
QUERYING OBJECT-ORIENTED DATABASES FROM

C++

By

XlnANTANG

Bachelor of Science

in Petroleum Engineering

Petroleum Institute of Eastern China

Dongying, P. R. China

1983

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1998

QUERYING OBJECT-ORIENTED DATABASES FROM

C++

Thesis Approved:

Dean of the Graduate College

u

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my advisor Dr. George Hedrick,

for his intelligent guidance, inspiration, and friendship during this study, and for his

patience in correcting this thesis. My appreciation is also extended to my other

committee members Dr. John Chandler and Dr. Huizhu Lu, for their kind suggestions,

assistance and friendships regarding my project.

Special thanks are given to Thomas L. Underwood and all my other personal

friends, for their encouragement, consideration, and helping me with my language.

I also like to express my thanks to my mother, Xiuying Feng, and to my wife,

Weihua Liu for their encouragement, loves and supports during my study at Oklahoma

State University.

111

TABLE OF CONTENTS

Chapter

I. INTRODUCTION 1

Motivation 2
Problem Statement 4
Outline of the Thesis 5

II. LITERATURE REVIEW 7

Query Languages 7
Queries Integrated with the Database Programming Languages 9
The Recent Advances in Object-oriented Databases with Object Query
Languages 11

III. OBJECTS AND OBJECT-ORIENTED DATABASES 13

Object Orientation Concepts 13
Object-oriented Database Concepts 14
An Application Example of Object-oriented Database 17

IV. A QUERYING METHOD FOR OBJECT-ORIENTED DATABASES20

Introduction 20
Extension to C++ to Cover the Object Query Language 21

Basic Structure 22
Structure Construction 24
Selection Predicate 24
Aggregate Operators 25
Relational and Logical Operators 25
in and !in Operators 26
Nested Queries 27
Join Query 27
Duplicates and Order 27

The Object Query Language Grarnmar. 28

IV

Chapter

V. IMPLEMENTION OF THE QUERYING OPERATIONS FOR
OBJECT-ORIENTED DATABASES...•..................•.•.30

Implementation Schema of An Object-oriented Database .30
Object Class and Data Classes .33
Reference Classes 37
Collection Template Classes 39
Database Structures and System Classes .44

Design and Implementation of the Query Method .46
Test Results 52

VI. SUMMARY, CONCLUSION AND SUGGESTED FUTUTE WORK 60

Summary 61
Conclusions 62
Suggested Furore Work 62

REFERENCES ' 64

APPENDIX 67

Glossary of Terms 68
Table of Acronyms 72

v

Table

1.

2.

3.

4.

5.

6.

7.

8.

9.

LIST OF TABLES
Page

The Relational Operators 26

The Query Results of the Collection, people 55

The Query Results of the Collection, students 56

The Query Results of the Collection, staff.. 56

The Query Results of the Collection, TAs 57

The Query Results of the Collection, professors 57

The Query Results of "People Who Live in Stillwater" 58

The Query Results of "TA in Department 1" 58

The Query Results of "Professors Whose Ages Are Greater Than the Average

in Departm.ent I" 59

Vi

LIST OF FIGURES

Figure Page

1. UsinganODBMS 16

2. Data Class Hierarchy in the University Personnel Database 18

3. E -R Schema 31

4. The Tabular Representation 32

5. Schema Definition of the Class d_Object.. 33

6. Schema Definition of the Class Person 34

7. Schema Definition of the Class Student. 35

8. Schema Defmition ofthe Class Staff.. 35

9. Schema Definition of the Class TA 36

10. Schema Definition of the Class Professor 36

11. Schema Definition ofthe Template Class d_Ref 37

12. Schema Definition of the Class d_ReCAny 38

13. Schema Definition of the Template Class Tstruct 39

14. Schema Definition of the Class d Iterator. .40

15. Schema Definition of the Class d Collection .41

16. Schema Definition ofthe Template Class d_Set. .42

17. Schema Definition of the Template Class d_Bag 42

18. Schema Definition of the Template Class d_List. .43

Vll

Fieure Page

19. Schema Definition of the Template Class d_Varray .44

20. Schema Definition of Data Store Structure 45

21. Schema Definition of the Class d Transaction .45

22. Schema Definition of the Class d Database ..46

23. Three Symbol Tables 48

24. Schema Defmition of the Class string 49

25. Schema Definition of the Class queryclass .49

26. Schema Definition of the Class exequery .51

27. Implementation Definition of Query Execution Function 52

28. The Main Menu 53

29. The Sub Menu 54

viii

CHAPTER I

INTRODUCTION

Many programmers design and implement applications using object-oriented

programming languages, such as C++, Smalltalk, Java. The code developed and

implemented by using object design techniques tends to be well modularized. This

modularization is helpful in constructing many manageable, relatively small, source-code

building blocks. These software blocks, or objects, can be combined into functionality

and specialized to develop new functionality. The techniques of object-oriented

programming help to reduce the conceptual gap that the designers have in modeling real

world problems. Object-oriented programs are easier to maintain, to modify, and to

extend than other programs that were written using conventional techniques. This

flexibility allows programmers to respond more rapidly to changes in new requirements.

Since the inception of object-oriented programming, object-oriented concepts

have been integrated into database management systems. Database management systems

(DBMS) allow persistent databases to be shared by many users concurrently. DBMS use

underlying concurrency control, software management, and optimization strategies to

achieve this efficiently. There are two trends for object-oriented concepts being

integrated into database management systems. One trend is the incorporation of powerful

object capabilities. The object-oriented techniques provide powerful modeling

and application development alternatives for a number of advanced database applications.

The other trend in database is the downsizing of equipment in the environment in which

database management system operates. In many corporations the internetworked LANs

with file, database, and other servers are replacing mainframe environments for sharing

information concurrently.

Traditional database systems cannot meet the needs of new environments that

utilize new techniques on more complex applications, such as network, multimedia and

heterogeneous client /server, etc. An object-oriented DBMS provides persistence for

objects rather than for tables or records as do relational databases. It is well-suited for

supporting multi-user applications developed with an object-oriented programming

language, where the users must share data. The combination of object-oriented

programming with an object-oriented database offers benefits of a synergistic

development environment.

Motivation

As in all other kinds of databases, object-oriented databases must be able to

respond to a query easily. Frequently, this can be achieved by using an object-oriented

programming language [Loomis, 1994]. Because of the close coupling of the object­

oriented database with an object-oriented programming language, application

programmers can query persistent and transient objects in a consistent way. Also, object

2

query languages can access the object-oriented databases in the same manner as SQL is

used to query relational databases.

A variety ofobject query languages have been proposed in the literature.

Basically these querying languages can be placed into one of two families, each family

having its own objectives. The first family is the integrated family. Its objective is

seamless integration with its host object programming language. One approach is that

queries are coded in standard C++ using functions. The second family is the SQL family.

Its objective is to modify SQL to accommodate object databases. These query languages

came from the relational DBMS and have been extended to accommodate some aspects

of objects, such as OQL. OQL is Object Query Language defined by the Object Database

Management Group (ODMG).

These object query languages have some problems: how should programming

language features be mixed with the capabilities of Object Database management

Systems [ODBMSJ. For example, OQL semantics of ODMG - 93 [Cattell, 1996] support

querying any type of object supported by the object-oriented programming language. A

query can include operations defined on those types. Another problem arises since the

operations specified for classes are equally valid on both persistent and transient objects.

This is quite different from the SQL-deriva6ve perspective, where the relational DBMS

provides only the collection, Boolean, aggregate, sorting, and grouping functions. All of

the other functions must be provided by the programming languages. There is a clear

distinction between a programming language with transient data and SQL with persistent

data. SQL functions, including stored procedures, can execute only on persistent data.

3

They are the only database operations possible where SQL is used. The programmer

continually must be aware of the differences between transient and persistent data.

ODBMS tries to remove this distinction[Loomis, 1994].

Problem Statement

This topic of thesis is querying object-oriented databases using extended C++.

The approach belongs to the integrated family. The reasons we choose the approach

rather than the SQL approach are as follows:

1. There is a clear distinction between database variables used by SQL and program

variables. Values must be copied between these two kinds of variables explicitly,

and there may not be adequate type checking performed in those operations.

2. SQL has its own notions ofexpressions and functions. These functions cannot be

used freely in object-oriented programming languages, nor can the constructs of

programming languages be used in composing SQL statements.

3. SQL implements a table (relational) model, which is not the same as an object­

oriented model supported by the object-oriented programming languages. The result

of a SQL query is a relation which cannot be manipulated appropriately by object­

oriented programming languages.

4. The application programmer must design and code the logic to deal with the

differences between the type systems of the database programming language and

SQL. This can be error-prone and labor-intensive.

4

The goal ofthis thesis is to find the seamlessness ofthe object-oriented database

interface by how natural it is for the typical C++ programmer, rather than by how it fits

with a standard C++ compiler. Based on the square syntax of collections presented by

Loomis [Loomis, 1994] and drawing from features of either OQL or SQL, there is a new

querying method for object-oriented databases. The method extends the C++ language to

cover part of the object querying language. The extension to C++ is simple and easy to

implement. However, the querying capability is so powerful that it effects the most

queries implemented by OQL or SQL. Unlike the approach presented by Loomis, this

new approach does not require use of a preprocessor that turns the new syntax into code

that the compiler can understand. Instead, there is a query execution function to take the

queries as its arguments. This extended C++ approach has the benefits of an easy-to-use

interface with run-time type checking.

