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CHAPTER 1
THE PROBLEM AND ITS SETTING
INTRODUCTION

Dr. Walter A. Shewhart introduced the concept of control charts in the 1920’s.
The control charts were developed as tools for generating a picture of a process. The
basis of these charts was that there are two types of variation: controlled (common
cause) variation that is stable and consistent over time and uncontrolled (special cause)
variation which changes over time. Dr. Shewhart made the following conclusions based
on process variations; limits can be set, based on the natural variations of a process
(common cause), so that as long as there are fluctuations between these limits only con-
trolled (common cause) variation is present and fluctuations outside these limits indicate
uncontrolled (special cause) variation. If the process is influenced by only common
cause variation then it 1s in a state of statistical control (SOSC) and can be used as a
predictor of future occurrences; if influenced by special cause variations then it is not in
a state of statistical control. Dr. Shewhart stated the following as concerned with statis-
tical control: “A phenomenon will be said to be controlled when, through the use of past
experience, we can predict, at least within limits, how the phenomenon may be ex-
pected to behave in the future (4, p. 6).”

There are many different types of control charts used to study processes. The
most commonly used control charts are X and R charts which require measurable qual-
ity characteristics. The data used in these charts are made up of subgroups (typically

consisting of about four or five pieces of data) coilected from the process in a rational




manner. The X and R values are plotted in series on their respective graphs to build
control charts. These charts are utilized to monitor the process for changes in both loca-
tion and dispersion. The X control chart monitors the location of the process by plot-
ting the process average between subgroups. The R control chart monitors the disper-
sion of the data within the subgroups by plotting the range of data points within each
subgroup.

The X chart is a very robust tool although its statistical foundation is based on
the normal distribution. The robustness of this control charts is best explained by the
central limit theorem which states that for a random sample of size n, if n is significantly
large, the sample averages have approximately a normal distribution. The assumption
of normality can be made even when the process’s underlying distribution is non-
normal.

The R chart can also be used to monitor variations in process spread when the
underlying distribution is non-normal. The robustness of the R chart cannot, however.
be explained by the central limit theorem. In fact, as sample sizes increase, the distribu-
tion of the subgroup ranges become more dissimilar from normal. Although the prob-
abilities of type I errors for non-normal distributions fall short of those for the normal
distribution, “...both the Average Chart and the Range Chart can be said to be robust to
those departures from normality which are likely to be encountered in practice. They can
be used with confidence. They will work and they will work well, even when ‘the meas-

urements are not normally distributed’ (4, p.76).”



The X and R control charts are not suitable for all situations. Sometimes there
are special circumstances in a process that make subgroups impractical. Natural sub-
groups may not be feasible if there are long periods of time between measurements, a
single measurement represents one batch, measurements are too time consuming to ob-
tain, or measurements are too expensive to obtain. In cases such as these, where n=1,
X and R control charts are not applicable. Individual measurement X and moving
range n=2 mR control charts are commonly applied when only a single measurement is
taken at a time. An individual measurement X control chart is generated by plotting the
individual measurements on a graph to evaluate the process’s location. The moving
range n=2 mR chart is generated by plotting the successive differences between the in-
dividual values.

The individual measurement X and moving range n=2 mR control charts do not

possess the robustness of the X and R control charts. The underlying assumption of

normality is much more critical when there are no subgroups. Since the central limit
theorem does not apply to individual measurements, the quality characteristic measure-
ments must be approximately normally distributed to easily and accurately generate ex-
isting individual measurement X and moving range n=2 mR control charts.

In practice, all events cannot be explained by the normal distribution. There are
many instances where processes represent asymmetrical distributions. According to
Irving Burr (1953), *“...causes of non-normality is that the distribution may be unable to

go beyond a certain point, such as zero. ...measurement has a physical limitation at zero
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(3, p-80).” When the underlying distribution is asymmetrical the Pearson type III family
of distributions can be used to approximate the data (5, p.67).

Despite the limitations, individual measurement X and moving range n=2 mR
control charts are used in applications with non-normal distributions. As stated by
Schilling and Nelson (1976), “In many applications the chart is applied without knowl-
edge of the shape of the underlying distribution of individuals (3. p.183).” Conversely,
Duncan (1986) states, “Control charts for individuals must be very carefully interpreted
if the process shows evidence of marked departure from normality. In such cases, the
multiples of ¢ used to set control limits might be better derived from other distributions
for which the percentage points have been computed (6, p.400). *“ There is only limited
research concerned with the use of individual measurement X and moving range n=2

mR control charts in industry when the underlying process distribution is non-normal.

GENERAL STATEMENT OF THE RESEARCH PROBLEM
The problem of this research is to create and validate a mathematical model for
determining the location of upper and lower control limits on individual measurement X
and moving range n=2 mR control charts for asymmetrical distributions.
The sub-objectives of this study are as follows:
(1) Develop mathematical models representative of the upper and lower control limits
for asymmetrical distributions based on the shape parameter (o) and the scale pa-
rameter () from the Pearson Type III family of distributions with location parame-

ter c=0 (gamma distributions).



(2) Evaluate the performance of the individual measurement X and moving range n=2
mR control charts, based on average run lengths (ARL) and variation of run length
(VRL) using the Pearson type III family of distributions with location parameter c=0
(gamma distribution) control limits determined from objective 1. The performance
will be evaluated against a level that is acceptable for practical application in indus-
try and compared with methods having symmetrical control limits. A level that is
acceptable for practical application in industry means that the average run length
(ARL) for both the individual measurement X and moving range n=2 mR control
charts is a minimum of 100, which is equivalent to a 1% chance of a type I error,
when the process is in a state of statistical control.

(3) Compare the power of the individual measurement X and moving range n=2 mR
control charts using the Pearson Type Il family of distributions with location pa-
rameter ¢c=0 (gamma distribution) asymmetrical control limits with those methods
having symmetrical control limits. The power in this case refers to the ability of the
control charts to detect shifts in process location of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 ox

units.

THE DELIMITATIONS
The following limitations pertain to this research:
e This study is limited to the evaluation of control limits for individual measurement

X and moving range n=2 mR control charts which apply to non-normal distributions



generated by the Pearson type III family of distribution where ¢=0 (gamma distribu-
tion).

e The Pearson type IIl family of distributions with location parameter c=0 have a
range of values from (0O, +=); therefore, values of X (quality characteristic) cannot
take on negative values.

e The Pearson type III family of distributions with location parameter ¢=0 will only be
evaluated where the shape parameter alpha (o) is greater than or equal to the value
of I.

e Type I (o) errors are evaluated for points outside the upper and lower control limits.
Runs rules are not used in the evaluation of these errors. The notation (o) is used to
distinguish type I error fom the gamma distribution shape parameter (o).

e The evaluation of average run lengths (ARL) do not consider shifts in the process

standard deviation. Only shifts in the mean are considered.

DEFINITION OF TERMS

Average run length(ARL) - The average number of subgroups taken before an out-of-
control condition is given on the control chart.

Central limit theorem - Let X,,X,,...,X, be a random sample from a distribution with
mean “W” and standard deviation “¢”. Then, if “n” is sufficiently large, the
sample average has approximately a normal distribution with mean “p” and
standard deviation “o/Vn”. The larger the value of “n” the better the approxima-

tion.




Control chart - A graphical chart with control limits and plotted values of some statisti-
cal measure for a series of samples or individual values. Control charts are tools
used to detect the presence of uncontrolled variation in a process in order to in-
dicate when predictions regarding the future can be made.

Control limits - Limits on a control chart based on the data or standards given which are
used as criteria for action or for judging the significance of variations between
samples or individual values.

Individual measurement X control chart - A control chart used to evaluate the process
level in terms of a single observation per sample. These charts are usually used
when rational subgrouping is not appropriate.

Moving range - The successive absolute differences between individual values.

Moving range n=2 mR control chart - A control chart for evaluating the variability
within a process in terms of the range of the latest two observations in which the
current observation has replaced the oldest of the previous two observations.

Pearson Type III family of distributions - A family of distributions that, according to
Burr (5, p. 67), may be used as a second approximation of the curve shape of the
distribution if much asymmetry is present. The Pearson Type III family of distri-
butions with location parameter c=0 are gamma distributions which go from bell
shaped curves with range (0, +=) to J-shaped curves with range (0, +).

Process - The set of individuals, items, or data from which a statistical sampie is taken,

usually in time order.



Random sample - A sample that contains independent observations selected from the
same population or universe.

Range - The distance between the largest and smallest values in a subgroup. The range
1s used as a measure of dispersion.

Run length - The number of subgroups taken before an out-of-control condition is given
on the control chart.

Type 1 error (o) - The probability of demonstrating that a process is out-of-control

when it is in control. It is the probability of getting a false alarm.

ABREVIATIONS AND NOTATIONS

Symbol Term Definition
ARL Average run length /P or 1/P’
o’ Type I error
o Shape parameter for the gamma distribu-
tion
B’ Type Il error
B Scale parameter for the gamma distribu-
tion
c Location parameter for the Pearson Type

IIT distribution
CLmr Center line for moving range control mR

charts



CLx
dz
d3

Dy

k\

LCLx

Center line for individual control charts

Bias correction factor

Bias correction factor

Control chart constant

Control chart constant

Number of subgroups

Number of subgroups used to set control
chart limits.

Lower control limit for individual meas-
urement X control charts

Mean of theoretical probability distribu-
tion

Moving range

Average moving range

Moving range n=2 control chart

Number of items in a subgroup

Number samples or subgroups

Probability of detection on an X chart

probability of detection on an mR chart

X

R/c or mR /o
Or/C

143 dsz /d,

3/d,

X -3mR/d,

1Xi-Xi

Z mR /(N-1)

Probability(UCLx<X or
X<LCLx)

Probability(mR>UCL, k)



=l

Or

Ox

SOSC

UCLnmr

UCLx

VRL

>

X chart

X(o, B)

Range of a set of data

Average range

Sample standard deviation for a set of

data

Standard deviation of the theoretical dis-

tribution of ranges

Process standard deviation

State of statistical control

Multiple of G units the control chart lim-
its are from the center line.

Upper control limit for moving range

control charts

Upper control limits for individuals con-

trol charts

Variance of run length expressed as mul-
tiples of standard deviations.

An individual measurement

Average of a set of data

Individual measurement control chart

Gamma distribution with parameters o

and B

Xmux‘;'(min

> R /N
¥(x, -X) fn-1

T

d_‘{O’

D,mR

X +3mR /d,

Zern



THE ASSUMPTIONS
The following assumptions pertain to this research:
o The use of individual measurement X and moving range n=2 mR control charts will
continue to have widespread use in industry in the future.
e The individual measurements are not correlated.
e The acceptable minimum average run length (ARL) in industry for the combination
of control charts (X and mR) is 100 when the process is in a state of statistical con-

trol (SOSC). An ARL of 100 is equivalent to a 1% risk of having a type I (o) error.

THE IMPORTANCE OF THE STUDY
The purpose of this research is to create a method of determining control limits
for non-normal distributions which will support the widespread use of individual meas-

urement X and moving range n=2 mR control charts in industry.



CHAPTER 2
REVIEW OF RELATED LITERATURE
HISTORY

Throughout history, quality has been built into products. The early colonists and
immigrants in the United States followed the concepts of craftsmanship that were prac-
ticed in their countries of origin. At an early age, a boy would become an apprentice and
learn a skilled trade from a master. One of the lessons learned from the master was to
control the quality of the product through inspection before sale. The quality of the
products was essential because the craftsman had a large stake in meeting customer
needs. Product quality was a reflection of the craftsman’s skill.

The industrial revolution, which began in Europe, brought changes to controlling
the quality of products. The factory system of manufacturing products was becoming
increasingly popular. The trades that the craftsman practiced were divided into many
specialized tasks that could be performed by semiskilled or unskilled workers. The
skilled craftsman were no longer needed and the ability of a person Lo self-inspect a
product’s quality throughout its entire manufacture was lost. To maintain quality under
the factory system, full time inspectors would report to departmental production super-
visors. Product was either “good” or “bad” based on specification limits.

In the 1920’s, Dr. Walter A. Shewhart introduced the concept of statistical qual-
ity control to American industry. According to Dr. Shewhart, statistical tools could be
applied in a manufacturing setting to control the quality of manufactured product. One

of the tools of statistical quality control was the Shewhart control chart. The purpose of



Shewhart’s control charts was to determine if a sequence of data may be used for pre-
dictions of what will occur in the future and to warn of instability. These control charts
develop a picture of the process which aids in the evaluation of the process’s perform-
ance. The history of quality can be found in part or in full in numerous texts such as

Burr 1953 (5), Duncan 1986 (6), Joiner 1994 (11). and Juran 1995 (11).

SHEWHART CONTROL CHARTS

The basis of the Shewhart control charts is variation. There are two types of
variation that can affect a process; chance cause (common cause) variation and assign-
able cause (special cause) variation. Chance cause variation, also referred to as con-
trolled or common cause, is present in the process all the time. It is characterized by a
stable and consistent pattern of variation over time. Assignable cause variation, also re-
ferred to as uncontrolled or special cause, is not always present in the process. This
variation changes over time and comes from outside the process. References for process
variation and the basis of Dr. Shewhart’s control charts can be found in many texts in-
cluding Burr 1953 (5), Duncan 1986 (6), Wheeler 1992 (4), Deming 1993 (9), and
Joiner 1994 (11).

Dr. Shewhart made the following conclusion based on process variations:
“Limits can be set, based on the natural variations of a process, so that as long as there
are fluctuations between these limits only controlled variation is present, and fluctua-
tions outside these limits indicate uncontrolled (special cause) variation. If the process is

influenced by only common cause variation then it is in a state of statistical control

13



(SOSC) and can be used as a predictor of future occurrences, if influenced by special
cause variations then it is not in a state of statistical control. Dr. Shewhart stated the
following as concerned with statistical control: “A phenomenon will be said to be con-
trolled when, through the use of past experience, we can predict, at least within limits,

how the phenomenon may be expected to behave in the future (4, p. 6).”

X AND R CONTROL CHARTS

There are many different types of control charts used in industry. The most
commonly used control charts are the X and R control charts. According to Juran.
“Where the characteristic under study can be measured along a scale of measurement,
the X and R charts have proved to be of great value and should be used in place of p
and c charts (7, p.389).” There are two requirements for using X and R charts. First, the
quality characteristic must be measurable, and second, these control charts require that
data be collected in subgroups. The subgroups should be collected in a rational manner.
In other words, the subgroups should be such that if special causes are present they will
show up in the differences between subgroups instead of within the subgroups.

The X control charts are used to monitor variation between subgroups. This is
accomplished by monitoring the differences between subgroup averages. According 1o
ANSI/ASQC Standard Al- 1978, “Averages are generally used for the purpose of de-
termining whether there are differences between subgroup levels (12, p.3)."

The X chart has a center line and control limits. The center line of the X con-

trol chart is set at:




>

CLy =

X
where X is the average Xof all the data (or the average of the subgroup averages).

The control limits UCL ; and LCL;; are set +/- 3 ¢  units away from X.
UCL, =X +36
LCL, = X -36
where & ¢ is an estimate of ¢  derived from the data.
The estimate, § 3 ,depends on the subgroup size, n, and is calculated as follows:
85 = 6xAn
where & , is an estimate of the process standard deviation o, derived from the data.

The range (R) control charts monitor the variation within subgroups. This is ac-
complished by monitoring the range of data points that are collected for each subgroup.
According to ANSI/ASQC Standard A1-1978, “Ranges of the individual observation
within the subgroup or sample are used to estimate the variability from chance cause
within short time intervals and ordinarily should not include assignable causes. These
ranges serve to estimate the inherent variability within an essentially unchanging proc-
ess (12, p.3).” Although standard deviation is a more common measure of variability in
most applications, ranges are used because they are easier to compute. The range should
not be used, however, for subgroup sizes greater than 10 (n>10).

The range control chart has a center line and control limits based solely on sub-

group ranges. The center line of the R control chart is set at:



CLp, = R
where R is the average of all the subgroup ranges.
The control limits UCLgand LCLgare set +/- 3 cgunits away from R .
UCLg= R + 368
LCLe= R -368;
where 8ris an estimate of the range standard deviation orderived from the data.

The X and R control charts are considered very robust tools although their sta-
tistical foundation is based on the normal distribution. The robustness of the X control
chart is best explained by the central limit theorem. The central limit theorem states:
“Let X;,X3,...,X, be a random sample from a distribution with mean “u" and standard
deviation “c”. Then, if “n” is sufficiently large, the sample average has approximately a
normal distribution with mean “p” and standard deviation “o/¥n”. The larger the value
of “n” the better the approximation.” From the above definition of the central limit theo-
rem, the X chart can be used without having concern about the underlying distribution
of the process as long as the subgroup size is sufficiently large. According to Dr. She-
whart, “Such evidence...leads us to believe that in almost all cases in practice we may
establish sampling limits for averages of samples of four or more on the basis of normal
law theory (13).”

The R chart can also be used to monitor variations in process spread when the
underlying distribution is non-normal. The robustness of the R chart cannot, however,
be explained by the central limit theorem. In fact, as sample sizes increase, the distribu-

tion of the subgroup ranges may become more dissimilar to the parent distribution. In a

16



study performed by Wheeler and Chambers (4, 1992), the subgroup ranges of five non-
normal distributions were evaluated for type I errors using the common limits of 3og
units from the center line. The evaluation was performed for sample sizes of n= 2, 4,
and 10. The resulting probabilities of a type I error for a highly skewed distribution were
0.026, 0.026, and 0.04, respectively. Although the probabilities fall short of the 0.01,
0.005, and 0.005 probability of a type I error for the normal distribution, *...both the
Average Chart and the Range Chart can be said to be robust to those departures from
normality which are likely to be encountered in practice. They can be used with confi-
dence. They will work and they will work well, even when ‘the measurements are not

normally distributed’ (4, p.76).”

