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CHAPTER I

llNTRODUCTION

1.1 Goals and Objectives

Loblolly pine (Pinus taeda 1.) ranks high among the natural resources of the

South. Traditionally, forest tree breeders used methods for crossbreeding or selection

breeding to develop new and improved forest stocks. However, those methods are

tedious, costly, and of limited success because of the long generation time and large size

of forest trees (Karnosky 1981, Ledig et al. 1985).

Over the last several decades, vegetative propagation has become an important

regeneration method for trees, as both a research tool and an operational management

practice (Talbert et al. 1993, Huang, et al. 1993). Haissing (1989) found loblolly pine

could be produced by tissue culture through one of the two different developmental

pathways: organogenesis or somatic embryogenesis. Although somatic embryogenesis,

especially for loblolly pine, still remains a major challenge, organogenesis has become a

reliable technique for in vitro regeneration in many forest species (Haissig 1989). Most

of the research on organogenesis has focused on manipulation, including the selection of

medium and explant source and control of the culture environment. Few studies have



reported on the basic aspects of de novo organogenesis and regulation at the molecular

level.

The overall goals of this research are to clarify the genetic and molecular

mechanisms of the developmental process. of shoot organogenesis and the regulation of

the development pathway. The purpose of this study is to understand the genetic control

of the developmental process of de novo organogenesis and provide infonnation and tools

for manipulation of shoot regeneration in loblolly pine. Key genes specifying

organogenic transition will be identified and cloned, and the functions of the cloned genes

will be determined. To accomplish the objectives of this project, the following research

activities were planned:

1. Establish explants that do or do not consistently initiate shoot primordia in vitro.

2. Prepare poly (A+) mRNA to clone genes differentially expressed at the shoot

forming stage..

3. Amplify major genes that are directly involved in shoot differentiation from

different tissue sources using the PeR-based differential display technique.

4. Confirm expression ofgenes using Reverse Northern analysis.

5. Obtain full-length genes by screening a loblolly pine cDNA library constructed

from shoot-fanning tissue. Isolate and characterize the structures of those

identified genes.
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1.2 Significance

Loblolly pine ranks high among the natural resources of the South. Southern

yellow pine has provided an average harvest of some 10 billion board feet a year and at

least halfof this has been loblolly pine (Zobel 1992). Today, the growing stock volume

ofthis species stands at 90 billion board feet. Foresters, land managers, landowners,

industrialists, and many others have seen the benefits that loblolly pine has already

provided and they are becoming increasingly aware of the innumerable possibilities the

future holds. This potential requires developing both strategies and technologies for

increasing forest productivity and biomass production.

This research concentrates on molecular studies of the transition of cells from the

quiescent state to organ differentiation, which leads to shoot formation and plant

regeneration. Information obtained from this research will extend our knowledge of

morphogenetic control and differentiation and explore molecular mechanisms for de novo

organogenesis, which will provide a base for expansion of the appHcation of

biotechnology to woody plants for enhanced production of renewable resources. The

practical significance of the research is to allow or accelerate the mass production of

superior clones and selected genotypes of loblolly pine and to increase production of

biomass for commercial forestry and fueL

Organogenesis in plants is a complicated developmental process. There is at

present not much information about it. However, recent studies of the molecular genetics

of flowering have yielded knowledge about molecular mechanisms of flower

development (Markley et al. 1993). This breakthrough suggests success in studies of

plant organogenesis. Recently, in a related study with rice, a cDNA clone specific to

3



plant regeneration was isolated from embryogenic cultures through differential screening

of an embryogenic eDNA library (Mizobuchifukuoka et al. 1996). Organogenesis, the

other aspect of organized development, also forms a unipolar structure~ thus both

developmental pathways should at least share some common characteristics. All the

research mentioned above provides fundamental support and suggests a high probability

of success for tbis research.

Shoot apical meristem is believed to be generative tissue and the continual

activity of the apical meristem results in shoot development (Aitken-Christie et at. 1988).

Shoot apical meristem plays an important role in de novo organogenesis and other

developmental processes. In loblolly pine, apical meristematic tissue of young seedlings

has great potential to develop de novo shoots (Huang et at. 1995). Using apical

meristems of loblolly pine, this work will focus on elucidating molecular mechanisms

controlling de novo organogenesis. Loblolly pine has received a lot of research attention

because of its value. AU this work makes it the logical choice among conifer species as a

model system for studies of plant development and regeneration. The information from

this research should ultimately make significant contributions to both fundamental

understanding and practical applications.
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1.3 Literature Review

1.3.1 RegeneratioD of Trees by Vegetative Propagation

The world. demand for wood products is expected to rise sharply over the next few

decades.. To meet this growing demand there will be an increasing need for large

numbers of trees of improved quality and shortened rotation. Forest trees can be

regenerated by either sexual or asexual propagation. Traditionally sexual reproduction of

seedlings for reforestation has been the most important means of propagation in pine.

Since the report of plantlet regeneration in Pinus paiustris Mill via organogenesis from

mature zygotic embryos (Sommer et ai. 1975) was published, significant progress has

been made in the vegetative propagation of conifers. Now vegetative propagation in vitro

has become an important tool for regeneration of forests (Haissig 1989, Patel and Thorpe

1986).

In vitro propagation not only allows plant multiplication at a rapid rate but also

production of desirable genotypes in large quantities for commercial markets. Such

propagation has special value because it allows regeneration of large numbers of plants

with genetic homogeneity. Also vegetative propagation is a critical component of many

genetic improvement programs for higher plants, including traditional breeding and

genetic engineering. Zobel (1992) concluded that the most promising use of tissue

culture and biotechnology was to supply desired genotypes with large numbers developed

by the tree breeder.

Von Arnold (1991) concluded that there were three different regenerative

pathways used for the in vitro propagation of conifers. These are; (1) regeneration
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through somatic embryogenesis, (2) regeneration from adventitious meristems

(organogenesis); and (3) regeneration via the proliferation or enhancement of axillary bud

development of existing meristems.

Somatic embryogenesis is the de novo production of structures resembling zygotic

embryos, derived either from organized tissues or from callus. Somatic embryos must be

bipolar and have no vascular connection to the source tissue. Somatic embryos may be

derived either through direct or indirect embryogenesis. In direct embryogenesis,

embryos are formed essentially by multiplication of a zygotic embryo explant. Indirect

embryogenic systems involve dedifferentiation of nonembryonic tissue to form a callus

from which somatic embryos arise (Sharp et al. 1980).

Organogenesis is the de novo production of plant organs from tissues or calli. In

many cases, initial explants are induced to form callus and subsequently shoots. The

shoots are then elongated, and rooted (Gladfelter and Phillips 1987). Production of

plantlets from axiallary shoots is a method to excise shoots from source tissue and root

them individually to multiply the original genotype.

Vegetative propagation through all three routes of regeneration has been widely

reported for hardwood forest trees. During the last decade, more research priority was

placed on commercially important coniferous species. Loblolly pine (Pinus taeda L.) is

one of those species which has been studied world wide (Baker and Langdon 1990,

Frampton 1992, Gupta and Durzan 1991, Huang and Tauer 1996). Producing over half of

the total pine volume harvested in the Southern US, loblolly pine is the most important

softwood species in the southern pine region. It occurs almost throughout the entire

South and Southeast (Ellis et at. 1992). The tree makes rapid growth on a variety of
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soils, and the wood is valued for pulp and structural materials. Therefore, many forest

products companies are interested in developing commercial vegetative propagation

systems for loblolly pine. Manipulation for in vitro regeneration ofIobloUy pine has been

studied in many laboratories. Major activities involve searching for regenerable materials

and developing regeneration methods. Various tissue culture procedures have been

applied to regenerate loblolly pine. These include induction of adventitious shoots from

cotyledons (Mehra-Pafta et al. 1978), somatic embryogenesis via immature zygotic

embryos (Becwar et al. 1990, Gupta and Durzan 1987), and organogenesis from shoot

apical meristems (Bergmenn and Stomp 1992). Although some successes have been seen

in these areas of tissue culture research, there are obvious limitations associated with each

system because they aU use seeds or seed-derived materials. Shoot primordium can only

initiate from limited cells on cotyledons, and shoot multiplication frequency is low.

Somatic embryogenesis is still in the research phase and is far from operational.

Furthermore, success of these systems depends on the initial explant type. Some types of

explants respond well to shoot induction, whereas others do not, indicating that these

cultured materials must acquire competence to respond to organized development.

Although there are several known technical difficulties, resistance from forest

nursery operations, and a lack of experience in the production of rooted cuttings (Boulay,

1987), the future of vegetative propagation technology appears to be bright because of its

utility as an important tool in tree improvement.

7



1.3.2 Organogenesis of Woody Plants

Plant organogenesis refers to a developmental process where organ primordia,

such as buds, are initiated on an explant in response to triggering by exogenously applied

plant growth regulators (Thorpe 1990). The primary advantage of organogenic

regeneration methods is that some of these methods may have the potential for a high

frequency ofplantlet production in a short period of time. Callus can be grown in large

quantities with little demand for inputs of labor and space, and adventitious shoot

production can be used to achieve high multiplication rates. The phenomenon of de novo

organogenesis has been observed in a variety of tissue culture systems. Many plants can

now be propagated by in vitro organogenesis (Ahuja 1993, Wagley et a1. 1987).

The process of organogenesis can follow two major developmental sequences in

conifers: direct or indirect organogenesis (Hicks 1980). Indirect organogenesis would be

used when there is an initial production of callus tissue from the primary explant,

followed by the appearance of meristemoids (Torrey 1966). It is believed that the fate of

these meristemoids is not determined and they can produce either shoot or root primordia.

This method is presently of limited use for plantlet regeneration in conifers because of

low regeneration rate (Ahuja 1993). However, a low frequency of plantlet regeneration

has been achieved in Larix x eurolepis hybrids (Laliberte and Lalonde 1988).

The process of direct organogenesis is defined as organ fonnation directly from a

primary explant in the absence of an intervening callus stage (Hicks 1980). The

predominant morphogenic route reported for adventitious shoot formation in conifers has

been through direct organogenesis (Thorpe and Biondi 1984). The procedure typically

followed to accomplish plantlet regeneration by direct organogenesis can be divided into

8



four steps: (l) initiation of shoot meristems, (2) development and elongation of shoot

buds, (3) root meristem initiation and development, and (4) plantlet acclimation to the

ambient environment (Thorpe and Biondi 1984).

Shoot apices, needles, hypocotyls, epicotyls, cotyledons, zygotic embryos,

dormant buds, needle fascicles, and latera~ buds have been used as explants for the

induction of adventitious bud meristems (John 1983, Thorpe and Biondi 1984).

Generally, shoot organogenesis is not as easy as root organogenesis. There are several

limitations of vegetative regeneration via shoot organogenesis for many pine species.

The inability to induce shoot differentiation from meristematic cells and adventitious

shoot formation from other exp~ants is often the limiting factor for regeneration of plants

from tissue culture (Huang et at. 1991). For woody species, tissue maturation is often

accompanied by a reduced capacity for regeneration. Thus it is difficult or even

impossible to vegetatively propagate many woody plants by the time they are old enough

to evaluate them for superior traits. Present regeneration success with conifers depends

on the age ofexplant, tissue source, genotype and species chosen. Totipotency often

appears to be limited in callus culture to a few cells identified as meristemoids.

Research interest and needs in clonal propagation have extended studies into the

molecular level to correlate organogenesis with changes in biochemical metabolism and

genetic events within the target tissue (Bertrand-Garcia et al. 1992, Mandaci et al. 1994,

Stabel et al. 1990). Huang and Tauer (1996) showed correlation between histone

variation and organogenesis. Changes in gene expression during shoot organogenesis in

loblolly pine have been demonstrated (Huang et al. 1995).
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Much physiological, biochemical and tissue culture research has been focused on

understanding control of shoot organogenesis, which plays an important role in plant

regeneration. Environmental influences on shoot organogenesis can be dramatic and are

thought to be relatively well understood, at least in terms ofmanipulating culture

conditions for shoot induction (Hicks 1994,. Thorpe 1990). However, the fundamental

developmental biology of the shoot organogenesis process is not well understood. Major

work has been done with non-woody species, and it is believed the organogenesis process

shares some common features between woody and non-woody species as well as with

gymnosperms (Thorpe 1990). In addition, woody and non-woody species respond to

similar culture conditions for induction of shoot organogenesis in culture. This suggests

that the mechanisms controlling the developmental process of organogenesis is higWy

conserved among plants, raising questions about how this process is regulated and how

the genes involved interact.

