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NOMENCLATURE 

Acronyms: 

BGS below ground surface 

BTEX benzene, toluene, ethylbenzene, and xylene 

C-C carbon to carbon bond 

COCs chemicals of concern 

EPA Environmental Protection Agency 

MCLs Maximum Contaminant Levels 

MW monitoring well 

NAPLs non-aqueous phase liquids 

OAC Oklahoma Administrative Code 

OCC Oklahoma Corporation Commission 

ODOlf Oklahoma Department of Transportation 

PC personal computer 

RA risk assessment 

TOC total organic carbon 

USGS United States Geological Survey 

Units of Measure: 

9 gram 

mg milligrams 

kg kilogram 

L liters 



mL milliliter 

ATM atmospheres 

d day 

fl foot or feet 

yr year 

m meter 

m3 cubi.c meter 

°c degrees Celsius 

fl feet 

em centimeter 

cm3 cubic centimeter 

s second 

x 



1.0 INTRODUCTION 

Con~amination of groundwaler supplies by gasoline and other petroleum-der,ived hydrocarbons is 

a serious and widespread envimnmental problem. Releases from underground storage tanks 

(USTs) and associated piping due to corros'ion, ground movement, and poor installation 

practices are a prime source of hydrocarbon contamination. Approximately two million 

underground tanks stored gasoline in the United States (U.S.) in 1990, and 90,000 confirmed 

releases were reported between 1989 and 1990 (Kao and Borden, 1997). The leaking UST at 

the automobile servi,ce staN on on Patrick Air Force Base in Cocoa Bea,ch,. Florida provides a 

typical example of groundwater contamination resulting from a hydroca.rbon release. 

Approximately 700 gallons of gasoline were released into the subsurface, and Oily-phase residue 

continued to release water-soluble fuel hydrocarbons into the aquifer for more than eight years. 

Many such sites exist around the country with varying levels of contamination (Wiedemeier et aI. , 

1995). 

Gasoline is a complex mixture of many organic chemicalls which have indiv·idual properties and 

behavior when in contact with soils and water (Nyer, 1993a). The aromatic group, composed of 

benzene, toluene, ethylbenzene, and xylene (BTEX), is typically the focus of concem at 

hydrocarbon contamination sites due to the physical properties and toxic nature of these 

chemicals. These wat,er soluble components of gasoline have relatively high pollution potential 

due to their significant concentrations in gasoline, relat,ively high water solubility, and chronic 

tox;icity. All BTEX compounds are powerful depressants t,o the central nervous system, ,and 

benzene is a confirmed carcinogen which can cause leukemia in humans (Beller et aI., 1992). 

Traditional processes for removing BTEX from aquifers include excavation, product skimming, 

pump and treat, in situ thermal or chemical treatment. soil venting, and engineered 

bioremediation. Alii of these options require equipment, materials, and manhours and may be 

quite costly to implement. BTEX compounds may be difficult to pump from an aquifer due to a 



tendency to sorb to the aquifer material. Other options, such as treatment with actiJva,led carbon 

or air strippers, merely transfer the contaminants from one phase to another without converting 

them into less hazardous components (Corseuil aind A'ivarez, 1996). Natural attenuation has 

recently emerged as an acceptable and less cost'ly alternative to traditiona'i treatment (Odermatt, 

199'7). 

Mathematical models are becoming more commonly used by environmental consultants and 

scientirsts to simulate and predict the effectiveness of natural attenuation and to predi,ct 

remediation costs and timetables. The use of these models is assoC'iated with a, national move 

toward applying "ri,sk management" stlrateg;y. rather than the ·sUe remediation" stra,tegy that was 

prevalent in the last decade. Computer modeling can be used, to supplement risk assessments 

(RAs) to show the viability of using natural attenuation to remediate s'ites wheT'e immediate 

threats to human heal;th, safety and the environment do not exist, and the chemicals of concern 

(COGs) are unlikely to impact a receptor. Provided that sufficient site characterization data are 

availabl,e, computer modelling can be used to predict the time required for natural attenuation to 

occur and any potential for contaminants to migrate off-site (Odermatt, 1997). 

Several analytical and numerical computer models are currently available for simulating 

groundwater fate and transport. Of these models, relatively few incorporate biodegradation. The 

majority of the models incorporating b.iodegradation utilize first-order or Monad kinetics to 

approximate reactions. Recent developments in bioremediation modeling allow the use of 

instantaneous reactions i,n place of first-order or Monod kinetics. The use of instantaneous 

reactions has been shown to be very effective for simulating aerobic biodegradation (Rifaiet al., 

1995). With the development of the BIOSGREEN analytical model in 1996, the instantaneous 

reaction assumption was expanded to include simulation of anaerobic biodegradation utilizing 

alternate electron acceptor processes (Newell et aI., 1996). Less than one year ago, a new 

numerical model incorporating instantaneous reactions and alternate electron acceptor 
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simulation became available. This new model, BIOPLUME III, has not yet been appll,ied to field 

data other than those utilized for model validation during the development phase (Rifai et aI. , 

1998). The feasibility of using BIOPLUME III to support risk-based closure at typical petroleum 

contamination sites should be assessed. This endea,vor win require an impartial comparison with 

a similar model, such as BIOSCREEN. Small petroleum contamination sites such as ODOT 

facilities often lack extensive site characterization data .. The effects o,f limited input data on the 

accuracy and predictive capability of both BIOSCREEN and BIOPLUME III should be 

inv'estigated. 

This study evaluates the ability of ·BIOSCREEN and BIOPLUMiE III to simulate na,tura,l 

attenuation of petroleum contamination in groundwater at an Oklahoma Department of 

Transportation (OOOT) Residency Facility located in Edmond, Oklahoma (Site). Soilll and 

groundwater at the Site are contaminated with petroleum hydrocarbons, speCifically BTEX, which 

leaked from a fuel dispenser line. Analyses of groundwater samples from on-site monitoring 

wells show that both aerobic and anaerobic biodegradation are occurring at the Site, which 

indicates that natural attenuation models incorporating sequential electron alcceptor processes 

are most applicable to this data (Caldwell, 1996). Limited Site characterization data are 

available to develop input data for the models. 

This document discusses the current status of natural attenluation as a remediation technology 

and, the physical and dhemical processes associated with natural attenuation. The various 

natural attenuation models currently available are presented and categorized, and the state of 

the pra.ctice in bioremediation modeling is discussed. BIOSGREEN and BIOPLUME III are 

discussed in detail. The use of physical and chemical data for the ODOT Residency Facility to 

calibrate eaoh model to match existing Site conditions is dooumented, and the natural 

attenuation predictions of each model are presented. The sensitivity, limitations, and predictive 

capability of each model are discussed. Ultimately, the feasibility of utilizing BIOSCHEEN and 
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BIOPLUME 111 to simula,te natural: attenuation via altemate electron acceptor processes at 

limited-data petroleum contamination sites is evaluated. 

2.0 REVIEW OF THE LITERATURE 

Until recently, regulatory agencies and environmental groups tended to consider natural 

attenuation a "no action" remediation alternative. The body of technical literature documenting 

the function, versatillty, and applicability of natural attenuation has grown, and the use of this 

approach for site management and remediation has increased in popularity. For example, 

"Intrinsic BioremediationJNatural Attenuation" was selected as a topic area for the Petroleum 

Hydrocarbons and Organic Chemicals in Ground Water: Prev:ention, Detection, and Remediation 

conference in Houston, Texas, in November, 1996. 

Natural attenuation has several advantages over traditional: remediation processes, as follows 

(Corseuil and Alvarez, 1996): 

• transforms contaminants to innocuous products, 

• requires minimal disturbance of the site, 

• avoids dewatering of the aquifer due to excessive pumping, 

• travels with the contamination, 

• involves no worker exposure to contaminants and no releases to the atmosphere, 

• can be demonstrated through relatively inexpensive field and laboratory analytical 

methods, 

• is very effective for BTEX, which are the constituents of regulatory concern at petroleum 

release sites,. 

• is generally less costly than traditional treatment processes, and 

• biodegradation actually reduces the mass and concentration of petroleum contamination 

through microbial metabolization, instead of transferring the contamination from one 

phase to another. 
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Natural attenuation also has the following limitations (Corseuil and Alvarez, 1996 and Beller et 

at, 1995): 

• May be sensitive to natural or man-~induced changes in local hydrog.eologic conditions 

and site operations, 

• Typically requires a longer time period for remediation than more traditional techniques 

described in Section 1.0, 

• May be viewed as a "do nothing" alternative by the public, 

• Requires consiistent site conditions, 

• Requires definition of fhe groundwater plume, understanding of the site hydrogeology, 

and availability of groundwa~er data, and 

• May require sampling and analysis to demonstrate that decreases in contaminant 

concentrations are the result. of biological metabolism of compounds (rather than abiotic 

processes) in order to show that contaminants are actually being destroyed, rather than 

simply diluted or sorbed to aquifer material. 

The advanta'ges 'Iilsted above have contributed to the increasing use of natural attenuation as a 

remediation alternative, particularl,y at sites contaminated with petroleum hydrocarbons. The 

current regulatory trend is toward development of risk-based cleanup levels using site-specific 

data, an evaluation of contaminant toxicity, and possible receptor ex'posure. When receptor 

exposure pathways do not exist, regu.latory agencies are increasingly receptive to the use of 

natural attenuation remediation approaches, particularly in Ught of high capital costs ,r,equired for 

active remediation alternatives (Morin and Henry, 1 g,98). Implementation of natural attenuation 

as a plume management stra~egy in combination with rislk assessment requires thefoUowing: 

• site charact.erization; 

• determination of whether contaminants are being attenuated and/or removed from the 

aquifer; 
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• modeling of the fate and transport 'of the dissolved ,groundwater plume; and 

• long-teml monitoring to confirm and ensure prrotectian ,of human health and the 

environment 

The site characterization should provide data on the location and extent of the contaminant 

source(s), the extent and distribution of the dissolved contaminants, groundwater geochemical. 

data, geologie data, and hydrogeologic parameters. The results of the site characterization are 

analyzed to identify and quantify the extent of natural attenuation olccurring at the site. Three 

indicators primarily associated with biodegradation typica,lIy used to make this determination are 

(1) contaminant disappearance, (2) lass of electron acceptors, and (3) accumulatian of 

degradatian products. The site charact'er'ization d,ata is also utilized during fate and transport 

modeling, which can be performed using numerical or analytical models. Following 

implementation of a natural attenuation site management program, groundwater monitoring 

should be conducted to track contaminant remediation and document success of the program 

(Rifai et aI., 1995). 

Site characteristics typical to successful implementatian of natural attenuation include a 

homogeneous and permeable aquifer, contamination from a single source, low groundwater 

gradient, no free product, no soil contamination, and an easily degraded, extracted, or 

immobilized contaminant RareliY will a contaminated site meet these ideal criteria for natural 

attenuation. However, each of the processes associated with natural attenuation may be 

described and approximated using ,educated enQ!ineering assumptions to accurately model 

remediation (Sims et al., 1992). 

2.1 Natural .Attenuation Proc,esses 

Nalurally attenuating plumes may reach a quasi-steady-state condition at which the plume no 

longer grows in extent and begins to shrink somewhat over time. The major processes 

controlling the size of a steady-state plume include release of dissolved contaminants from the 

6 



source area, downgradient transport of contaminants and mixing with uncontaminated 

groundwater, volaHlization, and abiotic and biologically mediated ~ransformations of the COGs. 

(Rifai et aI., 1995). 

The principle mechanisms of natural attenuation include dispersion, adsorption, volatilization, 

and biodegradation. BT.EX compounds tend to be soluble and volatile due to relatively high 

solubihties and Henry's law constants, respectively. Benzene has a moderate adsorption 

capacity, and all four compounds have specific gravities less than one. BTEX compounds are 

also biodegradable. The physical· properties which dictate the behavior of BTEX compounds in 

groundwater are shown in Table 1. BTEX compounds are typically subject to the dispersion, 

adsorption, volatillization, and biodegradatian mechanisms of natural attenuation, as discussed 

below. 

2.1.1 Dispersion 

Hydrodynamic dispersion is a process which includes molecular diffusion and mechanical 

dispersion and decreases contaminant concentrations through dilution. It is the process by 

which a contaminant plume spreads out in directions longitudinal and transverse to the direction 

'Of normal flow. Molecular diffusion, typically governed by Fick's law, is the molecular movement 

of a chemical in response to concentration gradients. Molecular diffusion is considered 

independent of groundwater flow and insignificant relative to mechanical dispersion,except in 

no-flow or low-flow groundwater situations. Mechanical dispersion is the spreading of molecules 

in the longitudinal and transverse directions due to interactilons between advective movement of 

the chemical and the porous structure of the medium (ASTM, 1996). 

2.1.2 Adsorption 

Adsorption retards the advance of contaminant plumes relative to the groundwater flow velocity, 

thereby reducing the contaminant concentration in groundwater without decreas'ing the total 
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Table 1. Physical Properties of BTEX1 '; 

'. 0 

M.olar Solubility Specific Henry's Law 
Adsorption Capacity 

Chemical Fonnula 
Weight (mglL) Gravity Kow Koe Constant* (atm) 

at 500 ppb (mg-
compound/g-carbon) 

Benzene CeHe 78.12 1.75x103 0.879 1.3x102 38 · 97 230 80 
QQ 

Toluene CeHsCH3 92.15 5.35x102 0.866 1.3x102 242 211 20 

Ethytbenzene CeHsCH2CHa 106.18 1.52x1cr 0.861 1.4x103 622 359 18 
o. 

O-Xylene CeH .. (CHsh 106.18 1.75x1cf 0.880 8.9x1 02 570 266 75 

*at water temperature of 68~ .. 'From Nyer et al., 1993b and Yang et aI., 1995 



contaminant mass. It is considered a physical process because it does not irreversibly alter the 

contaminant This process is an interphase interaction of a chemical between the water and the 

soil. Adsorption is primarily controlled by orgianj,c matter on the soil particle surlace and the 

presence of clay minerals. A high fraction of organic carbon in the soi'l (foc)genera'lly results in 

increased adsorpbon. The langmuir, Freund,lich, and linear isotherms are typically used to 

describe the re,lationship between the concentration of the contaminant sorbed on the soil and 

the equilibrium concentration remaining in groundwater. The slope of an adsorption isotherm is 

called the distribution coefficient, ~, which is a ratio of sorbed to dissolved contaminant 

concentrations. Sorption of a chemical is directly proportional to the distribution coefficient, 

which is constant when desoribed by the linear isotherm. The linear adsorpti.on assumption 

typically fails in cases of low foe, large amounts of mineral clays, or for polar organic compounds. 

Ko can typically be estimated using the organic carbon partition coefficient (Koc) and the file for 

the soil (ASTM, 1996). Koc is a measurement ,of the tendency of an organic compound to be 

adsorbed by the soil. The higher the Koc value for a compound, the lower its motility and the 

higher its adsorption potential. Koc values for be~ene, toluene, and o-xy:lene were reported as 

50, 339, and 255, respectiv'ely (Nyer et aI., 19938), and 'Koc values reported for benzene range 

from 38 to 97 for be~ene (Nyer et aI., 1993b, Yang et ai., 1995, and Newell et ai., 1'996). 

Adsorptive processes are typically described by a retardation factor which accounts for the bulk 

densi.ty of the soil, the distribution coeffiCient, and the effective porosity (ASTM, 1996). 

2.1.3 Volatilization 

Volatilization transfers contaminants from the groundwater to the atmosphere, provided 

appropriate cond,itions exist. It typically includes vola~ilization of the contaminant from soil and 

groundwater to soil gas and transfer of the soil gas to the atmosphere. Volatilization depends on 

both chemical-specific factors and media-specific conditions,. and it is typically governed by 

Henry's law: 
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Where: Ca = Concentration in air (gfcm3 -vapor) 

H = Henry's law constant (dimensionless) 

Cw = Concentration in water (gJcm3 -water) 

Volatilization tends to contribute most tooontaminant mass loss at sites where the water table is 

shallow or highly fluctuating (ASTM, 1996). 

2.1.4 Biodegradation 

Biodegradation is typically the principal mechanism for mass loss from 'BTEX plumes (Ollila, 

1996). Intrinsic bioremediation can be defined as the transformation of a contaminant into 

innocuous products by indigenous microorganisms. Some requirements of intrinsic 

bioremediation processes include the following (Corseuil and Alvarez, 1996): 

• Presence of microorganisms with potential to biodegrade the t.al"get compounds, 

• Accessibility of target poHutants to the microorganisms, 

• Adequate pH, 

• Induction of appropriate degradative enzymes, 

• Availability of electron acceptors, 

• Availability of inorganic nutrients, 

• Adequate temperature, 

• Absence of toxic substances, and 

• Faster biodegradation than migration rate. 

Of these requirements for intrinsic bioremediation, the diistribut.ion and availability of electron 

.acceptors are considered to have the most influence on the rate of in situ biodegradation. In 

fact, other fact'ors rarely limit the amount of biodegradation ,occurring at petroleum release s'ites 

(Rifai et at, 1998). 

2.1.4.1 Microorganisms 

A wide variety of microorganisms typically accompany natura'i organics present in both soil and 
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groundwater. Although microorganisms may exist ,even in areas that have low natural organic 

material, the rhizosphere (root zone) typically contains the greatest variety and largest number of 

mi,Cfoorgansims. Several genera of natural bacteria and fungi present in soil and groundwater 

are capable of degrading hydrocarbon substrates. The most prevalent hydrocarbon degradin.g 

bacteria are Achromobacter, Alcaligenes, Arthrobacter, Bacillus, Ffavorbacterium, Nocardia, 

Pseudomonas, Corynebacterium, and Micrococcus, and typical fungi include Tn'choderma, 

Penicillum, Asperigillus, Mortierefla, and Phanerochaete. Any of these typically occurring 

bacteria and fungi are capable of degrading BTEX (Bowlen, 1995 and Nyer et aI., 1996). 

Surface soil typicaUy contains 0.1 to 1 billion cells per gram of soil. Subsurface soil 

concentrations range between 1,000 and 10,000,000 cells per gram of soil, and groundwater 

typically conta,ins 100 to 200,000 bacterial cells per milliliter of water (Nyer et al., 1996). Field 

studj·es have shown BTEX degrading bacteria concentrations in groundwater on the order of 1 cY 

to 103 (Troy et aI., 1995). 

Intrinsic biodegradation is the process in which indigenous microorganisms convert or degrade 

natura,1 and man-made organic compounds, with no man-induced process alterations, to obtain 

energy conserved in th,e carbon to carbon (C-C) bonds of the compounds (Nyer et aI., 1996). 

MiCfoorganisms obtain energy for cell production and maintenance by facilitating the transfer of 

electrons from electron donors to ,electron acceptors, which results in the oxidation of the 

electron donor and the reduction of the electron acceptor (Wiedemeier et ai, 1995). 

2.1 .4.2 Accessibility of Contaminant 

A common limitation of natural degradative processes is the lack of Bdequate contact between 

pollutants and microorganisms. lin order for complete degradation by membrane-bound enzymes 

to occur, the contaminant molecule must be small enough to enter the microbial cen. Very large 

contaminant molecules are often recalcitrant to biodegradation. Enzyme attack can be impeded, 

by the number, length, or location of functional groups. Strong sorption to aquifer material can 
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also hinder enzyme attack and reduce effectiveness of intrinsi.c bioremediation. BTEX molecules 

are small" relatively soluble, and tend to be readily available for biodegradati.on in most 

subsurface systems (Godsy, 1994). 