INDIVIDUAL MEASUREMENT X AND MOVING RANGE n=2 mR CONTROL
CHARTS

The X and R control charts are not suitable for all industrial situations. Some-
times there are special circumstances in a process that make subgroups impractical.
Natural subgroups may not be feasible if there are long periods of time between meas-
urements, a single measurement represents one batch, measurements are oo time con-
suming to obtain, or measurements are too expensive to obtain. In cases such as these,
where n=1, X and R control charts are not applicable. Individual measurement X and
moving range n=2 mR control charts are commonly applied when only a single meas-
urement is taken at a time. According to Wadsworth, et al., “Their use is generally re-

served for process and product characteristics for which it is impractical or unreasonable




to replicate observations and to form subgroups of observations to aid the study of proc-
ess variation (14, p.143).”

The individual measurement X control chart monitors the process level. This
control chart has a center line and control limits based on the individual value X. The
center line on this control chart is set at

CLy= X
where X is the average of all the individual measures.

The control limits UCLyx and LCLy are set at +/- tox from X (22, p. 275-7)

UCLy = X +t8y

LCLx = X - t8x
where & x is an estimate of the process standard deviation ox derived from the indi-
vidual measurements X.

The common form of the individual measurement X control chart has an under-
lying process distribution that is normal. In common form, the multiple of standard de-
viations, t, the limits are from the mean is equal to 3 (4, p. 60). The control limits UCLy
and LCLyx become

UCLx = X + 36«
LCLx = X - 36x

The moving range n=2 mR control chart monitors the variation within the proc-

ess. This control chart has a center line and control limits based on the range between

the two latest individual measurements X. The center line on this control chart is set at
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CLg = mR
where mR is the average of k-1 moving ranges formed from consecutive n=2 observa-
tions.
The upper control limit UCL,r is set at to,g above the center line mR (22, p. 275-7)
UCLyr = MR + 8,1

The common form of the moving range n=2 mR control chart has an underlying
process distribution that is normal. In the common form, the multiple of standard devia-
tions, t, the limit is away from the mean is equai to 3 (4, p. 60). The control limit
UCL,,r becomes

UCL g = ﬁ + 3(3'"]“

The individual measurement X and moving range n=2 mR controi charts do not

possess the robustness of the X and R control charts. The underlying assumption of

normality is much more critical when there are no subgroups (5, p. 266-7). Since the
central limit theorem does not apply to individual measurements, because n=I, the
quality characteristic measurements must be approximately normally distributed to eas-
ily and accurately generate existing individual measurement X and moving range n=2
mR control charts. When the process distribution is not approximately normally dis-
tributed, the value of t=3 may not produce control limits that are acceptable for use in

industry.
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APPLICATION OF X & mR CONTROL CHARTS

In practice, all events cannot be explained by the normal distribution. Many of
the distributions encountered in every day experiences are non-normal. Economical,
physical, chemical, and biological factors typically have distributions that are skewed.
According to Irving Burr “...cause of non-normality is that the distribution may be un-
able to go beyond a certain point, such as zero. ...measurement has a physical limitation
at zero (5, p.80).” When the underlying distribution is asymmetrical, the Pearson type
[1I family of distributions can be used to approximate the data (5, p.67).

Despite the limitations, individual measurement X and moving range n=2 mR
control charts based on the normal distribution are used in applications with non-normal
distributions. As stated by Schilling and Nelson, “In many applications the chart is ap-
plied without knowledge of the shape of the underlying distribution ol individuals (3,
p.183).” Conversely, Duncan states, “Control charts for individuals must be very care-
fully interpreted if the process shows evidence of marked departure from normality. In
such cases, the multiples of ¢ used to set control limits might be better derived from
other distributions for which the percentage points have been computed (6, p.400). “ By
Duncan’s statement above, the value of “t” used in setting control limits on individual
measurement X and moving range n=2 mR control charts for skewed distributions
should be based on a distribution more accurately representing the process. As stated in
the previous paragraph, the Pearson type III family of distributions with location pa-

rameter c=0 can be used to approximate asymmetrical distributions.
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Individual measurement X and moving range n=2 mR control charts are com-
monly used in industry. Unfortunately, they may produce inaccurate representations of
the process if the underlying process distribution is non-normal. To use individual
measurement X and moving range n=2 mR control charts appropriately there must be a
method for setting control limits that more accurately predict the stability of the process.
Research concerned with these control limits has been limited. although the need is jus-

tified.

CURRENT RESEARCH
The only research found that addresses non-normal individual measurement X

and moving range n=2 mR control chart limits was performed by Jose Oyon, 1995.

Oyon (8), in an unpublished master of science thesis, studied the effect of non-normality

on individual measurement X and moving range n=2 mR control charts. In this thesis,

Oyon did the following:

1. Evaluated the performance of the individual measurement X and moving range n=2
mR control charts using the constants d,, dz, and D, under the assumption ol nor-
mality when the underlying distribution was Pearson type Il family of distributions
with location parameter ¢=0.

2. Determined empirical functions for the control chart constants d», ds, and D4 when

the process distribution was approximated by the above distribution.
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3. Compared the performance of the individual measurement X and moving range n=2
mR control charts with control limits based on the normal distribution to those
based on the Pearson type III family of distributions with location parameter c=0.

Oyon made the following conclusion from his research:

. The individual measurement X and moving range n=2 mR control charts based on
the normal distribution do not work well when the underlying process distribution
shows a marked departure from normality.

2. Control chart constants based on the gamma distribution perform better than those
based on the normal distribution when the process distribution is non-normal and
perform approximately the same when the process distribution is normal.

Although the gamma control chart constants perform better than the normal
control chart constants, the false alarm rate produced from the gamma control chart con-
stants does not meet industry standard of 1% when the process is in SOSC. One possible
reason for the high false alarm rates is that the gamma control chart constants are used
to produce symmetrical control limits for process distributions that are asymmetrical
(skewed). It may be possible to improve the performance of individual measurement X
and moving range n=2 mR control charts for skewed distributions if asymmetrical con-
trol limits are developed.

No other work was found that addresses the effects of non-normality on individ-

ual measurement X and moving range n=2 mR control charts.
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CHAPTER 3
THE RESEARCH METHOD
Section 1: INTRODUCTION
The following sections of Chapter Three explain the methodology for

performing this research. The sections of this chapter are outlined below:
I. Introduction
2. General Data

2.1 The Data

2.2 Criteria for Admissibility

2.3 The Research Methodology
3. Specific Treatment of the Data for Each Sub-objective

3.1 Sub-objective One

3.1.1 Individual Measurement X Control Chart Limits
3.1.1.1 The Upper Control Limit
3.1.1.2 The Lower Control Limit
3.1.2 Moving Range n=2 mR Control Chart Limits
3.2 Sub-objective Two
3.3 Sub-objective Three
Section one of Chapter Three is intended to clarify the methodology of this

research. Section two 1s intended to characterize the data that is used to develop the
asymmetrical control limits. The Data describes the primary source of the data used to

develop the control limits. The Criteria for Admissibility defines the established limits
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and standards that the data must meet to be admitted into this research. The Research
Methodology classifies the methodology of this research.

Section three of this chapter explains the specific steps for each sub-objective of
this research. The flowchart on the following page (Figure 3-1) is included as a guide
for the research methodology. Section three is broken into three main sub-sections; sub-
objective one, sub-objective two, and sub-objective three. The statement of the sub-
objectives is found in their respective sub-sections. The following is an overview of the
main sub-sections:

Sub-section 3.1 overview

Sub-section 3.1 develops mathematical models representative of the upper and
lower control limits for asymmetrical distributions based on the shape parameter (o) and
the scale parameter () from the Pearson Type III family of distributions with location
parameter ¢=0 (gamma distributions). These mathematical models are for the multiple
of standard deviations the control limits are from the mean (t values). The mathematical
models are generated in two different sections. One section is for the generation of the
mathematical models for the individual measurement X control chart (t;, and t;) and the
other for the moving range n=2 mR control chart (13).

Section 3.1.1 develops the mathematical models for the upper and lower control
limits of the individual measurement X chart. To develop these mathematical models an
upper control limit is found which leaves 0.00135 of the area under the Pearson type 111
(c=0) distribution beyond the upper control limit and a lower control limit is found

which
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Determine the UCL for the X-
charl based on the Gamma
Start distribution for different values —
ofaand B. (Section 3.1.1.1 Calculate the d'z, d's, and D's
step 1) values from Oyon (1995).
l (Section 3.2 slep 8)
Create a mathematical model for l
the UCL < 1> based on the Calculate control limits based on
prediclors or and B. (Section Oyon's “d" values. (Section 3.2 step
3.1.1.1 sleps 2 & 3) 8)
Determine the LCL for the X- Calculate the b, t2, and 1 values
chart based on the Gamma from the mathematical models found
distribution for different values of in previous sleps of this research.
o and P. (Section 3.1.1.2 step 1) {Section 3.2 step 10)
Create a mathematical model for Calculale the als melrical control
the LCL <2 > based on the limits based upome *t" values.
predictors c and B (Section (Section 3.2 slep 11)
31.1.25leps2& 3) l
l Adjust the previous control limils
Locate the UCL for the mR chart {Normal, Oyon, and Asymmelrical) to
based on the Gamma distribution for simulate a shift in the mean of 0.5,
different values of ot . Parameter 3 is 1.0, 1.5, 2.0, 2.5, and 3.0 standard
shown to have no effect. {Section deviations. (Secticn 3.3 steps 1 & 2)
3.1.2 steps 1-6) l
4 For each control chart, produce
Create a mathemalical model for random variates until a value falls
the UCL <ta> based on the | outside of the control limits. {Section
predictors a and [3. (Section 3.1.2 3.2 step 12 & Section 3.3 step 3)
steps 7 & 8) l

-l Calculate the ARL & VAL for the

Produce 50 random variales ¥ control charts based on the 1000 runs
from a distribution. (Section and build RL histograms.{Section 3.2
3.2 step 6) slep 13 & Seclion 3.3 slep 4)
Calculate the Normal Place ARLs in Tables for analysis
control limits based on {Section 3.2 step 14 & Section 3.3
the 50 random variates. step 5)
(Section 3.2 slep 7) J

r

l ‘ EN |
Fit the 50 random variates to
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ihe gamma distribulion's «
parameter. (Section 3.2 step

7)

Figure 3-1: Research Methodology Flow Chart
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leaves 0.00135 of the area below the lower control limit. In this section the area is found
by integration. Control limits are located for different combinations of the shape
parameter (o) and the scale parameter () of the Pearson type III (c=0) distribution. The
control limits are expressed as multiples of the standard deviation from the mean. The t,
value represents the multiple of standard deviations for the upper control limit and the t,
value represents the multiple of standard deviations for the lower control limit.

The next step in developing the mathematical models for t; and t, is to use the
“t” values (from the different o’s and [B’s) to develop the actual mathematical

LTS R
t

expressions. Multiple regression models are developed which predict the values
using the (o) and (B) parameters as the predictors. There are different mathematical
models which can represent the behavior of the “t”” values, so, by trial and error, models
are found which do a good job of predicting t; and t; but may not be the only models
that can be used. A global F test is used to test the validity of the multiple regression
models selected.

Section 3.1.2 develops the mathematical model for the upper control limit of the
moving range n=2 mR control chart. In this section of the research, two streams of
random numbers are generated from the Pearson type III (c=0) distribution and the range
for the corresponding values of those streams are found. The ranges for subgroups n=2
are used instead of moving range values for two reasons:

1. There is correlation between the moving range values.

2. Current methods for setting control limits on the moving range charts are

based on the range of n=2.
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The next step is to find an upper control limit which leaves 0.0027 of the ranges
beyond the limit. The area of 0.0027 is used because it is consistent with the
probabilities of the individual measurement X chart when the subgroup size is less than
seven (since only an upper control limit exists on the range chart). Control limits are
found for different shape parameters (o) of the Pearson type III (c=0) distribution.
Previous analysis of the individual measurement X control charts indicate that B does
not have an effect on the control limit of the moving range chart. Appendix A
demonstrates that B has little or no effect on the control limits; therefore, B is not
included in the development of the moving range n=2 mR control limit. The control
limit is stated as a multiple (t;) of the standard deviation of the individual ranges. A
mathematical model for t3 is found in the same manner as for the individual
measurement X control limits.

Sub-section 3.2 overview

Sub-section 3.2 evaluates the performance of the individual measurement X and
moving range n=2 mR control charts based on average run lengths (ARL). Despite
limitations, individual measurement X and moving range n=2 mR control charts based
on the normal distribution are used in applications with underlying process distributions
that are non-normal. As stated by Schilling and Nelson, “In many applications the chart
is applied without knowledge of the shape of the underlying distribution of individuals
(3, p.183).” The idea of this sub-section is to evaluate the performance of individual
measurement X and moving range n=2 mR control charts having asymmetrical control

limits based on the Pearson Type III family of distributions with location parameter ¢=0
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(gamma distribution) to those having symmetrical contro] limits based on the same
distribution. The asymmetrical control limits are also compared to those based on the
normal distribution since control chart limits based on normality are commonly used in
industry.

The evaluation is performed by generating random variates from a parent
distribution which is assumed to be unknown. Control limits are calculated for Normal
Shewhart limits, symmetrical control limits based on the Pearson type III (c¢=0)
distribution (Oyon 1995), and the asymmetrical control limits based on the Pearson type
I (c=0) distribution. In order to calculate the latter two sets of control limits, the
randomly generated variates are fit to the Pearson type III (c=0) distribution. The
method of fit used in this research generates (o) and () values which are used in the
mathematical models for calculating the “d” values (needed for Oyon’s limits) and the
“t” values from this research.

Next, random variates are generated from the same parent distribution until an
out-of-control signal is detected on each of the three individual measurement X and
three moving range control charts. A run length (RL) is recorded for each control chart
(both X and mR) and the above steps (setting control limits and determining RL"s) are
repeated 1000 times. An average run length (ARL) and variance of run length (VRL) is
found for each control chart (6 total) and recorded for analysis in Chapter Four. The run
lengths are stored and presented as a histogram. The chart in Appendix J demonstrates

the logic used in the evaluation of sub-objectives 3.2 and 3.3.
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Sub-section 3.3 overview

Sub-section 3.3 compares the power of the individual measurement X and
moving range n=2 mR control charts using the Pearson Type III ¢=0 asymmetrical
control limits with those methods having symmetrical control limits (Normal and
Oyon). The power, in this case, refers to the ability of the control charts to detect shifts
in process location of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0cx units. A type Il error (B’) is the
probability of concluding a process is in-control when it is actually out-of-control. The
power of a control chart is a function of a type II error. The power is equal to 1 - B and
is the probability of detecting an out-of-control condition. Generally, type I and type 11
errors are negatively correlated. As the type I errors are reduced, the type II errors
increase which in turn decreases the power of the control charts. Discussions of these
types of errors can be found in many texts including Hayes (17), Savage (18), Hair (19),
and Miller (20). Previous sub-objectives of this research attempt to find control limits
which have smaller type I errors than existing methods, therefore, it is important to
evaluate the effect of asymmetrical limits on the power of the individual measurement X

control charts.

Section 2: GENERAL DATA
2.1: The Data
The primary source of data used to develop asymmetrical control limits consist

of values generated from the Pearson Type III family of distributions with location

29

UBRLAITUVGS OAALE LUANAVYELDLA &



parameter c=0 (gamma distributions). Random variates are generated from the normal
distribution, the log-normal distribution, and the gamma distribution to evaluate the
performance of the asymmetrical control limits developed from the Pearson Type III
family of distributions.

2.2: The Criteria for the Admissibility of the Data

The criteria for the admissibility of the data used for this research is as follows:

e Only values generated from the Pearson Type III family of distributions with
location parameter c=0 (gamma distributions) are utilized in the development of the
mathematical models for t, t2, and ts.

e  Only o (shape parameter) values greater than or equal to the value of 1.0 are applied
to the Pearson Type III family of distributions with location parameter ¢=0 (gamma
distributions).

e Only B (scale parameter) values equal to |, 2, and 5 are applied to the Pcarson Type
[T family of distributions with location parameter ¢=0 (gamma distributions).

2.3: The Research Methodology

The method of research used in this study is based on numerical data. Since the

data are numeric, quantitative methodology is utilized to conduct this research.

Section 3: SPECIFIC TREATMENT OF THE DATA FOR EACH SUB-OBJECTIVE

3.1: Sub-objective one:

Statement of the Sub-Objective: Develop mathematical models representative of

the upper and lower control limits for asymmetrical distributions based on the shape
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parameter (o) and the scale parameter (B) from the Pearson Type III family of
distributions with location parameter ¢=0 (gamma distributions) so often encountered in
industry.

The Data Needed: The data needed for this sub-objective consist of values
generated from the Pearson Type III family of distributions with location parameter ¢=0
(gamma distributions). The values generated from this distribution include individual
measurements X, as taken from integrating the distribution, and range values, as
produced from randomly generated observations.

The Location of the Data: The Pearson Type Il family of distributions with

location parameter ¢=0 (gamma distributions) have the following probability density

) it

ra)

function (pdf):

flx)=

All data needed in generating mathematical models representative of the upper and
lower control limits for individual measurement X and moving range n=2 mR control
charts are produced from this function.

The Means of Obtaining the Data: The control limits required for sub-objective
one are obtained by integrating the above function (the specific treatment of the function
is explained in the steps below). Mathcad for windows release 4.02 is utilized 1o
perform the necessary integration of the Pearson Type III family of distributions with
location parameter ¢=0 (gamma distributions) and Minitab for Windows release 10.5 is

used to generate random variates.
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Treatment of the Data: The treatment of the data is explained separately for the
individual measurement X control limits and the moving range n=2 mR control limits.
The explanations are as follows on sub-sections 3.1.1 and 3.1.2.

3.1.1: Individual measurement X control chart limits :

Individual measurement X control charts based on the normal distribution have
upper and lower control limits set at +/- 36x units above and below the average of a set
of data. When these control limits are applied to a process having a normal distribution,
there is a probability of approximately 0.00135 that a point will fall beyond the upper
control limit and a probability of 0.00135 that a point will fall below the lower control
limit. To stay consistent with normal probability theory of statistical process control, the
Pearson Type III family of distributions with location parameter ¢=0 (gamma
distributions) is evaluated against the same probabilities of a point falling outside
control limits. This evaluation is described in the following paragraphs.
3.1.1.1: The upper control limit

The following steps describe the methodology for generating a mathematical
model for the asymmetrical upper control limit on the individual measurement X control
chart.

