DESIGN AND IMPLEMENTATION OF A WEB
DATABASE

MANAGEMENT SYSTEM

By
YWJING ZHANG
Bachelor of Science
Zhejiang University of Technology
Hangzhou, China
1990

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
In partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
December, 1998

Oklahoma State University Library

DESIGN AND IMPLEMETATION OF A WEB
DATABASE

MANAGEMENT SYSTEM

Thesis Approved:

H__du
% Cha, Lo
Waene £, Foneld

Dean of the Graduate College

ACKNOWLEDGEMENTS

I sincerely thank my major advisor, Dr. Huizhu Lu for her intelligent supervision,
constructive guidance, warm encouragement and valuable time she has given to me
toward the completion of my thesis. My sincere appreciation extends to Dr. J.P. Chandler
and Dr. G. E. Hedrick for serving on my committee, whose guidance, encouragement,
assistance and friendships are also invaluable.

Moreover, I wish to express my sincere gratitude to Dr.Yue Zhang, Mr. Yuwen
Lin, and Mr. Hongchi Su for their suggestions and helps.

I would like to give my special thanks to my husband, Dr. Jiaqi Cai, for his
precious suggestions, encouragement, patience, love and understanding throughout this
whole process. My respectful thanks go to my parents Mr. Junhong Zhang, Mrs. Binfeng
Ma, and my brother Mr. Yiqun Zhang, for their support and encouragement.

Finally, I would like to thank all the faculty of the Department of Computer

Science for supporting during these two years's study.

iii

TABLE OF CONTENTS

Chapter Page
L INTBOBDUCTION i isisiuismimnisistisamsisinassnssmsossnsntutstnsssansassrsmsanessasshid 1
II. LITERATURE REVIEW.coccctiiiimtimminereneeeeissessseseascasssssssssaesasssasssasssssnsssesens 5

ACHVE SErver PARE 1..c.uicuiiisiniiisasisisdigsilissiississssisssisvissomsisissisasssmsosisssansisass 5
Open Database ComectiVity «cinsamniiatibaliammiminimmssiammbisesbilbamsatssmrrsin 8
Structured Query Language.veceeeericieeiieieieceeeseeresesaeseraeenesaessssasennens 12
Component Object MOde]uciammoimsmsasssasissssasismssssassiminssissmesianion o 14

III. REQUIREMENT SPECIFICATION OF THE SYSTEM...........cccccocnvnvararuensannee 19

Requirement Analysis of the Systemcccovveiiriiiiirccinnin e ccerennes 19
User Requirement Specification.........cceoeeerueeeecieriecieeeereeseeseeeeenesssseneenes 19
Functional Requirement Specificationc..ccvenreiiiicininninienininsssinninns 22

Formal Requirement Specificationcccevurunies vrverecsesserssssssensesens 25

Search OPETAtiONSccevirruereireerieeseieiaesaeiesress e sresseasasssaesasssesessaassssasas 27
Modify and Update Product Informationcccccoviiicrninninciccsniiinnnn 30
Modify and Update Company Information............cccoeveeceviencncnmsucrssnscseracens 34

IV. IMPLEMENTATION AND RESULTS ...ccccossssassanuorrasosasessaorerrossasesansanssossearssns 38

Bl COM i amissisissssiai i s s s iiss 38
Backgronnlviaaiis i s e s 38
Active Template Librarycccccveeemcrisercinsninssisssscseseeeesssseanens 38

SBOTKRE sccoviuiuniicasaasasossionsieesnisvissn s NSNS SRR S AR SRSS SR 39

Chapter Page

FRPIOREEBIION S oo cusmrmmmmmssimsamrsrsai s s s s D

Navigation Reeoid SOl iac. wiambubtmsumvminssmirtsis s 48
Customized MeSSaZE BOXccceveciriinrereeeistiesessesescssessessessessssasssssssssssssssessens 52

Some Outputs of this Database Management Systemcccccceevereeerveransees 54

V. SUMMARY, CONCLUSIONS AND SUGGESTED FUTURE WORK 83
BIBLIOGRAPEIY - . vivisiossrcasin siiaiossoismmsse - Asissiaias Aot S sa s 85
APPENDIXES ..ol ditBam cmnorencbinsmirtssilasssisansasscartsass sefsssssnssnessavasssesasssesssssssarsses 87

APPENDIX A —NOTATIONS OF Z SPECIFICATION

LANGUAGE USED IN THIS THESIS.ccccccevarnnnrunenes 88

APPENDIX B -- ABRVIATION USED IN THIS THESIS........ccccocoiecnaae 89

APPENDIX C -- GLOSSARY OF TERMS IN THIS THESIS...................... 91

LIST OF FIGURES

Figure Page
1. Fouwr Components of ODBC ArcBettine .c.viinassmmesssismsisissysivissol 9
2. Basic Flow Control for ODBC APPIICAtiONSccccerusrernsmsensseresnenssnssesassensenenes 11
3. A COM Object's Services Accessed via Its Interfacececrverveereecerreessesensennes 14
4. Component Object Model Vtable..........cccocveeeiriienieneiniiiiercsseseeesan e ssesaeenes 15
5, Three Kiid of Seeis . pavanssrsiimumms g
6. E-R Diagram of Electronic Parts Database Management Systemccccceveenee.e 20
¥ Amers and TIein OperalionS s s s smemmsnnastsasiomsoimemsnoosossscosseammsssstosnss onsaxesssts 23
8. Protocols and Networks in the TCP/IP Model Initiallycoccocervvecemrisiennsiarannss 39
9. Socket Communications for Connection-oriented Protocols...........covervarivccinsuacs 41

10. Code for athmail.h....c.....ooeee e et resaeas 42

11. Structire for COM'S BINAry SINE ...ioucismasimnsiisamsscsimmnsaissaonssmnmisassenivsss B0

12, COAE FOF AUMAILEPP 1rerrveeveeers e eseseereressessesemsessseessessmessesessssssesesee S 45

13. AnASP Propram Calls E-mail COM.........c.cooisismisisinsssnmmisimnmisisnsain i 48

14. Codefor Navigating the REeond Sef.....ccusmummsmascnsissassssansasasssasssasarsssenrassussnass 48

15. Code for Customized Error Message BoX.....cuesssasssessssissmsisssssasiinascsssssivies O

16. Code for Customized Confirmation BOXcccecevevininieiririnisisissninsnssnssssssesesassenes 53

17, 'Code i ContmboR BN ... s mmess s assests 53

18. Three TYpes Of UBEIS .cciiircssosasssnsssaissismniosasssisssasssssnasosansasssnsrssonsssasisssidassissaisss 57

19. The Example of User Search Page.........ccoeureemeeseesesnaressnsnsnssssasasasasasessssssssssasasass 58

vi

Figure Page

20.
21.
22.
23.
24,
25,
26.
27,
28.
29.
30.
31.
32
33,
34.
35.
36.
37.
38.

39.

The Output of Searching for Products Made by King/Allied Signal Company.... 59

b1 T G S R R U SR R 60
Compaily's HOmEPaEE 2. 0t it anmisamisrisr s 61
Searching Product by Avionics Catalog.......ccoeeeeueeeeeicececcceeeseeasesreeneressansnes 62
Search Result for Avionics Produtts....cissississssicssasinsissasissiasassissassonss 63
Selection of Product: TMA-330D, TN-200D, and TX-760Dcccceveuvereveremerrrnnene 64
B0 L PO e =0 =S e == e 65
Ltk COCler PO oo s vuamor e e s Ko AR ST N R TN A A R 66
Message Box of Ordesr STIIEcicimiiisssmisiiasisissasissicssiasioiisasisssssnississs 67
ORder MBIL 1o aimmis e S i s s ERs s sodis 68
Order Mail 2ottt ss st sasssessses s sassassassaassssnansnsasse 69

OTFAer MaAil 3 ..o e e e eeeeee s eaaeaesnnesessssnsasesssntssasessnsnassnesssssassassssnes N0

Log-on Page for Company AdminiStrator..........ococeumiscesecsnseccsmsecsnmsansiesessisies 71
First Record of Product in This COmPany.........ccuuwmismremmmmmiesismsesssmmscessens 72
Enable Previous BOHON ... imiisssmmiisiisin issiassmmnsoamsinaisssssisiss 73
Diisable Nt BUMON ovciinmasssimniisieismioionirssesdssiissssssssisersariaisgseisssssisssiis 74
Insertion with Invalid Data..........ccceeeeeiririeeseesmiernesieressasessssssesssssesssesessesssmssessnsans 75
BATOT MIBSBAPC. .cccciiuisuisissinssasiaiasssansisssnsisustasinensisesssssumsesssssnisessusspassensasmysassonsuness 76
Insertion with Valit DR ... miinmsnimiamasnmieiiseiysaivaviasiins 77
A SUCCESS INSETHION ..ovvveesreicncasseornnesnrsssresssssassnaraenssssransssnssanssssssssissiassssnsnssnsssassanse 78

vii

Figure Page

40. A Confirmation BoX IN ACHOM. e cvereceeeereieierasesssssseiesesssssssassssssssensanesssssssssssanseres 19

4]1. Cument Recond Success REMOVEDoivesnvivimsssimsmmsmsssansssiommsramssssssinasesniss 80
42. Log-on Page of Server AAMIniStrator..........cccccceieriineienssscsimsnessesssesssssesasssasssssas 81
43. Compainy Tolormalion PABE. . oiuismimeminiimmmessmimsisi s s e i 82

viii

Table

I

I1.

LIST OF TABLES

The Socket Primitives for TCP

Cursor Types, Meanings, and Values

...

...

CHAPTER1
Introduction

Today, the World Wide Web is gaining increasing popularity. People utilize the
Web for information inquiry, entertainment, and shopping. More and more businesses
realize the importance of the Internet, and actively seek opportunities through the
Internet. The increasing presence of businesses on the World Wide Web reflects the
intensive effect of marketing on the Web. Facing a huge volume of product information,
potential buyers who want to make comparisons among different brands and/or
manufacturers encounter the difficulty of information selection. This thesis intends to
provide a bridge between buyers and manufacturing companies, providing the buyers
with the information about different products and con nanies on the Internet from one
site, saving the potential buyer substantial effort in their arching. With such a bridge the
companies will be able to maintain and update their p: (uct information in the database
remotely; the customers can search and compare commodities they are interested in, and
place orders directly from this site. An order placed can be sent to the manufacturer
- directly.