1.3.3 Genetic Studies on Loblolly Pine

Recently, tree improvement has extended studies to the molecular level to

characterize the genetic basis of gene expression patterns. Sewell and Neale (1995)

constructed a consensus map for loblolly pine using restriction fragment length

polymorphisms (RFLPs) as genetic markers. This consensus map contains many known

and characterized genes within the 12 chromosomes of loblolly pine, and could serve as

the foundation for present and future genetic studies (Sewell et al. 1995). Also genomic

and cDNA clones of two genes encoding arabinogalactan-proteins (AGPs) were isolated

and characterized. AGPs are higWy glycosylated proteins thought to play important roles

to



in plant development, and were fOood to be abundant in differentiating xylem of loblolly

pine (Loopstra et al.1995). A water deficit stress inducible gene (1p5) of ioblolly pine

has been cloned (Dilip et al. 1995). The predicted translation product of the 1p5 gene is

rich in glycine (40%) and serine (20%), and appears to be a cell wall targeted protein with

a possible function in oeH wall reinforcement (Dilip et al. 1995). To increase the rooting

ability of in vitro propagation, molecular and cellular events during adventitious root

initiation in loblolly pine cuttings has been studied by Goldfarb and his colleague

(Goldfarb el al. 1995). They found the ability of a cutting to respond by forming roots is

not just dependent on the availability of auxin, but by some other determinant ofcellular

competence. They cloned genes from loblolly pine with sequence similarities to the

auxin-induced genes from pea, soybean, and arabidopsis. Their research indicates that at

least one ofthe genes is induced by auxin in hypocotyl cuttings. In addition, a cDNA

library with the mRNA differentially transcribed in the bud-forming apical meristems of

loblolly pine has been constructed (Huang and Tauer 1996). A number of cDNA clones

were identified when the shoot-forming cDNA library was screened with probes made

from several known genes which are involved in cell division and proliferation, as well as

in cellular metabolic events (Huang and Tauer 1996). DNA sequence analysis and

predicated amino acid sequences revealed cDNA clones with homology to several genes

of interest. One cDNA clone encoding a histone (H4) gene shows a relatively high

homology with that of tomato, having 73.1% identity at the DNA level and 99% identity

at the amino acid sequence level respectively. Increased abundance of the H4 transcripts

in the proliferating meristems suggests that it plays an important role in the shoot

initiation processes that preceeds rapid cell division. Other recognized eDNA clones
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include several plant genes, such as genes coding for a chromosomal replication initiator

protein and a cysteine protease involved in cellular metabolism (Huang and Tauer 1996).

Like most other conifers, loblolly p,ine is very difficult to regenerate in vitro,

particularly for long-term cultured cells or suspension cultures. Compared with

nontreated controls, biotechnological manipulations, which precede regeneration,

decrease regeneration ability (Huang and Tauer 1996). In searching for regenerative

tissues, much research effort has been directed toward apical meristems of plants.

The apical meristem is a specialized tissue composed of morphologically

undifferentiated ceUs that serve as progenitors for all shoot -associated structures (Kelly

and Meeks-wagner 1995). This type of tissue is competent for shoot induction. Shoot

apical meristem is believed to be generative tissue and the continual activity of the apical

meristem results in shoot development (Aitken-Christie et al. 1988). Meristemic tissue

may play an important role in de novo organogenesis and other developmental processes.

Shoot apical meristem also possesses the unique property of continuous development,

and should therefore be expressing unique genetic functions (Fleming et al. 1993,

Medford 1992). Some molecular genetics research has focused on characterization of the

genetic basis and gene expression patterns in apical meristems, but most studies on the

apical meristems relate to floral transition from vegetative meristems. Many genes

associat,ed with flower development have been cloned from apical meristems where they

are preferentially expressed (Markley et al. 1993, Peng and Iwahori 1994). However,

few studies on apical meristems have focused on shoot regeneration (Huang et al. 1995).

In loblolly pine, apical meristematic tissue of young seedlings has great potential to

develop de novo shoots (Huang et al. 1995). It is assumed that the apical meristern is not



only the source of signals modulating developmental processes but also the site of

perception of signals for determining the developmental pathway of the apical meristem

itself. Although the fate of cells produced within the apical meristem is relatively clear,

much is unknown about both the genetic events that occur and the regulatory factors that

are involved in cell differentiation.

Organogenesis in plants is a complicated developmental process and there is little

information on the basic aspects of organ differentiation. However, this molecular study

was designed to help us understand the series of cellular, biochemical, and genetic events

involved in organ development. Study of the molecular genetics of flowering (Markley et

al. 1993) has evolved at a rapid rate, and the breakthrough in understanding flower

development suggests success in studies of plant organogenesis. Recently, in a related

study with rice, a cDNA clone specific to plant regeneration was isolated from

embryogenic cultures through differential screening of an embryogenic cDNA library

(Mizobuchifukuoka et at. 1996). Furthermore, patterns of protein synthesis in

organogenic and non-organogenic cultures were assessed. Differences in the protein

profile were found using polyacrylamide gel electrophoresis, with a few new protein

bands observed in the bud-initiating tissues. This is evidence that specific proteins were

synthesized during shoot differentiation, and it suggests that the newly synthesized

proteins are necessary for specific cellular metabolism leading to fonnation of

adventitious shoots (Huang and Tauer 1994). Shoot apical meristems of loblolly pine

proved to be competent to respond to induction for organogenesis (Huang and Tauer

1994). The study showed that a set of novel mRNAs was rapidly synthesized after the

meristems were placed on shoot-induction medium (i.e., a modified LP containing 2.5 to
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5 mg/I benzylammopurine). The resulits also showed apparent differences in gene

expression between treated and non-treated meristems. The newly synthesized mRNAs

could serve as modulators to activate cells and as messages to signal the shift from simple

cell proliferation to organ differentiation (Huang and Tauer 1996).

1.3.4 peR Based Differential Display

The peR method was devised and named by Mullis and colleagues at the Cetus

Corporation (Mullis & Faloona 1987). It is a technique for the in vitro amplification of

specific DNA sequences by the simultaneous primer extension of complementary strands

of DNA. Although the principle has been described for 20 years, the use of PCR was

limited until a heat-stable DNA polymerase became widely available (Chien et al. 1976).

With the advent ofheat stable DNA polymerase, the PCR has rapidly become one

of the most widely used techniques of molecular biology. It is a rapid, inexpensive and

simple means of producing microgram amounts of DNA from minute quantities of source

material, and it is relatively tolerant of poor quality template (Taylor 1991). Many

variations on the basic procedure have now been described and applied. For example, the

peR has had a major impact on the diagnosis and screening ofgenetic disease and

cancer, and on the rapid detection of slow growing microorganisms and viruses, such as

HIV. Use ofPCR has established a central role in the human, animal, and plant genome

projects. In most molecular biology laboratories, the PCR has been routinely used in

processes such as probe preparation, clone screening, mapping and subcloning,

preparation of sequencing templates, and also for more advanced applications such as

cloning very low abundance transcripts and gene recombination (McPherson et al. 1991).

14



Starting maJterials for gene analysis and manipulation by the PCR may be

genomic DNA, RNA, and nucleic acids from archival specimens, cloned DNA, or peR

products themselves. The requirements of the reaction are simple: deoxynucleotides to

provide both the energy and nucleosides for the synthesis of DNA, primer, template, a

buffer containing magnesium and heat stable DNA polymerase. The availability of heat

stable DNA polymerase gives the PCR two major advantages. First, replenishment of

polymerase after each heating step is not required. Second, annealing of the

ohgonucletide primers is more specific and DNA synthesis is more rapid at higher

temperatures.

With each cycle of heating and cooling, the amount of DNA in the region flanked

by the primer will double. The number of cycles required for optimum amplification

varies depending on the amount of starting material and the efficiency of each

amplification step. Generally, 25 to 35 cycles should be sufficient to produce lOOng to

1ug of DNA of a single copy human sequence from SOng of genomic DNA (Taylor

1991). A final incubation step at the extension temperature (usually 72C) results in fully

double-stranded molecules from all products (Taylor 1991). Because the peR is a highly

sensitive and rapid technique for detecting extremely small amounts of a specific DNA or

RNA, many new methodologies have been developed based on it.

The mRNA differential display (DD-peR) is a newly deveLoped method, reported

by Liang and Pardee (1992) to select for novd genes expressed in mammary tumor cells

but not in normal cells (Liang et at. 1992). Since the development of the differential

display process in 1992, the application of this process has expanded into almost all areas

of science. Researchers have use differential display to successfully isolate differentially
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expressed cDNAs from mammalian tissues, such as mammary tumor cells (Liang et at.

1992), from glucose induced bovine aortic smooth muscle cells (Nishio et al. 1994) and

from a variety of other tissues.

The differential display method is based upon comparisons of most mRNAs

expressed in two or more cell populations, by running their reverse transcribed PCR

products on sequencing gels in adjacent lanes. The differential expression can be readily

detected by eye, the band cut out of the gel, eluted, and after PCR amplification used

directly as a probe in Northern blot analysis. The process includes the reverse

transcription of the mRNAs with oligo-dT primers anchored to the beginning of the

poly(A) tail, followed by the peR reaction with a second primers arbitrary in sequence.

The amplified cDNA sub-populations of 3' termini ofmRNAs as defined by this pair of

primers are size separated on a DNA sequencing gel. By changing primer combinations,

15,000 individual mRNA speci,es from a mammalian cell may by visualized. Differential

display provides the fingerprinting for mRNA analogous to 2-D protein gel

electrophoresis to visualize proteins. The mRNA samples analyzed side by side would

allow differentially expressed genes to be identified and probes to be recovered and used

to clone their cDNAs or genomic DNA (GenHunter, Nashville, TN).

The mRNA differential display method has several technical advantages over

existing methods. Differential display is based on PCR and DNA sequencing gel

electrophoresis, which are simple technologies. Differential display is a sensitive method

because 5 ug of total RNA is enough to cover all the anchored oligo-dT primers used in

aU combinations with 80 arbitrary primers. This would cover the majority of mRNAs in

an eukaryotic cell. Researchers found 90-95% of the bands ofmRNA differential display
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are reproducible from run to run; in addition, more than two RNA samples can be

compared at one time, revealing genes unique to a process instead of cell type specific

genes, therefore identification of the gene is built in. Both dominant genes (oncogenes)

and recessive genes (tumor suppressor genes) can be detected simultaneously. Another

advantage of differential display is the speed ofthis technique. The pattern of a mRNA

differential display can be obtained in two days and one can follow success at each step.

The peR based differential display tec1mology was used for mammalian tissues

frrst (Liang et al. 1992). Presently, more and more researchers are successfully using this

method (Goormachtig et al. 1995). Wilkinson et al (1995) identified genes involved in

ripening strawberry fruit by differential display. The genes related to cotton fiber

development were isolated by this method (Song-Ping 1995). Furthennore, this

technique has been used to study pathogen stress in alfalfa (Truesdell & Dickmean 1997)

and genes regulating sucrose in cultured rice cells (Tseng et al. 1995). Differential

display has also been used to study plant developmental processes, cloning new potential

markers of in vitro tomato morphogenesis (Torelli et al. 1996) and identifying

developmentally regulated genes during somatic embryogenesis in eggplant (Momiyama

et al. 1995).

1.3.5 Gene Cloning and a eDNA Library

Recombinant DNA technology has revolutionized molecular biology and

genetics. Today any segment of DNA can be isolated and replicated to provide sufficient

copies of a gene to study its structure and expression. In addition, cellular systems can be

designed to produce large quantities of a particular biological substance. Recombinant
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DNA techniques are being used in new industrial and medical technologies, and in

agriculture for the development of new varieties of pl.ants. The core process of DNA

recombination technology is gene cloning.. Once a gene and its regulators has been

cloned there is almost no limit to the infom1ation that can be obtained about the structure

and expression of that gene.

The basic steps in a gene cloning experiment are several: A fragment of DNA

containing the gene to be cloned is inserted into a vector to produce a chimera or

recombinant DNA molecule. The vector transports the gene into a host cell. Within the

host cell the vector multiplies, producing numerous identical copies not only of itself but

also of the gene that it carries. When the host cell divides, copies of the recombinant

DNA molecule are passed to the progeny and further vector replication takes place. After

a large number ofceU divisions, a colony, or clone of identical host cells is produced.

Each cell in the clone contains one or more copies of the recombinant DNA molecule

(Brown 1995).

There are very few areas of biological research that have not used gene cloning,

with PCR, and the recombinant DNA techniques. Agricultural research in particular has

benefited greatly from gene cloning, which provides a new dimension to crop

improvement. For example, gene cloning enables directed changes to be made to the

genotype of a plant, circumventing the tedious phenotypic selection processes inherent in

conventional breeding (Yoder and Goldsbrough 1994). Cloning can lead to developing

plants that resist insect attack (Fischhoff 1987) or plant pathogens by transformation with

cloned genes (Trove 1993).
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The fust libraries of complementary DNA (eDNA) clones were constructed in the

mid-to-Iate 1970s using RNA-dependent DNA polymerase (reverse transcriptase) to

convert poly (A+) mRNA into double-stranded cDNA suitable for insertion into

prokaryotic vectors.

A cDNA library represent the information encoded in the messenger RNA

(mRNA) of a particular tissue or organism. Each organism and tissue type has a unique

population of mRNA. The information encoded by the RNA is converted into a stable

DNA duplex (eDNA) and then inserted into a self-replicating vector. A representative

cDNA library contains full-length copies of the original population of rnRNA from each

organism or tissue type.

The starting material for any representative plant cDNA library is a supply of

rnRNA from the plant tissue of choice. The quality and quantity ofthe mRNA used is of

fundamental importance to the construction of a cDNA library. The cDNA synthesis may

be acmeved using one of two methods. Short oligonucleotides containing 12 to 20

deoxythymidines act as primers for reverse transcription of mRNA. The second method

of cDNA synthesis is random priming. Studies have indicated that sequences close to the

5' end of very long mRNAs are more readily cloned using this method. (Brown 1995).

The double-stranded cDNA molecules obtained from the reaction of DNA polymerase-I

are then inserted into a plasmid or a phage vector by attaching artificial restriction

enzyme sites onto the ends of the cDNA. After packaging into phage particles or plasmid

vectors, the library is completed and ready for screening.

Once the library has been plated out, the phage plaques are transferred to

duplicated nitrocellulose fihers or nylon membranes. Incubating these nitrocellulose
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replicas with a 32p labeled nucleic acid probe constitutes the library screening. Generally,

the probe could be a cloned DNA fragment of the target gene (e.g. A DD-PCR fragment),

and this is used to search for clones that contain additional sequences flanking the clone

fragment. In other cases, a closely related gene may have already been cloned and can be

used as a probe for the gene of interest using conditions that allow partially matching

sequences to hybridize.