2.1.4.3 pH 

Near-neutral aquifer pH values between 6.5 and 7.5 are typically optimum for the biodegradation 

of contaminant organic material, although most microorganisms can perform well within a pH 

range of 5 to 9. The hydrogen ion concentration of groundwater is governed by the types of 

compounds produced by bacterial activity, and it 'is controlled by COt:HC03':C02 equmbrium 

rales. Because hydrogen ion transfer is commonly involved in electron transport, pH and redox 

potential are interdependent. Redox potential is extremely important in the biotransformation of 

contaminants, as described below (Godsy, 1994). 

2.1.4.4 Energetics and Electron Transfer 

All living organisms must replenish enzymatic systems and maintain the oxidation-reduction 

power cycle. This involves the reduction of oxidized compounds by the addition of electrons 

released from compounds oxidized during energy production. Electron acceptors can be either 

organic or inorganic compounds. Oxygen, nitrate, iron(lJII) oxides, and sulfate have all been 

identified as potential electron acceptors in the biochemical pathway for hydrocarbon 

degradation (Borole et at, 1996), The respiration processes microorganisms use to bring about 

a reduction in total contaminant mass in groundwater are aerobic respiration, denitrification, iron 

or manganese reduction, sulfa,te reduction, and methanogenesis (Kampbell etail., 1996). Typical 

reactions for biodegradation of benzene are as follows (from Kampbell et aI., 1'996): 

• .Aerobic respiration 7,502 +- CaHs = 6C02,g + 3H20 

• Denitriifi·cation 6N03- + 6H+ + CsHa = 6C02.g + 6H20 + 3N2,9 

• Iron reduction 60H+ + 30Fe(OHb + CeHe = 6C02•9 +- 30Fe2 .. + 78 H20 



• Sulfate reductian 

• Methanagenesis 

7.SH· + 3.75S0/ + CsHs = 6C02.g + 3.75H2SO + 3 H20 

4.SH20 + C6H6 = 2.25C02 ,g + 3.75CH4 

In aerobic respilratian, the final electron acceptor is O2. The final reduced substrate in aerobic 

respiratian is H20 and the final oxidized compound respired fram energy praduction is CO2. 

Petraleum hydrocarbons are readily biodegradable a1 background dissolved oxygen Ileveis 

abave 2 mg/L However, a heavily contaminated sit.e will typically be 'Oxygen-depleted in the 

source zone due ta angaing bacterial respirabon. Although aerobic biadegradatian proceeds at 

relatively higher rates than anaerobic processes, it is generally limited by the aXYgien supply. 

Respiratian in oxygen-poor canditions (less than 1 to 2 mg/L 'Oxygen) tends to favor the most 

oxidized compaunds, which have the highest redox: potential. The resultant sequenti.al utilization 

scheme ils as foillaws:. O2, N03-, Fe3+, SO/", CO2 (Hifaiet al.,. 1995). Environmental conddions 

and micrabia.1 campetitian will ultimately determine which processes will dominate at a given site 

(Wiedemeier et aI., 1995). Zonation 'Of electron acceptar utilization in the direction of 

groundwater flow typically results,as shown in Figure 1. However, field studies have shawn that 

biochemical mechanisms with simiola,r energy patentials, such as aerobic oxidatian and nitrate 

reduction,. may 'Occur simultaneously when electran acceptar concentrations are reduced, rather 

than campletely depleted (Hifai et aI., 1998). 

Denitrification is a process promoted by facultative anaerobes, which are bacteria that can 1hr'ive 

under either aerobic ar anaerabic conditions. These micrabes can use O2 as the terminal 

e'lectron acceptar when it is available, 'Or use N03- as the terminal electron acceptor in the 

absence of oxygen. Toluene and a-xylene biodegradatian have been canclusi:vely shown under 

denitrifying canditions (Evans et aI., 1991). Other work dacuments the degradation 'Of BTEX 

under nitrate reducing conditians (Anid et aI., 1993 and Zeyer et 801., 1986). When axidation

reduction patentials within soils are even lower, other inarganic compaunds are used by specific 

groups 'Of bacteria as terminal electron acceptars. Several com man alternative electron 
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acceptors and associated bacterial groups include ferric iron (iron reducers}, sol (sulfate 

reducers), and CO2 (methanogens). The predominant form of microbiaUy reducible Fe (III) in 

most soils and sediments ris poorly crystalline 'iron (III) oxides. These iron (III) oxides are highly 

insoluble (Coates et al.. 1996). BTEX reduction under sulfate-reducing' conditions has been 

stud~ed in detail (Coates et al., 1996; Edwards et aI. , 1992; and Beller et aI. , 1996), and toluene 

and xylene are most likely to degrade under these conditions. Sulfanogeni.c and methanogenic 

bacteria tend to be extremely sensitive to oxygen (Godsy, 1994 and Nyer et aI., 1996). 

Anaerobic biodegradation of aromatic hydrocarbons is associated with the production of fatty 

acids, methane, and carbon dioxide; solubilization of iron; and. reduction of nitrate and sulfate. 

The occurrence of intrinsic biodegradation of dissolved BTEX plumes using oxygen, nitrate, iron, 

and sulfate as terminal electron acceptors has been widely documented in the literature (Rifai et 

aI., 1995 and Lovley, 1997). UtiHzation of carbon dioxide as a terminal electron acceptor during 

methanogenesis has also been documented for BTEX biodegradation {Lovley, 1997 and Borden 

et aI., 1997}. These studies, which include both laboratory and field data, have shown not only 

sequential utilization of electron acceptors, but also a. distinct order of biodegradation. Toluene 

and o-xylene tend to degrade more quickly than m-xylene, p-xylene, and benzene, and 

ethylbenzene tends to be the least biode'gradable (Edwards and Grbic-Gahc, 1992). 

2.1.4.5 Nutrients 

Nutrient elements are critical components of genetic material, structural molecules, enzymes, 

and intraceilliular plasma that compose bacteria, as illustrated by typical composition of a 

bact,erial cell (Table 2)<. Note tha,t Tabl,e 2 represents each component on a dry weight basis. 

Water constitutes 80 to 90% of cellular weight and is always a majm requirement for growth. 

Although the proportion of nutrilent elements req,uired for 'growth may vary widely among different 

types of bacteria, bacteria require carbon, hydrogen, sulfur, nitrogen, and phosphorous. Carbon 
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Element Dry Weight % 

Carbon 50 
Oxygen 20. 
Nitrog,en 14 

I 

Hydrogen 6 
Phosphorous 3 

Sulfur 1 
Potassium 1 

Sodium 1 

Calcium 0.5 
Magnesium 0.5 

Chlorine 0.5 
Iron 0..2 

Others 0.3 

'From Nyar at aI., 1996 
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and hydrogen are major components of organic compounds and afe typically present in 

adequate quantities for growth, as is sulfur. Nitrogen and phosphorous are typically the growth

limiting elements. A typi,cally recommended carbon/nitrogen/phosphorous ratio (C/N/P) is 300 to 

100:10:1 to 0.05 (Godsy, 1994 and Nyer et aI., 1.9,96). 

2.1.4.6 Temperature 

Groundwater temperature is an important factor in controlling microbial activity and rates 

of organic matter decomposition. Chemical and enzyma,tic reaction rates in a microbial cell 

increase as the temperatme rises. low temperatures reduce the fluidilty and permeability of the 

cellular membrane, which hinders nutrient and contaminant uptake (Corseuil and Alvarez, 1996 

and Nyer et aI., 1996). Rates of enzymatic degradation and bacterial metabolism typically 

double for every 10°C increase in temperature up to inhibitory temperatures, which are 40 to 

SO°C for most bacteria" However, bacteri,a are generally capable of degradation at most ambient 

temperatures, and biological reactions will generally occur year-round in an aquifer. 

Temperature can also affect biodegradation rates by changing the physical properties, 

bioavailability, or toxicity of the contaminant For example, an increased temperature may 

increase sorption to aquifer materials (Godsy, 1994). 

2.1.4.7 Toxic Materials 

Conditions that restrict life or inactivate microbia·' enzymes are incompatible with intrinsic 

bioremediation, For example, if aquifer microorganisms encount.er potentially toxic 

contaminants, such as high concentrations of heavy metals, bacterial growth will be impeded. 

Chemical agents. of this sort can disrupt cel lular activ'ity by interfering with protein function. 

Typical BTEX plumes do not exhibit signiflicant toxic effects on indigenous microorganisms 

unless other more toxic contaminants are present (Godsy, 1994). 
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2.1.4.8 Biodegradation Rate 

In order to insure that the contaminant plume will recede, rather than spread. the rate of 

biodegrad'ation must exceed the rate of p'lume migration. Biodegradation can be measured by 

the loss of original substrate, consumption of eleamn acceptors, or the production of by

products. Biodegradation rates can be dictated by factors such as the rat'e of substrate and 

electron acceptor movement in the aquifer and the rate that electron acceptors are utilized. In 

comparison to the rate of movement by advection, oxygen and, nitrat,e uWization can be 

considered to be instantaneous. The rates of these two processes are then dictated by the rate 

of electron acceptor movement in the aquifer. Rates of sulfate, iron, and carbon dioxide 

utilization may be govemed by the biochemical reaction rate (Nyer et aI., 1996) or by 

instantaneous reactions (Newell et aI. , 1996), depending on site-specific conditions. 

Biodegradation rates are site-specific and difficult to compare for various sites. and 

biodegradation rates in the field consistently tend to be much lower than the same rates 

quanti,fi,ed during laboratory simulations (Edwards and Grbic-Galic, 1992). Studies have 

indicated first-order BTEX decay rates in the laboratory of approximately 0.016 to 0.045 d" and 

fileld decay rates ranging from approximately 0.0002 to 0.038 d·l for various sites (Bordenet aI. , 

1997, Hutchinset aI. , 1991 , and Wiedemeier et aI. , 1996). 

Laboratory studies have shown that degradation rates can be sensiti,ve to the presence of readily 

degradable co-substrates and geochemical factors. For example, consider the sequential 

degradation of BTEX compounds: degradation of toluene. p-xylene, a-xylene, and ethylbenzene 

typically precede benzene degradation except in aerobic conditions. Ethylbenzene degrades 

more rapidly in nitrate-reducing conditions than in sulfate-reducing conditions (Reinhard et aI., 

1997). 

2.2 Modeling Bioremediation 

When evaluating natural attenuation as a potential remediation alternative, the time required for 
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remediation and predicted migration of the plume should bath be determined. Several analytical 

and numerical fa,te and transport models are available t.o determine these parameters by 

simulating advection, dispersien, sorption, and seurce disselutien in cantaminated aquifers. 

Analytical models are typically simple t.e use, but they are limited te simulation .of simplified 

hydrogeolagic scenari,os. Numerica,1 models can simulate heterogeneous systems and camplex 

hydrageelogic and contaminant scenaries, but they tend ta be mare complicated and require 

mere ext.ensive input data. Of the many greundwater transport models available, relatively few 

also incorporate a component t.o simulate biodegradation. Table 3 lists models which are 

capable .of simulating biodegradation. 

The mast common method for simulating biedegradation utilized by older medels such as 

ULTRA, develaped in 1986, and the original Domenico medel, developed in 1987, is by use .of a 

first-order decay equati,on of the ferm: 

C = Co e-kt 

where C is the biodegraded concentration of the chemical, Co is the initial chemi'cal 

concentratian, and k is the rate of decrease of the chemical (Rifai and Bedient, 1995). The CDC 

is assumed to biodegrade exponentially, and the first-order decay constant is specified by the 

modeler. This constant is typically modified to achieve model calibratien. Although current 

sci,entific lite!rature documents many first-order decay constants, they are specific to both the site 

and the contaminant. The use of this method can overestimate the effect of biodegradation on a 

given system because electron acceptor limitaHons are not accounted for. Alternatives to the 

first-order decay model. are available (Rifai et aI., 1995). 

In 1988, a ene-dimensienal finite difference model titled 6101D was developed to simulate 

biodegradation and sorptien. BI01D incorporales the Monad kinetic expression, which 

describes microbial growth and is composed of first-order, mixed-order, and zero-order reg!ions. 
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Table 3. Groundwater Transport MGdels C.:pable of ,Slmu.-tl'n.9iBlochamical 

,. .. , Ii .... . ~,. 

Reactions 
;'e- .,. 'c";i>..~:,,,:~ "?!!·'-."Jit~:.t~:~ '" ,.ol; ~." :.r _.' r:"l 

Model 
Release Mul'tlple Electron I Contact Infonnatlon 

Date AcceDtor? 

PORFLO 1985 N iIN.W. Kline; Boeing Computer Services; P.O. Box 300, 
il Richland, WA 99352 

BIOPlUME I 
, 

1986 N 
I H.S. Ritai; Rice University, Dept. of Environmental 
, Sciences and Engineering, P,O. Box 1892. Houston. 
I TX 77251 

AT123D 1987 N 
G.T. Yah; Dept. of CMI Engineering, Pennsylvania 

State University, University Park, PA 16802 

'BIOPLUME 1'1 
H.S. Rltai.; Rice University, Dept. of Environmental 

('11.1.1) 
1989 N Sciences and Engineering, P.O. Box 1B92, Houston, • 

IX. 77251 

i C. Zheng; S.S. Papadopulos & Assoc., Inc., 7944 
i MT3'D ('II. 1.11) 1992 N 

Wisconsin Ave., Bethesda, MD 20814 , 
, 

Scientific Software Group; P.O,Box 23041. I 
BioF&T 3D I Y 

Washington. DC 20026-3041 

BIOSCiREEN 
J..T. Wilson; Subsurface Protection and Remediation 

(v.1.4) 
1997 y Division, National Risk Management Research 

Laboratory, Ada, Oklahoma 74620 

BIOlO (v. 1.2) 1989 N 
P. Srinivasan and J. W. 'Mercer, GeoTrans, Inc., 250 • 

Exchange Place, SUite A, Hemdon. VA 22070 

BIOMO[)..30 N ScientifIC Software Group; P.O.Box 23041 . 
Washington. DC 20026-3041 --- t--.. 

I 20FATMIC 
1997 N 

G:r:{eh; Dept. of C,lvil :Engineering, Penn,aylvania 
I (v. 1.0) St~ University, University Park, PA 16802 

I 3'DFATMIC G.T. Yeh; Dept. of Civil Engineering, Pennsylvania ! 1997 N 
(v. 1.0) i State University, University Park, PA 16802 I 

SEAM30 1998 Y 
I Mark A. Widdowson, Department of Civil Engineering, 
I Virginia Polytechnic Institute and State University, 
, 

Blacksburg, VA 24061"()105 , 

BIOPLUME III H.S. Rifal; Rice University, Dept. of ,Environmental 

(v 1.0) 
1998 Y Sciences and Engineering, P.O. Box 1892, Houston. , 

TX 77251 

RT3D 1998 Y 
Brian Hooker, Pacific Northwest INational Laboratory, ! . 

or BOSS Intema,tional, WWW.bo!l8illtl,2Qm " 

i 
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The Monad equation is as fonows: 

IJ = IJmu (C I (Kc + C)l 

where IJ is the growth rate (time-\ ~ is the maximum specific growth rate (tirne-\ and C is the 

concentration of the growth-limitingl substrate (mglL). Kc is the hai,f-saturation constant or the 

growth-limiting substrate concentration which allows the microorganism to grow at half the 

maximum specif,ic growth rate (Rifai and Bedient, 1995). 

One of the first alternatives to utilizing first-order or Monad decay to model biodegradation j,s the 

use of an instantaneous reaction assumption. The BIOPLUME II model incorporates this 

assumption by combining the basis of .an earlier model, BIOPLUME I, with the USGS two

dimensional solute transport ·model and adding, superimposed oxygen and hydr'ocarbon plumes. 

The original BIOPLUME model was developed in 1986 and based on modificati.ons to the U.S. 

Geologic Survey (USGS) Method of Characteristics Modell. It is capable of simulaHng aerobic 

biodegradation as an instantaneous microbial reaction that is limited by the amount of electron 

acceptor available. Anaerobic biodegradation is simulatedl as first-order ,decay in hydrocarbon 

concentrations, and specific anaerobic decay reactions are not addressed (Rifa; et aI., 1998). 

BIOPLUME II 'is a two-dimensional numerical model capable of Simulating advection, dispersion, 

mixing, and retardation, in addition to oxygen-limited biodegradation conditions. This model 

provides for simulation of a heterogeneous aquifer system with a vari.able flow field , 

Instantaneous reactions between oxyg.en and hydrocarbons are assumed, and. the transport 

equation is solved twice to s'imulate these two superimposed plumes. Ana.erobic biodegradation 

is simulated as first-order decay .in hydrocarbon concentrations. BIOPLUME II is cur!rently baing 

used by Environmental Protection Agency (EPA) regional offices, U.S. Air Force faci'Ji~ies, and by 

consulting firms· (Rifai et aI., 1995). Both BIOPLUME and BIOPLUME II have been successfully 

calibrated to field sites (Rifai et aI., 1998). 

Recently-developed bioremediation modeling software incorporates simulation of anaerobic 

21 



biodegradation uUli,zing sequential electron acceptor processes. As shown in Table 3, 

bioremeciiation models developed in 1997 and 1:998 (BIOSC'REEN, BIOPLUME III, SEAM3D, 

and RT3D} are capab'le of simulating alternate electron acceptor processes. 

BIOSCREEN is based on the 1!987 Domenico three-dimensional analytical solute transport 

model. BIOSCREEN ad~pts the original Domenico model to allow simulation of transport with no 

decay, transport with first-order decay, or transport with instantaneous biodegradation reactions. 

In addition to aerobic biodegradation, BIOSCREEN simulates anaerobic processes using nitrate, 

ferric iron, sulfate, and carbon dioxide as 'electron a.cceptors. The source term and dispersivify 

are used as calibrabon parameters, which allows a more refined calibrati,on than a first-order 

simulation. BIOSCREEN is spreadsiheet-based and relatively simple, compared to numerical! 

models (Newell et aI. , 1996). Spreadsheet analytical models of this type were compared to 

BIOPLUME U and found to produce consistent results, although limited in prediction abil ity for 

complex flow paths in heterogeneous aquifers (Olli la, 1996 and Rifai et aI., 1998). 

BIOPLUME III became available from the EPA website in February, 1998. 'It is a two

dimensional numerical modell capable of simulating 'groundwater transport and biodegradation 

utilizing first-order, Monod, or instantaneous reaction assumptions. The instantaneous reaction 

can be applied to both aerobic and anaerobic biodegradation if the microbial reaction is 

assumed to occur at a much faster rate than the rate of electron acceptor replenishment via 

flowing groundwater. This reaction assumes biodegradation is limited by the amount of electron 

acceptor available (Rifai et at. , 1998). This assumption is valid, based on studies showing 

complete anaerobic biodegradation of BTEX in 10 to 72 days (Edwards at aI., 199>2 and 

Reinhard at aI. , 1997). BIOPLUME III also provides for anaerobic biodegradation simulation with 

sequential utilization of nitrate, ferric iron, sulfate,. and carbon dioxide as electron acceptors. Six 

plumes are tracked simultaneously: hydrocarbon, oxygen, nitrate, ferrous iron, sulfate, and 

carbon dioxide. During devel'opment of the BIOPLUME III mode,l, it was tested by compar'ing 
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various single-electron~cceptor simulations to BIOPLUME ~ I predictions. Eight sets of data for 

field sites were used to cal ibrate the model during development (Rifai et at, 1998). Asi,de from 

the BIOPLUME 111 User's Manual, no published liiterature was localed describing field-scale 

application of the software. 

