RED-BLACK TREE ANIMATION

By
YONGZHONG ZHANG
Bachelor of Science
Zhongshan University
Guangzhou, Guangdong
People's Republic of China
1990
Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE
December, 1998

RED-BLACK TREE ANIMATION

Thesis Approved:

ACKNOWLEDGMENTS

My sincere appreciation goes to all the people who assisted me in this study and my stay here at Oklahoma State University.

I am especially grateful to my major advisor, Dr. Jacques E. LaFrance, for his constructive guidance, inspiration and friendship during the whole process. My sincere appreciation extends to Dr. John P. Chandler and George E. Hedrick for serving as my graduate committee members and providing invaluable guidance and assistance, and also for their friendship.

I am indebted to my family for their patience, encouragement and support. I am particularly grateful to my wife, Tong Xic, for her love, understanding, suggestions. Many thanks go to my parents and grandparents for their never-ending emotional support.

Finally, I would like to thank the Department of Computer Science for providing me the study opportunity.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. RELATED WORK 5
Data Structure Animation 5
Work at Oklahoma State University 8
III. RED-BLACK TREE ISSUES 9
Introduction 9
Basic Operations 11
Advanced Topics 13
IV. COMPUTER ANIMATION ISSUES 17
Brief History 17
Computer-Assisted Animation 18
V. DESIGN AND TESTING 20
Visualization Organization 21
Testing 23
VI. SUMMARY AND FUTURE WORK 25
Summary 25
Future Work 25
BIBLIOGRAPHY 27
APPENDIXES 30
APPENDIX A—PROOF OF LEMMA 30
APPENDIX B-COMPUTER ANIMATION TERMS 31
APPENDIX C-MOVIE SCRIPT 32

LIST OF FIGURES

Figure Page

1. Rotations 12
2. Insertion Templates 14
3. Deletion Templates 15
4. Main Menu Interface 20
5. Animator Interface 22
6. An Indexed Complete Binary Search Tree 23

CHAPTER I

INTRODUCTION

Since the using of the film "Sorting Out Sorting" [Baecker 81] and BALSA [Brown 88], the study of computer animation as a teaching tool has been catching more and more attention within the past two decades [Ross 94][Stasko 96][Domingue 97], with the advance of computer techniques for creating and manipulating graphics displays.

Graphics have been used for centuries to communicate information effectively among people and aid in the comprehension of complex information. Because patterns and shapes are inherently less abstract than numbers and languages, pictures convey information more readily and permit easier retention than textual or verbal representation of the same information [Dudley 82]. With the advanced technology, the computer's information-handling capacities are now being implemented by the ability of hardware and software systems to condense, code, and display information in graphic forms that make large amounts of data comprehensible. Computer graphics can give people fast perception, vivid display of data relationships, and simplification of complex data.

Educators constantly are seeking new ways to improve instruction, to facilitate learning, and to hold the attention of students. The power of computers motivates the study and practice of using dynamic visualization as educational aids.

Though most of the text books do have pictures, the drawbacks of these figures are:

1. They give only static illustration
2. They usually do not have enough examples or even no examples
3. Possibly they don't show each step of a process
4. They don't have interactive capability.

Ross pointed out the problem [Ross 94]:

The problem is that no matter how clever or how animated our lecture is, when the student is faced with trying to review and assimilate the information later, the spirit of animation has long since left the body of knowledge. It would be very helpful to the student to be able to rerun the animation over and over, perhaps on other problem instances, while studying.

Since in computer science education, data structures and algorithms are a significant part, and a lot of research and animations focuses on this field. Algorithm animation has been proven to be a powerful tool in teaching data structures and algorithm analysis [Lawrence 94].

Algorithm animation uses computer-assisted visualization to make the comprehension of the functionality of algorithm easier. It actually serves two fundamental purposes as an instructional aid: it provides a concrete depiction of the abstractions and the operations which are inherent in an algorithm or program, and it portrays the dynamics of a time-evolving process [Stasko 96].

Algorithm animations don't have the drawback of static diagrams in textbooks. Stasko gave the additional advantages of algorithm animation:

Animations might encourage and make it relatively easy for the learner to make and test predictions of what is going to happen at each step of the algorithm. This prediction element could help the learner understand the algorithm better than a learner who passively takes in the information. A learner could certainly make predictions from a static textual/graphic presentation of an algorithm, but perhaps the advantage of an animation is that it will spontaneously encourage a learner to make the predictions without being prompted and will provide the learner with rapid feedback about the accuracy of his or her predictions. In addition, an animation might be more salient than a set of static images and thus, might help the student remember the algorithm better. An animation also might help learning because it displays the features that one should presumably attend to. That is, the items in the animation might, by their presence, provide information to the learner that might not be easily discernible otherwise. Finally, an animation might also encourage the learner to self-explain the behaviour of the algorithm. Self-explanation can increase the likelihood of a learner to integrate the new information with existing knowledge structures, thus making the learner mote likely to transfer the information to novel situations.

This thesis aims at the animated presentation of red-black trees. Such dynamic displays are helpful for students to comprehend the task of an algorithm to maintain the red-black tree structure.

Data structure algorithm animation can be either static or dynamic. Static animation means that the animation can only be seen for a fixed set of inputs. Dynamic animation means that the users can interact with the animation process of the computer, using their own inputs at run time. Dynamic animation enables users to observe and explore the dynamic behaviors of the data structure through interactive graphical displays. In this thesis, all animations are dynamic animations in order to achieve the greatest benefits for the learners.

The software used to develop this animation is Macromedia Director 6.0. It is one of the most powerful tools which can create a variety of multimedia productions. Some of the key features of Director 6.0 are [Director]:

1. wide-ranging cross-platform authoring and delivery
2. flexible authoring metaphors and tools
3. broad web authoring and delivery
4. approachable, professional user interface
5. powerful media, animation and integration functions

The Lingo scripting language of Director has object-oriented behavior. It can synchronize and integrate media elements or objects, such as interface, sound, and animation effectively.

This application is built on a PC, in the Windows 95 environment and can be delivered on the Internet, Windows NT, as well as both 68 K and PowerPC of Mac OS system. It has the features of maintainability, accessibility, flexibility and interactivity.

CHAPTER II

RELATED WORK

This chapter gives an overview of previous and current work related to data structure algorithm animation. We focus on the educational animations. We will also mention some important systems, although their goals maybe not primarily for education, but they can be used for education.

Data Structures Algorithm Animation

Knowlton's film, "L6: Bell Telephone Laboratories Low-Level Linked List Language" [Knowlton 66], which showed the manipulation of lists at an assembly level. It is known the first to use dynamic display techniques as opposed to static techniques using a movie film medium, and the first to address the visualization of a data structure. Other well-known related movies were Hopgood's movie on hashing algorithms [Hopgood 74] and Booth's PQ-Trees [Booth 75].

Baecker's system developed in the mid-1970s was the first known system to aim at algorithm animation. It was not interactive and eventually resulted in the film "Sorting Out Sorting". This 25-minute, color, narrated educational film used animated graphics to explain how nine different sorting algorithms manipulate their data. It also illustrated the speed differences by showing each algorithm working on a data set of twenty-five hundred random elements [Price 93].

All of the work above had the limitation that they were films. Though their display style was dynamic, they did not allow viewers to interact with the model being displayed. Viewers must watch the films in the exact form in which it was produced, with the exact parameters, the exact data and even at the exact speed.

Computer static graphical displays of data structures emerged in mid-1970s. These systems had the advantage that data structures in any arbitrary program can be viewed without altering the program in any way. However, the disadvantage is that the generic representation does not necessarily convey how the data really was used. Moreover, they did not reveal how the algorithm was processing the data. They did not update the display corresponding to the change of data. Some of these systems are Incense, PV, GDBX, PROVIDE [Brown 88].

The 1980's were the beginning of modern computer animation with the introduction of the bit-mapped display and window interface technology. The first interactive and most important system of this era was BALSA, followed by BALSA-II, produced at Brown University. Many production systems using modern humancomputer interface technology have been developed since then. The following gives brief descriptions of BALSA, Zeus, and TANGO. More systems information can be obtained from other literature [Price 93] and web sites [Zeus] [KMi].

BALSA was written in C and developed for both education and research. It was installed in a lab equipped with 55 Apollo workstations. All nodes were connected via a LAN. This system was used in undergraduate teaching [Brown, 85]. It allowed the instructor to give a running commentary on the prepared graphical animation running on each student's machine. Students could control these scripted animations (stop, start,
speed control, replay, etc.). Several of the animations could also be played backwards. The entire set of scripts was integrated with the textbook Algorithms [Sedgewick 83]. BALSA is a pioneering work and it has become the benchmark against which all subsequent systems have been measured.

