
RED-BLACK TREE ANIMATION

By

YONGZHONG ZHANG

Bachelor of Science

Zhongshan University

Guangzhou, Guangdong

People's Republic of China

1990

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1998

RED-BLACK TREE ANIMATION

Thesis Approved:

Dean of the Graduate College

11

ACKNOWLEDGMENTS

My sincere appreciation goes to all the people who assisted me in this study and

my stay here at Oklahoma State University.

] am especially grateful to my major advisor, Dr. Jacques E. LaFrance, for his

constructive guidance, inspiration and friendship during the whole process. My sincere

appreciation extends to Dr. John P. Chandler and George E. Hedrick for serving as my

graduate cornnrittee members and providing invaluable guidance and assistance, and also

for their friendship.

I am indebted to my family for their patience, encouragement and support. I am

particularly grateful to my wife, Tong Xic, for her love, understanding, suggestions.

Many thanks go to my parents and grandparents for their never-ending emotional

support.

Finally, I would like to thank the Department of Computer Science for providing

me the study opportunity.

m

Chapter

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

II. RELATED WORK 5

Data Structure Animation 5
Work at Oklahoma State University 8

III. RED-BLACK TREE ISSUES 9

Introduction 9
Basic Operations ,] I
Advanced Topics 13

IV. COMPUTER ANIMATION ISSUES 17

Brief History 17
Computer-Assisted Animation I 8

V. DESIGN AND TESTING 20

Visualization Organization 21
Testing .. 23

VI. SUMMARY AND FUTURE WORK 25

Summary 25
Future Work .. 25

BIBLIOGRAPHY 27
APPENDIXES 30

APPENDIX A-PROOF OF LEMMA 30
APPENDIX B-COMPUTER ANIMAnON TERMS 31
APPENDIX C-MOVIE SCRIPT 32

IV

Figure

LIST OF FIGURES

Page

1. Rotations 12

2. Insertion Tenlplates 14

3. Deletion Templates 15

4. Main Menu Interface 20

5. Animator Interface 22

6. An Indexed Complete Binary Search Tree 23

v

CHAPTER I

INTRODUCTION

Since the using of the film "Sorting Out Sorting' [Baecker 81] and BALSA

[Brown 88], the study of computer animation as a teaching tool has been catching more

and more attention within the past two decades [Ross 94][Stasko 96][Domingue 97), with

the advance ofcomputer techniques for creating and manipulating graphics displays.

Graphics have been used for centuries to communicate information effectively

among people and aid in the comprehension of complex information. Because patterns

and shapes are inherently less abstract than numbers and languages, pictures convey

information more readily and permit easier retention than textual or verbal representation

of the same information [Dudley 82]. With the advanced technology, the computer's

information-handling capacities are now being implemented by the ability of hardware

and software systems to condense, code, and display information in graphic forms that

make large amounts of data comprehensible. Computer graphics can give people fast

perception, vivid display of data relationships, and simplification of complex data.

Educators constantly are seeking new ways to improve instruction, to facilitate

learning, and to hold the attention of students. The power of computers motivates the

study and practice of using dynamic visualization as educational aids.

Though most of the text books do have pictures, the drawbacks of these figures

are:

1. They give only static illustration

2. They usually do not have enough examples or even no examples

3. Possibly they don't show each step of a process

4. They don't have interactive capability.

Ross pointed out the problem [Ross 94]:

The problem is that no matter how clever or how animated our lecture is, when the

student is faced with trying to review and assimilate the information later, the spirit of animation

has long since left the body of knowledge.]t would be very helpful to the student to be able to

rerun the animation over and over, perhaps on other problem instances, while studying.

Since in computer SCience education, data structures and algorithms are a

significant part, and a lot of research and animations focuses on this field. Algorithm

animation has been proven to be a powerful tool in teaching data structures and algorithm

analysis [Lawrence 94].

Algorithm animation uses computer-assisted visualization to make the

comprehension of the functionality of algorithm easier. It actually serves two

fundamental purposes as an instructional aid: it provides a concrete depiction of the

abstractions and the operations which are inherent in an algorithm or program, and it

portrays the dynamics of a time-evolving process [Stasko 96].

Algorithm animations don't have the drawback of static diagrams in textbooks.

Stasko gave the additional advantages of algorithm animation:

2

..

Animations might encourage and make it relatively easy for the learner to make and test

predictions of what is going to happen at each step of the algorithm. This prediction element

could help the learner understand the algorithm better than a learner who passively takes in the

information. A learner could certainly make predictions from a stati.c textual/graphic presentation

of an algorithm, but perhaps the advantage of an animation is that it will spontaneously encourage

a learner to make the predictions without being prompted and will provide the learner with rapid

feedback about the accuracy of his or her predictions. In addition, an animation might be more

salient than a set of static images and thus, might help the student remember the algorithm better.

An animation also might help learning because it displays the features that one should

presumably attend to. That is, the items in the animation might, by their presence, provide

information to the learner that might not be easily discernible otherwise. Finally, an animation

might also encourage the learner to self-explain the behaviour of the algorithm. Self-explanation

can increase the likelihood of a learner to integrate the new information with existing knowledge

structures, thus making the learner mote likely to transfer the information to novel situations.

This thesis aims at the animated presentation of red-black trees. Such dynamic

displays are helpful for students to comprehend the task of an algorithm to maintain the

red-black tree structure.

Data structure algorithm animation can be either static or dynamic. Static

animation means that the animation can only be seen for a fixed set of inputs. Dynamic

animation means that the users can interact with the animation process of the computer,

using their own inputs at run time. Dynamic animation enables users to observe and

explore the dynamic behaviors of the data structure through interactive graphical

displays. In this thesis, all animations are dynamic animations in order to achieve the

greatest benefits for the llieamers.

The software used to develop this animation is Macromedia Director 6.0. It is one

of the most powerful tools which can create a variety of multimedia productions. Some

of the key features of Director 6.0 are [Director]:

3

1. wide-ranging cross-platform authoring and delivery

2. flexible authoring metaphors and tools

3. broad web authoring and delivery

4. approachable, professional user interface

5. powerful media, animation and integration functions

The Lingo scripting language of Director has object-oriented behavior. It can

synchronize and integrate media elements or objects, such as interface, sound, and

animation effectively.

This application is built on a PC, in the Windows 95 environment and can be

delivered on the Internet, Windows NT, as well as both 68K and PowerPC of Mac as

system. It has the features of maintainability, accessibility, flexibility and interactivity.

4

CHAPTER II

RELATED WORK

This ehapter gives an overview of previous and current work related to data

structure algorithm animation. We focus on the educational animations. We will also

mention some important systems, although their goals maybe not primarily for education,

but they can be used for education.

Data Structures Algorithm Animation

Knowlton's film, "L6: Bell Telephone Laboratories Low-Level Linked List

Language" [Knowlton 66], which showed the manipulation of lists at an assembly level.

It is known the first to use dynamic display techniques as opposed to static techniques

using a movie fillim medium, and the first to address the visualization of a data structure.

Other well-known related movies were Hopgood's movie on hashing algorithms

[Hopgood 74] and Booth's PQ-Trees [Booth 75].

Baecker's system developed in the mid-l 970s was the first known system to aim

at algorithm animation. It was not interactive and eventually resulted in the film "Sorting

Out Sorting". This 25-minute, color, narrated educational film used animated graphics to

explain how nine different sorting algorithms manipulate their data. It also illustrated the

speed differences by showing each algorithm working on a data set of twenty-five

hundred random elements [price 93].

5

All of the work above had the limitation that they were films. Though their

display styIe was dynamic, they did not allow viewers to interact with the model being

displayed. Viewers must watch the films in the exact form in which it was produced,

with the exact parameters, ilie exact dam and even at the exact speed.

Computer static graphical displays of data structures emerged in mid-1970s.

These systems had the advantage that data structures in any arbitrary program can be

viewed without altering the program in any way. However, the disadvantage is that the

generic representation does not necessarily convey how the data really was used.

Moreover, they did not reveal how the algorithm was processing the data. They did not

update the display corresponding to the change of data. Some of these systems are

Incense, PV, GDBX, PROVIDE [Brown 88].

The 1980's were the beginning of modern computer animation with the

introduction of the bit-mapped display and window interface technology. The first

interactive and most important system of this era was BALSA, followed by BALSA-H,

produced at Brown University. Many production systems using modern human

computer interface teclmology have been developed since then. The following gives

brief descriptions of BALSA, Zeus~ and TANGO. More systems information can be

obtained from other literature [Price 93] and web sites [Zeus] [KMi).