This study consists of two phases: the design of an abstract model using
requirement specification and the implementation of the system.

In developing high quality software, one of the crucial stages is to write a
software requirement specification document. The requirement specification focuses
carefully upon what the software is supposed to do. We must make sure that requirement

specification statements completely and systematically describe what the software needs

to do. A good software requirement specification should have the following features:
first, it should be unambiguous; second, it should be accurate; finally it should be
complete. It is common that misunderstandings between the client and the developer
cause compromises which conceal some important requirements and may lead to
dissatisfaction by the client. A formal specification provides a way to achieve no
compromise (Ford, 1993). "Formal methods originated from the work of Dijkstra and
Hoare on program verification, and Scott, Strachey and others on program
semantics"(Goldsack and Kent, 1996). Many mathematical languages were developed
from program specifications. One of the most established languages is Z. Created by J.R.
Abrial, the Z language has been expanded and industrially applied by many others in the

1980s. Z is a "model-based" formal specification language, that is, it uses logic and set

theory to build abstract models of required systems using set sequences and functions -

(Goldsack and Kent, 1996). Since the Z language is based on the mathematical discipline
of first-order-logic and set theory, the Z specification has many advantages. It leads to
concise, unambiguous and exact specifications through which_ the reasoning process
easily can be seen. First-order logic deals with predicates, also known as propositions,
which are either true or false. Z contains true and false (two primitive predicates), which
are the always true and the always false propositions respectively (Diller, 1990).

This study uses Microsoft SQL Server 6.5 to create a database system and use
ASP (Active Server Page), JavaScript and VBScript to provide an Internet interface.
Microsoft SQL Server 6.5 uses SQL commands to create and to maintain databases. SQL
is a language that provides a tool that can create and operate a relational database; that is,

sets of related information stored in tables. Using SQL, relational database information

can be created, retrieved, updated and transferred. Because of its elegance and
independence from machine specifics, as well as the support from the industry leaders in
relational database technology, SQL has become the standard language in relational
database. The SQL standard is defined by the American National Standards Institute
(ANSI) and is accepted by the International Standard Organization (ISO) (Gruber, 1990).

While SQL is employed to create the database management system, JavaScript
and VBScript are employed to provide the Web interface. However, the functionality of
JavaScript and VBScript is limited. The Component Object Model, better known as
COM, is used to build a custom component providing extra functions. COM is a method
for developing software components that are small binary executables providing services
for applications, operating systems, and other components. Developing custom COM
components is like developing dynamic-object-oriented API (Application Programming
Interface). COM components are connected to form applications or systems of
components. As indicated by Rogerson “components can be unplugged and replaced at
run-time without re-linking or recompiling the application." (Rogerson, 1997). In this
thesis, Active Template Library is used to build a DLL (Dynamic Link Library) as the
component.

‘The objectives of the thesis are to create a multi-function relational database
management system, Electronic Parts Database Management, for both manufacturers and
customers; to provide a user-friendly web-interface for this database system. Customers
are able to access all information about different products and companies from one site.
The companies can remotely maintain and update product information of their own

company. The customers are allowed to place orders directly from the web site.

This thesis consists of five chapters. The current chapter (Chapter I) is
introduction, providing an overview of formal requirement specification, Z specification
language, Microsoft Active Server Page, Structured Query Language and Component
Object Model.

Chapter II is the literature review for this thesis. It includes ASP, ODBC (Open Database
Connectivity), SQL, and COM.

Chapter III is the System requirement specification. It presents the requirement
specification statements, and it analyzes the statements for the Electronic Parts Database
Management System.

Chapter IV is the implementation of the Electronic Parts Database Management System.
It states how the E-mail COM is created, how the customized message box is
implemented, and how the record set navigation is achieved through the Web interface.

Chapter V is the summary, conclusions and suggested future work of this thesis.

CHAPTER 11
Literature Review

As mentioned in the introduction, this thesis provides a tool by which a user can
search product information through an Web interface. Active Server Page (ASP) provides
a way that dynamically presents information to a Web page corresponding to the users
request.

2.1 Active Server Page

Active Server Page (ASP) is a technology that is used in the creation of dynamic
web content by supporting several server-side programming languages to generate an
HTML file. HTML, the HyperText Markup Language, is a standard language to provide
a common presentation method to globally shared information on World Wide Web

(Fedorchek and Rensin, 1997).

Being a presentation description language rather then a programming language,
HTML doses not determine or control a program's behavior. To address this problem,
Common Gateway Interface (CGI) is introduced as a solution. CGI presents dynamically
generated information on the World Wide Web. It allows the computer to generate Web
pages according to the user's request. It lets the Internet offer interactive advanced user-
driven applications. CGI opens up an entire class of modern applications for the Web
(Gundaraim, 1996). It is a set of standards that describe how a web server program
should communicate with an external application. Pages can be created by an external

program which returns dynamic HTML. But CGI applications suffer from some

problems. The major problem of CGI is that it can lead to slow performance, because
whenever a user loads a Web page that calls the CGI application, web server machine
creates a new process. When sites grow bigger and CGI applications grow more complex,
the problem would become more severe.

An alternative to CGI in the presentation of dynamic web page is Active server
Page (ASP). The majority of ASP functionality is controlled by an asp.dll file, which is
an OLE (Object Linking and Embedding) component. According to Fedorchek and
Rensin (Fedorchek and Rensin, 1997) “The first time a call is made to a page that is to be
handled by ASP, the web server creates an instance of the ASP OLE component in
memory and passes it on to the request. From then on, that same component handles all
user requests. This means that every call to ASP after the first will be extremely fast.”
ASP runs in the same memory space with the web server application since it is an in-
procesé component, and it does not require the operating system to start a new process for
each user.

ASP usually performs its work on server-side, which provides the security. ASP
provides some built-in objects and components that make programming much easier.
The built-in objects are as follows(Fedorchek and Rensin, 1997):

e Application: used to share information with other users who are accessing

the same ASP application

e Request: used to retrieve information submitted by a client

e Response: used to send output data to client l:;rowser

e Server: used to access some internal properties of the
web server

e Session: used to track information specific to a given user's
session
ASP not only provides the objects, but also provides a way enabling
developers to add in their own objects. The following are five components that are
provided with ASP (Fedorchek and Rensin, 1997):
e The Ad Rotator Component: automatically rotates advertisements
displayed on a page

e The Browser Capabilities Component: determines the capabilities of the client

browser

e The Database Access Component: interacts with any ODBC-compliant
database.

e The Content Linking Component: creates a table of contents for web pages

that the information of the site can be
organized like pages in a book.
e The File Access Component: creates and reads text files from the

local disk.

Relational databases information can be created, retrieved, altered and
transferred by using ASP built-in component, the Database Access Component, through

Open Database Connectivity technology.

2.2 Open Database Connectivity

The Open Database Connectivity (ODBC) interface defines a group of functions.
An api:-lication can use the interface to access a Database Management System (DBMS)
by Structured Query Language (SQL).

ODBC defines a method to connect to a data source. This open connectivity is
accomplished by a common method of accessing the database on which the application
and database must agree. This agreement is implemented as a standard that defines a set
of API (Application Programming Interface) function calls and a SQL syntax set. The
open connectivity on the database side is provided by drivers which are contained in
Dynamically linked libraries (DLL). These drivers transform the ODBC API functions
into function calls that are supported by the particular data source being used. These
drivers also transform the ODBC SQL syntax into synta that is acceptable to the data
source. Therefore different data sources can be ac ssed by just loading their
corresponding drivers.

The ODBC architecture consists of four main components: the application, a
driver manager, the driver, and the data source (Whiting, Morgan, and Perkins, 1996), as

shown in Figure 1.

e Application: A program calls ODBC functions to interact with data
sources.
e Drive manager: A Dynamically Linked Library (DLL) that loads drivers

and provides a single entry point to ODBC functions for
different drivers.

e Driver: A DLL, passes SQL statements from application to data

source, and passes results back to the application.
e Data source: includes the data , the associated database, Management System
(DBMS), the platform , and the network used to access the

platform.

Application

Driver Manager

Driver Driver

Data Source Data Source

Figure 1.Four Components of ODBC Architecture
(Whiting, Morgan, and Perkins, 1996)
The ODBC interface functions have seven groups of functions, which contain the
functions defined by the X/Open and SQL Access Group (SAG) CALL Level
Interface (CLI) draft specifications. The SAG CLI groups the interface functions as

follows (Signore, Creamer, and Stegman, 1995):

e Allocate and deallocate
* Environment handle: Identifies the memory storage for global
information
= Connection handle: Identifies the memory location for information
about a particular connection
= Statement handle: Identifies the memory location for information
about a SQL statement
e Connection: Establish connection to a server and upon exiting an application,
the SAG CLI also provides the closing connection to the server
e Executing SQL statements: There are two ways to execute SQL statements:
prepared and direct. If the developers plan to have
the application submit the SQL statement multiple
times, with possibly changes to the parameter
values then, a prepared execution method is used. If
application does not require information about a
result set prior to completing the SQL request and
the developers plan to have the application submit
the SQL request only once, then the direct
execution method is used.
e Receiving results: Retrieving data from an SQL statement's result set and
retrieving information about a result set.

e . Transaction control: Allows the developers to commit or roll back a transaction.

10

e Error handling and miscellaneous: Returns error information and allows
attempting the cancellation of a SQL
statement.

The elementary flow control for ODBC application is showed as follow (Figure 2)

Allocate environment

1 is

Allocate connect handle
Initializing { T

Connect to server
U

\ Allocate statement handle

|

Statement processing

SQL ' &
processing <

Receiving parts

U

(Free statement handle
i}

Disconnect from server

Jd

Terminating <

Free connection handle
JL

\| Free environment

Figure 2. Basic Flow Control for ODBC Applications

(Signore, Creamer, and Stegman, 1995)

Structure Query Language is employed to create and manipulate the data in the

database system.

