WATER QUALITY OF COAL CREEK TRIBUTARIES DRAINING AN EAGLE-PICHER SMELTER SITE OKMULGEE COUNTY,

OKLAHOMA

By

LARRY L. WOOTEN

Bachelor of Science

West Texas State University

Canyon, Texas

1976

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 1998

WATER QUALITY OF COAL CREEK TRIBUTARIES

DRAINING AN EAGLE-PICHER SMELTER SITE

OKMULGEE COUNTY,

OKLAHOMA

Thesis Approved:

100

Coang J. Thesis Adviser Coang J. Thuman Mich Mich	 At sunslow
Coang J. Teman Micht Micht	Thesis Adviser
Micht Mull	Coan 1. Temans
Micht Mult	
	Mich Mull
	Warne B Forvel
Warne B Powell	Dogo of the Graduate Collage

Dean of the Graduate College

ACKNOWLEDGMENTS

I would like to extend to Dr. Arthur Hounslow, my thesis advisor, my sincere appreciation for his guidance and suggestions. My appreciation is further extended to thesis committee members Dr. Gary Stewart and Dr. Michael Nicholl for their ideas and time spent on this thesis. I also wish to thank Dr. Stewart for suggesting the thesis topic.

I wish to thank Scott Thompson with the Oklahoma Department of Environmental Quality for providing chemical analyses for this study and Jim Staves with the U. S. Environmental Protection Agency, Region VI for providing copies of site assessment reports. I wish to thank Jason Cotton for computer aided drafting and Les Woosley for assistance in manuscript reproduction. I also wish to thank Mike Schornick and Herschel Roberts for the use of company resources.

VIE VMORT DIO

Lastly, I would like to thank my wife, Brenda, for without her support and encouragement this thesis would not have been possible.

iii

TABLE OF CONTENTS

Chapter	Pag	je
I. INT	RODUCTION	1
	Statement of the Problem Location Tri-State Mining District Site Background Previous Investigations	1 2 7
II. PH	YSIOGRAPHY AND GEOLOGY 1	2
	Topography 1 Soils 1 Stratigraphy 1 Structural Geology 1	2 3 5
III. HY	DROGEOLOGY 1	8
	Climate	8 20 26
IV. MI	THODS AND MATERIALS	9
	Data Sources 2 Field Procedures 2 Sample Preparation 3 Sample Analysis 3 Methods of Data Evaluation 3	9 9 13 14
V. RE	SULTS AND DISCUSSION 4	0
	Data Validation	0

ORGANOMA STA

Chapter	Page
	Results of Specific Conductance, pH, and TDS Measurements.46Southern Tributary47Northern Tributary47Chemical Trends and Reactions48Southern Tributary48Major and Minor Constituents49Trace constituents54Northern Tributary59Major and Minor Constituents60Trace Constituents60Trace Constituents60
VI.	CONCLUSIONS AND RECOMMENDATIONS
LITERATU	IRE CITED
APPENDI API API	KES

LIST OF TABLES

Table	Page
1.	Summary of Monthly Precipitation For 1985 Through 1992 19
2.	Summary of Laboratory Analytical Results of Surface-water Samples Collected by the EPA and OWRB
3.	Summary of Field Measurements of Surface-water Samples 32
4.	Summary of Analytical Results (Total Metals) of Aqueous Samples Collected on June 28, 1992 Downstream from the Eagle-Picher Smelter Site, Henryetta, Oklahoma
5.	Summary of Analytical Results (Dissolved Metals) of Aqueous Samples Collected on June 28, 1992 Downstream from the Eagle-Picher Smelter Site, Henryetta, Oklahoma
6.	Summary of Analytical Results (General Chemistry) of Aqueous Samples Collected on June 28, 1992 Downstream from the Eagle-Picher Smelter Site, Henryetta, Oklahoma

LIST OF FIGURES

Figure	Page
1.	Regional Location Map 3
2.	Study Area and Topographic Map 4
3.	Map Showing Geologic Provinces of Oklahoma
4.	Topographic and Geologic Map
5.	Average Monthly Precipitation 1985-1992 21
6.	Monthly Precipitation 1985-1988 22
7.	Monthly Precipitation 1989-1992 23
8.	Study Area with Surface-Water Sample Locations 24
9.	Sample Locations on the Southern Tributary 43
10.	Sample Locations on the Northern Tributary 45
11.	Piper Diagram of Sample Analyses, Southern Tributary 50
12.	Stiff Diagrams of Sample Analyses, Southern Tributary 51
13.	Piper Diagram of Sample Analyses, Northern Tributary 61
14.	Stiff Diagrams of Sample Analyses, Northern Tributary

CHAPTER I

1

ORLAHOMA STATE UNIVERSITY

INTRODUCTION

Statement of the Problem

The objective of this investigation was to explore the effects of runoff from an abandoned Eagle-Picher smelter site on the water quality of the two unnamed tributaries (the northern and southern tributaries) of Coal Creek draining the smelter site. The effects of the runoff were evaluated as follows:

1. Results of this study were compared to historical laboratory analytical data from corresponding surface-water sample locations to determine whether significant changes occurred over approximately a ten-year period.

2. Measurements of pH, specific conductance, and total dissolved solids were evaluated for surface-water samples collected within the study area.

 Potential chemical reactions and trends for major and minor constituents and trace constituents for both the southern and northern tributaries were evaluated.

Location

The abandoned Eagle-Picher zinc smelter site located between the cities of Henryetta and Dewar, Okmulgee County, Oklahoma (Figure 1) is drained by two unnamed tributaries of Coal Creek that flow south and north from the site. The study area is covered by a portion of the United States Geological Survey (USGS) 7.5-minute series Henryetta Quadrangle. More specifically, the southern portion of the study area is in the north half of Section 5 of Township 11 North, Range 13 East. The northern portion of the study area is situated in the west half of Section 32 and the southwest quarter of Section 29 of Township 12 North, Range 13 East (Figure 2).

The southern tributary flows southward from the smelter site and then east and adjacent to the north side of United States (U. S.) Highway 266. The confluence of the southern tributary with Coal Creek is approximately 3,000 feet east of the intersection of U. S. Highways 266 and 62 and 300 feet north of U. S. Highway 266 (Figure 2). The northern tributary flows northward from the smelter site and adjacent to the east side of U. S. Highway 62. The confluence of the northern tributary with Coal Creek is approximately 7,500 feet north of the highway intersection and 1,500 feet east of U. S. Highway 62 (Figure 2).

Tri-State Mining District

The Tri-State Mining District encompasses northeastern Oklahoma, southeastern Kansas, and southwestern Missouri. In 1933, the Tri-State District

2

VITE UNIT BREAKING

Figure 1. Regional Location Map (after U.S.G.S., State Map of Oklahoma, 1972)

ORLAHOMA STATE UNIVERSITY

Figure 2. Study Area and Topographic Map (After U.S.G.S. Henryetta 7.5 Minute Quadrangle)

ORLAHOMA STATE UNIVERSITY

produced more than 40 percent of the zinc and 12 percent of the lead mined in the United States (Harbaugh, 1933). Practically all of the zinc and lead concentrates produced were processed in plants in Oklahoma, Kansas, Arkansas, Illinois, Indiana, Pennsylvania, and West Virginia (Harbaugh, 1933). In Oklahoma, three plants were constructed between 1907 and 1908, and 11 plants were constructed between 1910 and 1917 (Mower, 1959). By 1959, only three of the 14 plants were in operation. These were located in Blackwell, Bartlesville, and at the Eagle-Picher plant in Henryetta, Oklahoma (Figure 3). The Eagle-Picher plant in Henryetta was operated from 1916 (Mower, 1959) through 1968 (EPA, 1988).

The following is a partial list of minerals associated with ores in the Tri-State Mining District:

Anglesite	PbSO₄	Aragonite	CaCO ₃
Barite	BaSO₄	Calamine	(ZnOH) ₂ SiO ₃
Calcite	CaCO ₃	Chalcopyrite	CuFeS ₂
Dolomite	(Ca,Mg)CO ₃	Enargite	Cu₃AsS₄
Galena	PbS	Greenockite	CdS
Marcasite	FeS ₂	Melanterite	$FeSO_4 + 7H_2O$
Pyrite	FeS ₂	Quartz	SiO ₂
Smithsonite	ZnCO ₃	Sphalerite	ZnS

The partial list is compiled from work published by Samuel Wiedman (1932) and Edwin T. McKnight and Richard P. Fisher (1970).

Figure 3. Map Showing Geologic Provinces of Oklahoma (After Johnson and Denison, 1973)

ORLAHOMA STATE UNTURNETTY

Marcasite specimens were reported to contain from 0.06% to 0.09% nickel (Barrett, 1940). Pyrite specimens had nickel concentrations of as much as 0.18% (McKnight and Fisher, 1970). Sphalerite specimens reportedly had cadmium concentrations that ranged from 0.035% (Weidman, 1932) to 1.4% (McKnight and Fisher, 1970). Additionally, trace concentrations of iron, copper, lead, titanium, manganese, silver, gallium, cobalt, barium, and indium were associated with shell boundaries of sphalerite species (McKnight and Fisher, 1970). The minerals listed above are assumed to be the source, in part, for concentrations of 13 dissolved metals and 16 total metals detected in surfacewater samples collected from the northern and southern unnamed tributaries draining the smelter site.

Site Background

The Henryetta Zinc Smelter, owned by the Picher Lead Company, was brought on line in 1916. The Picher Lead Company, and the Eagle White Lead Company merged on June 1, 1916 to form the Eagle-Picher Lead Company. In 1945, the name was changed to the Eagle-Picher Company (Mower, 1959).

Smelting activities at the Henryetta plant included the roasting, sintering, and distillation processes from 1916 through 1955 (Mower, 1959). During the roasting process, ore concentrate (predominately sphalerite) was heated in furnaces in the presence of oxygen to form zinc oxide called calcine and sulfur dioxide gas (Mower, 1959). Next, the calcine powder was mixed with about 10%

coal. During the sintering process, the mixture was placed on slowly moving pallets, passed through a combustion area to ignite the coal, and then fed into an oven where the heat from the burning coal caused the fine calcine particles to fuse forming sinter cake (Mower, 1959). The sinter cake was then ground to the proper size, and mixed with about 20% coal with a small amount of water, and 0.5% salt. This mixture was then placed in retorts (clay cylinders approximately 60 inches in length with an internal diameter of 9 inches) within a furnace (Mower, 1959). Each furnace contained several hundred retorts. During the distillation process, the temperature within the furnace was increased to approximately 1,400 degrees centigrade. Zinc vapor produced at this high temperature passed from the retort to a condenser where liquid zinc was collected. By 1955, the Henryetta plant had furnaces for approximately 8,800 retorts (Mower, 1959).

Gases produced during the roasting and sintering processes typically contained concentrations of sulfur dioxide, cadmium, arsenic, antimony, bismuth, and lead. These gases generally were discharged to the atmosphere (Mower, 1959), and resulted in a particulate plume that generally extended northeast from the smelter. The roasting and sintering processes, along with the sulfuric acid production and cadmium recovery, were transferred to a Galena, Kansas plant in 1955 (Mower, 1959). Slag, residue from the smelting process, was removed from the retorts and either processed for precious metals or discarded on the smelter property.

Slag, mixed with retort shards and fire-brick, now covers approximately 30 acres on the former Eagle-Picher property. The slag ranges in thickness from less than one foot on the east side of the site to greater than 15 feet on the west side of the site near U. S. Highway 62 (Figure 2). The slag pile is porous and allows for rapid percolation of storm-water to the underlying soil or to Pennsylvanian strata. Water that has percolated through the slag discharges at the margins of the slag pile to two unnamed tributaries of Coal Creek.

During operation of the Eagle-Picher Smelter, several companies were mining the Croweburg Coal (Henryetta Coal) beneath the smelter property and beneath surrounding properties. The larger mines included the Dewar Coal Company, Big Four Coal Company, Blackstone Coal and Mining Company, Starr Coal Company, and the Cado Coal Company. The Croweburg Coal was accessed by shafts ranging in depths from approximately 110 to 133 feet (Dunham and Trumbull, 1955).

The Dewar Coal Company mined in the northern half of Section 5, Township 11 North, Range 13 East and the southern half of Section 32, Township 12 North, Range 13 East (Dunham and Trumbull, 1955; and State of Oklahoma Department of Mines, 1992). The Big Four and Blackstone Coal and Mining Company were active in the eastern half of Section 30 and the western half of the western half of Section 32, Township 12 North, Range 13 East (Dunham and Trumbull, 1955). The Starr Coal Company was active in the southwestern quarter of Section 29 and the northern half of Section 32, Township 12 North,

Range 13 East (Dunham and Trumbull, 1955). The Cado Coal Company mined in the eastern half of Section 6 and the northwestern quarter of Section 5, Township 11 North, Range 13 East (Dunham and Trumbull, 1955; and State of Oklahoma Department of Mines, 1992). Approximate locations of the mines are shown in Figure 4.

Previous Investigations

Geological investigations into the coal resources of the area were conducted by Chance (1890), Drake (1896) and Dunham and Trumbull (1955). Culp (1955) reported on the roadside geology of Okmulgee County. Logan (1957) reported on oil and gas production in Okmulgee County.

Oakes (1963), Marcher (1969) and Bingham (1975) conducted investigations into the geology and water resources of the area. These investigations contained limited climatological and water-quality data.

Mower (1959) investigated the zinc-smelting industry of Oklahoma, which included the Eagle-Picher smelter located in Henryetta. Investigations into the toxicity of the sediment, soil and surface-water of the abandoned Eagle-Picher smelter property were conducted by the Oklahoma Water Resources Board (1989) and the Environmental Protection Agency (1983, 1987, 1988, and 1990).

Figure 4. Geologic and Topographic Map (After Dunham and Trumbull, 1955, and Oakes and Motts, 1963)

ORLAHOMA STATE UNIVERSITY

CHAPTER II

PHYSIOGRAPHY AND GEOLOGY

Topography

The southernmost portion Okmulgee County, Townships 11 and 12 North, Ranges 12 and 13 East where the study area is located, is within the drainage basin of the Deep Fork of the Canadian River (Figure 2). The Deep Fork occupies an alluvial valley that is approximately two miles wide and flows in a southeasterly direction through Township 12 North, Range 13 East. Tributaries of the Deep Fork in this area generally flow in a northeasterly direction to the confluence with the Deep Fork. The tributaries and their branches form a dendritic to sub-rectangular drainage pattern.

This area of Okmulgee County is characterized by cuestas that trend North 30° East, separated by valleys that are one-half mile to one mile wide. The cuestas are capped with erosion-resistant sandstones overlying less resistant shales. Sandstones and shales generally dip North 60° West at an average of about 60 feet per mile.

Topographic relief in the study area is approximately 250 feet, measured from the top of a sandstone-capped butte on the east side of the northern unnamed tributary (860 feet above mean sea level (AMSL)) in the southeast quarter of Section 32, Township 12 North, Range 13 East to the confluence of the northern unnamed tributary and Coal Creek (610 feet AMSL) in the southwest quarter of Section 29, Township 12 North, Range 13 East. The maximum topographic relief in the four townships surrounding the study area is approximately 390 feet. The elevations range from approximately 600 feet AMSL on the alluvial plain of the Deep Fork of the Canadian River in Township 12 North, Range 13 East to 990 feet AMSL in Section 34, Township 12 North, Range 12 East.

Soils

Soils of the study area are comprised of the Bates-Collinsville fine sandy loam, Collinsville-Talihina complex, Dennis silt loam, Hector complex, and Lightning silt loam. The soil in the central portion of the study area, denuded of vegetation by of fumes and toxic residues from smelter operations, is classified as Smelter-waste land (Sparwasser, 1968).

The Bates-Collinsville fine sandy loam is in the extreme southwestern portion of the study area. This complex consist of 40 to 60 percent Bates fine sandy loam, 30 to 50 percent Collinsville fine sandy loam, and 5 to 10 percent Bates loam. The soil is 10 to 20 inches deep, gently sloping, and formed from weathered sandstone. The Bates-Collinsville fine sandy loam is porous, moderately acidic, and is moderately fertile. Water-holding capacity is limited due to the shallow depth to bedrock (about 38 inches). Collinsville-Talihina complex is along the southern unnamed tributary in the study area. This complex consist of 60 to 70 percent Collinsville fine sandy loam and 30 to 40 percent Talihina clay with slopes of 10 to 30 percent. Soil of this series is very stony.

Denis silt loam is in the extreme southeastern portion of the study area, adjacent to Coal Creek. Dennis silt loam is deep and moderately acidic (pH of 5.6 to 6.0). The soil is grayish brown silt loam approximately 12 inches thick, brown heavy silt loam four inches thick and mottled light yellowish brown to brownish yellow clay loam to a depth of 36 inches. Slopes range from one to three percent.

Hector complex is on the butte in the eastern and northern portion of the site. Hector soil is thin (five to six inches) and consists of grayish brown stony sandy loam and light yellowish brown fine sandy loam, with fragments of sandstone. The soil forms from the detritus of weathered sandstones. Slopes range from five to 30 percent.

Lightning silt loam is in the extreme northern portion of the study area, adjacent to Coal Creek. This soil type is in bottom lands that are occasionally flooded. The soil consists of approximately 11 inches of gray silt loam, nine inches of gray silty clay loam, 16 inches of gray clay and dark gray clay below 36 inches. Slopes range from zero to one percent.

Stratigraphy

Rocks exposed in the area of study are included in the Des Moines Series of the Pennsylvanian System. The Des Moines Series is further divided into the Krebs, Cabaniss and the Marmaton Groups in ascending order.

The Cabaniss Group, which consists of the Thurman Sandstone, Stuart Shale and Senora Formation in ascending order, is conformable with the overlying Marmaton Group and unconformable with the underlying Krebs Group. The oldest formation outcropping in the area of study is the Senora Formation (Figure 4).

The Senora Formation crops out in a band that extends from the northeastern border of Oklahoma in Craig County to Hughes County in southeastern Oklahoma (Figure 3). This exposure of Senora Formation extends from the area of study, east for 12 miles to the Okmulgee County line, and then three miles east into Muskogee County. The maximum thickness in the area of study is approximately 800 feet (Oakes and Motts, 1963). The Senora Formation in southern Okmulgee County generally strikes North 30° East and dips North 60° West at an average of about 60 feet per mile.

The Senora Formation is divided by the Croweburg Coal (Henryetta Coal) into an upper portion approximately 220 feet thick and a lower portion approximately 580 feet thick. The Croweburg Coal is generally 30 to 36 inches thick and has been mined extensively in the Henryetta area (Oakes and Motts, 1963). Outcrop of the Croweburg Coal is shown in Figure 4. The lower portion of the Senora consists of silty-sandy shale, fine-grained sandstone and limestone. The upper portion consists of shale with lenses of silty sandstone. In the study area, shale of the upper portion of the Senora formation is exposed in the steam beds of the northern and southern unnamed tributaries of Coal Creek.

The Senora Formation is overlain by the Calvin Sandstone of the Marmaton Group. The contact is irregular, characterized by an interfingering of the discontinuous sandstones and shale. The Calvin Sandstone consists of silty shale inter-bedded with sandstone. The maximum thickness in southern Okmulgee County is 440 feet. Cuestas bounding the northern portion of the study area on the east and west are capped by resistant Calvin Sandstone (Marcher, 1988) as shown in Figure 4.

Structural Geology

The study area is situated 30 miles east of the Seminole arch, 55 miles southwest of the Ozark Uplift and approximately 15 miles northwest of the Arkoma Basin as shown in Figure 3. The most prominent structural feature in southern Okmulgee County is the Henryetta-Schulter Anticline. The anticline is approximately ten miles long and is one half to three fourths mile wide. The anticline extends from four miles south of Henryetta, through Henryetta to Schulter, Oklahoma (Figure 4). The anticline strikes North 30° East south of Henryetta and strikes North 15° East north of Henryetta. Strata are reported to dip one degree on the western flank and ten to 20 degrees on the eastern flank.

The study area is one half mile east of the anticline.

-

CHAPTER III

HYDROGEOLOGY

Climate

The climate of Okmulgee County is warm and temperate. The National Oceanic and Atmospheric Administration (NOAA) reports a mean temperature of 59.4° Fahrenheit (F) for the years 1961 through 1990. During this same period of time, the normal maximum temperature was 71.9° F. and the normal minimum temperature was 46.6° F. The average annual precipitation was 39.46 inches, with the heaviest precipitation generally occurring during the months of April, May, and June. The data cited above was for the Okmulgee Water Works Station (0700 LT), Okmulgee, Oklahoma and is considered typical for Okmulgee County (NOAA, 1990).

The Oklahoma Climatological Survey (OCS) compiles precipitation data reported by the Dewar, Oklahoma station (station index 34-2485-6). This station is close to the study area. A summary of monthly precipitation data from January 1985 through August, 1992 (OCS, 1992), presented on Table 1, includes annual precipitation for years 1985 through 1991 and average monthly precipitation (eight year average from January through August and seven year average from

TABLE 1

SUMMARY OF MONTHLY PRECIPITATION FOR 1985 THROUGH 1992 STATION NAME : DEWAR, 2 NE STATION INDEX NO: 34-2485-6

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC A	NNUAL
1985	2.87	2.83	7.88	7.01	3.30	6.32	0.87	1.35	4.42	10.87	3.60	4.02	55.35
1986	0.00	1.91	2.45	5.89	7.28	2.83	0.59	3.32	7.53	11.05	3.58	0.99	47.43
1987	2.84	4.14	3.01	0.20	7.03	3.74	3.15	6.58	3.10	1.52	4.86	7.28	47.45
1988	1.21	1.19	6.38	3.42	0.88	1.62	9.57	0.79	4.98	1.57	4.13	1.91	37.65
1989	1.61	4.92	2.46	0.23	7.92	3.43	4.34	1.27	5.74	2.25	0.06	0.32	34.55
1990	4.76	3.79	8.82	9.18	10.37	0.50	4.35	2.85	6.87	1.96	3.35	3.05	59.85
1991	1.56	0.39	1.86	1.61	5.23	5.71	2.65	4.50	5.52	7.36	4.44	6.48	47.31
1992	1.06	0.67	2.23	4.70	4.19	5.61	6.89	5.28					
MONTHLY	1.99	2.48	4.39	4.03	5.78	3.72	4.05	3.24	5.45	5.23	3.43	3.44	

NOTE:

1. EIGHT -YEAR MONTHLY AVERAGE FROM JANUARY THROUGH AUGUST AND SEVEN-YEAR MONTHLY AVERAGE FROM SEPTEMBER THROUGH DECEMBER

September through December). Annual precipitation ranged from 34.55 (1989) to 59.85 (1990) inches. Average monthly precipitation ranged from 1.99 (January) to 5.78 (May) inches and is presented graphically on Figure 5. Monthly precipitation for years 1985 through 1988 is shown graphically in Figure 6 and the monthly precipitation for years 1989 through August, 1992 in Figure 7.

Surface-water

The study area is drained by two unnamed tributaries of Coal Creek. The confluence of the southern tributary with Coal Creek is approximately 3,000 feet east of the intersection of U. S. Highways 266 and 62 and 300 feet north of U. S. Highway 266. The northern tributary flows north from the smelter site and adjacent to the east side of U. S. Highway 62 as shown in Figures 2 and 8. The natural courses of the northern unnamed tributary and Coal Creek were modified during surface reclamation conducted during 1979 or 1980 as shown in Figure 8.

A canal was constructed from a point on Coal Creek approximately 500 feet east of the original confluence of the northern unnamed tributary and Coal Creek (approximately the center of the east half of the northwest quarter of Section 32, Township 12 North, Range 13 East), north approximately 1,900 feet to a point on Coal Creek near the center of the southeast quarter of the southwest quarter of Section 29, Township 12 North, Range 13 East (Figure 2). After the canal was completed, approximately 1,200 feet of Coal Creek channel was abandoned.

NOTE: 8-YEAR AVERAGE JAN .- AUG.

NOTE: 7- YEAR AVERAGE SEPT.-DEC.

N

Figure 8. Study Area with Surface-Water Sample Locations

The northern unnamed tributary now occupies approximately 2,900 feet of the former Coal Creek channel. The new confluence of the northern tributary with Coal Creek is approximately 7,500 feet north of the intersection of U. S. Highways 62 and 266 and 1,500 feet east of U. S. Highway 62.

A dam was constructed on the northern unnamed tributary approximately 1,200 feet upstream from the new confluence. The resulting impoundment measures 150 feet from east to west and 2,050 feet from north to south (Figure 8). The surface reclamation is not shown on the Henryetta Quadrangle, photorevised in 1979. However, the surface reclamation is shown on a high-altitude aerial photograph dated April, 1980.

Perennial seeps and springs occur along the northern and southern margins of the smelter slag, and in each of the unnamed tributaries where sands and gravels thin, exposing the underlying shale of the Senora Formation. Alluvial fans, on the west side of a butte on the east side of the northern tributary (Figure 2), extend west to the northern tributary. During periods of heavy precipitation, springs flow in steep washes on the alluvial fans, and flow from the base of the fans to the northern tributary (between sample locations 5-NT62892 and 6-NT62892 shown in Figure 8). During periods of heavy precipitation, springs discharge from mixed alluvium and slag on the west side of the northern tributary (near sample location 4-NT62892) to the northern tributary. One spring emanates from the base of a dam of an impoundment (measuring 400 feet from north to south and 800 feet from east to west) along the northern limit of the smelter slag. The runoff from this spring flows into the northern unnamed tributary. Subsurface flow occurs in both unnamed tributaries where sands and gravels thicken along their courses.

The drainage area of Coal Creek is estimated to be 22.2 square miles at the point 2,000 feet south of the study area where the Union Pacific Railroad crosses Coal Creek (Federal Emergency Management Agency (FEMA), 1991). The peak discharges for 10-, 50-, and 100-year floods are estimated to be 9,300 cubic feet per second (cfs), 12,800 cfs, and 14,500 cfs, respectively (FEMA, 1991).

Coal Creek bifurcates approximately 2.5 miles northeast of the study area in Section 27 of Township 12 North, Range 13 East. Most of the steam flow from the bifurcation is toward the confluence with Wolf Creek approximately three miles to the south in Section 1, Township 11 North, Range 13 East. The confluence of Wolf Creek and Deep Fork of the Canadian River is in Section 32, Township 12 North, Range 14 East.

A smaller portion of the steam flow from the bifurcation is towards the confluence with Deep Fork approximately one mile to the north in Section 22, Township 12 North, Range 13 East.

Groundwater

Groundwater present in alluvium deposited along the Deep Fork of the Canadian River drainage and associated tributaries, and in Pennsylvanian bedrock throughout Okmulgee County. Groundwater resources in Okmulgee County generally support stock and some domestic uses (Oakes and Motts, 1963).

Total dissolved solids range from 1,000 ppm to 2,000 ppm in alluvial aquifers associated with the Deep Fork. Yields range from 1 gpm to 25 gpm (Oakes and Motts, 1963). Groundwater quality of the younger Deep Fork alluvial aguifers is variable, influenced in part, by recharge from poorer quality surface-water of the Deep Fork (Oakes and Motts, 1963). Older alluvial terrace deposits of the Deep Fork, occupy a higher topographic position than the younger alluvial deposits. The older alluvial terrace aguifers have groundwater of better guality because recharge is by direct infiltration of rainfall as opposed to recharge from the Deep Fork. Groundwater guality in alluvial aguifers associated with the tributaries of Deep Fork is variable with total dissolved solids reported to be as low as 250 ppm. However, groundwater quality of the tributary alluvial aquifers may be influenced by recharge from underlying, highly mineralized bedrock aguifers. Yields from the tributary alluvial aquifers have been reported as high as 17 gpm (Oakes and Motts, 1963). Within the study area, the alluvial deposits of Coal Creek are considered to be an alluvial aquifer (Johnson, 1993).

Pennsylvanian sandstones comprise most of the bedrock aquifers in Okmulgee County. Generally, each thickly bedded sandstone is a potable aquifer over part of its outcrop area where recharge is from infiltration of rainfall. Potable groundwater has been reported to mix with highly mineralized

groundwater under confined conditions down dip in the sandstones. Total dissolved solids have been reported for groundwater produced from bedrock aquifers as ranging from 670 ppm east of Henryetta (Bingham and Moore, 1991) to 5,000 ppm north of Okmulgee (Marcher, 1988).

CHAPTER IV

METHODS AND MATERIALS

Data Sources

Water quality data of surface-water samples collected on the Eagle-Picher smelter site and two unnamed tributaries that drain the smelter site were obtained from the U. S. Environmental Protection Agency (EPA) and the Oklahoma Water Resources Board (OWRB). These samples were collected from December 2, 1982 through December 7, 1988. A summary of the EPA and OWRB analyses is presented on Table 2.

Water-quality data for the two unnamed tributaries of Coal Creek were obtained from laboratory analyses of surface-water (from three locations on the southern tributary and four locations on the northern tributary). These seven samples were collected by the writer on June 28, 1992 and submitted to the Oklahoma State Environmental Laboratory for analysis on June 29, 1992.

Field Procedures

Surface-water samples (1-ST62892 through 7-NT62892) were collected the morning of June 28, 1992. Approximately 0.23 inches of precipitation
AGENCY	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	OWRB
DATE COLLECTED	12/2/82	12/2/82	12/2/82	12/2/82	12/7/88	12/7/88	12/7/88	12/7/88	12/7/88	12/7/88	9/28/88
SAMPLE #	4588-A	4589-A	4593-A	4594-A	MFF 777	MFF 778	MFF779	MFF 780	MFF 787	MFF 788	0107
	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	mg/L
ALUMINUM					118.00	5,530.00	1,310.00	1,110.00	6,210.00	158.00	
ANTIMONY	6	<5	<5	<5	27.40	27.40	27.40	27.40	27.40	27.40	
ARSENIC	83	<5	<5	<5	5.40	5.40	5.40	5.40	5.40	5.40	
BARIUM					20.00	19.80	20.80	19.10	16.80	23.10	
BERYLLIUM	<20	<20	<20	<20	0.10	1.00	1.30	0.56	2.40	0.14	
CADMIUM	70	270	462	436	237.00	541.00	226.00	572.00	742.00	584.00	0.38
CALCIUM					127,000.00	218,000.00	96,000.00	221,000.00	319,000.00	212,000.00	
CHROMIUM	<20	<20	<20	<20	3.30	3.30	3.30	3.30	3.30	3.30	
COBALT					18.60	92.70	254.00	86.80	376.00	19.30	
COPPER	265	22	793	<20	650,00	9,030.00	11,800.00	5,490.00	30,800.00	24.00	58.2
IRON					80.80	734.00	431.00	199.00	187.00	153.00	1.1
LEAD	2,580	110	154	<30	8.70	65.30	76.90	32.70	105.00	16.90	0.54
MAGNESIUM					29,300.00	64,900,00	25,600.00	70,000.00	60,300.00	79,100.00	102.76
MANGANESE					1,050.00	5,070.00	6,880.00	51.90	11,900.00	4,990.00	1.41
MERCURY	84 00	0.97	<0 2	<0.2							
NICKEL	64	164	19,600	1,310	169.00	699.00	1,490.00	607.00	1,940.00	303.00	
POTASSIUM					3,680.00	10,200,00	7,430.00	10,700.00	9,630.00	12,300.00	
SELENIUM	<10	<10	13	<10	4.20	4.20	4.20	4.20	4.20	4.20	
SILVER	<20	<20	<20	<20	4.10	4.10	4.10	4.10	7.50	4.10	
SODIUM					41,100.00	82,700.00	43,000.00	89,200.00	85,500.00	97,900.00	
THALLIUM	<6	<6	<6	<6	5.20	5.20	5.20	5.20	5.20	5.20	
VANADIUM					5.00	5.00	5.00	5.00	5.00	5.00	
ZINC	21,200	78,500	290,000	83,800	69,900.00	166,000.00	83,900.00	176,000.00	210,000.00	186,000.00	151.38
TEMPERATURE	60¦ F	59¦ F.	58¦ F.	59¦ F.							
pH	6	6	5	6							4.57
SULFIDE	<0.1	<0.1	<0.1	<0.1							
CHLORIDE											23.9
HARDNESS											4270
SOLIDES, DISSOLVED											3498
SULFATE											123
NH3-N											0.058
NO2-N											2.2
PHOSPHORUS, TOTAL						• • •					0.48

SUMMARY OF LABORATORY ANALYTICAL RESULTS OF SURFACE WATER SAMPLES COLLECTED BY THE EPA AND OWRB

TABLE 2

NOTE:

1 --- ANALYSIS NOT PERFORMED

2. < LESS THAN DETECTION LIMIT 3. TOTAL METAL CONCENTRATIONS REPORTED

accumulated the two hours prior to sampling (Oklahoma Climatological Survey).

Surface-water samples for laboratory analysis were collected at locations downstream from the smelter property on each of the two unnamed tributaries. The first sample collected on each tributary was a few feet upstream from the confluence with Coal Creek. Subsequent samples were collected at progressively upstream locations. Surface-water samples 1-ST62892 through 3-ST62-892 were collected on the southern tributary and surface-water samples 4-NT62892 through 7-NT62892 were collected on the northern tributary (Figure 8).

Samples submitted for laboratory analyses were collected in three one-liter and one 500-milliliter, precleaned laboratory containers provided by the Oklahoma State Environmental Laboratory (OSEL). An attempt was made to collect a representative water sample at each location by minimizing the amount of sediment in each sample. Each sample container was labeled and stored immediately on ice. Specific conductance, pH, and temperature of each sample were measured in the field. Results of the field measurements are in Table 3.

Thirteen surface-water samples (8-SW through 20-SW) were collected for field measurements of pH, specific conductance, and temperature. Ten surfacewater samples were collected from the southern portion of the study area and three from the northern portion of the study area. Results of these field measurements are in Table 3.

One surface-water sample was collected from each of four arroyos (10-SW, 12-SW, 14-SW, and 15-SW) that drain the southern portion of the smelter site.

SUMMARY OF FIELD MEASUREMENTS OF SURFACE WATER SAMPLES

FIELD SAMPLE NO.	1-ST62892	2-ST62892	3-ST62892	4-NT62892	5-NT62892	6-NT62892	7-NT62892	8-SW	9-SW	10-SW
SPECIFIC CONDUCTANCE	1830.0	1340.0	1280.0	1980.0	2020.0	1810.0	490.0	1120.0	870.0	3730.0
pH	4.3	6.6	6.6	6.7	6.8	7.3	7.2	6.7	7.1	6.6
TEMPERATURE	23.6	23.8	24.0	23.8	23.6	23.0	24.0	22.6	23.1	23.6

FIELD SAMPLE NO.	11-SW	12-SW	13-SW	14-SW	15-SW	16-SW	17-SW	18-SW	19-SW	20-SW
SPECIFIC CONDUCTANCE	1530.0	3950.0	1990.0	2010.0	590.0 5 7	1910.0	1870.0	2340.0	1900.0	4640.0
TEMPERATURE	23.1	23.7	23.7	23.1	23.9	24.0	23.8	29.7	31.1	25.9

NOTE

1 SPECIFIC CONDUCTANCE IN MICROMHOS PER CENTIMETER

2. pH IN STANDARD UNITS

3. TEMPERATURE IN DEGREES CENTIGRADE

Six surface-water samples (8-SW, 9-SW, 11-SW, 13-SW, 16-SW, and 17-SW) were collected at locations above and below the confluences of the four arroyos with the southern unnamed tributary. These ten surface-water sample locations were upstream from surface-water sample location 1-ST62892.

