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Winter Wheat Fertilizer Nitrogen Use Efficiency in Grain and Forage Production
Systems

Abstract

Nitrogen use efficiency (NUE) is known to be less than fifty percent in winter

wheat grain production systems. This study was conducted to determine potential

differences in NUE when winter wheat (Triticum aestivum L.) is grown strictly for forage

or grain. The effects of different nitrogen rates on plant N concentrations at different

growth stages and on grain yield were investigated in two existing long-term winter

wheat experiments near Stillwater (experiment 222) and Lahoma (experiment 502),

Oklahoma. At both locations in all years, total N uptake was greater when wheat forage

was harvested twice (Feekes 7 and flowering) compared to total N uptake when wheat

was grown only for grain. Percent N content immediately following flowering was much

lower compared to percent N in the forage harvested prior to flowering, indicating

relatively large losses of N over a short period of time. Averaged over locations and

years, at the 90 kg N ha -I rate, wheat produced for only forage had much higher NUE

(77%) when compared with grain production systems (31 %). While gaseous N loss was

not measured in this trial, the higher NUE values found in the forage only production

systems were attributed to harvesting prior to anthesis and prior to the time when plant N

losses are known to be greater.

Introduction

Nitrogen use efficiency is defined as units ofN harvested per unit ofN applied.

Two principal components ofNUE are efficiency of uptake and efficiency ofN



utilization to produce grain or forage (Moll et al., 1982). Nitrogen use efficiency is

important when discussing fertilizer applications and plant growth. Nitrogen use

efficiency depends on the nitrification rate of the soil, the fonn ofN applied, the growth

stage of the plant and weather, etc. Fanners desire to apply N at the ideal time and using

the fertilization method that will optimize efficiency. Environmentally, it is important to

know how much fertilizer is used by the plant and how much is lost. Scientifically, it is

important to understand the processes and storage methods for N and other nutrients.

Nitrogen content varies with the growth stage of the plant (Wuest and Cassman,

1992). Gaseous plant N loss has been found to be significant from flowering to

physiological maturity (Harper et a1. 1987). Recent work has found that the total N

content of the grain and straw components is not equal to total N content of plants at

flowering (Harper et a1. 1987). Fertilizer N use efficiency as reflected in grain yield of

winter wheat has also been shown to change with time and rate of application (Ellen and

Spiertz, 1980). Nitrogen use efficiency varies with different genotypes of winter wheat

with estimated N loss from flowering to physiological maturity ranging from 4 to 28 kg

N ha- I (Kanarnpiu et al., 1997). Increased N rates have resulted in increased N

concentrations in leaves of tall fescue and switchgrass (Staley et aI., 1991). Work with

winter wheat has shown that high N concentrations in plants at flowering are associated

with increased plant N loss (Parton and Morgan, 1988). Many authors have noted that

grain yield and N content of cereal grain crops increase significantly with applied N

(Simonis, 1987; Raun and Johnson, 1995). However, the higher N rates generally result

in decreased NUE values. Olson and Swallow (1984) found that half of the N applied
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over a five year period remained in the 0 - 0.10 m layer of the soil profil suggesting loss

from aboveground plant mass and not from leaching.

Harper et al. (1987) found that much of the loss of fertilizer N is due to gaseous

loss from plants at senescence. At flowering, N is translocated to the grain causing

gaseous N losses to increase and efficiency to decrease (Harper et aI., 1987). Q'Deen

(1989) detected volatile ammonia emissions from winter wheat and attributed the source

of ammonia to the decomposition of protein during translocation from the leaf to the

seed. Research has indicated that NUE decreases at grain fill in cereals, mostly due to

gaseous N loss (Bruno et aI., 1987).

Nitrogen is essential for plant growth and is known to be present in proteins,

nucleic acids and chlorophyll. Plant roots assimilate N mostly as ammonium and nitrate.

Adequate N nutrition is required for full development of tillers and leaves and also

enables the plant to operate at peak photosynthetic capacity. Nitrogen is the nutrient

most susceptible to loss, and recovery ofN is usually less than half of that applied

(Boswell et aI., 1985). Whitehead (1995) found that N concentration in the plant tends to

decrease as plants age, mostly due to the increase in cell wall material and decrease in

cytoplasm. Similar studies by Harper et ai. (1987) noted decreased N concentrations in

winter wheat with time during the growing season.