All of the models discussed above treat the petroleum hydrocarbon as a single compound by 

combining BTEX into one parameter. Two additional models, RT3D and SEAM3D, developed in 

1998, are capable of simulat.ing transport and biodegradation of multiple constituents in three 

dimensions, utilizing sequential electron .acceptors. SEAM3D is a block-centered, finite

difference computer algorithm which interfaces with the groundwater flow model MODFLOW. 

SEAM30 assumes Monad kinetics for biodegradation, modified to include effects of electron 

acceptor and nutrient availability, inhibi.tion, and thresho'id concentrations. SEAM3D includes 

manganese as an electron acceptor, whereas BIOPlUME III and BIOSCREEN do not, but it 

does not incorporate instantaneous reactions. To date, the theoretical model supporting 

SEAM3D and hypotheticall· demonstration scenarios have been documented in s6entific 

literature. No field-scale analyses have been conducted utilizing SEAM3D (Waddill and 

Widdowson, 1998). 

RT3D is based on the 1997 version of MT3Dand incorporates three-dimensional reactive 

groundwater transport. Multiple sorbed and aqueous phase contaminants and reactions can be 

defined, and user-<iefined kinetic expressions can be employed. Instantaneous reactions 

utilizing oxygen, nitrate, ferric iron, sulfate, and carbon dioxide as elleclron acceptors are an 

option (BOSS International, 1998). RT3D results were compared to actual natural attenuation 

field data during model validation efforts conducted by researchers at Pacific Northwest National 

laboratory. Although field results were matched exactly dUfiing model va'lidation, other field

scale applications of RT3D have not been published (K.S.B. , 1997). 
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3.0 METHODOLOGY 

The methodology for this project included selecting model,ing software packages based on a 

review of the available models, gathering and .sumrnariz.ing available data for the study Site, 

modeling and comparing actual data from tihe study Site, and evaluating; results. Each of these 

tasks is discussed in greater detail in the following sections. 

3" 1 Modeling Software Packages Setected 

The selected software packages are BIOSCREEN and BIOPLUME III, which are both Natural 

Attenuation Decision Support Systems produced by the EPA Office of Research and 

Devel1opment. These models were selected based upon the capability to simUlate natural 

attenuation utilizing instantaneous reactions and bioremediation via alternate electron acceptor 

processes. BIOSCREEN is an analytical model, and BIOPLUME HI is a numerical model, which 

allows a comparison between the two model types and complexities to be made. ThelimitatilOns 

of the two models do not preclude the OOOT Residency Facility, and both models were readily 

avaiilable. The two models were compared and evaluated based on the following criteria: 

• ability to model natural attenuation, 

• ability to simUlate advection, dispersion, and adsorption, 

• abiliity to model alternate electron acceptor processes, 

• mathematical basis of model, 

• limitations, 

• input data required, 

• complexity, 

• availability, and 

• cost. 

Tables 4 and 5 summarize the applicability of these critefi.a to each model. 
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' T~bl~,;1. ,Bl~SCRE!E~~~a,I~~atlq.n Clftaria " 
" 

" 
, 

" " 

Criteria I Applicability to BIOSCREEN 

i Ability to model natural BIOSCREEN simulates natural attenuation. 
attenuation: 

: 

Ability to simulate advection, . BIOSGREEN simulates advection, dispersion,and , 

idispersion, and adsorption: adsorption. 

lAbility to model alternate BIOSCREEN simul'ates oxygen, nitrate, ferric iron, sulfate, 
electron acceptor processes: Sind carbon dioxide electron acceptor p~ocesses. 

Mathematical bas,is of SIOSCREEN is based on the Domenico analytical solute 
mode:l: transport model. It can simulate both aerobic and anaerobic 

decay., Groundwater transport can be modeled in the x-
direction with tirst-order" instantaneous, or no decay 
biodegradation. Three-dimensional dispersion can be 

I 

simulated. , 

• Limitations: BIOSCREEN assumes simple groundwater flow conditions. 
tt is a screening tool that makes simplifying assumptions, 
and is not intended to produce extremely detailed and 
accurate natural attenuation data for complex sites. 

Input data required: BIOSCREEN requires seepage velocity; hydraulic 
:conductivity; hydraul,icgradient; effective porosity; 
;'ongitudlnal, transverse, and vertical dispersivity; estimated 
Illume length; retardation factor; soil bulk density; organic 
carbon partition coefficient; fract.ion organic carbon; flrst-
,order decay coefficient; dissolved plume solute half-life; 
delta oxygen; delta nitrate; observed ferrous iron; delta 
sulfate; observed methane; model area length and width; 
simUlation time; source thickness in saturated zone; source 

, zone width; source z,one concentration; and soluble mass ,in 
source zone. 

Gomple)dty: BIOSCRIEEN is a user-friendly screening level tool which 
, incorporates simplifying assumptions. 
, I 

Availability: BIOSCREEN is readily available for download from the EPA 
internet site. 

- -

Gost BIOSCREEN is free. 
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7-<)~ ~ ;? T.b" 5. ,> BIOPLUME 1111 <Evaluation CHteria i .;' ~~, ",~ .\.[" ' " 

Criteria Applicability to BIOPLUME III 
. Ability to model natural BIOPlUME III simulates natural' attenuation., 
attenuation; 

Ability to simulate advection, BIOPlUME In sil11ulates advection, dispersion, and 
disperSion, and adsorption: adsorption. 

Ability to model' alternate B'IOPLUME III simulates oxygen, nitrate, ferric iron, sulfate, 
electron acceptor processes: and carbon dioxide electron acceptor processes. 

Mathematical basis of BIOPILUME III is a two-dimensiona'i natural attentuation 
model: model that can simulate sequential biological decay via first-

order, Monad,or instantaneous reactions. The principle of 
superposition 'is used to combine the hydrocamon plume 
with the electron ,acceptor plume(s), and the transport 
equation is solved six times to account for the electron 
acceptors. BIOPlUME III is based on BIOPLUME II, which 
is based on the USGS Method of Characteristics Mode:1 
dated J'Uly, 1989. Three~imensional dispersion can be 
simulated. 

limitations: BIOPLUME III is two-dimensional and is a Simplification of 
compl~ex redox reactions. The model does not account for 
selective or competitive biodegradation of hydrocarbons, so 
BTEX compounds are simulated as slumped parameter. 

Input data required: BIOPLUME III requires definition of the model grid and 
simulation time; porosity; longitudinal disperslvlty; storativity; 
dlspersivity ratio; transmissivity; recharge; aquifer thickness; 

I 

constant head and constant flux boundaries; initial water 
table; initial concentration of contaminants, oxyg1en, nitrate, 
ferrous iron, ferric· iron, sulfate, and carbon dioxide; 
source/sink pa.rameters; aquifer bulk density; sorption 
coefficient; kinetic model identifiers for each electron 
acceptor; concentration of microorganisms in the aquifer; 
microbial retardation coeffICient; half-saturation constant for 
contaminant and electron acceptor;. numerical parameter 

. definitions; and output control parameters 

Complexity: BIOPLUME III is user-friendly due to the Windows interface 
: and Environmentallnfonnation System (EIS) Graphical User 
I Interface Platform. It is a numerical model that requires 
significant input data. 

Availability: BIOPLUME III is readily available for download from the 
EPA internet site. 

Cost B:IOPlUME III is free. 
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3.1.1 BtOSCREEN 

B'IOSCREEN is a Microsoff® Excel spreadsheet screening model which S'imulates natural 

attenuation of dissolved hydrocarbons at petroleum fuel release sites. It is a user-friendly, 

simple package, and it does not have any extraordinary personal, computer (PC) requirements, 

This mod:el ;s readily available for download from the EPA internet site (w#w,epa.gov) at no 

charge. 

As described above, BIOSCREEN is based on the Domenico analybcal model and is able to 

simulate advective transport, three-dimensi,onal dispersion, and adsorption. Solute transport 

with instantaneous biodegradation reactions uses a superpositi,on method to account for electron 

acceptor limitations. The BIOSCREEN version of the Domenico equation, including the 

instantaneous reaction superposition algorithm, is in Appendix A. As shown in Appendix A, 

BIOSCREEN assumes a fully penetrating vertical plane source oriented perpendicular to 

groundwater flow to simulate the release of organics to moving groundwater (Newell et aI. , 

1996). 

Aerobic or ana,erabic biodegradation can be simulated with BIOSCREEN, assuming sequential 

utilization of electron acceptors such as nitrate,ferric iron, sulfate, and carbon dioxide. 

Biodegradation reactions can be simulated as first-order decay or instantaneous reactions. To 

apply an electron-acceptor-limited kinetic model, such as the instantaneous reaction, the amount 

of biodegradation that can be supported by the groundwater moving through the source zone 

must be calculated. The conceptual model used in BIOSCREEN is as follows (Newell et at, 

1996 and Rlifai et .al., 1998): 

• Groundwater upgradient of the source contains el:ectron acceptors. 

• Non-aqueous phase liquids (NAPLs) and contaminated soil release BTEX as upgradient 

groundwater moves through the source zone. 
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• Biological reactions occur until the available eleelron acceptors in groundwater are 

consumed. 

• The total amount of electron acceptors available can be calculated by measuring 

differences between upgradient and source zone concentrations. 

• A utilization factor based on stoichiometric relabonships can be developed to show th,e 

ratio of electron acceptor consumed (or metabolic by-product produced) to the mass of 

dissolved hydrocarbon degraded. BIOSCREEN assumes the following utilization factors 

for ,combined BTEXin (Ig/g): 

O2 - 3.14 N03- - 4.9 Fe3+ - 21.9 sol- 4.7 CO2 - 2 .17 

These utilization factors represent the grams of electron acceptor utilized for each gram 

of hydrocarbon degraded. 

• The potential biodegradation capacity of an aquifer depends on the uti lization factor 

specified for each electron acceptor. Dividing the background concentration of an 

electron acceptor by its utilization factor provides an estimate (in concentration units) of 

the assimilative capacity of the aquifer by that mode of biodegradation. 

Because it incorporates simplifying assumptions, BIOSCREEN jig not considered a substitute for 

detailed mathematical model analysis which may be necessary to make final regulatory 

decisions at complex sites. Thls package is intended to be used as a screening tool to 

determine whether full-scale site characterization and mathematical modeling are appropriate at 

a particular site. The B/OSCREEN model may also be applicable at small sites with simple 

subsurface conditions and limited data. The model should not be applied where pumping 

systems create a complicated flow field, where vertical flow gradients affect contaminant 

transport, or where hydrogeologiC conditions change dramatically over the simulation domain 

(Newell 'et aI. , 1996). 

BIOSCREEN simulations require hydrogeologic, dispersion, adsorption, and biodegradation data 
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in addition to general information about the contamination source. The input data required by 

BIOSCREEN varies a.ccording to the simulation type Chosen. For example, first-order decay 

requires a first-order decay coefficient, whereas the instantaneous reaction model requires 

specific electron acceptor infonnation instead. Certain parameters required by the model may be 

entered directly or calculated by the software, depending on which data are available. The 

following data are required by BIOSCREEN (Newell et a1. , 1996): 

• Seepage velocity or hydrauhc conducti,vity, hydraulic gradient, and effective porosity; 

• longitudinal, transverse, and v·ertical dispersivity or estimated plume length; 

• Retardation factor or so,il bulk denslity, organic carbon partition coefficient, and fraction of 

organic carbon; 

• First-order decay coefficient or dissolved plume solute half-life for first-order 

biodegradation, or the reduction in oxygen, sulfate, and nitrate in addition to the source 

area concentrations of ferrous iron and methane for alternate electron acceptor 

biodegradat'ion; 

• model area length and width and simulation time; and 

• source area dimensions, concentration , and mass of contaminants in the source zone. 

These BIOSCREEN input paramet,ers are listed according to data type and defined in Appendix 

B. Site-specific values used in model simulations for this study are discussed in Section 3.3.1 

below. 

3 .. 1.2 BtOPLUME III 

BIOPLUME III is a detailed stand-alone numerical model that operates in the Microsoft® 

Windows 95 environment. Although the software is user-friendly, development of an accura~e 

simulation requires oonsiderable familiarity wi,th the program and the User's Manual. This 

program does not require any extraordinary personal computer (PC) hardware to operate. This 

model is readi ly available for downl!oad from the EPA internet site (www.epa.gov) at no charge. 
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BIOPlUME III is a two-dimensional, finite-difference model for simulating biodegradation of 

hydrocarbons in groundwater .. This program ,is able to simulate advective transport, dispersion, 

adsorption, ion exchange, and biodegradation using altemate electron acceptor processes. 

BIOPLUME III incorporates the following assumptions fRifai et aI. , 1998): 

• Darcy's law is valid and hydraulic head gradients are the oOlly driving mechanism for 

flow. 

• The porosity and hydraulic conductivity of the a,quifer are constant with time, and 

porosity is uniform in space. 

• Gradients of fluid density, viscosity, and temperature do not affect the velocity 

distribution. 

• No chemical reactions occur that affect the fluid properties or the aquifer properties, 

• Ionic and molecuJar diffusion are negligible contributors to the total dispersive flux. 

• Vertical variations in head and concentration are neglig.ible. 

• The aquifer is homogeneous and isotropiC with respect to the coefficients of longitudinal 

and transverse dispersivity. 

BIOPLUME m is capable of Simulating bioremediation using first-order decay, instantaneous 

reactions, or Monod kinetics, As described above for BIOSCREEN, the biodegradation capacity 

of the aquifer must be calculated by the model in order to apply an electron~acceptor-limited 

kinetic model such as the instantaneous reaction. The conceptual model ut.ilized 'by BIOPLUME 

III is identical to that described above for BIOSCREEN (Rifaj etal., 1998). 

BIOPLUME III is based on simplifications of the complex biologically medii'ated redox reactions 

that occur in the subsurface. Aerobic and anaerobic biodegradation processes are simulated 

utilizing oxygen, nitrate, ferric iron, sulfate, and carbon dioxide as electron acceptors. 

Manganese is not included. Ferric iron is simulated based on the production and transport of 

ferrous iron, whi,ch is a soluble by-product of the iron reaction. The model solves the transport 

equation six times to determine the fate and transport of the hydrocarbons and electron 
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acceptors or reaction by-products. The BIOPLUME III equations, and associated variables are in 

Appendix C, and the BIOPLUME II equations are provided for comparison. BIOPLUME III does 

not account for seledi;ve or competitive biodegradation of hydrocarbons; rather, BTEX is 

simulated as a single organic compound due to the difficulty of determining how much electron 

acceptor is available for each individual component (Rifai et aI., 1998). 

Numerical models typically require that the modeler determine what data are required and how to 

incorporate the field data into the modeling process, Typical data requirements include 

estimates of aquifer thickness, matrix conductivity, porosity, and sorptive characteristics. A 

description of the hydrauliC and: hydrologic behavior of the system, including boundary conditions 

or recharge data, is also required, and the source representation and electron acceptor 

availability must also be determined. Numerical models must be calibrated to match existinglsite 

hydraul,ics and contamination conditions (Rifai et aI., 1995). In accordance with typicall numerical 

models, the input data required by BIOPLUME 1111 are used for discretization of time and space, 

s'etting boundary and initial condlltions, describing hydrogeol,ogiccharacteristics of the aquifer, 

sources and sinks, sorption, source decay, radioactive decay, ion exchange, biodegradation, 

and defining numerical and output control parameters. Alii of the possiblie BIOPlUME III linput 

parameters are described in Appendi.x D. The inpUit data required by BIOPLUME III varies 

according to th.e simulation type chosen. For example, first-<lrder decay requires a first-order 

decay coefficient, whereas the instantaneous reaction model requires speci.fic electron acceptor 

j,nformation instead (Rifaiet aI., 1998). Input data used in model simulations for the OOOT 

iResidency Facility are discussed in Section 3,3.2 below. 

3.2 Site Descri,ption 

The Oklahoma Department of Transportation (OOOT) Edmond iResidency Facility (Facility) was 

used for this study. The Facility serves as an office for OOOT personnel working on projects in 

Logan County and north Oklahoma County. The Site is located approximately 1,000 feet 
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northwest of the intersection of Interstate 35 (1-35) and Memorial Road in Edmond, Oklahoma, as 

shown on Figure 2. The property surrounding the Facility is commercial and residential , and an 

COOT Maintenance Facility is adjacent to the FaciBty on the east (CaldWell, 1996). The Facility 

layout is shown on Figure 3, Site Map. 

In early 1991, a leak was discovered in a dispenser line which was used to transfer fuel from a 

12,000 gallon underground storage tank (UST) to pumps located beneath the canopy on the east 

side of the Facility building. It is unknown when the line began to lea'k and how much fuel was 

lost. The leak resullted in a release of fuel to the soil and groundwater. Figure 3 shows the 

location of the dispenser line and UST relative to the building. The fuell dilspenser line was 

removed on February 1, 1992, along with soil containing BTEX concentrations exceeding 

Oklahoma Corporation Commission (OCC) Category I cleanup levels,which are 5, 400,150, and 

1000 ppm for benzene, toluene, ethylbenzene, and xylene, respectively. The UST was remm/,ed 

on September 19, 1994. In accordance with Oklahoma Administraliive Code (OAC 165:25) and 

OCC requirements, an Initial Response, Iinitial Abatement Measures and Site Check, Initial Site 

Characteriza~ion, and a Riisk Assessment (RA} were conducted for the Site. The document 

summarizing the RAalso describes background information, physical and chemical data!, 

remediation activities conducted, and the regulatory history for the Site (Caldwell, 1996). 

The RA reported that soil borings were drilled, and monitoring wells were installed during Site 

characterization activities. According to the soil boring data, the Site is underlain by 

approximately one to five feet of brown to red silty clay, reddish brown silty clayey sand, and 

brown to red fine grained sand. The upper soH layer is underlain by weathered Permian age 

Garber Sandstone (bedrock) composed of light red, very fine to fine grained, moderately well 

sorted sandstone with some siltstone and shale. According to regional geologic information, the 

bedrock dips to the southwest at approximately 40 feet per mile. During the investigation, 

groundwater was present in the uppermost Garber Sandstone aquifer at an approximate depth of 
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IFigure 2. ODOT Residency Facility Location Map 
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25 feet below ground surface (8GS). Sandstone typically has a porosity of 0.005 to 0.10, which 

is much lower than typical porosity values for clay, silt, sand, and gravel. Due to the presence of 

sil~stone and shale lenses, the porosity of theaq.uifer material may actually range between 0.1 

and 0.2. Sandstone is also estimated to have a very low fraction of or'ganic carbon and a bulk 

density of approximately 2.1 gJcm3• Based on the potentiome1rlic surface estimated from depth to 

groundwater measur,ements ,conducted in October, 1995, the hydraulic gradient (i) is 

approximately 0.005 to 0.006 toward the west-southwest, as shown on Figure 4. Aquifer slug 

tests performed on monitoring wells MW-2 and MW-3 showed the hydraullic conductivity (K) to 

beapproximalely 6.3 x 10-4 cm/s, which falls within the published range of 9.4 x 10-4 to 1.7 x 10.3 

cmIsec for the Garber-Wellington aquifer (Caldwell, 1996). The low h,ydraulic gradient, hydrauliC 

conductivity, and low porosity indicat'e that groundwater is moving slowly in the aquifer beneath 

the Site. 