Outline ofthe Thesis

The thesis is organized as follows: Introduction, Literature Review, Objects and

Object-oriented Databases, A Querying Method for Object-oriented Databases,

Implementation of the Querying Operations for Object-oriented Databases, and

Summary, Conclusion, and Suggested Future Work. Introduction simply describes the

current development of object-oriented database and object query problems. Literature

Review introduces several querying database approaches or/and languages such as SQL

and OQL. Objects and Object-oriented Databases first reviews the concepts of objects

and object-oriented databases, then describes object database organization and gives an

example of object database. A Querying Method for Object-oriented Databases presents

5

the new definition of the syntax of querying object databases based on the square-bracket

syntax used in the collections ofobjects. The new definition is consistent with the C++

style. Many examples are provided to illustrate both syntax and semantics of the new

definition. Implementation of the Querying Operations for Object-oriented Databases

will give the implementation schema, interface and test results.

6

CHAPTER II

LITERATURE REVIEW

Query Languages

Most relational databases have used a single query language -- SQL in all

contexts.

SQL is basically the same whether it is embedded in COBOL, PLlI, C, C++, or used in

interactively. The database records exist outside the context of any particular application.

A relational database can be accessed from programs written in any of a variety of

languages using embedded SQL. The syntax and semantics of SQL are inseparable

[Loomis, 1995].

The initial specifications for the SQL language dates back to 1973. It was first

developed for system R at IBM Research Laboratory, San Jose, California [Chan et aI.,

1993]. Although not part of relational model theory, SQL is considered by some people

to be equal in importance to development of the relational DBMS products [Fleming and

Von Hall, 1989]. It was adopted by the American National Standards lnstitute(ANSI) in

1986 as a standard language for interacting with relational databases. Since the early

eighties SQL has prevailed as the database language implemented in most commercial

7

relational DBMS products. The popularity of SQL and the relational model has

prompted the makers of many non-relational database products to provide SQL as a

means of access, or "front-end" to their product [Lusardi, 1988]. SQL as a common

relational database language enables consistency across product implementations, at least

in the way that users, application developers, and, to some extent, database designers

interface with the products. Using a common language allows users to deal with only one

syntax for invoking those mechanism.

There are other database query languages in addition to SQL. These are done

mostly in the laboratories with student users. One famous query language for relational

database is QUEL. QUEL is a product ofINGRES. It is based on technology published

by researchers at the University of California, Berkeley [Loomis, 1995]. QUEL can be

used as an interactive query language or it can be embedded within a host programming

language. It provides a range of functionality similar to that provided by SQL. But SQL

and QUEL were not syntactic variants on a common semantic model. They are totally

different. A relational DBMS could not support both. By contrast, an ODBMS can

support a variety of surface syntax for the ODMG object-oriented query language

semantics.

The Object Database Management Group (ODMG) has defined a query language

called the Object Query Language (OQL) [Cattell, 1996]. OQL provides declarative

access to objects in the object database. It bases on the ODMG object model and uses the

application's object model as the definition of the database schema. In addition to

providing the data access, it also supports the same type defined by the application object

model. OQL has the same capabilities as the object-oriented languages, such as object

8

identity, path expressions to traverse relationships, operation invocation, inheritance, and

polymorphism. It relies on the ODMG object model. In 1993 ODMG released his

standard: ODMG -·93 [Cattell, 1996] which includes OQL. This standard OQL

provides both a subset and superset ofSQL92 [Jordan, 1995]. As a subset, it supports

nearly all of the query syntax and semantics of the entry-level ANSI SQL92 specification,

which is common subset supported by the relational vendors. As a superset, it provides

many extensions to support the object paradigm.

SQL is based on the tuple relational algebra~ whereas, OQL is based on domain

relational algebra. The two algebra are quite similar, the key difference being that

variables in the domain algebra reference values from an arbitrary domain (data type)

whereas in the tuple algebra, the variables can reference only tuples.

SQL does not support objects. But the SQL3 committee is preparing a

specification of a new SQL language that will support obj ects. Currently SQL3 only

allows objects to serve as the data type of a column, and all object semantics and methods

are defined in a procedural extension to SQL. SQL3 must maintain backward

compatibility with the huge volume oflegacy SQL code deployed in systems today. The

current market dominance of SQL is both an asset and a liabi lity of the SQL3 efforts.

There are many other fundamental object model and architectural differences between

ODMG OQL and SQL3 [Jordan, 1995].

Queries Integrated with the Database Programming Languages

The above querying languages do not share the same type system as ODBMS.

They belong to the SQL family. Another family is the integrated family. The members of

the family seek seamless integration within the database programming language. A C++

9

programmer can use C++ to query an object database directly when seemless integration

is used. A Smalltalk programmer can use Smalltalk to query an object database.

One approach to object-oriented query syntax is to use standard C++. Some

ODBMS provide a Select function that takes a string containing the query as its

argument. The SQL statements are coded as strings that C++ ignores. The Select

function is inherited by persistent objects whose classes are derived from a virtual base

class. The Select function takes as its argument a string form of the query predicate to be

applied to the extent of a class. This approach does not use preprocessors and makes

debugging programs easier [Loomis, 1994].

Another object query syntax approach is to extend C++ to accommodate query

semantics, with careful attention paid to consistency with C++ style so the queries

fit seamlessly and naturally with in C++. This approach requires use of a preprocessor,

which turns the newly introduced syntax into code that can be handled by the C++

compiler [Loomis, 1994].

Queries can be coded in Smalltalk. An ODBMS can provide a smoothly

integrated query capability in Smalltalk using the Select method already defmed on

Smalltalk collections. This approach implements a seamless interface that is natural to

most Smalltalk programmers.

As with Smalltalk, there is another database programming language, OSQL, that

combines an expression-oriented procedural language with a high-level, declarative, and

optimizable query language [Won Kim, 1995]. The OSQL language combines the object­

oriented features found in such as C++ and Smalltalk with a query capability that is a

superset of the familiar SQL relational query language. Therefore, OSQL is an object

10

oriented programming language which provides object identity, a type system with

multiple inheritance, polymorphic functions and built-in aggregate object types such as

sets and lists. It also provides a declarative query capability similar to that provided by

SQL for relational databases [Jordan, 1995].

The Recent Advances in Object-Oriented

Databases with Object Query Languages

A new standard (ODMG 2.0) for object-oriented databases was released in 1997

by ODMG [Cattell, 1997]. This completely revised standard for object database

management systems represents an important industry consensus on component

technology for database products and languages. The goal of the standard is to combine

programming languages and database systems into a single environment, providing better

performance and more powerful representations for complex database applications.

ODMG 2.0 draws upon related work represented by ANSI SQL-92, the OMG Object

Model and Interface Definition Language.

There are several enhancements in ODMG 2.0. ODMG has defined a new

binding for Sun's Java programming language that combines the safety and pure object

orientation of Smalltalk with the more powerful data and syntax of C++, as well as

security and automatic program transfer on the internet. The ODMG object model has

been modified and expanded to provide a comprehensive specification of object database

semantics across many programming languages. A standard for the external form for

data and the data schema has been defined to allow data interchange between databases

[Wade, 1997]. Some updates and improvements on Object Query Language (OQL) have

11

been made, too. The new OQL supports method invoking polymorphism during the query

process. It can deal with object identity and support operator composition.

Another advance is in SQL3. The current draft includes many new capabilities,

such as object functionality and a computationally complete language (PSM). Both of

them are very significant additions. PSM is a full language with control flow, procedural

operations, and function resolution. It has been defined for both relational and object­

oriented databases, including query language, as being compatible with SQL2. The

addition of object capabilities includes the ability to define and access Abstract Data

Types (ADTs), which have much the same functionality as ODMG objects. PSM is used

to implement the internals ofobjects, both state and operations. The rows in tables may

contain objects, which are instances of ADTs. A mechanism to reference objects in other

row provides a means to uniquely identify such a row. This is the basis for a concept of

identity, similar to ODMG's object reference [Wade, 1997].

Queries in SQL3 include the exact query ability ofSQL2, along with an

additional ability to invoke methods and traverse relationships. This is much like OQL.

OQL queries may apply to and result in objects and collections, whereas SQL3 queries

are limited to tables. But, there exist syntax differences between OQL and SQL3, also.

For example, OQL uses the dot to indicate traversal, and SQL3 uses double-dot to avoid

conflict with the use of dot in SQL2 for naming.

12

-

CHAPTERllI

OBJECTS AND OBJECT-ORlENTED DATABASES

Object Orientation Concepts

An object is a software building block. An object-oriented technique can be

defmed loosely as the software modeling and development disciplines that make it easy

to construct complex systems from individual components [Khoshafian, 1993]. The

objects are implemented through classes. Every object is uniquely identifiable by an

object identifier that is unchangeable during the lifetime ofthe object. A class produces

instances, each with the same structure and behavior. A class is composed of two parts:

state and operations. State is defined by the values that objects carry for a set of

properties. These properties can be either attributes of an object or relationships between

the object and one or more other objects. The operations are called methods which

manipulate the instances of a class. The state, or data, of an instance is stored in instance

variables. The object or class has the following characteristics [Loomis, 1995]:

• Modularization Programs are developed in small, understandable modules of data

structures and operations allowable on those data.

• Encapsulation The code and the data it manipulates are bound together for keeping

both safe from outside interference and misuse.

13

• Type All objects that have the same interface, or the same properties, are grouped

together. They are treated as being of the same type.

