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NOMENCLATURE 

a Half contact width of rubber covered rolls 

A Durometer 

8 Radial deflection of rubber covered roUs 

D Roll Diameter 

E Young's Modulus or modulus of elasticity 

E. Modulus of elasticity as a function half contact width 

Ec Compressive modulus of rubber 

E Strain at the edge of the web 

dE Change in strain from one edge of the web to the other 

F Force or load 

FIW Effective nip load 

k Factor used by Lindley in equation (1) 

K Stiffness 

K. Specific stiffness 

L Length of the web prior to the nip 

M Moment 

ML Moment at the length of the web 

NLL Load applied on left side of nip 
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Shape factor 

Rubber cover thickness 
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Change in velocity per velocity or strain 
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Lateral deflect ion of web 
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Chapter I 

Introduction 

A web is a thin continuous material. Examples include paper, plastic film, cloth, 

and aluminum foil. Web materials are flexible and cannot support bending alone. A web 

is usually stored in the form of a roll. 

Web handling involves the transportation and processing of the material. Web 

handling includes slitting, splicing, coating and winding. Transportation usually involves 

long bands of web running along with the aid of rolls. Web handling improves processes 

by eliminating defects and losses. New techniques are created by these improvements. 

Any type of web handling work involves the use of rolls. These rolls are either free 

spinning or driven. Rolls include the cores used to wind the material for storage to the 

roUs used for the transportation of the web The rolls can be metal, paper, wood, plastic, 

or rubber covered. A nip is any two roUs in contact as shown in figure 1-1 . A common 

example is a nip roll used during the winding process. Winding is the procedure used to 

fonn the web into a rolL The core is the hollow tube used as the base for the rolls. 

Surface winding uses the nip roll to control the tension of the web being wound. The nip 

also controls the air entrained in the wound roll. Rolls are important in web handling. 

During the processing of the web, the material travels along with the aid of rolls. 

Edge detectors sense the edge of the web by optical or pneumatic means and adjustments 

are made if the web edge strays laterally from the point of guidance. The adjustments 



Force 
Force 

NIP 

Figure 1-1: Illustration ofa Nip 

could be made by misaligning a roller on the entering side of the edge sensor as shown in 

figure 1-2. Tms technique is a popular form for lateral web guidance. 

RoUer < > 
WEB 

Figure 1-2: Movement of an end pivoted roller to adjust the lateral position of the web 

Lateral movement of web has caused problems also. Too much movement can 

cause slackness to occur in the web. Slackness in a web is defined as when the web loses 

tension across some portion of the width.. When tms happens the slack web may go 

through a nip or wound on to a roll causing creases or wrinkles to form. Thus, too much 

lateral movement becomes a problem as far as waste of material and process time. 

Tms research focuses on rubber covered nip rollers. Non-uniform nip loading has 

been proven to be a means of laterally moving a web. Rubber is a nearly incompressible 

substance and when loaded in the geometry of the nip the rubber velocity increases as it 

passes through the contact zone. Tills is analogous to a problem in which a fluid is 
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passing through a reduced cross-section channel which perhaps expands back to a cross

section of the original dimensions. If the mass flow rate of the incompressible substance is 

assumed to be constant, then the velocity of the substance must increase as it passes 

through the constriction. It also follows that as the constricted cross-section becomes 

smaller that the velocity must increase even higher. Thus a set of rubber covered nip 

rollers with non-uniform nip loading will have a variation in velocity across their width in 

the contact zone 

A web being transported which encounters a set of such rollers will attempt to 

achieve the velocity of the rubber coverings in the contact zone. Thus in conditions in 

which the nip loading is non-uniform it should be expected that the web will have non

uniform velocity across its width. A variation in velocity across the width of a web is 

indicative of a variation in strain and therefore stress across the width. When integrated 

this stress will result in a moment which will be shown to produce the lateral deformation 

of the web. 

The objective of this research win be to quantify and experimentally verify the 

lateral defonnations of a web due to non-uniform nip loading with rubber covered rollers. 
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Chapter II 

Literature Survey 

A literature study in the area of web steering due to uneven nip loading was 

performed. Little work has been done in this area. Some research has been done in the 

area of rubber covered rolls for load and compression relationships. The following 

resources were used to develop or help in the algorithms used to predict the steering effect 

of a differentially loaded nip. 

Lindley [8] presented a load-deformation relationship. Using approximate 

relationships derived for load compression of rubber blocks at low strains, Lindley 

expanded the relationships to rubber-covered rollers at larger deformations, equation (1). 

This was done by considering Young's modulus to be independent of the strain in the 

material. 

-=EJtij a +-I? F [kD] 
W R t fJR 

(1) 

8 [1 + Fu] 16 r [1 + fu] lO./U 4;; <5 a R = -In r --'IIU ,PR = In r - ( ) + ( )2 and u =-
3 I-vu 3 I-vu 31-u 31 - u t 

JD8 s=--
(I -8) 
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t - 8 
8 -t--.... ~-~-....,Y 

F 

Figure 2-1: Illustration for Lindley's variables 

Equation (1), however, requires a factor, Ie, to be determined empirically from equation 

(2) . Equation (2) calculates compression modulus from shape factor and Young's 

modulus. Figure 2-1 illustrates the variables for Lindley's equations. 

In 1964, Foreman [4] showed a relationship between rubber compression and the 

velocity of the strip passing through the pinch rolls. Foreman stated that the increased 

velocity is due to the increased length of contact between the compressed rubber and the 

strip passing through. Initially, Foreman used two sets of rubber covered rolls. One was 

11 in. in diameter with a % in. covering and the other was 30 in. in diameter with a 1 in. 

covering. The hardness of the covering ranged from 60 to 70 durometer. The strip was 

passed through and the top roU is loaded. By using a hand lever the bottom roll was 

turned by a single revolution. Figure 2-2 illustrates Foreman' s experimental setup. After 

the full revolution was completed the length of movement is measured. The length of 

movement of the strip without any load was calculated from the diameter ofa single roll. 

The difference divided by the initial length gave the percent increase. A steady increase 

was found due to added load. Increases up to 2 percent were found. Foreman also 

conducted experiments using one rubber covered roll and a steel roll. By doing so, the 

effects of different durometer and thickness on the increased movement were also shown. 

He also showed relationships between the compression of the rubber and the sheet 
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movement for different durometer and cover thickness . Foreman performed many 

experiments and developed many plots but didn't produce algorithms explaining the trends 

in the plots. 

