A COMPARISON OF ROASTED PEANUT FLAVOR ATTRIBUTES OVER TIME FOR THREE PEANUT CULTIVARS WITH DIVERS OLEIC: LINOLEIC ACID RATIOS

By

FAYE ANN WATSON

Bachelor of Arts

Ottawa University

Ottawa, Kansas

1983

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 1998

OKLAHOMA STATE UNIVERSITY

A COMPARISON OF ROASTED PEANUT FLAVOR ATTRIBUTES OVER TIME FOR THREE PEANUT CULTIVARS WITH DIVERS OLEIC: LINOLEIC ACID RATIOS

Thesis Approved: Thesis es

Dean of the Graduate College

ACKNOWLEDGEMENTS

Any endeavor the magnitude of a research project and thesis can only be accomplished with the support and understanding of others who have previously walked a similar path. My thanks and appreciation are sincerely expressed to those who have preceded me and who have enabled and assisted me in completing this project. First, to Dr. Sue Knight, my major advisor, whose unyielding support and grace enabled me to stay the course, I offer my greatest thanks and appreciation. And to Dr. Gail Gates and Dr. Carla Goad I extend sincere thanks for their individual expertise and advisement.

To the dedicated panelists who trained diligently and participated willingly in a project from which they stood to reap no lasting benefit, and which, more often than not, was not an altogether pleasant experience, I extend my special thanks.

Finally, I thank my brother, Chris, for his encouragement, unwavering love and support, and for timely reminders that "God hasn't failed you yet; He won't start now. It will all come together, just hang in there and you'll get through." And I hereby note for posterity his eloquent final comment on the subject, pronounced immediately following the Graduate Convocation, "See?"

I dedicate this thesis to a very special lady, my "Grandma DD" who always supported me in every endeavor with love, encouragement and timely gems of wisdom. I sincerely regret that she did not live to see the fulfillment of the dream that she inspired.

iii

TABLE OF CONTENTS

-

Chaj	Chapter	
I.	INTRODUCTION	1
	Purpose and Objectives	3
	Assumptions	
	Limitations	
	Hypotheses	
	Format of Thesis	
II.	REVIEW OF LITERATURE	7
	Lipids	7
	Lipid Oxidation	8
	Lipid Oxidation and Production of Volatile Compounds	. 10
	Peanuts	
	Factors Affecting Peanut Flavor	. 12
	Sensory Evaluation	
	Project Design for Sensory Evaluation	. 15
	Panel Selection for Sensory Evaluation	. 16
III.	A COMPARISON OF ROASTED PEANUT FLAVOR ATTRIBUTES	
	OVER TIME FOR THREE PEANUT CULTIVARS WITH DIVERS	
	OLEIC: LINOLEIC ACID RATIOS	. 19
	Introduction	. 19
	Materials and Methods	. 20
	Sample Preparation	
	Sensory Evaluation Participants and Training	
	Data Collection: Sensory Evaluation Panel	
	Data Collection: Consumer Preference Panels	
	Data Collection: Hexanal	. 29
	Experimental Design and Statistical Analysis	
	Results and Discussion	
	Sensory Evaluation Data	
	Analyses on Fresh Roast Peanuts	

Chapter

-

Page

	Analyses on Aging Peanuts	32
	Sensory Discussion	
	Consumer Preference Data	37
	Consumer Preference Discussion	37
	Hexanal Analysis Data	
	Hexanal Discussion	
IV.	HYPOTHESES TESTING AND RECOMMENDATIONS	42
	Hymotheses Testing	17
	Hypotheses Testing Recommendations	42
	Recommendations	45
SEL	ECTED BIBLIOGRAPHY	47
APP	ENDIXES	51
	APPENDIX A - CIE L*a*b* COLOR ANALYSIS	52
	APPENDIX B - SENSORY EVALUATION DATA	56
	APPENDIX C - CONSUMER PREFERENCE DATA	69
	APPENDIX D - HEXANAL ANALYSIS	71
	AFFENDIA D - MEAANAL ANAL I SIS	/4
	APPENDIX E - IRB APPROVAL	78

LIST OF TABLES

Table	e	Page
1.	Least Squares Means and Standard Errors for specific attributes for each variety at Week 0 (fresh roast)	32
2.	Pearson Correlation coefficients (and their significance levels) between specific attributes and time (weeks) in storage for each variety	33
3.	Least Squares Means and Standard Errors for sour attribute for each variety at Week 7	34
4.	Least Squares Means and Standard Errors for cardboard attribute for each variety at Week 7	35
5.	Pearson Correlation coefficients (and their significance levels) between specific attributes and hexanal for each variety	39
6.	Least Squares Means and Standard Errors for hexanal at week 6	40

LIST OF FIGURES

Figu	re I	Page
1.	A copy of the sensory evaluation data sheet used by the trained panel	27
2.	A sample of one of the 6 randomized data score sheets used by the consumer preference panels rating fresh roasted peanuts	28
3.	A sample of one of the 6 randomized data score sheets used by the consumer preference panels rating aged peanuts.	28
4.	Cardboard attribute vs. weeks in storage	35
5.	Hexanal vs. weeks in storage	40

NOMENCLATURE

Astringency	chemical feeling on the tongue and in the mouth described as
	puckering / dry, associated with tannins, as in strong tea
	(Johnsen, 1986).

- Bitter..... taste associated with caffeine or quinine (Johnsen, 1986).
- Blanch...... peel the tough, tight-fitting skin from a nut (Lawler, 1961).
- Cardboardaromatic associated with somewhat oxidized fats and oils and reminiscent of cardboard (Johnsen, 1986).
- Dark roasted peanut..... aromatic associated with darkly roasted peanuts, very browned or toasted character (Johnsen, 1986).
- Earthy.....aromatic associated with wet dirt and mulch (Johnsen, 1986).
- Fatty acidlong chain monocarboxylic acids having 12-24 carbon atoms.
 Saturated fatty acids can be represented by the general formula CH3(CH2)nCOOH, with each carbon bonded to the maximum number of hydrogen atoms. Unsaturated fatty acids can be represented by the formula CH3(CH2)nCH=CH(CH2)n'COOH, with each at least one carbon-to-carbon double bond, resulting in carbons which are not "saturated" with hydrogen atoms (Caret, R.L., Denniston, K.J., and Topping, J.J., 1993).

Fishy aromatic associated with cod liver oil or old fish (Johnsen, 1986).

Green	aromatic associated with uncooked vegetables, grass or twigs
	(Johnsen, 1986).
Hexanal	. an aldehyde, CH3(CH2)4CHO (Caret et al., 1993).
Legumey	"beany" aromatic associated with raw legumes and beans
	(Civille, G.V. and Lyon, B.G., 1996.).
Linoleic acid	a polyunsaturated fatty acid, C17H31COOH, having two double

bonds; cis, cis, 9,12-Octadecadienoic acid (Caret et al., 1993).

- Mouth coat chemical feeling in the mouth described as a film coating on the inside of the mouth (Johnsen, 1986).
- Oleic acida monounsaturated fatty acid, C17H33COOH, having one double bond; cis-9-Octadecadienoic (Caret et al., 1993).
- Painty.....aromatic associated with linseed oil/oil based paint (Johnsen, 1986).

PPM parts per million

Roasted peanutty aromatic associated with medium-roasted peanuts (Johnsen, 1986).

Raw bean / peanut aromatic associated with lightly roasted peanuts, having legumelike character (Johnsen, 1986).

Salt.....taste associated with table salt (Johnsen, 1986).

Skunky aromatic associated with sulfur compounds, which exhibit skunklike or rubberlike character (Johnsen, 1986).

Sour taste associated with acids (citric acid) (Johnsen, 1986).

Sweettaste associated with sugars (Johnsen, 1986).

Sweet aromatic aromatic associated with sweet materials, such as caramel,

vanilla, molasses or fruit (Johnsen, 1986).

Woodyaromatic associated with base peanut character (absence of fragrant top notes) and related to dry wood, peanut hulls and skins (Johnsen, 1986).

CHAPTER I

A COMPARISON OF ROASTED PEANUT FLAVOR ATTRIBUTES OVER TIME FOR THREE PEANUT CULTIVARS WITH DIVERS OLEIC: LINOLEIC ACID RATIOS

Roasting converts the most obvious flavors of a peanut seed from green, legumey, moderately sweet, and "beany" in the raw form to a widely recognized and characteristic roasted nutty flavor. That characteristic roasted nutty flavor of each peanut seed is actually comprised of a variety of tastes, aromatic volatiles, and chemical feeling factors in a unique combination. While the overall first impression of roasted peanut flavor appears to be consistent from one type of peanut to another, sensory panelists trained to identify and quantify intensities of various flavor attributes recognize that there are unmistakable differences in peanut flavors. As time between the initial roasting and tasting increases, the disparity in some of the flavor attributes increases, enabling almost everyone to detect differences in taste between "fresh" and "stale" peanuts. Efforts to extend the time that elapses between roasting and the onset of readily noticeable "offflavors" indicative of staling and rancidity continue to be on the cutting edge of peanut research (Braddock et al., 1995; Pattee and Knauft, 1995; Pattee and Giesbrecht, 1990).

While there are a variety of factors that can be directly involved in the onset of

peanut staling, one primary cause of staling and rancidity in peanuts is the autoxidation of the fatty acids which comprise 45 - 50% of each peanut. Unsaturated fatty acids comprise 80% of all of the fatty acids in peanuts, and oxidative rancidity increases as the levels of polyunsaturated fatty acids increase (Divino et al., 1996). Up to 12 fatty acids have been identified in different peanut oils, but the oleic acid (18:1) and linoleic acid (18:2) proportions constitute 80% of the fatty acids in peanuts (Moore and Knauft, 1989). These unsaturated fatty acids oxidize readily due to their lack of saturation; the greater the degree of unsaturation, the faster oxidation can take place. Linoleic acid oxidizes 64 times faster than oleic acid (Hamilton, 1983). Increasing the degree of saturation of the fatty acids by increasing the ratio of oleic acid to linoleic acid in the peanut oil decreases the rate of oxidation and increases flavor stability over time (Moore and Knauft, 1989). Genetic experiments with Florida Sunrunner peanuts (Sunrunner) produced the Florida SunOleic 95R peanuts (SunOleic) with high oleic: linoleic acid ratios. Similar experiments in crossbreeding are currently in progress with varieties of Oklahoma Spanish peanuts.

With modification of fatty acid ratios, flavor changes may occur in peanuts because the lipid fraction and the fatty acid distribution are responsible for a variety of flavor and character notes, such as aroma, color, texture, flavor and mouthfeel, which combine to make foods acceptable and desirable (St. Angelo, 1996). Identification and comparison both of flavor attributes and of changes in those flavor attributes over time for peanuts with differing oleic: linoleic acid ratios provide indices for flavor modifications and shelf life stability (Braddock et al., 1995).

Purpose and Objectives

The purposes of this study were to:

- Compare intensities of roasted peanut descriptors for Sunrunner, SunOleic, and Spanco peanuts within 48 hours of initial roasting by sensory evaluation of the roasted peanuts.
- Compare intensities of roasted peanut descriptors for Sunrunner, SunOleic, and Spanco peanuts over time by sensory evaluation of stored roasted peanuts.
- Compare rates of aging for Sunrunner, SunOleic, and Spanco peanuts by sensory evaluation of stored roasted peanuts.
- Compare consumer preferences for Sunrunner, SunOleic, and Spanco peanuts within 48 hours of initial roasting.
- Compare consumer preferences for Sunrunner, SunOleic, and Spanco peanuts after aging.
- 6.) Compare hexanal levels for Sunrunner, SunOleic, and Spanco peanuts within 48 hours of initial roasting.
- Compare increases in hexanal levels for Sunrunner, SunOleic, and Spanco peanuts after aging.
- Compare rates of increase in hexanal levels for Sunrunner, SunOleic, and Spanco during aging.

Assumptions

The author assumes the following:

1.) Sensory evaluation by a trained panel produces data that assists in determination of

the true attributes of food products.

- 2.) With appropriate training, panelists will develop the skills necessary for sensory evaluation to provide sensitivity and reliability in recognition of a food product's particular characteristics.
- 3.) After completion of training, a sensory panel will diligently use the skills developed during training to evaluate the characteristic attributes of the roasted peanuts and the data generated will reflect the perceptions of the panel.
- 4.) Cold storage of peanuts prior to roasting adequately slowed any natural aging that might affect flavor of the peanuts before roasting.
- 5.) Packaging and storage conditions for the roasted peanut samples were adequate for the objectives of this research.

Limitations

The total number of panelists trained for the sensory panel was 22. The maximum number of panelists participating in a testing session was 22, and the minimum number of panelists participating in a testing session was 6.

Consumer panel testing was conducted on the basis of a forced choice with no option to decline making a preferential choice.

Consumer panel test subjects did not represent a true random sample of the total population.

Hypotheses

The following hypotheses were postulated for this research:

- H₁: There will be no significant difference among the varieties of freshly roasted peanuts in the intensity of any of the following sensory characteristics: tastes, including sweet, sour, bitter, and salt; aromatics, including peanutty, sweet aromatics, cardboard, painty, fishy, woody, earthy and skunky; and chemical feeling factors, including astringency and mouthfilm.
- H₂: There will be no significant difference as a result of aging over time among the varieties of sample peanuts in the intensity of any of the following sensory characteristics: tastes, including sweet, sour, bitter, and salt; aromatics, including peanutty, sweet aromatics, cardboard, painty, fishy, woody, earthy and skunky; and chemical feeling factors, including astringency and mouthfilm.
- H₃: There will be no significant difference among the varieties in the rate of increase over time in intensity of any of the following sensory characteristics: tastes, including sweet, sour, bitter, and salt; aromatics, including peanutty, sweet aromatics, cardboard, painty, fishy, woody, earthy and skunky; and chemical feeling factors, including astringency and mouthfilm.
- H₄: There will be no clear preference shown among the varieties of freshly roasted peanuts in consumer preference testing.
- H₅: There will be no clear preference shown among the varieties of aged peanuts in consumer preference testing.
- H₆: There will be no significant difference in hexanal levels among the varieties of freshly roasted peanuts.
- H₇: There will be no significant difference in hexanal levels among the varieties of aged peanuts.

H₈: There will be no significant difference in the rates of increase in hexanal levels among the varieties of aged peanuts.

Format of Thesis

The study discussed in Chapter 3 was outlined and written for publication according to the Style Guide for Research Papers of the Institute of Food Technologists. The literature citations referenced in Chapter 3 will be cited in the Selected Bibliography.

CHAPTER II

REVIEW OF LITERATURE

The purpose of this study was to determine the effects of storage time on the sensory characteristics of three types of roasted peanuts: Florida Sunrunner, Florida SunOleic 95R, and Oklahoma Spanco Spanish peanuts. This literature review opens with information surveying lipids, fatty acids, oxidation, and development of "off flavors" in foods. A review relating to factors affecting perceived flavors in peanuts follows. This is followed by a discussion regarding the use of sensory evaluation as a research tool.

Lipids

All living systems are composed of basic elements in specific combinations. This specificity in the carbon, oxygen and hydrogen combinations results in fats and carbohydrates, while addition of nitrogen is necessary for proteins. Lipid is the term used to describe compounds that are organic, widely distributed, found in "natural" foods, insoluble in water, and soluble in non-polar solvents (St. Angelo, 1996; Meyer, 1982, Freeland-Graves and Peckham, 1987). Lipids serve as a primary source of fuel for living organisms, acting as the storage form of energy, but not contributing structural strength to plant and animal tissues. They provide a source of metabolic energy, essential fatty acids, and fat-soluble vitamins. Additionally, lipids contribute to the overall quality of food by providing a variety of flavor and character notes, such as aroma, color, texture,

flavor and mouthfeel, which combine to make foods acceptable and desirable. However, when lipids are oxidized, they lead to products that are detrimental to these lipid functions (St. Angelo, 1996).

Lipid Oxidation

Natural fats commonly contain oleic acid, an unsaturated fatty acid, having 18 carbon atoms with one double bond between the ninth and tenth carbon atoms. Linoleic acid, also commonly found in natural fats, has 18 carbon atoms and two double bonds, one appearing between the ninth and tenth carbons and one between the twelfth and thirteenth (Meyer, 1982). All unsaturated fatty acids, including oleic acid and linoleic acid, are highly prone to oxidation, but the stability of an oil can be improved by decreasing the polyunsaturated fatty acids (e.g., linoleic) and increasing the monounsaturated fatty acids (e.g., oleic) (Roozen et al., 1994a, St. Angelo et al., 1973; Moore et al., 1989). Oxidation of linoleic and oleic fatty acids occurs via several pathways, and although the first step of the oxidation produces an odorless intermediate, that intermediate breaks down further into molecules which carry off-flavors (Hamilton, 1983). Autoxidation occurs when the substrate unsaturated fatty acid is oxidized, forming intermediate products which are capable of further catalyzing the reaction. This begins an autocatalytic process by which the oxidative products themselves continue catalyzing the reaction, which results in an increasing rate of reaction over time (St. Angelo, 1996).

Temperature, oxygen, light, metals, enzymes, and some microorganisms can activate autoxidation. The hydroperoxides that are formed during the oxidation of triglycerides and fatty acids decompose rapidly to form secondary reaction products, such as

aldehydes, ketones, alcohols, acids and hydrocarbons. Many of these products contribute off-flavors and odors (St. Angelo, 1996; Fritsch and Gale, 1977). The degree of unsaturation of a fatty acid is inversely related to the rate at which oxidation occurs. (Moore et al., 1989). Oxidation of linoleic acid takes place 64 times faster than oxidation of oleic acid, and linolenic acid is oxidized 100 times faster than oleic. During the initial stage, oxidation takes place slowly and at a uniform rate, but when the rate of oxidation has proceeded beyond a certain level, it accelerates rapidly, resulting in oxidation reactions that proceed at many times the initial oxidation rate. It is at this point that offflavors begin to be noticed (Hamilton, 1983). In vegetable oils, autoxidation affects the total composition of the oil over time, as the percentage of linoleic acid decreases markedly during storage periods of 9 months or more (Semwal et al., 1996). Lipid oxidation, which is an autocatalytic reaction, has been shown to increase exponentially over time, until the termination phase is reached (Fritsch et al., 1997). Initiation of oxidation is the first phase of autoxidation, the slow phase. Propagation is the second phase, where the rapid branching chain reactions take place and peroxides are generated. The third phase, termination, is marked by the distinct slowing of oxidation and recombination of many of the free radicals formed during the propagation phase (Hudson, 1983; Rossell, 1983).

