
DESIGN AND IMPLEMENTATION OF A WEB

DATABASE

MANAGEMENT SYSTEM

By

YlJ]NG ZHA G

Bacbelor of Science

Zb.ejiang University of Technology

Hangzbou, China

1990

Submitted to tbe Faculty of the
Graduate College of the

Oklahoma State University
In partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1998

Oklahoma State University Library

DESIGN AND IMPLEMETAnON OF A WEB

DATABASE

MANAGEMENT SYSTEM
"

Thesis Approved:

Dean of the Graduate College

ii

ACKNOWLEDGEMENTS

I sincerely thank my major advisor, Dr. Huizhu Lu for her intelligent supervision,

constructive guidance, warm encouragement and valuable time she has given to me

towar~ the completion of my thesis. My sincere appreciation extends to Dr. J.P. Chandler

and Dr. G. E. Hedrick for serving on my committee, whose guidance, encouragement,

assistance and friendships are also invaluable.

Moreover, I wish to express my sincere gratitude to Dr.Yue Zhang, Mr. Yuwen

Lin, and Mr. Hongchi Su for their suggestions and helps.

I would like to give my special thanks to my husband, Dr. Jiaqi Cai,. for his

precious suggestions, encouragement, patience, love and understanding throughout this

whole process. My respectful thanks go to my parents Mr. Junhong Zhang, Mrs. Binfeng

Ma, and my brother Mr. Yiqun Zhang, for their support and encouragement.

Finally, I would like to thank all the faculty of the Department of Computer

Science for supporting during these two years's study.

•

iii

Chapter

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

II. LITERATURE REVIEW 5

Active Server Page : i 5

Open Database Connectivity : 8

Structured Query Language 12

Component Object Model 14

III. REQUIREMENT SPECIFICATION OF THE SYSTEM 19

Requirement Analysis of the System 19

User Requirement Specification 19

Functional Requirement Specification 22

Fonnal Requirement Specification ~ 25

Search Operations 27

Modify and Update Product Infonnation 30

Modify and Update Company Information 34

IV. IMPLEMENTATION AND RESULTS 38

Email COM 38

Background 38

Active Template Library 38

Socket 39

IV

Chapter r • Page

Implementation 42

Navigation Record Set 48

Customized Message Box : 52

Some Outputs of this Database Management System 54

V. SUMMARY, CONCLUSIONS AND SUGGESTED FUTURE WORK. 83

BIBLIOGRAPHY 85·

APPENDIXES , 87

APPENDIX A - NOTATIONS OF Z SPECIFICAnON

LANGUAGE USED IN THIS THESIS 88

APPENDIX B -- ABRVIATION USED IN THIS THESIS 89

APPENDIX C -- GLOSSARY OF TERMS IN THIS THESIS 91

v

LIST OF FIGURES

~~ ~

1. Four Components ofODBC Architecture 9

2. Basic Flow Control for OOBC Applicat~ons 11

3. A COM Object's Services Accessed via Its Interface 14

4. Component Object Model Vtable 15

5. Three Kind of Servers , 17

6. E-R Diagram of Electronic Parts Database Management System 20

7. ~sers and Their Operations 23

8. Protocols and Networks in the TCPIIP Model Initially 39

9. Socket Communications for Connection-oriented Protocols 41

10. Code for atlmail.h 42

11. Structure for COM's Binary String 44

12. Code for atlmail.cpp 45

13. An ASP Program Calls E-mail COM 48

14. Code for Navigating the Record Set.. .48

15. Code for Customized Error Message Box 52

16. Code for Customized Confirmation Box 5~

17. Code in Confinnbox.html 53

18. Three Types of Users 57

19. The Example ofUser Search Page 58

vi

R~ p.

20.' The Output of Searching for Products Made by King/Allied Signal Company 59

21. View Product. 60

22. Company's Home Page ' ' 61

23. Searching Product by Avionics Catalog , 62

24. Search Result for Avionics Products 63

25. Selection of Product: TMA-330D, TN-200D, and TX-760D 64

26. Order Forms ' 65

27. Completed Order Form 66

28. Message Box of Order Status 67

29. Order Mail 1 68

30. Order Mail 2 69

31. Order Mail 3 70

32. Log-on Page for Company Administrator 71

33. First Record ofProduct in This Company , 72

34. Enable Previous Button 73

35. Disable Next Button , 74

36. Insertion with Invalid Data 75

37. Error Message 76

38. Insertion with Valid Data , 77

39. A Success Insertion , 78

vii

Figure . ., f)'. Page

40. A Confinnation Box In Action 79

41. Current Record Success Removed 80

42. Log-on Page of Server Administrator ' 81

43. Company Infonnation Page 82

viii

LIST OF TABLES

Table Page

I. The Socket Primitives for TCP 40

II. Cursor Types, Meanings, and Values 51

"

ix

CHAPTER I '~

lotroductioR

; .

Today, the World Wide Web is gaining increasing popularity. People utilize the

Web for infonnation inquiry, entertainment, and shopp:ing. More and more businesses

realize the importance of the Internet, ana actively seek opportunities through the

Internet. The increasing presence of businesse's on 'the World, Wide Web reflects the

intenSIve effect of marketing 'on the' Web. Facing a huge volume of product information,

potential buyers who want to make comparisons among different brands and/or

manufacturers encounter the diflkulty of information selection. This thesis intends to

provide a bridge between buyers and, manufacturing companies, providing the buyers

with the information about different products and co . anies on the Internet from one

site, saving the potential buyer substantial effort in thei~arching. With such a bridge the

companies will be able to maintain and update their pt luct information in the database

remotely; the customers can search and compare commodities they are interested in, and

place orders dir:ectly from this site. An order placed can be sent to the manufacturer

. directly.

This study consists of two phases: the design of an abstract model using

requirement specification and the implementation ofthe system.

In developing high quality software, one of the crucial stages is to write a

software requirement specification document. The requirement specification focuses

carefully upon what the software is supposed to do. We must make sure that requirement

specification statements completely and systematically describe what the software needs

to do. A good software requirement specification should h~v~ the following features~

first, it should be unambiguous; second, it should be aC,curate; finally it should be

compl~te. [t is common that misunderstandings between the cHent and the developer

cause compromises which conceal, some important requirements and may lead to

dissatisfaction by the client. A formal specification provides a way to achieve no

compromise (Ford, 1993). "Fonnal methods originated from the work of Dijkstra and

Hoare on program verification, anc;l Scott, Strachey and others ;on program

semantics"(Goldsack and Kent, 1996). IMany ma~ematical languages were developed

from program specifications. One of the most establ~shed languages is Z. Created by J.R.

Abrial, the Z language has been expanded and industrially applied by many others in the

19805. Z is a "model-based" formal specification language, that is, it uses logic and set

theory to build abstract models of required systems u~ing set sequences and functions .

(Goldsack and K:ent, 1996). Since the Z language is based on the mathematical discipline

of first-order-logic and set theory, the Z specification has many advantages. It leads to

concise, unambiguous and exact specifications through which the reasoning process

easily can be seen. First-order logic deals with predicates, also known as propositions,

which are ei,ther true or false. Z contains true and false (two primitive predicates), which

are the always true and the always false propositions respectively (Diller, 1990).

This study uses Microsoft SQL Server 6.5 to create a database system and use

ASP (Active Serv,er Page), JavaScript and VBScript to provide an Internet interface.

Microsoft SQL Server 6.5 uses SQL commands to create and to maintain databases. SQL

is a language that provides a tool that can create and operate a relational database; that is,

sets of related information stored in tables. Using SQL, relational database infonnation

2

can be created, retrieved, updated and transferred. Because of its elegance and

independence from machine specifics, as well as the support from the industry leaders in

relational database technology, SQL has become the standard language in relational

database. The SQL standard is defined by the American National Standards Institute

(ANSI) and is accepted by the International Standard Organization (ISO) (Gruber, 1990).

While SQL is employed to create the database management system, JavaScript

and VBScript are employed to provide the Web interface. HoweveJi; the functionality of

JavaScript and VBScript is limited. The Component Object Model, better known as

COM, is used to build a custom component providing extra functions. COM is a method

for developing software components that are small binary executables providing services

for applications, operating systems, and other components. Developing custom COM

components is like developing dynamic-object-oriented API (Application Programming

Interface). COM components are connected to form applications or systems of

components. As indicated by Rogerson "components can be unplugged and replaced at

run-time without re-linking or recompiling the application." (Rogerson, 1997). In this

thesis, Active Template Library is used to build a DLL (Dynamic Link Library) as the

component.

The objectives of the thesis are to create a multi-function relational database

management system, Electronic Parts Database Management, for both manufacturers and

cl:lStomers; to provide a user-friendly web-interface for this database system. Customers

are able to access all information about different products and companies from one site.

The companies can remotely maintain and update product information of their own

company. The customers are allowed to place orders directly from the web site.

3

This thesis consists of five chapters. The current chapter (Chapter I) is

introduction, providing an overview of fonnal requirement specification, Z specification

language, Microsoft Active Server Page, Structured Query Language and Component

Object ModeL . l

Chapter II is the literature revi,ew for this thesis. It includes ASP, ODBC (Open Database

Connectivity), SQL, and COM.

Chapter III is the System requirement specification. It presents the requirement

specification statements, and it analy~es the statements for the Electronic Parts Database

Management System.

Chapter IV is the implementation of the Electronic Parts Database Management System.

It states how the E-mail COM is created, how the customized message box is

implemented, and how the record set navigation is achieved through the Web interface.

Chapter V is the summary, conclusions and suggested future work of this thesis.

4

CHAPTER II

, -
LiteratllFe Review

T, •

As mentioned in the introduction, this thesis provides a tool by which a user can

search product infonnation through an Web interface. Active Server Page (ASP) provides

a way that dynamically presents infonnation'to a Web page corresponding to the users

request.

2.1 Active Server Page

Active Server Page (ASP) is a technology that is used in the creation of dynamic

web content by supporting several server-side programming languages to generate an

HTML file. HTML, the HyperText Markup Language, is a standard language to provide

a common presentation method to globally shared information on World Wide Web

(Fedorchek and Rensin, 1997).

Being a presentation description language rather then a programming language,

HTML dos,es not determine or control a program's behavior. To address this problem,

Common Gateway Interface (COl) is introduced as a solution. CGI presents dynamically

generated infonnation on the World Wide Web. It allows the computer to generate Web

pages according to the user's request. It lets the Internet offer interactive advanced user

driven applications. CGI opens up an entire class of modem applications for the Web

(Oundaraim, 1996). It is a set of standards that describe how a web server program

should communicate with an external appHcation. Pages can he created by an external

program which returns dynamic HTML. But COl applications suffer from some

5

problems. The major problem of CGI is that it can lead to slow perfonnance, because

whenever a user loads a Web page that calls the COl application, web server machine

creates a new process. When sites grow bigger and COl application's grow more complex,

the problem would become more severe.

An alternative to CGI in the presentation of dynamic web page is Active server

Page (ASP) .. The majority of ASP functionality is controlled by.an asp.dU fLle; which is

an OLE (Object Linking and Embedding) component. According to Fedorchek and

Rensin (FedQrchek and Rensin, 1997) "The first time a call is made to a page that is to be

handled by ASP, the web server creates an instance of the ASP OLE component in

memory and passes it on to the request. From then on, that same component handles an

user requests. This means that every call to ASP after the first will be extremely fast."