1) The value of the upper control limit for the Pearson Type III family of distributions
with location parameter ¢=0 (gamma distribution) is located by integrating the
distribution on Mathcad. An upper control limit (UCL) is generated which leaves a tail
area of 0.00135 beyond the limit. The UCL for the Pearson Type III family of

distributions with location parameter ¢=0 (gamma distribution) is denoted by (UCL) in
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the equations below. The limit is evaluated in this manner for all combinations of o
(shape parameter) = 1, 5(5)135 and B (scale parameter) = 1, 2, and 5. As demonstrated
in Appendix I, the o values represent a range of skewed distributions from exponential
to approximately normal (since the gamma distribution cannot generate an exact normal
distribution). The UCL’s are expressed as a multiple of ox units (t;) to the right of the

mean of the distribution. The following equations are used to generate the limits:

ol i
ucL ,8 “‘1*0_‘[11

-00135= J; W*x Plax | -1 . (given ocand B. find UCL)
(eq. 3-1)
O, = J(x ® ﬁi (eq. 3-2)
X(mean) = ar* B (eqg. 3-3)
. _ UCL-a* 3
t; = multiple of ox units from the mean =——— (eq. 3-4)

Jar B

The multiple of ox units from the mean (t;) generated in this step are paired with their
associated o and 3 values and recorded as demonstrated in the table (Table 3-1) on the
following page.

2) A statistical software package (Minitab for Windows release 10.5), which features
regression software, is used to generate different multiple regression models for
predicting the t; value with the predictors o and . There are different mathematical
models which can predict the t; values, so, by trial and error, a model is found which
does a good job of predicting t; but may not be the only model that can be used. A

model is chosen that has a high adjusted multiple coefficient of determination R”.
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Table 3-1: 6x Units From the Mean (t))

Ox units from the mean ((,)

o B=1 B=2 B=5
] 5.6080 5.6080 5.6080
5 4.2005 4.2005 42005
135 3.2305 3.2305 3.2305
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The adjusted multiple coefficient of determination (R?) is a sample statistic thal
demonstrates how well the mathematical model fits the data; therefore, it represents a

measure of adequacy of the model. The R? is defined as:

R*=1-[X(y,-5,) /Xy, -7) | = 1-SSE/Ssyy

3) A global F test is used to test the validity of the multiple regression model selected.
The null hypothesis of this F test is:
Ho: A =X =43 =...=% =0
where A, is the distance from the integrated t; value to the corresponding t; value
calculated from the multiple regression equation. The n = 1, 2, 3, ..., k represent the A
for the respective ot = 1, 5(5)135.
The null hypothesis is tested against the alternative hypothesis
Ha : at least one of the A parameters does not equal zero
The test statistic is defined by
F = (R¥k)/{(1-R* )/[n-(k+1)]}
and the rejection region by
F>Fo ket

where

k is the number of A parameters in the multiple regression mode! excluding the

constant term Ay .
n is the number of integrated t; values used to generate the multiple regression

model.
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Ai’s are the distances from the integrated t; value to the corresponding t; values
calculated from the multiple regression equation.

o’ is the significance level.
3.1.1.2: The lower control limit

The following steps describe the methodology for generating a mathematical
model for the asymmetrical lower control limit on the individual measurement X control
chart.
1) The value of the lower control limit for the Pearson Type III family of distributions
with location parameter ¢=0 (gamma distribution) is located by integrating the
distribution on Mathcad. A lower control limit (LCL) is generated which leaves a (ail
area of 0.00135 below the limit. The LCL of the Pearson Type III family of
distributions with location parameter c=0 (gamma distribution) is denoted by (LCL) in
the equations below. The limit is evaluated in this manner for all combinations of o
(shape parameter) = 1,5(5)135 and B (scale parameter) = 1, 2, and 5. The LCL’s are
expressed as a multiple of oy units (t2) to the left of the mean of the distribution. The

following equations are used to generate the limits:

LCL NRA
00135= f m* x*xe [‘de ; (given acand B, find LCL)
9 (eq. 3-5)
o, = Ja*p’ (eq. 3-2)
mean = o* 3 (eq. 3-3)
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a* - LCL

ch*ﬁ:

The t, values are placed in a table similar to Table 3-1 in step 1 of section 3.1.1.

t, = Ox units away from the mean = (eq. 3-6)

Steps 2) and 3) are the same for the lower control limit as stated earlier for the
upper control limit.

3.1.2: Moving range n = 2 mR upper control chart limits:

The moving range n=2 mR control charts are commonly used in industry.
Unfortunately, they may produce inaccurate representations of the process if the
underlying process distribution is non-normal. As seen from previous research by Oyon
(1995), moving range n = 2 mR control charts fall well short of achieving ARLs of 100
(the assumed ARL for industry acceptance in the research) for moving ranges of skewed
distributions. The result of the poor performance of these charts is the appearance of
many false out-of-control signals. To use the moving range n=2 mR control charts
appropriately, there must be a method for setting control limits that more accurately
predicts the stability of the process. This portion of the research sets control limits based
on the location (t3) of the upper control limits as a multiple of the standard deviation of
the ranges. The (t;) values for the moving range n=2 mR control charts for skewed
distributions are evaluated as follows:

I) The value of the upper control limit for the moving range n = 2 mR control charts
based on the Pearson Type Il family of distributions with location parameter ¢=0
(gamma distribution) is located by simulating values of the distribution from
Minitab. Two columns of k = 60,000 randomly generated observations are produced

for all values of a (shape parameter) = 1, §, 10. 15, 20,..., 135. The selection of the
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number of subgroups, k = 60,000, is found in Appendix B. The scale parameter is
not evaluated in generating this mathematical model for the ranges because it does
not affect the value (t;) as demonstrated in Appendix A.
The upper control limit for the mR chart is based on ranges of subgroup size two as
is common with Shewhart’s mR control charts. Ranges of subgroup size n=2 can be
used instead of mR values. This is demonstrated in Appendix H.
2) The observations are grouped in the following manner:
(X1,Y1), (X2, Y2), (X3, Y3)5e00s Xk, Y )
Where X; represents the first column of k = 60,000 observations and Y; represents the
second column of k = 60,000 observations.
3) The range for each pair of data is found using the following equation:
R=IX; -Yil

4) The average range, R, is found with the equation:

2R,

R=-—

where k = 60,000. The value of R is found for each value of o (shape parameter) = 1,
5(5)135.

5) The standard deviation of the ranges, or, is found with the following equation:

(R, -R)’
k-1

O, =

where k = 60,000. The value of o, is found for each value of o (shape parameter) = 1,

3(5)133.
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6) An upper control limit is generated for each o which leaves a tail area of 0.0027 (see
introduction) outside the limit. In order to accomplish this step, the following equation
1s used:
UCL, =R +t,(6,) (eq. 3-7)

To locate the upper control limit, the values from steps 4 and 5 are applied to
this equation and an appropriate (t3) value is found. This is accomplished by increasing
the value of (t3) by 0.0001 until 0.27% of the ranges are outside the control limits.

The limit is evaluated in this manner for all values of o (shape parameter) = 1, 5.
10, 15, 20,..., 135. The results are expressed as a multiple of or units (t3) to the right
of the mean range of the distribution. The multiple of ogx units from the mean ((3)
generated in this step are paired with their associated & values as demonstrated in the
table (Table 3-2) on the following page.

Steps 7) and 8) are the same as steps 2) and 3) for the upper and lower control
Jimits of the individual measurement X control chart.

3.2: Sub-objective two:

Statement of the Sub-Objective: Evaluate the performance of the individual
measurement X and moving range n=2 mR control charts, based on the average run
length (ARL) using the Pearson type III family of distributions with location parameter
c¢=0 (gamma distribution) control limits determined from sub-objective 1. The control
charts are evaluated against an ARL that is acceptable for practical application in
industry and compared with methods having symmetrical control limits. An ARL that is

acceptable for practical application in industry means that the average run length (ARL)
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Table 3-2: oy Units From the Mean (t3) for the UCL of the Range Chart

Oy units from the mean (t;) for the
UCL of the range chart
o Bz |
| 4.9826
5 4.1126
10 3.9821
135 3.6919
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for each control chart is 2 minimum of 100 observations. An ARL of 100 is equivalent

to a 1% chance of a type 1 error when the process is in a state of statistical control.

The Data Needed: The data for sub-objective two consist of randomly generated
variates from the normal, Jog-normal. and gamma distributions. Individual measurement
X and moving range n=2 mR control limits are also needed for the normal Shewhart,
Oyon’s symmetrical Pearson type III (c=0), and asymmetrical Pearson type III (c=0)
control charts.

The Location of the Data: The location of the data for sub-objective two is as
follows:

e A random variate generator is utilized to generate values from the normal, log-
normal, and gamma distributions.

e Symmetrical individual measurement X and moving range n=2 mR contro] limit
equations based on the normal distribution produced by Dr. Shewhart are found in
various quality control texts including Wheeler and Chambers (1992), Burr (1953),
and Duncan (1986). These equations can be found in step 6 below.

e  Symmetrical individual measurement X and moving range n=2 mR control limit
equations are produced using the d’», d’3, and D’y values approximated by the
Pearson Type III family of distributions with location parameter ¢=0 (gamma
distribution) from previous research by Jose Oyon (1995). These equations can be
found in step 8 below,

e Asymmetrical individual measurement X and moving range n=2 mR control limit

1]

equations are produced using the mathematical models generated for the “t” values
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approximated by the Pearson Type III family of distributions with location
parameter c=0 (gamma distribution). The mathematical models are produced in sub-
objective one above.

Means of Obtaining the Data: The Individual measurement X and moving range
n=2 mR control limits are obtained through the calculation of the symmetrical and
asymmetrical control limit equations. Equations 3-11 through 3-13 are for the normal
control limits, equations 3-18 through 3-20 are for the Oyon control limits, and
equations 3-21 through 3-23 are for the asymmetrical control limits.

Treatment of the Data: The following is a detailed procedure to achieve sub-
objective two:

1) Five process distributions are selected to represent unknown parent distributions.
The distributions are chosen to represent a variety of process distributions that occur in
industry. The five process distributions selected are as follows:

 Normal (40, 10%)

e Log-normal (0, 19

Gamma (o= 1.5,8=1)

e Chi-square (df = 4)

Exponential (= 1)
2) One set of k™ = 50 observations is generated from one of the five distributions

selected in the previous step.
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3) The average ( X)) is calculated for the 50 observations (the 50 observations for which
the control limits are calculated are referred to as k). The average is obtained using the

following equation:

(Xx,) (eq. 3-8)

kl

X =
4) The moving range n=2 is calculated for the k” = 50 observations. The moving range
n=2 is calculated by grouping the observations into subgroups of two consecutive
measurements and then applying those subgroups to the following equation:
mR, =|X,,, - X|| (eq. 3-9)
5) The average moving range is calculated from the 49 moving ranges calculated in step
4 for the k’ = 50 observations using the following equation:

K =l
ZmRy (eq. 3-10)

mR =—7’Ek._])

6) Control limits based on the normal distribution are calculated. The individual
meuasurement X and moving range n=2 mR control chart limits are calculated with the

following equations:

UCL, = X +2.66(mR) (eg. 3-11)

LCL, = X-2.66(mR) (eq. 3-12)

UCL ; = 3.268(Fn—R) (eq. 3-13)

7) In order to calculate the control chart constants based on the Pearson Type 11l family

of distributions with location parameter c=0 (gamma distribution), the shape parameter
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(0.) has to first be estimated. The following was written by Jose Oyon (1995) in regards
to estimating the parameters o and [ for the Pearson Type III family of distributions
with location parameter ¢c=0 (gamma distribution):

“In order to get the Pearson type Il with ¢=0 (gamma) control
chart constants d,, ds;, and Dy to be used in setting control limits for
each run of (k') observations, Pearson type Il parameters o and B have
to be estimated from the (k') observations generated.

“Since the process distribution is supposedly unknown, the idea
is to fit the data with a Pearson type Il with ¢=0 distribution by
estimating the parameters & and 3 from the (k') data values (gamma
distribution assumption as the underlying process distribution).
According to Fisher (I, p.332), the method of moments is inefficient to
estimate parameters of a gamma distribution, except for a distribution
closely resembling the normal distribution. Kendall and Stuart (2, p.38)
show that the efficiency of the estimated shape parameter & of a gamma
distribution by the method of moments may be as low 22 percent.
Therefore, Fisher (I, p.332) and Law and Kelton (15, p.331) recommend
the method of maximum likelihood estimation (MLE) in order to estimate
the parameters & and B of type 1l from the data.

"The difficulty in applying the method of maximum likelihood
estimation to estimate the parameters o and B of the gamma distribution

is that closed expressions for the maximum likelihood estimators & and
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B cannot be obtained analvtically. Therefore, numerical methods must

be used to estimate the parameters & and 3 of the gamma distribution.
“Choi and Wette (9, p.683) developed a numerical technique of

the maximum likelihood method to estimate the parameters of the

gamma distribution. This method is recommended by Law and Kelton

(15, p. 331) to estimate o and B. Therefore, this method is the one to be

used in this (sub-objective two) to estimate & and B from the data in

order to fit a Pearson type Il distribution with location parameter ¢=0

(gamma distribution).”

The maximum likelihood method stated above utilizes a T statistic to estimate
the parameters o and B (15, p.331). The T statistic is obtained with the following

equation as given by Law and Kelton (15, p.410):

=l
e Ini—¥ (eq. 3-14)

Using the T statistic from the above equation, the estimator @ can be obtained
using Table 6.19 in Law and Kelton (15, p. 411). A reproduction of this table is
included in Appendix C of this research.

8) The control chart constants d’,, d’;, and D’ based on the Pearson Type III family of
distributions with location parameter c=0 (gamma distribution) are calculated for the k’
= 50 observations. The following mathematical models (as produced by research from

Jose Oyon (1995)) are used to generate the constants:
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d', =0.64282+0.097751-e ) +035736(1—e **) +0.02483 1 - *"*) (eq. 3-15)
d',=0.859457 +0.2964(c ™) +0.2909%e ***) +0.4758/¢ **) (eq. 3-16)

D, =3.28976+1.87067(e™*)+0.13663e ") (q. 3-17)
9) Symmetrical control limits based on the Pearson Type III family of distributions
with location parameter ¢=0 (gamma distribution) are calculated. The individual
measurement X and moving range n=2 mR control chart limits are calculated using the

following equations:

UCLX . i 4 (f}(ﬁ) (eq. 3-18)
LCL, =X - [; ](ﬁ) g
UCL,, =D, (mR) (eq. 3-20)

d,
where D, = (1+ 3[8-—} .

10)  The t;, t;, and t;3 values are calculated for the Pearson Type III family of
distributions with location parameter c=0 (gamma distribution) for the k’ = 50
observations. The parameter (o) designated from step 7 of sub-objective two is used to
estimate the t;, t5, and t; values using the mathematical models generated from sub-

objective one of this research.
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11) Asymmetrical control limits based on the Pearson Type III family of distributions
with location parameter c¢=0 (gamma distribution) are calculated. The individual
measurement X and moving range n=2 mR control chart limits are calculated with the

following equations:

_ t, \—
UCL, =X+ (FJ(mR) (eq. 3-21)
LEE. =%~ [Et?—](ﬁ) (eq. 3-22)
UCL,, = D', (mR) (eq. 3-23)

d';
where D', = (1+¢, dT ).

12) For the three sets of control limits (normal, Oyon, and asymmetrical), random
variates are generated until a value falls outside each set control limits. A run lenglh
(number of values generated before an OOC signal) is recorded for each control chart.

13) Steps 2) through 12) are repeated 1,000 times for each of the five parent
distributions stated in step one of this sub-objective. An average run length (ARL) for

each of the five distributions is calculated using the following equation:

E(RL) (eq. 3-24)
1,000

ARL =

14) A variance of the run length (VRL) for each of the five distributions is calculated

with the following equation:
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1000
> (RL, - ARL)’ (eq. 3-25)
VRL = || =

999
15) The 1000 run lengths are stored and presented on a histogram for each of the five
parent distributions. The data from steps 13) and 14) of sub-objective two are
grouped according to the parent distributions of the random variates and placed in a
table for easy reference. The table (Table 3-3) is illustrated on the following page.

3.3: Sub-objective three:

Statement of the Sub-Objective: Compare the power of the individual
measurement X and moving range n=2 mR control charts using the Pearson Type TII
c=0 asymmetrical control limits with those methods having symmetrical control limits,
The power, in this case, refers to the ability of the control charts to detect shifts in
process location of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0cx units.

The Data Needed: The data for sub-objective two consist of randomly generated
variates from the normal, log-normal, and gamma distributions. Individual measurement
X and moving range n=2 mR control limits are also needed for the normal Shewhart,
symmetrical Pearson type III (c=0), and asymmetrical Pearson typc HI (¢=0) control
charts.

The Location of the Data: The location of the data for sub-objective two is as
follows:

e A random variate generator is utilized to generate values from the normal, log-

normal, and gamma distributions.
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Table 3-3: Control Chart ARLs and VRLs

Individual Measurement X

Moving Range

Parent
Distribution Shewhart  Symmetrical  Asymmetrical | Shewhart  Symmetrical ~ Asymmetrical
Normal ARL
(40, 10%)
VRL
as si. dev
Log-normal ARL
(0.19)
VRL
as st. dev,
Gamma ARL
(1.5. 1)
VRL
as st. dev.
Chi-square ARL
(df =4)
VRL
as st. dev.
Exponential ARL
()
VRL
as st dev.
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e Symmetrical individual measurement X and moving range n=2 mR control limit
equations based on the normal distribution produced by Dr. Shewhart are found in
various quality control texts including Wheeler and Chambers (1992), Burr (1953),
and Duncan (1986). These equations can be found in step 6 of section 3.2,

e Symmetrical individual measurement X and moving range n=2 mR control limit
equations are produced using the d’;, d’3, and D’y values approximated by the
Pearson Type III family of distributions with location parameter c=0 (gamma
distribution) from previous research by Jose Oyon (1995). These equations can be
found in step 8 of section 3.2.

e Asymmetrical individual measurement X and moving range n=2 mR control limit
equations are produced using the mathematical models generated for the ty, t5, and 13
values approximated by the Pearson Type III family of distributions with location
parameter ¢=0 (gamma distribution). The mathematical models are produced in sub-
objective one above.

