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1.0 Introduction

The industrial revolution that occurred during the nineteenth and twentieth

centuries changed the United States. It caused almost as many problems at it solved. The

invention of complex machines that bolstered the revolution was actually the reason for

the improvements in society. The onset of these machines created situations that the new

revolution could not foresee. They required fuel, lubricants, cleaners, degreasers, and

other industrial solvents and keep the revolution moving. These products come from

crude oil and other fluids (mainly fresh water and saIt water) drawn from the ground and

brought to the surface through pipes made of various components. These fluids from the

ground were then stored in tanks until processed or used at the industries. These early

day transportation and storage methods were not very efficient at transporting the fluids

from the drilling process to the point of use. The pipes used for transportation often

leaked. The early storage containers were made of redwood that wouLd leak until the

wood swelled from the moisture. The drilling rigs would blowout, spraying oil out of

the top of the dike until the well pressure could be stabilized. Maintaining the machines

required cleaning and maintenance, after which the various fluids would be simply

discarded. This often meant that the fluids were thrown down the drain, poured out on

the ground or discharged into a stream without any type of treatment.

These early industrial practices have led to many types of environmental problems

associated with the ground, water, and air found in North America (Masters, 1991). The

leaks and spills caused by the fuel and lubricants of the industrial revolution were not

perceived at the time to cause significant problems. The dumping or discarding of the



fluids often created an aesthetics problem with the neighboring people. As time passed.

these environmental problems caused by the dumping started to mount. The types of

problems that arose were undrinkable water supplies, sickness, and even death (Masters,

1991). These problems were often not directly associated with the industrial practice

until much later in the century. The problem only seemed to rise due to increasing

numbers of industrial facilities and more potent chemicals and escalated well into the late

1970's until the federal government stepped in and developed new laws.

1.1 Congress's Approach to Cleaning up the Environment

Congress began applying minor regulatory pressure towards industry in the late

1950's with an environmental policy that dealt with clean water. Although it was not the

first environmental law in the United States, the Rivers and Harbors Act dealing with

dredging in the 1890's was the first environmental law (Hughes, 1995). The 1950's clean

water law was written under the common law system. This means that the property

owner retained control of environmental conditions, unless it could be proven in a court

of law that a particular incident hanned someone off of the property. In 1969, Congress

passed the National Environmental Policy Act (NEPA) making the first time that the

United States defined its environmental objective (Sullivan, 1997). This law addressed

environmental problems without the traditional common law approach. This act did help

alleviate some of the problems in certain cases, but did not solve all the environmental

problems. NEPA only applied to federal government controlled land or persons dealing

directly with the federal government. That meant that environmental situations on private
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lands were not controlled under this policy. The next government action came in the

early 1970's following two major environmental disasters. One was an oil spill off the

coast of California that coated the Santa Barbara beaches with oil, and the Cuyahoga

River in Ohio caught fire. The Environmental Protection Agency (EPA) was created

from the environmental departments of several agencies to provide a unified focus to the

nation's environmental effort. Congress also passed several laws to rectify past

environmental problems. These acts included the Clean Water Act of 1972, which dealt

with discharges into surface waters, and the Research Conservation and Recovery Act

(RCRA) of 1976, which addressed solid waste (Thomas, 1995). The acts that were

created in the late 1970's were not effective until the early 1980's. The law mitigated

past or abandoned hazardous waste sites was the Comprehensive Environmental

Response, Compensation, and Liability Act (CERCLA). Each act and law was an

attempt to strengthen and/or eliminate weak. or missing areas that dealt with

environmental pollution and control. Congress has also passed laws in the 1980's and

1990's to assist in the environmental protection plan of the United States. They include

the Clean Air Act (CAA), Safe Drinking Water Act (SDWA), Superfund and

Reauthorization Act (SARA), Toxic Substances Control Act (TOSCA), and the Pollution

Prevention Act (PPA) to name a few (Findley, 1991).

These laws have many things in common, they state that the contaminated areas

or events must be dealt with and cleaned to appropriate levels to alleviate any harm to the

public. The appropriate levels are not always clear. The problem is how do we reach

these clean-up levels? The laws are not specific how to obtain the final concentration
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levels of the contaminated area. As a result, engineering designs used to remediate a

contaminated site relies on accepted current practices when remediating a particular site.

1.2 Using Expert Systems to Evaluate Environmental Problems

The processes that were used in the early stages were decision trees based on

limited knowledge and experience. Different situations required following different

branches of the tree. This method was only as good as the engineers practical experience

and the questions in the decision tree. The early engineers' decision tree was greatly

effected by the type of infolTI1ation that the decision tree contained. If the engineer had

only a limited knowledge of infolTI1ation of a particular type of remediation, then all

applicable remediation schemes may not be considered. As a result, the best remediation

scheme for a particular problem may not be evaluated.

The engineering world approached this problem by creating decision trees that

were based on the most up-to-date technology. The easiest way to get this up-to-date

technology was through a computerized decision tree model that was updated with the

most current innovations in science and technology. These newly created models were

called expert systems. By proceeding through the program and imputing information

required by the expert system on a certain site, it will identify remediation schemes

applicable to the unique situations that exist at the site.

1.3 Using CORA as the Modeled Expert System

The expert system that was used during this research project was called Cost of

Remedial Action (CORA) (CH2M Hill, 1990). CORA is a program that was created and
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maintained for the Environmental Protection Agency until the early 1990's. CORA at the

time of its last update in 1990 gave the user a way to evaluate the site in a screening

matrix of remedial activities by asking specific questions about the site. The questions

ranged from what type ofchemicals were present, soil types, and information concerning

the hydrology of the site. The program then interprets each answer and recommends

several applicable remediation schemes. The user then inputs the total amount of

contaminated materials and the recommended level of clean-up for that site. This

information results in CORA giving the user an approximate cost ofthe remediation and

clean-up. The costing module includes everything from clearing and grubbing to moving

off-site. CORA needs to be updated with regards to costs, new remediation technologies,

and program default parameters.

CORA can be updated by rewriting and revising the computer code. As an

alternative, this research applied a neural network model. A neural network works by

pattern recognition that comes from training the system to learn. Training means that the

neural network is capable of looking at the inputs and outputs of a given situation to

predict the results of different situation. The structure of the neural network is modeled

after the human brain. In general, the brain works by connecting millions of neurons with

synapses (Figure 1, in Chapter 2, shows an illustration of the brain deals with thoughts in

the human brain). All the neurons in a brain are connected to each other to allow the

brain to process many types of complex information easily. The computer counterpart

can achieve similar results with increased efficiency and speed relative to conventional

computer codes. Neural networks have the capacity of learning the complicated decision

tree associated with CORA or other expert systems while being able to update the
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underlying data base and decision algorithm. The advantage of updating CORA by using

a neural network is that the time needed to update the system was relatively minimal and

a knowledge of CORA's programming language is not needed. Similarly, the

infonnation contained in CORA. was updated for greater applicability. Once the training

is complete, the updates are very fast, usually less than five minutes. The only computer

information that the user must know to run the neural network is a basic knowledge of

computer spreadsheets augmented with the neural network "add-on". In this manner, a

tool was developed quickly and efficiently which built upon previous engineering

knowledge with readily available skills and software.

1.4 Definition of the Scope for the Project

The scope of this project was confined to only sites that contain Volatile Organic

Compounds (VOCs) as the chemical of concern. Although, CORA has the capability of

giving remediating alternatives for many other categories of chemicals that might exist at

a site. VOCs were chosen for two reasons. The first was that CORA was a very complex

program that was designed to handle every condition that a user might see at ajob site.

The second reason was that VOCs are a common contaminant problem that exist in

Oklahoma as a direct result of the oil industry and other industries. The neural network

was designed and set-up with the same questions as the CORA program for all types of

situations where VOCs may need to be remediated. The ultimate goal of this research

project is to achieve a tool that is based on the slightly dated information from CORA

with the updated information that has been added through the neural network that can be
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used to help make decisions in future environmental remediation sites. The neural

network that was used in this research project was Neuralyst (Shih, 1994). This tool will

also have the capability of being updated with any type of information through the use of

the neural network.

7



2.0 Neural Networks

2.1 History of Neural Networks

Neural networks have a history that dates back to the early 1940's. The first

mention of a neural network was in an article by McCulloch and Pitts in 1943 (Wilson

and Sharda, 1992). The McCulloch-Pitts paper started the examination of how the human

brain functions. McCulloch-Pitts believed that the brain exists as a series of interacting

parts, which evolve continuously, whose sole function is dependent upon the connection

of these intermediate parts (Wilson and Sharda, 1992). This paper was given credit for

starting the research for processing systems of data based on the function of the human

brain. As a result, this research was the first ever done on the neural network.

Donald Hebb, a psychologist, in 1949 further advanced the science of the human

brain with a new theory (Wilson and Sharda, 1992) that stated that the brain operates by a

collection of neurons called assemblies. These neurons process the brain's impulses and

convert them into an appropriate behavior. Hebb also believed that the neurons were

only interconnected by what he termed self-organization. He believed that the

interconnections between neurons helped strengthen the pathways.

In 1957, a scientist named Rosenblatt made the next major stride in the neural

network field by developing one of the first learning systems (William and Sharda, 1992).

The system was a neuron-like device that was caned the "Perceptron." This was the first

neuron type program or machine that could learn from data input.

The biggest break in the early history of the neural network occWTed in 1960

when two electrical engineers, Windrow and Hoff, described the first neuron based
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computer (Wilson and Sharda, 1992). This neuron based computer is the foundation for

the modem neural network training of computer programs.

An opposite view was published that produced evidence that questioned the

earlier work. This damaging view was published in a book called "Perceptrons" co

authored by Minsky and Papert in 1969 (Wilson and Sharda, 1992). The opinion was that

the neuron based computer (Windrow and Hoff) did and would not work. They disputed

the Rosenblatt's perceptron device and stated that the device could not solve the simplest

of problems. They further stated that the neuron device, while having attractive features,

could not be carried over to the multi-layer networks proposed by the earlier scientist

(Wilson and Sharda, 1992). This sent ripples through the scientific community that

seriously disputed the earlier claims of Rosenblatt. A lack of technology further fueled

this argument. The computers in the 1960's and 1970's were severely limited in speed

and capacity. They were large but very slow by today's standards. As such they could

not process problems of the complexity and sophistication posed by typical neural

network approaches. Federal research money was temporarily directed away from neural

network topics, resulting in a thirteen year period where little or no additional

development occurred.