Surface-water sample SW-18 was collected from runoff above a settling pond on the north side of the smelter site. Sample SW-19 was collected from water flowing over the spillway of the settling pond, and sample SW-20 was collected from a seep at the base of the west end of the settling pond dike. Field measurements of specific conductance, pH, and temperature were performed on these samples.

Sample Preparation

Samples placed in 500-milliliter containers were labeled "total metals" and preserved with approximately one milliliter of reagent grade nitric acid to achieve a pH less than two. The reagent grade nitric acid was provided by the OSEL. A portion of the water from one of the one-liter containers from each sample location was filtered into a second 500-milliliter container and labeled "dissolved metals". The water was pumped from the one-liter container into the 500-milliliter container using a peristaltic pump, disposable inert tubing and a 0.45micron high-capacity disposable filter. After each sample was filtered, the filter and tubing were replaced. The filtered sample was then preserved with approximately one milliliter of reagent-grade nitric acid, to achieve a pH less than two. The remainder of water in each of the one-liter containers was used for field measurements of pH, specific conductance, and temperature. A field filter blank was prepared utilizing distilled, deionized water provided by the OSEL. The distilled, deionized water was pumped from a one-liter container into a 500-milliliter container by the method discussed above. The container was marked "filter blank" and submitted to the OSEL for quality control.

Sample Analysis

Four sample containers from each sample location and one filter blank were retained by the writer and submitted to the OSEL on June 29, 1992 under chainof-custody control. The surface-water samples were analyzed for total and dissolved metals (aluminum, arsenic, barium, cadmium, calcium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, sodium and zinc). Results of analyses are in Tables 4 and 5, respectively. The samples were also analyzed for chloride, sulfate, nitrate, alkalinity (carbonate and bicarbonate), pH, specific conductance and total dissolved solids. These results are in Table 6. The filter-blank sample was analyzed for dissolved metals only.

Method 3010, digestion procedure for the preparation of aqueous samples, was used by the OSEL prior to the total and dissolved metal analyses by Method 6010, inductively coupled plasma atomic emission spectroscopy. These methods were used to analyze for the metals listed above, with the exception of

SUMMARY OF ANALYTICAL RESULTS (TOTAL METALS) OF AQUEOUS SAMPLES COLLECTED ON JUNE 28, 1992 DOWN STREAM FROM THE EAGLE-PICHER SMELTER SITE, HENRYETTA, OKLAHOMA.

OSDH LAB SAMPLE NO.	215447	215448	215449	215450	215451	215452	215453
FIELD SAMPLE NO.	1-ST62892	2-ST62892	3-ST62892	4-NT62892	5-NT62892	6-NT62892	7-NT62892
	µg/L						
ALUMINUM	30,080	518	2,154	1,325	1,576	355	1,996
ARSENIC	203	<60	<60	<60	<60	<60	<60
BARIUM	224	33	45	43	56	48	46
CADMIUM	426	263	211	432	331	22	5
CALCIUM	221,000	159,000	142,000	201,000	196,000	110,000	32,000
COBALT	105	<100	<100	<100	<100	<100	<100
COPPER	14,060	527	272	85	31	<10	38
IRON	102,400	780	3,094	625	1,528	966	3,912
LEAD	2,193	<45	61	<45	<45	<45	<45
MAGNESIUM	40,000	30,000	33,000	159,000	63,000	51,000	15,000
MANGANESE	4,881	360	1,558	4,391	3,868	3,347	1,130
MERCURY	2	<.5	<.5	<.5	<.5	<.5	<.5
NICKEL	800	334	336	939	783	75	77
POTASSIUM	11,900	13,500	13,400	27,100	23,500	15,200	6,500
SODIUM	83,000	60,000	57,000	116,000	104,000	159,000	29,000
ZINC	108,100	55,480	49,540	91,190	71,750	5,555	1,254

NOTE:

1. < LESS THAN DETECTION LIMIT

SUMMARY OF ANALYTICAL RESULTS (DISSOLVED METALS) OF AQUEOUS SAMPLES COLLECTED ON JUNE 28, 1992, DOWN STREAM FROM THE EAGLE-PICHER SMELTER SITE, HENRYETTA, OKLAHOMA.

OSDH LAB SAMPLE NO	215454	215455	215456	215457	215458	215459	215460	215446
FIELD SAMPLE NO.	1-ST62892	2-ST62892	3-ST62892	4-NT62892	5-NT62892	6-NT62892	7-NT62892	FILTER BLANK
	µg/L							
ALUMINUM	10,950	<300	<300	<300	<300	<300	<300	<300
ARSENIC	<60	<60	<60	<60	<60	<60	<60	<60
BARIUM	42	28	33	44	55	45	32	<10
CADMIUM	412	255	215	431	355	10	<5	<5
CALCIUM	222,000	159,000	147,000	203,000	214,000	111,000	32,000	<1000
COBALT	<100	<100	<100	<100	<100	<100	<100	<100
COPPER	13,230	195	137	46	12	<10	<10	10
IRON	3,248	55	132	90	196	146	110	64
LEAD	333	<45	<45	<45	<45	<45	<45	<45
MAGNESIUM	38,000	32,000	35,000	62,000	71,000	53,000	16,000	<1000
MANGANESE	4,749	359	1,589	4,484	4,221	3,365	1,071	<10
MERCURY	<.5	<.5	<.5	<.5	<.5	<.5	<.5	<.5
NICKEL	768	335	322	949	848	74	<25	<25
POTASSIUM	14,200	16,100	15,500	27,900	23,700	17,500	6,600	<100
SODIUM	84,000	61,000	60,000	120,000	116,000	163,000	28,000	<10000
ZINC	103,600	53,850	49,910	89,580	74,970	4,054	268	32

NOTE:

.

1. < LESS THAN DETECTION LIMIT

. 36

OKLAHOMA STA

SUMMARY OF ANALYTICAL RESULTS (GENERAL CHEMISTRY) OF AQUEOUS SAMPLES COLLECTED ON JUNE 28, 1992, DOWN STREAM FROM THE EAGLE-PICHER SMELTER SITE, HENRYETTA, OKLAHOMA.

OSDH LAB SAMPLE NO. 215447 215448 215449 215450 215451 215452 215452 215453 FIELD SAMPLE NO. 1-ST62892 2-ST62892 3-ST62892 4-NT62892 5-NT62892 6-NT62892 7-NT62893 CHLORIDE <10 <10 10 35 39 96 16 pH 7.4 7.5 SULFATE <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>								
CHLORIDE <10	OSDH LAB SAMPLE NO. FIELD SAMPLE NO.	215447 1-ST62892	215448 2-ST62892	215449 3-ST62892	215450 4-NT62892	215451 5-NT62892	215452 6-NT62892	215453 7-NT62892
pH 3.8 6 6.3 6.4 6.5 7.4 7.4 SULFATE 693 466 415 664 723 413 132 ALKALINITY, BICARBONATE <15	CHLORIDE	<10	<10	10	35	39	96	16
SULFATE 693 466 415 664 723 413 133 ALKALINITY, BICARBONATE <15	pH	3.8	6	6.3	6.4	6.5	7.4	7.5
ALKALINITY, BICARBONATE <15 24 35 46 43 246 89 ALKALINITY, TOTAL <15	SULFATE	693	466	415	664	723	413	132
ALKALINITY, TOTAL <15 24 35 46 43 246 89 ALKALINITY, CARBONATE 0<	ALKALINITY, BICARBONATE	<15	24	35	46	43	246	89
ALKALINITY, CARBONATE 0	ALKALINITY, TOTAL	<15	24	35	46	43	246	89
NITRATE/NITRITE AS N 0.7 0.9 0.9 0.6 0.5 <.5 <.1 SPECIFIC CONDUCTANCE 1,716 1,262 1,211 1,867 1,918 1,716 439 TOTAL DISSOLVED SOLIDS 1,660 1,135 1,062 1,766 1,754 1,300 306	ALKALINITY, CARBONATE	0	0	0	0	0	0	0
SPECIFIC CONDUCTANCE 1,716 1,262 1,211 1,867 1,918 1,716 439 TOTAL DISSOLVED SOLIDS 1,660 1,135 1,062 1,766 1,754 1,300 306	NITRATE/NITRITE AS N	0.7	0.9	0.9	0.6	0.5	<.5	<.5
TOTAL DISSOLVED SOLIDS 1,660 1,135 1,062 1,766 1,754 1,300 306	SPECIFIC CONDUCTANCE	1,716	1,262	1,211	1,867	1,918	1,716	439
	TOTAL DISSOLVED SOLIDS	1,660	1,135	1,062	1,766	1,754	1,300	306

NOTE:

1. CONCENTRATIONS IN MILLIGRAMS PER LITER; pH IN STANDARD UNITS

2. SPECIFIC CONDUCTANCE IN MICROMHOS PER CENTIMETER

3. < LESS THAN DETECTION LIMIT

mercury. Method 7470, a cold-vapor atomic absorption technique, was used to analyze for mercury (EPA Test Methods For Evaluating Solid Waste Physical/Chemical Methods, 1986).

Methods of Data Evaluation

Laboratory analytical data from this study are discussed in Chapter V. The discussion includes: data validation; a comparison of historical analytical data to data from this study; pH, specific conductance, and total-dissolved-solids measurements of samples collected in the study area; and chemical trends and reactions.

The data validation includes results of the filter blank analysis, a comparison of total versus dissolved metal concentrations, and a comparison of field versus laboratory measurements of pH and specific conductance.

Comparisons of historical analytical data (reported by the EPA and the OWRB) to data from this study, are included in sections for both the southern and northern tributaries. The purpose of this comparison is to determine whether significant changes in total metals concentrations have occurred over approximately a ten year period. It is assumed that any significant changes in total metal concentrations would be reflected by similar changes in dissolved metal concentrations.

Specific conductance, pH, and total-dissolved-solids values for sample locations in the study area are used to assess the general water quality of the two unnamed tributaries and their branches. Field measurements of specific conductance and pH were used to evaluate samples 8-SW through 18-NT. Laboratory measurements of specific conductance, pH, and total dissolved solids were used to evaluate samples 1-ST62892 through 7-NT62892.

Chemical trends and reactions were evaluated using Eh-Ph diagrams (Brookins, 1988; and Garrels and Christ, 1965). The computer program WATEVAL (Hounslow and Goff, 1995) was utilized for calculation of anioncation balance, analytical reliability, element ratios, and mass balance. WATEVAL was also used to generate Piper (Piper, 1944) and Stiff (Stiff, 1951) diagrams for graphical presentation of analytical data. WATEVAL printouts for dissolved metal samples 1-ST62892 through 7-NT62892 are in Appendix A. The computer program WATEQ4F (Ball, Nordstrom, and Zachmann, 1987) was utilized for the calculation of equilibrium distribution (activities) of inorganic aqueous species and saturations indices for solid phase minerals, for samples collected during this investigation. Portions of each of the WATEQ4F printouts for each of the samples are in Appendix B.

CHAPTER V

RESULTS AND DISCUSSION

This chapter is presented in four sections: Data Validation; Comparison of Historical Data to Data from This Study; Results of Specific Conductance, pH, and TDS Measurements; and Chemical Trends and Reactions. In the first section, results from seven sample analyses, one laboratory control sample (field-filter blank), and field measurements are compared for the purpose of identifying anomalies in the study data, if anomalies are present. In the second section, historical laboratory analytical data from the study area are compared to analytical data from corresponding surface-water sample locations of this study, to determine whether significant changes occurred over approximately a tenyear period. In the third section, pH, specific conductance, and total-dissolvedsolids (TDS) measurements are evaluated for anomalies or trends. In the fourth section, chemical trends and potential chemical reactions are evaluated for the surface-water in the southern and northern tributaries that drain the smelter site.

Data Validation

Sample containers, distilled deionized water, and nitric acid were provided by the OSEL. Inert tubing, 0.45-micron single-use filters, and a peristaltic pump were provided by Roberts/Schornick & Associates, Inc., an environmental consulting firm.

A field-filter blank was prepared using the materials listed above. The filter blank was submitted to the OSEL for analysis of dissolved metals. Copper, iron, and zinc were detected in the filter blank at concentrations of 10, 64, and 32 μ g/L, respectively (Table 5). The director of the OSEL indicated in conversation that plumbing repairs had been made to the distilled-deionized-water supply system, which possibly resulted in the detected concentrations.

Total metal concentrations are generally expected to be equal to, or greater than the dissolved metal concentrations, due to dissolution of metals from particulates (if present) in the sample, when the sample is preserved with nitric acid. A comparison of 112 (seven samples, 16 metal analyses per sample) total metal to dissolved metal analyses showed 35 analyses (nine metals) where dissolved metal concentrations exceeded total metal concentrations.

The percent differences in cation and anion balances calculated with WATEVAL ranged from -3.95 (7-NT62892) to 16.34 (3-ST62892). The percent differences in input cation and anion balances calculated with WATEQ4F ranged from -6.82 (7-NT62892) to 47.79 (1-ST62892). WATEVAL input parameters are generally limited to major and minor constituent concentrations. The constituent concentrations are used in balance calculations totally as aqueous species with ionic charge. WATEQ4F input parameters include major, minor, and trace constituents. Neutrally charged aqueous species are not used in WATEQ4F for calculation of balances. Thus, calculated percent differences in cation and anion balances are greater with WATEQ4F. High percent differences may indicate error in laboratory analyses.

Field measurements of pH and specific conductance were conducted on seven samples submitted for laboratory analysis (1-ST62892 through 7-NT62892), and thirteen additional samples (8-SW through 20-SW) collected from branches of the northern and southern tributaries. Field measurements are in Table 3 and laboratory measurements (1-ST62892 through 7-NT62892) are in Table 6. Generally, field and laboratory measurements of pH differed by less than 0.5 standard units (SU). Field and laboratory measurements of specific conductance differed by less than 115 micromhos per centimeter (µmhos/cm). Laboratory measurements will be used in the following discussion.

Comparison of Historical Data with Data from This Study

Southern Tributary

The southern portion of the smelter site is drained by several branches of the southern unnamed tributary. Each of the branches emanates from springs along the southern portion of the smelter slag, including the western and eastern slag piles (shown in Figure 9).

EPA sample locations MFF778 through MFF788 are on various branches of the southern tributary. Sample location 1-ST62892 (this study) is below the confluences of the several branches of the southern tributary (Figure 9). A

Figure 9. Sample Locations on the Southern Tributary

comparison the analytical results of EPA sample locations MFF778 through MFF788 (1988) to sample location 1-ST62892 shows total metal concentrations of similar magnitude.

EPA sample location MFF777 corresponds with this study's sample location 2-ST62892. Results of analyses for total metals for both samples MFF777 and 2-ST62892 are similar. The total metal concentrations were generally higher in sample 2-ST62892, with the exception of copper and manganese. Based on these comparisons of total metal concentrations, it is assumed that dissolved metal concentrations similarly have remained about the same since 1988.

Northern Tributary

The EPA collected samples from two locations on the northern tributary. One EPA sample location (4593-A) corresponds with this study's sample location 18-SW. Sample locations along the northern tributary are shown in Figure 10. Sample 18-SW was collected for field measurements of pH and specific conductance. The pH of samples 4593-A and 18-SW were 5 and 6.6 SU, respectively. Specific conductance was not reported for EPA sample 4593-A. The second sample collected by the EPA (4594-A) corresponds with sample location 4-NT62892. EPA sample 4594-A was analyzed for seven total metals (arsenic, cadmium, copper, lead, mercury, nickel, and zinc) of which three were detected as being above the laboratory's reporting limit. Comparison of total

Figure 10. Sample Locations on the Northern Tributary

metals analysis of sample 4594-A (Table 2) with sample 4-NT62892 (Table 4) shows similar concentrations between 1982 to 1992. Based on this comparison, it appears that dissolved-metal concentrations have remained about the same since 1982.

Results of Specific Conductance, pH, and TDS Measurements
<u>Southern Tributary</u>

Field measurements of pH and specific conductance were conducted on surface-water samples 8-SW through 17-SW (see Table 3) for the purpose of identifying anomalous areas (Figure 9). Generally, surface-water originating from the southern portion of the smelter slag and from the western slag pile had pH typical for stream waters. Measured pH for branches draining the southern portion of the smelter slag and the western slag pile ranged from 6.5 (12-SW) to 7.1 SU (10-SW). Specific conductance ranged from 870 to 3950 µmhos/cm. No trend was apparent between pH and specific conductance. However, surface-water from branches draining the eastern slag pile showed lower pH, ranging from 3.9 (14-SW) to 5.7 SU (15-SW), with specific conductance ranging from 590 to 2010 µmhos/cm for samples 14-SW through 16-SW. Approximately 200 feet downstream from the confluence of the most easterly branch of the southern tributary, pH was measured at 6.0 SU (17-SW).

Samples 1-ST62892 through 3-ST62892 (Figure 9) were submitted for laboratory analysis of pH, specific conductance, and TDS (see Table 6). The pH was measured at 3.8 SU for sample location 1-ST62892, approximately 150 feet downstream from location 17-SW. The low pH of this sample and of water draining form the eastern slag pile may be the result of pyrite oxidation. Pyrite was a gangue mineral with ores from the Tri-State District. Additionally, the low pH may be associated with acid-water drainage from former coal mines operated in this area. The recorded pH of samples 2-ST62892 and 3-ST62892 was 6 and 6.3 SU, respectively. Specific conductance of samples 1-ST62892, 2-ST62892, and 3-ST62892 was 1716, 1262, and 1211 µmhos/cm, respectively, with TDS of 1660, 1135, and 1062 mg/L, respectively.

Northern Tributary

Generally, water samples from the northern tributary showed pH that ranged from weakly acidic (3.8 SU) for water draining from the settling impoundment (19-SW) to weakly alkaline (7.5 SU) near the confluence with Coal Creek. Specific conductance and total dissolved solids generally decrease in a downstream direction.

Water samples were collected for field measurements of pH and specific conductance at locations 18-SW, 19-SW, and 20-SW (see Figure 10). Field measurements of pH ranged from 3.8 (19-SW) to 6.6 SU (18-SW). Specific conductance ranged from 1900 (19-SW) to 4640 µmhos/cm (20-SW). No trend was apparent between pH and specific conductance.

UNLARIUMA SIAIE UNIVERSITY

Samples 4-NT62892 through 7-NT62892 were submitted for laboratory analysis of pH, specific conductance, and TDS. The reported pH increased at progressively downstream locations from 6.4 (4-NT62892) to 7.5 SU (7-NT62892) (see Figure 10). Specific conductance for samples submitted for laboratory analysis ranged from 490 (7-NT62892) to 2020 µmhos/cm (5-NT62892). TDS ranged from 306 (7-NT62892) to 1766 mg/L (4-NT62892).

Chemical Trends and Reactions

The chemical trends and reactions generally are based on analyses, calculated activities, and calculated mineral species for solutions in equilibria. However, chemical reactions probably do not approach equilibria for water within the southern and northern tributaries because of highly variable stream velocity, commingling of runoff originating from different areas outside the smelter site, variable groundwater discharge, and seasonal changes in temperature, evaporation, and biological activity.

Southern Tributary

The southern portion of the smelter site is drained by several branches of the southern unnamed tributary. Each of the branches emanates from springs along the southern portion of the smelter slag, including the western and eastern slag piles (see Figure 9). Downstream from the confluences of the of the several branches of the southern tributary, flow is generally over a uniform substrate of

UNLANUMA STALE UNIVERSITY

silts, sands, gravels, and slag transported from the smelter site. Very little aquatic life is present.

<u>Major and Minor Constituents</u>. Samples 1-ST62892 through 3-ST62892 were analyzed for the following major constituents: sodium, calcium, magnesium, chloride, sulfate, and bicarbonate. Additionally, the samples were analyzed for the minor constituents potassium and iron.

Cations (calcium, magnesium, and sodium plus potassium) and anions (bicarbonate, sulfate, and chloride) are graphically presented in Figure 11 (Piper diagram). The three water analyses (1-ST62892 through 3-ST62892) lie on straight lines. The lines, when extrapolated, pass near the calcium apex of the cation triangle and through the sulfate apex of the anion triangle. As illustrated, magnesium and potassium concentrations remain relatively constant. However, calcium and sulfate ions are removed from solution between each successive downstream sample location. This trend is characteristic of $aypsum (CaSO_4)$ precipitation. However, the calculated (WATEQ4F) saturation indices shows that each of the samples are slightly under saturated with respect to gypsum. However, high percent differences in the cation and anion balances (sum of cations greater than the sum of anions for each of the samples) may indicate that sulfate concentrations should be higher than reported. Higher sulfate concentrations could result in higher calculated saturation indices. Dissolved CaSO₄ in each of the samples is further evident from the Stiff diagrams presented in Figure 12. Stiff diagrams illustrate major and minor cation and

Figure 11. Piper Diagram of Sample Analyses, Southern Tributary

UNJATUMA STATE UNIVERSITY

Figure 12. Stiff Diagrams of Sample Analyses, Southern Tributary

anion concentrations. As shown in Figure 12, the Stiff diagram for each of the samples exhibits the shape (calcium greater than sodium plus potassium and greater than magnesium, with high sulfate) characteristic of water with aqueous CaSO₄ species.

As calcium and sulfate ions are removed from solution in a downstream direction, the bicarbonate concentration increases. This trend of the data may be attributed to pyrite oxidation, the reaction of carbonic acid (CO₂) with calcite to form bicarbonate, the removal of calcium by precipitation of gypsum, and the removal of sulfate by precipitation of gypsum and of other sulfate minerals.

Pyrite oxidation is described by the following reaction to form iron hydroxide, sulfate, and hydrogen ions :

FeS₂ + 60 + 5H₂O => Fe(OH)₃ + 2SO₄² + 7H⁺

The hydrogen ions react with available calcite in stream sediment to form calcium ions, water, and carbon dioxide:

 $2CaCO_3 + 4H^+ => 2Ca^{2+} + 2H_2O + 2CO_2$

The oxidation of pyrite, resulting in low pH along with high sulfate, calcium, and iron concentrations, is consistent with the analyses of sample 1-ST62892. Additionally, pyrite oxidation is indicated by the Ca/(Ca+SO₄) ratio for sample 1-ST62892. A ratio of less than 0.5 along with low pH indicates pyrite oxidation. Further downstream, carbon dioxide dissolves to form carbonic acid, likely reacting with more calcite to form calcium and bicarbonate ions:

2CaCO₃ + 2H₂O + 2CO₂ => 2Ca²⁺ + 4HCO₃⁻

This is consistent with the increase in bicarbonate concentrations at both sample locations 2-ST62892 and 3-ST62892.

Calcium is removed from solution between each successive, downstream sample location. Similarly, TDS is lower at each successive, downstream location. The greatest change is between sample locations 1-ST62892 and 2-ST62892. Removal of calcium from solution probably is due to the precipitation of gypsum even though the calculated (WATEQ4F) saturation indices shows that each of the samples are slightly under-saturated with respect to gypsum. It is unlikely that calcium is removed by either by Ca-Mg exchange during dedolomitization or by Ca-Na exchange in clays. Calcium exchange with sodium in clays would likely result in higher sodium concentrations. However, sodium concentrations decrease from sample locations 1-ST62892 to 3-ST62892. Dedolomitization occurs because magnesium concentrations are relatively constant between the three sample locations.

Sulfate is removed from solution between each successive, downstream sample location. The greatest change is between sample locations 1-ST62892 and 2-ST62892. Removal of sulfate from solution probably is due to precipitation of gypsum (this assumption is based on the discussion above regarding the removal of calcium from solution). Additional sulfate probably is removed from solution by the precipitation of other sulfate minerals. The calculated (WATEQ4F) saturation indices show that water at each of the three sample locations is over-saturated with respect to barite (BaSO4) and that water at sample location 1-ST62892 is over-saturated with respect to basaluminite $(AI_4(OH)_{10}SO_4 \cdot 5H_2O)$. This probably would result in precipitation of these minerals. It is also assumed that anglesite (PbSO₄) is precipitated even though the calculated saturation index shows evidence of under-saturation. Eh-pH diagrams for the Pb-S-C-O-H system show that lead would likely precipitate as anglesite above pH of 5 SU (Brookins, 1988, and Garrels and Christ, 1965). Additionally, analytical results show that lead (in the presence of sulfate) is removed from solution by location 2-ST62892.

Sulfate probably is not removed from solution by replacement of calcite with gypsum in the presence of sulfate, because of the limited amount of calcite available in stream sediment. Neither limestones or dolomites, which would provide a continuing source of calcite in stream sediments, are exposed in the study area.

Trace constituents. Surface-water samples 1-ST62892 through 3-ST62892 were submitted for the analysis of 11 trace metals (aluminum, arsenic, barium, cadmium, cobalt, copper, lead, manganese, mercury, nickel, and zinc). Trace metals generally are defined by concentrations of less than 0.1 mg/L. The concentrations of three metals (arsenic, cobalt, and mercury) were less than the laboratory reporting limit in each of the samples. Six of the eight trace metals detected (lead, cadmium, nickel, zinc, copper, and barium) are associated with minerals contained in ore from the Tri-State Mining District. The presence of

VIUMIUMU OLATE UNIVERSITY

these trace metals in samples from this study area is consistent with metals reported in stream waters of the Picher Mining Area, northeastern Oklahoma, and southeastern Kansas (portion of the Tri-State Mining District) (Parkhurst, 1987).

Jenne (1968), Elder (1988), Horowitz (1985, and McLean and Bledsoe (1992) have discussed the importance of metal-partitioning in natural waters. Methods of metal-partitioning include complexation, sorption, precipitation, and biological uptake. However, complexes formed with organic matter and biologic uptake of the trace metals probably are less important, due to absence of observable aquatic life in the southern tributary.

Results of analyses made during this study were used to calculate (WATEQ4F) activities and saturation indices (Appendix B). The activities and saturation indices were used to evaluate which ions were likely to form complexes in the aqueous phase or were likely to precipitate, respectively. Availability of hydrous oxides of aluminum, iron, and manganese for sorption sites was evaluated. Additionally, the results analyses of trace metals detected in water samples from this study were compared to Eh-pH diagrams (Brookins, 1988, and Garrels and Christ, 1965) to determine which species (aqueous or solid phase) probably would exist for a given sample pH. The Eh for the samples were assumed to range from 0.4 to 0.6 volts (V). This range includes stream waters (0.4 V) to acid mine drainage (0.6 V) (Brookins, 1988).

Aluminum (10950 μ g/L) was reported in only one sample, 1-ST62892 (pH of 3.8). The Eh-ph diagram for aluminum (AI-O-H system) shows that AI³⁺ may be in solution at pH than approximately 3.7 SU (Brookins, 1988, and Garrels and Christ, 1965). At pH greater than approximately 3.7 SU, aluminum precipitates as gibbsite (AI(OH)₃). However, the calculated (WATEQ4F) saturation indices for basaluminite (AI₄(OH)₁₀SO₄ ·5H₂O) and diaspore (AIO(OH)) show that these species are slightly over-saturated and probably would precipitate. This is consistent with the calculated activities. The highest activities in the aqueous phase are AIOH⁺² and AISO₄⁺¹ species. Precipitation of aluminum is consistent with analytical results. Aluminum was removed from solution by sample location 2-ST62892 (pH of 6.0 SU). Sample location 2-ST62892 is approximately 700 feet downstream from sample location 1-ST62892.

Lead was reported in one sample only, 1-ST62892 (333 μ g/L). The Eh-pH diagram for lead (Pb-S-C-O-H system) shows that Pb²⁺ may be in solution at pH less than approximately 0.5 SU. Above a pH of 0.5 SU, anglesite (PbSO₄) probably would precipitate (Brookins, 1988, and Garrels and Christ, 1965). This is consistent with the activities. The highest activity in the aqueous phase is the PbSO₄ species. Precipitation of lead is consistent with results of analyses, which show that lead was removed from solution by sample location 2-ST62892. However, the saturation index shows that sample 1-ST62892 is under-saturated with respect to anglesite.

The Eh-pH diagram for barium indicates that barium (Ba-S-O-H-C system) precipitates as barite (BaSO₄) at pH greater than 1 SU (Brookins, 1988, and Garrels and Christ, 1965). This is consistent with the calculated saturation indices, which show that barite is slightly over-saturated in each of the three samples. However, precipitation of barite may not occur. Barium concentrations are about the same among each of the three sample locations. The activities for each of the samples show that barium forms a complex with sulfate (BaSO₄) in the aqueous phase.

Eh-pH diagrams are similar for cadmium (Cd-C-S-O-H system), copper (Cu-C-S-O-H system), nickel (Ni-O-H system), manganese (Mn-O-H system), and zinc (Zn-O-H-S-C system) (Brookins, 1988, and Garrels and Christ, 1965). The diagrams indicate that each of these metals should be in an aqueous phase below pH of about 7 or 8 SU, as hydrated free ions having the general formula $M(H_2O)_x^{n+}$ where M is the ion and n+ is the ionic charge (Elder, 1988). This is consistent with results discussed below.

Concentrations of cadmium (412 µg/L), copper (13230 µg/L), nickel (768 µg/L), manganese (38000 µg/L), and zinc (103600 µg/L) were high at sample location 1-ST62892, where the pH was 3.8 SU. These metals were in solution at sample locations 2-ST62892 (700 feet downstream from location 1-ST62892) and 3-ST62892 (300 feet downstream from location 2-ST62892) where pH measurements were 6.0 and 6.3, respectively. However, concentrations of cadmium, nickel, and zinc were reduced by approximately 50%, manganese by

93%, and copper by approximately 99% of the amounts reported for sample 1-ST62892. These significant changes coincide with precipitation of hydrous oxides of aluminum and iron. Presumably, the most important mechanism for removal of cadmium, copper, manganese, nickel, and zinc ions between sample locations 1-ST62892 and 2-ST62892 is sorption to hydrous oxides of aluminum and iron. This is consistent with the calculated saturation indices, which show that the samples are under-saturated with respect to cadmium, nickel, manganese, and zinc solid-phase minerals, with the exception of otavite (CdCO₃) in sample 3-ST62892. As discussed above, Eh-pH diagrams show that the aqueous/solid phase boundaries are at pH of approximately 7 to 8 SU for cadmium, nickel, manganese, and zinc.

As discussed previously, iron hydroxide is precipitated as a product of pyrite oxidation and aluminum hydroxide is precipitated as a result of change in pH. Both iron and aluminum hydroxides would be available as sorption sites or sorption edges for cadmium, copper, manganese, nickel, and zinc ions. The low pH and high dissolved aluminum and iron concentrations at sample location 1-ST62892 indicate a continuing source for precipitation of iron and aluminum hydroxides. Additionally, amorphous hydrous oxides of iron (and manganese) tend to precipitate, forming coatings on clay particles. This increases their surface area and efficiency as sorption edges (Jenne, 1968).

Eh-pH diagrams for copper show that precipitation of malachite (Cu₂CO₃(OH)₂), or tenorite (CuO) is likely at pH of approximately 6.3 SU, with a

Cu²⁺ activity of 10⁻⁷ (sample location 3-ST62892). Elder (1988) points out that copper species are dominated by malachite below pH of 7 and tenorite above pH of 7 SU (depending on the ratio of activity of copper species to the activity of the copper ions). However, the saturation indices show that samples 2-ST62892 and 3-ST62892 are under-saturated for copper solid-phase minerals.

The saturation indices show under saturation for manganese minerals in each of the three samples.

Northern Tributary

Water emanates from springs along a channel cut through the slag immediately upstream from a settling impoundment along the northern limit of the smelter slag. Runoff and water from springs discharge into the settling impoundment. Water flows from a spring on the west side of a settlingimpoundment dam and from the impoundment spillway across silts, sands, gravels, and slag to sample location 4-NT62892. Additionally, stormwater runoff from the east side of U. S. Highway flows in washes to a western branch of the northern tributary (along the northwestern side of the smelter slag).

During periods of heavy precipitation, springs discharge from mixed alluvium and slag on the west side of the northern tributary (near sample location 4-NT62892) to the northern tributary. Water flows from sample location 4-NT62892 across exposed Senora shale, and then flows beneath silts, sands, gravels, and slag within the channel before discharging from springs at sample location 5-NT62892 (a distance of about 600 feet between sample locations).

Alluvial fans, on the west side of a butte on the east side of the northern tributary (Figure 2), extend west to the northern tributary. During periods of heavy precipitation, springs flow in steep washes on the alluvial fans, and flow from the base of the fans to the northern tributary (between sample locations 5-NT62892 and 6-NT62892 shown in Figure 8). Flow from sample location 5-NT62892 to 6-NT62892 is through a wetlands covered with reeds and willows for a distance of approximately 770 feet. The water then flows north into an impoundment that is approximately 2050 feet (south-to-north direction) by 150 feet wide. Sample location 7-NT62892 is approximately 3200 feet downstream from sample location 6-NT62892 (650 feet downstream from the impoundment). Sample locations along the northern tributary are shown in Figure 10.

<u>Major and Minor Constituents</u>. Samples 4-NT62892 through 7-NT62892 were analyzed for the major constituents: sodium, calcium, magnesium, chloride, sulfate, and bicarbonate. Additionally, the samples were analyzed for the minor constituents, potassium and iron.

Cations (calcium, magnesium, and sodium plus potassium) and anions (bicarbonate, sulfate, and chloride) are shown in Figure 13 (Piper diagram), and these constituents show distinctive trends.

Stream flow from sample locations 4-NT62892 to 5-NT62892 is over exposed Senora shale, subsurface flow through sands and gravels within the channel,

Figure 13. Piper Diagram of Sample Analyses, Northern Tributary

and flow from springs at sample location 5-NT62892 (approximate distance of 600 feet). The analysis of sample 4-NT62892, compared to the analysis of 5-NT62892, shows slight increases in calcium, iron, magnesium, sulfate, and chloride, with slight decreases in sodium plus potassium and bicarbonate. This trend is shown by the Piper diagram (Figure 13). Lines connecting the two data points in both the cation and anion portions of the Piper diagram illustrate a trend toward the calcium-magnesium and sulfate-chloride baselines, respectively. This trend could be attributed to oxidation of minor amounts of pyrite (increases in iron and sulfate) buffered by dissolution of dolomite (increases in calcium and magnesium). However, bicarbonate concentrations decreased, unlike the bicarbonate trend of the southern tributary. As discussed previously (Southern Tributary, Major and Minor Constituents), increase in bicarbonate is anticipated as an indirect product of pyrite oxidation.

Stream flow from sample locations 5-NT62892 to 6-NT62892 is through the wetlands environment (approximate distance of 770 feet). The analysis of sample 5-NT62892 compared to the analysis of sample 6-NT62892 shows significant increases in sodium plus potassium (33%), bicarbonate (472%), and chloride (146%) and significant decreases in calcium (48%), magnesium (25%), and sulfate (43%). This trend is illustrated by the Piper diagram (Figure 13). Lines connecting the two data points on both the cation and anion portions of the diagram show a trend toward the sodium plus potassium and bicarbonate regions, respectively.

