 

64.6 4).1 24.9 11.5 5.1 3.1 219.6 414 .2 710.3 l)4~.4 12H2 .. ~ I IA 

Symmetri cal 52.51 30.11 18.21 10.21 .1 .61 1.41 181.41 322.71 54.\1/ 605 .71 41301 120.51 
86.4 49.1 33.2 19.8 8.2 4.4 310.7 542.5 109H 2 146.5 2Wn .5 26~ :U 

Asymmetrica l 1237.81 525.41 30931 160.41 91.11 53.01 15.51 2.9/ 1.71 1.31 1.21 1.11 
7071.7 2225.3 19 15. 1 765 .8 460.3 4 19 .4 57.9 2.6 1.1 0.7 D.S 03 

Exponenti al 
(J) Normal 29 .21 18.61 10.71 6.61 4.11 2.51 82 .01 D 6.31 19(1.21 167 II (,9 II 5 41 

46.4 35.3 15.5 10.1 5.8 3.5 131.4 206.4 .154.5 551'1 476.0 ID ') 

Symmetri cal 46.01 28 . 11 17 .41 10.41 6 .. 11 .UI 12.1.21 2 J 2.21 34 5.61 41 \i . 1I 403 r)f 21601 
75.4 49.4 16.0 17 .0 10.4 5 R 2(}6.3 .156.3 6 14.3 g4 1. 1 12'>0. I 1567 .3 

ASYl1unetri cai 1358.51 872.51 512 .SI 297.41 192.0/ 122 .HI 2.61 1.61 J IJI 1.21 1.11 1.11 
4947 .R 3954.3 1503 .8 7963 602.2 400. 1 2.1 1.0 0.6 0.4 0.4 0.2 
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3.1: Analysis of Negative shifts in the mean (shifts to the left): 

The data in Table 4.4: ARLs/VRLs for Shifts in the Process Mean , indicate th at 

the asymmetrical individual measurement X and mR control limits do a very good job 

of detecting negative shifts in the process mean . Even at a very small shift of -0.5 

standard deviations, the asymmetrical control limits are very sensitive to the detection of 

shifts . Regardless of the underlying distribution , the asymmetrical limits detect a -0.5 

standard deviation in less than 40 observations, a -1.0 shift in less than 13 observations , 

and a - 1.5 shift in less than 6 observations. For large shifts in the process mean of -2.5 

and -3.0 standard deviations, the asymmetrical limits detect the shift within the first two 

observations. The asymmetrical limits are much more sensitive to negative shifts than 

the symmetrical limits. It can be concluded that the asymmetrical control limits do a 

good job of detecting negative shifts in the mean regardless of the underlying 

distribution . 

3.2: Analysis of Positive shifts in the mean (shifts to the right): 

The data in Table 4.4 : ARLs/VRLs for Shifts in the Process Mean. lI1dicate that 

the asymmetrical individual measurement X and mR control limits do not do a good job 

of detecting positive shifts in the process mean. The symmetrical control limits are more 

sensitive to detecting positive shifts. The only underlying distribution for which the 

asymmetrical limits appear to be effective in detecting positive shifts is the log-normal 

distribution. Although the asymmetrical limits appear to be moderately effective in this 

case, the symmetrical limits still perform better. 
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CHAPTERS 

CONCLUSIONS AND RECOMMENDATIONS 

Section 1: CONCLUSIONS & RECOMMENDA TJONS 

This section consists of conclusions and recommendations for this thesis 

research. Using the results and analysis generated in Chapte r 4, the perfo rmance of the 

asymmetrical control limits are compared to that of Shewhart' sand Oyon' s control chart 

limits. The following conclusions are made based on the information in Tables 4 .3, 

Table 4.4, and the analysis in Chapter 4, sections 2 .6,2.7,3 .1, and 3.2. 

• The performance of the individual measurement X symmetrical control charts is 

much better than that of the asymmetrical charts when the underlying distributi on is 

normal and there is no shift in the mean. This conclusion is supported in Chapter 3, 

section 2.6: Individual measurement X control chart limits, page 4-21. 

• The performance of the moving range (n=2) asymmetrical control charts is much 

better than that of the symmetrical charts when the underlying distribution is nonnal 

and there is no shift in the mean. This conclusion is supported in C hapte r 3, section 

2.6 : Moving range (n=2j mR control chart limits, page 4-22. 

• The performance of the asymmetrical controJ charts is better than that of the 

symmetrical charts when the underlying distribution is non-normal and there is no 

shift in the mean. This conclusion is supported in Chapter 3, section 2.7, page 4-23. 

• The performance of the asymmetrical control charts is better than that of the 

symmetrical charts when there is a negative shift in the mean, regardless of the 
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underlying distribution. This conclusion is supported in Chapter 3, section 3.1, page 

4-26. 

• The asymmetrical control charts do not do a good job of detecting positive shifts in 

the mean regardless of the underlying distribution. This conclusion is supported in 

Chapter 3, section 3.2, page 4-26. 

The asymmetrical limits perform well when there is no mean shift and the 

underlying distribution is non-normal. The problem with the asymmetrical control 

charts is that they do not do a good job of detect.ing positive shifts in the process mean. 

In general, control charts for skewed distributions are most useful for detec ting positive 

shifts in the mean. According Irving Burr (1953), " ... causes of non-normality is that the 

distribution may be unable to go beyond a certain point, such as zero (5, p.80) ... " As 

indicated by this statement, negative shifts in the mean will not occur because the 

inability to go beyond this point (zero in this research). Shifts in the mean will, in most 

cases, be positive. Based all the conclusion that the asymmetrical control limi1s do not 

do a good job of detecting positive shifts in the mean, the author recommends the 

asymmetrical control limits developed in this research not be used. 
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Section 2: RESEARCH CONTRIBUTIONS 

• This thesis research provides empirical equations to calculate approximately the 

correct asymmetrical control chart constants tl, t2, and t:\ when the underlying 

process distribution is a gamma distribution with shape parameter ex and scale 

parameter ~ . 

• Thi s thesis research provides empirical evidence that the asymmetri cal gamma 

control charts (X and mR) perform better than the normal curve and symmetri cal 

gamma control charts eX and mR) when the distribution has a marked departure 

from normality (represented in this research by skewed distributions) and there is no 

shift in the mean . However, more research is needed in this area since the 

asymmetrical control charts lack the power to detect positive shi fts in rhe process 

mean . In this regard, this research opens avenues fo r future research providing 

improved methodology for setting control limits (X and mR) under skewed 

circumstances. 
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Section 3: FUTURE RESEARCH 

The fact that the asymmetrical control charts lack the power to detect positive 

shifts in the process mean suggests that more research is needed in this area. It is the 

author's belief that the inability to detect positive shifts in the mean is due to the 

following three factors: 

I. The use of 0.00135 of the observations falling outside the upper or lower 

control limits when setting those limits, regardless of the skew of the unde rlying 

distributions. 

2. The empirical nature of the study (Number of observations). 

3. The ability to accurately estimate the parameters ex and ~ from the unknown 

underlying distributions. 

Additional research is recommended in setting asymmetrical control limit eX 

and mR) based on the method for determining the location of the upper and lower 

control limits . The upper and lower control limits in this research are determined based 

on 0.00135 of the observations falling beyond each limit; regardless of the skew of Lhe 

underlying distributions. The upper and lower control limits can be determined by 

varying the percent of outlying observations with the shape parameter a. When the 

underlying distribution is skewed, a higher percentage can be allotted to the upper 

control limit so that it is not set so far out on the tail; meanwhile, a lower percentage can 

be allotted to the lower control limit since the process will not produce values less than 

a specified lower value. For example, when the distribution is exponentiaJ, set the lower 

bound at 0.0000 and use all 0.0027 on the upper limit. The control chart will not be as 
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sensitive to negative shifts in the process mean as the limits in this research but will 

become more sensitive to positive mean shifts. 