In 1982, John Hopfield restarted neural network research and restored its

credibility to the scientific community (Wilson and Sharda, 1992). His work proved that

neural networks were able to solve various types of problems from simple to complex by

applying a learning system program that was trained to learn.

In 1986, Rumelhart, Hinton, and Williams derived a learning algorithm for

Rosenblatt's Perceptron device. The algorithm was developed from the work perfonned
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by Rosenblatt as well as Windrow and Hoff in the late fifties and early sixties. This

learning algorithm was termed a "back propagation" network. Today, "Back propagation

is the most widely used training algorithm for multi-layer networks today" (Wilson and

Sharda, 1992). In the end, the perseverance of these scientists and engineers has given the

technical community a very innovative way to solve modem complex problems.

2.2 How The Neural Network Works

Neural networks operate in a very complex way that is hard to completely

understand. The important thing for environmental engineering applications is that to use

the program only requires knowledge of the program and its features and not the

underlying mathematics. These networks have been proposed for many applications with

various types ofproblems. On the simplest level, a neural network is setup like a human

brain with many simple elements (neurons) that work together in parallel. The following

two figures show how the brain functions in parallel and how the neural network attempts

to simulate the human brain. Figure 1 shows that the neurons in the human brain are setup

in parallel and how they are connected to each other. A more complex look at the

neurons would show multiple layers of these neurons that would be interconnected.

Biological

r
Figure 1: A Biological Neural Network: A Brain (powers, 1994)
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Figure 2 illustrates how the computer based structure ofneural networks. The neurons

that make-up each layer are connected to each other to create a network ofneurons.

Artificial

Figure 2: Artificial NeuraJ Network: A Computer (powers, 1994)

The "X's" in the figure represent the input layer of a neural network. The infonnation is

then spread throughout the network through the hidden layers which are represented with

the "A's". After the information is processed in the hidden layers the information goes

into the output layer defined as "D's". The difference between the biological process of

the brain and the artificial processes associated with a computer must be dealt with to

produce an affective artificial neural network.

Neural networks can have one or more layers of neurons. These networks

normally allow the user to have a range of 2 - 6 layers. The layers are separated into three

different categories. The first layer of neurons in the network is termed the input layer.

Input neurons are used to define the problem that is to be solved. The last layer of neurons

is the output layer. Output neurons are used by the computer for the results of the neural

network. All other neuron layers between the input and out are called hidden layers.

Hidden layers are used by the neural network to process the inputs while predicting the

outputs. These layers are responsible for the all the number crunching and pattern

association that is needed to convert or model the input information into the
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desired output. The layers can be interconnected together, or only connected on each

individual layer. The connections between all neurons carry weights that contain the

knowledge of the system. The neurons then sum the obtained information from other

surrounding neurons or external input stimuli (Wilson and Sharda, 1992). This

information is then transferred by each neuron in a non-linear fashion to ultimately

achieve a trained system. The neurons with the summed information will then internally

process the information and distribute the information to the next appropriate neuron or to

the external output. The exact way in which the neural network operates is based on the

structure of the computer code.

A decision has to be made on how many layers are needed for every neural

network. The higher the number of hidden layers the more generalizations can be made

in the network. The larger number of layers also allows the program to use fewer

numbers of neurons in the development of the neural network~' It is reported that most

neural networks can be solved with three layer systems (Shih, 1994). The neural network

program used in this research project has a default size of three layers. System

processing speed may be able to be increased with the addition of more neurons and/or

hidden layers. In some cases, too few layers and neurons in the neural network can cause

the network to stall and never reach the desired goal of 100% pattern recognition. Pattern

recognition occurs when the neural network produces the same results as the target results

that were inputted into the network by the user. The reason being that too few neurons

force the network to place a large amount of information into an individual neuron

resulting in a loss of efficiency. In the case of too many neurons, there is so little

information in an individual neuron it is almost a wasted space. This in tum will result in
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a slowing down of the network. Lowering the number of neurons will result in a

speeding up of the network. A problem with a larger layer system is the potential for a

great loss of time in the training period. The larger systems take longer to train due to the

size ofthe neural network. They have more layers and more neurons. The smallest

neural network that can efficiently give satisfactory predictable results are typically the

best networks as far as time is concerned. Selecting the number of layers and number of

neurons is an iterative process.

A neural network can solve both linear and non-linear problems. As with any

"learning" experience the network is initially very prone to mistakes. Once calibrated,

the neural network can become very precise. The network is ultimately driven by the

type of problem to be solved. The neural network begins as a collection of rules and

inputs that must be taught to achieve better results. This learning process is termed

training.

A neural network can be trained by either supervised or unsupervised training

(Wilson and Sharda, 1992). Supervised training requires the user to describe both the

problem domain and the answer (desired output). This allows the neural network to learn

that this particular input will result in this output. A control group is required to teach the

network the appropriate learning response from the training. The control group that

contains data with known inputs and outputs is used as a calibration instrument for the

network. After the input is entered, the neural network processes the inputs and the given

output until the system can train itself to produce the desired output. Training starts when

the network is given a problem and higher control neurons try to apply the hidden

neurons to generate the expected answer. The specific learning algorithm that is used
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during the training will determine how the neuron's interconnections are weighed. The

algorithm will then correct the weights of the neurons due to the differences in the actual

and desired outputs. The network is continually updating the system until the desired

outputs are achieved. In other words, after the calibration is completed the system will

adjust the weighted values ofthe neurons so that when a given input is received, the

correct output will be calculated (Gifford, Gifford, and Gifford, 1997).

In an unsupervised learning system, there is not a target answer to which the

network tries to learn. This pattern tries to learn by the process of repeated exposures.

Wilson and Sharda state that, "... this kind of learning can be envisioned as the neural

network appropriately self-organized or clustering its neurons related to the specific

desired task" (1992).

A properly functioning neural network will be able to learn the underlying

problem from a unique input signal and be able to map it onto a continuous output curve.

This process is called generalization (Gifford, Gifford, and Gifford, 1997). The number

of hidden neurons in a network is very important to the quality of the answer. If a

network does not have enough hidden neurons, the neurons will overgeneralize the

problem. The network will sort too much information in not enough categories. As a

result, the answer from the network will not reflect the complexity of the problem

resulting in a wrong answer. Networks with too many hidden neurons produce trivial

answers because the network has too many places to store information.

The neural network has many advantages over conventional models which have

been used in the past. Traditional models develop formulae that mimic reality. The data

for a particular situation is used to fit the model. A neural network develops functional
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relationships between the input and outputs. Neural networks can be adapted to the most

complex problems where other models are often too simplified. The training process

teaches the program the importance of every neuron instead of focusing on a single point

such as a maximum or minimum data point. Each neuron is assigned a significant

(weight) and is identified by the classification of the connection. This allows the program

to establish useful relationships between the neurons in the network. The network can be

as complex as the original problem with no worry about whether a human can understand

the processing of the information. The computer will give a result that an engineer or

scientist should be able to understand.

2.3 Neural Network Parameters

There are several parameters that are used by a neural network to help train the

system. They include the learning rate, momentum, training tolerance, and testing

tolerance. The process used to determine these parameters is an iterative one. Each

parameter will have to be evaluated to determine the correct number to enhance the

neural network's performances.

The learning rate is used to control the way in which the error is used to correct

the weights in the neural network for each training case. This correction in the error is

the way the network trains itself. The learning rates do this by reducing problems dealing

with stability. The range of the learning rate is from 0 to 1. The higher the learning rate

the more problems that can arise in the stability of the neural network. The lower number

will reduce unstable behavior. Unstable behavior is when the neural network plateaus
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during training (number of correct answers does not increase as time progresses). The

lower the learning rate the longer the network wi 11 take to develop. A learning rate that is

too low will result in a neural network that can not be trained without a significant

amount of computer time. If the network can be trained without the extra time required

by a low learning rate, then the low learning rate is not needed. The same results can be

produced without the extra computer time.

Momentum deals with the amount of previous error that is applied to the weight

adjustment in each training case. If a user defines momentum to be 0.5, then the weight

adjustment will be 50% from the current error and 50% of the adjustment will be applied

to the previous case within the neuron. The neuron then takes the starting value given by

the user and using an exponential decay, reduces the amount of error associated with the

next neuron by 50% each time. The higher the momentum is set the smoother the

training process will operate. It also allows the neural network to adjust for any unusual

circumstances that might arise in the training process. A setting of] would cause the

network to use 100% ofthe previous error for the weight adjustment. This means that for

the first training case the error from the previous example, there is no previous example

because it is the first training case, would have its weights adjusted by 0%. The next

training case would then take 100% of the error associated with the previous case (0) and

adjust it by the 0% again. This will continue no matter how many training cases.

Therefore, the training will never stop because the network is unable to train itself by

adjusting the error. This means that the momentum must be lower than 1 or ]00% (Shih,

1994). A lower momentum can be used if the data appears to be regular and smooth in

appearance. The lower rate will result in longer training times.
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Training tolerance is used during the actual training procedure of the neural

network. It tells the neural network how much training is needed to consider itself

trained. In other words, this number reflects how close the network must come to the

desired answer to consider that particular output as correct and trained. Tighter training

tolerances force the computer to come closer to the desired targets. For instance, if the

training tolerance is set at 0.2, then the computer will have to come within ± 20% of the

target answers to be considered trained. It basically increases the accuracy of the network

by decreasing the difference between the targets and the network generated outputs. This

increased accuracy will result in longer and rougher running during the training times, but

might train the network a little more than necessary to get the desired results. If the

training tolerance is set too low the network may encounter a phenomenon called

overtraining. This occurs when the network is so concerned predicting the answer that it

looses its ability to generalize the training data. This means that the training of the

network will never stop because the machine can not achieve the proper answers that

would stop the training procedure.

Testing tolerance indicates the same thing as training tolerance except that it is

used by the computer after the training period when predicting the test cases and tells the

network how close its generated values must be to the target answers to be considered a

correct response. The training tolerance allows the user to define to the network how

close the output of the test cases must be to the target answer given into the training case.

For example, if the user gives a value of 0.4, if the computer's output is within 40% of

the answer it is considered correct. Testing tolerances can be set up to 0.5 or 50% for

true- false type neural networks. The reason being that true is represented by a one where
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a false identification is represented by a zero. This feature will have to be set closer to

zero for networks that are using number values instead of true false. '/

2.4 Types of Neural Networks

There are many types of neural networks used to solve problems. Three of the

most commonly used neural networks are-tiulti-Iayer feed forward networks, opfield--
networks, and Kohonen's feature maps (Wilson and Sharda, 1992). The multi-layer feed- .