• Inheritance The codes are reused through defining new types that have all the

properties ofanother known type, plus some additional properties. The new type inherits

the shared properties from th.e known type.

• Messaging An object is made to perfonn one of its functions by sending to it a

message, phrased in a simple, standardized way, independent of how or where the object

is implemented.

• Polymorphism One interface is allowed to be used for a general class of actions. The

specific action is detennined by the exact nature of the situation. The system will figure

out at runtime exactly which operation code to invoke, based on the type of object that

receives the message. Polymorphism is the ability of different kinds of objects to respond

to the same message. Message overloading and dynamic binding make polymorphism

possible.

Object-oriented Database Concepts

The object-oriented database is the integration of object technology with database

capacities. Through object-oriented constructions users can hide the details of

implementation of their modules, share objects, and extend their database systems by

specializing existing modules. Database users can have the state of objects persist and be

updated between various program invocations, and various users can share the same

infonnation concurrently. Object-oriented databases can be defined as follows:

14

-

Object-oriented databases = Objects + Database capabilities

The capacities of object databases include the following [Khoshafian, 1993]:

• Persistence The ability of objects to remain after different program executions. Data

manipulated by an object database can be either transient or persistent. Transient data

last only for the invocation; they are lost once the program or transaction terminates.

Persistent data are retained until they are no longer used. These data are the recoverable

objects of the database.

• Transactions Units are executed either entirely or not at all. Transactions are atomic.

The updates to the persistent database within a transaction either must be visible to the

outside world, or none of the updates must be seen.

• Concurrency Control The mechanisms limit simultaneous reads and updates by

different users, so that all users see a consistent view of data. To guarantee database and

transaction consistency, database management systems impose a serializable order of

execution.

• Recovery The database management systems must guarantee that there is no

propagation of the failed partial results or partial updates of transactions in the persistent

database.

• Querying Queries are used to select subsets and sub-objects from database collections

of objects or sets. Queries expressed in terms ofhigh-level languages allow users to

qualify what they want to retrieve from the persistent databases.

15

• Integrity Database management systems must keep the database state consistent

throughout transactions. The database consistency can be typically expressed through the

predicate on the current state of database. Predicates also can apply to objects or attribute

values in the database.

• Security Database management systems enforce security constraints to access or

update persistent objects. The security mechanism, such as granting and revocation of

privileges, and the protection of persistent databases from adverse access are integral

Declarations
inODL

Application
Source in PL

Figure 1 Using an ODBMS

16

parts of any database management system, including object databases.

Figure 1 illustrates the use of the typical ODBMS product which was introduced

by Cattell[Cattell, 1996]. The programmers need to write declarations for the application

schema (both data and interface) and a source program for the application

implementation. The source program is written in a programming language (PL) such as

C++, using a class library that provides full database OML, or Object Manipulation

Language, including transactions and object query. Then the declarations and source

program are compiled and linked with the ODBMS to produce the running application.

The application accesses a new or existing database, whose types must conform to the

declarations. Databases may be shared with other application on a network. The

ODBMS provides a shared services for transaction and lock management, allowing data

to be cached in the application.

An Application Example of Object-oriented Database

Before discussing the method of querying object-oriented database we present an

application example of object-oriented database that manages the personnel of a

university. This database is called personnel. The implementation schema is given in

chapter 5 of the thesis.

The university personnel database manages infonnation about students and

educational staff (staff, in short). There are five data classes: Person, Student, Staff, TA

and Professor. Student and Staff have a common supertype: Person. The type, Person,

bas properties: name, person_identification, age, address, sex, marriage_status, and an

operation: move_addressO. An address is a structure whose properties are number,

17

street, city and zip_code. All instances ofPerson in the database form a collection,

people. The type, Student, inherits Person, but has extra properties: major and level, and

an operation: assign_majorQ. The collection of all instances of Student in the database is

called students. The educational staff includes TA and professors. A TA is not only

Person

Student Staff

TA Professor

Figure 2 The Data Class Hierarchy in University Personnel Database

student, but also a member of the staff. The type TA inherits both of Student and Staff

All instances ofTA in the database form a collection, TAs. The type staff has the extra

properties of department and annual_salary and two operations of hireO and fireO. All

instances of Staff in the database form a collection, staff. A professor is astaff and its

type Professor has the extra property of rank and an operation of grant_tenureO. The

collection of all instances of Professor in the is called professors. Figure 2 is graphical

18

representation for the application. There is no other relationship among those classes

(objects) except inheritance.

19

CHAPTER IV

A QUERYING METHOD FOR OBJECT-ORIENTED DATABAES

Introduction

The standard ODMG - 93 has given the definition of the Object Query Language

(OQL). OQL relies on the ODMG object model and is a superset of the part of standard

SQL that deals with database queries. Any SQL sentence which runs on relational tables,

works with the same syntax and semantics on collections of ODMG objects. For

example, find the ages of persons whose name is Pat from the collection people.

select distinct x.age

from peopIe x

where x.name="Pat"

This statement selects the set of ages, returning a literal of type set<integer>. Another

example,

select distinct struct(a: age, s; sex)

from people x

where x.age>20

20

This does almost the same things, but for each person, it builds a structure containing age

and sex. It returns a literal of type set<struct>.

Even though this kind of querying language is powerful, it is not natural for a C++

programmer. It is not easy to implement all the syntax and semantics of OQL in a small

object-oriented database. There are other problems as described in Chapter 1. The goal

is a query facility that is seamlessly integrated with a programming language and easy to

use. The result has been extensions to C++ to accommodate query semantics consistent

with C++ style. Loomis presented a querying method which applied the square-bracket

syntax to the collections of objects [Loomis, 1994]. For the first example above, the

query could be phrased as follows:

Set<integer> ages = people[name="Pat"]~

For the second example, the structure must be defined before using it in a query.

There are other limitations when this approach is used to make complex queries, such as

joins. The approach is extended to cover more complex situations. For example, the

second query above can be written as follows:

Set<struct(integer age, Boolean sex» age_sex = people[age>20];

The teon in the square brackets is predicate expression rather than indexes. The struct

term in the angle brackets is a structure type which has the same meaning as OQL. This

kind of querying statement is simple and natural for a C++ programmer to use.

Extension to C++ to Cover the Object Query Language

21

The above syntax of square brackets on the collection is an extension to C++. In

order to meet the complex query requirements we need make more such extensions must

be added. Following will give the language definitions for these extensions. A query is

an extended C++ statement which consists of a query expression followed by a

semicolon. A query expression is built from typed operands using query operators.

Basic Structure

The basic structure of a query expression consists of two operands which

separated by the operator =. The first operand defines the query return type which is

used for the output of query results. The second operand is the query term which acts on

the existing collections with square brackets. The term in the square brackets is the

selection predicate.

A typical query statement has the form:

collection type<struct(type var_identifier (, type var_identifier))>

identifier =collection_ identifier {, collectiofl_ identifierj[selection predicate};

where var_identifiers in the struct must be properties of the collections, or functions that

take the collections as their arguments. struct means the all items in the brackets

construct a new structure type. All collection_identifiers must be the existing collection

names. Initially the collections are the extents of the class which generates object data in

the object database. selection predicate is an Boolean expression or a query condition.

For example, find out the faculty's name, annual salary and age at the department 5.

Set<struct(string name, float annual_salary, integer age» list

22

= staffldepartment=5];

There is several modifiers for the basic structure. One ofmodifiers is to query a

collection directly. It has following fonn:

collection_identifier;

For example, the following query statement will list all person's information in the

collection, people.

people;

The other modifiers will be described later.

The collection types supported by the ODMG Object Model include

• Set<t>

• Bag<t>

• List<t>

• Array<t>

All the elements in the collection are of the same type 1. A Set is an unordered collection

of elements with no duplicates allowed. A Bag is an unordered collection of elements

that may contain duplicates. A List is an ordered collection of elements. An Array is

collection with a fixed number of elements that can be located by position. We can use

index number to get the wanted element. For example, to get the third element of an

array Names.

string third_name = Names[3];

23

Structure Construction

We often need to find more than one property from existing collections. A

structure must be built for storing these properties before the query is executed. The

definition struct(type var_identifier (, type var_identifier}) is used to build such a

structure whose data members are properties or functions of the collections. When the

data types for var_identifiers are the same as properties in the collections, then the types

of the var_identifiers need not to be mentioned. If there is more than one type or

collection, we can use a path delimiter. For example, we have a person p and want to

know the zip code where the person lives.

p.address.zip_code

If a struct is known, the struct can be omitted. This is another modifier for the

basic form. For example, find out all persons whose ages is greater than 30.

Set<Person> spersons = people[age>30];

where Person is the element type of the collection, people.

Selection Predicate

The selection predicate is an Boolean expression or a query condition which is

constructed by relational operator(s) with terms. Here term denotes variable or value and

is also an expression. The predicate serves to select only the data matching the predicate.

A modifier ofselection predicate is that it can be empty, with the meaning of a true

predicate. For example, select all person's name, age and sex from the collection, people.

Set<struct(string name, int age, Boolean sex» nas = people [];

24

A~life~ate Operators

Aggregate operators are functions that take a collection as input and return a

single value. Like SQL we define the 5 aggregate operators {min, max, count, sum, avg}.

Ife is an expression which denotes a collection, <op> is an aggregate operator, then

<op>(e) is an expression. For example,

minecollection)

min operator returns the element with the minimum value in the collection. The max

operator returns the element with maximum value in the collection. The count operator

returns the number of elements in the collection. The sum operator returns the average

value of the elements in the collection. For example, find out all names ofpersons whose

ages are greater than the their average age.