ASP runs in the same memory space with the web seryer application since it is an in

process component, and it does not require the operating system to start a new process for

each user.

ASP usually perfonns its work on server-side, which provides the se!curity. ASP

provides some built-in objects and components that make programming much .easier.

The built-in objects are as follows(Fedorchek and Rensin, 1997):

• Application: used to share information with other users who are accessing

the same ASP application

• Request:

• Response:

• Server:

used to retrieve infonnation submitted by a client

used to send output data to client browser

used to acoess some internal properties of the

web server

6

• Session: used to trac,k. infonnation specific toa given user's

seSSIOn

• The Ad Rotator Component:

ASP not only provides the objects, but also provides a way enabling

developers to add in their own objects. The following are five components that are

provided with ASP (Fedorchek and Rensin, 1997):

automaticaUy rotates advertisements

displayed on a page

• The Browser Capabilities Component: determines the capabilities of the client

• The Database Access Component:

• The Content Linking Component:

• The File Access Component:

browser

interacts with any ODBC-compliant

database.

creates a table ofcontents for web pages

that the information of the site can be

organized like pages in a book.

creates and reads text files from the

local disk.

Relational databases infonnation can be created, retrieved, altered and

transferred by using ASP built-in component, the Database Access Component, through

Open Database Connectivity technology.

7

2.2 Open Database Connectivity

The Open Database Connectivity (ODBC) interface defines a group of functions.

An application can use the interface to access a Database Management Syst.em (DBMS)

by Structured Query Language (SQL).

ODBC defines a method to connect to a data source. This open connectivity is

accomplished by a common method of acc~ssing the database on which the application

and database must agree. This agr,eement is implemented as a standard that defmes a set

of API (Application Programming Interface) function caBs and a SQL syntax set. The

open connectivity on the database side is provided by drivers which are contained in

Dynamically linked libraries (DLL). These drivers transform the OnBC API functions

into function caUs that are supported by the particular data source being used. These

driver~ also transform the ODSC SQL syntax into synta" that is acceptable to the data

source. Therefore different data sources can be ac 'ssed by just loading their

corresponding drivers.

The ODBC architecture consists of four main components: the application, a

driver manager, the driver, and the data source (Whiting, Morgan, and Perkins, 1996), as

shown in Figure 1.

• Application: A program calls ODSC functions to interact with data

sources.

• Drive manager:

• Driver:

A Dynamically Linked Library (DLL) that loads drivers

and provides a single entry point to ODBC functions for

different drivers.

A DLt, passes SQL statements from application to data

8

source, and passes results back to the application.

• Data source: includes the data, the associated database, Management System

(DBMS), the platform, and the network used to access the

platform.

Appl.icatioD

Driver Manager

Data Source Data Source

Figure I.Four Components ofODBC Architecture

(Whiting, Morgan, and Perkins, 1996)

The ODBC interface functions have seven groups of functions, which contain the

funclions defined by the X/Open and SQL Access Group (SAG) CALL Level

Interface (CLI) draft specifications. The SAG eLI groups the interface functions as

follows (Signore, Creamer, and Stegman, 1995):

9

•

•

•

• Receiving results:

• Allocate and deallocate

Environment handle: Identifies the memory storage for global

infonnation

Connection handle: Identifies the memory location for infonnation

about a particular cormection

Statement handle: Identifies the memory location for infonnation

about a SQL statement

• Connection: Establish connection to a server and upon exiting an application,

the SAG eLl also provides the closing connection to the server

• Executing SQL statements: There are two ways to execute SQL statements:

prepared and direct. If the developers plan to have

the application submit the SQL statement multiple

times. with possibly changes to the parameter

values then, a prepared execution method is used. If

application does not require infonnation about a

result set prior to completing the SQL request and

the developers plan to have the application submit

the SQL request only once, then the direct

execution method is used.

Retrieving data from an SQL statement's result set and

retrieving infonnation about a result set.

• . Transaction control: Allows the developers to commit or roll back a transaction.

10

• Error handling and miscellaneous: Returns error infonnation and allows

attempting the cancellation of a .SQL

statement.

The dementary flow control for ODBC application is showed as follow (Figure 2)

Ini!ializing

Allocate environment

Allocate connect handle

Connect to server

n

SQL
processing

Terminating

,I Allocate statement handle I
h

I
Statement processing

&

Receiving parts

Free statement handle I
.u.

Disconnect from server

.u.

Free connection handle

I

I Free environment

Figure 2. Basic Flow Control for ODBC Applications

(Signore, Creamer, and Stegman, 1995)

II

Structure Query Language isernp10yed to cr:eate and manipulate the data in the

database system.

2.2 Structured Query Language (SQL)

A relational database is related infonnation stored in two-dimensional tables.

Tables are interrelated so that sophisticated and powerful operations can be performed.

The power of the relational database lies in the relationship that the developers can

construct between the pieces of information. The relational model now is being used as

the primary data model for numerous applications outside the domain of traditional data

processing. The frrst database systems used either the network model or the hierarchical

model· which are tied more closely to the underlying implementation of the database than

is the relational model. There is a substantial theory for a relational database. The theory

assist in the design of relational databases and in the efficient processing of user requests

for infonnation from database. (Silberschatz, Korth, and Sudarshan, 1997).

In 1970, E.F. Codd introduced the relational model (Codd~ 1970). A theoretical

basis for database languages was founded. The model consists of simple concepts for

recording data and operators for manipulating the infonnation in a database. Codd later

published an article that brought forth ideas for th.e improvement of the initial model

(Codd, 1979). Database languages were developed based on the concept and ideas of that

relatio!1al model. Therefore, these languages are called relational database languages,

SQL was one of them.

12

SQL originated with a project-at IBM. The IBM project, known as System R, was

to develop an experimental relational database management systemt System R. One of

the objectives of System R was to demonstrate that the relational model could be

implemented in a system and could satisfy the demands of a modem database

management system. The Sequel language was chosen as its datahase language. In the

System R project, the language was renamed SQL. The System R project was completed

in 1979. IBM publicized the development of system R a great deal during and after the

project advocating relational database management systems. In the mean time, other
, .'\

manufacturers began to build relational database management systems. Some of them

implemented SQL with their own adaptive adjustment, while others adopted on SQL

immediately. As the result, there were a number of competing SQL products on the

market, ANSI leading to set up the standard SQL then call for conformation of the

standard (Van and Rick, 1988).

The structure of SQL is that it has two groups of SQL commands. One is called

Data Definition Language (or DDL also called Schema Definition Language in ANSI)

which is used to define relation schemas, delete relations, create indices, and modify

relation schemas. The other is called Date Manipulation Language (DML), which is used

to insert information into t delete information from, and modify infonnation in the tables

at any given time. Data Control Language (DeL) is used to detennine whether a user is

authorized to perform a particular operation in the datab~e. DCLis considered part of

DDL in ANSI (Derlans, 1988).

While SQL is employed to define and manipulating data, JavaScript and VBScript

are used to present the data to a user. Unfortunately, the functionality ofa scripting

13

language usually is limited. As mentmoned in chapter one, ASP allows developers to build

their own components. Therefore, component object model (COM) technology is adopted

to proyide additional functions.

2.3 Component Object Model ,(COM)

The advantage of using COMs is their abilities to plug into and unplug from an

application dynamically. Components link dynamically and hide the details of how they

were implemented. A program or a component that uses another component is called a

client. A dient and a componen1! connected to each other through an interface as shown

in Figure 3. Each interface is a contract between the object and its clients.

Interface 9
Interface

-0 COM object

ClientI

I

Figure 3. A COM object's Services Accessed via Its Interface

All COM interfaces are required to inherit from IUnKnown. which a standard

COM interface. Following is the definition oflUnknown.

14

Class IUknown

{

virtual HRESULT Querylnterface(REFIID riid, void" ppv) =0;

virtual ULONG AddRefO=O;

virtual ULONG ReleaseO=O;

}; .'

Each COM interface has three methods: QueryInterface. AddRef, and Release, which are

inherited from IUnKnown as the first three functions in its virtual function table (Vtable)

(Figur~ 4). A client can discover whether a compOnent supports aparticuJar interface by

passing the interface identifier structure (lID) to Querylnterface. 'If the COM supports

that particular interface., Querylnterface returns a pointer to the interface; otherwise,

QueryInterface returns an error code, and the client can ask for another interface.

Client

Pointer to Method 1

IPointer to Method 2

I Pointer to Method 3

IPointer to Method 4

COM

Querylnterface

AddRef

Release

Som.e other method I

IPointer to Method 5~

Vtable

Some other method 2

Figure 4. Component Object Model Vtable

15

Client brings COM into action by calling it. But stopping COM execution should

not depend on the client. If there are more than two clients using the COM

simultaneously, one client finishes using the COM and stops COM, the other client

would mysteriously lose the COM. Therefore COM must have the ability to know when

it should stop its own execution. Reference counting is a simple and fast method to

enable components to stop their own executions. A running C~M component maintains

a reference count. When a dient gets an interface from a component, the reference COWlt

is incremented. This is handled by the AddRef method. When the client finishes the

interface, the reference count is decremented, handled by the Release method. Release

method also check the reference count if it reaches zero, and if it dose so, Release deIetes

the component from the memory (unloads COM itself).

Every COM component is implemented inside a server.. There are three primary

kinds of servers (Chappell, r996), as shown in Figure 5:

• In-process Servers; implemented in a dynamic link library and execute

in the same process as the client

• Local Servers: implemented in a separate process running on the

same machine as the dient

• Remote Servers: implemented in a DLL or in a separate process that

runs on a different machine than the client does,

Distributed COM (DCOM) chooses this option

16

Among the above types of servers, in-process server is chosen because its

performance resutited from running in the same memory space as client process provided

by Dynamic Link Library (DDL).

..
Dynamic Link Libraries generally are not executable directly, and they usually do

not receive messages. They are separate fil,es containing functions that can be called by

programs and other DLLs to perform certain jobs. A DLL is brought into action only

when another module calls one of the functions in the library (petzold, 1996).

I
I

Q , I
I
I

q-1 I
I
I
I

~. In-process server
I

QI
I
I I

I·0
-. ...- ... -

41
Local server

Process 2
Process I

Machlne:One

Machine Two

Remote server

!r1
C;
I

Figure 5. Three Kind of Servers

Template is a technique to create a model for generic functions and

classes. A generic function or class is a set of functions or members that can

applied to various types of data. The particular data type is specified when it is

17

instantiated. COM has some basic requirements, such as, all interfaces that must

inherit from IUnknown. All interfaces must have three functions, which are

almost the same to all the COMs. The Active Template Library (ATL) uses

template technology to provide basic COM needs. ATL facilitates the creation of

small, COM-based components. . ATL provides the following features

(Annstrong, 1998):

• AppWizard: creates the initial ATL project

• Object Wizard: produces code for basic COM components

• Built-in support for elementary COM functionality such as llinKnown, Class

factories and self-registration

• Support for Microsoft's Interface Definition Langlllage (lDL). This provides

marshaling (transferring function arguments and return value across process

and machine boundaries) support for custom Vtable interface as well as

component self-description through a type library

• Support for IDispatch (Automation) and dual interfaces

• Support for developing efficient ActiveX controls

18

CHAPTER III

REQUIREMENT SPECIFICATION OF THE SYSTEM

Requirements specification includes both user requirements specification and
,

functional requirements specification. Specification of user requirements is statements

that characterize the data needs of the prospective database users. Specification of

functional requirements is statements that describe operations or transactions users expect

to perform on the data. The following sections present the detailed overview of the

Electronic Parts Database Management System. The requirement specification is stated

with Z specification language.