In the south central United States, producers often use winter wheat as a forage

crop for cattle as well as grain. The period of winter growth and the relatively high N

content of winter wheat make it a good forage crop for ruminant grazing. However, it

should be noted that the NUE of livestock production is generally much lower (usually

less the 20%) due to inefficiency of conversion and harvest (Van der Ploeg et aI., 1989).
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Whitehead (1995) suggested that forage production systems are more efficient users ofN

than grain production systems because harvest before maturity prevents loss of volatile

ammonia. Many research sources are available discussing NUB in either forage or grain

production systems, but there is little infonnation comparing forage-only versus grain

only production systems for the same crop. The objective of this experiment was to

determine potential differences in NUE when winter wheat is grown strictly for forage or

for grain.

Materials and Methods

Experimental sites were selected as sub-plots in two existing long-term winter

wheat experiments near Stillwater (experiment 222) and Lahoma (experiment 502),

Oklahoma, where N rates have been applied annually since 1969 and 1970, respectively.

Both experiments employed randomized complete block experimental designs with four

replications. Plots were 6.1 x 18.3 and 4.9 x 18.3 m at 222 and 502, respectively. At

both sites, N has been applied preplant and incorporated utilizing a conventional tillage

system. Nitrogen rates were 0, 45, 90, and 134 kg N ha'i yr" at Stillwater and 0, 22, 45,

67,90, and 112 kg N ha'i yr'l at Lahoma. Ammonium nitrate (34-0-0) was applied

broadcast and incorporated preplant at both sites. Phosphorus and potassium as triple

superphosphate (0-46-0) and potassium chloride (0-0-62) were applied with the N each

year at rates of 29 and 20 kg P ha- l and 38 and 56 kg K ha'l at Stillwater and Lahoma,

respectively. Initial soil test data taken from the check plots is shown in Table 1. In all

years, forage sub-plots (1.44-2.08 m2
) were hand harvested at Feekes growth stages six

and again from the same area at Feekes ten (Large, 1954). Grain was harvested from
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sub-plots, adjacent to forage sub-plots, with a combine from a 3.66 m2 area. Forage and

grain samples were dried and ground to pass a 140 mesh sieve (100 !lm) and analyzed for

total N content using a Carlo-Erba NA 1500 automated dry combustion analyzer

(Schepers et aI., 1989). Total N uptake in the forage was determined by multiplying N

content and dry matter yield for both harvests taken from the same area. Grain N uptake

was detennined by multiplying dry matter grain yield and grain total N. Nitrogen use

efficiency was determined as N uptake in N treated plots minus N uptake from the check

(O-kg N applied) divided by the applied N rate. Fertilizer applications, planting and

harvest dates are reported in Table 2.

Results

Analyses of variance and associated means for total forage yield and N uptake,

grain yield, and grain N uptake are reported in Tables 3-8 for Stillwater and Lahoma for

1996, 1997, and 1998. A significant grain yield and grain N uptake response to N

fertilization was found for the grain production system at both sites. Similarly, forage

and forage N uptake responded to applied N at both sites (Tables 3-8). It was interesting

to note that dry matter production levels were nearly double for forage-only when

compared to the grain production system at both sites. Although less pronounced, forage

N uptake or removal was nearly double in the forage-only system when compared to

grain-only at both locations (Tables 3-8).

As a result of increased dry matter production and N removal, NUE's were much

greater for the forage-only systems at both sites when compared to grain-only systems

(Tables 3-8). As per the work of Francis (1993), gaseous plant N losses are known to be

greatest between flowering and maturity. The two forage harvests employed here

5



(March, Feekes 6 and May, Feekes 10) were both prior tQ flowering. Regrowth,

including secondary tillers, following the March harvest did produce plants with heads by

May, however, flowering was not achieved. Only limited growth was observed in the

forage-only plots following the May harvest. By harvesting the plant for forage before

grain fill, potential losses were avoided, thus increasing NUE. At both locations, grain

only production systems had estimated NUE's less than 60 percent in all years excluding

the low N rate. The values for the lowest N rate are not discussed because the applied

rate is well below those recommended for acceptable yields. With forage-only

production systems, NUE's were much greater, exceeding 80% at Lahoma. Although

NUE's were expected to decrease with increasing N rates for grain production, this effect

was not consistent, excluding the high N rates where depressed NUE's were found.