Although no free product was identified in monitoring weUs or soil borings, analytical data from 

'groundwater sampling events delineated a plume of dissolved petroleum hydrocarbons located 

under and to the west of the dispenser line leak. The initial contamination occurred to the upper 

thr'e,e meters of saturated, fine grained, moderate to loosely cemented sandstone with lenses of 

shale and siltstone (Caldwell, 19'96). BTEX concentrations in groundwater between July, 1994 

and February, 1998 are summarized in Appendices E - H, respectively. These dalta were 

obta:ined from Ca~dwell (1996) and Akins (1998). Isopleths for each sampling date are also 

included in the respective appendices to show the extent of each contaminant plume with time. 

The isopleths were constructed using Surfer® 6.0 software for both Kriging and triangulation 

methods to demonstrate that a range of accuracy exists for estimation of the plume boundary 

and concentrations. Kriging is ageostatistical gridding method capable of smoothing data and 

incorporating anisotropy and underlying trends in data. The triangulabon interpolator draws lines 

between three input data paints and creates triangular planes that closely match input data 

without incorporating smoothing techniques, anisotropy, or trends in data. 
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The EPA has established National Primary Drinki.ng Water Standards which specify Maximum 

Contaminant Levels (MCLs) for BTEX of 0.005, 1.0,. 0.7, and 10 mg/l, respectively. MCLs 

repres.ent the maximum amount of a dhem ica I that may be present in drinking water without 

posing a threat t.o human heailth. The July 1994 analytical results identified BTEX concentrations 

whchexceeded MCLs for aU four ohemicals. However, the riisk of this BTEX plume 

contaminating any drinking water supply is negligiblie. As discussed above, groundwater is 

moving very slowly beneath the Site, which will increase the time required for contaminants to 

reach the property boundary. In addition, the City of Edmond requires municipal water supplies 

to be used for drinlking water; private drinking water wells are not permitted. Based on all the 

badkground, physical, analytical, and risk data availabl,e for the Site, an acc Remediation Index 

score of 47 points was calcullated for the Site dur,ing the RA. According to this Index, acc 

Category II Soil and Groundwater Cleanup levels were determined to be the applicable 

remediation goa.1 for the Site, rather than MCLs. acc Ca,tegory n Cleanup levels for BTEX are 

0.05, 10, 7, and 100 mglL, respectively. No groundwater containing BTEX concentrations 

exceeding acc Category II cleanup levels traveled beyond the ODOT property boundary, 

al.though benzene and toluene concentrations were initially in excess of the Category II cleanup 

Ileveis (Ca,ldwell, 1996). 

The source of contamination at the Site was eliminated when the fuel dispenser line and the UST 

were excavated and removed. Because there is no continuing source, petroleum contamination 

at the Site appears to have reachedequHibrium with the exception of biodegradation, adsorption, 

and desorption processes. The fu:el remaining at the Site from the dispenser line leak is present 

in the following phases: 

• as vapor in the unsaturated zone, 

• in ~he vadose zone in the form of free product adhering to the individual soil grains, and 

• dissdlved in groundwater. 
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The petroleum release occurred beneath a concrete and asphalt covered driveway and parking' 

lot. The pavement effectively seals the ground surface and prevents the escape of fuel vapors 

(Caldwell, 1996). Any free product in the vadose zone will not be flushed into groundwater 

because infiltration is eliminated by the sealed ground surface. Product present in the vadose 

zone may dissolve in groundwater during periods of high water table elevat,lon (Caldwell, 1996). 

Groundwater elevations have not been tracked regularly for the Site, and subsequently, 

groundwater fluctuations and any resultant potential increase in dissolved BTEX have not been 

quantified. Groundwater fluctuations are assumed to be negligible based on the low hydraulic 

gradient, hydraulic conductivity, and low Darcy velocity for the Site. Contribution from product 

present in the vadose zone is also expected to be minimal because soil contaminated above 

acc Category I levels was excavated. Without significant contribution from the unsaturated and 

vadose zones, concentrations of BTEX dissolved in groundwater are decreasing due to natural 

attenuation, adsorption, and desorption processes (Caldwell,. 1996). 

3.3 Modeling Practices and Input Data 

Benzene is more soluble than toluene, ethylbenz.ene, and xylene, which typi,cally causes it to 

spread the most quickly in groundwater (Verschuren, 1983 and Bowlen, 1996). Comparisons of 

BTEX isopleths for October, 1994 (see Appendices E - H) revealed that the benzene extended 

further than TEX cont.amination in groundwater, as expected.. Figure 5 shows this relationshi:p. 

Benzene isopleths were used to delineate the extent of the contaminant plume, defined as the 

line of zero concentration. Figure 6 shows the approximate plume boundary in October 1994, 
~, • w 

and in October 1997, according to the Caldwell (1996) data and the Akins (199B) data, 

respect.ively. Figure 6 also indicates the plume orientation relative to the direction of 

groundwater flow and the assumed source location. 

3.3.1 alOSCREEN Input Data and Simuta:tlons 

The plume dimensions and location were used to select the modeled area dimensions. An area 
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approximately 300 feet I'ong by 300 feet wide was selected to a.ccommodate the contaminant 

plume and monitoring wells used to gather data. As shown on Fi:gure 7, the BIOSCREEN 

modeling area was oriented to correspond with the plume direction and groundwater flow. 

Dispersion data required by BIOSCREEN included estimates of longitudinal, transverse, and 

vertical dispersivity. Longitudinal dispersivity corresponds to the x-axis, which is defined as the 

direction of groundwater flow, as shown on Figure 8. Data from October 1997 were used to 

estimate the 'length of the plume in the longitudinal direction (lp) to be 15'0 feet. Longitudinal 

dispersivity (ax) was estimated to range between 9.3 and 15 ~eet according to methods 

discussed by Newell et a1. (1996) which were developed by Pickens and Grrsak, and Xu and 

Eckstein, as fo,lIows: 

Longitudinal dispersivity, ax = 0.1 Lp = 0.1 (150 feet) = 15 feet, 

or 

Longitudinal dispersivity, ax = 3.28 (0.83) [log (Lpl 3.28)f414 = 9.3 feet, 

Transverse dispersivity corresponds to the y-axis, which is perpendicular to groundwater flow. 

Transverse dispersivity (ely) was estimated to range between 0.9 and 4 .9 feet , according to 

methods referenced by Newell et al. (1996) which were developed by the ASTM, and Gel,har et 

at , as follows: 

Transverse dispersivity, Cly = 0.33 a_ = 0.33 (15 feet) = 4.9 feet. 

or 

Transverse dIspersivity, ay = 0.1 (Xx = 0.1 (9.3 feet), :: 0.9 feet. 

The transverse dispersivity estimated from the October 1997 plume is 0.34, which suggests that 

the Gelhar method may be the most applicable at the Site. Vertical dispersivity corresponds to 

ilhe z-axis which is downward. Vertical dispersivity (az) is typically assumed to be very low or , . . 

zero, based on conservative estimates (Newell et aI., 1996). 

Using hydrogeologic data for the Site, (see Section 3.2 above), the seepage velocity (V) was 

calculated to range between 17.9 and 35.9 fIIyr, as follows: 
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K = hydrauilic conductivity = 6.3 x 10-4 cm/s = 652 . .26 ftlyr 

i = hydraul,ic gradient = 0.0055 ftlft 

" = effective porOSity = 0.1 to 0.2 (dimensionless) 

V = seepa'ge velocity = Kif" = (652.26 ft/yr) x (0.0055 ft/ft) 10.1 = 35.9 ftlyr, or 

(652.26 ft/yr) x (0.0055 ft/ft) 10.2 = 17.9 ft/yr. 

Using data discussed in previous sections, the retardation factor was estimated to be 

approximately 1.1, as follows: 

Pb = Bulk density of the aquirfer material = 2.1 kg/L (or g/cm3 ) 

Koc = Organic carbon partition coefficient = 38 Ukg 

foe = Fraction of organic carbon = 0.0002 

Tie = Effective porosity (dimensionless) = 0.1 to 0.2 

Retardation factor, R = 1 + [(Pb)(Koc) (foc) t TJe]= 1 + [(2.1 )(38)(0.0002) I 0.1] = 1.16, or 

1 + £(2.1) (38} (0.0002) I 0.2} = 1.08. 

Retardation factors typically used to simulate natural attenuation of BTEX in shallow aquifers 

range between 1.0 and 2.0 (Newell et aI., 1996). 

To estimate biodegradation according to the instantaneous reaction model, BIOSCREEN 

requires estimates of e.lectron acceptor utilization, defined as background concentrations minus 

source area concentrations for oxygen, nitrate, and sulfate (referenced as ll02. AN03. and AS04 ) . 

Dissolved oxygen, nitrate, ferrous iron, and sulfate data for the site are presented in both tabular 

and isopleth format in Appendices I-L, respectively. Sulfate concentrations at the Site exceeded 

even the highest typical values reported in the literature (Sublette et aI., 1997). The wells with 

the highest concentrations (MW-2, MW-5, MW-6, and MW-13) are located north of the Facility 

building, as shown on Figure 3. Sulfate concentrations in MW-16, which is downgradient from 

the four affected wells, were also higher than typical. Nitrate concentrations were al'so elevated 
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near wells MW~2 and MW-5. Dissolved oxygen was distributed as expected, with background 

concentrations of approximately 5 mglL present. at the outer edges of the BTEX plume and 

reduced concentrations present in the center of the plume.. The wells in the area of elevated 

sulfate and nitrate concentrations are located near an underground sanitary sewer tine. Totat 

organic carbon (TOC) data were reviewed (see Appendix M) to evaluate the possibility of a 

sewer line leak, but the TOC isopleths did not indicate any unusually high concentrations of 

organiC carbon near the affeded wells. The land directly upgradient from the affected wells is 

open field. which suggests that elevated concentrations of nitrate may be present due to fertilizer 

application and infiltration. However, the cause of the elevated concentrations of sulfate and 

nitrate was not conclusively determined. A second set of isopleths were constructed for nitrate 

and sulfate, excluding the unusually high values. These isopleths appeared to be representative 

of expected conditions at the Site, as shown in Appendix N. Based on the revised isopleths, 

values for 6.02. 6.N03. and .1S04 were estimated for October 1997, as follows: 

.. MW-16 was considered representative of background 00 concentrations, and MW-6 

and MW-7 data were averaged to obtain the source area concentration. a02 = 5.37 -

0..21 = 5.16 mglL. 

• Data from MW-13, MW-5, and MW-2 were a,veraged to estimate the background nitrate 

concentration. MW-3 was selected to represent the source zone concentration . .1N03 = 

25.0. - 0..04 = 24.96 mglL. 

• MW-7 was considered representative of background sulfat·e concentrations, and MW-4 

was used for the source area concentration. aS04 = 21204 - 7.71 = 204.69 mg/l. 

Concentrations of ferrous iron and methane present in the source area were also required as 

'input data for BIOSCREEN. However: no methane data were available for the Site. As 

discussed in Section 2.1.4.4 above, methanogenesis is the last of the sequential electron 

acceptor processes to proceed because carbon dioxide has the lowest redox potential. :Reduced 

concentrations of nitrate and sulfate and production of ferrous iron in the plume area indicate 
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that anaerobic biodegradation processes. are occurr'ing at the Site. Methanogenesis could be 

occurring in the most concentrated area of the plume. However, the si.gnificance of the 

methanogenic process at the Site lis currently unknown. Based on typical background 

concentrations o,f methane (less than 9.0 mgJL, {/Rafai et aI., 19'9B)}, methane concentrations 

were conservatively assumed to be zero in the source area at this Site. No ferrous !iron data 

were available for October 1997. A concentration of 1.0 mgfL was assumed in the source area, 

based on ferrous iron data, for April 199B. 

The source thickness was ass.umed to be approximately 10 feet, based on information provided 

in the RA for the Site. BIOSCREEN also requires source zone widths and concentrations and 

the soluble contaminant mass in soil. No soil sampUng data were ,available, which eliminated the 

possibility of estimating the solubl.e mass of BTEX available in the source area. In absence of 

any soil data, any volume of fuel spHled, and the date the release b,egan to occur, the source 

information for the Sit,e I?ecame the primary calibration parameter. To investigate the effect of 

source definition on the model results, three simulations were performed for different source 

zone scenarios. These simulations are described below. 

BIOSCREEN Simulation #1,: The Hill! Air Force Base example provided in the BIOSCREEN 

Users Manual provided guidance for sites lacking source data. Following this example, the 

soluble mass of BTEX in soil was assumed to be an infinite source, and the source area was 

placed in the highest BTEX concentration zone of the plume. Figure 8 shows the location of the 

source area. This location for the source area is logical, based upon the observed 

concentrations and the location of the assumed fuel leak point in the dispenser line. The plume 

length was measured from the source area. This 'source area was divided into three different 

concentration zones according, to concentrations shawn on the benzene isopleth from October 

1997. The zone concentrations ranged from 1.0 to 9 . .0 mglL. Based upon the history of the Site, 

the leak was assumed to occur one year prior to its discovery in 1991. As a result, a simulation 
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time of 7 years was selected, and the model was successfully calibrated to match the October 

1997 benz.ene isopleth. The primary caHbrat'ion parameters for the B'IOSCREEN modell are 

typicaUy dispersivity and the source definition. Appendix 0 contains the input data utilized tor 

Simulat~ion #1 and the resultant two- and thr,ee-dimens:ional plume concentration graphs. As 

recommended by Newell et at. (1996), longitudinal dispersivity was utilized as the primary 

calibration parameter aside from the source term. The inHial value of 9.3 ft was increased to 

20.0 ft. Folllowing calibration, the simulation time was extended to predict future attenuation. 

Utilizing the infinite soluble mass, the plume did not reduce with time. An infinite soluble mass is 

not representative of the existing! Site conditions following [,emoval of the fuel dispenser hne. In 

order to approximate more realistic conditions, a finilte source approximation was attempted. An 

assumed finite solubl,e mass of 12,500 kg produced results equivalent to the infinite source 

simulation for October 1997. This assumed finite source required 232 years to fully attenuate. A 

second set of assumptions was required to predict future attenuation. Utilizing the otherwise 

callibrated model, a soluble mass of 1000 kg was simulated to full atlenuation over a tota~1 of 27 

years following the assumed beginning of the fuel release in 1990. The plume was predicted to 

disappear by the year 2017. 

BIOSCREEN Simulation #2: In place of the infinite soluble m,ass assumed in the source area 

soil for Simulation #1, a soluble contaminant mass of 6 kg and a three-zone, finite source with a 

maximum concentration of 30 mg/L were developed for S.imulation #2. The model area, I,ocation 

of the source area, and the source thickness were unchanged from those used for Simulation #1 . 

Rather than use October 1997 electron acceptor and plume data to calibrate the model as in 

Simulation #1, data used for this simulation were projected backward to represent conditions of 

th.e contaminant plume in 1990. The dimensions of the contaminant plume were reduced and 

the concentrations were increased. ~OZ, and AN03. were recalculated, assuming less e'lectron 

acceptor reduction. For this simulation, MW-2 was assumed to be representative of dissolved 

oxygen in the source zone, and MW-5 was used for nitrate data in the source zone. Longitudinal 
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dispersivity was again increased from 9.3 to 20 feet. In order to calibrate this simulation to the 

October 1997 data, a porosity of 0.17 and a retardation factor of 1.8 were used. Both of these 

values are within the ranges discussed above. The input data are in Appendix P. The model 

was successfully calibrated to match the October 1997 data at a simulation time of 7 years, as 

shown on the plume centerline plot in Appendix P. Because a finite source was initially 

assumed, no modification of the source datal was required for the future attenuation projection. 

Over a twenty-year simulation period, the plume was predicted to simultaneously decrease in 

concentration and lengthen to approximately 21 Ofee1, until entirely attenuated. Assuming that 

the fuel line leak began in 1990, the entire plume should disappear in 2010. 

BIOSCREEN Simulation #3: Similar to Simulation #2, a finite soluble mass source was utilized 

and current plume boundary, concentration, and biodegradation process data were used to 

project these same parameters for 1987, when the fuel leak was estimated to begin. This 

simulation assumed that the source area was located at the assumed leak point in the fuel 

dispenser line, rather than downgradient where the BTEX concentrabons were greatest in the 

plume, as shown on Figure 8. This scenario required that the plume concentrations be 

calibrated to first increase and then decrease with downgradient distance to represent a circular 

area of elevated concentration, as indicated on the BTEX isopleths. Calibration of this 

simulation required that porosity be increased to 0.2, which is the maximum value in the 

estimated range for the Site. The input data for Simulation #3 are in Appendix Q. A retardation 

factor of 1.8 was used, which is higher than the estimated value, but still within the typical range 

for BTEX sites. longitudinal dispersivity was increased from 9.3 to 11 feet, which is a smaller 

increase than required for the previous two simulations. Biodegradation input data were 

consistent with those used for Simulation #2. The model was successfully calibrated to match 

t~he July 1994 benzene isopleth at a simulation time of 7 years, which assumes that the fuel line 

began to leak in 1987. This simulabon predicted that the plume would travel downgradient, 

ma,intaining a relatively high concentration in the center, without spreading si'gnificanUyin area. 
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As shown on the plume centerline pilot in Appendix a, the model predicted the October 1997 

plume dimensions fairly well, and continued to, predict a decreasing contaminant plume traveling 

downgradient until complet,ely disappearing in 47 ye'ars, or in 2034. 

3.3.2 alOPLUME III Input :Data and Simulations 

As described above for the BIIIOSCREEN simulations, the plume dimensions and location 

dictated the modeled area dimensions. .An area approximately 450 feet I:ong by 350 feet wide 

was selected toaccommodiate the plume, the monitoring well network, and to allow an outer row 

of grid cells to be defined as inactive, as required by the BIOPLUM'E 1\1 model. Figure 9 shows 

the orientation of the BIOPLUME III modeling grid aligned with the direction of groundwater flow. 

The second row of cellls within the edge ,of the modehng grid was defined as a constant head 

area, as required by the model, t'O fix. the water table elevaHon at a constant value in these cells 

throughout the simulation. This ,constent head assumption is applicable for this Site, based on 

the apparent stability of the water table, as described in Section 3.2 above. The start date for 

the BIOPLUME 1\1 simulaUons was s'et to January 1992, which is the year the leaking fuel 

dispenser line and contaminated SOil1 were removed. Because soB containing concentretions of 

BTEX above OCC Category I levels was excavated in 1992, the dissolved BTEX plume was 

assumed to be the only signifi1cant component of contamination existing for the purposes of the 

BIOPLUME 11'1 simulations. No specifi1c Site data are available prior to July 1994, so source area 

dimensions and' concentrations were assumed. Both transient and steady-state flow analyses 

wer,e performed. 

BIOPLUME 111.1 Simulation #1: The concentrations assumed' to exist in the plume area in 1992 

were adjusted until the Iplume shape and concentrations matched the July 1994 benzene isopleth 

at a simulation time of two years. Appendix R contains tables and plots showing the 

concentrations defined for each cell of the modeling grid for the assumed source and the July 

1994 calibration. 
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Figure 9. BIOPLUME m Modeling Glrid Orientation 
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Longi,tudinal dispersivity was initially assumed to be equal to the average of the two values 

appro,ximated in the prev'ious section, or 1:2.1 feet. Unlike BIOSCREEN, BIOPLUME III requires 

dispersivity ratios, rather than approximated lengths in feet. A verti,cal dispersivity ratio, of 

0.00001 was assumed, and an approximate ratio of 0.33 was estimated to represent transverse 

dispersivrity. based on the plume dimensions shown on Figure 6. Molecular diffusion data was 

not available for the Site. Because molecular diffusion iis tYipically insignificant compared to 

mechanical dispersion (Rifai et aI. , 1998), it was assumed to be zero for BIOPLUME III 

simulations. 