Set<struct(string name» names = people[age>avg(people)L

Relational and Lo~ical Operators

Relational and logical operators in C++ can be used to construct a composite

expression in the selection predicate in the square brackets. The relational operations are

=, !=, <, <=, >, and >=. Table 1 lists these operators and their meaning. The logical

operators are !, &&, II. They are binary operators except! which is unary. For example,

find the names of all persons whose ages are greater than 50 or less than 35 in department

5.

Set<struct(string name» names = people[«age>50) II

(age<35)&&(department=5))];

25

As the same as C++, the two tenus before and after any relational operator must have the

same types and single values. The expression el <op> e2 is Boolean expression which

can have a value of either Il:w: or~ only.

Table 1 The Relational Operators

in and !in Operators

Operator

,=
<

<=

>

>=

Meaning

equal

not equal

less than

less than or equal

greater than

greater than or equal

If eland e2 are expressions, e2 is a collection, and e1 has the type of elements of e2,

then el in e2 and el lin e2 are expressions. Here! means not. If elements el belongs to

collection e2, then el in e2 returns true, el !in e2 returns false, othelWise, el in e2 returns

true, el !in e2 returns false. For example, to find the students whose names are in the list,

lis.

Set<struct(string name, unsigned long person_id, String major» nim

= students[name in lis];

26

Nested Queries

The query method supports nested queries by applying a query to the collections

which are the results of the preceding queries. For example, assuming we know the

collections: staff and students, find out the names and majors of students who are TAs of

department 1.

Set<struct(string name» staffuames = staff [department 1];

Set<struct(string name, string major» TAnames =

students [(name in facultynames) && (level=PhD)];

The nested queries cannot be in the select predicate since each collection must be

declared early before getting in the execution. All collections in the select predicate

expression must exist, otherwise raise an exception.

Join Query

As with SQL, the query method allows computation ofjoins among many

collections. For example, select the people who bear the name ofa flower, assuming

there exists a set of all flowers called Flowers.

Set<Person> person1 = people[name = Flowers.nam.e];

Duplicates and Order

The collection has 4 different types: Set, Bag, List, and Array. The Set collection

does not allow the duplicate elements. This corresponds to the key word distinct in the

select clause of SQL. But the Bag collection allows duplicate elements. For example,

27

find out the names of people whose ages are 30.

Bag<stmct(string name» names = people[age 30];

The Bag names has duplicate elements s,ince there could be several persons who have the

same ages and the same names.

Sometimes an ordered collection is needed. This time the collection list can be

applied. For example, determine the students whose majors are computer science ordered

by age.

List<struct(string name, integer age, integer level» studentl =

students[major = "computer science"];

The Object Query Language Grammar

The above section has discussed the definition of the object query language.

Following is the grammar of the object query language.

Query~ collection <expression!> id = id [expression2]; lid;

collection ~ Set IBag IList IVarray

expressionl ~ type Istruct (term!)

term 1~ term 1, term1 I type id

type ~ int Ifloat Ichar Idouble I long Istring

expression2 ~ (expression2) logop (expression2) I tenn2 relop term2 I space

term2 ~ id Iconst Iaggregator (id)

28

where

logop ~ && III

relop ~ = I != I> I>= I< I<= I in I lin

const ~ Number IString

aggregator ~ min Imax Iavg Icount Isum

• collection denotes which kind ofcollection.

• expression1 denotes type or structure.

• expression2 denotes selection predicate.

• tenn1 denotes a variable and it type.

• tenn2 denotes identifier, value or aggregator function.

• logop denotes logical operator.

• relop denotes relational operator.

• const denotes number or string.

• bold symbols denote they are tenninated symbols

29

CHAPTER V

IMPLEMENTATION OF THE QUERYING OPERATION

FOR OBJECT-ORIENTED DATABASES

Implementation Schema of An Object-oriented Database

This section presents the implementation schema definitions of the university

personnel management database. The university personnel management database has five

data classes: Person, Student, Staff, TA and Professor. Figure 3.2 shows the relationship

among these classes. Each of these classes has specific data members and methods which

are discussed in the section entitled Object and Object-oriented Database. All Data are

stored in the objects which are instances of data classes. At this point it is appropriate to

present the E-R model of the university personnel management database from the view of

the relational database.

Figure 3 is the E-R schema of the university personnel management database. But

unlike the object model, the E-R model cannot have many inheritances. Therefore a TA

inherits either a Student or a Staff only. Figure 3 supposes a TA inherits a Student.

Figure 4 is the tabular representation of the E-R schema. There is much redundancy in it

30

Student

TA

Staff

Professor

Figure 3 E-R Schema

31

Person

name person id age sex marriage street num. street name city code city name

Student

Iname person id level major

name person id work date department ann. salary rank

name person id level major work date ann. salary department

name person id

Staff

work date ann. salary department

TA

Professor

Figure 4 The Tabular Representation

32

since the E-R model simply cannot represent the complicated relationship of inheritances.

However using the object model this kind relationship can be easily represented as

inheritance without any redundancy. This is one of the advantages that the object-

oriented database has. The university personnel database is the object-oriented database

which follow the standard: ODMG-93 [Cattell 93) except the querying method.

Object Class and Data Classes

As mentioned before there are five data classes in this database. They are Person,

Student, Staff, TA and Professor. These classes inherit the Object class. The Object

class i.s introduced to allow the type definer to specify when a class is capable of having

persistent as well as transient instances. Instances of classes derived from Object can be

class d_Object {
public:

d_ObjectO;
d_Object(const d_Object & ob);
virtual ~d_Object{);
d_Object & operator=(const d_Object & ob);
void mark_modifiedO;
void· operator new(size_t size);
void· operator new(size_t size, const d_ReCAny &cluster, canst char

*typename);
void * operator new(size_t size, d_Database *database~ canst char

*tyenarne=" ");
void operator delete(void * ptr);
virtual void saveData(ofstream &out) const;
virtual void restoreData(ifstream &in) ;
virtual void printDataO;

private:
int markbit;

}.. ,

Figure 5 Schema Definition of the Class d_Object

33

-

either persistent or transient. Figure 5 is the schema definition of the Object class (here

putting prefix d_ before Object means it is used in the database).

Figure 6 - 10 define the schema of class Person, Student, Staff, TA, and Professor

respectively. They all inherit class d_Object.

class Person: public d_Object {
public:

char name[21];
long personid;
int age;
int streetnum;
char streetname[51];
long cityeode;
char cityname[51];
int sex;
int marriage;
PersonO;
Person(const char *pname, long pid, const char *bd, int SX, int mar);
void move(const Address &);

Ilpeople is collection of instanoes of Person
static d_Ref<d_Set<Person> people;
static const char * const extent_name;
virtual void saveData(ofstream &out) const;
virtual void restoreData(ifstream &in);
virtual void printDataO;

};

Figure 6 Schema Definition of the Class Person

class Student: public Person {
public:

char major[51];
int level;
StudentO;
Student(int Iv);
Student(const char *pname, long pid, const char *bd, int SX, int mar, int

Iv);

34

-

-Student();
void assign_major(const char *mj);

Ilstudents is collection of instances of Student
static d_Ref<d_Set<Student» students;
static const char * const extent_name;
virtual void saveData(ofstream &out) const;
virtual void restoreData(ifstream &in);
virtual void printDataO;

};

Figure 7 Schema Definition of the Class Student

class Staff: public Person {
public:

float an_salary;
int department;
char workdate[51];
Staff0;
Staff(float ans, int dep);
Staff(const char *pname, long pid, const char *bd, int sx, int mar, float

ans, int dep);
-Staff0;
void hire(const char *hda);

Ilstaff is collection of instances of Staff
static d_Ref<d_Set<Staff.» staff;
static const char * const extent_name;
virtual void saveData(ofstream &out) const;
virtual void restoreData(ifstream &in);
virtual void printDataO;

} ;

Figure 8 Schema Definition of the Class Staff

class TA: public Student {
public:

float an_salary;
int department;
char workdate[51];

35

TAO;
TA(const char *pname, long pid, const char *bd, int SX, int mar,int lv,

float ans, int dep, char *wd);
-TAO;
//TAs is collection of instances ofTA
static d_Ref<d_Set<TA> > TAs;
static const char * const extent_name;
virtual void saveData(ofstream &out) const;
virtual void restoreData(ifstream &in);
virtual void printDataO;

};

Figure 9 Schema Definition of the Class TA

class Professor: public Staff {
public:

int rank;

ProfessorO;
Professor(const char *pname, long pid, const char *bd, int SX, int mar,

float ans, int dep);
-ProfessorO;

//professors is collection of instances of Professor
void grant_tenure(int rk);
static d_Ref<d_Set<Professor» professors;
static const char * const extent_name;
virtual void saveData(ofstream &out) const;
virtual void restoreData(ifstream &in);
virtual void printDataO;

};

Figure 10 Schema Definition of the Class Professor

In the above definitions there are some new types, such as d_ReCAny,

d_Ref<T>, d_Set<T>, and d_Database, which will be described later.