Figures 1 and 2 represent 3-yr. average NUE values at Stillwater and Lahoma,

respectively. Three-year NUE average values were included because the purpose of this

study was to evaluate the long-term differences between forage and grain production

systems. In 1997, forage yields were well above normal, exceeding 10 Mg ha') at both

sites at the highest N rates. Forage production conditions were ideal with a mild wet

winter and cool spring. Increased production at the high N rates was a result of depressed

yields in both 1995 and 1996 due to poor growing conditions, leaving significant residual

N in an environment where nitrate leaching is not expected (Raun and Johnson, 1995).

When environmental conditions favored higher yields than the current fertilizer

application could support, N was possibly mineralized from the soil organic pool and

made available to growing plants. While the 1998 crop year was also conducive to
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superior forage production, we did not see yields as high as those achieved in 1997,

because the reserve of mineralizable N was depleted in 1997.

Conclusions

Expected decreases in NUE's with increasing applied N rates for the grain only

production system were not observed in this study. Averaged over locations and years,

NUE values for forage production systems were substantially higher than those for grain

only production systems. At 90 kg N ha -I, a commonly applied preplant rate in this

region, wheat produced for forage only had much higher NUE's (77%) when compared

with grain production systems (31%). This is largely due to continuous pre-anthesis

harvesting, prior to the onset of gaseous plant N loss. This work suggests that NUE's can

be increased using a forage production system, but that these systems will be heavily

dependent upon an inefficient animal component. The human requirement for grain will

necessitate future improvements in NUE that consider holistic management strategies.
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Table 1. Surface soil (O-15cm) chemical characteristics and classification at Stillwater
(experiment 222) and Lahoma, (experiment 502) OK in check plots 1995.

Location Total NC Organic CC

Stillwater 5.7
k -I--------------mg g ---------------

4.64 2.3 33 159
k -I-------g g -----

0.9 10.6

Classification: Kirkland silt loam (fine-mixed, thennic Udertic Paleustoll)

Lahoma 5.6 5.60 4.0 77 467 0.9 11.0

Classification: Grant silt loam (fine-silty, mixed, thermic Udic Argiustoll)
apH: 1:1 soil:water
bp and K: Mehlich III
cOrganic C and Total N: dry combustion
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Table 2. Planting and harvest dates for Stillwater (experiment 222) and Lahoma
(experiment 502) NUE expts.

-------------------year-------------------
Procedure 1996 1997 1998

Stillwater 222

Fertilization Oct 9 Sept 5 Oct 2
Planting Oct 10 Oct3 Oct 3
Forage harvest 1 Marl Jan 6 Feb 18
Forage harvest 2 May 7 May 13 May 12
Grain harvest June 11 June 19 June 10

Lahoma 502

Fertilization Aug 31 Sept 4 Sept 10
Planting Oct 10 Oct 3 Oct 17
Forage harvest 1 Mar 5 Jan 3 Mar 25
Forage harvest 2 May 6 May 6 May 11
Grain harvest June 21 June 13 June 12
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Table 3. Analysis of variance and means for total dry matter forage yield (sum of harvests in March and May) grain yield, N uptake,
and nitrogen use efficiency (NUE) Stillwater, OK, 1996

Source of variation df
Replication 3
N rate 3
Residual error 9
SED

N rate, kg ha-1

o
44
90
134

------------------Forage----------------- ------------------Grain-----------------
Yield N uptake NUE@ Yield N uptake NUE@
Mg ha-1 kg ha-1 Mg ha-1 kg ha- I

--------------------------------------mean squares------------------------------------------
0.690 164 192 0.037 38 3
1.956* 1995* 332 0.329* 628* 403
0.612 396 192 0.059 108 109
0.553 14.0 9.7 0.171 7.3 6.9

Mgha-1 kg ha-1 % Mg ha-1 kg ha-1 %
2.719 49.58 - 1.007 28.95
2.841 59.01 21 1.274 35.61 15
3.553 83.12 37 1.382 48.49 22
4.228 98.52 36 1.701 56.79 21

* Significant at the 0.05 probability level
**Significant at the 0.01 probability level
@ df for NUE, N rate = 2
SED- Standard error of the difference between two equally replicated means



Table 4. Analysis of variance and means for total dry matter forage yield (sum of harvests in March and May) grain yield, N uptake,
and nitrogen use efficiency (NUE) Stillwater, OK, 1997