For the BIOSCREEN simulations, effective porosi,ty was estimated to range between 0.1 and 0.2, 

based on Site characterization information. Rifai et al.,1998 reported,a typical range of 0.005 

to 0.10 for effective porosity values for sandstone. Based on these two approximated values, an 

effective porosity of 0.10 was used for BIOPLUME III simulations. For transient ana'lysis, a 

sloragecoefficient equal to the specific storage mU'ltiplied by the aquifer thickness was required. 

Rifai et at , 1998 recommended that the storage coefficient be set equal to the effective porosity 

for unconfined aquifers. A storage coefficient of 0. 10 was used. The Site-specific horizontal 

hydraulic conductivity (IK) value of 2.07 x 10.5 ftlsec (6.3 x 10-4 cm/s) was used for the 

BIOPLUME III simulations. 

A bulk density of 2.1 glcm3 was used for the aquifer matrix, and an anisotropy value "Of 1.0 was 

used to represent an isotropic aquifer with respect to vertical: and horizontal hydraulic 

conductivity. No anisotropy data were available for the Site. Consistent with the BIOSCREEN 

model, BTEX was assumed to interact with soil according to the linear sorption isotherm. Linear 

sorption is considered to be appropriate for BTEX, except for subsurface materials with low foe 

values (ASTM, 1996). Although sandstone is assumed to have a very lowfoc, no lab data area 

available to indicate a typical distribution coefficient Linear sorption is assumed to be 

.aiPpropriate at the Site in lieu of other data. The distribution coefficient, ~, was estimated as 
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described above by multiplying Koc by fcx: to equal 0.0076. tan exchange and infiltration were nat 

included in BIOPLUME Itl simulations because ion exchange is nat a significant process in 

sandstone,and inftltrahon is negligible through the asphaU and concrete parking lot. 

Biodegradation was simulated according to the instantaneous reaction assumption and 

sequential util'jzalion of oxygen, nitrate, and sulfate. No carbon dioxide data were available for 

the Site, and methanogenic biodegradation was not included in BIOPLUME lit simulations. Data 

for MW-14 were utilized to represent background diss,o!lved oxygen concentrations of 5.5 mg/L, 

based on October 1997 data. Background concentrations from MW-8 and MW-14 were 

averaged to approximate a background nitrate concentration of 18.2 mg/L MW-12 data were 

initially assumed to be representative of background sulfate concentrations of approximately 244 

mglL This background concentration proved to be unrealistic during model calibration. This 

high: value caused the model to predict complete disappearance of the BTEX plume within one 

year at the simulation start date for both steady-state and transient model assumptions. In an 

attempt to utillize the original background! concentration assumpbon, the applicability of first-order 

decay was evaluated for sulfat'e. 

Following cal~ibration of the assumed source, the electron acceptor utilization thresholds were 

adjusted until. the predicted results for 1997 matched the concentrations shown on the October 

1997 isopleths for dissolved oxygen and nitrate. The best match to the October 1997 data was 

achieved using a utilization threshold of 2.0 mg/L for oxygen and a threshold of 5.0 mg/L for 

nitrate. Sulfate could nat be calibrated to match Site data using a background concentration of 

244 mglL for either first-order decay or an instantaneous reaction. Monod kinetics could not be 

applied due to lack ·of required input data. Based on the unexplainable elevated concentrations 

of sulfate in groundwater discussed in Section 3.3.1 above, the possibility that the background 

concentration hadi been overestimated was evaluated. Based on data collected for MW-15, a 

concentration of 62.7 mglL was used to replace the previously selected 244 mglL for the 
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background concentration. Predicted sulfate concentrations were calibrated to match October, 

1997 data with a thresho'id of 17 mg/L for sulfate. The sul,fate data summary in Appendix L 

suggests that the utilization threshold could be lower than 17 mg/L; however, values below 17 

mgll caused the model to slightly overpredict the dimensions of the sulfate reduction ~one. 

BIOPLUME III Simulation #2: Although simulations of transient flow conditions initi.ally appeared 

to most c:losellY match the measured Si,te data, a second simulation was performed to attempt to 

calibrate B'IOPLUME III to simulat'e st.eady-state conditions at the Site. Concentrations assum.ed 

to exist in the plume area in 1992 were re-adjusted until the plume shape and concentrations 

matched the July 1994 benzene isopleth at a, simulation t,ime ·of two years. Appendix S contains 

tables and plots showing the concentrations definedl for each cell of the modeling grid for the 

assumed source and the July 1994 calibration. The steady-state simulation coul,d not be 

accurately calibrated to simulate the February 1998 plume and electron acceptor data for the 

Site. The closest approximation, shown in Appendix S, was achieved assuming a longitudinal 

dispersivity of 1.0, which is siignifi.cantly lower than previously assumed for the Site. Other input 

data were unchang'ed from Simulation #1, although variation in fraction of organic carbon, 

distribution ooefficient, and retardatj,on factor did not improve the simulation. Calibrated as 

shown in Appendix S, the model predicted that the plume would comp'letely disappear within 10 

years, or by 2002. 

3.3.3 Additional BIOSCREEN Simulation 

Following the BIOPlUMEl1I simulations described above, an additiona'i BIOSCREEN simulation 

was performed using the same input data defined for iB lOPLUME III Simulation #1, which 

simulated transien~ flow conditions. This additional BIOSCREEN simulation was conducted so a 

direct comparison could be made between the two mode'ls. No additional BIOSCREEN 

simulation was conducted to match the second BIOPLUME III simUlation because it could not be 

accurately calibrated. 
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Tile hydrogeologic, dispersivity, and adsorption data utilized in BIOPLUME III Simulation #1 

were incorporated directly by BIOSCREEN, as was the assumed source thickness. However, 

BIOSCREEN required approximation of the source zone concentrations, arbitrary estimation of 

the soluble mass of BTEX remaining in soil, and approximation of required electronalCceptor 

concentration differences. The input data and simulation results for BIOSCREENI Simulation #4 

are in Appendix T. As the simulation results for this simulation show, the BIOSCREEN model 

underpredicted BTEX concentrations by approximately B.8 mglL at a distance of '65 feet 

downgradient from the assumed source zone location. This simulation pr'edicted dlOwnglradient 

transport and reduction in plume concentration and size with time. In an attempt to more close'ly 

approximate July 1994 Site data, this BIOSCREEN Simulation was calibrated by decreasing 

IlOngitudinal dispersivity and foe. Other parameters were unchanged, as shown on the second 

input data summary in Appendix T. This calibrat.ion effort improved the approximation of the July 

1994 Site data, but plume concentrations were still underpredicted at distances greater than 35 

feet downgradi1ent from the assumed source zone location. This simulation predict,ed 

downgradient transport and reduction in plume concentration and size with time, The plume was 

predicted to completely disappear within 10 years, or by 2002. 

4 .. 0 RESULTS AND DISCUSSION 

Three BIOSCREEN model simulations were developed utilizing totally different source zone 

assumptions and relatively smaller variations in other input data. For each simulation, the model 

was successfully calibrated to match a specific benzene isopleth for the Site uWizing data within 

ranges estimated to be applicable to Site-specific conditions. Each simulation produced a very 

different prediction for the time to completeatlenuation of the contaminant plume, indicating that 

predictive capability is strongly dependent on quality and accuracy of input data, particul!arly 

source definition. 
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Two BIOPLUME III model simulations were developed, one for transient and another for steady

state flow conditions. The transient simulation was calibrated to match the measured benzene 

plume in 1994 and 1997 as well as measured electron acceptor concentrations in 1997. This 

simulation predicted very little attenuation in an 80 year time period. The second BIOPLUME III 

simulation was performed using the steady-state now opt:ion. This simulation could not be 

aCCllrately calibrated to match two sets of benzene data, or measured electron acceptor 

concentrations. The model was cal ibrated to match only the 1994 benzene data, and the plume 

was predicted to disappear in ten years. The electron acceptor assumptions and measured data 

described in Section 3.32 were checked by comparing the zones of reduced electron acceptor 

concentrations predicted by the isopleths in Appendices I - L to theoretical zones (see Figure 1). 

The zones predicted from the measured data are shown in Figure 10. These measured and 

theoreticall zones are generally similar in shape and order of occurrence. The assumptions used 

for the BIOPLUME III simulations appear to be valid. 

An additional BIOSGREEN simulation was performed using the ,input data successfully calibrated 

for the BIOPLUME III transient flow simula.tion, but BIOSCREEN could not be exactly calibrated 

using identical input data. BIOSCREEN predicted a much quicker rate of attenuation and lower 

concentrations in the downgradient portions of the plume than the BIOPLUME III simU'lation. 

This additional BIOSGREEN simulation predicted that the plume would disappear in ten years. 

4.1 Comparison of Simulation Resu'ts 

The lack of source information for the Site introduced considerable uncertainty in the 

simulations. The time period between the initial fuel dispenser line leak and the removal of the 

line is unknown, as is the volume of fuel released and the actual location of the leak. No soil 

data is available, so the soluble cont.aminant mass in the soil can not be estimated. Several 

different assumptions can be made about the source type, concentrations, and dimensions which 
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aBect the time required to fully attenuate the Site and the behavior of the plume pr:ior to complete 

attenuation. 

According to the Hi:I:1 Air Force Base example provided in the BIOSCREEN User's Manual, an 

~nfinite source can be conservativelly assumed for sites lacking source data. BIOSOREEN 

Simulation #1 illustrated that the infinite soluble mass assumption is not valid for the Site 

following removal of the fuel dispenser line. The contaminant plume continued to expand and 

did not attenuate. It is more realistic to assume the source is infinite prior to removal of the fuel 

dispenser line and finite following removal of the line. This type of simulation would require (1) 

assuming an infinite soluble mass source and calibrating the model to match conditions when the 

fuel dispenser hne is removed, and (2) estimating the finite soluble mass source present when 

the fuel dispenser line is removed, and using the otherwise calibrated model to predict future 

attenuation. This second step is difficult because no soil da,ta are available to support any 

estimate of the soluble mass following removal of the fuel dispenser line. The RA does indiicate 

that soils con~aminated above OCC Category I levels were excava,ted, which suggests that 

remaining soils could conservatively be assumed to hav,e 0.5, 40, 15, or 200 ppm BTEX, 

respectively. However, no dimensions are provided for the contaminated area. Assuming a 

contaminated area of 150 feet square by 10 feet deep, a soluble mass of 6.7 k.g was estimated 

for benzene. Utilizing this value, the model predicted that the entire contaminant plume would be 

remediated in one year. The infinite soluble mass source assumption is not applicable to this 

Site, and changing the source type within a simUlation introduces a second level of uncertainty iln 

the model results. 

A fini,te soluble mass source was assumed for BIOSGREEN Simulations #2 and #3, and the 

model ir,esults appear more realistiC, although ,considerable uncertainty exists due to lack of Site 

data.. The prlime source of uncertainty for this simulation is the development of the assumed 

source. The plume dimensions and 'concentrations were projected backwards in time by 
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assuming that the contaminated area would be relatively smaller and more highly concentrated 

closer to the time the leak began. The electron acceptor uti lizati:on zones were assumed to 

shrink as well, which required that wells located along the fringes of the plume in 1997 be used 

to represent the source area, wel'ls in 1990. This assumption resulted in decreases in both ~02, 

and AN03 and elimination of any sulfate, iron, and methane d,ata from the simulation, because 

oxygen and nitrate processes were assumed to dominate at that time. The model was 

successfully cal,ibrated to match assumed field conditions exactly, as shown in Appendioes P 

and Q . Aside from the biodegradation parameters, the input data remained within the original 

ranges estimated for the Site. 

The BIOPLUME III model allows a more detailed source definition than BIOSCREEN, but 

simulation results are stiH highly dependent on the source area dimensions and concentrations 

used, as described above for BIOSCREEN. A second significant parameter for BIOPLUME 11/ 

simulations is the type of flow mod:eled. BilOPLUME III was accurately calibrated to match field 

conditions, a.ssuming transient groundwater flow. This transient simulation was calibrat,ed using 

input data within ranges expected for the Site (discussed in Section 3.2 above). A second 

simul,abon assuming steady-state conditions could not be simulated to accurately match more 

than one date for benzene, and electron acceptor conoentrations were not matched. Input data 

used for this simulation matched those used for the translient simulation, except for longlitudinal 

dispersiv;ty, which was decreased from 12.1 to 1.0 feet 

Steady-state conditions have been shown to exist by 3 to 7 years following gasoline releases at 

service stations with clay and silty clay subsurface materials, which indicates that the time 

required ~or typical BTEX plumes to reach steady-state conditions is reasonably short. 

(McAllister, 1996). If this report can be applied to sandstone aquifers, it is reasonable to 

assume that the Site conditions are also at st,eady-state. Rifai et al. (199B) also report that 

steady-state flow simulations are appropriate at most sites, unless pumping wells or other flow-
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altering factors are present However, the transient simulation performed using BIOPLUME I!II 

did not incorporate any flow data except those defined for dispersivlity, which was utilized as a 

calibration parameter. No Site data indicates that this type of transient simulation shou!ldI not be 

used to approximate the existing Site conditions. 

4.2 Model Sensitivity Analysis 

4.2.1 BIO'SCREEN 

Following calibration of the model during Simulation #1, various input data were methodically 

-
altered to evaluate the sensitivity of the model to the variations. An increase in porosity resulted 

in a decrease in seepage velocitY,which causedl simulated contaminant concentrations to 

decrease more rapidly with distance from the source. Increased longitudinal dispersivity resulted 

in decreased plume concentrations midway between the source and the tip of the plume. An 

increased retar,dation factor caused the plume to shorten. With all other input data consistent, 

Simulation #1 was rerun with a fraction of organic carbon value of zero, rather than 0.0002. This 

change resulted in a retardation factor decrease from 1.2 to 1.0. To recalibrate the model, 

longitudinal dispers,ivity wasilncreased by 4 feet. Both versions of this simulation were calibrated 

to closely match the October,. 1997 data for the Site. No vis,ible change in model results was 

caused by entering zeros forL102, and tiN03 separately, although an increase in plume length 

with time was expected. The concentration of observed ferrous iron was varied from 0.0 to 3.0 

without any visible effect. Reduction of aS04 to zero caused a significant increase in the plume 

length due to the large concentration of sulfate in the .aquifer. 

A comparison of the results of the three simulations indicates that the B1QSCREEN model is 

highlly sensitive to the manner in which the source is defined and described. An infinite source 

resulted in no attenuation of the plume with time, and no method was avai:lablle for converting the 

rnfinille source to a finite source following calibration of the model. Variations on a finite source 

assumption caused attenuation endpoints to range between .2000 and 2034. Considerable 
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concentration and evaluating the results. For steady-state and transient simulations, 

background sulfate concentrations above 150 mg/L resulted in a prediction of complete 

disappearance of the plume within one year. A background sulfate concentration of 100 mg/L 

resulted in reduction in the BTEX plume concentrations of approximately 50% within one year for 

the steady-state simulation and a 72% reduction within one year for the transient simulation. 

Both transient and steady-state simulations with a background concentration of 25 mg/L sulfate 

resulted in a 23% reduction in BTEX concentrations in the plume within one year. The steady

state and transient simulations appear to be equally affected by changes in background sulfate 

concentratiions. BIOPLUME III appears to be sensitive to large background -concentrations of 

electron acceptors. 

Manipulation of utilizaiti.on threshold values for dissolved oxygen, nitrate, and sulfate resulted im 

slight changes in the BTEX p,lume and electron acceptor concentrations, but the shape of the 
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plume and zones of reduced electron acceptor concentrations were unchanged. Background 

concentrations of ferrous iron in the source zone were assumed to vary between 0 and 3 mgJl, 

without any visible effect 'on the plume dimensions. Variations in longitudinal dispersivity 

produced very little change in the simulation results; an increase of 10 feet resulted ina very 

slight (approximat,ely 0.10 mgJl) concentration increase in the model grid cell containing the 

most concentrated area of the plume. No changes in plume shape or extent were observed. 

Variations in porosity also produced only very sl.ight changes in plume concentrat.ions. 

Aside from the parameters discussed above, the selection of transient or steady-state flow 

conditions most affected the predictive capacity of BIOPLUME III. Identica,1 input data were 

simulated for both steady-state and transient conditions, with and without biodegradation. A 

significant difference in simulation results was observed. The steady-state simulation predicted 

that the plume would travel farther downgradient with time, but attenuate much more rapidly than 

the transient simulation, even without biodegradation. The transient simulation predicted that the 

plume would remain in place as Site data indicate, but total attenuation time was predicted to be 

much longer than 80 years. Transient flow conditions ,could !be calibrated to match measured 

Site data, whereas steady-state flow conditions could not be calibrat,ed to match more than one 

date for benzene. During calibration of the steady-state simulation, longitudinal dispersivity was 

initially assumed to be equal to 12.1 feet, the value used in BIOPLUME III Simulation #1, but the 

plume was predicted to travel downgradient too rapidly. As discussed in Section 3.3.2 above, 

the model was calibrated using a value of 1.0. Appendix S shows the steady-state BIOPLUME III 

results assuming a longit,udinal dispersivity of 12.1 feet. No other input parameters signifi.cantly 

affected the results of Simulation #2, followingl definition of the source. 

4.3 Model Predictive Capabilities 

The wide rang,e in r'esults for the simul,ations suggests that BIOSOREEN and BIOPlUME III have 

limited predictive capability unless site-specific data are available. BIOSCREEN simulations 
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suggested a range of total attenuation times from 10 to 47 years, and the BIOPLUME III 

simulations ranged from 10 years to over 80 years. Ranges for physical and chemical data such 

as porosity and ~raction of organic carbon can be used to. predict a range for total attenuation 

time, but specific data delineating the dimensions of the source and centaminant concentratiens 

in soil and groundWater playa key role in determining the total time for plume attenuation. 

The predictive capability of the medels is limited by the available electron acceptor infermation. 

All of the simulaHons described above mest likely underpredict the time required for measurable 

concentrations of benzene to. disappear because methanegeni.c and iron-reducing precesses 

were not accounted for. Without scil data, concentrations of ferric iron which may be 

contributing to biodegradation are overlooked. Contributions from methanogenillc processes are 

overloo.ked as weI.! because no., carbo.n dioxide 'or methane data are available for the Site. Part of 

the plume is also subject to. elevated cencentratiens ef sulfate which may also be contributing to 

the biodegradation of the plume. 

5.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

Although sufficient data were avai lable to simulate natural attenuation at the OOOT facility using 

beth BIOSCREEN and BIOPlUME III, the models predicted a wide range for the time peried 

required fer the BTEX plume to reach full attenuatien. BIOSCREEN was simple to use and 

required basic Site informatien for input data. However, no informat.ion cenceming the date the 

fuel dispenser line began 100. leak or the volume of fuel leaked is available fer this site, so varied 

plausible source definitions were estimated for BIOSGREEN simulatiens. BIOSOREEN could be 

calibrated to match existing Site conditions, regardless of the source zone assumptions made, 

but predictions of total attenuation times varied widely. BIOPlUME III requ.ired additional input 

data to. define the modeling grid and boundary conditions, and allewed more complex definitiens 

of the hydrocarbon source and electron acceptors. However, this medel was equally as sensitive 

as BIOSCREEN to the defined source concentrat:ions and extent. Additlionally, BIOPLUME m 
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produced very differen~ results fm the transient and steady-state simulations. Steady-state 

conditions were expecte,d to be most applicable to ~he Site, but the steady:..state simulation could 

not be calibrated! to match measured Site data very well. The transient flow simulation was 

calibrated to match not only hydrocarbon concentrations, but aliso electron acceptor data. 