36

Reference Classes

Sometimes some objects need to refer to other objects. It can be achieved through

a smart pointer or reference called a d_Ref. A d_Ref<T> is a template class

template <class T>class d_Ref {
private:

T * ptr;
public:

d_RefO;
d_Ref(T *fromPtr);
d_Ref(const d_Ref<T> &ref);
d_Ref(const d_ReCAny &any);
~d_RefO;

operator d_ReCAny0 const;
d_Ref<T> & operator =(T *fromptr);
d_Ref<T> & operator =(const d_Ref<T> &ref);

void clearO;
T * operator ->0 const;
T & operator *0 const;

T * PtrO const
void delete_objectO;
operator const void *() const;
int operator !0 const;
int is_nullO const;
friend int operator =(const d_Ref<T> &refL, const d_Ref<T> &refR);
friend int operator =(const d_Ref<T> &refL, const T *ptrR);
friend int operator =(const T *ptrL, const d_Ref<T> &refR);
friend int operator =(const d_Ref<T> &L, const d_ReCAny &R);
friend int operator =(const d_ReCAny &L, const d_Ref<T> &R);
friend int operator !=(const d_Ref<T> &refL, const d_Ref<T> &refR);
friend int operator !=(const d_Ref<T> &refL, const T *ptrR);
friend int operator l=(const T *ptrL, const d_Ref<T> &refR);
friend int operator !=(const d_Ref<T> &L, const d_ReCAny &R);
friend int operator !=(const d_ReCAny &L, const d_Ref<T> &R);

} ;

Figure 11 Schema Definition of the Template Class d_Ref

37

which refers to an instance of type T. There is also a d_ReCAny class defined to support

any type. Figure 11 is the schema definition of d_Ref.

The d_ReCany class is defined that provides a generic reference to any type. Its

main purpose is to handle generic references and allow conversions of d_Refs between

the different types. A d_Ref<r> can always be converted to a d_ReCAny through a

function in the d~ef<r> template class. Using the constructor and assignment operator

in the template class a d_ReCAny can be become a d_Ref. The d_ReCany is defined in

Figure 12.

class d_ReCAny {
public:

d_Object * ptr;
d_ReCAnyO;
d_ReCAny(const d_ReCAny &any);
d_ReCAny(d_Object *obj);
~d_ReCAnyO;

d_ReCAny & operator =(const d_ReCAny &any);
d_ReCAny & operator =(d_Object *obj);
void clearO;
void delete_objectO;
operator canst void *0 const;
int operator!0 const;
int is nullO const;
friend int operator =(d_ReCAny &refL, d_ReCAny &refR);
friend int operator =(d_ReCAny &refL, d_Object *obj);
friend int operator =(d_Object *obj, d_ReCAny &retR);
friend int operator !=(d_Ref_Any &refL, d_ReCAny &retR);
friend int operator !=(d_ReCAny &refL, d_Object *obj);
friend int operator !=(d_Object *obj, d_ReCAny &refR);

};

Figure 12 Schema Definition of the Class d_ReCAny

38

Collectjon Template Classes

Collection template classes are used to represent a collection whose elements are

of any type. A confonning implementation must support at least the following subtypes

class which cannot have instances. It is derived from object class d_Object, allowing

instances of concrete classes derived from d_CoIJection to be stand-alone persistent

objects. There are two classes, Tstruct<T> and d_Iterator<T>, involved in the class

d_Collection. The template class Tstruct is used to construct the linked nodes in the

collection. Figure 13 shows its schema definition. The template class d_Iterator defines

the generic behavior for iteration. Its purpose is for sequentially returning each element

from the collection over which the iteration is defined. Normally, an iterator is initialized

by the create_iterator method on the collection class. Figure 14 lists the schema

definition for d Iterator.

Template <class T> class Tstruct {
public:

T tptr;
Tstruct<T> *next;
TstructO;

};

Figure 13 Schema Definition ofthe Template Class Tstruct

template <class T> class d_Iterator {
public:

Tstruct<T> *Inode, *Ooode;
d_IteratorO;
d_Iterator(const d_Iterator<T> &it);

39

-d_IteratorO;
d_Iterator<T> & operator =(const d_Iterator<T> &it);
friend int operator =(const d_Iterator<T> &itL, const d_Iterator<T>

&itR);
friend int operator !=(const d_Iterator<T> &itL, const d_Iterator<T>

&itR);
void resetO;
int not_doneO const;
void advanceO;
d_Iterator<T> & operator ++0;
d_Iterator<T> & operator --0;
T get_elementO const;
T operator *0 const;
void replace_element(const T &elem);
int next(T &obj);

};

Figure 14 Schema Definition of the Class d_Iterator

Figure 15 lists the schema definition of the template class d_Collection.

template <class T> class d_Collection: public d_Object {
protected:

Tstruct<T> *Head, *Cnode;
unsigned long size;
int order, duplicate;

d_CollectionO:d_Obj ectO;
d_Collection(const d_Collection<T> &dc);
d_Collection<T> & operator =(const d_Collection<T> &dc);

public:
virtual ~d_CollectionO;
d Collection<T> & assign from(const d Collection<T> &dc);- --
friend int operator =(const d_Collection<T> &cL, const

d Collection<T> &cR);
friend int operator !=(const d_Collection<T> &cL, const d_Collection<T>

&cR);
unsigned long cardinalityO const;
int is_emptyO const;
int is_orderedO const;

40

int allows_duplicatesO canst;
int contains_element(const T &element) const;
void insert_element(const T &elem);
void remove_element(const T &elem);
void remove_allO;
d_Iterator<T> create_iteratorO const;
d_Iterator<T> beginO const;
d_Iterator<T> endO const;
II query
const T & select_element(const char &OQL""'predicate) canst;
d_Iterator<T> select(const char *OQLyredicate) const;
int query(d_Collection<T> &, char *OQL""'predicate) const;
int exists_element(char *OQL-'predicate) const;

} ;

Figure 15 Schema Definition of the Class d Collection

The class d_Set<T> is an unordered collection of elements 0 f type T with no

duplicates. Figure 16 shows the schema definition of d_Set.

template <class T> class d_Set: public d_Collection<T> {
public:

d SetO;
d_Set(const d_Set<T> &set);
-d_SetO;
d_Set<T> & operator =(const d_Set<T> &set);
d_Set<T> & union_of(const d_Set<T>&sL, const d_Set<T>&sR);
d Set<T> & union with(const d Set<T>&s2);- - -
d_Set<T> operator +=(const d_Set<T>&s2);
d Set create union(const d Set<T> &s) const;- - -
friend d_Set<T> operator +(const d_Set<T> &sl, const d_Set<T> &s2);
d_Set<T> & intersection_of(const d_Set<T> &sL, const d_Set<T> &sR);
d Set<T> & intersection with(const d Set<T> &s2);- --
d_Set<T> & operator *=(const d_Set<T> &s2);
d_Set<T> create_intersection(const d_Set<T> &s) const;
friend d_Set<T> operator *(const d_Set<T> &sl, const d_Set<T> &82);
d Set<T> & difference of(const d Set<T> &sL, const d Set<T> &sR);- - - -
d_Set<T> & difference_witheconst d_Set<T> &s2);

41

d_Set<T> & operator -=(const d_Set<T> &s2);
d_Set<r> create_difference(const d_Set<T> &8) const;
friend d_Set<T> operator -(const d_Set<r> &sl, const d_Set<T> &82);

Figure 16 Schema Definition of the Template Class d_Set

The class d_Bag<T> is an unordered collection of elements of type T that does

allow duplicate values. Figure 17 is the schema definition ofclass d_Bag.

template <class T> class d_Bag: public d_Collection<r> {
public:

d_Bag;
d_Bag(const d_Bag<T> &bag);
~d_BagO;

d_Bag<T> & operator =(const d_Bag<T> &bag);
d_Bag<T> & union_of(const d_Bag<T>&sL, const d_Bag<T>&sR);
d_Bag<T> & union_with(const d_Bag<T>&s2);
d_Bag<T> operator +=(oonst d_Bag<r>&s2);
d_Bag<T> create_union(const d_Bag<T> &s) const;
friend d_Bag<T> operator +(const d_
Bag<T> &sl, const d_Bag<T> &s2);
d_Bag<T> & intersection_of(const d_Bag<T> &sL, const d_Bag<T>

&sR);
d_Bag<T> & intersection_witheconst d_Bag<T> &s2);
d_Bag<r> & operator *=(const d_Bag<T> &s2);
d_Bag<T> create_intersection(const d_Bag<T> &s) const;
friend d_Bag<T> operator *(const d_Bag<T> &s1, const d_Bag<T>

&s2);
d_Bag<T> & difference_of(const d_Bag<T> &sL, const d_Bag<T>

&sR);
d_Bag<T> & difference_with(const d_Bag<T> &s2);
d_Bag<T> & operator -=(const d_Bag<T> &s2);
d_Bag<T> create_difference(const d_Bag<T> &s) canst;
friend d_Bag<T> operator -(canst d_Bag<T> &sl, const d_Bag<T> &s2);

};

Figure 17 Schema Definition of the Template Class d_Bag

42

'.:;:
":...
,;

!..J

The template class d_List is an ordered collection ofelements of type T and does

allow for duplicate values. The beginning index value of the d_List is 0, following the

convention of C and C++. The figure 18 shows the schema definition of the template

class d List.

template <class T> class d_List: public d_Collection<T> {
public:

d_List(const d_List<T> & list): d_Collection<T>(list);
~d_ListO;

d_List<T> & operator =(const d_List<T> & list);
const T & retrieve_first_element() const;
const T & retrieve_Iast_elementO const;
void remove_first_elementO;
void remove_last_elementO;
const T & operator [](unsigned long position);
int find_element(const T &element, unsigned long &position) const;
const T & retrieve_element_at(unsigned long position) const;
void remove_element_at(unsigned long position);
void replace_element_ateconst T &element, unsigned long position);
void insert element first(const T &element);- -

void insert element last(const T &element);- -
void insert_element_before(const T &element, unsigned long position);
void insert_element_after(const T &element, unsigned long position);
d List<T> & concat(const d List<T> &listR) const;

- -
friend d_List<T> operator +(const d_List<T> &listL, const d_List<T>

&listR);
d_List<T> & append(const d_List<T> &listR);
d_List<T> & operator +=(const d_List<T> &listR);

};

Figure 18 Schema Definition of the Template Class d_List

The template class d_Varray is a one-dimension array of varying length

consisting of type T. In the same manner as the d_List the beginning index value ofthe

d_Varray is O. Figure 19 lists the d_Varray schema definition.