E I ICUNIC LEVEN

Changes in composition from location 5-NT62892 to 6-NT62892 are accompanied by increase in pH from 6.5 to 7.4 SU. Increase in pH, along with increases in sodium plus potassium, bicarbonate, and chloride, probably are the result of commingling of runoff originating outside the smelter site. Analyses of water samples collected by the OWRB at locations both above and below confluences of the southern and northern unnamed tributaries on Coal Creek (Grimshaw, Shapiro, Powell, and Black, 1986) reported pH as high as 7.4 SU. Analyses of water samples collected from Lake Henryetta (approximately 3.5 miles southeast of the smelter site) reported pH as high as 7.4 SU, sodium plus potassium as high as 405 ppm, bicarbonate as high as 270 ppm, and chloride as high as 740 ppm (Smith, Dott, and Warkentin, 1942). Lake Henryetta is on Wolf Creek, in an area of similar geological setting. Therefore, pH, sodium plus potassium, bicarbonate, and chloride reported at sample location 6-NT62892 are consistent with natural surface-water in the area.

The change in water chemistry at sample location 6-NT62892 is illustrated by Stiff diagrams in Figure 14. Samples 4-NT62892 and 5-NT62892 have shapes similar to those of samples 1-ST62892 through 3-ST62892 from the southern tributary. The similarity is indicative of water with aqueous CaSO₄ species. This is assumed to be the result of pyrite oxidation and dissolution of calcite. However, the Stiff diagram for sample 6-NT62892 has a shape suggestive of water associated with shale, reflecting the possible influence of commingling of runoff from the smelter site with natural water from springs along the base of

63

I TOMOLETEN IN

Figure 14. Stiff Diagrams of Sample Analyses, Northern Tributary

alluvial fans on the east side of the northern tributary, and groundwater discharge from outcropping fractured shale of the Senora Formation.

The significant reduction of calcium, magnesium, and sulfate probably is the result of precipitation of sulfate and carbonate minerals. Commingling of runoff from the smelter site (pH of 6.3 to 6.4 SU) with natural surface-water (pH of 7.4 SU) probably would result in a pH boundary. This is consistent with the analyses. The calculated saturation indices show that sample 6-NT62892 is over-saturated with respect to calcite (CaCO₃), dolomite (CaMg (CaCO₃)₂), rhodochrosite (MnCO₃), ZnCO₃ ·H₂O, and otavite (CdCO₃). Additionally, gypsum (CaSO₄) may precipitate even though the calculated saturation indices is undersaturated with respect to gypsum. High percent differences in the cation and anion balances (sum of cations greater than the sum of anions for each of the samples) may indicate that sulfate concentrations should be higher than reported. Higher sulfate concentrations could result in higher calculated saturation indices.

Water from sample location 6-NT62892 to 7-NT62892 passes through the impoundment (total distance between the locations is approximately 3245 feet). Comparison of analyses of samples 6-NT62892 to 7-NT62892 shows overall decrease in concentrations of major and minor constituents, which probably is due to dilution from stormwater runoff. However, the percent milliequivalent concentrations of calcium, magnesium, bicarbonate, and sulfate increase, but concentrations of sodium and chloride decrease. This trend is illustrated by the

「 「 「 」」」」」」」」」
Piper diagram (Figure 13). Lines connecting the two data points on the cation and anion portions of the diagram show a trend toward the calcium-magnesium and bicarbonate-sulfate baselines, respectively. Changes in composition (percent milliequivalent concentrations) between sample locations 6-NT62892 and 7-NT62892 are reflected in the Stiff diagram in Figure 14. The shape of the Stiff diagram for sample 7-NT62892 is indicative of water associated with dissolution of limestone. However, as illustrated by the shape of the Stiff diagram, magnesium and sulfate concentrations are higher than shown in literature (Hounslow, 1995); they may be the result of dissolution of minor amounts of dolomite along with sulfate from pyrite oxidation.

<u>Trace Constituents</u>. Surface-water samples 4-NT62892 through 7-NT62892 were submitted for analysis of 11 trace metals (aluminum, arsenic, barium, cadmium, cobalt, copper, lead, manganese, mercury, nickel, and zinc). Trace metals, as discussed previously, generally are defined by concentrations of less than 0.1 mg/L. Concentrations of aluminum, arsenic, cobalt, lead, and mercury were less than the laboratory reporting-limit in each of the samples. Five of the six trace metals (barium, cadmium, copper, nickel, and zinc) are associated with minerals contained in ore from the Tri-State Mining District. As discussed previously, the presence of these trace metals in samples from this study area are consistent with metals reported in stream waters of the Picher Mining Area, northeastern Oklahoma, and southeastern Kansas (Parkhurst, 1987).

66

たまでですたか したい

Methods of metal-partitioning discussed previously (Southern Tributary, Trace Constituents) include complexation, sorption, precipitation, and biologic uptake. Each of these methods probably is important in varying degrees along the northern tributary.

Calculated activities and saturation indices, as for samples from the southern tributary, were used to evaluate which ions were likely to form complexes in the aqueous phase and which were likely to precipitate. Availability of hydrous oxides of aluminum, iron, and manganese for sorption sites was evaluated. Analyses of the trace metals detected in water samples from this study were compared to Eh-pH diagrams (Brookins, 1988, and Garrels and Christ, 1965), to determine which species (aqueous or solid phase) probably would exist for a given pH. Eh values of the samples were assumed to range from 0.4 to 0.6 volts (V), as was assumed for samples from the southern tributary.

Precipitation is assumed to be the most important mechanism for reducing concentrations of cadmium, manganese, and zinc. As discussed earlier, a significant difference in pH occurs between sample location 5-NT62892 (6.5 SU) and 6-NT62892 (7.4 SU). This difference in pH would likely result in a pH boundary.

Eh-pH diagrams show that the aqueous/solid phase boundaries are at pH of approximately 7 to 8 SU for cadmium, manganese, and zinc (Brookins, 1988, and Garrels and Christ, 1965). This is consistent with the calculated saturation indices. Saturation indices show that the samples 4-NT62892 (pH of 6.4 SU)

and 5-NT62892 (pH of 6.5 SU) are over-saturated with respect to otavite $(CdCO_3)$. However, at sample location 6-NT62892 (pH of 7.4 SU), water is oversaturated with respect to rhodochrosite (MnCO₃), ZnCO₃ ·H₂O, and otavite $(CdCO_3)$ and likely results in precipitation of these minerals. This is consistent with the analyses which show the most significant reduction in concentrations occur at sample location 6-NT62892.

The Eh-pH diagram for barium indicates that barium (Ba-S-O-H-C system) precipitates as barite (BaSO₄) at pH greater than 1 SU (Brookins, 1988, and Garrels and Christ, 1965). This is consistent with the calculated saturation indices which show that barite is slightly over-saturated in each of the four samples. However, barite may not be precipitated. Barium concentrations are about the same between sample locations 4-NT62892 and 7-NT62892.

Sorption is assumed to be the most important mechanism for reducing concentrations of copper and nickel. As shown on the southern tributary, concentrations of dissolved aluminum and iron are high in low-pH water (location 1-ST62892). Likewise, it is assumed that low-pH water (3.8 SU) contained in the holding impoundment located on the north side of the slag pile would have similar concentrations of dissolved aluminum and iron, which would provide a continuing source for precipitation of iron and aluminum hydroxides. Iron and aluminum hydroxides then would be available as sorption sites for ions of cadmium, copper, manganese, nickel, and zinc. Further, the reduction in copper, zinc, cadmium, and nickel could be due, in part, to sorption by calcium

carbonate (McLean and Bledsoe, 1992), which is over-saturated at location 6-NT62892 and likely precipitates.

Eh-pH diagrams show that copper precipitation as malachite (Cu₂CO₃(OH)₂), and/or tenorite (CuO) is likely at a pH of approximately 6.3 SU (Brookins, 1988, and Garrels and Christ, 1965). Copper is removed from solution by sample location 5-NT62892 (pH of 6.5 SU). However, calculated saturation indices show that tenorite and malachite are under-saturated in samples 4-NT62892 and 5-NT62892. Therefore, sorption is the likely mechanism for removal of copper from solution.

The most significant reduction in concentrations of nickel occur between locations 5-NT62892 and 6-NT62892. Eh-pH diagrams for nickel show that the aqueous-Ni²⁺ and solid phase boundary is approximately at 8.8 SU (with an activity of 10⁻⁶), which is well above reported pH for samples from the northern tributary (Brookins, 1988, and Garrels and Christ, 1965). Therefore, sorption is the likely mechanism for removal of nickel from solution.

Lower concentrations of trace metals could also result from uptake by vegetation and sorption by humic materials present in water, from sample location 5-NT62892 through 7-NT62892. Mildly reducing or gley water resulting from decaying organic matter, present in water between sample locations 5-NT62892 and 6-NT62892, is not indicated. Between sample locations 5-NT62892 and 6-NT62892, iron and trace metal concentrations decrease. In gley water, dissolved oxygen, hydrogen sulfide, and ferric oxides and hydroxides are

absent. Ferrous iron is present, and generally trace metal concentrations increase because of the absence of ferric oxides and hydroxides (Hounslow, 1995).

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

The following conclusions are based on the results of this study:

1. Comparison of historical analytical date to data from this study indicates that total metal and probably dissolved metal concentrations in water draining from the smelter slag have not changed significantly since the 1982 and 1988 EPA sampling events.

2. Generally, pH was slightly acidic to slightly alkaline for samples collected in the study area. Three anomalous areas (pH less than 4 SU) were identified. One area included branches of the southern tributary draining the eastern slag pile. A second area was at sample location 1-ST62892 on the southern tributary. The third area was water flowing from the settling impoundment at the northern margin of the smelter slag. These pH anomalies probably are due to pyrite oxidation and/or acid mine drainage from former coal mines operated in the study area.

3. Water flows over a substrate of mixed silts, sands, gravels, and slag in the southern tributary. The data trends of water analyses from the southern tributary are generally described as follows:

a. The trend of major and minor constituents, as shown on a Piper diagram, is characteristic of gypsum precipitation. This is illustrated as removal of calcium and sulfate between successive, downstream sample locations.

b. The trend of minor and trace constituents is precipitation of aluminum and iron hydroxides, anglesite, basaluminite, and diaspore along with the sorption of cadmium, copper, nickel, manganese, and zinc to aluminum and iron hydroxides between each successive downstream sample locations.

4. Unlike flow in the southern tributary, flow in the northern tributary is through three environments: over and through silts, sands, gravels, and slag; through a wetlands; and through an elongated impoundment. Each of the three environments exhibits different data trends for major and minor constituents and trace constituents as described below:

a. The major and minor constituent trends, as illustrated on a Piper diagram, are as follows:

1. Flow over and through silts, sands, gravels, and slag is characterized by a trend toward the calcium-magnesium and sulfate-chloride baselines of the Piper diagram. This trend reflects slight increases in calcium, magnesium, sulfate, and chloride with decreases in sodium plus potassium and bicarbonate. This trend could be attributed to oxidation of minor amounts of pyrite buffered by dissolution of dolomite.

2. Flow through the wetlands is characterized by a trend toward the sodium plus potassium and bicarbonate regions of the Piper diagram. This

trend is likely due to the commingling of runoff from the smelter site with natural water (significant increases in sodium plus potassium, bicarbonate, and chloride) from springs along the base of alluvial fans on the east side of the northern tributary, and groundwater discharge from outcropping fractured shale of the Senora Formation, resulting in a higher pH (pH boundary) at sample location 6-NT62892 and precipitation calcite, dolomite (decreases in calcium and magnesium), and sulfate minerals (possibly gypsum). Gypsum (CaSO₄) may precipitate even though the calculated saturation indices is under-saturated with respect to gypsum. High percent differences in the cation and anion balances (sum of cations greater than the sum of anions for each of the samples) may indicate that sulfate concentrations should be higher than reported. Higher sulfate concentrations could result in higher calculated saturation indices.

3. Flow through the impoundment is characterized by a trend towards the calcium-magnesium and bicarbonate-sulfate baselines of the Piper diagram. This trend reflects slight increases in the percent milliequivalent concentrations of calcium, magnesium, bicarbonate, and sulfate with decreases in sodium plus potassium and chloride. This trend may be the result of dissolution of minor amounts of dolomite, sulfate from pyrite oxidation, and bicarbonate as an indirect product of pyrite oxidation.

b. The trace constituent trends are as follows:

1. Precipitation is assumed to be the most important mechanism for reducing concentrations of cadmium, manganese, and zinc by the

precipitation of otavite, rhodochrosite, and ZnCO₃ ·H₂O, respectively. Precipitation probably is in response to a pH boundary at sample location 6-NT62892.

2. Saturation indices shows that barite is over-saturated in each of the four samples. However, barium concentrations remain about the same among the sample locations. Therefore, barite probably does not precipitate.

3. Sorption of copper and nickel to aluminum and iron hydroxides, calcite, and humic material is assumed to be the most important mechanism for removal of copper and nickel from solution. Calculated saturation indices show that samples with detectable levels of copper and nickel are under-saturated with respect to solid phase minerals.

Recommendations

The following are the author's recommendations for further study:

 Conduct a second surface-water sampling, using existing sample locations; the analyses could be used for comparison with data from the June 28, 1992.

2. A systematic study to determine the source of low pH waters.

3. Field measurements of Eh and dissolved oxygen in addition to pH.

4. Collect water samples from Coal Creek, upstream and downstream from confluences of the southern and northern tributaries, to assess the impact of tributaries on the water quality of Coal Creek.

LITERATURE CITED

- Ball, J. W., D. K. Nordstrom, and D. W. Zachmann, 1987, WATEQ4F A Personal Computer FORTRAN Translation of the Geochemical Model WATEQ2 with Revised Data Base, U. S. Geological Survey Open File Report 87-50, Menio Park, Ca.
- Barrett, F. B., 1940, Impurities in Minerals of the Picher District, Engineering Mining Jour., Vol. 141, No. 1, p. 47.
- Bingham, Roy H., R. L. Moore, 1991, Reconnaissance of the Water Resources of the Oklahoma City Quadrangle, Central Oklahoma: Okla. Geol. Surv. Hydrologic Atlas 4.
- Brookins, Douglas G., 1988, Eh-pH Diagrams for Geochemistry: Springer-Verlag, New York, 176 p.
- Chance, H. M., 1890, Geology of the Choctaw Coal Fields: Trans. Amer. Inst. Mining Engineers, Vol. 18, pp. 653-661.
- Culp, Eugene, editor, 1955, Highway Geology of Oklahoma: Okla. City Geol. Soc., 172 p.
- Drake, N. F., 1897, A Geological Reconnaissance of the Coal Fields of the Indian Territory: Am. Philos. Soc. Proc., Vol. 36, pp. 326-419.
- Dunham, R. J., J. V. A. Trumbull, 1955, Geology and Coal Resources of the Henryetta Mining District, Okmulgee County, Oklahoma: Geol. Surv. Bul. 1015-F, 223 p.
- Elder, John F., 1988, Metal Biogeochemistry in Surface-Water Systems -- A Review of Principles and Concepts: U. S. Geol. Surv. Circ. 1013, 43 p.
- Environmental Protection Agency, 1983, Site Inspection -- P. K. Permacast Site: U. S. Env. Prot. Agency, OK 3751.
- Environmental Protection Agency, 1987, Summary Review of the Health Effects Associated with Zinc and Zinc Oxide, Health Issue Assessment: U. S. Env. Prot. Agency, Office of Health and Environmental Assessment, EPA/600/8-87/022F, 43 p.

- Environmental Protection Agency, 1986, Test Methods for Evaluating Solid Waste Physical/Chemical Methods: U. S. Env. Prot. Agency,
- Environmental Protection Agency, 1990, Site Assessment and Draft Action Memorandum Report -- P. K. Permacast Site: U. S. Env. Prot. Agency, CERCLIS OKD980696785.
- Environmental Protection Agency, 1988, Site Assessment Report -- P. K. Permacast Site: U. S. Env. Prot. Agency, OKD980696785.
- Federal Emergency Management Agency (FEMA), Flood Insurance Study, City of Henryetta, Okmulgee County, Oklahoma, Washington D. C., December, 1991.
- Garrels, Robert M., C. L. Christ, 1965, Solutions, Minerals, and Equilibria, Harper Row.
- Grimshaw, Herbert J., G. L. Shapiro, P. D. Powell, J. J. Black, 1986, Synopsis An Intensive Survey of Coal Creek, Oklahoma to Determine Current and Potential Beneficial Uses, Okla. Water Resources Board, Synopsis, 40 P.
- Harbaugh, M. D., 1933, The Story of the Tri-State Zinc and Lead Mining District: International Geological Congress, Souvenir, 43 p.
- Horowitz, Arthur J., 1985, A Primer on Trace Metal-sediment Chemistry: U. S. Geol. Surv. Water Supply Paper 2277, 67 p.
- Hounslow, Arthur W., 1995, Water Quality Data: Analysis and Interpretation, CRC Press-Lewis Publishers, New York, 362 p.
- Hounslow, Arthur W. and Goff, K. D., 1995, WATEVAL.
- Johnson, Kenneth S., and R. E. Denison, 1973, Igneous Geology of the Wichita Mountains and Economic Geology of the Permian Rocks in Southwest Oklahoma, Okla. Geol. Surv. Special Publication 73-2, 33 p.
- Logan, David, 1957, Geology of Okmulgee District: Okmulgee Geol. and Enig. Society
- Jenne, E. A., 1968, Controls on Mn, Fe, Co, Ni, Cu, and Zn Concentrations in Soils and Water: the Significant Role of Hydrous Mn and Fe Oxides, Advances in Chemistry Series, No. 73, Trace Inorganics in Water: American Chemical Society, Washington D. C., Chapter 21, p. 337-387.

- Johnson, Kenneth S., 1993, Maps Showing Principal Groundwater Resources and Recharge Areas in Oklahoma, Oklahoma State Department of Health/Oklahoma Geological Survey.
- Marcher, Melvin V., 1988, Reconnaissance of the Water Resources of the Fort Smith Quadrangle East-Central Oklahoma: Okla. Geol. Surv. Hydrogeologic Atlas 1.
- McKnight, Edwin T., R. P. Fisher, 1970, Geology and Ore Deposits of the Picher Field Oklahoma and Kansas: U. S. Geol. Surv. Professional Paper 588, 165 p.
- McLean, Joan E., Bledsoe, B. E., 1992, Behavior of Metals in Soils, EPA Groundwater Issue, EPA/540/S-92/018
- Mower, Roland D., 1959, The Zinc Smelting Industry in Oklahoma: Oklahoma State University, Masters Thesis, 101 p.
- National Oceanic and Atmospheric Administration, 1961-1990, Monthly Station Normals of Temperature, Precipitation, and Heating and Cooling Degree Days, Climatography of the United States No. 81.
- Oakes, Malcolm C., W. S. Motts, 1963, Geology and Water Resources of Okmulgee County, Oklahoma: Okla. Geol. Surv. Bul. 91, 164 p.
- Oklahoma Climatological Survey, Precipitation data for Dewar, Oklahoma, ASCII data file.
- Oklahoma Water Resources Board, 1989, Complaint Inspection Report Coal Creek: Okla. Water Res. Board. WR-88-807.
- Parkhurst, David L., 1987, Chemical Analyses of Water Samples From the Picher Mining Area, Northeast Oklahoma and Southeast Kansas: U. S. Geol. Surv. Open-file Report 87-453, 43 p.
- Piper, A. M., 1944, A graphical Procedure in the Geochemical Interpretation of Water-Analyses, American Geophysical Union Trans., v. 25, pp. 914-923.
- Smith, Otto M., R. H. Dott, and E. C. Warkentin, 1942, The Chemical Analysis of the Waters of Oklahoma, Publication No. 52, Engineering Experiment Station, Oklahoma Agricultural and Mechanical College, 461 p.
- Sparwasser, W. A., V. Bogard, and O. Henson, 1968, Soil Survey of Okmulgee County, Oklahoma: U. S Dept. of Ag., Soil Cons. Service.

- State of Oklahoma Department of Mines, correspondence, 1992, Underground Coal Mines located in Section 5 of Township 11 North, Range 13 East, Okmulgee County, Oklahoma.
- Stiff, H. A., Jr., 1951, The Interpretation of Chemical Water Analysis by means of Patterns, J. Petrol., tech pt. 15.
- U. S. Geological Survey, 1972, State of Oklahoma, Denver, Co.
- U. S. Geological Survey, 1979, Henryetta Quadrangle, Oklahoma, 7.5 Minute Series, Denver, Co.
- Weidman, Samuel, 1932, Miami Picher Zinc-Lead District, Oklahoma, Oklahoma Geological Survey, Bulletin No. 56.

APPENDIXES

APPENDIX A

WATEVAL PRINTOUTS

-

f . . Sample 1-ST62892 pH TempC = 25.0 = 3.8 TDS = 1660.0 COND = 1716.0 HARD = 0.0 DBNS = 0.0 x-cor = 0.0 y-cor = 0.0 Units = mg/L rock = 0.0 mg/L mmole/L meq/L % meg/L 84.0 . Na+ 3.6536 3.6536 19.9 K + 14.2 0.3632 0.3632 2.0 Ca++ 5.5389 222.0 11.0778 60.4 Mg++ 38.0 1.5630 3.1260 17.0 C1-0.0 0.0000 0.0000 0.0 S04--693.0 7.2142 14.4285 99.9 HCO3-0.0 0.0000 0.0000 0.0 C03--0.0 0.0000 0.0000 0.0 Si02 0.0 0.0000 0.0000 0.0 0.0 Li+ 0.0000 0.0000 0.0 Sr++ 0.0 0.0000 0.0000 0.0 Ba++ 0.0 0.0003 0.0006 0.0 Fe++ 3.2 0.0582 0.1163 0.6 N03-0.7 0.0113 0.0113 0.1 P-0.0 0.0000 0.0000 0.0 Br-0.0 0.0000 0.0000 0.0 B 0.0 0.0 0.0000 0.0000 LANGELIER INDEX = 0.00 SAR 1.4 -Conductivity = 1716 umho Est. Cond. = 1834 umho Analytical checks and comparisons Sum anions = 14.4398 RALANCE = 11.89 % Sum cations = 18.3376 TDS entered = 1660 mg/L TDS(180) calc = TDS calc = 1055 mg/L 1055 mg/L Entered TDS - TDS(calc) diff= 36.4 % Entered TDS - TDS(180) diff= 36.4 % Conductivity = 1716 umho TDS(entered)/Cond ratio = 0.97 TDS(calc)/Cond = 0.61 Conductivity/Sum-cations = 94 Usual range = 0.55 to 0.75 Usual range = 0.55 to 0.75= 90 - 110Usual range Entered and calculated density Meas. Density = 0.0000 Calc. Density = 1.0011 Entered and calculated hardness Meas. hardness= 0.0 mg/L CaCO3 Calc. hardness= 710.8 mg/L CaC03 Element ratios Na/(Na+C1) = 100.0 % Usually > 50% Ca/(Ca + SO4) = K/(Na + K) =43.4 % Usually > 50% 9.0 % Usually < 20% Mg/(Mg+Ca) = 22.0 % Usually < 40% Carbonate/bicarbonate at pH = 3.8 0.0 mg/L Meas CO3 = 0.0 mg/L 0.0 mg/L Calc CO3 = 0.0 mg/L Meas HCO3 = Calc HCO3 =

1 Sample 1-ST62892 ... SOURCE ROCK ESTIMATE SiO2 (mmol/L) =SiO2 not analysed HCO3/SiO2 -SiO2 not analysed HCO3 not analysed SiO2/(Na+K-C1) = SiO2 not analysed (Na+K-C1)/(Na+K-C1+Ca) = 0.42Plagioclase weathering possible 1.00 Na/(Na + C1) = Albite or ion exchange Mg/(Mg+Ca) = 0.22 Granitic weathering = 0.43 Ca/(Ca + SO4) Pyrite oxidation (Ca + Mg)/S04 = 1.0 Dedolomitization likely TDS calculated = 1055 mg/L Carbonate weathering, brine, evaporites or sea water 0.00 Cl/sum anions Ξ Silicate or carbonate weathering HCO3/sum anions = 0.00 Sea water, brine, or evaporites Langelier Index = Mass Balance Calculation Carbonate option Mineral Dissolves Precipitates HALITE 0.000 CALCITE -1.412 DOLOMITE 1.563 GYPSUM 7.214 ION EXCH 1.827 CO2 GAS -1.714 Silicate option Mineral Dissolves Precipitates HALITE 0.000 ALBITE(K) 3.654 ANORTHIT(K) -3.238 DIOPSIDE 1.563 GYPSUM 7.214 -3.429 CO2 GAS 0 Silica from albite and diopside = 407 - 627 Analysed silica = TEMPERATURE ESTIMATES IN DEGREES C Good for temperatures 20 - 350 C Mg-Li --> 0 --> 0 Na-Li Na-K-Ca (Mg corrected) --> 57 Good for low temperatures 30 - 70 C Chalcedony --> 0 Good for temperatures > 70 C Quartz-no steam loss --> 0 Quartz-maximum steam loss --> 0 Do not use for oil-field waters May not be useful below 150 C Na-K (Pournier) Na-K (Truesdell) --> 267 --> 271 Na-K-Ca (t < 100 C) Na-K-Ca (t > 100 C) --> 57 --> 175

. . . Sample 2-ST62892 pH = 'TempC = 25.0 6.0 1262.0 TDS = HARD = 1135.0 COND = y-cor = 0.0 x-cor = 0.0 rock = Units = mg/L 0.0 mg/L mmole/L meg/L % meq/L 19.5 61.0 2.6532 Na+ 2.6532 K + 16.1 0.4117 0.4117 3.0 Ca++ 159.0 3.9671 7.9341 58.2 1.3162 19.3 Mg++ 32.0 2.6324 0.0 C1-0.0 0.0000 0.0000 S04--466.0 4.8511 9.7023 96.0 HCO3-24.0 0.3933 0.3933 3.9 0.0 C03--0.0 0.0000 0.0000 Si02 0.0 0.0000 0.0000 0.0 0.0000 0.0000 Li+ 0.0 0.0 Sr++ 0.0 0.0000 0.0000 0.0 0.0002 Ba++ 0.0 0.0004 0.0 0.0020 0.0010 Fe++ 0.1 0.0 N03-0.9 0.0145 0.0145 0.1 0.0000 0.0 0.0000 0.0 P-0.0000 0.0000 0.0 Br-0.0 B 0.0 0.0000 0.0000 0.0 LANGELIER INDEX = -1.95 SAR Conductivity = 1262 umho Est. Cond. LANGELIER INDEX = 1.2 = = 1363 umho Analytical checks and comparisons 10.1101 1135 mg/L TDS(180) Sum anions = 10.1101 Sum cations = 13.6339 TDS entered = = 759 mg/L 747 mg/L TDS calc Entered TDS - TDS(calc) diff= 33.1 % Entered TDS - TDS(180) diff= 34.2 % Conductivity = 1262 umho TDS(entered)/Cond ratio = 0.90 Usual range = 0.55 to 0.75 TDS(calc)/Cond = 0.60 Usual range = 0.55 to 0.75 Conductivity/Sum-cations = 93 Usual range = 90 - 110 Usual range = 90 - 110 Entered and calculated density Calc. Density = 1.0008 Meas. Density = 0.0000 Entered and calculated hardness Calc. hardness= 528.8 mg/L CaCO3 Meas. hardness= 0.0 mg/L CaCO3 Element ratios Na/(Na+Cl) = 100.0 % Usually > 50% Ca/(Ca + SO4) = K/(Na + K) =Usually > 50% 45.0 % Usually < 20% = 13.4 % Mg/(Mg+Ca) = 24.9 % Usually < 40% Carbonate/bicarbonate at pH = 6 24.0 mg/L Meas CO3 = 0.0 mg/L 24.0 mg/L Calc CO3 = 0.0 mg/L Meas HCO3 = Calc HC03 = 24.0

• . • Sample 2-ST62892 SOURCE ROCK ESTIMATE SiO2 (mmol/L) = HCO3/SiO2 = SiO2 not analysed SiO2 not analysed Si02/(Na+K-C1) = SiO2 not analysed (Na+K-C1)/(Na+K-C1+Ca) = 0.44Plagioclase weathering possible Na/(Na + C1) = 1.00Mg/(Mg+Ca) = 0.25 Albite or ion exchange Mg/(Mg+Ca) 0.25 Granitic weathering Ca/(Ca + SO4) = 0.45 Ca removal ion exchange or calcite precipitation (Ca + Mg)/SO4 = TDS calculated = Dedolomitization likely 1.1 759 mg/L Carbonate weathering, brine, evaporites or sea water C1/sum anions = 0.00 Silicate or carbonate weathering HCO3/sum anions = 0.04 Sea water, brine, or evaporites Langelier Index = -1.95 Undersaturated with respect to calcite Mass Balance Calculation Carbonate option Mineral Dissolves Precipitates HALITE 0.000 -0.874 CALCITE DOLOMITE 1.316 GYPSUM 4.851 ION EXCH 1.327 CO2 GAS -1.365 Silicate option Mineral Dissolves Precipitates HALITE 0.000 ALBITE(K) 2.653 -2.200 ANORTHIT(K) DIOPSIDE 1.316 GYPSUM 4.851 -3.124 CO2 GAS 0 Silica from albite and diopside = 318 - 477 Analysed silica = TEMPERATURE ESTIMATES IN DEGREES C Good for temperatures 20 - 350 C --> 0 --> 0 Mg-Li Na-Li 0 Na-K-Ca (Mg corrected) --> 64 Good for low temperatures 30 - 70 C Chalcedony --> 0 Good for temperatures > 70 C Quartz-no steam loss --> 0 Quartz-maximum steam loss --> 0 Do not use for oil-field waters May not be useful below 150 C Na-K (Fournier) Na-K (Truesdell) Na-K-Ca (t < 100 C) --> 317 --> 344 --> 64 Na-K-Ca (t > 100 C) --> 197

		Samula	3-076780	12		
TempC =	25.0	Sampre	3-31020:	pH =	6.3	
TDS =	1062.0			COND =	1211.0	
HARD =	0.0			DENS =	0.0	
x-cor =	0.0			y-cor =	. 0.0	
Units =	mg/L			rock =	0.0	
		mmala/I		T ==== / I		
Net	60 0	2 6007	meq/L	10 7	0	
Kat	15 5	0 3964	0.3964	3.0		
Catt	147.0	3 6677	7 3353	55 5		
Matt	35.0	1 4396	2 8792	21.8		
C1-	10.0	0 2821	0.2821	3.0		
504	415.0	4.3202	8.6404	90.9		
HC03-	35.0	0.5736	0.5736	6.0		
C03	0.0	0.0000	0.0000	0.0		
Si02	0.0	0.0000	0.0000	0.0		
Li+	0.0	0.0000	0.0000	0.0		
Sr++	0.0	0.0000	0.0000	0.0		
Ba++	0.0	0.0002	0.0005	0.0		
Fe++	0.1	0.0024	0.0047	0.0		
N03-	0.9	0.0145	0.0145	0.2		
P	0.0	0.0000	0.0000	0.0		
Br-	0.0	0.0000	0.0000	0.0		
В	0.0	0.0000	0.0000	0.0		
			0.000.000	53-8274		
LANC	ELIER INDEX	= -1.	52	SAR	=	1.2
Conc	luctivity	= 1211	umho	Est. Cond	1. =	1323 umho
		Analytical	checks a	nd compari	sons	
5		12 0050				0 6106
Sum cati	ons -	13.2259		Sum anior	18 -	9.5100
		The second		ALANCE		10.34 4
TDS cal		719 mg/1	- 1	TDS(180)	ag/L	701 mg/1
Entered	TDS - TDS(c	alc) diff=	32 3 7	Entered 1	TDS - TDS(180) diff= 34.0 %
Ducered	100 100(0	arc, diri-	32.5 %	Entered .	105 105(100, 0111 0410 2
		Conduc	tivity =	1211 um	nho	
TDS(ente	ered)/Cond r	atio = 0	.88	Usual ran	nge = 0.1	55 to 0.75
TDS(cald	c)/Cond	= 0	.59	Usual ran	nge = 0.	55 to 0.75
Conducti	ivity/Sum-ca	tions = 9	2	Usual ram	nge = 90	- 110
		Entered and	calcula	ted densit	t y	
Meas. De	ensity =	0.0000		Calc. Der	nsity =	1.0007
Mana		Entered and	caicula	ted hardne	866	511 2 mg/1 CaC03
meas. na	ardness-	0.0 mg/L	Cacus	Carc. nat	caness-	JII.Z mg/L Cacos
		P	lement r	ation		
Na/(Na+)	(1) =	90.2 2	rement r	Usually	> 50%	
, ,						
Ca/(Ca ·	+ SO4) =	45.9 %		Usually	> 50%	
K/(Na +	к) =	13.2 %		Usually	< 20%	
1000 10 10 10 10 10 10 10 10 10 10 10 10	85 - 25					
Mg/(Mg+	Ca.) =	28.2 %		Usually	< 40%	
						2
Mone Ho	- 12	Carbon	ate/bica	rbonate a	срн = 6.	
Col- NC		35.0 mg	./ L	meas CO3	-	
Carc AC	5 =	35.0 mg	:/L	Calc CO3	=	0.0 mg/L

. Sample 3-ST62892 SOURCE ROCK ESTIMATE 1.1 SiO2 (mmol/L) =SiO2 not analysed. HCO3/SiO2 = SiO2/(Na+K-C1) = SiO2 not analysed SiO2 not analysed (Na+K-Cl)/(Na+K-Cl+Ca)= 0.43 Plagioclase weathering possible Na/(Na + Cl) = 0.90 Albite or ion exchange Mg/(Mg+Ca) = 0.28 Granitic weathering 0.46 Ca/(Ca + SO4) = (Ca + Mg)/SO4 = TDS calculated = Gypsum dissolution Dedolomitization likely 719 mg/L Carbonate weathering, brine, evaporites or sea water 0.03 Cl/sum anions = Silicate or carbonate weathering HCO3/sum anions = 0.06 Sea water, brine, or evaporites -1.52 Langelier Index = Undersaturated with respect to calcite Mass Balance Calculation Carbonate option Mineral Dissolves Precipitates HALITE 0.282 CALCITE -0.928 DOLOMITE 1.440 GYPSUM 4.320 ION EXCH 1.164 CO2 GAS -1.377 Silicate option Mineral Precipitates Dissolves HALITE 0.282 ALBITE(K) 2.328 ANORTHIT(K) -2.092 1.440 DIOPSIDE GYPSUM 4.320 CO2 GAS -3.328 Analysed silica = 0 Silica from albite and diopside = 313 - 453 TEMPERATURE ESTIMATES IN DEGREES C Good for temperatures 20 - 350 C --> 0 --> 0 Mg-Li Na-Li Na-K-Ca (Mg corrected) --> 65 Good for low temperatures 30 - 70 C Chalcedony --> 0 Good for temperatures > 70 C Ō Quartz-no steam loss --> Quartz-maximum steam loss --> 0 Do not use for oil-field waters May not be useful below 150 C --> 315 --> 340 --> 65 Na-K (Fournier) Na-K (Truesdell) Na-K-Ca (t < 100 C) Na-K-Ca (t > 100 C) --> 196