2.2 Structured Query Language (SQL)

A relational database is related information stored in two-dimensional tables.
Tables are interrelated so that sophisticated and powerful operations can be performed.
The power of the relational database lies in the relationship that the developers can
construct between the pieces of information. The relational model now is being used as
the primary data model for numerous applications outside the domain of traditional data
processing. The first database systems used either the network model or the hierarchical
model- which are tied more closely to the underlying implementation of the database than
is the relational model. There is a substantial theory for a relational database. The theory
assist in the design of relational databases and in the efficient processing of user requests

for information from database. (Silberschatz, Korth, and Sudarshan, 1997).

In 1970, E.F. Codd introduced the relational model (Codd, 1970). A theoretical
basis for database languages was founded. The model consists of simple concepts for
recording data and operators for manipulating the information in a database. Codd later
published an article that brought forth ideas for the improvement of the initial model
(Codd, 1979). Database languages were developed based on the concept and ideas of that
relational model. Therefore, these languages are called relational database languages,

SQL was one of them.

12

SQL originated with a project at IBM. The IBM project, known as System R, was
to develop an experimental relational database management system, System R. One of
the objectives of System R was to demonstrate that the relational model could be
implemented in a system and could satisfy the demands of a modern database
management system. The Sequel language was chosen as its database language. In the
System R project, the language was renamed SQL. The System R project was completed
in 1979. IBM publicized the development of system R a great deal during and after the
project advocating relational database management systems. In the mean time, other
manufacturers began to build relational database management systems. Some of them
implemented SQL with their own adaptive adjustment, while others adopted on SQL
immediately. As the result, there were a number of competing SQL products on the
market, ANSI leading to set up the standard SQL then call for conformation of the

standard (Van and Rick, 1988).

The structure of SQL is that it has two groups of SQL commands. One is called
Data Definition Language (or DDL also called Schema Definition Language in ANSI)
which is used to define relation schemas, delete relations, create indices, and modify
relation schemas. The other is called Date Manipulation Language (DML), which is used
to insert information into, delete information from, and modify information in the tables
at any given time. Data Control Language (DCL) is used to determine whether a user is
authorized to perform a particular operation in the database. DCLis considered part of

DDL in ANSI (Derlans, 1988).

While SQL is employed to define and manipulating data, JavaScript and VBScript

are used to present the data to a user. Unfortunately, the functionality of a scripting

language usually is limited. As mentioned in chapter one, ASP allows developers to build
their own components. Therefore, component object model (COM) technology is adopted

to provide additional functions.

2.3 Component Object Model (COM)

The advantage of using COMs is their abilities to plug into and unplug from an
application dynamically. Components link dynamically and hide the details of how they
were implemented. A program or a component that uses another component is called a
client. A client and a component connected to each other through an interface as shown

in Figure 3. Each interface is a contract between the object and its clients.

Interface (i)

" COM object

Interface

Client

Figure 3. A COM object's Services Accessed via Its Interface

All COM interfaces are required to inherit from IUnKnown, which a standard

COM interface. Following is the definition of IUnknown.

Class [Uknown

{
virtual HRESULT QueryInterface(REFIID riid, void** ppv) =0;
virtual ULONG AddRef()=0;
virtual ULONG Release()=0;

55

Each COM interface has three methods: QuerylInterface, AddRef, and Release, which are
inherited from IUnKnown as the first three functions in its virtual function table (Vtable)
(Figure 4). A client can discover whether a component supports a particular interface by
passing the interface identifier structure (IID) to QueryInterface. If the COM supports
that particular interface, Querylnterface returns a pointer to the interface; otherwise,

Querylnterface returns an error code, and the client can ask for another interface.

Client

CcoM

Pointer to Method 1
\‘ﬁ QuerylInterface
Pointer to Method 2

Pointer to Method 3 — | Release
Pointer to Method 4 Some other method 1
/,* Some other method 2
Pointer to Method 5
Vtable

Figure 4. Component Object Model Vtable

Client brings COM into action by calling it. But stopping COM execution should
not depend on the client. If there are more than two clients using the COM
simultaneously, one client finishes using the COM and stops COM, the other client
would mysteriously lose the COM. Therefore COM must have the ability to know when
it should stop its own execution. Reference counting is a simple and fast method to
enable components to stop their own executions. A running COM component maintains
a reference count. When a client gets an interface from a component, the reference count
is incremented. This is handled by the AddRef method. When the client finishes the
interface, the reference count is decremented, handled by the Release method. Release
method also check the reference count if it reaches zero, and if it dose so, Release deletes

the component from the memory (unloads COM itself).

Every COM component is implemented inside a server. There are three primary

kinds of servers (Chappell, 1996), as shown in Figure 5:

. In-process Servers: implemented in a dynamic link library and execute

in the same process as the client

s Local Servers: implemented in a separate process running on the

same machine as the client

° Remote Servers: implemented in a DLL or in a separate process that
runs on a different machine than the client does,

Distributed COM (DCOM) chooses this option

Among the above types of servers, in-process server is chosen because its
performance resulted from running in the same memory space as client process provided

by Dynamic Link Library (DDL).

Dynamic Link Libraries generally are not executable directly, and they usually do
not receive messages. They are separate files containing functions that can be called by
programs and other DLLs to perform certain jobs. A DLL is brought into action only

when another module calls one of the functions in the library (Petzold, 1996).

L
I
]
I
]
Q !
I
)
i
In-process server E o}
@ +
!
! Local server
1] i
i
H Process 2
]
Process | !
Machine!One

Machine Two

Remote server

e

Figure 5. Three Kind of Servers

Template is a technique to create a model for generic functions and
classes. A generic function or class is a set of functions or members that can

applied to various types of data. The particular data type is specified when it is

instantiated. COM has some basic requirements, such as, all interfaces that must
inherit from IUnknown. All interfaces must have three functions, which are
- almost the same to all the COMs. The Active Template Library (ATL) uses
template technology to provide basic COM needs. ATL facilitates the creation of
small, COM-based components. = ATL provides the following features

(Armstrong, 1998):

e AppWizard: creates the initial ATL project

e Object Wizard: produces code for basic COM components

e Built-in support for elementary COM functionality such as [lUnKnown, Class

factories and self-registration

o Support for Microsoft's Interface Definition Language (IDL). This provides
marshaling (transferring function arguments and return value across process
and machine boundaries) support for custom Vtable interface as well as

component self-description through a type library

e Support for IDispatch (Automation) and dual interfaces

e Support for developing efficient ActiveX controls

CHAPTER III

REQUIREMENT SPECIFICATION OF THE SYSTEM

Requirements specification includes both user requirements specification and
functional requirements specification. Specification of user requiremenis is statements
that characterize the data needs of the prospective database users. Specification of
functional requirements is statements that describe operations or transactions users expect
to perform on the data. The following sections present the detailed overview of the
Electronic Parts Database Management System. The requirement specification is stated
with Z specification language.

3.1 Requirement Analysis for the System
3.1.1 User requirements specification

A company is located in a particular, street, city, and is identified by its unique
company name. The company can be contacted through a contact person, or the
company’s email, phone, and fax. The company also provides additional information on
its homepage.

A product is made by some particular companies; it is identified by a particular part
number. A product has additional information such as features, image, price and catalog.

A company administrator is protected by his or her user id, password, and association
with the particular company whose database is his or her charge.

The server administrator also is protected by user id and password. The E-R diagram

for the electronic parts database management system is shown in Figure 6.

Figure 6 E-R Diagram of Electronic Parts Database Management System

Part Information

omp. Nam

0T

Company Administrator f|~——

@omé. Nam@

il
Contact Person

Company Information

Maintained b

Server Administrator

Base on the E-R diagram following tables are created.
CREATE TABLE ADTABLE
(SADMOINISTARTOR VARCHAR (50) NOT NULL,
PASSWORD VARCHAR (50) NOT NULL,

PRIMARY KEY (SADMINISTRATOR, PASSWORD))

CREATE TABLE CADIMINISTORTABLE

(COMPANYNAME VARCHAR (50) NOT NULL,
CADMINISTRATOR VARCHAR (50),
PASSWORD VARCHAR (50)

FOREIGN KEY (COMPANYNAME))

CTREATE TABLE COMPANYTABLE
(COMPANYNAME VARCHAR (50) NOT NULL,

WHOLENAME VARCHAR (100) NOT NULL,

STREET VARCHAR (50),
CITY VARCHAR (30),
STATE VARCHAR (20),
ZIP VARCHAR (20),

CONTECTPERSON VARCHAR (30),
HOMEPAGE VARCHAR (50),

EMAIL VARCHAR (50),

21

PHONE VARCHAR (30),
FAX VARCHAR (30),

PRIMARY KEY (COMPANYNAME))

CREATE TABLE PARTTABLE
(COMPANYNAME VARCHAR (50) NOT NULL,

MANUPARTNUMBER VARCHAR (100) NOT NULL,

CATALOG VARCHAR (100) NOT NULL,
PARTNUMBER VARCHAR (100) NOT NULL,
PFEATURE VARCHAR (255),
IMAGEFILE VARCHAR (255),
PRICE NUMERIC (18,2),

PRIMARY KEY (PARTNUMBER, COMPANYNAME))

3.1.2 functional requirements specification

Users in three different levels access this electronic parts database system. The
first level is for ordinary users who can search all product information of the system, but
are not authorized to make modifications. The second level is company administrators
who are responsible for maintaining or updating their company product information. The
highest level is a server administrator who can maintain and update any company
information. When a new company joins, the server administrator must record all
company information, the company administrators' user ID and password. Figure 7 shows

the operations that can be performed on this database management system.

22

€T

Figure 7 Users and Their operations

EParDB
L
o
| I |
Otinary User Compiny Administator Semver Adninistalor
I
| |
Searth Productnfomation Ot Product Wantzn Company's Own maintzin Companys’
Produetifomation Infomaton
| | |] Il
Update Add Remove Add Remore Updte
Exsiing Produe New Product 01d Product Hew Company Exsing Company | {Exsing Compnay Infomation

The major transactions in this database system are as follows:

e Search Product Information:

1.

2.

7.