Zeus, developed by the Systems Research Center (SRC) of Digital Equipment Corporation(DEC), was mainly designed for research. This system was written for Modula-3 on DEC workstations [Brown 92]. Zeus is also noteworthy for its objectoriented design. In Zeus, an algorithm is annotated with procedure calls that identify the fundamental operations to be displayed. An annotation, called an interesting event, has parameters that identify program data. SRC has another educational system called CAT (Collaborative Active Textbooks), which is based on Zeus. Its Java version is JCAT [Brown 96] [JCAT].

TANGO was built up by Stasko. The current version is XTANGO [Stasko 92], which runs on most popular Unix workstations that can compile C and use the X windows systems. It is a general purpose algorithm animation system that supports programmers developing color, real-time, continuous, $2 \& 1 / 2$-dimensional animation of their own algorithms and programs. The focus of the system is its ease of use. The basic process of developing an animation consists of implementing the algorithm in C (another language can be used, it must just produce a trace file which is read by a C program driver) and then deciding on the important events to be portrayed during the execution of the algorithm. These events then activate animation routines implemented in a separate file using the XTANGO animation package to create and manipulate objects (circles,
squares, lines, and so on). Transitions on objects include movement, color change, resizing, and filling, as well as others.

Work At Oklahoma State University

The research and practice on the algorithm animation has been started for many years at computer science department of Oklahoma State University [Lee 88] [Arra 92] [Kummetha 93] [Shen 94] [Muktavaram 96] [Harvick 97] [Lin 97].

The work of this thesis is part of a larger project ANIMATED PRESENTATION OF DATA STRUCTURES. This system is developed as a teaching tool, which helps students comprehend the task of an algorithm to maintain a data structure. Interactive animation of these data structure algorithms will allow the students to explore different scenarios in the construction of data structures and better understand what their programs need to do.

Several animations of data structure algorithms have been finished. These include linked list, queue, stack [Xu 97], binary search tree [Shen 98], B-tree...

Animations are being done for other data structures, such as AVL trees.
All of these animations are developed to run on both Windows and the Mac OS operating systems, and they can be distributed over the web. Wide-ranging crossplatform authoring and delivery is one of the Macromedia Director's key features.

CHAPTER III

RED-BLACK TREE ISSUES

Introduction

The real world requires the manipulations in dynamic (finite) sets, which can change over time. Operations on a dynamic set can be grouped into two categories: querying operations, which simply return information about the set, and modifying operations, which change the set. Typical operations are search (access), insert and delete. The time taken to execute a set operation is usually measured in terms of the size of the set given as one of its arguments [Cormen 90].

In this paper, we call internal nodes of a tree, nodes, which are key-bearing nodes, and external nodes of a tree, leaves (NIL), which means that the value in that field is a pointer referring to no object at all.

A binary tree is a finite set of elements which is either empty or is partitioned into three disjoint subsets. The first subset contains a single element called the root of the tree. The other two subsets are themselves binary tree, called the left and the right subtrees of the original tree. A complete binary tree with n nodes has $\mathrm{n}+1$ leaves. Information can be stored in the leaves and/or nodes of a tree. In some applications, we use only one possibility [Mehlhorn 84]. An important application of binary trees is their use in searching, because a special type of binary tree, the binary search tree, in which all
keys are arranged according to a total order manner, is well-suited for storing ordered list of keys. Binary search tree supports dynamic set operations in _(h) worst-case time, where h is the height of the tree [Weiss 93].

Balanced trees are a well-known solution to problem of maintaining a dynamic set so as to be able to perform the operations access, insert and delete quickly. These operations can be executed in _($\log n)$ time on a set of n elements if it is represented by a balanced tree [Knuth 73]. The idea of balancing a search tree is due to the invention of AVL trees, the oldest and most classical data structure for balanced trees. Balanced trees are not limited to binary trees, such as some famous trees such as splay trees, B-trees and their variants are also balanced trees [Sedgewick 83] [Cormen 90]. All known classes of balanced trees can be divided into two groups: height-balanced and weight-balanced trees. In height-balanced trees, one balances the height of the subtrees. In weightbalanced trees, one balances the number of nodes in the subtrees if a node is used as weight.

A red-black tree is a height-balanced binary tree, with one extra bit of storage per node: its color, which is either red or black. Red-black trees introduced by Bayer in 1972. He called them "Symmetric binary B-trees" [Bayer 72]. Guibas and Sedgewick studied their properties and related kinds of trees, and introduced the red/black color convention [Guibas 78]. The following is the definition of red-black tree according to Cormen [Cormen 90]. A binary search tree is a red-black tree if it satisfies the following red-black tree properties:
a. Every node is either red or black
b. Every leaf (NIL) is black
c. If a node is red, then both its children are black
d. Every simple path from a node to a descendant leaf contains the same number of black nodes

From the definition, we know immediately that a red-black tree is balanced by the constraint that a path from the root to a leaf is not more than twice as long as any other path. In other words, the longest path from an internal node to a leaf can not exceed twice that of a shortest path from that node to a leaf since both paths have the same number of black nodes.

We define black-height of a node $x, b h(x)$, is the number of black nodes on any path from x to a leaf, not counting x . Leaves have black-height 0 . The black-height of a tree is the black-height of its root.

As mentioned above, there are two ways to represent a list using red-black trees. The keys can be stored either in the internal nodes, so that the order in the list corresponds to symmetric order in the tree, or in the leaves, so that the order in the list corresponds to left-to-right order among leaves. Here we will use the former representation.

Basic Operations

One nice property of a red-black tree is that the access operation for standard binary search tree works without any modification. This section just focuses on the insert and delete operations.

The way to make red-black trees operations efficient in the worst case is to impose a balance condition that forces the height of an n-node tree to be _ $(\log n)$. This requires rebalancing the tree after each update operation.

Lemma A red-black tree with n nodes has height at most $2 \log (\mathrm{n}+1)$.
The proof of this lemma is in appendix A. An immediate consequence of this lemma is that the dynamic set operations can be executed in _ (log n) time on red-black trees, because a binary search tree of height h executes its operations in _(h), as mentioned before. Since operations insert and delete modify the tree, the result may violate the red-black tree properties, the rebalancing operations are needed if so. Updating is accomplished through node recoloring and tree rotation, which is a local operation in a search tree that preserves in-order traversal key ordering. Figure 1. gives the illustration of the rotations.

Figure 1. Rotations. Note that in both trees, an in-order traversal yields:

$$
A x B y C
$$

Inserting In Red-Black Tree
i. Find a place for insertion as binary search tree, end at a dummy-leaf. Replace the leaf by new node with two new dummy-leaves.
ii. Color the new node red.
iii. Use the following templates (Figure 2.) for the insertion. In case 3, propagation may be needed, that is, to apply the recoloring transformation in case 3 until it no longer applies, and then if necessary, apply one of the transformation in case 2 and 4 .

Deleting in Red-black Tree

Deleting an item is similar to the above but slightly more complicated.
i. Find the node to be deleted, delete it as in binary search tree.
ii. If node is red, the tree is still a red-black tree, otherwise the replacing node is short; i.e., paths down from it contain one fewer black node than paths from sibling. We use a minus symbol, _, to denote the shortness.
iii. Use the following templates (Figure 3.) for deletion. Let x be node to be deleted, y be the child of x.

Advanced Topics

Red-black trees can also perform the join and split operations in logarithmic time.
To join red-black trees, we need to store with each root its black-height, then while descending through the tree, we can compute the black-height of each node visited in constant time until we reach the appropriate node to join. Splitting a red-black tree at item x is accomplished by cutting off all subtrees along the path from root to x , and then we perform a sequence of joins to concatenate all the left ones to form T_{L} and all right ones to form T_{R} [Tarjan 83] [Booth 90].

In addition to having the $\mathrm{O}(\log \mathrm{n})$ time bound for the operations above, the alternative top-down implementations have extremely similar performance [Guibas 78].

Case 1: $p(x)$ is black, no update needed

Case 2: $p(x)$ is red, $g(x)$ doesn't exist

Case 3: $p(x)$ is red, $u(x)$ is red

Case 4: Terminal case. $p(x)$ is red, $u(x)$ is black

Figure 2. Insertion templates. Case 3 may cause propagation. other cases are terminal cases.

Case 1: red leaf, no update is needed

Case 2: black semi-leaf, if child is red, recolor it (2a), otherwise push the shortness up the tree (2b).