After an individual plasmid containing a single cDNA fragment has been

obtained, Southern blot analysis with the probe is required to confirm its identity. The

cloned gene is then sequenced, and this sequence is compared with all sequences in the

database in GenBank using a computer search. One can determine if this clone encodes

the protein of interest or a previously unknown protein.

This tec1moLogy has developed into a powerful and universal tool in the isolation,

characterization, and analysis of both eukaryotic and prokaryotic genes.

20



CHAPTER II

MATERIALS AND METHODS

2.1 Establishment of Shoot Apical Meristemic Culture

In order to clone shoot organogenesis regulation genes by comparing their

differential expressions within non-organogenic tissue, organogenic cultures of loblolly

pine at different developmental stages were developed using plant tissue culture.

2.1.1 Preparation of Seedlings of Loblolly Pine

Seeds ofloblolly pine family H-17 were used in our experiment. Seedlings were

obtained from sterilized seeds which were germinated for five to seven days at room

temperature on sterile 0.8% agar-solidified water in petri dishes.

Seed sterilization:

1. Pine seeds were soaked in 1% fungicide solution for 10 hours with agitation.

2. The seeds were rinsed with sterile distilled water to remove the fungicide.

3. Seeds were surface disinfected in 30% hydrogen peroxide (H20 2) for 10 minutes

with agitation.

4. The H20 2 -treated seeds were rinsed three times with sterile distilled water (1-5-1

minutes).
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5. The wet seeds stood in flask for 6 hours or overnight.

6. After six hours, steps 3 and 4 were repeated.

7. The empty nonviable seeds that float were discarded. Surface sterilized seeds

were placed into petri dishes for seed coat removal.

8. Seed coats were removed using sterile forceps and scalpel. Coat removal is

neoessary for germination of the seeds.

9. Seeds were further sterilized by soaking in 0.5% mercuric chloride (HgCI2) in a 50

m!. flask for 10 minutes with agitation.

10. Seeds were rinsed three times with sterile distilled water (5 minute each time).

11. Seeds were transferred to a petri dish and sterilized by soaking in 15% chlorox

(commercial bleach) for 5 minutes with agitation.

12. Seeds were rinsed three times with sterile distilled water (1-5-1 minutes).

13.

14.

Sterilized seeds were transferred onto 0.8% water agar medium in petri dishes (25

seed / dish) with sterilized forceps.

The dishes were sealed and incubated in continuous light at 20-25 °C for 5-7 days

until germination.

2.1.2 Preparation of Shoot Apical Meristemic Tissue

When the hypocotyls had grown out of the megagametophyte approximately 5

mm., the seedlings were removed from the agar p,lates and prepared for shoot apical

meristemic tissue induction.
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Preparation of tissue for shoot apical meristem induction

1. The young seedlings were removed from agar plates and the megagametophytes

were removed from the seedlings.

2. The seedlings were surface sterilized using 15% Clorox (commercial bleach) for

10 minutes with agitation.

3. The seedlings were rinsed three times with sterile distilled water (1-5-1 minutes).

4. The cotyledon, radical and most of the hypocotyl were excised.

5. The shoot apical meristem (lmm in length) was inserted up-side down into LP

medium (Tables 2.1, 2.2) in a petri dish.

6. The dishes were sealed and grown in continuous light at 20-25 dc.

7. Samples of the shoot apical meristemic tissues at three days, one week, two weeks

and three weeks were picked and stored in -80 DC for RNA isolation.

Table 2.1. Stock solutions for LP medium

Stock Components Amount added Total volume (ml)
Nitrates Ca(N°3)2.4H2O 60.0 g 500

NH4N03 20.0 g
KN03 KN03 90.0 g 500
Sulfates CuS04·5H2O 12.5 mg 500

MgS04·7H2O 18.0 g
I

MnS04 0.69 g
ZnS04·7H2O 0.43 g

PBMO H3B03 0.31 g 500
KH2P04 13.5 g
N~Mo04 10.64 mg

Halides CoC12·6H2O 1.25 mg 500
KI 4.0mg

Inositol Myo-Inositol 25.0 g , 250
Thiamine HCl Thiamine HCl 10.0 mg
Fe-EDTA FeS04·7H2O 1.5 g 500

N~EDTA 2.0 g
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Table 2.2. Composition of LP medium (500 ml)

Amounts Final Concentration
Nutrient Components (from stocks) (mg/l) Treatment
H2O 435 ml
Nitrates 2.5 ml Ca(N°3)2.4H2O 600

NH4N03 200
KN03 2.5 ml KN03 900
Sulfates 2.5 ml CuS04·5HzO 0.125 Autoclave

MgS04·7H2O 180
MnS04 6.9
ZnS04·7H2O 4.3

PBMO 2.5 ml H3B03 3.1 Sterilized
KH2P04 135
Na2Mo04 0.1064

Halides 2.5 ml CoC12·6H2O 0.0125
I Kl 0.04
I

Fe-EDTA 2.5 ml FeS04·7H2O 15

I NazEDTA 20
Agar 4g
H2O 30 ml
Inositol Thiamine HCI 5 ml Myo-Inositol 1000 Filter

Thiamine HCI 0.4
Sucrose 15 g Sterilized
BAP 1000 1.25 ml
NAA 1000 5 ml
pH 5.5

2.2 RNA Isolation

To compare the expression patterns of different development stage tissues, the

RNA of shoot apical meristemic tissues and other control tissues was isolated.

2.2.1 Decontamination of RNase

All items including glassware and plasticware to be used for experiments with

RNA are treated to be essentially free of RNase and sterilized. Gloves were worn at all

times during the preparation of materials and solutions for the isolation and analysis of
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RNA as well as during aU manipulations involving RNA. It is necessary to change

gloves frequently.

Glassware treatment:

Glassware was treated by baking at 250°C for 4 or more hours or at ]80°C for at

least 8 hours.

Plasticware treatment:

]. Plasticware were soaked in a solution of 0.1% diethylpyrocarbonate (DEPC) for 2

hours at 37 DC.

2. Plasticware were then rinsed several times with sterile water and autoclaved for

15 minutes on liquid cycle to remove traces of DEPC.

3. Equipment that could not be sterilized by heating was soaked in 0.1 % DEPC

solution overnight and then rinsed thoroughly with sterile, DEPC-treated water.

Electrophoresis tank treatment:

1. The gel rig was cleaned with detergent solution, rinsed with water.

2. Dried with ethanol.

3. Treated with a solution of 3% H20 2 for 1() minutes, rinsed thoroughly with DEPC

treated water.

Water and solutions treatment:

1. All solutions were prepared using RNase-free glassware and chemicals reserved

for RNA work.

2. The solutions were treated with 0.1 % DEPC at 37 DC overnight with occasional

vigorous shaking, then autoclaved.
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3. After autoclaving, the hot solutions were swirled to remove residual CO2 and

DEP, DEPC breakdown products.

2.2.2 Simultaneous Isolation of RNA and DNA from Conifers

Isolation of good quality RNA from conifer tissues is often difficult because of

the large amount ofphenolic compounds, polysaccharides, and unknown secondary

metabolites. A protocol for total RNA isolation from pine tissues was specially

developed, so it could be used for combined RNA and DNA isolation.

1. 10-15 ml extraction buffer was warmed to 65 DC in a water bath. 2-

Isolation of total mRNA:

were taken out off the -80 DC storage right before isolation.

pestle.

1-2 g of tissue in liquid nitrogen was grinded to a fine powder with a mortar and

mercaptoethanol was added into the buffer to a final concentration of 2%.

Shoot apical meristemic tissues treated on organogenesis-induction medium for 3-

days, I-week, 2-weeks, 3-weeks and controls (hypocotyls, cotyledons, and radicals)

2.

3. The frozen powder was mixed with 10-15 ml of extraction buffer and incubated

for 15 minuets at 65 DC.

4. The incubant was extracted two times with an equal volume of CHCI 1-IAA, and

phases were separated at 3.5K rpm at room temperature for 10 minutes in an SS34

rotor.

5. 1/4 volume 10 M LiCI was added to the supernatant, mixed gently, and

precipitated 5 hours at -20 DC or overnight at 4 DC.
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6. Centrifuged at 10k rpm for 20 minutes and pellet was collected for isolating

RNA. The resulting supernatant may be saved for DNA isolation.

7. The RNA pellet was dissolved into 500 III of SSTE.

8. Extracted once with an equal volume ofCHClJ-lAA.

9. 2 volumes of ethanol to the aqueous phase were added and RNA was precipitated

at -80°C for at least 30 minutes or at -20 °C for 2 hours.

10. Spun 20 minutes in a microfuge at full speed to pellet RNA, and dried pellet was

resuspended in the DEPC-treated sterile H20, the resultant RNA was ready to use.

Additional Steps For DNA Isolation:

1. DNA was precipitated from the supernatant from step 6 with one volume of

isopropanol.

2. Spun at 10 k rpm for 20 minutes to collect DNA pellet.

3. The DNA pellet was re-suspended in 0.5 ml TE buffer.

4. The crude DNA sample was extracted with an equal volume of CHCI3-IAA.

5. Aqueous phase was collected and precipitated with one volume of isopropano1.

6. DNA was pelleted by centrifugation and washed the DNA with 70% ethanol.

7. DNA was dissolved into an appropriate volume ofTE buffer.

27



Solutions and Buffers:

Extraction buffer:
200ml

2% CTAB (hexadecyltrimethylammoniurn bromide) 4.0g
2% PVP (polybinylpyrrolidinone K30) 4.0g
100mM Tris-HCI, pH 8.0 2.42g
25mM EDTA 1.86g
2.0M NaCI 23.4g
0.5g/1 Spennidine 0.1 g
(mixed, autodaved, and stored at 4 °C , and 2% 2-mercaptoethanol was added just before
use).

SSTE buffer:

Chloroform (CHClJ): isoamyl alcohol (fAA) = 24:1

Lithium Chloride
H20
(autoclave)

0.6M NaCl
0.2% SDS
10mM Tris-HCI, pH 8.0
ImM EDTA
(mixed, autoclaved)
10M Lithium chloride (Liel):

lOOml
42.39g
80 ml

100 ml
3.5g
O.2g
O.12g
37mg

Isopropanol: commercial stock was used

2.2.3 RNA Formaldehyde Gel Electrophoresis

1. Formaldehyde gel (llxi4 em horizontal gel) was prepared

1 % agarose
DEPC-dH20
lOx gel-running buffer
18 % formaldehyde (12.3 M)

100.0 mi
1 g
72 mi
10 ml
18 ml
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Agarose was dissolved in DEPC-dH20 in the microwave, DEPC-dH20, lOx gel-

running buffer and formaldehyde were added (Sigma F1635), and swirled to mix. The

gel was castled in the hood, and the gel was allowed to set at room temperature for at

least 30 min.

2. RNA samples were prepared

20 ~d 50 JlI
RNA (5-30 j..lg/lane) x J-ll x III
lOx gel-running buffer 2.0 III 5.0 III
1.7 % formaldehyde 3.5 III 8.8 III
50 % formamide (deionized) 10 III 25 III
DEPC-dH20 20-x-y 50-x-y
y = gel running buffer + formaldehyde + formamide

A "master mix" was prepared for multiple RNA samples by mixing all reagents

except RNA's and then transferred an appropriate volume of mix into each RNA

sample in a tube.

3. The samples were incubated at 65 °C for 15 minutes, and then quenched briefly on

ice. All of the fluid in the bottom of the tube was deposited by spinning briefly

(i.e., a few seconds).

4. The gel was pre-run at 80V for 5 minutes before the samples were loaded.

5. 2 !J.l of sterile, DEPC-treated gel-loading buffer was added to each sample.

Additional 1 III ofEtBr solution (1 mg/ml in DEPC-dH20) was added to each

RNA sample.

6. The samples were loaded into weHs of the gel. A molecular marker (3-5 Ilg of

BRL RNA ladder, 0.24-9.5 kb) was loaded into the outside lanes of the gel, and

prepared as described for the RNA sample.
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7. The gel submerged in lx formaldehyde gel-running buffer was run for a few hours

a~ SOV or overnight at 20V. Although constant re-circulation of the buffer was

not necessary for a short run, the buffer should be re-circulated while run

overnight

8. Electrophoresis was stopped when the dye has migrated Y2 the length of the gel.

Reagents and buffers;

lOX formaldehyde-gel running buffer (1 liter)

Reagent
MOPS (free acid, MW 209.3)
NaOAC (anhydrous)
EDTA (0.5 M, pH 8.0)

lOX
200mM
80mM
10mM

50 % glycerol
1 mM EDTA (pH 8.0)
0.25 % bromophenol blue
0.25 % xylene cyanol FF
DEPC-dH20

41.86 g of MOPS (Sigma M8899) and 6.56 g ofNaOAC were dissolved in 800

ml DEPC-treated water,. pH to 7.0 with NaOH, and 20 ml of DEPC-treated EDTA

was added. The volume was adjusted to 1 liter with DEPC-treated water and

autoclaved.

Formaldehyde gel-loading buffer (sterile)
10 ml
5 ml
20 J.ll (0.5 M stock)
25 mg
25 mg
5 ml

2.2.4 Removal of DNA Contamination from RNA

In order to use mRNA Differential Display technology to identify differentially

expressed genes, it is crucial that the total RNA should be absolutely free of DNA
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contamination. Dnase I from MessageClean™ Kit (GenHunter, Nashville, TN) was used

to clean up the RNA samples.

Protocol:

1. Dnase I digestion

Added in order

Total RNA in DEPC-H20 50.0 ~l (l 0-50 ~g)

lOX Reaction buffer 5.7 f.ll
DNase I (10 unit/ul) I .0 f.ll
Mix well and incubate for 30 minutes at 37°C.

2. 40 ~l of Phenol/ChC]3 (3: 1) were added to remove proteins. Vortexed for 30

seconds and kept 10 minutes on ice.