43

II template class d_Varray
template <class T> class d_Varray: public d_Collection<T> {
private:

unsigned long maxsize;
public:

d_VarrayO;
d_Varray(unsigned long length);
d_Varray(const d_Varray<T> &dv);
-d_VarrayO;
d_Varray<T> & operator =(const d_Varray<T> &dv);
unsigned long upper_boundO const;
void resize(unsigned long length);
const T & operator [](unsigned long index);
int find_element(const T &element, unsigned
const & retrieve_element_at(unsigned long index) const;
void remove_element_at(unsigned long index);
void replace_element_at(const T &element, unsigned long index);

};

Figure 19 Schema Definition of the Template Class d_Varray

Database Structures and System Classes

All objects of data classes are stored in the database. The data structure used to

store objects is listed in Figure 20.

struct objcollstruct {
int size;
char objectname[maxsize 1][5 I];
d_Object *objectcoll[maxsizel];

};

struct objectstruct {
int typesize,objsize[maxsizel];
d_Object *objectda[maxsize1][maxsize2];
char typenames[maxsizel][51];

};

44

..

'O,
ow...
'OJ

.;

struct DBstruct {
struct objcollstruct "'objcoll;
stmct objectstruct "'objects;
struct objectstruct "'dbobjs;
struct objectstruct *delobjs;

};

typedef struct OBstruct *dbase;

Figure 20 Schema Definition of Data Store Structure

An ODBMS provides a type d_Transaction which has begin, commit, abort and

checkpoint methods. The begin method starts a transaction. Transactions must be

explicitly created and started. The commit method commits all persistent objects created,

deleted, or modified within the transaction to the database and releases any locks held by

the transaction. The abort method aborts all changes to objects and releases the locks.

The checkpoint method commits objects modified within the transaction since the last

checkpoint, but maintain all locks it held on those obj ects. Figure 21 is class

d Transaction schema definition.

class d_Transaction {
public:

d_TransactionO;
~d_TransactionO;
void beginO;
void commitO;
void abortO;
oid checkpointO;

private:
d_Transaction(const d_Transaction &);
d_Transaction & operator=(const d_Transaction &);

};

Figure 21 Schema Definition of the Class d Transaction

45

..

..

.-

.....,......
;

fad

There is a predefined type d_Database supplied by the ODBMS. An ODBMS

may manage one or more logical databases which are instances of the class d_Database.

The class d_Database must have open and close methods. The open method must be

invoked, with a database name as its argument, before any access can be made to the

persistent objects in the database. The close method must be invoked when a program

has finished aU access to the database. Figure 22 shows the database class schema

defmition.

class d_Database {
public:

d_DatabaseO;
~d_DatabaseO;
dbase RecentDB;
char RecentDBname[5I];
int trans;
static const d_Database * const transient_memory=NULL;
enum access_status {not_open, read_write, read_only, execlusive};
void open(const char * database_name);!/, access_status

status=read_write);
void closeO;
void set_object_name(const d_ReCAny &theObject, const char

*newName);
void rename_Object(const char *oldName, const char *newName);
d_ReCAny Lookup_Object(const char *name) const;

private:
d_Database(const d_Database &);
d_Database & operator =(const d_Database &);

};

Figure 22 Schema Definition of Class d Database

Design and Implementation of the Query Method

Chapter 4 described the new object query language that is an extension to C++.

In this section the semantics of the new object query language are mapped into the C++

46

....-
••

..
·....-,
w....
;

language. A query class, three symbol tables and a query execution function are

constructed to execute the new query method. Figure 23 lists the implementation schema

of the three symbol tables included collTable, claTable and symTable. The CollTable is

provided to store the collection address, name and element type name. The ClaTable

stores the information of element types in all collections, such as type name, its data

member names and types. The SymTable is used to store the token symbols during the

parsing time. Here a class string is used as type for all names and defined in Figure 24.

struct clatab 1 {
string classname;
int memsize;
int memtype[20];
string memname[20];

};

struct clatab2 {
int tablesize;
struct clatab1 table[maxsize];

} ;

struct clatab2 ClaTable;

struct colltab1 {
string collname;
string classname;
d_Object *objaddr;

};

struct colltab2 {
int tablesize;
struct colltabl table[maxsize];

};

struct coUtab2 CollTable;

47

~

"­....
;:

struct symtab1 {
string symnarne;
int token;

};

struct symtab2 {
int tablesize;
struct symtab I table[maxsize];

} ;

struct symtab2 SymTable;

Figure 23 Three Symbol Tables

class string {
private:

char *str;
public:

stringO;
string(char *8);
string(string& s);
string& operator=(string& a);
string& operator=(char "'s);
string& operator=(const int a);
operator const char '"0 const;
char & operator[](int index);
int lengthO const;
void printO {cout«str«endl;}
-stringO;

friend int operator=(const string &51, const string &sr);
friend int operator==(const string &sl, const char *pr);
friend int operator (const char *pl, const string &sr);
friend int operator!=(const string &s], const string &sr);
friend int operator!=(const string &sl, const char *pr);
friend int operator!=(const char *pl, const string &sr);
friend int operator«const string &sl, const string &sr);
friend int operator«const string &sl, const char *pr);
friend int operator«const char *pl, const string &sr);
friend int operator<=(const string &sl, const string &sr);
friend int operator<=(const string &sl, const char "'pr);
friend int operator<=(const char *pl, const string &sr);

48

......

..

•..

~

0'.­....
;

friend int operator>(const string &sl, const string &sr)~

friend int operator>(const string &sl, const char *pr);
friend int operator>(const char *pl, const string &sr);
friend int operator>=(const string &sl, const string &sr);
friend int operator>=(const string &sl, canst char *pr);
friend int operator>=(const char *pl, const string &sr);

};

Figure 24 Schema Definition of the Class string

The query class, queryclass, is a general type used for the query results. All data

members of queryclass have the same type, string. Figure 25 shows queryc1ass schema

definition.

class queryc1ass {
public:

string *ab~

int size;

queryclass(int sz=20);
~queryclassO;

string & operator[](int i);
void print_queryO;

typedef d_Ref<queryclass> querycla;

Figure 25 Schema Definition of the Class queryclass

The query execution function is implemented through a class exequery. Figure 26

is the implementation schema definition of the class exequery. There are two types

involved in the class exequery. One is the class stack. Another is the structure

49

..

.
"".

tennstruct. Both ofthem are used to calculate the value of selection predicate. They are

presented at the top of figure 26. The query execution function is listed in figure 27. The

query execution function takes a string containing the query statement as its argument.

This string then is passed to the constructor ofclass exequery. The methods, collparser

and predparser, parse and evaluate the query. If there is not any error, the query results

are outputted through the method qprint. If there exists any error in the query statement,

the function will stop and print out the sentence: "syntax error".

II class stack definition
class stack {
private:

int size;
int array[100];

public:
stackO;
~stackO;

int isfullO;
int isemptyO;
void push(int elem);
int popO;
int topO;

};

II structure terrnstuct used to store both side terms of predicate
struct tennstruct {

string colI;
string mem;
int memtype;

};

II class exequery definition
class exequery {
private:

char currstr[81];
int error;
char collstr[81];
char selpred[81];
int pos;

50

·..
"·
·
";·

char tokenstr[81];
int lookahead;
int colltypenum;
int memnum;
int newclass;
struct colltab1 currcoll;
struct colltab 1 qcoll;
struct clatab 1 currclass;
struct clatab1 qclass;
stack stk;
struct tennstruct terrn[2];
int termnum;
int relnum;
int lognum;
int tennvalue, single;
void initsymTableO;
int lexanO;
void stmt();
void exprl 0;
void expr2(querycla &elem);
void coUtypeO;
void term10;
void term2(querycla &elem);
void calstack(querycla &elem);
void calvalue(querycla &elem);
void calagg(int i, intj, char *str);
void savequeryO;
void setqelem(d_Collection<querycla> *qcol, querycia &elem);
int looksym(string str);
int lookclass(string tname);
int lookcoll(string collname);
void setqclass(int j);
void setnewcollO;
void setoldcollO;
void match(int num);

public:
exequery(char * qs);
exequery(string qs);
~exequeryO;

void collparserO;
void predparserO;
void qprintO;

};

Figure 26 Schema Definition of the Class Exequery

51

Void Query_execute(string query) {
exequery q(query);
q.collparser();
q.predparserO;

q.qprintO;
}

Figure 27 Implementation Definition ofQuery Execution Function

Test Results

The preceding two sections define the entire schema of the university personnel

management database. The details of the implementation are not be presented since they

are very complicated and much longer. This section shows only the execution results of

the university personnel management database. When running this program, a main

menu is shown. Figure 28 is its main menu. There are 9 choices. The program prompts

the user to enter a choice number. Number 1 opens a database. A database name must be

entered. The university personnel management database name is personnel. A database

must be opened before any other choices are made except number 9, Exit. Then to

modify the objects in the database, start a transaction, or choose number 2. Number 3

and 4 are provided to add and delete the objects in the database. When choosing number

3 or 4, there a sub-menu is presented. Figure 29 is the sub menu which provides five data

class choices and one return. One must choose one data class to create obj eets and enter

the associated data. When modifying objects in the database is completed, one must

commit the transaction if the updates are to be retained permanently or abort the

52

transaction if undesired. Once the transaction is committed it cannot be aborted. All

modifications since the last transaction are permanently kept in the database except

modifying again. If choosing number 7, the current database can be queried. The query

topic will be discussed in detail later. When all operations are completed on the current

database it can be closed, or choose number 8. At this moment the program can be exited

(choose number 9) or opened to a database again.

