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CHAPTER I

INTRODUCTION

Osteoporosis is a major concern worldwide as it is in the United States (US). It

affects more than 25 million Americans each year, resulting in 1.5 milhon annual

osteoporotic-related fractures (1,2) and costs Americans $13-18 billion annually (3,4). It

is estimated that by the year 2030,21 % of the US population, or 65 million people, will

be 64 years and older (2,4). By that time, the cost for osteoporotic related treatment is

expected to exceed $60 billion annually (2,4,5).

Osteoporosis is the second leading cause of hospitalization in individuals 80 years

and older, the fastest growing segment of population in the US (3,5). At the age of 70,

risk of hip fracture is very probable and thereafter this risk doubles every seven years

(1,3). Similarly, the risk for mortality due to fractures increases by 20% (3). Those who

survive fractures live with the burden of morbidity, suffering from pain, immobility,

dependency and depression (1,6).

Osteoporosis is a metabolic bone disease characterized by reduction in bone mass

and microarchitecture of bone tissues (7). Although osteoporosis is a silent disease, its

early signs include loss of height and kyphosis that may go unnoticed until fracture occurs

(8).



There are two types of osteoporosis: primary and secondary. Primary or involutional

osteoporosis is further divided into two types, type I (postmenopausal) and type II

(senile). Secondary osteoporosis is a result of endocrinal diseases, gastrointestinal

disorders, or long-term use of certain medications (1,9). In postmenopausal osteoporosis,

ovarian honnone deficiency gives rise to accelerated bone turnover with bone resorption

ex'ceeding bone fonnalion, resulting in less bone mass (1). Currently in the US, one out

of three postmenopausal women suffer from osteoporosis (4).

Prevention of osteoporosis can be accomplished through increasing bone mass and

mineral content throughout the first three decades of life (6,10). A good strategy for

prevention of osteoporosis would include a lifetime adequate intake of calcium and other

nutrients, maintenance of a moderate amount of physical activity and avoiding smoking

and alcohol abuse (6,11).

Traditional therapy for postmenopausal osteoporosis has emphasized the use of

antiresorptive agents. Antiresorptive agents such as estrogen replacement therapy (ERT)

(1,4,7), calcium (1,6,10,11) calcitonin (1,12,13) and bisphosphonates (1,13) have been

widely investigated and approved with certain limitations. Antiresorptive agents

stabilize, but are relatively ineffective at restoring bone. However, in the case of

established osteoporosis, the treatment of choice would be a drug that stimulates bone

formation. Parathyroid hormone (PTH) (14,15,16), vitamin D (1,25 (OHh D3 )

(17,18,19), and sodium fluoride (l, 11 ,20) are potential bone forming stimulating agents

that may also playa role in the treatment of osteoporosis. Local bone factors have been

recognized to exert metabolic effects on bone. Examples include growth factors (21),
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such as insulin-like growth factor-1 (lGF-I), and transforming growth factor-~ (TGF-~)

(16,20,22). Even though growth hormone (GH) is currently recognized as bone forming

stimulating agent, it has serious side effects (16,21,22). Other bone fOimation

stimulating agents especially sodium fluoride may neither decrease susceptibility to

fracture nor improve bone quality (20). Although estrogen is known to effectively

prevent bone loss in postmenopausal women, it is associated with risk factors such as

endometrial and breast cancer (7).

Recent reports indicate that naturally occurring compounds such as isoflavones, a

subclass of tlavonoids and lignans, a group of diphenolic compounds, can inhibit bone

resorption while stimulating bone formation (23). In this regard, prunes and prune juice

are considered to be good sources of phenols, flavonoids, and antioxidants including

vitamin A, vitamin E, and selenium (24). Prune is also a rich source of boron (2.2

mg! 100 g) (25). Since antioxidants, phenolic compounds and boron are reported to

increase BMD, the reported profile of prune increases its importance in the osteoporosis

research field (9,26,27,28). Therefore, it is conceivable to speculate that prune plays an

important role in maintaining skeletal health. Hence, the purpose of this study is to

investigate the effects of prune on bone and indices of bone turnover in an ovarian

hormone deficient rat model of osteoporosis.

3



Hypothesis

The hypothesis of this study is that prune is effective in preventing ovarian hormone

deficiency-associated bone loss in a rat model of osteoporosiso To test this hypothesis,

we have two specific aims.

Specific Aim 1: To evaluate the effects of prune in preventing the occunoence of bone

loss in a rat model of ovarian hormone deficiency as assessed by bone mineral density

measurement.

Specific Aim 2: To examine some of the mechanisms by which prune protects ovarian

hormone deficiency-associated bone loss, including analyses of blood and urine indices of

bone turnover.

4



CHAPTERll

REVIEW OF LITERATURE

Bone Structure and Biology

Bone is a mineralized connective tissue, that functions as a mechanical support and

movement system, a protector for bone marrow and internal organs, and provides a

reservoir for calcium and other minerals (29). Anatomically, the skeleton is made up of

two types of bone: l) flat bones such as the skull, mandible, and vertebrae; and 2) long

bones, such as those that make up the tibia, femur, and humorous. In growing bones, the

end (epiphysis) is separated from metaphysis (the conical paJ1 that connects the epiphysis

to the-mid shaft) by a cartilage growth plate. The diaphysis (the mid shaft) encounters the

medullary cavity where bone marrow is produced (29).

Histologically, there are two kinds of bone: cortical and cancellous. Cortical bone is

the thick compact bone that forms the diaphysis of long bones or surrounds trabecular

bone. Cancellous or trabecular bone is the bone that fills out the flat bones or long bone

epiphysis and metaphysis (29). Trabecular bone is made up of calcified trabeculae

intercalating the bone marrow (29). The ratio of cortical bone to cancellous bone is 4: 1,

but cancellous bone is metabolically more active per unit volume because it is full of

5



trabeculae, that contain bone marrow. There are two bone surfaces: ex.ternal (periostium)

and internal (endostium). They are in contact with soft tissues and both are lined with

osteogenic cells (29).

Bone consists of organic matrix. cells and inorganic minerals (30). The extracellular

matrix contains collagenous fiber filled with the mineral component. The most important

mineral that provides the structural rigidity is calcium (13,30). The organic cells are in

two main forms: osteoblasts and osteoclasts. Osteoblasts are found either singularly or in

clusters of one or two layers of cuboidal cells along the layer of bone matrix in which

they are formed (29). Osteoblasts form collagen and ground substance of bone matrix

and its plasma membrane is, characteristically, rich in alkaline phosphatase enzyme

(whose concentration in the serum is used as a marker for bone formation) (1,29).

Osteoclasts are the giant multinucleated bone lining cells found usually in contact with a

calcified bone surface. In each resorptive site, one to four osteoclasts can be found

(7,29).

Bone Modeling and Remodeling

Bone is in a dynamic metabolic state throughout life. Bone fonnation and resorption

are parts of the continuous turnover process by which old bone is replaced by new bone

(7). Modeling takes place only during skeletal development and ceases when the

cartilaginous growth plate closes (13,29). Modeling starts with bone formation which

adds new bone and is then followed by resorption which shapes up the whole bone to its
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original shape. Both length and volume of the bone expand by the bone modeling

mechanism (3).

Bone remodeling occurs later in life after adult bone density is established. With the

right stimulus, resorption of a defined quantity of bone is performed by osteoc1alsts,

followed by osteoblast-stimulated bone formation (3,13,29). There are several million

active remodeling sites in the skeleton. Four remodeling steps take place in each site:

acti vation, resorption, reversal, and formation (13,16,29).

Activation

The exact mechanisms of activation are yet to be defined. Raisz (16) speculated that

the effect of local factors on osteoblasts and their precursors could be the initiators for

resorption. Another postulated mechanism includes the production of various proteolytic

enzymes from lining cells to prepare the bone surface by removing protein. Removal of

protein from the bone surface involves stromal ce)]s and pcrosteoblasts as well as active

and inactive osteoblasts (13,16).

Resorption

Osteoclasts are the main resorpti ve cells which assemble together or differentiate to

excavate an erosion cavity on the bone surface (16). Osteoclasts adhere to the bone

surface by the ruffled borders and stimulate the release of proteolytic enzymes which
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result in acidification, digestion, and removal of bone cells (13,16). When osteoclastic

activity goes array, perforations can occur resulting in removal of the template which

makes it impossible to restore bone mass (16).

Reversal

In this phase, resorption stops by osteoclastic inactivation (16,29). Macrophage-like

cells are seen in bone surface and in a deposition of the proteoglycan layer. As a result, a

cement line is formed between old and new bone to mark the limits of the resorption

cavity (16,29). What really stops the resorption phase is yet to be defined, but limited life

span of osteoclasts and inactivation of osteoclasts by accumulation of high concentrations

of calcium on ruffled borders might be the stopping signals (16). Another possibility is

that the release of TGF-13 from the matrix attracts the osteoblasts and inactivates the

osteoclasts.

Fonnation

In the formation stage, osteoblasts are taking over. They secrete matrix substances

which later will be mineralized (16). At the cement line old and new bone is held

together (29). Replication and differentiation of osteoblasts are controlled by local and

systemic factors (16). Local factors are derived from osteoclasts, reversal cells, marrow

cells,. and bone matrix. Systemic factors are hormones such as parathyroid hormone
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(PTH), calcitonin, and many other growth factors (16,29).

Osteoporosis, a Metabolic Bone Disease

Bone is a metabolically active tissue; it constantly undergoes modeling and

remodeling cycles throughout life (l,3,13). Bone modeling predominates throughout

childhood resulting in an increase in bone mineral density (BMD). This remodeling

process continues till early adulthood then, the established BMD plateaus between the

ages of 30 to 40 years after which remodeling takes over, resulting in a decrease in BMD

(4,13,31).

There are several million active remodeling sites in the skeleton which occupy 15-20

% of bone surfaces (32). After menopause, bone loss increases due to hypogonadism

which results in prolonged bone turnover time. It would take from five to fifteen years

after menopause to reach a new steady state where skeletal mass is no longer decreasing

(32). Depending on the Bl'vlD present at menopause, the net BMD at a certain time of the

postmenopausal resorption process might fall under the osteoporotic threshold. The

World Health Organization (WHO) defines osteoporosis as a decrease in BMD by more

than 2.5 standard deviations (SD) below the mean value for young women, and by more

than 3 SD below the mean value for young men (31). What controls BMD is mainly

genetic. Almost 80% of BMD is genetically determined while environmental factors and

endogenous sex hormone levels during puberty control the remaining 20% (2,31).

There are two types of osteoporosis: primary and secondary. Primary or involutional
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osteoporosis, is further divided into type I (postmenopausal) and type n (senile).

Secondary osteoporosis, or type ill osteoporosis, is a result of endocrinal diseases,

gastrointestinal disorders, or long-tenn use of certain medications (1,9). Type I

osteoporosis occurs in postmenopausal women 5 to 15 years after menopause. Estrogen

(E2) deficiency increases bOlle turnover and induces an imbalance between resorption and

fonnation in each site. Calcium malabsorption is found in 60-70% of type I osteoporotic

patients and calcium loss may exceed the intake of calcium in one-third of the patients

(4). Low serum dihydroxy-cholecalciferol [1,25 (OH)2 D3] concentrations may be

another cause of bone loss in postmenopausal osteoporosis. Estrogen replacement

therapy (ERT) decreases the rate of bone turnover in this group. Also it corrects the

imbalance between resorption and formation at each resorptive site (32). The conjugated

estrogen dose of 0.625 mg Iday is capable of decreasing skeletal loss.