Sheet 

Pointer 
for 
Indication 
amount of rotation 

Load, P 

L DL 

Hi 
Figure2-2: Foreman's Experimental Setup 

In 1994, Shelton [11] presented an infonnal report to Fife Corporation that 

outlines web steering due to differential nip loading across the width of the web. Shelton 

presented a relationship for calculating the effective nip load due to the radial deformation 

of the rubber, similar to Lindley's expression (1), and an algorithm to calculate the lateral 

movement of the web. These models were the primary basis for this investigation. 

The following assumptions were applied in developing the equations for the 

effective nip load and lateral deflection 

Assumptions Regarding Nip Load versus Radial Deformation 

1. The covering material behavior is that of natural rubber. When confined in the 

form of roll covering, it will be assumed that the covering is relatively 

incompressible. 

2. Rubber covered nip rolls are identical in size and duro meter. Therefore, 

symmetry will exist in the defonnation of the rolls in contact 
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3. Small deflections of the rubber covered roUs occur when loaded. A 

relationship between contact width and radial deflection can be fonnulated. 

Assumptions Regarding Lateral Deformation of the Rubber Covered Rolls 

1. The entering web span prior to the nip is extremely long. Thus shear 

deformations are assumed to be negligible. 

2. The lateral deformations are confined to the web span prior to the nip and 

results in a constant lateral offset in the downstream span. 

Formulation of Effective Nip Load 

Shelton starts with equation (3) using the definition for the stiffness of the rubber. 

The stiffness is defined [8] by the following equation: 

AE 
K=

t 

The stiffness is defined by the area of contact, A, multiplied by the modulus of elasticity, 

E, divided by the thickness, 1. The area of contact for the case of two rubber covered rolls 

in contact would be 2Wa, where 2a represents the contact width and W is the width of the 

rup. 

dF 2WaEa 

d8 t 
(3) 

E3 is the modulus of elasticity that varies with the half contact width, a. Shelton 

developed the following equation for modulus by curve fit of data from a figure that 

relates compressive modulus to shape fa.ctor, S, and Shore A Durometer [4]. 

(4) 
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Shape factor is defined as the loaded area per force free area [3]. By definition, shape 

factor becomes the following equation for a loaded rubber covered roll. 

2aW 
ShapeFactor = ( W) 

2t 2a+ 

For small values of half contact width compared to nip width, the shape factor becomes 

alt. By applying the Pythagorean Theorem to fit:,rure 2-3, the following equation is 

formulated: 

R 2 =a 2 +(R _8)2 
" 0 

For small values of 0, the following equation relates the radial deflection, 0, to half contact 

width, a: 

a 

Figure 2-3: Side view of Rubber covered roll radial deflection 

Combining and rearranging equations (3), (4), and (5) yields the following equation: 

dF [(2JJ)I/2(8)1/2 (2~)(I.5-0.002 A ) (8) ( L 5-0 . 002A)] d8 __ = 31eo.048A _"'_'0 _ + 1054e0 048A __ - t -
WIt ttl 

(6) 

Integrating equation (6) by using olt as the independent variable yields the following 

equation: 

£ = I 41.3e0 048A _"'_'0 _ + _ .. '0_ - (7) [ ~JJ (8)3(2 l05.4eOf148A (2JJ) (LS-.OO2A) (8)(2.S-.002 AJ] 
W t t 2.5- .002A t t 
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Components of equation (7) include the radius of the roll, the thickness of the covering, 

the durometer, and the radial defonnation of the rubber. 

Formulation of Lateral Deflection 

The following 2nd order differential equation for an entering span was developed by 

Shelton in his thesis [12]: 

12M 

K W 3 
s 

(8) 

The boundary equations that apply to the web entering the nip are as follows: 

X- L 

X 

Distributed 
Tensile 
Force 

y 

Figure 2-4: Illustration of "S" shape when web is deflected in the nip 

1. Yo'=O 
2. Yo = 0 
3. Mo = -ML (ML Positive) 
4. YL'=O 

From figure 2-4 and boundary condition (3), the moment can be calculated at any point 

along the web span using equation (9). 

(9) 

Equation (10) is used as a simplification. 
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By substituting equation (9) and equation (10), equation (8) becomes the following 

equation 

(11) 

After integrating equation (11) twice and applying the boundary conditions, the following 

solution was derived . 

ML [ sinhKL ] 
Y = T (coshKx -1) - coshKL -1 (sinhKx - Kx) (12) 

It is easier to use the differential strain across the web width for the input to the previous 

equation rather than the moment. A distributed effective tension, TIW, is equated to an 

average effective tension plus the differential effective tension.. This is used to relate the 

moment to the differential tension in the web. 

W 
M =-6T (13) 

L 12 

The following equation is the definition of specific stiffness: 

By combining equation (13) and equation (14) and rearranging yields the following 

equation: 

(I 5) 

Using equation (10) yields the following equation. 
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(16) 

Substituting into equation (12) yields the equation for lateral deflection. 

!1E [ sinh KL ] 
Y = K 2W (coshKx -l) - coshKL -1 (sinhKx - Kx) (17) 

The variable, !1E, in this equation can be defined as· the difference in travel per unit length 

of the two edges of the web. The strain is also the function of the difference in velocity 

per unit velocity ofthe edges. To determine the strain a study in nip behavior is required. 

The next equation is detennined from the triangle area, shown in figure 2-3, equaling the 

half area displaced by the action of the nip: 

4 t5 a 
If = 3 t 2 

(18) 

By assuming that the velocity ratio is proportional to the angle \II and adding a 

proportional constant, the following equation for change in velocity per unit velocity. The 

constant was determined through a best fit of Foreman's data . 

!1 V oa 
-V = 0.25 - , (19) 

t -

Substituting the equation for small deflections, the next equation relates the percentage 

velocity change to the roll radius, radial deflection of the roll and the rubber thickness. 

V 
(20) 

!1V 

This equation gives the increment in strain, E, in the web due to the speed increase of the 

rubber covering in the contact zone. 

This investigation will attempt to verifY the equation for the effective nip load, 

equation (7), and the lateral deflection equation, equation (17). Equation (7) assumes 
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small radial deflections, therefore, its usefulness applies to deflection in the rubber of this 

criteria. The formulation of the lateral deflection equation assumes that no web slackness 

exists. Another criteria for equation (17) is for the web span entering the nip should be 

sufficiently long. 

Good [6] presented material at the October 1996 Web Handling Research Center 

lAB meeting that relates the incursion of web slackness due to a misaligned roller in a web 

line. Good was able to develop a relationship to find the critical angle of rotation of the 

roller at which slackness occurs. 

Equation (21) determines the critical rotation angle of the back roll for a web span 

between a front and back roll. At this critical angle, slackness occurs in the web. For this 

situation, full contact and tension is maintained in the back roll when rotated. At the 

stationary front roll, the web maintains tension in only part of the contact. The situation 

with this investigation, observing figure 2-4, the loss of tension across the web, or 

slackness, occurs at two points at the nip and the leading roll . Equation (21) is effective 

since center of the entering span behaves like the rotating roll. Therefore, equation (21) 

can be applied to half the length of the entering span prior to the nip. 