This approach can be demonstrated with the theoretical run lengths for the 

exponential distribution under the cases where limits are one-sided and based on fa lse 

alarm rates of 0 .0027, 0.0050, and 0 .0100 when the re is no shift in the process mean . 

Table 5.1 : Theoretical Run Lengths for Exponential Distribution on the following page 

demonstrates the theoretical ARLs of these limits. As seen Table 5.1. the one-s ided 

control limits perform much better than the two-sided limits developed in this research . 

The one-sided limits have the power to detect positive shifts in the mean while 

maintaining an acceptable false alarm rate when no mean shift is present. 

The one-sided asymmetrical control limits detect shifts in the process mean 

bctter than the two-sided asymmetrical control limits. The one-sided limits , howcver, 

do not detect shifts in the process mean as well as the symmetrical control limits. As can 

be seen from Tables 5.1 and 5.2, at a sigma shift of 3.0. the theoretical ARL fo r the onc­

sided asymmetrical control limits is 4 .98 while the symmetrical control limits pick up 

the shift in 2.72. Although the symmetrical control limits perform bette r than the one­

sided symmetrical control limits when the underlying di stribution is exponential, both 

the symmetrical and asymmetrical control limits have good performance. 

The one-s ided asymmetrical con trol limits have a much better false alarl1l rate 

than the symmetrical limits. Based on the criteria defined in this research, the 

symmetrical control limits are not acceptable for practical use in indu stry because the 

run 
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Table 5-1: Theoretical Run Lengths for Exponential Distribution 

Positive Set Limits @ 0.00135 Set Upper Limits @ 0.0027 

Shift Upper Lower ARL Upper ARL 
0.0 0.001350 0.001350 370.37 0.002700 370.37 
0.5 0.002225 0.000000 449.44 0.004452 224 .62 
1.0 0.003668 0.000000 272.63 0.007339 136.26 
1.5 0.006048 0.000000 165 .34 0.012]01 82.64 
2,0 0.009972 0.000000 100.28 0.01995 1 50,]2 I 

2.5 0.016441 0.000000 60.82 0.032893 30.40 
3,0 0.027106 0.000000 36.89 0.054231 18.44 

Positive Set Upper Limit @ 0.005 Set Upper Limit @ 0,0 I 0 

Shifl Upper ARL Upper ARL 
0,0 0,005000 200,00 0,010000 ] 00.00 
0,5 0,008243 121 J2 0,016487 60,65 
1.0 0,013550 73,80 0.027182 36,79 
1.5 0,022407 44.63 0.044816 22,31 
2.0 0,036942 27.07 0,073888 13 ,53 
2,5 0,060907 16.42 0.121821 8,21 
3,0 0,100419 9.96 0.200849 4,98 
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lengths for the symmetrical limits are less than 100. Based on the theoretical ARL the 

asyrnmetricallimits do have a run length of 100. 

There is a tradeoff between the asymmetrical and symmetrical control limits. 

The tradeoff is a matter of economics. Compared to the symmetrical control limits. the 

asymmetrical control limits do not have as much power but do have a smaller fal se 

alarm rate. If the cost of defects is significantly larger than the cost of readjusting the 

process mean, than a higher false alarm rate would be more desirable than the inability 

to detect a shift in the mean. In this case the symmetrical contro l limits would be more 

desirable . If the cost of readjusting the process mean involves a much higher cost than 

the cost of defects, a lower false alarm rate would be more desirable than the power to 

detect a shift. In this case the one-sided asymmetrical control limits are more desirable. 

The selection and use of the control limits is dependent on the economics of the process. 

The empirical nature of this research also affects the results. The control limits 

for thi s research are set on fifty observations per run . Using sLlch a small number of 

observations creates variation in the control limits which generates ARLs th at are Ilot 

representative of those dictated by theory. This is apparent by comparing the theo retical 

results in Table 5. J to the results shown in Table 4.4: ARLs for Shifts in the Process 

Mean. As can be seen, the run lengths generated in this research are much higher than 

what theory states. 

Increasing the number of observations used in setting control limits improves the 

performance of the control charts under shifts in the process mean. Table 5.2: ARLs 

For Control Limits Set On Different Number Of Observations demonstrates the ability 
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to produce control limits which are more representative of the underl yi ng distriburioll by 

increasing the number of observations. Table 5.2 consists of ARLs for the exponential 

distribution when control limits are based on SO, 100, sao, and 1000 observations . By 

observation , it can be seen that increasing the number of observations greatly improves 

the performance of the control charts. 
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Table 5-2: ARLs For Control Limits Set On Different Number Of Observations 

Shift > 0.0 + 0.5 

Observations Shewhart Oyon Asymmetrica l Shew Oyon Asymm 

50 49 .72 77.85 1758.01 29.24 46.00 1358.52 
100 44.13 62.74 859.88 26.56 40.38 784.67 
SOD 39.54 55.74 490. 14 24.86 35.10 54 1.75 
1000 40.06 56.78 422.14 23.14 35. 10 509.04 

theoretical 54.60 54.60 370. 34 33.12 33.12 449.44 

Shift > + 1.0 + 15 

Observations Shew Oyon Asymm Shew Oyon Asymm 

50 18.62 28.08 872.54 10.68 17.36 512.77 
100 16.01 24.48 471.82 9.33 14.60 290.45 
500 15.05 21.99 329 .31 8.91 12.96 205.68 
1000 14.65 20.95 30701 8.91 12.9K 187.19 

theoretical 20.089 20 .089 272.63 12.18 12.18 165.34 

Shift> + 2.0 + 2.5 

Observations Shew Oyon Asymm Shew Oyon Asyrnm 

50 6.60 10.42 297.36 4.05 6.33 19 1.99 
100 5.73 8.56 185.03 3.64 5.27 107.08 
500 5.34 7.88 122.05 3.32 4.79 70.30 
1000 5.28 7.76 114.83 3.14 4.65 67.83 

theoretical 7.39 7.39 100.28 4.48 4.48 60.82 

Shift > + 3.0 

Observations Shew Oyon ASYITlI11 

50 2.52 3.79 122.77 

100 2.19 3.23 67.81 

500 1.96 2.96 43. 13 

1000 1.95 2.76 42.95 

theoreti cal 2 .72 2.72 36.89 
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THE SCALE PARAMETER AND THE RANGE 

The scale parameter W) for the Gamma distribution does not have an observable 

effect on the (t3) value for the range n = 2 as concerned with this research. This is 

demonstrated in the chart below. To demonstrate this claim, upper control limits for the 

moving range n=2 mR control chart are generated at particular a (shape parameter) 

values for ~ (scale parameter) = 1, 2, and 5. This is accompli shed by generating two 

rows of k = 10,000 observations. The ranges are calculated and the upper con trol limit is 

progressively increased by a value of 0.000 1 until 0.0027 of the values are outs ide the 

upper control limit. This is done for eacb ~ value at a corresponding a and the random 

numbers are generated from the same generator base to demonstrate if ~ (scale 

parameter) has any effect on the ranges. The results are expressed as multiples of the 

standard deviation of the ranges from the mean (t). The results are in T able A-loll the 

following page. 

The data in Table A-I demonstrates that ~ (scale paramete r) has no observable 

effect on the control limit multiplier (t)). The same random number generatin g base is 

used when testing different ~ values . Us ing the same base means that the uniform 

variates lI sed to calculate the variates for th e parent di stribution are the same on all cases 

of ~ = 1,2, and 5. When using the same random number generatin g base , the (13) value 

is the same regardless of the scale parameter. 
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Table A-I: Range Upper Control Limits as a Multiple (t3) of the Standard Devi ation 

Range Upper Control Limits as a M ultiple (t1) 

of the Standard Dev iation 

a Random # 

(shape parameter) Base ~=I ~=2 13 = 5 

I 2,500 5.1558 5.1558 5.15 58 

10 55,000 3.9308 3.9308 3.9308 
I 

, 

25 100,000 3.9452 3.9452 3.9452 

50 13,250 3.6883 3.6883 3.6883 

75 20,000 3.524 3.524 3.524 

100 81,096 3.8628 3.8628 3. 8628 
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SAMPLE SIZE ESTIMATION 

In order to create a mathematical model for t:< . random numbers are generated 

and a point found which leaves 0.0027 of the values outside the upper control limit. 