Search product information by company name

Search product information by catalog

Search product information by part number

Search product information by company name and part number
Search product information by company name and catalog
Search product information by catalog and product number

Search product information by company name, catalog and part name

e Maintain and Update Product Information:

1.
2

3

Add new product information
Modify existing product information

Remove existing product information

e Maintain and Update Company Information

1.
2.
3.
Ordinary users only can perform search product operations. Maintaining and
updating company product information is restricted to company administrators only.
However, server administrators can place themselves as company administrators to
modify product information, but maintaining and updating company information only can

be performed by server administrators. When a new company applies to join in the

Add new company information
Modify existing company information

Remove existing company information

24

database system, company information, its company administrator user ID and password
must be recorded. Company administrators only can maintain and update their own
product database

3.2 Formal requirement specifications

the Z specification language is adopted for writing requirements specification. In
this requirements specification, the following data types are defined:

company = [[companyname, person, password, address,

contactperson, phone, fax, homepage, e-mailaddress]]

product = [[partnumber, price, image, feature, catalog, companyname]]

The data type, company, represents any company information that may or may not
be in the database. The data type, product, represent any product information that may or
may not be in the database. The same thing applies to the partnumber, catalog and
companyname. The date type Company € company represents company information that
is currently in the database. The data type Product € product, which represents product
information, is currently in the database. So do data types PartNumber € partnumber,
Catalog € catalog and CompanyName € companyname.

R EpartDBState-----------
| CAdministrator, SAdministrator: F person
| CompanyName: F companyname
| Catalog: F catalog
1 PartNumber: F partnumber
| Product: F product
] Company: F company
| build: CompanyName —— Product
| about: Catalog——® Product
| identify: PartNumber—— Product
| ensure: CAdministrator —» Password
l
|

inchargeof: CAdministrator —p CompanyName
secure: SAdministrator —— Password

25

| aboutcompany: CompanyName ——3 Company

| CAdministrator (]| SAdministrator = { }

A EPartDBState & EPartDBState A EPartDBState’

= EPartDBState & A EPartDBState |
about' = about A
build' = build A
identify' = identify A
ensure' = ensure A
inchargeof' = inchargeof A
CAdministrator' = CAdministrator A
SAdministrator’ = SAdministrator A
Product' = Product A
Catalog' = Catalog A

CompanyName' = CompanyName

In the initial state every variable is the empty set:
InitialEPartDBState'=EPartDBState’ |
about'={} A
build' ={} A
identify'= { } A

ensure' = { } A

26

inchargeof = { } A
CAdministrator' = { } A
SAdministrator' = { } A
Product' =§{ } A
Catalog'={} A
CompanyName'= { }

The electronic database system can be interrogated in various ways. The
following session describes an operation that outputs all product information by a
particular company name, a transaction that lists all the product information about a
particular catalog and a transaction that lists all the product information of a particular
part number.

3.2.1. Search Operations

3.2.1.1 Search by Company Name

-=--==-= SearchByCompanyName-----------
| = EpartDBState

| c?: CompanyName

| out!: F Product
|
|

out! = build (|c?|)

Here c? is an input, and c? € CompanyName, out! is an output. Since build is a
function that maps from CompanyName to Product, build(lc?]) will give all the
information of the products that are made by that company.

3.2.1.2 Search by Catalog

- SearchByCatalog-----------

| Z EpartDBState
| a?: Catalog

27

| out!: F Product

[out! = about (|a?|)

3.2.1.3 Search by Part Number

-——= SearchByPartNumber-----------
| = EpartDBState

| p?: PartNumber

| out!: F Product

[out! = identify (|p?))

This session presents an operation that outputs all the product information by
specifying company name and catalog; an operation that outputs all the product
information by specifying company name and part number; and an operation that outputs
all the product information by specifying part number and catalog.

3.2.1.4 Search by Company and catalog

----- SearchByCompanyAndCatalog-----------

= EpartDBState
a?: Catalog

|

|

| c?: CompanyName
| out!: F Product

| out! = build (|c?) N about (ja?|)

Here a? and c? are inputs. And a?e Catalog, c? € CompanyName, out! is an
output. The function about maps from Catalog to Product, so about(|a?|) will give us all
the product information that belongs to that catalog. Since build(|c?|) gives all the
products that are made by that company, build (|c?|)) about (|a?)) will give products that
are made by that particular company and belong to that specified catalog. It should be

noticed that out! may be an empty set.

28

3.2.1.5 Search by Company and Part Number

SearchByCompanyAndPartNumber-----------
= EpartDBState

p?: PartNumber

c?: CompanyName

out!: F Product

| out! = build (|c?]) N Identify (jp?])

3.2.1.6 Search by Catalog and Part Number

. ==-==-= SearchByCatalogAndPartNumber-----------
| = EpartDBState
| p?: PartNumber
| a?: Catalog
| out!: F Product

1 out! = about (ja?]) (" Identify (jp?])

The following operation will output all product information by choosing
particular company name, part number and catalog.
3.2.1.7 Search by Company, Catalog and Part Number

-=mnee= SearchByCompanyCatalogAndPartNumber-----------
| = EpartDBState
| ¢?: Company
N p?: PartNumber
| a?: Catalog
| out!: F Product

| out! = about (ja?|) [Identify ({p?[)() build(|c?))

Here a?, ¢? and p? are inputs, c?eCompanyName, a?e Catalog,
p?€ PartNumber. The function identify maps from PartNumber to Product. Because

identify (|p?|) gives product information that is identified by the PartNumber, build (|c?))

29

gives a list of products that are made by the company, and about([a?]) gives a list of
products that belongs to that specified catalog, therefore, outputs out! is the product that
is made by that particular company, belonged to that specified catalog and can be

identified by that specified part number. Again out! may be an empty set.

3.2.2 Modify and Update Product Information

3.2.2.1. Add a New Product

------- AddNewProduct---------==-----
A EPartDBState
p?: product
n?: person
c?: catalog
a?: partnumber

|
|
|
|=
| a? ¢ dom identify
| p? ¢ ran identify
N n? € dom inchargeof
| Product'=Product U {p?}
| Catalog'=Catalog U {c?}
| build' = build U {inchargeof (|n?|) —» p?}
| identify' = identify U {a? ——p p?}
| about' = about U {¢? —» p?}

---—---- NotNewProduct------=---smnmn--
| = EPartDBState
| a?: partnumber

| p?: product

| rep!: Report
|

|

|

a? € dom identify v
p? € ran identify
rep! = 'Not a new product!’

—emeremen- AuthoTiZEdC AdMiniStrator-------===-----

30

n?: person
¢?: companyname
p?: password

n? € dom inchargeof
p? € ran ensure

¢? € ran inchargeof
¢? = inchargeof(|n?|)
p? = ensure(|n?|)

------------UnauthorizedCAdministrator------------
| = EPartDBState

| n?: name

| p?:password

| c?:companyname
| rep!:Report

| n? ¢ dom inchargeof v

| p? & ran ensure v

| ¢? ¢ ran inchargeof

| p? # ensure(|n?|) v

[c? # inchargeof(|n?))

| rep! = 'Not Authorized as company administrator!'

DoAddNewProduct £ AuthorizedCAdministrator A AddNewProduct A Success

v
UnauthorizedC Administrator

\IilotNewProducl
Here is an operation that adds a new product to the database. p? ¢ ran identify
specifies that this product information does not exist in this database, since the identify is
the function that maps from existing part number in this database to product information.
a? ¢ dom identify means that this new part number is not currently being used for
identifying some other products. In this case it is considered as this 'new' product not a

really new. Here n? € dom inchargeof guarantees that function inchargeof(in?|) gives

the company name. And function buwild is add a new mapping

31

inchargeof{|n?)) — p? guarantees that the company administrator only modify his or
her own company’s product information.

~ Product’ = Product U {p?} updates new Product set, so does Catalog set.
The function identify adds a new mapping from part number to new product information.
So does the function about.

When a new product is added, three scenarios can happen. First, if the requester
is an authorized company administrator, and the product is new, then he/she can add the
new product successfully. Second, if the requester is an authorized company
administrator, because the product is not new (either product information not new or
product part number being used), then insertion cannot be done. Third if the requester is
unauthorized, then the insertion cannot be done.

3.2.2.2 Remove a product from database

- =-=---—-—-RemoveProduct
A EpartDBState
p?: product
c?: catalog
n?: person
a?: partnumber

p?€ ran identify

n?e dom inchargeof

build' = build \ { inchageof(|n?|) —»p?}
identify’' = identify \ { a? —»p? }
about' = about \ { ¢? ——p p? }
Product' = Product \ {p?}

I
I
|
I
|
%
| a?e dom identify
I
I
I
I
|
I
[Catalog' = Catalog \ {c?}

————————— NotExistProduct

| = EPartDBState
- a?: partnumber

| p?: product

| rep!: Report

32

|

|

| a? ¢ dom identify v

| p? ¢ ran identify

| rep! = Not exist such product!’

DoRemoveProduct £ AuthorizedCAdministrator A RemoveProduct A Success
A4
UnauthorizedCAdministrator
v
NotExistProduct

3.2.2.3 Update a product information

--------UpdateProduct-----=--------
| A EpartDBState
| p?: product

| c?: catalog

| n?: person

| a?: partnumber

| a? € dom identify

| n? € dom inchargeof

| p? € ran identify

| build' =(build & identify(ja?|)) U { inchargeof(|n?)) — p? }
| about' =(about & identify(ja?)) U {c? —»p?}

| identify' = (identify » identify(ja?|)) U {a? —» p? }

| Product’ = Product

| Catalog' = Catalog

DoUpdateProduct £ AythorizedCAdministrator A UpdateProduct A Success

v
UnauthorizedC Administrator

A"
NotExistProduct

a? € dom identify specifies that this part number does exist in the database.

n? € dom inchargeof guarantees that inchargeof(|n?|) will give the company name.

p? € ran identify means that product information is included in the database.

(build & identifi(]a?|)) U { inchageof(n?)) —®» p? } means build filters the mapping

33

which is associated with product information identify(|a?|) , and adds a new mapping
from company name inchargeof{|n?|) to the current product information. So about and
identify functions do the same thing.