Little literature exists for the area of web due to uneven nip loading. Research, 

however, does exist for rubber covered rolls. Load and compression relationships have 

been researched. Lindley, for example, developed a relationship, equation (1), for 

calculating the effective nip load due to radial deflection. This equation was also 

experimentally verified by Lindley. Equation (1), however, requires a "k" factor to be 
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determined empirically from equation (2). Shelton also developed an equation for 

calculating effective nip load, equation (7). This equation is a function ofradia! deflection, 

rubber cover thickness, initial roll radius, and durometer. This equation has not been 

experimentally verified, however. Shelton also developed equation (17) to predict the 

lateral movement of the web due to uneven nip loading. The equation is related by the 

stiffuess of the web, the nip width, entering span length, and the difference in strain from 

one edge to the other. The strain can be determined from equation (20) . This equation is 

a function of radial deflection, roll radius, and rubber thickness. Once equation (7) has 

been verified, a source for determining radial deflection from effective nip load or vice 

versa can be established. This can then be used to detennine the strain at the edges of the 

web from equation (20). Equation (17) can then be used to predict the lateral web 

deflection. The lateral deflection equation assumes that no web slackness exists. Using 

the equation developed by Good, equation (21), detennines the critical angle of rotation 

when slackness occurs in the web. This equation is applied for a misaligned roller in a 

web line. For this situation the slackness occurs at the aligned roller. A deflected web due 

to non-uniform nip load forms an "S" shape. The slackness occurs at two points in this 

formation. One point is at the nip and the other is at the front roller. Equation (21), 

however, can be applied for a half of the length of the web entering the nip. This can then 

give an upper limit of useful lateral web deflection data. This study will attempt to verify 

equations (7) and (17) through experimental data. 
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Chapter III 

Experimental Setup 

A nip setup with loads that can be unevenly applied was needed to perform 

experiments. The setup required two rubber covered rolls of the same durometer. The 

setup needed to be installed on a web line that would allow continuous transport without 

changing the web during the experimental process. The setup had to be able to apply 

loads on both sides of the nip independently. An edge guiding mechanism needed to be 

used at the entry side to hold constant position for the web. 

The Shelton machine at the Web Handling Research Center allows for continuous 

transport of a single strip of web. The web is spliced and taped together after being 

looped through the machine. The adjustable tension control roll adjusts the web line 

tension. Two identical springs supply force to either side of the tension roll. A DC motor 

drives a rubber covered roll that winds the web. The motor is controlled by the voltage 

supplied to it. A platform sits on top that can be adjusted horizontally. The nip setup was 

mounted to this table to be used with the test bed. 

The first nip setup, illustrated in figure 3-1, was designed and built previously by 

Shelton for his Ph.D. study [12]. The original setup used Bellofram Super Cylinders to 

apply the load on the sides of the nip as illustrated. The mounts for these cylinders were 

pinned to the frame of the apparatus. The rolls were rubber covered of unknown 
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hardness. The rolls had to be modified to be free rolling in order to be used for the type of 

work expected. The top roll was modified so that bearings were pfiessed into the sides 

which made it tum upon the shaft. Bearing pillow blocks were used for the bottom shaft 

to turn freely. Since there wasn' t enough room the pillow blocks had to be clamped to the 

frame. 

Cylinder Cup 
Pinned and Clamped 

to Frame 

Pillow Block 
Bearing 

Clamped to 
Frame 

Pressure Guages and Regulators 

Bellofram 
Super Cylinders 

Figure 3-1: Illustration of original setup 

Linear 
Guides 
for 
RoJl 
Shaft 

This setup helped to determine that it was feasible to steer the web by unevenly 

loading the nip. Several tests were made in attempting to steer the web. The first tests 

were done by using one rubber covered roll and one metal roll. Paper, plastic and 

aluminum webs were used. The Fife guide at the front roll was turned off so that the 

steering of the web would be additive and, thus, run the web off the side of the nip. This 

fonnation demonstrated no web steering upon loading for each of the web used. Tests 

were also done by making an "s" shaped wrap around the rolls. The wrap fonnation is 

commonly used in industrial applications of nips. This technique emitted a high piercing 
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sound when the nip was loading while the web was running. This was thought to have 

been due to slippage occurring between the web and the nip rolls in compression. Lateral 

movement of the web was not seen in this fonnation either. The metal roll was taken out 

and replaced with another rubber covered roll. The paper web would tear when it passed 

through the loaded nip. The aluminum web didn't show any lateral displacement. The 

aluminum has high stiffitess and was thought to steer better. No lateral displacement was 

seen. The plastic web showed movement. The only formation that showed lateral 

deflection was the two rubber covered rolls with plastic web running through the center of 

the nip. More lateral deflection was seen when less thick webs were used. Therefore, it 

was seen that an unevenly loaded nip with two rubber covered rolls could be used to 

laterally deflect plastic web. 

The setup had limitations that would be needed for further work. The setup didn't 

allow independent control of the two sides being loaded. When an uneven load was 

applied, the top roll shaft would bind in the linear guides. The alignment of the two rolls 

needed to be of high accuracy. Misalignment has shown lateral displacement of web. 

The loading of the rolls also needed to be accurate. Pre-existing unevenness would skew 

data. The cylinder cups were pinned and clamped. More space was also desired so that 

other items can be mounted near the nip. A new design for the experimental setup was 

needed. 

Towards a new experimental setup, three sets ofroUs were designed and 

manufactured to be recovered with rubber of different durometer. These rolls were made 

with a core outside diameter of three inches. They were designed to be covered by rubber 

half inch in thickness and known hardness. Three different hardness values of 40, 55, and 
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70 durometer were to be used. These were chosen so that they would provide a broad 

range of duro meter. The duro meter of rubber is a measure of its hardness. The scales 

usually associated with the durometer are the International Rubber Hardness (IRHD) scale 

or the Shore A Durometer scale. These two scales are about the same. The rolls were 

sent to Mid-South Roller to be covered. Nitrile rubber was chosen because ofits 

durability. After receiving the rolls, a Shore A Durometer tester was used to verify the 

hardness of the rubber. The tests detennined that the actual durometer was 52, 60, and 78 

instead of 40, 55, and 70 respectively. This made a difference considering the equations 

for lateral deflection are functions of the duro meter . These rolls would be used in the new 

experimental setup. 