3.1 Requirement Analysis for the System

3.1.1 User requirements specification

A company is located in a particular, street, city, and is identified by its unique

company name. The company can be contacted through a contact person, or the

company's email, phone, and fax. The company also provides additional infonnation on

its homepage.

A product is made by some particular companies; it is identified by a particular part

number. A product has additional infonnation such as features, image, price and catalog.

A ,company administrator is protected by his or her user id, password, and association

with the particular company whose database is his or her charge.

The server administrator also is protected by user id and password. The E-R diagram

for the el.ectronic parts database management system is shown in Figure 6.

19

Figure 6 E-R Diagram of Electronic Parts Database Management System

Homepage 'Email

tv
o

Image

~

Price

UserID

Company Information

Compo Nam~

UserID

Company Administrator Server Administrator

Base on the E-R diagram following tables are created.

CREATE TABLE ADTABLE

(SADMOINISTARTOR VARCHAR (50) NOT NULL,

PASSWORD VARCHAR (50) NOT NULL,

PRIMARY KEY (SADMINISTRATOR, PASSWORD»

CREATE TABLE CADIMINISTORTABLE

(COMPANYNAME VARCHAR (50) NOT NULL,

CADMINISTRATOR VARCHAR (50),

PASSWORD VARCHAR (50)

FOREIGN KEY (COMPANYNAME»

CTREATE TABLE COMPANYTABLE

(COMPANYNAME VARCHAR (50)

WHOLENAME VARCHAR (100)

STREET VARCHAR (50),

CITY VARCHAR (30),

STATE VARCHAR (20),

ZIP VARCHAR (20),

CONTECTPERSON VARCHAR (30),

HOMEPAGE VARCHAR (50),

EMAIL VARCHAR (50),

NOT NULL,

NOT NULL,

21

PHONE

FAX

VARCHAR (30),

VARCHAR (30),

PRIM~RY KEY (COMPANYNAME»

CREATE TABLE PARTTABLE

(COMPANYNAME VARCHAR (50) NOT NULL,

MANUPARTNUMBER VARCHAR (100) NOT NULL,

CATALOG VARCHAR (l00) NOT NULL,

PARTNUMBER VARCHAR (100) NOT NULL,

PFEATURE VARCHAR (255),

lMAGEFILE VARCHAR (255),

PRICE NUMERIC (18,2),

PRIMARY KEY (PARTNUMBER, COMPANYNAME)

3.1.2 functional requirements specification

Users in three different levels access this electronic parts database system. The

first level is for ordinary users who can search all product information of the system, but

are not authorized to make modifications. The second level is company administrators

who are responsible for maintaining or updating their company product information. The

highest level is a server administrator who can maintain and update any company

information. When a new company joins, the server administrator must record all

company information, the company administrators' user ID and password. Figure 7 shows

the operations that can be performed on this database management system.

22

N
w

Figure 7 Users and Their operations

~~arlO8

I
I

Onlina~ User Com~n~ A~minisnlor ~rver Aaminislralor

I
I I

~arc~ ~ro~u~ Infonna~on Oroer Pro~u~ MainQin Com~ys Own lI\1in~in Com~nrs'

Pro~uct Inronnation Inlonna~on

I I I I
U~aa~ A~~ Remove M~ Remove U~aM

Exsffin~ Pro~uct ~wPro~uct Ol~ Pro~ucl NewCom~anr Exsion~ Com~anr ~siln~ Compnay Inlonnaijon

.• IThe majior transactions in this database system are as follows:

• Search Product Information:

1. Search product information by company name

2. Search product information by catalog

3. Search product information by part number

4. Search product information by company name and part number

5. Search product information by company name and catalog

6. Search product information by catalog and product nwnber

7. Search product information by company name, catalog and part name

• Maintain and Update Product Information:

1. Add new product information

2. Modify existing product information

3. Remove existing product information

• Maintain and Update Company Information

I. Add new company information

2. Modify existing company information

3. Remove existing company information

Ordinary users only can perform search product operations. Maintaining and

updating company product information is restricted to company administrators only.

However, server administrators can place themselves as company administrators to

modify product information, but maintaining and updating company infonnation only can

be performed by server administrators. When a new company applies to join in the

24

database system, company information, its oompmy administrator user ID and password

must be recorded. Company administrators onJy can maintain and update their own

product database

3.2 Formal requirement specifications

the Z specification language is adopted for writing requirements specification. In

this requirements specification, the following data types are defined:

company = [[companyname, person, password, address.

contactperson, phone, fax, homepage, e-mailaddress]]

product = [[partnwnber, price, image, feature, catalog, companyname]]

The data type, company, represents any company information that mayor may not

be in the database. The data type, product, represent any product information that mayor

may not be in the database. The same thing applies to the partnumber, catalog and

companyname. The date type Company E company represents company information that

is currently in the database. The data type Product E product, which represents product

information, is currently in the database. So do data types PartNumber E partnumber,

Catalog E catalog and CompanyName E companyname.

. ------ EpartDBState-----------
I CAdministrator, SAdministrator: F person
I CompanyName: F companyname
I Catalog: F catalog
I PartNumber: F partnumber
I Product: F product
I Company: F company
I build: CompanyName --•• Product
I about: Catalog • Product
I identify: PartNumber • Product
I ensure: CAdministrator • Password
I inchargeof: CAdministrator • CompanyName
I secure: SAdministrator • Password

25

aboutcornpany: CompanyName ----I'•• Company

CAdministrator nSAdministrator = { }

~ EPartDBState 6 EPartDBState 1\ EPartDBState'

BEPartDBState 6, ~ EPartDBState I

about' = about 1\

build' = build 1\

identify' = identify 1\

ensure' =ensure 1\

inchargeof = inchargeof 1\

CAdministrator' =CAdministrator 1\

SAdministrator' = SAdministrator 1\

Product' = Product 1\

Catalog' = Catalog 1\

CompanyName = CompanyName

In the initial state every variable is the empty set:

InitialEPartDBState'=EPartDBState' I

about' ={} 1\

build' = {} 1\

identify' = { } 1\

ensure' = { } 1\

26

inchargeof = { } 1\

CAdministrator' = { } 1\

SAdministrator' = { } 1\

Product' = { } 1\

Catalog' = {} 1\

CompanyName' = { }

The electronic database system can be interrogated In vanous ways. The

follo\\jng session describes an operation that outputs all product infonnation by a

particular company name, a transaction that lists all the product infonnation about a

particular catalog and a transaction that lists all the product infonnation of a particular

part number.

3.2.1. Search Operations

3.2.1.1 Search by Company Name

-------- SearchByCompanyName-----------
I B EpartDBState
I c?: CompanyName
I out!: F Product
1--
I out! = build (lc?l)

Here c? is an input, and c? E CompanyName, out! is an output. Since build is a

function that maps from CompanyName to Product, but/d(le?!) win give all the

infonnation of the products that are made by that company.

3.2.1.2 Search by Catalog

---- SearchByCatalog-----------
I B EpartDBState
I a?: Catalog

27

out!: F Product
------_._-------------------------------_.__._------------

out! = about (Ia?!)
.------------- ...,---------,---_._--------_._----------------

. 3.2.1.3 Search by Part Number

------- SearchByPartNumber-----------
I :=: EpartDBState
I p?:P~urnber

I out!: F Product
--_._--------------------------------------'...------_.-._---
I out! = identify (lp?1)

This session pres,ents an operation that outputs all the product information by

specifying company name and catalog; an operation that outputs all the product

infonnation by specifying company name and part nwnber; and an operation that outputs

all the product information by specifying part number and catalog.

3.2.1.4 Search by Company and catalog

----- SearchByCompanyAndCatalog-----------
I 8 EpartDBState
I a?: Catalog
I c?: CompanyName
lout!: F Product
-------------------_._-------------,------------------...

I out! = build (Ie?!) nabout (la?1)

Here a? and c? are inputs. And a? E Catalog, c? E CompanyName, out! is an

output. The function about maps from Catalog to Product, so abou/(la?l) will give us all

the product infonnation that belongs to that catalog. Since build(lc?!) gives all the

products that are made by that company, build (Ie?!) nabout Cia?!) will give products that

are made by that particular company and belong to that specified catalog. It should be

noticed that out! may be an empty set.

28

3.2.1.5 Search by Company and Part Number '

-'-- SearehByCompanyAndPartNumber----------
I 3 EpartDBState
I p?: PartNumber
I e?: CompanyName
I out!: F Product

out! = build (Ie?!) n Identify (Ip?1)

3.2.1.6 Search by Catalog and Part Number

. ------ SearchByCatalogAndPartNumber----------
I 2: EpartDBState
I p?: PartNumber
I a?: Catalog
I out!: F Product

out! = about (Ia?/) n Identify (Ip?!)

The following operation will output all product infonnation by choosing

particular company name, part number and catalog.

3.2.1.7 Search by Company, Catalog and Part Number

------ SearchByCompanyCatalogAndPartNumber-----------
I 2: EpartDBState
I c?: Company

. I p?: PartNumber
I a?: Catalog
I out!: F Product

out! = about (la?l) n Identify (lp?l)n build(lc?1)

Here a?, c? and p? are inputs, c? E CompanyName, a? E Catalog,

p? E PartNumber. Th,e function identify maps from Par/Number to Product. Because

identify (Ip?1) gives product infonnation that is identified by the Par/Number, build (lc?l)

29

gives a list of products that are made by the company, and about{la?1) gives a list of

products that belongs to that specified catalog, therefore, outputs out! is the product that

is made !by that particular company, belonged to that specified catalog and can be

identified by that specified part number. Again out! may be an empty set..

3.2.2 Modify and Update Product Informa.liion

3.2..2.1. Add a New Product

-------- AddNewProduct----------------
I AEPartDBState
I p?: product
1 n?: person
I c?: catalog
I a?: partnumber
1---------_·_------------------------------------
I a? i!' dom identify
I p? '1. ran identify

. I n? E dom inchargeof
I Product'=Product U {p?}
I Catalog'=Catalog U {c?}
I build' = build U{inchargeof (In?l) ~ p?}
I identify' = identify U{a? ~ p?}
I about' = about U{c? • p?}
---------_.-----------------_._-------------------'----------------------

--------- NotNewProduct-----------------
I E EPartDBState
I a?: partnumber
I p?: product
1 rep!: Report

1--
I a? E dom identify v
I p? E ran identify
I rep! = 'Not a new productr'
---------,---

----------AuthorizedCAdministrator----------------

30

n7.: person
c?: companyname

I
I
I p?: password
1-----------,--------------------
! n? E dorn inchargeof
I p? E ran ensure
I c? E ran inchargeof
I c? = inchargeof(ln?1)
I p? = ensure(ln?1)

t ;

, '

-------------_._----------------------------------,---------------

-----------UnauthorizedCAdministrator------------
I S EPartDBState

. I n?:name
I p?:password
I c?:companynam,e
I rep! :Report

n? ~ dom inchargeof v
p? ~ ran ensure v
c? ~ ran inchargeof
p? '!; ensure(ln?l) v
c? '!; inchargeof(ln?1)
rep! = 'Not Authorized as company administrator!'