Source of variation df
Replication 3
N rate 3
Residual error 9
SED

N rate, kg ha-1

o
44
90
134

------------------Forage----------------- ------------------Grain-----------------
Yield N uptake NUE@ Yield N uptake NUE@
Mg ha-1 kg ha-1 Mg ha- I kg ha-1

--------------------------------------mean SqllareS------------------------------------------
1.10 336 1113 .0364 235 3
19.1* 3667** 4016 1.011* 725* 403
0.79 793 1046 0.126 79 109
1.21 20,0 22.9 0.251 6.3 6.9

Mg ha-1 kg ha- l % Mgha-1 kg ha-' %
3.334 49.88 - 0.872 20
5.077 76.05 58 0.859 21 17
7.460 103.75 60 1.069 29 19
9.668 143.12 69 1.920 50 21

* Significant at the 0.05 probability level
**Significant at the 0,01 probability level
@dffor NUE N rate = 2
SED- Standard error of the difference between two equally replicated means



Table 5. Analysis of variance and means for total dry matter forage yield (sum of harvests in March and May) grain yield, N uptake,
and nitrogen use efficiency (NUE) Stillwater, OK, 1998

Source of variation df
Replication 3
N rate 3
Residual error 9
SED

N rate, kg ha- I

o
44
90
134

------------------Forage----------------- ------------------Grain------------------
Yield N uptake NUE@ Yield N uptake NUE@
Mg ha- I kg ha-1 Mg ha-1 kg ha- I

----------------------------------------mean squares-----------------------------------------
1920.4** 377** 744 1.876 103 163*
6265.5** 2766** 1709 1012** 324** 319**
187.23 41.20 261 109 32.42 40.75
0.306 4.54 11.42 0.233 4.03 4.51

Mg ha-1 kg ha-1 % Mg ha-1 kg ha-1 %
1.886 23.21 - 1.153 22
2.768 41.20 40 1.434 31 20
3.276 50.96 31 1.808 38 18
4.868 80.76 47 2.316 43 15

* Significant at the 0.05 probability level
** Significant at the 0.01 probability level
@d.ffor NUE N rate = 2
SED- Standard error of the difference between two equally replicated means



Table 6. Analysis of variance and means for total dry matter forage yield (sum of harvests in March and May) grain yield, N uptake,
and nitrogen use efficiency (NUE) Lahoma, OK, 1996

SOllfce of variation df
Replication 3
N rate 5
Residllal error 13
SED

------------------Forage----------------- ------------------Grain····-----------------
Yield N uptake NUE@ Yield N uptake NUE@
Mg ha-1 kg ha'i Mg ha-1 kg ha-1

----------------------------------------meaul sClllares--------------------------------------------
1.300 1394 2.580 324 660* 1341 *
3.197* 4844* 5.708 1510** 1140** 2850**
0.520 568 4.033 184 156 387
0.509 16.8 1.16 0.247 7.2 11.4

N rate, kg ha-1 Mg ha-1

o 2.89
22 3.04
45 3.49
67 4.29
90 5.24
112 4.91

kg ha-1

57.98
75.90
87.32

113.32
149.90
133.93

%

-
24
65
80

102
68

Mg ha-1

1.48
1.96
2.22
2.17
2.87
3.17

kg ha-1

33
51
58
54
74
80

%

81
55
32
46
42

:It Significant at the 0.05 probability level
"Significant at the 0.01 probability level
@df for NUE N rate = 4
SED- Standard error of the difference between two equally replicated means



Table 7. Analysis of variance and means for total dry matter forage yield (swn of harvests in March and May) grain yield, N uptake,
and nitrogen use efficiency (NUE) Lahoma, OK, 1997

Source of variation df
Replication 3
N rate 5
Residual error 13
SED

N rate, kg ha'l
o
22
45
67
90
112

------------------Forage----------------- ------------------Grain------------------
Yield N uptake NUE@ Yield N uptake NUE@
Mg ha- 1 kg ha'l Mg ha-1 kg ha-1

-----------------------------------------mean squares----------------------------------------
17412** 2541** 6744* 663 426 879
32914** 17434** 19830** 4265** 2361* 3049

2012 344 1675 462 201 811
0.82 10.7 23.6 0.39 8.2 16.5

Mg ha-1 kg ha'l % Mg ha'l kg ha'l %
3.94 69 - 1.47 35
7.92 115 208 2.23 54 83
8.37 123 121 2.30 55 45
9.17 146 114 3.05 73 56