BALSA was written in C and developed for both education and research. It was

installed in a lab equipped with 55 Apollo workstations. All nodes were connected via a

LAN. This system was used in undergraduate teaching [Brown, 85]. It allowed the

instructor to give a running commentary on the prepared graphical animation running on

each student's machine. Students could control these scripted animations (stop, start,

6

speed control, replay, etc.). Several of the animations could aJso be played backwards.

The entire set of scripts was integrated with the textbook Algorithms [Sedgewick 83].

BALSA is a pioneering work and it has become the benchmark against which all

subsequent systems have been measured.

Zeus, developed by the Systems Research Center (SRC) of Digital Equipment

Corporation(DEC), was mainly designed for research. This system was written for

Modula-3 on DEC workstations [Brown 92]. Zeus is also noteworthy for its object

oriented design. In Zeus, an algorithm is annotated with procedure calls that identify the

fundamental operations to be displayed. An alIDotation, called an interesting event, has

parameters that identify program data. SRC has another educational system called CAT

(Collaborative Active Textbooks), which is based on Zeus. Its Java version is JCAT

[Brown 96] [JCAT].

TANOO was built up by Stasko. The current version is XTANGO [Stasko 92],

which runs on most popular Unix workstations that can compile C and use the X

windows systems. It is a general purpose algorithm animation system that supports

programmers developing color, real-time, continuous, 2 & 1/2-dimensional animation of

their own algorithms and programs. The focus of the system is its ease of use. The basic

process of developing an animation consists of implementing the algorithm in C (another

language can be used, it must just produce a trace file which is read by a C program

driver) and then deciding on the important events to be portrayed during the execution of

the algorithm. These events then activate animation routines implemented in a separate

file using the XTANOO animation package to create and manipulate objects (circles,

7

squares, tines, and so on). Transitions on objects include movement, color change,

resizing, and fiDing, as wen as others.

Work At Oldahoma State University

The research and practice on the algorithm animation has been started for many

years at computer science department of Oklahoma State University [Lee 88] [Arra 92]

[Kummetha 93] [Shen 94] [Muktavaram 96] [Harvick 97] [Lin 97].

The work of this thesis is part of a larger project ANIMATED PRESENTATION

OF DATA STRUCTURES. This system is developed as a teaching tool, which helps

students comprehend the task of an algorithm to maintain a data structure. Interactive

animation of these data structure algorithms will allow the students to explore different

scenarios in the construction of data structures and better understand what their programs

need to do.

Several animations of data structure algorithms have been finished. These include

linked list, queue, stack [Xu 97], binary search tree [Shen 98], B-tree ...

Animations are being done for other data structures, such as AVL trees.

All of these animations are developed to run on both Windows and the Mac OS

operating systems, and they can be distributed over the web. Wide-ranging cross

platform authoring and delivery is one of the Macromedia Director's key features.

8

CHAPTER III

RED-BLACK TREE ISSUES

Introduction

The real world requires the manipulations in dynamic (finite) sets, which can

change over time. Operations on a dynamic set can be grouped into two categories:

querying operations, which simply return information about the set, and modifying

operations, which change the set. Typical operations are search (access), insert and

delete. The time taken to execute a set operation is usually measured in terms of the size

of the set given as one of its arguments [Connen 90].

In this paper, we call internal nodes of a tree, nodes, which are key-bearing nodes,

and external nodes of a tree, leaves (NIL), which means that the value in that field is a

pointer referring to no object at all.

A binary tree is a [mite set of elements which is either empty or is partitioned into

three disjoint subsets. The first subset contains a single element caUed the root of the

tree. The other two subsets are themselves binary tree, called the left and the right

subtrees of the original tree. A complete binary tree with n nodes has n+1 leaves.

Information can be stored in the leaves and/or nodes of a tree. In some applications, we

use only one possibility [Mehlhorn 84]. An important application of binary trees is their

use in searching, because a special type of binary tree, the binary search tree, in which all

9

keys are arranged according to a total order manner, is well-suited for storing ordered list

of keys.. Binary search tree supports dynamic set operations in _ (h) worst-case time,

where h is the height of the tree [Weiss 93].

Balanced trees are a weU-known solution to problem of maintaining a dynamic set

so as to be able to perform the operations access, insert and delete quickly. These

operations can be executed in _ (log n) time on a set of n elements if it is represented by a

balanced tree [Knuth 73]. The idea of balancing a search tree is due to the invention of

AVL trees, the oldest and most classical data structure for balanced trees. Balanced trees

are not limited to binary trees, such as some famous trees such as splay trees, B-trees and

their variants are also balanced trees [Sedgewick 83] [Cormen 90]. All known classes of

balanced trees can be divided into two groups: height-balanced and weight-balanced

trees. In height-balanced trees, one balances the height of the subtrees. In weight

balanced trees, one balances the number of nodes in the subtrees if a node is used as

weight.

A red-black tree is a height-balanced binary tree, with one extra hit of storage per

node: its color, which is either red or black. Red-black trees introduced by Bayer in

1972. He called them "Symmetric binary B-trees" [Bayer 72]. Guibas and Sedgewick

studied their properties and related kinds of trees, and introduced the red/black color

convention [Guibas 78]. The foHowing is the definition of red-black tree according to

Cormen [Cormen 90]. A binary search tree is a red-black tree if it satisfies the foHowing

red-black tree properties:

a. Every node is either red or black

b. Every leaf (NIL) is black

JO

c. If a node is red, then both its children are black

d. Every simple path from a node to a descendant leaf contains the same numbe.F

of black nodes

From the defInition, we know immediately that a red-black tree is balanced by the

constraint that a path from the root to a leaf is not more than twice as long as any other

path. In other words, the longest path from an internal node to a leaf can not exceed

twice that of a shortest path from that node to a leaf since both paths have the same

number of black nodes.

We define black-height of a node x, bh(x), is the number of black nodes on any

path from x to a leaf, not counting x. Leaves have black-height O. The black-height of a

tree is the black-height of its root.

As mentioned above, there are two ways to represent a list using red-black trees.

The keys can be stored either in the internal nodes, so that the order in the list

corresponds to symmetric order in the tree, or in the leaves, so that the order in the list

corresponds to left-to-right order among leaves. Here we will use the former

representation.

Basic Operations

One nice property of a red-black tree is that the access operation for standard

binary search tree works without any modifIcation. This section just focuses on the insert

and delete operations.

The way to make red-black trees operations efficient in the worst case is to

impose a balance condition that forces the height of an n-node tree to be (log n). This

requires rebalancing the tree after each update operation.

II

Lemma A red-black tree with n nodes has height at most 2Jog(n+1).

The proof of this lemma is in appendix A. An immediate consequence of this

lemma is that the dynamic set operations can be executed in _ (log n) time on red-black

trees, because a binary search tree of height h executes its operations in _ (h), as

mentioned before. Since operations insert and delete modify the tree, the result may

violate the red-black tree properties, the rebalancing operations are needed if so.

Updating is accomplished through node recoloring and tree rotation, which is a local

operation in a search tree that preserves in-order traversal key ordering. Figure 1. gives

the illustration of the rotations.

A B

c
right rotate •
left rotate

A

B c

Figure 1. Rotations. Note that in both trees, an in-order traversal yields:

AxByC

Inserting In Red-Black Tree

1. Find a p,lace for insertion as 'binary search tree, end at a dummy-leaf. Replace the leaf

by new node with two new dummy-leaves.

n. Color the new node red.

iii. Use the following templates (Figure 2.) for the insertion. In case 3, propagation may

be needed, that is, to apply the recoloring transformation in case 3 until it no longer

applies, and then if necessary, apply one ofthe transformation in case 2 and 4.

Deleting in Red-black Tree

Deleting an item is similar to the above but slightly more complicated.

1. Find the node to be deleted, ddete it as in binary search tree.

11. If node is red, the tree is still a red-black tree, otherwise the replacing node is short;

i.e., paths down from it contain one fewer black node than paths from sibling. We

use a minus symbol, _, to denote the shortness.

iii. Use the following templates (Figure 3.) for deletion. Let x be node to be deleted, y be

the child of x.

Advanced Topics

Red-black trees can also perform the join and split operations in logarithmic time.

To join red-black trees, we need to store with each root its black-height, then while

descending through the tree, we can compute the black-height of each node visited in

constant time until we reach the appropriate node to join. Splitting a red-black tree at item

x is accomplished by cutting off all subtrees along the path from root to x, and then we

perform a sequence of joins to concatenate aU the left ones to form TL and aU right ones

to form TR [Tarjan 83] [Booth 90].

In addition to having the O(log n) time bound for the operations above, the

alternative top-down implementations have extremely similar performance [Guibas 78].