DoAddNewProduct /\ AuthorizedCAdrninistrator /\ AddNewProduct /\ Success
v
UnauthorizedCAdministrator
v
NotNewProduct

. Here is an operation that adds a new product to the database. p? ~ ran identify

specifies that this product infonnation does not exist in this database, since the identify is

the function that maps from existing part number in this database to product infonnation.

a? ~ dom identify means that this new part number is oot currently being used for

identifying some other products. In this case it is considered as this 'new' product not a

really new. Here n? E dom inchargeof guarantees that function inchargeoj(lo?1) gives

the company name. And function build IS add a new mapping

31

inchargeoj(ln?1) -. p? guarantees that the company administrator only mod.ify his or

her own company's product information.

Product' = Product U {p?} updates new Product set, so does Catalog set.

The function identify adds a new mapping from part number to new product information.

So does the function about.

When a new product is added, three scenarios can happen. First, if the requester

is an authorized company administrator, and the product is new, then he/she can add the

new product successfully. Second, if the requester is an authorized company

administrator, because the product is not new (eith.er product infonnation not new or

product part number being used), then ins,ertion cannot be done. Third if the requester is

unauthorized, then the insertion cannot be done.

3.2.2.2 Remove a product from database

. ----------RemoveProduct------------------------
I 11 EpartDBState
I p?: product
I c?: catalog
I n?: person
I a?:partnunnber

1---
I a?E dom _dentify
I p? E ran identify
I n? E dom inchargeof
I build' = bui.ld \ { inchageof{ln?l) ~p?}

I identify' = identify \ { a? ~p? }
I about' = about \ { c? ~ p? }
I Product' = Product \ {p?}
I Catalog' =Catalog \ {c?}
-_._-----,----_._----------------,--_._-----------------------------

--------NotExistProduct-------------------
I B EPartDBState

. I a?: partnumber
I p?: product
I rep!: Report

32

1-------------------------------------·- ,
I a? ~ dom identify v
I p? e ran identify
I rep! = 'Not exist such producH'
-------------------------,-------,---------------_._----'-

DoRemoveProduct 6. AuthorizedCAdministrator 1\ RemoveProduct 1\ Success
v
UnauthorizedCAdministrator
v
NotExistProduct

3.2.2.3 Update a product information

--------UpdateProduct-------------
!1 EpartDBState
p?: product
c?: catalog
n?: person
a?: partnumber

a? E dom identify
n? Edam inchargeof
p? E ran identify
build' =(buHd ~ identify(la?l)) U {inchargeof(ln?1)~ p? }
about' =(about ~ identify(la?l)) U {c? ~ p? }
identify' = (identify fl!' identify(la?I» U {a? ~ p? }
Product' = Product
Catalog' = Catalog

DoUpdateProduct 6. AythorizedCAdministrator 1\ UpdateProduct 1\ Success
v
UnauthorizedCAdministrator
v
NotExistProduct

a? E dam identify specifies that this part number does exist in the database.

n? Edam inchargeof guarantees that inchargeoj{ln?l) will give the company name.

p? E ran identify means that product information is included in the database.

(build ~ identW-'(Ia?l) U { inchageoj(ln?1) --+ p?} means build filters the mapping

33

which is associated with product information identijy(la?1) , and adds a new mapping

from company name inchargeoj(ln?1) to the current product information. So aboul and

identify functions do the same thing.

3.2.3 Modify and Update Comp.any l.nforlDatioB

3.2.3. I Add New company

---------AddNeWCompany--------------------------------
I I:!. EPartDBState
I c?: Company
I a?: CompanyName
1 b?: person
1 p?: password

1---
I a? ~ dam Company
I inchargeof = inchargeof U {b? • a?}
I ensure' = ensure U {b?· • p?}
1 aboutcompany' = aboutcompany U {a? .c?}

--------AuthorizedSAdministrator------------
I n?: person
I p?: password

1--
I n? E dom secure
I p? = secure(ln?l)

---------UnauthorizedSAdministrator-----------
1 2 EPartDBState
1 n?: person
1 p?:password
1 rep!: Report

1-------------------------------------
I n? ~ dom secure v
I p? * secure(ln?1)
I fep! = 'Not Authorized as company administrator!'

NotNewCompany-----------------------------------
2 EPartDBState
a?: CompanyName

34

I rep!: Report
1--
I a? E dom aboutcompany
I rep! = 'Not a New company!'

DoAddNewCompany 6 AuthorizedSAdministrator 1\ AddNewCompan,Y 1\ Success
v
UnauthorizedSAdministrator
v
NotNewCompany

3.2.3.2 Remove a company information

RemoveCompany-----------------------------
A EPartDBState
a?: CompanyName

I c?:company
1--
I a? E dom aboutcompany
I c? = aboutcompany(la?1)
I aboutcompany' = aboutcompany !> {a?}
I ensure' = ensure e> {a?}
I inchargeof = inchargeof !> {a?}
I identify,-I = identifi' e- build(la?1)
I about,-J = abour l t> build(la?1)
I Product' = Product' \ build(la?l)
! build,-I = build-I e- build(la?1)
I Company' = Company \ {c?}
I Catalog' = dorn about

NotExsitCompany------------------------------------
. I 3 EPartDBState
I a?: CompanyName
I c?:company
I rep!: Report
1---
I a? ~ dom aboutcompany v
I c? :t:- aboutcompany(la?1)
I rep! = 'The Company Not Exsit !'

DoRemoveCompany /\ AuthorizedSAdministrator 1\ RemoveCompany 1\ Success
v

35

UnauthorizedSAdministrator
v
NotExistCompany

_a? E dom aboutcompany denotes that this company name exists in the database.

c? = aboutcompanYCla?1) makes sure that the company name and company information

truly are associated with each other in the database.

aboutcompany' = aboutcompany ~ {a?} filters this association from this fwtction. When

the company information is removed from the database, all the products that are related

to this company should be removed as well. identify,-I = identify-' ~ build(la?1) filters

infonnation which is associated with this company, since the identify-J maps product

information to part number. So does the other two functions of abour! and buila',

Therefore, functions of build~ about, and identify are updated.

When the company information is removed, the following three cases may occur.

First, the requester might not be authorized; second, requester might be authorized but the

company does not exist in the database; finally, if the requester is an authorized server

administrator, and if the company exists in the database, then he/she can remove

company information successfully.

3.2.3.3 Update a company infonnation

UpdateCompany---------------------------
tJ. EPartDBState
a?: cornpanyname
c?: company
b?: Name

1 p?: password
1---
I a? E Dom aboutcompany

. I aboutcompany' = aboutcompany Ee {a? • c?}
I inchargeof = inchargeof ffi {b? • a?}
I ensure' = ensure $ {b? • p?}

36

Company' = ran aboutcompany
Produd = Product
Catalog' = Catalog

DoUpdateCompany 6.AuthorizedSAdministrator A UpdateCompany A Success
v
UnauthorizedSAdministrator
v
NotExistCompany

37

CHAPTER IV • l

IMPLEMENTATION AND RESULTS

4.1 E-mail COM

As mentioned in the objectives section, when a user selects products, then clicks

the "order" button, the order should be sent to manufacturers. To send the order to the

manufacturers automatically, an E-mail COM should be created. This E-mail COM is

created using the Active Template Library (ATL) and Winsock.

4.1.1 Background

4.1.1.1 Active Template Library

ATL is a framework that easily creates small, lightweight COM objects. It gives

software developers the flexibility to implement tL if components without any

dependencies on secondary DLLs, including the standard C run-time DLL. It makes

components as small and fast as possible. The ATL AppWizard provides the basic

housing support that the COM component needs. All COM objects must support the

IUnknown interface and expose its specific functionality. It must provide a class factory,

which facilitates the creation of COM objects, and it should support self-registration,

which is the ability to add the COM registry entries for each of its components

automatically. Since the ATL includes its functionality as part of the implementation,

there is no need to link to any external DLLs. It encapsulates a component's support

housing for in-process component in its CcomModule class, taking care of self

registration by exporting two standard COM functions: DHRegisterServer and

38

DllUmegisterServer. ATL supports IUnknown~ so the developer need not write any code

for QueryInterface, AddRef, Release methods. ATL supports for -class Factories, so the

developer need not write any code for Createlnstance, LockServer these methods. ATL

provides build-in support for each of these requirements. Because of this, COM

developers can concentrate on the unique func.tions that they want the COM to provide.

4.1.1.2 Socket \ .
.)~ . \

- TCP (Transmission Control Protocol) is a reliable connection-oriented protocol

that allows a byte stream to be delivered without error on any other machines in the

internet. UDP (User Datagram Protocol), is an unreliable, connectionless protocol. The

protocols and networks is shown in Figure 8 (Tanenbaum, 1996).

ISMT~ITELNET I I FTP I I I DNS I

II Tep II UDP I

I IP I

I jARPANET I I I IISATNET I II Packet Radio LAN

Layer
(OST names)

Application

Transport

Network

Physica
I+ data
link

Figure 8. Protocols and Networks i.n the Tcpnp Model Initially (Tanenbaum, 1996).,

The primitives and meanings are list as follow (Table 1):

39

Primitive Meaning

SOCKET Create a new communication end point

BIND Attach a local address to a socket

LISTEN Announce wiUingness to accept connections, give queue size

ACCEPT Block the caller until a connection attempt arrives

CONNECT Actively attempt to establish a connection

SEND Send some data over the connection

RECEIVE Receive some data from the connection

CLOSE Release the connection

Table 1 The Socket Primitives for TCP (Tanenbaum,1996)

There are some implementation differences between Winsock and the UNIX

version of Berkeley sockets. One of the differences is that s· ,cket descriptors and file

descriptors cannot be interchanged in. Another is that whe developers use Winsock

functions, they must first call the WSAStartup function; and they should calf

WSACleanup for proper tennination.

Some structures used in this COM are as follows:

. struct sockaddr in

{

short sin_family;

u_short sinyort;

struct in_addr sin_addr;

char sin_zero[8];

40

}

struct hostent

{ , ,

char FAR'" h_name;

char FAR * FAR'" h_aliases;

short h_addrtype;

short h_length;

char FAR * FAR'" h_addrJist;

} ;

The overview of setting up and using TCP connection:

Server Client

Create a socket Socket()
Binds socket to a
specific port bind()

Indicate willingness
1isten()to accept incoming

connection requests

Wait for incoming
accept()

requests

Socket() Create a socket

Connect(} Initiate a connection

send () Send data

Receive data recv()
,

Send data reeve) Receive data
send ()

Tenninate tile connecci,on
Terminate the c1osesocket() c1osesockeC()
Connection

Figure 9. Socket Communications for Connection-oriented Protocols (Toth, 1997)

41

From the figure 9 we know that the E-mail COM needs to do is create a socket and

connect to mail server, then send data and receive data,. after that terminate the

connection. Following section is the detail of the implementation of the E-mail COM.