1		Sample	4-NT6289	2						
TempC =	25.0	(pH	=	6.	4			
TDS =	1766.0			COND	=	1867.	0			
HARD =	0.0			DENS	=	0.	0			
x-cor =	0.0			y-cor	=	0.	0			
Units =	mg/L			rock	=	0.	0			
10		• • •		-	÷.					
	mg/L	mmole/L	meq/L	Z me	ad/r					
Na+	120.0	5.2194	5.2194	24.	1					
K +	27.9	0.7135	0.7135	3.4	•					
Ca++	203.0	5.0649	10.1297	47.	•					
Mg++	62.0	2.5502	5.1004	24.	1					
C1-	35.0	0.9872	0.9872	6	3					
S04	664.0	6.9123	13.8247	88.1	3					
HC03-	46.0	0.7539	0.7539	4.1	3					
C03	0.0	0.0000	0.0000	0.0	0					
Si02	0.0	0.0000	0.0000	0.0	0					
Li+	0.0	0.0000	0.0000	0.1	С					
Sr++	0.0	0.0000	0.0000	0.0	C					
Ba++	0.0	0.0003	0.0006	0.0	C					
Pe++	0.1	0.0016	0.0032	0.0	0					
NO3-	0.6	0.0097	0.0097	0.	1					
P-	0.0	0.0000	0.0000	0.1	0					
Br-	0.0	0.0000	0 0000	0.1	2					
B	0.0	0.0000	0.0000	0.	'n					
5	0.0	0.0000	0.0000	0.						
LANC	PLTER INDEX		21	GAD			±2		1 9	
Cond	BDIEK INDER	- 1947	2 I	Dat			-	2	117	
cond	uccivicy	- 1007	umno	Lat.	Jona	•	32	4.	117 000	10
		Appletical	chacks of	d com						
		Analycical	checks al		part	50115				
Sum cati	ons =	21 1669		Sum a	nion	2	-	15 57	5 5	
Jum cacr	0113	21.1007		DALAN	C D		-	15 22	*	
		TDC antenad	- 13	DALAN		-/1	-	13.22	/0	
The sale	-	105 entered	- 1	TDC()	۳ ۵۵۱	8/1		112	5 / f	
IDS calc	-	1159 mg/L		IDS(I	80)	calc	-	113	J mg/L	
Encered	TDS - TDS(c	alc) diff=	34.4 %	Enter	ed 1	DS -	IDS (180) (d111-	33.1 %
		Creative		1967		10.2				
TD8 (Conduc	civity -	100/	um	ino	- 0		1) 75	
TDS(ente	red//cond r	atio - 0	. 95	Usual	ran	ge	- 0.	55 10	0.75	
IDS(calc)/Cond	- 0	.02	Usual	ran	ge	- 0.	55 to	0.75	
Conducti	vity/Sum-ca	tions = 8	8	Usual	ran	ge	- 90	- 110	0	
				e canace						
		Entered and	calcula	cea ae	nsit	y		3		
Meas. De	nsity =	0.0000		Calc.	Den	sity :	=	1.0	0012	
		anter a contrar a contra	10-10010an (Constantino)							
		Entered and	calcula	ted ha	rdne	55		7/0		a . a a a
Meas. ha	rdness=	0.0 mg/L	CaCO3	Calc.	har	dness		/62.	2 mg/L	Cacos
		_		100.00 (Proc. 1000)						
		E	lement r	atios						
Na/(Na+C	1) =	84.1 %		Usual	ly >	50%				
2 112 0	12222	122 331 31		199 - 62	63 - VA	100000				
Ca/(Ca +	SO4) =	42.3 %		Usual	ly >	50%				
K/(Na +	K) =	12.0 %		Usual	ly <	20%				
Mg/(Mg+C	a) =	33.5 %		Usual	ly <	40%				
22/00/00/1 220/00	2 3.2	Carbon	ace/bica	rbonat	e at	pH =	6.	4		
Meas HCO	3 =	46.0 mg	/L	Meas	C03		=	0.0	mg/L	
Calc HCO	3 =	46.0 mg	/L	Calc	C03		=	0.0	mg/L	

k

Sample 4-NT62892 SOURCE ROCK ESTIMATE SiO2 (mmol/L) =SiO2 not analysed HCO3/SiO2 = SiO2 not analysed SiO2/(Na+K-C1) = SiO2 not analysed (Na+K-C1)/(Na+K-C1+Ca) = 0.49Plagioclase weathering possible Na/(Na + Cl) = 0.84 Albite or ion exchange Mg/(Mg+Ca) = 0.33 Granitic weathering 12 Ca/(Ca + S04) 0.42 Ca removal ion exchange or calcite precipitation (Ca + Mg)/SO4 -1.1 Dedolomitization likely TDS calculated = 1159 mg/L Carbonate weathering, brine, evaporites or sea water 0.06 Cl/sum anions = Silicate or carbonate weathering HCO3/sum anions = 0.05 Sea water, brine, or evaporites Langelier Index = -1.21 Undersaturated with respect to calcite Mass Balance Calculation Carbonate option Mineral Dissolves Precipitates HALITE 0.987 CALCITE -2.282 DOLOMITE 2.550 GYPSUM 6.912 ION EXCH 2.116 CO2 GAS -2.065 Silicate option Dissolves Mineral Precipitates HALITE 0.987 ALBITE(K) 4.232 ANORTHIT(K) -4.398 DTOPSIDE 2.550 GYPSUM 6.912 CO2 GAS -4.884 Analysed silica = 0 Silica from albite and diopside = 561 - 815 TEMPERATURE ESTIMATES IN DEGREES C Good for temperatures 20 - 350 C Mg-Li --> 0 Na-Li --> 0 Na-K-Ca (Mg corrected) --> 62 . Good for low temperatures 30 - 70 C Chalcedony --> 0 Good for temperatures > 70 C Quartz-no steam loss --> 0 Quartz-maximum steam loss --> 0 Do not use for ail-field waters

8		Sample	5-NT6289	92
"TempC =	25.0			pH = 6.5
TDS =	1754.0			COND = 1918.0
HARD -	0.0			DENS = 0.0
.x-cor -	mg/I			y = cor = 0.0
onics	mg/ n			10ck - 0.0
	mg/L	mmole/L	meg/L	% meg/L
Na+	116.0	5.0455	5.0455	22.7
К +	23.7	0.6061	0.6061	2.7
Ca++	214.0	5.3393	10.6786	48.1
Mg++	71.0	2.9204	5.8407	26.3
c1-	39.0	1.1000	1.1000	6.5
S04	/23.0	7.5265	15.0531	89.3
HC03-	43.0	0.7047	0.7047	4.2
\$:02	0.0	0.0000	0.0000	0.0
1.1+	0.0	0.0000	0.0000	0.0
Sr++	0.0	0.0000	0.0000	0.0
Ba++	0.1	0.0004	0.0008	0.0
Fe++	0.2	0.0035	0.0070	0.0
NO3-	0.5	0.0081	0.0081	0.0
P -	0.0	0.0000	0.0000	0.0
Br-	0.0	0.0000	0.0000	0.0
В	0.0	0.0000	0.0000	0.0
LANG	ELIER INDEX	= -1.	13	SAR = 1.8
Cond	uctivity	- 1918	umno	Est. Cond 2210 umno
		Analytical	checks a	nd comparisons
		24		
Sum cati	ons =	22.1788		Sum anions = 16.8659
		-		BALANCE = 13.61 %
TDC and	-	1220 march	- 1	/54 mg/L TDS(180) and a 1200 mg/L
Entered	TDS - TDS(c	alc) diff=	29 8 2	Entered TDS - TDS(180) diff= 31.1 %
Dateres	100 100(0	ait, 0111	27.0 4	
		Conduc	tivity =	1918 umbo
TDS(ente	ered)/Cond r	atio = 0	.91	Usual range = 0.55 to 0.75
TDS(cald	c)/Cond	= 0	.64	Usual range = 0.55 to 0.75
Conducti	vity/Sum-ca	tions = 8	6	Usual range = 90 - 110
				Where the second state
M 0.		Entered and	calcula	Cele Desting - 1 0012
neas. De	ensity -	0.0000		Calc. Density - 1.0012
		Entered and	calcula	ted hardness
Meas. ha	rdness=	0.0 mg/L	CaC03	Calc. hardness= 826.7 mg/L CaC03
		E	lement r	atios
Na/(Na+0)	51) =	82.1 %		Usually > 50%
	U ANGRADIN G.	1973 A 1927 - 1927:		
Ca/(Ca -	+ SO4) =	41.5 %		Usually > 50%
K/(Na +	K) =	10.7 %		Usually (20%
Ma/(Ma+)	- (25 / 4		lleuslin (409
		55.4 4		
		Carbon	ate/bica	rbonate at pH = 6.5
Meas HCO)3 =	43.0 mg	:/L	Meas CO3 = 0.0 mg/L
Calc HC	3 =	43.0 mg	:/L	Calc CO3 = 0.0 mg/L

Sample 5-NT62892 .. SOURCE ROCK ESTIMATE >Si02 (mmol/L) = SiO2 not analysed HCO3/SiO2 = SiO2 not analysed SiO2/(Na+K-C1) = SiO2 not analysed (Na+K-C1)/(Na+K-C1+Ca) = 0.46Plagioclase weathering possible Na/(Na + C1) = 0.82Mg/(Mg+Ca) = 0.35 Albite or ion exchange Granitic weathering Ca/(Ca + S04) = 0.41 Ca removal ion exchange or calcite precipitation (Ca + Mg)/SO4 = 1.1 Dedolomitization likely TDS calculated = 1230 mg/L Carbonate weathering, brine, evaporites or sea water 0.07 Silicate or carbonate weathering Cl/sum anions = HCO3/sum anions = 0.04 Sea water, brine, or evaporites Langelier Index = -1.13 Undersaturated with respect to calcite Mass Balance Calculation Carbonate option Mineral Dissolves Precipitates HALITE 1.100 CALCITE -3.135 DOLOMITE 2.920 GYPSUM 7.527 ION EXCH 1.973 CO2 GAS -2.001 Silicate option Dissolves Mineral Precipitates HALITE 1.100 ALBITE(K) 3.945 ANORTHIT(K) -5.108 DIOPSIDE 2.920 GYPSUM 7.527 CO2 GAS -4.707 Analysed silica = 0 Silica from albite and diopside = 588 - 825 TEMPERATURE ESTIMATES IN DEGREES C Good for temperatures 20 - 350 C Mg-Li --> 0Na-Li Na-K-Ca (Mg corrected) --> 61 Good for low temperatures 30 - 70 C Chalcedony --> 0 Good for temperatures > 70 C Quartz-no steam loss --> 0 Quartz-maximum steam loss --> 0 Do not use for oil-field waters May not be useful below 150 C --> 287 --> 299 --> 77 --> 191 Na-K (Fournier) Na-K (Truesdell) Na-K-Ca (t < 100 C) Na-K-Ca (t > 100 C)

Sample 6-NT62892 рН = 25.0 7.4 TempC = TDS = 1300.0 COND = 1716.0 0.0 0.0 HARD = DENS = x-cor = 0.0 y-cor = 0.0 rock = Units = mg/L 0.0 mg/L mmole/L meq/L Z meg/L 40.6 7.0897 163.0 7.0897 Na+ 0.4475 K + 17.5 0.4475 2.6 Ca++ 111.0 2.7695 5.5389 31.8 Mg++ 53.0 4.3600 2.1800 25.0 C1-96.0 2.7078 2.7078 17.7 S04--413.0 4.2994 8.5988 56.1 HCO3-4.0317 246.0 4.0317 26.3 C03--0.0 0.0000 0.0000 0.0 Si02 0.0 0.0000 0.0000 0.0 0.0 Li+ 0.0 0.0000 0.0000 Sr++ 0.0 0.0 0.0000 0.0000 0.0 0.0003 Ba++ 0.0007 0.0 0.0 0.1 0.0026 Po++ 0.0052 N03-0.0 0.0000 0.0000 0.0 P -0.0 0.0000 0.0000 0.0 0.0 Br-0.0000 0.0 0.0000 B 0.0 0.0000 0.0000 0.0 3.2 LANGELIER INDEX = X = 0.28 SAR = 3.2 = 1716 umbo Est. Cond. = 1744 umbo 0.28 SAR Conductivity Analytical checks and comparisons 17.4421 Sum anions = 15.3383 BALANCE = 6.42 X TDS entered = 1300 mg/L Sum cations = = TDS calc = 1100 mg/L TDS(180) calc = 975 mg/L Entered TDS - TDS(calc) diff= 15.4 % Entered TDS - TDS(180) diff= 25.0 % Conductivity = 1716 umhoTDS(entered)/Cond ratio = 0.76Usual range = 0.55 to 0.75TDS(calc)/Cond = 0.64Usual range = 0.55 to 0.75Conductivity/Sum-cations = 98Usual range = 90 - 110 Entered and calculated density Calc. Density = 1.0010 Meas. Density = 0.0000 Entered and calculated hardness 495.4 mg/L CaCO3 Meas. hardness= 0.0 mg/L CaCO3 Calc. hardness= Element ratios Na/(Na+C1) = 72.4 % Usually > 50% Ca/(Ca + SO4) = 39.2 % Usually > 50% K/(Na + K)5.9 % Usually < 20% = Mg/(Mg+Ca) = 44.0 % Usually < 40% Carbonate/bicarbonate at pH = 7.4 Meas HCO3 = Calc HCO3 = 246.0 mg/L Meas C03 = 0.0 mg/L 245.1 mg/L Calc C03 = 0.4 mg/L

Sample 6-NT62892 SOURCE ROCK ESTIMATE Si02 (mmol/L) = SiO2 not analysed HC03/Si02 = Si02/(Na+K-C1) = SiO2 not analysed SiO2 not analysed (Na+K-C1)/(Na+K-C1+Ca) = 0.64Plagioclase weathering possible Na/(Na + C1) = 0.72Mg/(Mg+Ca) = 0.44Albite or ion exchange Mg/(Mg+Ca) Granitic weathering 0.44 Ca/(Ca + SO4) = 0.39 Ca removal ion exchange or calcite precipitation (Ca + Mg)/SO4 = 1.2 Dedolomitization likely (Ca + Mg)/SO4 = 1.2 Dedotomicization fixer, TDS calculated = 1100 mg/L Carbonate weathering, brine, evaporites or sea water = 0.18 Cl/sum anions Silicate or carbonate weathering HCO3/sum anions = 0.26 Langelier Index = 0.28 Oversaturated with respect to calcite Mass Balance Calculation Carbonate option Mineral Dissolves Precipitates HALITE 2.708 CALCITE -1.519 DOLOMITE 2.180 GYPSUM 4.299 ION EXCH 2.191 CO2 GAS 1.191 Silicate option Dissolves Mineral Precipitates HALITE 2.708 ALBITE(K) 4.382 ANORTHIT(K) -3.710 DIOPSIDE 2.180 GYPSUM 4.299 CO2 GAS -1.650 Analysed silica = 0 Silica from albite and diopside = 525 - 789 TEMPERATURE ESTIMATES IN DEGREES C Good for temperatures 20 - 350 C --> 0 --> 0 Mg-Li Na-Li Na-K-Ca (Mg corrected) --> 43 Good for low temperatures 30 - 70 C Chalcedony --> 0 Good for temperatures > 70 C Quartz-no steam loss --> 0 Quartz-maximum steam loss --> 0 Do not use for oil-field waters May not be useful below 150 C Na-K (Fournier) --> 223 --> 212 Na-K (Truesdell) Na-K-Ca (t < 100 C) --> 85 --> 169 Na-K-Ca (t > 100 C)

i

	Sample	e 7-NT6289	2		
TempC = 2	5.0		PH =	7.5	
TDS = 30	6.0		COND =	439.0	
HARD =	0.0		DENS =	0.0	
x-cor =	0.0		y-cor =	0.0	
Units = mg/L			rock =	0.0	
	mg/L mmole/L	mag/I	T mag/1		
Na+	28.0 1 2179	1 2170	29 2		
К +	6.6 0.1688	0 1688	20.5		
Ca++	32.0 0.7984	1 5968	37 1		
Mg++	16.0 0.6581	1 3162	30.6		
C1-	16.0 0.4513	0 4513	0.7		
S04 1	32.0 1.3741	2 7683	59.0		
HC03-	89.0 1.4586	1 4586	31 3		
C03	0.0 0.0000	0.0000	51.5		
Si02	0.0 0.0000	0.0000	0.0		
Li+	0.0 0.0000	0.0000	0.0		
Sr++	0.0 0.0000	0.0000	0.0		
Ba++	0.0 0.0002	0.0000	0.0		
Fe++	0.1 0.0020	0.0003	0.0		
N03-	0.0 0.0000	0.0039	0.1		
P -	0.0 0.0000	0.0000	0.0		
Br-	0.0 0.0000	0.0000	0.0		
B	0.0 0.0000	0.0000	0.0		
	0.0000	0.0000	0.0		
LANGELIER	INDEX = -0	. 47	SAR	=	1.0
Conductiv	ity = 43	9 umho	Est. Cond.	=	430 umbo
	Analytical	checks an	d comparis	ons	
Sum cations	= 4.3041		Sum anions	= 4.	.6582
			BALANCE	= -3.	.95 %
	TDS entered	d = 3	06 mg	/L	
TDS calc	TDS entered = 320 mg/L	d = 3	06 mg TDS(180) c	/L alc =	275 mg/L
TDS calc Entered TDS -	TDS entered = 320 mg/L • TDS(calc) diff=	d = 3 -4.5 %	06 mg TDS(180) c Entered TD	/L alc = S - TDS(180	275 mg/L D) diff= 10.3 %
TDS calc Entered TDS -	TDS entered = 320 mg/L TDS(calc) diff=	d = 3 -4.5 z	06 mg TDS(180) c Entered TD	/L alc = S - TDS(180	275 mg/L D) diff= 10.3 %
TDS calc Entered TDS -	TDS entered = 320 mg/L TDS(calc) diff= Conduct	d = 3 -4.5 x ctivity =	06 mg TDS(180) c Entered TD 439 umho	/L alc = S - TDS(180	275 mg/L D) diff= 10.3 %
TDS calc Entered TDS - TDS(entered)/ TDS(calc)/Con	TDS entered = 320 mg/L TDS(calc) diff= Condu Cond ratio = 1	d = 3 -4.5 % ctivity = 0.70	06 mg TDS(180) c Entered TD 439 umho Usual rang	/L alc = S - TDS(180 e = 0.55	275 mg/L) diff= 10.3 %
TDS calc Entered TDS - TDS(entered)/ TDS(calc)/Con Conductivity	TDS entered = 320 mg/L TDS(calc) diff= Conduction d = 1 Sum=cations = 1	d = 3 -4.5 % ctivity = 0.70 0.73 02	06 mg TDS(180) c Entered TD 439 umho Usual rang Usual rang	/L alc = S - TDS(180 e = 0.55 e = 0.55	275 mg/L) diff= 10.3 % to 0.75 to 0.75
TDS calc Entered TDS - TDS(entered)/ TDS(calc)/Con Conductivity/	TDS entere = 320 mg/L TDS(calc) diff= Condu Cond ratio = 0 d = 0 Sum-cations = 1	d = 3 -4.5 % ctivity = 0.70 0.73 02	06 mg TDS(180) c Entered TD 439 umho Usual rang Usual rang Usual rang	/L alc = S - TDS(180 e = 0.55 e = 0.55 e = 90 -	275 mg/L) diff= 10.3 % to 0.75 to 0.75 110
TDS calc Entered TDS - TDS(entered)/ TDS(calc)/Con Conductivity/	TDS entered = 320 mg/L TDS(calc) diff= Conduction d = 0 Sum-cations = 1 Entered and	d = 3 -4.5 % ctivity = 0.70 0.73 02 d calculat	06 mg TDS(180) c Entered TD 439 umho Usual rang Usual rang Usual rang ed density	/L alc = S - TDS(180 e = 0.55 e = 0.55 e = 90 -	275 mg/L D) diff= 10.3 % to 0.75 to 0.75 110
TDS calc Entered TDS - TDS(entered)/ TDS(calc)/Con Conductivity/ Meas. Density	TDS enterer = 320 mg/L TDS(calc) diff= Condu Cond ratio = 0 d = 0 Sum-cations = 10 Entered and r = 0.0000	d = 3 -4.5 % ctivity = 0.70 0.73 02 d calculat	06 mg TDS(180) c Entered TD 439 umho Usual rang Usual rang Usual rang Usual rang Calc. Dens	/L alc = S - TDS(180 e = 0.55 e = 0.55 e = 90 -	275 mg/L) diff= 10.3 % to 0.75 to 0.75 110
TDS calc Entered TDS - TDS(entered)/ TDS(calc)/Con Conductivity/ Meas. Density	TDS entered = 320 mg/L TDS(calc) diff= Conduc Cond ratio = 0 Sum-cations = 10 Entered and = 0.0000	d = 3 -4.5 % ctivity = 0.70 0.73 02 d calculat	06 mg TDS(180) c Entered TD 439 umho Usual rang Usual rang Usual rang ed density Calc. Dens	/L alc = S - TDS(180 e - 0.55 e = 0.55 e = 90 - ity =	275 mg/L D) diff= 10.3 % to 0.75 to 0.75 110 1.0003
TDS calc Entered TDS - TDS(entered)/ TDS(calc)/Con Conductivity/ Meas. Density	TDS entered = 320 mg/L TDS(calc) diff= Conduc Cond ratio = 0 d = 0 Sum-cations = 10 Entered and Entered and	d = 3 -4.5 % ctivity = 0.70 0.73 02 d calculat d calculat	06 mg TDS(180) c Entered TD 439 umho Usual rang Usual rang Usual rang ed density Calc. Dens ed hardnes	/L alc = S - TDS(180 e - 0.55 e = 0.55 e = 90 - ity = s	275 mg/L D) diff= 10.3 % to 0.75 to 0.75 110 1.0003
TDS calc Entered TDS - TDS(entered)/ TDS(calc)/Con Conductivity/ Meas. Density Meas. hardnes	TDS entered = 320 mg/L TDS(calc) diff= Conduct Cond ratio = 10 Sum-cations = 10 Entered and Entered and s= 0.0000	d = 3 -4.5 % ctivity = 0.70 0.73 02 d calculat calculat CaC03	06 mg TDS(180) c Entered TD 439 umho Usual rang Usual rang Usual rang Usual rang calc. Dens calc. hard	/L alc = S - TDS(180 e - 0.55 e = 0.55 e = 90 - ity = s ness = 14	275 mg/L D) diff= 10.3 % to 0.75 to 0.75 110 1.0003 45.8 mg/L CaC03
TDS calc Entered TDS - TDS(entered)/ TDS(calc)/Con Conductivity/ Meas. Density Meas. hardnes	TDS entered = 320 mg/L TDS(calc) diff= Conduct Cond ratio = 10 Sum-cations = 10 Entered and Entered and s= 0.0000	d = 3 -4.5 % ctivity = 0.70 0.73 02 d calculat GaC03	06 mg TDS(180) c Entered TD 439 umho Usual rang Usual rang Usual rang Usual rang calc. Dens ed hardnes Calc. hard	/L alc = S - TDS(180 e - 0.55 e = 0.55 e = 90 - ity = s ness = 14	275 mg/L D) diff= 10.3 % to 0.75 to 0.75 110 1.0003 45.8 mg/L CaCO3
TDS calc Entered TDS - TDS(entered)/ TDS(calc)/Con Conductivity/ Meas. Density Meas. hardnes	TDS entered = 320 mg/L TDS(calc) diff= Conduct Cond ratio = 0 Sum-cations = 10 Entered and Entered and s= 0.0000	d = 3 -4.5 % ctivity = 0.70 0.73 02 d calculat GaCO3 Element ra	06 mg TDS(180) c Entered TD 439 umho Usual rang Usual rang Usual rang Usual rang calc. Dens ed hardnes Calc. hard tios	/L alc = S - TDS(180 e = 0.55 e = 0.55 e = 90 - ity = s ness = 14	275 mg/L 0) diff= 10.3 % to 0.75 to 0.75 110 1.0003 45.8 mg/L CaC03
TDS calc Entered TDS - TDS(entered)/ TDS(calc)/Con Conductivity/ Meas. Density Meas. hardnes Na/(Na+C1)	TDS entered = 320 mg/L TDS(calc) diff= Conduction Cond ratio = 10 Sum-cations = 10 Entered and s= 0.0000 Entered and s= 0.0 mg/L = 73.0 %	d = 3 -4.5 % ctivity = 0.70 0.73 02 d calculat GaCO3 Element ra	06 mg TDS(180) c Entered TD 439 umho Usual rang Usual rang Usual rang Usual rang calc. Dens ed hardnes Calc. hard tios Usually >	<pre>/L alc = S - TDS(180 e - 0.55 e = 0.55 e = 90 - ity = s ness= 14 50%</pre>	275 mg/L D) diff= 10.3 % to 0.75 to 0.75 110 1.0003 45.8 mg/L CaC03
TDS calc Entered TDS - TDS(entered)/ TDS(calc)/Con Conductivity/ Meas. Density Meas. hardnes Na/(Na+C1)	TDS entered = 320 mg/L TDS(calc) diff= Conduction Cond ratio = 10 Sum-cations = 10 Entered and s= 0.0000 Entered and s= 0.0 mg/L = 73.0 %	d = 3 -4.5 % ctivity = 0.70 0.73 02 d calculat GaCO3 Element ra	06 mg TDS(180) c Entered TD 439 umho Usual rang Usual rang Usual rang ed density Calc. Dens ed hardnes Calc. hard tios Usually >	<pre>/L alc = S - TDS(180 e - 0.55 e = 0.55 e = 90 - ity = s ness= 14 50%</pre>	275 mg/L D) diff= 10.3 % to 0.75 to 0.75 110 1.0003 45.8 mg/L CaCO3
TDS calc Entered TDS - TDS(entered)/ TDS(calc)/Con Conductivity/ Meas. Density Meas. hardnes Na/(Na+C1) Ca/(Ca + SO4)	TDS entered = 320 mg/L TDS(calc) diff= Conduction Cond ratio = 10 Sum-cations = 10 Entered and s = 0.0000 Entered and s = 0.0 mg/L = 73.0 % = 36.7 %	d = 3 -4.5 % ctivity = 0.70 0.73 02 d calculat Calculat CaCO3 Element ra	06 mg TDS(180) c Entered TD 439 umho Usual rang Usual rang Usual rang ed density Calc. Dens ed hardnes Calc. hard tios Usually > Usually >	<pre>/L alc = S - TDS(180 e - 0.55 e = 0.55 e = 90 - ity = s ness= 14 50%</pre>	275 mg/L D) diff= 10.3 % to 0.75 to 0.75 110 1.0003 5.8 mg/L CaC03
TDS calc Entered TDS - TDS(entered)/ TDS(calc)/Con Conductivity/ Meas. Density Meas. hardnes Na/(Na+C1) Ca/(Ca + SO4) K/(Na + K)	TDS enterer = 320 mg/L TDS(calc) diff= Condu Cond ratio = 0 Sum-cations = 10 Entered and s= 0.0000 Entered and s= 0.0 mg/L = 73.0 % = 36.7 % = 12.2 %	d = 3 -4.5 % ctivity = 0.70 0.73 02 d calculat Calculat CaCO3 Element ra	06 mg TDS(180) c Entered TD 439 umho Usual rang Usual rang Usual rang ed density Calc. Dens ed hardnes Calc. hard tios Usually > Usually > Usually <	<pre>/L alc = S - TDS(180 e - 0.55 e = 0.55 e = 90 - ity = s ness= 14 50% 50% 20%</pre>	275 mg/L D) diff= 10.3 % to 0.75 to 0.75 110 1.0003 45.8 mg/L CaC03
TDS calc Entered TDS - TDS(entered)/ TDS(calc)/Con Conductivity/ Meas. Density Meas. hardnes Na/(Na+Cl) Ca/(Ca + SO4) K/(Na + K) Mg/(Mg+Ca)	TDS entered = 320 mg/L TDS(calc) diff= Conduction = 0 d = 0 Sum-cations = 10 Entered and s= 0.0000 Entered and s= 0.0 mg/L = 73.0 % = 36.7 % = 12.2 % = 45.2 %	d = 3 -4.5 % ctivity = 0.70 0.73 02 d calculat d calculat CaCO3 Element ra	06 mg TDS(180) c Entered TD 439 umho Usual rang Usual rang Usual rang Calc. Dens ed hardnes Calc. hard tios Usually > Usually > Usually <	<pre>/L alc = S - TDS(180 e - 0.55 e = 0.55 e = 90 - ity = s ness= 14 50% 50% 20% 40%</pre>	275 mg/L D) diff= 10.3 % to 0.75 to 0.75 110 1.0003 45.8 mg/L CaCO3
TDS calc Entered TDS - TDS(entered)/ TDS(calc)/Con Conductivity/ Meas. Density Meas. hardnes Na/(Na+C1) Ca/(Ca + SO4) K/(Na + K) Mg/(Mg+Ca)	TDS entered = 320 mg/L TDS(calc) diff= Conduction = 10 Sum-cations = 10 Entered and s= 0.0000 Entered and s= 0.0 mg/L = 73.0 % = 36.7 % = 12.2 % = 45.2 %	d = 3 -4.5 % ctivity = 0.70 0.73 02 d calculat d calculat CaCO3 Element ra	06 mg TDS(180) c Entered TD 439 umho Usual rang Usual rang Usual rang ed density Calc. Dens ed hardnes Calc. hard tios Usually > Usually < Usually <	<pre>/L alc = S - TDS(180 e - 0.55 e = 0.55 e = 90 - ity = s ness= 14 50% 50% 20% 40%</pre>	275 mg/L D) diff= 10.3 % to 0.75 to 0.75 110 1.0003 45.8 mg/L CaCO3
TDS calc Entered TDS - TDS(entered)/ TDS(calc)/Con Conductivity/ Meas. Density Meas. hardnes Na/(Na+C1) Ca/(Ca + SO4) K/(Na + K) Mg/(Mg+Ca)	TDS entered = 320 mg/L TDS(calc) diff= Conductions = 10 Sum-cations = 10 Entered and s= 0.0000 Entered and s= 0.0 mg/L = 73.0 % = 36.7 % = 12.2 % = 45.2 %	d = 3 -4.5 % ctivity = 0.70 0.73 02 d calculat d calculat CaC03 Element ra	06 mg TDS(180) c Entered TD 439 umho Usual rang Usual rang Usual rang ed density Calc. Dens ed hardnes Calc. hard tios Usually > Usually > Usually < Usually <	<pre>/L alc = S - TDS(180 e - 0.55 e = 0.55 e = 90 - ity = s ness= 14 50% 50% 20% 40% pH = 7.5</pre>	275 mg/L D) diff= 10.3 % to 0.75 to 0.75 110 1.0003 45.8 mg/L CaCO3
TDS calc Entered TDS - TDS(entered)/ TDS(calc)/Con Conductivity/ Meas. Density Meas. hardnes Na/(Na+C1) Ca/(Ca + SO4) K/(Na + K) Mg/(Mg+Ca) Meas HCO3	TDS entered = 320 mg/L TDS(calc) diff= Conductions = 10 Sum-cations = 10 Entered and s= 0.0000 Entered and s= 0.0 mg/L = 73.0 % = 36.7 % = 12.2 % = 45.2 % Carbon = 89.0 mm	d = 3 -4.5 % ctivity = 0.70 0.73 02 d calculat d calculat CaCO3 Element ra	06 mg TDS(180) c Entered TD 439 umho Usual rang Usual rang Usual rang ed density Calc. Dens ed hardnes Calc. hard tios Usually > Usually > Usually < Usually < Usually <	<pre>/L alc = S - TDS(180 e - 0.55 e = 0.55 e = 90 - ity = s ness = 14 50% 50% 20% 40% pH = 7.5 = 0.</pre>	275 mg/L D) diff= 10.3 % to 0.75 to 0.75 110 1.0003 5.8 mg/L CaC03
TDS calc Entered TDS - TDS(entered)/ TDS(calc)/Con Conductivity/ Meas. Density Meas. hardnes Na/(Na+C1) Ca/(Ca + SO4) K/(Na + K) Mg/(Mg+Ca) Meas HCO3 Calc HCO3	TDS entered = 320 mg/L TDS(calc) diff= Conductions = 10 Sum-cations = 10 Entered and s = 0.0000 Entered and s = 0.0 mg/L = 73.0 % = 36.7 % = 12.2 % = 45.2 % Carbon = 89.0 mg = 89.0 mg	d = 3 -4.5 % ctivity = 0.70 0.73 02 d calculat CaC03 Element ra nate/bicar g/L g/L	06 mg TDS(180) c Entered TD 439 umho Usual rang Usual rang Usual rang Osual rang ed density Calc. Dens ed hardnes Calc. hard tios Usually > Usually > Usually < Usually < Usually < bonate at Meas CO3 Calc CO3	<pre>/L alc = S - TDS(180 e - 0.55 e = 0.55 e = 90 - ity = s ness = 14 50% 50% 20% 40% pH = 7.5 = 0. = 0</pre>	275 mg/L 0) diff= 10.3 % to 0.75 to 0.75 110 1.0003 5.8 mg/L CaCO3

Sample 7-NT62892 ÷., SOURCE ROCK ESTIMATE ' SiO2 (mmol/L) = SiO2 not analysed HC03/Si02 = Si02/(Na+K-C1) = SiO2 not analysed SiO2 not analysed (Na+K-C1)/(Na+K-C1+Ca) = 0.54Plagioclase weathering possible Na/(Na + C1) = 0.73Mg/(Mg+Ca) = 0.45 Albite or ion exchange Granitic weathering 0.37 Ca/(Ca + S04) = Ca removal ion exchange or calcite precipitation (Ca + Mg)/SO4 = 1.1 Dedolomitization likely TDS calculated = 320 mg/L Silicate weathering possible 0.10 Cl/sum anions = Silicate or carbonate weathering HCO3/sum anions = 0.31 -0.47 Langelier Index = Undersaturated with respect to calcite Mass Balance Calculation Carbonate option Mineral Dissolves Precipitates HALITE 0.451 CALCITE -0.851 DOLOMITE 0.658 GYPSUM 1.374 ION EXCH 0.383 CO2 GAS 0.993 Silicate option Precipitates Mineral Dissolves HALITE 0.451 ALBITE(K) 0.767 ANORTHIT(K) -1.234 DIOPSIDE 0.658 GYPSUM 1.374 CO2 GAS 0.527 Analysed silica = 0 Silica from albite and diopside = 125 - 171 TEMPERATURE ESTIMATES IN DEGREES C Good for temperatures 20 - 350 C Mg-Li --> 0 --> Na+Li 0 Na-K-Ca (Mg corrected) --> 53 Good for low temperatures 30 - 70 C Chalcedony --> 0 Good for temperatures > 70 C --> 0 ss --> 0 Quartz-no steam loss Quartz-maximum steam loss --> Do not use for oil-field waters May not be useful below 150 C Na-K (Pournier) Na-K (Truesdell) --> 304 --> 323 Na-K-Ca (t < 100 C) --> 62 Na-K-Ca (t > 100 C) --> 191

APPENDIX B

WATEQ4F PRINTOUTS

-

Date = 9/24/95 13:18

1-ST62892

DOX = .0000 DOC = .0 INPUT YUS = 1660.0 Anal Cond = 1716.0 Calc Cond = 1727.5 Anal EPMCAT = 23.5372 Anal EPMAN = 14.4567 Percent difference in input cation/anion balance = 47.7995 ERROR IN CALCULATED CHARGE BALANCE GREATER THAN 30 PERCENT. CHECK INPUT DATA.