The new experimental setup was designed and built. The new setup used the 

original Bellofram Super Cylinders. These cylinders have less fiictionallosses within the 

cylinder than most pneumatic cylinders. The pressure applied by the cylinder is closer to 

the pressure dialed on the gauges . The setup allowed total independent control of the two 

sides of the nip. The alignment between the rolls was accurate. Precision bearings were 

used to allow proper alignment of the rolls and cylinders as illustrated in figure 3-2 The 

new design also allowed flexibility in modifications. The new design was better suited for 

this study than the original setup. 

The new nip setup was installed on the continuous loop web transport machine. 

The placement of the test apparatus was chosen so that the web running on the winder 

would pass through the center of the nip. A Fife Guide was used at the front roll in the 

entering span. This ensured that the web's position would be held constant on the front 

roll. Therefore the web would make an "S" shape as the web is steered in the nip_ This 
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could clearly be seen when observed from the front ron looking down the edge of the web. 

This was also the first indication of web steering through observation. 

Fife 

Web Movement 
0::: -1= 

Nip 

..... 
Setup 

Guide 0::: F= 

A 
) H 

' 0 Motor and 0 Honzontal Table 
Fife Guide Controls Adjustment 

= Tension Adjustment ~ Dnven Roll 

I ( )' 
) 0 

" TenSIOn Adjustment Roll 
Figure 3-3: Illustration of new setup on continuous loop 

f;0 
~ 

\,. 

Web 
/' 

The equations for the effective nip load and strain do not rely upon the properties 

of the web. These equations require the durometer and characteristics of the rubber 

covered rolls and the radial defonnations. Only the lateral deflection equation relies upon 

the stiffness and the entering length of the web. Polyester web was chosen to be used for 

experimentation because of the availability at the lab. This material can be used 
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continuously without excessive damage. Also, it does not stretch as easily as other plastic 

web. The elastic modulus is 600,000 psi. The thickness is .002 in. and 6 in. wide. The 

dimensions and properties are used in the lateral deflection equation. 

Although no set criteria for a long entering span was made, the experimental 

apparatus which was mounted on a movable plate was moved to the furthest part of the 

continuous loop from the first rolL It was placed to give the maximum entering length 

while still having room to work behind the nip. The length from the center of the front 

roll to the center of the nip was 71.25 inches. 

A new experimental setup was designed and built. The new setup was designed 

specifically for this study. It was also designed so that modifications could be made easily 

if need be. Three sets of rubber covered rolls were made. They were chosen so that they 

would cover a wide range of durometer. Polyester web was chosen to be used for the 

forth coming experiments because of its availability. The length of the span of the web 

prior to the nip was set at the longest point on the experimental setup while having room 

for other devices to be installed. After the experimental setup was established, tests for 

the verification of equation (7) and (17) could begin. 
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Chapter IV 

Experiment FIW and () 

Shelton [11] developed an equation relating the effective nip load to the radial 

deflection in the rubber rolls and the durometer of the rubber, equation (7). The 

independent variable in this equation for each set of rolls is the radial deflection. 

Rearranging equation (5), the following equation relates the radial deflection to the half 

contact width of the two rolls in contact. 

(Sa) 

In order to obtain the half contact width, a Tek-scan sensor was used . The sensor is an 

array of force sensitive resistance sensors that provide a display of the pressure being 

applied to it A sensor specifically designed to be used in a nip was used. The sensor 

requires two point calibration. The first point is usually near the smallest force used, while 

the second is the near the top of the range of use. 

The sensor placed in the nip and loaded displays the pressure profile across the nip. 

The Tekscan software displays the profile on the computer monitor. The pixels on the 

display correspond to the resistor points on the sensor. The specifications of the sensor 

used is given in figure 4-1 . Using the row width and the number of rows of sensor cells in 

the sensor, the length per cell was calculated. The pixels on the display were squares of 

.125 inches. By measuring the length of the pixels on the screen, the number of activated 
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cells were determined. Using the number of cells activated and the length per cell, the 

contact width was calculated. Half of this width is used in the equation above for 

calculating the radial deflection. The half width was determined for each set of rolls. The 

cylinders were loaded incrementally. Each cylinder was pressurized with equal pressure. 

The pressure applied was incremented by 3 psi to a maximum of 30 psi. 

Length 

B A 

RW / 

Width , cw 

_\L 

Figure 4-1: Illustration ofTek-scan sensor 

Dimensions: 

Length: 12.25 in. 
width 13.25 in. 
Row xCol 34 x 44 
Col width 11.75 in. 
Col space 0.275 in . 
Row width 0.825 in. 
Row space 0.025 in. 
A 5 in. 
B 6 in. 
H 1.88 in. 

The values for the contact width were divided in half because of symmetry and 

used in equation (Sa) to get the resulting radial deflection. The radial deflection data was 
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averaged after taking several sets of half contact width readings for each durometer. 

These values were then plotted on a log-log scale against the effective nip load. The 

experimental nip load was detenmned from the pressure applied by each cylinder and 

multiplied by the area of the cylinder. The force displaced by the cylinder was confirmed 

by placing a scale under each cylinder during loading. The effective nip load is then 

determined by adding the forces and dividing by the length of the nip . The theoretical 

effective nip load, equation (7) is then detennined by using the radial deflection. These 

plots are given in figure 4-2 
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Figure 4-2: Variation of Calculated and Measured Effective Nip Load, Radial Deformation Calculated 

The experimental values did not show distinct correlations, especially at the 78 durometer 

In order to determine the source of error, equation (Sa) was investigated. A non-

contact displacement measurement system was used. The system utilizes an inductive 

technique to monitor the position of a target in relation to the sensor. An electromagnetic 
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field radiates out from the sensor. When a conductive target enters this field., a current 

flow is induced and produces a secondary opposing field. This opposing field reduces the 

intensity of the original field. An impedance variation in the sensor results. As the target 

moves the impedance changes. The impedance changes are converted to analog voltage. 

This voltage is directly proportional to the displacement of the target. Thus the output of 

the system is the displacement of the target. 
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Figure 4-3: Illustration of location of displacement sensor 

The specific instrument used was the Kaman KD M -7200, model 1 U 1. The 

measuring range was .040 inches. The minimum offset was .006 inches. This was the 

initial distance between the sensor and the target. The sensor required that the target 

material be nonmagnetic for great stability and linearity than magnetic material for 

readings. Aluminum in particular is a good material to use for the target. The resolution 

of the sensor is .000004 in. 

The sensor needed to be used to detect the radial deflection of the rubber rolls in 

contact. The sensor was placed between the rolls underneath the outer flange of the rolls 
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as shown in figure 4-3. The sensor mounts to a lateral precision adjustable table . This 

table moves lateraUy by turning the adjustment knob. Each rotation of the knob moves the 

table by 1 mil (001 "). The location with respect to the test bed is shown in figure 4-4. 