Means of Obtaining the Data: All data used for this sub-objective are obtained
from the data generated in sub-objective two. The normal, Oyon, and asymmeltrical
control imits calculated in sub-objective two are adjusted to represent a2 mean shift in
sub-objective three. The random variates generated in sub-objective two are used (o

evaluate the adjusted controf limits.
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Treatment of the Data: This sub-objective evaluates the ability of the control
charts to detect shifts in the mean on the individual measurement X control charts. The
following is a detailed procedure to achieve sub-objective three:

1) The theoretical standard deviation is found for each of the five parent distributions
listed in step one of sub-objective two. The following equations are used to find the
standard deviations:

Exponential, Gamma, and Chi-square:

o, = a*p’ (eq. 3-26)

Log-normal:

o, :Jez‘”ﬁz (e‘g: - ]) (eq. 3-27)

Normal: The standard deviation for the normal distribution is taken from the definition
of the distribution’s parameters. The normal distribution used in this research is a N(40.
10%); therefore, the mean is 40 and the standard deviation is 10,

2) Shifts in the process mean of +/- 0.5, 1.0. 1.5, 2.0, 2.5, and 3.00x are simulated by
adjusting the individual measurement X control chart limits generated in sub-objective
two. The control limits are adjusted as follows:

UCL(adjusted) = UCL-A* (0 ) (eq. 3-28)

LCL(adjusted) = LCL- A* (0, ) (eq. 3-29)

where A is the process mean shift as a multiple of ox_
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3) For the set of ten adjusted control limits, random variates are generaled until a value
falls outside each set of control limits. The number of values generated before the value
fall outside the limits (run length (RL)) is recorded.

4) Steps 2) and 3) are repeated 1,000 times for each of the five parent distributions
stated in step one of sub-objective two. An average run length (ARL) for each of the

shifts in the five distributions is calculated using the following equation:

_ 2. (RL) (eq. 3-30)

5) The data from step 4 of sub-objective three are grouped according to the parent
distributions of the random variables and placed in a table for easy reference. The

table (Table 3-4) 1s illustrated on the following page.
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Table 3-4: ARLs/VRLs for Shifts in the Process Mean

ARLs for Shifts in the Process Mean

Parent +05 | +1.0| +1.5} +2.0{ +25| +30 -05 | -1.0 | -1.5 | -20 | -25 | -3.0
Distribution
Normal Normnal
(40, 10%)
Symmetnical
Asymmetrical
Log-normal Normal
(0.1%)
Symmetrical

Asymmetrical

Gamma Normal
(1.5.1)
Symmetrical
Asymmetrical
Chi-square Normal
(df =4)

Symmetrical

Asymmetrical

Exponential Normal
(n

Symmetrical

Asymmetnical




CHAPTER 4
RESULTS AND ANALYSIS

The results of this thesis research are presented following the three sub-
objectives described in chapter 1.
Section 1: SUB-OBJECTIVE ONE

The first sub-objective is to develop mathematical models representative of the
upper and lower control limits for asymmetrical distributions based on the shape
parameter (0t) and the scale parameter () from the Pearson Type III family of
distributions with location parameter c=0 (gamma distributions) so often encountered in
industry.

1.1: Individual Measurement X Control Chart Limits:

Following the steps in Section 3.1.1.1 and 3.1.1.2, described in detail in Chapter
3 ( pg. 3-8), the values of the individual measurement X upper and lower control limils
for the Pearson Type III family of distributions with location parameter c=0 (gamma
distribution) are located by integrating the distribution on MathCad for Windows release
4.02. The value of the upper control limit is expressed as a multiple of ox units from the
mean. An upper and lower control limit is generated which leaves a tail area of 0.00135
beyond each limit. The limit is evaluated in this manner for all combinations ol o
(shape parameter) = 1, 5(5)135 and [ (scale parameter) = 1, 2, and 5.

The table on the following page, Table 4.1: Gamma Distribution Upper & Lower
Control Limits, demonstrates the results of integrating the gamma distribution. As can

be seen from Table 4.1, the values for B appear to have little or no effect on the upper
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Table 4-1: Gamma Distribution Upper & Lower Control Limits

Sigma units from

= .
Sigma units from

average on the average on the Total sigma
skew (upper) tail non-skew (lower) tail spread
for 0.00135 for 0.00135 for 0.0027
pha Sigma p=1 f=2| =5 =1 =2 | p=5
135] 11.6190 3.2305 ' E 2.7718 £ 3 6.0023
130] 11.4018 3.2350 * = 2.7675 2.7675 3 6.0025
125 11.1803] 3.2395 % " 2.7630 2.7630 2 6.0025
120 10.9545 3.2445|  3.2445 - 2.7582| 2.7582 : _6.0027 ]
115] 10.7238| 3.2497 3.2497 g 2.7530 2.7530 2.7530 6.0027
110 10.4881) 3.2555|  3.2555 : 2.7475| 2.7475| 27475 6.0030
105 10.2470 ) 3.2615 3.2615 3.2615 2.7416 2.7416 2.7416 6.0031
100 10.0000 32680 3.2680] 3.2680] 2.7354] 2.7354] 2.7354]  6.0034
95[ 9.7468 3.2750| 32750, 32750 2.7285 27285 27285  6.0035
90| 94868 3.2825| 3.2825| 3.2825) =2.7211] 27211 27211 6.0036
85 9.2195, 3.2908 3.2908 3.2908 2.7132 2.7132 27132 6.0040
BO| B.9443 3.2997| 3.2997| 3.2997]) 2.7045| 2.7045| 27045 6.0042
75 8.6603| 3.3095 3.3085 3.3095 2.6945 2.6949 2 6949 6.0044
70 8.3666 3.3205 3.3205 3.3205 2.6843 2.6843 2.6843 6.0048
65 8.0623 3.3328 3.3328 3.3328] 26725 26725 2.6725 5.0053
60 7.7460 3.3464 3.3464 3.3464 2.6594 2.6594 2.6594 6.0058
55 7.4162 3.3617 3.3617 3.3617 2.6444 2.6444 2.6444 6.0061
50 7.0711 3.3795 3.3795 3.3795 2.6273 2.6273 26273 6.0068
45| 6.7082 3.4000f 3.4000| 3.4000] 26075 2.6075| 286075 6.0075
40 5.3246 3.4245 3.4245 3.4245 2.5840 2.5840 2.5840 6.0085 _
35| 509161 3.4540] 3.4540| 3.4540] 2.5558| 25559 25559 6.0099
30| 54772 3.4905| 3.4905| 3.4905] 2.5211 25211 2.5211 6.0116
25 5.0000 3.5375 3.5375 3.5375 2.4765 24765 2.4765 65.0140
20 44721 3.6010] 3.6010[ 3.6010] 24166| 2.4166] 24166  6.0176
15] 38730 3.6940| 3.6940| 3.6940] 2.3297| 2.3297| 23297 6.0237
10 3.1623 3.8505 3.8505 3.8505 2.1870 2.1870 2.1870 6.0375
5] 2231 4.2005] 4.2005| 4.2005] 1.8820] 1.8820| 1.8820 6.0825
1 1.0000 5.6080 5.6080 5.6080) 0.9986 0.9986 0.9986 6.6066
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and lower control limits for the gamma distribution when expressed as a multiple of oy
units. Following step 2 in 3.1.1.1 and 3.1.1.2, regression models are generated in
Minitab for Windows release 10.5. This statistical software package is used to generate
different multiple regression models for predicting the t; and t, values with prediclors o
(shape parameter) and [ (scale parameter). There are different mathematical models
which can predict the t; and t» values. By trial and error, a model is found which does a
good job of predicting t; and t,. The models found may not be the only models that can
be used.

The output from Minitab can be found in Appendix D: Regression Output For
Control Limits. The best t; and t, regression models, based on R?, for the upper and
lower control limits are as follows:

t =3.23 +3.19%e" + 0.852*e" " ' 4 0.442%e" 2%

1 =277 » L% 751%™ ¥ . D 45 8% o150
A global F test 1s used to test the validity of the multiple regression models. The F tests
for the upper and lower control limits are shown in sections |.1.1 and 1.1.2.

1.1.1: The upper control limit

The model for t; has a multiple coefficient of determination R® of 99.9%. The
global F test is used to test the validity of the upper control (t;) limit multiple regression
model as indicated in Chapter 3 section 3.1.1.1 step 3.

From the Minitab output (Appendix D - Regression Output For Control Limits) .
the value for the test statistic F is:

F =6935.38
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Using a significance level o’ = 0.01, the rejection region for the test is defined by the
critical value Fc o' (k. n.k+1). From an F table, this critical value is:
Fc 0013, 23) = 4.765
Clearly the null hypothesis Ho: A; =A; =2X; =...=2A =0 isrejected since the
value of the F statistic is greater than the critical value Fc:
F > Feok, o1
6935.38 > 4.765
Therefore, it is concluded that one can be very confident that this model is useful
in predicting t;.

1.1.2: The lower control limit

The model for t, has a multiple coefficient of determination R* of 99.8%. The
global F test is used to test the validity of the lower control (t;) limit multiple regression
model as indicated in Chapter 3, section 3.1.1.2, step 3.

From the Minitab output (Appendix D - Regression Output For Control Limits).
the value for the test statistic F is:

F = 5465.84
Using a significance level o =0.01. the rejection region for the test is defined by the
critical value Fc o'k n-k+1) From an F table, this critical value is:
Fc 013,23, = 4.765
Clearly the null hypothesis Ho: A=A, =A: =...= At =0is rejected since the

value of the F statistic is greater than the critical value Fc:
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F>Feo k, nk+1)
5465.84 > 4.765
Therefore, it is concluded that one can be very confident that this model is useful in

predicting to.

1.2: Moving Range n = 2 Upper Control Chart Limits:

Following the steps in Section 3.1.2, described in detail in Chapter 3 ( pg. 3-15),
the values of the moving range n = 2 upper control chart limit for the Pearson Type I1I
family of distributions with location parameter c=0 (gamma distribution) are located by
simulating values in MathCad for Windows release 4.02. The value of the upper control
limit is expressed as a multiple of or units from the average range. An upper control
limit is generated which leaves a tail area of 0.0027 beyond the upper limit. The limit is
evaluated in this manner for all combinations of o (shape parameter) = 1, 5(5)135. As
demonstrated in Appendix A, the values for B appear to have little or no effect on the
upper control limit for the gamma distribution when expressed as a multiple of o units.
The table on the following page, Table 4.2: Gamma Distribution Upper Control Limits
For Moving Range, demonstrates the results of simulating the gamma distribution.

Following step 7 in 3.1.2, a regression model is generated in Minitab for
Windows release 10.5. This statistical software package is used to generate different
multiple regression models for predicting the ty values with the predictor o (shape
parameter). There are different mathematical models which can predict the t3 values, so,
by trial and error, a model is found which does a good job of predicting t; but may not

be the only model that can be used.
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Table 4-2: Gamma Distribution Upper Control Limits For Moving Range

04 t3 @ B = 1

1 4.9826
5 4.1126
10 3.9821
15 3.8825
20 3.8271
25 3.7939
30 3.7458
35 3.7430
40 3.7119
45 3.7168
50 3.7105
55 3.7103
60 3.6884
65 3.7213
70 3.7091
75 3.7065
80 3.7155
85 3.6922
90 3.6955
95 3.6603
100 3.7005
105 3.7107
110 3.6967
115 3.7065
120 3.6903
125 3.6927
130 3.6614
135 3.6919
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The output from Minitab can be found in Appendix D: Regression Output For
Control Limits. The best t; regression model, based on R?, for the upper control limits is
as follows:

(3= 3.68 + 1.88%e"™ + 0.564%e" 'Y + 0.0969%e ">
A global F test is used to test the validity of the multiple regression models. The F tests
for the upper and lower control limits are as follows:

The model for t; has a multiple coefficient of determination R” of 99.7%. The
global F test is used to test the validity of the upper control (t3) limit multiple regression
model as indicated in Chapter 3 section 3.1.2, step 8.

From the Minitab output (Appendix D - Regression Output For Control Limits) ,
the value for the test statistic F is:

F =2892.98
Using a significance level o’ = 0.01, the rejection region for the test is defined by the
critical value F¢ o n.k+1) From an F table, this critical value is:
Fc 00103.23) = 4.765
Clearly the null hypothesis Ho: A =i, =Ai; = ... =2 =0is rejected since the
value of the F statistic is greater than the critical value Fc:
F> Fea . k1
2892.98 > 4.765
Therefore, it is concluded that one can be very confident that this model is useful

in predicting ts.
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Section 2: SUB-OBJECTIVE TWO

The second sub-objective is to evaluate the performance of the individual
measurement X and moving range n=2 mR control charts, based on the average run
length (ARL) using the Pearson type IIf family of distributions with location parameter
c¢=0 (gamma distribution) control limits determined from sub-objective 1. The control
charts are evaluated against an ARL that is acceptable for practical application in
industry and compared with methods having symmetrical control limits. An ARL that is
acceptable for practical application in industry means that the average run length (ARL)
for each control chart is a minimum of 100 observations. An ARL of 100 is equivalent
to a 1% chance of a type [ error when the process is in a state of statistical control.

Following the steps in section 3.2, five process distributions were selected to
represent unknown parent distributions. The distributions were chosen to represent a
variety of process distributions that occur in industry. The five process distributions
selected are as follows:
e Normal (40, 10%)
e Log-normal (0, 12)
e Gamma(a=15[3=1)
e Chi-square (df = 4)
e Exponential (B =1)

A Turbo Pascal (version 6.0) program was written to perform steps 2 through 13

of section 3.2 (Chapter 3). The Turbo Pascal program for the Chi-square (df = 4)
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distribution can be found in Appendix E. To generate random variates from each of the
five parent distributions, random variates were first generated from the uniform
distribution. The random uniform variates were generated according to Marse and
Roberts” random number generator found in Appendix F. Based on the numbers
generated from the uniform distribution, random variates for each of the parent
distributions were then generated according to the following algorithms, as
recommended by Law and Kelton (15, p. 484-93):

2.1: Normal (40, 10*) Algorithm:

The algorithm used to generate Normal (40, 10%) random variates is known as
the polar method.
Algorithm:

2.1.1 Generate U; and U, as [ID U(0,1), let V; =2U; -1 fori=1,2,... and let W =

(351

V=V,

(]

2.1.2 It W > 1, go back to step 1. Otherwise, let Y = J(-12InW/W) | X, =
V1Y, and X; = V,Y. Then X, and X, are IID N(O,1) random variates.
2.1.3 Given that Y ~N(0,1), X~N{u,0‘2) can be obtained by using X =L + Y.

2.2: Log-normal (0, 1%) Algorithm:

A special property of the log-normal distribution is that if Y~N(uo’) then
e ~LN(u,0%). Therefore, Log-normal variates can be generated based on Normal

variates from the algorithm above (Chapter 4, section 2.1).

Algorithm:
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2.2.1 Generate Y ~N(1.,67).

2.2.2Return X =¢" .

2.3: Gamma (0. = 1.5, B = 1) Algorithm:

Random Gamma variates are typically generated according to three cases: 0 < o

< 1;a=1;and a> 1. Since o = 1.5, the case for o> 1 will be used. According to Law

and Kelton (5, p. 489), “There are several good algorithms for the case o > 1.”

However, they recommend a method due to Cheng (22) referred to as the GB

algorithm.

Algorithm:

where:

2.3.1 Generate U, and U, as [1D U(0,1).
232LetV=aln[U/1-U)),Y=0e",Z=U,*Us,and W=b+qV - Y.
233IfW+d-6Z >=0,return X = Y. Otherwise, proceed to step 4.

2.341f W>=InZ, return X =Y. Otherwise, go back to step .

a=1/,/(2a - 1)
b=o-In4
q=0o+l/a
0=45
d=1+Inb

2.4: Chi-square (df = 4) Algorithm:

The Chi-square distribution is a Gamma distribution with shape parameter o =

df/2 and scale parameter B = 2. Therefore, the algorithm used to gencrate Gamma (o =
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2, B = 2) will be used to generate the Chi-square distribution. The algorithm in section
4.2.3 for the case o> 1 will be the one used for Chi-square (df = 4).

2.5: Exponential (B = 1) Algorithm:

The Gamma distribution with shape parameter o = | and scale parameter 3 is an
exponential distribution with mean B. The algorithm used to generate Gamma variates
(o= 1, B) is based on the inverse transform method.

Algorithm:
2.5.1 Generate U ~ U(0,1).

2.5.2 Return X = - In (U).

Based on the algorithms above and steps 2 through 13 from section 3.2 (Chapter
3), 1000 run lengths were generated for each of the five parent distributions. The
program output for the Normal distributions can be found in Appendix G. The output
consists of 1000 run lengths based on the individual measurement X and moving range
n=2 mR control charts for Shewhart, Oyon’s symmetrical, and Ankney’s asymmetrical
control limits.