3. Spun in an Eppendorf centrifuge at 4 °C at maximum speed for 5 minutes. The

upper phase was collected.

4. 5 ~l of 3 M NaOAC and 200 ~l ]00% EtOH were added and kept at -80°C for

more than 1 hour.

5. Spun for 10 minutes at 4°C. The supernatant was carefully removed and RNA

pellet was washed with 0.5 m] 70% EtOH (in DEPC water).

6. Spun for 5 minutes, and EtOH was removed. Spun briefly and the residual liquid

was removed.

7. RNA was re-dissolved in 10 to 20 ~l ofDEPC-HzO.

8. Quantitated by ODZ60 after 1:300 dilution of the RNA sample.

9. RNA was stored as 1 Ilg /f.ll aliquots at -80°C, and diluted to 0.1 ~g /~J with

DEPC-H20 right before used in differential display PCR reaction.
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2.3 DifferentiaJ DispJay Procedure

The mRNA Differential Display technology was used to identify genes which

might be related to the shoot organogenesis. Shoot apical meristemic tissues (3-days, 1-

week, 2-weeks, 3-weeks) were compared with non-organogenesis tissues (hypocotyl,

cotyledon, radical) to identify tissue specific cDNA fragments by their differentially

expressed patterns.

2.3.1 Reverse Transcription of mRNA

The seven different types of RNA, free of chromosomal DNA contamination,

were freshly diluted. They were then reverse transcripted to cDNA with oligo-dT pl'imers

(Table 2.3) anchored to the beginning ofthe poly (AI) tail. The 3' primer consists of 11

deoxythymidine residues plus one additional 3' base to provide specificity.

Protocol:

1. The all components were thawed, and set on ice.

2. Three reverse transcription reactions were set for each RNA sample for each of

the three primers (M=A, G, or C)

Components (for 201-11 final volume)
dH20 9.4 1-11
5X RT buffer 4.0 1-11
dNTP (250 uM) 1.6 1-11
Total RNA (DNA-free) 2.01-11 (0.1 ~lg 11-11)
H-T"M(2uM) 2.01-11

3. Thermocycler was programmed to 65°C, 5 minutes-- 37°C, 60 minutes-- 75°C, 5

minutes --end.
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4. The tubes were put into the thennocycler for 10 minutes at 37°C. 1 ~l MMLV

reverse transcriptase was added to each tube, quickly mixed wen by finger tipping

and continued incubation.

5. At the end of reaction, the tube was briefly spun to collect condensation.

6. The tubes were stored at -20°C for later use.

2.3.2 peR to Amplify the eDNA aDd Label with up

PCR reaction was use to amplify the amount of cDNA. The second 16 primers

with arbitrary sequence (Table 2.3) anchored to the 5' end of the eDNA. Different

combinations of 5' and 3' primers were used to generate a panel of PCR products which

were labeled with 33p for comparison ofthe seven RNA samples.

Protocol:

1. The components were thawed and set on ice.

H-AP primer = primer #1 - primer #16. H-TIIM primer, M=A, G, C

20 ~l final volume for each primer set combination.

Components
dH20
lOX PCR buffer
dNTP(25 uM)
H-AP primer (2 uM)
H-T"M (2 uM)
RT-mix from Reverse Transcription
a_[J3p] dATP (1200 Ci/mmole)
AmpliTaq (Perkin-Elmer)
Total

2. Mixed well by pipetting up and down.
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3. 25 III mineral oil was added to each tube.

4. PCR reaction was run as 94°C, 30 second - 40 °C, 2 minutes -72°C, 30

seconds for 40 cycles - 72°C, 5 minutes - end.

S. The tubes were stored at 4 °C for later use.

Table 2.3 Primers Used in mRNA Differential Display Reactions

H-T11G 51-AAGCTTTTTTTTTTTG-3'

H-T11A S'-AAGCTTTTTTTTTTTA-3'
H-T,1C 51-AAGCTTTTTTTTTTTC-3'
H-API 5'-AAGCTTGATTGCC-3'
H-AP2 5'-AAGCTTCGACTGT-3'
H-AP3 5'-AAGCTTTGGTCAG-3'
H-AP4 S'-AAGCTTCTCAACG-3'
H-APS 5'-AAGCTTAGTAGGC-3'
H-AP6 51-AAGCTTGCACCAT-3'
H-AP7 5'-AAGCTTAACGAGG-3'
H-AP8 5'-AAGCTTTTACCGC-3'
H-AP9 5'-AAGCTTCATTCCG-3'
H-APIO 5'-AAGCTTCCACGTA-3'
H-APII 5'-AAGCTTCGGGTAA-3'
H-API2 5'-AAGCTTGAGTGCT-3'
H-AP13 5'-AAGCTTCGGCATA-3'
H-API4 : 5'-AAGCTTGGAGCTT-3'
H-API5 : 5'-AAGCTTACGCAAC-3'
H-API6 5'-AAGCTTTAGAGCG-3'

2.3.3 Separation of Amplified eDNA Fragments by PAGE

The expression patterns of a group of cDNA from the same 5' and 3' end primers

were compared by separating on a 6% denaturing polyacrylamide gel in TBE buffer. To

insure making "bubble-free" gels, the glass plates must be thoroughly cleaned and the

outer glass plate should be siliconized or coated before each use. Always wear gloves
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while handling the glass plates during assembly to avoid fingerprints on the glass plates.

Fingerprints will cause bubbles to form during gel casting. Polyacrylamide is a

hazardous chemical and a neurotoxin. Always wear gloves, lab coat, and safety glasses

while working with polyacrylamide.

Protocols:

1. The plates were cleaned thoroughly and siliconed by spreading 5 1111 silanizing

reagent (5% y-coate + ice cold 100% EtOH) .

2. The glass plate sandwich was assembled.

3. The gel was castled without air bubbles. The gel was polymerized for at least two

hours or overnight.

4. The buffer chamber was filled with 1 x TBE. The gel was pre-run for I hour till

the temperature of the buffer reached 55 °C.

5. 5 III of each sample were mixed with 2 I.d of loading dye and incubated at 80 0c.

The gel was loaded and run.

6. The gel set was disassembled and dried at 70°C for 2 hours. The gel was exposed

to x-ray film at -80°C for 2 days.

2.3.4 Re-amplifieatioD of eDNA Fragment

After developing the film, auto-radiographs were oriented with the gel. Bands

with differential ,expression patterns were located by punching through the film with a

needle at the four comers of each band. Bands were cut out with a clean razor blade for

re-amplification.
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Protocol:

L The gel slice was soaked along with the 3M paper in 100 ~L1 dH20 overnight.

2. The samples were boiled with cap of the tube tightly closed for 15 minutes.

3. Spun for two minutes to collect condensation, and the gel and paper debris were

pelleted.

4. The supernatant was transferred to a new microfuge tube.

5. 10 III of 3 M sodium acetate, 5f-l1 of glycogen (l0 mg/ml) and 450 ~L1 of 100%

EtOH were added. Kept on dry ice or in a - 80°C freezer for 30 minutes.

6. Spun for 10 minutes at 4 °C to pellet the DNA.

7. The supernatant was removed. The pellet was rinsed with 200 III ice-cold 85%

EtOH. Spun briefly and the residual ethanol was removed.

8. The pellet was dissolved in 10 III of dH20 and re-amplificated in 2 Ill. The rest

was saved at -20°C.

9. The same primer set was used for re-amplification.

10. The components as following were added for 20 III reaction:

H-AP primer = primer III - primer 1116.
H-T1I M primer, M= A, G, or C

dH20
lOx peR buffer
dNTP (250 uM)
H-AP primer (2 uM)
H- T11M primer (2 uM)
cDNA template
AmpliTaq (Perkin-Elmer)

Total
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11. 15 I.ti of the PCR samples were run on a 1.5% agarose gel and stained with

Ethidium bromide.

12. The cDNA size was checked under UV light.

13. If the cDNA probe failed to be re-amplified in the first round of PCR, it could be

amplified by another 40- cycle PCR reaction with 2 J.lI of the first - round PCR

sample.

2.4 eDNA Cloning

In order to manipulate the cDNA fragments identified from Differential Display,

we cloned them using the TA Cloning System (Invitrogen, Carlsbad, CA) and PCR

TRAP Cloning System (GenHunter, Nashville, TN).

2.4.1 TA Cloning Kit (PCRII)

The TA Cloning Kit with peR 2.1 provides a quick, one-step cloning strategy for

the direct insertion of a PCR product into a plasmid vector. The selection of the insert is

base on the blue-white colony color identity caused by the insert mutageniesis of an

marker gene.

Ligation Reaction:

1. Fresh PCR products were used for cloning.

2. The eDNA fragments were ligated into the PCRII vector by adding the following

components (10 J.ll reaction):
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dH20 5 I-l]

1() X ligation buffer 1 Jll
PCRIl vector (25 ng/ JlI) 2 !il
Fresh PCR product (~l0 ng) I !il
T4 DNA ligase 1 j.ll

3. Ligation reactions mix was incubated at 14°C for at least 4 hours or overnight.

4. The ligation reactions were centrifuged briefly and placed on ice.

Transformation:

1. Appropriate number of vials of One Shot™ supplier cells were thawed on ice.

2. 2 j.ll of 0.5 M 2-mercaptoethanol was pipetted into each vial of the One Shot™

cells and mixed by stirring gently with pipette.

3. 1-2 j.!l of each ligation reaction was pipetted into cells and stirred gently with

pipette to mix.

4. The vials were incubated on ice for 30 minutes.

5. The vials were heat shocked for exactly 30 seconds in a 42°C water bath without

disturbance.

6. The vials were placed on ice for 2 minutes.

7. 250 j.!1 of SOC medium was added to each vial.

8. The vials were shaken at 37°C in a shaker at 225 rpm for exactly I hour. The

vials containing the transformed cells were placed on icc.

Analysis:

1. 50 j.!l and 200 ~.LI from each transformation vial were placed on a LB plate

containing 50 j.!g/ml ampicillin, X-Gal, and IPTG.
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2. Incubated at 37°C for at least 18 hours. Plate was shifted to 4 °C for 2-3 hours for

color development.

3. 5 white colonies were analyzed fO]' the presence and orientation of insert by

restriction mapping.

2.4.2 PCR-TRAP Cloning System

This system utilizes a third generation cloning vector that features positive-

selection for DNA inserts. Only vectors with a peR product incorporated through blunt

end ligation will have ampicillin resistance. Anything that grows on a tetracycline plate

most likely will have the plasmid vector containing a DNA insert.

Ligation:

1. The reampiified PCR products from differential display were used directly for

cloning without any purification or dilution.

2. For a 20 ,..LIligation reaction, components were added in the following order:

dH20
Insert-ready PCR-TRAP vector
10 X ligation buffer
PCR product
T4 DNA ligase (200 unit! !11)

lO !J.l
2 !J.l
2 !J.I
5 !J.l
1 !J.I

3. Mixed well by pipetting up and down. Allowed ligating at 16°C overnight
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Transformation:

1. GH competent cells were thawed on ice for 10 to 15 minutes .. 100 l'll of GH

competent cells was aliquoted to 1.5 m] microfuge tubes and set on ice.

2. 10 JlI of ligation mixture was added to the tube containing the competent cells and

incubated on ioe for 45 minutes.

3. The cells were heat shocked for 2 minutes at 42°C and the tube was set back on

Ice.

4. 0.4 ml of LB medium was added and the cells were incubated at 37°C for one

hour.

5. Cells were mixed well by vortexing briefly.

6. 200 1-11 of cells was plated on each LB plate containing 20 flg Iml tetracycline.

7. The plate was incubated upside down overnight at 37°C.

8. The tetracycline resistant colonies were scored and the plate was saved at 4 °C for

further analysis.

Checking for Insert:

Checking for plasmid with DNA insert was done using PCR with a primer set that

flanks the doning site of the PCR-TRAP vector.

A. Colony Lysis

1. Using a marker pen, each TetR colony to be analyzed was numbered on the back

of the plate.

2. 50 ~d of colony lysis buffer was aliquoted into each numbered microfuge tube.
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3. Each colony was picked with a clean pipette tip, and the cells were transferred

into the tube with colony lysis buffer.

4. The tube was incubated at 95°C for 10 minutes.

5. The tube was spun for 2 minutes to pellet the cell debris.

6. The supernatant was transferred into a clean tube.

7. It was used directly for PCR analysis or stored at - 20°C for future amplification.

B. peR Reaction

1. For each colony lysate the following components were added:

dH20
lOX PCR buffer
dNTPs (250 uM)
Lgh primer
Rgh primer
colony lysate
AmpliTaq (Perkin- Elmer)

lO.2 III
2.0 fl.l
1.6 ~LI

2.0 III
2.0 I-tl
2.0 III
0.2 III

2. Mixed well and 30 III mineral oil was added to each tube.

3. The PCR reaction was run as follows: 94°C for 30 seconds -- 52°C Jor 40

seconds -- 72°C for 1 minutes for 30 cycles -- 72 °C for 5 minutes -- end.

4. All of the 20 J.ll PCR products were analyzed on a ].5% agarose gel. The peR

product after colony- PCR was 120 bp larger than the original PCR insert due to

the flanking vector sequence being amplified.

2.4.3 Small-Scale Plasmid DNA Isolation

Protocol:

1. A single bacterial colony was inoculated into 2.0 ml LB broth with antibiotic.
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2. Grown at 37°C with vigorous shaking (200 rpm) overnight.

3. About 1.4 mt of bacterial suspension was poured into a 1.5 ml Eppendorftube.

4. Bacterial cells were pelleted in a microfuge at a full speed for 15- 30 seconds.

5. Supernatant was discarded and cell pellet was resuspended in 100 J.lI of GTE

buffer.