Fife Guide 

D Motorand 
Fife Guide Controls 

Nip 
Setup Placement of 

Displacement 
Sensor \ 

o Horizontal Table 
Adjustment 

Tension Adjustment Driven Roll 

o 
'Tension Adjustment Roll 

Figure 4-4: Location of displacement sensor overall view 

After installing the sensor in the desired location., the sensor is offset and 

calibrated. The sensor is retracted by 40 mils (.04 in.) using the turning knob. The 

deflection of the 78 durometer rolls was less than 40 mils . For the other two sets of roIls, 

the sensor needs to be retracted during loading because the deflection of the rubber is 

greater than 40 mils. Therefore, when the nip was loaded the sensor would be offset when 

the displacement neared 40 mils before the experiment was complete. In these cases the 

final displacement is a summation of each retraction made till the rolls reached the 

maximum deflection at the highest loading. The readings were taken by incrementally 

loading the nip by 3 psi to a maximum of 30 psi. The sensor was also used to detect the 

deflection of the bottom roll due to loading where indicated. The deflection of the bottom 

roll was small compared to the sensor's full-scale reading. Therefore, no retractions of the 

sensor was needed. Having only one sensor, readings were taken on the left side of the 
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nip and the right side. The deflection of the bottom roll was subtracted from the 

deflection of the top rolls. The values from the left and right side were averaged .. 
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Figure 4-5: Comparison of measured and calculated radial deflections 
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Figure 4-6: Variation of calcu1ated and measured effective nip load, radial defonnation is measured 

The average values obtained were compared to the radial deflection calculated 

from the equation (Sa) that is related by the half width. The values are comparable as 

shown in figure 4-5 . The error bars indicate the distance between the force sensitive 

resistors along the width of contact Error bars would exist for in the vertical direction in 
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figure 4-5 for the resolution of the displacement sensor, however, the values would be 

very small, .000004 in. The values obtained were used in the equation (7) and the results 

are shown in figure 4-6. The measured values give a better correlation between the 

experimental data with the theoretical. The lack of correlation for the 78 durometer stiH 

remained. 

The poor correlation of the rolls of 78 durometer hardness was investigated in 

detail The first focal point of this investigation was the equation developed by Shelton 

which relates Young's modulus to the durometer and shape factor of the rubber. 

(4) 

The shape factor is a ratio ofloaded area per force free area [3]. Modulus tests were done 

on the pieces of rubber of the same material and durometer that were made at the same 

time the rolls were covered. The pieces of rubber were machined down to the same size. 

The pieces were constrained on four sides and a load was applied by an indentor as 

shown. Multiple indentors of various sizes were used to give different shape factors. 

EJ Load o Aluminwn 
Indentor of Sizes 
.2 x .2 
.25 x.25 
.3x.3 
.375 x .375 
.4 x.4 
45 x .45 

Figure 4-7: IllustJation of rubber pieces confined for modulus testing 

A plot of the modulus versus the shape factor was made. This plot was compared to the 

equation (4) developed by Shelton. In truth none of the 3 materials tested correlated very 

26 



well with equation (4). These are difficult tests to set up, however, and a great deal of 
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Figure 4-8: Modulus comparison at different shape factors 

experimental error may be present. The trends are correct in that the modulus increases 

with respect to durometer and shape factor as seen in figure 4-8 . 

Discrepancy remained for the 78 durometer. The modulus is approximately half of 

theoretical. 

Table 4-1: Compression modulus and k values for several duro meter 

213 0.85 1 
45 256 0.8 
50 310 0.73 1 
55 460 .64 1 -

60 630 
65 830 
70 1040 1 

1 1 

27 

.... 
... 
'3 
,; I 

~ 
~ 

~ 
"1 
) 

~ 
1 
1 

• I 
~ 

. ~ 

..t . 



Lindley [8] had developed equation (1) that calculated the effective nip load. In 

this equation, k had to be determined empirica1lyfrom many samples by using equation 

(2). Using values from table 4-1 [I], the k factor was determined for the three rollers used 

in this investigation. Equations (22) and (23) are curve fits for the modulus of elasticity 

,E, and k in table 4-1. Equation (1) was then used with the radial deflection data collected 

from the non-contact displacement sensor. 

E = 26.54geoO~24 A (22) 

.. 
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Figure 4-9: Variation of calculated and measured effective nip load using equation (1) 

This plot was similar to the plot developed by equation (7). Therefore, equation (7) 

developed by Shelton could be used for calculating the effective nip load for rubber 

covered rolls of known initial radius, rubber thickness, and radial deformation. The 

discrepancy for the 78 durometer roll still remained. 
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Good and Markum [5] did a separate investigation in the modulus of the 78 

durometer. They took the rubber covered rolls and placed them in diametral compression 

in a materials testing system. The values obtained were compared to the deflection data 

produced by the inductance probe. The results yielded are given in figure 4-10. The data 

points yielded by the probe were comparable to the data Good and Markum obtained. 
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Figure 4-10: Variation of calculated and measured effective nip load. 
Good and Markum results included 

The theoretical curves also plotted were comparable for the 52 and 60 durometer rolls as 

with other rolls, but the 78 durometer roll's theoretical curve was approximately twice as 

much as that obtained from testing. The same procedure was done for other rolls around 

the WHRC. The test procedure worked well for all the rolls except for the 78 durometer 

roll. Note that a roller with a 76 durometer compared quite well to theory as well as a 

roller with a 72 and 79 durometer cover. Thus there is no indication that the theories 
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purported by Lindley and Shelton are in error for rollers with hard covers. Of all the 

rollers tested, only the 78 durometer rollers correlated poorly to theory. The design data 

for all of these rollers are contained in Appendix A. Although the theories seem 

reasonably robust there is evidence from the 78 durometer roller that Young's modulus 

may be a function of more variables than durometer and shape factor. If the 

manufacturers of these rolls would specify Young's modulus rather than duro meter, which 

is the standard, the mechanical properties would be known without the need to divulge 

proprietary chemical properties. The manufacturer has explained there were no 

manufacturing differences in the roll except for the coloring. Fibers or other fillers were 

not present in the material that would increase the modulus of the material. 
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Equation (7) developed by Shelton to calculate the effective nip load at 

corresponding radial deflections of rubber covered rolls was verified for the 52 and 60 

durometer rolls. The radial deformations of the rubber covered rolls were experimentally 

determined from a non-contact displacement sensor. A comparison between the 

calculated nip load and the experimental nip load is shown in figure 4-6. There was a lack 

of correlation for the rolls with the 78 durometer covering. An investigation of equation 

( 4) was done to determine the poor correlation. This investigation only proved the trend 

of equation (4) to be true. Lindley's equation for effective nip load was used. Equation 

(1) was developed independently. Applying the radial deflections to this equation resulted 

in similar results as equation (7) shown in figure 4-9. Good and Markum also did an 

investigation to verify the theoretical equations. They used several rubber covered rolls at 

the WHRC. Their investigation data correlated well with the theories developed by 

Lindley and Shelton shown in figure 4-11. Their investigation showed the theories 

worked well with hard covers 0[72, 76, and 79 durometer. Young' s modulus for the 78 

duro meter rubber may be a function of more variables than hardness and shape factor. 