During oxidation a wide range of hydroperoxides can be formed, resulting in production of a wide range of aldehydes. These aldehydes give rise to a range of flavors described in terms such as sweet, pungent, fatty, green, fruity or oily, depending upon which aldehyde has been formed and at what level it is present. Hydrolytic reactions, including lipolysis, break triglycerides down to keto acids, thus releasing hydroxy fatty

acids, and contributing free oleic, linoleic, and linolenic acids for autoxidation. Flavor terms associated with the ketones and the aliphatic acids range from pungent, sweet, fruity and fatty, to sour, vinegary, and sweaty (Hamilton, 1983). Of these two types of oxidation which lead to rancidity, hydrolytic and autoxidative, it is the hydrolytic action, caused by the release of the free fatty acids from triglycerides, which is most important in determining flavor changes in foods. However, in addition to causing detrimental flavor changes, oxidative rancidity also causes formation of toxic compounds, such as oxidized sterols, polymeric material, and peroxidized fatty acids and their end-products within the rancid fats (Sanders, 1983).

Lipid Oxidation and Production of Volatile Compounds

The derivation of rancid flavors from unsaturated fatty acids results in chemically complex flavors that can be the result of any of several mechanisms. Even small amounts of the oxidative aldehyde and ketone end products are recognizable by the human sense of taste. As linoleic acid is oxidized, *cis*-3-Hexanal, *cis*-4-Hexanal, and *trans*-2-*trans*-4-decadienal are produced. Green bean and green flavor notes are attributed to *cis*-3-Hexanal and *cis*-4-Hexanal, respectively, and stale frying oil flavor notes are attributed to *trans*-2-*trans*-4-decadienal (Hudson, 1983). In testing the volatile compounds resulting from oxidation of oleic or linoleic acids, Roozen (1994a) states that gas chromatography reveals that heptane and octane are produced in large amounts by linoleic rich oils. The peak area ratio for pentane, pentanal and hexanal is 5:4:100, showing hexanal to be a reliable measure of hydroperoxide decomposition resulting from oxidation of linoleic acid. Hydroperoxide formed by oxidation of linoleic acid decompose into relatively

high amounts of hexanal, and both the rate and the yield of the hexanal are dependent mainly on autoxidation (Roozen, 1994b). In storage tests on a variety of products, rancid odors are noted when the hexanal concentration in the samples increases to 5 to 10 PPM. Prior to onset of rancid odors, there are no significant changes in the chromatogram patterns of volatiles other than the hexanal. Results of these tests indicate that hexanal denotes deterioration of the products well before the appearance of rancid odors (Fritsch and Gale, 1977). Use of the hexanal method has proven effective in a variety of formats, having been used to study effects of packaging materials, conditions of processing, and changing ingredients on development of rancidity in products.

Peanuts

Peanuts generally contain 45-50% lipids (vegetable oils), comprised of up to 12 unsaturated fatty acids, which are highly susceptible to oxidation. However, only three fatty acids make up 90% of the total lipid profile: 10% is palmitic (16:0), a saturated fatty acid which is not subject to oxidation. The unsaturated components of the remaining 80% of the oil profile are linoleic (18:2) and oleic (18:1) acids. While the oxidation of these unsaturated fatty acids is the result of lipoxygenase activity in raw peanuts, autoxidation occurs in roasted peanuts long after high temperature has caused enzymatic activity to cease (Divino et al., 1996; Pattee and Knauft, 1995; Moore and Knauft, 1989). The presence of high levels of polyunsaturated fatty acids renders peanuts quite sensitive to oxidation. So one major factor affecting the final flavors and aromas in roasted peanuts is the stability of the particular combination of fatty acids comprising the peanut (Braddock et al., 1995).

Factors Affecting Peanut Flavor

While the fatty acid ratio is of great importance, a variety of other factors affecting the character of the roasted flavor of peanuts have been the subject of a wide range of research. Variations in flavor between various peanut cultivars and breeding lines have been examined (Pattee and Giesbrecht, 1990). The mechanistic relationships occurring between particular aldehydes and pyrazines produced during lipid oxidation and the changes in flavor over time has been investigated (Warner et al., 1996). Analysis of the amino acid and sugar content of raw Virginia-type peanuts has been performed in an attempt to predict sensory scores (Oupadissakoon and Young, 1984). Research into the specific effects of cold storage on peanut quality has documented that deterioration of quality decreases with cold storage of raw peanuts. Further research has investigated the relationship between peanut seed size, the length of storage time, and the flavor and color of the roasted peanuts, showing that the oxidative stability of raw peanuts decreases for smaller seeds and longer storage times, with blanchability of the seeds after roasting also being significantly affected (Pattee et al., 1982). Research has confirmed the importance of oxygen concentration, relative humidity, and the roasting process in the oxidation of peanuts. Edible coatings with low oxygen permeability and nitrogen-flushing of oxygenbarrier product packaging have been examined as potential methods for extending shelf life by reducing lipid oxidation (Mate et al., 1996). Optimal roasting color for peanut samples has also been investigated, and small differences in color of roasted peanuts has not been a major contributing factor to the flavor differences noted among samples (Pattee et al., 1991; Sanders et al., 1989). In addition, the effects of curing treatments and peanut maturity on roasted peanut flavor have been studied, noting that differences in

roasted peanut flavors are possibly due to effects of different curing treatments on peanuts of different maturity in sized peanut lots (Sanders et al., 1990). It is evident that a wide variety of factors contribute to the final roasted peanut flavor.

High levels of polyunsaturated fatty acids in peanuts contribute directly to early rancidity in peanut oils. The desire to minimize the rate of oxidative changes in peanuts resulted in the investigation of selective breeding for peanut lines having higher proportions of oleic acid because extending storage time while retaining flavor stability decreases product losses due to degradation, and is therefore beneficial not only for the processors but also for the consumers of the peanut products (Pattee and Knauft, 1995; Braddock et al., 1995; Moore and Knauft, 1989).

Braddock, Sims and O'Keffe (1995) reported on the testing of high oleic acid peanuts, with approximately 80% oleic and 3% linoleic acid against normal peanuts to evaluate sensory characteristics and volatile oil gas chromatography profiles over time. Shelf life of the high oleic acid peanuts was estimated from the combined sensory and physical data as being twice the shelf life of normal peanuts. They note that the aromas of aldehydes which are generated from oxidation of oleic and linoleic acids in the two different types of peanuts may affect the kinds of off flavors which occur in the aging process. They also reported that the high oleic acid peanuts exhibited fewer off flavors and maintained a more pleasing flavor during storage. Painty and cardboardy flavors, as well as dark roasted flavor notes were compared between the lines. Over time, the dark roast character almost disappeared in both lines, while the painty and cardboardy offflavors were higher in the normal peanuts.

Sensory Evaluation

The excellence of a product is irrelevant if consumers do not appreciate the product enough to make the purchase. Product acceptance is not homogeneous across a population, nor are the attributes that consumers appreciate necessarily ones producers have regarded as most important. Consumers, in fact, may not recognize the roles of ingredients, processing and quality control procedures that improve the quality and value of a product. However, manufacturers have recognized their need to know what consumers think because product quality has a strong impact on consumer behavior. Although information regarding consumer perception of quality is readily available, applying this information is challenging.

Sensory analysis is a method for identifying product qualities that are important to the consumer (Stone et al., 1991). Sensory analysis testing is divided into two major classifications: affective testing, which evaluates preference and/or acceptance of products, and analytical testing, which evaluates differences or similarities between products, or identifies and quantifies sensory characteristics. Affective testing utilizes untrained panel members who may be selected based on predetermined criteria, such as location, age, product usage, socio-economic status, size of family, etc. Analytical testing is further divided into discriminative and descriptive testing, both of which employ trained and/or experienced panelists with the ability to generate consistent and reproducible results (IFT Sensory Evaluation Division, 1981). For panelists performing affective testing, such as consumers, it is a necessary part of the strategy for them to not be overfamiliarized with the product being tested, or they cease being untrained. Unlike affective testing, however, the primary goal of analytical sensory evaluation is to use

human beings and their sensory abilities as complex laboratory instruments to measure characteristics of food (O'Mahony, 1995; Mancini, 1992; Rutledge and Hudson, 1980).

Project Design for Sensory Evaluation

Clearly set objectives are essential to every project utilizing sensory analysis, whether affective or analytical. The objectives for the project define the testing design. Testing methods, which are either selected or developed, must be suitable for the specific objective. For instance, if the objective is to investigate consumer preferences, consumers are the logical choice for panelists. Any training renders those consumers atypical of the consumer population, and should be avoided (O'Mahony, 1995; Lawless, 1994). Since affective tests evaluate preference and/or acceptance of products, a large number of panelists is needed, usually 50 - 100, and the panelists are selected to represent a larger target audience. Preference measurement may ask the panelist to choose one sample over another, to put sample products in order based on a characteristic, or express an opinion on a hedonic scale. Paired-preference, ranking and rating tests are methods appropriate for consumer panel testing (IFT Sensory Evaluation Division, 1981).

On the other hand, when the objective of the testing is to measure specific sensory characteristics of one product, perhaps over time, or to determine similarities of characteristics of several products, sensitivity and reliability of the panelists must be assured. Training the panel to develop sensitivity and reliability in recognition of the particular characteristics is needed, a task accomplished by repeated familiarization with standards, thus calibrating the human instruments (O'Mahony, 1995; Mancini, 1992; Rutledge and Hudson, 1980). Analytical sensory panelists are screened for interest in the work and for discriminative abilities before being trained to reproduce results and

function as calibrated instruments. Usually analytical panels consist of 10 or more panelists, with an absolute minimum of 5 panelists recommended to avoid excess dependence on responses of any one panelist. A wide variety of methods are available for analytical sensory analysis, falling into one of two general categories: discriminative testing, used for measuring whether samples are different, or descriptive testing, used for measuring qualitative and/or quantitative characteristics of the product(s). Further classification of discriminative tests is also possible: difference tests, such as pairedcomparison, duo-trio, triangle, ranking and rating, or sensitivity tests, such as threshold and dilution. Descriptive testing can measure attribute ratings, using category scaling or ratio scaling, or descriptive testing can be used to perform descriptive analyses, such as flavor profile analysis, texture profile analysis, or quantitative descriptive analysis (IFT Sensory Evaluation Division, 1981).

Panel Selection for Sensory Evaluation

Selection of panelists appropriate for both the testing objectives and methods is important. Descriptive panelists are trained to focus on individual attributes of a product and fully analyze the component flavor notes. Their training enables them to notice many attributes that generally go unnoticed by consumers, who look at products as whole systems rather than as specific combinations of sensory properties. Consumers give an integrated response, but a sensory panelist no longer responds in like manner. Therefore, it is important not to present descriptive panelists with conflicting test objectives, such as combining preference questions with descriptive analysis questions. Selection of appropriate objectives, test methods, and appropriate panelists for the chosen tests are all factors which contribute directly to the reliability of the sensory testing as it is performed

(Lawless and Claassen, 1993).

When working with well-trained panels, British research has suggested that panels greater than about 6 are not necessary, and that panels larger than 6 may not achieve additional accuracy (Cook and Homer, 1996). Testing of descriptive panels has shown a positive relationship between training procedures, length of training, and panel performance. The greater the length of training, thus increasing familiarity with both panel procedures and product characteristics, the more consistent and reproducible the responses of the panelists. Generally, this is due to the increased experience utilizing descriptive terms, as well as learning a greater depth of discriminative skills. Training did not distort panelists flavor perceptions, but did magnify or sharpened it (Wolters and Allchurch, 1994). Training of descriptive panelists introduces them to the component parts of flavor: tastes (bitter, sweet, sour, salt), chemical feeling factors (sensations to the nerve endings in the mouth and nose, such as astringency, pungency, heat, cooling, etc.), and aromatics (olfactory sensations from food volatiles in the mouth). It is essential for descriptive panelists to understand that their task is to break food down into those component parts and express the components in numbers representative of the relative intensities of the component parts, a task accomplished by utilizing standardized reference foods and solutions to anchor the scores (Rutledge, 1992; Rutledge and Hudson, 1990).

With modification of fatty acid ratios, flavor changes occur in peanuts due to the changes in the lipid fractions and the fatty acid distribution. Identification and comparison both of initial flavor attributes and of changes in those flavor attributes over time for peanuts with differing oleic: linoleic acid ratios provides information regarding

the differences encountered during aging among the different varieties.

CHAPTER III

A COMPARISON OF ROASTED PEANUT FLAVOR ATTRIBUTES OVER TIME FOR THREE PEANUT CULTIVARS WITH DIVERS OLEIC: LINOLEIC ACID RATIOS

Introduction

The primary purpose of this study was to compare intensities of roasted peanut flavor attributes for Florida Sunrunner, Florida SunOleic 95R, and Oklahoma Spanco Spanish peanuts within 48 hours of initial roasting and to repeatedly compare those flavor attributes over time by means of sensory evaluation of the roasted peanuts by a trained descriptive panel. The second purpose of this study was to compare consumer preferences for Sunrunner, SunOleic, and Spanco peanuts within 48 hours of initial roasting and to compare consumer preferences after aging the peanuts. And the final purpose of this study was to compare the hexanal levels for Sunrunner, SunOleic, and Spanco peanuts within 48 hours of initial roasting and to repeatedly compare those levels over time by means of gas chromatography. The following sections will cover the materials and methods utilized in preparation of the samples, sensory evaluation, data collection, experimental design and statistical analysis, and the results and discussion.

Materials and Methods

Sample Preparation

Raw peanuts destined to become samples for sensory evaluation were roasted as a single batch to eliminate variation in roasting times, temperature, or methods across a particular cultivar. Only one cultivar was roasted at a time to eliminate the possibility of mis-identification of the roasted peanuts. Each cultivar batch was roasted using the same procedure, which began with preheating the ovens to 350°F. Four cups of raw, shelled peanuts of a single cultivar were measured onto insulated baking sheets that measured 12 x 18 inches. Hand culling removed broken, discolored, misshapen, bug-eaten, and overly wrinkled peanuts. Peanuts with no paper skins and peanuts that were much larger or smaller than the "average" peanut of the lot were also removed before roasting began. The peanuts were spread evenly in a single layer on the pans and placed in the ovens.

Roasting was regulated utilizing two ovens, one gas and one electric, rotating the baking sheets between the ovens every 10 minutes. Additionally, the peanuts were thoroughly agitated each time they were moved between ovens to minimize hot spots on the peanuts. Further regulation of roasting required rotating the baking sheets between the top and bottom oven shelves at 5-minute intervals. These methods allowed each pan to spend an equal amount of time in the gas and electric ovens, as well as spending as equalizing time spent on the top and bottom shelves within each oven. When the color of the roasted peanuts closely approximated the color standard, the cooking was stopped by removing the pans from the ovens and transferring the roasted peanuts to cooling screens for quick cooling by forced air with continuous agitation. (The color standard utilized for

this study was a commercially available confection, which is covered with roasted peanuts.) To most closely approximate the color standard, the Sunrunner peanuts required a total of 50 minutes to roast, the SunOleic required 55 minutes, and the Spanco peanuts required 45 minutes. Upon reaching room temperature, agitation of the peanuts was discontinued, but the forced air cooling continued for an additional 30 minutes, with periodic agitation, to ensure all peanuts were completely cooled. The cooled roasted peanuts were placed in large plastic containers that were clearly tagged for easy identification. The containers were covered for storage and wrapped in black plastic and moved into a dark room for storage until the controlled environment packaging and placement could be completed, 10 days later.

Samples for the initial sensory evaluation testing were prepared approximately 48 hours after roasting. Individual one-ounce samples of each of the roasted peanut cultivars were measured into color-coded two-ounce plastic soufflé cups and capped. Individual one-ounce samples of the roasted peanut standard were measured into unmarked two-ounce plastic soufflé cups and capped. One of each of the three color-coded samples and one standard were prepared for each sensory panelist. After the initial samples were taken, the roasted peanuts were packaged for storage in the environmental control chamber, where they were stored until needed for testing purposes.

The packaging for storage in the environmental control chamber for each cultivar utilized the following methodology: First, two cups of roasted peanuts were placed in each color-coded polyethylene package. Atmospheric air was evacuated from each bag, down to one inch of mercury (1 in. Hg), and a mixture of 21% oxygen and 79% nitrogen was introduced into the bag. Each bag was sealed and all packages of each cultivar were

placed in a plastic storage container and the lid was snapped in place. The storage container was enclosed in black plastic and placed in an environmental control chamber at 30°C. Packaging in 2-cup random lots drawn from the total roast batch of each cultivar allowed for ease in obtaining sufficient sample material for each testing session without an opportunity to contaminate the remaining roasted sample materials.

In preparation for the continuing sensory evaluation of the aging roasted peanuts, one color-coded bag of each cultivar was randomly chosen and removed from the environmental control chamber and brought to room temperature in the experimental food laboratory. For each test session of the aging roasted peanuts, one-ounce samples of each of the three roasted peanut cultivars were measured into color-coded two-ounce plastic soufflé cups and capped, and one-ounce samples of the standard roasted peanuts were measured into unmarked two-ounce plastic soufflé cups and capped. One of each of the three color-coded two-ounce plastic soufflé cups and one of the standard two-ounce plastic soufflé cups were prepared for each sensory panelist.

All peanut samples for gas chromatographic hexanal analysis and for CIE L*a*b* color analysis were obtained directly from the packaged and marked sensory evaluation samples to ensure random sampling. Two of each of the color-coded two-ounce plastic soufflé cups and two of the standard two-ounce plastic soufflé cups were prepared for each gas chromatographic hexanal analysis. Two of each of the color-coded two-ounce plastic soufflé cups and two of the standard two-ounce plastic soufflé cups were also prepared for each CIE L*a*b* color analysis test session. (For CIE L*a*b* Color Analysis procedures and results, see Appendix A).

Freshly roasted peanuts of each cultivar were necessary for all consumer preference

testing of the fresh roasted peanuts. This required roasting within 48 hours of testing. Oven roasting of peanuts of each cultivar was performed utilizing the methods previously described. After cooling, the roasted peanuts were sealed in color-coded plastic food storage bags until they were portioned into individual sample cups. Portioning and marking of consumer preference samples was performed as previously described. One of each of the three color-coded two-ounce plastic soufflé cups was prepared for each consumer preference panelist. Preparation of samples of aging peanuts for consumer preference testing was performed in the same manner as for the sensory evaluation samples, with the following exception: two matching color-code labels were affixed to each of the two-ounce plastic soufflé cups to indicate the samples were aged. Consumer preference panelists did not receive samples of the standard peanuts for tasting.

