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1. INTRODUCTION

A binary search tree (BST) is a data structure with two important structural prope11ies:

1) a node in the tree can have at most two children, 2) all keys in the tree are arranged in a

total order manner; the values of all keys in the left subtree of every node X are smaller

than the key value in X, and the values of all the keys in the right subtree are larger than

the key value in X [16]. An important application of binary trees is their use in searching

because the structure of binary search tree is well-suited for storing ordered set of

elements. A binary search tree allows searching for an element in (log n) average-case

time because the average depth of a binary search tree is O(log n). However, each

operation could have linear time in the worst case because the depth can be as large as

n-1.

To improve the worst-case behavior of binary search trees, different types of balanced

search trees have been developed. Well-known balanced trees included AVL trees, red­

black trees, and splay trees [5, 13, 15]. AVL trees and red-black trees enforce balance

using balance-maintenance algorithms which allow insertion, deletion and searching to be

performed in logarithmic worst-case time. However, the application of a balancc­

maintenance algorithm increases overhead cost because the balance must be checked and

updated (if necessary) for every insert and delete operation. Splay trees do not require the

maintenance of height or balance information, but achieves balance by self-adjusting. In

a splay tree, a node is pushed to the root, after it is accessed, by a series of rotations. The

side effect of the push-to-root operation is that the depth of most nodes on the access path

is reduced to roughly half. Eventually, the depth of a splay tree becomes roughly log n



after a selies of the push-to-root operations. As a result, splay trees guarantee that any m

consecutive operations take at most O(m log n) time. Unfortunately, this guarantee does

not exclude the possibility that an single operation could take O(n) time.

Another way to obtain a balanced binary search tree is using binary representations of

B-trees, such as symmetric binary B-tree [2], because B-trees are totally balanced trees

with all leaves at the same depth [3}. A symmetric binary B-tree has several properties

that makes it a good alternative to other binary search trees. It can be represented with

only one extra bit per stored element for balance information, H has relatively simple

updating algOlithms and it can be maintained with a constant number of restructuring

operations per update. However, the maximal height of an symmetric binary B-tree is

2*log n. Another drawback of symmetric binary B-trees is that elements are stored only

in leaves, and all internal nodes store only indexes. If a tree is large, then there will be

many ]nternal nodes. It is expensive to maintain and store these internal nodes in terms of

space utilization and time complexity.

In addition to these well-known balanced binary search trees, there are a number of

other algorithms developed for balancing binary search trees; some are for general

purposes while some are for special purposes such as secondary storage access [1, 4, 6, 7,

8,9, 10, 11, 12, 14]. This study presents a new data structure called binary search forest

which inherits all propriet&es of binary search trees but has a better worst-case

performance than binary search trees. In addition, this data structure can also perform

sorting operations in O(n) time for sorting n elements. The implementation is also

relatively simple. It does not require the maintenance of tree balance after each

operation.
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2. DATA STRUCTURE AND ALGORITHM

2.1 A Simple Idea (which does not always work):

For a given binary search tree of size n, the worst-case time is O(n). However, if the

tree is broken into m subtrees and linked together using a root-list, then the worst-case

time for each subtree in the forest is reduced to O(n/m) because each subtree has the size

of only n/m. The reduction in subtree size, however, is associated with an extra cost of

maintaining and searching the root-list. In order to minimize the cost of searching over

the root-list, the arrangement of subtrees in the forest becomes the plimary concern of the

algorithm.

Because each subtree in the forest itself is a binary search tree, a given key could

reside in any subtree in the forest. This makes the implementation difficult because if we

do not know to which subtree a given key belongs, it is possible that we must search

every subtree to access the key. Consequendy the binary search forest is no better than a

single unified binary search tree. One way to solve this problem is to impose an order

among subtrees. That is, for every tree in the forest, the value of its maximum key is

smaller than that of the minimum key of the tree on its right, and the value of its

rninimum key is larger than that of the maximum key of the tree on its left. For example

(Figure 1), a given binary search tree with 14 keys with values 1 to 14 can be divided into

3 binary search trees. Thus, each subtree has at most 5 nodes. A root-list is used to link

the three binary trees together to form a binary search forest. A total order is imposed

among the three trees. Subtree 1 has nodes with key values less than 5, subtree 2 has

nodes with key values less than 10, and subtree 3 has key values less than 15. A node
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with key value of W will be inserted into subtree 2. If a key to be inserted is out of the

range of any existed tree, a new tree is created.

(a)

4
/ \

1 5
\ \

2 10
\ I \

3 7 14
/ \ /

6 8 11
\ \
9 13

/
12

(b)
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Figure 1: A regular binary search tree (a) and the cOITesponding forest implementation

(b). The range of each tree is indicated by the value in each cell of the root-list. Both

structures are implemented by consecutively inserting key 4,5,10,7,1,2,8,14.11,6,

13,3,9, and 12.
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Two steps are involved in accessing a key;. first scan the root-list to find the

appropriate subtree, then traverse the binary search tree to find the exact location of the

key in the tree. Since the root-list can be impkmented as a sorted array of size m

(number of trees), a binary search algorithm can be used to locate a tree. Thus, the

running time to find a tree is O(log m). Since the total n nodes are divided into m trees,

each tree has at most n/m nodes. Therefore, the worst-case time of any individual subtree

is O(n/m). Together, the worst-case running time to access a node in the binary search

forest is

total time =(time for tree search) + (time for key search)

=O(log m) + O(n/m)

=O(n/m)

The forest implementation obviously has a better worst-case perfmmance than a single

regular binary search tree of the same size.

The average time for this data structure is O(log n) if each tree in the forest is full.

Since each tree in the forest itself is a binary search tree, the average time to access a key

in a tree will be log (n/m). Assume the average time for tree-search in the root-list is also

log m, the same as the worst-case time, then the average time to search all the trees

necessary is the sum of the average time of the tree-search step and the tree-traversal step.

average time =(log m) + (log n/m)

= log(m * nlm)

=log n

Thus, the average time of the binary search forest of size n is approximately same as the

average time of a single binary search tree of the same size. Both algorithms have an
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average running time of O(log n). However, the average time for this implementation is

determined under the assumption that every tree in the forest is full so that the size of

each tree is exact n/m. This situation is unlikely to occur in practice. If a tree is not full,

then the number of nodes in the tree will be Jess than nlm, and accessing a key in the tree

will cost less than in a full tree.

The structure of the binary search forest is quite simple. Each subtree in the forest is a

regular binary search but smaller in its size. Same to the node structure in a binary search

tree, each unit of the root-list has two pointers; one points to the root of a subtree, one

points to next unit in the list. Each unit also contains a key indicating the upper bound of

its tree.

As mentioned in the beginning of this section, this simple implementation may not

always work. For example, when a tree grows larger than nlrn due to insert operation, the

largest element in that tree must be reinserted into the tree on the right. This could

propagate if that tree is also full. Consider the situation where key 3.5 is inserted into the

forest present in Figure 1b. Since tree 1 is already full, the node with key 5 must be

reinserted into tree 2. Since tree 2 is also full, then key 10 must be moved to tree 3, and

so on until a non-fuB tree is found. To avoid this propagation, the following improved

impkmentation was developed.

2.2 The improved implementation:

In this improved implementation, a tree-splitting method is used to avoid the

propagation problem. This implementation requires pre-determination of the size of the

trees in the forest. When a key is inserted into a tree which is already fuB, instead of
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propagation, we simple split the tree into two trees. In order to effect this

implementation, the structure of the root-]ist needs to be modified slightly. First, instead

of using an index to indicate the upper bound of each tree, the actual maximum-element

of each tree is kept in the root-list as shown in Figure 2. If a tree has only one node, the

node win be kept in root-list. Second, the root-list will be implemented as a linked list so

that the split and merge operation can be performed in constant time.
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14

/
11

\
13

/
12

Figure 2: The modified representation of Figure 1b, with the largest element of each tree

actually residing in the root-list Notice that the number of 15 in the root-list is changed

to 14 which is the largest element in tree 3.

2.2.1 Insert and build-tree

If the forest has only one tree, we insert each key, one by one, into the tree until it is

fun. The key to be inserted is first compared with the root. If the key is smaller than the

key value of the root, then directly insert it into the tree, same as the standard insert

operation of a binary search tree. If the key is larger than the root, swap it with the root

and insert the old root into the tree so that tree root always contains the maximum key of

the tree. Once the tree is full, insertion of next key requires tree splitting. After a tree is
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split, more nodes can be inserted into the new trees until one of the trees is full again.

However, if there are more than one trees in the forest, to insert a key, we must first

search the tree to which the key belongs. To find the tree, the key to be inserted is

compared with the keys of roots until the first root with key value larger than the insert

key is found. Then the key is inserted into the tree with that root. If the key to be inserted

is larger than any key in the forest, it wdl be inserted into the last tree in the forest.