The theoretical equations worked weB and could be used for further investigations. 
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Chapter V 

Experiment L1. V Nand Y 

After verifying the effective nip load equation, the strain at the edges of the web 

needed to be determined, Using equation (20) for difference in velocity per unit velocity 

was used, Verifying this equation gives an effective solution to determine the strain at the 

edges of the web, 

Foreman [11] determined that more web had passed through the nip after one 

revolution of the nip than would be associated with the circumference ofthe nip rolls. He 

thereby deduced that the roller coverings were moving faster when passing through the 

nip contact zone than they were when not in contact. It is assumed that the web achieves 

the velocity of the rubber covering in the contact zone such that an accurate measurement 

of web velocity is also a measure of the velocity of the constricted rubber covering, This 

velocity should be greater than the velocity of the rubber covering away from the contact 

zone, In order to determine each of these velocities, encoders were used. These were 

Gurley Teledyne encoders that emit 10,000 pulses per revolution. Their output can be 

monitored with an HP Frequency/Counter such as Model 5314A. Placing a disc of known 

diameter on the shaft allowed for placement tangential to the rotating surface. One 

encoder was placed to record the velocity of the rubber covered roll as shown in figure 5-

1, The other was placed on the driving roll to register the velocity ofthe web. The 
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Figure 5-1: Placement of encoder to find the velocity of rubber covered rolIs 

placement with respect to the test bed is shown in figure 5-2 . The controller for the DC 

motor turning the driving roll was set for constant voltage, therefore constant velocity. 

The nip was loaded incrementally by 3 psi from 3 to 30 psi equally on both sides. The 

counter read the frequency output from the encoders and averaged 100 readings. These 

readings were taken for each set of nip rolls. 
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Figure 5-2: Location of encoders on test bed 
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The data was compared to the plot generated by equation (20) in figure 5-3 . 
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Figure 5-3: II VN at corresponding radial deflection 

The experimental data follows the theoretical plot quite well for the 52 and 60 durorneter 

rolls. The 78 duro meter roll, however, does not. This would confinn that the behavior of 

this roll is not as predicted as stated earlier. If the roll had behaved as predicted then the 

strain plot would look similar to the that given in figure 5-4. 
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By obtaining the theoretical values for radial deflection, 0, from equation (1) or (7) and 

using the experimental values of strain, the corresponding plot of strain versus radial 

deflection would be similar to that of equation (20) . Thus if a roller cannot be modeled by 

either equation (1) or (6), equation (20) would not model the it strain versus radial 

deflection behavior well . 

Strain at the edges of the web determines the lateral deflection of the web. In 

order to quantifY the deflection of the web, a 3M edge sensor was used. This sensor uses 

a laser to detect the edge of the web. By using a counter board in a computer, a LabView 

program tracks the edge of the web from the signal output by the sensors. Any small 

displacement in the web registers on the screen, to a resolution . 001 in. The sensitivity of 

the laser can be adjusted by calibrating the sensors over a specific range. The program 

also allows the user to adjust the average of the readings by adjusting the time period and 

the number of samplings taken. 
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Figure 5-5: Location of 3M edge sensor in location 

The laser was pLaced a few inches downstream from the nip as illustrated in figure 

5-5. Since the maximum lateral deflection occurs at the nip, the web would remain in its 
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maximum deflected state till it returns to the Fife guide, The laser was placed so that the 

web in its undeflected state would cover about half the length of the laser. Calibrating the 

sensor here allows the laser to be sensitive over a half inch. The adjustment for the 

averages taken by the program were made so that they would cover one completre cycle of 

the web, 

Three sets of data were taken for each set of rolls, The web was centered in the 

rnp. Again the web width and thickness were 6 and ,002 in., respectively. The web 

'. tension was 5,4 lb. The tension was verified by placing known weight on one end of the 

web and checking the displacement of the spring. The loads applied started at 24,9, 

49,86, and 74,79 lb. The nip was first evenly loaded and then incrementally increased by 

,83 lb. on one side. Data was collected at each increment. 

0.25 .Y Exp, F=24.91b .. 52 Durometer 

.Y Exp, F=49.86lb .. 52 Duromeler • • .. Y Exp, F=74,79 lb., 52 Ourometer • • []Y Exp, F=24.9Ib" 60 Duromeler • • 0.2 OY E)(Jl, F=49 ,86 lb. , 60 Durometer A 0 
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Figure 5-6: Lateral deflection at corresponding differential nip load 
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Data was taken till either separation between the rolls were visible on the lower loaded 

side or slackness was visible. The procedure was done for both sides of the nip. The data 

was then averaged. The data produced is given in figure 5-6 

The upper limit of the data is the critical point where slackness occurs. Using 

Good's equation (21) to detenrune this point is helpful. As stated earlier the center of the 

entering span into the nip behaves similar to the rotating roll. By entering the properties 

of the web into equation (21) and using only half of the entering length, the critical angle 

for the Polyester web is .004 radians. By modeling the web as a beam with two rigid 

supports and a half-length equal to the length of the entering span, the maximum 

deflection can be found in terms of rotation angle. 

1 PL2 192YEI 
8m"" = ---and P = 3 

64 El L 

Y = BcrL 
cr 3 

After making the substitutions, the critical deflection was .211 in. For this type of web at 

the length used this is the maximum deflection of use by the lateral deflection equation. 

In order to verify the lateral deflection equation, a spreadsheet was incorporated to 

find the theoretical deflection. The spreadsheet was setup to input the forces applied on 

either side of the nip, the durometer of the rolls, and the initial thickness and radius. By 

modeling the nip as a beam, the reaction forces were found at the edges of the web and 

therefore the effective nip load. This is given in Appendix B. Once the effective nip loads 

were detennined at the edges of the web in the undeflected state, the effective nip load 

equation was driven to equal the detennined effective nip load by using the solver 

function. Solver changed the radial defonnation till the two set of effective nip loads were 
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equal. Figure 5-7 gives a flow chart that illustrates the spreadsheet analysis. Using the 

radial defonnation 

I • ... Calculate Effective Nip Load at Error 1 FfWLB 

I 
... uft edge of Web by beam Calculate Effective FIWl(I ~-() 

rmdel iNip Load at Left ... edge: equation (1) ..... I£L (20) 
InputS. I: .... 