4.1.2 Implementation . '-

following code are developed to implement E-mail COM. The file atlmail.h declare the

object and its unique function sendmaiL The file atlmail.cpp implement the sendmail

mathod.

II. atlmail.h : Declaration of the Cadmail
#ifndef ATLMAIL H
#define ATLMAIL H

#include "resource.h" 1/ main symbols
#include <winsock2.h>

1111/1///11/1/1111//1//1111//1111111111/111/1//1111//111/111//111/1/1/111/1//
// CadmaiI

class email
{
public:
int init;
int mysocket;
struct sockaddrjn a;
struct hostent *h;

. WSADATA wsadata;
email();
-emailO;
int Logon(BSTR server);

. int sendmsg(BSTR sender, BSTR .address, BSTR message);
};

Figure 10. Code for atlmail.h (to be continued)

42

class ATL_NO_VTABLE Catlmail :
public CComObjectRootEx<CCornSingleThreadModel>,
public CComCoClass<Catlmail, &CLSID atlmail>- ,
public IDispatchImpl<Iatlmail, &I1D_Iatlmail,&LmID_WATLlSOCKLib>

{
public:

CatlmailO
{
}

DECLARE_REGISTRY_RESOURCEID(lDR~TLMAIL)

BEGIN_COM_MAP(Catlmail)
COM_INTERFACE_ENTRY(latlmail)
COM_INTERFACE_ENTRY(IDispatch)

END_COM_MAPO

II IatlmaiI
public:

STDMETHOD(sendmail)«(I*[in]*IBSTR server,I*[in]*/BSTR
send'er,l*[in]*IBSTR addr,ess,l*[in]*IBSTR message);

};

#endif II ATLMAIL H

Figure 10. Code for atlmail.h

In the OBJBASE.H, three COM C++ macros are defined as shown below:

#define STDMETHODCALLTYPE _stdcall

#defme STDMETHOD(method) virtual HRESULT STDMETHODCALLTYPE

method

#define STDMETHODIMP HRESULT STDMETHODCALLTYPE

43

The STDMETHOD macro is us~d in the declaration of the interface methods

within the implementing class. The STDMETHODIMP macros are used when the

developers actually implement the interface function.

The 'in' and 'out' keywords spedfy the direction of the parameter. By providing

this infonnation, the developers provide COM with infonnation that will help to make the

parameter marshaling process more efficient. The 'retval' keyword specifies that the

parameter should be treated as the return value for the method.

COM uses a special string data type called a binary string or basic string or

BSTR. It is declared as OLECHAR .*, which indicates that it is a, Unicode string. The

structure of BSTR is as follow:

DWORD
length

Unicode String

The DWORD length is managed by
COM's BSTR function(e.g.,
SysAIlocString)

Figure 11. Structure for COM's Binary String (BSTR)(Annstrong,1998)

BSTRs are represented as OLECHAR pointers. To convert a BSTR to ANSI, developers

can use:

USES_CONVERSION;

OLE2T(someBSTRdata);

This conversion is being used in the admail.cpp(figure 7.b).

44

1/ atlmai1.cpp : Implementation of Catlmail
#include "stdafx.h"
#include "wadI sock.h"
#inc1ude "atlmail.h"

1/1/1/1/11////11//1/////1///1///1///11///1///////1/1////11/////1/1///11//1/11
II Catlmail
email::emaiIO
{

init=O;
mysocket=O;

}
email: :--emaiIO
{

if (mysocket!=O)//has socket
closesocket(mysocket);llshut down the connection

if(init!=O)
WSACleanupO; Ilclean up

init=mysocket=O;/lreset
}

int email::Logon(BSTR server)
{

char *mserver=new char[50];
USES_CONVERSION;
strcpy(mserver,0 LE2T(server»;
Ilchange BSTR to ANSI and copy to mserver
if (WSAStartup(OxlOl , &wsadata») I/ean not initiated
{

delete mserver;
return 0;

}
mysocket=socket(Af_INET, SOCK_STREAM,

IPPROTO_TCP);llcreate a socket
init=I; Ilinitialization success

Figure 12. Code for atimaiI.cpp (to be continued)

45

return 0;

if (mysocket O)//can not create a socket

{
delete mserver;
return 0;

}
h=gethostbyname(mseTVer);llresolve hostname
if (h NULL) Ilcan not resolve hostname
{

delete mserver;
return 0;

}
delete mserver;
return 1;

}

int emaiL::sendmsg(BSTR sender, BSTR address, BSTR message)
{

. char *t=new char [2000];
char *temp=new char [2000];
char *msender=new char[50];
char *maddress=new char[lOO); .
char *mmessage=new char[1500];
USES CONVERSION;
strcpy(msender,OLE2T(sender»;
strcpy(maddress,OLE2T(address»;
strcpy(mmessage,°LE2T(message»;
a.sin_family = AF_INET;
a.sinyort=htons(25); IISMTP port number is 25
memcpy(&(a.sin_addr.s_addr), h->h_addr, siz.eof(int»;
if (connect(mysocket, (struct sockaddr *)&a, sizeof(a»)
{

}
int i=recv(mysoceket, temp, 2000,0);
strcpy(t,"MAIL FROM:");
msender[strlen(msender)]='\n';
strcat(t,msender);
send(mysocket, t,strlen(t),O);/lsend data :"MAIL FROM:" + msender +'\n'
i=recv(mysocket,temp,2000,0);
strcpy(t,"RCPT TO:");

. strcat(t,maddress);
t[strlen(t)]='\n';
send(mysocket,t, strlen(t),O);//send data:"RCPT TO:"+maddress+'\n'
i=recv{mysocket,temp,2000,O);
strcpy(t,"DATA\nlt

);

send(mysocket,t,strlen(t),O);//send data: "DATA\n"

Figure 12. Code for atlmail.cpp (to be continued)

46

i=recv(mysocket, temp,2000,O);
strcpy(t,mmessage);
strcat(t,"\o\n\o.\n");
send(mysocket,t,strlen(t),O);//send data: mmessage+u\n\n\n.\n"
i=recv(mysocket,temp,2000,O); ,
strcpy(t,"QUIT\n").;I/send data: "QUIT\n"
send(mysocket,t,strlen(t),O);
delete t;
delete temp;
delete msender;
delete maddress;
delete mmessage;
return 1;

}

STDMETHODIMP Catlmail::sendmail(BSTR server, BSTR sender,
BSTR address, BSTR message)

{
email Email;
int i=Email.Logon(server);//logon the mail server
if (i=1)//if success

i=Email.sendmsg(sender,address,message);//send message
return S_OK;

}

Figure 12. Code for atlmaiLcpp

Sendmsg method [onnats an SMTP-compliant message and sends it. The basic SMTP

session looks like this:

MAIL FROM: <sender>

RCPT. TO: <recipient address>

DATA

<message>

QUIT

47

Calling E-mail COM is verysimple as shown below (Figure 13):

if (isobject(session(Ue_mail't)))then
set e_mail=session("e_mail")

else
set e_mail=Server.CreateObject("'atlmail.atlmail.1")
set session("e_rnail")=e_mait

end if
emailserver="a.cs.okstate.edu"
e_mail.sendrnai~ emailserver, sender, recipientaddress ,message

Figure 13. An ASP Program Calls E-mail COM

The E-mail COM uses ATL. To add a new ATL object a Simple Object is chosen

instea~ of an Active Server Component; therefore, this component can be used not only

in ASP but also in other application programs such as Visual Basic. And it is portable

with any windows operating system.

4.2 Navigation Record Set

[n order for users to navigate the database backward and forward through the web

interfac,e, the following code is developed:

function recordform(str,b)
dim s,rs,getnext,getprevious

if (isobject(session("rs"» and b)then
set rs=session("rs")
total=request.fonn("total")

else
total=o
currec=O
SQL="select catalog,manupartnumber,price,imagefile,pfeature" II

SQL=SQL & "keynumber from parttable ~here companyname='!1
SQL=SQL & cname & 1/111

set rs=conn.execute(SQL)

Figure 14. Code for Navigating the Record Set (to be continued)

48

do while not rs.eof
total=total+1
rs.MoveNext

loop
rs.close
rs.open, ,2
set session("rs")=rs
end if

select case str
case "Get First"
rs.MoveFirst
currec=O

case "Get Next"
currec=currec+1
rs.MoveNext

case "Get Previous"
currec=currec-l
rs.MovePrevious

case "Get Last"
currec=total-l
rs.MoveLast

case "Get Current"
end select

if (cint(total)-l>currec) then
getnext=true

else
getnext=false

end if
if (currec>O) then

getprevious=true
else

getprevious=false
end if

s="<table align=right cellspacing=O><tr><td><input type=image border=O
src=first.gifname=First><Itd><td> II

if getprevious then
s=s & "<input type=image border=O src=prev.gif

name=Prev><ltd><td>"
else

s=s & "<image src=prev1.git></td><td>"
end if
s=s & "<input type=text size=3 name=currec value='" & currec &lfI></td>

<td>"
if getnext then

s=s & "<input type=image border=O src=next.gif name=Next><Itd><td>"

Figure 14. Code for Navigating of Record Set (to be continued)

49

else
s=s & "<image src=nextl.gif></td><td>"

end if
s=s & "<input type=image border=O src=last.gif
name=Last></td></tr></table>

"
s=s&n <table align=center><tr><td width= 1OO><center>Catalog<td width=200><center><font color=#OOOOff

>Manufacture Part Nwnber</td>"
s=s&"<td width= IOO><center>Price</td></tr

>01
s=s&"<tr><td><input type=text name=Clog size=20

value='"&rs(O)&"'></td><td>"
s=s&"<input type=text name=mpartnumber size=30

value='" &rs(1)&'"></td><td>"
s=s&"<input type=text name=price size=20 "

if (csng(rs(2»)=int(csng(rs(2)) then
s=s & "value=$" &rs(2)&".OO></td></tr>"

else
s=s & "value=$" &rs(2) & "></td></tr>"

end if
s=s&"<tr><td width= IOO><center>Image File

Name"
s=s &"<td width=200><center>Product

Features</td>"
s=s&"<td width=1OO><center>Key

Number</td><Itr>"
s=s&"<td><input type=text name=ifile size=20 value='''&rs(3)&tII></td>

<td>n
s=s & "<input type=text name=pfeature size=30 value='"
s=s & rs(4) & "'></td><td>"
s=s & n<input type=text name=k:number size=20

value='" &rs(5)&tIl></td></tr></table>"
s=s & "<input type=hidden name=cname value='" & cname & "'>"

s=s & "<input type=hidden name=recO value="1 & rs(O) & "'>"
s=s & "<input type=hidden name=recl value='" & rs(l) & '''>''
s=s & "<input type=hidden name=rec2 value='" & rs(2) & '''>''
s=s & "<input type=hidden name=rec3 value='" & rs(3) & "'>'t

s=s & "<input type=hidden name=rec4 value='" & rs(4) & "'>"
s=s & "<input type=hidden name=rec5 value='" & rs(5) & '''>''
s=s & "<input type=hidden name=total vaJue="' & total & ",>n
recordfonn=s

end function

Figure 14. Code for Navigating of Record Set

50

There are four different cursor types when opening a Record set oBject: Dynamic

cursor,. ICeyset cursor, static cursor and Forward-only cursor (By default ADO opens a

forward-only cursor). FoUowings are CursorTypeEmnll valiues:

Constant Value Description

adOpenForwardOnly 0 Forward-only cursor Identical to a static cursor

except that it only allows scrolling forward

through records.

adOpenKeyset

adOpenDynamic

adOpenStatic

1

2

3

Keyset cursor. Like a dynamic cursor, except

that you can't see records that other user add~

although records that other users delete are

inaccessible from your recordset. Data changes

by other users are still visible.

