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CHAPTERl

INTRODUCTION

1.1 Ultra Precision Mach.ining

Ultra Precision Machining (or UPM) is' 'a term used for machining at the finest

level possible with current methods. Today, UPM involves machining at the nanometric

level. To achieve such high precision, the tool must be extremely resistant to wear and

have a high degree of sharpness and absence of any grain boundaries. Thus single crystal

diamond tools are used for machining of non-ferrous materials. Examples of parts made

of non-ferrous materials include aluminum and copper mirrors for lasers and aluminum

disc drives. The cutting tool is part of a large dedicated UPM machine, which focuses on

high rigidity, high precision, minimum level of vibration, contamination, and other

possible influences which could have an effect at such a level of precision. Thus the

entire process is of necessity controlled by some type of feedback control system. The

machine tool is generally located in a temperature and humidity controlled room. To

maintain close control on the temperature, the entire machine tool is continuously

showered and if possible remotely operated. This is an advantage in that the operator

does not really enter into the equation when it comes to machining error but it is a

disadvantage in that the proper settings for the control system need to be known before

machining.
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In spite of several careful studies, the mechanism of machining at the nanometric

level is not fully understood. Thus, for a unique machining situation, the only course of

action that is viable at this point is to combine results from similar past machining

operations with severa] experiments on the configuration desired to be machined.

However, the acquisition of severa] sing~e crystal diamond tools with different rake

angles along with reconfiguring the control system/machining apparatus can be extremely

time consuming and expensive. Plus, the absolute best solution may not be found but

only a "local maximum" so~ution. If the intrinsic behavior of the process was obtained,

then at more thorough and fruitful analysis of a particular situation could be conducted.

This would require knowledge of atomic positions and behavior, which at this time is

nearly impossible to measure during a UPM operation, especially below the surface. New

methods (such as computer simulation, see below) may prove to be a promising

alternative to traditional empirical optimization techniques.

1.2 Applications of UPM

In today's world, technology is increasing at a very rapid pace. This is especially

so in the field of electronics, and with such a pace comes a commensurate decrease in the

size (and increase in required manufacturing precision) of components. There are several

reasons why electronic devices are becoming smaller:
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• The speed of a circuit is influenced by the total path length that the signal must

travel. Reducing the path length (and thus the size of the circuit) increases the

performance.

• More complex ~ogic requires more circuitry. CPU's have millions of transistors,

gates, and other components all competing for a small space. The spacing of th.at

circuitry must be precise to reduce chances of "cross-talk" and improve heat

transfer.

• Optical devices reqUire a high degree of accuracy to minImiZe undesired

diffraction of signal due to surface imperfections

Another field which continually demands improved machining precision is that of

micro/nano machines. These devices have a wide range of possible applications including

surgical/medical tools, space applications (due to their extremely Jaw payload weight),

and ultra precise motion controllers.

As the scale of UPM approaches that of machining materials atom-by-atom, the

need for characterization of interatomic behavior under machining conditions becomes

more and more important. This goes way beyond the continuum mechanics of macro

scale machining, and requires an accurate model of the bonds/forces present at this leveL

This requires massive computational power, towards which the recent strides in computer
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technology could prove to be the solution.

1.3 Molecular Dynamics Simulation

Molecular dynamics (MD) simulation is the principle of using various equations

that describe interatomic forces to analyze the behavior of sets of atoms under varying

conditions. The simulations themselves are conducted using a computer that iterates

through the many computations necessary to resolve the trajectories. The resulting data

can then be displayed in numerical (forces, potential energies) and visual (animation, still

pictures) form. The prospect for characterizing intrinsic atomic behavior by virtue of

being able to see it happen is awesome. Perhaps the single most important advantage of

having an accurate computer simulation technique is not to test known configurations but

to be able to try configurations previously not thought of. Many of the recent

developments in materials research have been greatly affected by the ability of chemists

and material scientists to investigate the possibility of creating a new material before

actually creating it. The case in point is the possibility of creating carbon boron nitride,

which is expected to be harder than diamond, if only it can be successfully synthesized.

This applies not only to new material creation but also to related fields such as research

conducted into diseases. Molecular biologists are able to try out a particular structure of a

new antigen or the like to see if it is viable.
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1.4 MD and its Relationship to UPM

In order to perform ultraprecision machining, a high degree of control is

necessary over the parameters during cutting. As mentioned above, sma]] deviations due

to vibration or other influences can severely affect the results. Thus, elaborate control

systems are implemented to control the forces, vibrations, etc. on the tool during cutting.

If the desired shape of the tool and cutting parameters are known, they can be controlled

somewhat easily. However, the mechanism of cutting at the nanometric level is still

largely unclear, and thus standard machining principles may not be applicable in these

situations. As mentioned above, one possible way to determine the optimal parameters

for a particular UPM application would be to try different tool shapes, forces, control

algorithms, etc., but this would prove very expensive in terms of time and equipment. If

the process could be simu~ated accurately by a computer, then the optimal configuration

could be determined "virtually"', without a single physical experiment performed.

In order to perform nanometric cutting, the mechanism of interaction between

atoms must be known. The field of Molecular Dynamics (MD) is concerned with just

such a behavior. As mentioned above, it attempts to quantify the interactions between

atoms into sets of equations that can be solved using various approaches. The

computational speed of computers today is nearing the point at which large enough sets

of atoms (on the order of a few millions) can be simulated so as to identify UPM

behavior over a few hundred nanometers of material. The key issue is to determine what
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the current deficiencies are In the mathematical models of atomic interaction so these

simulations can be deemed valid. Once an accurate model is achieved, the practice of

"virtual machining" mentioned above will almost 4efinitely be utilized in the UPM field.
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CHAPTER 2

LITERATURE REVIEW

2.1 Ultra Precision Machining

The field of Ultra Precision Machining (UPM) lies at ''the extreme limit of machin~ng

accuracy. Since technology is continuously moving forward, the tolerance range of UPM

is constantly being reduced. Machining processes have of late been characterized into

three "levels": normal or conventional machining (CM), precision machining (PM), and

ultraprecision machining (UPM). The progression in these three areas throughout th~s

century is shown in Figure I, It can be seen that with time, yesterday's UPM is becoming

today's PM, and yesterdays PM's is becoming today's CM.

2.2 Machine Tools for UPM

The machine tools for ultra-precision machining using single crystal diamond

were developed in the 1970's at Lawrence Livermore National Laboratory (LLNL) with

primary focus placed upon optical applications for the defense industry. A diamond

turning machine for large diameter optics was developed subsequently also at LLNL by
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Donaldson (1979). Precise temperature control is a pre-requisite In UPM to avoid

deviations due to thermal expansion, etc., and thus Donaldson's machine paid particular

attention to this by operating the machine remotely in a temperature controlled room and

by implementing temperature control on the machine tool components. A 3-axis general

purpose ultra precision grinding (UPG) machine was designed and built by at CUPE

(Cranfield Unit of Precision Engineering) under the leadership of Professor McKeown

(1990). It combined diamond turning, grinding, polishing, and measuring into one device

capable of 1.25 nm accuracy. A UFO machine to produce aspherical optics was produced

by Veda (1991) which used a fine grained resinoid bonded diamond grinding wheel.

Surface roughnesses of 0.6 om Ra were achieved with this machine. Finishing of large

wafers for the electronics industry was accomplished by an ultraprecision float polishing

machine developed by Namba (1987). Subsequent work by Namba and Abe (1993)

produced a technique of grinding glasses with resinoid bonded diamond grinding wheels

to a surface roughness of about 0.15 nm. This displayed the capability of producing

ultrasmooth surfaces with grinding alone (no polishing). Ando (1992) produced a super

smooth polisher which could polish 500 mm diameter optics to a contour accuracy of 78

om and surface roughness of0.13 nrn nns.

In aU of the above machine tools, attention was paid to factors such as

temperature control, vibration damping, and control system accuracy. As mentioned with

the Donaldson machine, controlling the temperature can be critical to produce good

results, and thus various methods such as oil baths and even the development of a zero

thermal expansion glass-ceramic spindle (Namba, 1989) were employed to minimize
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temperature effects. Vibration was often combated by usmg very -heavy 'and stiff

materials (granite-epoxy or the like) as well as methods to decouple any moving parts

from the critical interface sections. Accurate control systems were vital to the above

machines as well, and so laser interferometry techniques were employed to give

maximum performance.

2.3 Mechanisms of UPM

When machining at small depths of cut, there is a noticeable deviation from

standard machining behavior. This is most likely manifested by the fact that the relative

shape of the tool tip, shear zone size, etc. ar~ approaching the size of the atomic structure

of the workpiece/tool, and thus more relatively important towards one another.

Nakayama and Tamura (1968) observed a definite increase in specific energy

with tool edge radii and decrease in depth of cut. The scale of this research was limited to

a few micrometers cut depth as ultraprecision machine tools were not available.

Furukawa and Morunuki (1988) also found an increase in specific energy below a certain

depth of cut (around 3 ~ m). Again this was attributed to the fact that the tool tip radius

and other dimensions were becoming large as compared to the depth of cut. In effect, the

tool can be considered to be blunt with respect to the workpiece when the depth of cut is

less than the edge radius of the tool. This accounts for the difference in the behavior of
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the same tool with the same workpiece yet smaller depth of cut. Figure 2 shows the

relative progression from a standard positive rake machining operation to, grinding, to

ultraprecision machining, to an indentation-sliding process after Komanduri et al (1997).

This is akin to what happens as the depth of cut is decreased to below the edge radius of a

tool. Of course, if an atomically sharp tool were available, the comparison between the

behavior at ultraprecision level and larger scale machining would likely be more similar.

Rubbing at the flank face of the tool due to elastic recovery of the machined

surface also can contribute to deviations in the behavior at small depths of cut. Morikawa

and Okuda (1989) observed the specific energy to increase with decreasing depth of cut

and attributed this behavior to this rubbing at the flank face. Thus, as depth of cut is

decreased, the effect can be described more in terms of plowing than conventional

machining, as the effective rake angle is increasing and there is a large amount of contact

with the tool surface which previously was not influencing the behavior. This increase in

specific energy coupled with a change in defonnation characteristics imposes a lower

limit on the depth of cut for a particular tool shape. The more accurate a tool is to the

atomic scale, the more it can prolong this transition to different behavior. Tool edge

radius can be produced accurately to around 20nm today but that is still much larger than

what is considered to be a super-smooth surface (l nm or less).
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(b) FdFt =1/2

(c) FdFt < 1/2 (d) FdFt« 112

FIGURE 2 : Tool/Workpiece interactions with change in tool
geometry: (a) conventional cutting (b) grinding, (c)

ultraprecision machining at small depths of cut, and (d)
indentation sliding (after Komanduri and Lucca, 1997)
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Lucca et al (1991) studied this trend with decreasing depths of cut with regards to

the ratio of cutting fmce to thrust force. As expected, overall forces decreased with

decrease in depth of cut down to about 2 ~ m. Specific energy then began to increase

with decreasing depth of cut, as well as the ratio of thrust force to cutting force. The

increases in forces were attributed to increased tool/work interaction due to the small

depth of cut.

In all of the above cases there was a definite trend towards increase in specific

energy with decrease in depth of cut below a certain level. While force and energy data

are important and can reveal much about a particular process, visualization of the cutting

process as it happens could provide crucial information about the nature of the

deformation process and interaction between the tool and the work. Today there are

several highly accurate means of direct analysis of work materials, as shown in Figure 3.

It is possible with all of these techniques to observe a workpiece's structure before

and after a machining process, and to a limited degree during machining itself. One major

limitation is that actual atomic structure below the surface cannot be observed during the

process, and being able to see "into" the workpiece during machining could provide

invaluable information as the underlying process of UPM. The possible solution to this

dilemma is the use of computer simulations, where all data (including atoms ltinside the

workpiece") is readily available for analysis. Thus implementing MD simulations of

UPM is an attractive research possibility.
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II Resolution (nm)
;

Range (mm)

Instrument Lateral ' Vertical Lateral Vertical, I

Stylus 100-250 0.3 >100 1

interferometric 500 0.1 7 0.1
, microscope

AFM 2 <0.1 0.1 0.005

81M
~...

2.5 0.2 0.1 0.0001
,

Nomarski >500 - - -
microscope

8EM 10 2 - 0.002

TEM 2 2,000 - 0.0001

FIGURE 3 : Resolutions and range of some surface scanning
instruments (after Lonardo et a1., 1996; Whitehouse, 1994)
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2.4 Molecular Dynamics Simulation

The advent of computers has opened up a world ofl computational research

previously unavailable to mankind due to incredibly large amounts of mathematical

operations. Molecular Dynamics (MD) is one such field. The pioneering work in this area

was conducted at the Lawrence Radiation Laboratory (LRL) by Alder and Wainwright

(1959). The growth of MD simulation has been a joint effort between chemists and

physicists continuously developing new potentials to attempt to describe complex

interatomic behavior, and the increasing computational power of computers which allows

for those potentials to be tested with larger and larger atom sets. Many applications of

MD exist and have been the subject of continued progress (Hoover 1986, Levine 1987,

Allen and Tildesley 1991). Due to the fact that potentials are developed primarily by

studying small atom sets, their behavior when "scaled up" to larger atom sets is where

discrepancies usually manifest themselves. This is especially true when applying MD

simulation to machining processes. The data acquired from MD simulations of UPM as

compared to known empirical data will not only help researchers to better understand the

mechanism of UPM, but also to help refine the atomic potentials developed for use in

MD simulation.

2.5 MD Simulations of UPM

16



Only recently have computers acquired the necessary horsepower, in tenns of

speed and memory capacity, to conduct MD simulations of any significant size with

respect to machining. This power is necessary due to the fact that the number of atoms

involved in a typical UPM process can well reach into the millions and beyond, and at

least a few thousand are necessary for any kind of machining behavior to be observed.

So, not only the computational speed requirements but also memory capacity

requirements can become quite large. Fortunately, progress in both areas in the realm of

computer hardware is quite rapid. Other advancements such as parallel processing and

UMA (unified memory architecture) are allowing a greater amount of atoms to be

simulated in less time. Thus work is beginning to increase in fields such as MO

simulation ofUPM.