6. Boiled RNase A was added to a final concentration of20 /-lg / ml.

7. 200 /-ll SDS- NaOH solution was added.

8. Mixed gently by inverting the tube several times, and incubated on ice for 10

minutes.

9. 150 /-11 of ice-cold 3M NaOAC (pH 4.8) was added, mixed by gentle inversion,

and incubated on ice for 5- 10 minutes.

10. The lysate was spun in a microfuge tube for 5 minutes.

11. Supernatant was carefully transferred into a clean tube.

12. The RNase and other proteins were removed by equal volume phenol extraction.

13. The upper portion was transferred into a clean tube without disturbing the inter-

phase.

14. 450 III of ice-cold isopropanol was added and mixed by inversion.

15. Plasmid DNA was pelleted and dried, and fe-suspended in 10-30 J.lI dH20.

16. The DNA concentration was checked by OD2(;o with 1: 150 dilution.

Solutions and Buffers:

GTE buffer:
50 mM glucose
20 roM Tris (pH 8.0)
10mMEDTA
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SDS-NaOH solution:
2%SDS
0.4 NNaOH

3M NaOAC (pH 4.8):

5MKoAC
Glacial ascetic acid
dH20

Phenol
Phenol and CHCl3 (1: I)

lOOml
60.0 ml
11.5 ml
28.5 ml

2.5 Confi.rmation of Differentially Expressed cDNAs

To insure that the cDNAs were truly tissue-specific, the fragments cloned from

Differential Display were confirmed by "Reverse Northern" and "Quick Blot Southern

Analysis" before using them as probes to screen the eDNA library.

2.5.1 Reverse Prime cDNA L.abeling

The radioactive labeling was performed for the first strand cDNA from mRNA by

reverse transcription. The labded cDNAs were used as probes to screen for the putative

differentially expressed eDNA fragments isolated by Differential Display tcclmology.

A pair of RNA samples was labeled by reverse transcription. The positive one

was from the organogenic tissue (3 - weeks shoot apical meristem), and the cotyledon

tissue was used as a negative check.

2.5.1.1 Reverse Transcription

1. The components were thawed and set on ice.

2. Two reverse transcription reactions were set in PCR tubes corresponding to each

of the RNAs being compared.
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3. The following components were added in order: (For 40 J.!l final volume)

dH20
5 X RT buffer
dNTP (-C)
T20 primer
Total RNA (20 ~g)

a_[32p] dCTP

4. Mixed well by pipetting up and down.

X ~I

8 ~L

6 ~l

4 ~l

Y fll
5 ~l

5. The thermocycler was programmed to --65°C, 5 minutes -- 37°C, 60 minutes --

75°C,S minutes.

6. The tubes were put into the thermocycler and the incubation was started.

7. After the temperature had been at 37°C for 10 minutes, the thermocycler was

paused and 4 IJ-l of reverse transcriptase was quickly add to each tube.

8. Mixed well by pipetting up and down and continued the incubation.

2.5.1.2 Removal of Un-incorporated a_[32PJ

To reduce the background on the blot, the un-incorporated a_[32p] dCTP was

removed from the Labeled cDNA by gel filtration using a Sephadex G-50 spin column.

Protocol:

1. The bottom of a 1- ml disposable syringe was plugged with a smalI amount of

sterile glass wool.

2. Sephadex G- 50 equilibrated in TE (pH 8.0) was added into the syringe by a glass

pipette.

3. The column was spun down in a rotor for 3 minutes at 3,000 rpm.

4. Addition ofSephadex was continued until the packed column volume was 0.9 ml.
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5. 0.1 rol of STE buffer was added and re-centrifuged at exactly the same speed and

for exactly the same time as before.

6. All the waste liquid was disposed, and a decapped 0.6 ml tube was put inside the

centrifuge tube.

7. STE buffer was used to take the DNA sample to a total volume of0.1 ml, and

applied to the column.

8. Centrifuged at exactly the same speed and for exactly the same time as before.

9. 100 Jll of effluent was collected from the syringe in the decapped Eppendorf tube.

10.

11.

For short length DNA samples, the column was washed once with 100 III STE

buffer and two effluents were mixed together.

2 JlI of each label,edcDNA in a scintillation counter was counted to determine the

efficiency of cDNA labeling.

, .~
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2.5.2 Reverse Northern by Colony Hybridization

The positive and negative probes are hybridized with the eDNA colonies on

replica membrane.

Protocol:

1. The tetracycline-resistant colonies were transferred from each plate to a

nitroceUulose membrane.

2. Duplicated by pressing a second membrane on the first membrane with colonies

side up ..
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3. The membrane with fewer cells was laid down on the top of LB plates containing

tetracycline.

4. After an overnight incubation, the filters with TetR colonies were carefully

removed.

5. The plasmids were denatured by floating the filters on 0.5 N NaOH/I.5 M NaCI

for 5 minutes.

6. The DNA was denatured for 3 minutes by transferring the filters and floating

them on 0.5 M Tris-HCI buffer (pH 7.0)/ 1.5M NaCI.

7. The filters were blotted dry on a piece of 3M paper.

8. The DNA was UV cross-linked onto the filter.

9. The filters were washed in 6 X SSC plus 0.5% SDS at room temperature for 15

minutes with vigorous shaking to remove the cell debris from the filters.

10. The duplicate filters were separated into "positive" and "negative" groups in

separate containers and pre-hybridized overnight at 42 DC.

11. Two radioactively labeled cDNA probes were boi~ed for 10 minutes, and

quenched on ice.

12. The hybridization solution was chanced and boiled single strand salmon sperm

DNA was added.

13. Each probe was added to its corresponding container representing "positive" and

"negative" groups, respectively.

14. Hybridized overnight at 42°C.
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15. The membranes were washed 15 minutes in 1 X sse with 0.1% SDS at room

temperature followed by washing at 60 °e for 5 minutes in 0.25 X sse with 0.1 %

SDS. The membranes were checked frequently to avoid over-washing.

16. The membranes were blotted dry on a piece of 3M paper.

17. The duplicate membranes were placed on X-ray film at - 80 (le.

18. The films were developed and the result was evaluated by comparing the

hybridization signals of the corresponding duplicate films.

2.5.3 Bi-directional Blotting Southern Analysis

The eDNA fragments from DD-PCR were digested from the vectors by restriction

enzymes (EeoR I and Hind UI) and separated in an agarose gel. Duplicate membranes

were obtained by gel blotting. The organogenic tissue specific cDNA should hybridize

with the positive probe.

Protocol:

1. 20 /-lg of plasmid DNA was digested with a restriction enzyme at 37°C for 2-3

hours.

2. 2 ~Ll of loading buffer was added to each sample.

3. 0.8 % agarose gel was added into 0.5 X TBE buffer.

4. The samples were loaded into the gel and a DNA size marker was included.

5. The DNA was run towards the anode at 50-80 V until the bromophenol blue dye

reaches 2/3 of the length of the gel.

6. The gel was stained in 1 Ilg/ml ethidium bromide solution for 10 minutes.
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7. The DNA was visualized on the UV transilluminator, and the gel was

photographed alongside a ruler.

8. The gel was incubated in 500 ml of 0.25 M HCI for 15 minutes until the blue dye

turns yellow.

9. The gel was rinsed twice in dH20.

10. The DNA was denatured by placing the gel in 0.5 M NaOH for 30 minutes.

11. The gel was neutralized in 1M NH40AC for 20 minutes twice.

12. The gel was rinsed in 6 X SSC briefly.

13. A bi-directional blot (Figure 2.1) was set.

.- Weight
<llI.-I------ Glass plate

Paper towels ~ ~

Nylon membrane

Whetman 3MM paper

Gel

Figure 2.1 Bi-Directional Bloting Diagram

14. The cDNA was transferred to the membranes for 2 hours.

15. The membranes were briefly rinsed with 6 X SSe.

16. The DNA was UV cross-linked onto the filter.

17. The duplicate filters were separated into "positive" and "negative" groups in

separate containers and prehybridized overnight at 42 0e.
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18. Two labeled cDNA probes (+ and -) were boiled for 10 minutes and quenched in

Ice.

19. The hybridization solution was changed and boiled single strand salmon spenn

DNA was added..

20. Each probe was added into its corresponding container representing "positive" and

"negative" groups, respectively.

21. Hybridized overnight at 42°C.

22. The membranes were washed 15 minutes in 1 X SSC with 0.1 % SDS at room

temperature followed by washing at 60°C for 5 minutes in 0.25 X SSC with 0.1 %

SDS.

23. The membranes were blotted dry on a piece of 3M paper.

24. The duplicate membranes were exposed to a X-ray film at -80°C.

25. The films were developed and the result was evaluated by comparing the

hybridization signals of the cOlTesponding cDNAs.

2.6 cDNA Library Screening

The confirmed cDNA fragments, which showed organogenic-specific, were used

as probes to screen the organogenic cDNA library to obtain the full-length organogenesis

genes.

2.6.1 Random Prime DNA Labeling

Protocols:

1. The cDNA (50-100 ng in a total volume of6.96 ~1 H20) was denatured in a
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microfuge tube at 95°C for 5 minutes.

2. Quenched on ice immediately after boiling.

3. The fonowing was added to a microfuge tube on ice (for 25 J.lI):

Denatured DNA
10 mg/ml BSA
RPL buffer
50flCi 32p_dCTP
Klenow (2.5 unit)

6.96 flJ
1.0 fll
11.4 fll
5.0 fll
0.5 fll

4. The reaction was allowed at room temperature for at least three hours to

overnight.

5. The reaction was stopped by adding 21-11 of 0.2 M EDTA (pH 8.0).

6. Incorporated and unincorporated nucleotides were seperated by spin-column

procedure (See 2.5.1.2).

7. Samples were measured in scintillation counter.

8. The radio-labeled probe was stored at -20°C until it was needed.

Solutions and Buffers:

OL Buffer:
1 roM Tris, pH 7.5
1 mM EDTA, pH 8.0
9000 units Iml hexamers (Pharmacia, pd (N)t; ~ 27-2166-0 I)

HEPES: 1 M, pH 6.6 with NaOH, filter- sterilized and stored at 4 0c.
dNTP solution:

250mM
25mM
50mM
0.1 mM
0.1 mM
0.1 mM

Tris, pH 8.0
MgCl2
BME
dATP
dGTP
dTTP
H20

0.5 ml store at -20°C
125 fll 1M Tris, pH 8.0
12.5 fll 1 M MgCl2
1.75 fll ~-mercaptoethano]

5.0 flll0 mM dATP stock
5.0 fll 10 mM dGTP stock
5.0 fll 10 mM dTTP stock
346 fll
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RPL Buffer:
Solutions HEPES/OLldNTP were mixed in a ratio of 100 : 28 : 100.

2.6.2 Screen the cDNA Library

Dr. Y. Huang has established the cDNA library from shoot organogenic tissues in

our laboratory.

2.6.2.1 eDNA Library Tittering

Protocols:

1. 50 ml cultme of XLI-blue MRF cells were grown on LB medium containing 0.2

% maltose + 10 mM MgS04, grow overnight at 30°C shaking at 200 rpm.

2. The cells were re-suspended in 0.5 original volume with sterile 10 mM MgS04 .

3. 50 ml bacteria XLI- blue MRF' cells were spun down at 6,000 g for 20

minutes.

4. The bacteria cells were re-suspended in 5 ml 10 mM MgS04, and it was set on

Ice.

5. The library stock was diluted by IX SM to three concentrations (10-2,10-4, and

6. Mixed with 200 III bacteria host cell (XL1- blue MRF').

7. Incubated in 37°C water bath for 17 minutes.

8. The melted top agarose was kept in 65°C water bath, and warm up the NZY plate

(100 x ]5 mm) at 37°C.

9. 3 ml top agarose was quickly mixed with bacteria and phage at 45-50 DC, and

51



mixed well by inverting the tubes.

10. The mixture was poured on the NZY small plates, make smooth surface and dry

the plates.

11. The plates were incubated at 37°C for 4 - 5 hours.

12. The number of phage plaques were counted.

2.6.2.2 First Screening

Protocol:

1. 250 III of host cells and 8 mt top agarose were plated on large 150 mm NZY

plates (> 2 day-old) to 50,000 pfuJplate (30 /-Lllibrary phage at 10-4 dilution).

2. The plates were incubated at 37°C. Grow for 4-5 hours.

3. The plates were chilled for 1 hour at 4 °C to prevent the NZY top agarose from

sticking to the nitrocellulose membrane.

4. Transferred onto a nitrocellulose membrane for 2 minutes.

5. A needle with waterproof ink was used to prick through the membrane and agar

for orientation.

6. A second duphcate nitroceHulose membrane was made by transferring as before,

but for 4 minutes.

7. The membranes were treated as follows (process on 3 mm papers)

A. Denatured for 5 minutes in 1.5 M NaC1I0.5 M NaOH.

B. Neutralized for 7 minutes in 1.5 M NaCl/O.5 M Tris (pH 8.0)

C. Rinsed 2 minutes in 2xSSC buffer solution.
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8. Blot-dried briefly on an absorbency paper

9. The DNA was UV cross-linked to the membranes twice using the auto-crosslink

setting (120,000 f.!J ofUV energy).

10. The stock agar plates of the transfers were stored at 4 DC to use after screening.

11. The pre-hybridization solution was pre-heated to 50 DC without the salmon sperm

DNA.

12. The salmon sperm DNA was boiled for 10 minutes, quenched on ice and then

added to the warm pre-hybridization solution.

13. The membranes (4 mil membranes) were prehybridized at 42 DC for 4 hours to

overnight.

14. The hybridization solution was changed and new denatured salmon sperm DNA

was added.