.!9rwar:d-BetwQr-ksJlave .Q:l.any~!icCltions in classification and forecasting problems.

This network type consists of layers of neurons which pass information in one direction

from input layers, through hidden layers, and finally to output layers of the network. The

neurons of each layer are only connected to the subsequent layer of neurons. The hidden

layers are allowed to develop their own internal representation of mapping input to

output. Overall the network operates with a non-linear behavior, which allows the

neurons of the neural network model to learn many different types of input-output

relationships. The training of the system is done by a back propagation training

algorithm which is a type of supervised training. ORfMS Today defines back

propagation as an "... attempt to minimize an error measure such as the sum of squared

error during the training process" (1992). Back propagation is used when the error is

determined and a part of it is propagated back through the network within the neurons.

The error is used to adjust the weights and threshold values at each neuron, so that the

next time, the error within the network response will be less for the same inputs and

outputs. Back propagation is applied continuously until the network error in the results
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fall below the training or testing rate set by the user (Shih, 1994). Back propagation is

one of the most common training algorithms used today.

The second type of neural network which i,s commonly used is a Hopfield

Network. This model is based on a series of papers presented by John Hopfield in the

1980's (Wilson and Sharda, 1992). It is composed ofhigWy interconnected networks of

non-linear neurons. It is a single layer of neurons in which every neuron is connected to

every other neuron. The system's output from a neuron depend on the previous values

stored in the neuron. Interconnections between the neurons are weighted, which

eventually will lead to a feasible solution. The system creates an energy function, which

represents the goal of the neural network by stopping the evolution of the network when

the right output is calculated (Wilson and Sharda, 1992). The Hopfield network starts

with neurons, and assigns a weight to each of the interconnections. The neurons and their

weights are adjusted over time as the network runs. Eventually the neurons stabilize as

they approach the final answer as determined by the energy function. This network does

not use any type of training to teach this particular system. The interconnections between

the neurons and the weight they carried tend to be fixed once established. This type of

network is best used for an optimization problem, especially when the application can

take advantage of the parallelism of the network (Wilson and Sharda, 1992).

The last major type of neural networks is the Kohonen's self-organization

network. This network uses an unsupervised approach to teach the network. The

network is based on the premise that the human brain classifies some of its information

based upon an applied external stimulus. The algorithm used in Kohonen's networks

form what he called a "feature map" (Wilson and Sharda, 1992). This is where the
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neighborhoods are sensitive to the same certain types of inputs. This network is most

often used in a cluster analysis problem. The network has also been shown that it can

handle certain types of organizational problems.
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J.O Expert Systems

Expert systems are one of the most commonly used computer tools for making

decisions. The field of expert systems is at the forefront of commercialization in

computer science (Walker and Miller, 1986). Expert systems are defined as a"...

computer system (hardware and software) that simulates human experts in a given area

of specialization" (Castillo. Gutierrez, and Hadi, 1997). The reason expert systems are

becoming popular in the 1990's is because of the very high level of expertise required to

address increasingly complex problems. These expert systems, if designed properly,

contain an extremely high level of human expertise required to make potentially life

threatening decisions. This in turn, gives a high level of expertise to everybody who uses

the expert system appropriately and responsibly.

3.1 History of Expert Systems

Expert systems fall under a new field called artificial intelligence. The official

beginning of artificial intelligence was at a convention at Dartmouth College in 1956

(Walker and Miller, 1986). A prediction made at this conference was that within the next

25 years everyone would be involved in recreational activities, while their computers

back at the office would do all the work (Walker and Miller, 1986).

The development of artificial intelligence was slowed during the 1960's and

1970's when programs that became more difficult and complex than originally thought

were installed on computers lacking power and speed. Through these lean years, research

continued and successful artificial intelligent programs or systems were developed in the
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early 1980's. The major advancement that spurred this new growth in artificial

intelligence was the rapid growth and power of the modern computer. As a result, there

are numerous types of artificial intelligent programs in use in commercial businesses and

industry. The majority of the artificial intelligence and expert systems are being used in

the business world, but increasingly there are significant environmental examples.

3.2 How Expert Systems Operate

Expert systems are based directly on knowledge created or derived from their

human counterparts. This process is called knowledge engineering (Williams, 1986).

Knowledge engineering involves 4 components. The knowledge engineering must:

(1) define the expert system domain,
(2) elicit desired information from human experts,
(3) incorporate that knowledge into acceptable form for the knowledge

base, then
(4) test the system to evaluate its robustness and accuracy (Williams,

1986).

The knowledge base contains facts, rules, and relationships derived from expert

experience relating to specific situations. Once the knowledge base has been established

the computer-based expert system must simulate the thinking process of a human expert.

The knowledge base must then use an inference engine to apply the knowledge base

efficiently. The inference engine automatically identifies and evaluates any knowledge

from the knowledge base that would be applicable to each given situation. This process

of going through the knowledge base and the inference engine is not always easy. The

knowledge engineer must incorporate not only general rules about a situation, but also the

22



....

specialized rules associated with special circumstances. The information can be added

later when the error is detected. The problem is that the problem may not be caught until

the system has been sent to the public. For this reason, expert systems have become

iterative processes of multiple refinement. (Williams, 1986)

Expert systems offer several advantages to a company that uses them. The expert

system allows the design engineer to make decisions with the most current knowledge as

long as the computer program is updated. If the expert system is not updated

continuously, the system can still be very useful. The updates normally involve minor

changes in the decision tree or the addition of new processes. As a result, the updated

version will provide only a small change in the output. If the system is not updated over

a period of time then the small changes will add up to make your system out of date.

Expert systems are capable of outperforming their human counterparts that become

bored, forgetful or developing tunnel vision (Williams, 1986). The speed of the decision

making process used in expert systems via the computer is far superior to a human. The

limitation is that the computer is only as smart as the human who created the program.

Expert systems are also susceptible to any wrong information that is inputted into the

expert system. Human experts have two qualities that supersede the computer. Humans

have considerable knowledge in specific areas and can have effective strategies for

quickly sorting through knowledge when faced with problems (Williams, 1986). Clearly

the use of an expert system in association with a human expert can improve the decision

making process.
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3.3 CORA as an Expert System

Cost of Remedial Action (CORA) was the expert system that was simulated with

a neural network in this research project. CORA was originally written for the

Environmental Protection Agency (EPA) to allow the user to define a site remediation

approach and to assign associated costs (1990). The program is intended for users who

are knowledgeable about the site. The relatively little information that is required

concerning the site includes hydraulic conductivities or soil types and limited

concentration range information (CH2M Hill, 1990). It is assumed in the program that

the remediation process is in the earliest stages of the remedial investigation. From the

information provided by the user, CORA will then recommend several relevant

remediation actions for the site as well as estimating costs. It is to be used specifically at

sites that have not had a feasibility study.

The program is comprised of two independent components: an expert system and

a cost system. The expert system component requires the user to respond to questions

about various contamination types and levels as well as remedial action goals and

conditions present at a site. The expert system will recommend to the user a range of

remediation actions that can be considered at the site. CORA's expert system functions

as the knowledgeable advisor and creates the knowledge base. The system then evaluates

the answers to the questions to determine what additional facts are required for that

particular site. The expertise used by CORA for the inference engine originates from

EPA policy considerations and technical feasibility (CH2M Hill , 1990). CORA makes a
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decision on different remediation schemes by looking at the site characteristics and

chemicals of concern. The program does not evaluate any alternatives based on cost.

After the user evaluates the options created in the expert system component, the

user then inputs the desired remediation actions into the cost module of the program. The

different types of remediation actions that were selected are then economically evaluated

separately. An example of an economic evaluation for a remediation scheme is located

on the following page in Figure 3, representing a general cost estimate generated by

CORA for an excavation example. This figure also shows the type of questions that are

required for the cost evaluation for a particular remediation scheme. Both the estimated

capital and O&M costs are presented.

Within the cost module, remediation schemes will be costed out after a few more

questions about the site are answered. These additional questions cover topics such as the

area of contamination, type of contamination, and level of protection required for the

public and workers. This is accomplished by CORA with the use of default values in

certain places throughout the cost modules (CH2M Hill, 1990). This feature allows the

user to establish a price before all the site information is collected. Since the economic

evaluation can be based on default values, the program requires the user to input a level

of confidence. The program does allow the user to input more specific site information.

Costs generated by the program cover capital cost and the first year of operational costs

(CH2M Hill, 1990). CORA does not provide all the economic elements that may exist in

all remedial actions. For example, cost of equipment, decontamination of buildings,

and/or applicable permits are not included in the overall costs provided by CORA.
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***** VERSION 3.0 DRAFT ***** DATE: 03/29/98
TIME: 17 : 39 : 34

SITE NAME:
OPERABLE UNIT:
SCENARIO:
RUN BY:

CORA SOIL EXCAVATION COST MODULE (201)

EXAMPLE FOR THESIS
ENTIRE SITE ESTIMATED START: MID FY 1998
MODULES COMMON TO ALL SCENARIOS
Matt Thornnpson PHONE NUMBER:

INPUTS

Parameter Value

RESULTS

Component Total

128

TEST
Soil type
Depth of excavation (ft)
1. Steel sheeting or
2. side slope?
Horizontal component
Length of excavation (ft)
Width of excavation (ft)
Depth of cover above
contaminated materials (ft)

Depth of contaminated excav.
w/o continuous sampling (ft)

Depth of contaminated excav.
w/continuous sampling (ft)

Thickness of lifts (inches)
Number of drums
Pct. of contaminated zone
Base air monitoring required?
Pct. of backfill available

onsite
INPUTS

4
5

1
1

25
25

2

o

3
12

o
o
N

75

BYPRODUCTS FOR TRANSPORT/DISPOSAL:

DRUMS
CONTAMINATED SOIL (CY)

(SWELL FACTOR=1.45)

RESULTS

o

Parameter Value

Protection level for:
Uncontaminated materials A
contaminated materials A

Temperature (degrees F) 65
Confidence level H

component Total

COST FOR ALL EXCAVATIONS

CAPITAL COST 240,000
o « H COSTS 0

*** Excavation depth cannot exceed 25 feet. For excavations
deeper than 25 feet, complex site-specific sheeting, bracing,
dewatering, terracing and haul roads may be required.
Excavation for depths deeper than 25 feet should be scoped and
casted on a site-specific basis.