When evaluating data in this manner it is important that an appropri ate sample size be 

used which provides adequate confidence of representative data values at the ex tremes 

of the tail of the distribution. 

The parent distributions are those for the range n = 2 of the gamma distribution. 

Numbers randomly generated from this distribution result in a number of discrete points 

that can be approximated by the binomial distribution. According to Miller et al. (p. 

274), the sample size is approximated by the following equation: 

Zal2 2 
n = p(l- p)[-] 

E 

where n is the sample size, p = binomial parameter, and E = maximum error of the 

estimate. 

This formula cannot be used without a value of p. Since no data is availahle 

concerning the p value, it will be assumed that p*( I-p) = 0.25. The value p*( I-p) = 0.25 

is chosen because it is the largest possi ble value that p*( J-p) can take on because 0 <= P 

<= 1. The distribution is also evaluated for only one tail, so al2 becomes (Y... The 

substitution yields the equation: 

n = 0.25[~] 2 
E 
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The value (E) for this portion of the research is equal to 0.0027 and a is set at 

0.90. The corresponding z-value for 0.90 is 1.282. The resL1lting sample size is as 

follows: 

1.282 ? 

n = 0.25[ ] - = 56.362 
0.0027 . 

The sample size is rounded up to 11 = 60,000 for use in this research. 
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TABLE 6.19 
a as a (unction or T, gamma distribution 

T i T G: T G- T G-
0.01 0.010 1.40 0.821 5.00 2.655 13.00 6.662 0.02 0.019 1.50 0.819 5.20 2.155 13.50 6.912 0.03 0.021 1.60 0.931 5.40 2.856 "'.00 7.163 0.04 0.036 1.70 0.983 5.60 2.956 14.50 7.·Cl3 O.OS 0.044 1.80 1.035 5.80 3.051 15.00 7.663 0.06 0.052 1.90 1.086 6.00 3.151 15.50 7.913 0.07 0.060 2.00 1.138 6.20 3.257 16.00 8.163 0.08 0.068 2.10 1.189 6.40 3.351 16.50 8.413 0.09 0.076 2.20 1.240 6.60 3.458 17.00 8.663 0.10 o,~, 2.30 1.291 6.80 3.558 17.50 8.913 0.11 0.090 2.40 1.342 7.00 3.658 18.00 9.163 0.12 0.098 2,50 1.393 7.20 3.759 18.SO 9.414 0.13 -'1)]05 2.60 1.«4 7.40 3.859 19.00 -9.664 0.14 0.112 2.70 1.495 7.60 3.959 19.50 9.914 0.15 0.119 2.80 1.~ 7.80 '4.059 20.00 10.164 0.16 0.126 2.90 1.596 8.00 4.159 20.50 10.414 0.17 0.133 3.00 1.647 8.20 4.260 21.00 10.664 0.18 0.140 3.10 1.698 8.40 4.360 . 21.50 10.914 0.19 0.147 3.20 1.748 8.60 4.460 22.00 11.164 0.20 0.153 3.30 1.799 8.80 4.560 22.50 11.0414 0.30 0.218 3.40 1.&49 9.00 04.660 23.00 11.664 0.40 0.279 3.50 1.900 9.20 4.760 23.50 11.914 0.50 0.338 3.60 1.950 9.40 4.860 24.00 12.164 0.60 0.396 3.70 2.001 9.60 4.961 24.50 12.0414 0.70 0.452 3.80 2.051 9.80 5.061 25.00 12.664 0.80 0.507 3.90 2.101 10.00 5.161 30.00 15.165 0.90 0.562 4.00 2.152 10.SO 5.411 3S.00 17.665 1.00 0.616 04.20 2.253 11.00 5.661 40.00 20.165 1.10 0.669 4.40 2.353 11.50 5.912 4S.oo 22.665 1.20 0.722 4.60 2.454 12.00 6.162 50.00 25.166 1.30 O.TIS. 4.80 2.554 12.50 6.412 

99 



APPENDIXD 

Regression Output for Control Limits 

100 



Regression models were generated for the upper and lower control limits on the 

individual measurement X control chart and the upper control limit for the movin o 

range, n = 2, mR control chart. The regression models were generated from the 

statistical software package Minitab for Windows re lease 10.5. 

The statistical software package was used to generate diffe rent multipl e 

regression models for predicting t), 12, and t3 with predictors a (shape parameter) and ~ 

(scale parameter). The output from Minitab is on the followin g pages . 
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Upper Tail Regression for X-Chart 

Regression Analysis 

* NOTE * Alpha"'2 lS highly correlated with other pre dic tor 
variables 
* NOTE * Alpha"'3 is highly correlated with other pre dicto r 
variables 

The regression equation is 
SigmaHi = 4.81 - 0.0655 Alpha +0.000855 Alpha A 2 -0.00000 3 
Alpha"'3 

Predictor Coef Stdev t-ratio p 
Constant 4.8136 0.1603 30.02 0.000 
Alpha -0.06546 0.01047 -6.25 0.000 
Alpha"'2 0.0008545 0.0001813 4.71 0.000 
Alpha"'3 -0.00000345 0.00000088 -3.92 0.001 

s = 0 . 2354 R-sq = 77.7% R-sq(adj) = 74.9 % 

Analysis of Variance 

SOURCE DF SS MS F P 
Regression 3 4.6275 1.5425 27. 82 0 . 000 
Error 24 1 .330 5 0 .0554 
Total 27 5.9579 

SOURCE DF SEQ SS 
Alpha 1 2.3930 
Alpha '" 2 1 1.3816 
Alpha'" 3 1 0 . 8528 

Unusual Observations 
Obs. Alpha SigmaHi Fit Stdev.Fit Res idua l 
St.Resid 

1 135 3.2305 3.0647 0.1569 0.16 58 
0.94 X 

28 1 5.6080 4.7490 0.1518 0.85 90 
4.77R 

R denotes an obs. with a large st. resid. 
X denotes an obs. whose X value gives it l arge influe nce . 

Regression Analysis 

The regression equation is 
SigmaHi = 4.42 - 0.0280 Alpha +0 .00 01 54 Alpha "' 2 

Predictor Coef Stdev t-ratio p 
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Constant 4.4222 0.1575 28.08 0.000 
Alpha -0.028016 0.005402 -5.19 0 . 000 
Alpha"2 0.00015354 0.0 0003860 3.98 0. 00 1 

s = 0.2955 R-sq = 63.4% R-sq(adj) = 60 .4 % 

Analysis of Variance 

SOURCE OF SS MS F P 
Regression 2 3.7746 1.8873 21.61 0. 000 
Error 25 2.1833 0.0873 
Total 27 5.9579 

SOURCE OF SEQ SS 
Alpha 1 2.3930 
Alpha"2 1 1.3816 

Unusual Observations 
Obs. Alpha SigmaHi Fit Stdev.F i t 
St.Resid 

28 1 5.6080 4.3943 0.1530 
4.80R 

R denotes an obs. with a large st. resid. 

Regression Analysis 

The regression equation is 
SigmaHi = 3.97 - 0.00725 Alpha 

Predictor Coef Stdev 
Constant 3.9697 0.1365 
Alpha -0.007249 0 .001735 

t-rat io 
29.08 
-4.18 

Res idual 

1.2 13 7 

p 
0.0 0 0 
0.0 00 

s = 0.3703 R-sq 40.2 % R-sq( a dj) = 37. 9% 

Analysis of 

SOURCE 
Regression 
Error 
Total 

Variance 

OF 
1 

26 
27 

Unusual Observations 

SS 
2.3930 
3.5649 
5.9579 

Obs. Alpha SigmaHi 
St.Resid 

28 1 5.6080 
4.77R 

MS 
2.3930 
0.1371 

F 
17.45 

Fit Stdev.Fit 

3.9624 0.1350 

R denotes an obs. with a large st. resid. 