Case 1: p(x) is black, no update needed

Case 2: p(x) is red, g(x) doesn't exist

Case 3: p(x) is red, u(x) is red

Case 4: Terminal case. p(x) is red, u(x) is black

Figure 2. Insertion templates. Case 3 may cause propagation.

other cases are terminal cases.

l4

Case 1: red leaf, no update is needed

Case 2: black semi-leaf, if child is red, recolor it (2a), otherwise push the shortness up
the tree (2b).

2a

2b

o
0-

Case 3: s(y) is red

:

Case 4: s(y) is black, p(y) is black

Case 5: Terminal case. s(y) is black, p(y) is red

15

Case (i: Terminal case. s(y} is black, p(y) is either, s(y)'s I'eft child i,s red, s(y)'s right chi,ld
is black

Case 7: Term'nal case. s(y) is black, p(y) is either, s(y)'s left child is either, s(y)'s right
child is red

Figure 3. Deletion templates. Case 2b, 3 and 4 may cause propagation,

other cases are terminal cases.

The conventions used in the figures above are the following:

p(x) ------ the parent of node x

u(x) ------ the uncle of node x

g(x) ------ the grandparent of node x

sex) ------ the sibling ofnode x

e
e
e

Red node

Black node

Either, i.e., node is either red or black

16

p:s

CHAPTER IV

COMPUTER ANIMATION ISSUES

Animation is based on the physiological fact that the image of an object perceived

by the human eye persists in the brain for a brief period of time after the object no longer

exists in the real world. This phenomena, called visual retention, is related to the

chemistry of the retina and to the structure of cells and neurons in the eye. Smooth

animation is achieved in cinematography and television by consecutively displaying

images at a faster rate than the period of visual retention. The critical image update rate

for smooth animation has been determined to be between 22 and 30 images per second

[Sanchez 95].

Computer animation can be defined as the simulation of movement or of lifelike

actions by the manipulation of digital objects. The notion of digital simulation of

movement is the core of this definition [Sanchez 95].

Brief History

In 1824, Mark Roget published a paper, "The Persistence alVision with regard to

Moving Objects" [Morrison 94], which revealed the principle that the human eye retains

an image for a fraction of a second longer than the image is actually present.

In 1831 , Joseph A. Plateau invented the first animation machine called

Phenakistoscope. This device consisted of a disk with a series of drawings and windows.

17

f1

When the disk is rotated, viewers would see the drawings in rapid sequence

[Thalmann 90].

The birth of computer graphics was a military system introduced in 1951.

Computer animation was first developed in mid-1960s. The first computer-animated

film was Hunger, produced by Peter Folders in 1974 [Thalmann 90].

Computer-Assisted Animation

Computer animations can be divided into two classifications: computer-assisted

animation and computer-generated animation.

Computer-assisted animation, also referred to as key-framed animation, consists

of six possible functions, summarized by Thalmann: the input of drawings, the

production of in-betweens, the specification of the motion of an object along a path, the

coloring of drawings and backgrounds, the synchronization of the motion with sound, and

the initiation of recording a sequence of film [Thalmann 90].

Computer-generated animation, also referred to as modeled animation, is used in

the creation of three-dimensional images.

Sanchez described some techniques on computer-assisted animation.

Frame-By-Frame Animation

In frame-by-frame animation, the computer generates the required images, which

are recorded or stored for playback at a later time. This playback can take place in the

same machine that generated the image set or in another media. The generated images

can either recorded in video tape or stored in computer disk. When the image set is

complete, the animation can be viewed by playing back.

18

Interactive Animation

Interactive animation refers to computer objects that are moved at the user's

desire. At present, the most common interactive devices are tile keyboard and mouse. In

general, the notion of interactive animation includes any te,chnology in which the user

exercises some levels of control over computer-animated action.

19

CHAPTER V

DES]GN AND TESTING

The goal of this thesis is red-black tree animation. Only the insert and delete

operations are implemented. They are completely different from those of binary search

trees (BSD. Generally, the design and implementation of this animation will fonow the

style of previous work at Oklahoma State University. Eventually all work can be

integrated into one whole data structure algorithm animation system.

The application consists of four Director movies which are presented as windows

on a computer. Each one contains menu and/or burton to enhance the interactivity of the

graphical. display. The figure below gives a display of the main menu of this application.

Welcome to
Red-Black Tree Animation

Definitions and Concepts

sertion and Deletion Algorithms

ed Black Tree Animator
.E~ D

Exit

Arc yOll surc to ()~iL tllC

unimutiun?

(Yes) ~

Figure 4. Main menu interface.

20

Visualization Organization

Specifically, the red-black tree animation consists of three parts: the presentation

of the definition of a red-black tree, explanation of its operations, and the interactive

animation of the algorithm.

Presentation of Definition

a. Different definitions will be given.

b. Some important concepts and features of red~black tree, such as black-height,

shortness.

c. An example of a red-black tree.

Explanation of Operations

a. Templates for insert operation

b. Algorithm for insertion operation

c. Templates for delete operation

d. Algorithm for deletion operation

Algorithm AnimationThe design of this interface has the similar style to that of the

previous work. To be an active animation and more user-friendly, pop up menus and

buttons are put onto the animator. The following is the interface of the animator, where

learners will experience the insert and delete operation of red-black trees

21

Show Help

Deletion
RebuIld
Back

Elrit

. Inseltion IE3

I (Previous) (Close) (Next

EJdt { RebUild) Insert (Delete)

Figure 5. The animator inteTface.

Because rotations and propagation could happen, the implementation of the

operations is more complicated than that of in BST. An exampl can explain more

clearly how to implement the animation. When a new node is inserted, it is first

compared with the root, and go along the path as in BST. If a rotation happens, a node X

is moved to the proper place, then the line connecting X and its parent disappears, the

new parent of X then is moved to the right position if X has that new parent. The

movement of the key nodes (x, y in figure) in a rotation are displayed. Finally, a new line

connecting X with its parent is drawn. The animations of other nodes in the rotation run

under the same method.

The visualization is basing on the inherent fact in the binary search trees: the one-

to-one correspondence between the node in a BST and an entry in an array.

22

We index each node in a complete BST, as shown below:

Figure 6. An indexed complete binary search tree

Then we put these nodes into an array orderly:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...

We can find that the relationship between the tree and the array is:

1. If node in position n has children, its left child and right child are at the entry

2n,2n+l of the array, respectively.

2. The parent of any node in position n (n> l) is in the position _ni2_.

Testing

The purpose of testing is to ensure that the software works as intended. The test

process includes the user interface testing, data handling testing and object movement

testing (animation testing).

1. The objective of the testing of all the user interfaces, including the pop up

windows, is to ensure the ease of use.

23

2. The objective of the testing of data handling, including the error handling, is

to ensure the functionality of the actions.

3. The objective of the testing of image mov,ement is to ensure that during the

operation, the learners can view clearly the path along with a node is moving.

24

CHAPTER VI

SUMMARY AND FUTURE WORK

Summary

Advanced technology leads to inscr,easing capability of computers. It gives us a

new way to develop some new teaching tools that can help students have better

understanding of the information they get from the instructor's lectures and from their

textbooks.

This thesis project is to build an interactive red-black tree animation. This

application provides a user-friendly interface. Users can interact with it to get the

presentation of red-black tree's definition, key concepts and its operations and their

algorithms. Multiple windows, menus, buttons, and event-drive design allow the learners

to rerun the red-black tree animation over and over. The learners are able to tryout the

software on their own data, at their own pace, so that they can get better comprehension

of what a red-black tree is and how it performs insertion and deletion operations.

This application is developed on Windows 95 environment using Macromedia

Director 6.0. It can be delivered on the Internet, Windows NT, as well as both the

Motorola 68K and the PowerPC of Mac OS system. It has the features of reusability,

maintainability, accessibility and interactivity.

25

Future Work

The work here is a part of a larger project, which is planned to be a teaching tool

to help computer science students to learn more effectively while studying data structures

and algorithms. Sound can be added to the application to achieve a better multimedia

effect and to enhance the presentation quality, and help users understand what is

happening easier while using it, thus help them have a better understanding of the

abstract concepts and algorithms.

More of the animations of other data structure algoritluns can be constructed, and

all work could be woven together into an integrated system suitable for use in laboratory

exercises or distance learning in the future.

26

BIBLIOGRAPHY

Arra, Shravan K., "Object-Oriented Data Structure Animation", MS. Thesis, Computer
Science Department, Oklahoma State University, 1992.

Baecker, Ronald, Sorting Out Sorting, 16mm color sound film, 25 minutes, Computer
Science Department, University of Toronto, 1981.

Bayer, R., "Symmetric binary B-trees: Data Structure and Maintenance algorithms",
Acta Informatica 1, pp. 290-306, 1972.

Booth, Heather D., "Some Fast Algorithms on Graphs and Trees", Ph.D. dissertation,
Princeton University, 1990.