Belak et al (1990) pioneered MD simulations of nanometric cutting of copper at

LLNL. These were conducted in both 20 (to save computation time and focus on planar

behavior) and quasi -3D (to allow for real behavior) fashion. The interatomic potential

used was the embedded atom method, which uses functions of background electron

density to relate forces on atoms. Tests were perfonned on copper workpieces· using an

infinitely hard tool, i. e. the tool atoms were not allowed to deform during the simulation.

Cutting speed used was significantly higher than in practice (on the order of 100 m/sec)

in order to save computational time, which can affect the results. These simulations

behaved similar to the experimental machinining results in that the specific energy

17



increased with decreasing depths of cut. Larger radii tools also experienced larger forces

for the same depth of cut as smaller radii tools. Shimada et al (1992) observed similar

results in 2D MD simulations of nanometriccutting of copper. Studies were also

conducted by Shimada et al (1993) on minimum thickness of cut (MTC) below which

machining accuracy is lost. Both copper and aluminum were simulated with various radii

tools, and the trends indicated that copper possessed a lower MTC for the same tool

geometry than aluminum. The interaction potentials between tool and work could be the

significant reason for this, as well as the respective plasticity of each material. Surfaces

on the aluminum were observed to be rougher as well after machining, also attributable to

the aluminum's higher plastic deformation and diamond affinity.

It is clear that MD simulation hinges upon the accuracy of the interatomic

potentials used. Potentials are generally well developed for like-to-like materials (atom

bonding with another atom of the same element). However, unlike bonding is usually

largely undefined, especially for the simpler potentials. Inamura (1992) investigated the

effect of the "unlike" potential upon several MD simulations of nanometric cutting of

copper by an infinitely hard tool. When a Morse potential (interatomic potential between

the tool and work possessed both attractive and repulsive components, i.e. chemically

active) was used for the interface potential, there was a large amount of clustered atoms

observed to gather in front of the tool during machining. This is due to the attractive

component of the interatomic potential between the tool and work. When a Born-Meyer

(repulsive behavior only, i.e. inert) potential was used, machining behavior was more in

line with that observed during conventional machining (shear zones, standard chip

18



formation, etc.) Thus it would seem that unless chemical interaction between the tool and

the work is known to be significant then an inert (Born-Meyer) approach is appropriate.

This effectively makes MD simulation the study ofdisturbing the workpiece by a moving

geometry of repulsive atoms (the tool). Certainly there is some in.teraction between tool

atoms and work atoms during real machining, especially at the high temperatures

generated during such processes. As work progresses in the development of appropriate

potentials, proper adjustment to MD simulations should be made accordingly.

Inamura et al (1993) also investigated the force and energy variations during MD

simulation of nanometric cutting. The forces on the tool dropped significantly at several

points during machining for short times. This was attributed to the dislocations generated

in the workrnaterial by the tool, as once the dislocations began moving the force exerted

by the section of workpiece inline with it upon the tool decreased. Potential energies of

each atom during the machining process were examined as well. About half the energy

dissipation was observed in the shear zones, a little less due to plastic deformation below

the tool, and the remaining small amount by new surface generation. The amount of shear

stress in the shear zone was also observed to be less than the theoretical yield stress, and

so implied a secondary mechanism of defonnation.

Maekawa et al (1995) continued the analysis of interface potential effects by

simulating nanometric cutting of copper using both chemically active (attractive and

repulsive) and inert (repulsive) potentials. When active potentials were used, there was a
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large tendency of the workpiece atoms to migrate towards the tool, which was likened

more to energy beam processing than conventional machining. inert potentials did not

produce chips and resulted in more of an extrusion behavior. The tool was altered from

being near infinitely hard to less cohesive, in order to study possible tool wear

mechanisms. It appeared that the mechanism was one of continuous tool-work atom

diffusion a~ong with worn tool particles re-adhering to the tool.

At OSU considerable work is ibeing conducted on MD simulation of nanometric

cutting and tribology. Chandrasekaran et 811 {1998) developed a new method of MD

simu}atmon, called length restricted molecular dynamic simulation to enable large lengths

of workpieces to be machined without the need for a large number of atoms. Thus

processing times could be reduced considerably and the memory requirements could also

be reduced. Komanduri et al (1997) investigated the effect of high negative rake angles to

simulate grinding. Komanduri et al (1998) also investigated the effect of edge radius on

nanometric cutting. Komanduri et 811 (1998) also investigated the effect crystal orientation

and direction of cutting in nanometric cutting of single crystal workmaterials. [n the area

of tribology, Komanduri et 811 (1998) investigated nanoindentation and scratching as well

as nanometric friction in sliding (1998). Several other studies both on nanometric cutting

and nanotribology are in progress. They include the effect of different workmaterials,

entry and exit effects, workmaterial-tool combinations of different hardness levels, and

multiple tool cutting, such as milling.

20



From the reVIew of literature and work conducted upon MD simulation of

nanometric cutting upto this point, several issues became appar,ent to the prospective MD

researcher:

]) The need for more computational speed, ~hether garnered by faster computers or

through other means (algorithm refinement, etc.), is an important aspect.

2) Using different potentials for the interaction of unlike materials can highly affect the

results of an MD simulation.

3) Due to the uncertainty of interatomic potential accuracy, the goals at this stage of MD

simulation are as much to verify an interatomic potential's validity in large scale

situations as it is to relate the observed behavior to the empirical realm.

4) The need to develop MD simulation software that is more user friendly.

5) The need to improve visualization such as still pictures of MD simulation as well as

animation.

21
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CHAPTER 3

PROBLEM STATEMENT

Molecular dynamics modeling of nanO/petric cutting requires the integration of

severa] different fields of expertise. Understanding of how to utilize interatomic

potentials requires knowledge of chemistry and physics. Solving the equations of motion

for the atoms requires knowledge of mathematics. Coding a molecular dynamics

program so as to be sufficiently useful and fast requires application of computer science.

Finally, simulations need to be created and evaluated using knowledge of engineersng.

Therefore, a broad understanding of all the aspects of MD simulation is required.

This win allow for various modifications to be made to the process to improve the

performance as well as aid in the analysis of results. As the goal of MD simulation is to

mirror reality, fundamental knowledge of both real world behavior (experimental results)

and MD's underlying behavior are vital in order to relate the two.

There are two main limiting factors to MD simulation today. The first is the lack

of an all encompassing interatomic potential behavior. While results have been somewhat

promising to this point (as discussed in Chapter 2), much work has yet to be performed to

better define the interactions of materials so they behave more reaUstically. Simulating
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various processes where the outcomes are generally known. will aid in this process, as

macro behavior often is hard to eh"1rapolate from micro behavior. The other limiting

factor to MD is computational speed. When simulating three dimensional sets of atoms,

the amount of atoms and more importantly the amount of bonds present can increase at

an alanning rate. For example, a 40 nm x 40 nm x 40 nrn cube of FCC atoms with a

lattice constant of 0.4 om contains 4,000,000 atoms. If each of these atoms is interacting

in a non-negligible fashion with 10 neighboring atoms, the amount of bonds present is

approximately 20,000.000. This obviously can lead to severe computational loads, which

slow the MD process considerably. Any method that would reduce the computational

time without sacrificing significant accuracy should be looked into and exploited.

The goals of this investigation include the following:

1) To investigate various optimizations approaches, namely, in the realms of runtime and

error correction. Test various approaches and investigagte how much improvement can

be obtained. MD simulations are highly intensive computationally and can result in

extremely long runtimes for large atom sets. The number of computations is also

typically very large and so precision is important to maintain.

2) Develop a method for setting up molecular dynamics simulations, so as to provide

sufficient flexibility in terms of initial simulation geometry. Also, investigate and develop
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a method to view molecular dynamics data. In order to conduct MD simulations, the

initial positions and other characteristics (such as material type, etc.) need to be defined

for the atom set in question. For simple geometries (such as box shapes) this is not very

difficult but more complex geometries (such as polycrystalline materials) present

somewhat of a problem.

3) Using the approaches developed above, evaluate the effectiveness of the methods used

for grain ini6alization, grain size, grain orientation, and grain boundary shape have upon

MD simulations and compare it to known material behavior.

As discussed earlier, cutting at the nanometric level differs from larger scale cutting due

to the fact that the interaction is now mor,e of a particle nature than a continuum. The

conventional machining wisdom which applies at larger scales may not always hold good

for nanometric cutting. Divergence from conventional behavior is also found in

nanocrystalline materials versus those with larger grain sizes.

1. To develop the required software to enable animations of the MD

simulations of various nanometric cutting and tribological processes.

2. To develop a framework for MD-CAD for MD simulation of nanometric

and tribological problems. This will facilitate user fr~endly approach to

MD simulation of nanometric cutting.
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CHAPTER 4

PRINCIPLES OF MD SIMULATION

The basic principle of molecular dynamics (MD) is to repeatedly solve the

Newtonian equations of motion for the desired system of atoms. This requires two things:

a simultaneous solution method of sufficient· accuracy as to allow this approach to be

valid and a method of generating the forces between the atoms.

4.1 Solving Newtonian Equations for MD

Suppose that there is a system of N particles· with characteristics in three

dimensional space denoted by :

Mass of ith atom = illj(t) (1)

Position-of the ith atom at time t = rj(t) = x,y,z vector (2)

Velocity of the ith atom at time t = rj(t) = Vj(t) (3)

Acceleration ofthe ith atom at time t = ~(t) =,,;(t)= aj(t) (4)
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These equations lead to :

Momentum of the ith atom at time t = mj(t)vj(t) = Pi(t)

Force on the ith atom at time t = mi(t)aj(t) = Fi(t)

(5)

(6)

Using Newton's second law, the force on each atom is equal to its rate of change

of momentum, namely:

(7)

Assuming that a system of particles has the current forces and momentums for

each atom defined, one can digitally step the system to a new position by applying the

above equations over a discrete time step. This "Euler method" approach though simple,

can lead to inaccuracies. A more accurate method, which is commonly used to solve such

simultaneous systems, is the fourth order Runge-Kutta method. It attempts to evaiuate the

average forces experienced over a time step by calculating forces at 4 different points.

The method is outlined below for a single particle:

For N particles with initial derivative Dl and desired time step t:
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1) move to a new position P2 using D1 and a time step of ti2

2) calculate new derivative D2 using forces experienced at P2

3) return to position PI

4) apply D2 over a 6me step oft/2 to arrive at a new position P3

5) calculate new derivative D3 using forces experienced at P3

6) return to position PI

7) apply 03 over a time step of t to arrive at a new position P4

8) calculate new derivative D4 at this point

9) return to position PI

10) calculate Oavg=(DI+2*D2+2*D3+04)

11) use this Davg and a time step of t to advance the atom to its final position
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Fig 4 : Diagram of Runge-Kutta method in action
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Figure 4 elucidates this procedure. It is important to note that this is a simultaneous

solution approach, in that all particles are moved together during steps 1-11 above. Thus

for a set ofN particles, there will be 4N intermediately calculated positions and forces for

a Runge-Kutta procedure per time step. '

So basically the Runge-Kutta method weights the final behavior more heavily

upon "midway" calculations than those at the ends. It is fairly accurate, but as can be seen

from above, it effectively solves the system four times before incrementing the atom

position pemlanently. This can be time consuming, but the accuracy gained is worth the

computational cost. The Runge-Kutta method is also a "self-starting" teclmique, in that it

can be applied to a set of atoms that "instantly appear" (as is often the case in molecular

dynamics simulations, i.e. the atoms all start together at some initial time). Some other

simultaneous solution techniques (such as predictor-corrector methods) are not self

starting, and require a startup routine (such as Runge-Kutta) to gather sufficient data

history. The amount of derivatives evaluated per time step is generally less for the

predictor-corrector methods, however a smaller time step is often required in predictor

corrector method to achieve similar accuracy, thus evening out computational time.

Therefore, Runge-Kutta is a good choice for such calculations.

4.2 Calculating Interatomic Forces
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In MD simulations, a method for calculating the forces generated by each atom

upon the others is necessary in order to have Newtonian equations to solve in the first

place. TypicaUy, the interatomic behavior is defined in terms of potential functions.

These functions effectively define the potential energy present between two atoms, from

which can be derived forces (the derivatives of potential). They can be very complex to

very simple in scope. The simpler functions are based solely upon characteristics of the

two atoms in question (their respective positions, material types, etc.). The more complex

potentials introduce terms based upon other atoms' positions, bond angles with other

atoms, etc., which help to correct for behavior that can be related to those factors. Silicon,

for instance, has a complex behavior that requires more than a "two-body" potential force

can simulate (Stillinger and Weber 1985). However, simple BCC and FCC metal

structures have been simulated fairly successfully with pairwise potentials, and these

potentials (specifically Morse) are used in the later described simulations.

4.3 PairwiselMorse Potentials

These functions attempt to define a potential energy relative to the position of two

atoms. The Morse potential, a simple pairwise potential, is defined as follows:

(8)
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where VCr) potential at radius r

r = radial distance of the two atoms

re = "equilibrium radius"

Note that the equation:

(9)

where Viet) is the potential of particle i at time t and Fx is the force in the x direction and

its y and z counterparts is used to relate potential energy to forces.
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This potential equation has two terms - an attractive term and a repulsive term.

The fIrst term is repulsive, in that potential ,energy increases with decreasing radius below

reo This simulates the fact that two atoms will repel below their II equilibrium" separation

radius (re). The second term is attractive in that potential energy decreases with

decreasing r. This term dominates when r is larger than re, and simulates the attractive

force two atoms possess when their separation is larger than reo Both terms reduce to zero

for large r, simulating the negligible interactions of two atoms separated by a large

amount. The parameters D, ex, and re are constants which are determined by the material

type. Graphs for various Morse potentials of different materials and for various values of

D, n, and re are shown in Figures 5 (a) -(g).