Sensory Evaluation Participants and Training

The participants selected for the sensory evaluation panel were 22 healthy female volunteers from the Oklahoma State University community. Ages of the sensory evaluation panelists ranged from 21 to 45 years. Prior to the initial testing session, sensory panelists participated in several hours of training in sensory evaluation and descriptive panel methodology in weekly 45 – 60 minute sessions extending over a 6-week period. Panelists were first introduced to identification of basic tastes, aromatics, and chemical feeling factors that are inherently involved in flavor. Panelists learned to evaluate the intensity of sensory data and assign numerical values to those intensities by using reference standards. Sampling techniques routinely used by panels performing quantitative descriptive analysis, such as pinching the nostrils to block aromatics while determining the basic tastes present in a sample, were learned and practiced repeatedly

(ASTM, 1992). Reference standards were used regularly and became the foundation for the intensity ratings throughout the study. Panelists learned to employ group discussion to reach consensus ratings on a variety of sample materials. Through panelist training, recognition of an attribute in a specific sample became based on training rather than on the previous personal experience of each panelist. Physiological sensitivity was explained and demonstrated to panelists, and specific rules for training and testing were set forth and accepted by panelists, in accordance with <u>Sensory Testing Methods: Second Edition</u> (ASTM, 1996).

After training on both fresh and rancid sample materials, panelists utilized their training to identify basic tastes, aromatics, and chemical feeling factors found in samples of the standard unsalted dry roasted peanuts that would serve as reference throughout the testing sessions. Panelists were instructed to blanch the sample peanuts, place 4 to 5 peanut halves between their molars and to chew 4 to 5 times to release the flavors. They were first to identify the basic tastes present in the sample and then to release the aromatics as they had been taught. A list of peanut flavor attributes, adapted from <u>A</u> <u>Lexicon of Peanut Flavor Descriptors</u> by the USDA, was supplied to each panelist to assist as the group chose the flavor attributes and definitions for the flavors they identified in the peanuts. A ballot was prepared indicating the flavor attributes identified by the panel and a practice evaluation was done. Panelists assigned intensity values for the individual flavor attributes of the standard dry roasted peanuts through balloting, discussion, and consensus in final preparation for descriptive analysis of the sample products.

Participants in the consumer preference panels were 78 healthy volunteers from the

Oklahoma State University community. Consumer participants ranged from adolescent middle school students to middle-aged parents of OSU students. No training was given to participants in the consumer preference panels.

The sensory evaluation score sheets were scored by the panelists by marking their findings for each sensory attribute on a numerical rating scale (0 - 10) to signify increasing intensity. The panelist identified the response for each sample by the color code on the sample container. Accuracy in assignment of values to the panelists' marked responses was facilitated by use of an acetate template grid and a light table: each score sheet was affixed in a precise location on the template and the template markings were backlit, clearly "marking" the score sheet with the marks from the underlying grid. The value of each response was then marked on the score sheet and all scores were tabulated.

Data Collection: Sensory Evaluation Panel

Testing sessions for the sensory evaluation panel took place over a 6-month period. Sessions were held in classrooms with ambient temperature and lighting. Environmental sounds and odors were minimized. Distilled water was supplied to each panelist for mouth rinsing before and between samples. At each testing session, panelists first tasted the standard peanuts in order to refamiliarize themselves with the flavor attributes and decide whether the values set for the standard required adjustment. Discussion followed and group consensus was accepted.

For testing, sample presentation order was initially randomized and then specific presentation order was noted on each sensory evaluation data sheet. Panelists were instructed to taste samples in the order given on their sensory evaluation data score sheet. They were to blanch the samples before tasting, place 4 to 5 peanut halves between their

molars, and chew 4 - 5 times to release the flavors. Each panelist was to identify the basic tastes present in the sample, release the aromatics as they had been taught, set intensity values for each of the attributes, and record their results on the bipolar evaluation scales on the sensory evaluation data sheet. Discussion of individual impressions and scoring was discouraged during the sample evaluation sessions and scoring to facilitate and encourage individual objectivity. Figure 1 is a copy of the sensory evaluation score sheet.

Data Collection: Consumer Preference Panels

Consumer preference tests were conducted in classrooms with ambient temperature and lighting. Environmental sounds and odors were minimized. Distilled water was supplied to each panelist for mouth rinsing before and between samples. Sample presentation order was randomized and the presentation order was specified on each data score sheet. At the beginning of the testing session, the consumer preference panelists were told to taste the samples in the order set forth on the data score sheet. They were instructed to blanch the peanut samples and taste 4 - 5 peanut halves at one time, then to mark the data sheet to indicate the color of the sample which they "like the best" and the color of the sample which they "like the least". Figure 2 is a copy of one of the 6 randomized data score sheets used for the consumer preference panels rating fresh roasted peanuts. Figure 3 is a copy of one of the 6 randomized data score sheets used for the consumer preference panels rating aged peanuts.

ensory Panel I	Evalua	tion					Date / 1	ime		#	
irections: Place str											
rresponding numbe Il have 4 marks wh asic Tastes Sweet									ense. (Eacl	n scale	
	0	1	2	3	4	5	6	7	8	9	10
Sour							_		-		
Bitter	0	1	2	3	4	5	6	7	8	9	10
Salt	0	1	2	3	4	5	6	7	8	9	10
romatics Peanutty	0	1	2	3	4	5	6	7	8	9	10
,	0	1	2	3	4	5	6	7	8	9	10
Sweet ar	No Roast	6	2	3	-	5	9		Ū	3	Dark R
Cardboa	0 rd	1	2	3	4	5	6	7	8	9	10
Painty	0	1	2	3	4	5	6	7	8	9	10
Fishy	0	1	2	3	4	5	6	7	8	9	10
Woody	0	1	2	3	4	5	6	7	8	9	10
Earthy	0	1	2	3	4	5	6	7	8	9	10
Skunky	0	1	2	3	4	5	6	7	8	9	10
eeling Factors Astringe		1	2	3	4	5	6	7	8	9	10
Mouth fi	0 ilm/coa	1 ating	2	3	4	5	6	7	8	9	10
	0	1	2	3	4	5	6	7	8	9	10

Figure 1. A copy of the sensory evaluation data sheet used by the trained panel.

Consumer P	elerence densory	Evaluation Testing
Please taste each of the sa	mples in the following orde	r:
Green		
Blue		
Orange		
Mark the box with the color	of the sticker on the pean	its which you like the best:
🗆 Orange	□ Green	□ Blue
Mark the box with the color	of the sticker on the pean	its which you like the least:
Orange	□ Green	□ Blue
Thank you for helping us wi	th this second	

Figure 2. A sample of one of the 6 randomized data score sheets used by the consumer preference panels rating fresh roasted peanuts.

Consumer Pr	reference Sensory	Evaluation Testing
This taste test is like the firs Please taste each of the sar Green Blue Orange		
Mark the box with the color	of the sticker on the pean	uts which you like the best :
□ Orange	Green	🗆 Blue
Mark the box with the color	of the sticker on the pean	uts which you like the least:
□ Orange	Green	Blue
Thank you for helping us wi	th this research	

Figure 3. A sample of one of the 6 randomized data score sheets used by the consumer preference panels rating aged peanuts.

Data Collection: Hexanal

Peanut halves of a single cultivar were uniformly ground to a particle size of less than 1mm for packaging in 2-dram vials. Six (6) 50-mg samples were used for each cultivar at each testing session. Prior to sealing the 2-dram sample vials with Teflonlined silicon septa, an internal standard was added. For this internal standard, 4heptanone was dissolved in canola oil. The vials, with the mixture of ground peanuts and the internal standard, were then incubated at 90°C for 15 minutes.

A gas chromatograph equipped with a split injector (split ratio 1:50) and FID detector was used to analyze headspace gas (1 ml) from the incubated vials. Within the gas chromatograph, the injector temperature was 275°C and the detector temperature was 300°C. Separations were carried out using a DB 23 fused silica capillary column (30 m x 0.25 mm I.D., J & W Scientific, Rancho Cordova, CA). The temperature of the column oven was maintained at 50°C for 2 min, then the temperature was increased at a rate of 10°C / min for 4 min. The oven temperature was returned to 50°C prior to injection of a new sample. The entire process was followed for each of the peanut cultivars at each testing session.

Experimental Design and Statistical Analysis

The sensory evaluation study was a repeated measures experiment designed to generate data regarding the effects of storage time on selected sensory characteristics of three types of roasted peanuts: Sunrunner, SunOleic, and Spanco peanuts. The specific order of presentation of the sample peanuts was predetermined to ensure that each variety appeared before and after each of the other varieties an equal number of times during

each testing session whenever possible. The order of presentation was manipulated to ensure that no sensory panelist began testing with the same variety more than twice in succession. At each test session, the unsalted dry roasted standard peanut was used as a reference. The sensory characteristics selected for balloting were the basic tastes: sweet, sour, bitter, and salt; the aromatics: peanutty, sweet aromatic, cardboard, painty, fishy, woody; and the feeling factors: astringency and mouthfilm. The aromatics earthy and skunky were included at the specific request of the sensory panel immediately after the second week of storage, when the panelists identified the two new aromatics in the aging samples.

Analysis of Variance (ANOVA) was performed for each sensory attribute of the fresh roasted peanuts. Correlation analyses were performed among all sensory attributes and time for each variety. Sensory attributes which demonstrated strong trends over time were further analyzed using Analysis of Covariance (ANCOVA), comparing the vareiety means at specific times. For attributes that did not exhibit a trend over time, analysis of variance was performed for each attribute of the aging peanuts at 7 and 11 weeks in storage. Least Squares Means (LSMeans) were used to separate variety means when ANOVA tests were significant.

The consumer preference study used a randomized block design to model data from the preference of consumers faced with the three varieties of peanuts in a forced-choice test. Requiring panelists to mark both "like the best" and "like the least" provided ranked data for the three choices in each test. The consumer preference data for fresh roasted and aged peanuts were analyzed, using ANOVA, as separate studies in randomized complete block designs where the ages of the samples were the treatments.

Hexanal analysis generated data regarding increase in hexanal (in parts per million) occurring over time. Testing was performed for each of the three varieties at each test session, and a standard was tested in most sessions. Hexanal levels and sensory attributes for each variety were examined using correlation analyses. Hexanal levels over time were analyzed by ANCOVA methods to compare mean responses among the Sunrunner, SunOleic, Spanco peanut varieties and a standard.

Results and Discussion

Sensory Evaluation Data

The initial ballot of sensory attributes chosen by the sensory evaluation panel was comprised of 12 terms that each of the panelists learned to identify and quantify during the training and practice sessions. The level of training achieved by the panelists became evident during the third week of evaluation of the aging samples, when the panelists informed the researchers that two aromatics had developed in the samples. By referring to <u>A Lexicon of Peanut Flavor Descriptors</u> (Johnsen, 1986), the panelists identified the "new" aromatics by the descriptors "earthy" and "skunky", and the terms were added to the score sheet. Since the panel had not identified those attributes during any prior testing session in either the fresh roasted peanuts or in the standard peanuts, values for those attributes were set as 0 (zero) for those attributes on the earlier sessions on advice of the statistician. Addition of earthy and skunky as attributes for this study raised the number of attributes for evaluation by the sensory evaluation panel to a total of 14.

Analyses on Fresh Roast Peanuts

ANOVA was performed for each sensory attribute for the freshly roasted peanuts.

No significant differences were indicated among the varieties for the following taste attributes: sweet and salt; the aromatics: cardboard, painty, fishy, earthy, and skunky; and for the chemical feeling factor mouthfilm (p > 0.05). LSMeans indicated significant differences for each of the following taste attributes: sour and bitter; aromatics: peanutty, sweet aromatic, and woody; and for the chemical feeling factor astringency (see Table 1).

Varieties Attributes	SunOleic	Sunrunner	Spanco
SOUR	1.1861 •	1.0210 ^s	0.6075
	(0.1516)	(0.1460)	<i>(0.1360)</i>
BITTER	1.9093	1.1538*	0.6440 •
	(0.2386)	(0.2386)	<i>(0.2222)</i>
PEANUTTY	4.7493 *	5.4493 *	2.2711
	(0.4892)	<i>(0.4892)</i>	(0.4557)
SWT AROMATIC	1.9431 •. ^b	1.6209*	2.3414 ^b
	(0.2540)	(0.2540)	(0.2366)
WOODY	3.7848 [•]	3.7682*	2.3577
	(0.2467)	(0.2467)	(0.2298)
ASTRINGENCY	4.0409 [*]	3.7687*	2.7548
	(0.2717)	(0.2717)	(0.2531)

Table 1. Least Squares Means and Standard Errors for specific attributes for each variety at Week 0 (fresh roast).

*Within a single attribute, means having a common superscript are not significantly different at $\alpha = 0.05$. *Values in parentheses are Standard Errors of the LSMeans.

At fresh roast, SunOleic was more sour, bitter, peanutty, woody and astringent than Spanco, and SunOleic was more bitter than Sunrunner. Sunrunner was more sour, peanutty, woody and astringent than Spanco. Spanco had higher sweet aromatics than Sunrunner.

Analyses on Aging Peanuts

Preliminary correlation analyses between the mean values of sensory attributes (averaged across panelists) and time in storage showed no correlation within any of the varieties for a number of the attributes (tastes: sweet and salt; the aromatics: peanutty, sweet aromatic, and woody; and the chemical feeling factor astringency) (p > 0.05). However, significant positive linear trends were observed for the remaining aromatics: cardboard, painty, fishy, earthy, and skunky and for mouthfilm. Pearson correlation coefficients and their significance levels are shown in Table 3.

Varieties Attributes	SunOleic	Sunrunner	Spanco
CARDBOARD	0.8305	0.8165	0.8042
	($p = 0.0107$)	($p = 0.0134$)	($p = 0.0292$)
PAINTY	0.1379	0.9114	0.8276
	($p = 0.7447$)	(p = 0.0016)	($p = 0.0216$)
FISHY	0.4390	0.8916	0.8358
	(p = 0.2765)	($p = 0.0029$)	($p = 0.0192$)
EARTHY	0.6766	0.8574	0.9524
	(p = 0.0654)	($p = 0.0065$)	($p = 0.0009$)
SKUNKY	0.6202	0.7563	0.8715
	($p = 0.1009$)	($p = 0.0299$)	($p = 0.0106$)
MOUTHFILM	0.1872	0.8627	0.7040
	($p = 0.6570$)	($p = 0.0058$)	($p = 0.0775$)

Table 2. Pearson Correlation coefficients (and their significance levels) between specific attributes and time (weeks) in storage for each variety.

Because sensory attributes that did not exhibit a strong trend over time could still exhibit differences over time, ANOVA was performed to compare the varieties after 7 weeks in storage. No significant differences were indicated among the varieties for the following taste attributes: sweet, salt and bitter; the aromatics: peanutty, sweet aromatic, and woody; or for the chemical feeling factors astringency and mouthfilm (p > 0.05). However, a significant difference was found between SunOleic and Spanco (p = 0.0017) and between Sunrunner and Spanco (p = 0.0024) for sour, with Spanco being less sour than either of the other varieties, as shown in Table 2.

Varieties Attribute	SunOleic	Sunrunner	Spanco
SOUR	1.5125 ^a	1.4750 ^a	0.6750
	(0.1527)	(0.1527)	(0.1527)

Table 3. Least Squares Means and Standard Errors for sour attribute for each variety at Week 7.

*Means having a common superscript are not significantly different at $\alpha = 0.05$. **Values in parentheses are Standard Errors of the LSMeans.

ANOVA was performed to compare the varieties again after 11 weeks in storage. No significant differences were indicated among the varieties for any of the attributes at the alpha level chosen for this research (0.05).

For data exhibiting a trend over time ANCOVA techniques were used to model the trends and make comparisons among means. The remaining aromatics (cardboard, painty, fishy, earthy, and skunky) increased over time. For each of these attributes, the rate of increase was adequately modeled by systems of parallel lines (see Figure 4 and Appendix B). This implies that each attribute changed at the same rate for all varieties.

Since a system of parallel lines models each attribute, varieties can be compared at any time (0 – 16 weeks in storage) to determine if variety differences exist. No differences among the varieties were found for the aromatics painty, fishy, earthy, or skunky, or the chemical feeling factor mouthfilm (p > 0.05). However, LSMeans indicated a significant difference between SunOleic and Spanco (p = 0.0035) and between Sunrunner and Spanco (p = 0.0006) for the aromatic cardboard. Spanco was significantly lower than either of the other two varieties (see Figure 4).

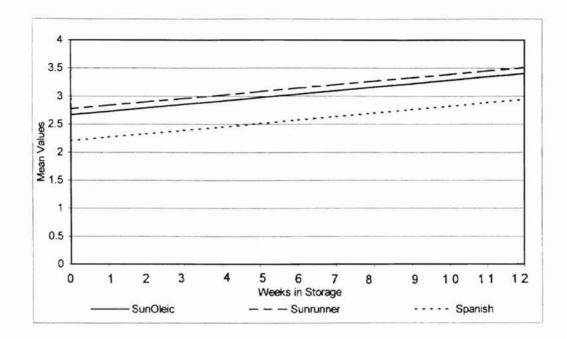


Figure 4. Cardboard attribute vs. weeks in storage.

Table 4. Least Squares Means and S	Standard Errors for	cardboard	attribute for each
variety at Week 7.			

Varieties Attribute	SunOleic	Sunrunner	Spanco
CARDBOARD	3.2202 °	3.3261°	2.7588
	<i>(0.0986)</i>	(0.0986)	<i>(0.0986)</i>

*Means having a common superscript are not significantly different at $\alpha = 0.05$. **Values in parentheses are Standard Errors of the LSMeans.

Sensory Discussion

The sensory evaluation panelists indicated significant differences in several of the flavor attributes of the fresh roasted peanuts. As the peanuts aged, variation in flavor attributes occurred within each variety of peanuts. Several of the attributes showed no significant differences over time among the three varieties (tastes: sweet and salt; aromatics: peanutty, sweet aromatic, and woody; chemical feeling factor: astringency). Furthermore, the attributes that did show significant linear trends increased at the same rate in each of the varieties (aromatics: cardboard, painty, fishy, earthy, and skunky; chemical feeling factor: mouthfilm). While the aging of the peanuts brought definite flavor changes, only one attribute, the aromatic cardboard, was significantly different between any of the varieties and it, too, increased at the same rate in each of the varieties.