Figure 3: Cost Analysis from CORA (CH2M DiU, 1990)
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4.0 Materials and Methods

The ultimate goal of the project was to have a 100% recognition rate in an

efficient manner. The 100% recognition rate occurs once the training of the network

leads to a 100% prediction of the test cases. The neural network will tell the user that all

variables are correct while no variables are incorrect. When this criteria is met, the goals

of the neural network have been accomplished and the network is ready for almost any

type of containment or treatment scenarios dealing with VOC's previously addressed by

CORA.

The first step of the research project was to evaluate CORA and decide the exact

scope of this project for the neural network. This was required to help develop the

spreadsheet that will be used in the neural network. A spreadsheet is needed as a place to

set up the information from CORA. The spreadsheet will then be used to input the

information into the neural network. The scope was fixed on a potential site that could

exist in the state of Oklahoma. Consistent with input to CORA, the soil condition of the

site was Limited to homogeneous contaminated unsaturated soils. The neural network

was set up to evaluate both containment and treatment remediation schemes while the

type of chemicals of concern for the potential site were limited to Volatile Organic

Carbons (VOC). The types of soils that were evaluated were clay and silt. It was felt that

these represented most of the potential site characteristics for contaminated site in

Oklahoma.
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4.1 Neural Network Setup for Containment

The neural network setup was adversely impacted because the amount of data

needed to achieve a 100% pattern recognition rate from the neural network from CORA

was unknown. The overall size of the spreadsheet based model will not be finalized until

the training and testing ofthe neural network is finished. It is an iterative process

requiring many trials. The research had to solve this dilemma by going back into CORA

and collecting data. These data were used to train the neural network (described in

Section 2.2). The questions that CORA asked, except for the information described in

Section 4.0, were true-false questions. CORA as well as the neural network gave

different remediation schemes depending on the answers to these questions.

The network was established by looking at the types of questions and answers that

were asked by CORA. The key to this project was to directly relate CORA to the

spreadsheet, which in turn was used to load and train the network. The neural network

was based on the use of a spreadsheet. The size of the spreadsheet was not known at the

start of the research project. That is, the different site scenarios would lead to different

questions from CORA. The spreadsheet must be large enough to encompass every type

of question for treating or containing VOC's. The actual structure of the network

required that questions that were related to a certain issue be incorporated into the

network together. Different issues would then need to be related to the network as a

different entity. The actual network could not be setup until the data from CORA were

collected and input into the spreadsheet.
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The first data collected from CORA dealt with different scenarios associated with

containment schemes. An example of an output from CORA for a typical containment

scenario, is located on the following two pages i,n Figure 4. The first part of Figure 4

shows the type of questions with answers that were asked by CORA for one containment

scenario. The second part of Figure 4 shows the remediation schemes that were

recommended based on these question. An entire list of all the questions that are possible

within the containment section are listed below in Table 1.

Table 1: CORA Containment Questions*

- What waste types apply to the site (Ql)
- What response action do you wish to consider (Q2)
- What types of contaminants are in the soil (Q4)
-Will excavation of the contaminants cause environmental or public impacts

(Q5)
-Is the contaminated soil a hazardous waste (Q6)
-Is the contaminated soil concentration above land disposal restrictions (Q7)
-Is an onsite landfill reasonable (Q8)
-Select all types of contaminants in leachate from landfill (Q8-a)
-Are contaminated soil located in a IOO-year flood plain (Q8-b)
-Is a shallow aquifer present that would not allow a below grade landfill (Q9)
-Type of discharge option either water reinjection (QI0)-water infiltration

(QI0-a)-discharge to POTW (Q-I0b)-discharge to surface water (QI0-c)
-Could site conditions threaten health or safety of unauthorized visitors (Qll)
-Are exposed soils on the site exposed to erosion (Q12)
-Pick the location of the site: above floodplain (Q12-a)-at base of hill above

floodplain (Q12-b)-in floodplain (Q12-c)
*The questions are not sequentially numbered due to other questions that resulted in the treatment section of

CORA.

The data were collected by picking true and false responses for the questions listed above.

In some cases all of these questions would not arise. For instance, if question 6 was

answered false and question 7 was answered true then questions 8 - 1Oc would not be

asked. The next question would be 11 (is the site considered a hazard to unauthorized

personnel). There are several other instances that involve these if-then questions in this
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******* VERSION 3.0 DRAFT *******

CORA EXPERT SYSTEM

RUN:
RUN BY: Matt Thompson
SITE: Thesis Example
CONTAMINATED AREA: Example

WASTE TYPE: HOMOGENEOUS CONTAMINATED UNSATURATED SOILS

INPUT
Response type: containment
Soil contaminant: Volatile organic compounds
Excavation acceptable: True
Material in question is hazardous: True
Concentrations above land disposal restrictions: True
Site conditions could threaten: True
Exposed to erosion: True
Site Type: Type 1 on raised qround above floodplain

Figure 4: Cora Output Example (CH2M Hill, 1990)
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******* VERSION 3.0 DRAFT *******

CORA EXPERT SYSTEM

RUN:
RUN BY: Matt Thompson
SITE: Thesis Example
CONTAMINATED AREA: Example

DATE: 03/19/98
TIME: 11:16:30

RECOMMENDATIONS FOR HOMOGENEOUS CONTAMINATED UNSATURATED SOILS

GENERAL
o 504 Site access restrictions
o 503 Groundwater monitoring
o 105 Surface water diversion and collection type 1

REMOVAL OPTIONS
o 201 Soil excavation

LANDFILL for contaminated unsaturated soils
o Landfill not appropriate for contaminant concentrations above

land disposal restrictions

Figure 4{cont.): Cora Output Example (CH2M Hill, 1990)
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program.

To better understand the decision tree and questions associated with the

containment portion of CORA's structure a flow chart has been provided in Figure 5.

The flow chart is setup with the question numbers instead of the actual questions. This

was done to help reduce the overall size of the flow chart. The translation between the

questions and the question numbers is located in Table 1. Answering Q1, Q2, and Q4

with the answers provided on the flow chart was translation between the questions and

the question numbers as given in Table 1. Answering QI, Q2, and Q4 with the answers

provided on the flow chart was required to get within the scope of the project [answers:

Q1-7 Homogeneous Contaminated Unsaturated soils (HCUS), Q2-7Containment,

Q3 -7Volatile Organic Carbon]. Any deviation in this step will place that particular case

outside of the scope ofthe project resulting in a different flow chart not provided or

discussed. The remainder of the questions are true false. Appropriate answers will take

the user through different paths through the flow chart.

The input data from CORA and the neural network were collected in 10 arbitrary

training cases at a time with 5 test cases. These 15 cases are simply the questions and

answers associated with data runs within CORA. After the first set of data were collected

from CORA, the neural network was established. Table 2 shows the number of cases and

how each case was used in each run. This table is used to represent the number of training

cases and test cases that were used for every run during the research project. A case was

defined as an example of the output from CORA used to either train or test the neural

network. A run represented a training session of the neural network that attempts to
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Table 2- Trainio& and Test Cases from the Neural Network-
Run #'s New Training Total Training Test Cases

I

Cases Cases
1,2,3,4,5,6,7, & 8 10 10 5

9,10,11,&12 9 24 5
13,14,15, & 16 10 39 5

17 10 64 5
18 10 79 5
19 10 94 5
20 10 109 5
21 10 ! 124 5
22 10 I

139 15I:

simulation the CORA cases. CORA assigns remediation schemes after every run. This

information was used later as target information for the network. Once the training data

were determined, a separate group of data were derived to test the neural network once it

is trained. This was done by going into CORA and retrieving more data describing

different remediation scenarios. The key was that these test data had not previously been I •..

placed into the neural network as a training aid. If the test case had been used to train, the

neural network will cheat because it already knows the answer from training. Since the

neural network would now know the answer from the training, it will use that information

for the test case answers and not use the information derived learned through the neural

network training structure.

An initial estimate of the size of the spreadsheet was now determined The overall

size of the spreadsheet will be discussed later in section 5.1. The questions that pertained

from CORA were placed in the columns. The spreadsheet was setup so that the questions

asked by CORA were in individual columns at the top of the spreadsheet. Each data run

and its results were recorded in rows with answers to each question in the corresponding

column. The answers to the questions from CORA were reported to the neural network
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as true or false. A true is represented by the number one in the appropriate square while a

false is represented by a zero. A square that does not have any numbers was a question

that was not required in that data run and was not used during the training of the network

for that particular case. The numbers one and zero in the target and output columns

represent whether a particular remediation scheme was acceptable or not. In this case, a

one meant that the remediation scheme was appropriate with the given circumstances. A

zero meant the opposite: the remediation scheme was not suitable for this application. A

total of 154 computer simulations were completed for the containment and remediation

alternatives. An example of these with the first 25 simulations from the containment

portion, is included in Figure 6. Figure 6 is located inside the back cover in a map folder.

The entire spreadsheet containing all 154 simulations are presented in Figure 10 also

located in inside the back cover in the map folder. Figure 6 presents the run number as

well as a listing of each of the questions previously presented in Table I or in the flow

chart in Figure 5. Also included in this figure are the twenty targets and outputs

associated with each simulation run. They are labeled with the CORA remediation

scheme numbers. A complete list of these CORA remediation scheme numbers are

located in Table 4.

The columns of the spreadsheet with adjoining questions represent questions from

CORA that are directly related. These questions are entered into the neural network

structure at the same time as inputs to instruct the neural network of their relationship.

The questions that are separated are independent from one another and do not need to be

entered into the neural network at the same time. This allows the neural network to

know that the questions with adjoining columns are related and should be considered
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together during training. After the last CORA question, a section for the targets and

outputs was required. One target column was needed for every possible remediation

scheme that CORA might suggest for remediating VOC's. The next section to the right

in Figure 6 are the output columns. These columns are used by the neural network to

produce results based on the trained information. The number of output columns required

was equal to the number of target columns. These columns must be labeled in the same

order to know the exact answers that the network produced.

4.2 Inputting the Spreadsheet into the Neural Network

Now that the questions and results were entered and the first data are entered the

spreadsheet part of the assignment was finished. The spreadsheet must then be dissolved

into components. This allows the neural network to understand the information in the

spreadsheet. The neural network looked for input columns, target columns, output

columns, and a mode column (signals the program that the information for that row was

to be used to "Train" or "Test" the network). Training the network told the computer to

use a specific row of data for creating pattern associations to predict unknown data runs.