103 

p 
0 . 00 0 

Residual 

1 .6 45 6 



Regressi on Ana lys is 

The regression equation is 
SigmaHi = 3.40 + 6.04 e~-l 

Predictor Coef Stdev 
Constant 3.39926 0.04135 
e"-l 6.0420 0.5947 

s = 0.2147 R-sq = 79.9% 

Analysis of Variance 

t-ratio p 
82.20 0.000 
10.16 0.000 

R-sq(adj) = 79.1 % 

SOURCE DF 
Regression 1 

SS 
4.7591 

MS 
4.7591 
0.0461 

F 
103.22 

p 
0.000 

Error 26 1.1988 
Total 27 5.9579 

Unusual Observations 
Obs. e A -1 SigmaHi 
St.Resid 

26 0 . 000 
2.14R 

27 
3.61R 

28 
3.62RX 

0.007 

0.368 

3.8505 

4.2005 

5.6080 

Fit Stdev.Fit 

3.3995 0.0413 

3 .44 0 0 0 . 040 8 

5.6220 0.2147 

R denotes an obs. with a large st. r es id. 

Residua l 

0 .4 510 

0 . 7605 

-0. 01 4 0 

X denotes an obs. whose X value gives it large inf l u e nce . 

Regression Analysis 

The regression equation lS 

SigmaHi = 3.23 + 3.19 e"·-1 + 0.852 el\-.1 + 0.442 el\-.025 

Predictor Coef Stdev t-ratio p 
Constant 3.23311 0.00576 561.20 0.000 
e A -1 3.19102 0.08362 38.16 0.000 
e"-.l 0.85168 0.04487 18.98 0.00 0 
e"-.025 0.44197 0.02487 17.77 0 .000 

s = 0.01691 R-sq 99.9 % R- s q(adj) = 99 .9 % 

Ana l ysis of Variance 

SOURCE DF SS MS F P 
Regression 3 5.9511 1.9837 6935.38 0.000 
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Error 24 0.0069 0.0 00 3 
Total 27 5.9579 

SOURCE DF SEQ SS 
e"-l 1 4.7591 
e"-.l 1 1.1016 
e"-.025 1 0.09 03 

Unusual Observations 
Obs. e"-l SigmaHi Fit Stdev.Fit Residua l 
St . Resid 

25 0 . 000 3.69400 3.7269 1 0.00668 -0 .03 291 
2.12R 

26 0.000 3.85050 3.89078 0.00836 -0.0 402 8 
2.74R 

27 0.007 4.20050 4.16122 0.01443 0.03 928 
4.45RX 

28 0.368 5.60800 5.60871 0.01691 -0. 00 071 
4.46RX 

R denotes an obs. with a large st. resid. 
X denotes an obs. whose X value gives it large influence. 

Lower Tail Regression for X-Chart 

Regression Analysis 

The regression equation ~s 
SigmaLo = 2.77 - 1.81 el\-1 - 0.751 el\-.1 - 0.438 el\-.025 

Predictor Coef Stdev t-ratio p 
Constant 2.77 031 0.00504 549.96 0.000 
e"-l -1.80838 0.07312 -24.73 0 .0 00 
e"-.l -0.75091 0.03923 -19 . 14 0 . 000 
e " -.025 -0.43839 0.02 1 75 -20.16 0. 0 00 

s = 0.01479 R-sq = 99.9% R-sq(adj) = 99.8 % 

Analysis of Variance 

SOURCE DF SS MS F P 
Regression 3 3.5856 1.1952 54 65. 84 0 . 000 
Error 24 0.0052 0.0002 
Total 27 3.5908 

SOURCE DF SEQ SS 
e"-l 1 2.5437 
e"-.l 1 0.9531 
e"-.025 1 0.0888 
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Unusual Observations 
Obs. e " -l SigrnaLo Fit Stde v.F i t Residual 
St.Resid 

25 0.000 2.3297 0 2 .3 014 7 0 . 00 58 4 0 . 02823 
2.08R 

26 0.000 2.18695 2 . 1 525 7 0 . 00731 0 . 03438 
2.67R 

27 0.007 1.88195 1.91580 0.01261 -0. 03385 
4.39RX 

28 0.368 0.99865 0.99803 0.01479 0. 0006 2 
4.40RX 

R denotes an obs. with a l arge st. resid. 
X denotes an obs. whose X value gives it large inf l u e n ce . 

Upper Tail Regression for mR-Chart 

Regression Analysis 

The regression equation is 
T = 3.68 + 1.88 exp( -a) + 0.564 exp(-.1 a) + 0.0969 exp(-.025) 

Predic t or 
Constant 
exp (-a) 
exp ( - .la 
exp(-.02 

Coef 
3. 6849 0 
1. 88402 
0.56355 
0.09686 

S t dev 
0.00483 
0.07004 
0.0375 8 
0.02083 

t-ra t i o 
763.64 

26.90 
14.99 

4 . 65 

p 
0. 000 
0. 000 
0 .00 0 
0 . 00 0 

s = 0.01417 R-sq 99 . 7 % R- s q(adj) = 99 . 7% 

Analysis of Variance 

SOURCE DF 
Regression 3 
Error 24 
Total 27 

SOURCE DF 
exp (-a) 1 
exp(- . la 1 
exp(-.02 1 

Unusual Observations 

SS 
1 . 741 53 
0.00482 
1.74635 

SEQ SS 
1.49678 
0 . 24041 
0.00434 

Obs . exp ( - a ) T 
St.Resid 

1 0.36 8 4.98 26 0 
1.66 X 

2 
1 . 66 X 

0.0 07 4.1126 0 

MS 
0. 58 051 
0. 00020 

F 
2892.98 

Fit Stdev.Fit 

4.9 82 38 0 . 01 41 6 

4.12488 0 .0 1208 
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p 
0 . 00 0 

Re sidua l 

0 . 00022 

- 0 . 01228 



20 
2.45R 

27 
2.02R 

0 . 000 

0.000 

3.66030 

3.66140 

3.69395 0.00350 

3 . 68865 0.00422 

R denotes an obs. with a large st. resid. 

- 0 . 03 3 65 

- 0 . 027 25 

X denotes an obs. whose X value gives it large infl u e n ce . 
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APPENDIX E 

Chi-square Distribution Turbo Pascal (version 6.0) Program 
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A Turbo Pascal (version 6.0) program was written to perfonn steps 2 through 13 

of section 3.2 and steps I through 5 of section 3.3. The program on the followin g pages 

is the one used to generate run lengths for the Chi-square Cdf = 4) distribution. 
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Program qctest(chisq); 
uses crt,printer; 
var 

w,d,t,z,aaa,bbb,u1 ,u2,q,v,theta, x, mr, xsum, mrsum, Insum, sigma, 
prey, xbar, mrbar, tstat, alpha, ucixs, lcixs, ucirs, lcirs, 
uclxo, Iclxo, uclro, uclxa, Iclxa, uclra, uni,form, aa, uni, 
earl, y, yy, pill, s: real; 

dtwo, dthree, dfour, tone, ttwo, tthree: real; 

ehisq:text; 

sxO, sxeO, qx, count, srO, sreO, oxO, oxeO, orO, oreO, axO, axeD, arO, areO, 
sx5r, sxeSr, oxSr, oxeSr, axSr, axe5r, 
sx1 r, sxc1 r, ox1 r, oxe1 r, ax1 r, axe1 r, 
sx1Sr, sxc1Sr, ox1Sr, oxc15r, ax1Sr, axe1Sr, 
sx2r, sxe2r, ox2r, oxc2r, ax2r, axe2r, 
sx2Sr, sxe25r, ox2Sr, oxe2Sr, ax25r, axe2Sr, 
sx3r, sxc3r, ox3r, oxe3r, ax3r, axc3r, 
sxSI, sxcSl, oxSl, oxeSI, axSI, axeSl, 
sx11, sxe11, ox11, oxe11, ax11, axe11, 
sx1SI, sxe1SI, ox1SI, oxc151, ax1SI, axc1SI, 
sx21, sxc21, ox21, oxe21, ax21, axc21, 
sx251, sxc2SI, ox2SI, oxc2SI, ax251, axc2SI, 
sx31, sxe31, ox31, oxe31, ax31, axc31, 
a, b,number, seed:longint; 