Booth, Kellog S., PQ Trees, 16mm color silent film, 12 minutes, 1975.

Brown, Marc H., "Zeus: A System for Algorithm Animation and Multi-View Editing",
Systems Research Center Research Report 75, Digital Equipment Corporation,
1992.

Brown, Marc E., Algorithm Animation, The MIT Press, 1988.

Brown, Marc H. and Najork, Marc A., "Collaborative Active Textbooks: A Web-Based
Algorithm Animation System for an ElectlfOnic Classroom", Systems Research
Center Research Report 142, Digital Equipment Corporation, 1996.

Brown, M. R., and Sedgewick R., "Techniques For Algorithm Animation", IEEE
Software, pp. 28-39, 1985.

Carmen, R. H., Rivest, R.L., and Leiserson, C. E., Introduction to Algorithms, The MIT
Press under a joint production-distribution agreement with the McGraw-HilI
Books, 1990.

Director, Macromedia Inc., WWW page, 1998.
URL: http://www.macromedia.com/software/director/productillfo/.

Domingue, John and Mulholland, Paul, "Teaching Programming at a Distance: The
Internet Software Visualization Laboratory", Journal of Interactive Media in
Education, 1997(1), pp. 1-24.

27

-

Dudley, Timothy K., "Computer and Graphics: A Technology Comes of Age", in
Interactive Computer Systems, edited by Wilham C. House, Petrocelli Books,
Inc., 1984.

Guibas, Leo J. and Sedgewick R., "A Dichromatic Framework for Balanced Trees",
Proceedings o/the I1h Annual Symposium on Foundations a/Computer Science,
IEEE Computer Society, pp. 8-12, 1978.

Harvick, Lee HOll., "Rule Based Data Structure Animation", MS. Thesis, Computer
Science Department, Oklahoma State University, 1997.

Hoopgood, F. Robert A., "Computer Animation Used as a Tool in Teaching Computer
Science", Proc. 1974IFIP Congress, 1974.

JCAT, "Java-Based Collaborative Active Textbooks", Systems Research Center, Digitam
Equipment Corporation WWW page, 1998.
URL: http://www.research.digitaLcom/SRC/JCAT/.

KMi, "Software Visualization Research in KMi", Knowledge Media Institution WWW
page.
URL: http://kmi.open.ac.uk/sv/.

Knowlton, K. C., L6: Bell Telephone Laboratories Low-Level Linked List Language,
16mm black and with sound film, 16 minutes, Murray Hill, NJ: Technical
Information Libraries, Bell Laboratories, Inc., 1966.

Knuth, Donald E., The Art o/Computer Programming, Volume 3/Sorting And Searching,
Addison-Wesley Publishing Co., 1973.

Kummetha, V. C. S. Reddy, "A Level Linked R* Tree Structure With An App]ication
Using X-Window Graphical Interface", M.S. Thesis, Computer Science
Department, Oklahoma State University, 1993.

Lawrence, A., Badre, A., and Stasko, J., "Empirically Evaluating The Use Of Animation
To Teach Algorithms", IEEE Symp. On Visual Languages, pp. 48-54, 1994.

Lee, Wilson, "An Implementation Of A Data Structures Display System", MS. Thesis,
Computer Science Department, Oklahoma State University, 1988.

Lin, Betty, "An Object-Oriented Graphic User Interface For Visualization Of B-Trees'
Animation", M.S. Thesis, Computer Science Department, Oklahoma State
University, 1997.

Mehlhorn, Kurt, Sorting and Searching, Volume J 0/ Data Structures and Algorithms,
Springer-Verlag, 1984.

28

Morrison Mike Become A Comnuter Animator, Sams Pub., 1994
" r

Muktavaram, Vikas, "Visualization Of Sorting Algorithms", MS Thesis, Computer
Science Department, Oklahoma State University, 1996.

Price, B. A., Baecker, R. M., and Small, 1. S., "A Principled Taxonomy of Software
Visualization", Journal of Visual Languages and Computing, 4(3) pp.211-266,
1993.

Ross, Rockford 1, "Animation in Computer Science Education", SIGACT News, Volume
25, No.2, pp.40-49, 1994.

Sanchez, Julio and Canton, Maria P., Computer Animation Programming Methods and
Techniques, McGraw-Hill Inc., 1995.

Sedgewick, Robert, Algorithms, Addison-Wesley Publishing Company, Inc. 1983.

Shen, Bin, "An Instructional Module For Teaching About Binary Search Trees", MS
Thesis, Computer Science Department, Oklahoma State University, 1998.

Shen, Hung-Che, "A Visual Aid For The Leaming Of Tree-Based Data Structures", MS.
Thesis, Computer Science Department, Oklahoma State University, 1994.

Stasko, John T., Byrne, Michael D. and Catrambone Richard, "Do Algorithm Animations
Aid Learning?", Technical Report GIT-GVU-96-18, Georgia Institute of
Technology, 1996.

Stasko, John, "Animating Algorithms with XTA GO", SIGACT News, 23(2),67-71,
1992.

Tarjan, R. E., "Data Structure And Network Algorithm", SIAM, Philadelphia, 1983

Thalmann, Nadia M. and Thalmann, Daniel, Computer Animation, Second revised
edition, Springer-Verlag, 1990.

Weiss, Mark A., Data Structures and Algorithm Analysis in C, Benjamin/Cummings
Publishing Company, Inc., 1993.

Xu, Cong, "Multimedia Visualization Of Abstract Data Type", MS Thesis, Computer
Science Department, Oklahoma State University, 1997.

Zeus, "Algorithm Animation at SRC ", Systems Research Center, Digital Equipment
Corporation WWW page, 1998
URL: http://www.research.digital.com/SRC/zeus/home.html.

29

APPENDIXES

APPENDIX A

Lemma

A red-black tree with n internal nodes has height at most 21g(n+1)

proof

Show that subtfee starting at x contains at least 2bh(x)-1 internal nodes. By induction

on height of x:

if x is a leaf then bh(x) = 0, 2bh(x)-1

Assume x has height h, x's children have height h -1

x'S children black-height is either bh(x) or bh(x) -1

By induction X's children subtree has 2bh(x)-1-1 internal nodes

So subtree starting at x contains

2bh(x)-1-1 + 2bh(x)-1-1 + 1 = 2bh(x)-1 internal nodes

let h = height of the tree rooted at x

bh(x) >= h/2

So n >= 2h/2-1 <=> n + 1 >= 2h/2 <=> Ig(n+1) >= h/2

h <= 2Ig(n+ 1)

30

.~

APPENDIXB

Computer-Assisted Animation ---Animation produced with the use of a software program

and a computer to draw or model each frame, produce the in-betweens and color

them, as opposed to animation produced with cells, clay, or puppets etc.

Computer-Generated Animation --- Animation produced using a computer and various

software programs to create images within the computer and manipulate them.

These images exist as digital information until they are output to the CRT

monitor, film/video recorder or printer.

Keyframe --- The main positions ofa model along its movement path.

In-between(s) --- The frame(s) that lies in sequence between two keyframes.

31

APPENDIX C

The following is the movie script, the main part of scripts in this application:

* *
* Movie Script *
* *

on startMovie
global gOperationList, gNodeList

set gOperationList = []
set gNodeList = 0

invisible
installmenu 5

end

on Intemp

set the modal of window "templates" to TRUE
set the windowtype of window "templates" to 4
teU window "templates" to go to frame "Intemp"
telJ window "templates" to set the title of window "templates" to "Insertion"
set the reet of window "templates" to reet(S,SO,280,220)
open window "templates"
--forget window "templates"

end Intemp

-- ***
on Deltemp

set the modal of window "templates" to TRUE
set the windowtype of window "templates" to 4
tell window "templates" to go to frame "Deltemp"
tell window "templates" to set the title of window "templates" to "Deletion"
set the reet of window "templates" to reet(S,50,280,220)
open window "templates"
--forget window "templates"

end Deltemp

-- ***
on ShowHistory

-- alert "Doesn't work."
global gOperationList

set totalNum to eount(gOperationList)
if totalNum=O then

alert "No operation yet."
exit

end if

32

set operations=getAt(gOperat:ionList, 1)
repeat with x=2 to totalNum

put ", "& getAt(gOperationList,x) after operations
end repeat

go to frame "History"
puppetSprite 46, TRUE
puppetSprite 47, TRUE
set the visible of sprite 46 to TRUE
set the visible of sprite 47 to TRUE
set the text of member "showOps" to operations
-- set the text of member "Another" to operations
updateStage

end ShowHistory

-- ***
on rebuild

global gOperationList, gNodeList
set gOperationList = []
set gNodeList = []
invisible
cleardata