Case 3: $s(y)$ is red

Case 4: $s(y)$ is black, $p(y)$ is black

Case 5: Terminal case. $s(y)$ is black, $p(y)$ is red

Case 6: Terminal case. $s(y)$ is black, $p(y)$ is either, $s(y)$'s left child is red, $s(y)$'s right child is black

Case 7: Terminal case. $s(y)$ is black, $p(y)$ is either, $s(y)$'s left child is either, $s(y)$'s right child is red

Figure 3. Deletion templates. Case $2 b, 3$ and 4 may cause propagation, other cases are terminal cases.

The conventions used in the figures above are the following:
$p(x)$------ the parent of node x
$u(x)$------ the uncle of node x
$g(x)$------ the grandparent of node x
$s(x)$------ the sibling of node x

- Red node

0
Black node
——either, i.e., node is either red or black

CHAPTER IV

COMPUTER ANIMATION ISSUES

Animation is based on the physiological fact that the image of an object perceived by the human eye persists in the brain for a brief period of time after the object no longer exists in the real world. This phenomena, called visual retention, is related to the chemistry of the retina and to the structure of cells and neurons in the eye. Smooth animation is achieved in cinematography and television by consecutively displaying images at a faster rate than the period of visual retention. The critical image update rate for smooth animation has been determined to be between 22 and 30 images per second [Sanchez 95].

Computer animation can be defined as the simulation of movement or of lifelike actions by the manipulation of digital objects. The notion of digital simulation of movement is the core of this definition [Sanchez 95].

Brief History

In 1824, Mark Roget published a paper, "The Persistence of Vision with regard to Moving Objects" [Morrison 94], which revealed the principle that the human eye retains an image for a fraction of a second longer than the image is actually present.

In 1831, Joseph A. Plateau invented the first animation machine called Phenakistoscope. This device consisted of a disk with a series of drawings and windows.

When the disk is rotated, viewers would see the drawings in rapid sequence [Thalmann 90].

The birth of computer graphics was a military system introduced in 1951. Computer animation was first developed in mid-1960s. The first computer-animatedfilm was Hunger, produced by Peter Folders in 1974 [Thalmann 90].

Computer-Assisted Animation

Computer animations can be divided into two classifications: computer-assisted animation and computer-generated animation.

Computer-assisted animation, also referred to as key-framed animation, consists of six possible functions, summarized by Thalmann: the input of drawings, the production of in-betweens, the specification of the motion of an object along a path, the coloring of drawings and backgrounds, the synchronization of the motion with sound, and the initiation of recording a sequence of film [Thalmann 90].

Computer-generated animation, also referred to as modeled animation, is used in the creation of three-dimensional images.

Sanchez described some techniques on computer-assisted animation.

Frame-By-Frame Animation

In frame-by-frame animation, the computer generates the required images, which are recorded or stored for playback at a later time. This playback can take place in the same machine that generated the image set or in another media. The generated images can either recorded in video tape or stored in computer disk. When the image set is complete, the animation can be viewed by playing back.

Interactive Animation

Interactive animation refers to computer objects that are moved at the user's desire. At present, the most common interactive devices are the keyboard and mouse. In general, the notion of interactive animation includes any technology in which the user exercises some levels of control over computer-animated action.

CHAPTER V

DESIGN AND TESTING

The goal of this thesis is red-black tree animation. Only the insert and delete operations are implemented. They are completely different from those of binary search trees (BST). Generally, the design and implementation of this animation will follow the style of previous work at Oklahoma State University. Eventually all work can be integrated into one whole data structure algorithm animation system.

The application consists of four Director movies which are presented as windows on a computer. Each one contains menu and/or button to enhance the interactivity of the graphical display. The figure below gives a display of the main menu of this application.

Figure 4. Main menu interface.

Visualization Organization

Specifically, the red-black tree animation consists of three parts: the presentation of the definition of a red-black tree, explanation of its operations, and the interactive animation of the algorithm.

Presentation of Definition

a. Different definitions will be given.
b. Some important concepts and features of red-black tree, such as black-height, shortness.
c. An example of a red-black tree.

Explanation of Operations
a. Templates for insert operation
b. Algorithm for insertion operation
c. Templates for delete operation
d. Algorithm for deletion operation

Algorithm AnimationThe design of this interface has the similar style to that of the previous work. To be an active animation and more user-friendly, pop up menus and buttons are put onto the animator. The following is the interface of the animator, where learners will experience the insert and delete operation of red-black trees

Figure 5. The animator interface.

Because rotations and propagation could happen, the implementation of the operations is more complicated than that of in BST. An example can explain more clearly how to implement the animation. When a new node is inserted, it is first compared with the root, and go along the path as in BST. If a rotation happens, a node X is moved to the proper place, then the line connecting X and its parent disappears, the new parent of X then is moved to the right position if X has that new parent. The movement of the key nodes (x, y in figure) in a rotation are displayed. Finally, a new line connecting X with its parent is drawn. The animations of other nodes in the rotation run under the same method.

The visualization is basing on the inherent fact in the binary search trees: the one-to-one correspondence between the node in a BST and an entry in an array.

We index each node in a complete BST, as shown below:

Figure 6. An indexed complete binary search tree

Then we put these nodes into an array orderly:

We can find that the relationship between the tree and the array is:

1. If node in position n has children, its left child and right child are at the entry $2 \mathrm{n}, 2 \mathrm{n}+1$ of the array, respectively.
2. The parent of any node in position $n(n>1)$ is in the position _n/2.

Testing

The purpose of testing is to ensure that the software works as intended. The test process includes the user interface testing, data handling testing and object movement testing (animation testing).

1. The objective of the testing of all the user interfaces, including the pop up windows, is to ensure the ease of use.
2. The objective of the testing of data handling, including the error handling, is to ensure the functionality of the actions.
3. The objective of the testing of image movement is to ensure that during the operation, the learners can view clearly the path along with a node is moving.

CHAPTER VI

SUMMARY AND FUTURE WORK

Summary

Advanced technology leads to inscreasing capability of computers. It gives us a new way to develop some new teaching tools that can help students have better understanding of the information they get from the instructor's lectures and from their textbooks.

This thesis project is to build an interactive red-black tree animation. This application provides a user-friendly interface. Users can interact with it to get the presentation of red-black tree's definition, key concepts and its operations and their algorithms. Multiple windows, menus, buttons, and event-drive design allow the learners to rerun the red-black tree animation over and over. The learners are able to try out the software on their own data, at their own pace, so that they can get better comprehension of what a red-black tree is and how it performs insertion and deletion operations.

This application is developed on Windows 95 environment using Macromedia Director 6.0. It can be delivered on the Internet, Windows NT, as well as both the Motorola 68 K and the PowerPC of Mac OS system. It has the features of reusability, maintainability, accessibility and interactivity.

Future Work

The work here is a part of a larger project, which is planned to be a teaching tool to help computer science students to learn more effectively while studying data structures and algorithms. Sound can be added to the application to achieve a better multimedia effect and to enhance the presentation quality, and help users understand what is happening easier while using it, thus help them have a better understanding of the abstract concepts and algorithms.

More of the animations of other data structure algorithms can be constructed, and all work could be woven together into an integrated system suitable for use in laboratory exercises or distance learning in the future.

BIBLIOGRAPHY

Arra, Shravan K., "Object-Oriented Data Structure Animation", M.S. Thesis, Computer Science Department, Oklahoma State University, 1992.

Baecker, Ronald, Sorting Out Sorting, 16 mm color sound film, 25 minutes, Computer Science Department, University of Toronto, 1981.

Bayer, R., "Symmetric binary B-trees: Data Structure and Maintenance algorithms", Acta Informatica 1, pp. 290-306, 1972.

Booth, Heather D., "Some Fast Algorithms on Graphs and Trees", Ph.D. dissertation, Princeton University, 1990.

Booth, Kellog S., PQ Trees, 16 mm color silent film, 12 minutes, 1975.
Brown, Marc H., "Zeus: A System for Algorithm Animation and Multi-View Editing", Systems Research Center Research Report 75, Digital Equipment Corporation, 1992.

Brown, Marc H., Algorithm Animation, The MIT Press, 1988.
Brown, Marc H. and Najork, Marc A., "Collaborative Active Textbooks: A Web-Based Algorithm Animation System for an Electronic Classroom", Systems Research Center Research Report 142, Digital Equipment Corporation, 1996.

Brown, M. H., and Sedgewick R., "Techniques For Algorithm Animation", IEEE Software, pp. 28-39, 1985.

Cormen, R. H., Rivest, R.L., and Leiserson, C. E., Introduction to Algorithms, The MIT Press under a joint production-distribution agreement with the McGraw-Hill Books, 1990.

Director, Macromedia Inc., WWW page, 1998.
URL: http://www.macromedia.com/software/director/productinfo/.
Domingue, John and Mulholland, Paul, "Teaching Programming at a Distance: The Internet Software Visualization Laboratory", Journal of Interactive Media in Education, 1997(1), pp. 1-24.