zrng: array[1 .. 1 DO] of longi nt; 
zset: array[1 .. 1 ~O] of longint; 

function rand:real; 

eonst 

var 

b2e1S=32768; 
b2e16=6SS36; 
modlus=2147483647; 
mult1=24112; 
mult2=261: 43; 

hi 1S, hi31, low1S, lowprd, ovflow, zi: longint; 

begin {rand} 
{generate the next random number} 

zi:=seed; 
hi1S:=zi div b2e16; 
lowprd:=(zi-hi1S"b2e16)*muI11 ; 
low1S:=lowprd div b2e16; 
hi31 :=hi1S*mult1 +low1S; 
ovflow:=hi31 div b2e1S; 
zi:=(((lowprd-low1S'b2e16)-modlus)+(hi31-ovflow'b2e15)*b2e16)+ovflow; 
if zi<O then zi:=zi+modlus; 
hi1S:=zi div b2e16; 
lowprd:=(zi-hi1S'b2e16)*mult2; 
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low15:=lowprd div b2e16; 
hi31 :=hi15*mult2+low15; 
ovflow:=hi31 div b2e 15; 
zi:=(((lowprd-low15*b2e16)-modlus)+(hi31-ovflow"b2e15)*b2e16)+ovtlow; 
if zkO then zi:=zi+modlus; 
seed:=zi; 
rand:=(2*(zi div 256)+1)/16777216.0 

end; {rand} 

{******.*********.**********.********~***.****.****.************ 

***.**************************************.*******.************* 

********************.*.*********************.*.*******k.*k ••• k •• } 

procedure chisquare; 

begin {chi square} 
u1 :=rand; 
u2:=rand; 
aaa:=1/(sqrt(3)); 
bbb:=2-(ln(4)); 
q:=2+(1/aaa); {???????????} 
theta:=4.5; 
d:=1 +In(theta); 
v:=aaa*ln(u1/(1-u 1 )); 
yy:=2*exp(v) ; 
z:=u1*u1*u2; 
w:=bbb+q*v-yy; 
if (w+d-(theta 'z) »=0 then 

y:=2*yy 
else if w>=ln(z) then 

y:=2*yy 
else chisquare; 

end; 

{********.**********************~******** ** *~**r*} 

procedure Generate; 

begin {generate} 
chisquare; 
number:=number+ 1 ; 

if sxO=O then {check for ooc signal on shewhart limits x chart 
if there is a signal sxO=1 and there it will 
stop counting on sxcO. sxcO will be at least one} 

begin {sxcO} 
sxcO:=sxcO+ 1; 
if y<lclxs then sxO:=1 
else if y>uclxs then sxO:=1; 

end; {sxcO} 

if number> 1 then {check for ooc signal on shewhart limits mr chart 
if there is a signal srO=1 and there it will 
stop counting on srxcO. srxcO will be at least one} 

if srO=O then 
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begin {sreO} 
sreO:=sreO+ 1; 
if abs(y-earl»uclrs then 

srO:=1 
end; {sreO} 

if oxO=O then {check for ooe signal on Oyon limits x chart 
if there is a signal oxO=1 and there it will 
stop count ing on oxeO. oxeO will be at least one} 

begin {oxeO} 
oxeO:=oxeO+ 1 ; 
if y<lclxo then oxO:=1 
else if y>uelxo then oxO:=1; 

end; {oxeO} 

if number>1 then 
if orO=O then 

begin {oreO} 
oreO:=oreO+ 1; 
if abs(y-earl»uelro then 

orO:=1 
end; {oreO} 

ifaxO=O then 
begin {axeO} 

axeO:=axeO+ 1 ; 
if y<lclxa then axO:=1 
else if y>uclxa then axO:=1 ; 

end; {axeO} 

if number> 1 then 
if arO=O then 

begin {areO} 
areO:=arcO+ 1 ; 

if abs(y-earl»uclra then 
arO:=1 

end; {areO} 
{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx} 

if sx5r=O then 
begin {sxe5r} 

sxc5r:=sxe5r+ 1; 
if {y+O.S*s)<lelxs then sxSr:=1 
else if (y+O.S*s»uclxs then sxSr:=1; 

end; {sxe5r} 

if oxSr=O then 
begin {oxc5r} 

oxe5r:=oxeSr+ 1 ; 
if (y+O.S*s)<lclxo then ox5r:=1 
else if (y+O.S*s»uclxo then oxSr:=1; 

end; {oxcSr} 

ifax5r=O then 
begin {axcSr} 
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axcSr:=axcSr+ 1; 
if (y+O.S*s)<lclxa then axSr:=1 
else if (y+O.5*s»uclxa then axSr:=1 ; 

end; {axcSr} 
{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx} 

if sx1 r=O then 
begin {sxc1 r} 

sxc 1 r:=sxc1 r+ 1; 
if (y+s)<lclxs then sx1 r:=1 
else if (y+s»uclxs then sx1 r:=1; 

end; {sxc1 r} 

if ox1 r=O then 
begin {oxc1 r} 

oxc1 r:=oxc1 r+ 1; 
if (y+s)<lclxo then ox1 r:=1 
else if (y+s»uclxo then ox1 r:=1; 

end; {oxc1 r} 

ifax1 r=O then 
begin {axc1 r} 

axc1 r:=axc1 r+ 1; 
if (y+s)<lclxa then ax1 r:=1 
else if (y+s»uclxa then ax1 r:=1 ; 

end; {axc1 r} 
{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx} 

if sx1Sr=O then 
begin {sxc1Sr} 

sxc15r:=sxc15r+ 1; 
if (y+ 1.S·s)<lclxs then sx1Sr:=1 
else if (y+ 1.5*s»uclxs then sx1Sr:=1; 

end; {sxc1Sr} 

if ox15r=O then 
begin {oxc15r} 

oxc15r:=oxc1Sr+ 1 ; 
if (y+ 1.S*s)<lclxo then ox15r:=1 
else if (y+1 ,S*s»uclxo then ox1Sr:=1; 

end; {oxc15r} 

ifax15r=O then 
begiln {axc15r} 

axc15r:=axc1Sr+ 1; 
if (y+ 1.S*s)<lclxa then ax15r:=1 
else if (y+ 1.S*s»uclxa then ax15r:=1 ; 

end; (axc15r) 
{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx} 

if sx2r=O then 
begin {sxc2r} 

sxc2r:=sxc2r+ 1 ; 
if (y+2*s)<lclxs then sx2r:=1 
else if (y+2*s»uclxs then sx2r:=1; 
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end; {sxc2r} 

if ox2r=O then 
begin {oxc2r} 

oxc2r:=oxc2r+ 1; 
if (y+2*s)<lclxo then ox2r:=1 
else i,f (y+2*s»uclxo then ox2r:=1; 

end; {oxc2r} 

ifax2r=O then 
begin {axc2r} 

axc2r:=axc2r+ 1; 
if (y+2*s)<lclxa then ax2r:=1 
elise if (y+2*s»uclxa then ax2r:=1; 

end; {axc2r} 
{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx} 

if sx25r=O then 
begin {sxc25r} 

sxc25r:=sxc25r+ 1; 
if (y+2.S*s)<lclxs then sx2Sr:=1 
else if (y+2.S*s»uclxs then sx25r:=1 ; 

end; {sxc2Sr} 

if ox2Sr=O then 
begin {oxc25r} 

oxc25r:=oxc25r+ 1 ; 
if (y+2.S*s)<lclxo then ox25r:=1 
else if (y+2.S*s»uclxo then ox25r:=1; 