Trees built by this method are slightly different from the standard binary search trees

(Figure 3). The root of each tree in the forest has only one child. On other words, each

root has only a left subtree because the root always contains the maximum key of that

tree. The actual binary search tree structure starts from the first descendant of the tree.

For convenience, we call the root of the first subtree of the root of a tree the "second

root". In Figure 3, the nodes with key values 4, 8, and 11 are the second roots of tree 1, 2,

and 3, respectively.
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Figure 3: A forest representation of binary search tree built by the improved

implementation using the same keys used in the previous example. Maximum number of

nodes each tree can keep is assigned to be 5 (k=5) in this example.
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2.2.2 Split

Tree splitting takes place at the second root of the tree. The second root and its left

subtree are split from the old tree to fonn a new tree. The second root then becomes the

root of the new tree and is inserted into the root-list on the left next to the old tree. By

implementing the root-list as a linked Jist, it is a simple job to insert a root into the linked

list. The right subtree of the old second root of the old tree is linked to the root of the old

tree (Figure 4). In this way, the old tree is divided into two trees at about the mid point of

the tree if it is balanced. This is the best way to generate two trees with about equal

number of nodes. However, when the tree is highly unbalanced, such as when it has an

almost linear structure in the extreme, it is possible to generate two trees with one tree

having only one node and the other having aU rest of the nodes.

Figure 4 exhibits an example of this process. In this example, 8.5 is the key to be

inserted into the forest in Figure 3. By searching the root-list we find that 8.5 should be

inserted into tree 2 since 8.5 is smaller than the key value (key = 10) of lhe rool of tree 2.

After 8.5 is inserted into tree 2, the number of nodes in the tree is 6 which is larger than

tree size (k = 5). Then tree 2 is split into two trees; the one rooted at key 8 and the one

rooted at key 10. All keys with value smaller than 8 are moved to the tree rooted at 8 and

the rest are kept in the tree rooted at 10. Both new trees maintain their order property.

The process operates as: first insert the key, then check whether the tree is overfull, if it

is, then split the tree.

The split operation occurs in constant time; we assume, without loss of generality, that

it takes 1 unit of time to create a new unit in the root-list, 1 unit of time to insert the new
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tree, and 1 unit of time to rehnk the old tree. Therefore, the order of time complexity is

0(1).

5 10 I 14 5 8 I 10 I 14 I
----------------------------- -------------------------------

+8.5 / / / split / / / /

----> 4 8 l.ll ----> 4 7 9 11
/ / \ \ / / / \
1 7 9 13 1 6 8.5 13
\ / / / \ /
2 6 8.5 12 2 12
\ \
3 3

Figure 4: The insertion of 8.5 into the binary search forest in Figure 3. The original tree

rooted at key 10 is overfull (number of nodes> k=5) after the insertion, and then it is split

into two trees; the one rooted at key 8 and the other rooted at key 10.

2.2.3 Delete

Similar to the insert operation, to delete a key, the first thing is to find the tree to

which the key belongs. Once the tree is found, the rest of the work is same to the

standard delete operation of a binary search tree except the deletion of the root. Since the

root of a tree in the forest contains tbe maximum key, after the root is deleted, we need to

search the new maximum key of the tree and insert it into the root-list as the new root of

the tree.
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2.2.4 Merge

Tree merge is needed if the total number of nodes of two adjacent trees is less than or

equal to the fixed tree size (k ~ nj + ni+!). This situation may occur after split or delete

operations. After tree splitting, new trees are smaller. If the adjacent neighbor trees are

also small enough, two adjacent trees can be merged into a larger tree as long as the

resulting size is not larger than the maximum tree size k.

When two trees are merged, the root of the tree on the right (the tree with larger key

values) is served as the root of the merged tree. The root of the tree on the left will

become the second root of the merged tree, and the second root of the old tree on the right

will become the right subtree of the new second root of the merged tree (Figure 5). For

example, after key 8.5 is deleted from the third tree on Figure 3, tree 2 and tree 3 are

needed to be merged together because the total number of the two trees are 5 which is

equal to the tree size. The root (key =10) of tree 3 becomes the root of the merged tree,

----------------------- ----------------------- --------------------

I 5 I 8 110 114 1 15 I 8 110 114 1 I 5 I 10 I 14 I
----------------------- ----------------------- --------------------

/ / / / -8.5 I I / / merge / / /
4 7 9 11 ----> 4 7 '9 11 -----> 4 8 11

/ / I \ / / \ / / \ \
I 6 8.5 13 1 6 13 1 7 9 13
\ / \ I \ / /
2 12 2 12 2 6 12

\ \ \
3 3 3

Figure 5: Delete 8.5 from the forest. After the delete operation, tree 2 and tree 3 need to

be merged into one tree because the total number of nodes of the two trees are 5 which

equaIs the required tree size.
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the root (key = 8) of tree 2 becomes the second root of the merged tree, and the second

root (key = 9) of tree 3 becomes the right subtree of the new second root of the merged

tree. After merging. we then delete the node from the root-list, which is used to hold tree

2. This process is exactly the reverse of the split process. Therefore, the time complexity

for a tree merger operation is also 0(1).

2.3 Time complexity

Based on the analysis in previous section, the worst-case time for the binary search

forest should be O(n/m) if the root-list is implemented as an array. However, for the

improved implementation, the root-list is implemented as a linked list. The worst-case

time to search over the linked listed be Oem). Thus, the worst-case time to access a key

in the forest is:

worst-case time =max.imum time for tree search + maximum time for key search

=Oem) + O(n/m)

=O(O(m), O(n/m))

In practice, it is more likely that the number of trees in the forest will be smaller than the

size of the tree. Based on above equal, the worst-case time of this implementation will

take O(n/m) in most cases. However, because each tree in the forest is designed to have a

maximum size, conducting an operation in a tree should take only a constant time no

matter how larger the tree size is. Then the worst-case time of this data structure is Oem)

+0(1) =Oem). Obviously, this worst-case time complexity is better than O(n/m) in most

cases, and is much better than the worst-case time O(n) of regular binary search trees. It
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should mentioned, however, that if the tree size is vary large, then there will be a very

large constant in the time complexity expression. Thus, the actual running time of the

implementation may not have as good practical performance as it seems to have

theoretically. For this reason, we will take O(nlm), instead of O(m), as the worst-case

time for this data structure in general.

2.4 Amortized analysis

Amortized time is the worst-case running time for any sufficiently long sequence of z

operations. It contrasts with the worst-cast analysis which is given for any single

operation [15J. In amortized analysis, the state of the data structure at any time is given

by a function known as the potential. When operations take less time than the time

allocated to them, the unused time is saved in the form of a higher potential. When

operations occur that take more time than the allocated, then the excess cost is covered by

the saved time. Once a potential function is chosen, the amOltized time is determined as

follow:

amortized time (a) =actual time (t) + potential (4))

If the final potential, after a sequence of operations, is at least as large as the initial

potential which is commonly chosen to be 0, then the amortized time is the upper bound

on the actual time used during the execution of the sequence.

Amortized analysis normally is applied for data structures whose time complexities

are difficult to be determined by traditional methods. As discussed above, the worst-case

time for this data structure could be as good as O(m), considering the maximum tree size.

In this case, the time complexity of the forest implementation can be determined easily. It
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is simply the time for searching for a tree over the root-list. Thus, no amortized analysis

is necessary. However, assume the time complexity of Oem) for this data structure is not

realistic in practice because the value of the tree size could be a very large constant. In

this case, we must account for the actual cost of all the processes involved in an operation

to determine its upper bound. Amortized analysis may be appropriate to determine the

time bound for this data structure.

The extra cost of the alternative implementation is the split process and the merge

process after an insert operation and a delete operation, respectiveiy. As stated above, the

split process requires 3 units of time; 1 for creating a new unit in the root-list, 1 for

linking the new tree to the new root, and 1 for relinking the old tree. The merge process

is the reversal of the split process, so it also takes 3 time units. The result of a split

operation or a merge operation is a net change in the number of trees in the forest. This

allows the use of the number of trees as the basis for the potential function. The potential

function is defined as follow:

potential = 3 time units * number of trees = 3 * m

The potential before operation is: <Pb = 3 * mb

The potential after operation is: <Pa =3 * rna

The change in potential after a operation is: ~<P =<Pb - <Pa =3(ma - mb)

The initial potential is 0 since there is no tree present at the beginning. The net change in

potential is 0 after an insert or delete operation without a split or merge, because the

number of trees is not changed. When splitting occurs, one more tree is added into the

forest, resulting in a net increase in potential by 3 time units. When merging occurs, one

tree is removed from the forest, resulting in a net decrease in potential by 3 time units.

14



The decrease in potential by merging is covered by the energy saved during splitting.

Because the number of trees can never be negati ve, the amortized time bound holds.