The prediction of unknown data runs from the trained network would be classified as a

test run.

The first step required to run the neural network program utilized in this effort

was to select "initiate working area" from the neural network program menu. Initiate

working area officially loads the neural network structure and information onto the

spreadsheet. It also allows the user to evaluate the neural network's progress towards
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training. The rows that contain data must be highlighted in the spreadsheet and entered

into the network with the selection of "Select Rows" from the "Config" menu. This

defines the rows ofthe spreadsheet to be evaluated by the neural network.. The input

columns were highlighted from the spreadsheet. Input columns are those that were used

to represent the answers to CORA's questions. lfthe questions were directly related and

need to be considered together they must be input simultaneously. As a result, each input

column(s) was entered into the network individually by selecting "Add Input Columns"

from the "Config" menu. The number of input columns that can be used in this program is

practically limitless. Figure 7 shows an example of the screen that was used to load the

spreadsheet into the network.

Figure 7-Screen Used for Loading the Spreadsheet

Upon completion of the above steps, all of the information from the CORA questions

were loaded into the network. Once all of these input columns were entered, the target

data were then entered. As described earlier, the columns that represented the

remediation schemes selected by CORA from the answers given are the target columns.

All targets from the different scenarios were entered into the network at one time by
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means of "Add Input Columns" under the "Config" menu. The Output columns were

now higWighted and entered into the neural network through the "Add Output Columns"

under the "Config" menu following these activities. The spreadsheet was compatible

with the neural network.

4.3 Neural Network Parameters

The parameters of the neural network were the next to be set. These parameters

were used to help force the learning curve of the neural network to be smooth and short.

In other words, these functions can help remove any points during the training procedure

that would cause the neural network to take longer to train. It also allows the acceleration

of the training procedure. Those parameters that were used to ease the training procedure

include size of the network, learning rate, momentum, training tolerance, and testing

tolerance are determined. All five of these are used to control the way in which error is

used to correct the weights in the neural network for each training case. The problem is

that these parameters can be set in a way that will cause unpredictability. This arises

from setting the parameters so close to the data that the network places too much

emphasis on matching the data that it forgets to teach itself the pattern association

inherent within the data.

The number of layers within the neural network is the first determination to be

made. The different neural network evaluated were 2,3,4, and 5 layer systems. Each of

the systems were tried until they were eliminated for various reasons. A complete list of

all of the layer systems that were used during this project is located in the result section
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in Table 5. The decisions that were made to detennine exactly which layer system was

ultimately employed was detennined by the amount and type of data. The types of

reasons that were used to eliminate systems were that a system could not be trained in a

reasonable amount oftime and eliminating a system because it did not produce the

desired results. The number of neurons remained constant for each layer. They were as

follows: input layer 732 neurons (always the first layer), output layer 7 21 neurons

(always the last layer), hidden layer 1730 neurons, hidden layer 2745 neurons, hidden

layer 3730 neurons. These were chosen by recomendations given by the Neuralyst user

guide (Shih, 1994). The number of layers and number of neurons were determined by an

iterative process. The figure presented below represents the screen in Neuralyst that was

used to set the rest of the network parameters. This screen shows the default values that

used by the neural network.

if raining QAOffI ((Joinorie);:::==~::=:::::i~~~~~=====:::=:;
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Three different scenarios involving the network parameters were evaluated during the

containment and treatment training and testing periods. The containment portion of the

project looked at only two of these scenarios. The first was accepting the default values
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that are listed in Figure 8. The second case accepted the default values above except for

changing the training tolerance and testing tolerance. The first case gave results that were

not acceptable because the desired results were not achieved. The modified version was

used to force a tighter control of the training and testing tolerances. In both cases, the

default values were halved. This was an attempt to force both the training and testing of

the neural network to work harder to approach the target values. The training tolerance

was cut from 0.1 to 0.05. The testing tolerance was lowered from 0.3 to 0.15. The

default case was eliminated because it did not produce the 100% recognition rate. The

treatment portion also used two cases. They were the final version from the containment

portion (modified version~ training tolerance 0.05, and testing tolerance~0.15) plus one

that only modified the training tolerance. This third case was developed to reduce the

amount of time and control that the modified case exerted on the neural network. The

training tolerance was still set high, but with true-false questions within 30% of being

accurate considered acceptable to save on proficiency. The other network parameters

were accepted with their default values, and were therefore not evaluated as a variable in

this research project.

4.4 Training the Network

The network was linked to the limited infonnation from CORA and placed into

the initial spreadsheet. The neural network parameters were also initially set to minimize

any problems that might arise that would slow down the neural network training

procedure. The next step was to train the network with the first ten training and five test
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cases that were picked from CORA. The network was then trained with this limited

information. The output from the neural network is reported every epoch. An epoch is

simply "x" number of training runs that can be defined by the user. It allows the user to

check on the progress of the network as it trains. The amount of time that the training run

takes is dependent on all the network parameters, the complexity of the network, and the

volume of data in the network. During the training procedure the network may never

stop training. If this occurs, the training must be stopped and the input data reevaluated.

The network parameters must be changed and/or the number of layers or neurons in the

network altered. After the above items have evaluated and changed the network can be

retrained.

Once the training was finished (the computer screen shows that there is a 100%

recognition rate), the network must be used to find the answers to the five test cases

defined by using the run/predict portion of the program. The neural network then

displays the results of these predictions. For a first run with only a small amount of data,

the accuracy will probably not achieve a 100% precision rate. The 100% success rate can

be achieved by turning the test cases into training cases and going back into CORA and

obtaining additional information for other scenarios. A new column is added to the

spreadsheet to accommodate new information that might arise with different scenarios.

This research obtained 10 more training cases and 5 more test cases from CORA and

further retrained the network. This process was repeated until the success rate of 100%

was achieved by the neural network for containment type of remediation schemes. Once

100% was achieved, 10 more test cases were derived from CORA to further the

confidence of the neural network.
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4.5 Spreadsheet Modification for Treatment Options

The treatment portion of CORA's remediation ofVOC's was then explored.

Information from CORA was obtained for the various treatment options. This involved

the exact same steps as with the containment scenarios. The major difference from the

containment and treatment portion were the types of questions asked by CORA and the

remediation schemes subsequently suggested. To compensate for the new questions, the

existing spreadsheet was extended. A list of the questions that arose from the treatment

section are located in Table 3.

Table 3: CORA Treatment Ouestions*

-What waste types apply to the site (Q1)
- What response action do you wish to consider (Q2)
-What is the hydraulic conductivity of the soil (Q3)
-What types of contaminants in the soil (Q4)
- Will excavation of the contaminants cause environmental or public impacts (Q5)
-Is onsite incineration precluded based on space or local considerations (Q5-a) I

-Type of discharge option either water reinjection (Q10)-water infiltration
(Q10-a)-discharge to POTW (Q-10b)-discharge to surface water (QI0-c)

- What is the hydraulic conductivity of saturated zone (Q10-d)
-Is the water table greater than 5 feet below surface (QlO-e)
-Is the ash a hazardous waste (QI0-t)
-Is conc. of containment in ash above land disposal (QlO-g)
-Is an onsite ReRA landfiH for solidified ash reasonable (QI0-h)
- What types of contamination in the leachate from landfill (QI0-i)
- Would a shallow aquifer preclude a below grade landfill for solidified ash (QIOj)
-Is the solidified material landfill footprint in a 1DO-year floodplain (Q10-k)
-Could site conditions threaten health or safety ofunautborized visitors (Qll)
-Are exposed soils on the site exposed to erosion (Q12)
-Pick the location of the site above floodplain (Q12-a)-at base ofhiU above

floodplain (Q12-b)-in floodplain (Q12-c)
• The questions are not sequentially numbered due to other questions that resulted in the containment section of
CORA

A complete flow chart of the treatment section of CORA is presented in Figure 9. Figure

9 is much like Figure 5, the number of the appropriate questions rather than the actual
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questions are included in this flow chart. The actual question numbers can be replaced

with the questions with the help of Table 3. The first three questions must be answered

appropriately to fall under the treatment scope of this project. These answers to these

questions are homogeneous contaminated unsaturated soils (Q 1), treatment (Q2), and

volatile organic carbons (Q3). The remainder ofthe questions are true false. Depending

on answers given by user the expert system will detennine the final path that is used

through the flow chart for a selected scenario. The different remediation schemes

associated with treatment were added to the target and to the output columns. The

increased information caused the neural network parameters to be reevaluated and

adjusted. The spreadsheet was cleared and reloaded into the neural network framework.

After this was accomplished, the network could be trained and tested as with the

containment portion of the network. This process for treatment was repeated until the

100% success rate was accomplished.

4.6 Updating Cost of CORA's Remediation Technologies

The neural network was now complete for containment and treatment

options and was capable of producing CORA compatible answers for either containment

or treatment ofVOC's. The costs portion ofthe expert system required attention. The

goal of this portion of the project was to give updated costs from CORA 1990 to include

a more current data set. Several ways were looked at for this step. The first was to try to

use data. from CORA and simply apply a price of inflation to adjust the cost to 1998
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dollars. The problem with this was that CORA does not give unit costs for the

remediation schemes. This meant that volumes of contamination had to be known to give

a price for that scheme. An exact amount of contamination could not be determined for a

base case since every remediation scheme in CORA requires a different minimum

amount of contamination. Defining the current prices based on a unit cost was

eventually selected as the method of choice. This allowed every site to be economically

evaluated by eventually knowing the unit cost from the neural network and the volume of

contaminated material from the engineers studies. The costs of the remediation schemes

came from several sources. They include the Environmental Protection Agency (1998),

Ground-Water Remediation and Analysis Center (1998), environmental design engineers,

city officials, and landfill designers.
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5.0 Results from the Neural Network

The results of this research project come in two forms. Those involved the actual

setup of the input spreadsheet containing both the questions and resultant answers from

CORA and the actual training of the network required to meet the 100% recognition rate

as defined by the scope of the research project. In both cases, the process that was used

to arrive at the correct answer was a result of adjustments and iterations.

5.1 Model Dimensions

The actual spreadsheet turned out to be quite large and extensive. The total size

of the spreadsheet excluding the neural network weights was 88 columns by 156 rows.

The complete spreadsheet is located in Figure 10 inside the back cover in map folder 1.