****"'''''''************************************
* 1. Open a Database *
* 2. Start Transactions '"
* 3. Add Objects '"
* 4. Delete Objects *
* 5. Commit Transactions '"
* 6. Abort Transactions '"
* 7. Query Current Database '"
* 8. Close Current Database '"
* 9. Exit *
**********************"'**"'*****************
Please make a choice:

Figure 28 The Main Menu

The current database can be queried by choosing number 7 after a database is

opened. The program prompts the user to enter a query statement. When a query

statement is entered, the program compiles the query statement, then executes the query

on the database at run-time. 1fno errors occur, the query result is output; otherwise the

phrase "Syntax Error" is printed. For example, in response to the query "people;" the

program lists all persons' information in the university personnel management database

as shown in Table 2. Tables 3 - 6 present the information for the four other data classes.

53

*********************.**************
* 1. Person *
* 2. Student *
* 3. Staff *
* 4. TA *
* 5. Professor *
* 6. Return *

Please select a class number:

Figure 29 The Sub Menu

When the program finishes a query, it asks the question: "Do you need more queries

(yIn)?". Ifthe user responds "yes" the database can be queried continually; otherwise, a

"no" response cause a return to the main menu.

If the following query statement is entered,

d_Set<struct(string name, long personid, int age» listname =people[

cityname="Stillwater"]~

the program presents a list ofnames, identities and ages of persons who live in Stillwater.

The query results are presented in Table 7.

The program supports the nested queries by applying a query to the collections

that are the query results of the preceding queries. For example, to detennine the names

and majors of students who are TA of department 1, the following two query statements

can be used:

d_Set<struct(string name» staffnames = staff [department = 1];

d Set<struct(string name, string major» TAnames = students[name in

staffnames];

54

Table 8 shows the query results. However, the same results can be elicited with the

following query statement:

d_Set<struct(string name, string major}> TAnames = TAs[department=l];

Table 2 The Query Results of the Collection, people

name personid age sex marriage streetnum streetname citycode cityname

---_._------------------------------_.-----.--
Tang 462993398 35 1 1 44 University 74075 Stillwater
Wang 336445880 32 0 1 3020 Western 74075 Stillwater
Li 564380010 29 0 I 12 University 74075 Stillwater
Johnson 430710038 24 1 0 3041 pt 74104 Tulsa
Wu 398441042 25 0 0 402 81ave. 74106 Tulsa
Stone 333128899 45 1 I 3404 Vermont 45056 OKC
Brown 345224677 34 1 1 568 Washington 74075 Stillwater
Hua 456224456 30 0 1 4506 Oregon 45078 OKC
Lee 456333123 50 0 0 3565 4ave. 74075 Stillwater
William 234676778 42 1 I 450 Lewis 5124 Tulsa

55

VI
0\

Table 3 The Query Results of the Collection, students

name personid age sex marriage streetnum streetname citycode cityname level major

Tang 462993398 35 1 1 44 University 74075 Stillwater 5 computer
Wang 336445880 32 0 1 3020 Western 74075 Stillwater 4 physics
Li 564380010 29 0 1 12 University 74075 Stillwater 5 computer
Jolmson 430710038 24 1 0 3041 pI 74104 Tulsa 3 chemistry
Wu 398441042 25 0 0 402 81ave. 74106 Tulsa 6 computer
Hua 456224456 30 0 1 4506 Oregon 45078 OKC 4 computer
William 234676778 42 1 1 450 Lewis 75124 Tulsa 3 civil

----------------------'.--

Table 4 The Query Results of the Collection, staff

-----------------------------------~--_.~---

name personid age sex marriage streetnum streetname citycode cityname workdate ann_salary department
----------_._-_._--------------------_._._--------------_._--_._-----_._-_._---,--_._-_._.__._-----_._-------------------

Tang 462993398 35 1 1 44 University 74075 Stillwater 01101198 1000.0 1
Li 564380010 29 0 1 12 University 74075 Stillwater 08/16/97 800.0 1
Johnson 430710038 24 I 0 3041 1sl 74104 Tulsa 01/13/97 850.0 3
Stone 333128899 45 1 1 3404 Vermont 45056 OKe 01110/90 60000.0 1
Brown 345224677 56 1 1 568 Washington 74075 Stillwater 08/16/95 45000.0 1
Lee 456333123 50 0 0 3565 4ave. 74075 Stillwater 01/14/80 85000.0 2
William 234676778 42 1 1 450 Lewis 75124 Tulsa 06/01/97 1000.0 4

Table 5 The Query Results of the Collection, TAs

name personid age sex marriage streetnum streetname citycode cityname level major workdate ann_salary department

VI
-..I

Tang
Li
Johnson
William

462993398 35 1
564380010 29 0
430710038 24 1
234676778 42 1

1
1
o
1

44
12
3041
450

University
University
pI

Lewis

74075
74075
74104
75124

Stillwater 5 computer 01/01/98
Stillwater 5 computer 08/16/97
Tulsa 3 chemistry 01/13/97
Tulsa 3 civil 06/01/97

1000.0
800.0
850.0
1000.0

I
1
3
4

Table 6 The Query Results of the Collection, professors

name personid age sex marriage streetnum streetname citycode cityname workdate annual_salary department rank

Stone 333128899 45
Brown 345224677 56
Lee 456333123 50

1
I
o

1
1
o

3404
568
3565

Vermont 45056 OKC
Washington 74075 Stillwater
4ave. 74075 Stillwater

01/10/90
08/16/95
01/14/80

60000.0
45000.0
85000.0

1
1
2

2
1
3

Table 7 The Query Results of "People Who Live in Stillwater"

name personid age

Tang
Wang
Li
Brown
Lee

462993398 35
336445880 32
564380010 29
345224677 34
456333123 50

Table 8 The Query Results of "TA in Department 1"

name major

Tang computer
Li computer

The aggregate operators can be tested on the personnel database. For example,

the following query statements can be used to find out all the names and ranks of

professors whose ages are greater than the average age in department 1.

d_Set<struct(int age» ages = staff[department = 1];

d_Set<struct(string name, int rank» proflist = professors [(age>avg(ages»

&&(department =1)];

Table 9 is the final query results.

58

Table 9 The Query Results of "Professors Whose Ages Are

Greater Than the Average Age in Department I"

name rank

stone 2

The Table 2 - 9 list some typical query results in the university personnel
database. Ofcourse, more examples can be made.

59

CHAPTER VI

SUMMARY, CONCLUSION AND SUGGESTED FUTURE WORK

The concepts of object orientation have been accepted well [Loomis, 1995].

Programmers try to develop database applications using object-oriented languages. The

object-oriented database management systems (ODBMS) are an integration ofobject

technology within database management systems. ODBMS contains many advantages of

an object model, such as flexible type structures, inheritance, reusable codes and data

encapsulation, etc. One main advantage ofODBMS is that it can be used to build

complex data models without wasting storage space. But ODBMS also has a few small

disadvantages. One disadvantage is that it is not convenient or safe to query objects in

the databases when using object-oriented languages directly. The Object Database

Management Group (ODMG) has defined a query language called Object Query

Language (OQL) [Cattell, 1996]. OQL provides declarative access to objects in the

object-oriented database. It also supports the same type defined by the application object

model. However, the complete implementation of OQL in the small database is difficult

and unnecessary.

60

Summary

This thesis has defined a new object query language which is an extension to C++.

The query language is based on collections of objects. It extends the square syntax of

collections to take into account the selection predicates. All query items are specified

explicitly in a query structure. This kind of query language provides a natural interface to

C++ programmers. It has a simple form easy to implement. However, the querying

capability is powerful, and it can meet most application needs.

An application ofthe object-oriented database is implemented completely through

the university personnel management database. This database manages the university

personnel. It has five data classes: Person, Student, Staff, TA and Professor. Inheritance

is the only relationship among these classes. The class Person is a common super type of

other classes. The class TA inherits both Student and Staff. The class Professor inherits

Staff, but also has its own behavior. The implementation of the personnel database

follows the standard of ODMG-93 except the query language. The application program

is easy to operate. It has a main menu which provides 9 choices. These choices allow

creation and deletion of objects in the database and querying them. The query method is

simple. When entering a query statement the program will parse and evaluate the query.

Ifthere is no syntax error, the query results will be outputted. If there exists any syntax.

error the query will be aborted without exiting the program. All these are done at run­

time. This system does not use a preprocessor. Querying the objects in the databases can

be continued until returning to the main menu. The collections formed by an earlier

61

query results can be queried again later as long as there has been no exit from the

program.