Because each operation takes O(1og n) time on average, then the amortized time is

amortized time (a) =actual ti.me (t) + net potential change (i1 ep )

=(log 11) + 3(ma - mb)

After z operations, the total potential will be 3(mz - 1110) =3m, and the actual time for z

operations will be (z log n). Together, the amortized time for z operations will be

z

L a =(z log n) + 3m
i=O

Thus, this data structure takes O(z log n) time for z successive operations. By comparing

this result with the worst-case analysis which takes O(n/m) time for each operation and

O(z n/m) time for z successive operations, the amortized time bound is tighter than the

worst-case bound. However, the amortized bound is not as strong as the worst-case

bounds, because there is no guarantee for any single operation. The amortized bound is

stronger than the corresponding average-case bound, because even the average time is

O(log n) per operation, it is still possible for a sequence of z operations to take z times of

the worst-case time.
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3. DISCUSSION

The selection of subtree size (k) or the number of subtrees (m =n/k) is an important

factor in the implementation. If m is too large, then the search of the root-list becomes

expensive. If m is too small, then each subtree has a relatively large size, implying that a

search within a subtree can be quite costly. [n one extreme, if m = n, then every single

node becomes a subtree and what we get is a sorted linked list. In other extreme, if

m = I, then the forest is a one-tree forest. Thus, the forest implementation of the binary

search tree is just a redundant work. There is no unique requiDement for the selection of

tree size, which depends on the actual situations. One way is to make m a constant so

that the tree search process in the root-array takes only a constant time 0(1). The

problem assodated with this method is that trees in the forest could be too small or too

large, depending on the total number of keys. Another way is to make m a variable,

depending on the predetennined maximum tree size k. If a tree is fuJI, then a new tree is

created. This is the method we used in this study. The problem with the method is the

number of trees may become too large as the number of keys increased. Theoretically,

this forest implementation should outperform the regular binary search trees, since we can

implement either the number of the trees (m) or the size of the trees (k) as a constant

number and take advantage of that fact.

The extra overhead cost of this implementation occurs in the split and merge

operations. However, both the split and merge operations are rather simple and fast, since

they take only a constant time. Neither rebalancing nor sorting is needed for these two

operations. The only work needed for the split and merge process is to switch the
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pointers of the roots and the second roots of the two trees involved, but leave rest of the

nodes of the two trees untouched. In practice, the size of each tree is expected to be more

than just a few nodes. If the designated tree size is not very small, the number of tree­

split operations should small.

This algorithm requires no an extra space to implement the root-list because each unit

of the root-list also holds a actual element of a tree. Therefore, it will not affect the space

complexity relative to the regular binary search trees.

The structure of this algorithm not only has the binary search tree order but also has, in

part, the heap order because each tree has its maximum key located in the root. Thus, we

can perform the delete_max operation on this data structure for sorting purpose. Since

the keys with the largest values in the forest are all located in the most right tree (last tree)

and the maximum key of the tree is located in the root-list, so it takes only a constant time

to find and delete the maximum key of the forest. However, after deleting the root of the

rightmost tree, we have to traverse the tree to find next largest key of the tree to replace

the deleted root. This process takes worst-case time of O(k), which is O( I) because k is a

constant. As a result, the entire delete_max operation takes 0(1) time. If we consider

tree size k to be (n/m) instead of a constant, then the delete_max operation takes O(n/m)

worst-case time and O(log(n/m)) average-case time. Because this data structure has both

search tree propriety and heap propriety, it may have a great potential for applications

which require both efficient binary-search and heap-sort.

Another advantage of this data structure is its structural flexibility by which all trees in

the forest can be easily merged into one single binary search tree or be extended to an

arbitrary number of trees. Therefore, the size of trees and the number of trees in the
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forest can be easily adjusted if needed. Because this data structure employs the split and

merge operations, we can perfonn the sorting operation by continuously splitting trees

until only one node left for each tree. This sorting process is very efficient and it takes

only O(n) time for sorting n nodes and 0(1) average time for each individual operation.

In the same way, a sorted list of size n can be merged into a single tree in O(n) time. This

is specially important for building a forest when the input data are presorted. For a

regular binary search tree, to build a tree using presorted data will take a worst-case time

for each step and result in a linear structure. But for the binary search forest, to build a

forest using the same presorted data takes almost optimal time and results in a optimal

structure. The detail of the SplitSort and MergeBuild processes will be discussed in next

section.
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4. IMPLEMENTATION AND TESTING

Tills section wi]] first demonstrate the basic operations of the binary search forest, and

then compare its performance with that of the regular binary search tree in both worst

case and average case. The running time is determined by the number of loops and

recursions instead of the actual running time. [n data structure theory, time complex of a

search tree is usually determined by the depth of the tree, and the constant factor of the

time complexity is ignored. Following are the results of the actual operations of the

implementations. The number in the parenthesis associated with each node indicates the

number of nodes in that tree. At the end of each operation, the time count is displayed.

For the convenience of presentation, we limit the total number of nodes to 15 in most

cases.

4.1 Basic operations of binary search forest

The bask operations include Create, Find, Insert, Delete, Merge, Split,

ChangeTreeSize, SplitSort, DelMaxSort, MergeBuild, FindMin, FindMax, CountNodes,

PrintRoots, and PrintForest. This section only demonstrates those key operations. The

other operations will be demonstrated in next section.

4.1.1 Create (a forest of size 10 with tree size of 5 by Insert operations)

Enter tree size: 5

Enter the element to be inserted: 15
Tl: 15(1)
Time count: 1
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Enter the element to be inserted: 6
T1: 15 (2)

6 (1)
Time count: 2

Enter the element to be inserted: 4
Tl: 15 (3)

6(2)
4 (1)

Time count: 3

Enter the element to be inserted: 10
Tl: 15(4)

6 (3)

Time count: 3

10(1)

4 (1)

Enter the element to be inserted: 2
Tl: 15 (5)

6(4)

Time count: 4

10(1)

4 (2)
2 (1)

Enter the element to be inserted: 12
T2: 15 (3)

Tl: 6(3)

12(1)
10 (2)

4(2)
2 (1)

Time count: 5

Enter the element to be inserted: 13
T2: 15 (4)

13 (1)
12 (2)

10(3)

T1: 6 (3)
4(2)

2(1)
Time count: 5
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Enter the element to be inserted: 11
T2: 15(5)

13 (1)
12 (3)

11(1)
10(4)

T1: 6 (3)
4 (2)

2 (1)
Time count: 5

Enter the element to be inserted: 3
T2: 15(5)

13 (1)
12(3)

11(1)
10(4)

T1: 6 {4}
4(3)

3 (1)
2 (2 }

Time count: 4

Enter the element to be inserted: 5
T2: 15 (5)

13 (1)
12 (3)

11 (l)
10 (4)

T1: 6 (5)
5 (1)

4(4)
3 (1)

2 (2)
Time count: 3

The maximum size of each tree is S. Tree 1 (Tl) is full after inserting 2 so that the

insertion of next key (12) resulted in the split of tree 1 to two trees. After the splitting,

each tree is about half full, more nodes can be inserted into the trees until they are full

again. Then tree splitting will take place again. These processes can go on and go on.

Next few operations will further demonstrate the splitting and merging actions.
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4.1.2 Insert, Delete, Split and Merge

Enter the element to be inserted: 9
T3: 15(4)

13 (1)
12 (3)

11(1)

T2: 10 (2)
9 (1)

T1: 6 (5)
5 (1)

4 (4)
3 (1)

2 (2)
Time count: 5

Enter the element to be deleted: 9
T2: 15(5)

13 (1)
12 (3)

11 (I)
10{4)

Tl: 6 (5)
5 (I)

4 (4)
3 (1)

2 (2)
Time count: 4

After inserting 9, tree 2 was split into two trees. After deleting 9, the total number of

nodes in tree 2 and tree 3 are less than the maximum tree size and the two trees are

merged into one tree.

If the insertion of 9 is followed by the insertion of 1, the key 5 and 6 that are spJit from

tree i will be merged into tree 2 which already has key 9 and 10. The number of trees in

the forest is still 3 as showed by the following figures.