end; {oxc2Sr} 

ifax25r=O then 
begin {axc25r} 

axc25r:=axc25r+ 1; 
if (y+2.5*s)<lclxa then ax25r:=1 
else if (y+2.5*s»uclxa then ax2Sr:=1 ; 

end; {axc25r} 
{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx} 

if sx3r=O then 
begin {sxc3r} 

sxc3r:=sxc3r+ 1 ; 
if (y+3*s)<lclxs then sx3r:=1 
else if (y+3*s»uclxs then sx3r:=1; 

end; {sxc3r} 

if ox3r=O then 
begin {oxc3r} 

oxc3r:=oxc3r+ 1; 
if (y+3*s)<lclxo then ox3r:=1 
else if (y+3*s»uclxo then ox3r:=1; 

end; {oxc3r} 

ifax3r=O then 
begin {axc3r} 
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axe3r:=axe3r+1 ; 
if (y+3*s)<lelxa then ax3r:=1 
else if (y+3*s»uclxa then ax3r:=1; 

end; {axe3r} 
{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx} 

it sxSI=O then 
begin {sxeSI} 

sxeSI:=sxeSI+ 1 ; 
it (y-O.S*s)<lclxs then sxSI:=1 
else it (y-O.S*s»uelxs then sxSI:=1; 

end; {sxeSI} 

if ox51=O then 
begin {oxeSI} 

oxeSI:=oxeSI+ 1 ; 
if (y-O.5*s)<lclxo then oxSI:=1 
else if (y-O.S*s»uclxo then oxSI:=1; 

end; {oxe51} 

it axSI=O then 
begin {axeSI} 

axcSI:=axcSI+ 1 ; 
if (y-O.S*s)<lelxa then axSI:=1 
else if (y-O.S*s»uelxa then ax51:=1; 

end; {axcSI} 
{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxJ 

it sx11=O then 
begin {sxe11} 

sxc11:=sxe11+ 1; 
if (y-s)<lclxs then sx11:=1 
else if (y-s»uclxs then sx11:=1; 

end; {sxc11} 

if ox11=O then 
begin {oxe11} 

oxc11:=oxc11+ 1 ; 
if (y-s)<lclxo then ox11:=1 
else if (y-s»uclxo then ox11 :=1; 

end; {oxc1r} 

ifax11=O then 
begin {axc11} 

axe11:=axc11+ 1; 
if (y-s)<lclxa then ax11:=1 
else if (y-s»uclxa then ax11:=1; 

end; {axc11} 
{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx} 

if sx151=O then 
begin {sxc1SI} 

sxc151:=sxc151+ 1; 
if (y-1.S*s)<lclxs then sx151:=1 
else it (y-1.S*s»uclxs then sx1SI:=1; 
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end; {sxc151} 

if ox 151=0 then 
begin {oxc151} 

oxc151:=oxc151+ 1; 
if (y-1 S·s)<lclxo then ox151:=1 
else jf (y-1.5*s»uclxo then ox151 :=1 ; 

end; {oxc151} 

ifax151=0 then 
begin {axc1SI} 

axc151:=axc151+ 1; 
if (y-1.S*s)<lclxa then ax1SI:=1 
else if (y-1.S*s»uclxa then ax1SI:=1; 

end; {axc1SI} 
{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx} 

if sx21=0 then 
begin {sxc21} 

sxc21:=sxc21+ 1 ; 
if (y-2*s)<lclxs then sx21:=1 
else if (y-2*s»uclxs then sx21:=1; 

end; {sxc21} 

if ox21=0 then 
begin {oxc21} 

oxc21:=oxc21+ 1 ; 
if (y-2*s)<lclxo then ox21:=1 
else if (y-2*s»uclxo then ox21:=1; 

end; {oxc21} 

ifax21=0 then 
begin {axc21} 

axc21:=axc21+ 1 ; 
if (y-2*s)<lclxa then ax21:=1 
else if (y-2*s»uclxa then ax21:=1 ; 

end; {axc21} 
{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx} 

jf sx251=0 then 
begin {sxc2SI} 

sxc2SI:=sxc2SI+ 1; 
if (y-2.S*s)<lclxs then sx251:=1 
else if (y-2.5*s»uclxs then sx2SI:=1; 

end; {sxc2SI} 

if ox251=O then 
begin {oxc251} 

oxc2SI:=oxc2SI+ 1 ; 
i,f (y-2.5*s)<lclxo then ox251:=1 
else if (y-2.S*s»uclxo then ox251 :=1 ; 

end; {oxc2SI} 

ifax2SI=O then 
begin {axc251} 
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axc251:=axc251+ 1; 
if (y-2.S*s)<lclxa then ax2SI:=1 
else if (y-2.S*s»uclxa then ax251:=1 ; 

end; {axc2SI} 
{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx} 

if sx31=0 then 
begin {sxc31} 

sxc31:=sxc31+ 1 ; 
if (y-3*s)<lclxs then sx31:=1 
else if (y-3*s»uclxs then sx31:=1; 

end; {sxc31} 

if ox31=0 then 
begin {oxc31} 

oxc31:=oxe31+ 1; 
if (y-3*s)<lelxo then ox31:=1 
else if (y-3*s»uclxo then ox31:=1; 

end; {oxe31} 

ifax31=0 then 
begin {axe31} 

axe31:=axc31+ 1 ; 
if (y-3*s)<lclxa then ax31:=1 
else if (y-3*s»uclxa then ax31:=1; 

end; {axc31} 

earl:=y; 
end; {generate} 

{Run the entire test 1000 times to get 1000 run lengths for 
all of the control charts. The loop starts here. Each seperate 
loop will regenerate conrollimits.} 

begin {program} 
clrser; 
writeln(' Relax, the program is running'); 
writeln(' It will be done in about 5 minutes') ; 
seed:=1 ; 
assign(chisq. 'e:chi.dat'); 
rewrite{chisq); 
s:=sqrt(8); 
a:=O; 
repeat 
{begin repeat1 } 

{reset the required count variables} 
sxO:=O; 
sx5r:=O;sx1 r:=O; sx15r:=O; sx2r:=O;sx25r:=O; sx3r:=O; 
sx51:=O;sx11:=O; sx151:=O; sx21:=O;sx251:=O; sx31 :=O; 
sxcO:=O; 
sxc5r:=O;sxc1 r:=O; sxc1Sr:=O;sxc2r:=O; sxc25r:=O; sxc3r:=O; 
sxcSI:=O;sxc11:=O; sxc1SI:=O;sxc21:=O; sxc251:=O; sxc31:=O; 
srO:=O; 
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srcO:=O; 
oxO:=O; 
ox5r:=O;ox1 r:=O; ox15r:=O; ox2r:=O;ox25r:=O; ox3r:=O; 
ox51:=O;ox11:=O; ox151:=O; ox21:=O;ox251:=O; ox31:=O; 
oxcO:=O; 
oxc5r:=O;oxc1 r:=O; oxc15r:=O;oxc2r:=O; oxc25r:=O; oxc3r:=O; 
oxc51:=O;oxc11:=O; oxc151:=O;oxc21:=O; oxc251:=O; oxc31:=O; 
orO:=O; 
orcO:=O; 
axO:=O; 
ax5r:=0;ax1 r:=O; ax15r:=O; ax2r:=O;ax25r:=O; ax3r:=O; 
ax51:=O;ax11:=O; ax1'51:=O; ax21:=0;ax251:=0; ax31:=O; 
axcO:=O; 
axc5r:=O;axc1 r:=O; axc15r:=O;axc2r:=O; axc25r:=O; axc3r:=O; 
axc51:=O;axc11:=0; axc151:=O;axc21:=0; axc251:=O; axc31:=O; 
arO:=O; 
arcO:=O; 

X:=O; 
qx:=O; 
Count:=O; 
mr:=O; 
mrsum:=O; 
xsum:=O; 
Insum:=O; 
sigma:=1 ; 
number:=O; 