Type n (senile) osteoporosis occurs in much older patients, 80 years and older. Hip

fractures are more common in this group. The decrease in BMD for this group is caused

by the ultimate decrease in calcium absorption and other minerals in advanced age.

Seventy-five percent of the elderly have a documented decrease in calcium absorption

(1,4).

Type ill (secondary) osteoporosis is the result of non-skeletal conditions that impact

bone and mineral metabolism. Partial gastrectomy, malabsorption syndrome,

thyrotoxicosis and drug and alcohol abuse can be the cause of type ill osteoporosis (1,9).



Antiresorpti v,e Agents

Several antiresorpitive agents are currently in use for prevention or treatment of

osteoporosis. They include ERT, Bisphosphonates, and calcitonin.

Estrogen Replacement Therapy (ERT)

In the perimenopausal years, the bone-remodeling cycle is taking over. This results

in an increase in the rate of bone turnover which leads to an imbalance between

resorption and formation (32). Estrogen slows down bone resorption by limiting

osteoclastic access to bone and blocks the process of creating new erosion cavities (32).

Estrogen is unique in correcting the imbalance between resorption and formation in each

erosion site resulting in a net increase in bone mass (32). This increase in bone mass

should not be interpreted as an anabolic action for estrogen because it does not continue

indefinitely (32). Even though estrogen does not restore the bone mass already lost, it

prevents bone loss due to ovarian hormone deficiency (32,33,34). Therefore, E2 is a

preventive rather than a corrective agent (32).

Estrogen's influence on osteoclasts is not yet as clear as its effect on osteoblasts (34).

Osteoblasts respond to estrogen by producing local growth factors including insulin-like

growth factor-I (lGF-I) (32).

Zofkova and Kancheva (34) studied the effects of estrogen administration on 11

women following hysterectomy and oophorectomy. In their study, bone indices were
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measured before ovariectomy, 12-16 weeks afterthe surgery, and 2 months after

transdermal treatment with a reservoir estrogen patch. Estrogen administration to these

women increased parathyroid honnone levels after the postoperative drop in their levels,

and decreased serum calcium after postoperative serum calcium increases. Estrogen also

lowered IGF-I following its increase after the ovariectomy (34). Although ERT plays a

central role in controlling bone mass, it is not a risk free option. Estrogen increases the

Jisk of endometrial cancer with a small but real increase in the risk for breast cancer

(32,33,23,35).

Bisphosphonates

Bisphosphonates are synthetic analogues of pyrophosphate and are promising agents

in the treatment and prevention of osteoporosis (1,36). These drugs have a high affinity

for calcium, and attach to it in the hydroxyappetite crystals in bone (1). They are ingested

by osteoclasts and impair the resorptive process (13).

Etidronate, a bisphosphonates member, considerably increases the vertebral bone

mass and reduces the rate of new vertebral fractures in postmenopausal women (36). It is

administered orally in a cyclical dose regimen which is 400 mg daily for two weeks

followed by 13-15 weeks of adequate calcium and vitamin D intake to support bone

mineralization (1). Although etidronate is effective in preventing bone loss in the first

five years after menopause (1,36), its long-term use may inhibit bone mineralization and

cause osteomalacia (36).

Alendronate (Fosamax), a new member of the bisphosphonates family, is the first

non-honnonaI drug to be approved by the FDA for the treatment of osteoporosis in

postmenopausal women (1,13). Daily administration of 10 mg of alendronate has been
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reported to increase B:MD in the spine and hip joint (1,13). Alendronate is poorly

absorbed and has low toxicity due to its short half-life (1,13).

Calcitonin

Calcitonin is a small peptide hormone secreted by thyroid "C"celJs and is recognized

as an effecti ve antiresorptive agent (1,16). In its phannacological doses, it suppresses

osteoclastic activity resulting in reduction of resorption and increase in BMD (13,16).

Calcitonin has no effect on calcium homeostasis but is used effectively in the treatment of

glucocorticoid-induced osteoporosis (l,16).

Seven published trials evaluating the efficacy of 200 ill nasal salmon calcitonin were

analyzed by Nieves et al. (12). Six of the seven studies used a mean calcium dose of

1466 mgld (which is daily intake from diet and supplement) and one used calcitonin

alone, without calcium supplementation (total 627 mg calcium /d). The analysis of the

results indicated a 0.2% increase in BMD of lumbar spine per year happened when

calcitonin was used alone as compared with a 2.1 % increase in BMD of lumbar spine per

year when calcium supplement was added (12). Such results indicate that calcitonin can

be a reasonable alternative for ERT in at risk cancer cases (12).

Bone Formation Stimulating Agents

Parathyroid Hormone

Parathyroid hormone is a major calcium-regulating hormone in humans (21). When

blood calcium concentrations drop below normal levels, PTH draws calcium from bone
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to restore normal calcium levels by stimulating bone resorption (14,16). Parathyroid

hormone can exert an inhibitory effect on bone formation by inhibiting collagen synthesis

as well as stimulating bone formation through intermittent or low dose administration

(14). The stimulatory effect of PTH on bone formation is probably mediated through the

production of local growth factors such as IGF-I and TGF-'~ (16).

Parathyroid hormone related peptide (PTHrP) could be a possible factor in acti vating

PTH receptors in bone (14). Injection of small doses of PTH to postmenopausal

osteoporotic women can positively shift calcium balance (4). Although PTH stimulates

1,25 (OH)2 D3 secretion from the kidneys which in tum enhances calcium uptake (14,17),

repeated injection of PTH can result in down regulation of 1,25 (OHh D3 and

consequently a reduction in bone formation (14). Therefore, injection with PTH needs to

be accompanied by 1,25 (OHh D3 to be most effective (4).

Growth hormone

Growth hormone increases bone formation and promotes calcium absorption (15,23).

Growth hormone may increase IGF-I synthesis, and decreases renal calcium excretion

(16). Since production of both GH and IGF-I decline with advancing age, they may play

a role in osteoblastic bone formation (16).

Insulin-like growth factors

A large number of growth factors have been implicated in the regulation of bone

formation (16,22). Bone matrix produces IGF-I, IGF-II, bone morphogenetic protein

14



(BMPs), IGF binding proteins (lGFBPs, except IGFBP-I), and both acidic and basic

fibroblast growth factors (FGFs) (16).

Insulin-like growth factor-l has a strong anabolic effect on bone foonation and

mediates the anabolic response of PTH (16). It enhances chondrocyte proliferation,

differentiation and proliferation of osteoblasts, matrix formation, and type I collagen

synthesis (22). Bone morphogenetic proteins including TGF-~I and TGF-~2 (16), have

been shown to enhance bone formation in animals (16,22,20). These BMPs stimulate

osteoblast differentiation and formation of normal mineralized bone (20). Fibroblast

growth factors are potent bone mitogens which decrease collagen synthesis and increase

bone resorption (20).

Fluoride

Fluoride enhances new bone formation, mostly trabecular, through the reactivation of

osteoblasts (20). This results in an increase in trabecular bone mass, especially in the hip

and spine (20). An increase in BMD by approximately 10%, can be achieved by Duoride

treatment (20). Unfortunately fluoride treatment is not a risk free drug and it has been

associated with gastric distress and pain in the joints and lower extremities (20).

Increased rates of non-vertebral fractures due to fluoride treatment, have been reported

(20). Currently, the FDA is considering the approval of sodium fluoride as a therapeutic

alternative for the treatment of osteoporosis.
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Selective Estrogen Receptor Modulators (SERM)

Raloxifen

The challenge in estrogen research is to produce a risk free derivative of E2•

Raloxifen is a new drug on the market that reduces the risk of osteoporosis and heart

disease in postmenopausal women (37). It is a synthetic compound and a part of the

Selective Estrogen Receptor Modulators (SERMs) class of medication (37). It halts the

effects of estrogen by blocking E2 receptors in the breast and uterus (37). Delmas et al.

(37) studied 601 postmenopausal women who took either 60 mg Raloxifen or placebo

daily for two years. An increase in bone density of 1.2-1.6% was observed in the

Raloxifen-treated group along with a reduction in LDL cholesterol by 10% and no change

in HDL cholesterol. By comparison, estrogen generally increases bone mass by 3%-4%,

lowers LDL by 15%, and raises HDL by about 7%. Vaginal bleeding and hot flashes

were the most common adverse events in the Raloxifen-treated group. Raloxifen is less

potent than estrogen and it has a better safety profile regarding breast and uterine cancer

compared to ERT (37).

Ipritlavone

Ipriflavone (IP), a synthetic isoflavone derivative, has been reported to act as both an

anti-resorptive and bone forming agent. Ipriflavone has been shown to prevent bone loss
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in both humans (38,39) and animals (40).

The mechanism by which ipriflavone acts on bone, however, is unknown. Both direct

(41) and indirect (42) stimulation of estrogen-induced thyroid calcitonin secretion have

been suggested as possible mechanisms.

Nakamura et al. (43) examined the effects of ipriflavone on bone mineral density and

calcium regulating hormones and found that bone loss was inhibited possibly through

increased serum calcitonin levels (43). By using mouse cens, some investigators (44)

have demonstrated that the bone conserving mechanism(s) of ipriflavone involve the

inhibition of osteoclast formation and bone resorption (44), the inhibition of mature

osteoclast activity and formation (45), or the production of collagen by osteoblasts (45).

Others have reported potential effects of IP when used in conjunction with low doses of

estrogen (38). However, further studies are needed to elucidate the role of IP in the

treatment of osteoporosis.

Dietary Factors Influencing Bone Metabolism

Calcium

Calcium is the most abundant divalent cation in the body. About 1.5% of body

weight (1-1.2 kg) is calcium (46). Calcium is an essential nutrient for bone and soft

tissues. Ninety-eight percent of calcium is found in bone and the remaining 2% is found

in serum and soft tissues. In soft tissues, calcium is involved in regulatory mechanisms
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such as cellular secretion, blood clotting, and neurotransmission (46). Due to ultimate

calcium loss through urine, feces, and skin, calcium deficiency can be easily induced.

Calcium deficiency in developmental stages results in impaired growth and a weak

skeleton. Deficiency in adulthood and the elderly result in a decrease in BMD and

ultimately, osteoporosis (47). In a 14 year prospective population study by Holbrook et

al. (48), 957 men and women aged 50-79 years were studied in the period from 1973 to

1975 and then followed up to 1987. The baseline distribution of calcium intake (based on

a 24-hour intake report) was examined in relation to hip fracture in subjects with no prior

history of hip fractures during the14 year follow-up period. Also, the relations of protein,

fat, fiber, caffeine, trace minerals, vitarrUn D and vitamin C to hip fractures were

examined. The only factor consistently and significantly associated with the risk of hip

fracture was calcium. Although other nutrients may alter calcium absorption, calcium

ingestion was the limiting factor determining calcium availability. A moderate increase

in dietary calcium consumption for adults can significantly reduce the risk of hip fracture

(48).