However, this simulation :predicted that the plume would be attenuated only slightly within 80 

years, which is twice the longest time to complete plume disappearance predicted by 

BIOSCREEN. Use of a relatively more complex numerical model, BIOPlUME III, did not 

produce results which could be regarded with any more confidence than those produced by the 

steady-state analytical model, BIOSGREEN. 

A recent study was conducted to compare model and parameter uncertainties in groundwater 

flow and solute transport predictions. The study illustrated that uncertainty and variability in 

model input parameters often outweigh error due to the type of model applied, which suggests 

that application of sophisticated computer models may not be warranted for sites with limilted 

input data (Massman and Hagley, 1995). The results of this comparison between BIOSGREEN 

and BIOPLUME III support the premise thalt use of a complex mod!el is not necessarily advisable 

for typical petroleum hydrocarbon sites with limited data. Modeling with alOPLUME III may 

serve as a method for identifying those areas where d:etailedfield information needs to be 

collected (Rifai et aI., 1998), but typically, collection of large amounts of data is prohibitively 

expensive at sites such as the ODOT Edmond Residency Fa.cility. 

Both BIOSCREEN and BIOPLUME III predict that natural attenuation is taking place at the 

OOOT Residency Facility rapidly enough to prevent migration of any BTEX beyond the Facility 

property boundary. In spite of the widely varied results, all of the simulations desoribed above 

are conservabve and tend to underpredict bioremediation. Natural attenuation is generally 

considered to be acceptable support for risk-based closure provided that the contaminant plume 

is shrinking or stable, and there are no impa,cts to receptors (ASTM, 1996). These model 
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results, in combination with documentation of biodegradation processes at the Facility, support 

risk-based closure by showing that biodegrad'ation is taking place, and the plume will not migrate 

off-site where it could potentially impact receptors. 
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Domenic,o Model with Instantaneous Reaction Superpositi;on Algorithm 1 

The 1987 Domenico analytical model utilized by BIOSCREEN is designed for the 
multidimensional transport of a decaying contaminant species. The model equation, boundary 
conditions, and assumptions are discussed below. 

I 
C(k)~ 

~a., i!!' . -'< ... SH; ""4 
m", ; < ·~ ~A " ·.t l45 

... 
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Definitions of Variables: 

BC Biodegradation capacity (mg/L) 

C(x,y"z,t) Concentration at distance x downstream of source and distance y off centerline of 
plume at time t (mg/L) 

x 

y 

z 

az 

Concentration in Source Zone (mglL) 

Concentration in Source Zone at t=O ,(mglL) 

Distance downgradient of source (ft) 

Distance from plume centerline of source (ft) 

Distance from surface to measurement point (assumed to be 0; concentration is 
always assumed to be at top of water table). 

Concentration of electron acceptor n in groundwater (mg/l) 

Utilization factor for electron acceptor n (i.e., mass ratio of electron acceptor to 
hydrocarbon consumed in biodegradation reaction) 

Longitudinal groundwater dispersivity (ft) 

Transverse groundwater dispersivity (ft) 

Vertical groundwater dispersivity (ft) 

Effective Soil Porosity 

First-Order Degradation Rate (da{l) 

1 From Newell et aI., 1996. 
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\) Groundwater Seepage Velocity (fUyr) 

K Hydraulic ConducUvity (ftlyr) 

R Constiltuent retardation factor 

Hydraulic Gradient (cmlcm) 

Y Source Width (ft) 

Z Source Depth (tt) 

• The initial oonditions are: 
1) c(x. Y, z, 0) = 0 (Initial concentration = 0 for x. y, Z, > 0) 
2} c(O, Y, Z, 0) = Co (Source concentration for each vertical plane source = Co at time 0) 

• The key assumptions in the model are: 
1) The aquifer and flow field are homogeneous and isotropic. 
2) The groundwater velocity is fast enough that molecular diffusion in the dispersion terms 

can be ignored I(may not be appropriate for simulation of transport through clays). 
3) Adsorption is a reversible process represented by a linear isotherm. 

• The key limitations to the model are: 
1) The model should not be applied where pumping systems create a complicated flow field. 
2) The model should not be applied where vertical flow gradients affect contaminant 

transport. 
3) The model should not be applied where hydrogeologic conditions chang,edramaticaUy 

over the simulation domain. 

• The most important modifications to the original Domenico model are: 
1: ) The addition of "layer cake" source terms where three Domenioo models are 

superimposed one on top of another to yield the 5-source term used in BIOSCREEN. 

2) Addition of the instantaneous Ireaction term using the superposition algorithm. For the 
instantaneous reaction assumption, th,e source concentration is assumed to be an 
"effective source concentrationD (Coe) equal to the observed concentration in the source 
zone plus the biodegradation capacity, 
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DEFllNmONS OF BIOSCREEN INPUT PARAME~ERS 

Hydrogeologic Data: 

• Seepage velocity (Vs), ftJyr - Actua.l interstitial groundwater velocity equal to Darcy 

velocity divided by effective porosity. 

• Hydraulic conductivity (K), cm/s - HOrlzontal hydraulic conductivity of the saturated 

porous medium. 

• Hydraulic gr:adient (I), ftIft - The slope of the potentiometric surface, which is equivalent 

to the slope of the water table in unconfined aquifers. 

• Effective pomsitv (TJ) - Dimensionless ratio of the volume of interconnected voids to the 

bulk volume of the aquifer matrix. 

Dispersion Data: 

• Longitudinal, transverse, and vertical dispersivity (alpha X, alpha Y, and alpha z), ft - An 

estimation of the tendency of a plume to spread out in the longitudinal direction (parallel 

to groundwater flow), the transverse direction (perpendicul:ar to groundwater flow),and 

vertically downwards due to mechanical mixing in the aquifer and chemical diffusion. 

• Estimated plume len~h (Lp), ft - Estimated length of the existing or hypothetical 

groundwater plume. 

Adsorption Data: 

• Retardation factor(R) - Dimensionless rate at which dissolved contaminants moving 

through an aquifer can be reduced by sor;ption of contaminants to the solid aquifer 

matrix. 
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Adsorption Data, Confd: 

• Soil bulk density (Pb), kgJL orglcm3 - The bulk density of the aquifer matrix. 

• Organic carbon partitionooefficient (Koc), Ukg or mUg - Chemical-specific partition 

coeffident between soil organiC carbon and the aqueous phase. 

• Fraction of organic carbon (foc) - Dimensionless fraction of the aquifer soil matrix 

comprised of natural arglanic carbon in uncontaminated areas. 

Biodegradation Data: 

• First-order decay coefficient (:A.), y(1 - Rate coefficient describing first-order decay 

process for dissolved constituents. 

• Dissolved plume solute hallf-life (t'I2), yr - Time for dissolved plume concentrations to 

decay by one half as contaminants migrate through the aquifer. 

• Delta oxygen (A02), mg/L - The average background concentration of oxy'gen minus the 

lowest observed concentration of oxygen in lhesource area. 

• Delta nitrate (ANO), mg/L - The average baokground concentration of nitrat'e minus the 

lowest observed concentration of nitrate in the source area. 

• Observed ferrous iron (Fe2+), mgll - The average observed concentration of f,errous liron 

found in the source area. 

• Delta sulfate (&50,,), mg/L - The a,verage background conoentration of sulfate minus the 

:Iowest observed concentration of sulfate in the source area. 

• Observed methane (CH,,), mg/L - The average observed concentration of methane found 

in the source area. 

General Data: 

• Model area length and width (L and W). ft - Physical dimensions of the rectangular area 

to be modeled. 
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• Simulation time (t), yr - Time for which concentrations are to be calculated. 

Source Data: 

• Source thickness in saturated zone (z), ft - The thickness of the contaminated 

groundwater zone, measured down from the top of the water table. 

• Source zone width, ft - The horizontal width, perpendicular to groundwater flow, of the 

source area, divided into one, three, or fill'e zones. 

• Source zone concentration, mg/L - Concentrations of contaminant within each source 

zone. 

• Soluble mass in source zone, kg - The best estimate of dissolvable organics present in 

the source zone .. 
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BIOPLUME III E'quation Formulation 

Rifai et al. (1988) incorporated the conclusions developed by Borden and Bedient (1986) int.o 
the USGS two-dimensional solute transport model more commonly referred as the Method of 
Characteristics (MaC) model. The MOe model was modified from a single particle mover to a 
dual partiale mover model to simulate the transport of hydrocarbon and oxygen. The system 
of transport equations solved in BIOPlUME /I is given by: 

iJHb 1 (0 ( iR) 0 ) H' W - . =- -. ·bDij- --(bHVd ---a Rn Ox; Oxj ax; n 

iVb (8 ( CO ) 8 ) 0' W - = - bDi/- :--(bOVi) --a t7.xi /J.xj Oxl n 
where 

H = concentration of hydrocarbon 
0 = concentration of oxygen 
H' = concentration of hydrocarbon in source or sink fluid 
O· = concentration of oxygen in source or sink f1,uid 
n = effective porosity 
b = saturated thickness 
W = volume flux per unit area 
Vi = seepage velocilyin the direction of Xj 

Rh = retardation factor for hydrocarbon 
D,lj = coefficient of hydrodynamic disperslion 

Much like the approach used in developing BIOPLUME iii , the 19'89 version of the MOe model 
was modified to become a six-component particle mover model to simulate the transport of 
hydrocarbon, oxygen, nitrate, iron(Il), sulfate and carbon dioxide. Since the biodegradation of 
hydrocarbon uses iron (III) as an electron acceptor, iron (III) concentrations are simulated as 
an initial concentration of ferric iron that is available in each cell. Once the iron (III) is 
consumed, hydrocarbon concentrations are reduced and ferrous iron is produced. The 
resulting ferrous iron is then transported in the aqUlifer. The BIOPlUME III equations include: 

iJHb 1 (iJ ( 8H) 0 ) H' W -=-·-·bDij- --(bHVi) ---a RJ. Oxi Ox)' Ox; n 

COb ( t3 ( CO) t3 . ) 0' W -= - bDij-.. --(bOVi) ---a O.xi Oxj iJx; n 

CNb (0 ( ilN) 0 J N'W -= - bDij-·--(bNVI) ---a t7.t; Ox) Ox; n 
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asb (13 ( as). 13 ( )J S'W -. =;- bDy-,-- bSVi· ---a ilxt . Ox) ax.; n 

CCb (13 (. X) 0 J C' W -= - bDIj-. --(bCVi) ---a ax, Ox) ax, n 

where 

N = concentrat.ion of nitrate 
N' = concentration of nitrate in source or sink fluid 
F = concentration of iron (II) 
F' = concentration of iron {II} in source or sink f 'luid 
S = concentration of sulfate 
S" = concentration of sulfate in source or sink fluid 
C = concentration of carbon dioxide 
C' = concentration of carbon dioxide in source or sink flu.id 
All other parameters as defined previ:ously. 

The biodegradation of hydrocarbon using the aerobic and anaerobic electron acceptors is 
simulated using the prinCiple of superposition and the following equations: 

H(t+1) = H(t) - RHO - RHN - RHFe - RHS - RHC 

0(t+1 ) = OCt) - ROH 

N(t+1) = N(t} - ~NIH 

Fe(t+1 ) = Fe(t) - RFelH 
F(t+1) = RFeH 

S(t+1 ) = 8(t) - RSH 

C(t+1) = C(t) - RCH 

where RHO. RHN. RHFe, RHS, RHC are the hydrocarbon concentration losses due to 
biodegradation using oxy'gen, nitrate, ferric iron, sulfate and carbon dioxide as electron 
acceptors, respectively. The terms ROHI RNHI RF,eH, RSH, RCH are the corresponding 
concentration losses in the electron acceptors. These reactlion terms are computed using one 
of the three biodegra:dation expressions: first-order, instantaneous or Monad. For example, 
and for the instantaneous model, the reaction terms are computed as follows: 

RHO = O(t)/Fo 
RHN = N(t)IFN 
RHFe = Fe(t)/FFe 
RHS = 8(t)/Fs 
RHC = C(t)JFc 

ROH = H(t). Fa 

RNH = H(t+1)1. FN 
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RFeH 
RSH 
RCH 

= 
= 
= 

H(t+1f· FFe 
H(t+1)3. Fs 
H(t+1)". Fe 

where Fo, FN, FFe, Fs, and Fc are the stoichiometric ratios for each of the el'ectron acceptors, 
respectively, and H(t+1) 1, H(t+1 )2, H(t+1 )3, and H{t+1)" are the hydrocarbon concentrations 
modified by loss due to the reaction with oxygen; oxygen and nitrate; oxygen, nitrate-and iron; 
and oxygen, nitrate, iron and sulfate; respectively in the given time step. 

For each of the electron acceptors, the following constraints are applied: 

H(t+1 )1 = 0 where 0(1) > H(t) • Fo 
0(t+1 ) = 0 where H{t) > O(t)/Fo 

H{t+1 )2 = 0 where N(t) > H(t+1)1 • FN 
N(t+1 ) = 0 where H{t+1)1 > N(t)IFN 

H(t+1 )3 = 0 where Fe(t) > H(t+1)2 • f Fe 
Fe(t+1 ) = 0 where H(t+1 )2 > Fre(t)/FIFe 

H(t+1 )4 = 0 where Set), > H(l+1)3 • Fs 
5(t+1 ) = 0 where H(t+1)3 > 5(t)IFs 

H(t+1 ) = 0 where C(t) > Hr(t+1)4 • Fe 
C(t+1 ) = 0 where H(t+1)4 > C(t)/Fc 

Furthermore, these reaction terms are subject to additional constraints. For first-order decay, 
instantaneous and Monad kinetic models: 

if 0(t+1) > a 

if 0(t+1) > Omin 
or N(t+1) > Nm1n 

if 0(t+1) > Omin 
or N(t+1) > Nmin 
or Fe(t+1) > Femin 

if 0(t+1) > Omin 
or N(t+1) > Nmln 
or Fe{t+1) > Femln 

or 5(t+1) > 5m1n 

where Omin, Nmin, Femin, Smln, Cmin are the threshold concentrations for the corresponding 
electron acceptor below which no biodegradation wiU take place. 

For the first-order decay and Monad kinetic models, the reaction terms are compared to the 
concentration of the electron acceptor: 

RHO < O(t)/Fo 
RHN < N(t)/FN 
RHFe < Fe(t)/FFe 

RHS < S(t)/Fs 
RHC < C(t)tFc 
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BIOPLUME III INPUT DATA 

The BIOPLUME III input data are described in the fo llowing sections. 

1.0 Discretization of Space 

The first step in applying the BIOPLUMIE III model, to a field site involves s'electing the size of the 
model grid and the number of caHs contained within the grid. Four variab'les are used to define 
the selected grid: NX, NY, XDEL and YDEL. The number of grid cells in the x- and y- directions 
are defined in NX and NY, respectively and the size of the individual cells are defined in XDEL 
and YDEL, respectively. 

Since the model requires that no- flow boundaries be specified around the site, "extra" cells need 
to be incorporated into the grid design. In other words, if an "active" domain of 12 x 12 cells is 
needed, a 14 x 14 grid is specified in order to allow for the outer rows and columns to serve as 
no-flow boundaries. 

Ther'e are a number of conventions used in the model which are useful to note. First, flow is 
generally a'iong the y- direction. The origin is deSignated at the upper left- hand corner of the grid 
(this means that flow is essentially "down the page"). The x- cells are then counted starting with 1 
at the origin and thmugh NX moving to the right of 1'l")e origin. Similarly,. the y- cells are counted 
starting with 1 at the origin and through NY moving downwards from the origin . These 
conventions may be changed but caution needs to be exercised in entering the input data and 
analyzing the resulting output to avoid confusion. 

2.0 Discretization of TIme 

BIOPLUME III uses three variables to define simulation time in the model: NTIM, PINT and 
NPMP. 

NTIIM - is defined as the number of times in a given simulation period that the user may receive 
model results. 

PINT - is defined as the length of time :in a given simulation peri.od. 

NPMP - defines the number of pumping periods to be simulated. A pumping per,iod is defined as 
a specified Ilength of time during which the hydrologic conditions at the site remain 
unchanged. 

3.0 Hydrogeologic Characteristics of the Aquifer 

A number of variables are used in BIOPLUME III to identify the hydrogeologic characteristics of 
the aquifier. These include: porosity (POROS), longitudinal dispersivity (BETA), storativity (S), 
ratio of transverse to longitudinal dispersivity (OL TRAT) , ratio of longitudinal 
transmissivity to transverse transmissivity (ANFCTR), transmissivity (VPRM), recharge (RECH)I 
and thickness of the aquifer (THCK). 
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POROS - (effective porosity) is the dimensionless ratio of the volume of interconnected voids to 
the bulk volume of the aquifer solids. The porosity is obtained from site specific measurements 
or from literature values. 

BETA - (longitudinal dispersivity) defines the longitudinal spreading of a plume ,in the direction 
of flow. Sellection of dis,persivity values is diifficult because of the impracticability of measuring 
dispersion in the field. Values for BETA may be obtained using: 

o Data compiled from 50 sites by Gellnar et al. (1985); 
o Data from recent field studies; 
o Using the relationship suggested by Pickens and Grisak (1981): 

BETA = 0.1 Lp, where Lp is the plume length or distance to measurement point in ft. 

S - (storativity) is the product of the specific 5tora'ge and the thickness of the alquifer, where the 
specific storage is defined as the volume of water that a unit volume of aquifer relleases from 
storage when the pressure head in the unit volume ,changes a unit amount. Storativity is only 
used for transient flow anallyses and is estimated trom pump tests conducted at the site. 

DL TRAT - is the ratio of transverse to longitudinal dispersivity. Much like the longitudinal 
dispe:rsivity, this variable is difficult to estimate. One of the following relationships may be used: 

DLTRAT = 0.33 (Gelhar 'et aI., 1992) 
DLTRAT = O. 1 (U. S. Environmental Protection Agency, 1986) 

ANFCTR - (ratiO of longitudinal transmissivity to transverse transmissivity) is rarely characterized 
at field sites and is mostly set to 1. 

VPRM - (transmissivity) is the product of the hydraulic conductivity and the thickness of the 
aquifer. VPRMcan be ,obtained from slug tests or pump tests at the site or from published 
literature values for the hydraulic conductivity. 

RECH - (recharge) is generally obtained from rainfall data and soil infiltration characteristics. 
This variable is rarely, if ever, measured at field sites. It is usually estimated from local or 
regional data publ.ished by the USGS and the Soil Conservation Service, or calibrated. 

THCK - (aquifer thickness) is generally obtained from well logs, soil borings and other Q'eologic 
characterization efforts at the site. 

Note: The last three parameters: VPRM, RECH and THCK. may be s:pecified as a constant for 
the whole site or as a spatially variable parameter such that a different value is entered for each 
cell in the model grid. 

4.0 Boundary Conditions 

In order to simulate a field site with the BIOPLUME I'll model, it is necessary to identify the 
hydrogeologic conditions that prevail around the site. These hydrogeologic conditions are 
r,eferred to as boundary conditions. The two types of boundary conditions that can be simulated 
with BIOPLUME In include: constant head and constant flux. 

Constant bead boundaries refer to cells where the water level j,s constant throughout the 
simulation. The head or water level value ~s specified by the user at the constant head 
boundaries. 
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Constant flux boundaries, on the other hand, refer to cells that allow water (and possibly 
contaminants and electron acceptors) to flow through. In this case, the user specifies the rate of 
water flow (or flux of water) through the cell and specifies whether the cell is also 8. source of 
contamination or electron acceptor( s}. 