These increases in off flavors probably reflect the increase in aldehydes and ketones within the seeds as described by Hamilton (1983) and Sanders (1983). The parallel rates of increase with aging do not reflect the difference in rates of oxidation between oleic and linoleic acid described by Hamilton (1983), nor do they reflect the exponential escalation expected during the propagation phase of the autocatalytic processes as described by Hudson (1983), Rossell (1983), and Moore et al. (1989).

Oxidation produces a wide range of hydroperoxides that, in turn, produce aldehydes and ketones. A range of off flavors was anticipated in the research because the human tongue readily identifies very low levels of these organics. St. Angelo (1996) and Fritsch and Gale (1977) indicated that off flavors and odors are contributed by aldehydes and ketones. Identification of the attributes skunky and earthy by the panelists early in the study clearly illustrated the ability of the panel to isolate and identify flavors previously not present in the samples. These flavor attributes were most likely a direct result of oxidation producing "new" organics in the aging peanuts.

The sizeable differences in peanut kernel circumference would also be expected to significantly affect rates of aging among the varieties, as described by Pattee et al. (1982), however the results of this research did not reflect significantly different rates for

the smaller Spanco peanuts. Finally, these results indicating parallel rates of increase in flavor attributes with aging do not agree with Braddock, Sims and O'Keffe (1995), who reported that high oleic peanuts exhibit fewer off flavors and maintain a more pleasing flavor during storage.

Consumer Preference Data

The consumer preference data sheets were scored and the samples were ranked using choice "liked the best" as the first choice, "liked the least" as the third choice, and the remaining sample as the second choice. The ranks were converted to scores in the manner of Fisher and Yates (1974), and the scores were subjected to ANOVA. Consumer preference data indicated no significant difference (p > 0.05) among the three fresh roasted varieties. There was also no significant difference between the aged samples in consumer preference testing (p > 0.05). (See Appendix C.)

Consumer Preference Discussion

The results of consumer preference testing demonstrated that consumers assess products much more holistically than trained sensory panelists as Lawless, et at. (1993) stated. Differences in individual taste perceptions, and the fact that consumer preference panelists were not directed to choose based on any specific attributes of the samples worked together to permit individuals to record global and integrated perceptions and responses, without considering the variety of separate flavor attributes in each sample. Since preferences result from general predisposition for certain foods, flavors, or attributes of foods, they are highly individual decisions and may indicate variations in the intensity of individual olfactory and taste perceptions (Meiselman, 1996).

The consumer panelists were given no standards of reference, and with no standards of reference, the panelists based their decisions on their first impression of each sample. Therefore, the panelists judged the samples on their own individual criteria, with full assurance that the criteria they chose to use would provide an acceptable choice. And, although all of the peanut varieties developed off flavors with aging, there was apparently no attribute or attributes that were so significantly offensive as to cause the majority of the consumers to prefer the other varieties. As stated by O'Mahony (1995), consumer data must be interpreted with caution because the panelists were not trained test takers and had no internal calibrations with which to judge. Although it is possible with some products to have consumer preference results indicating population groups whose preferences are quite different from the general population (Stone, et al., 1991), the consumer preference data for this study was designed to allow researchers to draw such conclusions. While the results of the consumer preference testing are an indicator that the three varieties are not significantly different in acceptability, they do not necessarily predict consumer consumption behavior over time.

Hexanal analysis

Hexanal was not correlated with the taste salt, the aromatics peanutty, sweet aromatic, and woody, or the chemical feeling factor astringency in any of the three varieties (p > 0.05), but it was correlated with sweet in SunOleic (r = 0.8853, p = 0.0035). Other correlations were identified between hexanal and the tastes sour and bitter, the aromatics cardboard, painty, fishy, and earthy, and the chemical feeling factor mouthfilm for Sunrunner and Spanco, but not for SunOleic. Table 5 shows Pearson Correlation coefficients and their significance levels.

Varieties Attributes	SunOleic	Sunrunner	Spanco
SOUR	-0.3479	0.8300	0.6458
	($p = 0.3984$)	($p = 0.0108$)	($p = 0.1172$)
BITTER	0.5044	0.7271	0.7652
	($p = 0.2025$)	($p = 0.0401$)	(p = 0.0450)
CARDBOARD	-0.2401	0.7918	0.8170
	($p = 0.5668$)	(p = 0.0192)	($p = 0.0249$)
PAINTY	-0.4646	0.9093	0.8434
	($p = 0.2461$)	(p = 0.0017)	($p = 0.0171$)
FISHY	-0.1058	0.8197	0.8312
	($p = 0.8030$)	($p = 0.0127$)	($p = 0.0205$)
EARTHY	0.1461	0.8631	0.7900
	($p = 0.7300$)	($p = 0.0058$)	($p = 0.0345$)
SKUNKY	0.3187	0.7445	0.6489
	($p = 0.9542$)	($p = 0.0341$)	($p = 0.1148$)
MOUTHFILM	0.4629	0.9012	0.7735
	($p = 0.2481$)	($p = 0.0022$)	($p = 0.0413$)

Table 5. Pearson Correlation coefficients (and their significance levels) between specific attributes and hexanal for each variety.

Further analysis of the hexanal data used ANCOVA techniques to compare trends between varieties since significant linear trends were observed (p < 0.001). This analysis determined that hexanal differences among the varieties at fresh roast were not significant (p = 0.1014). However, the production of hexanal as the peanuts aged in storage proceeded at rates that were significantly different among the varieties ($p \le 0.0001$) (see Figure 5). LSMeans indicated no significant difference between the SunOleic and the Standard peanuts at 6 weeks of storage (p > 0.05), but there were significant differences between SunOleic and Sunrunner, SunOleic and Spanco, and Sunrunner and Spanco (p < 0.05). Hexanal levels in Spanco were the highest, and the levels in Sunrunner were higher than in SunOleic, as seen in Table 6. (See Appendix D for additional information.) No formal slope comparisons were done on hexanal data.

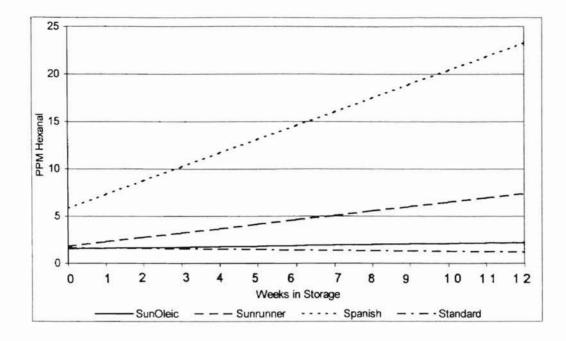


Figure 5. Hexanal vs. Weeks in Storage

Table 6. Least Squares Means and Standard Errors for hexanal at Week 6.

Varieties	SunOleic	Sunrunner	Spanco	Standard
HEXANAL	2.0469 *	4.7042	14.3177	1.4203 •
	(0.7136)	(0.7136)	(0.7617)	(0.8305)

*Means having a common superscript are not significantly different at $\alpha = 0.05$.

**Values in parentheses are Standard Errors of the LSMeans.

Hexanal Discussion

As anticipated, the SunOleic production of hexanal, an organic byproduct of oxidation described by St. Angelo (1996), Hamilton (1983), and Fritsch and Gale (1977), proceeded more slowly than in either Sunrunner or Spanco. Spanco produced hexanal at a much higher rate than either SunOleic or Sunrunner, probably due to higher levels of linoleic acid since the rate at which hexanal is produced is dependent on formation of hydroperoxides from linoleic acid (Roozen, 1994b). Fritsch and Gale (1977) have shown hexanal production and hexanal levels reaching 5 – 10 PPM predict rancid odors and off-flavors in pecans and other nuts, and the results of this testing appear to agree. However, the sensory panelists detected and described off flavors in all three varieties, including SunOleic, after week 2 of storage, when the aromatics earthy and skunky emerged in all three varieties. These flavor changes were never reflected by significant hexanal increases in the SunOleic variety. Hexanal levels may be a predictor of some off flavors, but this researcher would not state that hexanal is necessarily indicative of the off flavors that developed in each variety. Other organic compounds created during oxidation may also cause the off flavors detected by the sensory panelists.

CHAPTER IV

HYPOTHESES TESTING AND RECOMMENDATIONS

The primary purpose of this study was to compare intensities of roasted peanut flavor attributes for Sunrunner, SunOleic, and Spanco peanuts within 48 hours of initial roasting and to repeatedly compare those flavor attributes over time by means of sensory evaluation of the roasted peanuts by a trained descriptive panel. The secondary purpose of this study was to compare consumer preferences for Sunrunner, SunOleic, and Spanco peanuts within 48 hours of initial roasting and to compare consumer preferences after aging the peanuts. And the final purpose of this study was to compare the hexanal levels for Sunrunner, SunOleic, and Spanco peanuts within 48 hours of initial roasting and to repeatedly compare those levels over time by means of gas chromatography.

Hypothesis Testing

Established statistical procedures were used in all portions of the analyses to test the hypotheses for this study. The alpha level was set at 0.05 for determining differences between means.

The first hypothesis (H_1) stated, "There will be no significant difference among the varieties of freshly roasted peanuts in the intensity of any of the following sensory characteristics: tastes, including sweet, sour, bitter, and salt; aromatics, including peanutty, sweet aromatics, cardboard, painty, fishy, woody, earthy and skunky; and

chemical feeling factors, including astringency and mouthfilm." No significant differences were shown among the varieties for the following taste attributes: sweet or salt; the aromatics: cardboard, painty, fishy, earthy, or skunky; or for the chemical feeling factor mouthfilm (p > 0.05). Therefore, for these attributes, the researcher fails to reject H₁. However, as demonstrated in Table 1, significant differences were indicated in the freshly roasted peanuts for each of the remaining taste attributes: sour and bitter; the aromatics: peanutty, sweet aromatic, and woody; and for the chemical feeling factor astringency. Based on these results, the researcher rejected H₁.

The second hypothesis (H2) stated, "There will be no significant difference as a result of aging over time among the varieties of peanuts in the intensity of any of the following sensory characteristics: tastes, including sweet, sour, bitter, and salt; aromatics, including peanutty, sweet aromatics, cardboard, painty, fishy, woody, earthy and skunky; and chemical feeling factors, including astringency and mouthfilm." No significant differences were indicated between any of the varieties for the following characteristics: tastes, including sweet, sour, bitter, and salt; aromatics, including peanutty, sweet aromatics, cardboard, painty, fishy, woody, earthy and skunky; and chemical feeling factors, including astringency and mouthfilm (p > 0.05). As shown in Table 2, at 7-weeks in storage, there was a significant difference between SunOleic and Spanco (p = 0.0017) and between Sunrunner and Spanco (p = 0.0024) for the taste attribute sour. There were also significant differences between SunOleic and Spanco (p = 0.0035) and between Sunrunner and Spanco (p = 0.0006) for the aromatic cardboard (Figure 4). Based on these results, the researcher fails to reject H₂ for sweet, bitter, salt, peanutty, sweet aromatics, painty, fishy, woody, earthy, skunky, astringency and mouthfilm.

However, the researcher rejects H₂ for the taste sour and the aromatic cardboard.

The third hypothesis (H_3) stated, "There will be no significant difference among the varieties in the rate of increase over time in intensity of any of the following sensory characteristics: tastes, including sweet, sour, bitter, and salt; aromatics, including peanutty, sweet aromatics, cardboard, painty, fishy, woody, earthy and skunky; and chemical feeling factors, including astringency and mouthfilm." For several attributes (the tastes sweet and salt; the aromatics peanutty, sweet aromatic, and woody; and the chemical feeling factor astringency) there was no significant trend over time (p > 0.05). Although a clear trend was present, exhibited as parallel slopes for the aromatics cardboard, painty, fishy, earthy, skunky, and the chemical feeling factor mouthfilm, there was no significant difference in rate of increase (p < 0.05) (Figure 4 and Appendix B). Therefore, the researcher failed to reject H₃.

The fourth hypothesis (H_4) stated, "There will be no clear preference shown between the three varieties of freshly roasted peanuts in consumer preference testing." Consumer preference data indicated no significant difference (p > 0.05) between the three fresh roasted varieties, so the researcher failed to reject H_4 .

The fifth hypothesis (H_5) stated, "There will be no clear preference shown between the three varieties of aged peanuts in consumer preference testing." Consumer preference data indicated no significant difference (p > 0.05) between the three varieties after aging, so the researcher failed to reject H_5 .

The sixth hypothesis (H_6) stated, "There will be no significant difference in hexanal levels among the three varieties of freshly roasted peanuts." The results determined that

the three varieties had equal amounts of hexanal initially (p = 0.1014), so the researcher failed to reject the hypothesis (H_c).

The seventh hypothesis (H_7) stated, "There will be no significant difference in hexanal levels among the three varieties of aged peanuts." There was no significant difference between the SunOleic and the Standard peanuts found at 6 weeks of storage (p > 0.05). However, as seen in Table 6, there was a significant difference between SunOleic and Sunrunner, SunOleic and Spanco, or between Sunrunner and Spanco at 6 weeks of storage, so the researcher rejected hypothesis H_7 .

The eighth hypothesis (H_8) stated, "There will be no significant difference in the rates of increase in hexanal levels among the varieties of aged peanuts." Since, as shown in Figure 5, the production of hexanal as the peanuts aged in storage proceeded at rates that were significantly different among the varieties ($p \le 0.0001$), the researcher rejects H_8 .

Recommendations

This study demonstrated that a trained sensory panel has the ability to detect differences in aging peanut samples, even to the point of identifying new flavors that are formed during the aging process. It also showed that there are differences in the rates of aging and hexanal production for the three varieties of peanuts that were under examination in this study. Following are recommendations for additional research:

 Test samples every 24 – 36 hours for the first 3 weeks, or until "rancid" attributes are perceived by the majority of the sensory panelists, in an effort to determine the point where autoxidation begins to increase dramatically in the samples. Blanch and chop the peanuts to uniform size prior to presenting as samples.

- Blanch and chop the peanuts to a uniform chopped size prior to packaging for storage. Test samples every 24 – 36 hours until "rancid" attributes are perceived by the majority of the sensory panelists, in an effort to determine the point when autoxidation begins to cascade.
- Study the textural changes of the varieties over time, as texture was found to change as well as flavor.
- Utilize sensory evaluation score sheets that require the panelists to directly assign numerical values to results.
- Set up consumer testing on a weekly basis as the peanuts age. Ask the consumers to note what characteristics or flavors are most influential in their decisions.
- Study the training of sensory panelists to determine optimal length of training, effective methods of refreshing training from session to session, and the effects of cultural biases on scoring various flavor attributes.
- Investigate the relationship between cultural background and perceived tastes among sensory panelists. See how cultural background affects perceived intensities of basic flavors and aromatics.
- Investigate quantification of octane, pentane, pentanal or nonanal production as predictors of rancidity in aging peanuts.
- Identify and quantify the specific flavor attributes associated with "rancidity" in peanuts.

SELECTED BIBLIOGRAPHY

- ASTM, 1992. Manual on descriptive analysis testing for sensory evaluation. R.C. Hootman (Ed.), p. 1-50. American Society for Testing and Materials, Pennsylvania.
- ASTM, 1996. Sensory testing methods, second edition, E. Chambers IV. and M.B. Wolf (Ed.), p. 1-25. American Society for Testing and Materials, Pennsylvania.
- Braddock, J.C., Sims, C.A. and O'Keffe, S.F., 1995. Flavor and oxidative stability of roasted high oleic acid peanuts. J Food Sci. 60(3):489-493.
- Caret, R.L., Denniston, K.J. and Topping, J.J., 1993. Principles and applications of organic and biological chemistry, Wm. C. Brown Communications, Inc., Iowa.
- Civille, G.V. and Lyon, B.G., 1996. Aroma and flavor lexicon for sensory evaluation; terms, definitions, references and examples, p. 58-151. American Society for Testing and Materials, Pennsylvania.
- Cook, G.L. and Homer, D.B., 1996. The effect of number of sensory assessments on the accuracy of treatment comparisons in meat quality trials. Food Qual Pref. 7(2):95-99.
- Divino, G.L., Koehler, P.E. and Akoh, C.C., 1996. Enzymatic and autoxidation of defatted peanuts. J Food Sci. 61(1):112-115.
- Erickson, M., 1993. Contributions of phospholipids to headspace volatiles during storage of pecans. J Food Qual. 16:13-24.
- Fisher, R.A. and Yates, F., 1974. Statistical tables for biological agricultural and medical research, 6th edition, p. 112. Oliver and Boyd Ltd., London.
- Forbus, W.R. Jr., Senter, S.D., Lyon, B.G. and Dupuy, H.P., 1980. Correlation of objective and subjective measurements of pecan kernel quality. J Food Sci. 45(4):1376-1379.
- Freeland-Graves, J.H. and Peckham, G.C., 1987. Foundations of food preparation, 5th edition, MacMillan Publishing Company, New York.