Enter the element to be inserted: 9

T3: 15 (4)
13(1)

12(3)
11(1)
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T2: 10 (2 )
9 (1)

T1: 6 (5)
5 (1)

4 (4)
3 (1)

2 (2)
Time count: 5

Enter the element to be inserted: 1

T3: 15 (4)
13 (1)

12 (3)
11(1)

T2: 10(4)
9 (1)

6 (3)
5 (1)

T1: 4(4)
3 (1)

2 (3 )
1 (1)

Time count: 6

4.1.3 ChangeTreeSize, SplitSort, MergeBuild, and DelMaxSort

Change tree size (by Merge operations for above forest)
Enter tree size: 12
T1: 15(12}

13 (1)
12 (3)

11 (1)
10(11)

4(7)

Time count: 2

6 (3)

2 (3)

8 (1)

5(1)

3 (1)

1(1)

SplitSort (by Split operations for above tree)
Enter tree size: 1
T12: 15 (1)
T11: 13(1)
T10: 12(1)
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T9: 11 (1)
T8: 10(1)
T7: 8(1)
T6: 6(1)
T5: 5 (1)
T4: 4(1)
T3: 3 (1)
T2: 2 (1)
T1: 1(1)
Time count: 11

MergeBuild (by Merge operations for above sorted data set)
Enter tree size: 15
Tl: 15(12)

13 (1)
12 (3)

11 (1)
10 (11)

8 (1)
6 (3)

Time count: 11

4 (7)

2 (3)

5 (1)

3 (1)

1 (1)

DelMaxSort (by DelMax operations for above tree)
15 13 12 11 10 8 6 5 4 3 2 1
Time count: 33

One of the advantage of this data structure is its structure flexi bili ty by which the

number of trees or the size of each tree can be easily modified with litHe cost. The

modifications are achieved by split and merge operations. This approach provides a very

efficient way to perfonn the sorting operation and the build-forest operation from the

presorted or ordered data set (To build a BST from a presorted data set by the regular

approach is the most costly operation. We will discuss this in detail later). From above

operations we can find that for the same set of data in the same format the DelMaxSort

(sorting by DelMax operations) takes 33 time units whi.Je the SplitSort(sorting by Split

operations) takes only 11 time units. If the forest has onl y one tree, the SpJitSort process

takes only 0-1 time for sorting n nodes, suggesting that the time complexity for each
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individual operation takes only 0(1) time. If the forest has more than one trees, the

SplitSort process takes even less time because some split operations have already done.

The advantage of the SplitSort is that it does not require tree traverse to find the max-key

as the DelMaxSort does.

The MergeBuild process using the sorted data set is the exact reverse of the SplitSort

operation. It takes also only 0-1 units of time. Next few figures demonstrate the step by

step MergeBuild process by successively applying the Merge operation. The basic

approach is to consider each individual node as a single-node tree and then merge them

pair by pair, following by merging two small trees to a bigger tree. This process go on

and go on until only one tree left. In each step the size of tree doubles and the number of

trees in the forest is reduced to half. The time complexity for this whole MergeBuild

process is O(n) which is much faster than the insert approach.

The step by step process of MergeBuild using above sorted data:

Enter tree size: 2
T6: 15 (2)

13 (1)
T5: 12(2)

11(1)
T4: 10(2}

8 (1)
T3: 6(2)

5(1)
T2: 4 (2)

3 (1)
T1: 2(2)

1 (1)
Time count: 6

Enter tree size: 4
T3: 15 (4)

13 (1)
12 (3)

11 (I)

T2: 10 (4)
8 (1)

25



6 (3)
5 (1)

T1: 4(4)
3 (1)

2 (3)
1 (1)

Time count: 3

Enter tree size: 8
T2: 15(4)

13 (1)
12 (3)

11(1)

T1: 10 (8)
8 (1)

6 (3 )

4 (7)

2 (3)

Time count: 1

Enter tree size: 12
T1: 15(12)

5 (1)

3 (1)

1 (1)

13 (1)
12 (3)

11 (l)
10(11)

4 (7)

Time count: 1

6 (3)

2 (3)

8 (1)

5 (1)

3 (l)

1 (1)

Total time = 6 + 3 + 1 + 1 = 11

As above operations show that the MergeBuild process can stop at any step to build a

binary forest instead of a single binary search tree, depending on the tree size one wants.

The earlier the process stops, the less the time used. Besides, the forest built by the

MergeBuild method is perfectly balanced, as demonstrated by the following forest built

by the MergeBuild method from 32 presorted data.
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Enter tree size: 8

T4: 32 (8)
31 (1)

30(3)
29(1)

28(7)
27 (1)

26(3)
25 (1)

T3: 24(8)
23 (1)

22(3)
21 (1)

20 (7)
19 (1)

18 (3)
17 (1)

T2: 16(8)
15 (1)

14 (3)
13 (1)

12(7)
11 (1)

10(3)
9 (1)

Tl: 8 (8)
7 (1)

6 (3)
5 (1)

4(7)
3 (1)

2 (3)
1 (1)

Time count: 28

4.2 Comparison between regular BST and binary search forest

4.2.1 Worst-case performance

4.2.1.1. Binary search forest

Create (by successively inserting 1, 2 I 3 I 4, 5, 6, 7 I 8, 9 I

10)
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Enter tree size: 5
Enter the total number of nodes: 10

T2: 10 (5)
9 (4)

8 (3)
7 (2)

6 (1)
T1: 5 (5)

4 (4)
3 (3)

2 (2)
1 (1)

Time count: 11

Find (find deepest node)
Enter the element to be found: 6
10 9 8 7 6 (found)
Time count: 6

FindMax
The max-key 1S: 10
Time count: 1

FindMin
the min-key is: 1
Time count: 5

DelMaxSort
10 9 8 7 6 5 4 3 2 1
Time count: 20

SplitSort
Enter tree size: 1
TIO: 10(1)
T9: 9 (1)
T8: 8 (1)
T7: 7 (1)
T6: 6(1)
T5: 5 (1)
T4: 4 (1)
T3: 3 (1)
T2: 2 (1)
Tl: 1 (1)
Time count: 8

MergeBuild (tree size = 5)

T3: 10 (2)
9 (1)

T2: 8(4)
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7 (1)
6 (3)

5 (1)

Tl: 4(4)
3 (1)

2 (3)
1 (1)

Time count: 7

In the MergeBulid operation, the process stopped when the forest still has 3 trees

because further merging of any two trees in the forest will cause the number of nodes in

the resulted tree excesses the pre-set tree size 5. In this example, the total number of

nodes is 10 and maximum size of each tree is set to be 5. This does not necessarily mean

that there will be only two full trees. In practice, some trees will be completely full and

some only half full. Thus, further insertion of new node into the forest will not

necessarily result in a tree splitting. Tree merging will take place only when the total

number of nodes of two adjacent trees are smaller than the maximum tree size.

4.2.1.2 Binary search tree

Create (by successively inserting 1, 2, 3, 4, 5, 6, 7, 8, 9,
10)
Enter tree size: 10

10 (l)
9 (2)

8 (3 )
7 (4)

6 (5)
5 (6)

4(7)
3 (8)

2 (9)
1 (10)

Time count: 55

Find (find the deepest node)
Enter the element to be found: 10
1 2 3 4 5 6 7 8 9 10 (found)
Time count: 10
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FindMax
The max-key is 10
Time count: 10

FindMin
The min-key is 1
Time count: 1

DelMaxSort
10 9 8 7 6 5 4 3 2 1
Time count: 55

Table 1: The comparison of the worst-case performance between

regular BST and binary search forest

Operation

Create
Find deepest node
FindMax
FindMin
DelMaxSort
SplitSort
MergeBuild

BST

55
10
10

1
55

Time
Forest

11
6
1
5

20
8
7

As Table 1 shows that the forest implementation has significant advantages than the

regular BST implementation in worst-case performance. The worst-case of a binary

search tree is that its structure moves towards to a linear structure because binary search

trees has no control on its balance. This occurs when presorted data are inserted

successively into an empty binary tree. In this example, the Create operation of binary

search tree takes 55 units of time but the Create operation of the forest implementation

takes only 11 units of time. The forest implementation keeps max-keys in the roots. If

the persorted data set is in ascending order, each new key will be inserted into the root so

that there will be no need for tree travel to find the location. Therefore, the time
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complexity is O(n) for the whole create process and 0(1) for each individual insert

operation. This time complexity will not happen if the input data set is sOlted in

descending order. However, because the forest implementation employs the split and

merge operations, a forest can be built using MergeBllild method for any presorted data

set. In this example, the MergeBllild process takes only 7 time units, which is about 8-

times faster than the create process of a regular binary search tree. Furthennore, as

mentioned above, a forest built by the MergeBuild method has a completely balanced

structure. Thus, for a same set of sorted data, a BST built by the regular insert approach

will have the worst-case structure while a BST or a forest built by the merge approach

will have the optimal structure.

Because each tree in the forest is smaller the a regular BST of the same size, to find

the deepest node will be faster in the forest. For the same reason, the DelMaxSort

operation which perfonns sorting by continuously deleting max-key is less expansive for

the forest (20 time units) than for the single BST (50 time units). In addition, the forest

implementation can use split operation to perform sorting, the whole sorting process for

the forest by the SplitSort approach takes only 7 time units.