Calc EPMCAT = 18.8484 Calc EPMAN = 9.8175 Percent difference in calc cation/anion balance = 63.0080 Total Ionic Strength (T.I.S.) from input data = .03651 Effective Ionic Strength (E.I.S.) from speciation = .02671

 Galc

 Input Sigma P63/F02 Sigma H202/02 Sigma N03/N02 Sigma N03/NH4 Sigma H202/02 Sigma S04/S= Sigma A65/A63 Sigma 9.900

 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 <

Effective Т pH TDS ppm Ionic Str pO2 Atm pC02 Atm pCH4 Atm CO2 Tot Uncom CO2 ppm Uncom CO2 Nerb Alk aH2O 25.00 3.800 1189.2 .02671 0.008+00 0.008+00 0.008+00 .0008+00 0.008+00 7.48E-11 .9997

I	Species		Anal ppu	Calc ppm	Anal Molal	Calc Molal	Activity	Act Coeff	-Log Act
0	Ca	2	222.000	171.599	5.546E-03	4.286B-03	2.366B-03	.5520	2.626
28	CaOH	1		.000000		4.391E-12	3.759B-12	.8561	11.425
31	CaSO4 aq	0		171.125		1.258E-03	1.266E-03	1.0062	2.897
81	CaHSO4	1		.184		1.343E-06	1.150E-06	.8561	5.939
1	Mg	2	38.000	30.161	1.565B-03	1.2428-03	6.957E-04	.5601	3.158
18	MgOH	1		.000000		8.2338-12	7.048E-12	.8561	11.152
22	MaSO4 ag	0		38.838		3.230E-04	3.250E-04	1.0062	3.488
2	Na	1	84.000	82.907	3.658E-03	3.611E-03	3.0988-03	.8580	2.509
43	NaSO4	1		5.665		4.764E-05	4.079E-05	.8561	4.389
3	K	1	14.200	13.944	3.636E-04	3.570E-04	3.041E-04	.8518	3.517
45	KSO4	-1		.885		6.558E-06	5.615B-06	.8561	5.251
63	н	1		.182		1.804E-04	1.5858-04	.8788	3.800
26	011	-1		.000001		7.3888-11	6.3258-11	.8561	10.199
5	504	-2	693.000	462.454	7.2238-03	4.820B-03	2.6278-03	.5451	2.581
62	IISO4	-1		4.577		4.721B-05	4.042E-05	.8561	4.393
84	NO3	-1	.700	.700	1.130B-05	1.130E-05	9.677E-06	.8561	5.014
50	A1	3	10.950	5.503	4.0638-04	2.042E-04	5.046B-05	.2471	4.297
51	AIOH	2		.266		6.063E-06	3.257E-06	.5373	5.487
52	A1(OH)2	1		.011		1.863E-07	1.595E-07	.8561	6.797
181	A1(OH)3	0		.000098		1.259E-09	1.266E-09	1.0062	8.897
53	A1(OH)4	-1		.000000		9.330E-13	7.988E-13	.8561	12.098
58	A1504	1		19.928		1.6228-04	1.3888-04	.8561	3.858
59	A1(SO4)2	-1		7.401		3.382E-05	2.8958-05	.8561	4.538
203	A1HSO4	2		.001357		1.0958-08	5.882E-09	.5373	8.230
16	Fe total	2	3.248		5.8238-05				
109	Mn	2	4.749	3.784	8.6558-05	6.8958-05	3.705E-05	.5373	4.431
114	MnOli	1		.000000		7.016E-12	6.006E-12	.8561	11.221
115	Mn(OH)3	~1		.000000		1.7218-28	1.473E-28	.8561	27.832
118	Mn(NO3)2	0		.000000		1.373E-14	1.3818-14	1.0062	13.860
117	MnSO4 ag	0		2.655		1.7608-05	1.7718-05	1.0062	4.752
130	Cu	2	13.230	10.286	2.0848-04	1.6218-04	8.706E-05	.5373	4.060
138	CuOH	1		.000516		6.414E-09	5.492E-09	.8561	8.260
139	Cu(OH)2	0		.000007		7.193B-11	7.237B-11	1.0062	10.140
140	Cu(OH)3	-1		.000000		3.2138-20	2.7518-20	.8561	19.561
141	Cu(OH)4	-2		.000000		6.4438-29	3.462B-29	.5373	28.461
142	Cu2(08)2	2		.000004		2.454B-11	1.319E-11	.5373	10.880

1-ST62892

I	Species	Anal ppm	Calc ppm	Anal Molal	Calc Molal	Activity	Act Coeff	-Log Act
143	CuSO4 ag 0		7.399		4.641B-05	4.670B-05	1.0062	4.331
145	Zn 2	103.600	77.211	1.587E-03	1.183E-03	6.353B-04	.5373	3.197
151	ZnOII 1		.000422		5.132E-09	4.394B-09	.8561	8.357
152	Zn(OH)2 0		.000000		3.163E-13	3.182B-13	1.0062	12.497
153	2n(OH)3 -1		.000000		7.414E-21	6.347E-21	.8561	20.197
154	Zn(OH)4 -2		.000000		1.181E-29	6.345E-30	.5373	29.198
158	ZnS04 ag 0		62.703		3.889E-04	3.913B-04	1.0062	3.408
159	Zn(S04)2 -2		3.997		1.554E-05	8.350B-06	.5373	5.078
160	Cd 2	.412	.289	3.670E-06	2.573E-06	1.3838-06	.5373	5.859
167	CdOII 1		.000000		8.472E-13	7.253E-13	.8561	12.139
168	Cd(01)2 0		.000000		2.442E-19	2.457E-19	1.0062	18.610
169	Cd(OH)3 -1		.000000		2.031E-28	1.739E-28	.8561	27.760
170	Cd(OH)4 -2		.000000		1.8192-38	9.775E-39	.5373	38.010
171	Cd20H 3		.000000		1.9838-17	4.900E-18	.2471	17.310
173	CdN03 1		.000007		3.9258-11	3.361E-11	.8561	10.474
174	CdS04 ag 0		.217		1.0418-06	1.0488-06	1.0062	5.980
277	Cd(S04)2 -2		.012		5.613E-08	3.016E-08	.5373	7.521
182	Ph 2	.333	.184	1.609E-06	8.896E-07	4.779E-07	.5373	6.321
192	PLOH I	1000	.000015		6.866E-11	5.8788-11	.8561	10.231
193	Pb(0H)2 0		.000000		1.434B-16	1.442E-16	1.0062	15.841
194	PL(OH)3 -1		.000000		1.2208-23	1.045B-23	.8561	22.981
242	Pb(OH)4 -2		.000000		2.8108-31	1.509B-31	.5373	30.821
195	Pb20H 3		.000000		2.536B-15	6.267E-16	.2471	15.203
200	Pb3(0H)4 2		.000000		4.211E-28	2.262B-28	.5373	27.645
196	PbN03 1		.000021		7.990E-11	6.841B-11	.8561	10.165
197	PbS04 an 0		.213		7.017E-07	7.061E-07	1.0062	6.151
243	Pb(\$04)2 -2		.007222		1.8118-08	9.7298-09	.5373	8.012
204	Ni 2	.768	.603	1.310E-05	1.028E-05	5.526E-06	.5373	5.258
208	NiOH 1		.000000		5.619E-12	4.811E-12	.8561	11.318
209	Ni(011)2 0		.000000		2.185E-17	2.198E-17	1.0062	16.658
210	Ni(OH)3 1		.000000		1.6208-24	1.387E-24	.8561	23.858
211	Ni 504 ag 0		.435		2.813E-06	2.830B-06	1.0062	5.548
283	Ni(S04)2 2		.000186		7.428E-10	3.991B-10	.5373	9.399
89	Ba 2	.042	.025	3.062E-07	1.798E-07	9.661E-08	.5373	7.015
90	BaOH 1	125.12	.000000		3.129E-17	2.679E-17	.8561	16.572
201	BaSO4 ag 0		.029		1.264E-07	1.2728-07	1.0062	6.895

1-	ST	62	8	92	
----	----	----	---	----	--

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Phase	Log AP/KT	Sigma(A)	Sigma(T)	Log	AP/MinKT	Log AP/MaxKT	Log AP		Log KT	Log MinKT	Log MaxKT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	140	A10H3 (a)	-3.283				-2.594		-34.894		-31.611	-32.300	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	471	A10IIS04	.152				.312	008	-3.078		-3.230	-3.390	-3.070
338 Alum k -7.807 -12.877 -5.170 50 Alumic 2.571 -5.273 -62.763 -63.34 17 Anhydrice -5.59 -5.69 -5.73 -5.73 16 Barite -1176 -7.856 -4.637 -9.773 17 Benhaite -1.176 -33.929 -9.773 -3.585 -11.204 -33.929 17 Benhaite -1.667 .200 -1.384 -3.170 8.467 9.440 18 Gypaus 667 237 7.103 8.770 8.467 9.440 18 Gypaus 6660 7.600 114 -7.580 179 18 Gypaus 6.666 7.600 173 9.200 9.300 238 Gu2(00)30 -0.975 10.452 .3580 15.300 15.301 12 Gu2(00)300 -0.975 11.045 1735 9.240 9.310 24 Langite 2.612 .9.797 13.300 15.150 15.500 24 Langite 2.612 .9.797 4.622 3.981 16.790 17.400 24 Conolic	472	A14(OH)10504	-4.470						18.230		22.700		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	338	Alum k	-7.807						-12.977		-5.170		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	Alunite	2.571						-82.763		-85.334		
146 Earlie	17	Anhydrite	569						-5.206		-4.637		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	144	Barite	.381					.178	-9.595		-9.976		-9.773
	52	Boehmite	-1.478				965		-34.894		-33.416	-33.929	
154 Dispore .227 -3.89 -35.121 360 Reposite -3.599 -5.739 -2.140 310 Gibbsite (c) -1.657 $.200$ -1.384 -2.337 7.103 8.770 8.467 9.440 310 Gibbsite (c) -1.667 -7.012 -7.596 -7.114 -7.596 -1.739 310 Gibbsite (c) -9.61 -7.012 2.669 9.200 233 Gu2(01)200 - 0.915 -7.012 2.669 9.200 233 Gu2(01)300 - 0.915 -1.1646 -7.012 2.669 9.200 233 Gu2(01)300 - 0.915 -1.1127 -11.528 8.200 8.300 234 Gu2(01)300 - 0.915 -2.021 -7.012 2.690 7.350 7.890 234 Gu2(01)300 - 0.917 -1.0464 -1.735 8.200	19	Brucite	-12.351						-23.555		-11.204		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	154	Diaspore	.227						-34.894		-35.121		
S1 0 ibbsite (c) -1.667 .200 -1.384 -2.337 7.103 8.770 8.467 9.440 18 0ypoum 607 607 607 607 607 607 607 607 607 607 600 1114 18 0ypoum 618 7.600 7.600 7.600 7.600 7.600 9.200 236 0x2(0H)300 -0.075 10.645 1.7.83 9.200 8.300 8.00 8.00 8.00 236 0x2(0H)300 -0.075 1.645 1.339 9.200 8.00 1.5.50 1.5.00 1.5.00 1.5.00 1.5.00 1.5.00 1.7.403 8.00 1.5.50 1.5.00 1.7.400 1.7	340	B psomite	-3.599						-5.739		-2.140		
18 Gypus 607 617 64 -7.600 -1.114 65 Theardite -7.419 -7.508 114 65 Theardite -7.612 2.669 -2.012 2.213 3.168 15.088 15.381 185 MSGA -9.681 -5.660 3.540 8.640 9.200 236 Gu2(08)3003 -10.975 -11.045 -1.735 9.240 9.310 240 Brochantite -11.362 .160 -11.172 -11.422 3.978 15.300 15.150 15.500 241 Langite -12.213 -13.422 3.978 16.700 17.400 242 Gu2(08)3003 -9.231 -10.061 -6.641 3.010 2.550 -2.135 247 Gu3604 -9.231 -10.061 -6.641 3.010 2.560 -2.2135 212 Antonic (c) -7.877 -6.077 4.033 11.700 11.860 213 Sat(00)2 (c) -7.377 .020 -6.747 -7.437 4.033 11.750 11.	51	Gibbsite (c)	-1.667		.200		-1.384	-2.337	7.103		8.770	8.487	9.440
66 Hirabilite 5 -7.600 -1.114 65 Theorarite 77.600 -7.598 179 188 Pyrocroite 70.001 -1.1.920 -7.603 15.381 234 Cu(OH)2 -5.100 -7.603 3.168 15.088 9.200 238 Cu(OH)2 -5.100 -5.660 3.540 8.640 9.200 238 Cu(OH)2 -5.100 -5.660 3.540 8.640 9.200 238 Cu(OH)2 -7.852 -8.462 .438 8.290 8.300 15.150 15.500 241 Langite -12.812 .160 -11.172 -11.422 3.978 15.360 15.150 15.500 242 CueCuSO4 -9.651 -9.291 -10.011 -16.641 3.010 2.650 3.420 247 CuSO4 -9.651 -9.291 -10.01 -6.641 -2.660 -2.950 -2.135 271 An(OH)2 (c) -7.797 -4.403 12.200 12.480 272 Zan(OH)2 (c) -7.307 -6.547 -7.437 4.403<	18	Gypsum	607						-5.207	<	-4.600		
65 Theoretice -7.419 -7.598 -7.199 188 Pyrocroite -11.920 -7.213 3.168 15.081 15.381 182 Maxion -9.681 -7.012 2.669 9.200 234 Gu(00)3803 -10.975 -11.045 9.240 9.310 239 Antierite -7.852 -17.358 8.200 8.900 240 Gu(00)3803 -10.975 -11.122 -13.422 3.978 16.760 17.400 247 Gu(00)3803 -10.822 3.978 16.760 17.400 17.400 247 GuS04 -9.651 -9.291 -10.061 -6.641 3.610 2.650 3.420 247 GuS04 -9.651 -9.291 -10.061 -6.641 2.660 -2.650 -2.135 212 Zar(08)2 (c) -7.377 -4.033 12.2450 12.480 227 Car(08)2 (c) -7.977 -4.033 11.710 11.90 11.802 212 Zar(08)2 (c) -7.397 6.917 -7.437 4.403 11.	66	Mirabilite	-6.486						-7.600		-1.114		
18 B Processite -11.920 -12.213 3.168 15.088 15.381 182 MiSO -9.681 -7.012 2.669 -2.00 9.200 23 Gu2(01)3003 -10.975 -11.045 -1.7.35 9.200 9.300 24 Gu2(01)3003 -10.975 -3.462 4.33 8.290 8.900 20 Breachantite -11.627 -11.172 -11.422 3.978 15.3A0 15.150 15.500 24 Gualcatobic -12.812 -3.810 -3.462 3.978 16.790 17.400 17.400 241 GuaSol -9.651 -9.291 -10.61 -6.641 3.010 2.650 3.420 212 Zan(01)2 (c) -7.797 .020 -6.917 -7.437 4.403 12.260 12.480 212 Zan(01)2 (c) -7.367 .020 -6.547 -7.217 4.403 11.710 11.90 11.600 212 Zan(01)2 (c) -7.367 .020 -6.547 -7.217 4.403 11.70 11.90 11.600 212 Zan(01)2 (c) -7.367 -7.677 -7.437 4.403 11.500	65	Thenardite	-7.419						-7.598		179		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	188	Pyrocroite	-11,920					-12.213	3.168		15.088		15.381
224 Out(01)2 -5.100 -5.660 3.540 8.640 9.200 238 G2(00)2003 -10.975 -11.065 -1.735 9.240 8.300 240 Brochmatice -13.362 .160 -11.172 -13.422 3.978 15.340 15.150 15.500 241 Brochmatice -12.012 .160 -11.172 -13.422 3.978 16.790 17.400 242 Immorite -4.080 -3.810 -6.350 3.540 7.620 7.350 7.890 243 GuOCASO4 -2.231 -9.291 -10.061 -6.641 3.010 2.650 3.420 243 GuOCASO4 -3.681 -9.291 -10.061 -6.641 3.010 2.650 -2.480 272 Zn(01)2 (c) -7.397 .020 -6.917 -7.487 4.403 12.260 11.90 11.800 272 Zn(01)2 (c) -7.307 .020 -6.547 -7.217 4.403 11.500 11.800 11.600 272 Zn(01)2 (c) -7.307 -6.547 -7.217	182	MnSO4	-9.681						-7.012		2.669		
215 0.2(00,100,3) -10.375 -11.063 -1.735 9.240 9.310 219 Antlerite -7.852 -11.064 -1.735 9.240 9.310 219 Antlerite -7.852 .160 -11.172 -1.735 9.240 9.310 214 Langite -12.012 -13.422 3.978 15.340 15.150 15.500 241 Langite -12.012 -3.810 -4.350 3.560 7.420 7.350 7.890 243 CucOuSO4 -22.231 -0.0701 11.530 3.420 3.420 244 CusO(12 (a) -7.397 -9.291 -10.061 -6.641 -2.640 -2.960 -2.135 272 Zn(0H)2 (a) -7.397 -7.457 4.403 11.710 11.320 11.840 272 Zn(0H)2 (b) -7.397 -7.457 -7.437 4.403 11.710 11.840 272 Zn(0H)2 (b) -7.397 -7.167 -7.457 4.403 11.100 10.950 11.840 273 Zn(0H)2 SO4 -8.375 <t< td=""><td>234</td><td>Cu(08)2</td><td>-5,100</td><td></td><td></td><td></td><td></td><td>-5.660</td><td>3.540</td><td></td><td>8.640</td><td></td><td>9.200</td></t<>	234	Cu(08)2	-5,100					-5.660	3.540		8.640		9.200
123 0010101100 17.852 8.462 1.438 8.200 8.900 240 Brochantike -11.362 .160 -11.172 -11.522 3.978 15.300 15.150 17.400 241 Langite -12.812 .978 16.790 17.400 17.400 242 Tenorite -4.080 -3.810 -4.350 3.540 7.620 7.350 7.890 243 GuOGuS06 -22.231 -9.291 -10.061 -6.641 3.010 2.650 3.420 243 CuOGuS64 -9.651 -9.291 -10.611 -6.641 3.010 2.650 3.420 244 CuG12 (c) -7.797 -7.437 4.403 12.450 12.460 12.480 212 Zn(0H)2 (c) -7.347 .020 -6.917 -7.437 4.403 11.710 11.800 11.620 212 Zn(0H)2 (c) -7.097 .030 -6.547 -7.137 4.403 11.710 11.900 11.620 212 Zn(OH)2 (Sb0 -0.507 -7.167 -7.457 4.403 <td>238</td> <td>Cu2(0H) 3NO3</td> <td>-10,975</td> <td></td> <td></td> <td></td> <td></td> <td>-11.045</td> <td>-1.735</td> <td></td> <td>9.240</td> <td></td> <td>9.310</td>	238	Cu2(0H) 3NO3	-10,975					-11.045	-1.735		9.240		9.310
3.5 Anticitize -11.322 3.978 15.360 15.150 15.500 241 Langite -12.422 3.978 15.360 17.400 241 Langite -12.422 3.978 15.360 7.550 7.890 242 Tenorite -4.080 -3.810 -4.350 3.560 7.620 7.350 7.890 243 CucOuSO4 -22.231 -10.001 11.530 2.460 -2.651 3.420 246 Chalcanthite -4.001 -3.681 -4.506 -6.641 2.260 3.420 272 Zn(0H)2 (a) -7.377 -4.031 12.260 12.480 12.480 272 Zn(0H)2 (b) -7.307 -6.787 -7.437 4.003 11.710 11.890 278 Zn(0H)8504 -8.875 -1.375 7.500 -1.375 7.500 7.431 28.400 -1.3226 3.440 280 Zno(N)32, 6H20 -16.666 -11.870 11.840 10.990 11.540 292 Zincoirte -6.737 -7.167 7.457 4.	230	Antlorito	-7 852					-8.462	.438		8.290		8.900
240 Boommitte 11.000 11.110 11.120 13.422 3.978 14.790 17.400 241 Langitte -4.080 -3.810 -4.350 3.560 7.620 7.350 7.890 243 Cu0Cu304 -92.231 -10.701 11.530 -10.701 11.530 3.420 247 Cu0Cu304 -9.651 -9.291 -10.611 -6.641 3.010 2.650 3.420 247 Cu0Cu304 -9.291 -10.611 -6.641 3.010 2.650 3.420 247 Cu0Cu304 -9.291 -10.611 -6.641 3.010 2.650 3.420 247 Cu0H2 (c) -7.797 -7.857 -8.077 4.403 11.750 11.300 11.840 212 Zn(OH)2 (c) -7.307 -6.787 -7.437 4.403 11.500 10.950 11.620 218 Zn(OH)2 (c) -7.997 .030 -5.547 -7.217 4.403 11.310 11.950 11.840 218 Zn(OH)2 (ch) -7.057 -7.167 -7.437 4.03 11.310 11.500 11.620 212 Solo(H200 -16.666 -	240	Brochentito	-11 362		160		-11.172	-11,522	3,978		15.340	15.150	15.500
241 Langle B -11.012 -3.810 -4.350 7.650 7.650 7.890 242 Tenorite -4.080 -10.701 11.530 -10.701 11.530 243 Canobiaso4 -22.231 -10.701 11.530 -10.701 11.530 246 Chalcanthite -4.001 -3.681 -4.506 -6.641 -2.640 -2.960 -2.135 272 Zn(0H)2 (a) -7.797 -7.857 -8.077 4.403 12.200 11.320 11.990 274 Zn(0H)2 (b) -7.307 -6.787 -7.437 4.403 11.710 11.800 11.620 278 Zn(0H)2 (c) -7.307 -6.547 -7.217 4.403 11.500 11.620 278 Zn(0H)2 (b) -7.307 -6.547 -7.137 4.603 11.500 11.620 278 Zn(0H)2 (b) -7.307 -6.567 -1.322 3.440 11.500 11.620 278 Zn(0H)2 (b) -7.167 -7.457 4.403 11.310 11.500 11.620 280 Znaol(Su(2b)2	240	brochantite	-12 012					-13 422	3 978		16.790		17.400
242 lanorite -4,000 -10,701 11,530 -10,701 11,530 -10,701 243 Guódushá -9,291 -10,611 -6,641 3,010 2,650 3,420 246 Cháloshá -2,851 -9,291 -10,611 -6,641 3,010 2,650 3,420 247 Chúčká -8,047 -7,857 -8.077 4,403 12,250 12,480 272 Zn(0H)2 (b) -7,347 .020 -6,917 -7,487 4,403 11,710 11,1300 11,840 273 Zn(0H)2 (c) -7,307 -6,787 -7,437 4,403 11,510 10,950 11,620 278 Zn2(0H)2504 -8.875 -1,375 7,500 -1,375 7,500 278 Zn2(0H)2504 -8.875 -1,375 -1,375 11,800 11,840 280 Znaol(Sol)2 -26,172 -1,375 4,403 11,110 10,990 11,540 281 Znol(Sol)2 -26,172 -7,157 -7,457 4,403 11,140 10,990 11,540 2	241	Langice	-12.012				-3 810	-6 350	3.540		7 620	7.350	7.890
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	292	Tenorite	-4.080				-3.010	-4.330	-10 701		11 530	11330	
247 CuSO4 -9.531 -9.231 -10.061 -6.641 3.610 2.250 3.742 248 Chalcanthite -4.001 -3.681 -4.005 -6.641 -2.600 -2.250 12.480 271 Zn(OH)2 (a) -7.797 -7.857 =6.077 4.403 11.750 11.320 11.390 273 Zn(OH)2 (b) -7.347 .020 -6.917 -7.487 4.403 11.710 11.190 11.640 273 Zn(OH)2 (b) -7.097 .030 -6.547 -7.217 4.403 11.710 11.180 11.620 278 Zn(OH)2504 -8.875 -1.375 7.500 1.500 10.950 11.620 278 Zn(OH)2504 -8.875 -1.375 7.500 -7.431 28.400 280 Zn(OH)252 -16.666 -7.457 4.403 11.140 10.990 11.860 281 Zno(Cative) -6.737 -6.587 -7.137 4.403 11.40 10.990 11.800 283 Znao(F) 2 -7.187 -7.457 -1.020 -	293	CuOCuSO4	-22.231				0 201	10 0(1	-10.701		2 010	2 650	3 420
248 Chalcauthite -4.001 -3.681 -2.080 2.000 2.000 2.000 2.000 2.000 271 2n(01)2 (a) -8.047 -7.857 -8.017 4.403 12.260 12.480 272 2n(01)2 (b) -7.307 -6.917 -7.437 4.403 11.710 11.320 11.800 278 2n(01)2 (c) -7.307 -6.917 -7.437 4.403 11.750 11.320 11.800 278 2n(01)2 (c) -7.097 .030 -6.547 -7.437 4.403 11.500 10.950 11.620 278 2n(01)2 (b) -7.097 .030 -6.547 -7.217 4.403 11.500 10.950 11.620 278 2n(01)2 (c) -6.907 -7.167 -7.457 4.403 11.310 11.570 11.860 282 2no(active) -6.907 -7.167 -7.457 4.403 11.310 11.500 10.990 11.540 283 2no(active) -6.9172 -7.167 -7.157 4.403 11.60 3.930 3.930 3.930	247	CuSO4	-9.651				-9.291	-10.061	-0.041		-2.640	-2.960	-2 135
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	248	Chalcanthite	-4.001				-3.661	-4.500	-0.041		-2.040	12 260	12 480
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	271	Zn(OH)2 (a)	-8.047				-7.857	-8.077	4.403		12.450	12.200	12.400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	272	Zn(OH)2 (c)	-7.797		12222		0.000	2 222	4.403		12.200	11 220	11 000
274 Zn(OH)2 (c) -7.307 -6.787 -7.437 4.403 11.710 11.190 11.690 275 Zn(OH)2 (c) -7.097 .030 -6.547 -7.217 4.403 11.500 10.950 11.620 278 Zn(OH)2 (c) -8.875 -1.375 7.500 -1.375 7.500 279 Zn(OH)2 (c) -6.666 -1.372 3.440 281 Zn0(active) -6.907 -7.167 -7.457 4.403 11.100 11.570 11.860 282 Zincite -6.737 -6.587 -7.137 4.403 11.100 10.990 11.540 290 Zincosite -8.788 -7.167 -7.457 4.403 11.100 10.990 11.540 290 Zincosite -8.788 -7.137 4.403 11.100 10.990 11.540 291 ZnS04, 1H20 -5.208 -5.278 -5.778 -1.650 -1.020 293 Galarite -3.818 -4.758 -5.778 -1.765 -1.020 292 Giacolatzite -3.813 -11.870 -12.560 1.740 13.730 13.610 14.300 321 Gd(0H)2	273	Zn(OH)2 (b)	-7.347		.020		-6.917	-7.487	4.403		11.750	11.320	11.070
275 2n(0H)2 (e) -7.097 .030 -6.547 -7.217 4.403 11.500 10.950 11.620 278 202(0H)2504 -8.875 7.500 7.431 28.400 279 2n(0H)6504 -20.969 7.431 28.400 280 2n(active) -6.907 -7.167 -7.457 4.403 11.310 11.570 11.840 283 Zn30(So4)2 -26.172 -7.157 -7.403 11.310 11.570 11.840 290 Zincoite -8.788 -7.137 4.403 11.10 10.990 11.540 292 Zincoite -8.788 -9.708 -5.778 3.010 3.930 291 Zincoite -3.818 -5.278 -1.765 -1.020 292 Bianchite -3.818 -3.908 -5.778 -1.960 -1.870 321 Cd(0H)2 (a) -11.970 .040 1.740 13.650 -1.870 322 Cd3(0H)4504 -27.154 -4.550 -6.560 -1.673 -1.653 3225 Cd4(0H)2 (c)	274	Zn(OH)2 (g)	-7.307		 • • • • • • • • • • • • • • • • • • •		-6.787	-7.437	4.403		11./10	11.190	11.040
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	275	Zn(OH)2 (e)	-7.097		.030		-6.547	-7.217	4.403		11.500	10.950	11.620
279 Zu4(0R)6S04 -20.969 7.431 28.400 280 ZnN03)2,6H20 -16.666 -13.226 3.440 281 ZnO(active) -6.907 -7.167 -7.457 4.403 11.310 11.570 11.860 282 Zincite -6.737 -6.587 -7.137 4.403 11.140 10.990 11.540 283 ZnSO(So4)2 -26.172 -7.152 19.020 -7.152 19.020 290 Zincosite -8.788 -9.708 -5.778 -1.765 -1.020 291 ZnsOiste -4.013 -4.758 -5.778 -1.960 -1.870 292 Bianchite -4.318 -3.908 -5.778 -1.960 -1.870 320 Cd(OH)2 (a) -11.990 -11.870 -12.560 1.740 13.610 14.300 321 <cd(oh)2 (a)<="" td=""> -11.910 .040 -1.740 13.610 14.300 -1.870 322 Cd3(OH)4504 -27.519 -1.870 -1.870 -1.870 -1.870 325 Cd3(OH)4504 -27.519 -</cd(oh)2>	278	Zn2(OH)2S04	-8.875						-1.375		7.500		
280 ZnN03)2, 6820 -16.666 -13.226 3.440 281 Zn0(active) -6.907 -7.167 7.457 4.403 11.310 11.570 11.860 282 Zinoite -6.737 -6.587 -7.137 4.403 11.140 10.990 11.540 282 Zinocsite -6.737 -6.587 -7.137 4.403 11.140 10.990 11.540 283 Zn30(S04)2 -26.172 -7.152 19.020 -7.152 19.020 290 Zincosite -8.788 -9.708 -5.778 570 500 291 ZnS04, 1H20 -5.208 -5.278 -5.778 -1.765 -1.020 293 Goslarite -3.818 -3.908 -5.778 -1.765 -1.020 320 Cd(0H)2 (a) -11.990 -11.870 -12.560 1.740 13.730 13.610 14.300 321 Cd(0H)2 (a) -11.910 .040 -13.999 1.741 15.740 -3.219 28.560 324 Cd30H2(SoA)2 -21.849 -13.999 1.741 15.120 -1.630 325 Cd4(OH)6So4 -31.619 -4.959 22.560	279	Zn4(OH)6SO4	-20.969						7.431		28.400		
281 ZnO(active) -6.907 -7.167 -7.457 4.403 11.310 11.570 11.840 282 Zincite -6.737 -6.587 -7.137 4.403 11.140 10.990 11.540 283 Za30(S04)2 -26.172 -7.152 19.020 3.930 290 Zincosite -8.788 -9.708 -5.778 3.010 3.930 291 ZnS04, 1H20 -5.208 -5.278 -5.778 -1.765 -1.020 293 Goslarite -3.818 -4.758 -5.778 -1.960 -1.870 320 Cd(OH)2 (a) -11.90 .040 1.740 13.730 13.610 14.300 321 Cd(OH)2 (a) -11.910 .040 .040 .040 1.740 13.650 -1.870 322 Galante -3.908 -5.778 -1.900 -1.870 13.610 14.300 321 Cd(OH)2 (a) -11.910 .040 .040 .040 13.650 -3.219 22.560 .0710 .020 .010 .050 .020 .050	280	2nN03)2,6H20	-16.666						-13.226		3.440		
282 Zincite -6.737 -6.587 -7.137 4.403 11.140 10.990 11.540 283 Zn30(S04)2 -26.172 -7.152 19.020 -7.152 19.020 290 Zincosite -8.788 -9.708 -5.778 3.010 3.930 291 ZnS04, 1H20 -5.208 -5.278 -5.778 -1.575 -1.020 293 Goalarite -3.818 -3.908 -5.778 -1.960 -1.870 320 C4(0H)2 (a) -11.990 -11.870 -12.560 1.740 13.730 13.610 14.300 321 C4(0H)2 (c) -11.910 .040 -12.560 1.740 13.730 13.610 14.300 321 C4(0H)8504 -21.849 -15.139 6.710 -3.219 28.400 325 C44(0H)6504 -31.619 -3.219 28.400 -1.3.999 1.741 15.120 15.740 320 C4S04 (J H2O -6.783 -6.760 -6.810 -8.440 -1.657 -1.660 -1.630 331 C4S04 (2, 7H2O -6.567 -6.560 -6.580 -8.440 -1.657 -1.660 -1.630	281	ZnO(active)	-6.907				-7.167	-7.457	4.403		11.310	11.570	11.860
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	282	Zincite	-6.737				-6.587	-7.137	4.403		11.140	10.990	11.540
290 Zincosite -8.788 -9.708 -5.778 3.010 3.930 291 ZnS04, 1H20 -5.208 -5.278 -5.778 -1.765 -1.020 293 Goslarite -3.818 -3.908 -5.778 -1.765 -1.020 201 Gd(0H)2 (c) -11.910 .040 -11.870 -12.560 1.740 13.650 323 Gd3(0H)AS04 -27.519 -4.959 22.560 -4.959 22.560 -5.778 -1.00 .040 326 Monteponite -13.379 -13.999 1.741 15.120 15.740 320 GdS04, 1H20 -6.763 -6.760 -6.810 -8.400 -1.657 -1.660 -1.630 331 GdS04, 2.7H20 -6.567 -6.550 -6.580 -8.400 -1.657 -1.680 -1.630 331 GdS04, 2.7H20 -6.567 -6.560 -8.400	283	Zn30(S04)2	-26.172						-7.152		19.020		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	290	Zincosite	-8.788					-9.708	-5.778		3.010		3.930
292 Bianchito -4.013 -4.758 -5.778 -1.765 -1.020 293 Goslarite -3.818 -3.908 -5.778 -1.765 -1.870 320 Gd(0H)2 (a) -11.990 -11.870 -12.560 1.740 13.730 13.610 14.300 321 Gd(0H)2 (c) -11.910 .040 1.740 13.650 -1.765 -1.870 323 Gd3(0H)8504 -27.519 -4.959 22.560 -4.959 22.560 -4.959 22.560 324 Gd30H2(S04)2 -21.849 -15.139 6.710 -3.219 28.400 -13.379 -13.999 1.741 15.120 15.740 326 Monteponite -13.379 -13.999 1.741 15.139 6.710 -0.550 320 Gd304, 1H20 -6.783 -6.760 -6.810 -8.440 -1.657 -1.680 -1.630 331 GdS04, 2.7H20 -6.567 -6.550 -6.580 -8.440 -1.873 -1.860 -1.630 367 Massicot -11.631 -11.511 1.279 12.720 12.640 13.070 369 Pb0, .3H20 -11.701 -1.322 <td>291</td> <td>ZnSO4, 1H20</td> <td>-5.208</td> <td></td> <td></td> <td></td> <td></td> <td>-5.278</td> <td>-5.778</td> <td></td> <td>570</td> <td></td> <td>500</td>	291	ZnSO4, 1H20	-5.208					-5.278	-5.778		570		500
293 Goslarite -3,818 -3,908 -5,778 -1,960 -1,870 320 Cd(0H)2 (a) -11,990 -11.870 -12,560 1,740 13,650 323 Cd3(0H)4S04 -27,519 -4,959 22,560 -4,959 22,560 324 Cd30H2(S04)2 -21.849 -15.139 6.710 -3.219 28.400 326 Monteponite -13.379 -13.999 1.741 15.120 15.740 320 CdS04 -8.340 -8.310 -0.390 -8.440 -1.657 -1.660 -1.630 320 CdS04, 1120 -6.763 -5.760 -6.810 -8.440 -1.657 -1.660 -1.630 331 CdS04, 2.7H20 -6.567 -6.550 -6.580 -8.440 -1.677 -1.890 -1.860 367 Massicot -11.631 -11.511 1.279 12.720 12.640 13.070 369 Pb0, .3H20 -11.701 -1.322 -7.622 -2.80 -6.300 372 Pb302S04 -27.163 -1.031 -5.063 22.100 -6.300 373 Pb403S04 -27.163 -5.063 22.100 -7.870	292	Bianchite	-4.013					-4.758	-5.778		-1.765		-1.020
320 Cd(0H)2 (a) -11.90 -11.870 -12.560 1.740 13.730 13.610 14.300 321 Cd(0H)2 (c) -11.910 .040 1.740 13.650 1.740 13.650 323 Cd(0H)2 (c) -11.910 .040 1.740 13.650 1.740 13.610 14.300 323 Cd(0H)2 (c) -11.910 .040 1.740 13.650 1.740 13.610 14.300 322 Cd(0H)8504 -21.849 -4.959 22.560 -4.959 22.560 1.740 15.740 325 Cd4(0H)8504 -31.619 -3.219 28.400 -11.870 -13.999 1.741 15.120 15.740 329 CdS04 -8.340 -6.760 -6.810 -8.400 -1.657 -1.660 -1.630 330 CdS04, 1H20 -6.763 -6.550 -6.580 -8.440 -1.657 -1.660 -1.630 331 CdS04, 2.7H20 -6.567 -6.550 -6.580 -8.440 -1.873 -1.890 -1.860 361 Litharge -11.41 -11.361 -11.791 1.279 12.910 12.790 371 Larnak	293	Goslarite	-3.818					-3.908	-5.778		-1.960	10100-000-001	-1.870
321 Cd(OH)2 (c) -11.910 .040 1.740 13.650 323 Cd3(OH)8504 -27.519 -4.959 22.560 324 Cd3(OH)8504 -21.849 -15.139 6.710 325 Cd4(OH)6504 -31.619 -3.219 28.400 326 Monteponite -13.379 -13.999 1.741 15.120 15.740 320 CdS04 -8.340 -8.340 -8.390 -8.440 -1.657 -1.680 -1.630 330 CdS04, 1H20 -6.783 -6.760 -6.810 -8.440 -1.657 -1.680 -1.630 331 CdS04, 2.7H20 -6.567 -6.550 -6.580 -8.440 -1.873 -1.890 -1.860 367 Massicot -11.631 -11.511 1.279 12.720 12.640 13.070 369 Pb0, .3H20 -11.701 -1.322 -7.622 -2.80 -6.300 372 Pb302504 -6.743 -1.322 -7.622 -2.80 -6.300 372 Pb302504 -27.163 -5.063 22.100 -5.063 22.100 384 Anglesite -1.111 .020 -1.031 -8.901	320	Cd(OH)2 (a)	-11.990			0	-11.870	-12.560	1.740		13.730	13.610	14.300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	321	Cd(OH)2 (c)	-11.910		.040				1.740		13.650		
324 Cd30H2(S04)2 -21.849 -15.139 6.710 325 Cd4(0R)6S04 -31.619 -3.219 28.400 326 Monteponite -13.379 -13.999 1.741 15.120 15.740 326 Cd304 -8.340 -8.310 -0.390 -8.440 -1.00 130 050 330 CdS04, 1H20 -6.783 -6.760 -6.810 -8.440 -1.657 -1.680 -1.630 331 CdS04, 2.7H20 -6.567 -6.550 -6.580 -8.440 -1.873 -1.890 -1.860 366 Litharge -11.411 -11.361 -11.791 1.279 12.710 12.790 369 Pb0, .3H20 -11.701 1.279 12.980 -6.300 -6.343 10.400 372 Pb302S04 -16.743 -1.322 -7.663 22.100 -6.300 373 Pb403S04 -27.163 -27.163 -5.063 22.100 -7.870 384 Anglesite -1.111 .020 -1.031 -8.901 -7.790 -7.870	323	Cd3(0H)4S04	-27.519						-4.959		22.560		
325 G44(0II)6S04 -31.619 -3.219 28.400 326 Monteponite -13.379 -13.999 1.741 15.120 15.740 329 G4S04 -8.340 -8.340 -8.390 -8.440 -1.00 050 330 G4S04, 1H20 -6.783 -6.760 -6.810 -8.440 -1.657 -1.680 -1.630 331 G4S04, 2.7H20 -6.567 -6.550 -6.580 -8.440 -1.873 -1.890 -1.860 367 Massicot -11.631 -11.511 1.279 12.701 12.790 12.700 368 Litherse -11.701 1.279 12.980 -6.300 -6.343 10.400 372 Pb302S04 -16.743 -1.322 -7.622 -2.80 -6.300 373 Pb403S04 -27.163 -27.163 -5.063 22.100 -6.380 384 Anglesite -1.111 .020 -1.031 -8.901 -7.790 -7.870	324	Cd30H2(S04)2	-21.849						-15.139		6.710		
326 Monteponite -13.379 -13.999 1.741 15.120 15.740 329 CdS04 -8.340 -8.310 -8.390 -8.440 100 130 050 330 CdS04, 1120 -6.763 -6.760 -6.810 -8.440 -1.657 -1.680 -1.630 331 CdS04, 2.7H20 -6.567 -6.550 -6.580 -8.440 -1.873 -1.890 -1.680 -1.680 367 Massicot -11.631 -11.511 1.279 12.910 12.790 12.790 368 Litharge -11.441 -11.361 -11.791 1.279 12.720 12.640 13.070 371 Larnakite -7.342 -1.322 -7.622 280 -6.300 372 Pb302S04 -16.743 -6.343 10.400 -5.063 22.100 384 Anglesite -1.111 .020 -1.031 -8.901 -7.790 -7.870	325	Cd4(0H)6504	-31.619						-3.219		28.400		
329 CdS04 -8.340 -8.340 -8.390 -8.440 -1.00 130 050 330 CdS04, 1120 -6.783 -6.760 -6.810 -8.440 -1.657 -1.680 -1.630 331 CdS04, 2.7H20 -6.567 -6.50 -6.580 -8.440 -1.657 -1.680 -1.630 367 Massicot -11.631 -11.511 1.279 12.910 12.790 368 Litharge -11.441 -11.361 -11.791 1.279 12.920 12.640 13.070 369 Pb0, .3H20 -1.701 1.279 12.980 -6.333 10.400 -6.343 10.400 372 Pb302S04 -16.143 -10.31 -5.063 22.100 -8.901 -7.790 -7.870 384 Anglesite -1.111 .020 -1.031 -8.901 -7.790 -7.870	326	Monteponite	-13, 379					-13,999	1.741		15.120		15.740
330 CdS04, 1H20 -6.783 -6.760 -6.810 -8.440 -1.657 -1.680 -1.630 331 CdS04, 2.7H20 -6.567 -6.550 -6.580 -8.440 -1.873 -1.890 -1.860 367 Massicot -11.631 -11.511 1.279 12.910 12.790 368 Litharge -11.441 -11.361 -11.791 1.279 12.640 13.070 369 Pb0, .3H20 -11.701 1.279 12.980 -6.300 -6.343 10.400 371 Larnakite -7.342 -1.322 -7.622 -2.80 -6.300 372 Pb302S04 -67.163 -5.063 22.100 -6.343 384 Anglesite -1.031 -8.901 -7.790 -7.870	329	CdS04	-8.340				-8.310	-8.390	-8.440		100	130	050
331 CdS04,2.7H20 -6.567 -6.550 -6.580 -8.440 -1.873 -1.890 -1.860 367 Massicot -11.631 -11.511 1.279 12.910 12.790 368 Litharge -11.441 -11.361 -11.791 1.279 12.980 369 Pb0, .3H20 -11.701 1.279 12.980 13.070 371 Larnakite -7.342 -1.322 -7.622 -2.80 -6.300 372 Pb302S04 -16.743 -6.343 10.400 -5.063 22.100 384 Anglesite -1.111 .020 -1.031 -8.901 -7.790 -7.870	330	CdS04 1820	-6.783				-6.760	-6.810	-8.440		-1.657	-1.680	-1.630
367 Massicot -11.631 -11.511 1.279 12.910 12.790 368 Litharge -11.441 -11.361 -11.791 1.279 12.720 12.640 13.070 369 Pb0, .3H20 -11.701 1.279 12.720 12.640 13.070 371 Larnakite -7.342 -1.322 -7.622 280 -6.300 372 Pb302804 -16.743 -6.343 10.400 -6.343 10.400 373 Pb403804 -27.163 -20.02 -1.031 -8.901 -7.790 -7.870	331	CdS04 . 2 . 7H20	-6.567				-6.550	-6.580	-8.440		-1.873	-1.890	-1.860
368 Lithærge -11.441 -11.361 -11.791 1.279 12.720 12.640 13.070 369 Pb0, .3H20 -11.701 1.279 12.980 12.720 12.640 13.070 371 Latnakite -7.342 -1.322 -7.622 -2.80 -6.300 372 P502504 -16.743 -6.343 10.400 373 P5403504 -27.163 -5.063 22.100 384 Anglesite -1.111 .020 -1.031 -8.901 -7.790 -7.870	367	Massicot	-11.631			4	-11.511		1.279		12.910	12.790	
369 Pb0, .3H20 -11.701 1.279 12.980 371 Larnskite -7.342 -1.322 -7.622 280 -6.300 372 Pb302S04 -16.743 -6.343 10.400 373 Pb403S04 -27.163 -5.063 22.100 384 Anglesite -1.111 .020 -1.031 -8.901 -7.790 -7.870	368	Litharge	-11.441			1	-11.361	-11,791	1.279		12.720	12.640	13.070
371 Larnskite -7.342 -1.322 -7.622 -2.80 -6.300 372 Pb302S04 -16.743 -6.343 10.400 373 Pb403S04 -27.163 -5.063 22.100 384 Anglesite -1.111 .020 -1.031 -8.901 -7.790 -7.870	369	PN0 3820	-11 701						1.279		12,980	8) 	
372 Pb302504 -16.743 -6.343 10.400 373 Pb403504 -27.163 -5.063 22.100 384 Anglesite -1.111 .020 -1.031 -8.901 -7.790 -7.870	371	Larnakite	-7 342				-1.322		-7.622		280	-6.300	
373 Pb403S04 -27.163 -5.063 22.100 384 Anglesite -1.111 .020 -1.031 -8.901 -7.790 -7.870	372	Ph302504	-16 763				1.000		-6.343		10,400	u vetrestensu)	
384 Anglesite -1.111 .020 -1.031 -8.901 -7.790 -7.870	372	Ph/03004	-27 163						-5.063		22.100		
Jog nigreste -1111	394	Anglasita	-1 111		020		-1 031		-8,901		-7.790	-7.870	
	204	AUBICOILC			1020		11001				0.000	015-3227	