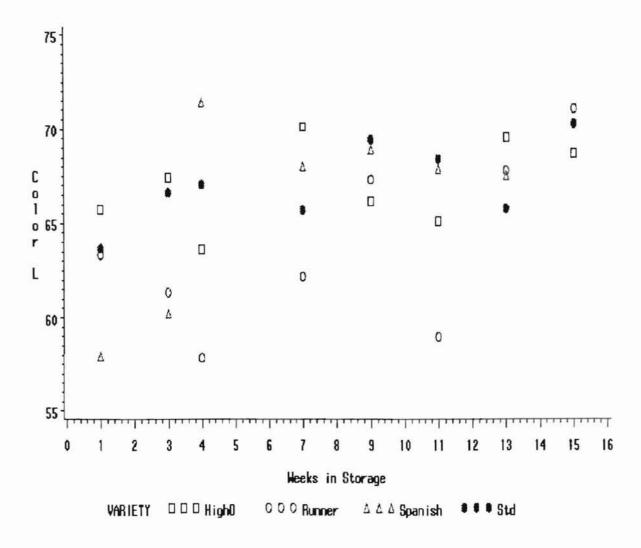
- Fritsch, C.W. and Gale, G.A., 1977. Hexanal as a measure of rancidity in low fat foods. J Am Chem Soc. 54(6):225-228.
- Fritsch, C.W., Hofland, C.N. and Vickers, Z.M., 1997. Shelf life of sunflower kernels. J Food Sci. 62(2):425-428.
- Hamilton, R.J., 1983. The chemistry of rancidity in foods. Ch. 1 in Rancidity in foods, J.C. Allen and R. J. Hamilton (Ed.), p.1-19. Applied Science Publishers, New York.
- Hofland, C., Vickers, Z. and Fritsch, C.W., 1995. Sunflower kernel shelf life study. Effects of temperature, packaging and roasting oil on storage flavor. Presented at Ann. Mtg., Inst. of Food Technologists, Atlanta, GA, June 25-29.
- Hudson, B.J.F., 1983. Evaluation of oxidative rancidity techniques. Ch. 3 in Rancidity in foods, J.C. Allen and R. J. Hamilton (Ed.), p.47-57. Applied Science Publishers, New York.
- IFT Sensory Evaluation Division, 1981. Sensory evaluation guide for testing food and beverage products. Food Tech. 35(11):50-59.
- Johnsen, P.B., 1986. A lexicon of peanut flavor descriptors. U.S. Department of Agriculture, Agricultural Research Service ARS-52:1-8.
- Lawler, F.K., 1961. Ingenuity creates new process. Food Eng. 33(2):38-40.
- Lawless, H.T., 1994. Getting results you can trust from sensory evaluation. Cereal Foods World. 39(11):809-814.
- Lawless, H.T. and Claassen, M.R., 1993. Application of the central dogma in sensory evaluation. Food Tech. 47(6):139-146.
- Mancini, L., 1992. Taste trials: making sensory panels work. Food Eng. 64(9):121-126.
- Mate, J.I., Saltveit, M.E. and Krochta, J.M., 1996. Peanut and walnut rancidity: effects of oxygen concentration and relative humidity. J Food Sci. 61(2):465-472.
- Meyer, L.H. (Ed.), 1982. Food chemistry, Avi Publishing Company, Westport, CT.
- Moore, K.M. and Knauft, D.A., 1989. The inheritance of high oleic acid in peanut, J Heredity. 80(3):252-253.
- O'Mahony, M., 1995. Sensory measurement in food science: fitting methods to goals. Food Tech. 49(4):72-82.

- Oupadissakoon, C. and Young, C.T., 1984. Modeling of roasted peanut flavor for some Virginia-type peanuts from amino acid and sugar contents. J Food Sci. 49(1):52-58.
- Pattee, H.E. and Knauft, D.A., 1995. Comparison of selected high oleic acid breeding lines, Florunner and NC7 cultivars for roasted peanut, sweet and other sensory attribute intensities. Peanut Sci. (1995)22:26-29.
- Pattee, H.E., Giesbrecht, F.G. and Young, C.T., 1991. Comparison of peanut butter color determination by CIELAB L*a*b* and Hunter color-difference methods and the relationship of roasted peanut color to roasted peanut flavor response. J Agric Food Chem. 39(3):519-523.
- Pattee, H.E., Pearson, J.L., Young, C.T. and Giesbrecht, F.G., 1982. Changes in roasted peanut flavor and other quality factors with seed size and storage time. J Food Sci. 47(2):455-460.
- Roozen, J.P., Frankel, E.N. and Kinsella, J.E., 1994a. Enzymic and autoxidation of lipids in low fat foods: model of linoleic acid in emulsified triolein and vegetable oils. Food Chem. 50(1):39-43.
- Roozen, J.P., Frankel, E.N. and Kinsella, J.E., 1994b. Enzymic and autoxidation of lipids in low fat foods: model of linoleic acid in emulsified hexadecane. Food Chem. 50(1):39-43.
- Rossell, J.B., 1983. Measurement of rancidity. Ch. 2 in *Rancidity in foods*, J.C. Allen and R. J. Hamilton (Ed.), p. 21-45. Applied Science Publishers, New York.
- Rutledge, K.P., 1992. Accelerated training of sensory descriptive flavor analysis panelists. Food Tech. 46(11):114-118.
- Rutledge, K.P. and Hudson, J.M., 1990. Sensory evaluation: method for establishing and training a descriptive flavor analysis panel. Food Tech. 44(12):78-84.
- St. Angelo, A.J., 1996. Lipid oxidation in foods, Food Sci Nutr. 36(3):, 175-214.
- St. Angelo, A.J. and Ory, R.L., 1973. Investigations of causes and prevention of fatty acid peroxidation in peanut butter. J Am Peanut Res Educ Assoc. 5:128-133.
- Sanders, T.A.B., 1983. Nutritional significance of rancidity. Ch. 4 in Rancidity in foods, J.C. Allen and R. J. Hamilton (Ed.), p.59-66. Applied Science Publishers, New York.
- Sanders, T.H., Blankenship, P.D., Vercellotti, J.R. and Crippen, K.L., 1990. Interaction of curing temperature and inherent maturity distributions on descriptive flavor of commercial grade sizes of Florunner peanuts. Peanut Sci. 17(2):85-89.

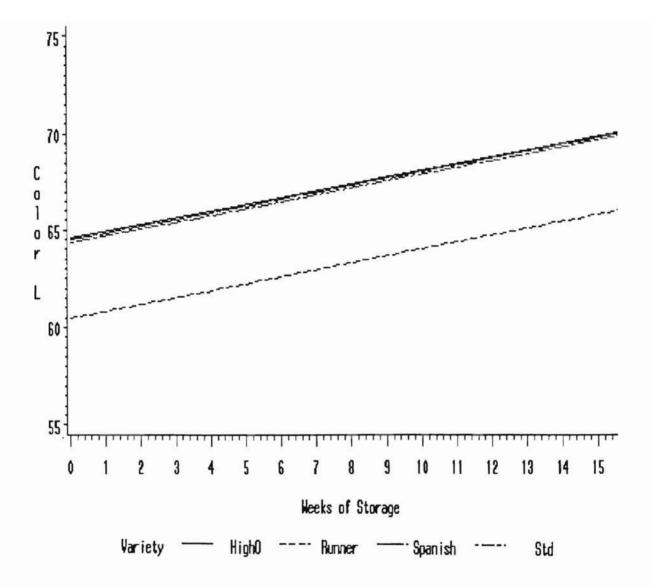
- Sanders, T.H., Vercellotti, J.R., Crippen, K.L. and Civille, G.V., 1989. Effect of maturity on roast color and descriptive flavor of peanuts. J Food Sci. 54(2):475-477.
- Semwal, A.D., Narashimha Murthy, M.C., Sharma, G.K. and Arya, S.S., 1996. Studies on storage stability of commercially marketed refined sunflower oil in plastic film packs. J Food Sci Tech. 33(4):352-354.
- Steel, R.G.D. and Torrie, J.H., 1980. Principles and procedures of statistics: a biometric approach. McGraw Hill, New York.
- Stone, H., McDermott, B.J. and Sidel, J.L., 1991. The importance of sensory analysis for the evaluation of quality. Food Tech. 45(6):88-95.
- Warner, K.J.H., Dimick, P.S., Ziegler, G.R., Mumma, R.O. and Hollender, R., 1996. 'Flavor-fade' and off-flavors in ground roasted peanuts as related to selected pyrazines and aldehydes. J Food Sci. 61(2):469-472.

APPENDIX A

CIE L*a*b* COLOR ANALYSIS


CIE L*a*b* color analyses were performed to collect data regarding changes in color occurring over time. Testing was performed for each of the three varieties and a fresh standard at each test session. The data for each of the color values (L*, a*, and b*) were compared utilizing ANOVA and ANCOVA, and LSMeans were used to separate variety means when ANOVA tests were significant.

For all varieties, the a* and b* readings of the CIE L*a*b* color analysis do not exhibit a trend over time (p = 0.05), therefore ANOVA methods were used to test for differences for all varieties. ANOVA indicated no significant difference between SunOleic, Spanco, and a standard for the a* readings (p = 0.0135). For the b* readings, ANOVA indicated no significant difference between SunOleic, Sunrunner, and a standard (p = 0.0107).


The L* readings of the CIE L*a*b* color analysis exhibited a significant linear trend over time (p = 0.009). Therefore further analyses of the L* readings were done using ANCOVA techniques. The initial L* values of the three varieties were not equal (p > 0.0176) and as the peanuts aged in storage the L* values changed at the same rate in each of the varieties (p > 0.0014). The LSMeans indicated a significant difference between SunOleic and Sunrunner (p = 0.0068), between Sunrunner and Spanco (p = 0.0096), and between Sunrunner and a standard (p = 0.0152).

With regard to the a* readings, only the Sunrunner variety showed any significant difference from the other varieties, but only the Spanco variety showed significant differences from the others with regard to the b* readings. Although the initial L* readings were not equal, the values changed at the same rate in each of the varieties

during aging. The L* readings of Sunrunner variety was significantly different from each of the other varieties at all times.

L* mean values.

Slope of L* for each variety.

L*a*b* CORRELATION DATA

SUNOLEIC

X	Correlation Matrix						
	WEEK	HEXMN	LMN	AMN	BMN		
WEEK	1.0000	0.1634	0.3890	0.3205	-0.1392		
HEXMN	0.1634	1.0000	-0.3728	0.2500	-0.2957		
LNN	0.3890	-0.3728	1.0000	-0.2976	-0.1137		
AMN	0.3205	0.2500	-0.2976	1.0000	0.6917		
BWN	-0.1392	-0.2957	-0.1137	0.6917	1.0000		

P-Values of the Correlations									
	WEEK	HEXMN	LWN	AMN	BMN				
WEEK	0.0	0,6991	0.3409	0.4390	0.7424				
HEXMN	0.6991	0.0	0.3630	0.5504	0.4771				
LMN	0.3409	0.3630	0.0	0.4741	0.7886				
ANN	0.4390	0.5504	0.4741	0.0	0.0573				
BMN	0.7424	0.4771	0.7886	0.0573	0.0				

SUNRUNNER

X		Correlat	ion Matrix		
	WEEK	HEXMN	LMN	AMN	BMN
WEEK	1.0000	0.9808	0.7016	-0.2339	0.0455
HEXWN	0.9808	1.0000	0.7751	-0.1331	0.1592
LMN	0.7016	0.7751	1.0000	-0.0135	0.2755
AMN	-0.2339	-0.1331	-0.0135	1.0000	0.9019
BMN	0.0455	0.1592	0.2755	0.9019	1.0000

N.		P-Values of t	he Correlations		
	WEEK	HEXMN	LWN	AMN	BMN
WEEK	0.0	0.0001	0.0524	0.5772	0.9147
HEXWN	0.0001	0.0	0.0239	0.7534	0.7066
LMN	0.0524	0.0239	0.0	0.9746	0.5090
AMN	0.5772	0.7534	0.9746	0.0	0.0022
BMN	0.9147	0.7066	0.5090	0.0022	0.0

SPANCO

		Correlat	ion Matrix		
	WEEK	HEXMN	LMN	AMN	BWN
WEEK	1.0000	0.9263	0.2193	-0.1275	-0.5120
HEXMN	0.9263	1.0000	-0.0907	-0.3048	-0.7154
LMN	0.2193	-0.0907	1.0000	-0.0359	0.3429
AMN	-0.1275	-0.3048	-0.0359	1.0000	0.7266
BNN	-0.5120	-0.7154	0.3429	0.7266	1.0000
		P.Values of t	he Correlations		
	WEEK	HEXMN	LMN	AMN	BMN
WEEK	0.0	0.0027	0.6366	0.7852	0.2401
HEXMN	0.0027	0.0	0.8466	0.5062	0.0707
LWN	0.6366	0.8466	0.0	0.9392	0.4515
AMN	0.7852	0.5062	0.9392	0.0	0.0643
BWN	0,2401	0.0707	0.4515	0.0643	0.0

APPENDIX B

-

MEANS DATA

OBS	DATE	WEEK	STOR	VARIETY	SWEETMN	SOURMN	BITTERM	N SALTMN
1		2		HighO	0.72353	2.41250	1.38824	4 0.34706
2		6	ĺ.	HighO	0.58571	1.10000		
3		2		Runner	0.56250			
4		6		Runner	0.44000	1.16000	 No.50.50080786308 	
5		3		Spanish	1.45333			
6	24-Mar	0	- 1	HighO	0.76471	1.18235		
7	24-Mar	0	- 1	Runner	0.85556	1.02778		
8	24-Mar	0	- 1	Spanish	0.88947	0.66316		
9	24-Mar		- 1	Std				0.4/508
10	31-Mar	1	0	High0	0.63158	1.01579	1.33158	. 0.45263
11	31-Mar	ì	o	Runner	0.56842	0.91579		
12	31-Mar	i	0	Spanish	1.17059	0.74706		
13	31-Mar		õ	Std				
14	7-Apr		1	High0	(**)		•	·
1.7	/ Apr	2.00		night	6 8)	•	•	
OBS	PNUTMN	SWAR	OMMN	CRDBRDMN	PAINTMN	FISHMN	WOODMN	EARTHMN
1	3.52353	2 2	8235	2.76471	2.04706	1.27647	3.19412	0.00000
2	3.15333		0667	2.82000	1.92667	1.45714		1.22667
3	4.46250		3125	2.93125	2.05625	1.06875	3.20625	0.00000
4	3.90667		7143	2.48667	1.38667	0.71429	2.60667	0.88000
5	2.78000		2000	2.06000	1.82000	1.26000	2.26000	0.00000
6	4.76667		5000	2.20000	1.42778	0.88889	3.78889	0.00000
7	5.46667		2778	1.94118	1.93889	1.17778	3.77222	0.00000
8	2.35263		6842	2.18421	1.09474	0.86842	2.20000	0.00000
9			0042					
10	3.21579	1.6	2632	2.76316	2.15789	1.29474	2.80000	0.00000
11	3.39474		6316	2.96316	1.84211	1.06316		0.00000
12	3.05294		1765	1.93529	1.32353	0.72353	2.34118	0.00000
13			1705					
14	•	•		8		1	·	
14		•		•		·		
OBS	SKUNKMN	ASTR	INMN	MOUTHMN	HEXMN	LMN	AMN	BMN
1	0.00000	3.6	1176	4.28824				
2	0.92000	3.2	8000	4.04000			×	
3	0.00000		8000	4.40000			•	
4	0.48000		3333	3.73333				
5	0.00000		4667	3.81333	•			
6	0.00000		0000	4.68333	3.0695	65.9017	5.51167	32.9133
7	0.00000		2778	4.22778	2.2836	61.2000	8.57500	35.6100
8	0.00000		6842	3.62105	1.6668	65.7550	5.55500	32.7667
9					6.00 B (B (B (B (B))) 			•
10	0.00000		1579	3.95556	1.4998	65.1283	5.29167	33.5567
11	0.00000		2632	3.76111	2.1589	55.4600	7.09667	34.3633
12	0.00000		5882	3.70588	2.9816	69.2067		32.2067
13					2.1994			
		•		1.00				
14				2 .	2.0411	65.7367	6.62667	35.6233

OBS	DATE	WEEK	STOR	VARIETY	SWEETMN	SOURMN	BITTERMM	SALTMN
15	7-Apr		1	Runner	4			
16	7-Apr	24	1	Spanish				
17	7-Apr	7	1	Std		2	/4	
18	21-Apr	4	3	High0	0.55333	1.20667	1.16000	0.57333
19	21-Apr	4	3	Runner	0.54667	1.18667	1.38667	
20	21-Apr	4	з	Spanish	1.36667	1.10667	0.83333	
21	21 - Apr		з	Std				2 2
22	28-Apr	5	4	High0	0.51250	1.51250	1.70000	0.35000
23	28-Apr	5	4	Runner	0.71250	1.47500	1.62500	0.32500
24	28-Apr	5	4	Spanish	1.19333	0.76000	0.72000	0.30000
25	28-Apr		4	Std		•		a 1
26	19-May	8	7	High0	0.53750	1.51250	1.70000	0.36250
27	19-May	8	7	Runner	0.71250	1.47500	1.62500	0.32500
28	19-May	7	7	Spanish	0.85000	0.67500	1.17143	0.32857
OBS	PNUTMN	SWAR	OMMN	CRDBRDMN	PAINTMN	FISHMN	WOODMN	EARTHMN
000	1 No Ann	Ollivat	Channe	OTEDITEMIN	17111111	1 1011011	WOODIIII	
15	2							
16								7
17	•	20		<i>t</i> :				
18	2.62667	2.1	6667	3.02667	2.11333	1.75333	2.96000	0.00000
19	3.36667	2.0	0000	2.83333	2.08000	1.68667	2.98000	0.00000
20	2.64667	4.0	7333	2.28667	1.44000	1.04667	1.90714	0.00000
21	· · ·			÷	a /	ж.	÷	÷
22	3.57500	2.9	2500	2.97500	2.05000	1.93750	2.52500	1.61111
23	4.12500		7500	3.15000	2.07500			1.13000
24	3.49333	2.6	2000	2.08000	0.70667	0.58571	1.76000	0.40667
25				•			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
26	3.23750		0000	2.77500	2.02500	2.05000	2.72857	1.61111
27	4.12500		7500	3.11250	2.07500	1.46250	2.42500	1.25556
28	2.93750	2.5	6250	2.28750	1.66250	1.47500	1.88750	1.28889
OBS	SKUNKMN	ASTR	INMN	MOUTHMN	HEXMN	LMN	AMN	BMN
15					2.3216	63.3600	6.88833	35.1117
16	943	*			6.5499	57.9650	6.76667	31.4517
17	2 4 0			S4	1.2834	63.7000	5.76000	31.8617
18	0.00000	3.30	0667	3.67333	1.1905	67.4500	5.85000	32.6550
19	0.00000	3.3	2857	3.95000	2.9509	61.3700	4.15000	27.9567
20	0.00000	2.8	2667	3.96667	16.6904	60.2800	3.77000	27.6183
21						66.6617	6.07167	32.5717
22	1.18889	2.93	3750	4.81250	1.8635	63.6333	5.26667	32.0983
23	1.08000	3.43	3750	4.33750	3.4651	57.8583	7.81333	33.3133
24	0.44667	2.24	4000	3.09231	10.0344	71.4800	3.28500	29.9600
25					1.2685	67.1117	4.56167	30.8533
26	1.43333	3.18	3750	4.87143	1.3961	70.1917	2.31833	29.9250
27	1.20000	3.43	3750	4.33750	4.7891	62.2150	7.42500	34.2217
28	1.75556	2.71	429	3.91667	11.9321	68.0550	7.05000	31.7767