4.2.2 Average-case performance

4.2.2.1 Binary search forest

Create (by successively inserting randomly generated data)
Enter tree size: 5
Enter the total number of nodes: 10
T3: 10(1)

T2: 9 (5)
8(2)

7 (1)

6(4)
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5 (1)

T1: 4(4)
3 (1)

2 (3 )
1(1)

Time count: 34

Find (find the deepest node)
Enter the element to be found: 7
9 6 8 7 (found)
Time count: 5

FindMax
The max-key is: 10
Time- count: 1

FindMin
the min-key 1S: 1
Time- count: 3

SplitSort
Enter tree size: 1
T10: 10(1)
T9: 9(1)
T8: 8(1)
T7: 7 (1)
T6: 6 (1)
T5: 5(1)
T4: 4(1)
T3: 3 (1)
T2: 2 (1)
T1: 1(1)
Time count: 7

DelMaxSort
10 9 8 7 6 5 4 3 2 1
Time count: 23

4.2.2.2 Binary search tree

Create (by randomly generated data)
Enter tree size: 10

10 (1)
9 (10)

8 (2)
7 (1)

4 (8)

6(4)

2 (3 )

5 (1)

3 (1)
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1 (1)
Time count: 32

Find (find the deepest node)
Enter the element to be found: 7
9 4 6 8 7 (found}
Time count: 5

FindMax
The max-key is 10
Time count: 2

FindMin
The min-key is 1
Time count: 4

DelMaxSort
10 9 8 7 6 5 4 3 2 1
Time count: 18

Table 2: The comparison of the average-case perfolmance between

regular BST and binary search forest

Operation

Create
Find deepest node
FindMax
FindMin
DelMaxSort
SplitSort

BST

32
5
2
4

18

Time
Forest

34
5
1
3

23
7

In this section both BST and forest are created by randomly generated data to avoid the

worst-case situation. Table 2 shows that the time to create a BST of size 10 and the time

to create a forest of the same size is 32 and 34, respectively. Because the data is

randomly generated, the stlUcture of a BST or a forest may differ from time to time. But

in a long run, the average time to create a regular BST and the average time to create a
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forest are very close, suggesting that the average performance of the regular BST and the

forest is in the same time complexity order.

The forest implementation still has some advantages over the regular BST in some

special cases. For example, it takes only 1 time unit to find the max-key in any forest

because the max-key is always located in the root of the last tree in a forest. It also takes

less time to find the min-key in a forest because the min-key is always located in the first

tree in a forest. To find the min-key all it takes is to search the first tree instead of the

whole forest. The forest implementation also can use the SplitSort, in case that a sorting

is required in practice, to change a forest or trees to a sorted linked list at very low cost.

This option is not available for a regular BST.
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5. SUGGESTED FURTHER STUDIES

The implementation of this algorithm could be simplified by arranging the merge

process to be the last operation of a sequence of operations. After merging two trees, the

merged tree is normally close to full. Thus, there is a good chance that the tree will be

split again during next few insert operations. It is common practice to follow a delete

operation with an insert operation. To reduce the chances of the repeated split and merge

operations, we can leave the trees as they are after split or delete operations, even if they

are qualified to be merged. Thus, trees are less full and have more space for insertion

without the necessity of repeated splits within a short time. The merge operations are

performed only at the end of a sequence of operations. This merge procedure can be done

easily by scanning the root-list to find candidate trees and then merge them pair by pair.

Actually, there are several alternatives to deal with the merging process, such as merging

trees during the tree search process of each individual operation, or to merge trees at a

given operation intervals, or to merge trees only when the number of nodes in both trees

has dropped to a certain low level, such as 1/3 full.

The idea of forest implementation of binary search tree could be applied to other types

of tree structmes. Since each tree in the forest is ill times smaller than a single tree of the

same size, operations on a tree in the forest should be m times faster. This is especially

important for trees which need path updating or rebalancing after an operation, because

these processes could propagate to the root. Propagation costs less in a smaller tree than

in a larger tree.
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This data structure can also be applied to applicat~ons which need both binary search

tree operations and heap operations because this data structure also has partial heap

properties. For example, it can be used to sort data in a quite efficient way. Further

studies are suggested in order to fully extend its applications in various areas.

36



-

6. SUMMARY

A binary search forest algorithm with worst-case time of max(O(m), O(n/m», where

m is the number of trees in the forest and n is the total number of keys, is presented in this

study. The idea underlying this implementation is to break a large binary search tree into

m subtrees, then to link all the subtrees together using a root-list. We impose a total order

among subtrees in the forest so that the value of the minimum key of t.he tree on the right

is larger than that of the maximum key of the tree on the left. Accessing a key in the

forest takes two steps: tree searching in the root-list, and key searching in a tree.

For a given binary search tree of size n, the worst-case time is O(n). However, if the

tree is broken into m subtrees then the worst-case time for each subtree is reduced to

O(n/m). Although searching over the root-list is an extra operation, the process takes

only G(log m) time when the root-list is arranged as an ordered array since a binary

search of the root-list is possible. The worst-case time of this data structure is O(Jog m) +

O(n/m) = O(n/m). If the root-list is implemented as a linked list, the worst-case time to

search a root in the list is Oem). Thus, the worst-case time of this data structure is max

(O(m) + O(n/m». The amortized time bound for this data structure is O(z log n) for z

successive operations.

Another advantage of this data structure is that it also has a partial heap order because

each tree has its maximum key located in the root. Thus, we can perform t.he delete_max

operation on this data structure for sorting purposes. The delete_max operation takes

O(log (n/m» average time. The sorting procedure can also be done by performing split

operations, which takes O(n) time for sorting n nodes and 0(1) average time for

individual operation.
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APPENDIX: SOUReD CODE

'************************************************************************************
FOREST IMPLEMENTATION OF BINARY SEARCH TREES

Shangsban Zhang

INTRODUCTION:
This program implements a binary search tree as a binary search forest by dividing a single binary search

tree of size n into m su.btrees of size 111m, then linking all subtrees together using a roo'llist. Thus, the worst­
case time complexity of this implementation will be O(nlm) instead of O(n). The data structure has not only
the search-tree properties but also the binomial heap properties. It can sort n node in total O(n} time. The
penalty for tbis implementation is the time required for tree-splitting and tree-merging processes.

APPROACH:
This implementation includes two major components: 1) the root-list object, and 2) the BST objects. The

root-list links all trees together to form a forest. The root-list is implemented as an ordered linked list. The
max-key of each tree is stored in the root-list as the root of that tree. The value of the root key (max-key) of
the tree in the left is smaller than the min-key of the tree in the right. Each tree in the forest is a regular
BST.

To access a key in the forest, it needs to first search the root-list to find the tree to which the key belongs
to, then travel the tree to find the exact location of the key. A split operation is performed after an insert
operation if the number of nodes in the tree excesses the pre-set limit. Similarly, a merge operation is
required after a delete operation if the total number of nodes of two adjacent trees is less than the limit.

Tree size can be changed dynamically by applying post-merge or post-split operations. In one extreme,
if every tree in the forest has only one node, then the forest will be a linked list. On the otber band, if the
tree size is n, then the forest is actually a single regular BST. Sorting can be achieved by applying
continuously either the delete-max operation or the post-split operation.

MAJOR OPERAnONS:
Forest Level:
I Create, 2 Search, 3 Insert, 4 Delete, 5 Split, 6 Merge,
7 Heap sort, 8 Split sort, 9 Change tree size, 10 Print forest,
I I List roots, 12 Change forest to BST, 13 Count total nodes
Tree Level:
1 Find node. 2 Insert, 3 Delete, 4 Find min-key, 5 Delete max-key
6 Inorder print, 7 Preorder print, 8 Postorder print

TIME COMPLEXITY:
In order to make a comparison with a standard BST, time complexity is determined for each operation.
The time complexity is determined based on the number of loops and recursive calls that a given
operation performed. A global variable is used to sum the time used by various operations.
************************************************************************************/

#include<iostream.h>
#indude<fstream.h>
#include<stdlib.h>

#define Stat
#define MAX_NODE 200

I/statistics
I/maximum number of nodes
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class TreeNode;
class Tree;
class List;
void ShowMenuO
void RandomDataO

typedef int bool;
int TreeSize = 10;
int TotalNum = 20;
int TimeCount = 0;
int Array[MAX_NODE];

ffutility function
lIutility function

IIdefault tree size
f/default total number of nodes
lIused for statistics
IIset up the maximum array

class TreeNode{ IIlree node class
public:

TreeNode(inl theData):myLeft(O), myRight(O), myData(theData), nodeCount(O){ }
friend class Tree; IImake it accessi ble by class tree
friend class List; IImake it accessible by class list (forest)

private:
TreeNode *myLeft;
TreeNode *myRight;
int nodeCount; IInumber of nodes in a tree or subtree
int myData;

};

class Tree{ IIbinary search tree class
public:

Tree(int theData): myRoot(O),myNext(O),myPrev(O),myData(theData),nodeCount(l){ )
- TreeO( }
friend List;
bool InsertNode(int theData)(return InsertHelp(&myRoot, theData);)
TreeNode *DeJeteNode(im theData) (return myRoo t= DeleteHelp(myRoot, theData);)
int FinclMinO{TreeNode *theNode=FindMinHelp(myRoot); return theNode->myData;}
int DelMaxO (return DeIMaxHelp(myRoot);}
int FindNode(int);
void PreOrderO{PreOrderHelp(myRoot);)
void InOrderO{ int sp =9; InOrderHelp(myRoot, sp);)
void PostOrderO (PostOrderHelp(myRool);}
void DestroyTreeO{ DestroyTreeHelp(rnyRoot);)

private:
boo.1 InsertHelp(TreeNode **, int);
void PreOrderHelp(TreeNode *);
void InOrderHelp(TreeNode *, int);
void PostOrderHelp(TreeNode *);
TreeNode *DeleteHelp(TreeNode *, int);
TreeNode *FindNodeHelp(TreeNode *, int);
TreeNode *FindMinHelp(TreeNode *);
int DelMaxHelp(TreeNode *);
void ResetCountUp(TreeNode *, int);
void ResetCountDown(TreeNode "', int);
void DestroyTreeHelp(TreeNode *);