The total number of trial cases that it took to train and test the neural network for both

containment and treatment from CORA's information was 154. Fifty-four of those runs

were containment, while the remaining 100 were used to train the network for the

treatment section of the project. The containment portion of CORA required up to 19

questions while the treatment portion of the project required answers up to 23 questions.

The exact number of questions that were answered by the user is highly site dependent.

A complete list of the questions from CORA and the neural network infrastructure have

previously been presented and discussed in Chapter 4. The flow sheet that incorporates

both treatment and containment in the decision tree of CORA is located in Figure 11.

The total numbers of different types of remediation schemes developed by CORA for the
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this project was 20. Containment schemes used 11 of the 20 schemes. The treatment

portion ofthe project required aU 20 of the different types of schemes that were

developed by CORA. The table (Table 4) on the following page represents the

remediation schemes used by CORA. It also shows which schemes were used by each

remediation type. Several of the different schemes were found in both the containment

and treatment options.

5.2 Training the Network

The number of different runs that were required by the neural network to simulate

the CORA's responses following training was 22. Recall, that this effort was not

designed to determine the minimum amount of data required to achieve the 100%

recognition rate. Rather, the project goals were to achieve the 100% success rate of both

the containment and treatment portion of CORA with VOC's as the chemical of concern.

Containment options required 16 of the training runs, while the treatment portion only

required six runs. The containment scenarios needed more runs because they were used

to develop the number of neural network layers and the network parameters which were

then utilized by the treatment simulations. The number of runs and data samples were

determined by trial and error. If the first trial of the data achieved the desired goal, then

the number of data samples would be sufficient for that particular case. In both cases 10

additional cases were evaluated to further the precision of the network.

The framework for the 22 runs was as follows. Sixteen runs were used for the

containment portion while 6 were used for the treatment portion. Table 5 displays the run
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number, number of samples, number of layers, neurons, parameters, and results for each

of the 22 runs.

Table 4' Remediation Schemes used in Containment and Treatment
REMEDIATION SCHEME NAME CONTAINMENT TREATMENT

CORA #
105 Surface Water X X

Diversion/Collection
201 Soil Excavation X X

301 Onsite Incineration X

302 Offsite Incineration X

305 Soil Vapor Extraction X

306 Flaring X

307 Air Stripping X

308 Vapor Phase Carbon X

312 Ion Exchange X

316 Solidification X

317 In-situ Stabilization X

401 Offsite RCRA landfill I X X
I

402 Onsite RCRA landfill - X X
Above Grade

403 Offsite RCRA Landfill - I X X
Below Grade

404 Offsite Solid Waste Landfill X X

405 Discharge to POTW X X

406 Discharge to Surface X X
Water

407 Water Reinjection X

503 Groundwater Monitoring X X

504 Site Access Restrictions X X

"X" denotes when a particular remediation scheme could have been employed by CORA
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The network became so large that the three and four layer systems could not

Table 5: Results of the Training Runs
Kun Numoer Numoer Neurons "N9twOf'l( Results I.,;ornmems

Number of Samples of Layers per Layer Parameters (correct)
1 1U train L. 3L.,:l.1 lJetault values ~3U/o Need more aata

5 test
2 10 train 2 32,21 ITralnlng 101. o.oe 1:11:1"10 Neea more data

5 test Testing Tal. = 0.15
J 1U train J 3L.,JU,L.1 Uetault values ~% Need more data

5 test
4 1U train J JL,JU,L1 I raining 101. - U.UO ~uv/o Need more data

5 test Testing Tal. = 0.15
0 10 train 4 32,30,45,21 Uetault Values \:l3"/o Neea more data

5 test
ti lU tram 4 32,3U,45,21 I raining 101. U.U5 89% Need more aata

5 test Testing Tal. = 0.15
/ 1U train 0 3L.,JU,40,JU,Ll Uetault Values 81% Need more data

5 test
1:1 1U tram 0 3L.,JU,4b,JU,L1 I raining 101. - U.U:: 9U% Need more data

5 test Testing Tal. = 0.15
9 24 tram 2 3L,:l.1 I raining 101. - U.U:: 90'10 Need more data

5 test Testing Tal. = 0.15
10 24 train 3 32,30,21 Training Tal. U.Ub \:lJ"lo Need more data

5 test Testing Tol. = 0.15
11 L4 tram 4 32,30,45,21 I raining 101. - 0.05 92% Neea more dara

5 test Testing Tol. = 0.15
lL 24tr 0 3L.,3U,40,30,Ll r ramlng 101. - 0.00 ~5% Need more data

5 test Testing Tal. = 0.15
13 39 train :l. 3:l.,:l.1 I ramln9' 101. - U.U5 --- Would not tram

5 test Testing Tol. = 0.15 eliminated 2 layer networks
14 3\:l train J 3:l.,3U,Ll I ralnmg '01. - U.UO !:Jti% Need more data

5 test Testing Tol. = 0.15 !

1b J'::j tram 4 3L,JU,4b,L1 I raining 101. - U.Ub \:l9"/o Need more data
5 test Testing Tol. = 0.15

16 3~ tram 5 32,30,45,30,21 Training Tal. = U.Ub 100'10 lOU"/o tralnmg TOr comalnmnet
5 test Testing Tol. = 0.15 --10 more cases to test

1/ b4 tram ;, 3L.,3U,45,3U,21 I ralmng 101. - 0.05 5~% Need more data
5 test

11:1 {\:l tram ;, 3:l.,3U,40,JU,:l.1 I raining 101. - U.UO 9U'10 I Need more data
5 test

19 94 tram 5 32,3U,4b,JU,:l.1 I ralnmg 101. - U.Ub \:l4"lo Need more data
5 test

20 109 train 5 3L,3U,4b,JU,Ll I ralnmg 101. - U.U::: \:lU"lo Need more data
5 test

I

21 124 train 0 32,3U,45,30,21 Tramlng 101. - 0.0:: 86% Need more data
5 test

LL 13!:J train :> 3:l.,JU,40,3U,L.1 I ralnmg 101. - U.U:: 1OU% 1OU"/o tramlng Tor treatment
5 test --10 more cases to test

* Default network parameters are as follows: Learning Rate = 1, Momentum =0.9, Input Noise =0,
Testing Tolerance =0.3, Training Tolerance =0.1, and 1 Epochs per update ~Tbese valu:es are
used unless a modified version was looked at in th.is column. In this case, tbe default values were
used except for the changes noted in this column.
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handle the number of variables and information in a routine manner. The run time for

three training sessions was stopped at two hours without 100% training rate. This was

deemed an unacceptable time limit. Without the training achieving the 100% recognition

rate, the prediction of the test cases is unpredictable. Therefore, the 2, 3, and 4 layer

systems were eliminated after the completion ofcontainment section. The desired goal of

100% was achieved with the five layer system in the containment section so it was used

for the training of the treatment section. In all cases, if a smaller or larger layer system is

needed (or tried) the neural network can be altered and the network reloaded instantly.

The final network parameters were all default values except the training tolerance.

As the chart shows, the training tolerance was set to 0.05. This forced the neural network

to be within 0.05 of the actual number during the training procedure. This tighter control

during training helped force the training numbers closer to the target values. The other

network variables were not modified because upon further review the default values were

in the appropriate range to achieve the best results in a short amount of time.

5.3 Cost Results

The cost that were associated with the remediation schemes from CORA in this

project were updated with basic unit cost. The table on the following page (Table 6)

shows the remediation scheme name and CORA number with the updated cost. The

basic unit costs are in the form of price per ton, price per cubic yard, price per pound.

price per gallon, and price per size of machine. The exact conditions of the site will

ultimately determine the cost of the project.
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Table 6: Updated Costs for CORA

REMEDIATION SCHEME NAME UNIT COSTS

CORA #

105
Surface Water

$1 0,963/Ac •Diversion/Collection

201 Soil Excavation Approximately $2-$5fyd3

301 Onsite Incineration $164 -- $730fTons

302 Offsite Incineration $200 -- $1 ,000fTons

I

305 Soil Vapor Extraction $100/Tons

306 Flaring $300/hole for pipes

307 Air Stripping
Depends on Electricity costs --

Requires 1.5 hp/Foot of Stripping

308 Vapor phase Carbon
$1,000 -- $40,000 for the Machine

Carbon =$2 -$3/lb

312 Ion Exchange $0.30 -- $0.80/11000 gal Treated

316 Solidificati'on $100fTon Including Excavation

317 In-situ Stabilization
Shallow - $40-$60/yd" Deep --

$150-$250/yd3

401 Offsite RCRA Landfill
$15/Yard - Excludes

Transportation

402
Onsite RCRA Landfill - $500-$1140/cy Range from 7000-

Above Grade 220000cy •

403
Offsite RCRA Landfill - $490-$1121 fcy Range from 7000-

Below Grade 220000cy *

404 Offsite Solid Waste Landfill $4.00/cy plus $1.50/ton

405 Discharge to POTW
$5.25/gal First 1000 gal, $2.00/gal

After

406 Discharge to Surface Water NPDES Permit =$7,000 ••

407 Water Reinjection
$1.00/gal Haz, $0.55/gal Non Haz

Excluding Pump Truck

503 Groundwater Monitoring
$2,000/well/month plus Quarterly

Monitoring

504 Site Access Restrictions
$28.50/ft Includes Fencing and

Signs·

• These costs came form CORA and were updated from 1990 dollars to 1998 dollars with a factor of innation
of 3%, ** This price depends on the city that issues the NPDES permit (this price is for Sand Springs, OK).
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5.4 Examples to Compare the Neural Network to CORA

The following example presents a comparison of the output from the neural

network model with those generated by CORA. This hypothetical site is typical of those

found in Oklahoma. The example was broken down into five cases. Each case was

similar, but with minor changes to show the process of working through the decision tree

(the decision tree is located in the flow chart in Figure 11) and arriving at different

remediation schemes. Two cases (Case I and 2) involved a containment scenario for

remediation, while the remaining three cases (Cases 3, 4, and 5) were treatment scenarios.

Case 2 was very similar to that used as an example of the CORA output in section 4.1 in

Figure 4.

The following infonnation was used as background information for the site and

was used in all five of the test cases:

• A homogeneous contaminated unsaturated soil
• Non-hazardous volatile organic carbons (VOC's) as the chemical of concern
• Clayey soil
• A site where the physical nature was dangerous to trespassers
• Exposed soils that may erode
• A site that can be excavated
• A small site that restricts any type of onsite landfill
• A site that is located above the flood plain
• A site that is located near surface water.