OBS	DATE	WEEK	STOR	VARIETY	SWEETMN	SOURMN	BITTERM	SALTMN
29	19-May		7	Std				
30	2-Jun	10	9	High0	0.51429	1.43333	1.21429	0.18571
31	2-Jun	10	9	Contract of the second second	0.74286	1.60000		
32	2-Jun	9	9	Spanish	0.87143	1.34286	1.31429	0.24286
33	2-Jun		9	Std				
34	16-Jun	12	11	High0	0.81429	1.10000		
35	16-Jun	12	11	Runner	0.41429	1.27143	1.47143	
36	16-Jun	11	11	Spanish	0.87143	0.88571	1.34286	0.34286
37	16-Jun		11	Std	×.	3 4		
38	30-Jun	3	13	High0	4			
39	30-Jun		13	Runner				
40	30-Jun		13	Spanish	i i			
41	30-Jun	2	13	Std				
42	15-Jul	16	15	High0	0.61667	1.66667	1.66667	0.58333
				•				
OBS	PNUTMN	SWAR	OMMN	CRDBRDMN	PAINTMN	FISHMN	WOODMN	EARTHMN
29							<i>4</i>	¥
30	2.08571	2.0	2857	3.37143	2.77143	1.44286	2.38571	1.41250
31	2.32857	2.4	7143	3.57143	2.68571	1.61429	2.80000	1.45000
32	2.35714	2.9	1429	3.50000	2.65714	1.70000	1.61429	1.33750
33				2				
34	2.47143	1.8	5714	3.02857	1.90000	1.97143	2.54286	1.51250
35	2.81429	1.5	5714	3.41429	2.97143	2.22857	2.92857	1.73750
36	2.81429	1.78	8571	3.08571	3.40000	3.11429	2.75714	1.93750
37								
38								
39								
40	0.2				•	×		
41								× .
42	2.21667	2.25	5000	3.65000	1.73333	1.51667	3.21667	1.10000
OBS	SKUNKMN	ASTR	I NMN	MOUTHMN	HEXMN	LMN	AMN	BMN
29					1.3868	65.7417	5.44167	31.4200
30	0.77500	3.22	2857	4.34286	1.7486	66.2417	5.67833	32.1133
31	0.95000	3.64	1286	4.81429	6.2259	67.3717	6.85333	34.2250
32	0.93750	2.58	3571	4.41429	21.3170	69.0050	3.23667	28.2183
33					1.2016	69.5033	7.15333	32.8900
34	0.82500	3.07	7143	4.67143	3.9626	65.1850	5.87500	30.1950
35	1.32500	3.32	2857	4.91429	5.8357	58.9950	5.58833	31.0650
36	1.77500	3.01	429	4.58571	26.9718	67.9100	4.82333	30.0050
37	4				1.1304	68.4750	5.11667	35.7217
38				×	1.8022	69.6583	5.49333	32.1517
39					10.4026	67.8717	7.20833	36.1283
40					19.9552	67.5867	5.13167	29.3150
41					1.1106	65.8400	5.24333	34.9600
42	0.91250	2.73	333	4.33333	1.9252	68.7800	7.50167	34.2767

OBS	DATE	WEEK	STOR	VARIETY	SWEETMN	SOURMN	BITTERMN	SALTMN
43	15-Jul	16	15	Runner	0.33333	1.65000	1.60000	0.43333
44	15-Jul	15	15	Spanish	0.60000	1.83333	1.65000	0.36667
45	15-Jul		15	Std				5.
46		24	23	HighO	1.37143	1.87143	2.28571	0.67143
47		24	23	Runner	0.78571	2.68571	2.64286	0.28571
48		23	23	Spanish	1.42857	1.77143	1.40000	0.32857
OBS	PNUTMN	SWAR	OMMN	CRDBRDMN	PAINTMN	FISHMN	WOODMN	EARTHMN
43	2.76667	2.1	6667	3.55000	2.88333	2.21667	3.78333	1.40000
44	1.85000	2.0	8333	3.46667	3.28333	2.60000	3.73333	1.18750
45								*
46	3.08571	2.2	7143	4.17143	3.28571	2.82857	3.27143	3.07143
47	2.08571	1.5	5714	4.01429	3.68571	2.57143	3.64286	2.41429
48	2.70000	3.4	0000	3.42857	3.02857	1.61429	3.20000	2.07143
OBS	SKUNKMN	ASTR	INMN	MOUTHMN	HEXMN	LMN	AMN	BMN
43	0.95000	3.4	8333	4.85000	7.4917	71.1617	6.92667	35.3600
44	1.62500	3.7	1667	4.75000		•	2. 4 3	*
45	2	.		5 1	1.3147	70.3683	3.56333	29.3917
46	2.41429	3.6	8333	4.21667			510 E	12 C
47	2.60000	3.8	2857	4.28571			(a)	a 2
48	1.47143	3.0	7143	4.17143			•	8

\cap
õ
\mathbf{U}
R
-
\sim
Ē
2
P
H
-i
0
$\underline{}$
\mathbf{z}
_
~
P
H
~
1
CORRELATION DATA F
-
0
Ŧ
~
n
1
4
7
3
0
F
Ì
141
3
FOR SUNOLEIC

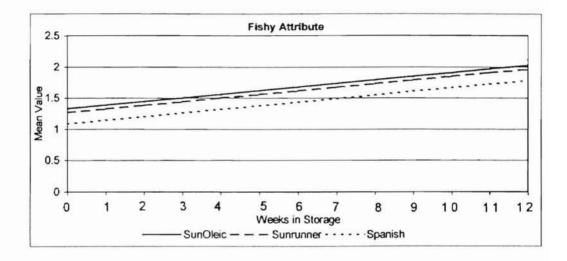
9									Correlati	on matrix									
	STOR	-	soutier	BITTEANN	SALTHIN	PHUTHEN	SHAROMAN	CADERICAR	PAINTNE	Filmente	HOODERS	EAATHON	BRUNNAM	ASTRIMAN	NOUTHIN	HEON	LMM	-	-
TOR	1.0000	0.0292	0.5679	0.0395	0.0673	0,7903	0.1140	0.8305	0,1379	0.4390	0.3228	0,6766	0.6202	0.4592	0.1872	(o. 1654	D.3890	0.3205	-0.138
	-0.0282	1 0000	0.5768	0.4250	0.0950	0.2801	0,5633	-0.3890	0.6299	0.2147	0.4387	-0.7451	0.3498	0.2191	0.1753	0.8553	0.2306	0.2672	0.081
	0.5879	0.5768	1.0000	0.2641	0.0920	0.2546	0 7260	0.5603	0.0760	0.3025	0.0064	0.6126	0.7331	0.2320	0.3710	- 0.3478	0.4587	0.0011	0.052
-	0.0395	0.4250	0.2641	1.0000	0.0563	0.8101	0.4056	0.3904	0.7758	0.0552	0.4662	0.2541	0.3622	0,2748	0.8135	0.8044	0.0041	0.1566	-0.187
LTIN.	0.0673	0.0950	0,0820	0.0563	1.0000	0.0100	0.0077	D.1158	0.4368	.0.3174	0.5224	-0.5476	0.3515	0.2072	0.5511	0.4218	0.3695	0.3210	0.617
	-0.7603	0.2601	0.2586	0.6101	0.0100	1,0000	0.1749	-0.9033	0.6033	-0.4356	0.6002	-0.3854	-0.2730	0.6003	0.3735	0.1877	0.2543	0.3340	0.031
NIONAN	0 1140	0.5633	0.7260	0.4058	0.0077	0,1749	1 0000	0.0473	0.0590	0.5535	0.1568	0.3567	0,7219	0.0175	0.5487	-0.3214	0.2360	-0.4516	0.325
CORCHAN	0.8305	0.3890	0.5803	0.3904	0.1188	0 9033	0.0475	1.0000	0.4564	0.3620	0.4641	0.4819	0.3941	0.6545	0.2404	0.2401	0.2218	0 4907	0.196
	0.1379	0.8299	0.0760	-0 7758	0.4368	0,0033	0.0540	0.4564	1.0000	0.2485	0,7960	0.2017	0,1636	0.3328	-0.2940	0.4646	0.0875	0.1312	-0.153
SHAN	n. 4390	0.3147	0.3025	0.0552	0.1178	0.4358	0.5535	0.3620	0.2485	1.0000	0,6865	0,6866	0.7033	0.4478	0.2425	0.1056	0.1752	-0.3626	-0.665
NON NO	0.3220	0.4387	0.0954	0.4662	0.5224	0.8002	0.1568	0.4641	0.7960	-0.6655	1,0000	0.5407	0.5115	0.3645	0.0491	0.1756	0.2117	0.2333	0,490
UT-Sale	D.6786	0.2451	0.4124	0.2541	0.5479	0.3854	0.5567	0.4619	0 2917	0.6866	-0.6407	1.0000	0.9514	0.3331	0.6760	0.1467	0.0889	-0.2385	0.502
C.PROM	0.8202	P.3496	0.7331	0.3822	0.3515	0.2730	0.7219	0.3981	0.1636	0.7033	0.5115	0.9514	1.0000	0.3492	0.6960	-0.0244	0.2750	0.3670	0.543
111110	0.4592	0.3191	0 2320	0.2748	0.2072	0.6093	0.0175	0.0042	0.3328	0.4478	0.5645	0 3331	0.5492	1.0000	0.2056	0.3187	0.0193	-0.1663	0 158
N/TH NN	0.1872	0.1753	0.3710	0.8138	0.8813	0.3735	0.5487	0.2404	0.2940	0.2425	0.0491	0.6760	0.8980	0.2066	1,0000	0.4829	0.0006	0.4151	0.557
-	0.1654	0.8853	0.5470	0.5044	0.4715	0 1877	0.3214	0.2401	0.4648	0,1058	0.1756	0.1481	0.0244	0,3187	0.4829	1.000	0.3728	0.2500	0.295
•	0.3890	0.2306	0.4587	0.0341	0.3895	-0.2543	0.2360	0.7218	0.0875	0.1752	0 2117	0.0885	0.2750	0.0193	0.0306	0.3784	1.0000	0,2976	0.113
•	0.3208	0.2672	0.0011	0.1589	0.3210	0.3340	0.4516	0 4907	-0.1312	-0.5628	0 2333	0.2385	0.3670	0.1863	0.4151	0.3560	0.2976	1.0000	0.091
	0.1392	0.0617	0.0527	0.1825	0.6176	0.0314	0.3250	0.1082	0.1554	0.6068	0.4907	0.5923	0.5432	0.1591	-0.5574	0,2987	0.1137	0.0917	1,000

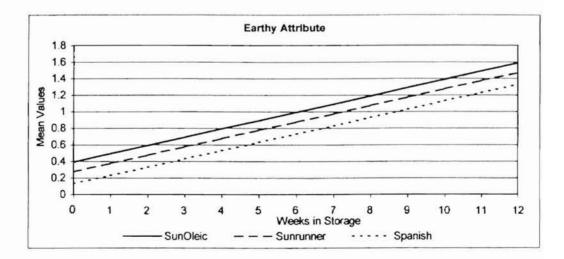
	stow	SHEET WAY	SORIAN	STITERAM	341.746	-	AMCOUNT.	CHORNAM	PACINTUM	112000	HOODER	Extrame	BONDE	ASTREAM	KOUTHARK	HEIDER	1704	ų	ñ
BTDM.	0.0	2196.0	0.1254	0.9260	0.8742	0.0286	0.7881	0.0107	0.7447	0.3765	0.4366	0.080*	0,1008	0.2524	0,6570	D. 6991	9046.0	0.4380	0,7424
MRI Jak	0.9472	0.0	0.1344	0.7914	0.4279	21005-2	0.1480	0.3408	0.0942	0.4477	0.2769	0.5545	0.3959	0.4410	0.5780	0.0035	0.5627	¥225'0	0.8474
SOUTH A	0.1254	0.1344	°, c	0,5274	0.4264	0.5300	0.0414	0.1486	0.8580	0.4665	0.4204	D.1084	0.0065	0.5603	0.3656	+902.0	0.2530	0.9990	0.0014
ARKULU IN	0.8260	0.7538	0.5274	0.0	0.8947	0 1082	C.3188	0,3390	0.0037	0.0046	0.2442	0.5436	0.3780	0.5103	0.0140	0.2025	0.0065	0.7105	0.7008
INC. LINE	0,8742	0.8228	0.8264	0.8947	0.0	0.9812	0.9456	0.7829	0, 2792	0.7818	0,1841	D. 1 544	Exest 'O	9-229-0	0.1508	0.2084	0.3477	CHC+.0	0.1027
	0.0285	2103.0	CHCS-0	0,1082	0.9812	0.0	0.8787	0.0021	0.1124	0.2607	0.1157	0.3456	0.5130	0.1088	0,3620	0.6562	CCM5.0	D.4182	0.9415
-	V881.0	0.1480	0.0414	0.3188	0 10110	0.6787	0 6	0.9114	0.8696	0.1548	0.7103	0.1500	0.0438	2.cim.0	0.1580	0.4378	0.5703	0.2614	0.4321
CHORNOW	0.0107	0.3408	0.1489	0466.0	0.7829	0.0001	0.9114	0 0	0.7557	0.3782	0.2467	0.7492	1822.0	0.0720	0.5663	0. Seens	D. 5925	0.2170	0.6414
PALINTARY	0.7447	0.0942	0.8560	1620.0	0.2792	0.1134	0.6696	0.2567	0.0	0, 5079	0.0181	0.4833	0.0004	0.4208	0.4797	0.2461	1968.0	0.7568	0.7169
- These	0.2765	0,4477	0,4650	0.8968	0.7818	0.2907	0,1548.	0.3762	0.5629	0.0	0,0601	0.0000	0.0018	0.7659	0.5629	0,0000	0,6782	0.3771	0.0709
-	0 4356	0.2765	0.8704	0.2442	0.7881	0.1127	0,7107	D. 2447	1860 0	0,0801	0 0	0.0670	0.1961	0.1140	0.9082	0.8775	0.6147	0.5782	0.2168
tattes	0 00054	0.5565	0.1064	0.54.38	0.1158	0.24	0.1500	0.24402	0.4533	0.0800	0.0670	0.0	0.0000	0.4200	0.0057	0.7300	5.83M2	0.5666	0.1218
NUMBER OF	0.1008	exec. p	\$WC0 0	0.3780	2266 O	0.8100	0.0432	0.3247	0.6064	0.0616	0.1981	0.0003	0.0	SIMUL O	\$1000 O	0.9547	D. NOME	0.3112	0, 1941
ASTR LIMM	0.2524	0.4410	0.5603	0.5103	0 6224	0.1068	0.9473	0.0720	0.+206	0.2659	0.1440	0.4200	0.39665	0.0	0.6235	0.4410	0.9639	0.6587	1901.0
MOUTH MAY	0.8570	0.4790	0.3636	0.0140	0.1568	0.3000	0.1580	C1004 D	0.4797	0.5694	0, 9082	0.0657	0,0642	0.6236	0'0	D.2481	0.6420	0.3045	0.1512
ž.	0, 9991	0 2005	- Mar. 0	0.7075	0.7984	2,000	0.4378	0, 5668	19+2 O	n. A000	0,8775	0.7300	2408.0	0.4410	0.2481	0.0	DCMC.0	0.3604	0.4779
	0.3408	0.5422	0.2530	1968.0	0.3677	0.5420	0.5703	0 5623	0, 6367	0.6792	0.6147	21629.0	o some	BCMR 0	9649.0	OCMC ' O	0.0	0.4741	0.7888
1	000010	62295.0	0.9960	0.7105	CRC+ '0	0.4187	0.2014	0.110	0.7508	1116.0	0.5782	0.5694	511E.0	0.6587	0.3065	0.5004	0.4745	0.0	0.0573
1	1424	0.6474	0 8014	0 7006	0.1027	0.2411	10.101	D 8444	A 71440	0 0700	0.2180	101104	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	o Town	A183-X	10.45	A - 1444	and the second	