15. The labeled probes #10 and #11(1 X 106
- 5 X 106 counts / ml of hybridization

solution) were boiled for 10 minutes, and quenched on ice.

16. Hybridized with probes #10 and #11 at 42 DC for 20 hours.

17. The membranes were washed at 52 DC in 1000 ml washing solution for 20

minutes, the washing solution was changed and the membranes were washed for

another 10 minutes.

18. Membranes were exposed to film for 50 hours at -70°C.
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2.6.2.3 Secondary Screening

Protocols:

1. The membranes were oriented to the film and using the marked "dots" where the

needle poked through the strongest "putative" clones were determined.

2. A Pasteur pipet and an inverted yellow pipet tip were used to transfer the clone

into 1 ml of SM buffer and 20 fll of chloroform.

3. Vortexed and briefly spun. The phage stocks were stored at 4 0c.

4. The membrane was stripped at 65°C for 2 hours for probe "14 and #)7

hybridization.

5. Diluted and titered with host cells as before (see section 2.6.2.1) to determine the

concentrations.

6. Plated on small 100 mm NZY plates (> 2 day-old) to 200 -500 pfu/plate with

phage stock (at 10.4 dilution) plus 200 ).ll of host cells and 3 ml top agarose.

7. The plates were incubated at 37°C, and grown for 4-5 hours.

8. The plates were chilled for I hour at 4°C.

9. Made lifts from plates as before (2.6.2.2).

10. Pre-hybridization and hybridization were performed as before (2.6.2.2).

2.6.2.4 In Vivo Excision

Protocols:

1. The plaque of interest was cored from the plate and transferred to the tubes

containing 500 fll of SM buffer and 20 ).ll of chloroform.
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2. The tubes were shaken to release the phage particles into the SM buffer.

3. The tubes were incubated overnight at 4 0c.

4. An overnight culture of XLI-Blue MRF' and SOLR cells were grown in LB broth

at 30 °e.

5. The XL I-Blue MRF' cells were spun down at 1,500x g. The cells were re-

suspended by 10 mM MgS04 to an OD600 ~ 1.0.

6. The following components were combined in a 50-mI conical tube:

200 f-ll XLI-Blue MRF' cells
250 III of phage stock
1 III of the ExAssist helper phage (> 1 X 106 pfu/I-.d)

7. The tube was incubated at 37 °e for 15 minutes.

8. 3 ml ofLB broth was added then shaken at 37 °e and 100 rpm for 2.5 hours.

9. The conical tube was heated at 70 °e for 15 minutes and then spun at 4,000 x g for

15 minutes.

10. The supernatant was decanted into a sterile conical tube. This stock contained the

excised pBluescript phagemid packaged as filamentous phage particles. Stored at

4°e.

11. The SOLR cells were spun down at 1,500x g. and re-suspended by 10 mM

MgS04 to an 00600 = 1.0.

12. 50 I-li phage supernatant stock and 200 I-li SOLR cells were combined and

incubated in a tube at 37 °e for 15 minutes.

13. 25 I-li ofthe combination solution was plated on LB plate with 50 I-lg Iml

ampicillin, the plates were incubated overnight at 37°C.
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14. Ampicillin resistant single colonies were selected and 4 rnl culture was made for

DNA isolation.

Media and Reagents:

NZY Agar (IL)
1L NZY broth, adjust the pH to 7.5 with NaOH
15 g of agar
Autoclave, pour into petri dishes avoid bubbles.

NZY top agarose (1 L)
lL ofNZY broth
Add 0.7% (WN) agarose.

Hybridization and Prehybridization Solution (350 ml)
17.5 mI 100x Denhardts
87.5 m} 20x SSPE
3.5 ml10% SDS
4.35 m! 10 mg/m1 5S DNA (denatured, sonicated salmon sperm DNA)
237.15 roI dH20

Washing Solution (1L)
740 ml dH20
250 mI20 X SSPE (5 X SSPE)
10 ml10% SDS (0.1% SDS)

Stripping Solution (lL)
5 mIl M Tris, pH 8.0 (5 mM)
0.4 rnl 0.5 M EDTA, pH 8.0 (0.2 mM)
0.5 g Na-Pyrophosphate (0.05%)
1.0 rnl of 100 X Denhardts (0.1 X)
Add dH20 to I L

2.7 Molecular Characterization of the Identified cUNA Clones

The isolated full-length genes cloned from eDNA library were next sequenced.

After sequencing, we compared the identities of these genes with the database in

GenBank to determine the function of the genes.
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2.7.1 Southern Blot

The organogenesis related genes were isolated using the small- scale plasmid

DNA isolation method (see section 2.4.3). Southern blot analysis was used to confirm

the genes picked from the cDNA library had homology with the probes.

Protocols:

1. 20 f-lg of plasmid DNA was digested with restriction enzymes (EcoR J and XhoI)

at 37 DC for 2-3 hours.

2. 2 f-ll of loading buffer was added to each sample.

3. 0.8 % agarose gel was prepared in 0.5 X TBE buffer.

4. The samples were loaded onto the gel and a DNA maker was included.

5. The DNA was run towards the anode at 50-80 V until the bromophenol blue dye

reached 2/3 of the length of the gel.

6. The gel was stained in I ~g/ml ethidium bromide solution for 10 minutes.

7. The DNA was visualized on a UV transilluminator, and the gel was photographed

alongside a ruler.

8. The gel was incubated in 500 ml of 0.25 M Hel for 15 minutes until the blue dye

turns yellow.

9. The gel was rinsed twice in dH20.

10. The DNA was denatured by placing the gel in 0.5 M NaOH for 30 minutes.

II. A DNA transfer assembly was set as shown below (Figure 2.2):

12. The buffer tank was filled with transfer buffer (0.5 M NaOH) and allowed the

transfer to proceed overnight.
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Nitrocellulose filter 0
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I

Gel

Whctman 3MM paper

Figure.2.2 Southern Blot Analysis Diagram

13. The wet paper towels were replaced, and more transfer buffer was added if

necessary.

14. The transfer set was carefully disassembled.

15. The filter was neutralized in 500 ml of 1.0 M NaCl/ 0.5 M Tris (pH 7.2) at room

temperature for 15 minutes.

16. The DNA was fixed to the filter by UV cross-linking.

17. Pre-hybridized in 50 I-li /cm2 of hybridization solution at 42°C for 4 hours.

18. The hybridization solution was changed and boiled salmon sperm DNA was

added.

19. The 32p labeled cDNA probes were boiled for 10 minutes, quench them on ice.

20. The probe was added and hybridized overnight at 42°C.

21. The membranes were washed for 20 minutes at 42 °C followed by washing 10

minutes at 52°C and 5 minutes at 62 °C, and the radioactivity counting was

checked frequently.
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22. The membranes were blotted dry on a piece of 3M paper.

23. The membranes were placed on x-ray film at -80°C.

24. The films were developed and the result were evaluated by comparing the

hybridization signals to the gel picture.

Solutions and buffers:

Denaturation buffer:
0.5 MNaOH

Neutralization buffer:
1.0 MNaCl
0.5 M Tris- HC1, pH 7.2

20 X SSPE: (IL)
175.3 gNaCI
27.6 g NaH2P04-H20
7.4 g EDTA, pH 7.4

100 X Denhardt's:
2% Ficol1 (400 K)
2% PVP (360 K)
2% Bovine serum album, BSA (fraction V)
Filter and store aliquots at -20°C.

Prehybridization-mix:
5 X SSPE
5 X Denbardts
100 llg/ml salmon sperm DNA
0.1% SDS

Hybridization- mix:
Prehybridization - mix containing 106

- 107 cpmlml denatured probe

Washing Solution:
5 X SSPE
0.1 % SOS
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2.7.2 Isolation of the Plasmid DNA Using Wizard System

High quality plasmid DNA were isolated using Wizard™ Plus Minipreps DNA

Purification Systems.

Protocols:

1. 4 ml of cells was pelleted by centrifugation at lO,OOOxg for 10 minutes.

2. The cell pellet was completely re-suspended in 300 III of cell resuspension

solution.

3. 300 III of cell lysis solution was added and mixed by inverting the tube 4 times.

4. 300 III of neutralization solution was added and mixed by inverting the tube

several times.

5. The lysate was centrifuged at lO,OOOxg in a microcentrifuge for 5 minutes.

6. I ml of re-suspended resin was pipetted into each barrel of the inicolumn/syringe

assembly.

7. All of the cleared lysate was carefully removed from each miniprep and

transferred to the barrel of the minicolumn/syringe assembly containing the resin.

S. The stopcocks were opened and a vacuum was appli.ed to pull the resin/lysate mix

into the minicolumn.

9. When the entire sample had completely passed through the column, the vacuum

was broken at the source.

10. 2 ml of the column wash solution was added to the syringe barrel and the vacuum

was re-applied to draw the solution through the minicolumn.
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11. The resin was dried by continuing to draw a vacuum for 30 seconds after the

solution had been pulled through the column.

12. The minicolumn was centrifuged at 10,000 x g for 2 minutes to remove residual

column wash solution.

13. The minicolumn was transferred to a new microcentrifuge tube.

14. 30 flI of water was applied to the minicolumn and wait I minute.

15. The tube was centrifuged at 10,000 x g in a microcentrifuge for 20 seconds to

elute the DNA.

2.8 Gene Expression Analyses

To demonstrate the expression of the cloned genes, the Northern Blot analysis

was performed.

2.8.1 Synthesis of Probes

Two probes were synthesized. The first one was obtained by EcoR J and Xho I

restriction digestion of plasmid DNA. The second probe was synthesized by peR

reaction with a pair of primers selected from a EMB II-similar gene. Both of them were

then purified by glass wool column. And then they were labeled with 32p by the Random

Primer DNA Labeling method (Feinberg and Vogelstein 1982). The following protocols

shows the glass wool column purification.

Protocols:

1. A small hole was made on the 0.5 ml tube and a stab of glass wool was put at the
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bottom. This tube was put into a 1.5 mt tube.

2. The bands were cut from agarose gel and put into the 0.5 mt tube.

3. The DNA fragment was spun down at 12,000 rpm for 5 minutes.

4. 20 I-lt TE buffer or sterilized water were added and spun again at 12,000 rpm for 5

minutes.

5. All the solution was collected.

6. Added to the DNA solution volume 2.5 times 100% ethanol and 0.1 times of total

volume 3M NaOAc to precipitate the DNA.

7. The tube was put into -80 °C for at least ]0 minutes.

8. The DNA was pelleted at maximum speed for 5 minutes.

9. The liquid was poured out and the pellet was washed out with 75% ethanol once.

10. The tube was spun at maximum speed for 3 minutes.

II . The DNA pellet was air-dried for 10 minutes.

12. The DNA pellet was dissolved into 10 I-ll dH20.

13. A mini gel was run to check the concentration of the purified DNA.

2.8.2 RNA Isolation aDd Formaldehyde Gel Electrophoresis

Seven type of RNA samples were isolated from shoot apical meristemic tissues

(3-day, I-week, 2-week, 3-week) and non-meristemic tissues (cotyledon, hypocotyl,

radical). The isolation protocol is same as 2.2.2. The RNAs were separated by

formaldehyde gel electrophoresis by the same protocol in 2.2.3.
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2.8.3 Northern Blot Analysis

Protocols:

1. The RNA gel was destained in 200 mM NaOAc (pH=4.0) for 20 minutes.

2. The membrane was pre-wet in H20 and 2xSSe.

3. The transfer was set-up as Southern blot (Figure 2.2).

4. The buffer tank was filled with transfer buffer (20xSSC) and allowed the transfer

to proceed overnight.

5. The membrane was washed in 5xSSPE briefly after blotting.

6. The DNA was fixed to the membrane by UV cross-link.

7. Pre-hybridized in 50 ul/cm2 of prehybridization solution at 65°C overnight.

8. The 32p labeled cDNA probes were boiled for 10 minutes, and quench on ice.

9. The probes were added into the hybridization solution, and hybridized at 42 DC

overnight.

10. The membranes were washed at 65°C for 10 minutes. The radioactivity counting

was checked frequently. The membrane was rinsed in 2x SSe.

11. The membranes were blotted dry on a piece of 3M paper.

12. The membranes were placed on x-ray film at -80 DC for 2 days.

13. The films were developed and the result was evaluated.

Solutions and Buffers:

Prehybridization Solution:

5x SSPE
5x Denhardt's
0.2 % SDS
100 ug/ml denatured ssDNA
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100 ml 20x SSPE
20 ml lOOx Denhardt
8 mllO% SDS
4 milO mg/ml ssDNA



Hybridization Solution:

50 % forrnamide
5x Denhardt's
5x SSPE
0.2 % SDS
100 ug/ ml denatured ssDNA

Washing Solution:

2x sse
0.5 % SDS
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CHAPTER III

RESULTS AND DISCUSSION

3.1 Establishing Shoot Organogenic Culture

Organogenesis in plants is a complicated developmental process. Even though

organogenesis has been a reliable technique for in vitro regeneration in many forest

species, there is limited practical methodology avaHable for loblolly pine organogenesis.

Organogenic cultures of loblolly pine family H-17 (Supplied by Western Gulf

Forest Tree Improvement Cooperative) have been established from shoot apical

meristems in our laboratory, allowing study of shoot organogenic culture in the

laboratory condition. The germination rates of loblolly pine family H-17 seeds are shown

in Table 3.1.