A number of variables in Bl0PLUME III aHow the user to specify the boundary conditions for 
the site. These include: NCODES, the NODEID matrix, and the parameters ICODE, FCTR1, 
FCTR2, FCTR20, FCTR2N, FCTR2F, FCTR2S, FCTR2C, FCTR3, and OVERRD. 

The NCODES variable is used to define the number of boundary condition types to be used in 
the model. For examp:le, if constant head boundary conditions without chemical concentration 
inflow are to be used for the slite, then the NCO DES variable is set to one. If, on the other hand, 
constant head boundaries without chemical concentration infl.ow are to be used in one portion of 
the site and constant head boundaries with chemical concentrations inflow are to be usedl lin 
another portion of the site, then the NCODES variable is set to two. 

The NODEID matrix is used to specify the cells at which the boundary conditions wiU be 
deSignated. The NODEID matrix can be thought of as an ON/OFF switch deSignator. If 
BIOPLUME 1111 encounters a number between 1 to 9 alt any of the cells, the model interprets that 
as "an ON switch" for additional boundary cond!itioninfermatien. BIOPLUME III anticipates that 
more data weu1ld be provided for those cells. The data include the varialbles ICODE, FCTR1, 
FCTR2, FCTR20, FCTR2N, FCTR2F, FCTR2S, FCTR2C ,. FCTR3, and OVERRD. Additionally, 
if constant head boundaries are used at any of the cells, the water table or WI' variable needs to 
be specified for those cells. 

5.0 Initial Condiitions 

The head and concentrations at the start of the simulation period need to be specified in the 
BIOPLUME III input. The specific variables include: initial water table (WT), ,initial concentration 
of contaminants (CONC), oxygen (CONC1), nitrate (CONC2), ferrous iron (CO!NIC3), ferric iron 
(CONC3A), sulfate (CONC4), and carbon dioxide (CONCS). 

The initial water table (WT) may be developed by contouring water level data measurem,ents and 
entering the resulting values into each cell in the model grid. This is however. time consuming 
and net entirely necessary since the model will recompute the water table anyway. The user can 
enter "0" for the initial water table elevation everywhere except where constant head nodes have 
been specified (the actual water level is entered for those). 

The initial concentration of contaminants (CONC) and the initial concentrations for all the 
electron acceptors (CONC1 through CONCS) are determined from monitoring well data. 

Note: The BLOPLUME III model does net require specific units for concentratien. The user may 
select between mg/L and J.l9/L. The model does require that the user use al consistent set ef 
units for all the concentration input. Therefore, if mglL fer example are to be used, then all the 
concentrati:en data need to be entered in that systems of units. The output concentratlions 
generated by the model will also reflect t,he same units as the input. 

6.0 Sources and Sinks 

The introduction of water or release of water from the a.quifer (including contaminants and 
electron acceptors) is referred to as sources and sinks. These can be simulated using inj;ectionl 
pumping wells, rechargei discharge cells or constant head cells. The use of recharge and 
constant head nodes to represent sources and sinks has been illustrated in the previous section. 

84 

I 

·,1;1 
~ .;. 



This section will foct.Js on the use of injection wells. to represent sQurcesandl .or pumping and 
injection scenarios. The model parameters for injectionl pumping wells include: NREC, REG, 
CNRECH, CNRECO, CNRECN, CNRECF, CNRECS, and CNRECC. 

NREC - defines the number of injection or pumping wells that will be used in the model input. 

REC - specifies the injection (- ve) or pumping rate (+ ve) for each of the wells. 

CNIRECH - specifies the concentration of contaminant in injected water (parameter set to () for 
pumping wells). 

CNRECO - specifies the concentration of oxygen in injected water (parameter set to 0 for 
pumping wells). 

CNRECN - specifies the concentration of nitrat.e in i1njected water (parameter set to () for 
pumping wells). 

CNRECF - specifies the concentration of ferrous iron in injected water (parameter set to 0 for 
pumping wens). 

CNRECS - specifies the concentration of su:lfate in injected water (parameter set to 0 for 
pumping well's). 

CNIRECC - specifi,es the concentration .of carbon dioxide in injected water (parameter set to 0 far 
pumping. wells). 

7.0 Sorption, Source Decay, Radiioactive Decay and lon-Exchange Variables 

A number .of variables are used in the model to represent source decay, radlioactive decay, 
sorption and ion-exchange reactions. The parameter IREACT is used to deSignate which of 
these reactians are to be used in the current simulation: 

I REACT 
-1 
o 
1 
2 
3 
4 
5 
6 
7 

REACTION 
decay .only 
no reaction 
linear sorptian 
Freundlich sorption 
Langmuir sorption 
monovalent exchange 
divalent exchange 
mono- diiva,lent exchange 
di- monovalent exchange 

PARAMETERS TO BE SPECIFIED 
THALF 
None 
DK RHOB, THA'LF 
RHOS, EKF, XNF, THALF 
RHOS,EKL,CEC, THALF 
RHOS, EK, CEG, CTOT, THALF 
RHOS, EK, GEG, CTOT, THALF 
RHOS, EK, GEG, GTOT, THALF 
RHOB, EK, GEG, CTOT, THALF 

THALF is the decay half-life used t:or radioactive compounds. This half- life is applied both to 
the specified source concentration and to the dissolved concentrations in the model. 

RHoa - is the aquifer bulk density. 

OK - is the linear sarpti.an distribution coefficient more typically referred ta as K d. The 
distributian coefficient is generally computed using the follOWing relationship: 
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where Koc is the normalized distribution co1effiicient and foe is the fraction of organic carbon 
found in uncontaminated soils at the site. The variablefoc can be determined from laboratory 
analyses of the soils at the site or using the typical values. 

EIKF - is the FreundlliCh sorption coefficient. 

XNF - is the Freundlich sorption exponent. 

EKl - is the Langmuir sorption coefficient 

CEC - is the maximum sorption capacity or ion exchange capacity. 

:EK - is the lon-exchange selectivity coefficient. 

CTOT - is the total solution concentration of two exchanging ions. 

THALIFS - represents the source decay rate. 

8.0 Biodegradation Variables 

A number of variables are used in BIOPlUME III to simulate the aerobic and anaerobic 
biodegradation of contaminants. An overall first-order decay biodegradation rate (DEC 1) can be 
desi'gnated to simulate the lumped effect of aerobic and anaerobic processes. Alternatively, 
detai,led imollTlation about the electron acceptors may be provided to simulate their individual 
impacts. A biodegradati,on type specifier for each of the electron acceptors (IREGO, IREGN, 
iIREGF, IRECS, IREGe) is used to sellect between the first- order, instantaneous, and Monad 
kinetic models. The electron acceptor data for oxygen, for example, depends on the selected 
kinetic model: 

First-Order Decay Simulations: 
DCa - is the first-order decay rate for oxygen. 
FO - i!s the concentration of available oxygen in the groundwater. This value is needed to 

allow the modell to decay hydrocarbons as long as oxygen is Ipresent in the aquifer. If 
oxygen concentrations reach their specified threshold concentrations (DOMIN), the 
biodegradation reaction is terminated. This ensures that the first-order decay model 
does not overestimate the amount of biodegradation that is likely to occur in the 
aquifer. 

DOMIN - is the threshold oxygen concentration. 

Instantaneous Reaction Simulations: 
The variabl,es FO and DOMIN (defined previously) are required. 

Monod KinetiC Simulations: 
In addition to Fa and DOMIN (as in the case of the first-order model, these parameters are 
provided to ensure this model does not overestimate the amount of biodegradation that is 
likely to occur in the aquifer), the following parameters. are required: 

CMSO - is the concentration of microorganisms in the aquifer. 
RMO - is the microbial retardation coefficient. 
RKHO - is the half-saturation constant for the contaminant. 
RKMAXO - is the maximum growth rate for the contaminant. 
RKO - is the half-saturation constant for oxygen. 
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Similar variables ar'e defined for all the electron acceptors. 

9.0 Numerical Parame1iers 

A. number of variables used lin BIOPLUME III define "numerical paramet.ers" needed in the 
solution method used by the model. These include: NPTPNiD, NPMAX, CELDIS, NITP, ITMAX, 
TOl, TIMX, and TINIT. 

NPTPND is the number of particl!es to be used in each cell in the model. The number of particles 
used in each cell will impact the runtime required for the model. A smaller number of particles will 
allow the model to run in a shorter peri.od of time but may increase the mass balance errors in 
the simulation .. In general, 9 particles provide adequate model accuracy without causing 
excessively long run times. 

NPMAX is the maximum number of particles for the whole grid. In general, NPMAX should be 
set to a number greater than NX*NY*NPTPND. 

CELDIS defines the maximum allowable distance within the cell that a particle is allowed to 
move in a time step. A CELDIS of 0.5 implies thlat a particle is not allowed to move more than 
hallf a cell I'ength during the time step. This variable is needed in order to control the movement 
of the particles and the mass balance errors in the model. A. smaner CELDIS causes lower 
numericall mass balance errors but may increase runtimes. In general, a CELDIS of 0.5 is 
recommended. 

NITP is the number of iteration parameters used in solving the flow equation. A value of 7 is 
recommended for this variable. 

ITMAX is the max.imum number of iterations to be used in solving the flow equation. A value of 
200 (the maximum) is recommended for this variable. If the model is unable to anrive at a solution 
of the flow equation using this value, an error message will be generated and the model run will 
be terminated. In this case it is recommended that the user review the in.put data for possible 
errors. 

TOl is the conver9'ence criterion that is used to iteratively solve the flow equation. A value £ 
0.001 is recommended. 

TIMIX and TINIT define the time steps for transient simulations. TINIT is the size of the initiall 
time step, and TIMX is the multiplier that will be used to generate subsequent time steps from 
TI'NIT. For example., if TIINIT is set to 1000 seconds and TIMX is set to 10, the second time step 
will be 10 x 1000 = 10,000 seconds, the third time step will be 10,000 x 10 = 100,000 seconds, 
and so on. 

10.0 Output Control Parameters 

A number of variables in BIOPLUME III can be used to contro~ the amount of output that is 
generated by the model. These include: NPNT, NPNTMV, NPNTVL, NPNTO, N'POElC, and 
NPNCHV. The majority of lhese parameters, except for NPNT, are typically set to "d. NPNT is 
usually set to "1" to allow viewing of the output at the end of the time step. 
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Other variables are used to control the type of output that can be generated by the model. These 
include variables that designate the number and location of observation points: NUMOBS, 
IXOBS and IYOBS. 

NUMOBS is the number of observati'on or monitoring wells to be specified. A maximum of 5 is 
allowed. 

lXOBS and IYOBS define the locations of the specified number of monitoring wells. 
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Benzene Analytical Data and Isopleths 
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1 

MW~ 1 <0.005 0.3vv U.310 U.1I:iO <U.O <U.::l <0.5 <:0.5 
MW-2 10.800 11 .000 6.700 0.0108 <0.5 , <0.5 <0.5 <0.5 
MW-3 10.500 7.300 12.0 10.2 6.04 8.950 12 ·~10 11 .940 12.630 
MW-4 16.100 8.200 6.926 6.250 7.850 16.030 40.260 25.530 
MW-5 <0.005 <0.0002 0.002 0.0025 <0.5 <0.5 <0.5 <0.5 
MW-S <0.005 2.100 1.290 1.670 1.110 3.540 3.300 2.970 
MW-7 0.071 0.520 0.004 0.161 1.650 2.600 2.800 2.970 
MW-8 <0.0002 <:0.001 0.0036 <0.5 <0.5 <0.5 <0.5 
MW-9 0.0051 0.0668 T 0.0208 0.0182 
MW-10 0.0029 0.0014 <0.5 <0.5 <0.5 0.21 
MW-11 <0:0002 <0.001 0.0258 I 0.0404 0.0258 <0.5 <0.5 <0.5 <0.5 

'" l MW-12 <0.0002 <0.061 0.0015 0 0.0048 <0.5 <0.5 <0.5 <0.5 
MW-13 <0.0003 0.002 0.0018 0.0107 <0.5 <0.5 <0.5 <0.5 
MW·14 0:'0105 <0.5 <0.5 <0.5 <0.5 

.. 

MW·15 <0.001 I <0.001 <0.5 <0.5 <0.5 <0.5 
MW:16 <0.001 I <0.001 <0.5 <0.5 <0.5 <0.5 

Notes: 
1. Less than signs «) designate values below the detection limit. 
2. 1994, 1995, and 1996 data is from caldwell, 1995. 
3. 1997 and 1998 data is from Akins, 1998. 
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2/17/98 
MVV-1 <ti 0 .034 U.U'1!) U.lJlJ43 0.0022 0.129 0.129 0.129 0.172 

- --- --- .. 

MW-2 0.005 <0.0002 <1.0 <0.001 0.086 <0.005 <0.005 0.043 . .. - - -

MW-3 15 11 18 15.1 8.8 11 .435 19.877 18.470 24.116 
MW-4 10.2 4.6 4.17 7 4.861 18.294 59.459 30.561 
MW-5 <0.005 <0.0002 <0.001 <0.001 0.258 0.172 0.086 0.086 
MW-6 <0.005 0.81 0.543 0.84 0.258 3.1399 0.430 0.258 
MW-7 0.0059 0.077 0.004 0.0098 1.914 3.163 3.355 2.495 
MW·8 <0.0002 <0.001 <0.001 <0.005 <0.005 0.086 <0.005 
MW-9 <0.0002 0.0081 0.0081 <0.001 <0.001 .. 

MW-10 <0.0002 <0.001 <0.005 <0.005 0.602 
MW-11 <0.0002 - <0.001 0.0027 0.0038 0.0027 <0.005 0.086 0.086 0.172 

I MW·12 
.. 

0 <0.0002 <0.001 <0.001 <0.001 0.172 <0.005 <0.005 <0.005 - MW-13 <0.0002 <0.001 <0.001 <0.001 0.086 0.086 <0.005 <0.005 
MW· 14 <0.001 0.086 <0.005 <0.005 <0.005 
MW-15 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 
MW-16 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 

. 

Notes: 
1. Less than signs «) designate values below the detection limit. 
2. 1994, 1995, and 1996 data is from Caldwell, 1995. 
3. 1997 and 1998 data is from Akins, 1998. 
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Well 7/25/94 10110/94 416195 10126/95 11/13/95 12121195 2120/98 10/20/97 12115197 1/20/98 2117/98 
MW-1 <0.005 <0.0002 <0,001 <0.001 <0.001 0.070 <0.005 <0.005 <0.005 
MW-2 <0.005 <0.0002 <0.001 <0.001 0.046 <0.005 <0.005 <0.005 
MW-3 0.901 0.57 0.73 0.892 <0.100 0.325 1.320 1.467 0.839 
MW-4 1.03 0.64 0.625 0.497 0.418 3.815 4.529 2.180 
MW-5 <0.005 <0.0002 <0.001 <0.001 0.093 0.186 <0.005 <0.005 
MW-6 <0.005 0.016 <0.025 <0.05 0.046 0.046 0,093 0.093 
MW-7 <0.005 <0.0002 <0.001 <0.001 0.186 0.279 0.325 0.279 
MW-8 <0.0002 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 
MW-9 <0.0002 <0.001 <0.001 <0.001 

MW-10 <0.0002 <0.001 <0.005 <0.005 0.046 
MW-11 <0.0002 <0.001 0.0033 0.0012 0.0021 <0.005 0.028 0.093 0.093 
MW-12 <0.0002 <0.001 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 

tv 
MW-13 <0.0002 <0.001 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 
MW-14 <0.001 <0.005 <0. DOS <0.005 <0,005 
MW-15 <0.001 <0.001 <0.005 <0.005 <0,005 <0.005 
MW-16 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 

Notes: 
1. Less than signs «) designate values below the detection limit. 
2. 1994, 1995, and 1996 data is from Caldwell, 1995. 
3. 1997 and 1998 data is from Akins, 1998. 
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Xylene Analytical Data and Isopleths 
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;' .. ··,·,",,:"'?;J)1i: .. '·+5L·;;::·'!:<',,':0.,,: :·:;;';:JJ)'p.<,0'~; "'.:'? 

----. -.......... ~ .... - .. .- ..... .. .. ..... .... -- .. ---.--Well 7/25/94 . 10/10/114 4/ti/¥O lU/;ltiniO 11/13/9'5-' 12121195' 2120196 10/2Q/97 12115/97 ,..... 1/20/98 2117198 
MW-1 0.0058 0.016 0.0085 0.0066 0.002.2 0.075 <0.005 <0.005 <0.005 
MW-2 <0.005 <0.0002 <0.001 <0.001 0.100 <0.005 <0.005 <0.005 
MW-3 14.40 7.600 fO.20 9.45 5.15 1.295 4.913 4.082 7.380 
MW-4 10.300 5.800 4.040 2.720 9,299 3.477 10.902 6.374 
MW-5 <0.005 <0.0002 <0.001 <0.001 0.100 0.921 0.049808 <0.005 
MW..a 0.0445 1.000 0.534 0.85 0.087 0.249 0.324 0.174 
MW-7 0.008 0.054 0,021 0.0194- 0.349 0.648 0.797 0.548 

1-'--' 1 :~:6~~ I 0.001 I-·n - I _.n._ 1 MW-8 <0.0002 <0.001 <n nn1 

MW-9 <0.0002 0.0239 

<n ('\{'\~ <n n()~ <0.005 <0.005 

MW-10 <0.0002 <0.001 <0.005 <0.005 0.100 
MW·11 <0.0002 <0.001 0.0125 0.0168 0.0089 <0.005 0.100 0.050 <0.005 

l'.) MW-12 <0.0002 <0.001 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 
. . 

w I MW-13 <0.0002 <:0.001 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 
MW-14 <0.001 <0.005 0.049~O8 <0.005 <0.005 

, . MW-15 
MW-16 

<0.001 I <0.001 
<0.001 I <0.001 

..:;0.005 <0.005 ..:;0.005 <0.005 
<0.005 <O.OOS <0.005 <0.005 

Notes: 
1. Less than signs «) designate values below the detection limit. 
2. 1994, 1995, and 1996 data is from Caldwell , 1995. 
3. 1997 and 1998 data is from Akins, 1996. 
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Dissolved Oxygen Concentrations In Groundwater (mglL) 
, 

Well 10/20197 1Z115/97 1/2C!~ ~1/9~ 
MW-1 0.2.1 0.21 0.63 0.77 
MW-2 1.45 2.56 ! 1.98 1.62 , 

MW-3 ! 2.90 4.40 3.10 I 0.99 
MW-4 I 0.19 0.22 0.08 0.20 
MW-5 5.01 , 5.48 4.67 4.07 
MW-6 0.16 0.23 0.25 0.52 
MW-7 0.23 0.18 2.33 0.62 
MW-8 1.'06 0.22 0.33 0.71 
MW-9 

MW-10 7.77 
" 

6.99 
MW-11 5.11 0.85 0.57 1.13 
MW-12 3.20 2.90 3.11 3.02 
MW-13 4.00 6.03 I 5.15 4.58 

I MW-14 5.50 5.36 5.39 5.30 
MW-15 5.21 4.55 4.80 4.90 
MW-16 5.37 6 .23 5.37 523 

Notes: II 
1. Less than signs «) designate values below the detection limit. 
2. 1994,.1'995, and 1996 data is from Caldwell, 1995. 