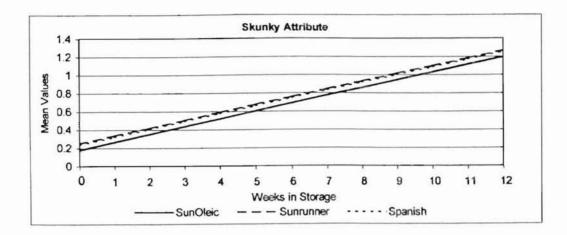
CORRELATION DATA FOR SUNRUNNER

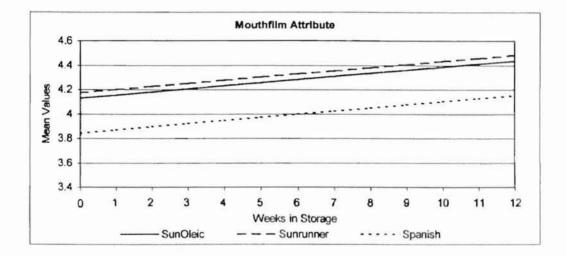
•									Correlat	ATTIME POLICETATION									
	100	SHEETAN	NUMBER	1011111	3ALT M	MUTH	BRVICINE	CONCIMENT	PAINTUR	13-61	ROOM	EARTHER	MEMORY	ASTRINAM	IDUTHAN	HETAN	ġ	1	ž
53138	1.0000	0.6405	0.7975	0.7408	1204.0	1000 0	0.2200	0.8165	0.0114	0.8918	0.1107	0,8574	0.75653	0.1505	D. MOT	0. 540M	0.7016	865.2.0.	0.0455
1011100	0.6495	1. 1000	0.1784	0.2145	0.1838	0.4+76	0,3252	-0.5768	0 6137	-0.7658	-0.7295	0.3712	0 2302	0.4949	100E.0-	-0.5220	10.7366	0.5606	5 7984
an co	0,7875	0.1784	1,0000	0.9364	0.15	0.4562	0.7324	0111.0	0.8100	0.5745	NKE1 0	0.8012	0.7870	102.4337	1162.0	0.8300	1021.0	9000.0	0.1840
v#10.21.119	0.7408	0112 0	0.0004	1, 1000	0.4716	0.4552	0.7515	0.7540	0,5257	0.5675	-2210-0+	0,8231	0.8483	0.2160	0,4236	0.7771	0,48,99	0.1080	10,0011
344,7186	1209 0	0.1898	CHCF.O.	0.4716	0,0000	1112.0	0.2110	0.4047	.0.3175	0.2793	0.3583	-0.7764	-0,7718	1896.0	-0.7089	-0.4706	-0.0000	-0.2079	-D. H000
PROJEM P	0.6931	0.6476	2041+01	0.4502	0.3177	00001	\$110.0	0089.0	0.7136	-0.4191	0.1433	+0055-0-	-0.3812	0.7968	-0.6847	-0.6783	0, 39555	0.5725	0.7602
mount	0.2200	2525 0	0.7324	0.7515	0.2119	2+10.0	1,0000	0.3600	22/02-0-	.0.0764	-0.5103	2515.0	0.4564	0.2965	0.1385	6. 2722	NON O	0.2489	0.2003
CHORNER	0.8165	0.5758	0.7118	CES1 0	0.4047	0048-0	0.3600	1.0000	****	0.6419	C++C-0-	0.7883	0.7162	0944.0	0.4075	0.7918	ABGE. 0	1120.0	0.0775
PAINTUR	0.2114	10.0137	0.010.0	0.5257	0.5175	0.71355	0.06177	0.7111	1 0000	0.0054	0.7333	0.7988	0.6476	0.7090	0.222	0.003	0.6013	10.2958	1900.0
#1 Source	0.3616	94%410	0.5748	0.5675	0 2783	10.4191	M010'0'	0.6419	0.8054	1, 0000	0,2214	0.6662	0.5956	0.0821	0.7780	0.0107	0.5333	5189 U.	HORE OF
eccose.	0.1107	0.7795	0001-0-	2211 0-	0.3545	0.1433	2015-0	0.3443	0052 0	0.2714	000011	1862.0	00000	0.3709	0.1773	0.1582	0.4770	0.1208	0.2938
PAATTAMS	0.8514	5125.0	0,40+2	1628-0	.0.776A	MOCS 0-	0.3753	0,7883	0.7988	0.6667	1WCZ.0-	1.2000	0.9701	0,7340	0.6856	D. MID1	0.4257	0.0078	0,1394
NUMBER	0, 1963	0.2303	0.7670	0.644	0 7718	0, 2412	0.4584	0.7162	0.6478	0.5004	0.945	0,9701	1,0000.1	0.1770	0.7803	0.7445	0.2812	0.0008	00113
VALUE AND A REAL	0.1505	0.454.0	1004.0	0.7180	0 3697	n 7886	o Pass	0.2160	0.2089	D.042+	0.3708	0.2240	0.1170	1.0000	0.4543	0.2776	0.5713	0.4048	0.2493
MOUTH SUB	2.294-0	1025 0	0.7319	0.4238	0 1000	0.4842	980.1.0	0.6075	\$225.0	0.7760	6221 0	D. Better	0,7803	0.4548	1.0000	0.9012	0, 6290	9210/G	0.1858
HC LINE	0.18006	0.5270	0 8300	a 7271	B01+10	0 6790	0 2772	0 7914	0.9990	0.8197	0.1362	1098 0	0, 7445	0.2776	0.9012	1.0000	0.7731	1011.0	0.1560
ġ	0.7016	0.2'998	0 130	0,4850	0 16400	STATE 0	0.35.0	2.364	0.6013	0.5333	0.4770	0.4257	0.2912	0.5713	D. 6290	0.7751	0000114	0.01M	0.7756
-	9552.0	0.5698	8.0004	0.1080	0.707%	6246.0	54¥2 0	0.3017	10 7954	0.4875	0.1208	0.0016	D. CHIMA	0.4046	0.0174	10011-0-	9610.0-	1.0000	0,0019
1	0, 245.6	-0.798+	0.1985	10.0011	1000 to 0	0.2900	0.2003	0.0775	10.0081	NO84 0-	0.2036	0.130+	0.1130	CENC O	0.1850	0.1100	0.2735	0.9019	1.0000

	a TOM	20174	1	-	841.148	12	Success	CACENCIER		Westly	-	1.ANTIME	and a second	ASTRINUE	10	ţ	5	1	1
\$104	0.0	0.0015	0.0177	0.0365	HCRE'O	8. 04466	0.6006	0.0134	0.0016	0.0009	0.7942	0.0005	0.0096	0.7721	0.0066	0.0001	0.0534	\$169.0	4++6.0
-	0.0013	0 G	0.6125	0.6093	9269-0	8,0625	0.4318	a.1327	0.1056	0,0046	0.5846	0.4379	0.552	0.2174	0.4395	0.1945	0.0672	0.+405	0.4778
SOUTHING .	0.0117	0 5725	e.a	0.000	0.2744	0.2550	0.0088	0.0479	0.1083	0.13455	0.752*	0.0188	0.004	1684.0	0.0064	0.0108	0.0049	0 3968	0.6908
ALT1944	0.0355	0.6003	0.0006	0.0	+#C2 0	0.2394	0.0316	0.0099	0,1809	0.1423	0.3102	0.0121	0.0078	0.6040	0.0003	0.0410	0.2772	0.7960	0.8043
	NC26.0	0.6575	0 2794	0.7381	0.0	0.6046		0.3199	011110	0.5000	0.3620	0.0236	0.0049	0.3674	0.0485	0.2383	0.8446	5128.0	0.6934
-	0.0066	0.0425	0.255.0	1462 U	0.0046	e c	0.6667	0.0008	0.04465	4101.0	0.7345	0.1763	0.2515	0.4881	0-2241	0.0038	1200.0	1961.0	0.5337
-	0. 6006	81CF 0	0.000	0.0115	1 2 0	0.6667	0	0.3528	0.8745	0.4517	0.1953	10.2445	0.2506	6544,0	0.7415	0.8142	0 4040	0.0572	0.6344
CACONCIM	0.0134	428+ 0	0.0476	0.0268	0.3188	9000010	0.3578	0.0	0,0480	0.0442	0.4037	1000.0	0.0407	0.6074	0.1102	0.0192	0100.0	1164.0	0, 4552
MUNINA	0.0016	0.1056	0.1063	0.1500	01110	0.0469	0.8743	0.0480	0.0	0.0000	0.5782	0.0174	0.0425	0.6179	0.0011	0.0017	D.1148	0.4768	C266 G
1000	0.0076	0.0046	0.1363	0.1423	0.5000	4101.0	4168'0	0.0662	0.0000	0.0	0.5962	+990.0	0511.0	0.8468	0.0230	0.0127	9621.0	0.2087	0.4807
	2101.0	0 1448	0.7524	2246.0	0.3820	0.7540	0.1180	0.4037	0.5782	0.5082	0.0	0.5692	0.3460	0.3667	0.6745	0.7441	0.2396	0.1156	0.4800
(Alther	0.0005	0.4379	0, 0166	0,0121	0.0235	0.1765	0.3567	0.0201	0,0174	0,0051	0.5662	0.0	0.0001	0.5936	0.001	0.0058	0.7979	0.9857	0.7546
SKLINK	0.0298	0 (M32	9420 0	0.0078	0.0240	0.3515	0.7556	0.0457	0.0825	0.1103	0.3450	0.0001	0.0	0.474.0	0.027	0.0041	0.4586	0.8406	0, 7945
AL LA L	0,7271	\$212.0	HENE O	0.6040	0.3674	0.488	2542*'0	0.607.	0.6179	0.8468	1. XXX	acet.o	0.6749	0.0	0.2223	0. NOM	0.1381	1005.0	0.3965
-	0.0004	4988 • U	0.0394	C MAC . C	0.0445	0.2741	0.7419	0,1100	0.0011	0620'0	0.6745	0.0031	0.0223	0.775	0.0	0.0022	0.0948	9748.0	0.4564
-	0, 1001	0.005	0.0108	0.9410	0.7365	50W0 0	0.31+2	0.0182	0.0017	1210.0	0,7441	0.0054	0.0041	0.5056	0.0022	0.0	0.0036	0.7334	0.7066
	+C00'-0	0.5672	0.0065	0.3222	O. NAVA	1202 0	0.4082	0.3340	0.1148	BC11.0	0.2320	0.7925	0.4999	1861.0	0.0948	0.073	e c	0.9746	0.5090
,	£112.0	0.++08	o utas	0 / tep0	0.0013	1001-0	0.5523	0.4371	0.4750	0.2067	0.7736	0.0007	0. 8888	0.3201	0. 6766	0.7334	0.9746	0 0	0.0023
	0 000	0.4728	ST 86.9	0 1043	0,6004	0.5337	1 1044	2558 0	0. 9023	0.4807	0.4800	0.7548	0.7883	0 3995	0.6094	0.706M	0.0000	0 0001	0.0


9									Correlati	on Matrix									
	NOTE	INCETAN	SOURIN	BITTERM	SALTEN.	PNL/TMP	SHACKER	CROOPCINE	PAINTIN	LIDIN	WOODAW	EANTHER	SHOWNIN .	-	NOUTHIN	HEXAN DEAL	L, SPV	ASPI	-
TON	1.0000	0 4661	0.4544	0.8772	-0.5443	0.0332	D 2482	0.8042	0.8276	0.8356	0.0404	0,9524	0.8715	0.0437	0,7040	0.0135	0.2258	0.0830	0.4791
HEETMN	0.4681	1.0000	0.0976	0.5012	0.0045	0.4003	0.0007	0.5331	0.5540	-0.5540	0.1815	-0.6848	0.8711	0.0054	0.4625	-0.2002	0.3791	0.4970	0.3723
OURSEN	0.4544	0.0976	1.0000	0.4429	0.4801	0.4668	0.5052	0.7409	0.4873	0.2691	0.390+	0.2483	6.0133	-0.0552	0.5722	0.6456	0.2527	0.6715	0.9688
11120304	0 8772	0.5812	0.4429	1.0000	0.5424	0.2290	0.3112	0.9058	0.9083	0.8336	0.1756	0.9052	0.8177	0.3174	0.8655	0.7652	0.2049	0.1148	0,2662
ALTIN .	0.5443	0.0045	0.4801	0.5460	1,0000	0.0433	0.0064	0.4258	0.3062	-0,1450	0.3638	0.4331	0.3422	0.1213	0.2008	-0.4111	0.5717	0,*080	0.4118
N/TWN	0.0332	0.4003	-0.4666	0.2390	0,3433	1.0000	0.1708	0.5121	0.3642	-0.2551	0.0075	0.0742	0.0631	0.2111	-0.5834	+0.1851	0.5187	0.0629	0.1304
skilowie	0.7482	6.8907	8.5012	0.3112	-0.0054	0.1708	1.0000	17 1414	0.3404	0.4478	0.8018	0.4974	0.4926	0,1382	0.1111	0.0013	0.6737	0.3667	0.6243
COROWN	0.8042	8, 5533	8.7409	8,9058	0.4258	0,5121	0.1418	1,0000	0.8842	0.7408	-0.0322	0.7828	0.5418	-0.0096	0.8215	0.8170	0.0857	0.3045	-0.5351
AINTWY	0.8278	0.5340	0 4873	0.0083	0.0082	0.3842	0.3494	0.8842	1.0000	0.9609	0.4087	0.8492	0.8900	0,3997	0.9453	0.6434	0.0248	0.0237	0.333
SHIME (0.0350	0.5540	0.2891	0.8336	0.1450	0.2551	0.4478	0,7409	0,8505	1_0000	0.5260	0.8831	0.7857	0.3544	0.8571	0.8512	0.0132	0.1208	0.229
COMPL	0.0404	0.1815	0.3901	0.1756	0.3634	0.0075	0.6018	0.0322	0.4067	0.5280	1.0000	D.1997	0,1849	0.7209	0.3254	0,0876	0,0392	0.3263	0.397
ARTHMAN	D-8524	0.6846	0.2463	0.9057	0 4331	0.0742	0.4924	0.7628	0.6492	0.8831	0 1997	1.0000	0.0474	0.0477	5,7008	0.7900	0.3333	0.1482	0.2008
C.necille	0 8715	0.0711	0.0133	0,8177	0.3472	0.0631	-0.+926	0.5418	0,9900	0.7857	0,1849	0.9474	1.0000	0.0374	0.5667	0.0480	0.3175	0.2007	-0.0369
STINIZAGIN	0.0437	0.0054	0.0552	0.3175	0.1213	0 2111	0.1542	-0.0094	0.3067	0.3544	0.1208	0.0477	0.0374	1.0000	0.5072	0.0090	0.2972	0.3352	0 2134
SUT HAR	0.7040	0 +426	0.8722	0.8655	0.2008	0.5434	30.950	0.8215	0.9453	0.8571	0.3254	0.7098	0.5683	0.5072	1.0000	0.7735	0.2304	0.0451	0.370/
E SHR	0.9135	0.2052	D.8458	0 7682	0.4111	0 1651	0.0013	0.8170	0.8434	0.8312	0.0978	0 7900	0.5480	0 0595	0.7735	1.0000	0.0907	0.3048	0,7154
•	0.2256	0.3791	0.2827	0 2049	9 5711	0.5187	8. 6737	0.0657	0.0248	0.0132	-0.0392	0.3333	0.3175	6.2972	0.2304	0.0907	1.0000	0.0359	0.3479
*	0.0830	0.4970	0.0715	0.1148	0.4080	0.0629	0.3867	0.3043	0.0237	0.1208	0.32#3	0.1482	0.3907	0.3352	0.0451	0.3049	0,0358	1.0000	0 7205
e l	0,4791	0.3723	0.0005	0.2962	0.4118	0.7304	0.6243	0.5351	0.2336	0.2294	0.3974	0.2006	0.0360	0.2134	0.3707	-0,7154	0.3429	0.7266	1.0000


CURRELATION DATA FOR SPANCO	2
C	2
Ŧ	ĥ
6	4
2	2
Ц	7
	1
7	
1	2
1	2
0	5
H	2
1	4
F	1
2	1
P	•
-	3
Þ	
2	4
Ξ	2
C	2
ㅈ	5
2	1
2	•
P	1
Z	5
C	5
-	5
-	,


									P. Walson of the	Values of the Correlations									
	8108	settae	SOUTH	0111Course	19. X	et la	announe:	CODECOM	PALATURE	F15Peer	NECCOM	EATTHEM	primote:	ASTREMAN	WOUTH AND	N LW	19	ş	1
57.0M	0.0	0.2850	7505.0	0.0000	0,2068	0.9437	0.5916	0.0792	0.0218	0.0192	0.9315	0.0005	0.0106	0,9258	0.0775	0.0040	0.6267	0.8585	0.7762
set 1144	C. 2865	0.0	0, 6151	1.1421	5.00A U	AC16 0	6. casa	841210	21.2+70	0.1969	0.6006	0.0647	D. DOMA	9008-0	8982 U	0.4573	0.4017	0.2565	0.4109
March	0.5007	P. 8351	0.0	0.318	0.2756	0.2910	C. pena	W000 0	0.2673	0.5566	6. MAR	0.5013	0.9775	0.5004	0.1195	0.1172	0.5446	0.0045	1110.0
MITTERNA .	0.0005	0.1621	6.3196	0.0	0.2027	0.6058	0.4969	0.0267	0.0046	0.0198	0.7064	0,0061	0.0246	0,4877	0.0118	0.0450	0,6594	0.8064	6095.0
54(1)(8)	0 2005	6.2861-0	0.2256	0.2022	0.0	0.510	0.9930	0.308	0 5042	0,7565	0.4725	0.3318	0.4524	0,7996	0.4650	0.3585	0.1805	NCM: 0	1995.0
MUTUR	1042.0	0.3736	0.2910	0.5056	0.4210	0.0	0.7+42	00+2'0	0 2944	0.5600	0.0472	0.8744	00564.11	0.6495	0.1601	0.1236	0,229	0.0034	0.7457
ARROVANCE OF	0.5916	0.0854	0,2464	0. +144	5° 88 50	0.7142	8.8	5, 7473	3157 0	0.3150	0.1528	0.2616	*192.0	0.7675	0 8118	0.9978	0.0970	0.3814	90110
CHORENA	0.0292	64.72.0	0.0069	0.0267	0.3408	0.7400	C204, 0	0.0	0.0121	0 0568	0.3453	0.0481	0.7000	1246.0	90.00	0.0249	0.8551	0.9070	0.2156
PATINTAN	0.0216	0112.0	6.141.0	0.0045	0.5043	0 3948	0.4548	0.0121	0 0	0.0010	2,000.0	0.0156	0.0462	E11C-0	0.0013	0.0171	0.9562	0. 97988	0 4545
-	0.0192	0.1969	0.5560	0.0156	0, 7565	0.5408	0.318	0.0568	0.0010	6	1622.0	0.0084	ENCO.0	P36+'0	0,0137	0,0206	0.9116	0.7965	0.8903
NACODAN I	0.0319	Distance of	n 2960	0.7064	0.4275	0.9677	0.1523	0.9453	0.3627	0.2231	0.0	0.8674	S189'0	0.0075	0.4764	SEE 0	0.9006	1219-0	0.3774
No. 1 Average	P.0008	0.0892	0.5513	19007-0	0.2316	0 8744	0.2516	1.048	8,0158	n. 5084	0 MATE	0	0,0012	1010 0	0.0740	0.0345	0.4651	0.7511	0.6656
Approximited	0.0106	0.0966	0.9775	0.00+6	0.4224	0.8500	0 2614	0602.0	0.1862	0 0300	0.9915	0.0012	0 Q	\$14CB * 0	0.1851	0.1148	0.4878	DAME .0	0.8775
were large	0.9239		0.10044	0.4827.	0,7866	0.6435	619419	0. 3437	0.3743	0 4324	0.0675	0.0151	0. BOMA	9.0	C. 2455	0.8984	0.3175	0.4623	0,0456
ADD THAT	0.0775	ecst.u	0.1785	0.0118	C. SMORE	1681.0	611610	0.0235	0,003	1610 0	0.4754	0.0740	0, 1051	0.2453	0.0	0,0413	0.6191	0.0234	0.4130
-	0.0040	Loss 0	0.117	0.250	10, 354M	8027 8	0.0078	0.02+0	+4+0.0	0.0005	10.0351	0.0345	0.7148	0.6001	0.0413	0.0	0.9486	11-2002	0,0707
4	1923.0	0.4013	0 1446	6 A534	0.1806	6202 U	0.0970	5 A35+	CM08 0	0 9778	0.0335	0.4851	0.4878	0.5125	0.8181	0. 84465	0 0	caca.o	818+.0
1	\$954'0	0.2765	0.0005	4908.0	Wat 0	M01 0	0.3614	0.5070	0. 8588	0 7965	1473.0	0.7511	2005. 0	C247 0	ecca u	Decision 0	Cec.8. U	0.0	0.0643
1	0.2745	0.44.08	0.000	1.563	0.3587	1691.0	0.1338	0.2158	2 4544	0.8207	0 3774	0.00040	0.8375	0.6450	0.4130	0.0707	0.4515	0.0643	0.0