1-ST62892

Phase	Log AP/K	T Sigma(A)	Sigma(T)	Log AP/Mi	nKT Log AP/MaxKT	Log AP	LOS KT	Log MinKT	Log MaxKT
389 Pb(OH)2 (c) -6.871			-	-12.351	1,279	8,150		13.630
393 Pb20(OH)2 -23.642				-24.542	2.558	26.200		27.100
394 Pb4(0	H)6S04 -26.164					-5.064	21,100		
411 Ni(OH)2 -8.458		.100	-8.24	8 ~10.958	2.342	10.800	10.590	13,300
412 Ni4(0	H)6SO4 -32.812					812	32.000		
413 Bunse	nite -10.108				-10.048	2.342	12.450		12.390
416 Retge	raite -5.799					-7.839	-2.040		
417 Moren	osite -5.479					-7.839	-2,360		

Date = 9/24/95 13:18

Anal Cond = 1262.0 Anal BPMCAT = 15.3302 Anal RPMAN = 10.1182 Percent difference in input cation/anion balance = 40.9615 ERROR IN CALCULATED CHARGE BALANCE GREATER THAN 30 PERCENT. CHECK INPUT DATA. Calc EPMCAT = 12.7844 Calc EPMAN = 7.5739 Percent difference in calc cation/anion balance = 51.1879 Total lonic Strength (T.I.S.) from input data = .02371 Effective Ionic Strength (E.I.S.) from speciation = .01861 Sato Calc Fe3/Fe2 Sigua H202/02 Signu NO3/NO2 Sigma NO3/NH4 Sigma Input Signa H202/02 Sigma SO4/S= Sigma As5/As3 Sigma - -- - Eh 9.900 000 9.900 000 9.900 .000 .000 .000 9.900 .000 9.900 .000 9.900 .000 9.900 .000 202 PE .000 100.000 .000 100.000 .000 100.000 .000 100.000 .000 100.000 .000 100.000 .000 100.000 .000 100.000 Effective T pll TDS ppm pO2 Atin pCO2 Atm pCH4 Atm CO2 Tot Uncom CO2 ppm Uncom CO2 Norb Alk aH20 Ionic Str 25.00 6.000 814.1 .01861 0.00E+00 2.108-02 0.00B+00 .00110 3.62B-04 1.59E+01 1.158-08 .9998 I. Species Anal ppm Cale ppm Anal Molal Calc Molal Activity Act Coeff -Log Act 0 159.000 3.1538-03 1.883E-03 .5971 2.725 Ca 2 126.280 3.970B-03 28 CaOH .000031 5.422E-10 4.741E-10 .8744 9.324 CaSO4 aq 31 109.949 1.0043 3.091 8.083E-04 8.118B-04 0 81 CaHS04 .000729 5.3198-09 4.650E-09 .8744 8.333 29 CaHC03 8.732E-06 5.117 .882 7.635E-06 .8744 30 CaCO3 ay 0 .004684 4.6848-08 4.704E-08 1.0043 7.328 32.000 26.042 .6036 3.189 1 2 1.317E-03 1.072E-03 6.471E-04 Mg 18 MgOII .000049 1.188E-09 1.0398-09 .8744 8.983 22 MgSO4 aq 29.168 2.425B-04 2.436B-04 1.0043 3.613 0 21 MgHC03 1 .233 2.736B-06 2.3928-06 .8744 5.621 20 MgCO3 aq .000773 1.0043 8.036 0 9.170E-09 9.210E-09 2 Na 1 61.000 60.347 2.656E-03 2.6278-03 2.301E-03 .8759 2.638 43 NaSO4 3.321 2.792E-05 4.612 2.441E-05 .8744 -1 42 NallCOJaq 0 .034 4.097E-07 4.114B-07 1.0043 6.386 41 NaCO3 -1 .000060 7.275B-10 6.361E-10 .8744 9.196 3 ĸ 16.100 15.864 4.121E-04 4.061E-04 3.538E-04 .8714 3.451 45 KSO4 .813 6.019B-06 5.263B-06 .8744 5.279 -1 63 п .001129 1.121E-06 1.000B-06 .8922 6.000 26 OH .000195 1.1478-08 1.0028-08 .8744 7.999 - 1 .5973 7.826 17 CO3 -2 .001497 2.497E-08 1.491E-08 HC03 24.000 22.047 3.937E-04 3.6168-04 3.179B-04 .8791 3.498 6 -1 1.0045 3.146 85 II2CO3 ag 0 44.090 7.115E-04 7.147B-04 5 S04 -2 466.000 343.263 4.855B-03 3.576E-03 2.117E-03 .5918 2.674 62 6.687 11504 -1 .023 2.350E-07 2.055E-07 .8744 1.453E-05 1.270E-05 .8744 4.896 N03 .900 1.453E-05 84 .900 -1 16 Fe total 2 .055 9.856E-07 .292 6.540E-06 5.325E-06 3.1138-06 .5846 5.507 109 Min 2 .359 119 MnilC03 .002442 2.108E-08 1.8438-08 .8744 7.735 1 9.149E-11 8.000E-11 .8744 10.097 114 MnOH .000007 .8744 22.307 115 Mn(OH)3 -1 .000000 5.638E-23 4.930B-23 1.991E-15 1.9998-15 1.0043 14.699 .000000 118 Mn(NO3)2 0 MnSO4 aq 5.921 117 0 .180 1.1948-06 1.199B-06 1.0043 2.1578-06 1.261E-06 .5846 5.899 130 Cu .195 .137 3.071E-06 2 6.697 .8744 271 CullCO3 .029 2.298E-07 2.0098-07 CuCO3 aq 1.006E-07 1.0108-07 1.0043 6.996 131 .012 0 3.242E-12 1.895E-12 .5846 11.722 132 Cu(CO3)2 -2 .000000

INPUT TDS = 1135.0

2-ST62892

DOX =

.0000

DOC =

Calc Cond = 1252.1

.0

2-ST62892

1	Species	Anal ppm	Calc ppm	Anal Molal	Calc Molal	Activity	Act Coeff	-Log Act			
138	CuOII 1		.001161		1.442E-08	1.2618-08	.8744	7.899			
139	Cu(011)2 0		.002556		2.6228-08	2.6348-08	1.0043	7.579			
140	Cu(OH)3 -1		.000000		1.814E-15	1.5878-15	.8744	14.800			
141	Cu(011)4 -2		.000000		5.414E-22	3.165E-22	.5846	21.500			
142	Cu2(011)2 2		.000019		1.190E-10	6.958B-11	.5846	10.157			
143	CuSO4 ag 0		.087		5.427E-07	5.450B-07	1.0043	6.264			
145	Zu 2	53.850	40.594	8.244E-04	6.215E-04	3.633E-04	.5846	3.440			
272	ZnliCO3 1		2.100		1.663E-05	1.454B-05	.8744	4.837			
273	2nC03 0		.135		1.076E-06	1.081E-06	1.0043	5.966			
274	Zn(CO3)2 · 2		.000109		5.893E-10	3.445E-10	.5846	9.463			
151	ZnOII 1		.037		4.555E-07	3.983E-07	.8744	6.400			
152	Zn(OII)2 0		.000452		4.5528-09	4.572B-09	1.0043	8.340			
153	Zn(OII)3 1		.000000		1.6538-14	1.445B-14	.8744	13.840			
154	Zn(OH)4 -2		.000000		3.9188-21	2.290E-21	.5846	20.640			
158	ZnSO4 ag 0		28.952		1.795E-04	1.803E-04	1.0043	3.744			
159	Zn(S04)2 -2		1.365		5.304B-06	3.1018-06	.5846	5.509			
160	Cd 2	.255	.182	2.271E-06	1.6248-06	9.491E-07	.5846	6.023			
166	Cd(CO3)3 4		.000000		4.4692-23	5.218E-24	.1168	23.283			
275	CdIIC03 1		.007528		4.3448-08	3.7998-08	.8744	7.420			
276	CdC03 0		.000610		3.540E-09	3.555E-09	1.0043	8.449			
167	Cd011 1		.000012		9.0268-11	7.893E-11	.8744	10.103			
168	Cd(OH)2 0		.000000		4.2198-15	4.238E-15	1.0043	14.373			
169	Cd(OH)3 -1		.000000		5.436E-22	4.754B-22	.8744	21.323			
170	Cd(OH)4 -2		.000000		7.2468-30	4.236E-30	.5846	29.373			
171	Cd2OH 3		.000000		1.227E-15	3.666E-16	.2988	15.436			
173	CdN03 1		.000006		3.463E-11	3.028E-11	.8744	10.519			
174	CdS04 ag 0		.120		5.769E-07	5.794E-07	1.0043	6.237			
277	Cd(S04)2 2		.004790		2.300E-08	1.344E-08	.5846	7.871			
204	Ni 2	.335	.251	5.711E-06	4.2818-06	2.502E-06	.5846	5.602			
280	NiHCO3 1		.015		1.256E-07	1.098E-07	.8744	6.959			
281	NiCO3 0		.033		2.7558-07	2.766E-07	1.0043	6.558			
282	Ni(CO3)2 -2		.000002		1.2268-11	7.165E-12	.5846	11.145			
208	NIOH I		.000030		3.950E-10	3.454B-10	.8744	9.462			
209	Ni(OH)2 0		.000000		2.491E-13	2.501E-13	1.0043	12.602			
210	Ni(OH)3 -1		.000000		2.860E-18	2.501E-18	.8744	17.602			
211	NiSO4 ag 0		.159		1.028E-06	1.033E-06	1.0043	5.986			
283	Ni(SO4)2 -2		.000050		2.008E-10	1.174E-10	.5846	9.930			
89	Ba 2	.028	.017	2.040E-07	1.262E-07	7.375E-08	.5846	7.132			
90	BaOII 1		.000000		3.706E-15	3.241E-15	.8744	14.489			
201	BaSO4 ag 0		.018		7.790E-08	7.8238-08	1.0043	7.107			
	Phase	Log AP/KT	Sigma(A)	Sigma(T)	Log	AP/MinKT	Log AP/MaxKT	Log AP	Log KT	Log MinKT	Log MaxKT
-----	---------------	-----------	----------	----------	-----	--	--------------	---------	---------	-----------	-----------
17	Anhydrite	763		000				-5.400	-9.336		
21	Aragonite	-2.216		.020				-10.332	-0.530		
150	Artinite	-10.8/7					0.74	-1.2//	9.600		-9 773
144	Barite	.169					034	-9.807	-9.976		-9.115
19	Brucite	-7.983		1000		1002233		-19.187	-11.204		
12	Calcite	-2.072		.020		-1.992		-10.552	-8.480	-0.560	
11	Dolomite	-4.567						-21.567	-17.000		
340	Epsomite	-3.724						-5.864	-2.140		
18	Gypsum	800						-5.400	-4,600		
117	Huntite	-13.630						-43.598	-29,968		
38	Hydrmagnesit	-26.487						-63.249	-36.762	21222	
10	Magnesite	-2.986				-2.736	-3.236	-11.015	-8.029	-8.279	-7.779
66	Mirabilite	-6.837						-7.951	-1.114		
58	Nahcolite	~5.588						-6.136	548		
60	Natron	-11.793						-13.104	-1.311		
149	Nesquehonite	-5.395				-5.883	-6.470	-11.016	-5.621	5.133	-4.546
65	Thenardite	-7.771						-7.950	179		
61	Thermonatr	-13.228						-13.103	.125		
59	Trona	-18.443						-19.238	795		
145	Witherite	-6.374				-1.624		-14.959	-8.585	-13.335	
188	Pyrocroite	-8.595					-8.888	6.493	15.088		15.381
190	Rhodochrosit	-2.923				-2.314	-3.340	~13.333	-10.410	-11.019	-9.993
182	MnSO4	-10.850						-8,181	2.669		
231	CuCO3	-4.096				-4.076	-4.116	-13.726	-9.630	-9.650	-9.610
236	Cu(OII)2	-2.539					-3.099	6.101	8.640		9,200
235	Malachita	-2 446		080		-1.796	-2.656	2.704	5.150	4.500	5.360
236	Ameite	-6 663		090		-1.873		693	3.750	1.180	
230	0.2(0H) 3NO3	-7 935					-8.005	1.305	9.240		9.310
230	dat lonito	-6 662					-5.272	3.628	8,290		8.900
237	Brochastila	-5 612		160		-5 422	-5.772	9.728	15.340	15.150	15.500
240	Brochancite	-7.062		.100		3.444	-7 672	9 728	16.790		17.400
241	Tangite	-1 510				-1 269	-1 789	6.101	7.620	7.350	7.890
242	Cucou Col	-26 002				1.147	1.105	-16 673	11.530		
243	CubCiiS04	-20.003				-11 224	-11 994	-8 576	3.010	2.650	3.420
241	Cholomethius	-11.304				-5 616	-6 439	-8.574	-2.640	-2,960	-2.135
240	Chalcanthite	-3.934				- 456	-1 446	-11 266	-10,000	-10.810	-9.820
208	Smithsonite	-1.200				430	-1.440	-11 266	-10.260		
209	ZnC03, 1H20	-1,000				-3 200	-3 920	8 560	12.450	12.260	12.480
2/1	Zn(OII)2(a)	-3.890				-3.700	-3.920	8 560	12 200		111100
212	Zn(OH)2 (c)	-3.640		020		-2 260	-1 330	8 560	11 750	11.320	11.890
213	Zn(OH)2 (b)	-3.190		.020		-2.780	-3.350	8 560	11 710	11,190	11.840
214	Zn(OII)2 (g)	-3.150		030		2.030	-3.060	8 560	11 500	10.950	11.620
275	Zn(OH)2 (e)	-2.940		.030		-2.390	-3.000	3 446	7 500	10.750	
278	Zn2(OH)2504	-5.054						2.440	28 400		
279	2n4(OH)6SO4	-8.834						19.300	20.400		
280	ZnN03)2,61120	-16.673				the second s		-13.233	5.440	11 570	11 860
281	ZnO(active)	-2.750				-3.010	-3.300	8.500	11.310	11.570	11.560
282	Zincite	-2.580				-2.430	-2.980	8.560	11.140	10.990	11.340
283	2n30(S04)2	-22.688						-3.668	19.020		2 020
290	Zincosite	-9.124					-10.044	-6.114	3.010		5.930
291	ZnS04, 1H20	-5.544					-5.614	-6.114	570		-1.020
292	Bianchite	-4.350					-5.095	-6.115	-1.765		-1.870
293	Goslarite	-4.155					-4.245	-6.115	-1.960	-12 810	-11,210
315	Otavite	109				039	-2.639	-13.849	-13.740	-13.810	-11.210
320	Cd(OH)2 (a)	-7.753				-7.633	-8.323	5.977	13.730	13.610	14.300
321	Cd(OH)2 (c)	-7.673		.040				5.977	13.650		
323	Cd3(0H)4S04	-19.303						3.257	22.560		
324	Cd30H2(S04)2	-18.127						-11.417	6.710		

Phase	Log AP/KT	Sigma(A)	Signus (T)	Log AP/Min	KT Log AP/MaxKT	Log AP	Log KT	Log MinKT	Log MaxKT
325 Cd4(OH)6SO4	-19.166				a	9.234	28.400	5	
326 Monteponite	-9.143				-9.763	5.977	15.120		15.740
329 CdS04	-8.597			-8.567	-8.647	-8.697	100	130	050
330 CdS04, 1H20	-7.040			-7.017	-7.067	-8.697	-1.657	-1.680	-1.630
331 CdS04, 2.7H20	-6.824			-6.807	-6.837	-8.697	-1.873	-1.890	-1.860
410 NiCO3	-6.588					-13.428	-6.840		
411 Ni(OH)2	-4.402		.100	-4.192	-6.902	6.398	10.800	10.590	13.300
412 Ni4(OH)6504	-21.081					10.919	32.000		
413 Bunsenite	-6.052				-5.992	6.398	12.450		12.390
416 Retgersite	-6.237					-8.277	-2.040		
417 Morenosite	-5.917					-8.277	-2.360		

Date = 10/14/95 21:45

3-ST62892

DOX = .0000 DOC = .0 INPUT TDS = 1062.0 Anal Cond = 1211.0 Calc Cond = 1196.0 Anal EPMCAT = 14.8419 Anal EPMAN = 9.5178 Percent difference in input cation/anion balance = 43.7122 ERROR IN CALCULATED CHARGE BALANCE GREATER THAN 30 PERCENT. CHECK INPUT DATA.

Calc RPMCAT = 12.5613 Calc EPMAN = 7.2423 Percent difference in calc cation/anion balance = 53.7180 Total Ionic Strength (T.I.S.) from input data = .02242 Effective Ionic Strength (B.I.S.) from speciation = .01786

Calc Sato As5/As3 Sigma Fe3/Fe2 Sigma H202/02 Sigma NO3/NO2 Sigma NO3/NH4 Sigma H202/02 Sigma SO4/S= Signa Input Sigma - Bh .000 .000 9.900 .000 9,900 .000 9.900 .000 9.900 .000 9.900 .000 .000 9.900 9.900 .000 -.000 .000 100.000 .000 100.000 .000 100.000 .000 100.000 100.000 .000 100.000 .000 100.000 .000 100.000 Effective ppm Uncom CO2 Norb Alk aH20 TDS PPm pCH4 Atm CO2 Tot Uncom CO2 т pll Ionic Str pO2 Atm pCO2 Atm 5.268-04 2.318+01 2.288-08 .9998 .01786 0.008+00 1.538-02 0.00E+00 .00109 25.00 6.300 770.7 Anal Molel Calc Molal Activity Act Cooff -Log Act 1 Calc ppm Species Anal ppm .6021 2.748 0 Ca 2 147.000 118.853 3.670B-03 2.9688-03 1.7878-03 .000058 1.0258-09 8.979B-10 .8764 9.047 28 CaOH 1 1.0041 3.159 6.907E-04 6.935B-04 31 CaSO4 aq 0 93.958 .000311 2.2728-09 1.9918-09 .8764 8.701 CaHSO4 81 1 .8764 4.977 1.204E-05 1.0558-05 29 CallCO3 1.216 1.2928-07 1.2978-07 1.0041 6.887 CaCO3 aq .013 30 0 .6085 3.140 1.441E-03 1.192E-03 7.2518-04 35.000 28.948 1 2 Mg .8764 8.634 18 .000109 2.6518-09 2.3238-09 MgOH 3.610 22 MaSO4 ag 29.428 2.447E-04 2.457B-04 1.0041 0 4.454E-06 3.903E-06 .8764 5.409 21 MgHC03 .380 1 7.523 20 MgCO3 aq .002516 2.9868-08 2.9988-08 1.0041 0 .8779 2.644 2 60.000 59.416 2.6128-03 2.5878-03 2.271E-03 No 4.664 .8764 43 NaS04 -1 2.943 2.474E-05 2.168E-05 5.910B-07 1.0041 6.228 .049 5.886E-07 42 NaHC03ag 0 .8764 8.739 41 NaCO3 .000173 2.0808-09 1.8238-09 -1 .8735 3.466 15.295 3.9678-04 3.915E-04 3.420B-04 15.500 3 x .8764 5.339 45 KS04 .706 5.2258-06 4.579E-06 -1 6.300 .000565 5.608E-07 5.0128-07 .8937 63 H 1 .8764 7.699 26 OH .000388 2.2828-08 2.000B-08 -1 17 .004312 7.191E-08 4.332B-08 .6024 7.363 003 -2 .8810 3.335 HC03 -1 35.000 32.032 5.741B-04 5.2548-04 4.629E-04 6 3.283 85 H2C03 #9 32.180 5.192B-04 5.215B-04 1.0044 0 .5971 2.720 4.3238-03 1.905E-03 5 \$04 -2 415.000 306.289 3.191E-03 7.033 62 HS04 .010 1.058E-07 9.269E-08 .8764 -1 2.8238-04 2.8208-04 2.4638-04 .8735 3.609 10.000 9.989 4 Cl -1 4.895 84 NO3 .900 .900 1.4538-05 1.4538-05 1.273E-05 .8764 -1 .132 2.3658-06 16 Fe total 2 .5899 2.392E-05 1.4118-05 4.850 109 Ma 2 1.589 1.313 2.8958-05 MnHC03 .016 1.3888-07 1.216E-07 .8764 6.915 119 1 .8764 7.852 111 MnC1 .001449 1.6048-08 1.406E-08 MmC12 aq 9.3698-13 9.408E-13 1.0041 12.027 112 0 .000000 1.045E-16 .8764 15.981 1.1928-16 113 MnC13 -1 .000000 9.141 8.2558-10 7.235E-10 .8764 MnOE .000059 114 .8764 20.751 .000000 2.0268-21 1.7758-21 115 Mn(OH)3 -1 1.0041 14.041 Mn(NO3)2 0 .000000 9.0668-15 9.1048-15 118 5.311 4.8728-06 4.8928-06 1.0041 117 Mas04 ag 0 .735