3.2.3 Modify and Update Company Information

3.2.3.1 Add New company

---------AddNewCompany
A EPartDBState
¢?: Company

a?: CompanyName
b?: person

p?: password

a? ¢ dom Company

inchargeof' = inchargeof J {b? —— a?}
ensure' = ensure U {b? ——pp?}
aboutcompany' = aboutcompany U {a? ——®c?}

e AuthorizedSAdministrator------------
n?: person
p?: password

n? € dom secure
p? = secure(|n?|)

--------- UnauthorizedS Administrator-----------
| = EPartDBState
| n?: person

| p?:password

| rep!: Report
i

l

I

|

n?¢ dom secure v
p? # secure(|n?])
rep! = 'Not Authorized as company adrmmstrator"

" ——--- NotNewCompany
| = EPartDBState
| a?: CompanyName

34

rep!: Report

a? € dom aboutcompany
rep! = 'Not a New company!’

DoAddNewCompany £ AuthorizedSAdministrator A AddNewCompany A Success
Vv
UnauthorizedSAdministrator

vV
NotNewCompany

3.2.3.2 Remove a company information

o RemoveCompany
A EPartDBState
a?: CompanyName
c?: company

|

|

I

|

| a? € dom aboutcompany

| ¢? = aboutcompany(|a?|)

| aboutcompany' = aboutcompany & {a?}
| ensure' = ensure & {a?}

| inchargeof' = inchargeof & {a?}

| identify”' = identify” & build(ja?))
| about”™ = about™ & build([a?])

| Product' = Product' \ build(|a?|)

| build™" = build” & build(|a?))

| Company' = Company \ {c?}

| Catalog' = dom about

------ NotExsitCompany
= EPartDBState
a?: CompanyName
c?: company

rep!: Report

a? ¢ dom aboutcompany v
c? # aboutcompany(|a?|)
rep! = "The Company Not Exsit !'

DoRemoveCompany 2 AuthorizedSAdministrator A RemoveCompany A Success
v

UnauthorizedS Administrator
\I;IotExistCompany
. a? € dom aboutcompany denotes that this company name exists in the database.
¢? = aboutcompany(|a?|) makes sure that the company name and company information
truly are associated with each other in the database.
aboutcompany' = aboutcompany v {a?} filters this association from this function. When
the company information is removed from the database, all the products that are related
to this company should be removed as well. identify™ = identify” & build(ja?)) filters
information which is associated with this company, since the identify”" maps product
information to part number. So does the other two functions of abour' and build".
Therefore, functions of build, about, and identify are updated.
When the company information is removed, the following three cases may occur.

First, the requester might not be authorized; second, requester might be authorized but the
company does not exist in the database; finally, if the requester is an authorized server

administrator, and if the company exists in the database, then he/she can remove

company information successfully.

3.2.3.3 Update a company information

______ UpdateCompany
i A EPartDBState

j a?: companyname
| c?: company

| b?: Name

] p?: password
!

l

I

I

|

a? € Dom aboutcompany

aboutcompany' = aboutcompany @ {a? —»c?}
inchargeof' = inchargeof @ {b? — a?}
ensure' = ensure @ {b? —» p?}

36

I Company' = ran aboutcompany
| Product' = Product
| Catalog' = Catalog

DoUpdateCompany £ AuthorizedSAdministrator A UpdateCompany A Success
v
UnauthorizedS Administrator
v
NotExistCompany

37

CHAPTER IV
IMPLEMENTATION AND RESULTS
4.1 E-mail COM

As mentioned in the objectives section, when a user selects products, then clicks
the "order" button, the order should be sent to manufacturers. To send the order to the
manufacturers automatically, an E-mail COM should be created. This E-mail COM is
created using the Active Template Library (ATL) and Winsock.

4.1.1 Background
4.1.1.1 Active Template Library

~ATL is a framework that easily creates small, lighiweight COM objects. It gives
software developers the flexibility to implement ti ir components without any
dependencies on secondary DLLs, including the standard C run-time DLL. It makes
components as small and fast as possible. The ATL AppWizard provides the basic
housing support that the COM component needs. All COM objects must support the
IUnknown interface and expose its specific functionality. It must provide a class factory,
which facilitates the creation of COM objects, and it should support self-registration,
which is the ability to add the COM registry entries for each of its components
automatically. Since the ATL includes its functionality as part of the implementation,
there is no need to link to any external DLLs. It encapsulates a component's support
housirig for in-process component in its CcomModule class, taking care of self-

registration by exporting two standard COM functions: DIIRegisterServer and

38

DllUnregisterServer. ATL supports [Unknown, so the developer need not write any code
for QuerylInterface, AddRef, Release methods. ATL supports for class Factories, so the
developer need not write any code for Createlnstance, LockServer these methods. ATL
provides build-in support for each of these requirements. Because of this, COM

developers can concentrate on the unique functions that they want the COM to provide.

4.1.1.2 Socket

- TCP (Transmission Control Protocol) is a reliable connection-oriented protocol
that allows a byte stream to be delivered without error on any other machines in the
internet. UDP (User Datagram Protocol), is an unreliable, connectionless protocol. The

protocols and networks is shown in Figure 8 (Tanenbaum, 1996).

Layer
(Osl)
[TELNET | [FTP | DS Appli?ai:?;:ls
Transport
TCP
Nefwork
: Physica
[ARPANET | [SATNET | [PacketRadio | | LaN | :i;kdam

Figure 8. Protocols and Networks in the TCP/IP Model Initially (Tanenbaum, 1996).

The primitives and meanings are list as follow (Table 1):

39

Primitive | Meaning

SOCKET | Create a new communication end point

BIND Attach a local address to a socket

LISTEN Announce willingness to accept connections, give queue size

ACCEPT | Block the caller until a connection attempt arrives

CONNECT | Actively attempt to establish a connection

SEND Send some data over the connection

RECEIVE Receive some data from the connection

CLOSE Release the connection

Table 1 The Socket Primitives for TCP (Tanenbaum,1996)

There are some implementation differences between Winsock and the UNIX
version of Berkeley sockets. One of the differences is that - cket descriptors and file
descriptors cannot be interchanged in. Another is that when developers use Winsock
functions, they must first call the WSAStartup function; and they should call
WSACleanup for proper termination.

Some structures used in this COM are as follows:

-~ struct sockaddr_in
{
short sin_family;
u_short sin_port;
struct in_addr sin_addr;

char sin_zero[8];

}

struct hostent

{
char FAR * h_name;
char FAR * FAR * h_aliases;
short h_addrtype;
short h_length;
char FAR * FAR * h_addr list;
3

The overview of setting up and using TCP connection:

Server Client
Create a socket Socket()
Binds socket to a
specific port bind()
Indicate willingness -
to accept incoming listen()
connection requests
Wait for incoming secept()
requests
Socket() Create a socket
Connect() Initiate a connection
send () Send data
Receive data recv()
Receive data
Terminate the connection
Terminate the closesocket() closesocket()
Connection '

Figure 9. Socket Communications for Connection-oriented Protocols (Toth, 1997)

4]

From the figure 9 we know that the E-mail COM needs to do is create a socket and
connect to mail server, then send data and receive data, after that terminate the
connection. Following section is the detail of the implementation of the E-mail COM.

4.1.2 Implementation

following code are developed to implement E-mail COM. The file atlmail.h declare the
object and its unique function sendmail. The file atlmail.cpp implement the sendmail

mathod.

// atlmail.h : Declaration of the Catlmail
#ifndef ATLMAIL H_
#define ATLMAIL H_

#include "resource.h” // main symbols
#include <winsock2.h>

I T T T T
// Catlmail

class email

{

public:

int init;

int mysocket;

struct sockaddr_in a;

struct hostent *h;

. WSADATA wsadata;

email();

~email();

int Logon(BSTR server),
" int sendmsg(BSTR sender, BSTR address, BSTR message);

HE

Figure 10. Code for atlmail.h (to be continued)

42

class ATL NO VTABLE Catlmail :
public CComObjectRootEx<CComSingle ThreadModel>,
public CComCoClass<Catlmail, &CLSID atimail>,
public IDispatchImpl<Iatlmail, &IID_Iatlmail &LIBID WATL1SOCKLib>

{
public:

Catlmail()

{
}

DEC LARE_REGISTRY_RESOURCEID(IDR_ATLMAIL)

BEGIN_COM_MAP(Catlmail)
COM_INTERFACE_ENTRY (latlmail)
COM_INTERFACE_ENTRY(IDispatch)

END_COM_MAP()

// Tatlmail

public:
STDMETHOD(sendmail)((/*[in]*/BSTR server,/*[in]*/BSTR
sender,/*[in]*/BSTR address,/*[in]*/BSTR message);

s

#endif / _ATLMAIL H_

Figure 10. Code for atlmail.h
In the OBJBASE.H, three COM C++ macros are defined as shown below:

#define STODMETHODCALLTYPE _stdcall

#define STDMETHOD(method) virtual HRESULT STDMETHODCALLTYPE

method

#define STDMETHODIMP HRESULT STDMETHODCALLTYPE

43

The STDMETHOD macro is used in the declaration of the interface methods
within the implementing class. The STDMETHODIMP macros are used when the
developers actually implement the interface function.

The 'in' and 'out' keywords specify the direction of the parameter. By providing
this information, the developers provide COM with information that will help to make the
parameter marshaling process more efficient. The 'retval' keyword specifies that the
parameter should be treated as the return value for the method.

COM uses a special string data type called a binary string or basic string or
BSTR. It is declared as OLECHAR *, which indicates that it is a Unicode string. The

structure of BSTR is as follow:

DWORD Unicode String

length

The DWORD length is managed by
COM's BSTR function(e.g.,
SysAllocString)

Figure 11. Structure for COM's Binary String (BSTR)(Armstrong,1998)
BSTRs are represented as OLECHAR pointers. To convert a BSTR to ANSI, developers
can use:
USES_CONVERSION;
OLE2T(someBSTRdata);

This conversion is being used in the atlmail.cpp(figure 7.b).