Average run lengths (ARLs) and variance of run lengths (VRLs) were calculated
for each of the distributions. The ARLs and VRLs can be found in Table 4.3: Control
Chart ARLs and VRLs on the following page. The 1000 run lengths are also presented
on a histogram for each of the five parent distributions according to their relative control

limits. These histograms, figures 4-1 through 4-15, are on the following pages.
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Table 4-3: Control Chart ARLs and VRLs for No Mean Shift

ldeal ARL = oo
Acceptable ARL = 100

Individual Measurement X

Moving Range

Parent
Distribution Shewhar Oyon Asymmetrical || Shewhar Oyon Asymmetrical
t 1
Normal ARL 11189 1427.2 141.9 2134 277.0 4011.7
(40, 10%)
VRL 4693.9 6783.5 224.0 4959 817.4 334295
as st. dev.
Log-normal ARL 33.0 40.7 161.0 339 56.0 148.2
(0. 1%
VRL 45.0 58.6 285.8 48.1 87.2 273.2
as st dev.
Gamma ARL 58.3 80.1 1885.7 57.0 130.1 1418.9
(1.5 1)
VRL 83.3 126.2 12566.5 78.4 284.7 5256.1
as st, dev.
Chi-square ARL 722 99.0 2079.1 70.1 144.1 1550.9
(df =4)
VRL 108.2 192.2 9075.6 108.0 3127.3 7198.2
as st dev.
Exponential ARL 49.7 T77.8 1758.0 493 143.0 1713.9
(1)
VRL 75.7 136.5 8897.2 738 318.1 6H846.8
as st dev.

65




X-Normal Distribution -
Shewhart limits

(=]
(=
w
ok

200 E
600
1000 @
1400 =
2200
2600

Individual Measurement X Run Lengths

3000

450

R - Normal Distribution -
Shewhart Limits

400 -
350 -
300
250
200
150
100
50

.00
=] L= =]
u [Tp} 'r]
o ™ ~r

@
2
<]
=

(=
W
wl

Moving Range Run Lengths

Figure 4-1: Normal Distribution Run Lengths - Shewhart Control Limits

X - Normal Distribution -
Oyon limits

1400 [
1800
2200
2600
3000

Individual Measurement X Run Lengths

400
350

300 +

250
200
150
100

50

R - Normal Distribution -
Oyon limits

i
e 2 g 2 2 g ]
- o M % W

Moving Range Run Lengths

Figure 4-2: Normal Distribution Run Lengths - Oyon Control Limits

66




X - NormalDistribution - R - Normal Distribution -

Asymmetrical limits Asymmetrical limits
500 == === 350
400 - 300
250
300 1 200 Y
200 150 i
100 100 )
50 H|
Q- - - 0
2 8 8 8 8 8 ¢
w - o 5] ~ rel o
=
Individual Measurement X Run Lengths Moving Range Run Lengths

Figure 4-3: Normal Distribution Run Lengths - Asymmetrical Control Limits

X -Log-normal Distribution - R - Log-normal Distribution -
Shewhart limits Shewhart limits

Individual Measurement X Run Lengths Moving Range Run Lengths

Figure 4-4: Log-normal Distribution Run Lengths - Shewhart Control Limits

67




X - Log-normal Distribution - R - Log-normal Distribution -

Oyon limits Oyon limits
500 350
400 - 0
250
300 H 200 - -
200 Hi 150 - = —
' 100 i —
100 i ll‘ —
0 , . 1|1 e———|
& 8 8 ¥ 8 §& & 2 ¢ 2 8 8 8 £
— — o 2 - -— - =]
= =
Individual Measurement X Run Lengths Moving Range Run Lengths

Figure 4-5: Log-normal Distribution Run Lengths - Oyon Control Limits

X - Log-normal Distribution - R - Log-normal Distribution

Asymmetrical limits - Asymmetrical limits
500 —

400 1y
300
200 |}
100 {}]
0 -

(=] (=] (=] j=]
u iy w
o «™ < )

More [

Individual Measurement X Run Lengths

Moving Range Run Lengths

Figure 4-6: Log-normal Distribution Run Lengths - Asymmetrical Control Limits

68




X - Gamma Distribution -
Shewhart limits

(=] (= o o o o
o w [=] = Lo ﬁ

Individual Measurement X Run Lengths

o
—
o
=

R - Gamma Distribution -
Shewhart limits

-
T} w el wn n 1] o
ol [ o ~ o ~ 5

— - o oJ E

Moving Range Run Lengths

Figure 4-7: Gamma Distribution Run Lengths - Shewhart Control Limits

X - Gamma Distribution -
Oyon limits

u 's] Te] 1] e} Te]
o P~ o ~ o P~
— v o o

Individual Measurement X Run Lengths

More [E

R - Gamma Distribution -
Oyon limits

Moving Range Run Lengths

Figure 4-8: Gamma Distribution Run Lengths - Oyon Control Limits

69




X - Gamma Distribution -
Asymmetrical limits
600

500 -
400
300 -
200 -
100 -
o

300

900
1500
2100
2700
3300
More

Individual Measurement X Run Lengths

R - Gamma Distribution -
Asymmetrical limits

300
900
1500
2100
2700
3300

Moving Range Run Lengths

More

Figure 4-9: Gamma Distribution Run Lengths - Asymmetrical Control Limits

X - Chi-Square Distribution -
Shewhart limits

Individual Measurement X Run Lengths

R - Chi-Square Distribution -
Shewhart limits

350

300 Hi

250 -
200 -
150
100

50

!| | | | ] -
e § 8 8§
™

Moving Range Run Lengths

More =

Figure 4-10: Chi-square Distribution Run Lengths - Shewhart Control Limits

70




X - Chi-Square Distribution - R - Chi-Square Distribution -

Oyon limits Oyon limits
350 500 |
|
0 400
250
200 300 i
150 200 ]
100 - 100 A
50 il -
0 | 'I | = | 0 - L [ -
o o = =] o [=} [
& k8 8 8 8 ¢ 58 g 8 2 8 3
Individual Measurement X Run Lengths Moving Range Run Lengths

Figure 4-11: Chi-square Distribution Run Lengths - Oyon Control Limits

X - Chi-Square Distribution - R- Chi-Square Distribution -
Asymmetrical limits Asymmetrical limits
500 - 500
400 - 400
300 ~ 300
200 200
100 100 HI-
0 ] - - - 0. i s - " ﬂ
b= b el - [ o =] =] o o =} o =1 5
- ™ o ™ = m @ 0 N 5 Q =
Individual Measurement X Run Lengths Moving Range Run Lengths

Figure 4-12: Chi-square Distribution Run Lengths - Asymmetrical Control Limits

7]




X - Exponential Distribution - R - Exponential Distribution -

Shewhart limits Shewhart limits
300 300
250 250
200 - 200 H
150 4 150
100 A 100 -
50 1 50
o 4 L ] A o 1 -
o (=] [=] o (=] o 1] :
ot a el = & i 5 o o (=] o =] =} o
™ s - ™ n ~ o = 5
=
Individual Measurement X Run Lengths Moving Range Run Lengths
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2.6: Analysis of the Normal Distribution: No Mean Shift:

Individual measurement X control chart limits:

The data in Table 4.3: Control Chart ARLs and VRLs for No Mean Shift
indicate that the asymmetrical individual measurement X control limits are acceptable
for practical use in industry when the underlying process distribution is normal and
there is no shift in the process mean. An ARL that is acceptable for practical application
in industry means that the average run length for the control chart is a minimum of 100
observations. Although the asymmetrical control limits are acceptable, they do not work
as well as individual measurement X control limits produced by Shewhart or Oyon.
When the underlying process distribution is normal and there 1s no shift in the process
mean, the ARLs for Shewhart and Oyon individual measurement X control limits are
approximately 1119 and 1427 observations, respectively. The asymmetrical control
limits have an ARL of 141.9 observations.

Based on the histograms in Figures 4.1, 4.2, and 4.3 for individual measurement
X control limits, the difference in the performance between the asymmetrical and
symmetrical control limits is not so prevalent. The median run length for Shewhart
limits is between 200 and 300 observations, Oyon is between 200 and 300 observations,
and the asymmetrical limits are between 100 and 150. The differences in run lengths
between the symmetrical and asymmetrical control charts are much smaller than when
comparing ARLs. The median run length for the asymmetrical limits is only 150 to 200

observations less than that of the symmetrical limits. The symmetrical individual
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measurement X control limits perform better than those that are asymmetrical whether
comparing ARLs or median RLs .

Moving range (n=2) mR control chart limils:

The data in Table 4.3 also indicate that the moving range (n=2) mR control chart
limits based on the Pearson type HI family of distributions work well when the
underlying process distribution is Normal. The ARL for the asymmetrical control chart
limits perform better than the Shewhart and Oyon limits. When the underlying process
distribution is normal and there is no shift in the process mean, the ARLs for Shewhart
and Oyon mR control limits are approximately 213 and 277 observations, respectively.
The asymmetrical mR control limits have an ARL of 4012 observations.

The median RLs also indicate that the asymmetrical mR limits exceed the
performance of the Shewhart and Oyon limits. From Figures 4.1, 4.2, and 4.3 for mR
control limits, the median run length for Shewhart limits is between 75 and 125
observations, Oyon is approximately 100 observations. and the asymmetrical limils are
between 500 and 700 observations. The differences in median run lengths between the
symmetrical and asymmetrical control charts are smaller than when comparing ARLs.
The median run length for the asymmetrical imits is 425 to 575 observations greater
than that of the symmetrical limits. The asymmetrical mR control limits perform better
than those that are symmetrical whether comparing ARLs or median RLs with no shift

in the mean.
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2.7:_Analysis of Non-Normal Distributions; No Mean Shift:

The data in Table 4.3 for the log-normal, gamma, chi-square, and exponential
distributions indicate that the asymmetrical control chart limits perform better than the
Shewhart and Oyon limits when the underlying distribution is non-normal with no mean
shift. The asymmetrical limits out-perform the other limits on both the individual
measurement X and mR control charts. In all cases, the asymmetrical ARLs exceed 100
observations when there is no shift in the mean. For the highly skewed distributions,
log-normal and exponential, the Shewhart and Oyon limits fall well short of 100
observations. In these cases, the Shewhart and Oyon individual measurement X limits
have ARLs of 33 and 41 for the log-normal distribution and 50 and 78 observations for
the exponential distribution.

The median run lengths follow the same pattern as the ARLs when there is no
shift in the process mean. The median RLs for the asymmetrical limits exceed 100
observations in all but one instance. The median RL for the log-normal mR
asymmetrical control limits falls between 75 and 105. The median run length comes
very close to 100 but falls short. The median RLs for the Shewhart and Oyon limits are
less than 30 observations when the underlying distribution is log-normal. The
asymmetrical limits perform better than the symmetrical limits when there is no shifl in

the process mean, even though the median RL falls short of 100 observations.
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Section 3: SUB-OBJECTIVE THREE

The third sub-objective is to compare the power of the individual measurement
X and moving range n=2 mR control charts using the Pearson Type III ¢=0
asymmetrical control limits with those methods having symmetrical control limits. The
power, in this case, refers to the ability of the control charts to detect shifts in process
location of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.00x units.

To perform the third sub-objective, a Turbo Pascal (version 6.0) program was
written to perform steps 1 through 5 of section 3.3 (Chapter 3). The Turbo Pascal
program is the same program referred to in section 4.2, page 4-9. The program for the
Chi-square (df = 4) distribution can be found in Appendix E and the program output for
the Normal distribution is in Appendix G. The output consists of 1000 run lengths based
on the individual measurement X and moving range n=2 mR control charts for
Shewhart, Oyon’s symmetrical, and Ankney’s asymmetrical control limits at process
mean shifts of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0Gx units.

Average run lengths (ARLs) were calculated for each of the distributions
according to the shift in the process mean. The ARLs can be found in Table 4.4:

ARLs/VRLs for Shifts in th Process Mean on the following page.
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Table 4-4: ARLs/VRLS for Shifts in the Process Mean

ldeal ARL = 1 ARLs /VRLs for Shifts in the Process Mean
Parent Shift = +0.5 +1.0 +1.5] +20 +2.5 +3.0 -0.5 -1.0 -1.5 20] -25 -0
Distnbution
Normal_
(40, 107) Normal 437.5/ 84,2/ | 25.3/ 9.3/ 4.3/ 2.3/ 402.2/ | 911/ | 25.4/ 8.3/ 4.1/ 1Y
1476.9 | 2054 | 86.7 15.6 1.6 23 14909 | 230.1| 639 129 5.6 31
Symmetrical || 485.9/ 933/ | 28.% 9.7 4.5/ 24 450.6/ | 98.0/ | 28.4/ 9.9/ 4.3/ 2.4
15824 2173 104 6 16.1 7.7 29 1571.6 239.0| 724 318 6.1 il
Asymmerrical | 518.2/ | 1155.9/] 764.0/| 122.9/] 235.3/ 10.6/ 39.2/ 12,1/ 5% 2.8/ 1.7/ 1.3/
10596 | 4846.4 | 6946.3| 6984 106.5 593 66.7 14.8 5.7 2.6 1.2 0.7
Log-normal
(0.1 Normal 13.2/ 4.3/ 1.5/ 1.0/ 1.0/ 1.0/ S8 192/ 217 1.0/ 1.0/ 1./
18.6 7.4 24 0.4 0.0 0.0 824 999 | 318 02 0.1 0l
Symmetncal 18.1/ 64/ b3 1.2/ 1.0/ 1.0/ 767/ S4.6/ | 12.14 2w L./ 1.0
3.7 1.3 4.2 1.4 0.2 0.0 110.5 2039 1199 | 318 0.1 0.1
Asymmerical || 6.5/ 543 | 26 12.7/ 5.5/ 2.8/ L2 1. 1.0/ 1.0/ 1.0/ .04
2146 1708 | 94.0 510 259 217 0.6 2 0.2 0.1 0.1 0.0
Gamma
(15, 1) Normal 33.9/ 21.00 | 11.9/ 6.9/ 4.1/ 2.5/ 103,47 | IR5.5/| 255.8/ | 1920/ 793/ 4.7/
49.5 317 17.2 10.8 5.2 33 1689 | 311.7] S00.0 [ 8514 8344 6.7
Symmetncal || 45.9/ 245/ | 16.&/ 9.6/ T 3.3 1471/ | 265.3/| 432.8/ |459.6/] 3629 | 2295
67.1 45.0 25.0 15.0 9.5 4.4 254.3 4603.3 | B840 |1291.4] 21065.1] 2470.2
Asymmetrical || 1059.0/ | 639.6/ | 3490/ 1942/ 1172 650/ 5.8/ 2.1/ I.5¢ 1.2/ 1.1 1.1
38064 | 26498 | 1381.9] 7334 538.9 268.3 6.6 1.6 0.8 0.5 0.4 0.2
Chi-square
(df=4) Normal 402/ | 249/ | 138/ | T4/ 43/ 2.6/ 13807 | 254.5/] 3279/ [2183] 951/ 1.7/
64.6 43.] 249 11.5 5.l 3.1 2396 | 434.2) 7103 | 9424 1282.51 1.4
Symmetrical || 52.5/ o 18.2/ 10,2/ 5.6/ 4 IB3.4) | 322,77 54530 |oOs 7] 41304 12005/
86.4 49,1 332 19.8 8.2 4.4 3107 S42.5 [ 1093.0 |2146.5] 29683.5| 206332
Asymmernical | 1237 8/ S25.4/ | 309.3/| 1604/ | 91.1/ S3.0 15.5/ 2.9 1.7/ 1.3 1.2/ 1.1/
70717 | 22253 | 19151 7658 460 3 4194 579 26 1.1 0.7 0.5 0.3
Exponential
4B Normal 29.2/ 18.6/ | 10.7/ 6.6/ 4.1/ 2.5/ R2.0/ 136.3/] 19027 [ 167 14 6917 sS4
46.4 353 15.5 10.1 58 35 1314 | 2064 | 3545 | §539] 476l 1239
Symmetncal 46.0f 28.1/ 17.4/ 0.4/ 6.3 kAT 12524 | 212,24 3456/ |919.0/] 40308 | 2260/
754 494 36.0 17.0 1104 SK 2061 1563 | 614.3 | 841, 12490 1 |1SG7 3
Asymmetrical || | 358 5/ | 8725/ | S12.8/| 297.4/| 192.0/| 1228/ 2.6/ 1.6/ 1.3/ 1.2/ 1.1/ 1.1/
49478 | 3954.3 | IS03.8] 7963 | 6022 | 400.1 2.] 1.0 0.6 04 N4 02
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3.1: Analysis of Negative shifts in the mean (shifts to the left):

The data in Table 4.4: ARLs/VRLs for Shifts in the Process Mean, indicate that
the asymmetrical individual measurement X and mR control limits do a very good job
of detecting negative shifts in the process mean. Even at a very small shift of -0.5
standard deviations, the asymmetrical control limits are very sensitive to the detection of
shifts. Regardless of the underlying distribution, the asymmetrical limits detect a -0.5
standard deviation in less than 40 observations, a -1.0 shift in less than 13 observations,
and a - 1.5 shift in less than 6 observations. For large shifts in the process mean of -2.5
and -3.0 standard deviations, the asymmetrical limits detect the shift within the first two
observations. The asymmetrical limits are much more sensitive to negative shifts than
the symmetrical limits. It can be concluded that the asymmetrical control limits do a
good job of detecting negative shifts in the mean regardless of the underlying
distribution.

3.2: Analysis of Positive shifts in the mean (shifts to the right):

The data in Table 4.4: ARLs/VRLs for Shifts in the Process Mean, indicate that
the asymmetrical individual measurement X and mR control limits do not do a good job
of detecting positive shifts in the process mean. The symmetrical control limits are more
sensitive to detecting positive shifts. The only underlying distribution for which the
asymmetrical limits appear to be effective in detecting positive shifts is the log-normal
distribution. Although the asymmetrical limits appear to be moderately effective in this

case, the symmetrical limits still perform better.
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CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS
Section 1: CONCLUSIONS & RECOMMENDATIONS
This section consists of conclusions and recommendations for this thesis
research. Using the results and analysis generated in Chapter 4, the performance of the
asymmetrical control limits are compared to that of Shewhart’s and Oyon’s control chart

limits. The following conclusions are made based on the information in Tables 4.3,

Table 4.4, and the analysis in Chapter 4, sections 2.6, 2.7, 3.1, and 3.2.

e The performance of the individual measurement X symmetrical control charts is
much better than that of the asymmetrical charts when the underlying distribution is
normal and there is no shift in the mean. This conclusion is supported in Chapter 3,
section 2.6: Individual measurement X control chart limits, page 4-21.

e The performance of the moving range (n=2) asymmetrical control charts is much
better than that of the symmetrical charts when the underlying distribution is normal
and there is no shift in the mean. This conclusion 1s supported in Chapter 3, section
2.6: Moving range (n=2) mR control chart limits, page 4-22.

e The performance of the asymmetrical control charts is better than that of the
symmetrical charts when the underlying distribution is non-normal and there is no
shift in the mean. This conclusion is supported in Chapter 3, section 2.7, page 4-23.

e The performance of the asymmetrical control charts is better than that of the

symmetrical charts when there is a negative shift in the mean, regardless of the
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underlying distribution. This conclusion is supported in Chapter 3, section 3.1, page
4-26.

e The asymmetrical control charts do not do a good job of detecting positive shifts in
the mean regardless of the underlying distribution. This conclusion is supported in
Chapter 3, section 3.2, page 4-26.