Dynamic cursor. Addition, changes, and

deletions by other users are visible, and all types

of movement through the recordsst are allowed,

,except for bookmarks if the provider doesn't,

support them.

Static cursor, Astatic copy ofa set of records that

you can use to find data or generate reports.

Additions~ changes, or deletions made by other

users are not visible.

Table 2 Cursor Types, Meanings, and Values

51

The cursor cannot be changed once a recordset is opened. Instead., the recordset

must be closed and reopened using a new cursor type. After this is done, any new

operations supported by the cursor are immediately available.

4.3 Customized Message Box

VBScript has a function called msgbox, and it supports many styles.

Unfortunately, Netscape does not support theVBScript language. JavaScript has only one

function called alert that can be used as message box although Netscape and Internet

Explorer support JavaScript. Therefore, a unique error message and confinnation box

needs to be developed using JavaScript. JavaScript has a window object that has the

'open' method. The following code is developed for trapping this method and sending

error iJ1essage to users:

. function errorbox(str)
0/0>
<script>
strl="ERROR"
str2="<OIo=str'/0>"
aPopUp=window.open(It,'messagebox','toobar=yes,location=no,directories
=no,status=no,scrollbars=yes,resizable=no,copyhistory=no,width=250,
height=150,ScreenX=200,ScreenY=200')
ndoc=aPopUp.document
astr='<htmJ><head>
<tide>' + strl + '</title>'

astr +='<lhead><fonn>' +'<body'+' background="backgmdl.gif'>'
astr +='<table><tr><td><image border=O src="stop.gif'><td>' +str2+

l<tr></table>
'
astr +='<center><input type=button narne=closebtn value="0K"

onclick="closeboxO">'
astr +='<script>'
astr +='function closeboxO' +'{' + 'sel£close()'+ ' }'+'</'

+'script>'+'<Jbody></fonn></html>t
ndoc.write(astr)
ndoc.closeO
self.messagebox=aPopUp

</script><O.Io end functiono/o>

Figure 15. Code for Customized Error Message Box

52

It is necessary for the confirmed box not only to' send a oon:finned message to

users but also to get a feedback from the users. Hence the author uses a hidden field that

allows the user to send information back to the server. The following code serves this

purpose (here the hidden field name is caUed ",cbutton't)

s="<script language=javascript>"
s=s & "functionconfinnbox() {"
s=s&

"window.open('confinnbox.htm','confnm','height:150,width=200,ScreenX=
200,ScreenY=200');"

s=s & If} </script>"
s=s & If
"

s= s & "<table align=center><tr><td><input type=submit name=model
value=ADD></td><td>"

s=s&"<input type=submit name=model value=UPDATE></td><td>ll
j s=s&"<input type=button name=model value=REMOVE

OnClick='confinnboxO'></td><td>"
S=S&"<input type=submit name=modeI

value=LOGOFF><ltd><ltr></table>II

Figure 16. Code for Customized Confinnation Box

In the confinnbox.htm:

<html><head><titIe>CONFIRM<ltitle>
<script language=javascript>
function yesbox 0 {
opener.document.fonns[O].cbutton.value=llyes";
opener.document.forms[O].submitO;
self.closeO;
}
function nobox 0 {
opener.document.fonns[O].cbutton.value="no";
opener.document.forms[O] .subrnitO;
self.closeO;
}
</script></head>
<body background="backgrnd1.gif'><fonn>
<table><tr><td><image border=O src="question.gir><td>
Are you sure you want to remove current record?<tr><ltable>

<center><input type=button value="yes" onclick="yesboxO">
<input type=button value="No" onclick="noboxO">

. </form></body></html>

Figure 17. Code in Confinnbox.html

53

4 . 4 Some Outputs of the Database MaBagemen~System

. As stated in the requirements specification, there are three groups of users. The

fITst group of users is ordinary users, who can search all the products in this database,

select products, and place an order for the products. The second gro,up of users is

company administrators, who can maintain their own company's product infonnation

remotely. The third group of users is server administrators, who will maintain company

information and company administrator infonnation.(see Figure 18). The ordinary users

can search for products by adding some specifications, such as, company name, catalog,

part number. Figure 19 is the result when a user selects company King!Allied Signal as

the search specification. A user can view the product by clicking "view" (see Figure 21).

The user can continue to search for or order products, but must select products and add

them to hislher shopping cart before clicking the 'order' button. Otherwise, an alert

message pops up. The user can also jump to a company's homepage to view more

information about the company by clicking the company name (see Figure 22). A user

can also search for products by catalog (see Figure 23). All company names are

hyperlinked to their home pages. After selecting products, the user can click the 'order'

button.(see figure 25), then, an order form pops up that shows shopping cart items, with

default quantity 1. The user can change the quantity to 0 or more than 1. On the order

fonn, name, street, city, state and zip code fields must be completed; otherwise, the user

will be given an alert message, and the order is not sent to the server. After the order

information sent back to serv,er, zip code and phone number (if user filled in) are

checked. If either of them is not valid, the order message is not sent to the manufacturer,

and an error message appears. If all the information is valid the server will check whether

54

company's email information is in the database. If it is•.the order message is sent to the

manufacilurer; otherwise, it gives a message to show which orders were sent successfully

and which orders failed due to lack of email information. If a user orders three products

then the system sends three order messages instead of one. since the user may order. from

three different companies.(see Figures 28, 29, 30, 31).

Company administrators can update company product infonnation remotely by

passing a security check (see Figure 32). After a company administrator logs on. he/she

can navigate the company product information.. ' Figure 24 is -the first record of the

product information. The "Previous" button is dark, which means it is disabled. After

clicking the "Next" button. the "Previous" button is enabled (see Figure 34). Company

administrator can move forward by clicking "Next" button, or move backward by

clicking the "Previous" button. Administrator can also jump to the last record by clicking

the "Last" button(see Figure 35) or back to the first record by clicking the "First" button.

Company administrators can insert, delete or update records (see Figures 36.37,

38,39). After clicking the "Add" button. company administrators can fill in the

information about "catalog", "manufacture part number". "price", "part number"(which

are required) and "image file name,\ "product feature" (which are optional). If the

required fields are not completed. the information is not be sent to the server, and an alert

message pops up. When the information is at the server. it checks whether "price" is

numeric and "part number" is unique. If any of the checks fail. then insertion aborts and

the user is given an error message. If the insertion is successful, the last record is shown

and the number of th.e record is increased by one.

55

A company administrator can delete records as welL When the administrator

clicks the "Remove" button~ a confinnation message box will pop up. The action of the
. .

. .

deletion depends on the infonnation sent back by the confinnation box (see Figure 40). If
, 1 ~ •

. ~

the administrator clicks IIYes" in the confinnation box~ the server checks the data in this
, .

record. If any data changes, the deletion aborts and an error message shows up. If it is a

successful deletion~ the last record is sho~~ and the record number is decreased by one.
• I \-. l

A server administrator can log in and do insertion~ deletion and modification to
• I'

the company information table and company administrator table (see Figure 42). The

server administrator can navigate the records too, just like the company administrator

does (see Figure 43). .r

56

.. ~ " .
.... "

~. . ; .
"•1".

I''''.'

.~.. :'
" ,

'-';'.'.'
" '

• J':",'~ "'.", :.• I

~ei-al';u;,. f,~ch.n thtpr.od\lcf$ jQ,lhisW.,! aad~
" oi-ders:~ordm:WlII be StlllllO !be ll:laIN!8t1ln conipames .-
:dii:~,~ ..:J;;:::', "",.

" t ' .. , • ~ I •• ~ "; t

;;
~. ,

I

".: , :c~' ,,,'<T ' :i:;.i:;: ~;::j;'r'ii l'f:;i;jt I

"., ." ,'. -:':':'~'~':;:,:: :~/!;;,/(;K::,':,~~';::;;~.;:t,:1
, _ ~.~ ..~.(,.{----...,,. • o;r.t,I~ .' ~~~ I

. ~:;W~ie~rn(ii;:'(~l~"~:i!Jiictiob'ic·,iP-;'~:D.ai.ba~e::'i' ';", '0',," ',;;, ": ,<,'J:;:::: '
'!If:, ..~...., .•••.•. _~ :!. --- ..,- ... r.': -4,..• ,.~.",:.,' t, : •.';f:,... ,- "

',:.1 ("'~~-i~ \,,,:t~~~/::3~·'..~,·,,:·,,:::':', .,:,: ..fi~;'
~~, ,.'. ,::,)' <":':"~'~./:),;'.~,:<;/ >.', ';;;." :;)

~.)

• ..''''' .' ... ~ ~ ..1'.,....... ,., '" f

/j;~,: :·',~~'.~~:·I·::. ~ i •.,:

.f-. '; ~ :.'J I ~.~ :

) ':;:;{U::(~;>::'~:;~:':::;;; i

~~==_..

":'
.1 •

Figure 18. Three Types of Users

57

Figure 19. The Example of User Search Page

58

.~ ":.'~:~,:~:::~ .pO: .~,':'~~

I~!'-~-~' .•..•. ,. .•..•~~~,~ .• --- p.. --,=._- ,j,

.," ,:,-..

Figure 20. The Output of Searching Products Made by King/Allied Signal Company

59

-.,., - ~..
. . ., ~

'--"':' .. - .

,-'--,
;

Figure 21. View Product

60

\ .

,...............
~0Hw,., ..

411iedSi'gnai
,~.

" ~:t~ .===..' ~

Figure 22. Company's Home Page

6]

t,

t·..
< ' •

, ,

'. --I. '~:;".. : ~. .
.)

,;, .. ' I
,':." ,I

, ",:::~)?~j,-I
" . :!

.. -....

. ~ :

.
..... "'I:''"'~~'-;: .',~::?:'~ ,;:

M" • j •

; I , ••••~ :.1"

• , ·f.l ' •

• ;1 ,

1.",:',.1: p'.

•4

" ~ 15K
'" ., 2lJK

. ::..::' ':.;' 'i ~ ~y~~der,!,:.Ckag!, .

, ..~.

til' ;1

",' .','·j.l:

,... ~ .

. '.

I'·' ,

."
.r, r"

'''~ .-

... '. '....... ,.'
". .~.. , .

" ~

.... j....
". ., ., ~ .

": ;

~ ~ "", "~ "

." '._~. - :; '.. ' ' ' ..,

• " I ~.:.

..
,,-''''_: ...:,--

Figure 23. Searching Product by Avionics Catalog

62

j

Figure 24. Search Result for Avionics Products

63

Figure 25. Selection of Product: TMA-330D, TN-200D, and TX-760D

64

'J • : • I

'1. ,"~'

Figure 26. Order Forms

65

~..;' '...'~;~ :.'.; ...~-':.:' I.• ,., ,I _

,..;,. ::"'.'