66

-

APPENDIX C

CONSUMER PREFERENCE DATA - FRESH ROAST

Judge #	bchoice	gchoice	ochoice	scoreB	scoreG	scoreO
1	1	2	3	0.85	0	-0.85
2	1	2	3	0.85	0	-0.85
з	1	2	3	0.85	0	-0.85
4	1	2	3	0.85	0	-0.85
5	1	2	3	0.85	0	-0.85
6	1	2	3	0.85	0	-0.85
7	1	2	3	0.85	0	-0.85
8	1	2	3	0.85	0	-0.85
9	1	2	3	0.85	0	-0.85
10	1	2	3	0.85	0	-0.85
11	1	2	3	0.85	0	-0.85
12	1	2	3	0.85	0	-0.85
13	1	2	3	0.85	0	-0.85
14	1	2	3	0.85	0	-0.85
15	1	2	3	0.85	0	-0.85
16	1	3	2	0.85	-0.85	0
17	1	3	2	0.85	-0.85	0
18	1	3	2	0.85	-0.85	0
19	1	3	2	0.85	-0.85	0
20	1	3	2	0.85	-0.85	0
21	1	3	2	0.85	-0.85	D
22	1	3	2	0.85	-0.85	0
23	1	3	2	0.85	-0.85	0
24	1	3	2	0.85	-0.85	0
25	1	3	2	0.85	-0.85	0
28	2	1	3	0	0.85	-0.85
27	2	1	3	0	0.85	-0.85
28	2	1	3	0	0.85	-0.85
29	2	1	3	٥	0.85	-0.85
30	2	1	3	0	0.85	-0.85
31	2	1	3	0	0.85	-0.85
32	2	1	з	0	0.85	-0.85
33	2	1	3	0	0.85	-0.85
34	2	1	3	0	0.85	-0.85
35	2	1	3	0	0.85	-0.85
36	2	1	3	0	0.85	-0.85
37	2	1	3	0	0.85	-0.85
38	2	1	з	0	0.85	-0.85
39	2	1	3	0	0.85	-0.85
40	3	1	2	-0.85	0.85	٥

Judge #	bchoice	gchoice	ochoice	scoreB	scoreG	scoreO
41	3	1	2	-0.85	0.85	0
42	3	1	2	-0.85	0.85	0
43	3	1	2	-0.85	0.85	0
44	3	1	2	-0.85	0.85	0
45	3	1	2	-0.85	0.85	0
48	3	1	2	-0.85	0.85	0
47	3	1	2	-0.85	0.85	o
48	3	1	2	-0.85	0.85	0
49	3	1	2	-0.85	0.85	0
50	3	1	2	-0.85	0.85	0
51	3	1	2	-0.85	0.85	٥
52	2	3	1	0	-0.85	0.85
53	2	3	1	0	-0.85	0.85
54	2	3	1	0	-0.85	0.85
55	2	3	1	0	-0.85	0.85
58	2	3	1	0	-0.85	0.85
57	2	3	1	0	-0.85	0.85
58	2	3	1	0	-0.85	0.85
59	2	3	1	0	-0.85	0.85
60	3	2	1	-0.85	0	0.85
61	3	2	1	-0.85	0	0.85
82	3	2	1	-0.85	0	0.85
63	3	2	1	-0.85	0	0.85
64	3	2	1	-0.85	0	0.85
65	3	2	1	-0.85	0	0.85
66	3	2	1	-0.85	0	0.85
67	3	2	1	-0.85	0	0.85
68	3	2	1	-0.85	0	0.85
69	3	2	1	-0.85	0	0.85
70	3	2	1	-0.85	0	0.85
71	3	2	1	-0.85	0	0.85
72	3	2	1	-0.85	0	0.85
73	3	2	1	-0.85	0	0.85
74	3	2	1	-0.85	0	0.85
75	3	2	1	-0.85	0	0.85
76	3	2	ĩ	-0.85	0	0.85
77	3	2	1	-0.85	0	0.85
78	3	2	1	-0.85	0	0.85
79	3	2	1	-0.85	0	0.85

CONSUMER PREFERENCE DATA - FRESH ROAST, cont.

CONSUMER PREFERENCE DATA – WEEK 8

Judge	bchoice	gchoice	ochoice	scoreB	scoreG	scoreO
1	1	2	3	0.85	0	-0.85
2	1	2	3	0.85	0	-0.85
3	1	2	3	0.85	0	-0.85
4	1	2	3	0.85	0	-0.85
5	1	2	3	0.85	0	-0.85
8	1	2	3	0.85	0	-0.85
7	1	3	2	0.85	-0.85	0
8	1	3	2	0.85	-0.85	0
9	2	1	3	0	0.85	-0.85
10	2	1	3	0	0.85	-0.85
11	2	1	з	0	0.85	-0.85
12	2	1	з	0	0.85	-0.85
13	3	1	2	-0.85	0.85	O
14	3	1	2	-0.85	0.85	0
15	3	1	2	-0.85	0.85	0
18	3	1	2	-0.85	0.85	0
17	2	3	1	0	-0.85	0.85
18	2	з	1	o	-0.85	0.85
19	2	3	1	0	-0.85	0.85
20	2	з	1	0	-0.85	0.85
21	2	3	1	0	-0.85	0.85
22	2	з	1	0	-0.85	0.85
23	3	2	1	-0.85	0	0.85
24	з	2	1	-0.85	0	0.85
25	3	2	1	-0.85	0	0.85
26	3	2	1	-0.85	0	0.85
27	3	2	1	-0.85	o	0.85
28	3	2	1	-0.85	0	0.85
29	3	2	1	-0 85	o	0.85

CONSUMER PREFERENCE DATA - WEEK 9

Judge	bchoice	gchoice	ochoice	scoreB	scoreG	scoreO
1	1	2	3	0.85	0	-0.85
2	1	2	3	0.85	0	-0.85
3	1	2	3	0.85	0	-0.85
4	1	2	3	0.85	o	-0.85
5	1	2	3	0.85	0	-0.85
6	1	2	3	0.85	o	-0.85
7	1	2	3	0.85	0	-0.85
8	1	2	3	0.85	o	-0.85
9	1	2	3	0.85	0	-0.85
10	1	3	2	0.85	-0.85	0
11	1	3	2	0.85	-0.85	0
12	1	3	2	0.85	-0.85	0
13	1	3	2	0.85	-0.85	0
14	1	3	2	0.85	-0.85	0
15	1	з	2	0.85	-0.85	0
16	1	3	2	0.85	-0.85	0
17	1	з	2	0.85	-0.85	0
18	2	1	3	0	0.85	-0.85
19	2	1	3	0	0.85	-0.85
20	2	1	3	O	0.85	-0.85
21	2	1	3	0	0.85	-0.85
22	2	1	3	0	0.85	-0.85
23	2	1	3	0	0.85	-0.85
24	3	1	2	-0.85	0.85	0
25	3	1	2	-0.85	0.85	0
26	3	1	2	-0.85	0.85	0
27	3	1	2	-0.85	0.85	0
28	3	1	2	-0.85	0.85	0
29	3	1	2	-0.85	0.85	0
30	2	3	1	o	-0.85	0.85
31	2	3	1	o	-0.85	0.85
32	2	3	1	0	-0.85	0.85
33	2	3	1	o	-0.85	0.85
34	2	3	1	0	-0.85	0.85
35	2	3	1	0	-0.85	0.85
36	2	3	1	0	-0.85	0.85
37	3	2	1	-0.85	0	0.85
38	3	2	1	-0.85	0	0.85
39	3	2	1	-0.85	0	0.85
40	3	2	1	-0.85	0	0.85

APPENDIX D

Figure 5. Hexanal means in PPM.

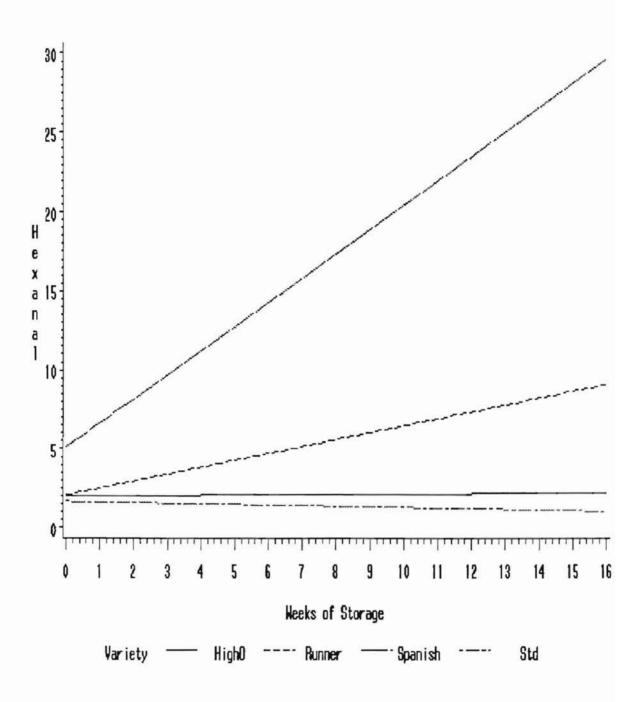


Figure 6. Slopes of Hexanal mean values (PPM) over time.

CORRELATION DATA

SUNOLEIC

			Correlati	on Matrix			
	WEEK	BITTERMN	PAINTWN	FISHMN	EARTHMN	SKUNKWN	HEXMN
WEEK	1.0000	0.0395	0.1379	0.4390	0.6765	0.6202	D. 1634
BITTERMN	0.0395	1.0000	-0.7758	-0.0552	0.2541	0.3622	0.5044
PAINTHN	0.1379	0.7758	1,0000	0.2485	0.2917	0.1638	-0.4646
FISHMM	0.4390	-0.0552	0.2485	1,0000	0.6866	0.7033	-0.1058
EARTHWN	0.6766	0.2541	0.2917	0.6866	1.0000	0.9514	0.1461
SKUNKIN	0.6202	0.3622	0.1638	0.7033	0.8514	1.0000	-0.0244
HEXMN	0.1634	0.5044	-0.4646	-0,1058	0.1461	+0.0244	1.0000
			P-Values of th	e Correlation			
	WEEK	BITTERMN	PAINTWN	FISHMN	EARTHIN	SKUNKMN	HEXMN
WEEK	0.0	0.9260	0.7447	0.2765	0.0654	0.1009	0.6991
BITTERWN	0.9260	0.0	0.0237	0.8968	0.5438	0.3780	0.2025
PAINTHN	0.7447	0.0237	0.0	0.5529	0.4833	0.6984	0.2461
FISHMN	0.2755	0.8968	0.5529	0.0	0.0600	0.0516	0.8030
EARTHMN	0.0654	0.5438	0.4833	0.0600	0.0	0.0003	0.7300
SKUNKWN	Q.1009	0.3780	0.6984	0.0516	0.0003	0.0	0.9542
	0.6991	0.2025	0.2461	0.8030	0.7300	0,9542	0.0

SUNRUNNER

			Correlati	on Matrix			
	WEEK	BITTERMN	PAINTMN	FISHMH	EARTHMH	SKUNKMN	HEXMI
NEEK	1.0000	0.7408	0.9114	0.8918	0.8574	0.7563	0.9808
BITTERIN	0,7408	1,0000	0.5257	0.5675	0.6231	0.8493	0.7271
PAINTIN	0,9114	0.5257	1.0000	0.9054	0.7988	- 0.6476	0.9093
FISHMN	0.8916	0.5675	0.9054	1.0000	0.6962	0.5956	0.8197
EARTHIN	0.8574	0.8231	0.7988	0.6952	1.0000	0.9701	0.8631
SKUNKIN	0.7563	0.8493	0.6476	0.5956	0.9701	1.0000	0.7445
HEXMM	0.9808	0.7271	6606. 0	0.0197	0.8631	0.7445	1.0000
			P-Values of th	e Correlations			
	WEEK	BITTERMH	PAINTMN	FISHWN	EARTHIN	SKUNKIN	HEXMM
WEEK	0.0	0.0355	0.0016	0.0029	0.0065	0.0299	0.0001
BITTERMN	0.0355	0.0	0.1809	0.1423	0.0121	0.0076	0.0410
PAINTMN	0.0016	0.1809	0.0	0.0020	0.0174	0.0825	0.0017
FISHMAN	0.0029	0.1423	0.0020	0.0	0.0551	0.1193	0.012
EARTHMN	0.0065	0.0121	0.0174	0.0551	0.0	0.0001	0.005
SKUNKMH	0.0299	0.0076	0.0825	0.1193	0.0001	0.0	0.034
HEXMM	0.0001	0.0410	0.0017	0.0127	0.0058	0,0341	0.0

SPANCO

			Correlati	on Matrix			
	WEEK	BITTERMN	PAINTMN	FISHMM	EARTHINN	SKUNKMN	HEXMI
WEEK	1,0000	0.8545	0.8164	0.8280	0.9375	0.8512	0.9283
BITTERMN	0.8545	1.0000	0.9083	0.8336	0.9052	0.8177	0.7652
PAINTEN	0.8164	0.9083	1.0000	0.9509	0.8492	0.6900	0.8434
FISHIN	0.8280	0.8336	0.9509	1.0000	0.8831	0.7857	0.8312
EARTHIN	0.9375	0.9052	0.8492	0.8831	1.0000	0.9474	0.7900
SKUNKIN	0.8512	0.8177	0.6900	0.7857	0.9474	1.0000	0.6485
HEXMN	0.9263	0.7652	0.8434	0.8312	0.7900	0.6489	1.0000
			P-Values of th	e Correlations			
	NEEK	BITTERMN	PAINTWN	FISHMM	EARTHM	SKUNKIN	HEXMN
WEEK	0.0	0.0143	0.0251	0.0214	0.0018	0.0151	0.0027

	RECR	BITTERM	PATRIAN	1 I SPIMPI	EARTHMA	Dis Constante	PSEX.MPI
WEEK	0.0	0.0143	0.0251	0.0214	0.0018	0.0151	0.0027
BITTERMN	0.0143	0.0	0.0046	0.0198	0.0051	0.0246	0.0450
PAINTHN	0.0251	0.0048	0.0	0.0010	0.0156	0.0862	0.0171
FISHMAN	0.0214	0.0198	0.0010	0.0	0.0084	0.0362	0.0205
EARTHMN	0.0018	0.0051	0.0156	0.0084	0.0	0.0012	0.0345
SKUNKUN	0.0151	0.0246	0.0862	0.0362	0.0012	0.0	0.1148
HEXMN	0.0027	0.0450	0.0171	0.0205	0.0345	0.1148	0.0

APPENDIX E

OKLAHOMA STATE UNIVERSITY INSTITUTIONAL REVIEW BOARD HUMAN SUBJECTS REVIEW

Date: 02-24-97

IRB#: HE-97-048

Proposal Title: SENSORY EVALUATION OF HIGH OLEIC ACID PEANUTS

Principal Investigator(s): Sue Knight, Faye Watson

Reviewed and Processed as: Exempt

Approval Status Recommended by Reviewer(s): Approved

ALL APPROVALS MAY BE SUBJECT TO REVIEW BY FULL INSTITUTIONAL REVIEW BOARD AT NEXT MEETING, AS WELL AS ARE SUBJECT TO MONITORING AT ANY TIME DURING THE APPROVAL PERIOD. APPROVAL STATUS PERIOD VALID FOR DATA COLLECTION FOR A ONE CALENDAR YEAR PERIOD AFTER WHICH A CONTINUATION OR RENEWAL REQUEST IS REQUIRED TO BE SUBMITTED FOR BOARD APPROVAL. ANY MODIFICATIONS TO APPROVED PROJECT MUST ALSO BE SUBMITTED FOR APPROVAL.

Comments, Modifications/Conditions for Approval or Disapproval are as follows:

Signature:

nstitutional Rev Chair

cc: Faye Watson

Date: March 10, 1997

OKLAHOMA STATE UNIVERSITY INSTITUTIONAL REVIEW BOARD HUMAN SUBJECTS REVIEW

Date: 04-08-97

IRB#: HE-97-061

Proposal Title: SENSORY EVALUATION OF HIGH OLEIC ACID PEANUTS

Principal Investigator(s): Sue Knight, Faye Watson

Reviewed and Processed as: Exempt

Approval Status Recommended by Reviewer(s): Approved

ALL APPROVALS MAY BE SUBJECT TO REVIEW BY FULL INSTITUTIONAL REVIEW BOARD AT NEXT MEETING, AS WELL AS ARE SUBJECT TO MONITORING AT ANY TIME DURING THE APPROVAL PERIOD. APPROVAL STATUS PERIOD VALID FOR DATA COLLECTION FOR A ONE CALENDAR YEAR PERIOD AFTER WHICH A CONTINUATION OR RENEWAL REQUEST IS REQUIRED TO BE SUBMITTED FOR BOARD APPROVAL. ANY MODIFICATIONS TO APPROVED PROJECT MUST ALSO BE SUBMITTED FOR APPROVAL.

Comments, Modifications/Conditions for Approval or Disapproval are as follows:

Signature:

Institutional Revie Chair

cc: Faye Wats

Date: April 11, 1997

VITA

Faye Ann Watson

Candidate for the Degree of

Master of Science

Thesis: A COMPARISON OF ROASTED PEANUT FLAVOR ATTRIBUTES OVER TIME FOR THREE PEANUT CULTIVARS WITH DIVERS OLEIC: LINOLEIC ACID RATIOS

Major Field: Nutritional Sciences

Biographical:

- Education: Graduated from Mt. Eden High School, Hayward, California in June, 1966; received Associate in Arts degree in English from Chabot College, Hayward, California in December, 1969; received Bachelor of Arts degree from Ottawa University, Ottawa, Kansas in May 1983; completed Dietetic Internship at Oklahoma State University, Stillwater, Oklahoma in January, 1997; completed requirements for the Master of Science degree with major in Nutritional Sciences at Oklahoma State University in July, 1998.
- Experience: Food Service Supervisor, Woodridge Retirement Village, Stillwater, Oklahoma, July, 1994 – February, 1996. Dietetic Internship at St. Mary's Mercy Hospital, Enid, Oklahoma, June 1996 – November 1996. Research Assistant, Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, January, 1997 – June, 1998. Teaching Assistant, Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, August, 1997 – May, 1998. Research Assistant, Food and Agricultural Products Research and Technology Center, Oklahoma State University, Stillwater, Oklahoma, December, 1997 – June, 1998. Instructor, Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, November, 1997 and April, 1998.
- Professional Memberships: American Dietetic Association; Oklahoma Dietetic Association; Institute of Food Technologists.

Awards: Mary B. Leidigh Scholarship, August, 1997.