{Generate 50 random variable from the specified distribution in order 
to get control limits for each on the three types on controllimnits. 
the three types of control limits include Shewhart, Oyon, and Ankney.} 

repeat 
{ begdn repeat2} 

chisquare; 
x:=y; 
xsum:=xsum+x; 
count=count+ 1; 
if count> 1 then mr:=abs(x-prev); 
prev:=x; 
mrsum:=mrsum+mr; 
Insum:=lnsum+ln(x) 

{ end repeat2} 
until count=50; 

{Calculate the three sets of control limits based on the 
fifty random variable just produced in the above loop.} 

xbar:=xsum/50; 
mrbar:=mrsum/49; 
pill:=ln(xbar)-lnsum/50; 

{average x} 
{average mr} 

tstat:=1/pill; {t statistic} 
alpha:=O.109+0.503*tstat; {estimated shape parameter} 
uclxs:=xbar+2.66*mrbar; {shewhart upper control limit} 
Iclxs:=xbar-2.66*mrbar; {shewhart lower control limit} 
uclrs:=3.268*mrbar; {shewhart mr upper control limit} 
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dtwo:=(0.64282)+(0 .09775* (1-exp( -O.S*alpha)) )+(0.3S736*(1-exp( -2*alpha)) )+(0.02483* (1-
exp( -0.1 *alpha))); 

dthree:=(0.859457)-(0.2964 *exp( -1 *alpha) )+(0.29099*exp( -O.S*alpha) )+(0.4 7S8*exp(-
2*alpha)); 

dfour:=(3.28976)+(1.87067*exp(-1*alpha))+(0.13663*exp(-0.1 *alpha)); 
tone:=(3.23311 )+(3.191 02*exp(-1*alpha))+(O.85168*exp( -0.1 *alpha))+(OA4197*exp(-

0.02S*alpha)); 
ttwo:=(2. 77031 )-(1.80838*exp( -1*alpha))-(O. 75091 *exp( -0.1 *alpha))-(0.43839*exp(-

0.02S*alpha)); 
tthree:=(3.68490)+(1.88402*exp(-1 *alpha))+(0.S63SS*exp( -0.1 *alpha))+(O.09686*exp(-

0.02S*alpha)); 
uclxo:=xbar+((3*mrbar)/dtwo); {oyon upper control limit} 
Iclxo:=xbar-((3*mrbar)/dtwo); {oyon lower control limit} 
uclro:=dfour*mrbar; {oyon mr upper control limit} 
uclxa:=xbar+((tone*mrbar)/dtwo); {ankney upper control limit} 
Idxa:=xbar-((ttwo*mrbar)/dtwo); {ankney lower control limit} 
uclra:=mrbar+((tthree*dthree*mrbar)/dtwo); {oyon mr upper control limit} 

{Generate random variable from the parent distribution until 
a point goes out of control on each of the control charts.} 

repeat 
Generate 

until sxO+srO+oxO+orO+axO+arO>5; 
writeln (chisq, sxcO:7, srcO:7, oxcO:7, oreO:7, axcO:7, arcO:7, 

sxe5r:7, oxcsr:7, axcSr:7, 
sxc1 r:7, oxc1 r:7, axc1 r:7, 
sxc15r:7, oxe15r:7, axc1Sr:7, 
sxc2r:7, oxc2r:7, axc2r:7, 
sxe2S~7, oxc25~7, axc25~7, 

sxc3r:7, oxc3r:7, axc3r:7, 
sxcSI:7, oxeSI:7, axc51:7, 
sxc11:7, oxc11:7, axc11:7, 
sxc15 11:7, oxc15k7, axc151:7, 
sxc2!:7, oxe21:7, axc2!:7, 
sxc2SI:7, oxc251:7, axc251:7, 
sxc31:7, oxc31:7, axc31:7); 

{writeln (uclxs:7, Iclxs:7 ,uc\xo:7, Iclxo:7,uc\xa:7,lclxa:7);} 
a:=a+1 

{end repeat 1 } 
until a=1002; 
end. 
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APPENDIX F 

Marse and Roberts Random Number Generator 
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Random uniform variates were used to generate random variates from the fi ve 

parent distributi.on discussed in section 4.2. These uniform variates were generated 

according to Marse and Roberts random number generator. The Pascal code for this 

generator is on the following page. 
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proqra. ran4-test, 
uses crt,prlnterl 
var 1,n I lnteqer, 

seed I lonqLnt, 
x I real, 
outUle 1 text; 

function Ran~Unlr : rcal; 

const 
B2E15 0:: 

B2E16 0:: 

Modulus 
MultI & 

Hult2 0:: 

var 

32768: 
65536; 

0:: 2H747J647: 
24112: 
26143: 

HilS, Hill, LOY15, Lo~prd, OV!low,Zi 
lonqlnt; 

begin 
Zi :e: Seed; 
HilS Ie: Zi DIV B2E16; 
Lowprd := (Zi - HilS • B2E16) t Hultl; 
Low15 1= Lowprd DIV B2E16; 
Hi31 Ie HilS * Hultl + LowlS1 
Ovflow Ie Hi31 DIV 82E1S; 
Zi :e: «(Lowprd - LowlS * B2E16) _ MOdUlus) + 

(Ki31 - Ovflow • 82E15) * 82E16) + OvfIow; 
IF Zi < 0 THEH ti :e: Zi + ModuluS1 
HilS :e ti DIV B2E16: 
Lowprd Ie (Zi - Hil5 * 82E16) * Kult2r 
LoW15 :e Lowprd DIV B2E16; 
Hi31 Ie HilS ttKult2 + LoW151 
Ov~lo. 1= Hi3l DIV 2~E1S, 
Zi := «(Lowprd - LoW15 * B2E16) - KodUlus) + 

(Ki~1 - Ovflow • 82E15) • 82E16) + OVflow: 
IF zi < 0 THEN ti Ie ti + KoduluSl 
Seed :: ti, . 
RandUnir := (2* (Zl DIV 256) + 1) I 16777216.0; 

end; 

be<}in 
c1rscrl 
write(' enter Seed and n: '); 
readln( Seed, n); 
writeln: 

( assiqn( outfile,' a: rand .dat ' ) r 
rewrite(outfile): 

for 1 :e 1 to n do 
begin 

)( ,- RandUn if ; 
vrlte1n(1:s, Sced:15, )(:15:10): 

write1n(outfi1e,x:IO:8)1 ) 
end; 

( close(outfile); 
end. 
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entor 

1 
2 
3 
( 

5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Seed and n: J 

';30360016 
1549035330 

264620982 
529512731 

1896697821 
2116530888 
1923129168 
1674201058 

108088067 
859154222 

1946499387 
13F890442 
13 279J310 

7(8)02678 
101(57656) 

5l4.017889 
2050)50098 
1928578391 

86)848128 
24~801402 

20 

0.29353(2193. 
0.7213258147 
0.1232237220 
0.2465736270 
0.18321.87057 

O".55~'''' 0.1955 826( 
0.77961 5742 
0.05033 4866 
0.(0007 8992 
0.906(0944 24 
0.6416302323 
0.6439133286 
0.3577688336 
0." 72449004 7 
0.239358246) 
0.9547687173 
0.8980(4315) 
0.4022606015 
0.1149258018 



APPENDIXG 

Normal Distribution Program Output 
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Turbo Pascal programs were written for this research. The programs generated 

1000 run lengths for each set of control limits based on each of the f ive parent 

distributions. The run lengths were also generated fo r each mean shi ft simulated in th is 

research. The program output for the normal distribution is supplied in thi s appendi x. 