I 
3. 1997 and 1996 data is from Ak,ins, 1998. 
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Nitrate Analytical Data and Isopleths 
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Well 10120/97 12115197 1120/98 2117198 
MW-1 0 . .04 0.08 DAD 1.1 9 
MW-2 18.53 14.21 25.39 13.57 
MW-3 0.04 0.17 0.79 0.04 
MW-4 0.07 0.13 0.05 0.12 
MW-5 24.75 18.39 22.54 21 .94 
MW-6 5.,66 1.46 3.05 0.93 
MW-7 5.29 6.89 5.55 4.30 
MW-8 19.71 13.44 13.71 6.98 

MW-10 0.95 1.06 0.79 
MW-1 1 0.35 0.42 0.11' 0.19 
MW-12 7.32 5.18 5.72 6.05 
MW-1'3 31.72 25.44 34.64 34.37 
MW-14 16.74 11 .78 13.84 10.74 
MW-15 
MW-16 

4.52 3.02 3.69 
32.48 26.61 19.42 

3.40 
14.77 

i 

'j 
Notes: r 

1. Less than signs «) designate values bel.ow the detection limit. 
2. 1994,1995, and 1996 data is from Caldwell, 1995. 
3. 1997 and 1998 data is from Akins, 1998. 

140 



NITRA TE (mg/L) ·-10/20/97 

MW-14 

8 

Triangulation 

141 

, I 

. 
,r 

. , 
i, (1 

i:, :1' , I 
, ,I! 

H , 
• -If ,. 

, I , , 
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Ferrous Iron Analytical Data and tsopleths 
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, 
Ferrous Iron Concentrations In Groundwater (rng/:Lt 

Well '" 4114198 
MW-1 1.56 
IMW-2 0.18 
MW-3 2.74 
MW-4 >3 
MW-5 0.00 
MW-6 0.09 
MW-7 >3 
MW-8 0.00 
MW-9 
MW-10 0.15 

,l 

MW-11 0.19 
MW-12 0.07 
MW-13 0.28 
MW-14 0.85 
MW .. 15 
MW-16 

Notes: 
1. Greater than signs (» designate values above the detection limit. 
. 2. Data were obtained in the field. Laboratory total iron analyses were inconclusive . 
3. Data is from Akins, 1998. 
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Sulfate Concentrations in Groundwate,r .(mo/l) 

Wen 10120197 12115191 1/20/98 
MW-1 33.65 26.72 26.23 
MW-2 639.33 537.51 56S.99 
MW-3 8.56 7.34 24.56 
MW-4 7.71 2.88 1.11 
MW-5 776.06 637.61 787.47 
MW-6 764.64 543.29 743.51 
MW-7 212.40 229.50 248.62 
MW-8 163.56 131.30 123.06 
MW-9 

MW-10 35.75 38.07 
MW-11 86.37 62.57 51 .65 
MW-12 i 244.45 171.91 187.03 
MW-13 

, 

483.87 402.87 455.12 
MW-14 313.42 185.45 

, 

179.88 , 

MW-15 62.65 47.16 54.74 
MW-16 569.48 455.25 273.60 

Notes: 
1. Less than signs «) designate values below the detection limit 
2. 1'994,.1995, and 1996 data is from Caldwell, 1995. 
3. 1997 and 19'98 data is from Akins,1998. 
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TotalOrgahic Carbon Concentrations In Groundwater .. {mg/LJ 
'M'S \ 

I Well 10/20197 12115/97 1120/98 2117198 
MW-1 29.54 56.72 2.45 24.14 
MW-2 30.46 43.16 -4.15 29.42 
MW-3 72.90 93.17 47.65 81.72 
MW-4 140.96 151.70 ! 68.85 72.05 
MW-5 32.68 40.02 18.88 38.97 
MW-6 40.47 62.50 13.95 45.09 
MW-7 i 42.52 37.66 21.78 39.49 , 

MW-8 i, 34.27 37.92 16.45 24.82 
MW-9 

MW-10 47.31 0.00 27.61 
I 

MW-11 40.72 82.14 , 25.30 39.17 
I 

MW-12 34.24 56.09 17.27 29.77 I 
I 

MW-13 34.53 5,5.102 17.82 26.54 
MW-14 30.20 52.59 17.30 29.51 
MW-15 27.71 29.35 I 13.21 24.86 
MW-16 32.14 64.02 I 16.29 27.01 

Notes: 
1. Less than signs «) designate values below the detection limit. 
2. Data is from Akins,. 1998. 
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Nitrate and Sulfate Isopleths, Selected !Data 
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BIOSCREEN Simulation #1 Input Data - Calibrated to 10/20/97 
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Results of BIOPLUME III Simulation #1 - Source 
Definition, January 1992 
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BIOPLUME Simulation #1 - Source Definition, January 19:92 
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'Results of BIOPLUME III Simulation #1 - Hydrocarbon Plume, 
July 1994 
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BJOPLUME Simulation #1 - Hydrocarbon Plume, July 1994 

Average Grid Cell Concentrati.ons (mg/l) 
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Results of BIOPLUME III Simu1lation #1- Hydrocarbon 
Plume, October 1997 
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BIOPLUME Simulation #1 - Hydrocarbon Plume, October 1997 

Average Grid Cell Concentrations (mg/L) 
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BIOPLUME Silmulation #1 - Dissolved Oxygen, Octobe,r 1997 

Average Grid Cell Concentrations (mg/L) 
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Results of BIOPLUME III Simulation #1- Nitrate, 
October 1997 
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elOPLUME Simulation #1 - Nitrate, October 1997 

Average Grid Cell Concentrations (mg/L) 
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Results of BIOPLUME III Simulation #1- Sulfate" 
October 1997 
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BIOPLUME Simulation #1 - Sulfate, October 1997 

Average Grid Cell Concentrations (mg/L) 
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Results of BIOPLUME !.II Simulation #1- Hydrocarbo," 
Plume, January 2072 (80 years) 
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BIOPLUME Simulation #1 - Hydrocarbon Plume, January 2072 
(80 years) 

Average Grid Cen Concentrations (mgll) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 
I 

I 

0 0 0 a a 0 0 a a 0 0 0 0 0 

0 0 a 0 12.6 11,.8 15.2 15.8 14.6 13.9 , 0 0 0 0 
, 

0 a 0 0 0 1'3.6 16.3 19.5 17.4 14.1 0 0 0 0 

0 a 0 0 .0 12.8 14.8 17.5 16.7 10.5 : 0 0 a I 0 

! 

00 0 0 0 0 0 0 15.5, 0 0 0 0 0 0 
: I 

I 

a 0 0 0 a a 0 0 0 a a 0 0 0 

I 
! ! a a a a a 0 0 0 0 a 0 0 0 0 

1 

0 0 0 0 0 0 i 0 0 0 0 0 0 0 0 
, I 

, 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 .0 

I 

0 0 0 0 0 0 0 0 
! 

a 0 a 0 0 0 
I 

a 0 0 0 a 0 0 a 0 
I 

0 0 a 0 0 
, 

I 

a 0 0 a 0 0 0 0 0 0 0 0 0 a , 

a 0 0 0 a 0 0 a a 0 00 0 0 0 

0 0 0 0 0 0 0 a 0 0 0 0 0 0 

0 0 a 0 a 00 I 0 a 0 o I 0 o I 00 0 

191 

I 

i 



APPENDIX S --

B'OPLUME III Simulation #2 Source Definition and Results 
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Results of BIOPLUME III Simulation #2 - Source 
Def,inition, January 1992 
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BIOPlUME S.imulation #2 - Souflce Definition, January 1992 

Average Grid Cell Conce~trations (mglL) 
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Results of B'IOPLUME III Simulation #2 -
Hydroca,rbon Plume, July 1994 

(Longitudinal Dispersivity =1 .. 0 ft) 
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BIOPLUME Simulation #2- Hydrocarbon Plume, July 1994 
(longitudinal Dispersivity = 1.0 tt) 

Average Grid Cell Concentrations (mg/L) 
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Results of BIOPL'UME III Simulation #2 -
Hydrocarbon PJume, February 1998 
(Long.itudinal Dispersivity = 1.0ft) 
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I 

BIOPLUME Simulation #2· Hydrocarbon Plume, February 1998 
(Longitudina.1 Ois,perslvity= 1.0 ft) 

Average Grid Cetl Concentrations (mg/l) 

I 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 
I , , 

0 I 00 0 0 0 0 0 0 0 0 0 0 0 0 
I 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 
; 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 00 0 

I 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

I 

0 0 i 0 0 0 0 0 0 0 0 0 0 0 0 
, 

I 

I ! 

a 0 
I 

0 0 0 14.2 . 16.2 18.3 . 17.7 16.4 7.45 0 0 0 
I 

0 0 0 12.9 16.5 20 21 .5 21 .7 20.8 17.7 4.73 0 0 0 

0 0 0 : 16.3 17.5 18.5 18.9 , 18.6 17.8 1.73 0 0 0 0 
, 

0 0 
I 

0 0 0 3.3 3.18 6.28, 0 0 0 0 0 0 
I 

I 

0 0 0 0 a 0 0 0 0 0 0 0 0 a 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

I 

0 0 ·: 0 0 0 0 0 0 0 ,0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 
1 

0 0 a 
I 

0 

0 0 0 0 0 0 0 0 0 0 0 0 a 0 

0 ! 0 0 0 0 0 0 0 0 0 a 0 0 0 I 

I: 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Results of BIOPLUME III Simulation #2 -
Hydrocarbon Plume, July 1994 

(Longitudinal Dispersivity = 12.1 tt) 
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BIOPLUME Simulation #2· Hydrocarbon iP,lume, JUly 1994 
(Longitudinal Dispersivity = 12.1 tt) 

Average Grid Cell Concentrations (mgfL) 
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0 0 0 0 4.01 10 ... 8 12.1 10.2 0.9'8 0 0 0 
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! 

0 00 0 0 0 0 0 0 0 0 0 0 
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I 
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I 
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Results of BIOPLUME III Simulation #2 -
Hydrocarbon Plume, February 1998 
(Longitudinal Dispersivity = 12.1 ft) 
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I 

BIOPLUME Simulation #2 - Hydrocarbon Plume, F'ebruary 1998 
(Longitudinal Dispersivily = 1,2.1 ft) 

Average Grid Ce't! Concentrations (mglL) 

0 0 0 0 0 0 0 0 0 0 0 0 o I 0 

0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 
:1 

0 0 0 0 0 0 0 
I 'I 

0 O . 0 0 0 0 0 0 
il 

0 0 0 0 0 0 

0 0 0 0 
I o I 0 0 0 0 0 0 0 0 0 

I 

0 0 a , 
0 0 0 a 0 i 0 0 0 0 0 0 

0 0 0 0 0 0 a 0 0 a 0 '0 , 0 a 

0 a 0 '0 0 1.74 4.53 5.82 4.82 0.46 0 0 0 0 

0 0 0 0 0.91 4.35 6.3 6.4 4.44 0 0 0 0 0 

0 0 0 0 0 '0048 1.06 2.31 0 0 0 0 0 0 

0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 

! : 
0 

, 
0 0 0 0 0 0 a a 0 a 0 0 0 

I 

0 a 0 0 ! 0 0 , 0 0 0 0 0 0 0 0 I 

'I I 
i 
I 

I 

0 0 0 0 0 0 0 0 0 0 0 0 0 
I 

0 

0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 
, 
I 

0 0 0 0 0 0 0 0 0 0 0 0 0 i 0 I 

i , 

0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 i 
I 
, 
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Results ·of BIOPLUME III Simulation #2 -
Dissolved Oxygen" February 1998 
,(Longitudinal Dispersivity = 1.0 ft) 
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BIOPLUME Simulation #2 - Dissolved Oxygen, February 1998 
(Longitudinal Dispersivity = 1.0 ft) 

Average Grid Celt Concentrations {mg/L} 
I 

5.5 5.5 5.5 5.5 5.5 5.5 5,48 5.48 5.49 5.48 5.45 1 5.5 5.5 5.5 
, 

5.5 5.5 5.5 . 5.5 5.5 5.5 5.48 5.48 5.49 5,48 5.45 5.5 5 .. 5 5.5 

5.5 5.5 5.5 5.5 5.5 5.5 5,46 5.45 5,47 5.49 5.45 5.5 5.5 5.5 
1 .' 

5.5 5.5 5.5 5.49 5.48 
I 

5.481 5.38 5.36 ·5.41 5.43 5 .. 42 5.5 5.5 
1 5.5 

I 
I 

5.5 5.5 5.5 5.45 
[ 

2.4 5.3 i 5.01 .4.93 4.97 5.12 5.28 5.54 5.5 5.5 
I : 

5.49 5.49 ·5.44 5.24 3.72 3.32 2 2 I 2 2.48 4.65 5.34
1 
5,49 5,49 

i 
I , 

5.44 5.44 3.44 3.06 2 2 I 2 2 2 2 2 '3.34 5.4 5.4 
, 
, 

5.4 5.4 2 2 2 2 2 2 2 2 I 2 2 5.19 5.19 

5.1 5.1 3.37 2 2 2 2 2 2 2 2 2 5.24 5.24 

5.24 5.24 2.82 2 2 2 2 2 2 2 II 2 .3.82 5.32 5.32 

I I 

5.45 5.45 5.09 5.09 3.5 2 2 2 2 I 2 2 2 4.92 5.38 
[ 

I I 

I 

5.41 5,41 4.93 3.85 3.92 2.03 2 2.76 2.95 5.35 5.47 5.49 5.52 5.52 

5.45 5.45 5.41 15.36 5.26 5 .. 22 5.22 5.3 5.41 5.49 5.5 5.5 5.46 5.46 

5.49 5.49 5.49 5.49 5.48 5.46 5.47 5.48 5.49 5.5 5.5 5.5 5.5 5.5 

5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 . 5.5 5.5 5.5 

1 
I 

5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 

5.5 5.5 5.5 i 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 
, 

5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 
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Results of BIOPLUME 1111 Simulation #2 .. 
Nitrate,. February 1998 

(Longitudinal Dispersivity = 1.0 tt) 
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BIOPLUME Simulation #2 - iNitrate, February 1998, 
(Longitudinal :O,ispersivity = 1.0 ft) 

Average Grid Cell Concentrations (mg/L) 
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I 
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Results of BIOPLUME III Simulation #2 -
Sulfate, February 1998 

(Longitudinal Dispersivity = 1..0 ft) 
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242 

BIOPLUME Simulation #2 - Sulfate, February 1998 
(L.ongitudinal Dispersivity = 1.0 ft) 

Average Grid Cell Concentrations (mg/L) 

243 244 244 244 244 244 243 244 244 243 244 244 
" 
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1 

: 
I 
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I 

, 
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1 
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1 

, 
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i 

191 191 219 225:1216 144 102 81. 1 74.2 92.1 111 82.2 216 

157 157 121 1 33.3 63 17 17 17 I 17 17 17 154.6 197 
1 , 

104 104 71.2 17 17 17 17 17 17 17 17 28.8 169 
, 

79.5 79.5 63.4 17 17 17 17 17 17 17 58.3 62.6 1411 
, 

73 .. 6 73.6 61 .7 62.4 61.9 17 17 17 39.2 60.3 62.1 63.1 109 

128 128 62.9 61.3 60.7 61.1 61.1 61 61.5 62.5 62.6 62.8 84.'9 

120 120 !63.9 62.6 62.5 62.2 ,62.3 ' 
I 

62.5 62.6 62.6 62.7 62.9 69.7 

1 
1 62.6 149 149 64.5 62.7 62.6 62.6 62.6 62.6, 62.6 62.7 77 .. 5 113 ! 

, , I 

: 167 167 
, 

,64.1 62.7 62.7 , '62.6 62.6 62.7 62.6 :62.8 65.2 121 , 141 
I 

: 199 , 199 66.1 62.9 62.7 62.7 62.7 62.9 63.5 64.8 101 165 192 

1 
239 i 239 151 64.5 62.8 63.6 66.1 75.6 109 133 181 ' 213 226 

! I 

239 : 239 151 64.5 62.8 63.6 66.1 175.6 109 133 181 213 : 226 
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BIOSCREEN Simulation #4 Input Data and Output 
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N 

o 

(year} : . 

..' ''''.~ .~ 't: :f,: L 13 '(~) ''':' 
. . 0 (~l:;,:': 

53 tnlg.tL) '':··, 
o 1.r.,./I:) '·;j. :. - '! '~~ .-

BtOSCREEN Simulation #4 Input Data - 7/25/94 

;~~~~I~fl;lJftIJU1~~~;,J~~:.}~;1';; 

Restore Fonnulas for Vs, 
Dispersivities, R, lambda, other 

, 



w 
..... 

",:'; 

'""., .... . 
; ~~~~iU< 1 ,~os0~{~~~ ,i';~' 

14.441 5.076 1.038 0.000 0.000 0.000 

19.926 19.861 14.441 5.076 1.038 0.11 6 0.007 0.000 0.000 0.000 0.000 

4.101 8.701 6.248 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

4.000 10.500 15.000 7.000 

.i o.OOQ .• "{·'\i:~.1~;ic~~;~t;;d~iL -.~·~~~n~~~Aeb;;;;i;~~~~/; ;~~-~r~~~~!JVM1.;;:;:".,~:.;fJel4~ifit~:irpm~'~·; . 
. il8:00~: 

.•.. '1 6,000, 

, i).GOO 

.. -;:"" 
o 50 

Calculate 

100 150 '/' ;';"¥"~'oO' 
Di~ce: FroID; ~or~e (ft). 
~- ~'. ,""\',';~:.'-" .",.-. ,'~'.' '.-. 

tJ Tune; " .. ,;~' .... ;". ".;,. .,~ ;-, , "'. ~ 1 :,1;, .. :;:.~~:~~~ 
I 2 Years ~:",-.,~.;':, ':';' f- { Return to l( Recalculate This ) f'.;;:~;', '.". ~~ 
,'f' .,-"t(,);ii)ye'\~', . . Input . Sheet "<~''-'''-;';''«'l"~;;~, 

.")i. _ , - • ) • I; 't~ , i».' 

c'" <"-'" "' ··e:'#_;~.t, ,;i('''~ ., ..... , ;;';"~"""l"t:~~ ':-;---:-

BIOSCREEN #4 Plume Centerline - 7 Year Simulation 
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BIOSCREEN Simulat.ion #4 Input Data - Attempted Calibration 



r-

N 

W 

.::~'}~~·~)'~n{;i~~tl1i~~.;cl 
;:t~~i ; '~f':=i~~ . 0.000 0.000 

.~\'.~'.::'c . -~-

0.000 

' -~~~~; liea~jf~ 4.101 I 9.545 I 8.822 I 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

_~. ·{,drtbf~tGiii~~tttif6,S.~D 4.000 I 10.500 I 15.000 I 7.000 

'.\·;~~~tB,::' i~;~~1~2:: ·';:i· ::;~.;1?~~~~I~i!'~·~:· ·. ~~~~:~r~~b~~;~::!~. :~NJ!:~dap~· ,- · ... ·:·~~fm~ld.f~t~·~in;;~fte~,~~: 
I I . 

'd--_ .. '-- -.----.. --t--.-- .-.-, 
i i 
I I 

~-.----- .- - .... ~i----a- ... ----t --.... -.----
I • 
I I 

. ---~ .-1 .. -. - ---,-------

:;. 'r " ~ .. ! i I . I I ' I I 

.' . ~>q()Q .. ;; : .. ;J " . jk·~5,i i ··:;~i!tfl)ij;·· ~~~~;¥J :lt!l[j j,-!~ I~;O . ; . :);~ Jc~j.).~;o i • ... . L . . ; · 300 . 
35.(} 

.'., . 

':''''/' 

( Return to ) ( Reealculate This r ;" 
Input Sheet · . 

. . 
.,,~: 

.,' 

SIOSCREEN Simulation #4 Plume Centerline - Attempted Calibration 
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