I	Species	Anal ppm	Calc ppm	Anal Molal	Calc Molal	Activity	Act Coeff	-Log Act
130	Cu 2	.137	.086	2.158B-06	1.3628-06	8.034B-07	.5899	6.095
271	CuHCO3 1		.026		2.127B-07	1.8648-07	.8764	6.730
131	CuCO3 ag 0		.023		1.8618-07	1.8698-07	1.0041	6.728
132	Cu(CO3)2 -2		.000003		1.727E-11	1.0198-11	.5899	10.992
133	CuCl 1		,000060		6.077B-10	5.326B-10	.8764	9.274
134	CuCl2 ag 0		.000000		7.016B-14	7.045B-14	1.0041	13.152
135	GrC13 -1		.000000		7.025B-20	6.157B-20	.8764	19.211
136	CuC16 -2		.000000		1.2888-25	7.601B-26	.5899	25.119
138	Cu08 1		.001472		1.8298-08	1.6038-08	.8764	7.795
139	Gu(08)2 0		.006484		6.6528-08	6.6798-08	1.0041	7.175
140	Gu(08)3 -1		.000000		9.1618-15	8.0288-15	.8764	14.095
141	Gu(08)A -2		.000000		5.4178-21	3.1958-21	.5899	20.495
162	G12(0H)2 2		.000031		1.9068-10	1.1248-10	. 5899	9.949
143	CuSOA no 0		.050		3.1128-07	3.1258-07	1.0041	6.505
145	Zn 2	49.910	37,939	7.6418-04	5.8088-04	3.4268-04	.5899	3.465
272	2nHC03 1	471710	2.876		2.2788-05	1.9978-05	.8764	4.700
273	7=03 0		369		2.9498-06	2.9628-06	1.0041	5.528
274	Zn(CO3)2 -2		.000861		4.6478-09	2.7418-09	.5899	8.562
146	ZnC1 1		.026		2.5928-07	2.2718-07	.8764	6.644
140	ZnC12 no 0		000008		5.834R-11	5.8588-11	1.0041	10.232
148	ZeC13 -1		.000000		1.8478-14	1.6198-14	.8764	13.791
140	ZnC14 -2		.000000		3.388B-18	1.9998-18	.5899	17.699
151	7-08 1		.070		8.5518-07	7.4948-07	.8764	6.125
152	2n(OH)2 0		001698		1.7098-08	1.7168-08	1.0041	7.765
153	2=(04)2 -1		.000000		1.235B-13	1.0838-13	.8764	12.965
154	Zn(OH)A -2		.000000		5.8038-20	3.4238-20	.5899	19.466
155	ZeoHClag 0		.000654		5.5528-09	5.5758-09	1.0041	8.254
158	ZnSOA ag 0		24.583		1.5248-04	1.5308-04	1.0041	3.815
150	70(504)2 -2		1.033		4.017E-06	2.3698-06	.5899	5.625
160	CA 2	.215	.154	1.9148-06	1.3718-06	8.090E-07	,5899	6.092
166	CH(003)3 -6		.000000		9.005E-22	1.0908-22	.1211	21.962
275	CHHCO3 I		.009321		5.3798-08	4.714B-08	.8764	7.327
276	C4003 0		.001510		8.7678-09	8.8038-09	1.0041	8.055
161	CdC1 1		.003208		2.171B-08	1.9038-08	.8764	7.721
162	CdC12 ag 0		.000004		1.9468-11	1.9548-11	1.0041	10.709
163	CdC13 -1		.000000		3.465B-15	3.0378-15	.8764	14.518
167	CdOH 1		.000020		1.532B-10	1.342B-10	.8764	9.872
168	Cd(OH)2 0		.000000		1.4328-14	1.438E-14	1.0041	13.842
169	Cd(OH)3 -1		.000000		3.6738-21	3.2198-21	.8764	20.492
170	Cd(OH)4 -2		.000000		9.700E-29	5.722B-29	.5899	28.242
171	Cd20H 3		.000000		1.743B-15	5.315B-16	.3050	15.274
172	CdOHClay 0		.000003		1.5628-11	1.568E-11	1.0041	10.805
173	CdN03 1		.000005		2.952E-11	2.587E-11	.8764	10.587
174	CdSO4 ag 0		.092		4.4278-07	4.445B-07	1.0041	6.352
277	Cd(S04)2 -2		.003278		1.5748-08	9.285E-09	.5899	8.032
204	Ni 2	.322	.222	5.489B-06	3.784B-06	2.232B-06	.5899	5.651
280	NiHCO3 1		.019		1.6288-07	1.426E-07	.8764	6.846
281	NiCO3 0		.085		7.139E-07	7.1698-07	1.0041	6.145
282	Ni(003)2 -2		.000016		9.144E-11	5.3948-11	.5899	10.268
206	NiCl 1		.000148		1.576B-09	1.381E-09	.8764	8.860
279	NiC12 0		.000000		1.2308-12	1.2358-12	1.0041	11.908
208	NiOH 1		.000053		7.0148-10	6.1478-10	.8764	9.211
209	Ni(OH)2 0		.000000		8.8468-13	8.8838-13	1.0041	12.051
210	Ni(OH)3 -1		.000000		2.022E-17	1.772E-17	.8764	16.752
211	NiSO4 ag 0		.128		8.259E-07	8.2938-07	1.0041	6.081
283	Ni(SO4)2 -2		.000036		1.438E-10	8.483E-11	.5899	10.071
89	Ba 2	.033	.021	2.405B-07	1.5418-07	9.088E-08	.5899	7.042

I	Species		Anal ppm	Calc ppm	Anal Molal	Calc Molal	Activity	Act Coeff	-Log Act
90	BaOil	1		.000000		9.092E-15	7.9688-15	.8764	14.099
201	BaS04 aq	0		.020		8.642B-08	8.678E-08	1.0041	7.062

17	Phase	Log AP/KT	Sigma(A)	Sigma(T)	Log AP/MinKI	Log AP/MaxKT	Log AP	Log KT	Log MinKT	Log MaxKT
21	Aragonita	-1 775		020			-10,111	-8.336		
150	Artigolite	-9 860		.010			- 260	9.600		
144	Barite	216				.011	-9.762	-9.976		-9.773
10	Brusite	-7 333				.011	-18.537	-11,204		
12	Colcita	-1 631		020	-1.551		-10.111	-8.480	-8.560	
11	Delemite	-1 614		.010	1.001		-20 614	-17,000		
340	Reconite	-3 720					-5.860	-2.140		
10	Crocure	- 868					-5 468	-4.600		
10	Upline	-7 834					-6 252	1 582		
09	Halle	-7.034					-41 620	-20 068		
11/	MUNCICO	-11.032					-41.020	-26 762		
38	Hydrmagnesit	-23./8/			-2 22/	. 2 704	-10 503	-30.702	-8 279	-7 779
10	Magnesite	-2.4/4			-2.229	-2.724	-10.303	-0.029	0.279	1.112
66	Mirabilice	-6.895					-6.009	-1.114		
58	Nahcolite	-5.430					-3.9/0	340		
60	Natron	-11.341			6 0.70	r 017	-12.052	-1.311	6 122	-1 544
149	Nesquehonite	-4.882			-5.370	-5.957	-10.503	-3.621	-3.133	4.340
65	Thenardite	-7.829					-8.008	179		
61	Thermonatr	-12.776					-12.651	.125		
59	Trona	-17.835			201 0000		-18.630	795		
145	Witherite	-5.820			-1.070	10000 ALM 100	-14,405	-8.585	-13.335	
188	Pyrocroite	-7.339				-7.632	7.749	15.088		15.381
190	Rhodochrosit	-1.804			-1.195	-2.221	-12.214	-10.410	-11.019	-9.993
191	MnC12, 4H20	-14.778					-12.068	2.710		
182	MnSO4	-10.240					-7.571	2.669		100000000
230	Melanothalli	-17.042				-17.762	-13.312	3.730		4.450
231	CuC03	-3.828			-3.808	-3.848	-13.458	-9.630	-9.650	-9.610
234	Cu(OH)2	-2.135				-2.695	6.505	8.640		9.200
235	Malachite	-1.775		.080	-1.125	-1.985	3.375	5.150	4.500	5.360
236	Azurite	-3.505		.090	935		.245	3.750	1.180	
237	Atacamite	-4.239			-4.139	-4.389	3.101	7.340	7.240	7.490
238	Cu2(OH)3NO3	-7.426				-7.496	1.814	9.240		9.310
239	Antlerite	-4.096				-4.706	4.194	8.290		8.900
240	Brochantite	-4.641		.160	-4.451	-4.801	10.699	15.340	15.150	15.500
241	Langita	-6.091				-6.701	10.699	16.790		17.400
242	Tenorite	-1.115			845	-1.385	6.505	7.620	7.350	7.890
243	00000904	-26.440					-14.910	11.530		
247	CHROA	-11.825			-11.465	-12,235	-8.815	3.010	2.650	3.420
248	Chalcanthita	-6.176			-5.856	-6.681	-8.816	-2.640	-2.960	-2.135
267	ZaC12	-17.712				-17.742	-10.682	7.030		7.060
268	Smithsonito	- 828			018	-1.008	-10.828	-10.000	-10.810	-9.820
260	2=003 1820	- 569					-10.829	-10,260		
203	2=(04)2 (-)	-3 315			-3,125	-3.345	9,135	12.450	12.260	12.480
272	2n(0H)2(a)	-3.065			5.125	01010	9.135	12,200		
273	2-(OH)2 (L)	-2 615		020	-2 185	-2.755	9,135	11.750	11.320	11.890
213	2n(OH)2 (b)	-2 675		.020	-2 055	-2.705	9.135	11.710	11.190	11.840
279	2n(0B)2(g)	-2.315		030	-1 815	-2.485	9,135	11.500	10.950	11.620
2/3	2n(0n)2 (e)	-2.303		.050	1.015	2.1405	8 361	15 200		
2/6	Zn2(OH)3CI	-0.039					25 856	38 500		
211	203(00)0001	-12.044					2.949	7 500		
2/8	2n2(0H)2S04	-4.551					21 210	28 400		
219	Zn4(01)6504	-/.181					-13 256	3 440		
280	ZnN03)2,6H20	-10.096				-0 705	0 135	11 310	11 570	11.860
281	ZnO(active)	-2.175			-2.435	-2.725	0 135	11 140	10.990	11.540
282	Zincite	-2,005			-1.855	-2.405	-3 236	19 020	10.770	
283	Za30(304)2	-22.256				-10 115	-6 185	3.010		3,930
290	Zincosite	-9.195				-10.115	-6 185	- 570		500
291	28304, 1H20	-2.615				-3.665	0.105			

	102072										
	Phase	Log AP/KT	Sigma(A)	Sigma(T)	Log	AP/MinKT	Log AP/MaxKT	Log AP	Log KT	Log Minkr	LOS MAINT
292	Bianchite	-4.421					-5.166	-6.186	-1.765		-1.020
293	Goalarite	-4.226					-4.316	-6.186	-1.960		-1.870
315	Otavite	.285				.355	-2.245	-13.455	-13.740	-13.810	-11.210
316	CdC12	-12.629					-12.839	-13.309	680		4/0
317	CdC12, 11120	-11.599						-13.309	-1.710		
318	C4C12.2.5820	-11.369						-13.309	-1.940	1000 C 1000 C	
320	Cd(08)2 (a)	-7.222				-7.102	-7.792	6.508	13.730	13.610	14.300
321	C4(08)2 (c)	-7.142		.040				6.508	13.650		
322	CAOHOI	-6 921				-6.701		-3.401	3.520	3.300	
322	C43(08)/20/	-18 357						4.203	22.560		
323	C43002/204304	-17 826						-11.116	6.710		
329	CAL(01)(04)2	-17 699						10.711	28.400		
323	04(01)0304	-17.007					-9.232	6.508	15.120		15.740
320	Monteponite	-0.012				-8.682	-8.762	-8.812	100	130	050
329	00504	-7.156				-7.132	-7.182	-8.812	-1.657	-1.680	-1.630
330	Caso4, 1820	-/.155				-6 922	-6.952	-8.812	-1.873	-1.890	-1.860
331	Caso4,2.7H20	-0.939				0.722		-13.015	-6.840		
410	NICO3	-6.1/5		100		-3 641	-6 351	6.949	10.800	10.590	13.300
411	Ni(OH)2	-3.851		.100		3,041	0.001	12.474	32.000		
412	N14(OH)6504	-19.526					-5 661	6.949	12.450		12.390
413	Bunsenite	-5.501					3.441	-8.372	-2.040		
416	Retgeraite	-6.332						-8 372	-2.360		
417	Morenosite	-6.012						0.3/4	21000		

Date = 10/12/95 19:20

INPUT TDS = 1766.0 DOX = .0000 DOC = . 0 Anal Cond = 1867.0 Calc Cond = 1846.0 Percent difference in input cation/anion balanco = 42.9328 Anal BPMCAT = 24.1202 Anal BPMAN = 15.5948 ERROR IN CALCULATED CHARGE BALANCE GREATER THAN 30 PERCENT. CHECK INPUT DATA. Calc EPMCAT = 19.9265 Calc EPMAN = 11.4044 Percent difference in calc cution/anion balance = 54.4004 .03588 Total Ionic Strength (T.I.S.) from input data = Effective Ionic Strength (E.I.S.) from speciation = .02749 Calc Sato As5/As3 Si Pe3/Pe2 Sigma H202/02 Sigma NO3/NO2 Sigma NO3/NH4 Sigma H202/02 Sigma SO4/S= Sigma Input Signa - -- - -- - Bh - -- -9.900 .000 9.900 .000 9.900 .000 9.900 .000 9.900 .000 9.900 .000 9.900 .000 .000 PB .000 100.000 .000 100.000 .000 100.000 .000 100.000 .000 100.000 .000 100.000 100.000 .000 100.000 **Bffective** aH2 ppm Uncom CO2 Norb Alk pll Ionic Str pCO2 Atm pCH4 Atm CO2 Tot Uncom CO2 \mathbf{T}^{*} TDS ppm p02 Atm 2.958-08 .00125 6.618-04 2.918+01 0.008+00 1.508-02 0.00E+00 25.00 6.400 1253.2 .02749 Act Coeff -LOR ACT Anol ppm Anal Molal Calc Molal Activity I Species Calc ppm 203.000 5.071B-03 3.918E-03 2.149E-03 .5484 2.668 0 Ca 2 156.844 1.3598-09 8.867 .000091 1.590E-09 .8546 28 CaOH 1.0063 2.942 31 CaSO4 ag 0 154.306 1.135E-03 1.142E-03 .8546 8.584 2.605E-09 81 CaHS04 .000417 3.048E-09 4.807 .8546 1.841 1.8238-05 1.5588-05 29 CallCO3 1 1.0063 6.618 2.4128-07 2.396E-07 30 CaCO3 au 0 .024 .5567 2.948 62.000 49.169 2.5538-03 2.0258-03 1.1278-03 1 Mg .8546 8.342 .000220 4.546E-09 5.320E-09 18 MgOH 1.0063 3.281 MgSO4 aq 62.485 5.198B-04 5.231B-04 22 0 .743 8.7228-06 7.454B-06 .8546 5.128 MgHC03 21 7.2078-08 1.0063 7.142 MaCO3 au .006031 7.162B-08 20 0 2.355 5.226B-03 5.157E-03 4.417E-03 .8565 120.000 118.413 2 Na 1 6.759B-05 5.7778-05 .8546 4.238 43 NaS04 -1 8.037 1.0063 5.850 1.4038-06 1.4128-06 42 NaHCO3aq 0 .118 6.418B-09 5.485E-09 .8546 8.261 .000532 41 NaC03 -1 5.772E-04 .8501 3.239 27.000 26.516 6.914B-04 6.790B-04 3 ĸ 1 1.239B-05 1.0598-05 .8546 4.975 45 KSO4 -1 1.672 .8777 6.400 3.9818-07 63 .000457 4.5368-07 н 1 .000500 2.946E-08 2.518E-08 .8546 7.599 26 OH -1 .5483 6.6998-08 7.174 17 C03 -2 .007323 1.2228-07 7.5488-04 6.608E-04 5.686B-04 .8605 3.245 HC03 -1 46.000 40.267 3.293 5.089E-04 1.0067 85 H2CO3 aq 0 31.312 5.055E-04 6.921E-03 4.8218-03 2.609E-03 .5413 2.583 462.476 5 S04 -2 664.000 .8546 6.996 1.008E-07 62 HSO4 -1 .011 1.180E-07 9.885E-04 9.8688-04 8.389E-04 .8501 3.076 35.000 34.939 4 Cl -1 .8546 5.082 NO3 -1 .600 .600 9.689E-06 9.6898-06 8.280E-06 84 1.6148-06 .090 16 Fe total 2 .5335 3.459B-05 4.461 109 Mn 4.484 3.558 8.172B-05 6.484B-05 2 MaHC03 4.2858-07 3.662B-07 .8546 6.436 .050 119 1.174B-07 .8546 6.930 111 MnC1 .012 1.374B-07 10.573 .000003 2.675E-11 1.0063 MaC12 ag 2.658B-11 112 0 .8546 13.995 1.0128-14 113 MnC13 -1 .000000 1.1848-14 2.2328-09 .8546 8.651 .000188 2.6128-09 114 MnOH . .8546 20.062 8.6798-21 1.0168-20 Mn(OB)3 -1 .000000 115 1.0063 14.025 .000000 9.382B-15 9.442B-15 118 Mn(NO3)2 0 4.785 1.6328-05 1.6428-05 1.0063 117 MaSO4 aq 0 2.461

4-NT62892

109

.9

I	Species	Anal ppm	Calc ppm	Anal Molal	Calc Molal	Activity	Act Coeff	-Log Act
130	Cu 2	.046	.026	7.2488-07	4.171B-07	2.2258-07	.5335	6.653
271	CullCO3 1		.009229		7.4198-08	6.3418-08	.8546	7.198
131	CnC03 ao 0		.009815		7.9548-08	8.0058-08	1.0063	7.097
132	Cu(CO3)2 -2		000002		1.2648-11	6.745B-12	.5335	11.171
133	Cucl 1		.000058		5.8788-10	5.024E-10	.8546	9.299
134	Cucl2 au 0		000000		2 2498-13	2.2638-13	1.0063	12.645
134	Cuciz aq U		.000000		7 8828-19	6.7378-19	.8546	18,172
135			.000000		5 3008-24	2 8328-24	5335	23.548
130	Cucia -2		.000000		6 5378-00	£ 5978-09	8546	8 253
138	CUOH I		.000326		0.3376-03	3.3078-09	1 0063	7 533
139	Cu(OH)2 0		.002838		2.9128-08	2.9318-08	1.0003	14 353
140	Cu(OH)3 -1		.000000		5.1898-15	4.4348-15	.0340	20 (53
141	Cu(OH)4 -2		.000000		4.164E-21	2.2228-21	.5335	20.653
142	Cu2(OH)2 2		.000004		2.5598-11	1.3658-11	.5335	10.865
143	CuSO4 aq 0		.019		1.1788-07	1.1858-07	1.0063	6.926
145	Zn 2	89.580	64.347	1.372B-03	9.8568-04	5.258B-04	.5335	3.279
272	ZnHCO3 1		5.558		4.4048-05	3.7648-05	.8546	4.424
273	ZnCO3 0		.875		6.9848-06	7.0288-06	1.0063	5.153
274	Zn(CO3)2 -2		.003490		1.8858-08	1.0068-08	. 5335	7.997
146	ZnCl 1		.140		1.3898-06	1.187E-06	.8546	5.925
147	ZnC12 ag 0		.000141		1.036E-09	1.0438-09	1.0063	8.982
148	ZnC13 -1		.000000		1.1498-12	9.8168-13	,8546	12.008
149	ZnC14 -2		.000000		7.736E-16	4.1278-16	. 5335	15.384
151	Zn08 1		.139		1.6948-06	1,4488-06	.8546	5.839
152	Zn(OH)2 0		.004116		4.147E-08	4.173B-08	1.0063	7.380
153	Zn(OH)3 -1		.000000		3.8788-13	3.3148-13	.8546	12.480
154	Zn(OH)4 -2		.000000		2.472B-19	1.3198-19	.5335	18.880
155	ZnOHClay 0		.004289		3.6448-08	3.667B-08	1.0063	7.436
158	2n504 ag 0		51.527		3.196B-04	3.216B-04	1.0063	3.493
159	Zn(S04)2 -2		3.287		1.2788-05	6.8198-06	.5335	5.166
160	Cd 2	431	.283	3.8398-06	2.5198-06	1.344B-06	.5335	5.872
166	Cd(C03)3 -4		.000000		8.2648-21	6.694B-22	.0810	21.174
275	CdBC03 1		.019		1.1258-07	9.6198-08	.8546	7.017
276	C4C03 0		.003869		2.2478-08	2.2618-08	1.0063	7.646
161	CdCl l		.019		1.260B-07	1.0778-07	.8546	6.968
162	CdCl2 an 0		.000068		3.741B-10	3.7658-10	1.0063	9.424
163	C4C13 -1		.000000		2.3328-13	1.993E-13	.8546	12.701
167	CADH 1		.000042		3.284B-10	2.8068-10	.8546	9.552
168	C4(0H)2 0		.000000		3.760B-14	3.7848-14	1.0063	13.422
160	Cd(08)2 -1		000000		1.2488-20	1.0668-20	.8546	19.972
170	C4(0R)6 -2		000000		4.473B-28	2.3868-28	.5335	27.622
171	Cd20H 3		000000		7.5828-15	1.8448-15	.2432	14.734
170	Cd20H 3		000018		1.1098-10	1.117B-10	1.0063	9.952
172	cablerad 0		000006		3.2708-11	2.7958-11	.8546	10.554
175	CAROS A		209		1.0058-06	1.011E-06	1.0063	5.995
277	C4(50()2 -2		011		5.4218-08	2.8928-08	.5335	7.539
201	Cd(304/2 -2	0 4 0	599	1 6188-05	1.0228-05	5.453B-06	.5335	5.263
204	N1 2	. 74 7	060	1.0105 00	5.008B-07	4.2808-07	.8546	6.369
200	NINCOS I		319		2.6918-06	2.7088-06	1.0063	5.567
201	N1(003) - 2		000105		5.9058-10	3.150B-10	. 5335	9.502
202	Nic1 1		001264		1.3458-08	1.1498-08	.8546	7.940
270	Nicl2 D		000005		3.4788-11	3.500B-11	1.0063	10.456
208	NION 1		.000167		2.2128-09	1.8908-09	.8546	8.724
200	Ni(OH)2 O		.000000		3.4168-12	3.4388-12	1.0063	11.464
210	Ni(OH)3 -1		.000000		1.0108-16	8.6338-17	.8546	16.064
211	NiSOA AO D		.426		2.7578-06	2.7748-06	1.0063	5.557
283	Ni(S04)2 -2		.000182		7.285E-10	3.8868-10	.5335	9.410
89	Ba 2	.044	.026	3.2088-07	1.8958-07	1.011E-07	. 5335	6.995
			50.7577 (C)		100 (State 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			

- 1

I	Species		Anal ppm	Calc ppm	Anal Molal	Calc Molal	Activity	Act Coaff	-Log Act
90	BaOH	1		.000000		1.305B-14	1.116B-14	.8546	13.953
201	BaSO4 ag	0		.031		1.314B-07	1.3228-07	1.0063	6.879

	Phase	LOB AP/KT	Sigma(A)	Sigma(T) L	og AP/MinKT	Log AP/MaxKT	LOB AP	Log KT	Log MinKT	Log Ma
17	Anhydrite	614	50.00 0 0.0004040				-5.251	-4.637		
21	Aragonite	-1.506		.020			-9.842	-8.336		
150	Artinite	-9.310					. 290	9.600		
144	Barite	. 397				.194	-9.579	-9.976		-9.77
19	Brucito	-6.962					-18.146	-11.204		
12	Calcito	-1.362		.020	-1.282		-9.842	-8.480	-8.560	
11	Delomitu	-2.964					-19.964	-17.000		
340	Promite	-3 393					-5.533	-2.140		
18	Cynonica	- 652					-5.252	-4.600		
	Usline	-7 013					-5.431	1.582		
117	Bustite	-10 240					-40.208	-29.968		
11/	Hudenconsit	-21 872					-58.634	-36.762		
30	Hooresite	-2 093			-1.843	-2.343	-10.122	-8.029	-8.279	-7.77
10	Mignesite	-2.093			11040		-7.295	-1.114		
60	Mirabilite	-5.052					-5.600	548		
20	Nancolice	-10 574					-11.885	-1.311		
140	Natron	-4 501			-4.989	-5.576	-10.122	-5.621	-5.133	-4.54
147	These dite	-7 114			41.707		-7.293	179		
60	Thesardice	-12 009					-11.884	.125		
61	Thermonatr	-16 689					-17.484	795		
39	I FORM	-5 584			- 834		-14.169	-8.585	-13.335	
143	WICHOFICS	-6.749			1004	-7.042	8.339	15.088		15.38
188	Pyrocroite	-0.749			- 616	-1.642	-11.635	-10.410	-11.019	-9.99
190	Khodochrosit	-12 225					-10.614	2.710		
191	Macoz, 9820	-13.324					-7.045	2.669		
182	MnS04	-9.714				-17 255	-12.805	3.730		4.45
230	Melanothulli	-10.535			-6 177	-4 217	-13.827	-9.630	-9.650	-9.61
231	Cucos	-9.197			4.117	-3.053	6.147	8.640		9.20
234	Cu(OH)2	-2.495		0.90	-1 851	-2 711	2.649	5.150	4.500	5.36
235	Malachice	-2.501		.080	-2 029		849	3.750	1.180	
236	Azurite	-4.599		.090	-2.029	-4 672	2 818	7.340	7.240	7.49
237	Atacamite	-4.522			-4.422	-8 498	.812	9.240		9.31
238	Gu2(OH) 3NO3	-8.428				-5 842	3.058	8.290		8.90
239	Antlerite	-5.232		160	-5 945	-6 295	9.205	15.340	15.150	15.50
240	Brochantite	-0.135		.100	-3.345	-8.195	9.205	16.790		17.40
241	Langite	-1.505			-1 203	-1 743	6.147	7.620	7.350	7.89
242	Tenorite	-1.9/5			1.103	1.1.4.5	-15.889	11.530	1229 2240	
243	Cuocusoa	-12 244			-11 996	-12 656	-9.236	3.010	2.650	3.42
247	CuS04	-12.240			-6 277	-7 102	-9.237	-2.640	-2.960	-2.13
248	Chalcanthite	-0.297			0.211	-16 492	-9.432	7.030		7.06
201	Znciz	-10.402			357	- 633	-10.453	-10,000	-10.810	-9.82
208	Smithsonice	433				.000	-10.453	-10.260	10000000	
209	ZnG03, 1H20	-2 030			-2 740	-2 960	9.520	12.450	12.260	12.48
2/1	Zh(OH)2 (a)	-2.930			2.740	2.700	9.520	12.200		
272	Zm(OH)2 (c)	-2.680		020	-1 800	-2 370	9.520	11.750	11.320	11.89
2/3	Zn(OH)2 (b)	-2.230		.020	-1 670	-2 320	9.520	11.710	11,190	11.84
2/4	2n(OH)2 (g)	-1.080		030	-1.430	-2.100	9.520	11.500	10.950	11.62
213	2n(0n)2 (6)	-1.900		.050	1.400		9.565	15.200	1000000000	
270	2-5(04)801	-9.850					28.650	38.500		
278	202(08)2504	-3 842					3.658	7.500		
270	7-4(04)4804	-5 701					22.699	28.400		
280	20803)2 4820	-16 884					-13.444	3.440		
200	200(001100)	-1 789			-2.049	-2.339	9.521	11.310	11.570	11.86
201	Zincite	-1 619			-1.469	-2.019	9.521	11.140	10.990	11.54
282	7-30(\$04)2	-21 225					-2.205	19.020	12420462646	
200	Zinconite	-8 873				-9,793	-5.863	3.010		3.93
291	7.804 1820	-5 293				-5.363	-5.863	570		50
471	01004, 1120	3.2.75								

2892
2892

	Phase	Log AP/KT	Sigma(A)	Sigma(T)	Log AP/MinKT	Log AP/MaxKT	Log AP	Log KT	Log MinKT	Log Ma
292	Bianchite	-4.099				-4.844	-5.864	-1.765		-1.02
293	Goslarite	-3.904				-3.994	-5.864	-1.960		-1.87
315	Otavite	. 694			.764	-1.836	-13.046	-13.740	-13.810	-11.21
316	CdC12	-11.344				-11.554	-12.024	680		47
317	CdC12, 1H20	-10.314					-12.024	-1.710		
318	CdC12.2.5820	-10.085					-12.025	-1.940		
320	Cd(OH)2 (a)	-6.802			-6.682	-7.372	6.928	13.730	13.610	14.30
321	Cd(OH)2 (c)	-6.722		.040			6.928	13.650		
322	CAOHCI	-6.068			-5.848		-2.548	3.520	3.300	
323	C43(08)4504	-17.159					5.401	22.560		
324	C430H2(804)2	-16.692					-9.982	6.710		
325	C44(0H)6504	-16.071					12.329	28.400		
326	Montenonite	-8.192				-8.812	6.928	15.120		15.74
329	CASOA	-8.355			-8.325	-8.405	-8.455	-,100	130	05
330	C4804 1H20	-6.798			-6.775	-6.825	-8.455	-1.657	-1.680	-1.63
331	C4804 2 7820	-6.583			-6.566	-6.596	-8.456	-1.873	-1.890	-1.86
410	Nicos	-5.597			10.000 (D.D.)		-12.437	-6.840		
411	N:(08)2	-3.264		.100	-3.054	-5.764	7.536	10.800	10.590	13.30
412	Wit(OH)6SOA	-17 238				12000000	14.762	32.000		
413	Russenite	-6 916				-4.854	7.536	12.450		12.39
416	Petcensite	-5 808					-7.848	-2.040		
417	Morenosite	-5.488					-7.848	-2.360		

Date = 10/12/95 19:30

DOX = .0000 DOC = .0 INPUT TDS = 1754.0 Calc Cond = 1953.5 nal Cond = 1918.0 .nal BPMCAT = 24.6947 Anal BPMAN = 16.8878 Percent difference in input cation/anion balance = 37.5486 RROR IN CALCULATED CHARGE BALANCE GREATER THAN 30 PERCENT. CHECK INPUT DATA. ale BPMCAT = 20.1298 Cale BPMAN = 12.3301 Percent difference in cale cation/anion balance = 48.0573 'otel Ionic Strength (T.I.S.) from input data = .03785 ffective Ionic Strength (B.I.S.) from speciation = .02871 Sato Calc NO3/NO2 Sigma NO3/NH4 Sigma H202/02 Sigma 804/8= Sigma As5/As3 Sigms Fe3/Fe2 Sigma H202/02 Sigma Input Sigme - -- - - - - Bh - - -9.900 .000 9.900 .000 .000 9.900 .000 9.900 .000 .000 .000 9.900 .000 9.900 .000 9.900 -----DR .000 100.000 .000 100.000 .000 00.000 .000 100.000 .000 100.000 .000 100.000 .000 100.000 .000 100.000 **Bffective** aH20 pCO2 Atm pCH4 Atm Uncom CO2 ppm Uncom CO2 Nerb Alk CO2 Tot т pH TDS ppm Ionic Str p02 Atm .9996 2.74E+01 3.728-08 1310.9 1.128-02 0.00E+00 .00107 6.238-04 25.00 6.500 .02871 0.00E+00 Act Coeff -Log Act Anal Molal Calc Molal Activity Anal ppm Calc ppm I Species 4.072B-03 2.2118-03 . 5429 2.656 5.346E-03 2 214.000 162.986 0 Ca 8.754 1.7608-09 .8523 .000118 2.065E-09 28 CaOH 1 2.898 170.884 1.2578-03 1.2658-03 1.0066 31 CaSO4 aq 0 8.640 2.2928-09 .8523 .000368 2.6898-09 CallS04 81 . 4.822 1.7688-05 1.5078-05 .8523 1.785 29 CallCO3 1.0066 6.532 2.916B-07 2.9368-07 CaCO3 ag 0 .029 30 2.899 . 5514 2.924B-03 2.289B-03 1.2628-03 71.000 55.570 1 Mg 2 .8523 8.193 7.518E-09 6.407B-09 MgOH .000310 18 1 1.0066 3.200 6.264B-04 6.3058-04 MgS04 aq 0 75.300 22 .8523 5.106 MgHC03 9.2028-06 7.8438-06 .784 21 1 1.0066 7.020 .007986 9.5478-08 9.4848-08 MgCO3 ag 20 0 .8542 2.371 5.052E-03 4.981E-03 4.2558-03 116.000 114.355 2 Na 1 7.030B-05 5.9918-05 .8523 4.222 8.358 NaS04 -1 43 1.0066 5.893 1.270E-06 1.2798-06 NaHCO3aq 0 .107 42 .8523 8.204 .000608 7.3348-09 6.2518-09 NaC03 -1 41 3.297 .8476 23.700 23.243 6.0698-04 5.952B-04 5.045B-04 3 K 1 9.9628-06 .8523 5.002 1.1698-05 **K**504 1.578 45 -1 .8760 6.500 .000363 3.610E-07 3.1628-07 63 B 1 .8523 7.499 .000632 3.719E-08 3.1708-08 26 OH -1 .5427 7.101 .008753 1.461B-07 7.927B-08 17 CO3 -2 5.344B-04 .8583 3.272 37.939 7.0568-04 6.226B-04 43.000 HC03 -1 6 1.0070 3.420 23.367 3.7728-04 3.799B-04 H2C03 ng 85 0 7.536E-03 5.246B-03 2.8108-03 . 5356 2.551 504 -2 723.000 503.291 5 .8523 7.064 .009809 1.012E-07 8.624E-08 62 HSO4 -13.030 38.943 1.1018-03 1.100E-03 9.323E-04 .8476 -1 39.000 4 Cl 5.162 .8523 -1 .500 . 500 8.074E-06 8.074B-06 6.882E-06 84 NO3 3.514B-06 16 Fe total .196 2 .5277 4.497 3.1818-05 3.307 7.6938-05 6.027B-05 09 Mn 4.221 2 6.500 .043 3.713B-07 3.165E-07 .8523 19 MnHC03 .8523 6.921 1.200E-07 .013 1.408E-07 MnC1 11 1.0066 10.517 .000004 3.018E-11 3.0388-11 12 MaG12 ag 0 1.2778-14 .8523 13.894 .000000 1.498E-14 MnC13 -1 13 .8523 8.588 .000218 3.0328-09 2.5848-09 14 MnOH - 1 .8523 19.798 .000000 1.8688-20 1.5928-20 15 Mn(OH)3 -1 1.0066 14.222 Ma(NO3)2 0 .000000 5.957B-15 5.9978-15 18 1.6158-05 1.0066 4.789 1.6268-05 17 MaSO4 ag 0 2.436