It is important to note the behavior of the above potentials. For hard materials

(such as tungsten) the potential curve is deeper and more sharply curved than for soft.er

materials (such as iron). This is explained by the general behavior of hard vS. soft

materials:

Hard Material:

• Difficult to mov,e atom from equilibrium (and thus a sharply curved/deep

potential weU)

• Once bond energy is overcome tends to have brittle fracture (and thus the
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sharper curvature/limited extent of significant potential)

Soft Material:

• Easier to move atom from equilibrium (potential well is more shallow)

• Tends to be more ductile in nature (thus the gentler curvature/wider extent

of significant potential)

4.4 Molecular Dynamics using Morse potentials

The following is a step by step description of a basic molecular dynamics

simulation procedure that uses Morse potentials.

I) Set up the coordinates of the atoms in A. Usually in terms of an x, y, and z

coordinate. The unit typically used is A.

2) Define atom potential function to be used. Morse potentials need to be

generated for each like (same material to same material) and unlike material

possibility. Basically if there are N materials there will be N(N-l )/2 potential

energy curves necessary.
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3) Relax the atoms. Basically this procedure iterates on the set of atoms until they

reach at least a local minimum in potential energy. This is necessary because quite

often the atoms are set up in a "perfect" BCC or like matrix, which win therefore

have high energy points at the corners and edges. Relaxing the atoms lets them

"settle" to their lower energy states. Since the typical order of magnitude of an

MD simulation in terms of time is roughly a few picoseconds or less, this

"relaxation" period is very short indeed, and thus not able to completely relax the

matrix. Thus it is important to try and set up initial coord.nates of atoms to a

reasonably lowenergy state to begin with.

4) Perform a bond check. This checks all atoms with each other to see if they are

close enough to "bond". Usually a parameter known as a "cutoff radius" is

associated with each potential type. This is the radius within which two atoms are

considered "bonded". Beyond this radius the potential is negligible.

5) Using the bond list created, perform a Runge-Kutta or like procedure to

implement the effects of the bonds.

6) Return to step 4 until desired
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Some special considerations are required in a simulation of this type. These are described

below:

Boundary, peripheral, and moving atoms:

Since molecular dynamics is so computationally intensive, any way to reduce the

atom set required helps to greatly reduce simulation time. Take for example, a typical

cutting simulation. Usually the simulation runs for a time, with the areas of interest near

the cutting tip and edges as well as to a certain depth into the workpiece. Thus usuaUy an

atom set like that in Figure 6 is appropriate. However, the "real" workpiece would be

much larger, indeed most likely several thousand times larger in all directions. In order to

convey the stability that such a large workpiece would possess, the concept of boundary

atoms are employed. The idea is to place a layer of boundary atoms at the extreme edges

of the atom set, beyond which is implied to be a large amount of similar atoms. Thus, in

Figure 7, it is implied that the workpiece is much larger below and to the left of the

workpiece atom set, and the tool is much larger above and to the right of its atom set.

These boundary atoms are not allowed to be affected by potentials, but they do exert their

effect upon non-boundary atoms. Quite often a set of atoms is contained of ALL

boundary atoms. This is done when it is desirable to have an "infinitely hard" tool or

similar concept, as boundary atoms are not allowed to deform. Another type of special

atom employed is the periphera~ atoms. These atoms are clustered near the boundary

atoms. Their function is to simulate the dissipation of heat out into the much bigger set of
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atoms beyond the boundary atoms. This is typically done by "resetting" the atoms'

velocities every so often to a generally lower value, thereby simulating cooling. Moving

atoms are a term used to describe non-boundary atoms. Note that peripheral atoms are

moving atoms as well. Figure 8 illustrates the boundary-peripheral atom concept for a set

of atoms considered to be much larger to the left and below. Notice how the peripheral

atom layer adjoins the boundary atoms.
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How to move a set of atoms:

Often, it is desirable (especially in cutting simulations) to induce a velocity in a

certain subset of atoms. Exactly how this is done is dependent upon a few things. Most

importantly, a decision has to be made about whether a simulation of constant velocity,

constant force,' or a different situation is desired. The most basic method is to use

constant velocity. This method assumes that the forces encountered are instantly

overcome by whatever is driving the tool boundary atoms (such as a high powered lathe).

Constant force is not very difficult to implement a weB. No matter what movement

scheme is decided upon, the basic procedure is to move the boundary atoms and let the

rest of the atoms in the set react to that. If a set of atoms is considered to be moving

before the simulation begins, then all atoms need to be given an initial velocity to avoid

the effects of instantly "jerking" the atoms into motion. Movement steps are typically

very small, the exact magnitude of which will be dependent upon desired velocity and the

time step used. Too large of a motion per time step can induce problems with accuracy

and "ovedap", where an atom moves too dose or even past another atom due to large

time step jumps.
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CHAPTERS

OPTIMIZATION OF MD SlMULA'FION

When performing molecular dynamics calculations with the basic procedure

outlined in Chapter 4, quite often the most time consuming step is the calculation of

which atoms are "bonded" each time step. The standard method for doing this is to use

something like the following algorithm:

ForN atoms: Let atomA=l to N-I

Let atomB=(atomA+l) to N)

Check atomA and atomB for a bond

This checks all possible pairs of atoms for a bond. The amount of checks required for N

atoms is N(N-l)/2. A small workpiece of size roughly 20 run x 20 nrn x 20 nm contains

on the order of 250,000 atoms or more. This translates into almost 32 billion possible

bonds. It is easy to see why this step can be so time consuming. Any way in which to

limit these checks would have a great impact upon performance. A new method which

I

drastically reduces the time for this step is described below.
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5.1 Cell Method CODcept

The general procedure for-calculating bonds results in so many checks for mainly

one reason, namely, nothing is known about the position of atoms other than their actual

coordinates. At first consideration, this might seem like enough information. However,

the fact that every atom in the simulation is likely to move at least minimally per time

step means that the bond set has to he regenerated each time step. With just atom

coordinates, there is no way to tell if an atom has moved outside of or inside of another

atom's "cut-off radius" without actually checking the distance between them.

Thus, having data sorted by its relative position in simulation space is desirable.

Dividing the simulation space into sman regions (hereby dubbed "cells") and then only

comparing atoms in those adjacent regions to one another results in a large reduction in

the amount of calculations required. Several implementations of this approach have been

used in MD simulations (Allen and Tildesley 1991)

The "Cell Method," Ito be described in the following, provides much more

infonnation than juslt an atom's coordinates. It allows instant access to an atom's general

position within the simulation space, and also access to its immediate neighbors. This

results in a massive speed increase, as now an atom is only compared with its immediate

neighbors. The method in detail is described below.
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Step 1: Decide on a "cell size"

The cell method derives its name from a basic data storage scheme that it uses. It,

divides the atom space up into cubic "cells" of a predetermined size, such as in Figure 9.

The idea is to include as much of the atom set as possible during the entire simulation in

one large box of "cells". The size of the cells selected is usually a tradeoff between two

factors: number of atoms per cell and total number of cells generated (the reasons for this

will become apparent below). A cell size of about twice the maximum cut-off radius of

any atom pair in the simulation is typically a good choice.

Step 2: Insert the atoms into the cells and associate a cell with an atom

First clear out the cell data structures. Then just step through the atom set and

determine which cells they are in. When the cell has been determined for an atom, store

that ceJJ in some variable associated with that atom as well as the atom inside some data

structure associated with that cell. The desired result is two sets of data: one that will

return which cell an atom is in, and another that will return which atoms are in a

particular cell. Pseudocode that does this is as foHows:
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For J=1 to NumberofCells

Clear AtomsinCell[J]

For A=l to NumberofAtoms

C= which cell atom A lies within

CellofAtom[A]=C

Add A to AtomsinCell[C] data structure

For atoms outside the "cell set" there are additional "infinite cells" to place them in.

These are shown in Figure 10. The bounding cells effectively stretch to infinity.

Step 3: Go through atom set and determine bonds

This is where the benefits of the cell method should become clear. To generate the

bond set, the following procedure is followed:

1) Go through the atom set
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2) For each atom, determine which cel] it is in (already known from above)

3) Check for bonds with the atoms in the same celt or within a certain number of

adjacent cells

What is this "certain number"? Figure 11 displays how this is determined. The number of

adjacent cells checked needs to fuUy cover aU positions within the cut-off radius of the

current atom. This is why choosing the cell size based upon the maximum cut-off radius

encountered is a good practice.

5.2 Comparison of Cell Method a.nd Standard Method

The cell method becomes much faster than the "standard method" for many

reasons. The basic costs of both methods are outlined below:

Standard Method: For N atoms, N(N-l )/2 distance calculations

Cell Method: For C cells and N atoms,

a) C cell structure clears
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b) N checks to see which cell atom an atom is in

c) N insertions into ICeUofAtom" data structure

d) N insertions into "AtomsinCell" data structure

e) roughly A*B*N distance checks, where A = average number of

atoms per cell, B = number of cells necessary to be checked per atom

Even though distance checks and data insertions do not typically have the same

time cost in a computer, it is not unreasonable to take the above lists and generalize that

the timing for the standard method is N(N-l)/2 and the cell method is (CIN+3+A*B)N. It

can be seen that the timing for the standard method is exponential with N, whereas the

cell method is roughly linear with N. The importance of cell size and number of cells can

be seen in the timing equation for the cell method. Decreasing cell size but still covering

the same volume increases the number of cells C, decreases A and increases B. Larger

cells (and less of them) do the opposite.

The cell method was put to the test in several cutting simulations to get actual

timings. The computer used was a DEC 500 MHz Alpha running Digital Unix. Three

versions of the simulations were performed with each atom set: one with the standard

bond generation method, the second with the cell method, and the third with no bond

generation (skipping that step). The no bond generation simulation was run to give an

idea of how much time the other steps besides bond generation required during
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simulation.

Table 1 : Timings of various bond generation methods. The number of cells used were

40x40x40. The cell size was 3.0 A, with the maximum cut-off radius being less than 6.0

A.

No. of Atoms Cutting No cutoff! Cell method timing Standard method
,
I

, Distance timing (Hr: timing

I I

Min: Sec) I

i

2930 50A 00:07:25 00:11 :27 I 00:19:41
i

!

6856 50A 00:42:50 00:57:36 03:25:08 I
I l

i

12056 100 A 03:10:37 03:55:50 I 25:38:21
:
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These results are summarized in Figure 12. It clearly displays the cell method's

massive advantage over the standard method, especially as the atom count increases. The

cell method's timing increases only slightly faster than the equivalent simulation with no

cut-off, while the standard method's timing increases exponentially. Note that the

difference between both the cell method vs. no cut-off and the standard method vs. no

cut-off is how much time the cut-off routine takes in the respective methods. As one can

see, when the cell method is utilized the cut-off timing required is small compared to the

rest of the simulation (Runge-Kutta, etc.) while in the standard method the cut-off timing

dominates the computations.

5.3 Integration of Cell Method with Other Optimizations

The eel] method greatly reduces the time required for the cut-off routine in a

typical molecular dynamics simulation of a large number of atoms. The cell method also

lends itself well, however, to integration with other optimization techniques. One of the

most relevant (to cutting simulations) and useful optimizations is the "area-limiting"

concept. Basically the idea is to limit which atoms are operated on out of the atom set to

those which would experience non-negligible effects. As applied to a cutting simulation,

this typically involves atoms dose to the cutting tip and those in the chip. Due to the fact

that this method reduces atom count,. the timings will decrease for the cut-off routine.

Figure 13 displays the basic concept behind the area limiting principle.
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Some special considerations to take into account when perfonning such an "area-

limiting" approach is that the fringes of the area considered is likely to have more atoms

beyond it. Therefore it is common practice to make atoms which are not in the chip and

near the edges boundary atoms until they are well within the area.

Two versions of molecular dynamics simulations were perfonned to show the

effect of an area restricted only method and an area restricted with the cell method added

on. These are contrasted with the earlier standard, no cut-off, and cell method only runs.

Table 2 : Timings for various bond generation methods including area limiting.

• Number of Cutting . Method Time (Hr:Min: Sec),

Atoms Distance

• 2930 50A No cutoff 00:07:25
;

i,

: Area limited w/cells 00:08:23

i Cell method 00:11 :27

I

: Area limited 00: 12:30
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L

, Standard method 00:19:41
[

[
---

6856 150 A No cutoff , 00:42:50
1

i

1 Area limited w/cells 00:38:20

Cell method 00:57:36
,

I

I

I Area limited 01 :43:42
1

Standard method 03:25:08

1

12056 100 A No cutoff 03:10:37

Area limited w/ceHs 01 :37:46 1

I

Cell method 03:55:50

Area limited 04:58:24

1

, ,
Standard method 25:38:2]

! 1

The above table is summarized in Figure 14. As can be seen, the area limiting alone tends

to perfonn between the standard method and the cell method over the atom set range

tested. Area limiting with the cell method begins to greatly outperform, even the no cut-

off procedure. This is due to the fact that area limiting reduces the total instantaneous

atom set size, whereas no cut-off simply skips the cut-off procedure but performs other

operations on the full atom set (such as Runge-Kutta etc.).
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5.4 Computational Issues

The time savmg advantages of the cell method (as well as the area limiting

method) ar,e indeed attractive. However, the' question of loss of accuracy ar~ses. For an

optimization like area-limiting, the main issue is how far away from the tool tip the area

consmdered needs to be in order to capture all non-negligible interactions. If the chosen

area does not include all of the non-negligible interactions, the results will differ from the

standard method.

The cell method on the surface seems to not introduce any error. It simply is a

much faster way of generating the same set of bonds within an atom set. The order in

which it generates the bonds differs from the standard method. Since it is the same set of

bonds Gust in a different order) this would also seem to not create any differences.

However, the way in which computers perfonn basic addition operations influences the

results. Identifying the sources of such errors and reducing them are of importance to MD

simulations, as the amount of computations performed is typically very high. Therefore,

even a small amount of error per calculation has the potential to increase to a significant

amount of error over many millions of calculations. Any method to reduce the amount of

error accumulated would be of value.
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5.5 Compaters and F~oating Point Math

Computers are basically digital devices in that they store numbers in a digital

fonnat. What this means is that there are discrete "steps" between successive numbers

that can be represented in a computer. Therefore, some numbers cannot be represented

exactly, but must be rounded. This is one source of mathematical error. Perhaps more

important is the fact that most computers can only store so many digits of precision per

number. Most computers store floating point numbers according to the IEEE standard,

which includes a mantissa and an exponent.. The range of the mantissa defines the

precision of the number. This is a set number of digits in most cases (based upon the

number of bits available for the mantissa in the computer's representation of floating

point numbers). The fact that the precision is set can create some errors when performing

basic arithmetic operations on large sets of numbers. To illustrate this behavior, some

examples are provided below.