The out put on the following pages is an excerpt from a larger spreadsheet. 
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Shewart Oyon Ankney + 0.5 
x-chart x-chart x-chart Shew o on Ank 

101 101 101 114 14 14 187 
62 48 62 48 62 1064 82 82 62 

325 325 325 325 98 325 326 326 325 
237 66 237 66 38 1470 237 237 237 

46 184 46 184 25 202 5 5 46 
115 47 115 47 12 47 48 48 115 
29 58 29 58 18 173 29 29 29 

593 393 593 393 39 592 22 22 593 
206 211 206 247 52 247 206 206 248 

26 734 26 734 26 1016 851 851 26 
171 31 319 88 110 171 21 40 171 
112 17 112 17 112 355 159 159 112 

1299 64 1299 64 64 2931 127 127 822 
105 105 115 105 14 537 69 69 115 
33 120 33 120 11 120 97 97 33 

592 196 592 196 478 12596 474 474 592 
1 1337 1 1337 1 5584 2689 2689 1 

3916 1586 3916 1586 287 10322 2526 3916 2691 
307 306 307 306 206 378 93 307 379 
140 139 140 139 185 139 140 140 185 
225 69 225 69 278 4243 225 225 283 

1330 197 1330 197 360 2453 198 198 1330 
335 209 335 209 248 209 58 58 335 

1326 30 1326 152 30 1325 40 40 30 
145 144 145 144 96 144 77 77 145 
264 61 264 61 62 1021 264 264 264 
945 331 945 331 13 3365 214 214 945 
180 3 180 3 103 690 7 7 103 

15086 46 41349 46 847 88288 47 47 1072 
28 27 28 27 114 27 28 28 28 

980 103 980 103 54 103 112 112 291 
65 109 65 109 61 592 65 65 226 

7 53 7 53 7 53 33 33 7 
19 18 19 18 19 19 20 20 19 

164 41 164 41 74 163 41 41 164 
243 3 1139 3 4 242 243 243 4 
64 2 64 2 42 11 12 12 64 
41 40 41 40 23 134 41 41 41 
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• 

240 118 240 118 186 1363 42 42 
103 102 103 102 187 346 22 22 
63 24 63 24 49 197 19 19 

190 189 190 553 187 1056 47 47 
154 7 154 7 31 31 141 141 

2022 34 2022 3209 185 6791 3063 3063 
240 239 371 239 66 1971 114 114 
272 62 272 62 63 62 62 62 

29245 1477 29245 1477 182 132078 9447 9447 
7163 52 7163 52 245 30972 4845 4845 

165 164 165 164 8 165 108 108 
243 242 243 242 184 1255 208 208 

90 90 90 90 63 90 85 85 
1306 313 1306 313 163 1490 185 185 
220 9 220 9 220 4962 585 585 

5165 307 5165 307 1214 5724 206 206 
306 40 306 94 342 472 114 114 

52 15 52 52 52 121 2 15 
286 434 286 434 84 485 486 486 
183 73 183 377 377 377 89 89 
59 33 365 33 34 203 18 18 

158 157 158 157 39 157 22 78 
47 44 47 44 85 45 31 31 
65 7 65 65 58 65 66 66 
39 1 39 96 38 39 39 
11 10 11 10 30 10 11 11 
51 36 51 36 33 51 37 37 
45 45 45 45 8 232 32 32 

422 124 1820 124 315 761 125 125 
2 1 2 1 2 1 1 1 

61 10 61 10 99 127 35 35 
389 187 389 187 260 940 258 258 
112 111 112 111 17 111 8 8 
75 23 75 74 374 74 57 57 

Shewart Oyon Ankney + 0.5 
x-chart x-chart x-chart ran e Shew a on 

average= 1118.876 213.391 1427.191 277.033 141.883 4011.67 437.488 485.891 
Variance= 22032892 245915.4 46016238 668066.3 50173.24 1.12E+09 2181138 2503836 
stdev= 4693.921 495.8986 6783.527 817.3532 223.9938 33429.52 1476.868 1582.352 
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APPENDIX H 

R VS. mR 
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The upper control limit for the mR chart is based on ranges of subgroup size 

n=2, as is common with Shewhart's mR control charts. Ranges of subgroup size n=2 

can be used instead of mR values. This is demonstrated with the following test: 

1. Random numbers were generated from Minitab for both the normal and 

exponential distribution. 

2. Ranges (n=2) were figured from the random numbers based on their 

respective distributions. 

3. Control limits were calculated based on the ranges. 

4. The number of out of control signals were counted for both the normal and 

exponential distribution based on ranges n = 2 

5. Steps 2 - 4 were repeated using mR values instead of ranges n=2. The mR 

values were calculated from the 20,000 variates produced in step 1. 

The results on the following page demonstrate that there is no si gniric<lnt 

difference between the number of ooe signals for the R (n=2) alld mR cases (based on 

their respective distributions). The control limits in both cases arc also at approximately 

the same value. The slight differences result from the fact that only I n,oo I of the 

random variates were used to generate 10,000 moving ranges while all 20,000 variates 

were needed produce 10,000 ranges (n=2). 
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Normal - Range (n=2) 
Average X: 40.1378 Average: 3.657326 
Average mA: 11.17772 
T= 28.5772 
04 = 3.32196 

Alpha= 14.45332 

ucl = 04*mR(bar) 37.13196 

Total aOG: 

Normal - Moving Range 
Average X: 40.08921 Average: 3.656582 
Average mA: 11.06392 
T= 28.96429 
04 = 3.321343 

Alpha= 14.64694 

ucl = 04*mR(bar) 36.74708 

IIT01aloOG: 82 11 

Exponential - Range (n=2) 
Average X: 1.007212 Average: -0.57598 
Average mR: 1.01' 1283 
T= 1.714771 
04 = 4.108128 

Alpha= 0.990681 

ucl= 04*mR(bar) 4.15448 

IITotaIOOG: 16511 

Exponential - Moving Range 
Average X: 1.012581 Average: -0.56984 
Average mR: 1.012012 
T= 1.717193 
04 = 4.107237 

Alpha= 0.991941 

ucl = D4*mR(bar) 4.156575 

!ITotal aOG: 17411 

129 



APPENDIX I 

Gamma Distribution At Different Alphas 
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The graph on the following page represents the Gamma Distribution at different 

alpha (a) values. The plots were generated using the following probability densi ty 

function: 

(~ r,(~) 
j(x) = --* xa -1 *e fJ 

r(a) 

Alpha values of J .0,5.0,25.0,75.0, and 135.0 were chosen to demonstrate the effect of 

the shape parameter on the Gamma Distribution. The Beta value was he ld constant at a 

value of one (I) because it has no effect on th shape of the distribution. 
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APPENDIX J 

Sub-Objectives One and Two Program Logic 
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Turbo Pascal programs were written for this research. The programs generated 

1000 run lengths for each set of control limits based on each of the fi ve parent 

distributions. The run lengths were also generated for each mean shift simulated in this 

research. The program logic for generation of run lengths generated in sub-objective two 

and sub-objective three is supplied in the chart on the followin g page. 
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Figure 1- 1: Sub-Objectives Two and Three Program Logic 

j..l,cr 

Shewhart 
Control Limits: 

X&mR ,-----:-----" 

~ 
Negative Shift in the 

Mean: 
- 0.5, -1 .0, -1 .5. -2.0. 

\. -2.5 , -3.0 cr 
,-------

SO Random variates: 
Normal , Gamma, Exponential, Log­

normal, Chi-square 

!J.,cr,a,S 
/ 

!J.,cr,a,S 

Asymmetrical 
Control Limits: 

X& rnR 

/ Oyon's Symmetrical 
Control Limits~ 

X&mR 
,'-----~------~ 

~ 
/ Negative Shift in the 

Mean: 
- 0.5, -1.0, -1.5,-2 .0, 

-2.5, -3.0 cr 

1 
Positive Shift in thc"\ 

Mean: 
+ 0.5, 1.0, 1.5,2.0, 

\. 2.5, 3.0 cr --------

1 
/Positive Shift in the 

Mean: J 
+ 0.5 , 1.0, 1.5, 2.0, 

2.5 , 3.0 cr ,------_.../ 

I 

Negative Shift in the 
Mean: 

- 0.5 , -1.0, -1.5 , -2 .0, 

-2.5, -1.0 (j 
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