end rebuild

-- ***
on backMain

play done
end

-- ***
on finish

set the modal of window "Wins" to TRUE
set the windowtype of window "Wins" to 4
set WinTop to «the stageTop + the stageBottom)/2-75)
set WinBottom to {(the stageTop + the stageBottom)/2+75)
set WinLeft to «the stageLeft + the stageRight)/2-100)
set WinRight to «the stageLeft + the stageRight)/2+100)
set the reet of window "Wins" = reet(WinLeft, WinTop, WinRight, WinBottom)
tell window "Wins" to go to frame "exit"
open window "Wins"
--forget window "Wins"

end finish

-- ***
on stopmovie

invisible
eleardata
set the text of member "Keyl" to ""
repeat with x= 17 to 47

set the text of member x to ""
end repeat

end

33

on Instruct

set the modal of window "Wins" to FALSE
set the windowtype of window "Wins" to 4
set the reet of window "Wins" to rect(S,50,413,298)

tell window "Wins" to go to frame "Help"
open window "Wins"

end

on AboutThis
set the modal of window "Wins" to TRUE
set the windowtype of window "Wins" to 4
set the reet of window "Wins" to rect(S,50,286,228)

tell window "Wins" to go to frame "About"
open window "Wins"

end

* Insertion Routine *

on insert
global gNodeList, gOperationList

if the text of member "Fieldlnput" = '"' then
alert "Please enter an integer in the box."
exit

end if

set NewKey to value(the text of member "Fieldlnput")
puppetSprite 91, TRUE
puppetSprite 92, TRUE

if count(gNodeList)=O then
set NewNode==new(script "MakeNewNode", NewKey, 1)

display NewNode
add gNodeList, NewKey
add gOperationList, "Insert "& string(NewKey)

Co10rRootBlack
else

if getOne(gNodeList, NewKey)=O then
set CurKey=value(the text of member "Keyl")

set CurNum=1

set the text of member "MovingKey" to string(NewKey)
repeat while voidP(CurKey)=FALSE

set CurSprite=3*CurNum-l

set the locH of sprite 91 to the right of sprite CurSprite-l
set the 10cY of sprite 91 to the 10cV of sprite CurSprite
set the locH of sprite 92 to the locH of sprite 91+17

34

set the locV of sprite 92 to the locV of sprite 91

ifCurKey > NewKey then
set the text of member "Compare" to ">"

set CurNum=CurNum"'2
else

set the text of member "Compare" to "<"
set CurNum=Cl.lrNum'"2+ 1

end if

set the visible of sprite 91 to TRUE
set the visible of sprite 92 to TRUE

updateStage

10ngWait
if CurNum=16 or CurNum>=31 then
decline
exit

end if

set string=the text of member (the memberNum of sprite (3*CurNum-l))
if the visible of sprite (3 *CurNum-l)=TRUE then
set CurKey=value(string)

else
exit repeat

end if
end repeat

set the visible of sprite 91 to FALSE
set tbe visible of sprite 92 to FALSE

set NewNode=new(script "MakeNewNode", NewKey, CurNurn)

display NewNode
if CurNum>=4 and (getColor(getParentNum(CurNum))=34 or

getColor(getParentNum(CurNum))=35) then
acljust(CurNum)
if the foreCalor of sprite I <> 255 then
ColorRootBlack

end if
end if

add gNodeList, NewKey
add gOperationList, "Insert" & string(NewKey)

else
alert "This node already in the tree."

end if
end if

cleardata
end insert

-- ***

35

* This handler will be called when red rule is not satisfied *

on adjust thisNum
repeat while (thisNum<> 1)

if (getColor(getParentNum(thisNum»=35) then
set parentNum=getParentNum(thisNurn)
set grandparentNum=getGrandparentNum(thisNurn)

if (parentNum mod 2)=0 then
set unc1e=parentNum+ 1
if getColor(uncle)=35 or getColor(uncle)=34 then
colorBlack(parentNllrn)
colorBlack(uncle)
coIorRed(grandparentNurn)
set thisNum=grandparentNum

else
if (thisNum mod 2)<>0 then

JeftRotate(parentNurn)
end if

colorBlack(parentNum)
colorRed(grandparentNum)

rightRotate(grandparentNurn)
exit repeat

end if

else
set unde=parentNum-1
if getColor(uncle)=35 or getColor(uncle)=34 then
colorBlack(parentNum)
colorBlack(uncle)
colorRed(grandparentNurn)
set thisNum=grandparentN urn

else
if (thisNum mod 2)= 0 then

rightRotate(parentNurn)
end if
colorBlack(parentNurn)
colorRed(grandparentNum)

leftRotate(grandparentNum)
exit repeat

end if

end if
else

exit repeat
end if

end repeat
end

-- ***
* Right Rotation Routine *

36

-

-- ***
on rightRotate nodeNum

set KeySprite=3 *NodeNum-]
set rigbtNum=2*nodeNum+ I
set rightKeySprite=3 *rightNum-1

set height=the lacV of sprite rightKeySprite-the lacV of sprite KeySprite
set width=the locH of sprite rightKeySprite-the locH of sprite KeySprite
set times=integer(height/3)-1

puppetSprite KeySprite-l, TRUE
puppetSprite KeySprite, TRUE
puppetSprite 93, TRUE
set the text of member "movingNode"=tbe text of member (the member um of sprite

KeySprite)
set the foreColor of member "movingNode"=the foreColor of sprite (KeySprite-l)
set the lac of sprite 93 to the lac of sprite KeySprite

set the visible of sprite KeySprite-l = FALSE
set the visible of sprite KeySprite = FALSE
set the visible of sprite 93 = TRUE
updateStage

repeat with x= I to times
set the 10cV of sprite 93 = the locV of sprite 93 + 3
set the locH of sprite 93=the locH of sprite 93+(integer(3*width/height))

wait
updateStage

end repeat
set the loc of sprite 93 to the lac of sprite rightKeySprite
--set the visible of sprite rightKeySprite = FALSE
set the visible of sprite rightKeySprite-l = FALSE
updateStage

if (the text of member (the memberNum of sprite rightKeySprite))<>"" and the visihle of
sprite rightKeySprite=TRUE then

if rightNum=3 or rightNum=5 or rightNum=7 or rightNum=II or rightNum=15 then
RRmoveSubTreeDown 1 rightNum

else
RRmoveSubTreeDown2 rightNum

end if
end if

puppetSprite rightKeySprite-l, TRUE
puppetSprite rightKeySprite, TRUE
set the foreColor of sprite (rightKeySprite-I)=the foreColor of member "movingNode"
set the text of member (the memberNum of sprite rightKeySprite)=the text of member

"movingNode"

set the visible of sprite rightKeySprite = TRUE
set the visible of sprite rightKeySprite-l = TRUE
set the visible of sprite rightKeySprite-2 = TRUE
set tbe visible of sprite 93 = FALSE
updateStage

37

RRmoveSubTreeUp(2*nodeNum)
longwait

end

* Handlers to move sub-tree down whiling rotating *

on RRmoveSubTreeDown I subRootNum

set leftChildNum=2*subRootNum
set rightChildNum=2*subRootNurn+1
if subRootNum<16 then

if the visible of sprite (3*leftChildNum-1)=TRUE and (the text of member (the
memberNum of sprite (3*leftChildNum-I»)<>"1t then

RRmoveSubTreeDown IOeftChildNum)
end if

if the visible of sprite (3 *rightChildNum-I)=TRUE and (the text of member (the
memberNum. of sprite (3*rightChildNum-l»)<>'"' then

RRmoveSubTreeDown 1(rightChiIdNum)
end if

end if

if subRootNum=3 then
set newNum=7

else if subRootNum=5 then
set newNum= II

else if subRootNum=6 or subRootNum=7 then
set newNum=subRootNum+8

else if subRootNum=lO or sulJRootNum=ll thell
set newNum=subRootNum+ 12

else if subRootNum>=12 and subRootNum<15 then
set newNum=subRootNum+16

else
decline
exit

end if
nodeMoving(newNum, subRootNum)

end

-- ***
on RRmoveSubTreeDown2 subRootNum

set leftChildNum=2*subRootNum
set rightChildNum=2*subRootNum+ I
if subRootNum<16 then

if the visible of sprite (3*leftChildNum-l)=TRUE and (the text of member (the
memberNum of sprite (3*leftChildNum-l»)<>"" then

RRmoveSubTreeDown2(leftChildNum)
end if

if the visible of sprite (3*rightChildNum-l)=TRUE and (the text of member (the
memberNum of sprite (3*rightChildNum-l)))<>"" then