Nieves et a1. (12) used meta-analysis to evaluate the influence of calcium

supplementation on the efficacy of estrogen and calcitonin on bone mass change in

osteoporotic patients. Twenty out of 31 published ERT trials were analyzed. Twenty of

these trials made diet modifications or used calcium supplement to adjust total

consumption to a mean of 1183 mg/day. Eleven trials did not make diet modifications

and had a mean intake of 563 mg/day. The analysis showed mean increases in bone mass

densities of lumbar spine,. femoral neck, and forearm when ERT was used alone of
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1.3%/y, O.9%/y and O.4%/y, respectively. When ERT was used in addition to calcium,

the mean increases to those sites were 3.3%/y, 2.4%/y, and 2.1 %/y, fespectively.

Such results indicate that calcium and ERT have synergetic effects on BMD of all

skeletal sites. This synergetic effect of calcium can be explained by a temporarily

increased demand for calcium by the pre-existing remodeling sites with the start of anti

resorptive treatment (12). This can be met through increased calcium intake. Although

estrogen increases calcium absorption, an additional 550 mg elemental calcium per day is

needed for the accomplishment of a BMD increase by 2% per year (12).

Factors which affect calcium bioavailability

Estrogen may be involved in the regulation of intestinal calcium absorption.

Arjmandi et aI. (49) investigated estrogen's role in calcium absorption. They detected

estrogen receptors (ER) by using immunocytochemical and northern blot analysis.

Imrnunochemicallocalization of E2-receptors in rat duodenum was reported in ninety-five

day old female Sprague Dawley rats. Specific nuclear staining of ER was detected in the

surface epithelial cells lining the lumen as well as glandular epitheli urn of the 17B

estradiol treated group (49). 17B-Estradiol (10.8 mol) caused at significant increase in

calcium uptake by the duodenal cells in vitro (49).

Arjmandi et 811. (50) investigated the in vivo effect of 17B-estradiol on intestinal

cakium absorption in rats. Arjmandi and colleagues reported that administration of 17B

estradiol caused an increase in intestinal calcium absorption dose-dependently. Both
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studies (49,50) support the role of estrogen in intestinal calcium transport indicating that

estrogen acts directly on the intestinal cells to promote calcium transport (49,50).

The consumption of protein, fiber, caffeine, alcohol, trace minerals, and vitamin D

can affect calcium bioavailability (48). Although protein is needed by bone for growth

and integrity, a diet high in protein will increase the acid load resulting from its high

content of sulfur-containing amino acids (51). As the body attempts to neutrahze urine

pH, it pulls more calcium fonn the serum with a resultant hypercalciuria (11).

Consequently, calcium mobilization from bone increases to maintain serum calcium

levels (51).

Fiber, the plant polysaccharides and lignin that resist hydrolysis by digestive enzymes

of man, is an important food component (52). Calcium absorption may be reduced by

increased fiber consumption such as cellulose or other fiber components found in wheat

bran. Fiber effect on calcium absorption can be explained by the increase in the bulk of

intestinal cont.ents, the decrease in the intestinal transit time and the propensity of fiber to

bind cations. Therefore; it can potentially reduce the time available for calcium

absorption. Fiber also causes proliferation of intestinal microbes which in turn bind

calcium and make it unavailable for absorption (52).

Caffeine consumption has a negative effect on calcium metabolism. In a study

conducted by Kynast-Gales and Massey (53), the effects of caffeine consumption on

calcium excretion in 17 healthy men and women were evaluated. On the first day they

received a diet containing 11.3 mmol calcium and 12.7 mmol magnesium for two days

but on the second day 3 mg/kg body weight caffeine was added to the diet. Six hours
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after caffeine administration, an increase in the urinary calcium excretion was observed

(53). Renal conservation could not compensate for the caffeine effect on calcium.

Cigarette smoking influences BMD especially in postmenopausal women (1).

Perimenopausal smo~ers may experience an earlier onset of menopause. These women

also have lower £2 as a result of an increase in E2 biotransformation by hepatic enzymes

(1). Postmenopausal women who smoke and use ERT also have lower circulating levels

ofE2 (1).

Alcohol's impact on bone metabolism depends on the level of its consumption.

Moderate alcohol consumption of 70-140 g/week resulted in decreased BMD in

perimenopausal women (11). In contrast, there are studies that have shown some

beneficial effects of alcohol on BMD when consumed in moderation (11). The

mechanism through which alcohol exerts its effects on bone is not clear. However

alcohol, in part, may exert positive effects on bone by increasing 17~-estradiol

concentrations (11); on the other hand, excessive alcohol consumption may result in

reduced calcium absorption and increased renal calcium excretion (11). This results in

significant decrease in calci urn content and thickness of bone with increased bone

fragility (11).

Vitamin D, glucocorticoids, and trace minerals have great impacts on calcium

balance. Vitamin D metabolites not only increase calcium absorption in postmenopausal

women but also decrease bone resorption and increase bone formation (17). Estrogen

replacement therapy enhances calcium absorption in postmenopausal women and

improves calcium profile (50).
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Glucocorticoids are commonly used to treat conditions such as arthritis, asthma, and

allergic skin disorders. Glucocorticoids may decrease both ca1cium absorption and

estrogen production in women and testosterone in men with a resultant bone loss (19).

This bone loss can result in osteoporosis. Bone loss is usually most rapid in the first 6

months and can lead to fractures in less than one year. To prevent the bone loss

associated with the treatment of these diseases, physicians should start treatment with the

lowest possible effective steroid dose with patients suffeI-jng from those diseases. Also,

the use of topical or inhaled fonnulations of steroid drugs is recommended with

maintaining calcium intake of 1500 mg! day and of 800 IUI day for vitamin D (19).

Vitamin D

Vitamin D reaches the liver from the smalJ intestine where it is hydrolyzed into 25

(OH) D3, the main form of vitamin in the blood. It has a long half-life of three weeks.

the kidney, it is further hydroxylated to 1,25 (OH)2 D3 which is considered the active

form of vitamin D with half-life of 4-6 hours. Vitamin D is important in stimulating
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calcium absorption (17,19). Liang et a1. (17) tested calcium uptake in rats at 3, 6, 12, and

24 months. They found that calcium absorption declines in duodenal cells of aged rats

with simultaneous decline in 1,25 (OH)2 D3 levels (17).

Human studies (18) have also shown that vitamin D levels decrease in

postmenopausal women. This decrease in vitamin D levels has been associated with

reduced calcium absorption which is corrected by supplemental vitamin D (18).
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Magnesium

Magnesium is a vital component of human cells and skeleton (54). Bone is the major

storage site for magnesium, holding 53% of body stores for magnesium (55). Serum

magnesium is very sensitive to dietary consumption and both bone and serum magnesium

are closely linked. Magnesium is involved in the function of more than 200 enzymes

including ATPase and in energy production (54). It has been reported that trabecular

bone of osteoporotic women has low magnesium levels similar to those of magnesium

deficiency (54). Balance studies (54,55) have reported that in osteoporotic women

magnesium intake is about 15% lower than in normal women. Magnesium retention

increases by 90% in magnesium deficient people after a parenteral magnesium load. A

similar increase in magnesium retention also occurs in osteoporotic women which

indicates magnesium deficiency in those women (54). The mechanisms by which

magnesium status affects osteoporosis are not clear, yet as magnesium is involved in most

enzymatic pathways, it would be multifactorial. Magnesium deficiency may destabilize

bone minerals by increasing the pH of bone extraceJlar fluids. Also, the formation of

1,25 (OHh D3 (calcitriol) needs magnesium. Low calcitriol will reduce both calcium and

magnesium absorption from the intestine (54).

Magnesium has been also reported to influence the qualitative changes in bone

matrix and hence, it plays an important role in osteoporosis. Calcium is known to

increase BMD by a mean of 0.8% per year (12). Even though calcium has been reported

to increase BMD, it might result in larger and more brittle bone crystals (56). Magnesium

has been shown to enhance bone modeling and remodeling through its enhancement of

osteoblastic and osteoclastic activities (55,56).

Magnesium deficiency results in cessation of bone growth, osteopenia and bone

fragility through decreasing both osteoclastic and osteoblastic activity (56).

Stendig-Lindberg et a1. (57) assessed the effects of magnesium deficiency on trabecular

23



bone density in postmenopausal osteoporot~c women. Bone density loss was documented

in a two-year prospective controlled therapeutic trial. Fifty-fouT women participated in

the study and received either treatment or placebo. The treatment group received up to

750 mg magnesium hydroxide daily for six months, foHowed by 250 mg per day for 18

months. Seventy-one percent of women experienced an increase of 1-8 % in trabecular

bone density (57).

Classen et al. (55) investigated the influence of magnesium deficiency in older rats

(aged 34 months) and the effects of magnesium preloading before giving the rats

magnesium deficient diet. Rats were fed 9000 ppm magnesium as a high diet, 300 ppm

magnesium as a marginal diet and 50 ppm magnesium as a low diet. The results showed

significant differences in serum magnesium and pelvic bone calcium content between the

high magnesium diet and the marginal magnesium diet. The appearance of erythema in

50% of the rats was significantly delayed from the 11 th day to the 17th day in the low

magnesium diet group which previously was fed a loading diet of 9000 ppm magnesium

for 14 days. Body weight decreased continuously and was not affected by magnesium

loading prior to administration of low magnesium diet. The delayed appearance of

erythema, a symptom of magnesium deficiency, when rats were preloaded by magnesium

before they have been given magnesium deficient diet shows the ability of the skeleton to

store magnesium (55).

Magnesium deficiency is frequently associated with chronic alcoholism and may

contribute to the 47% increased inddence of osteoporosis in the alcoholic population

(58). In alcoholics, histologic evaluation of bone biopsies confirmed a reduction in

trabecular, and to a lesser extent, cortical bone mass (58). This may be used as

explanation for the magnesium reduction in the alcoholic population. Magnesium

deficiency may increase bone loss through its effect on mineral homeostasis.

Hypocalcemia is considered a major complication of magnesium deficiency (58).
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Apparently, impaired PTH which lessens the PTH effects on kidneys and bone, is the

principal cause of hypomagnesemia-induced-hypocalcemia. Also, reduction in serum

concentrations of vitamin D in hypocalcemic-hypomagnesemic patients can be explained

by low PTH secretion. Low PTH enhances 1,25, (OH)2 D3 production through its effect

on I,25,(OHhD3 I-a hydroxylase enzyme (58). Hence, alcohol reduces magnesium

which causes calcium and vitamin D deficiencies and consequently low BMD with more

osteoporosis incidence (58).

Potassium

Potassium is the principal intracellular cation with a concentration of 145 m Eq lliter.

It influences muscle contraction, nerve tissue's excitability, and electrolyte and pH

balance (46,59). Under normal conditions dietary potassium intake is enough to maintain

cellular levels, but deficiency can develop as a result of massive intestinal fluid loss or

increased renal excretion (46,59).

Normally, a Jow level of metabolic acidosis and a positive shift in acid base balance

are correlated with metabolism of the consumed diet. An ordinary diet with high protein

value causes a shift in acid-base balance to the positive side (60). If this dietary

consumption were a life-long process it would present a continuous load on the body's

buffering system. As an accommodating mechanism, serum bicarbonate, the known body

buffering alkali, faUs but stabilizes at a lower level despite the continued acid retention.