Conclusion

This study provided a new method to query objects in an object-oriented database

by defIDing an object query language extension to C++. The new object query language

has a natural interface for C++ programmers. The query structure is based on a bracketed

syntax of object collections. The query selection predicates are included within the

brackets. This kind of object query language provides the same basic functionality as

SQL does. Its querying capability can meet many application's needs.

The query method was implemented successfully through an application of the

object-oriented database: "University Personnel Management Database." This

application is used in the management of university personnel. The implementation does

not use a preprocessor as many methods do. Instead, a query statement is passed to a

query execution function as a string parameter at runtime. At that time the query

statement is translated and executed. The program provides a simple interface for users,

particularly for querying. All queries are done during execution without exiting the

program.

Suggested Future Work

There are some restrictions for the new query language. First, it is not complete.

Some complicated query functions cannot be achieved by applying the query language.

We need to make more extensions. For example, support operation functions of class in

the selection predicates, group-by and all operators in the query and get the ilb element of

62

an indexed collection. The extension should be made to support the complicated join

query functions. Second, the implementation needs to be improved. An improved

implementation would be able to handle several query statements at one time. All these

improvements will make the query language more powerful and efficient.

63

REFERENCES

1. Aho, A., Sethi, R. and Ullman, J. (1986). Compiler principles. Techniques, and

Tools. Reading, MA: Addison-Wesley, 1986.

2. Cattell, R. G. G., ed. (1996). The Object Database standard: ODMG-93 (Release

1.2). San Francisco, CA: Morgan Kaufmann, 1996.

3. Cattell, R. G. G., ed. (1997). The Object Database standard: ODMG: 2. O. San

Francisco, CA: Morgan Kaufmann, 1997.

4. Chan, H., Lu, H. and Wei, K. (1993). A Survey of SQL Language. Journal of

Database Management. 4(4): 4-15. Fall 1993.

5. Fleming, C. and von Halle, B. (1989). Handbook oJRelational Database Design.

Reading, MA: Addison-Wesley, 1989.

6. Jausen, G. and Vossen, G. (1998). Models and Languagesfor Object-Oriented

Databases. Reading, MA: Addison-Wesley, 1998.

7. Jordan, D. (1996). ODMG OQL: The Object Query language. C++ Report. 8(2).

1996.

8. Khoshafian, S. (1993). Object-oriented Databases. NY: John Wiley & Sons, 1993.

9. Kim, W., ed. (1995). Modern Database Systems. Reading, MA: Addison-Wesley,

64

1995.

10. Loomis, M. (1993). Making Objects Persistent. Journal ofObject-Oriented

Programming, 6(6): 25-28. October, 1993.

11. Loomis, M. (1994). Querying Object Database. JoumalofObject-Oriented

Programming, 7(3): 56-78. June, 1994.

12. Loomis, M. (1995). Object Databases: The Essentials. Reading, MA: Addison­

Wesley, 1995.

13. Lusardi, F. (1988). The Database Experts' Guide to SQL. Intertext

PublicationslMultiscience Press, Inc., 1988.

14. Ullman, J. (1980). Principles ofDatabase Systems. Potomac, MD: Computer

Science Press, 1980.

15. Ullman, J. (1988). Principles ofDatabase and Knowledge-base Systems. Rockville,

MD: Computer Science Press, 1988.

16. Vadaparty, K. (1995a). Persistent Pointers: l. Journal ofObject-Oriented

Programming, 8(4): 14-18. July, 1995.

17. Vadaparty, K. (1995b). Revisiting Persistent Pointers. Journal ofObject-Oriented

Programming, 8(5): 62-64. September, 1995.

18. Vadaparty, K. (1995c). Memory-mapped Architectures. Journal ofObject-Oriented

Programming, 8(6): 18-26. October, 1995.

65

19. Vadaparty, K. (1995d). Pointer Swizzling at Page-fault Time. Journal ofObject­

Oriented Programming, 8(7): 12-20. November - December, 1995.

20. Vadaparty, K. (1996). Developing an ODBMS Application: Basic Steps. Journal of

Object-Oriented Programming, 8(8): 19-25. January, 1996.

21. Wade, A. E. (1997). Object Query Standards. Object Magazine Online. June, 1997.

66

APPENDIX

67

APPENDIX A GLOSSARY OF TERMS

attribute A conceptual notion employed to express an identifiable association between

the object and some other entity or entities.

behavior The observable effects ofperforming the requested service.

binding The process of selecting a method to perform a requested service and selecting

the data to be accessed by that method.

class Template from which objects can be created. It is used to specify the behavior and

attributes common to all objects of the class.

concurrency control The mechanisms are necessary to enforce serializability of

•
transactions. There are four basic modes: pessimistic mode, optimistic mode, mixed

mode and semi-optimistic mode.

dynamic binding Binding that is performed at run time, after the request has been

issued.

encapsulation The facility by which access to data is restri.cted to legal access. IlJega1

access is prohibited in an object by encapsulating the data and providing the member

functions as the only means of obtaining access to the stored data.

inheritance The mechanism by which new classes are defined from existing classes.

Subclasses inherit operations of their parent class. Inheritance is the mechanism by

which reusability is facilitated. It is a mechanism for sharing behavior and attributes

between classes. It allows one class to be defined in tenus of another class. Objects can

68

inherit data and methods from other objects. Inheritance helps implement "is-a" or "kind­

of' relationships.

integrity A kind of consistency that guaranteed the existence of all objects referenced.

The consistency of the database can be typically expressed through predicates or

conditions on the current state of the database.

messaging The process of invoking an operation on an object. In response to a message,

the corresponding method is executed in the object. A message to an object specifies

what should be done. A message can be sent by clients of the object-application

programs, another object, or another method within the same object.

methods Implementations of the operations relevant to a class of objects. The part of an

object that perfonns an operations is termed a method. Methods are invoked in response

to messages.

modularization A method to develop and write software in small, understandable

modules ofdata structures and operations allowable on these data.

object A combination of data and the collection of operations that are implemented on

the data; also, a collection of operations that shares a state. The representation of a real­

world entity. An object is used to model a person, place, thing, or event from the real

world. It encapsulates data and operations that can be used to manipulate the data and

responds to requests for service.

69

persistence The ability of data to exist beyond the scope ofthe program that created it.

The phenomenon whereby data outlive the program execution time and exist between

executions of a program. All databases support persistence.

persistent object An object whose existence is independent of the lifetime of the

creating program.

polymorphism Ability to apply the same operation to different classes of objects. The

operation on the object can be invoked without knowing its actual class.

query An activity that involves selecting objects from implicitly or explicitly identified

collections based on a specified predicate.

recovery The process of enforcing consistency after a transaction has aborted as a result

of the state of certain objects, hardware failures, or communication problems.

request An event consisting of an operation and zero or more actual parameters that

causes a service to be performed.

reusability The concept of easily using existing software within new software; the

ability to use well-designed software modules that have been tested, in several places, in

different applications, so as to minimize development of new code. Object-oriented

languages employ inheritance as a mechanism for reusability.

security The mechanisms are necessary to protect operations and objects from illegal or

dangerous actions. Access control mechanisms are typically employed to restrict access

to objects or operations by other objects, systems, or users. Objects, users, and systems

70

can be provided with certain capabilities that authorize them to perfonn certain

operations.

signature Definition of the types of the parameters for a given operation.

transaction A sequence of database operations that transfonns a consistent state of a

database into another consistent state, without necessarily preserving consistency at all

intennediate points.

transient object An object whose existence is limited by the lifetime of the process that

created it; a temporary object.

type A predicate defi.ned over value that can be used in a signature to restrict a possible

parameter or characterize a possible result.

71

APPENDIX B TABLE OF ACRONYMS

ADTs Abstract Data Types
ANSI American National Standards Institute
DBMS Database Management Systems
E-R Entity-Relational
ODBMS Object-oriented Database Management Systems
ODL Object DefInition Language
ODMG Object Database Management Group
OML Object Manipulation Language
OQL Object Query Language
PL Progra.nuning Language
SQL Structured Query language
TA Teaching Assistant

72

VITA

Xijian Tang

Candidate for the Degree of

Master of Science

Thesis: QUERYING OBJECT-ORIENTED DATABASES FROM C++

Major Field: Computer Science

Biographical:

Personal Data: Born in Tongcheng, Anhui, P. R. Cruna, on January 13, 1962, the
son of Daihong Tang and Xiuying Feng; married to Weihua Liu in 1986.

Education: Graduated from Kongcheng High School, Tongcheng, Anhui, P. R.
China in June, 1979; received Bachelor of Science degree in Petroleum
Engineering from Petroleum Institute of Eastern China, Dongying,
Shangdong, P. R. China in July 1983; completed the requirements for the
Master of Science degree with a major in Computer Science at Oklahoma
State University in December, 1998.

Experience: Employed by the Research Institute of Daqing Oil Production
Technology in Daqing, Heilongjiang, P. R. China as an Engineer, 1983­
1988; Employed by the Petroleum Engineering Department at Texas Tech
University in Lubbock, Texas as a Visiting Scholar, 1988-1989;
Employed by the Research Institute ofDaqing Oil Production Teclmology
in Daqing, Heilongjiang, P. R. China as a Senior Engineer 1990-1996;
Employed by the Biosystems and Agricultural Engineering Department at
Oklahoma State University in Stillwater, Oklahoma as a research assistant,
1998 to present.