RRmoveSubTreeDown.2(rightChildNum)
end if

38

•

-

end if

if subRootNum=9 then
set newNum=subRootNum+10

else if subRootNum=13 then
set newNum=subRootNum+14

else
decline
exit

end jf

nodeMoving(newNum; subRootNum)
end

-- ***
* Handlers for move the left sub-tree up in Right Rotation Routio *

-- ***
on RRmoveSubTreeUp nodeNum

set KeySprite=3 *nodeNum-1
set parentKeySprite=(nodeNuml2)*3-1

set height=the locY of sprite KeySprite-the locY of sprite parentKeySprite
set width=the locH of sprite parentKeySprite-the locH of sprite KeySprite
set tirnes=integer(height/3)-1

puppetSprite KeySprite-l, TRUE
puppetSprite KeySprite, TRUE
puppetSprite 93, TRUE
set the text of member "movingNode"=the text of member (the memberN urn of sprite

KeySprite)
set the foreColor of member "movingNode"=the foreeolor of sprite (KeySprite- J)
set the loc of sprite 93 to the lac of sprite KeySprite
updateStage

set the visible of sprite KeySprite-2 = FALSE
set the visible of sprite KeySprite-J = FALSE
set the visible of sprite KeySprite = FALSE
set the visible of sprite 93 = TRUE

repeat with x= 1 to times
set the locY of sprite 93 = the lacY of sprite 93 - 3
set the locH of sprite 93=the locH of sprite 93+(integer(3*width/height»

wait
updateStage

end repeat
set the lac of sprite 93 to the loc of sprite parentKeySprite
updateStage

puppetSprite parentKeySprite-1, TRUE
puppetSprite parentKeySprite, TRUE
set the foreCoIor of sprite (parentKeySprite-1)=the foreColor of member "movingNode"
set the text of member (the memberNum of sprite parentKeySprite)=the text of member

"movingNode"

39

-

set the visible of sprite parentKeySprite = TRUE
set the visible of sprite parentKeySprite-l = TRUE
set the visible of sprite 93 = FALSE
updateStage

set leftChild=2*nodeNum
set rightChild=2*nodeNum+I

if (3*rightChild-1)<90 then
if the visible of sprite (3*rightChild-l)=TRUE then
if rightChild=5 then
RRtransferSubTree I rightChild

else if rightChild=9 or rightChild=13 then
RRtransferSubTree2 rightChild

dse
set newNode=rightChild+1
nodeMoving(newNode, rightChiJd)

end if
end if

end if

if (3 *JeftChild-l)<90 then
if the visible of sprite (3 *leftChiJd-I)=TRUE then
if leftChild=4 then
RRupingSubTreel leftChild

else if leftChild=8 or leftChiJd=12 then
RRupingSubTree2 leftChild

else
nodeMoving(leftChild/2, leftChild)

end if
end if

end if
end

on RRupingSubTreel subRootNum

if subRootNum=4 then
set newNode=2

else if subRootNum=8 or subRootNum=9 then
set newNode=subRootNum-4

else
set newNode=subRootNum-8

end if
nodeMoving(newNode, subRootNum)

set leftChild=2*subRootNum
set rightChild=leftChild+1
if leftChild<31 then

if the visible of sprite (3 *leftChild-l)=TRUE then
RRupingSubTree I JeftChild

end if
end if
if rightChild<31 then

if the visible of sprite (3 *rightChild-l)=TRUE then

40

-
RRupingSubTreel rightChild

end if
end if

end

-- ***
on RRupingSubTree2 subRootNum

if subRootNum=8 then
set newNode=4

else if subRootNwn=12 then
set newNode=6

else if subRootNum=24 or subRootNum=25 then
set newNode=subRootNum-12

else
set newNode=subRootNum-8

end if
nodeMoving(newNode, subRootNum}

set leftChild=2*subRootNum
set rightChild=leftChild+ I
if leftChild<31 then

if the visible of sprite (3 *leftChiJd-1)=TRUE then
RRupingSubTree2 leftChild

end if
end if
if rightChild<31 then

if the visible of sprite (3 *rightChild-1)=TRUE then
RRupingSubTree2 rightChild

end if
end if

end

on RRtransferSubTree 1 subRootN urn

set leftChild=2*subRootNum
set rightChild=leftChild+1

if leftChild<3 1 then
if the visible of sprite (3 *leftChild-1)=TRUE then
RRtransferSubTreel leftChild

end if
end if
if rightChild<31 tben

if the visible of sprite (3*rightChild-I)=TRUE then
RRtransferSubTreel rightCbild

end if
end if

if subRootNum=5 then
set newNode=6

else if subRootNum=IO or subRootNum=11 tben
set newNode=subRootNum+2

else
set newNode=subRootNum+4

4]

-

-

end if

nodeMoving(newNode, subRootNum)
end

on RRtransferSubTree2 subRootNum
set leftChild=2*subRootNum
set rightChild=leftChi Id+ 1

if leftChild<3l then
if the visible of sprite (3*leftChiId-l)=TRUE then
RRtransferSubTree2 leftChild

end if
end if
if rightChild<3 1 then

if the visible of sprite (3 *rightChild-l)=TRUE then
RRtransferSubTree2 rightChiId

end if
end if

if subRootNum=9 or subRootNum=13 then
set newNode=subRootNum+]

else
set newNode=subRootNum+2

end if

nodeMoving(newNode, subRootNum)
end

-- ***
* Left Rotation Routine *

-- ***
on leftRotate nodeNum

set nodeSprite=3 *nodeNum-l
set leftNum=2*nodeNum
set leftSprite=3 *leftNum-l

set height=the locY of sprite leftSprite-the 10cY of sprite nodeSprite
set width=the locH of sprite nodeSprite-the locH of sprite leftSprite
set times=integer(height/3)-1

puppetSprite nodeSprite, TRUE
puppetSprite leftSprite, TRUE
puppetSprite 93, TRUE
set the text of member "movingNode"=the text of member (the memberNum of sprite

nodeSprite)
set the foreCoIor of member I movingNode"=the foreColor of sprite (nodeSprite-l)
set the loc of sprite 93 to the loc of sprite nodeSprite
updateStage

set the visible of sprite nodeSprite-l = FALSE
set the visible of sprite nodeSprite = FALSE
set the visible of sprite 93 = TRUE

42

...

repeat with x=l to times
set the 10cV of sprite 93 = the 10cV of sprite 93 + 3
set the locH of sprite 93=the locH of sprite 93-(integer(3*width/height»

wait
updateStage

end repeat

set the loc of sprite 93 to the loc of sprite leftSprite
-- set the visible of sprite leftSprite = FALSE
set the visible of sprite leftSprite-l = FALSE
updateStage

if the visible of sprite leftSprite=TRUE and (the text of member (the memberNum of sprite
leftSprite»<>"" then

if leftNum=2 or leftNum=4f or leftNum=6 or leftNum=8 or leftNum=12 then
LRmoveSubTreeDownl leftNum

else
LRmoveSubTreeDown2 leftNum

end if
end if

puppetSprite leftSprite-l, TRUE
puppetSprite leftSprite, TRUE
set the foreCoIor of sprite (leftSprite-l)=the foreColor of member "movingNode"
set the text of member (the memberNum of sprite leftSprite)=tbe text of member

"movingNode"

set the visible of sprite leftSprite = TRUE
set the visible of sprite leftSprite-1 = TRUE
set the visible of sprite leftSprite-2 = TRUE
set the visible of sprite 93 = FALSE
updateStage

LRmoveSubTreeUp(2*nodeNum+1)
longwait

end

* Handlers for move the left sub-tree up in Left Rotation Routin *

on LRmoveSubTreeUp l10deNum
set KeySprite=3 *nodeNurn-1
set parentKeySprite=(nodeNum/2)*3-1

set height=tbe locY of sprite KeySprite-the locY of sprite parentKeySprite
set width=the locH of sprite KeySprite-the locH of sprite parentKeySprite
set times=integer(height/3)-1

puppetSprite KeySprite, TRUE
puppetSprite parentKeySprite, TRUE
puppetSprite 93, TRUE
set the text of member "movingNode"=the text of member (the rnemberNum of sprite

KeySprite)
set the foreColor of member "movingNode"=the foreColor of sprite (KeySprite-l)