Results of adding an array X:

Xis an array filled with the following:

For n=1 to 1,000,000 : angle = 1.5(n-1)/1 ,000,000 radians, X(n) = sin2(angle)
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Thus X basically contains all positive numbers increasing in magnitude from 0.0

to about 1.0. The array was added in three different fashions: randomly, smallest value to

largest value, and largest value to smallest value. The fonowing results were obtained:

Randomly: 476 479 . 501 158 585 770

Smallest to Largest: 476479. 501 158 594620

Largest to Smallest: 476479.501 158581 000

The results are in keeping with the fact that adding numbers smallest to largest minimizes

error. Adding the numbers smallest to the ~argest gave the largest answer. This is because

the true sum of the smallest numbers was retained more precisely than in the other two

cases. Adding the numbers largest to smallest resulted in the lowest answer. This is

because once the small numbers were reached, the sum to that point had already become

large, therefore the small numbers' rightmost digits become truncated (since the

computer will only consider a certain precision). The random result was between these

two extremes.

To contrast this example, a large set of numbers with the same precision range

were added in the same fashion. The idea here was to maintain the precision not only in

the numbers being added but in the sum as well. Therefore the foHowing scheme was

chosen:
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For n=1 to 100,000 ;

a = 0.00000000001 ; b = a+ 1 ; D(1) = a; D(n) = d(n-l )+a;

The array D was added to b randomly, smallest to largest, and largest to smallest.

In each case, the same result was obtained:

Randomly: 1.050 000 500 00997520

Smallest to Largest: 1. 050 000 500 009 975 20

Largest to Smallest: 1. 050 000 500 009 975 20

The same result was obtained because as the sum was generated, the precision of

the next number to be added matched that of the current sum. Starting out with the sum at

b ensured this. Thus, no losses were incurred due to the number being too small as

compared to the current sum.

Therefore, if one can ensure that both the numbers being added and the sum are

always equal, in terms of decimal place precision, then minimal error is encountered with

any addition order. However, this situation is rare. In terms of application to molecular

dynamics, the most commonly added values are potential calculations, i.e. adding up the
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potentials experienced by each bond. It would be possible to define a precision range that

is "middle of the road" for the potential function but this would lose some detail. For

example, suppose that a Morse potential varies on value from 1.5689 x 10-2 to 6.3569 x

102
. Also suppose that it is known that the sums of the potentials witl never be more than

the value 1.0000 x 103
, and that the computer used can represent 5 digits of precision.

Thus the sum could be initialized to 1.0000 x 103
, and then the potentials added to it in

any order with the result being the same. However, the lowest potential value of 1.5689 x

10-2 and indeed all numbers below 0.1 are now effectively zero, as their precision lie out

of the 5 digit range of the sum. So accuracy of calculation is lost for a gam in

repeatability. In most cases for molecular dynamics retaining accuracy would be

preferable.

The effects of out of order addition behavior upon molecular dynamics

simulations are shown below. Four methods are examined: (l) the standard method, (2)

the cut-off method, (3) the area limiting method, and (4) the area liming method

combined with the cell method. In each case, the calculations will differ due to varying

reasons. When the cell method is utilized, the bond list generated will be out of order as

compared to the standard method. When area limiting is utilized, only some atoms are

operated upon out of the entire atom set, thus inducing differences as compared to the

standard method.

Figures 15 (a)- (d) display the atom positions for a molecular dynamics simulatlon
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using the four methods examined. From these graphs, the differences are apparent but the

basic behavior is similar. One point that should be considered is that if an atom is at a

"neutral point", i.e. it is at equilibrium, then a small calculation difference couLd send it

right, up, left, or down. These are the primary reasons for the visual differences seen in

the above graphs .. A better way to quantify the differences is to analyze the force history
. .•. ~ .

on the tool. Since knowledge of the forces expe~enced by. a'tool during a cutting
;, "'" .,.
l' ,.

operation is of great engineering iht~Fest'; ,this 'Js~a~gqod yvay to' determ~ne if the induced
~. " i /-.'\0 '

.., .' iii'.
A. ,~ ••'{ i, 4

error due to out of order/less than full atom set calculations is acceptable.

"
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Figure 15a : Standard method ,Figure 15h : Area limited

Figure 15c : Cell method Figure 15d : Area limited
w/ceHs

65



Figures 16 (a)- (d) display the forces for the same four simulations. From them,

several behavioral patterns can be seen. All of the four force plots are extremely similar

near the start of the simulation (the right of the plots, since the tool moved right to left).

This is because any error that is building up due to out of order calculations and/or area

limiting has not become significant. However, as the simulation progresses, the four plots

begin to diverge. The cell method only plot differs slightly from but follows the same

trend as the standard method plot, while the area limited only plot begins to differ more

prominently from the standard plot as the simulation progresses right to left.

The similarity of the cell method to the standard method implies that the amount

of error incurred to this point due to out of order addition is not yet significant. Also

notice that the area limiting with cell method is very similar to the area limited only plot.

Once again, this implies that the out of order addition has not manifested significant error

yet.
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position (A)

Figure 't6a : Standard method

position (A)

Figure 16b : Area limited
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position (A)

Figure 16c : Cell method

position (A)

Figure 16d : Area limited with Cell Method
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The area limited only method is producing pronounced error due to the fact that

the area chosen was small (9 lattice constants ahead of and 3 lattice constants behind the

tool tip). The area chosen does not cover the complete area of elastic recovery. Figures 17

(a)- (b) are force plots of the same simulation run with area limiting/area limiting and

cells, only with a larger area (12 lattice constants ahead of and 8 lattice constant behind).

Notice that these graphs look more like the earlier displayed standard method only and

cell method only graphs, as the area chosen is larger, and thus more of the non-negligible

activity (such as elastic recovery) is taken into account during simulation. Notice once

again that the celI method does little to alter the results here as well.

It is important to reiterate the fact that the standard method is not "more correct"

than the cell method. The standard method generates bonds by fonowing a certain

algorithm. The values of the potentials of those bonds will not coincide in terms of what

order they are in (smallest to largest order, etc.) The only way to guarantee that is to sort

them. The goal of the above graphs was to show that the differences between two

methods (namely the standard and the cell methods) which have different addition orders

are much lesser than when important atom bonds (as in the case with the smaller area

limiting simulation) are omitted.
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Position (A)

Figure 17a : Area limited

positi.on (A)

Figure 17b : Area Limited with Cell Method
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A fast method that could be used to minimize error is to continuously update an error

term as addition is performed. This technique is summarized in the following::

A[n] is the array of numbers to be added

For b=l to n :

Temp=Sum

Sum=Sum+A[b]

Change=Sum-Temp

Remainder=A[b]-Change

ErrorTerm=ErrorTerm+Remainder

Add ErrorTerm to Sum at end of calculations

In this algorithm, ErrorTerm will accumulate most of the portions of A[n] which

are truncated during addition to Sum. Some losses still can occur, if the precision range

of A[n] varies widely. The cost of this approach is not too excessive, basically just 5 steps
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In stead of one for addition. The precision range of calculations can be as much as

doubled by this procedure. This method was applied towards two MD simulations to

evaluate how much floating-point error was present. The simulations conducted were as

follows:

10,110 10 was simulation run usmg conventional method, 110 with error

correction

12,112: 12 was simulation run usmg conventional method, 112 with error

correction

Figures 18a-18d display force graphs for these simulations.
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position (A)

Figure 18a : No error correction

position CA)
F'i'9ure 18b : Error corrected
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posi'tion (A)

Figure 18c : No error correction

position (A)

Figure 18d : Error corrected
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In both of the above comparisons computational time was less than 5% more for the error

corrected method versus the non-error corrected method. This is due to the fact that the

error correction is simple series of additions and subtractions, which are relatively quick.

The fact that this method takes little computational time is advantageous, and coupled

with the fact that it effectively doubles precision makes it very attractive.

5.6 Further Optimizations and Other Concerns

There are a few ways in which it is possible to further optimize the cell method,

although not all are desirable. The first is to practice a 'removal" concept. Basically once

an atom has all of its bonds generated, remove it from the cells. This prevents bonds from

being checked twice. There is an extra cost of removing the atom from the l.:ells in terms

of time, but it is outweighed by the fact that less number of bonds are checked. Table 3

and Figure 19 show the effect of this extra procedure on the time it takes to generate a

bond list vs. the standard and cell methods:
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Table 3 : Comparison of removal to non-removal timings

Number of atoms Method ' Time (seconds) Number .of bonds
I

checked

4000 : cell method 0.0833 254,889

,
, I

: cell method 0.1167 ! 135,133
, i

I w/removal I
I

I

standard method , 0.4666 1,954,150
"I

,

16000 cell method . 0.5000 2,506,508
I

cell method ,0.3833 1,276,494
: I

I
w/removal

i
,

: standard method 18.826 127,272,600
I

,

54000 I cell method 1.6833 ! 9,912,720
!

I

,

, :

cell method 1.2500 ' 5,034,094

w/removal

I
I ,

standard method I 183.3427 1,454,329,350I I

The removal method is clearly about 25% or so faster than the cell method
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without removal. However, certain issues need to be considered. First, th'e cells contain

information that may be useful to other algorithms, and so "destroying" that information

by removing the atoms during bond checking may not be desired. Second, the gain in

total speed for a small to mid-sized computation by reducing the cell method's cut-off

routine by 25% is minimal, as Runge-Kutta and other operations now dominate the

timing. The extra code may not be desirable. Certainly for larger runs the time gained

may be more significant, and in general the removal method is probably a desirable

option.

As mentioned earlier, the idea of the cell method is to try and contain as many of

the atoms throughout the simulation in the "interior" (non-infinite sized) cells. The effects

of atoms lying outside the interior cells on calculation speed are shown in Figure 20. All

of the timings were for the same atom set (20000 atoms) with one difference:

"configuration". This was set up as follows:
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Configuration I: all atoms lie completely within the interior ceHs

Configuration 2: half ofthe atoms lie within the interior cells

Configuration 3: almost all of the atoms lie outside the interior cells

As can be seen from the above chart, as more and more of the atoms escape, the

volume covered by the interior cells, the timing of the ceLl method cut-off routine begins

to mirror that of the standard cut-off routine. This is due to the fact that the exterior cells

(the cells that extend to infinity) have to check all of the atoms contained within them

with each other for possible bonds, as their relative distances are unknown. All that is

known is that they he within the same cell, which is of infinite size. Thus, all of the

advantages of the cell method evap0Talte. This is why it is important to carefully choose

the cell placement if they are static to include as many of the atoms as possible during the

simulation within the interior cells. This is not difficult for cutting simulations, as

chip/tool/workpiece behavior in terms of general position is somewhat easy to predict.

For very large or long simulations, it might be desirable to alter the placement of the cells

during the simulation to "keep up" with the atom positions. This should be done without

compromising ease of cell calculation (i.e. keep a box shape of cubic sized cells). A

simple example would be to move the center of the cells with the center of gravity of the

simulation.
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5.7 Recommendations

The cell method greatly speeds up standard Morse potential based cutting

simulations. The cut-off routine timing becomes less significant than the rest of the

calculations (over the atom set size analyzed). Whereas before, the increase in cut-off

timing was basic~lly second order with number of atoms, the increase now was more

linear in aspect. The typical gain in speed for an average sized simulation was 4-5 times.

Since the cell method is simply a quicker way of generating the correct bond list, it

merges well with other optimizations (~uch as area limiting). Issues arise due to the fact

that the bond list created with the cell method will likely be the same but "out of order"

compared to another bond list generation method. This is mainly an effect of the way in

which computers perform floating point arithmetic. For small to mid-sized simulations,

the differences induced by out of order bonds seemed to be minimal, but could manifest

itself to an undesirable degree in longer or larger computations. A simple method which

is fast, efficient, and effectively doubles precision without affecting runtime could be

implemented. Another slight disadvantage to the cell method is a larger memory

requirements, but these are more than offset by the increase in speed.

As processors continue to get faster and cheaper the small workstation user will continue

to reap the benefits of improved performance. The method presented above, as weLl as

95% of all software available, will continue to run better and faster on these new single

processor machines. However, making the move to true parallel processing would give
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incredible benefits to a molecular dynamics simulation. The "cell method'l presented

above would now able to be implemented in more of a hardware model than a software

model. Multiple processors could serve as the £ells, passing information to neighboring

processors about which atoms they contain and which atoms are ieaving their "cell".

Ideally, a correctly programmed simulation with one processor per cell would greatly

outperform the single processor version in the cut-off routine. For small to mid-sized

calculations this would not be too noticeable, as it has been shown that for these sized

simulations Runge-Kutta and other steps dominate once the cell method is implemented.

For very large simulations the cut-off routine with the cell method could very well

overtake and surpass the other calculations in terms of CPU time, and would benefit from

such an approach. Very large scale true parallel processing machines are still quite

expensive and usually the domain of large national laboratories and corporations.

As shown above, after implementing the cell method Runge-Kutta and other

calculations dominate the timing for smaU to mid-sized simulations. Investigations into

different ways to simultaneously evaluate the motions of the atoms could reduce these

timings. Runge-Kutta has proven to be very accurate and efficient in the past. So, perhaps

the avenue that needs to be followed is not choosing a completely new evaluation

procedure but implementing ways in which to provide the Runge-Kutta routine with

necessary information more efficiently and quickly than the current algorithm.
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CHAPTER 6 p'

Computer Graphic.s Te~hniques fo·r Molecular Dynamics

There are basically two tools to analyze the results of an MD simulation. One is to

stay strictly in the numeric realm, and look at things such as forces, average potential

energies, etc. However, perhaps of most use is to display the atoms in a picture or

animation. This allows for visualization of certain phenomena which data alone tends to

not reveal (such as dislocation motion, etc.). This leads to a more intuitive approach to

analysis and when coupled with the strict numeric behavior can greatly aid the research

process. The following is a general description of how to go about such visualization,

along with possible problems and improvements that could be implemented.