Bone plays a central role in the acid buffering process. Base mobilization from the

skeleton helps stabilize the serum bicarbonate concentration (60). Such a buffering
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capacity of bone may contribute to reduced BMD. Sebastian et a1. (60) investigated the

contribution of bone in buffering a portion of the acid generated from the metabolism of

food in postmenopausal women. The researchers used metabolic-balance techniques to

assess the effect of alkali on bone metabolism when given in the form of potassium

bicarbonate (60 to 120 mmol potassium bicarbonate per day per 60 kg of body weight) to

18 healthy postmenopausal women eating a diet containing 16 mmol calcium and 96 g

protein per 60 kg body weight daily. The researchers studied calcium, phosphorus, and

acid-base balance. They also measured hydroxyproline excretion and serum osteocalcin

concentrations. The results indicated that potassium bicarbonate neutralized endogenous

acid production, as reflected by a sharp reduction in net renal acid excretion. In addition

urinary excretion of calcium and phosphorus fell without a change in net intestinal

absorption. Moreover, bone formation was stimulated, as indicated by a reduction in

hydroxyproline excretion (60).

Because potassium bicarbonate improves calcium balance through its effect as a

component of the serum buffering system, one would assume that it is the bicarbonate

part that is effective in improvement of calcium balance. This was not the case in the

study done by Lemann et a1. (61). They reported that the administration of sodium

bicarbonate rather than potassium bicarbonate to healthy men with a low level of

metabolic acidosis did not improve calcium balance. These results suggest an effect of

potassium rather than bicarbonate in the bicarbonate salt on calcium balance (61).
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Boron is the first member of metalloids or semiconductors which are intermediate

elements between metals and nonmetals. The chemical properties of metalloid elements

can not be readily predicted (62). In 1923, boron was accepted as being essential for

plants. Recently, however, accumulated evidence indicates that boron is essential for

animals and humans (62).

Boron is obtained from a diet rich in fruits, vegetables, nuts and legumes (62). Wine

(39.1 ppm), raisins (25 ppm), dried parsley (26.8 ppm) and caviar (5430 ppm) are

particularly rich sources of boron (62). The daily intake by humans is estimated to range

from 0.3-41 mg per day. Such a wide range is due to variation of the analytical methods

used and diner,ences in the soil content of boron (62). Increasing dietary boron results in

increases in the tissue concentration of boron. Although large amounts of boron are well

tolerated, an oral dose of 3-4 g in adults (63) and 1 g in infants (64) has been suggested to

be toxic. Boron deficiency depresses growth and reduces some blood indices, particularly

steroid hormone levels (62). Based on animal studies, it can be suggested that O.5mg I

day boron is the minimum daily requirement (62).

Boron is well absorbed from the gastrointestinal tract and excreted through the urine,

bile, sweat and breath (62). The retention of boron by tissues is inversely related to its

concentration in the diet (62). Boron has been found in all tissues but in smalJ amounts

and its concentrati.on in the human body is 0.04 mg/kg body weight (62). Based on

tissues obtained from two human cadavers, boron is distributed as foHows: skin, 7.8;

skeleton, 2.1; liver, 7.8; heart, 0.2; spleen and kidney, 0.1 (mg boron lorgan or tissues)

(62).

In chemical reactions boron accepts a hydroxyl group and leaves proton. It complexes

with organic compounds containing more than two hydroxyl groups with a stronger

affinity to hydroxyl groups (62). In humans, boron supplementation enhances the
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hydroxylation rate leading to enhanced fonnation of vitamin D, testosterone and 17~

estradiol. In animals boron supplementation particularly increases testosterone levels in

rat (62). At an alkaline pH, borate reacts with hydroxyl groups of estrogen and possibly

results in reduction in the hormone methylation (63). Boron competitively inhibits the

liboflavin-containing xanthine oxidase, the enzyme that converts xanthine oxidase to uric

acid (9). Boron, in vivo, seems to be more prominent in cases of magnesium and vitamin

D deficiency.

Boron has been implicated with a number of diseases because of its effect on plasma

steroid hormone concentrations and their diverse roles in metabolism. In a study

conducted by Nielsen et al. (26), 12 women aged between 48 and 82 years were housed in

a metabolic unit. A boron supplementation of 3 mg/day for 24 days after 119 days of

consuming a conventional diet with 0.25 mg/day boron reduced the urinary excretion of

calcium and magnesium in all the postmenopausal women. Calcium excretion was

reduced by 22 mg/day in the five women who consumed adequate magnesium and by 52

mg/day in the seven women who consumed a magnesium deficient diet. Boron

supplementation markedly elevated 1713-estradiol and testosterone (26). This effect was

more marked in the low-magnesium consuming women (26).

However in another study (65), supplementation of boron at 3 mg/day to

postmenopausal women for 3 weeks after a low boron diet (0.33 mg/day) did not

significantly change mineral metabolism, steroids or urinary pyridinium cross-links.

Fourteen subjects, five men aged over 45 years, four perimenopausal women and five

postmenopausal women on estrogen therapy were fed a low boron containing diet (0.23

mg/2000 kcal) for 63 days, then fed the same diet supplemented with 3 rng boron/day for

49 days. The diet was low in magnesium (lIS mg/2000 kcal) and marginally adequate in

copper (1.6 mg/2000 kcaI). A higher erythrocyte superoxide dismutase, serum enzymatic

ceruloplasmin, and plasma copper were reported during boron repletion than boron
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depletion (66). Boron is also capable of enhancing and mimicking some of the effects of

estrogen on bone (66).

Antioxidants

The biology of oxygen radicals:

The complete reduction of an oxygen molecule to water is a univalent pathway which

requires 4 electrons (67). Such a reduction results in several intennediates: superoxide

anion (02-), hydrogen peroxide (H20 2), and hydroxyl radical, (OH) Because of their

high activity, these intermediates must be contained. Superoxide dismutase (SOD)

eliminates °2-. Catalases and peroxidases eliminate H20 2. The release of OR' is

decreased to a great extent by elimination of O2- and H20 2 and by the action of

glutathione peroxidase (GSH-Px) (67). This pathway for oxygen is not a major route of

O2 consumption by biological system, but is important for some biological reactions, such

as autoxidation of catecholamines, leukoflavins, thiols and reduced ferredoxins (67).

Superoxide anion, °2- is produced by red blood cells (RBCs) during the conversion of

hemoglobin and myoglobin to methemoglobin and metmyog]obin. Methemoglobin

reductase, xanthine oxidase, and aldehyde oxidase are enzymes that are involved in the

conversion. O2- and H20 2 can form OR' which in tum forms ethylene, a potent oxidant.

SOD and catalases inhibit ethylene production by eliminating 02- and H20 2 (67).
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H 20 2 + H 20 2 ~ 2H20 +02

H20 2 + RH2~ 2H20 +R

} Superoxide dismutase

Catalases

Peroxidases
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Oxygen derived free radicals (ODFR) in osteoclasts

Key and colleagues (28) were able to detect ODFR in the media sUlTounding

osteoclasts. The reduction of nitroblue tetazolium (NBT) by cellular oxidants to

formazan (insoluble precipitate) was used as an indicator for ODFR, particularly

superoxide, production. Three media preparations of NET, NBT+SOD, NBT+ human

calcitonin (hCT) were added to three groups of isolated osteoclasts from the tibiae and

clavaria of Sprague Dawley rats. The optical density of NBT in the media contained

NBT+SOD and NBT+ hCT (human calcitonin) was compared to the optical density of

NBT alone in its media by using microspectrophotometric densitometry. The media of

NBT alone had the highest density indicating that SOD and hCT have reduced the

production of ODFR (28). Under the transmission electron microscopy (TEM) calvarium

tissue sections showed much more accumulation of forrnazan granules in the area where

ruffled borders of osteoclasts face bone surface than the sUlTounding tissues (28). This

shows ODFR production by osteoclasts. Superoxide dismutase is a large molecule which

can not cross the cell membrane. Its inhibition to forrnazan accumulation in the media

preparations (which represent osteoclastic extracellular fluid) and inside the osteoclastic

ceBs under the transmission electron microscopy indicates that the reduction of NET to

formazan involved O2 -. Superoxide is suggested to be produced by osteoclasts because

formazan was detected in the media sUlTounding the isolated osteoclasts. These results

indicated that OFDR may contribute to bone resorption (28).
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Oxidants as stimulators of signal transduction

Suzuki et a1. (68) defined signal transduction as a process that transmits the

extracellular message to the intracellular environment. Oxidative-reduction reaction

(redox) is a chemical regulator of signal transduction. Redox signaling is mediated by

reactive oxygen species such as 02- , H202, HO' and lipid peroxidases. These oxidants

induce biological processes such as cell growth, apotosis, and cell adhesion. In bone,

vitamin D3, PTH and interleukin-l use reactive oxygen species as second messengers to

signal for osteoclastic bone resorption (68).

Superoxide anion role in osteoclasts is suggested to be due to the reduction of

fonnazan in the media surrounding osteoclasts. Superoxide anion blocks both O2"

production and bone resorption by interleukin-l and PTH. The detection of the role of

catalases in osteoclastic bone resorption suggested a role for HzOz in osteoclast". Thus

oxidants have the ability to mimic stimulus-mediated signal transduction in the

physiological system.

Oxidants have been shown to stimulate Ca2
+ signaling by an increase or a decrease in

cytosolic Ca2
+ concentration. Some reports (68) show a direct interaction between Caz

+

channels and oxidants which results in Ca2
+ release from sarcoplasmic reticulum of

cardiac and skeletal muscles.

The destructive role of oxidants to biological components has been revised and a new

role as a regulator of physiological systems is considered. If so, then antioxidants may
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alter biological function by blocking oxidant-mediated signal transduction events,

Xu and Watkins (69) evaluated the effect of two doses of dietary vitamin E on tissue

lipid peroxidation, trabecular bone formation and epiphyseal growth plate cartilage

development. Two levels of vitamin E (30 and 90 IUI kg diet) were used. After 14 days,

in the group that was fed the high dose of vitamin E, thiobarbitmic acid reactive

substances (TBARS) were lower than in the group fed the low vitamin E diet. These

results indicate that the higher doses of vitamin E can suppress lipid peroxidation in

animal tissue (69). In the high vitamin E group, lower hypertrophic chondrocyte zone

(LHCZ) thickness was significantly increased which may be due to decreased cartilage

resorption at the metaphyseal site. This data agrees with current reports that vitamin E

protects against cellular lipid peroxidation in cartilage which helps in maintaining normal

bone growth and modeling (69).

Umegaki et a1. (70) investigated the influence of dietary vitamin E on DNA damage

in rat bone marrow. Low-vitamin E supplemented diet (30 mg Ikg diet) or a high-

vitamin E supplemented diet (1000 mglkg diet) were fed for 50 weeks. DNA damage was

evaluated using a micronucleus assay and sister chromatid exchange in bone marrow cells

at 6 weeks and 50 weeks periods. Results showed that lipid peroxidation in bone marrow

cells was higher in the low vitamin E diet group, while it was not lowered by increasing

vitamin E in the diet of the high vitamin E group (70). Neither at six weeks nor at 50

weeks did the change in vitamin E level in the diet affect bone marrow. There was no

increase in DNA oxidative damage rate due to diet change. This indicates that DNA is

well protected against oxidative damage in vivo (70).
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Cohen and Meyer (7 nexamined the effects of dietary vitamin E supplementation on

alveolar bone loss in the mandibular bone of Rice (Oryzomys palustris) rats. Two levels

of vitamin E were introduced for 35 days to low animal groups, then rats were assigned to

normal or high-stress environments. The stressed group was subjected to I-min. period

of a 30 rev I min cage rotation every 4 hours. As a result of stress, stressed animals

practiced an increase in catecholamines and glucocorticoids due to the release of

cytotoxic free radicals. Due to high variability, no significant effect of vitamin E was

seen. But in the non-stressed group, a significant protective effect of vitamin E against

alveolar bone loss was detected (71).