10.99 206 153 3.58 81 51
12.20 143 162 4.32 104 62

* Significant at the 0.05 probability level
**Significant at the 0.01 probability level
@df for NUE N rate = 4
SED- Standard error of the difference between two equally replicated means



Table 8. Analysis of variance and means for total dry matter forage yield (sum of harvests in March and May) grain yield, N uptake,
and nitrogen use efficiency (NUE) Lahoma, OK, 1998

Source of variation df
Replication 3
N rate 5
Residual error 13
SED

------------------Forage----------------- ------------------Grain------------------
Yield N uptake NUE@ Yield N uptake NUE@
Mg ha- 1 kg ha-1 Mg ha-1 kg ha"l
----------------------------------------mean squares-----------------------------------------

858.3 1308 6155 250.8** 506.2 1979
5536.2** 5171** 4064 3415.4** 2640** 4183

567.1 461 3134 44.0 314.8 1086
0.435 12.4 32.3 0.121 10.24 19.02

N rate, kg ha-1 Mg ha- 1

o 4.06
22 4.45
45 4.86
67 5.79
90 6.65
112 6.89

kg ha- I

86
102
112
139
160
180

%

70
57
79
82
83

Mgha-1

2.112
2.284
3.719
3.665
3.426
4.542

kg ha-1

49.37
50.00
88.74
87.15
83.08

117.10

%

17
78
56
37
60

* Significant at the 0.05 probability level
** Significant at the 0.01 probability level
@! df for NUE N rate = 4
SED- Standard error of the difference between two equally replicated means



Table 8. Analysis of variance and means for total dry matter forage yield (sum of harvests in March and May) grain yield, N uptake,
and nitrogen use efficiency (NUE) Lahoma, OK, 1998

Source of variation df
Replication 3
N rate 5
Residual error 13
SED

------------------Forage----------------- ------------------Grain------------------
Yield N uptake NUE@ Yield N uptake NUE@
Mg ha-1 kg ha-1 Mg ha-1 kg ha-1

----------------------------------------mean squares-----------------------------------------
858.3 1308 6155 250.8** 506.2 1979

5536.2** 5171** 4064 3415.4** 2640** 4183
567.1 461 3134 44.0 314.8 1086
0.435 12.4 32.3 0.121 10.24 19.02

N rate, kg ha- l Mg ha-1

o 4.06
22 4.45
45 4.86
67 5.79
90 6.65
112 6.89

kg ha-1

86
102
112
139
160
180

%

70
57
79
82
83

Mg ha-1

2.112
2.284
3.719
3.665
3.426
4.542

kg ha-1

49.37
50.00
88.74
87.15
83.08

117.1 0

%

17
78
56
37
60

* Significant at the 0.05 probability level
** Significant at the 0.01 probability level
@! df for NUE N rate = 4
SED- Standard error of the difference between two equally replicated means
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Detection of Nitrogen Deficiencies in Cotton Using Spectrallrradiance and Cotton
Response to Topdress Applications

Abstract

Upland cotton (Gossypium hirsutum L.) requires adequate, but not excessive N to

produce optimum yields and still reach maturity at a reasonable date. This optimum rate

ofN is strongly dependent on yield potential and environmental conditions. The ideal

situation is to keep N from limiting plant growth while avoiding excessive N

applications. In-season N applications are popular because they allow the producer to

adjust fertilizer inputs based on how the crop is maturing. This study was conducted to

evaluate spectral radiance in cotton canopies and discern which wavelengths detect N

deficiencies, and to evaluate the effect of foliar applied N on cotton lint yield based on

spectral radiance measurements. The effects of differing N rates and timing were

evaluated using a spectrometer. Nonnalized difference vegetative index (NDVI) from

spectral radiance measurements collected mid bloom was highly correlated with preplant

N rate and cotton petiole N concentration. Reliable prediction of the N status in cotton

using NDVI was also indicated by the variable N rate treated plots as N rates were

reduced compared to fixed rates with no decrease in yield.