Dudley, Timothy K., "Computer and Graphics: A Technology Comes of Age", in Interactive Computer Systems, edited by William C. House, Petrocelli Books, Inc., 1984.

Guibas, Leo J. and Sedgewick R., "A Dichromatic Framework for Balanced Trees", Proceedings of the $19^{\text {th }}$ Annual Symposium on Foundations of Computer Science, IEEE Computer Society, pp. 8-12, 1978.

Harvick, Lee Hou., "Rule Based Data Structure Animation", M.S. Thesis, Computer Science Department, Oklahoma State University, 1997.

Hoopgood, F. Robert A., "Computer Animation Used as a Tool in Teaching Computer Science", Proc. 1974 IFIP Congress, 1974.

JCAT, "Java-Based Collaborative Active Textbooks", Systems Research Center, Digital Equipment Corporation WWW page, 1998. URL: http://www.research.digital.com/SRC/JCAT/.

KMi, "Software Visualization Research in KMi", Knowledge Media Institution WWW page.
URL: http://kmi.open.ac.uk/sv/.
Knowlton, K. C., L6: Bell Telephone Laboratories Low-Level Linked List Language, 16 mm black and with sound film, 16 minutes, Murray Hill, NJ: Technical Information Libraries, Bell Laboratories, Inc., 1966.

Knuth, Donald E., The Art of Computer Programming, Volume 3/Sorting And Searching, Addison-Wesley Publishing Co., 1973.

Kummetha, V. C. S. Reddy, "A Level Linked R* Tree Structure With An Application Using X-Window Graphical Interface", M.S. Thesis, Computer Science Department, Oklahoma State University, 1993.

Lawrence, A., Badre, A., and Stasko, J., "Empirically Evaluating The Use Of Animation To Teach Algorithms", IEEE Symp. On Visual Languages, pp. 48-54, 1994.

Lee, Wilson, "An Implementation Of A Data Structures Display System", M.S. Thesis, Computer Science Department, Oklahoma State University, 1988.

Lin, Betty, "An Object-Oriented Graphic User Interface For Visualization Of B-Trees' Animation", M.S. Thesis, Computer Science Department, Oklahoma State University, 1997.

Mehlhorn, Kurt, Sorting and Searching, Volume 1 of Data Structures and Algorithms, Springer-Verlag, 1984.

Morrison, Mike, Become A Computer Animator, Sams Pub., 1994
Muktavaram, Vikas, "Visualization Of Sorting Algorithms", M.S. Thesis, Computer Science Department, Oklahoma State University, 1996.

Price, B. A., Baecker, R. M., and Small, I. S., "A Principled Taxonomy of Software Visualization", Journal of Visual Languages and Computing, 4(3) pp.211-266, 1993.

Ross, Rockford J., "Animation in Computer Science Education", SIGACT News, Volume 25, No.2, pp.40-49, 1994.

Sanchez, Julio and Canton, Maria P., Computer Animation Programming Methods and Techniques, McGraw-Hill Inc., 1995.

Sedgewick, Robert, Algorithms, Addison-Wesley Publishing Company, Inc. 1983.
Shen, Bin, "An Instructional Module For Teaching About Binary Search Trees", M.S. Thesis, Computer Science Department, Oklahoma State University, 1998.

Shen, Hung-Che, "A Visual Aid For The Learning Of Tree-Based Data Structures", M.S. Thesis, Computer Science Department, Oklahoma State University, 1994.

Stasko, John T., Byrne, Michael D. and Catrambone Richard, "Do Algorithm Animations Aid Learning?", Technical Report GIT-GVU-96-18, Georgia Institute of Technology, 1996.

Stasko, John, "Animating Algorithms with XTANGO", SIGACT News, 23(2), 67-71, 1992.

Tarjan, R. E., "Data Structure And Network Algorithm", SIAM, Philadelphia, 1983
Thalmann, Nadia M. and Thalmann, Daniel, Computer Animation, Second revised edition, Springer-Verlag, 1990.

Weiss, Mark A., Data Structures and Algorithm Analysis in C', Benjamin/Cummings Publishing Company, Inc., 1993.

Xu, Cong, "Multimedia Visualization Of Abstract Data Type", M.S. Thesis, Computer
Science Department, Oklahoma State University, 1997.
Zeus, "Algorithm Animation at SRC", Systems Research Center, Digital Equipment Corporation WWW page, 1998
URL: http://www.research.digital.com/SRC/zeus/home.html.

APPENDIXES

APPENDIX A

Lemma

A red-black tree with n internal nodes has height at most $2 \lg (\mathrm{n}+1)$

proof

Show that subtree starting at x contains at least $2 \mathrm{bh}(\mathrm{x})-1$ internal nodes. By induction on height of x :
if x is a leaf then $\operatorname{bh}(x)=0,2 \operatorname{bh}(x)-1$
Assume x has height h, x 's children have height $\mathrm{h}-1$
x's children black-height is either $\mathrm{bh}(\mathrm{x})$ or $\mathrm{bh}(\mathrm{x})-1$
By induction x 's children subtree has $2 \mathrm{bh}(\mathrm{x})-1-1$ internal nodes
So subtree starting at x contains

$$
2 \mathrm{bh}(\mathrm{x})-1-1+2 \mathrm{bh}(\mathrm{x})-1-1+1=2 \mathrm{bh}(\mathrm{x})-1 \text { internal nodes }
$$

let $h=$ height of the tree rooted at x
$\operatorname{bh}(\mathrm{x})>=\mathrm{h} / 2$
So $n>=2 h / 2-1 \Leftrightarrow n+1>=2 h / 2 \Leftrightarrow \lg (n+1)>=h / 2$
$\mathrm{h}<=2 \lg (\mathrm{n}+1)$

APPENDIX B

Computer-Assisted Animation ---Animation produced with the use of a software program and a computer to draw or model each frame, produce the in-betweens and color them, as opposed to animation produced with cells, clay, or puppets etc.

Computer-Generated Animation --- Animation produced using a computer and various software programs to create images within the computer and manipulate them. These images exist as digital information until they are output to the CRT monitor, film/video recorder or printer.

Keyframe --- The main positions of a model along its movement path.
In-between(s) --- The frame(s) that lies in sequence between two keyframes.

APPENDIX C

The following is the movie script, the main part of scripts in this application:

```
-- ***********************************************************************
-- *
*
-- * Movie Script *
-- * *
-- **********************************************************************
on startMovie
    global gOperationList, gNodeList
    set gOperationList = []
    set gNodeList = []
    invisible
    installmenu 5
end
-- ***********************************************************************
on Intemp
    set the modal of window "templates" to TRUE
    set the windowtype of window "templates" to 4
    tell window "templates" to go to frame "Intemp"
    tell window "templates" to set the title of window "templates" to "Insertion"
    set the rect of window "templates" to rect(5,50,280,220)
    open window "templates"
    --forget window "templates"
end Intemp
on Deltemp
    set the modal of window "templates" to TRUE
    set the windowtype of window "templates" to 4
    tell window "templates" to go to frame "Deltemp"
    tell window "templates" to set the title of window "templates" to "Deletion"
    set the rect of window "templates" to rect(5,50,280,220)
    open window "templates"
    --forget window "templates"
end Deltemp
on ShowHistory
    -- alert "Doesn't work."
    global gOperationList
    set totalNum to count(gOperationList)
    if totalNum=0 then
        alert "No operation yet."
        exit
    end if
```

```
    set operations=getAt(gOperationList, 1)
    repeat with x=2 to totalNum
    put ", " & getAt(gOperationList,x) after operations
    end repeat
    go to frame "History"
    puppetSprite 46, TRUE
    puppetSprite 47, TRUE
    set the visible of sprite 46 to TRUE
    set the visible of sprite 47 to TRUE
    set the text of member "showOps" to operations
    -- set the text of member "Another" to operations
    updateStage
end ShowHistory
on rebuild
    global gOperationList, gNodeList
    set gOperationList = []
    set gNodeList = []
    invisible
    cleardata
end rebuild
on backMain
    play done
end
on finish
    set the modal of window "Wins" to TRUE
    set the windowtype of window "Wins" to 4
    set WinTop to ((the stageTop + the stageBottom)/2-75)
    set WinBottom to ((the stageTop + the stageBottom)/2+75)
    set WinLeft to ((the stageLeft + the stageRight)/2-100)
    set WinRight to ((the stageLeft + the stageRight)/2+100)
    set the rect of window "Wins" = rect(WinLeft, WinTop, WinRight, WinBottom)
    tell window "Wins" to go to frame "exit"
    open window "Wins"
    --forget window "Wins"
end finish
on stopmovie
    invisible
    cleardata
    set the text of member "Key1" to ""
    repeat with }x=17\mathrm{ to 47
        set the text of member x to ""
    end repeat
end
```