Table 3.1 Germination Rate of Loblolly Pine Family H-17 Seeds

I

10 11! Time (days) 6 7 8 9
Germination rate (%) 14 27 38 50 56 60

Generally, the seedlings were excised to develop organogenic cultures after

germinating 5-7 days. We found that surface-sterilized seeds did not germinate

uniformly if they had been stored at 4 DC. There was about a 3 week difference between

the first seed germination and the last one. This phenomenon did not occur with the
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surface-sterilized seeds stored at room temperature. We proposed that the non-uniform

germination was caused by low temperature, which breaking dormancy in the seed. Pine

seeds display highly variable germination behavior when sown following extraction or

storage. The type and degree of dormancy vary among species, geographic sources of the

same species, and lots within the same source. Gel1l1ination is greatly improved and

hastened by first subjecting the seeds to cold stratification, especially if the seeds have

been stored (Krugman and Jenkinson 1974).

In loblolly pine, apical meristematic tissue of young seedlings has great potential

to develop de novo shoots (Huang el al. 1995). The maturation of the tissues often

reduces the capacity for vegetative regeneration and many plants are impossible to

propagate vegetatively after the developmental state of the explants is determined (Torrey

1966). Shoot apical meristem plays an important role in de novo organogenesis and other

developmental processes. It is believed that shoot apical meristem is a generative tissue

and continuous activity of the apical meristem results in shoot development (Aithen et al.

1988).

Shoot apical meristem development was monitored to determine the optimum

stage for initiation of organogenic culture. When the hypocoty Is had grown out of the

megagametophyte 5 mm, the seedlings were removed from the agar plates to induce

shoot organogenic tissues. Plant growth regulators played an essential role in the

organogenesis process. LP medium containing 2.5 mg!1 BAP and 0.01 mgll NAA gave

relatively high initiation frequency (2%) of shoot organogenic tissue.
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Auxins and cytokinins are known to affect gene expression in relation to a variety

ofphenomena (Hathway 1990), but their action in organogenesis is unknown (Hicks

1993).

3.2 Identification of Shoot Organogenesis-regulated mRNAs

To investigate shoot organogenesis at the molecular level, the total RNAs from

different tissues and tissues at different stages ofdevelopment were isolated (Fig. 3.1).

We utilized the peR differential display technique on the seven developmentally

different RNA samples to identify putative shoot organogenesis-regulated genes. The

cDNAs were made from 3-day, I-week, 2-week, and 3-week organogenic tissues. Non-

organogenic tissues hypoctyl, cotyledon and radical tissues were used as control.

234567

4.40-kb-

2.37-kb
1.35-kb-

Figure 3.1 RNA pattern of loblolly pine seedling tissues. 1). 3-day shoot apical
meristemic tissue, 2). I-week shoot apical meristemic tissue, 3). 2-week shoot
apical meristemic tissue, 4). 3-week shoot apical meristemic tissue, 5). Cotyledon,
6). Hypocotyl, 7). Radi.cal.
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PCR-based differential display is a method originally developed to identify

differentially expressed genes in paired mammalian cell populations. The procedure

involves peR amplification of sub-populations of first-strand cDNAs using a given set of

short oligonucleotide primers. The 3' primer, which consists of 1I deoxythymidine

residues plus one additional 3' base to provide specificity, is used for reverse

transcription of mRNA subsets. The 5' primer is a decamer of arbitrarily-defined

sequence. Different combinations of 5' and 3' primers are used to generate a panel of

PCR products for two or more DNA samples that can be compared on a polyacrylamide

gel for distinct differences.

In our experiment, first strand cDNAs were synthesized from the total RNA by

reverse transcription of the mRNAs with poly A+ oligo-dT primers (A, G, and C). The

cDNA was amplified by the peR reaction with 16 pairs of primers arbitrary in sequence.

Table 2.3 shows the sequences ofall primers used. A total of 48 reactions were run for

each RNA sample. The PCR products were labeled with "'P-dATP and resolved on a

denaturing polyacrylamide gel and the pattern of bands for the seven samples compared

for each primer combination. Primer composition and the combination of primers used

had a significant impact on the banding patterns that were observed. Fifty-one cDNA

fragments that showed differential expression patterns crossing tissue types were

identified. Table 3.2 shows the primer combinations and expression patterns of the

cDNA fragments that were read from the differential display gel. In this table 3d, 1w,

2w, 3w represents 3-day, I-week, 2-week, 3-week shoot apical meristemic tissues

respectively. R, 1-1, and C refers to the radical, hypocotyl and cotyledon. By comparing

the density of the bands, the differentially expressed genes could be identified easily.
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Figure 3.2 shows an area of a polyacrylamide gel where a putative organogenesis

regulated cDNA fragment was detected. The first strand cDNAs were synthesized from

3-week shoot apical meristemic tissue RNA using 5'-AAGCTTTTTTTTTTTA-3' as the

primary oligonucleotide. The resultant eDNA product was peR-amplified in the

presence of 3
'ip-dATP using "12" as the 5' primer. The arrow points to a band where

there was distinctly more product amplification with RNA isolated from shoot apical

meristemic tissue than from non-organogenic tissue. In addition, the amount of cDNA

product from the later developmental stage (3-week) shoot apical meristemic tissue was

greater than that from the tissues of earlier developmental stages. This result suggests

that this RNA may control not only the initiation of organogenesis but the developmental

process as welL The 51 differentially expressed cDNA fragments identified were excised

from the dried gels, eluted into buffer, and re-amplified for cloning. We also sequenced

some of the cDNA fragments with significant differential expression patterns to provide

information about gene function.
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Table 3.2 DO-PCR cONA Expression Patterns (primer sequences showed in Table 2.3)

Band Primer Organogenic Non-organogenic
No. combination tissue tissue

3d lW 2W 3W R H C
1 H-API/H-T'JA + ++ +++ ++++ + / /
2 H-APIIH-TJJA ++ +++ +++ ++++ + -- /
3 H-APlIH-T, ,A -- + ++ +++ -- -- /
4 H-APlIH-TJJA -- + + +++ -I- -- /
5 H-APlIH-T1,A -- -I- +-1- +++ -- / /
6 H-APlIH-T" A + ++ ++ +++ / / /
7 H-APlIH-T"A -I- ++ +++ +++ -- -- /

8 H-AP4/H-T,1A -- ++ ++ +++ / -- /

9 H-AP4/H-T11A + ++ + +++ -- -- /

10 H-APII/H-T"A + ++ ++ ++++ + -- --
11 H-AP12/H-TIJ A ++ +++ +++ ++++ -- -- +

12 H-AP1 2/H-T1JA + ++ ++ +++ -- -- --
13 H-AP5/H-T1,A / + ++ ++++ -- / --
14 H-AP7/H-T1IC -- + -- ++ / / /
15 H-APS/H-T11C / / / ++ / / /
16 H-APS/H-T11C / / / ++++ / / /
17 H-APS/H-T1,C -- / +++ ++++ / / /

18 I-I-AP5/H-T,1C / -- -- ++ / / /

19 H-AP5/H-T I1C / / +++ ++++ -- / --

20 H-AP5/H-T11 C +++ +++ ++++ ++++ / -- /

21 H-AP4/H-T IIC -- ++ +++ ++++ -- / /
22 H-AP6/H-T11 C + + / +++ / -- --

23 H-AP6/H-T IIC -- -- / +++ / / --
24 H-AP8/H-T 1I C +++ +++ +++ ++++ / / --

25 H-AP8/H-TJle ++ +++ +++ +++ / -- /

26 H-AP8/H-T IIC + ++ ++ ++ -- / /

27 H-AP8/H-T"C ++ ++ +++ +++ / -- --

28 H-APll/H-TIlC ++ + ++++ ++++ -- -- --
29 H-APIIIH-TIIC + ++ + +++ + -- --
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Table 3.2 DD-PCR cDNA Expression Patterns (continued)

Band Primer Organogenic Non-organogenic
No. combination tissue tissue

3d 1W 2W 3W R H C
30 H-APll/H-TIIC + + + +++ -- -- /
31 H-AP9/H-T

"
G -- -- -- ++ -- / --

32 H-AP9/H-T" G ++ ++ +++ +++ / -- I
33 H-APII/H-T1,G -- -- + ++ I / I
34 H-APII/H-T11G + ++ + +++ / I I
35 H-APIllH-T1.1G / -- ++ ++++ 1 1 I
36 H-API21H-T ll G +++ +++ +++ ++++ -- / +

37 H-AP12/H-TJlG +++ +++ +++ +++ / / --
38 H-AP121H-T I ,G ++++ ++++ ++++ ++++ -- I +

39 H-AP13/H-T"G ++ -- ++ +++ -- + I
40 H-AP131H-T11 G +++ +++ +++ ++++ I -- --
41 H-AP141H-TlIG + 1 1 ++ 1 1 --

42 H-AP141H-T 11 G -- -- + +++ 1 / 1
43 H-AP6/H-T

"
G +++ +++ +++ +++ 1 -- +

44 H-AP7/H-T"G ++ 1 + +++ -- I I

45 H-AP7/H-TII G +++ ++ +++ +++ 1 1 I

46 H-AP7/H-TI,G ++ ++ +++ +++ -- -- I
47 H-AP7/H-T1IG +++ ++++ ++++ ++++ -- -- I
48 H-AP8/H-T"G ++ -- I +++ -- I 1
49 H-AP8/H-T 11 G ++ + 1 +++ -- -- --
50 H-AP8/H-TI1G ++ ++ / +++ -- / --
51 H-AP81H-T

"
G ++ + / +++ / -- /

'I
.!

++++:
+++:

++'
+:

I:

Very strong band
Strong band
Medium band
Weak band
Very weak band
No band
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Figure 3.2 Comparison oftbe expression patterns between the samples from different
tissue types (shoot apical meristems, cotyledon, hypoctyl and radical) suggests that the
gene is specific for apical meristems. The expression patterns of different stages of apical
meristem tissue show that a cDNA fragment (arrow) is associated with the organogenic
development process. I). 3-day shoot apical meristemic tissue, 2). I-week shoot apical
meristemic tissue, 3). 2-week shoot apical meristemic tissue, 4). 3-week shoot apical
meristemic tissue, 5). Hypocotyl, 6). Radical, 7). Cotyledon.
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3.3 Tissue-specific Expression

Reverse Northern was perfonned to verify the authenticity of the differentially

displayed bands. The cDNA fragments corresponding to each of the selected bands were

ligated into plasmid vector and transferred into E. coli cells. Antibiotic resistant colonies

were transferred onto duplicate filters, and were then probed with 32p labeled hulked

eDNA, which had been reverse transcribed from RNA of the 3-week shoot apical

meristemic tissue and cotyledon tissue. After washing and autoradiographing, the 3-week

shoot apical meristemic tissue showed the same patterns with the original antibiotic

plates. The plasmids with the eDNA insert did not hybridize with probes from cotyledon

tissue (Fig 3.3). This result confinned that the cDNA fragment cloned from the

differential display gel was truly tissue-specific.

Tissue specificity of all the cDNA fragments was examined by the hybridization

intensity oe2p- labeled cDNA probes (3-week shoot apical meristemic tissue and

cotyledon tissue) with cDNA fragments digested from the plasmid vectors. The results

indicate that some of the cDNAs were shoot organogenic tissue specific.

Seven cDNA fragments (10,11,14.17,24,39,45) selected from DD-peR were

confinued as tissue-specific cDNA fragments. Thus these fragments were utilized as

probes to screen the cDNA library to isolate the full-length organogenesis-regulated

genes.

73



l'

-.J
.j::..

..

'.
Positive

f'.

Negative

' ... "

Figure 3.3 Reverse Northern was conducted using the labeled cDNA transcribed from total RNA as probes to
hybridize with selected cDNA fragments from the differential display. Following hybridization positive results were
found with 3-week shoot apical meristemic tissue, negative results were obtained when probing with eDNA from
cotyledon tissue.



3.4 Sequence Analysis of eDNA Clones

By comparing the expressed pattems of these seven eDNA fragments cloned from

DD-PCR, we chose four of them (10, 11, 14, 17) as probes to screen a cDNA library in

order to obtain the full length shoot organogenesis related genes. This cDNA library

contained shoot apical meristemic genes and was constructed by Dr. Y. Huang in the

Forest Genetic laboratory, Oklahoma State University.

Eighty phage plaques homologous with probe II 11 were collected from the

secondary screening plates. Twenty-four of those plaques with strong signals were

chosen for in vivo excision to get the genes. Southern blot analysis result suggests that

twenty-one of those genes have homology with cDNA probe 1/ 11 cloned from the

differential display gel.

After the eDNA clones were sequenced, we compared the sequence with the

GenBank. database. No genes related to organogenesis were obtained by probe # 10, 1/ 14,

and #17. However, we found one, which might have a function in the regulation of

organogenesis using probe 1111. This clone (11-4) was 1250 bp in length. Figure 3.4

shows the nucleotide sequence of this clone. It is uncommon that a poly A sequence is

present in the middle of gene. We propose that this clone contain two genes.

Comparison of the sequence of the first gene (I lA-A, which is from 1 to 655 bp) with the

GenBank databases showed this region had 43 % homology with an antimicrobial gene

(AMPI). Purified MiAMP1 inhibited the growth of a variety of fungal, oomycete and

gram-positive bacterial phytopathogens in vitro (Marcus et al. 1997). The MiAMP 1 gene

may prove useful in improving disease resistance in transgenic plants. The second part of

clone 11-4 (11-4-8, which is from 656 to 1250 bp) has 90% identity to the Picea glauca
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late embryo abundant protein (EMB 11) rnRNA (Figure 3.5).

There are at least three explanations for the structure ofclone 11-4. First, this clone

is a full-length gene containing two independent open reading frames and the expression

of each is regulated by the other. Second, only the first part (I1A-A) expresses during

the organogenesis development process and the second part (11-4-B) was ligated with it

by chance during the cDNA library construction. Third, controversely, 11-4-A is not

related by organogenesis and was ligated with 11-4-B, which has a function in

organogenesis regulation.
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10 20 30 40 50 60 70

80 90 100 no 120 130 140 150

160 170 180 190 200 210 220 230

240 250
*

260
*

270 280 290 300 310

320 330 340 350 360 370 380 390

400
*

4lO

*
420 430

*
440

*
450 460

*

470 480
...