5-NT62892

5-	NTE	289	2	
			*	

	102072							
1	Species	Anal ppm	Calc ppm	Anal Molal	Calc Molal	Activity	Act Coeff	-Log Act
30	Cu 2	.012000	.006593	1.8918-07	1.039B-07	5.482B-08	. 5277	7.261
.71	CuHCO3 1		.002143		1.7238-08	1.4688-08	.8523	7.833
31	CuCO3 ao 0		.002861		2.318B-08	2.3348-08	1.0066	7.632
32	Cu(CO3)2 -2		.000000		4.409B-12	2.3278-12	. 5277	11.633
33	CuCl l		000016		1.6148-10	1.3768-10	.8523	9.861
34	CuCl2 ag 0		.000000		6.8438-14	6.8888-14	1.0066	13.162
34	Cuci2 aq 0		.000000		2.6738-19	2.2798-19	.8523	18.642
35	Cuclt -2		000000		2 0188-26	1.0658-24	. 5277	23.973
30	Cucla -2		000164		2 0338-09	1.7338-09	.8523	8.761
30	Cuon I		.000104		1 1378-08	1 1458-08	1.0066	7.941
39			.001108		2	2 1808-15	8523	14.662
40	Cu(OH)3 -1		.000000		2.3366-13	1 2758-21	5277	20.862
41	Cu(OH)4 -2		.000000		2.0008-21	1.3/36-21	5277	11 882
42	Cu2(OH)2 2		.000000		2.4898-12	1.3138-12		7 502
43	CuSO4 ag 0		.004980		3.1248-08	3.1458-08	1.0066	2 368
45	Zn 2	74.970	53.019	1.1488-03	8.1218-04	4.2868-04	.52//	5.500
72	ZnHCO3 1		4.269		3.383E-05	2.8838-05	.8523	4.340
:73	ZnCO3 0		.843		6.7348-06	6.7788-06	1.0066	3.109
.74	Zn(CO3)2 -2		.004026		2.175E-08	1.1488-08	.5277	7.940
46	ZnCl 1		.127		1.2628-06	1.0758-06	.8523	5.968
47	ZaCl2 ag 0		.000142		1.0438-09	1.0508-09	1.0066	8.979
48	ZnC13 -1		.000000		1.2898-12	1.0988-12	.8523	11.959
49	ZnC14 -2		.000000		9.725E-16	5.1328-16	.5277	15.290
51	2s0H 1		.143		1.743E-06	1.4858-06	.8523	5.828
52	Zn(OH)2 0		.005316		5.356E-08	5.391E-08	1.0066	7.268
53	Zn(OH)3 -1		.000000		6.323B-13	5.3898-13	.8523	12.268
54	Zn(OH)4 -2		.000000		5.1168-19	2.700E-19	. 5277	18.569
55	ZnOHClag 0		.004889		4.1558-08	4.183E-08	1.0066	7.379
58	2n504 ag ()		45.210		2.804B-04	2.8238-04	1.0066	3.549
59	20(504)2 -2		3.140		1.2218-05	6.445B-06	. 5277	5.191
60	Cd 2	355	.228	3.163E-06	2.031B-06	1.0728-06	. 5277	5.970
66	cd(co3)3 -4		000000		1.140B-20	8.8438-22	.0776	21.053
75	C44CO3/5 4		015		8.4598-08	7.2108-08	.8523	7.142
.76	CACO3 0		003650		2.1208-08	2.1348-08	1.0066	7.671
10			017		1.1208-07	9.5428-08	.8523	7.020
63			000067		3.6848-10	3.7098-10	1.0066	9.431
62	CdCl2 aq 0		000000		2.5608-13	2.182B-13	.8523	12.661
63			000063		3 3068-10	2.818R-10	.8523	9.550
67			000000		4 7528-14	4.784R-14	1.0066	13.320
00			.000000		1 9918-20	1.6978-20	.8523	19.770
70			.000000		9.0588-28	A.7808-28	.5277	27.321
70			.000000		6 220B-15	1 A768-15	.2374	14.831
/1	Cazon 3		.000000		1 2388-10	1 2468-10	1.0066	9,905
12	Cdonciag U		.000020		2 1748-11	1 8538-11	.8523	10.732
13	Canos I		.000004		9 6278-07	8 6858-07	1.0066	6.061
14	CdS04 aq U		.180		5.0275-07	2 6758-08	5277	7.573
	Cd(804)2 -2		.011		9.80(8-00	2.0/38-00	8277	5.333
04	Ni 2	.848	.516	1.4468-05	8.806E-06	9.09/8-00	8523	6 465
80	Ninco3 1		.048		4.0228-07	3.4208-07	1 0066	5 564
81	NiCO3 0		. 322		2.7138-06	2.7318-00	1.0000	9 4 25
82	Ni(CO3)2 -2		.000127		7.1218-10	3.758B-10	.5277	7 963
06	NICI 1		.001201		1.2778-08	1.0888-08	.0323	10 434
79	NICI2 0		.000005		3.6608-11	3.6848-11	1.0066	0.434
08	NIOH 1		.000180		2.3798-09	2.0288-09	.8523	11 222
.09	Ni(OH)2 0		.000000		4.6138-12	4.643E-12	1.0066	18 933
10	Ni(OH)3 -1		.000000		1.7228-16	1.4688-16	.8523	5.033
11	NISO4 ag 0		.391		2.5298-06	2.3468-06	1.0000	0 416
83	Ni(SO4)2 -2	1212121	.000182		7.2778-10	3.8408-10	5277	6 915
89	Ba 2	.055	.032	4.010E-07	2.3078-07	1.2188-07	. 52/1	0.715

I	Species		Anal ppm	Calc ppm	Anal Molal	Calc Molal	Activity	Act Coeff	-Log Act
90	BaOH	1		.000000		1.9858-14	1.692E-14	.8523	13.772
01	BaSO4 aq	0		.040		1.7038-07	1.715E-07	1.0066	6.766

S	-NT	52892	

Phase	LOS AP/KT	Sigma(A)	Sigma(T)	Log AP/MinK7	Log AP/MaxKT	Log AP	Log KT	Log MinKT	Log MaxKI
17 Anhydrite	570					-5.207	-4.637		
21 Aragonite	-1.420		.020			-9.756	-8.336		
50 Artinite	-9.013					.587	9.600		
44 Barite	.510				.307	-9.466	-9.976		-9.773
19 Brucite	-6.693					-17.897	-11.204		
12 Calcite	-1.277		.020	-1.196		-9.756	-8.480	-8.560	
11 Dolomite	-2.756					-19.756	-17.000		
40 Ensomite	-3 311					-5.451	-2.140	241)	
18 Cypeum	- 607					-5.207	-4.600		
66 Halita	-6 984					-5.402	1.582		
17 Hustite	-0.704					-39 756	-29.968		
17 NUNCICO	-91 135					-57 897	-36 762		
30 Hydrmagnesic	-21.135					-10 000	-8 029	-8 279	-7 779
10 Magnesite	-1.9/1			-1.721	-2.221	-7 205	-1 114	0.277	
66 MIFADIIICe	-6.181					-1.295	- 548		
58 Nahcolite	-5.095					-3.043	-1 311		
60 Natron	-10.534					-11.043	-1.511	-5 133	-6 546
49 Nesquehonite	-4.379			-4.86/	-5.434	-10.000	-3.021	-3.133	4.340
65 Thenardite	-7.115					-1.294	1/9		
61 Thermonatr	-11.968					-11.843	.125		
59 Trona	-16.692					-17.487	795	10.000	
45 Witherite	-5.430			680		-14.015	-8.585	-13.335	
88 Pyrocroite	-6.586				-6.879	8.502	15.088		15.381
90 Rhodochrosit	-1.188			579	-1.605	-11.598	-10.410	-11.019	-9.993
91 MnC12, 4H20	-13.269					-10.559	2.710		
82 MnS04	-9.718					-7.049	2.669		
30 Melanothalli	-17.052				-17.772	-13.322	3.730	0.0027	4.450
31 CuC03	-4.732			-4.712	-4.752	-14.362	-9.630	-9.650	-9.610
34 Cu(OH)2	-2.901				-3.461	5.739	8.640		9.200
35 Malachite	-3.445		.080	-2.795	-3.655	1.705	5.150	4.500	5.360
36 Azurite	-6.078		.090	-3.508		-2.328	3.750	1.180	
37 Atacamite	-5.393			-5.293	-5.543	1.947	7.340	7.240	7,490
38 Cu2(OH)3N03	-9.425				-9.495	185	9.240		9.310
39 Antierite	-6.625				-7.235	1.665	8.290		8.900
40 Brochantite	-7.936		.160	-7.746	-8.096	7.404	15.340	15.150	15.500
41 Langite	-9.387				-9.997	7.403	16.790		17.400
42 Tenorite	-1.881			-1.611	-2.151	5.739	7.620	7.350	7.890
43 Cu0Cu804	-28.604					-17.074	11.530		
47 Cu804	-12.822			-12.462	-13.232	-9.812	3.010	2.650	3.420
48 Chalcanthite	-7.173			-6.853	-7.678	-9.813	-2.640	-2.960	-2.135
67 2nC12	-16.459				-16.489	-9.429	7.030		7.060
68 Smithsonite	- 469			.341	649	-10.469	-10.000	-10.810	-9.820
69 2003 1820	- 209			0.02555	0.0723.0	-10.469	-10.260		
71 2n(OH)2 (a)	-2.818			-2.628	-2.848	9.632	12.450	12.260	12.480
72 70(08)2 (c)	-2.568					9.632	12.200		
72 2m(0H)2 (C)	-2 118		020	-1 688	-2.258	9.632	11.750	11.320	11.890
75 28(08)2 (0)	-2 078		.020	-1 558	-2.208	9.632	11.710	11.190	11.840
74 Zh(OH)2 (g)	-1.868		030	-1 318	-1.988	9.632	11.500	10.950	11.620
75 ZB((H)2 (0)	-1.000		.050	-1.510	1.700	9.733	15.200		
76 282(08)301	-9.407					29 098	38.500		
77 2n5(0H)801	-9.402					3.712	7.500		
70 282(08)2804	-3.700					22 976	28.400		
79 ZB4(0H)6804	-3.424					-13 696	3.440		
80 ZnN03)2,6820	-17.134			-1 029	-2 228	9 632	11.310	11.570	11.860
BI ZBO(ACCIVE)	-1.678			-1.938	-1.008	9 632	11 140	10.990	11.540
82 Zincite	-1.508			-1.358	-1.908	-2 207	19.020		
83 Zn30(804)2	-21.227				-0.040	-2.207	3.010		3,930
90 Zincosite	-8.929				-9.049	-5.010	- 570		500
91 Za804, 1820	~5.349				-2.419	-3.919			

	Phase	LOB AP/KT	Sigma(A)	Sigma(T)	Log AP/MinK?	Log AP/HaxKT	Log AP	Log KT	Log MinKT	Log MaxKI -1.020
92	Bianchite	-4:155				-4.900	-3.920	-1.060		-1.870
93	Goslarite	-3.960				-4.050	-5.920	-1.960	-13 910	-11 210
.15	Otavite	.669			.739	-1.861	-13.071	-13.740	-13.010	- 620
.16	CdC12	-11.351				-11.561	-12.031	680		-,470
.17	CdC12, 1H20	-10.321					-12.031	-1.710		
.18	CdC12.2.5H20	-10.091					-12.031	-1.940	10.010	14 200
.20	Cd(0H)2 (=)	-6.700			-6.580	-7.270	7.030	13.730	13.610	14.300
.21	Cd(OH)2 (c)	-6.620		.040			7.030	13.650		
.22	C40HC1	-6.021			-5.801		-2.501	3.520	3.300	
.23	C43(08)4504	-17.022					5.538	22.560		
.24	Cd30H2(804)2	-16.723					-10.013	6.710		
.25	C44(OB)6504	-15.832					12.568	28.400		
.26	Monteponite	-8.090				-8.710	7.030	15.120		15.740
20	CASOA	-8.421			-8.391	-8.471	-8.521	100	130	050
.30	Cd504 1820	-6.864			-6.841	-6.891	-8.521	-1.657	-1.680	-1.630
31	C4804 2 7H20	-6.669			-6.632	-6.662	-8.522	-1.873	-1.890	-1.860
10	Nicol	-5.594					-12.434	-6.840		
11	N;(OH)2	-3,133		.100	-2.923	-5.633	7.667	10.800	10.590	13.300
12	N14(0H)6506	-16.884		0.000	00001240000		15.116	32.000		
13	Bunsonite	-4.783				-4.723	7.667	12.450		12.390
16	Retearsite	-5.845					-7.885	-2.040		
17	Morenosite	-5.525					-7.885	-2.360		

Date = 9/30/95 9:47

DOX =.0000DOC =.0INPUT TDS =1300.0Anal Cond =1/16.0Calc Cond =1651.9Anal EMMCAT =17.7113Anal EMMAN =15.3554Percent difference in input cation/anion balance =14.2498Calc EPMCAT =15.7107Calc EPMAN =13.3615Percent difference in calc cation/anion balance =16.1611Total Ionic Strength (T.I.S.) from speciation =.02592.02194

0-N102892

 Sato
 Sato
 Culc

 Input Signu
 Pe3/Fe2 Sigma
 N03/N02 Sigma
 N03/N14 Sigma
 H202/02 Sigma
 S04/S=
 Sigma
 As5/As3 Sigma

 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 9.900
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000
 .000

			Effective								
т	pli	TDS ppm	Ionic Str	p02 Atm	pCO2 ALm	pCH4 Atm	CO2 ToL	Uncom CO2	ppm Uncom CO2	Nerb Alk	aH20
25.00	7.400	1107.2	.02194	0.00E+00	8.77E-03	0.002+00	.00429	3.84E-03	1.69E+02	2.91E-07	.9996

I	Species		Anal ppu	Calc ppm	Anal Molal	Calc Molal	Activity	Act Coeff	-Log Act
0	Ca	2	111.000	88.330	2.773B-03	2.206E-03	1.272E-03	.5766	2.895
28	CaOH	1		.000530		9.288E-09	8.046E-09	.8663	8.094
31	CaSO4 aq	0		67.330		4.951E-04	4.976B-04	1.0051	3.303
81	CaHSO4	1		.000018		1.310E-10	1.135E-10	.8663	9.945
29	CaHCO3	1		6.313		6.251E-05	5.415E-05	.8663	4.266
30	CaCO3 ag	0		.834		8.338E-06	8.3818-06	1.0051	5.077
1	Mg	2	53.000	43.200	2.182E-03	1.779E-03	1.039E-03	.5839	2.984
18	MgOII	1		.001996		4.836E-08	4.1898-08	.8663	7.378
22	MgSO4 ay	0		42.429		3.529E-04	3.547E-04	1.0051	3.450
21	MgHC03	1		3.966		4.653E-05	4.031E-05	.8663	4.395
20	MgC03 aq	0		. 327		3.878E-06	3.898E-06	1.0051	5.409
2	Na	1	163.000	161.170	7.098E-03	7.018E-03	6.092E-03	.8679	2.215
43	NaSO4	-1		8.048		6.767E-05	5.862B-05	.8663	4.232
42	NaHC03aq	0		.954		1.1378-05	1.143E-05	1.0051	4.942
41	NaC03	1		.042		5.125E-07	4.440E-07	.8663	6.353
3	ĸ	1	17.500	17.268	4.480E-04	4.421E-04	3.814E-04	.8627	3.419
45	KSO4	-1		.802		5.941E-06	5.147B-06	.8663	5.288
63	н	1		.000045		4.492E-08	3.981E-08	.8862	7.400
26	Oli	1		.004938		2.906E-07	2.518E-07	.8663	6.599
17	C03	2		.409		6.817E-06	3.932B 06	. 5768	5.405
6	IICO3	-1	246.000	233.393	4.036E-03	3.8298-03	3.337B-03	.8715	2.477
85	H2CO3 aq	0		18.405		2.971E-04	2.987B-04	1.0054	3.525
5	S04	-2	413.000	322.853	4.304B-03	3.3658-03	1.9208-03	.5707	2.717
62	HSO4	-1		.000831		8.566E-09	7.420E-09	.8663	8.130
4	Cl	-1	96.000	95.982	2.711E-03	2.710E-03	2.338E-03	.8627	2.631
16	Pe Lotal	2	.146		2.6178-06				
109	Ma	2	3.365	2.707	6.132E-05	4.9348-05	2.778E-05	.5631	4.556
119	MnHCO3	1		.231		1.9938-06	1.726E-06	.8663	5.763
111	MnC1	1		.027		3.034E-07	2.628E-07	.8663	6.580
112	MnC12 aq	0		.000021		1.661E-10	1.669E-10	1.0051	9.777
113	MnC13	-1		.000000		2.031E-13	1.760E-13	.8663	12.755
114	MnOH	1		.001488		2.070E-08	1.793E-08	.8663	7.746
115	Mn(OH)3	-1		.000000		8.047E-18	6.971E-18	.8663	17.157
117	MnSO4 aq	U		1.457		9.6598-06	9.708E-06	1.0051	5.013
145	Zn	2	4.054	1.963	6.208E-05	3.006E-05	1.6938-05	.5631	4.771
272	ZnHCO3	1		1.036		8.210B-06	7.112E-06	.8663	5.148
273	ZnC03	0		1.655		1.321E-05	1.3288-05	1.0051	4.877
274	Zn(CO3)2	2		.367		1.982E-06	1.116E-06	.5631	5.952

I	Species		Anal ppm	Calc ppm	Anal Molal	Calc Molal	Activity	Act Coeff	-Log Act
146	2nCl	ĩ –		.012		1.230E-07	1.0658-07	.8663	6,973
147	ZnC12 ag	ó		.000035		2.595E-10	2.6088-10	1.0051	9.584
148	ZnC13 -	1		.000000		7.900E-13	6.843E-13	.8663	12.165
149	ZuC14 -	2		.000000		1.424E-15	8.020E-16	.5631	15.096
151	ZuOH	1		.044		5.3808-07	4.660E-07	.8663	6.332
152	Zn(OII)2	0		.013		1.337E-07	1.344E-07	1.0051	6.872
153	Zn(OH)3	1		.000001		1.232E-11	1.067E-11	.8663	10.972
154	Zn(OH)4 -	2		.000000		7.539E-17	4.245E-17	.5631	16.372
155	ZnOHClag	ō		.003854		3.2748-08	3.291E-08	1.0051	7.483
158	ZuS04 ag	0		1.222		7.581E-06	7.620B-06	1.0051	5.118
159	2n(\$04)2	2		.054		2.113E-07	1.190E-07	.5631	6.925
160	Cd	2	.010000	.004353	8.907E-08	3.8778-08	2.183K-08	.5631	7.661
166	Cd(C03))	4	10100000000	.000000		2.189E-17	2.2018-18	.1005	17.657
275	CdIIC03	1		.001834		1.0598-08	9.172E-09	.8663	8.038
276	CdC03	0		.003695		2.145E-08	2.156B-08	1.0051	7.666
161	CdC1	1		.000831		5.627B-09	4.875E-09	.8663	8.312
162	CdC12 au	0		.000009		4.728E-11	4.752E-11	1.0051	10.323
163	CdC13 -	1		.000000		8.093B-14	7.010B-14	,8663	13.154
167	CdOH	1		.000007		5.263B-11	4.559E-11	.8663	10.341
168	Cd(011)2	0		.000000		6.117E-14	6.148E-14	1.0051	13.211
169	Cd(OH)3 -	1		,000000		1.999E-19	1.732E-19	.8663	18.761
170	Cd(OH)4	2		.000000		6.883E-26	3.876E-26	.5631	25.412
171	Cd2011	3		.000000		1.754B-17	4.818E-18	.2747	17.317
172	CdOHClag (0		.000008		5.030E-11	5.056E-11	1.0051	10.296
174	CdS04 ag	0		.002505		1.203E-08	1.2098-08	1.0051	7.918
277	Cd(S04)2 :	2		.000094		4.522E-10	2.547B-10	.5631	9.594
204	Ni	2	.074000	.004102	1.262E-06	6.995E-08	3.939E-08	.5631	7.405
280	NillC03	1		.002505		2.0958-08	1.815E-08	.8663	7.741
281	NiCO3	0		.135		1.142E-06	1.1488-06	1.0051	5.940
282	Ni(CO3)2	2		.002486		1.393E-08	7.842E-09	.5631	8.106
206	NiC1	1		.000025		2.671E-10	2.314E-10	.8663	9.636
279	NiC12	0		.000000		1.954B-12	1.964E-12	1.0051	11.707
208	NIOH	1		.000012		1.576E-10	1.365E-10	.8663	9.865
209	Ni(OH)2	0		.000000		2.471E-12	2.483E-12	1.0051	11.605
210	Ni(OH)3	1		.000000		7.1998-16	6.236E-16	.8663	15.205
211	NiSO4 ay	0		.002269		1.467E-08	1.475E-08	1.0051	7.831
283	Ni(S04)2	2		.000000		2.7022-12	1.522B-12	.5631	11.818
89	Ba	2	.045	.029	3.280E-07	2.1312-07	1.2008-07	.5631	6.921
90	BaOH	1		.000000		1.529E-13	1.324E-13	.8663	12.8/8
201	BaSO4 aq	0		.027		1.149E-07	1.155B-07	1.0051	6.938

	Phase	Log AP/KT	Sigma(A)	Sigma(T)	Log A	P/MinKT	Log AP/MaxKT	Log AP	Log KT	Log MinKT	Log MaxKT
17	Anhydrite	975						-5.612	-4.637		
21	Aragonite	.035		.020				-8.301	-8.336		
150	Artinite	-5.997						3.603	9.600		.0 773
144	Barite	.338					.135	-9.638	-9.976		-9.775
19	Brucite	-4.977				23.00		-16.181	-11.204	0.000	
12	Calcite	.179		.020		.259		-8.301	-8.480	-8.360	
11	Dolomite	.310						-16.690	-17.000		
340	Epsomite	-3.561						-5.701	-2.140		
18	Gypsum	-1.012						-5.612	-4.600		
64	Halite	-6.428						-4.846	1.582		
117	Huntite	-3.500						-33.468	-29.968		
38	Hydrmagnesit	-12.976						-49.738	-36.762		
10	Magnesite	360				110	610	-8.389	-8.029	-8.279	-7.779
66	Mirabilite	-6.035						-7.149	-1.114		
58	Nahcolite	-4.144						-4.692	548		
60	Natron	-8.527						-9.838	-1.311	6.63	1000
149	Nesquehonite	-2.768			_	3.256	-3.843	-8.389	-5.621	-5.133	~4.546
65	Thenardite	-6.968						-7.147	179		
61	Thermonatr	-9.961						-9.836	.125		
59	Trona	-13,733						-14.528	795		
145	Witherite	-3.741				1.009		-12.326	-8.585	-13.335	
188	Percercito	-4.845					-5.138	10.243	15.088		15.381
100	Phodoshrosit	668				1.057	.031	-9.962	-10.410	-11.019	-9.993
101	MaC12 6H20	-12 529						-9.819	2.710		
192	Much4	-9 942						-7.273	2.669		
267	7.012	-17 066					-17.094	-10.034	7.030		7.060
207	Saithanit.	- 177				.633	357	-10,177	-10.000	-10.810	-9.820
200	2-003 1020	083				0.000		-10,177	-10.260		
207	20(04)2 (a)	-2 622			-	2.232	-2.452	10.028	12.450	12.260	12.480
272	2n(011)2 (a)	-2 172						10.028	12.200		
272	2n(01)2(0)	-1 722		020	_	1.292	-1.862	10.028	11.750	11.320	11,890
274	2n(0H)2(0)	-1 682		1020		1.162	-1.812	10.028	11.710	11.190	11.840
275	2n(01)2(8)	-1.672		.030		922	-1.592	10.028	11.500	10.950	11.620
276	2n2(0H)3C1	-5.174						10.026	15.200		
277	2n5(OH)8C1	-8 621						30.079	38.500		
278	Zn2(011)2504	-4.960						2.540	7.500		
279	2n4(0H)6504	-5.803						22.597	28.400		
281	ZnO(active)	-1.282			-	1.542	-1.832	10.028	11.310	11,570	11.860
282	Zincite	-1.112				962	-1.512	10.028	11.140	10.990	11.540
283	2n30(504)2	-23.968						-4.948	19.020		
290	Zincosite	-10.498					-11.418	-7.488	3.010		3.930
291	ZnS04 1820	-6.918					-6.988	-7.488	570		~.500
292	Bianchite	-5.724					-6.469	-7.489	1.765		-1.020
203	Coslarite	-5 529					-5.619	-7.489	-1.960		-1.870
115	Otavita	674				.744	-1.856	-13.066	-13.740	-13.810	-11.210
316	CAC12	-12 243					-12,453	-12.923	680		470
317	C4C12 11120	-11 213						-12.923	-1.710		
310	CdC12, 1820	-10 984						-12.924	-1.940		
320	Cd(0H)2 (a)	-6 591			-	6.471	.7.161	7.139	13.730	13.610	14.300
321	Cd(OII)2(a)	-6 511		040				7.139	13,650		
122		-6 612		.040		6 192		-2.892	3.520	3.300	
322	Cd3(0H)/ SO/	-18 660						3,900	22.560	100	
323	C13042(S04)	-20 326						-13.616	6.710		
324	C44(00)2400/	-17 361						11.039	28.400		
325	Montenonite	-7.981					-8.601	7.139	15.120		15.740
320	CdS04	-10.276			-1	0.248	-10.328	-10.378	-,100	130	050
330	CdS04 1820	-8.721				8.698	-8.748	-10.378	-1.657	-1.680	-1.630
250	10000, 10120						611046	1223 1223	1.54		

0-N102072

121

.

	Phase	Log AP/KT	Sigma(A)	Sigma(T)	LUB	AP/MinKT	Log AP/MaxKT	LOE AP	Log KT	Log MinKT	Log MaxKi
331	CdS04,2.7H20	-8.505				-8.488	-8.518	-10.378	-1.873	-1.890	-1.860
410	NiCO3	-5.970						-12.810	-6.840		
411	Ni(OH)2	-3.405		.100		-3.195	~5.905	7.395	10.800	10.590	13.300
412	Ni4(OH)6504	-19.936						12.064	32.000		
413	Bunsenite	-5.055					-4.995	7.395	12.450		12.390
416	Retgersite	-8.082						-10.122	-2.040		
417	Morenosite	-7.762						-10.122	-2.360		

Date = 9/ JU/ 93 9:36

1-1102092 INPUT TDS = DOX = .0000 DOC = .0 306.0 Calc Cond = 494.4 Anal Cond = 439.0 Percent difference in input cation/anion balance = -6.8166 4.3528 Anal BPMAN = 4.6600 Anal EPMCAT = Percent difference in calc cation/anion balance = Calc EPMCAT -4.0085 Calc BPMAN = 4.3194 -7.4676 Total Ionic Strength (T.I.S.) from input data = .00736 Rffective Ionic Strength (E.I.S.) from speciation = .00668 Sato Calc As5/As3 Sigma Fe3/Fe2 Sigma H202/02 Signa NO3/NO2 Sigma NO3/NH4 Sigma H202/02 Sigma S04/S= Sigma Input Sigma - - Eh 9.900 .000 9.900 .000 9.900 .000 9.900 .000 .000 .000 9.900 .000 9.900 .000 9,900 .000 12 11 11 12 12 pt -.000 .000 100.000 .000 100.000 .000 100.000 .000 100.000 .000 100.000 100.000 .000 100.000 .000 100.000 Effective all20 т plf pCO2 Atm pCII4 Atm CO2 Tot Uncom CO2 ppa Uncom CO2 Nerb Alk TDS UPIN Ionic Str pO2 ALM .9999 25.00 .00668 0.00E+00 2.74E-03 0.00E+00 .00155 1.438-03 6.31E+01 3.468-07 7.500 321.1 Act Coeff 1 Species Anal ppu Calc ppm Anal Molal Calc Molal Activity -Log Act. 32.000 7.987E-04 6.999E-04 5.004E-04 .7149 3.301 O Ca 9 28.042 8,400 .000248 4.344E-09 3.985E-09 .9173 28 CaOH 11.977 8.800E-05 8.8148-05 1.0015 4.055 31 CaSO4 aq 0 10.797 81 CaHS04 .000002 1.741E-11 1.597E-11 .9173 .924 9.145E-06 8.389E-06 .9173 5.076 CallCO3 29 5.787 30 CaCO3 aq .163 1.6328-06 1.6348-06 1.0015 0 6.583E-04 5.859E-04 4.208E-04 .7182 3.376 16.000 14.240 1 MR 2 7.670 18 MgOII ,000962 2,330E-08 2.137E-08 .9173 22 MgSO4 aq 7.774 6.460B-05 6.470E-05 1.0015 4.189 0 21 MeHCO3 .598 7.011E-06 6.432B-06 .9173 5.192 7.817E-07 6.106 20 MgCO3 aq .066 7.829E-07 1.0015 0 2.954 2 Na 28.000 27.859 1.2188-03 1.2128-03 1.1138-03 .9181 1 5.258E-06 4.8238-06 .9173 5.317 43 NaS04 - 1 .626 6.085 42 NaHCO3aq 0 .069 8.213E-07 8.226E-07 1.0015 NaCO3 .003638 4.384E-08 4.0228-08 .9173 7.396 41 1 3.813 3 6.600 6.560 1.6882-04 1.678R-04 1.538E-04 .9163 K KS04 .138 1.0198-06 9.345E-07 .9173 6.029 45 -1 .9257 7.500 63 H .000034 3.416E-08 3.1628-08 1 .005876 3.456E-07 3.171E-07 .9173 6.499 26 011 -1 5.710 2.725E-06 1.9508-06 .7154 17 C03 -2.163 HCO3 -1 89.000 87.175 1.4598-03 1.4298-03 1.314E-03 .9197 2.881 6 1.0016 9.3288-05 9.344E-05 4.029 85 H2C03 ag 0 5.784 504 132.000 116.516 1.3758-03 1.2138-03 8.647E-04 .7127 3.063 5 -9 2.654E-09 .9173 8.576 .000281 2.8938-09 62 HS04 -14 C1 16.000 15.999 4.5148-04 4.514E-04 4.136B-04 .9163 3.383 1 1.9708-06 16 Fe total .110 .946 1.9508-05 1.7238-05 1.220E-05 .7082 4.914 109 1.071 Mn 3.2558-07 2.9868-07 .9173 6.525 119 MnIIC03 .038 2.2258-08 2.0418-08 .9173 7.690 .002011 111 MnC1 11.639 2.2948-12 1.0015 112 MuCl2 aq 0 .000000 2.2908-12 113 MuC13 .000000 4.6638-16 4.277E-16 .9173 15.369 .9173 8.004 114 MnOll .000777 1.081E-08 9.914E-09 17.214 6.663E-18 6.112E-18 .9173 115 Mn(OH)3 -1 .000000 5.717 1.9178-06 1.920B-06 1.0015 .289 117 MnSO4 ag 0 5.741 .7082 Zn .167 4.101E-06 2.5628-06 1.8158-06 145 .268 3.273E-07 3.0038-07 .9173 6.523 272 ZnHCO3 .041 . 7.0598-07 1.0015 6.151 ZnCO3 .088 7.0488-07 273 0 .7082 7.531 4.1548-08 2.9418-08 274 2n(CO3)2 -2 .007697

	10000	
1-141	62092	

1	Species		Anal	ppm	Calc ppm	Anal Molal	Calc Molal	Activity	Act Coeff	-Log Act
146	ZnC1	1			.000222		2.202B-09	2.020E-09	.9173	8.695
147	ZnC12 au	0			.000000		8.737E-13	8.750E-13	1.0015	12.058
148	ZnC13	-1			.000000		4.427E-16	4.061E-16	.9173	15.391
149	2nC14	-2			.000000		1.1898-19	8.419E-20	.7082	19.075
151	ZnOH	1			.005648		6.8588-08	6.291E-08	.9173	7.201
152	2n(OH)2	ō			.002266		2.2808-08	2.284E-08	1.0015	7.641
153	Zu(OH)3	-1			.000000		2.4898-12	2.284E-12	.9173	11.641
154	70(01)4	-2			.000000		1.6168-17	1.1448-17	.7082	16.941
155	ZnOHClan	õ			000092		7.8478-10	7.859E-10	1.0015	9.105
158	70806 40	ő			059		3.6738-07	3.6788-07	1.0015	6.434
150	2. (50/)2	-2			000940		3.6518-09	2.585E-09	.7082	8.587
00	B-	2		072	024	2 3318-07	1.784P-07	1.2638-07	.7082	6.898
0.9	Ba Oli	-	3	.032	.024	2.3516 07	1 9148-13	1.7568-13	.9173	12.756
90	Baun				.000000		5 4678-08	5 4758-08	1.0015	7.262
201	Bas04 ag	- 02			.013		3.40/6-00	3.4735-00	1.0015	

	Phase	LOB AP/KT	Sigma(A)	Sigma(T)	Log AP/MinKT	Log AP/MaxKT	Log AP	Log KT	Log MinKT	Log MaxKT
17	Anhydrite	-1.727					-6.364	-4.637		
21	Aragonite	675		.020			-9.011	-8.336		
150	Artinite	-6.912					2.688	9.600		12.0022
144	Barite	.014				189	-9.962	-9.976		-9.773
19	Brucite	-5.170					-16.374	-11.204	1337373985	
12	Calcite	531		.020	451		-9.011	-8.480	-8.560	
11	Dolomite	-1.097					-18.097	-17.000		
340	Epsomite	-4.299					-6.439	-2.140		
18	Gypsum	-1.764					-6.364	-4.600		
64	Halite	-7.919					-6.337	1.582		
117	Huntite	-6.301					-36.269	-29.968		
38	Hydrmagnesit	-15.956					-52.718	-36.762		
10	Magnesite	-1.057			807	-1.307	-9.086	-8.029	-8.279	-7.779
66	Mirabilite	-7.857					-8.971	-1.114		
58	Nahcolite	-5.287					-5.835	548		
60	Natron	-10.307					-11.618	-1.311		
149	Nesquehonite	-3.465			-3.953	-4.540	-9.086	-5.621	-5.133	-4.546
65	Thenardite	-8.791					-8.970	179		
61	Thermonatr	-11.742					-11.617	.125		
59	Trona	-16.657					-17.452	795		
145	Witherite	-4.024			.726		-12.609	-8.585	-13.335	
188	Pyrocroite	-5.002				-5.295	10.086	15.088		15.381
190	Rhodochrosit	214			. 395	631	-10.624	-10.410	-11.019	-9.993
191	MnC12, 6H20	14.391					-11.681	2.710		
182	MnSO4	-10,646					-7.977	2.669		
267	ZuC12	-19.538				-19.568	-12.508	7.030		7.060
268	Smithsonite	-1.451			641	-1.631	-11.451	-10.000	-10.810	-9.820
269	ZuC03, 1H20	-1.191					-11.451	-10.260		
271	Zn(OH)2 (a)	-3.191			-3.001	-3.221	9.259	12.450	12.260	12.480
272	Zn(OH)2 (c)	-2.941					9.259	12.200		
273	2n(OH)2 (b)	-2.491		.020	-2.061	-2.631	9.259	11.750	11.320	11.890
274	Zn(011)2 (g)	-2.451			-1.931	-2.581	9.259	11.710	11.190	11.840
275	Zn(OH)2 ()	-2.241		.030	-1.691	-2.361	9.259	11.500	10.950	11.620
276	Zn2(OH)3C1	-7.566					7.634	15.200		
277	Zn5(OH)8C1	-13.973					24.527	38.500		
278	Zu2(OH)2SO4	-7.046					.454	7.500		
279	Zn4(OH)6SO4	-9.428					18.972	28.400		
281	ZnO(active)	-2.051			-2.311	-2.601	9.259	11.310	11.570	11.860
282	Zincite	-1.881			-1.731	-2.281	9.259	11.140	10.990	11.540
283	Zn30(S04)2	-27.370					-8.350	19.020		147 March 192
290	Zincosite	-11.814				-12.734	-8.804	3.010		3.930
291	ZnS04, 1H20	-8.234	2			-8.304	-8.804	570		500
292	Bianchite	-7.040				-7.785	-8.805	-1.765		-1.020
293	Goslarite	-6.845				-6.935	-8.805	-1.960		-1.870

.

*S

VITA

Larry L. Wooten

Candidate for the Degree of

Master of Science

Thesis: WATER QUALITY OF COAL CREEK TRIBUTARIES DRAINING AN EAGLE-PICHER SMELTER SITE, OKMULGEE COUNTY, OKLAHOMA

Major Field: Geology

Biographical:

- Personal Data: Born in Canyon, Texas, March 15, 1950, the son of Leroy and Juanita Wooten.
- Education: Graduated from Canyon High School, Canyon, Texas, in May 1968; received a Bachelor of Science Degree in Geology from West Texas State University in May 1976; completed the requirements for the Master of Science degree at Oklahoma State University in May 1998.
- Profession Experience: Petroleum Geologist for Diamond Shamrock Corporation from 1976 to 1977, Petroleum Geologist for Amarillo Oil Company from 1977 to 1979, Petroleum Geologist for Argonaut Energy from 1979 to 1980, Petroleum Geologist for Republic Resources Corporation from 1980 to 1982, Petroleum Geologist for Red Land Energy, Ltd. from 1982 to 1983, Independent Petroleum Geologist from 1983 to 1991, Hydrogeologist for Roberts/Schornick & Associates, Inc. from 1991 to present.