Vitamin A toxicity and deficiency have profound effects on bone. Zile et a1. (72)

designed an experiment to investigate vitamin A metabolism in rats. Male Holtzman rats

were fed a retinol-deficient diet or a retinol adequate diet with all other nutrients in

normal level concentrations. Animals were fed low calcium, retinol-deficient diet after

they had the assigned retinol-deficient diet for 14,21, or 28 days. Serum calcium was

detemtined every 2 to 3 days until the animals became severely deficient and died.

Animals fed retinol adequate diet were subjected to similar treatment. Calcium

mobilization from bone and maintenance of normal ~evels of plasma calcium were not

affected or only slightly altered by vitamin A deficiency indicating that PTH secretion and

function were not affected (72). Major abnormalities in collagen metabolism and

mineralization were seen in vitamin A deficient group. In the deficiency group, bone

maturation was not complete with development of hypertrophied cartilage and improperly

calcified bone. Vitamin A deficiency decreased alkaline phosphatase (ALP) activity in
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bone, which supports the postulate that vitamin A enhances bone fonTIation (72).

In a study by Metz et a1. (73), diets with different levels of vitamin A and vitamin D

were introduced to large male white turkey poults to test the interaction between these

two vitamins and skeletal development. There was a marked reduction in growth rate in

poults after both the high and low vitamin A treatments compared to other groups. All

birds developed lameness, and many were unable to walk. At necropsy, bones from the

deficient birds were soft and flexible; whereas cortkal bone was thin and bone was

fractured easily in the vitamin A deficient group. Vitamin A was effective in

ameliorating the acute toxicity associated with hypervitaminosis D. Higher dietary levels

of vitamin A were effective in preventing the tubular mineralization and growth

depression associated with hypervitaminosis D (73).

Seleno-proteins are involved in mechanisms of cell differentiation and defense.

Using 75-selenium metabolic labeling of viable fetal human osteoblasts (hFOB-cells), the

expression of seleno-protein like glutathione peroxidase (GSH-Px) has been identified by

Derher et a1. (74). Basal cellular glutathione peroxidase was further increased by the

addition of sodium selenate to the culture medium for three days indicating that selenium

can act as an antioxidant as well (74). Cellular and plasma GSH-Px expression in

osteoblasts indicates that antioxidants are needed by growing osteoblasts since GSH-Px

protects against HzOz produced by osteoclasts during bone remodeling (74).
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Phytoestrogens I Isoflavonoids

Phytoestrogens are naturally occurring compounds found in many foods.

Phytoestrogens are structurally or functionaHy similar to estradiol (27). Phytoestrogens

consist of a number of classes with lignans and isoflavones being the most common.

Lignans are found mainly in flaxseed, cereal bran, whole cereal, fruits and vegetables

while isoflavones occur at high concentrations in soybean, other legumes and clovers

(27). The Iignanic compounds: entero}actone, enterodiol, and matariesinol all have been

isolated in human serum, urine, feces, bile, and semen (27). They also have been isolated

in cow's milk.

The major isoflavones in soy are genistein and daidzein. Daidzein is formed from

formononetin and metabolized to equol and O-desmethyl-angolensin (O-DMA) and

genistein is formed from biochanin. Genistein, daidzein, and equal have been detected in

human plasma and equol in cow's milk (27).

Lignans and isoflavones estrogenic activities vary from weak estrogenic to anti-

estrogenic activities (tamoxifen-Iike activity). Relative potencies of isoflavones

compared with Ez (considered 100) were coumestrol (0.202), genistein (0.084), equal

(0.061) daidzein (0.013). The therapeutic effects of Jignans and flavonoids are antiviral,

bactericidal, antifungal, anti-inflammatory, and antiproliferative. Biochemically,

flavonoids are inhibitors of tyrosine kinases which playa key role in tumorigenesis,

topoisomerases I and IT, microsomal lipid peroxidation, superoxide anion formation, and

sodium, potassium, calcium dependent ATPase pump.
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isoflavone-derived agent structurally similar to naturally occurring phytoestrogens. exerts

a direct inhibitory effect on osteoclastic activity and a stimulatory effect on osteoblastic

activity (75).

Arjmandi et aL (76) reported lower liver lipid and liver cholesterol in ovariectomized

rats receiving ipriflavone or soy protein, compared to other groups. Also, the

ovariectomy-induced increase in abdominal fat was completely reversed by the soy

treatment. Arjmandi et al. (76) suggested that their results, together with the reported

effects of ipriflavone in preventing bone loss associated with ovarian hormone deficiency

(44,45), constitute a good foundation for a potential alternative therapy in treatment of

ovarian hormone deficiency associated heart disease and osteoporosis since it

demonstrates effects similar to those associated with estrogen (76).

Prunes

Prunes and prune juice are reported to be excellent sources of fiber, compounds with

antioxidant properties such as phenols and flavonoids, vitamin A and vitamin E,

potassium, calcium, and boron. Prunes are considered a good source of protein (77).

Processed prune juice which is a water extract of dried prunes, is unique in its

predominance of free amino acids: a amino butyric acid, citrollin, taurine, 0-

phosphoethanolarnine, and quinic acid (77). Boron concentration in prune is about 2.2

mg/lOOg (25).

The health benefits of prunes including its hypocholesterolemic effects have hardly
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been studied. The human study conducted by Tinker and colleagues (78) has shown that

consumption of 100 g prunes on a daily basis by hypercho.leslerolemic men lowers serum

total- and LDL-cholesterol concentrations. The cholesterol lowering effects of prunes

have also been studied in rats. In another study (79), when diet-induced hyperlipidemic

rats were fed prune fiber, they had significantly lower plasma LDL- and liver total-

cholesterol concentrations in comparison with control animals.

Although the beneficial effects of prunes on skeletal health have not been studied, it

is conceivable to propose such a role for prunes. Prunes are considered good sources of

vitamin A (199 RE compare to 3094 RE in carrot) (24) which is reported to stimulate

bone fonnation (73). Vitamin A activity of prune is due to the presence of various

provitamin A carotenoid compounds. In the prune the primary carotenoid is 0-carotene

(1.192 /lg ) (80). 0-carotene can prevent bone resorption as a potent antioxidant. Prune

contains 2.5 mg vitamin E per 100 g (24) which stimulates bone formation and reduces

bone resorption (70,71,72).

Prune has a good content of magnesium (24). Magnesium increases bone formation

and reduces bone loss (54,56,57). Prune also contains potassium which decreases bone

resorption (60,61). Selenium and boron are trace minerals found in prune and both are

reported to play roles in preserving BMD (9,66,74). Based on the functional properties

and nutritional composition of prune, it would be reasonable to assume a positive role for

prune in osteoporosis.
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CHAPTER ill

RESEARCH DESIGN AND METHODS

Appropriateness of the ovariectomized rat model

Ovariectomized rats were selected as the model used in this study because

postmenopausal bone loss is characterized in this experimental model and is similar to

the bone loss that occurs in postmenopausal women (81). The same mechanisms control

bone resorption and bone fonnation in rats and humans (81). The osteopenia associated

with estrogen deficiency in women and with disuse follows the same patterns of bone Joss

and bone tissue changes oecuning in the rat (81). Therefore, the rat skeleton provides a

good model of human osteoporosis. In this study, 90 day-old female Sprague-Dawley rats

were used because these rats are considered mature and their bones have nearly ceased to

grow longitudinally (81). Additionally, these rats show marked skeletal sensitivity to

ovx-induced bone loss in a relatively short period of time (81).

Experimental design

This study was designed to represent preventive intervention for postmenopausal
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bone loss due to ovarian hormone deficiency. Forty-eight (Table I) female Sprague-

Dawley rats, aged 90 days, were purchased from Harlan Sprague-Dawley (Indianapolis,

IN). On arrival at our institution, rats were individually housed in wire bottom cages and

kept in an environmentally controlled animal room. The rats were fed a semi-purified

casein-based diet, AIN-93M, (Table II) and acclimated for 4 days. Rats had free access to

deionized water throughout the study (50). When the animals were 95 days old they were

divided into four weight-matched groups (12 animals/group) using a complete block

design (Table I) (50). Under halothane anesthesia, bilateral ovariectomy or sham

operations were preformed (82). Treatment intervention (Table I) began after surgery and

continued for 45 days. The sham and ovx control groups continued to receive casein-

based diet (AIN-93M) whereas the prune treatment groups received similar powdered

diets in which 5% or 25% of diets were replaced with dried-powdered prune with known

composition. The prune was provided by the California Prune Board (Pleasanton, CA).

Guidehnes for the ethical care and treatment of animals from the Animal Care and Use

Committee of the Oklahoma State University were strictly followed.
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TABLE I

EXPERIMENTAL GROUPS

Experimental Groups

SHAM

Ovx I

IOVX=ovariectomired animal
1:n=5% prune diet
1-ID=25% prune diet

Surgery
Day 1

•
•
•
•

Treatment
Started
Day 2
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Casein
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HD

Sacrifice
Day 45
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TABLE II

COMPOSmON OF DIErS

Ingredients Control OVX-LD1 OVX-HD2

Casein (g) 140.0 138.5 I32.5

Cornstarch (g) 465.7 465.7 465.7

L-cysteine (g) 1.8 1.8 1.8

Maltodextrin (g) 155.0 155.0 155.0

Sucrose (g) 100.0 1,00.0 100.0

Oil (g) 40.0 39.75 38.75
.I
•,

Cellulose (g) 50.0 45.5 27.5
....

Vitamin Mix 3 (g) 10.0 10.0 10.0

Choline bitartrate (g) 2.5 2.5 2.5

4 0 50.0 250 \Prune (g)
1,

Minerdl mix (Ca, P deficienti (g) 13.4 13.4 13.4 ;1

1
Calciurn carbonate (g) 9.88 9.79 9.43 1

"';
I,

Potassium phosphate, monobasic (g) 5.6 5.48 5.0 J
...

Sodium phosphate, monobasic (g) 3.44 3.32 2.84

Potassium citrate, monobasic (g) 0.9 0.9 0.9

Sucrose (g) 1.78 2.02 2.98

lLD=5% prune

2HD=25% prune

3Vilamin Mixture; From Harlan Teklad, Madison, WI. (TD94047)

4Prune in dry powdered form provided by the California Prune Board (Pleasanton, CA).

5Mineral Mixture: from Harlan Teklad, Madison, WI. This mineral mix is a modification of AlN 76
formulation.
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Feces and urine colJection

Seven days prior to termination of the study, animals were housed individually in

metabolic cages, fed known amounts of food daily for 4 days and feces were collected for

four days. Carmine red (25 mg/IOO g food) was added to their food the first and last days

to mark the beginning and end of the fecal collection. However this was not effective

since the red color was masked by pigments present in prunes. Two days pIlor to the

termination of the study, rats were placed in metabolic cages and urine was collected

from 8:00 p.m. to 8:00 a.m. During this 12-hour urine collection period, rats had free

access to deionized water but no food. Urine was coIJected in acid-washed tubes and

acidified using 6 mol/L HCl. Samples were frozen at -20°C unti I analyzed (50).