on Instruct
set the modal of window "Wins" to FALSE set the windowtype of window "Wins" to 4 set the rect of window "Wins" to rect($5,50,413,298$)
tell window "Wins" to go to frame "Help" open window "Wins"
end
on AboutThis
set the modal of window "Wins" to TRUE set the windowtype of window "Wins" to 4 set the rect of window "Wins" to rect $(5,50,286,228)$
tell window "Wins" to go to frame "About"
open window "Wins"
end
.- *
Insertion Routine
on insert
global gNodeList, gOperationList
if the text of member "FieldInput" $="$ " then alert "Please enter an integer in the box." exit
end if
set NewKey to value(the text of member "FieldInput")
puppetSprite 91, TRUE
puppetSprite 92, TRUE
if count(gNodeList) $=0$ then
set NewNode=new(script "MakeNewNode", NewKey, 1)
display NewNode
add gNodeList, NewKey
add gOperationList, "Insert " \& string(NewKey)
ColorRootBlack
else
if getOne(gNodeList, NewKey) $=0$ then set CurKey=value(the text of member "Keyl") set CurNum=1
set the text of member "MovingKey" to string(NewKey) repeat while voidP(CurKey)=FALSE
set CurSprite=3*CurNum-1
set the locH of sprite 91 to the right of sprite CurSprite-1 set the loc V of sprite 91 to the locV of sprite CurSprite set the locH of sprite 92 to the locH of sprite $91+17$

```
            set the locV of sprite 92 to the locV of sprite 91
            if CurKey > NewKey then
            set the text of member "Compare" to ">"
            set CurNum=CurNum*2
            else
            set the text of member "Compare" to "<"
            set CurNum=CurNum*2+1
            end if
            set the visible of sprite 91 to TRUE
            set the visible of sprite 92 to TRUE
            updateStage
            longWait
            if CurNum=16 or CurNum>=31 then
            decline
            exit
            end if
            set string=the text of member (the memberNum of sprite (3*CurNum-1))
            if the visible of sprite (3*CurNum-1)=TRUE then
            set CurKey=value(string)
            else
            exit repeat
            end if
            end repeat
            set the visible of sprite 91 to FALSE
            set the visible of sprite 92 to FALSE
    set NewNode=new(script "MakeNewNode", NewKey, CurNum)
    display NewNode
    if CurNum>=4 and (getColor(getParentNum(CurNum))=34 or
getColor(getParentNum(CurNum))=35) then
            adjust(CurNum)
            if the foreColor of sprite 1 }>255\mathrm{ then
            ColorRootBlack
            end if
            end if
    add gNodeList, NewKey
    add gOperationList, "Insert " & string(NewKey)
    else
            alert "This node already in the tree."
    end if
    end if
    cleardata
end insert
```

```
-- *
                This handler will be called when red rule is not satisfied
-- ************
    repeat while (thisNum}>>1
        if (getColor(getParentNum(thisNum))=35) then
            set parentNum=getParentNum(thisNum)
            set grandparentNum=getGrandparentNum(thisNum)
            if (parentNum mod 2)}=0\mathrm{ then
            set uncle=parentNum+1
                if getColor(uncle)=35 or getColor(uncle)=34 then
                    colorBlack(parentNum)
                    colorBlack(uncle)
                    colorRed(grandparentNum)
                    set thisNum=grandparentNum
            else
                    if (thisNum mod 2)}>0\mathrm{ then
                        leftRotate(parentNum)
            end if
                    colorBlack(parentNum)
                    colorRed(grandparentNum)
                    rightRotate(grandparentNum)
                    exit repeat
            end if
        else
                    set uncle=parentNum-1
                    if getColor(uncle)=35 or getColor(uncle)=34 then
                    colorBlack(parentNum)
                    colorBlack(uncle)
                    colorRed(grandparentNum)
                    set thisNum=grandparentNum
            else
                    if (thisNum mod 2)=0 then
                    rightRotate(parentNum)
            end if
                    colorBlack(parentNum)
                    colorRed(grandparentNum)
                    leftRotate(grandparentNum)
                    exit repeat
            end if
        end if
        else
            exit repeat
        end if
    end repeat
end
-- *
on rightRotate nodeNum
set KeySprite=3*NodeNum-1
set rightNum \(=2 *\) nodeNum +1
set rightKeySprite \(=3 *\) rightNum-1
set height-the locV of sprite rightKeySprite-the locV of sprite KeySprite
set width=the locH of sprite rightKeySprite-the locH of sprite KeySprite
set times=integer(height/3)-1
puppetSprite KeySprite-1, TRUE
puppetSprite KeySprite, TRUE
puppetSprite 93, TRUE
set the text of member "movingNode"=the text of member (the memberNum of sprite
KeySprite)
set the foreColor of member "movingNode"=the foreColor of sprite (KeySprite-1)
set the loc of sprite 93 to the loc of sprite KeySprite
set the visible of sprite KeySprite-1 = FALSE
set the visible of sprite KeySprite \(=\) FALSE
set the visible of sprite \(93=\) TRUE
updateStage
repeat with \(x=1\) to times
set the locV of sprite \(93=\) the locV of sprite \(93+3\)
set the locH of sprite \(93=\) the locH of sprite \(93+\) (integer(3*width/height))
wait
updateStage
end repeat
set the loc of sprite 93 to the loc of sprite rightKeySprite
--set the visible of sprite rightKeySprite = FALSE
set the visible of sprite rightKeySprite-1 = FALSE
updateStage
if (the text of member (the memberNum of sprite rightKeySprite)) \(>" n\) and the visible of sprite rightKeySprite=TRUE then
if rightNum \(=3\) or rightNum=5 or rightNum=7 or rightNum=11 or rightNum=15 then
RRmoveSubTreeDown 1 rightNum
else
RRmoveSubTreeDown2 rightNum
end if
end if
puppetSprite rightKeySprite-1, TRUE
puppetSprite rightKeySprite, TRUE
set the foreColor of sprite (rightKeySprite-1)=the foreColor of member "movingNode" set the text of member (the memberNum of sprite rightKeySprite)=the text of member
"movingNode"
set the visible of sprite rightKeySprite \(=\) TRUE
set the visible of sprite rightKeySprite-1 = TRUE
set the visible of sprite rightKeySprite-2 \(=\) TRUE
set the visible of sprite \(93=\) FALSE
updateStage
```

 RRmoveSubTreeUp(2*nodeNum)
    ```
    longwait
end
-- \(_{\text {-- }}^{* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~}\)
on RRmoveSubTreeDown1 subRootNum set leftChildNum=2*subRootNum
set rightChildNum \(=2\) *subRootNum +1
if subRootNum \(<16\) then
if the visible of sprite ( \(3^{*}\) leftChildNum-1)=TRUE and (the text of member (the memberNum of sprite \(\left(3^{*}\right.\) leftChildNum-1))) \(\diamond\) " then

RRmoveSubTreeDown1(leftChildNum)
end if
if the visible of sprite ( \(3^{*}\) rightChildNum-1)=TRUE and (the text of member (the memberNum of sprite ( \(3^{*}\) rightChildNum-1))) \(\diamond\) " then

RRmoveSubTreeDown1(rightChildNum)
end if
end if
if subRootNum=3 then
set newNum=7
else if subRootNum=5 then
set newNum=11
else if subRootNum=6 or subRootNum=7 then
set newNum=subRootNum+8
else if subRootNum=10 or subRootNum=11 then
set newNum=subRootNum +12
else if subRootNum>=12 and subRootNum<15 then
set newNum=subRootNum +16
else
decline
exit
end if
nodeMoving(newNum, subRootNum)
end
--
on RRmoveSubTreeDown2 subRootNum
set leftChildNum=2*subRootNum
set rightChildNum \(=2\) * subRootNum +1
if subRootNum<16 then
if the visible of sprite \(\left(3^{*}\right.\) leftChildNum-1)=TRUE and (the text of member (the memberNum of sprite ( \(3^{*}\) leftChildNum-1))) \(>\) " then

RRmoveSubTreeDown2(leftChildNum)
end if
if the visible of sprite \(\left(3^{*}\right.\) rightChildNum-1)=TRUE and (the text of member (the memberNum of sprite ( \(3^{*}\) rightChildNum-1))) \(\diamond\) "" then

RRmoveSubTreeDown2(rightChildNum)
end if
end if
if subRootNum=9 then
set newNum=subRootNum +10
else if subRootNum=13 then
set newNum=subRootNum+14
else
decline
exit
end if
nodeMoving(newNum, subRootNum)
end