-.I~termine Ec and k using I ~ Web Tension equations (22) and (23) ... &tL .... ~£R (20) 1 Web Width j .. 
i---

Web th.ickness -~ &tR ... 
Web Modulus ""T""' ~"FIWLB 
Web Span Length ... FIWl(I ~a() ... IYkulate Effective 

" Nip Roll Diam:ter Calculate Effective Nip Load at iNip Load at Right 
d 

. ~ ... 
Nip Roll Width Right edge of Web by beam edge: equation (I) ~f: ..... 
Nip Load Right rmdel 

--
Nip Load Left 
Cover Thickness 
Rubber Durometer 'Y " Distance from load 

Calculate Moment of Calculate Ma.xinun Lateral 
applied to edge of nip ~ Inertia and Stiffitess of ... Deflection Value at Nip Using 

Web: .... 
Equation (17) 

Equations (24) and (24) 

Figure 5-7: Flow chart of spreadsheet operation to calculate maximum lateral deflection 

at the edge of the web, the strain was solved. The difference in strain of the edges was 

used in equation (17). Equations (24) and (25) were used to calculate the inertia and 

stiffuess of the web respectively [7]. 

tW3 

1=-
12 

(24) 

(25) 

The lateral deformation was then solved. Examples of the spreadsheet calculations are 

given in Appendix B. Figure 5-8, 5-9, and 5-10 show the point of the calculations given in 

Appendix B. This was done for each set of data. 

The lateral defonnation data correlated well with the theoretical data except for 

the 78 durometer rolls shown in figures 5-8,5-9,5-10, 5-12, 5-13, and 5-14. Excellent 
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correlation exists for the 24.9 lb. base level load . The maximum difference for the other 

two base level loads are approximately .05 in. for the 49.86 lb. And .08 in. for the 74.79 

lb. This is relatively smalL For the data that corresponds lateral deflection, Y, with the 

change in force, 6F, the trends of the experimental data is opposite that of the theoretical 

data. As the base level loads increase the theoretical lateral deflection decreases while the 

experimental lateral deflection increases. However, the graphs generated that shows the 

lateral deflection at the corresponding radial deflection, 8, the trends are the same. The 

dispersion of the experimental data, however, is greater than that of the theoretical 

prediction for all cases. This indicates the model is less sensitive to load levels compared 

to the experimental data. 
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Figure 5-8: Theoretical and experimental lateral deflection at corresponding differential nip load, 52 
durometer 
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Figure 5-9: Theoretical and experimental lateral deflection at corresponding differential nip load 60 
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Figure 5-10: Theoretical and experimental lateral deflection at corresponding differential nip load, 78 
durometer 
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Figure 5-11: Lateral deflection at corresponding differential radial deflection of rubber covering 
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Figure 5-14: Theoretical and experimental lateral deflection at corresponding 
differential radial deflection.. 78 durometer 

In an attempt to resolve the dispersion difference between the theoretical and 

experimental data, the effective nip loads were found at the corresponding location of the 
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deflected web. When the new lateral deflection was found for the loads at this point, there 

was no change from the previous theoretical deflection. Therefore, the deflection of the 

web does change the effective nip loads at the edges of the web, but the change in stain 

and lateral deflection was not effected. 

In applying the results from this study in design of web Lines, one must consider a 

few points. The selection of duro meter of the rubber is critical. As seen in figure 5-6, 

lateral deflection of the web is larger for the same differential nip load for the lower 

durometer as compared to the higher durometer, discounting the 78 duro meter rolls. The 

lateral deformation remains the same if the differential radial deflection is the same for all 

durometer as shown in figure 5-11. Also for consideration is the application of the rubber. 

For high nip loads, the lower durometer coverings may not be as reliable and prone to 

failure. The lower durometer coverings also have a shorter span of use. Thus higher 

durometer rolls may be required. This would then require a larger differential loading than 

for the lower durometer to achieve the same lateral deflection. 

Equation (17) used to predict the lateral deflection of the web proved to be a 

useful tool to do so. Equation (20) was also verified as shown in figure 5-3 for the 52 and 

60 durometer rolls. If the 78 durometer roll had conformed to either equation (1) or (7), 
-. 

which calculate the effective nip load, equation (20) would have predicted its strain 

behavior as shown in figure 5-4. Once equation (20) was verified the lateral deflection 

was found for each of the rolls for three different base load levels. The data was plotted 

against the incremental change in force in figure 5-6. By applying Good's equation (21) 

the upper useful limit of the data was found. By the use ofa spreadsheet and a solver 

program the lateral deflections were found at the corresponding differential load levels. 
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The experimental data was plotted against the differential radial deflection for the three 

different rolls in figure 5-11. This showed that for the same differential radial defonnation 

the same lateral deflection would occur. The experimental and theoretical data were 

plotted against the differential forces, figures 5-8, 5-9, and 5-10, and the differential radial 

deflections, figures 5-12, 5-13, and 5-14. The trends of the experimental data was 

opposite that of the theoretical for figures 5-8, 5-9, and 5-10. The trends were, however 

the same for the plots against the differential radial deflections. The dispersion was 

greater between the experimental data than that of the model. The experimental data is 

more sensitive to the load levels than the model. However, the correlation was good for 

the 52 and 60 durometer cases. The 78 duro meter was an anomaly. The equation for the 

lateral deflection could be used for design applications. 

44 



-

Chapter VI 

Conclusions 

The objective of this research was to quantifY and experimentally verify the lateral 

deformations of web due to non-uniform nip loading with rubber. Specifically, the 

equations developed by Shelton [11] for effective nip load, (7), and for lateral deflections 

of web, (17), were to be verified. Once verified these equations could be used for an 

innovative guiding mechanism and other web line applications. 

For the verification of equation (7) for the effective nip load, a direct correlation of 

experimental data with equation (7) was shown in figure 4-6 for the 52 and 60 durometer 

and for 72 and 76 duro meter shown in figure 4-11 The 78 durorneter roll, however, did 

not correlate well. In pursuit of detennining the difference, an investigation of equation 

(4) was attempted. Equation (4) was a curve fit of data that determines compressive 

modulus from shape factor and durometer. This investigation proved inconclusive only 

the trend of modulus to shape factor was verified Using equation (I) developed 

separately by Lindley [1] also showed the same correlation of experimental data with 

theory shown in figure 4-9. The 78 durometer roll remained an anomaly as shown in 

figure 4-9. Good and Markum's [5] diametral tests showed other rolls of different 

durometer resulted in data that verified the theoretical equations shown in figure 4-11. In 

equation (1), the factor "k" must be determined empirically from equation (2) which 
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calculates the compression modulus from Young' s modulus, shape factor, and the factor 

"k". The shape factor is detennined from the original undeflected roll diameter, the 

thickness of the rubber covering and the radial penetration of the roll. However, equation 

(7) only requires the undeflected radius of the roll, the covering thickness, duro meter, and 

radial deflection of the roll. The compressive modulus and shape factor have already been 

incorporated into equation (7) . Equation (7) provides an effective solution to detennine 

the effective nip load for a given thickness, durometer, and radial penetration. 