Necropsy

At the termination of the study, animals received intraperitoneal injection of a

combination of xylazine (5 mg/kg body weight) and ketamine (100 mg/kg body weight)

anesthesia and were bled from their abdominal aortas.

Body and organ wei ghts

Animals initial and final body weights were recorded. Weights were recorded for

uterine tissue, liver, abdominal fat, spleen, heart, right and left kidney, and right and left
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adrenal gland for individual animals.

Blood processing

Blood samples were collected and centrifuged (4°C) at 1500 x g for 15 minutes and

serum was immediately aIiquoted into small volumes (83) and stored at -20°C until

required for analysis. Serum parameters, including 17~-estradiol, alkaline phosphatase

(ALP) and tartrate-resistant acid phosphatase (TRAP) activities were determined.

Serum alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP)Serum

ALP and TRAP activities were determined colorimetrically using commercia) kits

from Sigma Diagnostics, Inc. (St. Louis, MO) (84). Based on optimized methods, the rate

of increase in absorbance due to the formation of p-nitrophenol which is directly

proportional to ALP activity was measured al405 nm. The rate of formation of TRAP

which is proportional to acid phosphatase activity, was measured at 405 nm by the diazol

dye formation rate.

These tests were peIformed on a Cobas-Fara Il Clinical Analyzer (Montclair, NJ)

following the manufacturer's instructions and using commercially available calibrator and

quality control samples.
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Bone processing

Right femurs, right tibiae and fourth lumbar vertebra were dissected, cleaned of soft

tissues and stored in stoppered glass vials at -20°C. For determination of bone density,

each femur, tibia and vertebra was placed in an unstopped glass vial filled with deionized

water. The vial was placed into a dessicator connected to a vacuum for 90 minutes so

that all trapped air diffused out of the bone (83). The bone was weighed in a boat

completely immersed and suspended in deionized water previously equilibrated to room

temperature (83). The bone was returned to the deionized water in the vial. Next, the bone

weight in air was determined by blotting the bone with a tissue and re-weighing it in air.

The bone density was calculated by Archimedes' principle (83):

bone density = bone air weight
bone air weight - bone under water weight

Bone mineral density and bone mineral content of 4th lumbar vertebrae were also

measured by dual x-ray absorptiometry (DXA)

The lengths of the femurs were measured to the nearest 0.1 mm using a vernier

caliper. Bones were dried overnight (90-95°C), weighed, then ashed in covered crucibles

at 600°C for 16 hours, cooled and weighed to determine the percent mineral content.

Bone chemistry

Femur, tibia, and 4th lumbar vertebrae were extracted after measuring BMD. Bones

obtained from each animal were rinsed with phosphate buffered saline and extracted in a
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solution of Triton X-lOO (containing 0.02% sodium azide) for 72 hours at 4 °c and then

centrifuged. Bone ALP and TRAP activities and total bone protein were measured from

aliquots of bone extract using the Cobas-Fara 11 Clinical Analyzer. Detection of bone

ALP and TRAP activities were based on colorimetric reactions using commerciaHy

available IGts from Sigma Diagnostics,Inc. (St. Louis MO). These tests were perfonned

on a Cobas-Fara II Clinical Analyzer (Montclair, NJ) following the manufacturer's

instructions and using commercially available calibrators and quality control samples.

Inorganic constituents of the right femur, right tibia, and the fourth lumbar vertebra

were determined from the ashed bone. After measuring bone enzymes, bone was ashed in

porcelain crucibles overnight at 600°C. Ashed samples were diluted with 0.5% nitric

acid and 0.5% lanthanum chlOlide solution. Bone calcium and magnesium were analyzed

using atomic absorption spectrophotometry (Model 5100 PC, Perkin-Elmer, Norwalk,

CT), and levels were expressed as milligram of calcium or magnesium per gram bone.

Urine Parameters

Urine was conected over a 12-hour period, preserved with 6 moUL HCL and stored at

-20°C until analyses were prefonned. Urine hydroxyproline was measured as an index of

bone collagen content following the methods of Bergman and Loxley and reported in Jlg

per mg creatinine. Creatinine was measured calorimetrically using a commercially

available kit from Roche Diagnostics (Branchburg, NJ) based on the 12-hour night urine

volume using Cobas-Fara II Clinical Analyzer (Montclair, NJ). Urine calcium and

magnesium were analyzed by diluting urine samples with 0.1 % nitric acid and 0.1 %

lanthanum chloride solution. Bone calcium and magnesium were analyzed using atomic
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absorption spectrophotometry (Model 5001 PC, Perkin-Elmer, Norwalk, CT), and

concentrations were expressed as milligrams of calcium or magnesium per gram bone.

Fecal parameters:

The collected feces were stored in polyethylene tubes and kept frozen at -20De.

Dried feces were ground and one gram was weighed and ashed in porcelain crucibles

overnight at 600°C. The ashed samples were diluted with 0.5% nitric acid and 0.5%

lanthanum chloride solution. Fecal calcium and magnesium were analyzed using atomic

absorption spectrophotometry (Model 500 I PC, Perkin-Elmer, Norwalk, CT) and

concentrations were expressed as milligrams of calcium or magnesium per gram bone.

Statistical and data analysis

Data analysis (Graph Pad Instat Software version 2.00, 1993, San Diego, CA)

involved estimation of means and SD for each of the groups (85). Analysis of variance

(ANOVA) was performed to determine whether there were significant (p < 0.05)

differences among the groups. When ANOVA indicated a significant difference among

the means, the Tukey-Kramer multiple comparison test was used to determine which

means were significantly different.

The primary statistical analysis was conducted to determine the effect of the

independent variable treatments ovariectomy, 5% prune diet and 25% prune diet on the
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dependent variable, BMD, measured for the right femurs, right tibiae and the fourth

lumbar vertebra. An ANOYA was perfonned for each outcome variable(85). Statistical

significance was set at p < 0.05 for aU analyses.

A secondary analysis was done to detemline whether the effect of treatment on BMD

was reflected by biochemical markers of bone metabolism. An ANOYA was perfonned

for each dependent variable: the % mineral content of the femur, tibia, and vertebra;

femur calcium and magnesium; serum ALP activity; serum TRAP activity; urinary

hydroxyproline; and creatinine concentrations. If the ANOYA was significant, the means

for each treatment group were compared to the sham and ovx control groups. For each

ANOYA, the Tukey-Kramer multiple comparison procedure was used to control for Type

I error (85).

47



CHAPTER IV

RESULTS

Food intake. body weights, and organ weights

Sham animals consumed significantly (p<0.05) less food than ovx control group

animals (Table III). There were no significant differences in food intake among the ovx

groups (Table III). Although all animals started with similar body weights, at the end of

the study all theovx groups regardless of dietary treatments had a significantly higher

mean body weight than the sham group (Table III). Among the ovx groups, the ovx LD

mean weight gain was significantly (p<0.05) higher than ovx control group but not

significantly different from ovx lID group (Table ilI). As expected, the mean uterine

weight (g) of the animals in the ovx con~rol group was significantly lower than the sham

group (Table Ill) indicating the success of the ovariectomy. Furthermore, prune diets had

no uterotrophic effects on ovx groups, indicating the lack of estrogenicity in prunes. The

mean weights of heart, kidneys, and adrenal glands, when expressed per 100 g body

weight, were significantly (p<0.05) lower in ovx animals than the sham (Table III). There

were no differences among the groups in mean liver, spleen, and abdominal fat weights

when expressed as g per 100 g body weight.
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Bone length and density

The mean right femoral (Table V) and tibial (Table VI) lengths in ovx-control

animals were significantly (p<O.05) greater than the sham animals. Prune treatments did

not significantly affect the ovx-induced increase in femoral and tibial length.

The ovx-control animals had significantly (p<O.05) lower 4th lumbar vertebral bone

mineral densities than the sham animals (Table IV). The 4th lumbar bone mineral density

was not significantly changed by 5% prune diet, but the loss was completely prevented by

25% prune diet as indicated by the significantly higher BMD for ovx-HD than that for

ovx-control group. The 4th lumbar vertebral bone density data were also confirmed using

dual-energy x-ray absorptiometry (DXA) which gave similar results (Table IV).

The mean femoral density for ovx-control was significantly (p<O.05) lower than for

sham animals (Table V). Similarly, the mean tibial density of ovx-control group was

significantly (p<0.05) lower than the sham animals (Table VI). High dose prune, but nol

LD prevented this ovx-induced tibial bone loss.

The ovx-induced bone mineral density loss was not affected by 5% prune in the diet

but was completely prevented by 25% prune in the diet for tibia and 4th lumbar vertebra

(Table IV and VI).

Bone mineral contents

Percent mineral content of fourth lumbar vertebrae was significantly (p<O.05) lower

for the ovx-control animals than the sham animals (Table IV). Ovx-HD group had
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significantly (p<O.05) greater fourth lumbar percent mineral content than both the ovx

control and the ovx-LD groups (Table IV). Fourth lumbar magnesium (glwhole bone)

was significantly greater in ovx-I-ID animals than the ovx-control group (Table IV).

Fourth lumbar magnesium (g/whoIe bone) was not significantly different in ovx-control

than in sham group or in ovx-LD group (Table IV).

Right femoral percent mineral contents of the ovx animals were not significantly

affected by prune treatments (Table V). Ovx-contro] group had significantly (p<O.05)

lower femoral magnesium concentration (g/ g bone) than the sham group. The 25%

prune in the diet had significantly (p<O.05) greater magnesium concentrations than both

ovx-control and ovx-LD groups (Table V).

There was no significant difference in magnesium (mg! whole bone) content of ovx

control group of tibia than of the sham. Ovx-lID group had significantly (p<O.05) higher

magnesium concentrations than the sham group in tibia (Table VI).

Bone alkaline phosphatase activity (ALP)

Fourth lumbar vertebral ALP activity (DIg bone) was not significantly different in

ovx-control group in comparison with the sham group. However, its activity was

significantly (p<O.05) lower in ovx-LD group in comparison with ovx-control group

(Table IV). There was no significant difference among all groups in femur ALP activity

(Table V). Tibial ALP activity (UI whole bone) was significantly (p<O.05) greater in the

ovx-control animals in comparison with the sham animals (Table VI). Both ovx-LD and

ovx-HD groups had significantly (p<O.05) lower tibial ALP activities than the ovx

control group but not significandy different than the sham group (Table Vl).
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Serum alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP)
activity

Mean serum ALP activity did not differ among the treatment groups (Table VII).

The ovx-control group had significantly (p<O.05) greater serum TRAP activity than the

sh"am group. There was a trend in mean serum TRAP activity in the ovx-HD group

showing a lowering effect of 25% prune diet on serum TRAP activity in comparison with

ovx control group (Table VII).

Urinary calcium, hydroxyprohne, and creatinine

Mean calcium, expressed as either mg calcium per 12-hour urine or mg calcium per

mg creatinine, was not significantly altered by ovariectomy, however, both LD and HD

prune diets elevated urinary calcium excretion. However, mean urinary cakium excretion

was significantly (p<O.05) greater only in HD compared to ovx-control group (Table

Vill)" Mean urinary hydroxyproline concentrations, when expressed in terms of Ilg per

mg creatinine, were not affected by ovariectomy or prune treatments (Table VllI).