6.1 Basic Computer Graphics

Most computers have a region of memory (either located in the system's RAM or

on a graphics card) which is designated as video memory. This memory is typically

oriented as shown in Figure 21. The entire screen can be said to be a large one

dimensional array. The upper left of the screen is the first element in the video memory

array, whereas the lower right is the last. Memory locations increase from left to right.

The amount of colors possible per pixel detennines the number of bytes necessary per
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pixel. For a 256 color displa.y, one byte is required rer pixeL Thus the screen can

basically be thought of as a one dimensional array, and so if a desired X-, Y- screen

! '-t

locations are known, then the proper index into that array can be calculated. This "linear l1

memory orientation is much easier to deal with than in the past, when memory was often

split into various planes and banks. There are still some slight deviations from this on

some graphics cards, namely an arrangement known as "pitch". The pitch- of at. region of

video memory is how many bytes of memory there are per line of resolution. Nonnally

one would expect this would equal the horizontal resolution (in bytes) but this is not

always the case. Some cards have extra data at the end of each line, due to the fact that
I

their architecture is tuned for only certain horizontal values. This is effectively a region

that is offscreen to the right, as shown in Figure 22. The onscreen surface displayed in

Figure 22 is 640x480 bytes, but at the end of each line of video memory there is an

additional 100 bytes that is not displayed. Thus the "pitch" of this surface is 740.

However, for calculations of x, y this "pitch" must be considered.
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Figure 22 : Example of pitch.
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Figuring out an individual pixd location is easy, and can be accomplished by the

following fonnula:

arrayindex=Y*(pitchwidth in bytes)+X*(number of bytes per pixel)

where X and Y are the desired screen X and Y of the pixeL

Note that Y=O is the top of the screen, and Y increases with movement to the

bottom of the screen. X is zero at the left, and increases towards the right.

When drawing a picture, one could write routines which calculate the proper

indices for all the pixels and set the array location to the appropriate value(s) based upon

the desiredcolor(s). Before the advent of hardw~re acceleration it was common practice

to write routines to create lines., bitmaps, etc. completely in software. Today most

graphics cards support hardware versions of these routines, which allow for a much faster

performance because the CPU is relieved of much of the burden of calculation. The CPU

merely has to say "copy this bitmap to this location on the screen" to the graphics card

and then the card takes over. The one area where the programmer can still typically

influence perfonnance the most (and of particular interest to MD simulation) is in sorting

the data efficiently.

6.2 Sorting MD data for Visualization
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When drawing atoms to the screen it is usually acceptable to use a two

dimensional bitmap which resembles a 3D sphere. The issue that needs to be addressed is

that of what order should they be drawn in? The answer for convex objects such as

spheres is back to front. So one could sort the atom set in tenus of distance from the

viewer (removing any atoms that are off the screen in the horizontal and vertical

directions) and then draw them in order from farthest to closest. Sorting the atoms

completely can be time consuming, especially when there are many thousands of atoms

that need to be drawn per frame. However, sorting completely is not required. In MD

simulations, atoms rarely, if ever, move closer than 0.5 A or so to each other, due to the

tremendous repulsive force present at such distances. Therefore, sorting down to the

nearest 0.5 A is "good enough", ?s no two atoms will lie 0.5 A or less apart. A sort of this

type can be tremendously faster than at traditional "complete" sort. The basic algorithm is

something like:

1. Go through all the atoms and detennine how many of them lie at each 0.5

increment

2. Use the total values at each increment to create pointers into an array

3. Fill up the array

For Example:

Suppose we have 7 atoms with the following coordinates (we will consider the
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viewer to be looking down the z-axis and at a highly negative z value. Thus z = 30.0 is

farther away from the viewer than z = 20.0)

ATOM No.

2

3

4

5

6

7

x y Z

0.5 2.0 7.4

0.7 3.2 6.4

1.5 4.5 6.2

0.7 8.5 4.1

0.3 1.0 7.5

0.9 2.1 4.6

1.4 6.2 6.3

So, it can quickly be determined (in one pass) that there are :

2 atoms in the range z=7.0-7.49

oatoms in the range z=6.5-6.99

3 atoms in the range z=6.0-6.49

oatoms in the range z=5.5-5.99

oatoms in the range z=5.0-5.49

1 atom in the range z=4.5-4.99
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1 atom in the range z=4.0-4.49

And so, the "sorted" order ofatoms from farthest to nearest woul!d become:

1,5,2,3,7,6,4

Notice that this is not completely sorted, it is just sorted down to the 0.5 A level. This is

good enough for a back to front drawing of atoms, and is very fast (takes approximately 2

passes through the data).

Some graphics cards may not require any sorting at all, as they implement what is

known as a "z-buffer". Basically each pixel on the screen is initializeq to a large "far

away" value, and then as graphics are drawn to the screen the effective z's of the pixels

being dlrawn are calculated and compared to the current z value of the pixel on screen. If

the pixel being drawn is farther away than the pixel already on screen then nothing is

done, otherwise the new pixel is drawn and the z buffer is updated with the new value.

This commensurately requires more effort than simply blasting a two dimensional bitmap

on to the screen (known as "blitting"), and so in some cases sorting then blitting is faster

than a z buffer. However, on some graphics cards this z buffer routine is extremely fast,

and clearly if a z buffer is used then no sorting is required, and thus could be faster in

those cases.

MD simulations typically involve thousands or more atoms and thus particular

attention should be paid to possible optimizations such as the sort above when creating a
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visualization application. In the near future almost all graphics operations will be

hardware based, and so the "fine art" of optimizations like sorting is likely to become

outdated. But for the time being, knowing how the hardware works and when

implementing a fast software approach can help'is advantageous to the MD researcher

and indeed anyone desiring fast graphics.

6.3. Animation of MD Simulation Data

Sets of static pictures can often reveal behavior of an MD simulation, but some

phenomena only reveal themselves during animation and are difficult to capture in a

series of slides. Animating MD data requires a speedy approach to graphics, as typically

many thousands of atoms are being drawn per frame. This section discusses general

approaches to fast animation that can be applied to MD simulations.

The first thing that needs to be done is acquire the MD data. Typically this data is

contained within a series of frames taken at different instants of the simulation time. One

could simply read in all x, y, and z positions of each atom for each frame. Then during

animation the position of each atom could be advanced towards its next position by

interpolating between two individual frames a certain amount. However, a more efficient

approach would be to store the initial positions of each atom, and then store velocities of

each atom for each subsequent frame (amount moved per interpolation between the
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current two frames). This saves calculation time and would allow for better performance.

Better still, if the animation is assured to be two dimensional in nature, one could convert

the atom coordinates and velocities to screen :space before storing them, thus skipping

any necessary transformations during animation. Of course, if the Ilzoom factor ll was

desired to be changed during animation, then ·the values would all have to be adjusted

again, but for static zoom levels this procedure would save even more time.

During any animation the atoms would have to be dynamically sorted, and so the

sort from Section 6.2 would be a good choice (unless the graphics hardware possessed a

faster implementation). This sort would have to be perfonned continuously during the

animation and so minimizing the calculations is important. For 20,000 atoms, the sort

described in Section 6.2 requires about 40,000 steps. If a frame rate of 24 fps (frames per

second, which is the standard for motion pictures) was desired during the animation, then

40,000*24=960,000 steps are required per second just to sort the data. From this fact it

can be seen why any possible optimization should be pursued in computer graphics, if

good perfonnance is desired.

The basic procedure for animation of MD simulations (in a 2D manner) can be

summarized as follows:

1. Read in all the data. This can take up considerable space. For example, if there are
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20,000 atoms distributed across 30 frames of data, then there is a total of

20,000*30*3=1,800,000 x, y, and z values to be stored. This does not include extra

information, such as atom type, potential energy, etc. that might be desired to be known

about each atom. An of this data has to be in the RAM for good performance, and so

thought should be given at this stage as to how much data is required.

2. Perform transformations upon the data for speed. This includes replacing x, y, and z

amounts (except for initial positions) with velocities. These velocities are basically linear

interpolations between each frame. If nonlinear interpolations are desired, then more data

needs to be stored (typical interpolations for trajectories are third order, i.e. splines).

Nonlinear interpolations require more computations, and thus slow down the animation

process. So, consideration of how far apart (in terms of simulation time) the frame data is

(nonlinear interpolation does better for data that is far apart than linear interpolati.on)

needs to be used in conjunction with the storage/performance penalties to decide which is

a better approach.

3. Begin animation by drawing aU the atoms to an offscreen surface and then displaying

that surface while drawing the next one. One should never draw directly to the screen

during animation, as this wiU be noticeable to the viewer. The technique of drawing

offscreen and then displaying that screen when finished whi Ie drawing to the next screen

is known as "double buffering" or "page flipping".
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The approach described above was implemented to create a general purpose

animation program. The program possessed the following features:

1. Designed for 2-D visualization .. Since it was intendedl to v~~w current MD simulations

at high speed, a 2-D approach was taken. A 3-D viewer requires more computations (and

thus slower performance, see 3-D discussion 'below) and was not necessary for t'le

simulations performed in the present investigations

2. Allowed for zoom, change of atom size, color coding with various parameters such as

depth, grain, etc. Also allowed pictures to be taken at various points and saved as
'.. .~

bitmaps. See Figures 23 (a) - (d) for examples of these featu,res> f~.

,"
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FIGURE 23a : Example of color coding with
deptl1. T1}is can help to reve~l motion in
successively' deep planes into the page.

FIGURE 23b : Color coding by grain. This
helps to delineate which atoms were part of a
particular grain, especially after large
deformations occur.
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FIGURE 23c : Color coding· by original
horizontal position. In this way the behavior of
individual layers can be monitored over time.

FIGURE 23d : Color coding by original vertical
position. Once again, layers can be tracked during
a simulation.
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3. Was written under Microsoft's DirectX API for x86 Windows (PC) machines. This

ensures maximum portability to any PC platfonn.

4. 'Overall code size was less than 300 kilobytes, and so easily fits on one floppy disk.

In the future, as the atom counts of MD experiments increase, a 3-D viewer might

prove useful. 3-D applications require more mathematical transformations per atom, and

so would be slower, Also, viewing large sets of atoms in 3-D it is difficult to see anything

worthwhile in many cases (except on the surface) due to the fact that there are many

atoms "in the way". In order for a 3-D application to be sufficiently useful, a very high

quality atom (i.e. with dynamic light sourcing, etc.) needs to be drawn, and this requires

still more horsepower. However, graphics hardware is beginning to support 3-D related

operations directly, and so this is becoming more and more feasible on the average

desktop PC.

6.4 Methods for Creating Atom Data in MD

In order to perform molecular dynamics simulations, atomic positions must be

known beforehand. For simple shapes (such as cubes and pyramids for example) it is not
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too difficult to devise an algorithm to "fin" such a shape with atoms. If more complex

shapes are desired, then a more general algorithm is called for. The method developed

below was used in the grain simulations to follow, and is .effectively a 2-D/3-D hybrid

way of generating complex shapes.

The general method used is one of clipping arbitrarily shaped polygons. This was

selected due to the fact that a constant cross sectional area was deemed acceptable for the

simulations to be conducted, and so a "true 3D" clipping was unnecessary. The basic

principle of clipping an atom to a polygon is thus:

1. draw a horizontal line coincident with the atom

2. calculate how many times the line intersects and edge to the left ofthe atom

3). if the number of left intersection is odd, the atom is inside, else it is not

Figure 24 shows this procedure in action. Notice that the number of times that the

horizontal line intersects the polygon to the left of the atom position is 3 (odd), and so

therefor~ the atom lies within the polygon.
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Figure 24 : Displays the concept of calculating
edge intersections of a horizontal line to the left
of the atom.

Edge A

/
Edge C

Figure 25 : Example of vertex
intersection problem.

Figure 26 : Exan1ple of problem
with horizontal edges.
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There are a couple of special con~itions that need to applied for this clipping

procedure to work. they are:

1. Do not count the "minimum y" of e~ch line as an intersection, as this would
.' ~ . :-. "-" . . "; .

produce an erroneous value when the horizontal' line crosses a vertex such as in Figure
. ~ • • l' iI'

25. If the horizontal line in Figure 25 was deemed 1; intersect both edges A and B, then

the total for the atom would be 2 and incorrect. Therefore, since the intersection occurs at

the minimum of A, only count B.

2. Do not count horizontal edges at all. Referring to Figure 26, if Edge A was

included in the intersection calculations it would cause difficulty. Notice that Edge B is

not included because the intersection is at the minimum of Edge B. Therefore Edge C is

the only intersection, and so the total is I (odd).
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Edge A

Boundary

Figure 27a : Displays how the
distance from an edge can be used to
determine atom type.

Edge E

EdgeC

Edge F

EdgeS

Edge G

Edge A

EdgeH

Figure 27b : Illustration of how to handle adjacent edges when
calculating atom type from normal distance.
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So, if one has defined a series of polygons defining crystals/grains and wishes to

"fill them" with atoms, the above clipping algorithm works well. However, that is not the

entire story_ The earlier discussions of boundary and peripheral atoms (as well as "no

man's land", see Chapter 5) come into play next. The method to detennine those

characteristics used is simply defining normal distance from each edge wherein a

particular type of atom exists. Figures 27 (a) - (b) display this approach. Figure 27 (a)

displays the co,ncept of determining an atom's type by its normal distance from a

particular edge. Here any atom at a distance D I or less from edge A is a boundary atom.