-- *
Handlers for move the left sub-tree up in Right Rotation Routin
on RRmoveSubTreeUp nodeNum
set KeySprite=3*nodeNum-1
set parentKeySprite \(=(\) nodeNum/2)*3-1
set height=the locV of sprite KeySprite-the locV of sprite parentKeySprite set width=the locH of sprite parentKeySprite-the locH of sprite KeySprite set times=integer(height/3)-1
puppetSprite KeySprite-1, TRUE
puppetSprite KeySprite, TRUE
puppetSprite 93, TRUE
set the text of member "movingNode"=the text of member (the memberNum of sprite
KeySprite)
set the foreColor of member "movingNode"=the foreColor of sprite (KeySprite-1)
set the loc of sprite 93 to the loc of sprite KeySprite
updateStage
set the visible of sprite KeySprite-2 = FALSE
set the visible of sprite KeySprite-1 = FALSE
set the visible of sprite KeySprite = FALSE
set the visible of sprite \(93=\) TRUE
repeat with \(x=1\) to times
set the locV of sprite \(93=\) the locV of sprite 93-3
set the locH of sprite \(93=\) the locH of sprite \(93+\) (integer( \(3^{*}\) width/height))
wait
updateStage
end repeat
set the loc of sprite 93 to the loc of sprite parentKeySprite
updateStage
puppetSprite parentKeySprite-1, TRUE
puppetSprite parentKeySprite, TRUE
set the foreColor of sprite (parentKeySprite-1)=the foreColor of member "movingNode" set the text of member (the memberNum of sprite parentKeySprite)=the text of member "movingNode"
```

 set the visible of sprite parentKeySprite = TRUE
 set the visible of sprite parentKeySprite-1 = TRUE
 set the visible of sprite 93= FALSE
 updateStage
 set leftChild=2*nodeNum
 set rightChild=2*nodeNum+1
 if (3*rightChild-1)<90 then
 if the visible of sprite (3*rightChild-1)=TRUE then
 if rightChild=5 then
 RRtransferSubTree1 rightChild
 else if rightChild=9 or rightChild=13 then
 RRtransferSubTree2 rightChild
 else
 set newNode=rightChild+1
 nodeMoving(newNode, rightChild)
 end if
 end if
 end if
if (3*leftChild-1)<90 then
if the visible of sprite (3*leftChild-1)=TRUE then
if leftChild=4 then
RRupingSubTree1 leftChild
else if leftChild=8 or leftChild=12 then
RRupingSubTree2 leftChild
else
nodeMoving(leftChild/2, leftChild)
end if
end if
end if
end

```
on RRupingSubTreel subRootNum
    if subRootNum=4 then
    set newNode \(=2\)
    else if subRootNum=8 or subRootNum=9 then
    set newNode=subRootNum-4
else
    set newNode=subRootNum-8
    end if
    nodeMoving(newNode, subRootNum)
    set leftChild=2*subRootNum
    set rightChild=leftChild +1
    if leftChild<31 then
        if the visible of sprite ( \(3^{*}\) leftChild-1)=TRUE then
        RRupingSubTreel leftChild
    end if
    end if
    if rightChild \(<31\) then
        if the visible of sprite ( \(3^{*}\) rightChild-1)=TRUE then
```

 RRupingSubTreel rightChild
 end if
 end if
 end
on RRupingSubTree2 subRootNum
if subRootNum=8 then
set newNode=4
else if subRootNum=12 then
set newNode=6
else if subRootNum=24 or subRootNum=25 then
set newNode=subRootNum-12
else
set newNode=subRootNum-8
end if
nodeMoving(newNode, subRootNum)
set leftChild=2*subRootNum
set rightChild=leftChild}+
if leftChild<31 then
if the visible of sprite (3*leftChild-1)=TRUE then
RRupingSubTree2 leftChild
end if
end if
if rightChild<31 then
if the visible of sprite (3*rightChild-1)=TRUE then
RRupingSubTree2 rightChild
end if
end if
end
on RRtransferSubTreel subRootNum
set leftChild=2*subRootNum
set rightChild=leftChild+1
if leftChild<31 then
if the visible of sprite (3*leftChild-1)=TRUE then
RRtransferSubTreel leftChild
end if
end if
if rightChild<31 then
if the visible of sprite (3*rightChild-1)=TRUE then
RRtransferSubTreel rightChild
end if
end if
if subRootNum=5 then
set newNode=6
else if subRootNum=10 or subRootNum=11 then
set newNode=subRootNum+2
else
set newNode=subRootNum+4

```
```

 end if
 nodeMoving(newNode, subRootNum)
 end
on RRtransferSubTree2 subRootNum
set leftChild=2*subRootNum
set rightChild=leftChild+1
if leftChild<31 then
if the visible of sprite (3*leftChild-1)=TRUE then
RRtransferSubTree2 leftChild
end if
end if
if rightChild<31 then
if the visible of sprite (3*rightChild-1)=TRUE then
RRtransferSubTree2 rightChild
end if
end if
if subRootNum=9 or subRootNum=13 then
set newNode=subRootNum+1
else
set newNode=subRootNum+2
end if
nodeMoving(newNode, subRootNum)
end
-- * Left Rotation Routine
on leftRotate nodeNum
set nodeSprite=3*nodeNum-1
set leftNum=2*nodeNum
set leftSprite=3*leftNum-1
set height=the locV of sprite leftSprite-the locV of sprite nodeSprite
set width=the locH of sprite nodeSprite-the locH of sprite leftSprite
set times=integer(height/3)-1
puppetSprite nodeSprite, TRUE
puppetSprite leftSprite, TRUE
puppetSprite 93, TRUE
set the text of member "movingNode"=the text of member (the memberNum of sprite
nodeSprite)
set the foreColor of member "movingNode"=the foreColor of sprite (nodeSprite-1)
set the loc of sprite 93 to the loc of sprite nodeSprite
updateStage
set the visible of sprite nodeSprite-1 = FALSE
set the visible of sprite nodeSprite = FALSE
set the visible of sprite 93= TRUE

```
repeat with \(\mathrm{x}=1\) to times
set the locV of sprite \(93=\) the locV of sprite \(93+3\)
set the locH of sprite \(93=\) the locH of sprite 93 -(integer( \(3 *\) width/height))
wait
updateStage
end repeat
set the loc of sprite 93 to the loc of sprite leftSprite
-- set the visible of sprite leftSprite = FALSE
set the visible of sprite leftSprite-1 = FALSE
updateStage
if the visible of sprite leftSprite=TRUE and (the text of member (the memberNum of sprite leftSprite)) \(<\) "" then
if leftNum=2 or leftNum=4 or leftNum=6 or leftNum=8 or leftNum=12 then
LRmoveSubTreeDownl leftNum
else
LRmoveSubTreeDown2 leftNum
end if
end if
puppetSprite leftSprite-1, TRUE
puppetSprite leftSprite, TRUE
set the foreColor of sprite (leftSprite-1)=the foreColor of member "movingNode"
set the text of member (the memberNum of sprite leftSprite)=the text of member "movingNode"
set the visible of sprite leftSprite = TRUE
set the visible of sprite leftSprite-1 = TRUE
set the visible of sprite leftSprite- \(2=\) TRUE
set the visible of sprite \(93=\) FALSE
updateStage
LRmoveSubTreeUp(2*nodeNum+1) longwait
end

on LRmoveSubTreeUp nodeNum
set KeySprite=3*nodeNum-1
set parentKeySprite \(=(\) nodeNum \(/ 2) * 3-1\)
set height=the locV of sprite KeySprite-the locV of sprite parentKeySprite set width=the locH of sprite KeySprite-the locH of sprite parentKeySprite set times=integer(height/3)-1
puppetSprite KeySprite, TRUE
puppetSprite parentKeySprite, TRUE
puppetSprite 93, TRUE
set the text of member "movingNode"=the text of member (the memberNum of sprite KeySprite)
set the foreColor of member "movingNode"=the foreColor of sprite (KeySprite-1)
```

set the loc of sprite 93 to the loc of sprite KeySprite
updateStage
set the visible of sprite KeySprite-2 = FALSE
set the visible of sprite KeySprite-1 = FALSE
set the visible of sprite KeySprite = FALSE
set the visible of sprite 93 = TRUE
repeat with x=1 to times
set the locV of sprite 93 = the locV of sprite 93-3
set the locH of sprite 93=the locH of sprite 93-(integer(3*width/height))
wait
updateStage
end repeat
set the loc of sprite 93 to the loc of sprite parentKeySprite
updateStage
puppetSprite parentKeySprite-1, TRUE
puppetSprite parentKeySprite, TRUE
set the foreColor of sprite (parentKeySprite-1)=the foreColor of member "movingNode"
set the text of member (the memberNum of sprite parentKeySprite)=the text of member
"movingNode"
set the visible of sprite parentKeySprite = TRUE
set the visible of sprite parentKeySprite-1 = TRUE
set the visible of sprite 93 = FALSE
updateStage
set leftChild=2*nodeNum
set rightChild=2*nodeNum+1
if (3*leftChild-1)<90 then
if the visible of sprite (3*leftChild-1)=TRUE then
if leftChild=6 then
LRtransferSubTree1 leftChild
else if leftChild=10 or leftChild=14 then
LRtransferSubTree2 leftChild
else
set newNode=leftChild-1
nodeMoving(newNode, leftChild)
end if
end if
end if
if (3*rightChild-1)<90 then
if the visible of sprite (3*rightChild-1)=TRUE then
if rightChild=7 then
LRupingSubTree1 rightChild
else if rightChild=11 or rightChild=15 then
LRupingSubTree2 rightChild
else
nodeMoving(rightChild/2, rightChild)
end if
end if