Introduction

Upland cotton (Gossypium hirsutum L.) requires adequate, but not excessive N to

produce optimum yields. Optimum rates ofN are strongly dependent on environmental

yield potentials. Plentiful N can lead to larger plants with the potential to produce more

cotton. Excessive N stimulates excessive plant growth to the detriment of yield and
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earliness (Boquet et aI., 1994). The ideal situation is to keep N from limiting plant

growth while avoiding excessive N applications. Many producers apply most of the

required N before planting and then make additional N applications when environmental

conditions favor high yields. Modem, high-yielding varieties grow and fruit faster than

older varieties and therefore, require larger amounts of nutrients in a shorter time. These

characteristics make in-season nutrient application even more critical. In some cases,

even when soil tests indicate sufficient plant nutrients, deficiency symptoms appear. This

suggests that plant uptake mechanisms may not immediately meet plant requirements.

Attempts have been made to correct in-season deficiencies with foliar fertilizer

applications in hopes that the fertilizer would be more readily available to the plant.

One common method of supplementing N is with foliar applied liquid VAN.

Foliar application of N has been shown to increase cotton yields when N was deficient

(Miley and Bonner, 1985). The problem with foliar application is detennining the point

in the growth pattern of the plant that will provide maximum response.

Modern testing procedures often use the plant itself as an indicator of nutrient

need (Gardner and Tucker, 1967). One school of thought follows the idea that the petiole

from the most recently mature leaf is the best indicator of plant N status (Gardner and

Tucker, 1967). This plant part is often used as the benchmark for the rest of the plant.

Petiole N content has been used for many years to detennine N status in the plant (Baker

et al., 1972). These results have varied between regions and years, often owing to the

difficulty of detennining the most recently mature leaf of the plant and variable

environmental conditions. Total N values for leaves are more stable, but are less

sensitive to N status of the plant (Cope, 1984). Leaf characteristics such as age and
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surface wax are some of the factors that affect plant response to foliar-applied N

(Bondada et aI., 1994).

Soil analysis for N content is a common method for determining N application

rates. The amount ofN detected in soils has been correlated with the amount ofN taken

up by the plant. The major drawback to this method is that soil sampling and analysis

involve money and time, time the producer does not have when attempting to correct in

season deficiencies. The ideal time for N application during the growing season has a

narrow window (Ebelhar and Welch, 1996). The perennial growth habit of the cotton

plant forces producers to wait until the plant has produced several leaves to use plant

samples to determine N status of the plant. Producers must also apply nitrogen during

blooming or earlier to avoid excess vegetative growth.

Spectral properties of the leaf canopy can provide alternative measures for

detecting nutrient status (Raun et aI., 1996). This technology offers the ability to detect N

deficiencies and apply fertilizer at the same time, eliminating the need for more time

consuming, in-season testing methods and reduces the number of trips made across the

field. Fields are not totally uniform and plants vary in N uptake due to environmental

factors. Some seeds may genninate sooner than others depending on the quality of the

seed and the temperature of the soil. Soil temperature also changes within specific areas

of the field.

The most important thing to remember about in-season testing is that the

deficiency must be detected before severe deficiency stress occurs. If the problem is

detected early enough, minimal loss of yield will result. Thus, in-season testing offers

the ability to tailor N applications with crop status at the time of sensing, while also
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having a plant indicator (biomass) as an index of yield potential. Combined with planting

density, time ofplanting and environmental data, indirect in-season measurements could

assist in refining N fertilization strategies.

Sensor based applications rely on in-season application of a liquid or granular N

source. Foliar N applications have been reported to provide yield increases when N is

limiting (Miley and Bonner, 1985). Foliar applications make the applied N available to

the plant for use in the critical early square to early boll growth stages. Foliar

applications have also been observed to increase root development of seedling cotton

(Chiles, 1989). The effectiveness of this treatment is contingent on growth stage and leaf

morphology of the plant. While there are many different views on the feasibility of foliar

N applications, most of the research indicates that foliar applications are productive if N

is deficient. When combined with sensor-based deficiency detection, this method should

improve yield and increase producer profits. The objectives of this study were: 1) to

evaluate spectral irradiance from cotton leaf canopies and discern which wavelengths

detect N deficiency; and 2) evaluate the effect of foliar applied N on cotton lint yield

based on spectral irradiance measurements.

Materials and Methods

One experimental site was chosen at Altus, Oklahoma (Tables Iand 2). A

randomized complete block experimental design with three replications was employed.

Plot size was 4.06 x 18.3 m. Pre-plant nitrogen rates were 0, 22, 45, 67, and 90, kg ha- l
.

Ammonium nitrate (34-0-0) was the N source used for all pre-plant treatments.