It is peripheral if it is less than distance 02 and not less than D I. Figure 27 (b) shows

how to determine which edge to use in the case of adjacent edges. If the adjacent edge to

an edge is less than 180 degrees different, then the procedure is to use the adjacent edge

as the "boundary" for the normal vector filling. Looking at Edge A, notice that Edges G

and H are both less than 180 degrees, and so they are used as the houndary. Same case

with Edge B (Edges C and G are less than 180 degrees). Notice how this allows the

nonnal regions from A and B to mesh well. For Edge 0 however, both edges E and Fare

gr,eater than 180 degrees. For this case,an average of the two adjacent edges is used for

the boundary.
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FIGURE 28a : Example of a multiple grained set
of atoms made using the polygonal approach

FIGURE 28b: Example of a set of atoms with a
large initial polygonal shaped void in the center
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Figures 28 (a) - (b) display some example MD simulations set up using the above

described "polygon" approach.

6.5. Future Methods

The methods described above are adequate for small "2-DI3-D" simulations. For targer

simulations where true 3-D shapes are required the algorithms will change somewhat but

the approach will likely be similar. Usually the bottleneck in terms of design is the

interface used. For constant cross section "2-D/3-D" simulations, a text based interface

which inquires about the vertex positions of the polygons and which vertices make up

which polygon is adequate. However, when moving to true 3-D, a graphical interface is

demanded, as it is very difficult to properly visualize a set of three dimensional grains

from merely seeing their vertices represented in x, y, and z numbers. Work is in progress

at OSU on an "MD-CAD" program which will allow for a very quick and graphically

based setup of MD simulations. It wiU include not only provisions for setting up atomic

positions but also for directing the motions of the various bodies, selecting from a

standard set of materials or customizing one's own, etc. Ifproperly designed, this "visual"

approach should greatly reduce snags at startup due to user error and thus increase the

amount of MD simulations (and perhaps more importantly, "correct" MD simulations)

perfonned.
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CHAPTER 7

INTRODUCTION OF GRAIN BOUNDARIES IN MD SIMULATION

7.1. Current Views

Nanocrystalline (sometimes known as "ultra-fine grained") materials have of late

become the topic of much interest. While there is not a generally accepted theory of

namocrystaUine behavior, it is clear that such materials do not follow the classical Hall

Petch relation for micrometer and larger grain sizes. The Hall-Petch relation is given by:

where crt = yield strength, d = average grain size, Hv = microhardness and k" k2 are

constants. Typically the value of k2 is positive, and so yield strength is predicted to rise

with decrease in grain size. However, this is not the case when grain sizes approach the

nanocrystalline level. Hall-Petch behavior fails to describe strength characteristics of

nanocrystalline materials however (Zaichenko and Glezer, 1997). Quite often a negative

value for k2 is found at these grain sizes, and moreover sometimes no equation fits the
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behavior. In some cases, there appears to be "critical grain size" wherein k2 effectively

switches sign, signifying a decrease in yield strength with further decrease in grain size.

..

Perhaps the variance in behavior of nanocrystaHine materials is due to the varied

ways in which they are produced and the fact that the grain boundary itself (as opposed to

just the grain size) is now a factor when machining at this level. The grain boundaries of

materials often are characterized as a separate phase known as the "grain boundary

phase". The shear modulus of the grain boundaries can differ by more than an order of

magnitude from the grain itself. The thickness of the "grain boundary phase" has been

studied for nanocrystalline materials using electrical resistance measurements, as grain

boundaries affect electrical resistivity. A Cu sample (avg grain,size of IOOnm) was found

to have an average grain boundary width of about 2.1 nm (Islamgaliev, et at., 1997). The

relationship between grain boundary width and the strength of the phase therein to the

grain shape itself seems to be a possible reason for different material behavior

(Zaichenko and Glezer, 1997).

Other attempts have been made to explain the deviation from the Hall-Petch

relationship by the concept of a DFZ (Dislocation Free Zone) and crack behavior (Saito

et aJ., 1990). Basically the fact that any crack generated in a nanograin is similar in size to

the grain vs.cracks in large grains are generally negligible, and that there is a DFZ

between the crack and the dislocation slip band is cited as the reason for the deviation

from Hall-Petch behavior.
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As mentioned above, there are severnl ways with which to prodijce

nanocrystalline materials. Some of the most common methods are:

1) Severe mechanical deformation, usually in an alternating 900 orientation

2) Gas phase/sputtering condensation of nanoparticles then compression of those

particles and CVD/thin film processes

In any event, each of the above processes is subjected to a vast array of variables.

The act of compressing grains together will create a random array of high and low angle

boundaries, while slowly "growing" them would likely produce generally lower angle

boundaries. It is the wide difference in grain angle, grain shape, contamination resistance

(nanocrystalline materials can be excellent "getters", and thus very susceptible to

chemical contamination) and other factors which make such materials hard to generalize.

The uncertainties III actual structure make computational studies of

nanocrystalline behavior desirable, as factors such as grain shape, grain boundary width,

etc. can be varied and controlled. Once a basic understanding of the principles are gained,

then they can be extrapolated to fit the more complex real world materials.

7.2. Computer Simulation Approach
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The first thing to realize about creating a multiple grain system using MD is that

the atoms created instantly pop into existence. They are altowed to reach a somewhat tow

energy state during a relaxation period, but this period is small in terms of real time (on

the order of picoseconds), and ;0 does not allo~ for the relaxation to occur for as long as

it often does in the real world. Therefore: approache~ need to be taken to try and get the

atoms to start off as dose as possible to a low energy state. It is at the grain boundaries

where the differenoes in energies will man.ifest themselves most heavily. And so. dealing

with atom placement with respect to the grain boundaries would seem to be the most

important consideration.

Take for example two grains forming a low angle boundary. The boundaries and

orientations of the grains are likely to be predetermined by the simulation requirements

(i.e. the researcher wants to test the interactions of two grains at orientations 01/02 and

boundary shapes B1/82). There are two methods proposed and investigated for grain

boundary setup: offset and no man's land. They can be summarized as follows:
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Figure 29 : Example
of two grains.

I Before I After

Figure 30: Example of
offset.

Figure 31 : Example of
atoms that are too close
together.

Figure 32 : Example of a situation
where offset is unlikely to help.
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Consider two grain boundaries as shown in Figure 29. The desired orientations of

the grains within those boundaries are also shown. They are basically taken to be

polygons with shared borders. Since the orientation of each grain was set from the

beginning, the "offset" of each grain was tl!Sed to get an initially low energy state. Offset

is basicaHy moving all atoms within a grain together an x, y, z amount, as shown in

Figure 30. Notice that the atom positions have changed but not their orientations (angle).

The motion was strictly a translation. The goal in using offset is to avoid a situation

where two atoms in separate grains start too close together, as in Figure 31. The shaded

atoms in Figure 31 are most likely too close together, and would possess a huge repulsive

force between them. Offsetting either grain away from the other would alleviate this.

Sometimes, however, the offset alone cannot accomplish this, as shown in Figure 32. In

this case no amount of offset can help the middle grain. Offsetting the outer grains could

help, but if they were "sandwiched" as well then offsetting them would not help. The

"sandwiching" effect is more pronounced in 3 dimensions. Therefore, the concept of a

"no-man's land" was implemented. This is a nonnal vector distance from an edge wherein

no atoms are allowed to be placed. Figure 33 displays this concept in action. Both grains

are not allowed to begin with atoms within a certain thickness of the grain boundary.

109



) ,

Figure 33 : Implementation of fl no
man's land".

L Grain boundary

Figure 34 : Two grains with
shaded boundary atom regions.

1\ 0

y

x
\aoundary atom region

\ Moving atom region

Boundary atom region



The important factor in guiding the next decision was simulation size. Recall from

earlier that boundary atoms were implemented to stabilize the crystal structure in MD

simulations. They were necessary because of the small number of atoms being considered

(on the order of a few thousand). They were implemented again in this situation, on the

positive and negative X faces of grains as well as any exposed outer edges that were

desired to be fixed. The boundary atoms matched the orientation and spacing of the grain

they were stabilizing and obeyed the same no-man's land restrictions as the non-boundary

atoms (see Figure 34).

The selection of which configurations of atoms to test was influenced by a desire

to see the basic influence of the following parameters upon defonnation behavior in

nanocrystaHine materials:

1. gram SIze

2. grain boundary orientation

3. crystal orientation

4. relative grain-to-grain crystal orientation

5. no-man's land, and

6. depth of cut
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In all cases the simulations were of similar size (about 15000 atoms) and

generally took -6 hours of CPU time to complete. The results of the simulations are

detailed in the following section.
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7. 3 Analysis of Results

The, behav-ior of theya;.iops grain tests. we~e characterized ,in terms of ~otl1;: visual
, ~. "-

. :~..' '" '\ " ~--:....~. .. . "

deformation and force:v~~ues. First the~visual,results are discussed and are bro~en up into
. , " " -,

~. .,'~

categones based upon tbe specifiC tests being' p~rfnnned. A smap diagram ne~t t~. the text
, '. ',.,., 1 ••' , _ -I

displays the structure which displayed thos~ pariicular results.
. . " .

~.. .'i ~ l' -:.••

, . . , .
, .~

Coinmon to all.simulati6ns-(unless otherwi;e '~ote~l) :

Tool: 20 degree rake, 5 degree clearance infinitely hard tool with neutral potential

Workpiece ~aterial: Cu (FCC: lattice constant 3.62 A).

, ' 3 depths ofcut tested: I. hun, 2.2nm, 3.3nm

"No man's-land'·' equals I:A,on.each si~e~fthe grain boundary

Machined from right to left, as pictured

1) li3 square grains all 0 degree ori,entation (grain size=2.2 run):

Initial 45 degree stress lines after relaxation (see fig. 20). Displays 45
I

I

• • degree slip behavior as expected (45 degrees is major slip plane for FCC
6.6nm

material oriented in a cubic fashion).

Very pronounced 45 degree slip behavior during machining, especially

2) 6x6 square grains all 0 degree orientation (grain size=1.1 run):i I
I
I

I

I

~ .. with the largest depth of cut (33 nm) Very well defined 45 degree shear
6.6nm

zone ahead of tool tip as well. Atoms also exhibited "roning" (quasicircular path of

deformation of atoms near tool tip)
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Figure 35a: Slides for Grain Test 1

MD simulation of nanometric cutting of Cu at various stages
All grains are cubic orientation
Depth ofcut : 1.1 run
Tool rake angle: 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 m/s
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Figure 35b : Slides for Grain Test 1

MD simulation ofnanometric cutting of Cu at various stages
All grains are cubic orientation
Depth of cut: 2.2 hm
Tool rake angle: 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed : 500 m/s
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Figure 35c : Slides for Grain Test 1

MD simulation of nanometric cutting of eu at various stages
All grains are cubic orientation
Depth of cut : 3.3 nrn
Tool rake angle: 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 mls
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Figure 36a: Slides for Grain Test 2

MD simulation of nanometric cutting of Cu at various stages
All grains are cubic orientation
Depth of cut : 1.1 nrn
Tool rake angle: 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 m/s
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Figure 36b : Sli4es for Grain Test 2

MD simulation of nanometric cutting of Cu at various stages
All grains are cubic orientation
Depth of cut : 2.2 nrn
Tool ra~e angle: 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 mJs
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Figure 36c : Slides for Grain Test 2

MD simulation of nanometric cutting of eu at various stages
All grains are cubic orientation
Depth of cut: 3.3 nrn
Tool rake angle: 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 mls
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3) Diamond shaped grains all 45 degree orientation (grain size=3.1 run):

Displays 0/90 degree slip behavior (expected from the 45 degree

,

cuts, no "reaf roll for 1.1 nm depth of cut. Roll is very pronounced for

orientation). "Rolling" begins early and s~ays constant for 2.2nm/3.3nm..
6.6nm

middle depth of cuf(2.2 nm) at the first 4 corner junction. t.

... ..
6.6 om

4) Diamond shaped grains flll 45 degree orientation (grain size=1.55 nm):
. .

Very pronounced 0/90 degree slip behavior. Rolling behavior starts early

and stays except for shallow (1.1 run) depth of cut, which takes longer to

manifest itself.

. 5) Square grains with shaded grains 45 degree orientation, unshaded 0

degree: 0 degree grains try to slip in 45 degree fashion, 45 try and slip in

0/90 degree. The tool/chip rlegion distorts this behavior close to it. There

is pronounced roll when crossing grain boundaries.

6.6nm

6) Square grains with shaded grains 45 degree orientation, unshaded 0

degree

No real definable slip behavior. Very constant roHing effect.

7) Diamond grains with shaded grains 0 degree orientation, unshaded 45

degree: Grains attempt to slip according to orientation of grain ( 0 degree

~ • grains in 45 degree fashion, 45 degree grains in 0/90 degree).
6.6nm
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Figure 37a : Slides for Grain Test 3

MD simulation of nanometric cutting of eu at various stages
All grains are 45 degree orientation
Depth of cut : 1.1 nm
Tool rake angle : 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 m/s
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Figure 37b : Slides for Grain Test 3

MD simulation of nanometric cutting of Cu at various stages
All grains are 45 degree orientation
Depth of cut: 2.2 nm
Tool rake angle: 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 rnls
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Figure 37c : Slides for Grain Test 3

MD simulation of nanornetric cutting ofeu at various stages
AU grains are 45 degree orientation
Depth of cut: 3.3 nrn
Tool rake angle : 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 m/s
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Figure 38a : Slides for Grain Test 4

MD simulation of nanometric cutting of eu at various stages
All grains are 45 degree orientation
Depth of cut : 1.1 nrn
Tool rake angle: 20 degrees
Tool cLearance angle: 5 degrees
Cutting Speed : 500 mls
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Figure 38b : Slides for Grain Test 4

MD simulation of nanometric cutting of Cu at various stages
All grains are 45 degree ofi,entation
Depth of cut: 2.2 nrn
Tool rake angle: 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed : 500 m/s
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Figure 38c : Slides for Grain Test 4

MD simulation of nanometric cutting of Cu at various stages
All grains are 45 degree orientation
Depth of cut: 3.3 nm
Tool rake angle : 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed : 500 m/s
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Figure 39a : 'Slides for Grain Test 5

MD simulation of nanometric cutting of Cu at various stages
Dark grains have cubic orientation, light are 45 degrees
Depth of cut: 1.1 nrn
Tool rake angle : 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 mls
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Figure 39b : Slides for Grain Test 5

MD simulation of nanometric cutting of eu at various stages
Dark grains have cubic orientation, light are 45 degrees
Depth of cut: 2.2 nm
Tool rake angle: 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 m/s
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Figure 39c : Slides for Grain Test 5

MD simulation of nanometric cutting ofeu at various stages
Dark grains have cubic' orientation, light are 45 degrees
Depth of cut: 3.3 nm
Tool rake angle: 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 m/s
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Figure 40a : Slides for Grain Test 6

MD simulation of nanolnetric cutting of Cu at various stages
Dark grains began at cubic orientation, light at 45 degrees
Depth of cut: 1.1 run
Tool rake angle : 20 degrees
Tool clearance angle : 5 degrees
Cutting Speed : 500 m/s
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Figure 40b : Slides for Grain Test 6

MD simulation of nanometric cutting of Cu at various stages
Dark grains began at cubic orientation, light at 45 degrees
Depth of cut : 2.2 nm
Tool rake angle : 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 m/s
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Figure 40c : Slides for Grain Test 6

MD simulation of nanometric cutting of Cu at various stages
Dark grains began at cubic orientation, light at 45 degrees
Depth of cut : 3.3 run
Tool rake angle : 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 mls
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RoBing behavior exhibited when crossing grain boundaries.

bou~dary B for largest depth of cut (3.3 run). ,.