Once equation (7) was verified, it could be used to help determine the lateral 

deflection of the web due to uneven loading. In order to verify equation (17), the strain at 

the edges of the web needed to be detennined. Thus, the verification of equation (20) was 

required. Figure 5-3 showed good correlation between experimentally detennined AVN 

at corresponding radial penetration to a plot of equation (20) for the 52 and 60 durometer 

rolls . If the 78 durometer roll had confonned to equations (1) or (7), it would have 

confonned to equation (20) as shown in figure 5-4. Thus, equation (20) was used to 

detennine the strain at the edges of the web. Using this equation to find the change in 

strain from one edge of the web to the other, the lateral deformations were then found. 

Figures 5-8 and 5-9 showed reasonably good correlation between the experimentally 

determined lateral deflection and the plots generated from equation (I 7) for the 52 and 60 

durometer rolls against differential loads. Figures 5-12 and 5-13 showed good correlation 

when the experimental and theoretical data was plotted against the differential radial 

penetration. The difference between actual and theoretical was relatively small. The 

equation for lateral deflection can be used for prediction, reasonably well, of displacement 
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of the web with known stiffness, entry length, and the difference in strain .from one edge to 

the other of the web. 

The experimental data obtained for lateral deflection corresponded well with the 

theoretical model formulated by equation (1 7) except for the 78 duro meter roll as shown 

in figures 5-8,5-9,5-10,5-12,5-13, and 5-14. The data however did not fall directly 

upon the model. Only for the low base level loading did the data fall directly on the plot 

generated by equation (17). The lateral deflection increased with the higher base level 

loading. The model, however, predicted that the lateral deflection would decrease with 

the increased base level loading shown in figures 5-8 through 5-10 when plotted against 

AF. Similar trends would exist when the lateral deformations were plotted against AB. 

The experimental data showed great dispersion between each base level loading for all the 

figures. The dispersion between each base level of the model was not as great. This 

indicates that the theory is less sensitive to the load levels as compared to the experimental 

data. For the same AF greater lateral deflections exist for lower durometer covering. For 

the same A8, however, lateral deflections are equal for any durometer covering. The 

correlation between the experimental data and the theoretical model is good and useful for 

design. 

Future Work 

Further investigation of the strain equation, (20), would be beneficial. This 

equation was curve fit by Shelton from the data provided by Foreman. Foreman assumed 

that the web achieves the velocity of the rubber rolls in the contact region. The velocity in 

this region should be greater than the velocity of the covering away from the contact zone. 
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An accurate model and basis for this greater velocity could provide a more accurate 

equation for strain. 

An investigation of modulus could also be useful. After investigating the 78 

duro meter roll, Young's modulus may be a function of more variables than durometer and 

shape factor. Young's modulus may also be a function of the composition of the rubber. 

A better understanding of the relationships effecting Young' s modulus could yield a more 

accurate algorithm and may explain why experimental data and theoretical models yield 

different trends as shown in figures 5-8 and 5-9. 

Research could also be perfonned on the small deflection assumption of the rubber 

covered roll. Being able to determine the point where this assumption does not apply 

could be useful in predicting the lateral deflection of the web. This could give a more 

accurate description oflateral web movement 

The effect of friction between the rollers and the web would also be interesting, 

Early works on the first experimental setup showed that a metal roll in contact with a 

rubber covered roll may yield no lateral movement. Thus the coefficient offrietion 

between aluminum and pet must have been larger than that between pet and nitrile rubber. 

Even when the rollers are similar but with low coefficient of friction one must wonder if 

the web achieves the maximum velocity of the rubber in the contact zone. This 

investigation could show a relationship between friction and lateral web movement. 

Once the equations for lateral deflection and effective nip load have been refined, 

they could then be used for web guiding, By using an edge sensor and feedback 

controller, the nip setup could be used as a web guidance system. 
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Also with a verified equation for lateral deflection a third derivative with respect to 

x would yield shear which has been shown to be a primary variable in predicting web 

wrinkling. Thus, equations such as equation (20) could be used with the understood 

restrictions of a slack edge [6] or that wrinkling may occur at some critical value of lateral 

deflection. 

Recovery effects of the rubber covering may also have an impact on lateral 

deflections ofthe web. Some rubber covering materials may not recover from radial 

defonnations as quickly as others. The effect of this may be adverse for this study. Recall 

expression (20), if 8 does not recover to zero in the time required for the rubber covering 

to reenter the contact zone then less strain within the web material can be expected. The 

nitrile material used in this investigation was relatively quick to recover from deformations 

which was proven during upload and download testing when verifying the load, F, versus 

deformations, 8, expressions (I) and (17). This effe·ct can occur in other elastomers. An 

in-depth study can be made in this area to study the effects of different covering material. 
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Table A-I: Design data for diametral compression for tests of Good and Markum 

The rolls designed specifically for this investigation are shaded in table A-I. 

F,b 

t 

Figure A-I Ulustration of diametral compression of tests conducted by Good and Markum 
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Table A-2: Data collected from diametraJ compression, Good and Markum 
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Figure B-1: Illustration of beam model developed to detennine effective forces at edges of the nip 

The equations developed for the reaction forces is used in the spreadsheet are given as 

equations (26) and (27). Since the load applied is uneven, the load is distributed across 

the width of the web. The effective forces can then be found at the edges ofthe web 

knowing the force is linearly distributed . The equations to determine the effective force at 

the edges of the web are given as equations (28) and (29). 

ML (MR-ML)*(WW) 
C!-eft = NRW M?W- (26) 

IlJ)ffn= (MR-ML)*(JJW) + MR 
~V"' NRW- NRW (27) 

QL W = QRite - QLeft * 1 + OLe ff (28) 
NRW - .p 

QRW = QRite - QLeft * 7 + QLeft (29) 
NRW 
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Figure B-2: Sample calculation ofIateral deflection for 52 durometer roll 
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Figure B-3: Sample calculation of lateral deflection for 60 durometer rolJ 
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Figure B-4: Sample calculation of lateral deflection for 78 durometer roll 
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