The information that was variable between all the cases is listed below.

• The type of remediation scheme employed (containment/treatment)
• Concentration of the soil (abovelbelow land disposal restrictions)
• Incineration (yes/no)
• Concentration of ash (above/below land disposal restrictions)

Case 1 looked at a containment scheme where the concentrations of the soil were

not above land disposal restrictions. Case 2 investigated the same scenario except that

53



the soils were above the land disposal restrictions. The rust treatment scheme, case 3, did

not use a incineration. While case 4 looked was a treatment scheme that employed

incineration. The ash in this case was not above the landfill disposal restrictions. The

last case (case 5) is the same as case 4 except the ash was above the land disposal

restrictions.

Questions asked by CORA that are used for inputs to the neural network are as follows:

CASE 1

Ql: What waste types apply to the site? Homogeneous contaminated unsaturated

soils

Q2: What response action do you wish to consider? Containment

Q4: What types of contaminants are in the soil? VOC's

Q5: Will excavation of the contaminants not cause environmental or public

impacts? True

Q6: Is the contaminated soil a hazardous substances? False

Q7: Is the contaminated soil concentration above land disposal restrictions? False

Q11: Could site conditions threaten health or safety of unauthorized visitors? True

Q12: Are exposed soils on the site exposed to erosion? True

Q12-a.b.c: Pick the location of the site: Above Floodplain (Q12-a)
These questions can be followed through the flow chart in Figure J1. The actual questions instead of question
numbers are located Table 1.

The results of these inputs for CORA and the neural network were the same. They

included remediation schemes 504-site restrictions, 503-groundwater monitoring, 105-

surface water diversion 20 I-soil excavation, and 404-offsite solid waste landfill. The

number preceding the activity refers to the CORA module describing that activity. The

CORA results are located on the following two pages in Figure 12. The neural network

results are located in Figure 17.
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******* VERSION 3.0 DRAFT *******

CORA EXPERT SYSTEM

RUN: Case 1
RUN BY: Matt Thompson
SITE: Oklahoma site, Case 1
CONTAMINATED AREA: Case 1

WASTE TYPE: HOMOGENEOUS CONTAMINATED UNSATURATED SOILS

INPUT
Response type: Containment
Soil contaminant: Volatile organic compounds
Excavation acceptable: True
Material in question is hazardous: False
Concentrations above land disposal restrictions: False
site conditions could threaten: True
Exposed to erosion: True
site Type: Type 1 on raised ground above floodplain

DATE: 03/25/98
TIME: -20:15:36

Figure 12: Example Problem - Case 1 CORA Results (CH2M Hill, 1990)
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******* VERSION 3.0 DRAFT *******

CORA EXPERT SYSTEM

RUN: Case 1
RUN BY: Matt Thompson
SITE: Oklahoma Site, Case 1
CONTAMINATED AREA: Case 1

DATE: 03/25/98
TIME: 20:15:36

RECOMMENDATIONS FOR HOMOGENEOUS CONTAMINATED UNSATURATED SOILS

GENERAL
o 504 Site access restrictions
o 503 Groundwater monitoring
o 105 Surface water diversion and collection type 1

REMOVAL OPTIONS
o 201 Soil excavation

LANDFILL for contaminated unsaturated soils
o 404 Offsite solid waste landfill

Figure 12(cont.): Example Problem - Case 1 CORA Results(CH2M Hi~ 1990)
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CASE 2

Ql: What waste types apply to the site? Homogeneous contaminated unsaturated

soils

Q2: What response action do you wish to consider? Containment

Q4: What types of contaminants are in the soil? VOC's

Q5: Will excavation of the contaminants not cause environmental or public

impacts? True

Q6: Is the contaminated soil a hazardous substance? False

Q7: Is the contaminated soil concentration above land disposal restrictions? False

Q11: Could site conditions threaten health or safety of unauthorized visitors? True

Q12: Are exposed soils on the site exposed to erosion? True

QI2-a,b,c: Pick the location of the site: Above Floodplain (Q12-a)
These questions can be followed through the flow chart in Figure 11. The actual questions instead of question
numbers are located Table 1.

The results of this case were 504-site access restrictions, 503-groundwater monitoring,

105-surface water diversion, and 201-soi1 excavation. The results were also the same

between CORA and the neural network. Case 2 CORA results are located on the

foHowing two pages in Figure 13. Figure 17 shows the neural network results. The

results of this case when compared to case 1 show that offsite solid waste incineration is

not needed.

CASE 3

Case 3 was the first of the three cases that looked at treatment versus containment for site

remediation. The background information mentioned earlier in this section was the same

for this case. This case excludes onsite incineration. Questions that were asked by

CORA for this case were:
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******* VERSION 3.0 DRAFT *******

CORA EXPERT SYSTEM

RUN: Case 2
RUN BY: Matt Thompson
SITE: Oklahoma Site, Case 2
CONTAMINATED AREA: Case 2

WASTE TYPE: HOMOGENEOUS CONTAMINATED UNSATURATED SOILS

INPUT
Response type: containment
Soil contaminant: Volatile organic compounds
Excavation acceptable: True
Material in question is hazardous: False
Concentrations above land disposal restrictions: True
Site conditions could threaten: True
Exposed to erosion: True
site Type: Type 1 on raised ground above floodplain

DATE: 03/25/98
TIME: 20:18:00

Figure 13: Example Problem - Case 2 CORA Results (CB2M HiD, 1990)
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******. VERSION 3.0 DRAFT *******

CORA EXPERT SYSTEM

RUN: Case 2
RUN BY: Matt Thompson
SITE: Oklahoma Site, Case 2
CONTAMINATED AREA: Case 2

DATE: 03/25/98
TIME: 20:18:00

RECOMMENDATIONS FOR HOMOGENEOUS CONTAMINATED UNSATURATED SOILS

GENERAL
o 504 site access restrictions
o 503 Groundwater monitoring
o 105 Surface water diversion and collection type 1

REMOVAL OPTIONS
o 201 Soil excavation

LANDFILL for contaminated unsaturated soils
o Landfill not appropriate for contaminant concentrations above

land disposal restrictions

Figure 13(cont.): Example Problem - Case 2 CORA Results (CH2M Hill, 1990)
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Q1: What waste types apply to the site? Homogeneous contaminated unsaturated

soils

Q2: What response action do you wish to consider? Treatment

Q3: What is the hydraulic conductivity of the soil? Clay

Q4: What types of contaminants are in the soil? VOC '5

QS: Will excavation of the contaminants not cause environmental or public

impacts? True

QS-a: Is on-site incineration option precluded based on space or local

considerations? True

Q11: Could site conditions threaten health or safety of unauthorized visitors? True

Q12: Are exposed soils on the site exposed to erosion? True

QI2-a,b,c: Pick the location of the site: Above Floodplain (Q12-a)
These questions can be followed through the now chart in Figure II. The actual questions instead of question
numbers are located Table 3.

Results from case 3 were 504-site access restrictions, 503-groundwater monitoring, 105

surface water diversion, 201-soil excavation, and 302 offsite incineration. The results

from CORA are located in the following figure (Figure 14). The neural network results

are posted in Figure 17. These results differed from the containment schemes completed

in cases 1 and 2.. The difference in this case and the previous two cases was the offsite

incineration feature.

CASE 4

This case was a treatment scheme that allowed onsite incineration. The questions that

were asked by CORA were:

Q1: What waste types apply to the site? Homogeneous contaminated unsaturated

soils

Q2: What response action do you wish to consider? Treatment

Q3: What is the hydraulic conductivity of the soil? Clay
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******* VERSION 3.0 DRAFT *******

CORA EXPERT SYSTEM

RUN: Case 3
RUN BY: Matt Thompson
SITE: Oklahoma Site, Case 3
CONTAMINATED AREA: Case 3

WASTE TYPE: HOMOGENEOUS CONTAMINATED UNSATURATED SOILS

INPUT
Response type: Treatments
Soil description: Clay
Excavation acceptable: True
Soil contaminant: Volatile organic compounds
Onsite incineration is precluded: True
site conditions could threaten: True
Exposed to erosion: True
site Type: Type 1 on raised ground above floodplain

DATE: 03/25/98
TIME: 20:20:44

Figure 14: Example Problem - Case 3 CORA Results (CH2M Hill, 1990)
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******* VERSION 3.0 DRAFT *******

CORA EXPERT SYSTEM

RUN: Case J
RUN BY: Matt Thompson
SITE: OKlahoma site, Case 3
CONTAMINATED AREA: Case 3

DATE: 03/25/98
TIME: 20:20:44

RECOMMENDATIONS FOR HOMOGENEOUS CONTAMINATED UNSATURATED SOILS

GENERAL
o 504 Site access restrictions
o 503 Groundwater monitoring
o 105 Surface water diversion and collection type 1

REMOVAL OPTIONS
o 201 Soil excavation

INCINERATION
o 302 Offsite incineration

Figure 14(cont.): Example Problem - Case 3 CORA Results (CH2M HiU, 1990)
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Q4: What types of contaminants are in the soil? VOC's

Q5: Will excavation of the contaminants not cause environmental or public

impacts? True

Q5-a: Is on-site incineration option precluded based on space or local

considerations? False

Q1O-a,b,c,d: Type of discharge option? Discharge to surface water (Q1O-d)

QlO-f: Is the ash a hazardous waste? False

Q I O-g: Is the concentration in ash above land disposal requirements? raise

Q 11: Could site conditions threaten health or safety of unauthorized visitors? True

Q 12: Are exposed soils on the site exposed to erosion? True

QI2-a,b,c: Pick the location ofthe site: Above Floodplain (Q12-a)
These questions can be followed through the flow chart in Figure 11. The actual questions instead of question
numbers are located Table 3.

Results for case 4 were as follows: 504-site access restrictions, 503 groundwater

monitoring, 105-surface water diversion, 201-soil excavation, 302-offsite incineration,

30 I-onsite incineration, 312-ion exchange, 406-discharge to surface water, and 404-

offsite solid waste landfill. The actual CORA results are located on the following two

pages in Figure 15 while the neural network results are located in Figure 17. More than

the others, this case gave the user an assorted list of remediation schemes to consider.

CASES

Case 5 is the last example completed. Similar to case 4, it differed in that contamination

concentration of the ash exceeded the land disposal restrictions.