Phosphorus as triple superphosphate (0-46-0) and potassium as potassium chloride (0-0-
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62) were applied at rates of 80 kg P ha- I and 80 kg K ha- I to the area. Paymaster HS-26

seed was planted on May 14, 1997 at a rate of 19.3 kg ha- I
. Dates for irrigations and

pesticide applications are listed in Table 1. Soil classification and characteristics are

listed in Table 2. Spectral data was collected within each plot using a PSD-l 000 portable

dual spectrometer manufactured by Ocean Optics Inc., from two overlapping bandwidths,

300-850 run and 650-1100 run. The PSD-l 000 is cormected to a portable computer

through a PCMCIA slot using a PCM-DAS 16D/12 ND converter manufactured by

Computer Boards, Inc. The fiber optic spectrometer has spectral resolution as low as

I run, however, all spectral readings were partitioned into 100m bandwidths (75 spectral

bands per reading). Six spectral readings (350-1100 om) were taken from three 1m2

areas within each plot at bloom and 10 days post-bloom and averaged for each 100m

bandwidth. In addition to the 75 spectral bands collected from each reading, the spectral

indices nonnalized difference vegetative index (NOVI) microwave polarization

difference index (MPDI, Becker and Choudhury, 1988), water band index (WBI,

Penuelas et a1., 1993), and nonnalized total pigment to chlorophyll a ratio index (NPCI,

Penuelas et al., 1993), were calculated for all spectral radiance readings. The 75, 10 nm

bandwidths for each growth stage where data was recorded and indices computed were

evaluated for simple correlation with petiole N03-N, total N, and N use efficiency

components adapted from Moll et al. (1982). Specific wavelengths where no correlation

was found were evaluated as divisors, for their potential use within indices whereby

illumination deviations can be removed from spectral indices. These indices were again

analyzed in the AOV model for their use in detecting main effects and main effect

interactions. Spectral radiance readings were taken from each plot at bloom and ten days
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post-bloom. At these same time periods, petiole samples were taken from the first mature

leaf from sixteen plants in the center two rows. Petiole samples were dried and ground

to pass a 140 mesh sieve (lOO~m) and analyzed for total N using a Carlo-Erba NA 1500

dry combustion analyzer (Schepers et aI., 1989) and for NO) -N using cadmium reduction

(Lachat, 1985). In-season applications of 0 and 45 kg ha-I as a fixed rate, and a variable

rate ofN were applied as UAN (28% N) at mid bloom. Variable rates were determined

by analyzing petioles for total N content and comparing it with the sensor readings but on

a much finer grid (1 x 2 m). The index NDVI was used as the basis for topdress N

applications. The values for this index were correlated with the N concentrations

determined from the tissue samples to determine plant N status and fertilizer need. The

plot with the lowest NDVI values received the highest rate ofN (45 kg ha- I
) and the plots

with the highest values received no added N.

Results

Spectrometer readings showed peaks at 527 and 770 nm for the cotton crop (Figure

1). No one index was consistently shown to have the highest correlation with petiole N

content. The index NDVI (Inonm-I67Inm/ hsonm+I67Inm, where I represents the spectrometer

reading) paralleled preplant N rate over time and was therefore used as a measure of crop

N status (Figures 2,3, and 4). The NOVI readings were correlated with actual plant N

measures and the N status of the plant was evaluated by the use of spectral irradiance

(Figures 3 and 4). With this correlation established, we then used the NDVI readings to

determine the N status of the plant on site, and liquid UAN applied as needed based on

these spectral readings using the equation, N rate applied = -0.0089(NDVI) + 0.3565.

NDVI indices gave a good prediction of the amount ofN the plant would require for the
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remainder of the growing season based on fmallint yields (Figure 3). Cotton lint yields

increased with increasing N applied either preplant or in-season, with lower yields seen in

plots with in-season only treatments (Table 3). The observed effects of increased yield

with N rate were linear (Table 3). Yields at the three highest variable rates were greater

than those for the in-season fixed applications with less fertilizer applied, up to 30 kg at

the highest rate. We also found a general trend toward increasing yields with increasing

N rates for the variable rate treated plots and average lint yields for the same pre-plant N

rates were higher for the variable applied treatments. In-season variable treatments

allowed us to use a lower pre-plant rate and then adjust the amount ofN based on NDVI.