```
end if
end
on LRupingSubTreel subRootNum
if subRootNum=7 then
set newNode=3
else if subRootNum=14 or subRootNum=15 then set newNode=subRootNum-8
else
set newNode=subRootNum-16
end if
nodeMoving(newNode, subRootNum)
set leftChild=2*subRootNum
set rightChild=leftChild +1
if leftChild<31 then if the visible of sprite \(\left(3^{*}\right.\) leftChild-1)=TRUE then
LRupingSubTreel leftChild
end if
end if
if rightChild< \(<31\) then if the visible of sprite ( \(3 *\) rightChild-1) \(=\) TRUE then LRupingSubTreel rightChild end if
end if
end
on LRupingSubTree2 subRootNum
if subRootNum=11 then
set newNode \(=5\)
else if subRootNum=15 then
set newNode=7
else if subRootNum=22 or subRootNum=23 then
set newNode=subRootNum-12
else
set newNode=subRootNum-16
end if
nodeMoving(newNode, subRootNum)
set leftChild=2*subRootNum
set rightChild=leftChild +1
if leftChild<31 then
if the visible of sprite \(\left(3^{*}\right.\) leftChild-1)=TRUE then
LRupingSubTree2 leftChild
end if
end if
if rightChild<31 then
if the visible of sprite ( \(3^{*}\) rightChild-1)=TRUE then
LRupingSubTree2 rightChild
end if
end if
end
```

on LRtransferSubTreel subRootNum
set leftChild=2*subRootNum
set rightChild=leftChild +1
if leftChild<31 then
if the visible of sprite (3*leftChild-1)=TRUE then
LRtransferSubTree1 leftChild
end if
end if
if rightChild<31 then
if the visible of sprite (3*rightChild-1)=TRUE then
LRtransferSubTreel rightChild
end if
end if
if subRootNum=6 then
set newNode=5
else if subRootNum=12 or subRootNum=13 then
set newNode=subRootNum-2
else
set newNode=subRootNum-4
end if
nodeMoving(newNode, subRootNum)
end
on LRtransferSubTree2 subRootNum
set leftChild=2*subRootNum
set rightChild=leftChild+1
if leftChild<31 then
if the visible of sprite (3*leftChild-1)=TRUE then
LRtransferSubTree2 leftChild
end if
end if
if rightChild<31 then
if the visible of sprite (3*rightChild-1)=TRUE then
LRtransferSubTree2 rightChild
end if
end if
if subRootNum=10 or subRootNum=14 then
set newNode=subRootNum-1
else
set newNode=subRootNum-2
end if
nodeMoving(newNode, subRootNum)
end
on nodeMoving newNode, subRootNum

```
```

 set newKeySprite=3*newNode-1
 set newNodeSprite=newKeySprite-1
 set subRootKeySprite=3*subRootNum-1
 set subRootNodeSprite=subRootKeySprite-1
 puppetSprite newKeySprite, TRUE
 puppetSprite newNodeSprite, TRUE
 puppetSprite newNodeSprite-1, TRUE
 puppetSprite subRootKeySprite, TRUE
 puppetSprite subRootNodeSprite, TRUE
 puppetSprite subRootNodeSprite-1, TRUE
 set the text of member (the memberNum of sprite newKeySprite) = the text of member (
 the memberNum of sprite subRootKeySprite)
set the foreColor of sprite newNodeSprite = the foreColor of sprite subRootNodeSprite
set the visible of sprite (newNodeSprite-1)=TRUE
set the visible of sprite newKeySprite=TRUE
set the visible of sprite newNodeSprite=TRUE
set the visible of sprite subRootKeySprite=FALSE
set the visible of sprite subRootNodeSprite=FALSE
set the visible of sprite subRootNodeSprite-1=FALSE
updateStage
end
on LRmoveSubTreeDown1 subRootNum
set leftChildNum=2*subRootNum
set rightChildNum=2*subRootNum+1
if subRootNum<16 then
if the visible of sprite (3*leftChildNum-1)=TRUE and (the text of member (the
memberNum of sprite (3*leftChildNum-1)))}>>" the
LRmoveSubTreeDown1(leftChildNum)
end if
if the visible of sprite (3*rightChildNum-1)=TRUE and (the text of member (the
memberNum of sprite (3*rightChildNum-1)))}\diamond\mathrm{ "" then
LRmoveSubTreeDown1(rightChildNum)
end if
end if
if subRootNum>=2 and subRootNum<4 then
set newNum=subRootNum+2
else if subRootNum>=4 and subRootNum<6 then
set newNum=subRootNum+4
else if subRootNum>=6 and subRootNum<8 then
set newNum=subRootNum+6
else if subRootNum>8 and subRootNum<12 then
set newNum=subRootNum+8
else if subRootNum>=12 and subRootNum<16 then
set newNum=subRootNum+12
else
decline
exit
end if

```
```

 nodeMoving(newNum, subRootNum)
 end
on LRmoveSubTreeDown2 subRootNum
set leftChildNum=2*subRootNum
set rightChildNum=2*subRootNum+1
if subRootNum<16 then
if the visible of sprite (3*leftChildNum-1)=TRUE and (the text of member (the
memberNum of sprite (3*leftChildNum-1)))}\diamond"" the
LRmoveSubTreeDown2(leftChildNum)
end if
if the visible of sprite (3*rightChildNum-1)=TRUE and (the text of member (the
memberNum of sprite (3*rightChildNum-1)))}\diamond""\mathrm{ then
LRmoveSubTreeDown2(rightChildNum)
end if
end if
if subRootNum=10 then
set newNum=subRootNum+10
else if subRootNum=14 then
set newNum=subRootNum+14
else
decline
exit
end if
nodeMoving(newNum, subRootNum)
end
on decline
alert "Out of stage! Please rebuild the tree."
rebuild
end
on ColorRootBlack
longwait
puppetSprite 1, TRUE
set the foreColor of sprite 1 to 255
updateStage
end
on cleardata
set the text of member "FieldInput" to ""
set the text of member "movingNode" to ""
end cleardata
on toggleVisible channel, state
set the visible of sprite channel to state

```
end
```

-_ ***
on wait
repeat with x=1 to 15000
nothing
end repeat
end
-- ***
on longWait
repeat with x=1 to 5
wait
end repeat
end
_- **
on invisible
repeat with }\textrm{x}=1\mathrm{ to }9
toggleVisible(x, FALSE)
end repeat
end
-- ***
on getParentNum child
set parentNum=child/2
return parentNum
end
on getGrandparentNum grandChild
set child=getParentNum(grandChild)
return getParentNum(child)
end
on getColor nodeNum
set nodeSprite=(3*nodeNum-1)-1
if the visible of sprite nodeSprite=0 then
set color=255
else
set color-the foreColor of sprite nodeSprite
end if
return color
end
on colorBlack nodeNum
set nodeSprite = 3* nodeNum-1
puppetSprite nodeSprite-1, TRUE
set the foreColor of sprite nodeSprite-1 to 255
updateStage
end

```
```

on colorRed nodeNum
set nodeSprite = 3*
puppetSprite nodeSprite-1, TRUE
set the foreColor of sprite nodeSprite-1 to 35
updateStage
end