The asymmetrical limits perform well when there is no mean shift and the
underlying distribution is non-normal. The problem with the asymmetrical control
charts is that they do not do a good job of detecting positive shifts in the process mean.
In general, control charts for skewed distributions are most useful for detecting positive
shifts in the mean. According Irving Burr (1953), *“...causes of non-normality is that the
distribution may be unable to go beyond a certain point, such as zero (5, p.80)..." As
indicated by this statement, negative shifts in the mean will not occur because the
inability to go beyond this point (zero in this research). Shifts in the mean will, in most
cases, be positive. Based on the conclusion that the asymmetrical control limits do not
do a good job of detecting positive shifts in the mean, the author recommends the

asymmetrical control limits developed in this research not be used.
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Section 2: RESEARCH CONTRIBUTIONS

This thesis research provides empirical equations to calculate approximately the
correct asymmetrical control chart constants t;, t, and t; when the underlying
process distribution is a gamma distribution with shape parameter o and scale
parameter [.

This thesis research provides empirical evidence that the asymmetrical gamma
control charts (X and mR) perform better than the normal curve and symmetrical
gamma control charts (X and mR) when the distribution has a marked departure
from normality (represented in this research by skewed distributions) and there is no
shift in the mean. However, more research is needed in this area since the
asymmetrical control charts lack the power to detect positive shifts in the process
mean. In this regard, this research opens avenues for future research providing
improved methodology for setting control limits (X and mR) under skewed

circumstances.
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Section 3: FUTURE RESEARCH

The fact that the asymmetrical control charts lack the power to detect positive
shifts in the process mean suggests that more research is needed in this area. It is the
author’s belief that the inability to detect positive shifts in the mean is due to the
following three factors:

1. The use of 0.00135 of the observations falling outside the upper or lower
control limits when setting those limits, regardless of the skew of the underlying
distributions.

2. The empirical nature of the study (Number of observations).

3. The ability to accurately estimate the parameters o and B from the unknown
underlying distributions.

Additional research is recommended in setting asymmetrical control limits (X
and mR) based on the method for determining the location of the upper and lower
control limits. The upper and lower control limits in this research are determined based
on 0.00135 of the observations falling beyond each limit; regardless of the skew of the
underlying distributions. The upper and lower control limits can be determined by
varying the percent of outlying observations with the shape parameter o. When the
underlying distribution is skewed, a higher percentage can be allotted to the upper
contro] limit so that it is not set so far out on the tail; meanwhile, a lower percentage can
be allotted to the lower control limit since the process will not produce values less than
a specified lower value. For example, when the distribution is exponential, set the lower

bound at 0.0000 and use all 0.0027 on the upper limit. The control chart will not be as
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sensitive to negative shifts in the process mean as the limits in this research but will
become more sensitive to positive mean shifts.

This approach can be demonstrated with the theoretical run lengths for the
exponential distribution under the cases where limits are one-sided and based on false
alarm rates of 0.0027, 0.0050, and 0.0100 when there is no shift in the process mean.
Table 5.1: Theoretical Run Lengths for Exponential Distribution on the following page
demonstrates the theoretical ARLs of these limits. As seen Table 5.1, the one-sided
control limits perform much better than the two-sided limits developed in this research.
The one-sided limits have the power to detect positive shifts in the mean while
maintaining an acceptable false alarm rate when no mean shift is present.

The one-sided asymmetrical control limits detect shifts in the process mean
better than the two-sided asymmetrical control limits. The one-sided limits, however,
do not detect shifts in the process mean as well as the symmetrical control limits. As can
be seen from Tables 5.1 and 5.2, at a sigma shift of 3.0, the theoretical ARL for the one-
sided asymmetrical control limits is 4.98 while the symmetrical control limits pick up
the shift in 2.72. Although the symmetrical control limits perform better than the one-
sided symmetrical control limits when the underlying distribution is exponential, both
the symmetrical and asymmetrical control limits have good performance.

The one-sided asymmetrical control limits have a much better false alarm rate
than the symmetrical limits. Based on the criterta defined in this research, the
symmetrical control limits are not acceptable for practical use in industry because the

un
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Table 5-1: Theoretical Run Lengths for Exponential Distribution

Positive Sel Limits @ 0.00135 Set Upper Limits @ 0.0027
Shift Upper Lower ARL Upper ARL
0.0 0.001350 0.001350 370.37 (.002700 370.37
0.5 0.002225 0.000000 449.44 0.004452 224.62
1.0 0.003668 0.000000 272.63 0.007339 136.26
1.5 0.006048 0.000000 165.34 0.012101 82.64
2.0 0.009972 0.000000 100.28 0.019951 50.12
2.5 0.016441 0.000000 60.82 0.032893 30.40
3.0 0.027106 0.000000 36.89 0.054231 18.44

Positive Set Upper Limit @ 0.005 Set Upper Limit @ 0.010
Shift Upper ARL Upper ARL
0.0 0.005000 200.00 0.010000 100.00
(.5 0.008243 121.32 0.016487 60.65
1.0 0.013550 73.80 0.027182 36.79
1.5 0.022407 44.63 0.044816 22.31
2.0 0.036942 27.07 0.073888 13.53
2.5 0.060907 16.42 0.121821 8.21
3.0 0.100419 9.96 0.200849 4 .98
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lengths for the symmetrical limits are less than 100. Based on the theoretical ARL. the
asymmetrical limits do have a run length of 100.

There is a tradeoff between the asymmetrical and symmetrical control limits.
The tradeoff is a matter of economics. Compared to the symmetrical control limits, the
asymmetrical control limits do not have as much power but do have a smaller false
alarm rate. If the cost of defects is significantly larger than the cost of readjusting the
process mean, than a higher false alarm rate would be more desirable than the inability
to detect a shift in the mean. In this case the symmetrical contrel limits would be more
desirable. If the cost of readjusting the process mean involves a much higher cost than
the cost of defects, a lower false alarm rate would be more desirable than the power to
detect a shift. In this case the one-sided asymmetrical control limits are more desirable.
The selection and use of the control limits is dependent on the economics of the process.

The empirical nature of this research also affects the results. The control limits
for this research are set on fifty observations per run. Using such a small number of
observations creates variation in the control limits which generates ARLs that are not
representative of those dictated by theory. This is apparent by comparing the theoretical
results in Table 5.1 to the results shown in Table 4.4: ARLs for Shifts in the Process
Mean. As can be seen, the run lengths generated in this research are much higher than
what theory states.

Increasing the number of observations used in setting control limits improves the
performance of the control charts under shifts in the process mean. Table 5.2: ARLs

For Control Limits Set On Different Number Of Observations demonstrates the ability
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to produce control limits which are more representative of the underlying distribution by
increasing the number of observations. Table 5.2 consists of ARLs for the exponential
distribution when control limits are based on 50, 100, 500, and 1000 observations. By
observation, it can be seen that increasing the number of observations greatly improves

the performance of the control charts.
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Table 5-2: ARLs For Control Limits Set On Different Number Of Observations

Shift > 0.0 +0.5
Observations | Shewhart Oyon Asymmetrical Shew Oyon Asymm
50 49.72 77.85 1758.01 29.24 46.00 1358.52
100 44.13 62.74 859.88 26.56 40.38 784.67
500 39.54 55.74 490.14 24.86 35.10 541.75
1000 40.06 56.78 422.14 23.14 35.10 509.04
theoretical 54.60 54.60 370.34 33.12 33.12 449 44
Shift > + 1.0 +1.5
Observations Shew Oyon Asymm Shew Oyon Asymm
50 18.62 28.08 872.54 10.68 17.36 512.77
100 16.01 24 .48 471.82 9.33 14.60 290.45
500 15.05 21.99 329.31 8.91 12.96 205.68
1000 14.65 20.95 307.01 8.91 12.98 187.19
theoretical 20.089 20.089 272.63 12.18 12.18 165.34
Shift > +2.0 +2.5
Observations Shew Oyon Asymm Shew Oyon Asymm
50 6.60 10.42 297.36 4.05 6.33 191,99
100 5.73 8.56 185.03 3.64 5.27 107.08
500 5.34 7.88 122.05 3.32 4.79 70.30
1000 5.28 7.76 114.83 3.14 4.65 67.83
theoretical 7.39 7.39 100.28 448 4.48 60.82
Shift > +3.0
Observations Shew Oyon Asymin
50 2.52 3.79 122.77
100 2.19 3.23 67 .81
500 1.96 2.96 43.13
1000 [.95 2.76 4295
theoretical 272 2.72 36.89
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THE SCALE PARAMETER AND THE RANGE

The scale parameter () for the Gamma distribution does not have an observable
effect on the (tz) value for the range n = 2 as concerned with this research. This is
demonstrated in the chart below. To demonstrate this claim, upper control limits for the
moving range n=2 mR control chart are generated at particular o (shape parameter)
values for [ (scale parameter) = 1, 2, and 5. This is accomplished by generating two
rows of k = 10,000 observations. The ranges are calculated and the upper control limit is
progressively increased by a value of 0.0001 until 0.0027 of the values are outside the
upper control limit. This is done for each B value at a corresponding o and the random
numbers are generated from the same generator base to demonstrate if B (scale
parameter) has any effect on the ranges. The results are expressed as multiples of the
standard deviation of the ranges from the mean (t). The results are in Table A-1 on the
following page.

The data in Table A-1 demonstrates that B (scale parameter) has no observable
effect on the control limit multiplier (t3). The same random number generating base is
used when testing different B values. Using the same base means that the uniform
variates used to calculate the variates for the parent distribution are the same on all cases
of B =1,2, and 5. When using the same random number generating base, the (15) value

is the same regardless of the scale parameter.



Table A-1: Range Upper Control Limits as a Multiple (t3) of the Standard Deviation

Range Upper Control Limits as a Multiple (t3)
of the Standard Deviation

o Random # B T
(shape parameter) Base B=1 B=2 B=35
I 2,500 5.1558 5.1558 5.1558
10 55,000 3.9308 3.9308 3.9308
25 100,000 3.9452 3.9452 3.9452
50 13,250 3.6883 3.6883 3.6883
75 20,000 3.524 3.524 3.524
100 81,096 3.8628 3.8628 3.8628
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SAMPLE SIZE ESTIMATION

In order to create a mathematical model for t;, random numbers are generated
and a point found which leaves 0.0027 of the values outside the upper control limit.
When evaluating data in this manner it is important that an appropriate sample size be
used which provides adequate confidence of representative data values at the extremes
of the tail of the distribution.

The parent distributions are those for the range n = 2 of the gamma distribution.
Numbers randomly generated from this distribution result in a number of discrete points
that can be approximated by the binomial distribution. According to Miller et al. (p.

274), the sample size is approximated by the following equation:

H=pﬂ~pn%§f

where n is the sample size, p = binomial parameter, and E = maximum error of the
estimate.

This formula cannot be used without a value of p. Since no data is available
concerning the p value, 1t will be assumed that p*(1-p) = 0.25. The value p*(1-p) = 0.25
1s chosen because it is the largest possible value that p*(1-p) can take on because 0 <= p
<= 1. The distribution is also evaluated for only one tail, so 0/2 becomes o. The

substitution yields the equation:

-

n=025%]
E
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The value (E) for this portion of the research is equal to 0.0027 and o is set at
0.90. The corresponding z-value for 0.90 is 1.282. The resulting sample size is as
follows:

1282
0.0027

n=023 1* =56,362

The sample size is rounded up to n = 60,000 for use in this research.
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TABLE .19 _
a as a function of T, gamma distribution

T é T & T & T &
0.01 0.010 1.40 0.827 5.00 2.655 13.00 6.662
0.02 0.019 1.50 0.879 5.20 2.755 13.50 6.912
0.03 0.027 1.60 0.931 5.40 2.856 14.00 7.163
0.04 0.036 1.70 0.983 5.60 2.956 14.50 7.413
0.05 0.044 1.80 1.035 5.80 3.057 15.00 7.663
0.06 0.052 1.9 1.086 6.00 3.157 15.50 7.913
0.07 0.060 2.00 1.138 6.20 3.257 16.00 8.163
0.08 0.068 2.10 1.189 6.40 3.357 16.50 8.413
0.09 0.076 2.20 1.240 6.60 3.458 17.00 8.663
0.10 0.083: 2.30 1.291 6.80 3.558 17.50 8.913
0.11 0.090 2.40 1.342 7.00 3.658 18.00 9.163
0.12 10,098 2.50 1.393 7.20 3.759 18.50 9.414
0.13 0.105 2.60 1.444 7.40 3.859 19.00 9.664
0.14 0.112 2.7 1.495 7.60 3.959 19.50 9.914
0.15 0.119 2.80 1.546 7.80 4.059 20.00 10.164
0.16 0.126 2.90 1.59 8.00 4.159 20.50 10.414
0.17 0.133 3.00 1.647 8.20 4.260 21.00 10.664
0.18 0.140 3.10 1.698 8.40 4360 . | 21.% 10.914
0.19 0.147 3.20 1.748 8.60 4.460 22.00 11.164
0.20 0.153 330 1.799 8.80 4.560 22.50 11.414
0.30 0.218 3.40 1.849 9.00 4.650 23.00 11.664
0.40 0.279 3.50 1.900 9.20 4.760 23.50 11.914
0.50 0.338 3.60 1.950 9.40 4.860 24.00 12.164
0.60 0.3% 3.70 2.001 9.60 4.961 24.50 12.414
0.70 0.452 3.80 2.051 9.80 5.061 25.00 12.664
0.80 0.507 3.90 2.101 10.00 5.161 30.00 15.165
0.90 0.562 4.00 2.152 10.50 5.411 35.00 17.665
1.00 0.616 4.20 2.253 11.00 5.661 40.00 20.165
1.10 0.669 4.40 2.353 11.50 5.912 45.00 22.665
1.20 0.72 4.60 2.454 12.00 6.162 50.00 25.166
1.30 015 . | 480 2.554 12.50 6.412
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Regression models were generated for the upper and lower control limits on the
individual measurement X control chart and the upper control limit for the moving
range, n = 2, mR control chart. The regression models were generated from the
statistical software package Minitab for Windows release 10.5.

The statistical software package was used to generate different multiple
regression models for predicting t;, t;, and t; with predictors o (shape parameter) and [3

(scale parameter). The output from Minitab is on the following pages.
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Upper Tail Regression for X-Chart

Regression Analysis

* NOTE * Alpha”2 is highly correlated with other predictor
variables
* NOTE * Alpha”3 is highly correlated with other predictor
variables

The regression equation is
SigmaHi = 4.81 - 0.0655 Alpha +0.000855 Alpha”2 -0.000003
Alpha”3

Predictor Coef Stdev t-ratio o)
Constant 4.8136 0.1603 30.02 0.000
Alpha -0.06546 0.01047 -6.25 0.000
Alpha”2 0.0008545 0.0001813 4.71 0.000
Alpha~3 -0.00000345 0.00000088 -3.92 0.001
s = 0.2354 R-sq = 77.7% R-sg(adj) = 74.9%

Analysis of Variance

SOURCE DF Ss MS F p
Regression 7 4.6275 1.5425 27.82 0.000
Error 24 L: 3305 0.0554
Total 27 5.9579

SOQURCE DF SEQ SS
Alpha 1 2.3930
Alpha~2 1 1.3816
Alpha~3 1 0.8528
Unusual Observations
Obs. Alpha SigmaHi Fit Stdev.Fit Residual
St.Resid

1 135 3.2305 3.0647 0.1569 0.1658

0.94 X

28 1 5.6080 4.7490 0.1518 0.8590
4.77R

R denotes an obs. with a large st. resid.
X denotes an obs. whose X value gives it large influence.

Regression Analysis

The regression equation is
SigmaHi = 4.42 - 0.0280 Alpha +0.000154 Alpha“2

Predictor Coef Stdev t-ratio o)
102



Constant 4,4222 0.1575 28.08 0.000
Alpha -0.028016 0.005402 -5.19 0.000
Alpha”2 0.00015354 0.00003860 3.98 0.001

s = 0.2955 R-sqg = 63.4% R-sg(adj) = 60.4%
Analysis of Variance

SOURCE DF SS MS F P
Regression 2 3.7746 1.8873 21.61 0.000
Error 25 21833 0.0873
Total 27 5.9579

SOURCE DF SEQ 5SS
Alpha 1 2.3930
Alpha”2 1 1.32816
Unusual Observations
Obs. Alpha SigmaHi Fit Stdev.Fit Residual
St.Resid

28 1 5.6080 4.3943 0.1530 1:2137%
4_.80R
R denotes an obs. with a large st. resid.
Regression Analysis
The regression equation is
SigmaHi = 3.97 - 0.00725 Alpha
Predictor Coef Stdev t-ratio o)
Constant 3.9697 0.1365 29.08 0.000
Alpha -0.0072459 0.001735 -4.18 0.000
s = 0.3703 R-sq = 40.2% B-sg(adj) = 37.9%
Analysis of Variance
SOURCE DF S8 MS F P
Regression 1 2.3930 23930 17.45 0.000
Error 26 3.5649 0.1371
Total 27 5.8579
Unusual Observations
Obs. Alpha SigmaHi Fit Stdev.Fit Residual
St .Resid

28 il 5.6080 3.9624 0.1350 1.6456
4.77R
R denotes an obs. with a large st. resid.
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Regression Analysis

The regression eguation is
SigmaHi = 3.40 + 6.04 e~-1

Predictor Coef Stdev t-ratio P
Constant 3.39926 0.04135 82.20 0.000
e~-1 6.0420 0.5947 10.16 0.000
5 = 0. 2147 R-sg = 79.9% R-sg(adj) = 79.1%

Analysis of Variance

SOURCE DF SS MS F P
Regression 1 4.7591 4.7591 103.22 0.000
Error 26 1.1988 0.0461
Total 27 5.9579
Unusual Observations
Obs. e™-1 SigmaHi Fit Stdev.Fit Residual
St.Resid

26 0.000 3.8505 3.3995 0.0413 0.4510
2.14R

27 0.007 4.2005 3.4400 0.0408 0.7605
3.61R

28 0.368 5.6080 5.6220 0.2147 -0.0140
3.62RX

R denotes an obs. with a large st. resid.
X denotes an obs. whose X value gives it large influence.