44

// atlmail.cpp : Implementation of Catlmail
#include "stdafx.h"

#include "watl1sock.h"

#include "atimail.h"

T I LT L T
/I Catlmail
email::email()

{
init=0;
mysocket=0;
H
email::~email()
{
if (mysocket!=0)//has socket
closesocket(mysocket);//shut down the connection
if (init!=0)
WSACleanup(); //clean up
init=mysocket=0;//reset
}

int email::Logon(BSTR server)
{
char *mserver=new char[50];
USES_CONVERSION;
strcpy(mserver,OLE2T(server));
//change BSTR to ANSIand copy to mserver
if (WSAStartup(0x101, &wsadata)) //can not initiated
{
delete mserver;
return 0;
}
mysocket=socket(AF _INET, SOCK_STREAM,
[PPROTO_TCP);//create a socket
init=1; //initialization success

Figure 12. Code for atimail.cpp (to be continued)

45

}

if (mysocket==0)//can not create a socket

{

delete mserver;
return 0;

h=gethostbyname(mserver);//resolve hostname
if (h=NULL) //can not resolve hostname

delete mserver;
return 0;

}

delete mserver;

return 1;

int email::sendmsg(BSTR sender, BSTR address, BSTR message)

{

char *t=new char [2000];

" char *temp=new char [2000];

char *msender=new char[50];

char *maddress=new char[100];

char *mmessage=new char[1500];
USES_CONVERSION;
strecpy(msender,OLE2T(sender));
strcpy(maddress,OLE2T(address));

strecpy(mmessage, OLE2T(message));

a.sin_family = AF INET;

a.sin_port=htons(25); //SMTP port number is 25
memcpy(&(a.sin_addr.s_addr), h->h_addr, sizeof(int));
if (connect(mysocket, (struct sockaddr *)&a, sizeof(a)))

return 0;
}
int i=recv(mysoceket, temp, 2000,0);
strepy(t,"MAIL FROM:");
msender{strlen(msender)]="n";
strcat(t,msender);
send(mysocket, t,strlen(t).0);/send data :"MAIL FROM:" + msender +"n'
i=recv(mysocket,temp,2000,0);
strepy(t,"RCPT TO:");

" strcat(t,maddress);

t[strlen(t)]="n";

send(mysocket,t, strlen(t),0)://send data:"RCPT TO:"+maddress+"n'
i=recv(mysocket,temp,2000,0);

strepy(t,"DATA\n");

send(mysocket,t,strlen(t),0);//send data: "DATA\n"

Figure 12. Code for atlmail.cpp (to be continued)

46

i=recv(mysocket, temp,2000,0);
strepy(t,mmessage);

strcat(t,"\n\n\n.\n");
send(mysocket,t,strlen(t),0);//send data: mmessage+"\n\n\n. \n“
i=recv(mysocket,temp,2000,0);
strepy(t,"QUIT\n");//send data: "QUIT\n"
send(mysocket,t,strlen(t),0);

delete t;

delete temp;

delete msender;

delete maddress;

delete mmessage;

return 1;

}

STDMETHODIMP Catlmail::sendmail(BSTR server, BSTR sender,
BSTR address, BSTR message)

K
email Email;
int i=Email.Logon(server);//logon the mail server
if (i=1)//if success
i=Email.sendmsg(sender,address,message);//send message
return S OK;
}

Figure 12. Code for atlmail.cpp

Sendmsg method formats an SMTP-compliant message and sends it. The basic SMTP
session looks like this:

MAIL FROM: <sender>

RCPT TO: <recipient address>

DATA

<message>

QUIT

47

Calling E-mail COM is very simple as shown below (Figure 13):

if (isobject(session("e_mail")))then
set e_mail=session("e mail")
else
set e_mail=Server.CreateObject("atlmail.atimail.1")
set session("e_mail")=e_mail
end if
emailserver="a.cs.okstate.edu"
e_mail.sendmail emailserver, sender, recipientaddress ,message

Figure 13. An ASP Program Calls E-mail COM

The E-mail COM uses ATL. To add a new ATL object a Simple Object is chosen

instead of an Active Server Component; therefore, this component can be used not only

in ASP but also in other application programs such as Visual Basic. And it is portable

with any windows operating system.

4.2 Navigation Record Set

In order for users to navigate the database backward and forward through the web

interface, the following code is developed:

function recordform(str,b)
dim s,rs,getnext,getprevious

if (isobject(session("rs")) and b)then
set rs=session("rs")
total=request.form("total")
else
total=0
currec=0

SQL=SQL & cname & """
set rs=conn.execute(SQL)

SQL="select catalog,manupartnumber,price,imagefile,pfeature, "
SQL=SQL & "keynumber from parttable where companyname=""

Figure 14. Code for Navigating the Record Set (to be continued)

48

do while not rs.eof
total=total+1
rs.MoveNext

loop

rs.close

rs.open, ,2

set session("rs")=rs

end if

select case str
case "Get First"
rs.MoveFirst
currec=0

case "Get Next"
currec=currec+1
rs.MoveNext

case "Get Previous"
currec=currec- |
rs.MovePrevious

case "Get Last"
currec=total-1
rs.MoveLast

case "Get Current”

end select

if (cint(total)-1>currec) then
getnext=true
else
getnext=false
end if
if (currec>0) then
getprevious=true
else
getprevious=false
end if

‘s="<table align=right cellspacing=0><tr><td><input type=image border=0
src=first.gif name=First></td><td>"
if getprevious then .
s=s & "<input type=image border=0 src=prev.gif
name=Prev></td><td>"
else)
s=s & "<image src=prev1.gif></td><td>"
end if
- s=s & "<input type=text size=3 name=currec value="' & currec &""></td>
<t d>|l
if getnext then _
s=s & "<input type=image border=0 src=next.gif name=Next></td><td>"

Figure 14. Code for Navigating of Record Set (to be continued)

49

else
s=s & "<image src=next].gif></td><td>"
. end if
s=s & "<input type=image border=0 src=last.gif
name=Last></td></tr></table>

"
s=s&" <table align=center><tr><td width=100><center>Catalog<td width=200><center><font color=#0000ff
>Manufacture Part Number</td>"
s=s&"<td width=100><center>Price</td></tr
>l|
s=s&"<tr><td><input type=text name=Clog size=20
value=""&rs(0)&""></td><td>"
s=s&"<input type=text name=mpartnumber size=30
value=""&rs(1)&""></td><td>"
s=s&"<input type=text name=price size=20 "
if (csng(rs(2))=int(csng(rs(2)))) then
s=s & "value=$" &rs(2)&".00></td></tr>"
else
s=s & "value=$" &rs(2) & "></td></tr>"
end if
s=s&"<tr><td width=100><center>Image File
Name"
s=s &"<td width=200><center>Product
Features</td>"
s=s&"<td width=100><center>Key
Number</td></tr>"
s=s&"<td><input type=text name=ifile size=20 value=""&rs(3)&""></td>|
<td>"
s=s & "<input type=text name=pfeature size=30 value=""
s=s & rs(4) & ""></td><td>"
s=s & "<input type=text name=knumber size=20
value=""&rs(5)&"></td></tr></table>"
s=s & "<input type=hidden name=cname value="" & cname & "">"
s=s & "<input type=hidden name=rec0 value=""' & rs(0) & "">"
s=s & "<input type=hidden name=rec] value="" & rs(1) & ">"
s=s & "<input type=hidden name=rec2 value="" & rs(2) & "">"
s=s & "<input type=hidden name=rec3 value="" & rs(3) & ">"
s=s & "<input type=hidden name=rec4 value="" & rs(4) & ">"
s=s & "<input type=hidden name=rec5 value=""' & rs(5) & "">"
s=s & "<input type=hidden name=total value="" & total & ">"
recordform=s

end function

Figure 14. Code for Navigating of Record Set

50

There are four different cursor types when opening a Record set object: Dynamic
cursor, Keyset cursor, static cursor and Forward-only cursor (By default ADO opens a

forward-only cursor). Followings are CursorTypeEnum values:

Constant Value | Description

adOpenForwardOnly | 0 Forward-only cursor Identical to a static cursor
except that it only allows scrolling forward

through records.

adOpenKeyset 1 Keyset cursor. Like a dynamic cursor, except
that you can't see records that other user add,
although records that other users delete are
inaccessible from your recordset. Data changes

by other users are still visible.

adOpenDynamic 2 Dynamic cursor. Addition, changes, and
deletions by other users are visible, and all types
of movement through the recordsst are allowed,
except for bookmarks if the provider doesn't

support them.

adOpenStatic 3 Static cursor, Astatic copy of a set of records that
you can use to find data or generate reports.
Additions, changes, or deletions made by other

users are not visible.

Table 2 Cursor Types, Meanings, and Values

51

The cursor cannot be changed once a recordset is opened. Instead, the recordset
must be closed and reopened using a new cursor type. After this is done, any new
operations supported by the cursor are immediately available.

4.3 Customized Message Box

VBScript has a function called msgbox, and it supports many styles.
Unfortunately, Netscape does not support the VBScript language. JavaScript has only one
function called alert that can be used as message box although Netscape and Internet
Explorer support JavaScript. Therefore, a unique error message and confirmation box
needs to be developed using JavaScript. JavaScript has a window object that has the

'open' method. The following code is developed for trapping this method and sending

error message to users:

- function errorbox(str)
%>
<script>
str1="ERROR"
str2="<%=str%>"
aPopUp=window.open(",'messagebox','toobar=yes,location=no,directories
=no,status=no,scrollbars=yes,resizable=no,copyhistory=no,width=250,
height=150,ScreenX=200,ScreenY=200")
ndoc=aPopUp.document
astr='<html><head>
<title>' + strl + '</title>"'
astr +='</head><form>' +'<body'+' background="backgmd1.gif">'
astr +='<table><tr><td><image border=0 src="stop.gif"><td>' +str2+
'<tr></table>
"'
astr +='<center><input type=button name=closebtn value="OK"
onclick="closebox()">"'
astr +='<script>'
astr +='function closebox()' +'{' + 'self.close()'+ ' }'+'</'
+'script>"+'</body></form></htm]>'
ndoc.write(astr)
ndoc.close()
self.messagebox=aPopUp
</script><% end function%>

Figure 15. Code for Customized Error Message Box

52

It is necessary for the confirmed box not only to send a confirmed message to
users but also to get a feedback from the users. Hence the author uses a hidden field that
allows the user to send information back to the server. The following code serves this

purpose (here the hidden field name is called "cbutton")

s="<script language=javascript>"

s=s & "function confirmbox() {"

s=s &
"window.open('confirmbox.htm','confirm','height=150,width=200,ScreenX=
200,ScreenY=200");"

s=s & "} </script>"

s=s & "
"
s= s & "<table align=center><tr><td><input type=submit name=model
value=ADD></td><td>"

s=s&"<input type=submit name=mode] value=UPDATE></td><td>"

s=s&"<input type=button name=model value=REMOVE
OnClick='confirmbox()></td><td>"

s=s&"<input type=submit name=mode]
value=LOGOFF></td></tr></table>"