```
-- *
Deletion Routine
on delete
global gNodeList, gOperationList
if the text of member "FieldInput" \(=" n\) then
alert "Please enter an integer in the box."
exit
end if
set deletion=value(the text of member "FieldInput")
if getOne(gNodeList, deletion) \(=0\) then
alert "Key not found, please select another one."
exit
end if
set \(\mathrm{keyNum}=\) findKeyNum(deletion)
if the visible of sprite \(\left(3^{*}\left(2^{*}\right.\right.\) keyNum \(\left.)-1\right)=\) FALSE or the visible of sprite ( \(3^{*}(2 *\) keyNum +1\(\left.)-1\right)=\) FALSE then
set delNum=keyNum
else
set delNum=findsuccessor(keyNum)
end if
if the visible of sprite \(\left(3^{*} 2^{*}\right.\) delNum-1)=TRUE then
set shortness \(=2 *\) delNum
else
set shortness \(=2 *\) delNum +1
end if
set the text of member (the memberNum of sprite (3*keyNum-1)) to ""
wait
set delColor-the foreColor of sprite ( 3 *delNum-2)
set the visible of sprite \(3^{*}\) delNum- 1 to FALSE
set the visible of sprite \(3^{*}\) delNum-2 to FALSE
set the visible of sprite \(3^{*}\) delNum-3 to FALSE
wait
if keyNum \(\diamond\) delNum then set height=the \(\operatorname{loc} \mathrm{V}\) of sprite ( \(3^{*}\) delNum-1)-the locV of sprite ( \(3^{*}\) keyNum-1) set width=the locH of sprite ( \(3^{*}\) delNum-1)-the locH of sprite ( \(3^{*}\) keyNum-1) set times=integer(height/3)-1
```

 puppetSprite 3*keyNum-1, TRUE
 puppetSprite 93, TRUE
 set the text of member "movingNode"= the text of member (the member of sprite
 (3*delNum-1))
set the foreColor of sprite 93= the foreColor of sprite (3*keyNum-1)
set the loc of sprite 93 to the loc of sprite (3*delNum-1)
set the visible of sprite 93 to TRUE
updateStage
repeat with }\textrm{x}=1\mathrm{ to times
set the locV of sprite 93= the locV of sprite 93-3
set the locH of sprite 93=the locH of sprite 93-(integer(3*width/height))
wait
updateStage
end repeat
set the text of member (the memberNum of sprite (3*keyNum-1)) to the text of member
"movingNode"
set the visible of sprite 93 to FALSE
updateStage
else
if the foreColor of sprite (3*delNum-2)=35 then
--the visible of sprite (3*2*delNum-1)=FALSE and the visible of sprite
(3*(2*delNum+1)-1)=FALSE then
set the visible of sprite (3*delNum-1)=FALSE
deleteOne gNodeList, deletion
add gOperationList, "Delete"\&\& deletion
cleardata
exit
end if
end if
set shortnessColor=getColor(shortness)
if delColor=255 then
puppetSprite 94, TRUE
puppetSprite (3*deINum-2), TRUE
if shortnessColor=35 then
puppetSprite (3*delNum-1), TRUE
set the foreColor of sprite (3*delNum-2) to shortnessColor
set the text of member (the memberNum of sprite (3*delNum-1)) to the text of member
(the memberNum of sprite (3*shortness-1))
set the visible of sprite 3*shortness-1 to FALSE
set the visible of sprite 3*shortness-2 to FALSE
set the visible of sprite 3*shortness-3 to FALSE
set the visible of sprite 3*delNum-1 to TRUE
set the visible of sprite 3*delNum-2 to TRUE
set the visible of sprite 3*delNum-3 to TRUE
else
set the foreColor of sprite (3*delNum-2)=255
set the visible of sprite (3*delNum-2)=TRUE
end if
set the loc of sprite 94 to point(the locH of sprite (3*delNum-1)-16, the locV of sprite
(3*delNum-1)-17)
set the visible of sprite 94 to TRUE

```
```

 updateStage
 longwait
 fixup(delNum)
 end if
deleteOne gNodeList, deletion
add gOperationList, "Delete"\&\& deletion
cleardata
end delete
on findKeyNum key
set nodeNum=1
set nodeKeySprite=3*nodeNum-1
repeat while the visible of sprite nodeKeySprite=TRUE
set nodeKey=value(the text of member (the memberNum of sprite nodeKeySprite))
if nodeKey=key then
set theNum=nodeNum
exit repeat
else if nodeKey>key then
set nodeNum=nodeNum*2
else
set nodeNum=2*nodeNum+1
end if
set nodeKeySprite=3*nodeNum-1
end repeat
return theNum
end
on findSuccessor keyNum
set successor=2*keyNum+1
set theLeft=2*successor
repeat while the visible of sprite (3*theLeft-1)=TRUE
set successor-theLeft
set theLeft-theLeft*2
end repeat
return successor
end
-- * Fix-Up handler of deletion routine
on fixup shortNum
set times =1
repeat while shortNum}>1\mathrm{ and getColor(shortNum)=255

```
```

 if (shortNum mod 2)=0 then
 set theNum=shortNum+1
 if getColor(theNum)=35 then
 colorBlack(theNum)
 colorRed(shortNum/2)
 leftRotate(shortNum/2)
 set shortNum=2*shortNum
 set theNum=2*(theNum-1)+1
 end if
 if getColor(theNum*2)=255 and getColor(theNum*2+1)=255 then
 colorRed(theNum)
 if times=1 then
 set the visible of sprite (3*shortNum-1) to FALSE
 set the visible of sprite (3*shortNum-2) to FALSE
 set the visible of sprite (3*shortNum-3) to FALSE
 end if
 set times=times+1
 set shortNum=shortNum/2
 puppetSprite 94, TRUE
 set the loc of sprite 94 to point(the locH of sprite (3*shortNum-1)-16, the locV of
 sprite (3*shortNum-1)-17)
set the visible of sprite 94 to TRUE
updateStage
longwait
else
if getColor(2*theNum+1)=255 then
colorBlack(2*theNum)
colorRed(theNum)
rightRotate(theNum)
-- set theNum=theNum*2+1
end if
puppetSprite (3*theNum-2), TRUE
set the foreColor of sprite (3*theNum-2) to the foreColor of sprite (3*(shortNum/2)-2)
updateStage
colorBlack(shortNum/2)
colorBlack(2*theNum+1)
leftRotate(shortNum/2)
set shortNum=1
end if
else
set theNum=shortNum-1
if getColor(theNum)=35 then
colorBlack(theNum)
colorRed(shortNum/2)
rightRotate(shortNum/2)
set shortNum=2*shortNum+1
set theNum=2*(theNum+1)
end if

```
```

 if getColor(theNum*2)=255 and getColor(theNum*2+1)=255 then
 colorRed(theNum)
 if times=1 then
 set the visible of sprite (3*shortNum-1) to FALSE
 set the visible of sprite (3*shortNum-2) to FALSE
 set the visible of sprite (3*shortNum-3) to FALSE
 end if
 set shortNum=shortNum/2
 set times=times+1
 puppetSprite 94, TRUE
 set the loc of sprite 94 to point(the locH of sprite (3*shortNum-1)-16, the locV of
 sprite (3*shortNum-1)-17)
set the visible of sprite 94 to TRUE
updateStage
longwait
else
if getColor(2*theNum)=255 then
colorBlack(2*theNum+1)
colorRed(theNum)
leftRotate(theNum)
end if
puppetSprite (3*theNum-2), TRUE
set the foreColor of sprite (3*theNum-2) to the foreColor of sprite (3*(shortNum/2)-2)
updateStage
colorBlack(shortNum/2)
colorBlack(2*theNum)
rightRotate(shortNum/2)
set shortNum=1
end if
end if
end repeat
colorBlack(shortNum)
set the visible of sprite 94 to FALSE
end

```

\section*{VITA}

\section*{Yongzhong Zhang}

Candidate for the Degree of

\author{
Master of Science
}

\section*{Thesis: \\ RED-BLACK TREE ANIMATION}

\section*{Major Field: Computer Science}

\section*{Biographical:}

Personal Data: Born in Guangzhou, Guangdong, P. R. China, on August, 1968, the son of Baojuan Gao and Hailin Zhang, and grandson of Muzhen Diao and Daolong Zhang; married to Tong Xie in 1995.

Education: Graduated from No. 16 High School, Guangzhou, Guangdong, P. R. China in June, 1986. Received Bachelor of Science degree in Chemistry from Zhongshan University, Guangzhou, Guangdong, P. R. China in July, 1990. Completed the requirements for the Master of Science degree with a major in Computer Sciences at Oklahoma State University in December, 1998.

Experience: Employed as Assistant Engineer by Nanzhong Organic Chemical Plant, Guangzhou, Guangdong, P. R. China, 1990-1992, Employed as Technical Representative by Coates (Guangzhou) PRC Ltd., Guangzhou, Guangdong, P. R. China, 1992-1994, Employed by ICI Swire Paints (China) Ltd. as a Senior Technical Sales Representative, Guangzhou, Guangdong, P. R. China, 1994 1996.```