Regression Analysis

The regression eguation is

SigmaHi = 3.23 + 3.19 eM~1 + 0.852 eM-.1 + 0.442 eA-.025

Predictor Coef Stdev t-ratio o)
Constant 3.23311 0.00576 561.20 0.000
e”-1 3.19102 0.08362 38.16 0.000
e”-.1 0.85168 0.04487 18.98 0.000
e™-.025 0.44197 0.02487 17.77 0.000
s = 0.01691 R-sg = 99.9% R-sg(adj) = 99.9%

Analysis of Variance

SOURCE DF S8 MS F P
Regression 3 50511 1.9837 6935.38 0.000
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Exrror
Total

SOURCE
e~-1
e”-.1
e™-.025

24
27

DF

1
1
1

0.0069
5.9579

SEQ SS
4.7591
1.101e6
0.0903

Unusual Observations

Obs. e
St.Resid
25 0.
2.12R

26 0.
2.74R

27 0.
4.45RX

28 0.
4.46RX

R denotes
X denotes

~-1

000

000

007

368

SigmaHi
3.69400
3.85050
4.20050

5.60800

an obs. with a la

0.0003

Fit

3.72691

3.88078

4.16122

5.60871

rge st.

Lower Tail Regression for X-Chart

Regression Analysis

The regression equation is
SigmalLo = 2.77 - 1.81 eM-1 - 0.751 en-.1 - 0.438 en-.025

Predictor
Constant
=]
e*-.1
e”-.025

s = 0.0147
Analysis o

SOURCE
Regression
Error
Total

SQOURCE
e™-1
e~-.1
e”-.025

9

77031
.80838
.75091
.43839

Coef

(e 22 o B oo Y o

R-sq = 89.5

f Variance

SS
3.5856
0.0052
3.5908

SEQ Ss
2.5437
0.9531
0.0888

Stdev.Fit

0.00668

0.00836

0.01443

0.01691

resid.
an obs. whose X value gives it

Stdev t-ratio
.00504 549,96 0
.07312 -24.73 0
.03923 -19.14 0
.02175 -20.16 0
% R-sg(adj) = 99.8
MS F

1.1952 5465.84
0.0002
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Residual

-0.03291

-0.04028

0.03928

-0.00071

large influence.

|2

.000
.000
.000
.000

%

P
0.000



Unusual Observations
SigmaLo

Obs. e
St.Resid

25 0.
2.08R

26 0.
2.67R

27 0.
4 .39RX

28 0.
4 40RX

R denotes
X denotes

*=1

000

600

007

368

an obs.

2.3

2=k

1.8

0.9

2970

8695

8195

9865

Fit

2.30147

2.15257

1.91580

0.99803

with a large st.

Stdev.Fit

0.

0.

0.

0.

resid.

an obs. whose X value gives it

Upper Tail Regression for mR-Chart

Regression Analysis

The regression equation is
T =3.68 + 1.88 exp(-a) + 0.564 exp(-.1a) + 0.0969 exp(-.025)

Predictor
Constant
exp(-a)
exp(-.la
exp(-.02

s = 0.01417

Lo o Y L O

Coef

.68490
.B8402
.56355
.09686

R-sqg

Analysis of Variance

SOURCE
Regression
Error
Total

SOURCE
exp(-a)
exp(-.la
exp(-.02

o

Unusual Observations

Obs. expl
St .Resid

1 8.
1.66 X

2 0.
1.66 X

_a)
368

007

4.9

4.1

oo oo

= 99.7

SS
1.74153
0.00482
1.74635

SEQ SS
1.49678
0.24041
0.00434

T
8260

1260

106

00584

00731

01261

01479

Residual

0.02823

0.03438

-0.03385

0.00062

large influence.

Stdev t-ratio
.00483 763.64 0
.07004 26.90 0
.03758 14.99 0
.02083 4.65 0
% R-sg(adj) = 99.7
MS F
0.58051 2892 .98
0.00020
Fit Stdev.Fit
4.98238 0.01416
4.12488 0.01208

p

.000
.000
.000
.000

%

p
0.000

Residual

0.00022

-0.01228



20 0.000 3.66030 3.69395 0.00350 -0.03365
2.45R

27 0.000 3.66140 3.68865 0.00422 -0.02725
2.02R

R denotes an obs. with a large st. resid.
X denotes an obs. whose X value gives it large influence.
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APPENDIX E

Chi-square Distribution Turbo Pascal (version 6.0) Program
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A Turbo Pascal (version 6.0) program was written to perform steps 2 through 13
of section 3.2 and steps | through 5 of section 3.3. The program on the following pages

is the one used to generate run lengths for the Chi-square (df = 4) distribution.
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Program qctest(chisq);
uses cr,printer;
var
w,d,t,z,aaa,bbb,u1,u2,q,v theta, x, mr, xsum, mrsum, Insum, sigma,
prev, xbar, mrbar, tstat, alpha, uclxs, Iclxs, uclrs, Iclrs,
uclxo, lelxo, uclro, uclxa, Iclxa, uclra, uniform, aa, uni,
earl, y, vy, pill, s: real;

dtwo, dthree, dfour, tone, ttwo, tthree: real;
chisqg:text;

sx0, sxc0, gx, count, sr0, src0, ox0, oxc0, or0, orcO, ax0, axc0, ar0, arc0,
sx5r, sxc5r, ox5r, oxcbr, ax5r, axchr,

sx1r, sxcir, ox1r, oxcir, ax1ir, axclr,

sx15r, sxc15r, ox15r, oxc15r, ax15r, axc15r,
SX2r, SXC2r, 0X2r, OXC2r, ax2r, axcar,

sx25r, sxc25r, ox25r, oxc25r, ax25r, axc25r,
sx3r, sxc3r, 0x3r, oxc3r, ax3r, axc3r,

sx5l, sxc5l, ox5l, oxchl, ax5l, axchl,

sx1l, sxc1l, ox1l, oxcil, ax1l, axcil,

sx15l, sxc15l, ox15l, oxc15l, ax15l, axc15l,
sx2l, sxc2l, ox2l, oxc2l, ax2l, axc2l,

sx25l, sxc25l, ox25l, oxc25l, ax25l, axc25l,
sx3l, sxc3l, ox3l, oxc3l, ax3l, axc3l,

a, b,number, seed:longint;

zrng: array[1..100] of longint;
zset: array[1..100] of longint;

function rand:real;

const
b2e15=32768;
b2e16=65536;
modlus=2147483647;
mult1=24112;
mult2=26143;

var
hi15, hi31, low15, lowprd, ovflow, zi: longint;

begin {rand}
{generate the next random number}

zi:=seed,

hi15:=zi div b2e16;

lowprd:=(zi-hi15*b2e16)*muli1;

low15:=lowprd div b2e16;

hi31:=hi15*mult1+low15;

ovflow:=hi31 div b2e15;
zi:=(((lowprd-low15*b2e16)-modlus)+(hi31-ovflow*b2e15)*b2e16)+cvilow;
if zi<0 then zi:=zi+modlus;

hi15:=zi div b2e16;

lowprd:=(zi-hi15*b2e16)*mult2;
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low15:=lowprd div b2e16;

hi31:=hi15*mult2+low15;

ovflow:=hi31 div b2e15;
zi:=(((lowprd-low15*b2e16)-modlus)+(hi31-ovflow*b2e15)*b2e16)+ovflow;
if zi<0 then zi:=zi+modlus;

seed:=zi;

rand:=(2*(zi div 256)+1)/ 16777216.0

end; {rand}

LR R e R e R R R e i R e e A
AR A S s sttt ad iRt ittt il st it sttt ittt ddd

ttt-’itt*til*tittttﬁ*il**i*ii*t*lttiit*ttiwittl*i*ii*itwttt!titl}

procedure chisquare;

begin {chi square}
ul:=rand;
u2:=rand;
aaa:=1/(sqrt(3));
bbb:=2-(In(4));

theta:=4.5;

d:=1+In({theta);

v:=aaa*ln(ui/(1-ul));

yy:=2*exp(v);

z:=ul*ul*u2;

w:=bbb+q*v-yy;

if (w+d-(theta*z))>=0 then
y:=2"yy

else if w>=In(z) then
y:=2"yy

else chisquare;

end;

{ntttt—ttfn4tglttwtitt’ttt-tt*tt:trthwtttittntt-t}

procedure Generate;

begin {generate}
chisquare;
number:=number+1;

if sx0=0 then {check for ooc signal on shewhart limits x chart
if there is a signal sx0=1 and there it will
stop counting on sxc0. sxcO will be at least one}
begin {sxc0}
sxc0:=sxcO+1;
if y<lclxs then sx0:=1
else if y>uclxs then sx0:=1;
end; {sxc0}

if number>1 then {check for ooc signal on shewhart limits mr chart
if there is a signal sr0=1 and there it will
stop counting on srxc0. srxcO will be at least one}
if sr0=0 then
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begin {srcO}
src0:=srcO0+1;
if abs(y-earl)>uclrs then
srQ:=1
end; {src0}

if ox0=0 then  {check for ooc signal on Oyon limits x chart
if there is a signal ox0=1 and there it will
stop counting on oxc0. oxcO will be at least one}
begin {oxc0}
oxc0:=oxc0+1;
if y<lclxo then ox0:=1
else if y>uclxo then ox0:=1;
end; {oxc0}

if number>1 then
if or0=0 then
begin {orc0)
orcO:=orc0+1;
if abs(y-earl)>uclro then
or0:=1
end; {orc0}

if ax0=0 then
begin {axc0}
axc0:=axc0+1;
if y<lclxa then ax0:=1
else if y>uclxa then ax0:=1;
end; {axc0}

if number>1 then
if ar0=0 then
begin {arc0}
arcO:=arc0+1;
if abs(y-earl)>uclra then

ar0:=1

end; {arc0}
{XXXXHXXXHKHHHXXKKXHXHKXKX XK K KKK KKKHKX}

if sx5r=0 then
begin {sxc5r}
SXCori=sxchr+1;
if (y+0.5”s)<lIclxs then sx5r:=1
else if (y+0.5"s)>uclxs then sx5r:=1;
end; {sxc5r}

if ox5r=0 then
begin {oxc5r}
oxchri=oxchr+1;
if (y+0.5"s)<Iclxo then ox5r:=1
else if (y+0.5%s)>uclxo then ox5r.=1;
end; {oxc5r}

if ax5r=0 then
begin {axc5r}
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axchri=axchr+1;
if (y+0.5%s)<lclxa then ax5r:=1
else if (y+0.5*s)>uclxa then ax5r:=1;
end; {axc5r}
{XXXXXXHHXXXXXHXHXXXKXXHHHXKXXXKHKKKXXX

if sx1r=0 then
begin {sxc1r}
sxcirn=sxc1r+1,
if (y+s)<lclxs then sx1r:=1
else if (y+s)>ucixs then sx1r:=1;
end; {sxc1r}

if ox1r=0 then
begin {oxc1r}
oxcir=oxcir+1;
if (y+s)<lclxo then ox1r:=1
else if (y+s)>uclxo then ox1r:=1;
end; {oxc1r}

if ax1r=0 then
begin {axc1r}
axcir=axcir+1;
if (y+s)<lclxa then ax1r:=1
else if (y+s)>uclxa then ax1r:=1;
end; {axc1r}
{XOORXXRKHXKXKXX KX XK XX XXX XXX XXX XXX K KKK}

if sx15r=0 then
begin {sxc15r}
sxc15r=sxc15r+1;
if (y+1.5"s)<lclxs then sx15r:=1
else if (y+1.5*s)>uclxs then sx15r:=1;
end; {sxc15r}

if ox15r=0 then
begin {oxc15r}
oxc15r:=oxc15r+1;
if (y+1.5%s)<lIclxo then ox15r:=1
else if (y+1.5%s)>uclxo then ox15r.=1;
end; {oxc15r}

if ax15r=0 then
begin {axc15r}
axc15ri=axc15r+1;
if (y+1.5"s)<lclxa then ax15r:=1
else if (y+1.5*s)>uclxa then ax15r:=1,
end; {axc15r}
{XOOXXKKXXKXXXKXXKHXHXXX XK XX XX XXX XX KXX }

if sx2r=0 then
begin {sxc2r}
SXC2r:=sxc2r+1;
if (y+2*s)<lclxs then sx2r:=1
else if (y+2*"s)>uclxs then sx2r:=1;
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end; {sxc2r}

if ox2r=0 then
begin {oxc2r}
OXC2r:=0Xc2r+1;
if (y+2*s)<lclxo then ox2r:=1
else if (y+2"s)>uclxo then ox2r:=1;
end; {oxc2r}

if ax2r=0 then
begin {axc2r}
axc2r.=axc2r+1;
if (y+2*s)<lclxa then ax2r:=1
else if (y+2*s)>uclxa then ax2r:=1;
end; {axc2r}
{XXXXXXXIHXKHXKHXKXXKKXXXKX KKK XXX XXX}

if sx25r=0 then
begin {sxc25r)
sxc25r:=sxc25r+1;
if (y+2.5%s)<lcixs then sx25r:=1
else if (y+2.5"s)>uclxs then sx25r;=1;
end; {sxc25r}

if ox25r=0 then
begin {oxc25r)
oXc25r:=0xc25r+1;
if (y+2.5%s)<lclxo then ox25r:=1
else if (y+2.5%s)>uclxo then ox25r:=1;
end; {oxc25r}

if ax25r=0 then
begin {axc25r}
axc25ri=axc25r+1;
if (y+2.5"s)<lIclxa then ax25r:=1
else if (y+2.5"s)>uclxa then ax25r:=1;
end; {axc25r}
{XXXXXXXXXXXXXXKXKXX KX XX XXX XKXXX XXX XXX}

if sx3r=0 then
begin {sxc3r}
SXC3r:=sxc3r+1;
if (y+3*s)<lclxs then sx3r:=1
else if (y+3"s)>uclxs then sx3r.=1;
end; {sxc3r}

if ox3r=0 then
begin {oxc3r}
oxc3r:=oxc3r+1;
if (y+3*s)<lclxo then ox3r:=1
else if (y+3*s)>uclxo then ox3r:=1;
end; {oxc3r}

if ax3r=0 then
begin {axc3r}

114



axc3r:=axc3r+1;
if (y+3*s)<lclxa then ax3r:=1
else if (y+3"s)>uclxa then ax3r:=1;
end; {axc3r}
{XXXXXHKOHHKIOKHX KX XXX XXX HXXXKXXXKX

if sx5I=0 then
begin {sxc5l}
sxchl:=sxchl+1;
if (y-0.5*s)<lclxs then sx5l;:=1
else if (y-0.5"s)>uclxs then sx5l:=1;
end; {sxc5l}

if ox5/=0 then
begin {oxc5l}
oxc5l:=oxc5l+1;
if (y-0.5"s)<lIclxo then ox5l:=1
else if (y-0.5"s)>uclxo then ox5l:=1;
end; {oxc5l}

if ax5l=0 then
begin {axc5l}
axchl:=axc5Il+1;
if (y-0.5"s)<lclxa then ax5l:=1
else if (y-0.5"s)>uclxa then ax5l:=1;
end; {axc5l}
{XXXXXHXHHHXXXXHHKXXKEK KKK XXX XXX KKHXNX

if sx11=0 then
begin {sxc1l}
sxc1li=sxc1l+1;
if (y-s)<lclxs then sx1l:=1
else if (y-s)>uclxs then sx1l:=1;
end; {sxc1l}

if ox11=0 then
begin {oxc1l}
oxcll:=oxc1l+1;
if (y-s)<Iclxo then ox11:=1
else if (y-s)>uclxo then ox1l:=1;
end; {oxc1r}

it ax11=0 then
begin {axctl}
axcll:=axc1+1;
if (y-s)<lclxa then ax1l:=1
else if (y-s}>uclxa then ax1l:=1;
end; {axc1l}
{XXXXXHXKXXKHXXKX XXX XK XXX XXX KKK XK KK ]

if sx151=0 then
begin {sxc15l}
sxc15l:=sxc15l+1;
if (y-1.5"s)<lclxs then sx15l:=1
else if (y-1.5"s)>uclxs then sx15l:=1;
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end; {sxc15l}

if 0x15l=0 then
begin {oxc15l}
oxc15l:=0xc15l+1;
if (y-1.5"s)<lclxo then ox15l:=1
else if (y-1.5"s)>uclxo then ox15l:=1,
end; {oxc15l}

if ax15I=0 then
begin {axc15l}
axc15h=axc15l+1;
if (y-1.5"s)<lclxa then ax15l:=1
else if (y-1.5%s)>uclxa then ax15l:=1;
end; {axc15l}
{XXXXXXHXXKHXXXKXXKKXXXXXXXXIXXXKXXXXXX )

if sx2I=0 then
begin {sxc2l)
sxc2l:=sxc2l+1;
if (y-2*s)<lIclxs then sx2l:=1
else if (y-2"s)>uclxs then sx2l:=1;
end; {sxc2l}

if ox21=0 then
begin {oxc2l}
oxc2l:=oxc2l+1;
if (y-2*s)<lIclxo then ox2l:=1
else if {y-2*s)>ucixo then ox2l:=1;
end; {oxc2l}

if ax21=0 then
begin {axc2l}
axc2l:=axc2l+1,;
if (y-2*s)<lclxa then ax2l:=1
else if (y-2*s)>uclxa then ax2l:=1;
end; {axc2l}
e POTTI VPP ICIICIIPIT I 000 0000000004