" I'. "

',:0
"~I d,:

, ·:1
, : ,.:".-' j,

,.' .
-,' I

,.,' :',:,),>",1
1

,I : .' • "',f'

, ,'j' '; ~; 'I
' I • ~ ,

,I
I

• ••. f.

.' ,I,.

• J.', "',.'

'" :.

"

','",.,'

.', ' 'l' ,',;. : ... ~")';' ";'
- , ..~,.~ .. : . , ,

. :. :.' ':,'• .. ,'J~' : '

..

~C~I:4D1S,
=~::-:-----

. '. ,,:,->~~:~.: .?rl~,,:~,~,~~~r.~~._ ,'. _._ 1. ,

~ ~··I~~Il'''''Io_''''_ -4"~ ,.I.'.' .~_.• ~ ~::.

"·,t·'.

,'- .

:-.\
\'" '.:, ;', '

.',"

. "
d,.

. #.:".'
'.,' ,~ •• ,,¥

.. }.
'.' .

'.' ' : t ~,,: •

.:....~~.~.~ " ..

~.~' >~ ~., .{:~..>:-:.f~ #

.. , .' . , ,_.~ ~

; ..", .
','

''', ','.,

Figure 27. Completed Order Form

66

• I _ ~

,. ,

.. :-,,;.
", .. .".,

,:"; :.', ~ :
',:; :: ,; ,I,.' ',' ,

"~,. .
.' ,r

,<c·r:,:1
, :.;:J '.1 •, , -,(.' .._~_.~~~, i

~.' • ':"'~' ::" • r
, , ,,:,:~-"

':' j. ~ .,-~. ',' . ~

." ~ .•. , ::; ~ , , • '.' I

>.i~:::'<'-':";'·~··:· :1
"."~:': .:..;' ,~ ': .. :~:'-.

. .- I
I.
J
I

I

': '. ;.', .. ;.

•. "j ..

15K
20K
~.,~~n~~,!~",.cJk-lg. ,~"'~'--r'I~I.'

... ,'-.' ,- "

r-' . T ,:~~':

--:' ' ..~'. .~. '

'A,iell!iC)]i;;.".

,. sueur,s NCI~t<J1J1 r::iWJr

,.:.1/..···

...
s~ ~~.~ ;dii~1

'i :; ,. '" ;·}fo.l to comp..,: ~ ''.:; "!'1
TDmble" . . - ",'

.... S1lCCel.~·y:",~: :.
.N~.2IoC~".' ..

. TfiiDblt ..-; .:'; .' :.. ' ..

,,' t"

..- ... '.. '. I{to.. do-'DO! 'ePacr,1II1 ~0AdiIiQ.i. il~~ mr:ni1~;;u f<l.~ ,.,
~:'" ~' .. '~'~."" l,,).·,. ,.

.•..
,,':

, ~. : ;"
.;...... '_', I, ~ ~

. ':~,.. . ~:

. :'~' "

. ',.. ~.

: _. ,'~'.,'"

' .. ;
.'

,>C', '.,~::.~ '.

Figure 28. Message Box ofOrder Status

67

Subject:

order .form t.eat.
Sl11p adttrC:II:II lUI to 1 lOViDgll

Street,:, 110

en.v: IIrill..atcer
Se..:t.e: OK

Z1p: 71075
Pbo.aet 377-3436

Email Ildd.re~at

Order: tollo.1no 1t.eDll='~:

'Cat.eloq : .l.V1:ODlcs
ae.XJut:acture part. nUDlber: TIU-,JJOD
Con: $536.00
oQucuJt.1cy : 1

Figure 29. Order Mail I

68

Subje<t:

ord.er form te~t.

5,b1p add.r:es:& as tollo1l'ing:
Screer.: 110

CU.?: stU~re.ter

SUite: OK
ZI..p: 710'75

Phone: 371-33 6
lJDa11 addre.,s:
Order follollJ'i~ itcm(e)':
CllteJ.og, : .Lv1oa1ceI
JDIlD'utaC"tw:e part. nlD"l:ber: TN-ZOO!)
Can : $1060.00
QuaDt 1ty : 1

8
", ""'.. ~ ,.f1~ .. ,...~ J

.j

Figure 30. Order Mail 2

69

SWz:iert:

Order .tOClD tC<5t.
Sbip adc1re.!uI as t:ol10.1:ng:

ge;reet.= 110
Cicy: :U:.lJ.lvat.er

Seste: OK
Zip: 74075

1'00"": 377-3436
Imlll11 addx'es:!!!!:
Order ;foJJ,081ng ite=(o):
CII:Ilt.aJog : I..v-~oD1c::s

manufacture J)eJ.rt n'lJltbl!r: TX-760D
Co"t : 11139.00
Qua.!!t.1ocy : 1

. '.'

Figure 31. Order Mail 3

70

'.·,.1

, "

,.' ,,.

..,

......:
:...

i- '. 1 • ~'~

.~',,\ , J' •

.. . ~.

~\....
r. "....

•. j.-., .•

..' ... -:- ~_. ': .

," '1

Figure 32. Log-on Page for Company Administrator

71

.'. ; ~ , '"'j'

"'"

Figure 33. First Record ofProduct in This Company

72

" .'
i

i.'

.....
.'" .

"

., .. ' :. ,~ ,.. , ,. '

, .',:,.;.'
.' :. ..

,~'.

: ••f ";'!:~~'~~~:~~~'~~'"
" ,

:il.V!On1Ce
• -':'" -;l". "'.

"':,_>.:::;~i!',.

: ' ,~; ~:

"

.......

"".',: ,', :,,:,'

,~.... . - "';' ~

' ...~ , . ".', ,

. ,f.: .:.
",'-.' ,

: 0:"" :~.

",;,' ,

"
~' .:/..

.: .

. t· .,
.... ' ..

: ..., :' '~:'

.".. " :-:,

"';..:,

.....

-: ..

· ,~ ,'.
'.' ':.'" ,...

,."l,., '
, .• ,. ~ -. ~:" •.1

·'t'>.;·.>. ,"
_".J _· .' ,.

o ;'- • ~: :1
" ,;'~,' ~ :.I"".i ,

" ;." ... :....

• I '~r
"",.' ',.'

'""',.
'" r ',~ • r .' ~

~. ; ,.
,.',' .;' :"' , ..,j

• J'r '::"1
"":If ",'I'" ;

. " : "":".'1

, ,

."

· , '

Figure 34. Enable Previous Button

73

-

.'~ • .1._
.l .,

(, ": .., ~ ,"!,.__ ,o
..... ,.;~~..,.

'rf;Ii~":;c,~",
,.'. >N~?:'::

::.. :: 'l,aJIQ/Joc1Z5.jPIl
': ~:",....._'~,':'tt"'i'"""

,-') ..

.'
,".. I ~ .:

,
:.". "or

.• I ... ; ',. '"~
.", ...~. '. :

• '« ~l .;:. ,

.:: .",:. ~:'. r-;~ 'j
'1 • I.

~ ",- , '"

.'.:, ~:~ ~"'>.: :~!.
.' .. j

.t.;••.' ".: ".

.
"

';y •• ~>:...~~:
t- t- ,- 1'_ ., ., r ,;..

',:'~:. " .::~.~,;::.:':~.>-4; I
'., ~ :'.. :.::" ..:

.•• .J

.,"

.,~ ,;?.' f

,-.. '
") ,",..'.' ..

••.0'.,"
, .:' .~~

{',-

:.

..... '

-.;" .-. ".... :

.-"".-.,.

.-..',
,~, ".' .

,:. .

' .. :..~"': : ..,." ,

... _._J

Figure 35. Disable Next Button

74

-

: I flit r1<tl"h.., t N,t-. tr"" ,";r-r"
D:!..rr::t:"~~~,r:~i!.\'l~"!lltmp.:~~:t~I,'r..1~u,i;:jtl~f'!''', ':' '!·':""I'!'r'~:,~;':'(;,.';!~ir

" ;;';!: ~ <::{~ < ~:, ~:P;:;i ',:.ul;;:;~ '~1"::t~
.' ,.; '. .'.~" - : .:.

•J,. ;, ••••••••. ;. ~ .
.~' .
"

.: I

.;<. . .•..'_.::

Figure 36. Insertion with Invalid Data

75

r.••.• " .. ·.:':·

"j.

--: ., f

'I
• ••• J •• ' : i

'.! ', I
.'., '1......; ; .

LI.' ,.; •. ,
.;:.:.. ' !'.. I

.:~; .jl
".

~;..
..;, .• j

',;,
I

,"

; ,.." r:-·.

..;,;,.

Prudlle! F-..•.

, '"
.. Soayyour~" imiti,
'W'.iosel1ion i..bord! ~.::

.: [RImA N•• " "''" [T'r§ r

Add New'Reco~d

Mum.tier.Part NlIIlI!>er ::. . . Prite

It.~~~.... .d ."d•• "" ' •••. , _ •.•.• '.rl?",,-..-..-..-.-_ "------

,,',
,', '. 1.

L ... "e"

-" 'I:

,~ :':, :-. .,~ ',. ,

", ~'

'.

r."'-I

I

.:.~.-.. !

Figure 37. Error Message

76

"

i
.1

-.;

- ,
.• , .. 'i

'.,:.
. .:

.. ',"

.' .

•. r,',
.,' ~~",

'.,. , r........ ' ..
,.... :

,s.

, ~ ..'

'".' . ~..

" '

."

," "

,"
"

,.

.Adt~ewl«col:'d
·;M.....raolianlPartN...er· .Prit:.. ." .• ,
.•..". .l: ··.~".tl,.:.._...:._....:._....:...:....,.I ..

(me !~Im i:, '1

. . . 'Part Nundle'
.' .," L " t·" .."...~ ~ - . ,

.,....----...:.--..........;...:..;..;..""'"'1i~I~~~c

• ,-,," " < ••••

" . .~

.~P~"~_.

'I

'~'~~~t., .. ~
'm..p'!De
':,::N~"'"

Figure 38. Insertion with Valid Data

77

-

I~. ;

J] ... (.;-~).

• ; ~ j' i

:..•. '

,:. ".):, ,,;.,

';'.~<.,',,~;/::
··j"r.:,-·;· .

~i;'i;r··~ ;.
" ir.;l.::

' .

• f'

....... (
• j: .

,,:: ;.;.,

';;;~. I ~J' ~ ,'f.
:' .~'.-.~ I: .~ t . 1 .' •

..,..1',:

."./

i,

': ~ . " :

", ;.,.; ','

",. r.'.:,.

, "Part"mimlilii'
'.", I·.'~ . ",

,.
;l".

... .:..

"J"

.' • ,J J • '_ ~ '. ,; ,:

MlI1lIIf~'PartN~er::''~i1"

I~,;;,_~.;.". '",.,•'.:"."'.._"" "'+ ," •.v,,,••, •. 1,.123,: O.~""•. ,'",., w. """'~ <

r--~"--------1r"t-~~-t----.....,,·
",.,.-:,'.,.,._- .-:: ~ .. ~,~';'T'.,... .;";'~"" ..~"~ ..,'."

" .. ; ;.-.' : .~.~

I' \'

, r' 'j"(', ',.J '(

...,.... ,,-,:','

::~ I,h ,X~ .;' -~

Figure 39. A Success Insertion.