Tree *myNexl;
Tree *myPrev;
TreeNode *rnyRoot;
int myData;
int nodeCount;

41



-

};

class List ( II root-list class: link individual BSTs together
public:

ListO:myHead(O), myTail(O), treeCount( I) {}
-ListO{ }
void CreateO;
void RandCreate();
void ShowRootO;
void Search(int);
Tree* FindTree(int);
void ShowForestO;
void Merge(Tree*. Tree*);
void Insert(int);
void Delete(int);
void Split(Tree*);
void PostMerge(int);
void PostSplit(int);
void ChangeTreeSizeO;
void ForestToTree(int);
int TotalNodesO;
void DeIMaxSort{);
void ShowMaxKeyO;
void ShowMinKeyO;
void DestroyForestO;

private:
Tree *myHead;
Tree *myTa.il;
int treeCount;

};

1**********************************
* following are forest operations *
**********************************1

1** ********** ************************** Create ********** "'************* '" ***'" '" ****** *'"
Create the binary search forest by continuously performing insert operations
***********************************************************************************1
void List: :CreateO
(

int theData, i=O;

ifstream InputFiJe("Data.dat", ios::in); Ilopen file
if(!InputFile){

cout«"File could not be opened\n";
exit( I);

while ((InputFile»theData)&&(i<TotaINum) ( l/read in data
Insert{theData); IIcreate forest by insert operation
i++;

return;
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1*************************************RandCreat.e ***********************************
Create the binary search forest using randomly generated data
************************************************************************************1
void Lisl::RandCreateO
{

int i, theData;
for(i=O; i<TotalNum; i++){

theData=Array(i]; /lcall random function
Insert(theData);

return;

1**************************************** Insert************************-*·*·**·*****
Insert operation
First find the tree, then call the insert method of the BST object to perform the insert operat'on
***********************************************************************************1
void List: :Insert(int theData)
{

Tree *newTree, *currentTree, *prev, *next;
int newData;
bool boolean;

if(myHead==O){ Ilif empty list
TimeCount++; Iistatistics
newTree = new Tree(theData);
myHead = myTail = newTree;
return;

)
else if(myTail->myData<=theData)' llif theData is largest

if(myTail->myData==theData){
cout«"can not insert identical data "«currentTree->myData«endl;
r,eturn;

}
TimeCount++; Iistatistics
currentTree=myTai I;
newData=currentTree->myData;
currentTree->myData=theData;
TreeNode *newNode=new TreeNode(newData);
newNode->nodeCount=eurrentTree->nodeCount;
newNode->myLeft=currentTree->myRoot;
currentTree->myRoot=newNode;
currentTree->nodeCount++;

)
else (

cUfrentTree = FindTree(theData); Ilfind the internal tree
if(theData == currentTree->myData){

cout«"can not insert identical data "«currentTree->myData«endl;
retum;
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boolean=currentTree->InsertNode(theData); Illnsert by BST method
if(boolean == tme)

currentTree->nodeCount++; /lupdate nodeCount

if(currentTree->nodeCount>TreeSize)
Split(currentTree);

IISpiit if necessary

prey = currentTree->myPrev;. IIMerging after splitting
next = currentTree->myNext;
if«prev && prev->myPrev)&&«prev->nodeCounl+prev->myPrev->nodeCount)<=TreeSize)

Merge(prev->myPrev, prev); Ilmerge left and left->Ieft trees
if«next)&&«currentTree->nodeCount+next->nodeCount)<=TreeSize»

Merge(currentTree, next); /lmerge right and right->right trees
return;

1**************************************** Delete***************·***·************·***
Delete an element from the fmest.
First find the tree, then call the delete method of the BST object to perform the delete operation
**********************************************************************************1
void List::Delete(int theData)
(

Tree *currentTree, *prev, *next;
int maxData, theCount;

currentTree = FindTree(theData);
if«!currentTree)II«currentTree->myDatal=theData)&&(!cUlTentTree->myRoot»)(

cout«"Can not find "«theData«endl;
return;

}
else if((currentTree->myData == theData)&&(currenlTree->myRoot==O» (

prev=currentTree->myPrev; Ilno tree, root only
nexl=currentTree->myNext;
if«prev==O)&&(next=O» Iionly one tree

myHead = myTail =0;
else if(prev==OH Ilhead tree

myHead = next;
next->myPrev = 0;

}
else if(next==OH

myTail = prey;
prev->myNext = 0;

}
else{

prev->myNext = next;
next->myPrev = prey;.

}
delete currentTree;
currentTree = prey;
treeCount--;

}
else if(currentTree->myData == theData){

maxData=currentTree->DeIMaxO;
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currentTree->myData = maxData;
currentTree->nodeCount--;
if(currentTree->nodeCount==1)

currentTree->myRoot=O;
I
else{

theCount = currentTree->myRool->nodeCount;
currentTree->DeleteNode(theData); Iidelete internal node--Iet EST hnndle it
if(currentTree->myRoot==O) Ilupdate nodeCount if delete success

currentTree->nodeCount--; flif deleted last node except tree root
else if(theCount==currentTree->myRoot->nodeCount + I}

currentTree->nodeCount--;

if(currentTree) ( flmerging if necessary
if«currentTree->myPrev)&&(currentTree->nodeCount+currentTree->myPrev­

>nodeCount)<=TireeSize)
Merge(currentTree->myPrev, currentTree); Ilmerge left

if«currentTree->myNexl)&&(currentTree->nodeCount+currentTree->myNext­
>nodeCount)<=l'reeSize)

Merge(currentTree, currentTree->myNext); Ilmerge right

return;

f****************************************Splrt***************************************
Split tree after insert operation if the size of the tree is larger than the maximum size
************************************************************************************1
void List::Split(Tree *currentTree)
(

TimeCount++;
Tree *prey;
TreeNode *leftRoot, *rightRoot, *oldRoot;

prey = currentTree->myPrey;
oldRoot=currentTree->myRoot;
if(oldRoot=O)

return;
leftRoot = oJc!Root->myLeft;
rightRoot = oldRoot->myRight;

Tree *newTree = new Tree(oldRoot->myData);
newTree->myRoot = leftRoot;
newTree->myNext = currentTree;
treeCount++;
if(prev=O)

myHead=newTree;
else{

newTree->myPrev = prey;
prey->myNext = newTree;

Ifstatistics

Ilsome of them could be NULL

flcreate and insert new tree

Ilupdate treeCount

Ilif insert in front

Ilif insert in mid
)
if(leftRoot!=O) Ilif leftRoot exists

newTree->nodeCount = leftRoot->nodeCount + I;
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currentTree->myPrev = newTree;
currentTree->myRoot = rightRoot;
currentTree->nodeCount -= newTree->nodeCount;
delete oldRoot;

return;

lIadjust old tree

1*******************'!<********** ****** '" ** Merge *** ************** **"'*** ***" **** ******
Merge operation after a delete or a spl it operation.
Merging takes place if the number of nodes of two adjacent trees is less than the maximum size
***********************************************************************************1
void List::Merge(Tree *leftTree, Tree *rightTree)
{

TimeCount++;
TreeNode *newNode;
Tree *prev;

Iistatistics

newNode = new TreeNode(IeftTree->myData); IIcreate and set-up new node
newNode->myLeft = leftTree->myRoot;
newNode->myRight = rightTree->myRoot;
newNode->nodeCount = leftTree->nodeCount + rightTree->nodeCount - 1;
rightTree->myRoot = newNode; Iiset-up right tree

prey = leftTree->myPrev;
if(prev==O){

myHead=rightTree;
rightTree->myPrev = 0;

}
if(prev !=O) {

prev->myNext = rightTree;
rightTree->myPrev = prey;

)
rightTree->nodeCount += leftTree->nodeCount;

delete leftTree;
treeCount--;
return;

Iladjust list pointers

Ilupdate nodcCount

Ilupdate treeCount

1*************************************** Search *************************************

Search the location of a given element
***********************************************************************************1
void List: :Search(int theData)

l
Tree *currentTree;

currentTree=FindTree(theData);
if(currentTree==O) I

cout«"Element not found\n\n";
return;

}
else if(currentTree->myData == theData)(
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COlJt«"found "«currentTree->myData«" (root)\n";
}
else(

cout«curreotTree->myData«" ";
currentTree->FindNode(theData);

return;

/*,~*********************'" ********'"***~FindTree ** *' ************* *********************
Find the tree to which a given element belongs.
Search the root-list to find the tree whose root-key value is larger than the given data
***********************************************************************************/
Tree* List::FindTree(int theData)
(