it sx251=0 then
begin {sxc25I}
sxc25l:=sxc251+1;
if (y-2.5"s)<lIclxs then sx25l:=1
else if (y-2.5"s)>uclxs then sx25l:=1;
end; {sxc25l}

if 0x25I=0 then
begin {oxc25l}
oxc25l:=oxc251+1;
if (y-2.5%s)<Iclxo then ox25l:=1
else if (y-2.5"s)>uclxo then ox25[:=1;
end; {oxc25l}

if ax25I=0 then
begin {axc25l}
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axc25l:=axc25|+1;
if (y-2.5"s)<lclxa then ax25l:=1
else if (y-2.5"s)>uclxa then ax25l:=1,
end; {axc25l}
{XXXXXHXHXXXXK XXX KXXXKHXX XXX XX XXX XXX XXX }

if sx3l=0 then
begin {sxc3l}
sxc3l:=sxc3l+1;
if (y-3*s)<lclxs then sx3l:=1
else if (y-3*s)>ucixs then sx3l:=1;
end; {sxc3l}

if ox3l=0 then
begin {oxc3l}
oxc3l:=oxc3l+1;
if (y-3*s)<lclxo then ox3l:=1
else if (y-3"s)>uclxc then ox3l:=1;
end; {oxc3l}

if ax31=0 then
begin {axc3l}
axc3t=axc3l+1;
if (y-3*s)<lclxa then ax3l:=1
else if (y-3*s)>uclxa then ax3l:=1;
end; {axc3l}

earl:=y,
end; {generate}

{Run the entire test 1000 times to get 1000 run lengths for
all of the control charts. The loop starts here. Each seperate
loop will regenerate conrol limits.}

begin {procgram}

clrscr;

writeln(' Relax, the program is running');

writeln(' It will be done in about 5 minutes');

seed:=1;

assign(chisq, 'c:chi.dat’);

rewrite(chisq);

s:=sqri(B);

a:=0;

repeat

{begin repeati}
{reset the required count variables}
sx0:=0;
sx5r:=0;5x11:=0; sx15r:=0; sx2r:=0;5x25r:=0; sx3r:=0;
sx51:=0;sx11:=0; sx15l:=0; sx2l:=0;sx25|:=0; sx3[:=0;
sxc0:=0;
sxc5r:=0;sxc1r:=0; sxc15r:=0;sxc2r:=0; sxc25r:=0; sxc3r:=0,
sxc5i:=0;sxc1l:=0; sxc15l:=0;sxc2l:=0; sxc25l:=0; sxc3l:=0;
sr0:=0;
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src0:=0;

ox0:=0;

ox5r:=0;0x1r:=0; ox15r:=0; ox2r:=0;0x25r:=0; 0x3r:=0;
ox51:=0;0x11:=0; ox15L=0; ox2l:=0;0x25!:=0:; ox3l:=0;
oxc0:=0;

oxc5r:=0;o0xc1r:=0; oxc15r:=0;0xc2r:=0; oxc25r:=0; oxc3r;=0;
oxc5l:=0;0xc11:=0; oxc15l:=0;0xc2l:=0; oxc251:=0; oxc3l:=0;
orQ:=0;

orc0:=0;

ax0:=0;

ax5r:=0;ax1r:=0; ax15r:=0; ax2r:=0;ax25r;=0; ax3r:=0;
ax5l:=0;ax11:=0; ax15l:=0; ax2l:=0;ax25!:=0; ax3!:=0;
axc0:=0;

axchr:=0;axc1r:=0; axc15r:=0;axc2r:=0; axc25r:=0; axc3r.=0;
axchl:=0;axc1l:=0; axc15l:=0;axc2l:=0; axc25|:=0; axc3|:=0;
ar0:=0;

arc0:=0;

X:=0;
gx:=0;
Count:=0;
mr:=0;
mrsum:=0;
xsum:=0;
Insum:=0;
sigma:=1;
number:=0;

{Generate 50 random variable from the specified distribution in order
to get control limits for each on the three types on control limnits.
the three types of control limits include Shewhart, Oyon, and Ankney.}

repeat
{ begin repeat2}
chisquare;
X:=Y,
XSUM:=XSUM+X;
count:=count+1;
if count>1 then mr:=abs(x-prev);
prev:=x;
Mrsum:=mrsum-+mr;
Insum:=Insum-+in(x)
{ end repeat2}
until count=50;
{Calculate the three sets of control limits based on the
fifty random variable just produced in the above loop.}

xbar:=xsum/50; {average x}
mrbar:=mrsum/49; {average mr}
pill:=In(xbar)-Insum/50;

tstat:=1/pill; {t statistic}

alpha:=0.109+0.503"tstat; {estimated shape parameter}
uclxs:=xbar+2.66*mrbar; {shewhart upper control limit)
Iclxs:=xbar-2.66*mrbar; {shewhart lower control limit}
uclrs:=3.268"mrbar; {shewhart mr upper control limit}
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dtwo:=(0.64282)+(0.09775*(1-exp(-0.5"alpha)))+(0.35736"(1-exp(-2*alpha)))+(0.02483*(1-
exp(-0.1*alpha)));

dthree:=(0.859457)-(0.2964 *exp(-1*alpha))+(0.29099"exp(-0.5*alpha)}+(0.4758"exp(-
2*alpha));

dfour:=(3.28976)+(1.87067*exp(-1*alpha))+(0.13663"exp(-0.1*alpha)};

tone:=(3.23311)+(3.19102%exp(-1*alpha))+(0.85168"exp(-0.1*alpha))+(0.44197"exp(-
0.025%alpha));

ttwo:=(2.77031)-(1.80838*exp(-1"alpha))-(0.75091*exp(-0.1"alpha))-(0.43839"exp(-
0.025*alpha));

tthree:=(3.68490)+(1.88402*exp(-1*alpha))+(0.56355"exp(-0.1*alpha))+(0.09686exp(-
0.025"alpha));

uclxo:=xbar+((3*mrbar)/dtwo); {oyon upper control limit}

Iclxo:=xbar-((3*mrbar)/dtwo); {oyon lower control limit}

uclro:=dfour*mrbar; {oyon mr upper control limit}

uclxa:=xbar+((tone*mrbar)/dtwo); {ankney upper control limit}

Iclxa:=xbar-({ttwo*mrbar)/dtwo); {ankney lower control limit}

uclra:=mrbar+((tthree*dthree*mrbar)/dtwo); {oyon mr upper control limit}

{Generate random variable from the parent distribution until
a point goes out of control on each of the control charts.}

repeat
Generate
until sx0+sr0+ox0+or0+ax0+ar0>5;

writeln (chisq, sxc0:7, src0:7, oxc0:7, orc0:7, axc(:7, arc0:7,
sxc5r.7, oxc5r.7, axchr.7,
sxcir:7, oxc1r.7, axc1r:7,
sxc15r:7, oxc15r:7, axc15r:7,
sxc2r.7, oxc2r.7, axc2r.7,
sxc25r:7, oxc25r:7, axc25r:7,
sxc3r:7, oxc3r:7, axc3r:7,
sxchl:7, oxchl:7, axchl:7,
sxc1l:7, oxc1l:7, axcil:7,
sxc15l:7, oxc151:7, axc15l:7,
sxc2l:7, oxc2l:7, axc2l:7,
sxc251:7, oxc25l1:7, axc25!.7,
sxc3l:7, oxc3l:7, axc3l:7);

{writeln (uclxs:7, Iclxs:7 ,uclxo:7, Iclxo:7,uclxa:7,lclxa:7);}

a:=a+1

{end repeat1)

until a=1002;
end.
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APPENDIX F

Marse and Roberts Random Number Generator



Random uniform variates were used to generate random variates from the five
parent distribution discussed in section 4.2. These uniform variates were generated
according to Marse and Roberts random number generator. The Pascal code for this

generator is on the following page.



rogram rand_test;
Eagg crt,printer;
var i,n 1 integer;
geed t longlinty
X 1t real)
outfile : text;

function RandUnif : real;

t
coggals = J2768;
B2El6 = 65536
Modulus = 2147473647;
Multl = 24112;
HMult2 = 26143;

var Hil5, Hi31, Lowuls, Lowprdq, Ovflow,zi

in
bcgi 1= Seed;
Hil1s := zi DIV B2E1l6;

Lowprd := (Zi - Hiis &« B2El6) Hultl;

5 = Lowprd DIV B2El6;
#?gi 3= Hi15 * Multy + Lowls;
Ovflow 1= Hi3l DIV B2E1s;

Zi := (((Lowprd - Lowls ¢ B2E16) - Hodulus) +

(Hi31 - ovflow t B2E1S5) ¢

! longint;

B2E16) + Ovflow:
IF £i < O THEK Zi := zi{ + Kodulus;

H1i15 := Zi DIV B2El6;

Lowprd 1= (Z{ = Hi15 & 52515) * Kult2;

wWl5 3= Lowprd DIV B2E16;
;I{?n 1= Hil5 € Kult2 + Lowis;
Ovilow t= Hi31 DIV B2gp1s,
Zi := (((Lowprd = Lowl5 ¢ B2E1g) -

Hod
(Hi31 - Ovflow # B2E15) & B2Eje

IF Zi < 0 THEN Zi := 2§ 4 oa

ulus;
Seced 1= iy

RandUnif := (2« (z{ DIV 256) + 1) / 16777216.0;

end;

begin
clrscr;
write(’ enter Sced and n: )1
readlg( Seed, n);
riteln;
{ “;ssi n(outtile,‘a:rand.dat'}:
rcurgte(outtile}: }
for 4 :=1 to n do
begin
g = RandUnirfr;
writeln(i:s, Sced:1s, X:15:10);

( HritE1n(out£11e,x:10:a); }
end;

( close(outfile); )

end.
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enter Eced and n:

Bt e et ot etk ot
SS;HC\GAUNFOUG‘JGWQUNH

630360016
15490315330
264620982
529512731
1896697821
2116530888
1923129168
1674201058
108088067
859154222
1946499387
13;7390412
1382793310
7681302678
1014576563
514017889
20503150098
192857839)
863848128
246801402

1 20

0.2935342193
0.7213258147
0.1232237220
0.2465736270
0.88321B7057
0.98558G64644
0.89552668264
0.77961p5742
0.05033p4866
0.4000748992
0.9064094424
0.6416302323
0.643913328¢
0.357768833¢
4724490047
2393582463
9547687173
.B98064315)
4022606015
-1149258018

coocoocoo



APPENDIX G

Normal Distribution Program Output
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Turbo Pascal programs were written for this research. The programs generated
1000 run lengths for each set of control limits based on each of the five parent
distributions. The run lengths were also generated for each mean shift simulated in this
research. The program output for the normal distribution is supplied in this appendix.

The out put on the following pages is an excerpt from a larger spreadsheet.
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Shewart Oyen Ankney +0.5
X-chart range x-chart range x-chart range Shew Ovyon Ank

101 101 101 101 114 186 14 14 187
62 48 62 48 62 1064 82 82 62
325 325 325 325 98 325 326 326 325
237 66 237 66 38 1470 237 237 237
46 184 46 184 25 202 5 5 46
115 47 115 47 12 47 48 48 115
29 58 29 58 18 173 29 29 29
593 383 583 393 39 592 22 22 593
206 211 2086 247 52 247 206 206 248
26 734 26 734 26 1016 851 851 26
171 31 319 88 110 171 21 40 171
112 17 112 17 112 355 159 159 112
1299 64 1299 64 64 2931 127 127 822
105 105 115 105 14 537 69 69 115
33 120 33 120 11 120 97 97 33
592 196 592 196 478 12596 474 474 592
1 1337 1 1337 1 5584 2689 2689 1
3916 1586 3916 1586 287 10322 2526 3916 2691
307 306 307 306 206 378 93 307 379
140 139 140 139 185 139 140 140 185
225 69 225 69 278 4243 225 225 283
1330 197 1330 197 360 2453 198 198 1330
335 209 335 209 248 209 58 58 335
1326 30 1326 152 30 1325 40 40 30
145 144 145 144 96 144 77 77 145
264 61 264 61 62 1021 264 264 264
945 331 945 331 13 3365 214 214 945
180 3 180 3 1083 690 7 7 103
15086 46 41349 46 847 88288 47 47 1072
28 27 28 27 114 27 28 28 28
980 103 980 103 54 103 112 112 291
65 109 65 109 61 592 65 65 226
7 53 7 53 7 53 33 33 7
19 18 19 18 19 19 20 20 19
164 41 164 41 74 163 41 41 164
243 3 1139 3 4 242 243 243 4
64 2 64 2 42 11 12 12 64
41 40 41 40 23 134 41 41 41
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240 118 240 118 186 1363 42 42

103 102 103 102 187 346 22 22

63 24 63 24 49 197 19 19

190 189 190 553 187 1056 47 47

154 7 154 7 AN 31 141 141

2022 34 2022 3208 185 6791 3063 3063

240 239 371 239 66 1971 114 114

272 62 272 62 63 62 62 62

29245 1477 29245 1477 182 132078 9447 9447

7163 52 7163 52 245 30972 4845 4845

165 164 165 164 8 165 108 108

243 242 243 242 184 1255 208 208

90 90 90 90 63 90 85 85

1306 313 1306 313 163 1490 185 185

220 9 220 9 220 4962 585 585

5165 307 5165 307 1214 5724 206 206

306 40 306 94 342 472 114 114

52 15 52 52 52 121 2 15

286 434 286 434 84 485 486 486

183 73 183 377 377 377 89 89

59 33 365 33 34 203 18 18

158 157 158 157 39 157 22 78

47 24 47 24 85 45 31 31

65 7 65 65 58 65 66 66

39 1 39 1 96 38 39 39

11 10 11 10 30 10 11 11

51 36 51 36 33 51 37 37

45 45 45 45 8 232 32 32

422 124 1820 124 315 761 125 125

2 1 2 1 2 1 1 1

61 10 61 10 99 127 35 35

389 187 389 187 260 940 258 258

112 111 112 111 17 111 8 8

75 23 75 74 374 74 57 57
Shewart QOyon Ankney + 0.5
x-chart range x-chart range x-chart range Shew Oyon

average= 1118.876 213.381 1427.191 277.033 141.883 401167 437.488 485.891

Variance= 22032882 2459154 46016238 668066.3 50173.24 1.12E+09 2181138 2503836

stdev= 4693.921 495.8986 6783.527 817.3532 2239938 33429.52 1476.868 1582.352
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APPENDIX H

R vs. mR
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The upper control limit for the mR chart is based on ranges of subgroup size

n=2, as is common with Shewhart’s mR control charts. Ranges of subgroup size n=2

can be used instead of mR values. This is demonstrated with the following test:

Random numbers were generated from Minitab for both the normal and
exponential distribution.

Ranges (n=2) were figured from the random numbers based on their
respective distributions.

Control limits were calculated based on the ranges.

The number of out of control signals were counted for both the normal and
exponential distribution based on ranges n = 2

Steps 2 - 4 were repeated using mR values instead of ranges n=2. The mR

values were calculated from the 20,000 variates produced in step 1.

The results on the following page demonstrate that there is no significant

difference between the number of OOC signals for the R (n=2) and mR cases (based on

their respective distributions). The control limits in both cases arc also at approximaltely

the same value. The slight differences result from the fact that only 10,001 of the

random variates were used to generate 10,000 moving ranges whilc all 20,000 variates

were needed produce 10,000 ranges (n=2).
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Normal - Range (n=2)

Normal - Moving Range

40.1378
1117772

40.08921
11.06392

Exponential - Range (n=2)

1.007212
1.011283

Exponential - Moving Range

1.012581
1.012012

Average X:

Average mR:

T= 28.5772
D4 = 3.32196
Alpha= 14.45332
ucl = D4*mR(bar)
[Total OOC: 88|
Average X:

Average mR:

T= 28.96429
D4 = 3.321343
Alpha= 14.64694
ucl = D4*mR(bar)
[Total OOC: 82|
Average X:

Average mR:

T= 1.714771
D4 = 4.108128
Alpha= 0.990681
ucl = D4*mR(bar)
[Total OOC: 165
Average X:

Average mR:

T= 1.717193
D4 = 4.107237
Alpha= 0.991941
ucl = D4*mR(bar)
[Total OOC: 174)
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Average: 3.657326

Average: 3.656582

Average: -0.57598

Average: -0.56984



APPENDIX I

Gamma Distribution At Different Alphas
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The graph on the following page represents the Gamma Distribution at different
alpha (o) values. The plots were generated using the following probability density

function:

Alpha values of 1.0, 5.0, 25.0, 75.0, and 135.0 were chosen to demonstrate the effect of
the shape parameter on the Gamma Distribution. The Beta value was held constant at a

value of one (1) because it has no effect on the shape of the distribution.
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APPENDIX J

Sub-Objectives One and Two Program Logic
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Turbo Pascal programs were written for this research. The programs generated
1000 run lengths for each set of control limits based on each of the five parent
distributions. The run lengths were also generated for each mean shift simulated in this
research. The program logic for generation of run lengths generated in sub-objective two

and sub-objective three is supplied in the chart on the following page.
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Figure I - 1: Sub-Objectives Two and Three Program Logic

50 Random variates:
Normal, Gamma, Exponential, Log-
normal, Chi-square

1, C u,o, o0 u, o, o, B
Shewhart Oyon’s Symmetrical Asymmetrical
Control Limits: Control Limits: Control Limits:
X & mR X & mR X &mR
Negative Shift in the Positive Shift in the
Mean: Mean:
-0.5,-1.0,-1.5, -2.0, + 0.5, 1.0, 1.5, 2.0,
-25,-300 25,300
Negative Shift in the Positive Shlfl in the
Mean: Mean:
).5.-1.0,-1.5,-2.0, + 0.5, 1.0, 1.5, 2.0,
-25,-300 25300
egatwe Shift in the Positive Shift in the
Mean: Mean:
-0.5,-1.0, -1.5,-2.0, + 0.5, 1.0, 1.5, 2.0,
25,300 25,300
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