8) Diamond gra!ns alrwith 45 degr:ee orientation and: "1?,O man ~s land"

, "
of 2. 0 A: ~pisplays 90 de'gree slip' behavior,:. yery' pronounced roU near

.,

: '.. .'~ "f'... ~

6.6nm

~:. .'~

I'.., "

,,"!>" :..

For the'following simulations enly one depth of cut ~as perfonned : ,1.1 run '(with same "I

"I
II:
u,

20 degree rake, 5 degree clearance tool)
'"
:::

.,,
9) Two grains of 0 degree orientation sharing a 45

- . ~

Exhibits stress lines paranel to gram boundary after

",
'"Il,
",

,I,

..
".,

"

"
....degree boundary

5.5nm

relaxation. Does not allow much slip parallel to gram boundary. Roll is present,

especially across the boundary. 45 degree shear angle ahead of tool.

!~'---__------'L__~

10) Two grains of 0 degree orientation sharing a 90

degree boundary. ~

3.3 nm No significant slip behavior below tool. Roll is present,

especially at grain boundary. 45 degree shear angle pres-ent.
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Figure 41a : Slides for Grain Test 7

MD simulation of nanometric cutting of Cu at various stages
Light grains have cubic orientation, dark are 45 degrees
Depth of cut : 1.1 nm
Tool rake angle: 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 mls
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Figure 41b : Slides for Grain Test 7

MD simulation of nanometric cutting of Cu at various stages
Light grains have cubic orientation, dark are 45 degrees
Depth of cut: 2..2 nm
Tool rake angle: 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 m/s
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Figure 41c : Slides for Grain Test 7

MD simulation ofnanometric cutting of eu at various stages
Light grains have cubic orientation, dark are 45 degrees
Depth of cut: 3.3 nm
Tool rake angle: 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 mls
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Figure 42a : Slides for Grain Test 8

MD simulation ofnanometric cutting ofCu at various stages
Same as for 3 except "no mans land" is 1.0 instead of 0.5
Depth of cut: 1.1 nm
Tool rake angle: 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 mls
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Figure 42b : Slides for Grain Test 8

MD simulation of nanometric cutting of eu at various stages
Same as for 3 except "no mans land" is 1.0 instead of 0.5
Depth of cut: 2.2 nm
Tool rake angle : 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed : 500 m/s
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Figure 42c : Slides for Grain Test 8

MD simulation of nanometric cutting of Cu at various stages
Same as for 3 except "no mans land" is 1.0 instead of 0.5
Depth of cut : 3.3 nm
TooI rake angle : 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 m/s

139



Figure 43 : Slides for Grain Test 9

MD simulation of nanometric cutting of Cu at various stages
Both grains are cubic orientation sharing a 45 degree boundary
Depth of cut: 1.1 nm
Tool rake angle: 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 m/s
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Figure 44 : Slides for Grain Test 10

MD simulation of nanometric cutting of Cu at various stages
Both grains are cubic orientation sharing a 90 degree boundary.
Depth of cut : 1.1 nm
Tool rake angle: 20 degrees
Tool clearance angle : 5 degrees
Cutting Speed: 500 m/s
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1.1 nm

11) Two grains of0 degree orientation sharing a 135 degree

boundary

Exhibits stress lines parallel to grain boundary after relaxation.

45 degree shear angle ahead ohool. Ron is apparent, especially at grain boundary.

p
------'

5.5 nm

12) Shaded grain with 45 degree orientation, unshaded 0

degree orientation sharing a 45 degree grain boundary

Begins with 45 degree slip behavior, switches to 90 degree in

2nd grain. Rolling observed at grain boundary.

13) Shaded grain with 45 degree orientation, unshaded 0

degree orientation sharing a 90 degree grain boundary. ~

Begins witI:P~!JJJtlegree slip behavior, switches to 90 degree slip in 2nd grain. Rolling is

observed at the grain boundary

14) Shaded grain with 45 degree orientation, unshaded 0

degree orientation sharing a 135 degree grain houndary...
Begins with 4fi.1d5gree slip behavior, changes to 90 degree slip in 2nd grain. Rolling is

observed before and after boundary, but not right upon it.
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Figure 45 : Slides for Grain Test 11

MD simulation of nanometric cutting of Cu at various stages
Both grains are cubic orientation sharing a 135 degree boundary
Depth of cut : 1.1 nrn
Tool rake angle : 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 mls
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Figure 46 : 'Slides for Grain Test 12

MD simulation of nanometric cutting of Cu at various stages
Left IllOst grain is 45 degree orientation, right grain is cubic.
Depth of cut : 1.1 nm
Tool rake angle: 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 m./s
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Figure 47 : Slides for Grain Test 13

MD simulation of nanometric cutting of Cu at various stages
Left grain is 45 degree orientation, right is cubic.
Depth of cut : 1.1 nm
Tool rake angle: 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 m/s
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Figure 48 : Slides for Grain Test 14

MD simulation of nanometric cutting of Cu at various stages
Left grain is 45 degree orientation, right is cubic.
Depth of cut : 1.1 nm
Tool rake angle: 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 mls
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5.5 nm

15) Shaded grain with 45 degree orientation, unshaded V

degree orientation sharing a 45 degree grain boundary

45 degree stress lines are present after relaxation in left

grain. Large amount of roll is observed near grain boundary and stress lines. Slips

degrees in right grain, 0 degrees in .1 eft.

16) Shaded grain with 45 degree orientation, um'haded 0

dewee orientation sharing a 90 degree grain boundary

90 degree slip in right grain, 45 degree slip in left grain.

degree orientation sharing a 135 de/?ree grain boundary

17) Shaded grain with 45 degree orientation, unshaded 0

.......
1.I am

Slips 90 degrees aU the way back to grain boundary in right grain, induces 45

degree stress lines, rolls near boundary, shifts to 45 degrees

in left grain.

18) Shaded grain with 67. 5 degree orien/Ulion. unshaded 0

degree orientation sharing a 67.5 degree grain boundary
3.8 nm

Shaded grain exhibits 22.5 degree slip, switches to 45 degree slip in left grain.

Leaves ajumbled region near where boundary was after tool passes.
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Figure 49 : Slides for Grain Test 15

MD simulation of nanometric cutting of eu at various stages
Left grain is cubic, right is 45 degree orientation.
Depth of cut : 1.1 nm
Tool rake angle: 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 m/s
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Figure 50 : Slides for Grain Test 16

MD simulation of nanometric cutting of eu at various stages
Left grain is cubic, right is 45 degree orientation.
Depth of cut : 1.1 nm
Tool rake angle: 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed : 500 m/s
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Figure 51 : Slides for Grain Test 17

MD simulation of nanometric cutting of Cu at various stages
Left grain is cubic, right is 45 degree orientation.
Depth of cut: 1.1 nrn
Tool rake angle: 20 degrees
Tool clearance angle : 5 degrees
Cutting Speed: 500 m/s
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Figure 52 . Slides for Grain Test 18

MD simulation of nanometric cutting of Cu at various stages
Left grain is cubic, right is 67.5 degree orientation.
Depth of cut : 1.1 nrn
Tool rake angle: 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 In/s
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19) Shaded grain with 67.5 degree orientalion, unshaded 0

degree orientation sharing a 67. 5 degree grain boundary

and with a "no-man's land" 0/0.75 A

22.5 slip in shaded, 45 slip in unshaded, leaves a "transition region" near

where grain boundary was after machining which goes from 67.5 to 90

Force comparisons: (these are generalizations across multiple depths of cut. See actual

diagrams that follow for individual behavior)

(I) vs (2) : Similar cutting force magnitudes (about] 00 eVIA for depth of cut 2.2 nm) ,

more thrust force for (2) (. Thrust force displayed a reversal in direction (more force

II down on the tool) with increasing depth of cut for (I). (2) displayed this

as well in the first half of the workpiece. Cutting force is more stable for

(2). The cutting force gained in magnitude to its maximum extent after the tool tip passed

through the first grain boundary (at time = 640 atu) for ( I), whereas it peaked at the Ilrst

grain boundary (time=420 atu) for (2).
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Figure 53 : Slides for Grain Test 19

MD simulation of nanometric cutting of Cu at various stages
Same as 18 except "no man's land" is 1.5 angstrOll1s not 2.0
Depth of cut: 1. I nm
Tool rake angle: 20 degrees
Tool clearance angle: 5 degrees
Cutting Speed: 500 m/s
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FIGURES 54a-c : RUN 1 FORCES
1 depth=1.1 nm
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FIGURE 55a-c : RUN 2 FORCES
2 depth=1.1 nm
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f)(1 (l) vs (3) : Similar magnitudes (cutting force about 100 eVIA and

~ thrust force near 0 eV/A for depth of cut 2.2 run), stepped entry and

spiky for (l), sharper entry and more stable for (3). Grain boundary comparisons are

somewhat irrelevant here due to the diagonal nature of the boundaries in (3) (the tool

continually crosses boundaries in a different fashion than for the vertical boundaries in

(l) ).

cn vs (5) : (Recall that shaded grains are at 45 degrees orientation)

Similar magnitudes (cutting force about 100 eV/A. thrust force ncar 0

eV/A for depth of cut 2.2 nm). Both (1) and (5) display a local minimum in cutting force

when crossing the first grain boundary (at time = 640 atu)

(2) vs (3) : Both display a reversal in direction of thrust force with

increasing depth of cut (towards more force downward on the tool).

Sharper entry derivative on cutting force in (3) for the smallest depth of cut (I. J run),

otherwise similar magnitudes (cutting force about 100 eVIA, thrust force near 0 eVIA for

depth of cut 2.2 run)

III: ~I (2) vs (4) : Similar magnitudes (about ]00 eVIA cutting force, near 0

eV/A thrust force for depth of cut 2.2 run), cutting forces are much

more stable for (2) (there is a cutting force variation of about +1- 20 eV1A for (4) during

the middle of the simulation whereas it is only about +1- 5 eV/A for (2»
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FIGURE 58a-c RUN 5 FORCES
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~ ~ (2) vs (6) : Similar magnitudes (about 100 eV/A cutting force, near 0

~ ~ eV/A thrust force for depth of cut 2.2 nm) . Whereas maximum

forces are reached in (2) at or prior to crossing of the first grain boundary, the maximum

forces in (6) tend to be centered in the middle of the second grain.

(3) vs (7) : (Recall here that shaded grams are of zero degree

orientation) Higher initial cutting force for (3) (peaks at about 100

ev/A at time = 375 atu, (7) only reaches about 75 eV/A at this time but eventually even

up with (3) at time = 600 atu) more small spikes for (7)

~ (3) vs (g) : SimiIar magnitudes (cutting force about 100 eVIA, thru 51

force near 0 eV/A for depth of cut 2.2 nm), sharper entry for (3) then

stable (peaks at time=375 atu for depth of cut 2.2 nm). shallower entry then spiky for (8)

(peaks at time=575 atu for depth of cut 2.2 nm). "Anti-peaks" are present in (8). where

thrust force and cutting force spike in opposite di.rections (time = 425 atu for depth of cut

1.1 nm and time = 575 atu for depth of cut 2.2 nm)

(9) vs (15) : (Recall that shaded grain is at 45 degrees orientation)

Very large "anti-peak" behavior in both when the tool tip crosses the grain boundary

(time = 600 atu), but more pronounced in (9) (spike of about 20 eV/A for (IS), 40 eV/A

for (9». (15) has higher initial cutting force (peaks at about 50 eVN, whereas (9) peaks

early at about 40 eV/A)
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FIGURE 59a-c : RUN 6 FORCES
6 d~plh·1.1 nm
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FIGURE 60a-c RUN 7 FORCES
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FIGURE 61a-c RUN 8 FORCES
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OJ (10) vs (16) : (shaded gram at 45 degrees orientation) Similar

behavior with slightly more thrust force for (I 0) (cutting force about 50 eV/A, thrust

force around 20 eV/A for (10),15 eV/A for (16») No significant behavior near the grain

boundary.

(II) vs (17) : (shaded grain at 45 degrees orientation) Similar cutting

force behavior, with more thrust force in (1 1) (cuning force about 50 eV/A, thrust force

about 20 eV/A for (1), averaging 10 eV/A for (17) ). Cutting force initially peaks out

higher for (17). Both thrust and cutting forces begin to increase past the grain boundary

for (17), whereas no real definable behavior for ( 11 ).