Tree *currentTree;
currentTree = myHead;
while(currentTree != O){

TimeCount++;
if(theData<=currentTree->myData)

return currentTree;
else{

currentTree = currentTree->myNext;

}
return currentTree;

/lfound the tree

/**** **** ** '" ******* ** '" ************PostMerge ********* ******************** ****** ***
This independent tree-merge process is oot associated with any individual delete operation. It can be
performed after a series of operations
*********************************************************************************/
void List::PostMerge(int theSize)

l
Tree *leftTree, *rightTree;
if(myHead=O)

return;
leftTree = myHead;
rightTree = myHead->myNext;
while «leftTree)&&(rightTree»){

if((1eftTree->nodeCount + rightTree->nodeCount)<=theSize)
Merge(leftTree, rightTree);

[eftTree = rightTree;
rightTree =rightTree->myNext;

return;
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1**********************************"PostSplit **************************************
This independent tree-split process is not associated with any individual insert operation. It can be
performed after a series of operations
**********************************************************************************1
void List::PostSplit(int theSize)
(

Tree *currentTree=myHead;

while(currentTree!=O){
while(currentTree->nodeCount>theSize)l

Sph t(currentTree);
if((currentTree)&&(currentTree->myPrev->nodeCount>theSize))

currentTree = currentTree->myPrev; //split again if still large
}
currentTree=currentTree->myNext;

return;

Ilsplit next tree

/lsplit if tree size becomes smaller
Ilmerge if tree size becomes larger

1*********************************ChangeTTeeSize *********************************
Change the size of binary search trees in the forest
*********************************************************************************1
void List: :ChangeTreeSizeO

i
PostSplit(TreeSize);
PostMerge(TreeSize) ;
return;

1***********************************ForestToTree ***********************************
Change the binary search forest to a single binary search tree
**********************************************************************************1

void List::ForestToTree(int theSum)
{

int i;

for(i=2*TreeSize; i<=theSum; i=i*2) (
PostMerge(i);

I
if(i/2) !=theSum)

PostMerge(theS urn);
return;

II heapify merge

/lif odd num or 2*TreeSize > theSum

*~***********************************
1*****************'~****************DelMa)(Sort .

Sorting by continuously performing delete-max op~ration '" ******************************1
***************************************************.*

void List::DeIMaxSortO
(

Tree *currentTree. *tempTree;
int i=O;
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TotalNum = TotaINodesO;
currentTree = myTail;
myTail=O;

while(currentTree!=OH Ilfrom one tree to another
tempTree=currentTree;
while (currentTree->nodeCount>1){ Ilperform DelMax in BST

Array[i++]=currentTree->myData;
currentTree->myData=culTentTree->DelMaxO;
currentTree->nodeCount--;

}
Array[i]=currentTree->myData;
currentTree = currentTree->myPrev;
delete tempTree;
treeCount--;
i++;

I
myHead=O;
myTail=O;
treeCount= I ;
for(i=O; i<TotalNum; i++)

cout«Array[i]«" ";
cout«endl;
return;

Illast element stored in the root

Ilupdate treeCount

Ilprint result

1***********************************TomINodes ***********************************
Obtain the total number of nodes in the forest
**********************************************************************************1
int List::TotaINodesO
(

int theSum=O;
Tree *tempTree;

tempTree = myHead;
while(tempTree!=O){

TimeCount++;
theSum = theSum + tempTree->nodeCount;
tempTree=tempTree->myNext;

return theSum;

Iisum nodes of each tree
Iistatistics

1***********************************ShowForest ************************************
Show forest -- print each individual tree
**********************************************************************************1
void List::ShowForestO
(

int treeNum=treeCount;
Tree *tempTree;
tempTree = myTail;
while(tempTree!=O)(

TimeCount++;
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cOllt«"T"«treeNllm«": ";

cout«tempTree->myData«"("«tempTree_>nodeCounl«")\n"; liroot
tempTree->InOrderO; IIprint each BST with tree appearance
tempTree=tempTree->myPrev;
cout«"\n\n";
treeNum--;

return;

1***********************************ShowRoot*************************************
Show the root of each tree

**********************************************************************************1
void List::ShowRootO
{

Tree *tempTree;
tempTree = myHead;
while(tempTree!=O){

TimeCount++; IIfor statistics
cout«tempTree->myData«"("«tempTree->nodeCount«") ";
tempTree=tempTree->myNext;

I
cout«endl;
return;

/************************************Show~axKey*********************************
Find the max.-key of the forest
.*******************.*••**********_.******.******-*-******************************1
void List::ShowMaxKeyO
{

cout«"The max-key is: "«myTaiJ->myData«endJ;
TimeCount++;
return;

1************************************Show~inKey*********************************
Find the min-key of the forest
***********************************-**********************************************/
void List::ShowMinKeyO
{

if(myHead !=O){
TimeCount++;
if(myHead->myRoot==O)

cout«"the min-key is: "«rnyHead->myData«"\n";

else
cout«"the min-key is: "«myHead->FindMinO«"\n";

return;
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1**************************'**** D'" "'estroyForest ******************************
Destroy the forest and release occupied memory
*****************************************************************************1
void List::DestroyForestO
{

Tree *currentTree, *tempTree;

currenlTree = myHead;
while(currentTree != O){

currentTree->DestroyTreeO;
tempTree=currentTree;
currentTree=currentTree->myNext;
delete tempTree;

)
myHead=O;
myTail=O;
treeCount=l;
return;

/********************************
* foHowing are BST operations *
********************************1

1******************************** FindNode ************************+********
Find a specific node
*****************************************************************************1
int Tree::FindNode(int theData)
{

TreeNode *tempNode;

tempNode=FindNodeHelp(myRoot, tneData);
if(tempNode=--o)

return -1;
else

return tempNode->myDala;

/********************************* FindNodeHelp ******************************
Actual find-node operation
*****************************************************************************1
TreeNode *Tree::FindNodeHelp(TreeNode *theNode, int theData)
{

TimeCounl++;
if(theNode==O}{

cout«"EJement not found\n";
return 0;

}
else {

cout«theNode->myData«" ";
if(theNode->myData==theData) {

COlll«"(found)"«"\n";
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return theNode;
}
else if(theNode->myData<theData)

FindNodeHelp(theNode->myRight, theData);
else

FindNodeHelp(theNode->myLeft, theData);
}
return 0;

1*******************·*************1. . . .. . nsertHelp *********************************
Actual Insert operation
*****************************************************************************1
bool Tree::lnsertHelp(TreeNode **theNode, int theData)
{

TimeCount++;
if(*theNode==O){

*theNode=new TreeNode(theData);
(*the ode)->nodeCount++;

Iistatistics

}
else{

if(theData> (*theNode)->myData){
(*theNode)->nodeCount++;
InsertHelp(&({*theNode)->myRight), theData);

}
else{

if(theData«*theNode)->myData}{
(*theNode)->nodeCount++;
InsertHelp(&«*theNode)->myLeft), theData);

}
else!

ResetCountDown(myRoot, theData);
cout«"Can not insert identical data: "«theData«endl;

return false;

return true;

1********************************** DeleteHelp *******************************

Actual delete operation
*****************************************************************************1

!fused for statistics
TimeCount++;
TreeNode *temp, *child;
if(theNode==O)(

cout«"Can not find "«theData«"\n";
ResetCountUp(myRoot, theData);

TreeNode *Tree::DeleteHelp(Tree ode *theNode, int theData)

{

}
else if{theData<theNode->myData){

theNode->nodeCount-- ;

Ilgo left
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/lgo right

Ilfound node with two children
Ilreplace with smallest in right subtree

theNode->myLefl=DeleteHelp(theNode->myLeft, theData);
}
else if(theData>theNode->myData){

theNode->nodeCount--;
theNode->myRight=DeleteHelp(theNode->myRight, theData);

}
else if«theNode->myRight)&&(theNode->myLeft» (

temp=FindMinHelp(theNode->myRight);
theNode->myData=temp->myData;
theNode->myRight=DeleteHelp(lheNode->myRight, theNode->myData);

}
else{

temp=theNode;
if(theNode->myRight==O)

etlild=theNode->myLeft;
if(theNode->myLeft==O)

child=theNode->myRight;
delete(temp);
return child;

}
return theNode;

Iione child and no child

linG right child

IIno left child

Ilreturn child as myRight or myLeft of parent node

Ilif not found

1*************************************DeIMaxHelp ** ************** ** '" '" **************
Actual delete-maximum-key operation
************************************************************************************1
int Tree::DeIMaxHelp(TreeNode *theNode)
(

TreeNode *tempNode, *deletedNode;
int theData;

if«theNode->myRight==O)&&(theNode->myLeft==O» (
TimeCount++;
theData=theNode->myData;
delete theNode;
theNode = 0;
return theData;

if(theNode->myRight===O) (
TimeCount++;
theData=theNode->myData;
myRoot = theNode->myLeft;
delete theNode;
return theData;

else{
TimeCount++;
tempNode = theNode;
tempNode->nodeCount--;
while(tempNode->myRight->myRight'!=O){