43

-

set the loe of sprite 93 to the lac of sprite KeySprite
updateStage

set the visible of sprite KeySprite-2 = fALSE
set the visible of sprite KeySprite-l = FALSE
set the visible of sprite KeySprite = FALSE
set the visible of sprite 93 = TRUE

repeat with x=l to times
set the locV of sprite 93 = the loeV of sprite 93 - 3
set the locH of sprite 93=the locH of sprite 93-(integer(3*width/height»

wait
updateStage

end repeat
set the loc of sprite 93 to the loc of sprite parentKeySprite
updateStage

puppetSprite parentKeySprite-l, TRUE
puppetSprite parentKeySprite, TRUE
set the foreColor of sprite (parentKeySprite-l)=the foreCoior of mernber IlmovingNade ll

set tbe text of member (the memberNum of sprite parentKeySprite)=the text of member
"movingNode"

set the visible of sprite parentKeySprite = TRUE
set the visible of sprite parentKeySprite-l = TRUE
set the vi.sible of sprite 93 = FALSE
updateStage

set leftChild=2*nadeNuro
set rightChild=2*nodeNuro+]

if (3 *leftChild-l)<90 then
if the visible of sprite (3*leftChild-I)=TRUE then
if leftChild=6 then

LRtransferSubTree1 leftChild
else if leftChil.d=l 0 or leftChil.d=14 then

LRtransferSubTree2 leftChild
else

set newNode=leftChild- i
nodeMoving(newNode, leftChild)

end if
end if

end if

if (3 *rightChild-})<90 then
if the visible of sprite (3 *rightChild-1)=TRUE then
if rightChild=7 then
LRupingSlIbTree 1 rightChild

else if rightChild= liar rightChild=15 then
LRlIpingSubTree2 rightChild

dse
nodeMoving(rightChild/2, rightChild)

end if
end if

44

end if
end

-- ***
on LRupingSubTreel subRootNum

if subRootNum=7 then
set newNode=3

else if subRootNurn=14 or subRootNurn=15 then
set newNode=subRootNum-:8

else
set newNode=subRootNum-16

end if
nodeMoving(newNode, subRootNum)

set leftChild=2*subRootNum
set rightChild=leftChHd+1
if leftChild<3 I then

if the visible of sprite (3 *leftChild-1)=TRUE then
LRupingSubTreel leftChild

end if
end if
if rightChild<31 then

if the visible of sprite (3*rightChild-I)=TRUE then
LRupingSubTree1 rightChild

end if
end if

end

-- ***
on LRupingSubTree2 subRootNum

if subRootNum= 11 then
set newNode=5

else if subRootNum= 15 then
set newNode=7

else if subRootNum=22 or subRootNum=23 then
set newNode=subRootNum-12

else
set newNode=subRootNum-16

end if
nodeMoving(newNode, subRootNum)

set leftChild=2*subRootNum
set rilghtChild=leftChild+l
if leftChild<31 then

if the visible of sprite (3*leftChiJd-l)=TRUE then
LRupingSubTree2 leftChild

end if
end if
if rightChild<31 then

if the visible of sprite (3*rightChild-I)=TRUE then
LRupingSubTree2 rightChild

end if
end if

end

45

-- ***.*******
on LRtransferSubTree 1 subRootNum

set leftChild=2*subRootNum
set rightChiId=leftChild+1

if leftChild<31 then
if the visible of sprite (3*leftChild-l)=TRUE then
LRtransferSubTree1 leftChild

end if
end if
if rightChild<31 then

if the visible of sprite (3 *rightChild-l)=TRUE then
LRtransferSubTr,ee 1 rightChild

end if
end if

if subRootNum=6 then
set newNode=5

else if subRootNum=12 or subRootNum=13 then
set newNode=subRootNum-2

else
set newNode=subRootNum-4

end if

nodeMoving(newNode, subRootNum)
end

- ***
on LRtransferSubTree2 subRootNum

set leftChild=2*subRootNum
set rightChild=leftCh ild+1

if leftChild<31 then
if the visible of sprite (3*leftChild-I)=TRUE then
LRtral1sferSubTree2 leftChild

end if
end if
if rightChild<31 then
if the visible of sprite (3 *rightCbild-l)=TRUE then
LRtransferSubTree2 rightChild

end if
end if

ifsllbRootNum=lO or subRootNum=14 then
set newNode=subRootNum-l

else
set newNode=subRootNum-2

end if

nodeMoving(newNode, subRootNum)
end

on nodeMoving newNode, slIbRootNum

46

~l

I

~
I
I
I

set newKeySprite=3*newNode-1
set newNodeSprite=newKeySprite-1
set subRootKeySprite=3 *subRootNum-1
set subRootNodeSprite=subRootKeySprite-1
puppetSprite newKeySprite, TRUE
puppetSprite newNodeSprite, TRUE
puppetSprite newNodeSprite-l, TRUE
puppetSprite subRootKeySprite, TRUE
puppetSprite subRootNodeSprite, TRUE
puppetSprite subRootNodeSprite-l, TRUE

set the text of member (the rnemberNum of sprite newKeySprite) = the text of member (
the memberNurn of sprite subRootKeySprite)

set the foreeolor of sprite newNodeSprite = the foreColor of sprite subRootNodeSprite

set the visible of sprite (newNodeSprite-l)=TRUE
set the visible of sprite newKeySprite=TRUE
set the visible of sprite newNodeSprite=TRUE
set the visibl,e of sprite subRootKeySprite=FALSE
set the visible of sprite subRootNodeSprite=FALSE
set the visible of sprite subRootNodeSprite-l=FALSE
updateStage

end

-- ***
on LRrnoveSubTreeDown 1 subRootNum

set leftChildNum=2*subRootNum
set rightChildNum=2*subRootNum+ 1
if subRootNum<16 then

if the visible of sprite (3*leftChildNum-I)=TRUE and (the text of member (the
mernberNurn of sprite (3*leftChildNum-I»)<>"" then

LRmoveSubTreeDown1(leftChiJdNum)
end if

if the visible of sprite (3 *rightChiJdN um-l)=TRUE and (the text of mem bel' (the
rnemberNum of sprite (3*rightChildNum-I)))<>"" then

LRmoveSubTreeDownl(rightChildNum)
end if

end if

if subRootNum>=2 and subRootNum<4 then
set newNum=subRootNum+2

else if subRootNum>=4 and subRootNum<6 then
set newNum=subRootNum+4

else if subRootNum>=6 and subRootNum<8 then
set newNum=subRootNum+6

else if subRootNum>8 and subRootNum<J 2 then
set newNum=subRootNum+8

else if subRootNum>=12 and subRootNum<16 then
set newNum=subRootNum+12

else
decline
exit

end if

47

~
,

nodeMoving(newNum, subRootNum)
end

-- ***
on LRmoveSubTreeDown2 subRootNum

set leftChildNum=2*subRootNum
set rightChildNum=2*subRootNum+1
if subRootNurn<l 6 then

if the visible of sprite (3 *leftChildNum-l)=TRUE and (the text of member (the
rnemberNum of sprite (3*leftChildNum-l))<>"" then

LRmoveSubTreeDown2(leftChildNurn)
end if

if the visible of sprite (3*rightChildNum-l)=TRUE and (the text of member (the
memberNum of sprite (3*rightChildNum-l)))<>'''' then

LRmoveSubTreeDown2(rrnghtChi IdNum)
end if

end if

if subRootNum=] 0 then
set newNum=subRootNum+10

else if subRootNum=14 then
set newNum=subRootNum+14

else
decline
exit

end if

nodeMoving(newNurn, subRootNum)
end

-- ***
on decline

alert "Out of stage! Please rebuild the tree."
rebuild

end

on ColorRootBlack

longwait
puppetSprite I, TRUE
set the foreColor of sprite 1 to 255
updateStage

end

on c1eardata

set the text of member "Fieldlnput" to ""
set the text of member "movingNode" to ""

end cleardata

on toggleVisible channel, state

set the visible of sprite channel to state

48

end

-- ***
on wait

repeat with x=l to 15000
nothing

end repeat
end

-- ***
on longWait

repeat with x=l to 5
wait

end repeat
end

-- ***
on invisible

repeat with x= I to 94
toggleVisible(x, FALSE)

end repeat
end

-- ***
011 getParentNum child

set parentNum=chiid/2

return parentNurn
end

-- ***
on getGrandparentNum grandChild

set child=getParentNum(grandChild)
return getParentNurn(cbild)

end

-- ***
on getColor nodeNum

set nodeSprite=(3*nodeNum-l)-1
if the visibJ.e of sprite noclieSprite=O then

set color=255
else

set color=the foreColor of sprite nodeSprite
end if
return color

end

-- ***
on colorBlack nodeNum

set nodeSprite = 3*nodeNum-l
puppetSprite nodeSprite-l> TRUE
set the foreColor of sprite nodeSprite-l to 255
updateStage

end

49

! '
r-
I

-- ***
on colorRed nodeNum

set nodeSprite = 3*nodeNum-1
puppetSprite nodeSprite-l, TRUE
set the foreColor of sprite nodeSprite-l to 35
updateStage

end

-- ***
* Deletion Routine *

-- ***
on delete

global gNodeList, gOperationList

if the text of member "Fieldlnput" = "" then
alert "Please enter an integer in the box. If

exit
end if

set deletion=value(the text of member "FieldInput")
if getOne(gNodeList, deletion)=O then

alert "Key not found, pl.ease select another one."
exit

end if

set keyNum=findKeyNum(deletion)

if the visible of sprite (3*(2*keyNum)-1)=FALSE or the visible of sprite
(3*(2*keyNum+l)-1)=FALSE then

set delNum=keyNum
else

set delNum=findsuccessor(keyNurn)
end if

if the visible of sprite (3 *2*deIN1.lm-1)=TRUE then
set shortness=2*delNlIm

else
set shortness=2*deINum+ J

end if

set the text of member (the memberNum of sprite (3 *keyNum-l) to ""
wait
set delColor=the foreColor of sprite (3*deINum-2)
set the visible of sprite 3*deINum-l to FALSE
set the visible of sprite 3*deINum-2 to FALSE
set the visible of sprite 3*deINum-3 to FALSE
wait

if keyNum<>delNum then
set height=the 10cY of sprite (3*deINum-l)-the 10cY of sprite (3*keyNlIm-l)
set width=the locH of sprite (3*deINum-l)-the locH of sprite (3*keyNum-l)
set times=integer(height/3)- 1