The 67 kg ha- I pre-plant rate produced 918 kg, with the in-season addition of26 kg ha-]

ofN (based on NDVI values) yields of that treatment were brought up to the maximum

yield which was also achieved with the 90 kg ha- I pre-plant rate(Table 3). This

infonnation would allow producers to begin the growing season with less N and adjust

applications according to crop status. Production per unit ofN values (kg lint kg N

applied-I) are shown in Table 3. Highest efficiencies were obtained with the lowest rates

of applied N. Variable treated plots showed increased efficiencies when compared to the

in-season fixed applications. These results show yields for the variable plot were similar

to or greater than the in-season fixed treatments with less total fertilizer applied. This

indicates that variable applied N based on NDVI readings could result in less total input

cost for the producer. This work will be continued for the 1998 crop year.
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Table 1. Dates and information regarding Altus Variable Rate Cotton Expt., 1997

Irrigations:
July 14
July 28

Herbicide applications:
March 26
May 14
July 3

Fungicide application:
May 14

Insecticide applications:
May 14
June 21
June 28
July 4
August 9
August 15
August 23
August 30
September Ia
September 18
September 26

Harvest aid applications:
September 30

Harvest date:
October 31, 1997

Treflan 4EC(PPI) at 2.0 pts. product/ac
Caparol 4L (Pre) at 3.2 pts. product/ac
Staple (Post) at 1.2 oz productJac

Start 15 G Brand Fungicide (In furrow) at 2.0 lb. productJac

Temik 15 G (In furrow) at 0.5 lb. Ai/ac
Vydate C-LV (Post) at 4.25 oz. productJac
Vydate C-LV (Post) at 4.25 oz. productJac
Vydate C-LV (Post) at 4.25 oz. productJac
Vydate C-LV + Larvin 3.2 at 4.40 + 5.12 oz. productlac
Vydate C-LV + Larvin 3.2 at 4.40 + 5.12 oz. product/ac
Karate + Furadan 4F at O.03Ib. Ai/ac + 8.0 oz. productlac
Vydate C-LV at 4.37 oz. product/ac
Malathion ULV at 10.0 oz. product/ac
Malathion ULV at 10.0 oz. product/ac
Malathion ULV at 10.0 oz. product/ac

Prep + Folex 6 EC at 1.3 pts. productlac + 1.0 pt.
product/ac
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Table 2. Initial surface soil (0-15cm) chemical characteristics and classification at Altus,
OK.

Location

Altus
k -J--------mg g -------

8.1 5.11 4.37

Total NC Organic C~

k -(
------g g ------
0.75 8.5

Classification: Tillman-Hollister clay loam (fine-mixed, thennic Typic Paleustoll)

apR: 1: 1 soil:water
cOrganic C and Total N: dry combustion
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Table 3. Nitrogen rates, mean yields and analysis of variance for cotton lint yields for
three N application times, Altus, 1997

Pre-plant flXed

N rate, kg ha'] Yield PN

0 645
22 820 37
45 899 20
67 918 14
90 1143 13

Source of variation df
Replication 2
N Rate 14
Error 28

Contrasts

In-season fIXed In-season variable

N rate, kg ha- I Yield PN N rate, kg ha·1 Yield PN

45 570 13 31 505 16
67 860 13 53 719 14
90 908 10 76 958 13

112 967 9 93 1168 13
135 1053 8 105 1176 1]

Mean Squares
32467.66
130232.47*
45593.92

Pre-plant linear
In season linear
Variable linear
Pre-plant quadratic
In season quadratic
Variable quadratic

SED = 45.52

I
1
1
1
1
1

360053.60*
345325.74*
963429.38*
351.60
33894.83
41313.66

*Significant at the 0.05 probability level
SED- Standard enor of the difference between two equally replicated means
PN- Production of lint per unit of applied N = (yield, kg ha"/total N rate applied, kg ha· l

)

32



1000
VI

C
III

E
'l)

8005
~
III

E
III
OJ 600~

;C;
«l....

<;....
400U

IIIc..
VI

"0
III

~.... 200.0

<;
Uc:

=>
0

-- Okgha- I

--22kgha- 1

44 kg ha- I

-- 67kgha-1

-- 90 kg ha- I

345 475 605 735 865 995 1125

wavelength, nm
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Figure 2. Relationship between NDVI readings from mid-bloom cotton and preplantN rates. July 27,1997. Altus, OK
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