(12) vs (15) : (shaded grains at 45 degree orientation) Distinct anti-

peak present in (15) when tool crosses grain boundary at time=600, no discernable

behavior at boundary for (12). Lower thrust force in (15) (thrust force averages about IS

ev/A for (15), 20eV/A+ for (12), with similar cutting forces for both (initially about 50

eV/A progressing to 60 eV/A over time)

(13) vs (16) : Similar behavior (cutting force averaging about 50

ev/A before the grain boundary, thrust forces about 15 eV/A). Cutting force for (13)

increases to higher value as the tool tip nears the grain boundary (time = 825 atu cutting

force for (13) is 60 eV/A, (16) is 50 eV/A) ) and then both cutting and thrust forces

increase for each simulation past the grain boundary.
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FIGURE 62a-c FORCES FOR RUNS 9-11
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FIGURE 63a-c: FORCES FOR RUNS 12-14
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FIGURE 64a-c : FORCES FOR RUNS 15-17
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FIGURE 65a-b : FORCES FOR RUNS 18-19
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(14) vs (17) : (shaded grains at 45 degree orientation) Lower thrust

force in (17) (thrust force about 20 eV/A for (120, averaging near ID eV/A for (17) ),

greater initial cutting force in (17) ( (17) spikes to 60 eV/A at time=250 atu, (14) is only

at 50 eV/A) but (14) eventually surpasses due to its steady increase. Once the grain

boundary is crossed however, (17)'s cutting and thrust forces increase rapidly whereas

(14)'s display only a minor increase.

(18) vs (19) : (shaded grains at 67.5 degree orientation, parallel to

boundary) Thrust force more stable for (19) before the tool reaches the grai.n boundary (a

somewhat steady value of 20 eV/A for the first 600 atu, whereas thrust force varies

between 20 and 15 eV/A for (18) during this time). Cutting force is similar (averaging

about 50 eV/A) with a higher initial peak value (60 eV/A vs. 50 eV/A) for (18). After

crossing the boundary forces reach similar behavior, although there is more of a gap

between thrust and cutting force at the grain boundary for (18) than for (19).

Note: the unit of time on the force graphs is in atu, or "atomic time units". These

were the basic time units utilized in the simulation, and 1 atu is on the order of 1 * 10 -14

sec (about 10 fs). Also note that the y force is horizontal (cutting) force and z force is

vertical (thrust) force. Also, magnitudes of the forces are for reaction forces, therefore the

actual applied force upon the tool is opposite in direction but of same magnitude.
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7.4. Discussion of Results

The results of the vanous nanogram simulations lead to the following

conclusions:

1. By decreasing grain size and with grains all of similar orientation (i.e. no grain

boundary angle) the behavior becomes more homogenous. Dislocations are observed to

progress through multiple grains in a very pronounced manner, implying that the

individual grains do not distort deformation behavior across their boundaries as much as

for larger grains.

2. For grains with high neighboring grain angles (specifically 45 degrees) and

decreasing grain size there is a similar loss of "grain individuality". In the larger grain

sizes, the deformation behavior can be seen to change direction within each grain to that

particular grains' preferred direction of slip, while in the small grains there is less

distinction. This perhaps explained the "rolling" behavior discussed next:

3. When crossing grain boundaries, especially between two grains of dissimilar

orientation, a "rolling" effect is observed. This can be characterized by the atoms of each

respective grain being displaced by the tool, influenced by all the neighboring grains and

trying to reorient themselves to a new position. The more grain boundaries nearby, the

more pronounced the roll. The effect also continued somewhat into a grain after crossing

a boundary, and so in the smaller grain sizes a near constant roll was observed.
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From the above statements, it appears that for very small grain sizes the grains

begin to lose their individual identity and consequendy their influence upon deformation.

They are simply not large enough to allow for a "stabilization" of deformation into their

preferred direction. The magnitudes of force do not differ substantially between similar

arrangements of high angle boundaries and zero angle boundaries, but there are some

trends which seem to occur:

a. The arrangements with alternating grain orientations (and thus "high angle"

grains) produce more of a periodic force (characterized by small spikes) than the non

alternating grains.

b. For non-alternating grain orientations, those with smaller grain size displayed

more stable force behavior

c. Two situations produced a large "anti-peak" at the grain boundary: experiments

(9) and (15). This anti-peak was typified by a drop in thrust force with a corresponding

increase in cutting force.

Trend A is likely to be explained by generality number 3 (the "rolling effect"

mentioned earlier). Alternating grains would continuously need to "roll" and thus produce

a more periodic effect. Trend B is explained by generality number 1. The more

homogenous slip observed in the smaller grain sizes would explain the more stable force

readings. Trend C is more difficult to explain. Both experiments (9) and (15) share one

thing in common: the same grain boundary angle. However, experiment (12) does not
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have an anti-peak, yet shares the same grain boundary angle as (9) and (15). Both (9) and

(15) begin with a small amount of "stress lines", whilst (12) does not. However these

lines are located well away from the cutting tip and do not appear to be affected by the

machining process. Therefore the "anti-peak" behavior remains somewhat difficult to

explain at this stage.

The "rolling" behaVIor is very consistent throughout these simulations, and thus

can be considered to be an expected behavior of MD with these conditions. Whether or

not this "rolling" behavior is present in real nanometric cutting of nanograined material is

in big question that may not be easily answerable. Some recent work (Swygenhoven and

Caro, 1997) on simulating plastic behavior of nanocrystals suggests that the main

mechanism is of flow at the interfaces coupled with grain rotation. This is similar to the

rolling effect observed here, and also goes along with the fact that as the grain size

decreased the grains themselves became less individualized.

The "no-man's land" of 0.5 A on either side of the grain boundary seemed to be

the best choice, as when it was increased to 1.0 the workpiece exhibited a SIgnificant

"droop" in ItS relaxed position (see slides for grain test 8). This "no man's land" assured

that no atom would be doser than 1.0 A, but for the most part atoms would average

higher than that prior to relaxation. Considering a perfect FCC cell, the closest distance

between two atoms is (lattice constant)1 J2 .For copper, this is about 3.62/1.414 ~ 2.5 A.

This means with a no-man's land of 0.5 A on each side of a grain boundary, atoms should

average about 0.75 A away from the no man's land, which is about 1/5 of a lattice
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constant. If the no-man's land was 1.0 A on either side of the grain boundary then the

closest atoms before relaxing would have to average about 0.25 Aaway. In other words a

larger no-man's land is inadvisable if the one of the grain's orientations is not parallel to

the boundary, as it would be impossible to get such a low average distance for a non

parallel grain. There did not seem to be a significant difference in forces for experiments

with slightly different no-man's lands (see 18 vs. 19 and 3 vs. 8). Therefore it appears that

as long as atoms do not start off too close (with a very high potential) then the results can

be expected to be somewhat similar. If the no-man's land was reduced to too low of a

value then there would be atoms experiencing very high repulsive forces (refer back to

Morse potential graphs in Figures 5a-g).

7. 5 Conclusions and Recommendations

Some basic behavior during the grain boundary tests were observed. These can be

summarized by the notion that the grain boundary shape/angles seemed to become more

important as grain size decreased. Larger grains tend to have more of an individual

behavior whereas smaller grains tend to either coalesce into a homogenous behavior (for

similar oriented grains) or into an amorphous behavior (for dissimilar neighboring

grains). This seems to agree with the Hall-Petch "reversal" found below a certain grain

size, in that the grains themselves are no longer as important as the boundaries. It is

suggested that at extremely low grain sizes the grains are effectively becoming atoms and

the system can now be defined as a set of these "grain atoms".
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A major factor contributing towards the observed behavior was the use of

boundary atoms. Boundary atoms are necessary at the atom counts simulated simply

because crystals of that size do not have much integrity if left free standing. The

influence of the boundary atoms on the grains should be pursued, and perhaps an

alternative approach could be developed. In some of the simulations the grains exhibited

a fair amount of stability. How much of this can be attributed to the boundary atoms

would be a desirable topic for further research.

Finally, all simulations were performed with Morse potentials. Although deemed

to be somewhat accurate for simple FCCIBCC metals, a one dimensional potential such

as Morse is sure to have deficiencies regarding certain behavior. The tool was treated as

infinitely hard, which in itself is not a bad assumption (diamond tools on copper rarely

wear) but the interaction potential used was neutral. Morse potentials are difficult to

implement for unlike materials, and thus the simulations could benefit from the use of a

more advanced potential for the tool/work interface.
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CHAPTERS

SUMMARY

Much ground was covered in this investigation in many different areas of research

in MD simulation of nanometric cutting. This is necessary in such a multi-disciplinary

area as MD simulation, as ignorance of one or more of the necessary fields of expertise

could limit the possible avenues of exploration. The concepts of interatomic potentials,

numerical integration methods, algorithm optimizations and error correction techniques,

and materials knowledge all contribute to the success or failure of MD simulations. The

following summarizes the findings described in detail earlier, and also attempts to

identify promising future avenues of investigation.

8.1 Overview of Optimization of MD Simulations

Optimizations of computer programs are always highly application specific. There

are several "levels" of optimization that can be pursued, each successive level gaining

more performance but sacrificing portability to another situation. In the case of MD

simulations, the concept of interatomic potentials based on relative atomic position is

fairly universally used, and so optimization of the application of those potentials to a set

of atoms could be used across a wide range of different MD simulations. The "cell"

method approach investigated is thus a "high level" optimization, i.e. one with general

applicability. Another way of viewing this "high level" optimizations is that the cell

method is an "algoritlunic optimization" versus a machine specific. It would be entirely

possible to further increase performance of the cell method, perhaps by even two or three
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times, if attention to the computer architecture was given. However, given that the celt

method already reduces the bond generation step to a smaller run time than the other

stages of MD (and that optimizing for a particular machine would most likely not carry

over to further machine upgrades) performing such a "Jaw level" optimization is probably

not worth the effort. Therefore, the cell method is probably "optimized enough" for the

current algorithmic scheme. Faster techniques to replace the Runge-Kutta method would

have more of an impact on the runtime, and thus any significant future advances in the

field of numerical integration methods should be implemented.

Error correction was also investigated. The undedying causes for error in

computer based calculations were explained. The ultimate question during MD

simulations (in terms of error correction) is how much error is tolerable and how much

penalty is there in correcting for it? The method decided upon was very fast and only

affected total runtime by a few percentage points at most. For the scale of simulations

performed, the accumulated error from infinite precision was not extremely large, but

also not exactly negligible. The fact that the error correction method investigated did not

significantly affect runtime and also increased precision of calculations by approximately

double the number of decimal places leaves no reason not to implement it in practice,

even if expected error is small. As computer bit-widths become larger in the future (and

thus the numbers they can represent more precise) the need for special error correction

approaches may disappear, but for now it is still somewhat necessary. especially in fields

of computational science.
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8.2 Overview ofVisualizatioR aRd Animation ofMD Simulations

Methods of displaying and animating MD data were presented. These principles

were used in the creation of software that ultimately was used to analyze the data from

the MD simulations performed in a visual manner. Computer graphics techniques along

with a sorting optimization that is particularly effective with regards to displaying atomic

data were implemented in the creation of the software, providing sufficient speed on

common desktop PCs to animate thousands of atoms effectively.

Methods to create user friendly MD simulations were also investigated and

implemented on a text based approach, with movement towards a fully graphical user

interface (QUI) initiated. The text based interface proved largely sufficient to create the

"2-D/3-D" simulations performed, but the obvious need for a GUI in the creation of true

3-D simulations is a compelling reason to continue development of such an "MD-CAD."

Also, the need to develop a new software system or the lack of familiarity of the software

of an existing system, limits the application of MD simulations to only a few researchers.

Development of user friendly MD-CAD software can enhance its use to a multitude of

applications similar to the availability of FEM software for most engineering

applications.

8.3 MD Simulations of Cutting of Nanocrystalline Copper
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Methods to setup nanocrystalline materials were implemented, with attention paid

to the fact that the grain boundaries are where high energy deviations from single crystal

structure could occur, and so steps were taken to minimize the possibility of "high energy

points" including the use of "offset" and "no man's land." The amount of such an offset

and "no-man's land" was varied in order to observe the effects of variations in the energy

state between the two grains. As expected, the most stable behavior occurred when atoms

at the grain boundary were approximately as far apart on average as they would be in a

single crystal. If they were significantly farther apart than the average crystal at the

boundary then the overall material structure tended to "droop" due to a lack of

cohesiveness, and when atoms were allowed to begin their existence too close then large

unnatural forces were created. There did not seem to be a significant variance in behavior

if the atoms were slightly offset closer or farther around the "midway" point, as the entire

set of atoms was relaxed for a short period prior to actual cutting. However, the

individual grains definitely were not at the lowest possible energy state they could reach

for their particular orientations. Due to the computational time constraints, the grains

created were only relaxed for a short time Upon acquisition of faster hardware, longer

grain relaxation periods should be investigated to see if there is any significant difference

in the grain behavior when relaxed much longer to a lower energy state.

Nanocrystalline materials do not exhibit the behavioral trends that their larger

grained counterparts do. Specifically the Hall-Petch relation breaks down at small grain

sizes. While there is deviation in the relative behavior of different nanocrystalline

materials (most likely due to differences in their methods of creation) the general

178



empirical trend is a reversal of Hall-Petch. Observed behavior also implies the grains

themselves become less important as compared to the grain boundaries, which can be

attributed to the fact that the grain boundaries now make up a significant portion of the

material volume. The simulations performed attempted to characterize trends observed in

the MD realm and relate these to known empirical behavior. The trends observed in the

MD simulations also point towards a decreasing importance of the individual grains

versus grain boundary structure. Larger grained materials tended to have distinct

deformation behavior within each grain, whereas smaller grained materials tended to

have a more homogenous behavior (either a slip behavior similar to a single crystal for all

similarly oriented grains or a very undefined behavior for alternating high angle grains).

This behavior is similar to the ones at macroscale where the grains a few micrometers in

diameter and cut depths are several hundred micrometers.

Thus at very small grain sizes it is almost as if the grains are now large atoms

with properties defined by their orientations. Also displayed in many cases was a

phenomena termed as "rolling", in which atoms rotate in a rather pronounced fashion as

they are displaced from their positions and attempt to "reorient" to a new grain. This

"rolling" was very evident at grain boundaries. Due to its very consistent presence during

the MD simulations (as well as reports of similar findings in the literature), it is very

likely to be an important characteristic of nanocrystalline behavior during plastic

deformation and should be investigated further.
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