Figure 16. Code for Customized Confirmation Box

In the confirmbox.htm:

<html><head><title>CONFIRM</title>

<script language=javascript>

function yesbox () {
opener.document.forms[0].cbutton.value="yes";
opener.document.forms[0].submit();
self.close();

}

function nobox () {
opener.document.forms[0].cbutton.value="no";
opener.document.forms[0].submit();
self.close();

1
</script></head>
<body background="backgmd].gif"><form>
<table><tr><td><image border=0 src="question.gif"><td>
Are you sure you want to remove current record?<tr></table>

<center><input type=button value="yes" onclick="yesbox()">
<input type=button value="No" onclick="nobox()">

" </form></body></htm!|>

Figure 17. Code in Confirmbox.html

53

4.4 Some Outputs of the Database Management System

- As stated in the requirements specification, there are three groups of users. The
first group of users is ordinary users, who can search all the products in this database,
select products, and place an order for the products. The second group of users is
company administrators, who can maintain their own company's product information
remotely. Thé third group of users is server administrators, who will maintain company
information and company administrator information.(see Figure 18). The ordinary users
can search for products by adding some specifications, such as, company name, catalog,
part number. Figure 19 is the result when a user selects company King/Allied Signal as
the search specification. A user can view the product by clicking "view" (see Figure 21).
The user can continue to search for or order products, but must select products and add
them to his/her shopping cart before clicking the 'order' button. Otherwise, an alert
message pops up. The user can also jump to a company's homepage to view more
information about the company by clicking the company name (see Figure 22). A user
can also search for products by catalog (see Figure 23). All company names are
hyperlinked to their home pages. After selecting products, the user can click the 'order'
button.(see Figure 25), then, an order form pops up that shows shopping cart items, with
default quantity 1. The user can change the quantity to 0 or more than 1. On the order
form, name, street, city, state and zip code fields must be completed; otherwise, the user
will be given an alert message, and the order is not sent to the server. After the order
information sent back to server, zip code and phone number (if user filled in) are
checked. If either of them is not valid, the order message is not sent to the manufacturer,

and an error message appears. If all the information is valid the server will check whether

54

company's email information is in the database. If it is, the order message is sent to the
manufacturer; otherwise, it gives a message to show which orders were sent successfully
and which orders failed due to lack of email information. If a user orders three products
then the system sends three order messages instead of one, since the user may order from
three different companies.(see Figures 28, 29, 30, 31).

Company administrators can update company product information remotely by
passing a security check (see Figure 32). After a company administrator logs on, he/she
can navigate the company product information. Figure 24 is the first record of the
product information. The "Previous" button is dark, which means it is disabled. After
clicking the "Next" button, the "Previous” button is enabled (see Figure 34). Company
administrator can move forward by clicking "Next" button, or move backward by
clicking the "Previous" button. Administrator can also jump to the last record by clicking
the "Last" button(see Figure 35) or back to the first record by clicking the "First" button.

Company administrators can insert, delete or update records (see Figures 36,37,
38,39). After clicking the "Add" button, company administrators can fill in the
information about "catalog”, "manufacture part number", "price", "part number"(which
are required) and "image file name", "product feature" (which are optional). If the
required fields are not completed, the information is not be sent to the server, and an alert
message pops up. When the information is at the server, it checks whether "price" is
numeric and "part number” is unique. If any of the checks fail, then insertion aborts and
the user is given an error message. If the insertion is su‘ccessful, the last record is shown

and the number of the record is increased by one.

55

A company administrator can delete records as well. When the administrator
clicks _the "Remove" button, a confirmation message box will pop up. The action of the
deletion depends on the information sent back by the confirmation box (see Figure 40). If
the administrator clicks "Yes" in the confirmation box, the server checks the data in this
record. If any data changes, the deletion aborts and an error message shows up. Ifitisa
successful deletion, the last record is shown, and the record number is decreased by one.

A server administrator can log in and do insertion, deletion and modification to
the company information table and company administrator table (see Figure 42). The
server administrator can navigate the records too, just like the company administrator

does (see Figure 43).

56

M'—'— B —— o T N | e M Y

Welcomu. i Chuk Electmnw Parts Dntahase

u.'\'u o

&nﬁdm:nnmﬁaﬂﬁgp«o&mndﬁhﬂbmﬂm . f

orders. The orders:will be sent to the manifacture compames LcgOn ac General User
M'-‘.‘. o .
'CMIMMmmmouhmcmw 'Z On as C. g

mdumdbm'l‘hsndcupwdwamd.wh:hcu
only be accessed by uthori

.:_SWAMMu:mmmwcw“ -.. T

m, d 1o company admmistor elc.

n‘ ¥ -vﬂx]ﬂ '[l -IT

Figure 18. Three Types of Users

57

[Antennas. T
Avionics P e
|Engine Montore)

TF you do riot sepacify any condition, i may take several mumgues to fish. gl i

Figure 19. The Example of User Search Page

58

Signal

| Manofactore part musaber

s

e

| .i-’_Kimg/AI_h'e__a;r

| Pee .‘r

FProdart featers

1$2695 00 (@PSICOM. .

A

$655.00. |Audio Panel .

$2995 00 [HSL-Factory Recondiboned

181995,00[GPS

18529500 |GPS-Factory Reconddioned -
_fsissson - - :

DETY SN S-S P P

i
L
i
i3
i

RARERRREY R

i
L
A

A

foiss o

i

{8505.00 |

151219 0014V Transponder

1$1292:00 [28V Transponder

52029.00

EEEE{

Figure 20. The Output of Searching Products Made by King/Allied Signal Company

59

SETITEST T RIS T T
N SEE L Betre

Bt}

ra

3 [t //ms21 i cx okatoin edutes/Krg/hal M po 4

Figure 21. View Product

60

@Iliedignal ;

e | s |m
g e o | ['
V._‘ ‘!;v"
S
< Ao
x4 h
R i
. A% M 1
‘J‘J Yl ".
L)
‘,‘} (“ i
Cargnd
0y L B Beda
Sypetem i N o e
-y ..
~ -

AliodSiguat's -

Select » Business to Jump lo EEarmaticn sa

Figure 22. Company's Home Page

61

Select Catalog:

_i 1 Antennas et e 15K
o E . B .18
..M | Engne Montors g |4 Cywnder Packsgs

Allenton:- -

I you donot sepacfy any condition, & muy talce m:fdm to finish.

Figure 23. Searching Product by Avionics Catalog

62

szomcs

zsm smsat0 .\jg:‘,umm'ummmawm '
Camy 587600 mm,. T R R
| Ameckng AR 450 $18900 (| D

e ELT100EE

$980.00

@mus.msm

[AneELT 1104

[T 50000

PN 4557005 R |

"‘,mﬂ:ruu ; :

| 8355000,

'{rmus—msmm

(A ELT 1104,63Batery |

83500

PN 4550130 -

i
W 4

T o= ELT 1104 RA

SG;FLIIU

455700501

- - fAde ELT 110406

1 $2800.00"

pnvaszoa0s R

" AnexELT 110406 EM

150,00

PN 455-0407 Heboopter Version

{AnexELT 110406 HM

- $380800

bnussmosn*wwmm S

ArexELT 110-6

£550.00

PN4s57012 ||

A ELT 200

3350 00

P/ 455-7063 _ A

BHN_|

Figure 24. Search Result for Avionics Products

63

il el ol Sl e

; fsi“?figi

fmbie . Package®3 $2150.00 New Suphis 5 T T

ﬁf

fomble [Package B3 00 (WI0 Gadeope i
ool Package O — - g

; "l) ' i i (i
ales i [.) ;-_.i,l:.__—l
p 57l o

e

CfMA3%D (4 G 5
= = ’R!.'w _ : I! £
(Tomble -~ .- RT-25D $101.00 " (Teamspondér 0~ < View
fombe = ATD00 fCame ot T U e

Figure 25. Selection of Product: TMA-330D, TN-200D, and TX-760D

Fr - e

M A REABRANENERNSEEE RN EEREDSNEN

R R R T

Ploase Enter Your

" Name or Compeny Nueme: [T

Street address: |

o |

State: |

Tipeods: [

Phooe [~

E-mai addross: [

You nrdﬂadfoﬂowlug J'Ian(s)

I sy - I... Nm s -Ii. -'..".‘" 2 a
- faviontcs q“‘""’" —— TE

Figure 26. Order Forms

65

e lumnsca ’ﬁm 2000 js1080.00 ifTcimble :Ji
- fivionics in—?wb fr135.00 frrimnie ix

Please Enter Your
Name urCmN.:m: i:est ¥
Sweet Jti0
Cq‘lsun.nur e
S jox
Ziprode [‘_Hn?s_
M- [p77-3426 o
E““"WI P b
-~ You om'a-a! ﬁtkwfng ifemfs):
.jl.,'_‘_'_"nl-ﬁf B “m—asun __ fisae.00 Tramble 2
o T—
p JIL2-00 e it i i

Figure 27. Completed Order Form

66

- lAmay] Antannas sk ~
Cantury - 1 Avionics L Cijjox 3 O |
Comant Classics 1 |Engina Monrtors) 4 Cylinder Package |

2 SUCLESS Mutseape

Figure 28. Message Box of Order Status

67

2 3= Bl] 3 e
&= N A=)
L] : .- 1423

Order form test |

3hip address as following:
Screet: 110
City: scillwater
State: OK |
Iip: 74075
Fhone: 377-3436 |
Email address:
Order following item(s): 1
Catalog : Avionics

ture part der: TAL=-330D
Coat : §536.00
Quanticy : 1

Figure 29. Order Mail |

68

Subject:

Order form teat
Ship address a= following:
Screec: 110
City: stillwater
3cate: CK
Zap: 74075
Fhone: 377-1436
Email address:
Order following item(s):
Catalog : Aviopics
ure part : TN-200D
Cost : §1080.00
Quanticy : 1

T m‘,ml.{g;.ﬂm ? '. T s TR HTEF Iy

Figure 30. Order Mail 2

69

IEETT TR o0 T

Order form tesc

Ship address as following:
Screec: 110

City: staillwater

Scate: OF

Zip: 74075

Phone: 377-3436

Email address:

Order following item(=):
Catalog : Avionica
manufacture part number: TX-760D
Cost : §1135.00

Quanctity : 1

Figure 31. Order Mail 3

70

m: . |Jonnsmich

Company Nams: [King/Allied Signal

|| Ruset | LOGOFF |

Figure 32. Log-on Page for Company Administrator

71

Figure 33. First Record of Product in This Company

72

Cotalog Munufactore Part Number . - Price

Jivionica [Ra-134 | |iess.00
‘Ieaage File Product Featuras " Part mumber
., Nume
i [mngfh:aq.m {rudio Panel | Jra-13a

Figure 34. Enable Previous Button

73

[~) smgrnpromsys

[gv;un_;cs(|Kx-125 '|u_ms 00
h:,"m e Product Features Part sumbar
frang/xx125. 399 Joavicon -125

Figure 35. Disable Next Button

74

Catalog Manofactare Part Number Price
lt.:?l? ' I‘Bﬂ: .)) . i Fﬂ.
. I"';;::" Potiark Pontmrab. 240 4h Purt Namber
o S T T

Figure 36. Insertion with Invalid Data

75

Add New Record

Catalog Manufartere Part Number Price
{eest ¥ |eesc B |ana
Biravivg? Prodact Featnres Part Number

Nume B 3 i
1 | jeest

Figure 37. Error Message

76

Add New Record

Ceslog Muosfactore Part Number Price
"wlt Il:mu _|123
Imags Fe <L '
R\ Product Features 2 3 Part Number :
I.) I I:Ilt

Figure 38. Insertion with Valid Data

717

Figure 39. A Success Insertion.

78

Catalag] Masiufartare Part Nomber Price : e

I;'-eg!:-_ —— [eeat ! __ lnz300
hﬁ" ' Prodnct Featres Part number
[_. i : | : |cest
200] uposted] oo [ugeast |
want to remove’
current record?
=l .

Figure 40. A Confirmation Box in Action

79

Catalog Manufactare Purt Namober Price

|avicaies |Kx-125] ~ |sz029.00 I
e Product Features Part number '
ams |
- |Ring/Kx125. 390 pavicon] frz-125

200 [uPoREY] [FeEOVEL] [ROGORF |

e T - e [N0 S S S SR 0 L

Figure 41. Current Record Success Removed.

80

Please enier your

UsesID: |chang
Pasoword: Illllll

Wit o

Figure 42. Log-on Page of Server Administrator.

81

Company Name(Abbreviation) Contart Person Full Company Name -

I".“"‘"‘ - e | Jamav System, Inc, = — s et e s fnn 231 E
Street Ci Sm.' - Cods
; T ™ Goiin) ¥ |
[1_5923 Hecidian Fasc : [Puyairup Jun _ |s8372 i
E-Moeil address HemePage Address .
I-rmviagl.l:m Im.l:u\r.ca- i
g Adinunistrator Hame Pasywerd Phone Fax
I | | |

Figure 43. Company Information Page

82

CHAPTER V

SUMMARY, CONCLUSIONS AND SUGGESTED FUTURE WORK

In this thesis a formal specification language, Z language, is used to design and
define the system requirement specification for an Electronic Parts Database
Management System in order to achieve high system integrity. This relational database
system is implemented using Microsoft SQL server 6.5. The web-interface is created by
Active Server Page, VBScript and JavaScript. Additional functionality is provided by the
COM using Active Template Library.

The Active Server Page is used to generate HTML dynamically, corresponding to
the user's responses. It contains built-in objects and components to make ASP
development tasks much easier. Although the default language with ASP is VBScript,
JavaScript is used with the intention of reducing data traffic on the Internet. JavaScript
can trap events such as a mouse click, a mouse move etc. In this thesis, JavaScript is used
to preprocess the data to reduce data traffic and to improve system performance.
JavaScript also is applied to build both the customized error message boxes and the
confirmation boxes.

The Active Template Library (ATL) is employed because it allows the COM
developers to concentrate on the unique functions that they want their COMs to provide:

thus, helping to improve both the efficiency and effectiveness of the COM developers.

Special efforts are made in the design of a customized error message and

confirmation box, and in the design of the E-mail COM. The design of the customized

83

error and confirmation message box makes the message more eye-catching, so that the
user can respond in a more timely manner in addition to a more pleasant graphical user
interface.

The design of the E-mail COM enables its user to send an order form to the
manufacturer directly rather then going through a server administrator, avoiding the
human interference of the server administrator; thereby reducing and eliminating possible
errors that may be involved, and providing a 24-hour availability of the service to the
customers without the physical presence of the server administrator.

The system developed provides a user-friendly interface. It is also very easy to
maintain. Since e-mail COM can be reused, it can be plugged in to some other
applications (not only for ASP applications) to provide the same functions for the client.
In its current version the e-mail COM supports only the sending mail function. Additional
mail functions should be added in the future, such as, reading, replying, forwarding, and
deleting mails. By adding this, e-mail COM not only can support current customers, but
also can provide new service for new customers in the future. Currently, the system
allows that one company only can have one company administrator. Sometimes, it is
convenient that one company has more than one company administrator. Concurrency

controi should be added in the future in order to allow each company to have multiple

company administrators.

84

REFERENCES

Armstrong, T. (1998) Active Template Library: A Developer's Guide. Foster City, CA:

IDG Books Worldwide, Inc.

Chappell, D. (1996) ActiveX OLE A Guide for Developers & Managers. Redmond,

Washington: Microsoft Press.

Codd, E.F. (1970) A Relational Model for [.arge Shared Data Banks. In

Communications of ACM, Volume 13, Number 6, (June 1970), pages 377-387.

Codd, E.F. (1979) Extending the Database Relational Model to Compute More Meaning.

ACM Transaction on Database Systems, Volume 4, Number 4 (December 1997),
pages 397-434,

Diller, Antoni (1990) Z: an Introduction to Formal Methods. New York: John Wiley &

Sons, Inc.

Fedorchek, A.M., Rensin, D.K. (1997) ASP Active Server Pages. Foster City, CA:

IDG Books Worldwide, Inc.

Ford, N.J., Ford, J.M. (1993) Introducing_Formal Methods: a Less Mathematical
Approach. New York: Ellis Horwood Limited.

Goldsack, S.J., Kent, S.J.H. (1996) Formal Methods and Object Technology. London:

Springer-Verlag London Limited.

Gruber, Martin (1990) Understanding SQL. San Francisco: SYBEX Inc.

85

Gundavaram, S. (1996) CGI Programming on the World Wide Web. Sebastopol, CA:

O'Reilly & Associates, Inc.

Petzold, C. (1996) Programming Windows 95 The Definitive Developer's Guide to the

Window 95 API. Redmond, Washington: Microsoft Press.

Rogerson, Dale (1997) Inside COM: Microsoft's Component Object Model. Redmond:

Microsoft Press.

Siberschatz, A., Korth, H.F., Sudarshan, S. (1997) Database System Concepts. New

York: McGraw-Hill, Inc.

Signore, R., Creamer, J., Stegman, M.O. (1995) The ODBC Solution Open Database

Connectivity in Distributed Environments. New York: McGraw-Hill, Inc.

Tanenbaum, S., A., (1996) Computer Networks. Third edition, New Jersey: Prentice Hall

PTR
Toth, V., (1997) Visual C++ 5. Second edition, Indianapolis, IN: SAMS Publishing

Van der Lans, Rick, F. (1988) Introduction to SQL, translated by Andrea, Gary

Workingham, England (1988): Addison-Wesley Publishing Company, Inc.

Whiting, B., Morgan, B., Perkins, J. (1996) Teach Yourself ODBC Programming in 21

Days. Indianapolis, IN: Sams Publishing.

86

APPENDIXES

87

APPENDIX A

NOTATIONS OF Z SPECIFICATION LANGUAGE USED IN THIS THESIS

A

(1]

7a

'a
F(lUD
dom
ran

B

Set membership

Function mapping

Set intersection

Empty set

Combining the before and after specifications of state
Used in the specification of operation that does not change the
state of the database

Input variable a

Output variable a

set of all those thing that can be reached from U
Domain

Range

Range anti-restriction

Overwriting Operator

88

ANSI

API

ASP

ATL

CGI

CLI

COM

DBMS

DCL

DDL

DLL

DML

HTML

IDL

ISO

ODBC

OLE

SAG

APPENDIX B

ABBREVIATION USED IN THIS THESIS

American National Standards Institute
Application Programming Interface
Active Server Page

Active Template Library

Common Gateway Interface

Call Level Interface

Component Object Model
DataBase Management System
Data Control Language

Data Definition Language

Dynamic Link Library

Data Manipulation Language
HyperText Markup Language
Interface Definition Language
[nternational Standard Organization
Open DataBase Connectivity
Object Linking and Embedding

SQL Access Group

89

SQL
TCP

UDP

Structured Query Language
Transmission Control Protocol

User Datagram Protocol

90

System R

System R

IUnknown

Vtable

IDispatch

ActiveX

APPENDIX C

GLOSSARY OF TERMS IN THIS THESIS

An IBM project Name

The relational database management system experimented in IBM

project System R

Standard interface for COM, it contains three methods:

Querylnterface, AddRef, and Release

C++ virtual function table

A mechanism by which an object can provide access to its methods

via dynamic invocation

Build on the component Object Model and a document-focused

technology

o1

VITA
Yijing Zhang
Candidate for the Degree of
Master of Science
Thesis: DESIGN AND IMPLEMENTATION OF A WEB DATABASE SYSTEM
Major Field: Computer Science
Bio gre;phical:

Personal Data: Born in Huzhou, China on February 5, 1969, the daughter of
Junhong Zhang and Binfeng Ma.

Education: Graduated from Economics Department, Zhejiang University of
Technology in July, 1990; received Bachelor of Science degree in
Industry Accounting. Completed the requirements of the Master of
Science at Oklahoma State University in December, 1998.

Professional Experience: Employed by Huzhou Vocational School, Huzhou,
China, as a Senior Instructor, 1990 to 1994; employed by Oklahoma
State University, Department of Computer Science as a Research
Associate, Oklahoma State university, Department of Computer Science,
1997 to present.