50

puppetSprite 3*keyNum-l, TRUE
puppetSprite 93, TRUE
set the text of member "movingNode"= the text of member (the member of sprite

(3 *delNum-l»
set the foreeolor of sprite 93= the foreColor of sprite (3 *keyNum-l)
set the loc of sprite 93 to the loc of sprite (3*deINmn-l)
set the visible of sprite 93 to TRUE
updateStage
repeat with x=] to times

set the 10cV of sprite 93 = the 10cV of sprite 93 - 3
set the locH of sprite 93=the locH of sprite 93-(integer(3*width/height»

wait
updateStage

end repeat

set the text of member (the memberNum of sprite (3*keyNum-I» to the text of member
"movingNode"

set the visible of sprite 93 to FALSE
updateStage

else
if the foreColor of sprite (3 *deINum-2)=3 5 then
--the visible of sprite (3 *2*delNum-1)=FALSE and the visible of sprite

(3 *(2*deINum+1)-1)=FALSE then
set the visible of sprite (3 *delNum-l)=FALSE
deleteOne gNodeList, deletion
add gOperationList, "Delete"&& deletion

cleardata
exit

end if
end if

set shortnessCoIor=getColor(shortness)
if delColor=255 then

puppetSprite 94, TRUE
puppetSprite (3*deINum-2), TRUE
if shortnessColor=35 then

puppetSprite (3*deINum-l), TRUE
set the foreeolor of sprite (3*deINum-2) to sh01tnessColor
set the text of member (the memberNum of sprite (3*delNum-l» to the text of member

(the memberNum of sprite (3*shortness-l»
set the visible of sprite 3*shortness-l to FALSE
set the visible of sprite 3*shortness-2 to FALSE
set the visible of sprite 3*shortness-3 to FALSE
set the visible of sprite 3*delNum-l to TRUE
set the visible of sprite 3*deINum-2 to TRUE
set the visible of sprite 3*deINum-3 to TRUE

else
set the foreColor of sprite (3 *deINum-2)=255
set the visible of sprite (3*deINum-2)=TRUE

end if

set the lac of sprite 94 to point(the locH of sprite (3 *delNum-l)-16, the locV of sprite
(3 *deINum-l)-17)

set the visible of sprite 94 to TRUE

51

updateStage
longwait
ftxup(delNum)

end if

deleteOne gNodeList, deletion
add gOperationList, "Delete"'&& deletion
cleardata

end delete

-- ***
on findKeyNum key

set nodeNum=1
set nodeKeySprite=3*nodeNum-l

repeat while the visible of sprite nodeKeySprite=TRUE
set nodeKey=value(the text of member (the memberNum of sprite nodeKeySprite))

if nodeKey=key then
set theNum=nodeNum
exit repeat

else if nodeKey>key then
set nodeNum=nodeNum*2

else
s,et lilodeNum=2*nodeNum+1

end if

set nodeKeySprite=3 *nodeNum-l
end repeat

return theNum
end

**
on findSuccessor keyNurn

set sucoessor=2*keyNum+1
set theLeft=2 *successor

repeat while the visible of sprite (3 *theLeft-J)=TRUE
set successor=theLeft
set theLe~heLeft*2

end repeat

return successor
end

,

I
I

* Fix-Up handler of deletion routine *

on fixup shortNum
set times =1
repeat while shortNum<>l and getColor(sbortNum)=255

52

if (shortNllm mod 2)=0 then
set theNllm=sbortNurn+l
if getColor(theNllm)=35 then
colorBlack(theNllrn)
colorRed(shortNum/2)
leftRotate(shortNum/2)
set shortNum=2*shortNum
set tbeNum=2*(theNum-l)+1

end if

if getColor(theNum*2)=255 and getColor(tbeNum*2+1)=255 then
colorRed(theNum)
if times=1 then

set the visible of sprite (3 *shortNurn-l) to FALSE
set the visible of sprite (3 *shortNum-2) to FALSE
set the visible of sprite (3*shortNum-3) to FALSE

end if

set times=times+]
set shortNum=shortNum/2

puppetSprite 94, TRUE
set the lac of sprite 94 to point(the locH of sprite (3*shortNum-l)-16, the 10cY of

sprite (3 *shortNllm-l)-17)
set the visible of sprite 94 to TRUE

updateStage
longwait

else
jf getCoJor(2*theNum+l)=255 then
colorBtack(2*theNum)
colorRed(theNum)
rightRotate(theN urn)

set theNum=theNum*2+ I
end if

puppetSprite (3*theNum-2), TRUE
set the foreColor of sprite (3*theNlIm-2) to the foreColor of sprite (3 *(shortNuml2)-2)

updateStage
colorBlack(shortN um/2)
colorBlack(2*theNllm+1)
leftRotate(shortN um/2)

set shorfNum=1
end if

else
set theNllm=shortNum-1
if getColor(theNurn)=35 then

colorBlack(theN urn)
colorRed(shortNum/2)
rightRotate(shortNum/2)
set shortNum=2 "'shortNum+1
set theNum=2*(theNum+})

end if

53

if getColor(theNum*2)=255 and getColor(theNum*2+1)=255 then
colorRed(theNum)
if times=1 then

set the visible of sprite (3*shortNum-l) to FALSE
set the visible of sprite (3*shortNum-2) to FALSE
set the visible of sprite (3*shortNum-3) to FALSE

end if
set shortNum=shortNumf2
set times=times+ I

puppetSprite 94, TRUE
set the toe of sprite 94 to point(the locH of sprite (3 *shortNum-l)- I 6, the locV of

sprite (3 *shortNum-l)-17)
set the visible of sprite 94 to TRUE

updateStage
Iongwait

else
if getColor(2*theNum)=255 then
colorBlack(2*theNum+ I)
colorRed(theNum)
leftRotate(theNurn)

end if

puppetSprite (3*theNum-2), TRUE
set the foreColor of SIJrite (3*theNum-2) to the foreColor of sprite (3*(shortNumf2)-2)

updateStage
colorBlack(shortNumf2)
colorBlack(2*theNurn)
rightRotate(shortNum/2)

set shortNum=1
end if

end if
end repeat

colorBlack(shortNum)
set the visible of sprite 94 to FALSE

end

54

~ I

· I
l.

VITA

Yongzhong Zhang

Candidate for the Degree of

Master of Science

Thesis: RED-BLACK TREE ANIMATION

Major Field: Computer Science

Biographical:

Personal Data: Born in Quangzhou, Quangdong, P. R. China, on August, 1968, the
son of Baojuan Gao and Hailin Zhang, and grandson of Muzhen Diao and
Daolong Zhang; married to Tong Xie in 1995.

Education: Graduated from No. 16 High School, Quangzhou, Quangdong, P. R.
China in June, 1986. Received Bachelor of Science degree in Chemistry from
Zhongshan University, Quangzhou, Quangdong, P. R. China in July, 1990.
Completed the requirements for the Master of Science degree with a major in
Computer Sciences at Oklahoma State University in December, 1998.

Experience: Employed as Assistant Engineer by Nanzhong Organic Chemical Plant,
Guangzhou, Quangdong, P. R. China, 1990 - 1992, Employed as Technical
Representative by Coates (Quangzhou) PRC Ltd., Quangzhou, Quangdong, P.
R. China, 1992 - 1994, Employed by ICI Swire Paints (China) Ltd. as a Senior
Technical Sales Representative, Guangzhou, Quangdong, P. R. China, 1994
1996.