The questions that were asked in case 5:

Q1: What waste types apply to the site? Homogeneous contaminated unsaturated

soils
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******* VERSION 3.0 DRAFT *******

CORA EXPERT SYSTEM

RUN: Case 4
RUN BY: Matt Thompson
SITE: Oklahoma Site, Case 4
CONTAMINATED AREA: Case 4

WASTE TYPE: HOMOGENEOUS CONTAMINATED UNSATURATED SOILS

INPUT
Response type: Treatments
Soil description: Clay
Excavation acceptable: True
Soil contaminant: Volatile organic compounds
Onsite incineration is precluded: False
Discharge options: Discharge to surface water

DATE: 03/25/98
TIME: 20:22:33

USER RESPONSES FOR ash
Material in question is hazardous: False
Concentrations above land disposal restrictions: False

USER RESPONSES FOR Homogeneous contaminated unsaturated soils
site conditions could threaten: True
Exposed to erosion: True
Site Type: Type 1 on raised ground above floodplain

Figure 15: Example Problem - Case 4 CORA Results (CH2M Hill, 1994)
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******* VERSION 3.0 DRAFT *******

CORA EXPERT SYSTEM

RUN: Case 4
RUN BY: Matt Thompson
SITE: Oklahoma site, Case 4
CONTAMINATED AREA: Case 4

DATE: 03/25/98
TIME: 20:22:33

RECOMMENDATIONS FOR HOMOGENEOUS CONTAMINATED UNSATURATED SOILS

GENERAL
o 504 Site access restrictions
o 503 Groundwater monitoring
o 105 Surface water diversion and collection type 1

REMOVAL OPTIONS
o 201 Soil excavation

INCINERATION
Either
o 302 Offsite incineration
Or
o 301 Onsite incineration
o See discharge recommendations for treated scrubber blowdown.
o See landfill recommendations for ash
o 312 Ion exchange for discharge options other than to POTW

DISCHARGE
o 406 Discharge to surface water

LANDFILL for ash
Either
o 404 Offsite solid waste landfill
Or
a Use ash to backfill excavation

Figure 15(cont.): Example Problem - Case 4 CORA Results (CH2M Hill, 1990)
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Q2: What response action do you wish to consider? Treatment

Q3: What is the hydraulic conductivity of the soil? Clay

Q4: What types of contaminants are in the soil? VOC's

Q5: Will excavation of the contaminants not cause environmental or public

impacts? True

Q5-a: Is on-site incineration option precluded based on space or local

considerations? False

Q1 O-a,b,c,d: Type of discharge option? Discharge to surface water (Q10-d)

Q10-f: Is the ash a hazardous waste? False

Q1O-g: Is the concentration in ash above land disposal requirements? True

Q1O-h: Is an onsite RCRA landfill for solidified ash reasonable? False

Ql1: Could site conditions threaten health or safety of unauthorized visitors? True

Q12: Are exposed soils on the site exposed to erosion? True

Q12-a,b,c: Pick the location of the site: Above Floodplain (Q12-a)
These questions can be followed through the now chart in Figure 11. The actual questions instead of question
numbers are located Table 3.

Case 5 involved more remediation alternatives: 504-site access restrictions, 503

groundwater monitoring, 105-surface water diversion, 201-soil excavation, 302-offsite

incineration, 301-onsite incineration, 312-ion exchange, 406-discharge to surface water,

317-in-situ stabilization, 316-s01dification, and 40 l-offsite RCRA landfill. CORA

outputs are located in Figure 16 while the neural network results are located in Figure 17.

These results differ from the other four cases because of the change in the inputs.

Table 7 summarizes the results of all five cases for both CORA and the neural

network inputs. The results were directly compared in every case. The results indicate a

100% matching of remediation schemes between these two programs. This indicated that

the neural network was now completely trained and ready for use on projects that fall

under the same conditions that exist in this research project.
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******* VERSION 3.0 DRAFT *******

CORA EXPERT SYSTEM

RUN: Case 5
RUN BY: Matt Thompson
SITE: Oklahoma Site, Case 5
CONTAMINATED AREA: Case 5

WASTE TYPE: HOMOGENEOUS CONTAMINATED UNSATURATED SOILS

INPUT
Response type: Treatments
Soil description: Clay
Excavation acceptable: True
Soil contaminant: Volatile organic compounds
Onsite incineration is precluded: False
Discharge options: Discharge to surface water

USER RESPONSES FOR ash
Material in question is hazardous: False
Concentrations above land disposal restrictions: True
Onsite landfill reasonable: False

DATE: 03/25/98
TIME: 20:25:38

USER RESPONSES FOR Homogeneous contaminated unsaturated soils
Site conditions could threaten: True
Exposed to erosion: True
site Type: Type 1 on raised ground above floodplain

',Figure 16: Example Problem - Case 5 CORA Results (CH2M Bill, 1990)
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******* VERSION 3.0 DRAFT *******

CORA EXPERT SYSTEM

RUN: Case 5
RUN BY: Matt Thompson
SITE: Oklahoma site, Case 5
CONTAMINATED AREA: Case 5

DATE: 03/25/98
TIME: 20:25:38

1
O~

RECOMMENDATIONS FOR HOMOGENEOUS CONTAMINATED UNSATURATED SOILS

GENERAL
o 504 site access restrictions
o 503 Groundwater monitoring
o 105 Surface water diversion and collection type 1

REMOVAL OPTIONS
o 201 Soil excavation

INCINERATION
Either
o 302 Offsite incineration
Or
o 301 Onsite incineration
o See discharge recommendations for treated scrubber blowdown.
o See landfill recommendations for ash
o 312 Ion exchange for discharge options other than to POTW

DISCHARGE
o 406 Discharge to surface water

LANDFILL for ash
Either
o 317 In-situ stabilization
Or
o 316 Solidification
o 401 Offsite RCRA landfill

Figure 16(cont.): Example Problem - Case 5 CORA Results (CH2M Hill, 1990)
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TarQets
Run 504 503 105 201 301 302 312 316 317 401 404 406

Case 1 1 1 1 1 0 0 0 0 0 0 0 0
Case 2 0 1 1 1 0 0 0 0 0 0 0 0
Case 3 0 1 1 0 0 0 0 0 0 0 0 0
Case 4 1 1 1 1 0 0 0 0 0 1 0 0
Case 5 0 1 0 0 0 0 0 0 0 0 1 0

Outputs
Run 504 503 105 201 301 302 312 316 317 401 404 406

Case 1 1 1 1 1 0 0 0 0 0 0 0 0
Case 2 0 1 1 1 0 0 0 0 0 0 0 0
Case 3 0 1 1 0 0 0 0 0 0 0 0 0
Case 4 1 1 1 1 0 0 0 0 0 1 0 0
Case 5 0 1 0 0 0 0 0 0 0 0 1 0

Figure 17 (cont.): Neural Network results for the Example Problem
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Table 7' ComDarison of Results for the Examnle.
Case Results Remediation Number

Number 105 201 301 302 i 312 316 317 401 404 406 503 504

1 CORA x x x x x
1 NN x x x x x

2 CORA x x x x
2 NN x x x x

3 CORA x I x XX x
3 NN x x x x X

I

4 CORA x x x x x x x x x
4 NN x x x x x x x x x

5 CORA x x x x x x x x x x x

5 NN x x x x x x x x x x x
NN = Neural Network, The actual remediatIOn Dames Instead of the numbers are located In Table 4. The actual
results for this chart are located in Figure 12,13,14,15,16, and 17.
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6.0 SUMMARY

The scope of this project was to accurately predict examples (l00% recognition

rate) of remediation types (based on CORA) in a timely manner for any site in Oklahoma

with the criteria:

• it is a homogeneous contaminated saturated soil,

• YOC's are the only contaminant, and

• the soil type is either clay or silt.

These goals were accomplished by taking the slightly dated information from CORA and

modeling it with the use of a neural network. The CORA information that was used to

establish the neural network model had to be set up within the structure of a spreadsheet.

Once the spreadsheet was developed, the data was loaded into the neural network where it

could be run for the training and predicting stages ofthe project.

This neural network ultimately required 54 data cases and 16 training runs to

accurately produce the 100% pattern recognition rate for the containment section of this

research proj ecL Some of the 16 runs were used to determine the size of the neural

network and the number of neurons. The ultimate size of the neural network was

dependent on both the treatment and containment portion of the project. The treatment

portion of the project involved more information from CORA that required almost twice

as many data samples as the containment section (l00 data cases) to be completely

trained. The number of runs required for the treatment section was six.

The final size of the neural network structure was five layers with the following

numbers of neurons per layer 32, 30, 45, 30, and 21 respectively for a total of 158

neurons. The final values that were used for the network parameters were as follows:
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• Learning Rate = 1.0 (Default Value)

• Momentum = 0.9 (Default Value)

• Input Noise = 0.0 (Default Value)

• Testing Tolerance = 0.3 (Default Value)

• Training Tolerance = 0.05 (Modified from Default Value of 0.1 )

• Epochs per Update = 1.0

The default values were used in most cases except for the training tolerance. The reason

was that the default values are positioned at a number that will generally give the best

results. The training tolerance was modified to force the neural network numbers to

come closer to the target numbers, which in turn forced the neural network values to

approach the outputs that were generated from the targets.

The final phase of this project was to update the costs from CORA. This was

accomplished in several ways. Most ofthe information came from the internet from two

sources: the United States Environmental Protection Agency and the Ground-Water

Technology Analysis Center. In other cases the cost data were collected from actual

environmental design engineers in private practice. These updated costs allow other

users of this neural network to have a base cost for twenty types of remediation schemes

for both containment and treatment remediation. As with CORA generated cost

projections, the costs are subject to change over time and with actual site conditions.

This project was able to train the neural network with a slightly dated expert

system. This trained neural network is now ready to be used in place of the original

expert system to preciously suggest remediation alternatives for VOCs in a homogeneous

contaminated saturated soil. This network is fully updatable as cost or the technologies

within CORA or subsequent neural network model change. Restructuring the spreadsheet
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that is contained within the neural network is readily accomplished. As such this neural

network is configured to allow future users to update it with different types of chemicals.

new and innovative technologies, and cost. The basis of the infonnation for the updates

will either come from CORA or from other sources that the user obtains from either

professional journals or the engineering trade. With additional work, this neural network

could have the capability of predicting any type of chemical contaminant for which data

exists. This research project has proven to be a success and should be further explored to

help the environmental engineering field.
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