78

..' .

,.,

.J

.'.'

, .
, '

. .
' ...'../ .'

1 ••• ,. 0 ,_""

I. ,', '

.,'

... ~ ,,

.,

- . _ I •

.. ~..
-".12: :.00 .

. Part~~·

,
'.'"

• IIINIIIIM Nt-I ,,-,')lI" 1-(6 r

.,
!

;.~Maiii>!.t.nf~ N"-';'~;: ..
·I~·~_t" " .'~."" -.~_w. ~,.' '.'

: ,.;'~ '.' • " # ~
..,1'nICJct Fell1Un.- • "

"'"

"" (.- "
':."

;: .'.

, ~ :"

,,. ,
•• ~.' #

.",

,~:. '~~<

:; t~~~'~~_~T.'J'""'~~.~.... ImaP'H.:
".1Il-e

. "

.. ' .. ' '
• • _0-· '. .,. • ~.'.

" : ,. -" : ...:.~ ."
'. ,

~. , . • J ;. '. ',.

, " .
.' .

__.-.....~.W"....:-__..l.

... '.,1• . -,

,j
,"

r '! .•. ,•. f'
,'.

Figure 40. A Confirmation Box in Action

79

... , ~ '. t_ .' ;,

.~ .' ,"

I..
I
1

'"
:\

!

.,'
.. ,

"
'I

j
l-,- I,

.... I
j',. ,.

j" ~

"

!
" .-.' ,I

"
,- I

"

'.

Priu'

I'ZOZg:,~~,,,, .

. Part "UIlIIm'

'11a-~Z5

';

.. ' . ~....

..
Mwluf~Part Nalllbe;: .'

tNJ.I1/COB

./ -,:'..

~ -:..' ..
~. "i

I • ~: •.

. ~. ~

CIitlIloI : '

,. t·

.... '
.t... _w.

- 1 , ~. "'.', ~ •

, I _ -~"

. I~v~~~a:~~~tt~. '.M"-:,- ~eW.-:

,N_

,. ,

C'
< ••"

.••.1 ..:.:.

. "

Figure 41. Current Record Success Removed.

80

. ' .

.,'.1

,< .' '

1 ,j1 ,
.:" .. "' oj,

;~: :
" , ."

• j'"

. 'f

• j~' l'!

.:
, .,' ~, ".' r,.

:;.':" ;.... -'~.

"'~'P:uswun1:).. t: •.•.r•. ~

~~.

.'. ~" ..

't .

....

: ~ :

.',1 .:,. •••

"

~ .' .. ~ " ! '. -;;

'e ..

c ,

',.:

Figure 42. Log-on Page of Server Administrator.

81

:
-." J, 'j

'-,-'-~-'-- -~.

.:,:

., :1,..

.~ ,

" ,,: ." ..,.,,;
• • '~r" I

. ':F~

·'r'

f· .~'

l'hoJIe..

',,,
t. :;,

, ~.

.,(

. ..,..)0".
ol.l.'

!' ./ "I

'~'
p

-;', I,:·
~.,.~ :.~ .;':r-·,- .. ";.:

_C,., .

c~

;I
.;

~ JfRH~V ll;yat...., IDe. .
_' .. ,", -".'""" _ r~_t·b .-tt=.:.. """"'-l"......,.~ =+...:,..... IU,llIIl;.&l''''I"''''''.•-;.....~~~t.u~dt'''. ,~Jt~ ,.,.u.

. state'· ,
(;.aiIW): .'~~~

.1~,6,~~? lIetidian l t . r1~"Y".l,~.~P q ••• nv.~·.,"J19~37~.
".' . . ~MIIil8ddn!~. " Ham.e1'q"AiIdtw.".
r~.....:,............=;,;i.......;.;·..!-"··""....;--"-".;;.;.;....;"'-..........;., .-------......--....;":-"......-'---".:.....

..J.~.~.~~,~.~.~,-r'.. !.I~:Cl~~mv ..~'OII . 1(.

,A~.~_:·;

Figure 43. Company Information Page

82

CHAPTER V

SUMMARY, CONCLUSIONS AND SUGGESTED FUTURE WORK

In this thesis a fonnal specification language, Z language, is used to design and

define. the system requirement specification for an Electronic Parts Database

Management System in order to achieve high system integrity. This relational database

system is implemented using Microsoft SQL server 6.5. The web-interface is created by

Active Server Page, VBScript and JavaScript. Additional functionality is provided by the

COM using Active Template Library.

The Active Server Page is used to generate HTML dynamically, corresponding to

the user's responses. It contains built-in objects and components to make ASP

development tasks much easier. Although the default language with ASP is VBScript,

JavaScript is used with the intention of reducing data traffic on the Internet. JavaScript

can trap events such as a mouse click, a mouse move etc. In this thesis, JavaScript is used

to preprocess the data to reduce data traffic and to improve system perfonnance.

JavaScript also is applied to build both the customized error message boxes and the

confinnation boxes.

The Activ'e Template Library (ATL) is employed because it allows the COM

developers to concentrate on the unique functions that they want their COMs to provide;

thus, helping to improve both the efficiency and effectiveness of tile COM developers.

Special efforts are made in the design of a customized error message and

confinnation box, and in the design of the E-mail COM. The design of the customized

83

error and confinnation message box makes the message moreeye-catcrung, so that the

user can respond in a more timely manner in addition to a more pleasant graphical user

interface.

The design of the E-mail COM enables its user to send an order fonn to the

manufacturer directly rather then going through a server administrator, avoiding the

human interference of the server administrator; thereby reducing and eliminating possible

errors that may be involved, and providing a 24-hour availability of the service to the

customers without the physical presence of the server administrator.

The system developed provides a user-friendly interface. It is also very easy to

maintain. Since e-mail COM can be reused, it can be plugged in to some other

applications (not only for ASP applications) to provide the same functions for the client.

In its current version the e-mail COM supports only the sending mail function. Additional

mail functions should be added in the future, such as, reading, replying, forwarding, and

deleting mails. By adding this, e-mail COM not only can support current customers, but

also can provide new service for new customers in the future. Currently, the system

allows that one company only can have one company administrator. Sometimes, it is

convenient that one company has more than one company administrator. Concurrency

control should be added in the future in order to allow each company to have multiple

company administrators.

84

REFERENCES

Armstrong, T. (1998) Active Template Library: A Developer's Guide. Foster City, CA:

IDG Books Worldwide, Inc.

Chappell, D. (1996) ActiveX OLE A Guide for Developers & Managers. Redmond,

Washington: Microsoft Press.

Codd, E.F. (1970) A Relational Model for Large Shared Data Banks. In

Communications of ACM, Volume 13, Number 6, (June 1970), pages 377-387.

Codd, E.F. (1979) Extending the Database Relational Model to Compute More Meaning.

ACM Transaction on Database Systems, Volume 4, Number 4 (December 1997),

pages 397-434.

Diner, Antoni (1990) Z: an Introduction to Fonnal Methods. New York: John Wiley &

Sons, Inc.

Fedorchek, A.M., Rensin, D.K. (1997) ASP Active Server Pages. Foster City, CA:

lOG Books Worldwide, Inc.

Ford, N.J., Ford, J.M. (1993) Introducing Formal Methods: a Less Mathematical

Approach. New York: Ellis Horwood Limited.

Goldsack, S.J., Kent, SJ.H. (1996) Fonnal Methods and Object Technology. London:

Springer-Verlag London Limited..

Gruber, Martin (1990) Understanding SQL. San Francisco: SYBEX Inc.

85

Oundavararn, S. (1996) COl Programming on the World Wide Web. Sebastopol, CA:

O'Reilly & Associates, Inc.

Petzold, C. (1996) Programming Windows 95 The Definitive Developer's Guide to the

Window 95 API. Redmond, Washington: Microsoft Press.

Rogerson, Dale (1997) Inside COM: Microsoft's Component Object Model. Redmond:

Microsoft Press.

Siberschatz, A., Korth, H.F., Sudarshan, S. (1997) Database System Concepts. New

York: McGraw-Hill, Inc.

Signore, R., Creamer, J., Stegman, M.O. (1995) The ODBC Solution Open Database

Connectivity in Distributed Environments. New York: McGraw-Hill, Inc.

Tanenbaum, S., A., (1996) Computer Networks. Third edition, New Jersey: Prentice Hall

PTR

Toth, V., (1997) Visua~ C++ 5. Second edition, Indianapohs, IN: SAMS Publishing

Van der Lans, Rick, F. (1988) Introduction to SQL, translated by Andrea. Gary

Workingham,England (1988): Addison-Wesley Publishing Company. Inc.

Whiting, B., Morgan, B., Perkins, J. (1996) Teach Yourse1fODBC Programming in 21

Days. Indianapolis, IN: Sams Publishing.

86

APPENDIXES

87

APPENDIX A

NOTATIONS OF Z SPECIFICATION LANGUAGE USED IN THIS THESIS

E

n
{ }

~

?a

!a

F(IUI)

dom

ran

"®

Set membership

Function mapping

Set intersection

Empty set

Combining the before and after specifications of state

Used in the specification of operation that does not change the

state of the database

Input variable a

Output variable a

set ofall those thing that can be reached from U

Domain

Range

Range anti-restriction

Overwriting Operator

88

ANSI

API

ASP

ATL

CGI

eLI

COM

DBMS

DCL

DDL

DLL

DML

HTML

IDL

ISO

ODBC

OLE

SAG

APPENDIXB

ABBREVIATION USED IN TIDS THESIS

American National Standards Institute

Application Programming Interface

Active Server Page

Active Template Library

Common Gateway Interface

Can Level Interface

Component Object Model

DataBase Management System

Data Control Language

Data Definition Language

Dynamic Link Library

Data Manipulation Language

HyperText Markup Language

Interface Definition Language

Int,emational Standard Organization

Open DataBase Connectivity

Object Linking and Embedding

SQL Access Group

89

SQL Structured Query Language

TCP Transmission Control Protocol

UDP User Datagram Protocol

90

System R

System R

IUnknown

Vtable

IDispatch

ActiveX

APPENDIXC

GLOSSARY OF TERMS IN THIS THESIS

An IBM project Name

The relational database management system experimented in IBM

project System R

Standard interface for COM, it contains three methods:

Querylnterface, AddRef, and Release

c++ virtual function table

A mechanism by which an object can provide access to its methods

via dynamic invocation

Build on the component Object Model and a document-focused

technology

91

VITA

Yijing Zhang

Candidate for the Degree of

Master of Science

Thesis: DESIGN AND IMPLEMENTATION OF A WEB DATABASE SYSTEM

Major Field: Computer S6ence

Biographical:

Personal Data: Born in Huzhou, China on February 5, 1969, the daughter of
Junhong Zhang and Binfeng Ma.

Education: Graduated from Economics Department, Zhejiang University of
Technology in July, 1990; received Bachelor of Science degree in
Industry Accounting. Completed the requirements of the Master of
Science at Oklahoma State University in December, 1998.

Professional Experience: Employed by Huzhou Vocational School, Huzhou,
China, as a Senior Instructor, 1990 to 1994; employed by Oklahoma
State University, Department of Computer Science as a Research
Associate, Oklahoma State university, Department of Compute~Science,
1997 to present.