500 SlO 520
*

530
...

540
*

'IGI' GIG CCA 'K:A 'I'CT ATe 'ICA PGr ATG ATA G'\.T ATA C'Gr N:A TAA 'IGI' TIT r:rA A'IT TIC N:f:: cx;r CCA TAT G'\.T GlC

550
*

560 570
*

580
*

590 600 610
*

620

TCl3 TGI' ATA Tl'G CIT 'IGI' erA ACT ITA TIT CGr TM TAC GfA ATG TIC TIT GIG CAe TG\ TAT TAe ATA 'OCT 'ITT TN:.

630
*

640 650
...

660 670 680 690 700

710
...

720 730 740 750
*

760 770 780

GIG CIT CAT ere CD: 'IGI' TCG 'IGI' 'K:A ATe ccc: Per a::c TCT CAA TIC CAT TGT ere 'OCT oro::: CTG m:: 'IGI' TI'G TIT

790 800 810 820 830 840
*

850

TIC TIT CAT ATT ex:. oro::: TIC rxc co:; TIT 'K:A TTA TCl3 CPG Gl'C err: TIC TAT en:; CAT N:.A Gi\T TAT CTI ere oro:::

860
*

870 880
*

890 900 910 920.• 930

TGA en:; ACA 'K:A AM TIT ere ATG ere GG: AAT ATA CCG CPG en; r.cr co:; ATG CGA TGA GAT CPA a::G Gl\G en::; co:;

940 950 960
*

970 980 990 1000 1010

1020
*

1030 1040 1050 1060 1070 1080 1090

G:7I TIC CG:; Pffi ATe l'LT TI'G (X;G 1'GA CG:; N:A CTG CPG Pee. TGA GG: PG. Pee. TCC TAT CTA G'\.A PGr PGA 'fAA ATA

1100
*

1110 1120 1130 1140 1150 1160 1170

G'\.T TAT TAC AAT AAT CAA Gl\G TAT l1J'[; AAT PGr 'ICA GI'A 'ICA TI'G TI'G TTA GAT TTC TIT Per CIT TIT CJlC PGr 'K:A

1180 1190
*

1200 1210 1220 1230 1240
*

oro::: Gl'C TGI' PGA c:g; TIT CCA G'\.T TAA ITA ATA TAT ATA AM erA TAT ATT TG\ TGI' TAA AM AM AM AM AM AM

1250
*

AA

Figure 3.4 The DNA sequence of 11-4 obtained from the eDNA library. The full
length of this clone is 1250 bp. The sequences of the primers are underlined.
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3.5 Organogenic Gene Expression

To confirm the hypothesis about the function of the cloned gene, a Northern blot analysis

was performed. Seven types of RNA samples were isolated and transferred onto membrane.

They were then probed by 11-4-A or 11-4-B separately. The 11-4-A gene was obtained by

restriction enzyme digestion of the plasmid DNA and DNA electrophoresis. However, there was

no useful restriction enzyme cutting site in 11-4-B. We synthesized a pair of primers which

flank the open reading frame of 11-4-B (Figure 3.4 shows the sequence of the primers) and

amplified this region to be used as a probe for Northern blot analysis.

Figure 3.7b is the result ofNorthern blot probed by 11-4-B. Compared with the

RNA maker, the size of the resultant bands are 594 bp and it is almost the halflength of

the whole clone 11-4. Thus, this gene is most probably an independent gene and was

linked with the first part during the cDNA library construction. Figure 3.6 shows the

gene sequence of 11-4-B and the corresponding amino acid sequence.

Transcription study (figure 3.7) with RNAs synthesized in apical meristemic

tissues (3-day, I-week, 2-week, and 3-week) and non-meristematic tissues (cotyledon,

hypocotyl, and radical) demonstrate that 11-4-B regulates the organogenesis associated

activity at the transcriptional level and is expressed only in the apical meristemic tissues.

The expressed amount of this gene increased significantly in 3-week apical meristematic

tissue. It suggests that this gene may also control the organogenesis development

processes.
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11-4-B:

EMB 11:

11-4-B:

EMS 11:

11-4-B:

EMS 11:

11-4-B:

EMS 11:

~
'~

11-4-B:

EMB 11:

11-4-8:

EMS 11;

CTCGAACTCTACTCGGCGAAAACAAAGCGCTGCGCATTCATCTCGCTGTGCTTCATCTCGCCTGTTCGTGTTCAATCCCCACTCCCTCTCAATTCCAT
111I1 I 11I1 1111111111111111111111111111111 111111111111 I 11111111 I III II
GCGAAGAGGAAGCTTGGCGCATTCACCTCGCTGTGCTTCATCTCGCCTACTCGTGTTCGATCCTCGCTCCCTCTAATTTCGAT

TGTCTCTCTTGCCTGCGCTGTTTGTTTTTCTTTCATATTCACTGCTTCGCC CCGTTTTCATTATGGCAGGACGGCTTCTATCTGCATACAGATTA
11111 I I II III II I I I 111111111 11111 I III 11111111111111111111
TGTCTGTTCAGTCTTGCGCATTTTCGAAACTCCCTGAGATTCATTGCTTTGTTACCGTTTTCACCATGGCGAGCCGGATTCTATCTGCATACAGATTA

TCTTCTCTGCTGACTGACATCAAAATTTCTCATGCTCGGCAATATACCGCAGCGGCCTCCGATGCGATGAGATCAAGCGGAGCGGCCGATGCGATGAG
11111111111111111111111111111111111111111111111111111 1111111111111111111111 III I I I
TCTTCTCTGCTGGCTGACATCAAAATTTCTCATGCTCGCCAATATACGGCAGCGGCGGCCGAAGCGATGAGATCAGGCGGAGTGGCGGCGCGGGAGTT

ATCAAGC GCAGGCGGAGGTAATGATAAGAGAAGAGCGTTCTGGATGAGAGACCCAACCACGGGGGACTGGATTCCGGAGGATCACTTTG
II 11111111111 II 111111111 111111111111111111 1111111111111111111111111111111111111

TCCAGAGCGGAGCAAGGCAGGCGGAGGGAACAATAAGAGAACAGCGTTCTGGATGAGAGATCCAACCACGGGGGACTGGATTCCGGAGGATCACTTTG

GGGAGACGGACACTGCAGAGCTGAGGCAGAAGCTCCTATCTAGAAAGTAGATAAATAGATTATTACAATAATCAAGAGTATAAGAATAGTTCAGTATC
11111111111111111 II 111111111 I II II 11111111111111111111 I I 11111111111111111 1111
GCGAGACCGACACTGCAGATCTCAGGCAG~AGTTTCTCTCCAGAAAGTAGATAAATAGATTTACAATAATC AGAGTATAAGAATAGTTTTGTATT

ATTGTTGTTAGATTTCTTT ACTCTTTTTCACAGTTCATGCGACTGTAGACGGTTTCCAGATTAATTAATATATATAAAACTATAT
I I I II I I 111111111:111111111111111111111111111111111111111111 II 1 1111I
ACCCCAGAGACATCTTCTGAGGTTTCTTACACTCTTTCTCACAGTTCAT CGACTGTAGACGGTTTCCAGATTAATTAATATATTTATATTTATAT

11-4-B: ATTTGl\TGIT~
EMS 11:

Figure 3.5 The DNA sequence comparison between 11-4-B and the Piceagfaucalateeml:::ryoabuOOantp:otcin(EMBll) mRNAfromtre
GenBank~. Thehomology ret.v.W1 trese two genes is 9CP/o.



10 20 30 40 SO 60

* * *
CTC GM CTC TAC TCG GCG AAA ACA AAG CGC TGC GCA TTC ATC TCG CTG TGC TTC ATC TCG

70 80 90 100 110 120

* * *
CCT GTT CGT GTT CM TCC CCA CTC CCT CTC AAT TCC ATT GTC TCT CTT GCC TGC GCT GTT

130 140 150 160 170
* * *

TGT 1'1'1' TCT TTC ATA TTC ACT GCT TCG CCC CGT TTT CAT l' ATG GCA GGA CGG CTT CTA
M A G R L L>

180 190 200 210 220 230
* * *

TCT GCA TAC AGA TTA TCT TCT CTG CTG ACT GAC ATC AAA ATT TCT CAT GCT eGG CM TAT
5 A ':{ R L S S L L T 0 I K I S H A R Q y>

240 250 260 270 280 290
* *

ACC GCA GCG GCC TCC GAT GCG ATG AGA TCA AGC GGA GCG GeC GAT GCG ATG AGA TCA AGC
l' A A A 5 0 A M R S S G A A D A M R S 5>

300 310 320 330 340 350
*

GCA GGC GGA GGT AAT GAT AAG AGA AGA GCG TTC TGG ATG AGA GAC CCA ACC ACG GGG GAC
A G G G N 0 K R R A F VI M R D P l' l' G D;..

360 370 380 390 400 410
* * * *

TGG ATT CCG GAG GAT CAC TTT GGG GAG ACG GAC ACT GCA GAG CTG AGG CAG MG CTC CTA
W I P E D H F G E l' D l' A E L R Q K L 1,>

420 430 440 450 460 470
*

TCT AGA MG TA GAT AAA TAG ATT ATT ACA ATA ATC MG AGT ATA AGA ATA GTT CAG TAT
S R K>

480 490 500 510 520 530
* * * * *

CAT TGT TGT TAG ATT TCT TTA CTC 1''1'1' TTC ACA GTT CAT GCG ACT GTA GAC GGT TTC CAG

540 550 560 570 580 590
* * *

ATT MT TM TAT ATA TAA MC TAT ATA 1''1'1' GAT GTT MA AAA AM AI\A AM AAA AM A

Figure 3.6 Nucleotide and predicted amino acid sequences of 11-4-B (From 656
to1250 bp of 11-4). The start and stop codons of Open Reading Frame are
underlined.
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Although 11-4-B was not cloned directly by library screening, it might be

included in the resultant of the differential display, colonies from the done or even some

plaques from the cDNA library and they were missed to be picked up by chance.

Transcriptional study of 11-4-A (Figure 3.7a) also demonstrated that 11-4-A and

11-4£ are independent. The result shows that 11-4-A is expressed strongly in all shoot

apical meristemic tissue, but very weak in the cotyledon, hypocotyl, and radical. There is

no significant difference in the expression abundance between the different stages of the

shoot apical meristematic tissues. Because the non-meristematic tissues were not

cultured on LP medium, and plant response to the injury caused by excision may be

affecting the gene expression. In order to demonstrate that this gene has a function in

organogenesis regulation, except for the antimicrobial effect, further study is required to

eliminate the effects from the medium.

2 3 4 567 2 3 4 5 6 7

(a)

-600 bp-

(b)

Figure 3.7 Gene expression patterns of 11-4-A (a) and 11-4-B (b). 1). 3-day shoot apical
meristemic tissue, 2). I-week shoot apical meristemic tissue, 3). 2-week shoot apical
meristemic tissue, 4). 3-week shoot apical meristemic tissue, 5). Hypocotyl, 6).
Cotyledon, 7). Radical. Total RNAs (40 ug) from aU type of tissues were used for each
hne. Autoradiograrns were exposed for ~ 40 hours.
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CHAPTER IV

CONCLUSIONS

Loblolly pine (Pinus teada L.) is an economically important conifer species. We

were trying to improve the in vitro propagation of loblolly pine by exploring the

molecular mechanisms of de novo organogenesis. Because aU the development processes

are under genetic control, the purpose of this research was to clone organogenesis

regulated genes from shoot apical meristemic tissue of loblolly pine.

Shoot organogenesis cultures of loblolly pine were established using shoot apical

meristems obtained from young seedlings. By using this culture system (modified LP

medium and long light), the induction rate of organogenic cultures was high.

Organogenic cultures collected from various development stages were used for

differential gene expression studies. Gene expression products (mRNA) associated with

the organogenesis process was identified using PeR-based differential display

technology. Fifty-one eDNA fragments with differential expression patterns and tissue

specificity were cloned. Comparison of the expression patterns between the eDNA

samples from different types of tissues (shoot apical meristems, cotyledon, hypoctyl and

radical) suggests that the genes are tissue-specific. Furthermore, expression patterns of

the selected cDNA appears to be associated with the shoot organogenesis. This result
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suggests that mRNA differential display technology is a useful tool to clone differentially

expressed genes involved in the development process of organogenesis in loblolly pine.

Seven shoot-organogenesis specific cDNA fragments (10, 11, 14, 17,24,39, and 45)

were confirmed using both Reverse Northern and Southern blot analyses, which were

used as probes for screening of the organogenic cDNA library of loblolly pine. A number

of cDNA clones have been obtained after we screened the organogenic eDNA library.

One of these clones encodes a protein homologous with Picea glauca late embryo

abundant protein (EMB 11) mRNA. Its function may be involved in regulation of organ

differentiation and meristematic cell activation. Another cDNA clone shows a homology

(43%) with an antimicrobial gene (AMPI) in their amino acid sequences, but is highly

expressed in shoot apical meristemic tissues of loblolly pine.

Histological studies of shoot formation in conifers showed that activities of

meristematic centers or meristemoids developed from a few layers of epidermal and sub

epidermal cells of embryogenic tissue, produced bud primordia and finally adventitious

shoots (Thorpe and Patel 1986). Finding out whether and when the regulatory genes are

expressed in such meristematic centers or elsewhere is critical in understanding the

functions of the cloned genes in such developmental processes. Therefore, one of the

further works should be in situ hybridization or in situ peR to determine specific tissue

and cell types in which these genes are expressed.
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