TimeCount++;
tempNode=tempNode->myRight;
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tempNode->nodeCount--;
}

theData = tempNode->myRight->myData;
deleted ode = tempNode->myRight;
tempNode->myRight=tempNode->myRight->myLeft;
delete deJetedNode;
return theData;

/*********************************** FindMinHelp **********************************~,

Actual operation of find minimum-key
************************************************************************************/
TreeNode *Tree::FindMinHelp(TreeNode *theNode)
(

TimeCount++;
if(theNode=-O)

return 0;
else if(theNode->myLeft==O)

return theNode;
else

return FindMinHelp(theNode->myLeft);

//used for statistics

/***********************************PreOrderHe~**********************************

Actual operation of preorder print of BST
***********************************************************************************/
void Tree::PreOrderHelp(TreeNode *theNode)
(

TimeCount++; /Jused for statistics
if(theNode!=O){

cout«theNode->myData«"("«theNode->nodeCount«") ";
PreOrderHelp(theNode->myLefl);
PreOrderHelp(theNode->myRight);

return;

J*** *************** *****************InOrderHelp ******** ****** ********************
Actual operation of inorder print of BST.
This operation will print-out the BST with tree structure (not just data). This function is a modified

inorder operation
**********************************************************************************/

void Tree::InOrderHelp(TreeNode *theNode, int sp)
(

TimeCount++;
int i;
if(theNode!=O){

if(theNode->myRight)
InOrderHelp(theNode->myRight, sp+5);

for(i=O; i<sp; i++)
cout«" ";
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cout«theNode->rnyData«"("«theNode->nodeCount«")\n";
if(theNode->myLeft)

InOrderHelp(theNode->myLeft, sp+5);

return;

r'********************************* PostOrderHelp **********************************
Actual operation of postorder print of BST.
***********************************************************************************/
void Tree::PostOrderHelp(TreeNode *theNode)
{

TimeCount++;
if(theNode!=O) {

PostOrderHelp(theNode->myLeft);
PostOrderHeltp(theNode->myRight);
cout«theNode->myData«" ";

return;

ffused for statistics

1************************************ResetCountUP ********************************
Update the count of nodes up.
***********************************************************************************f
void Tree::ResetCountUp(TreeNode *theNode, int theData)
{

if( theNode==O)
return;

else{
theNode->nodeCount++ ;
if(theNode->myData<theData)

ResetCountUp(theNode->myRight, theData);
else

ResetCountUp(theNode->rnyLeft, theData);
return;

f****** ****************************** ResetCountDown ******************************
Update the count of nodes down
***********************************************************************************f
void Tree: :ResetCountDown(TreeNode *theNode, int theData)
{

if(theNode==O)
return;

else'
theNode->nodeCount--;
if(theNode->myData<tneData)

ResetCountDown(theNode->myRight, theData);
else

ResetCountUp(tneNode->myLeft, theData);
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return;

/*** ********************* ************ DestoryTree ***************** *'"***********'" ** '"
Destroy the tree and release occupied memory
*****************~:**********************:~******************************~;********:~:~*I

void Tree: :DestroyTreeHelp(TreeNode "'theNode)
(

if(theNode != O){
DestroyTreeHelp(theNode->myLeft);
DestroyTreeHelp(theNode->myRight);
delete theNode;

return;

/*************************************RandomData *********************************
Create a set of random data--utility function
***********************************************************************************/
RandomDataO
{

int flag, theData, i=O, j=O;
while(i<TotaINumH

theData=randO%TotalNum+ I;
f1ag=O;
~or(j=O; j<=i; j++){

if(theData==ArrayUD (
f1ag=l;
break;

I
if(f1ag==O) {

Array[i++J=theData;

I
return 0;

/** ***************** '"************** ***ShowMenu :;, ***********'" ****************** ***
Print the detail of each command (independent function)
This is an utility function
***********************************************************************************/
void ShowMenuO
{

cout«"**********'" ****** **************** ******************** ********** *\n";
cout«"O Stop: Exit the program. 1 Create: Create a forest using file data\n";
cout«"2 Insert: Insert a node. 3 Delete: Delete a node\n";
cout«"4 ShowForest: Print forest. 5 ChangeSize: Change tree size\n";
cout«"6 ShowRoot: Print tree roots. 7 ChangeToBST: make forest to a BST\n";
cout«"8 TotalNodes: Count total nodes. 9 DelMaxSort: Sort by delMax operation\n";
cout«"10 Search: Find a node II RandomCreate: Create a forest using\n";
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randomly generated data\n";
14 Help: Show detail command menu\n";

cout«" 12 MaxKey: Show max-k.ey
cout«"B MinKey: Show min-key
cout«" 15 Clear: Destroy the forest\n\n";
cout«"note: number in parenthesis indicates the number of nodes in that lree\n";
cout«"*****************************************************************\n\n";
return;

int mainO
(

List myList;
int theData, command, theSum, timeCount;

do{
#ifdef Stat

TimeCount=O;
#endif
cout<<"\n----- --------- ---------------------- ---------- ------ ---------- ----- -- ---\n" ;
cout«"O Stop, 1 Create, 2 Insert, 3 Delete, 4 ShowForest, 5 ChangeSize\n";
cout«"6 ShowRoots, 7 ChangeToBST, 8 TotalNodes, 9 DelMaxSort, 10 Search\n";
cout«"ll RandomCreate, 12 MaxKey, .13 MinKey, 14 Help, 15 Clear-ENTER

COMMAND:";
cin»command;
cout<<"----------------------------------------------------- ------ --------- ----\n\n" ;
switch(command){
case 0:

return 0;
break;

case I:
cout«"Enter tree size: ";
cin»TreeSize;
cout«endl;
cOllt«"Enter the total number of nodes: ";
cin» TotalNum;
cout«endl;
myList.CreateO;
#ifdef Stat

timeCount = TimeCount;
#endif
myList.ShowForest();
cout«"\nTime_count: "«timeCount«"\n\n";
break;

case 2:
cout«"Enter the element to be inserted: ";
cin»theData;
cout«endl;
myList.lnsert(theData);
Itifdef Stat

timeCount = TimeCount;
#endif
myList.ShowForestO;
cout«"\nTime_count: "«limeCount«"\n\n";
break;

case 3:
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cout«"Enter the element to be deleted: ";
cin»theData;
cout«endl;
myList.Delete(theData);
#ifdef Stat

timeCount = TimeCount;
#endif
myList.ShowForestO;
cout«"\nTime_count: "«timeCount«"\n\n";
break;

case 4:
myList.showForestO;
#ifdef Stat

cout«"\nTime_count: "«TimeCount«"\n\n";
#endif
break;

case 5:
cout«"Enter tree size: ";
cin» TreeSize;
cout«endl;
myLiSl.ChangeTreeSizeO;
#ifdef Stat

timeCount = TimeCount;
#endif
myList.ShowForestO;
cout«"\nTime_count: "«timeCount«"\n\n";
break;

case 6:
myList.ShowRootO;
#ifdef Stat

cout«"\nTime_count: ..«TimeCount«"\n\n";
#endif
break;

case 7:
theSum=myList.TotalNodesO;
TimeCOlmt=O;
myList.ForestToTree(theSum);
#ifdef Stat

timeCount = TimeCount;
#endif
myList.ShowForestO;
cout«"\nTime_count: "«timeCount«"\n\n";
break;

case 8:
cOllt«"the total number of nodes of the forest is "«myLiSl.TotalNodesO

«"\0";
#ifdef Stat

cout«"\nTime_count: "«TimeCount«"\o\n";
If:endif
break.;

case 9:
myList.DeIMaxSort();
#ifdef Stat

cout«"\oTime_couot: "«TimeCount«"\n\o";
#endif
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break;
case 10:

cout«"Enter the element to be found: ";
cin»theData;
cout«endl;
myList.Search(theData);
#ifdef Slat

cout«"\nTime_count: "«TimeCount«"\n\n";
#endif
break;

case II:
cout«"Enter tree size: ";
cin» TreeSize;
cout«endl;
cout«"Enter the total number of nodes: ";
cin» TotalNum;
cout«endl;
RandomData();
myList.RandCreateO;
#ifdef Stat

timeCount = TimeCount;
#endif
myList.ShowForestO;
cout«"\nTime_count: "«timeCounl«"\n\n";
break;

case 12:
myList.ShowMaxKeyO;
#ifdef Stat

cout«"\nTime_count: "«TimeCount«"\n\n";
#endif
break;

case 13:
myList.ShowMinKeyO;
#ifdef Stat

cout«"\nTime_count: "«TimeCount«"\n\n";
#endif
break;

case 14:
ShowMenuO;
break;

case 15:
myList.DestroyForestO;
break;

default:
cout«"wrong command\n";

}
}while(command!=O);
return 0;
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