Fecal mineral content

Fecal mineral concentration was not significantly different in the ovx-control group

compared with sham group. There was a significant (p<O.05) decrease in mean mineral

concentration of feces in lID group compared to the LD group (Table IX). However,

among the ovx group, LD and the HD prune diets dose dependently lowered fecal mineral

content (p<O.05) for both groups in comparison with ovx-control group.

51

•



Fecal magnesium concentration did nol differ in ovx-control group from the sham

group. Fecal magnesium concentration was significantly (p<O.05) lower in ovx-HD than

in ovx-control (Table IX).
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TABLEID

Effects of Ovariectomy, 5% Prune Diet (LD), 25% Prune

Diet (lID) on Food Intake, Body and Organ Weights

Parameter Sham-Control Ovx-Control Ovx- LD Ovx- HD P value

IFood Intake b 16.4 ± LOa 16.2± 1.03 14.7 ± 0.9a
.
b <0.0044

(g/rat/day)
11.9 ± 0.7

Body Weights
(g)

Initial 227.8 ± 2.2 228.3 ± 2.3 226.2 ± 1.7 231.5 ± 1.8 >0.3169

Final b 313.9 ± 4.8a 328.5 ± 4.8'1 327.8 ± 3.53 < 0.0001265.6± 4.0

Weight gain 41.5 ± 3.2c b 102.3 ± 4.1 3 96.3 ± 4.33 ,b < 0.000186.4 ± 4.7

Organ Weights
(wtJIOOg body wt)

Liver 2.756 ± 0.082 2.649 ± 0.077 2.492 ± 0.066 2.696 ± 0.063 >0.0763

Spleen 0.233 ± 0.010 0.231 ± 0.006 0.236 ± 0.005 0.232 ± 0.008 >0.9755

Uterus 0.265 ±0.019a b 0.044 ± 0.004b 0.044 ± O.003b < 0.00010.045 ± 0.003

Kidney 0.674 ± 0.0183 0.575 ± 0.017b 0.548 ± O.oI5b b < 0.00010.554 ± 0.016

Heart 0.368 ± 0.0103 0.328 ± O.OlOb 0.322 ± 0.007b 0.320 ± 0.D08 b <0.0012

Adrenal 0.038 ± 0.002a 0.028 ± 0.002b O.029±0.OOl b 0.029 ± 0.00 Ib < 0.0001

Abdominal fat 2.016 ± 0.154 1.324 ± 0.183 2.061 ± 0.260 1.335 ± 0.194 <0.0114

Values are means ± S

a.b.c Within a row, values that do not share the same superscript letters are significantly (p<0.05) different
from each other.
lMean food intake from a six days collection
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TABLE IV

Effects of Ovariectomy, 5% Prune (LD), 25% Prune (lID) on 4th Lumbar Pal'ameters

Parameter: Sham Ovx Control Ovx-LD Ovx-HD p values:
4TH Lumbar: Sham vs. Ovx vs. Ovx VS. Ovx-LD VS. Overall

ovx-cont Ovx·LD Ovx-HD Ovx-HD
IBMDCDXA) 0.238 ± 0.009" 0.216 ± O.OlOb 0.223 ± 0.011 b 0.235 ± 0.010· <0.001 ns <0.001 <0.05 <0.0001

BMD (displacement) 1.275 ± 0.020.0 1. 240 ± 0.020b 1.247 ± 0.020bo 1.302 ± 0 040" <0.01 ns <0.001 <0.001 <0.0001

2BMC 0.117 ± 0007 0.I11i0010 0.115±00]2 0.119 ± 0.010 ns ns llS n5 >0.2978

%Mineral Content 60.10 ± 0.74" 57.42 ± 0.91 b 57.15 ± l.4Sb 59.05 ± 1.04" <0.00] ns <0.01 <0.001 <0.0001

'J>
Calcium (mglg bone) 206.00 ± 7.30 202.00 ± 8.87 198.00 ± 1824 204.00 ± 10.45-+:0 ns ns ns ns >0.3936

Calcium (mgl whole bone) 41.32 ±3.02 39.14 ± 3.73 40.73 ± 4.42 43.24 i 3.01 11S 11S 11S ns 0.0578

Magnesium (mglg bone) 3.97 ± 1.26 3.85 ± 0.41 4.-+4 ± 0.65 4.57 ± 0.61 ns ns I1S ns 0.0937

Magnesium (mglwhole bone)O 79 ±0.24"b 075 iO,12b 0,91±0.13"b 0,97±015" I1S ns <0.05 ns <0.0079

Protein (mglg bone) 0.68±0028 0.82 ± 1. OOab 0.87 ± 0.2b 0.89 ± 0.19b ns ns ns ns <0.0226

Protein (mgl \\hole bone) 0.137 ± 0.038 0156 ± 0.0220 o178 ± 0.040bo 0.189 ± 0.043 ab 11S ns ns ns >0.6163

3ALP activity (Ulg bone) 6.06 ± 1 728 5.78 ± 2.030..0 362 ± 1.70b 3.83 ± 2.08b
,0 ns <0.05 ns ns <0.0023

ALP activity (Ulwhole bone) 1.223 ± 0.353' 1.1 02 ± o. 349ab 0.744 ± 0.357b 0.808 ± 0.416° 11S 11S 11S ns <00055

",b"Within a row, values that do not share the same superscript letters are siinrncantly (p<O. 05 )different from each other.

Values are means ±SD; n==12; ns= not significant (p>0. 05)
lBMD: Bone Mineral Density: 2BMC: Bone Mineral Content, 3ALP: Alkaline Phosphatase
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TABLE V

Effects of Ovariectomy, 5% Prune (LD), 25% Prune (HD) on Femur Parameters

Parameter Sham Ovx Cont Ovx-LD Ovx-HD P values:
Femur: Sham vs. Ovx V8 Ovx vs, Ovx-HD vs, OveraJl

oyx-cont Ovx-,LD Ovx-JID Ovx-LD
Length (em) 3.669 ± 0,059b 3,690 ± 0.062" 3.685 ± 0.0598 3.658 ± 0,0708 <0.001 ns ns ns <0,0001

I BMD (displacement) L.517±0,0238 1.475 ± 0.054b 1.469 ± 0.022b 1.506 ± 0.057b <0.05 ns ns I1S 0.0163

%Mineral Content 63.54 ± USB 61.85 ± 1.23b 60.95 ± 1.03b 62.10±1.2b <0.01 n8 ns ns <0.0001

Calcium (mg/g bone) 234.0 ± 10,7 232.0 ± 13.7 224.0 ± 20.6 237.0 ± 26.6 ns ns ns ns 0.3872

VI
Calcium (mg/lI'hole bone) 136.0 ± 8.6 1370±9.0 136.0 ± 13.0 142.0 ± 9.0 ns ns ns ns 0.4044

VI

Magnesium (mg/g bone) 4.963 ± 0.5078 4.412 ± 0.413< 4.410 ± 0.397° 4.784± 0.523 b <0,05 ns <0,001 <0,001 <0.0001

Magnesium (mg/whole bone) 2.880 ± 0322 2,614 ± 0.275 2.680 ±0.258 2.858 ± 0,202 ns ns ns ns 0.0439

Protein (mg/g bone) 1.41 ±0,46 1.19 ± 0.46 U9±0.39 1.13 ±0,32 ns ns ns ns 0.2460

Protein (mg/whole bone) 0.812 ± 0.250 0703 ± 0.270 0,849 ± 0.260 0.697 ± 0.2]0 ns ns 11S ns 0,3357

~ALP activity (Ulg bone) 1.50 ± 0,54 138 ± 0.46 1.56±0.4] 1.51 ±0,32 ns ns 11S ns 0.7839

ALP activity (Ulwhole bone) 0.870±0300 0820 ± 0.260 0957 ± 0.280 0.929±0,210 ns I1S 11S ns 0,5926

a,b,OWithin a row, values that do not share the same superscript letters are significantly (p<O. 05 )different from each other.
VaJues are means! SD; ns = not significant rp>0.05)
I BIv.lD· Bone MineraJ Density, 2ALP: Alkaline Phosphatase
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TABLE VI

Effects of Ovariectomy, 5% Prune (LD), 25% Prune (00) on Tibia Parameters

Parameter Sham Ovx Control Ovx-LD Ovx-HD p values:
Tibia: Sham vs Ovx vs Ovx VS. Ovx-LD VS. Overall

ovx-cont Ovx-LD. Ovx-HD Ovx-HD-
Length (em) 3.919±0067" 4.023 ± 0.044" 4.052 ± 0.058· 4.012 ± 0.050· <0.001 ns TIS TIS <O.OOOL

1BMD (displacement) 1.557± 0.024" 1.51O±0.029b
.
o 1.523±0.042"o 1. 556 ± 0.040· <0.01 ns <0.05 ns <0.0025

%Mineral Content 63.85 ± 2.08 63.53 ± 060 63.48 ± 0.79 63.29 ± 065 ns ns ns ns 0.7207

Calcium (mg/g bone) 253.0 ± 30.9 244.0 ± 23.0 243.0 ± 19.0 238.0 ± 12.0 11S ns 11S ns 0.4157
V>
C\

calcium (mg/ li>hole bone) 111.0 ± 14.2 111.0±14.0 111.0 ± 10.0 110.0 ± 7.2 n5 I1S ns ns 0.9956

Magnesium (mg/g bone) 4.924±0.418 4.884 ± 0.677 5.051 ± 0.696 5.180 ± 0.304 ns 11S us ns 0.5465

Magnesiwu (mg/whole bOlle) 2.160 ± 0] 89b 2.205 ± o273"b 2.306 ± 0.240·b 2.391 ± 0.084" ns ns TIS 115 0.0368

Protein (mg/g bone) 1.68 ± 0.55 1.49 ± 0.57 1.60 ± 0.58 1.27 ± 0.33 ns 11S 11S 115 0.2400

Protein (mghvhole bone) 0.734 ± 0.240 0675 ± 0.270 0.736 ± 0270 0587 ± 0.150 11S us ns ns oj"751

2ALP activity (Ulg bone) 1.84 ± 0.48b 1.82 ± O.64b 1.89±0.58b 1.89 ± 0.52· TIS n$ <0.01 <0.001 <0.0001

i\LP activity (U/whole bone) 0.805 ± 0.210b 1.32 ± 0.300· 0.874 ±0.290b 0.871 ± o230b <0.001 <0.001 <0.001 ns <0.0001

a,b.o Within a row, values that do not share the same superscript letters are significantly (p<O. 05 )different from each other.
Values are means ~ SD; ns == not significant (p>O 05;
lB:MD: Bone Mineral Density
2ALP= Alkaline Phosphatase
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TABLE vn

Effects of Ovariectomy, 5% Prune (LD), 25% Prune (I-ID) on Serum

Alkaline Phosphatase (ALP) and Tartarate-Resistant Acid Phosphstase (TRAP).

Parameter: p values:
Serum: Sham Ovx Cont Qvx-LD Ovx-HD Sham vs. Ovx vs Ovxvs Ovx·LD vs. Overall

Ovx-cont Ovx-LD Ovx-HD Ovx-HD
ALP activity (UlI) 82.0 ± 15.5 95.7 ± 31. 7 90.5 ± 23.8 97.4 ± 14.9 ns ns ns I1S 0.3206

TRAP activity (U/L) 1.70±071° 2.90 ± 1. OO",b 3.50 ± 0.67" 2.60 ± 0.4Sb <0.01 ns ns <0.05 <0.0001

..b,o Within a row, values that do not share the same superscript letters are significantly (p<O. 05 Jdifferent from each other.
Values are means ± SD; n=12
ns=110t slgnifican t (p> O. 05)
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TABLE VIII

Effects of Ovariectomy, 5% Prune (LD), 25% Prune (lID) on Urine Parameters

Parameter: p values:
Urine: Sham Ovx Cont Ovx-LD Ovx-HD Sham vs. Ovx vs. Ovx VS. Ovx-LD VS. Overall

Ovx-cont Ovx-LD Ovx-HD Ovx-HD
Calcium (mgl12 hrs urine) 0.483 ± 0.260b 0.569 ± 0440 b i.:f89 ±1. 790b 2.211± 1.390B ns fiS <0.05 os <0.0123

Calcium (mg Img creatinine) 0.216 ± 0.242b 0.162 ± 0.122b 0.291 ± 0.269b 0.508 ± 0.3163 ns 11S <0.05 os <0.0170

Magnesium (mg/12 hrs urine) 0.584 ± 0.611 0.877 ± 1.270 0.467± 0.240 1.205 ± 1.670 ns ns ns ns 0.4074

Magnesium (mg /mg creatinine) 0.325 ± 0.574 0.239 ± 0.314 0.120 ± 0.040 0.256 ± 0.306 os ns ns os 0.5526

'J! Hydroxyproline (pglmg creat) 17.38±11.15 17.38±6.21 18.02 ± 6.78 15.47 ± 3.52 fiS 115 n5 ns 0.828000

'1.b.o Within a row, values that do not share the same superscript letters are significantly (p<0. 05 )different from each other.
Values are means ± SD: n=12
11S= not significant (p>O. 05)
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TABLE IX

Effects of ovariectomy, 5% Prune (LO), 25% Prune (lID) on Fecal Parameters

Parameter p values:

~ Sham Ovx Cont Ovx-LD Ovx-HD Sham vs. Ovx vs. Ovx vs. Ovx-LD vs. Overall
Ovx.-cont Ovx-LD Ovx-HD Ovx-HD

% Mineral Content 14.08 ± 1.24"b 14.93 t 1.80" 13. 25 t 1.18b 10.34 t 0.400 ns <0.05 <0.001 <0.001 <0.0001

Calcium (mglg feces) 47.45 ±5.80" 44.37 ±5.80"0 39.96 ± 2. 80bo 34.82 t 3. 50bons us ns ns <0.0002

Magnesium. (mglg feces) 3.09 ±0.52" 3.11 to.56" 2.95 t 0.56" 1. 91 t 0.23b ns ns <0.001 <0.001 <0.0001

ali,o Within a row, values that do not share the same superscript letters are significantly (p<O. 05 )different from each other
Values are means ± SD; n=12
I1S= not significant (p>0.05)



CHAPTER V

DISCUSSION

The purpose of this study was to compare the effect of high dose (25%) and low dose

(5%) prune on bone, bone mineral densities, and bone parameters in ovariectomized rats.

Because, we fed the prune diets immediately after the surgery, any effects on bone we

observed in 5% prune or 25% prune can be attributed to a preventive property of prune in

ovarian honnone deficiency. The significantly higher food intake of ovx-control animals

compared to sham animals was a result of ovariectomy. This agrees with the findings of

Arjmandi et 811. (76) and Kalu et 811. (83) who reported significant increases in food intake

of ovariectomized animals in comparison with sham animals. Arjmandi et 811. (76)

reported that administration of estrogen to ovariectomized rats decreased their food

intake. The significantly higher final mean body weights and weight gains of

ovariectomized animals compared to the sham animals suggest a shift in energy

metabolism due to ovarian hormone deficiency (76). Human (83) and animal (76,83)

studies that investigated estrogen effects on ovx-induced increased body weight have

concluded that there is a regulatory role for E2 on the rate of energy influx. Uterine

weight was significantly lower in the ovx-control compared to the sham group. This is an

expected effect of ovx on uterus due to the Jack of estrogen (49).
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The fact that prune did not increase the uterine weight of the ovx animals indicates a

lack of estrogenicity of prune at least as far as the uterus is concerned. This suggests that

prune may exert its action on bone tissue in a way different than that of estrogen.

Since abdominal fat did not significantly increase in the ovx-control group and organ

weights tended to be similar with the sham, the increase in body weight may be due to the

increase in muscle weight rather than organ weights.

Femur and tibial lengths were significantly higher in the ovx-control group than in

the sham group. This may be due to a transitory increase in GH synthesis and secretion in

ovariectomized rats as suggested by Kalu et a1. (83).

Bone densities of 4th lumbar vertebra, femur, and tibia were significantly lower in

ovx control groups than in the sham group. These findings arc in agreement with those of

Arjmandi and colleagues (50). This can be explained by the lack of estrogen in ovx rats

which accelerates the rate of bone turnover (32). High-dose prune diet may prevent BMD

loss by different mechanism(s) than that of estrogen.

Percent mineral content of the ovx-HD group was significantly higher than that for

the ovx-control group in the 4th lumbar vertebrae but not significant in femur or tibia.

Although prune is a good source of fiber which might have increased fecal mineral loss,

percent mineral content of feces was significantly lower in both 5% and 25% prune diets.

We speculate that prune diet may alter the pH of the digestive tract and that might

increase mineral absorption. Together, these findings suggest that the increase in BMD,

in part, may be associated with enhanced calcium absorption, an important factor in bone

mineralization. The reason that percent mineral content is significantly higher with 25%
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prune in the 4
th

lumbar vertebrae but not in femur or tibia may be explained, in part, by

bone biology. Lumbar vertebrae are predominately made of trabecular bone which is

more sensitive to changes in bone turnover than cortical bone from which femur and tibia

are made (32). Prune is a good source of antioxidants such as phenolic compounds,

vitamin E, f)-carotene and selenium (24). Oxidants have a deteriorating effect on BMD

as they accelerate bone resorption by osteoclasts (28,70). Vitamin E protects against

cellular peroxidation in cartilage which helps in maintaining normal bone growth and

remodeling (71). Vitamin A enhances bone growth and development and its deficiency

results in a decrease in serum ALP activity and an increase in hydroxyproline in unne

indicating that it stimulates bone formation and suppresses bone resorption (73).

Selenium can act as an antioxidant through its effect on GSH-Px (74).

Incorporation of 25% prune into the diet tended to decrease TRAP activity. Hence,

antioxidant activity of prune together with suppression of bone resorpbon and enhanced

mineral absorption may be important in protecting BMD loss.

Another reason for a protective effect of prune may be due to enhanced magnesium

absorption and its incorporation into bone as was the case in this study. In this study, the

magnesium concentrations of 4th lumbar vertebra and femur of rats receiving the 25%

prune diet were significantly higher than the ovx controls.

Additionally, magnesium is involved in most enzymatic pathways including vitamin

D 3 synthesis which regulates calcium and magnesium absorption (54). Therefore, this

mechanism could justify a postulated role for magnesium in a better bone mineralization.

Magnesium is also involved in osteoclastic and osteoblastic activities and hence
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influences bone metabolism in general (55). Magnesium stabilizes bone minerals by

decreasing the pH of extracellular fluids of bone cells (55,56).

Fourth lumbar vertebral protein content also increased significantly in 25% prune fed

animals in comparison to ovx-controls. Since the bone matrix is mainly collagen protein,

the increased bone content of protein may enhance the vital processes preformed by the

matrix such as bone cells fonnation.
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CHAPTER VI

CONCLUSION, RECOMMENDATIONS, AND SUMMARY

CONCLUSION

In the first few years following menopause or surgical ovariectomy, both osteoblastic

and osteoclastic activities are increased in women (32). Serum and urinary biochemical

indices of bone turnover such as urinary hydroxyproline, serum alkaline phosphatase, and

serum tartrate-resistant acid phosphatase acti vities are used for their reflection of bone

metabolism activities. Local bone factors such as IGF-I and IGFBP-3 may playa role in

increasing osteoblastic activity following ovarian hormone deficiency.

The results of this study suggest that prune is capable of preventing hone Joss in

ovarian hormone deficiency. Bone protective mechanisms of prune may differ from those

of estrogen as it is indicated by uterine weight. Prune may enhance bone formation and

suppress bone resorption as observed by serum indices of bone turnover.

Beneficial effects of prune may be due to a number of factors including: its contents

of minerals, vitamins, and diphenolic compounds that are known to positively influence

bone metabolism. Prune may enhance intestinal absorption of minerals including calcium

which is known to play an important role in skeletal health.
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RECOMMENDATIONS

The findings of the present study suggest that prune can effectively prevent the

ovarian hormone deficiency-induced bone loss in a rat model of osteopenia. Since prune

is also a good source of soluble dietary fiber, pectin, it may also prevent the ovarian

horrnone- associated rise in serum total cholesterol. Therefore, prune might be considered

a desirable food for dealing with postmenopausal women's increased risks of coronary

heart disease and osteoporosis. However, future human studies are needed to confirm the

findings of this animal study. Additionally, dose-response studies can help to identify

optimal amounts of prune to be incorporated into humans' diets.

Animal studies are also warranted to investigate the bone protective mechanisms of

action of prune using histomorphometric and molecular techniques.

SUMMARY

The purpose of this study was to evaluate the effects of prune in preventing the

occurrence of bone loss in a rat model of ovarian hormone deficiency, with exploration of

some of the mechanisms by which prune exerts its action on bone, blood, and urine

indices. The study examined the effects of incorporation of 5 and 25% prune into the rat

diet. Forty-eight Sprague-Dawley 90-day old female rats were used in the study. Rats

were randomly divided into four treatment groups as follows: Sham operated (sham),
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OVX, ovx+5% prune (LD), and ovx+25% prune (lID). Treatments were started after

surgery and continued for 45 days. After the end of the treatment period, rats were

sacrificed and bone, blood, and liver were collected and stored properly for various

analyses. Statistical analysis involved estimation of means and standard deviations (SD)

for each of the groups. Analysis of variance (ANOVA) and Tukey Kramer multiple

comparison tests were used to determine the significant differences between the groups.

The findings of this study indicate that ovariectomy significantly decreased BMD of 4th

lumbar vertebrae, tibia, and femur in comparison with sham. Prune incorporation to the

diet at the 25% level successfully prevented the bone loss observed in the ovx group.

When BMO was evaluated by dual-energy x-ray absorptiometry, the results confirmed the

displacement BMO values. From our findings it can be concluded that the ovx-induced

bone loss is completely preventable by the 25% prune diet in ovariectomized rat model.

Prune at the 25% level tended to decrease serum tartrate-resistant acid phosphatase, an

index of bone resorption, compared with the ovx-control group. Hence it may be logical

to postulate that prune suppresses bone resorption while allowing bone formation to

continue. Furthermore, incorporation of prune in diet enhanced percent mineral content

of 4th lumbar vertebrae, tibia, and femur which may be explained by increased mineral

absorption including calcium. However, the protective mechanisms of prune need further

investigation.
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