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PREFACE

This research is about the design of experiments, and the combinatorial problems that are
intrinsic to the subject. The possibility of being able to make judgmental decisions to control or
modify a process, select (or deselect) significant (or trivial) factors based on information gathered
from very few runs, in what is commonly referred to as screening experimentation is very
optimistic, both in its scope and importance. However, the design plans applicable for such
experiments, while being simple in concept and creation for symmetrical experiments, pose
interesting challenges for the case of asymmetrical experiments, both in attempting a generic
tractable solution and remaining true to their intent, i.e., easy to comprehend and use by the not-
so-naive experimenter. To this end, this research attempts to establish and propound a new
method for generating orthogonal plans, orthogonality being a necessary attribute of the design
plans to maximize confidence in the screening experiment’s outcome(s) and subsequent decisions

therefrom.

The method of symmetric constructions is the outcome of this research effort and
contends as a generic solution methodology for the construction of 2*es” (s>2) orthogonal plans in
s(1+k) runs, uses for which are numerous, inasmuch as industrial experimentation is concerned.
Also, rules for modifying these design plans, to incorporate any user-specified combination are
explored and elaborated. It would only seem fair to admit that this research is incomplete, either
in fully exploiting this technique or in achieving the desired objective of completely orthogonal
estimates of all higher order factor main effects. The design plans constructed using the method
of symmetric constructions allow for orthogonal estimates of all linear effects while the higher
order factor effects (for quantitative factors) are slightly correlated with each other. However, the
pros and cons of near-orthogonal arrays are not elaborated in this report. Also, generic design
templates for use in the constructions of asymmetrical experiments are derived and presented

herein.

It is the fond hope of the author that the method of symmetric constructions will find
applications in other allied fields as well and in this context, the ideas initiated and shared in this

report shall be found useful by interested researchers in the years to come.
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Chapter 1

SCREENING IN INDUSTRIAL EXPERIMENTATION

For "is" and “is-not" though with rule and line
And "up-and-down" by logic | define,

Of all that one should care to fathom, |

Was never deep in anything but - books and wine.

...Adapted from Omar Khayyam's "Rubaiyat"

1.0 INTRODUCTION

Designed experiments provide organized means for scientifically determining the
relationships of inputs to outputs in a given process. A designed experiment involves purposeful
changes to the inputs (factors) of a process in order to observe the corresponding changes in the
outputs (responses) so as to understand and characterize how the inputs affect the response(s).
The general situation considered is one in which there is a response (or, an output) variable which
is thought to be dependent on controllable variables or inputs. This type of situation is of quite
common occurrence, as may be seen from the following list of examples from widely different
fields:

Table 1.1: Some Examples to Illustrate Relevance of Designed Experimentation

1. Taste of Coffee %Fat in milk, # of spoons of sugar, # of spoons of

coffee powder used, etc.

2. Quality of an alloy - Hardness, | Amounts of different metals, rate of cooling,
Strength temperature of alloying element addition, etc.

Turning surface (Nut/Head)

Lubricant (Dry/Lube)

Lube type (Aliphatic acid/Anti-Seize)
Sealant (Yes/No)

Sealant Viscosity (Thin/Thick)

Rotation (30/600 RPM)

Hardness of joint (Soft/Hard)

Nut plating (Cadmium/Dry film)

Finish (structure being fastened) - White Lacquer
/Prime Aluminum

Washer (Bare/Cadmium plated)

Re-apply torque (Yes/No)

Bolt material (Titanium/CRES)

Nut geometry - Thin (hex)/Thick (12-point)

3. Torque applied to meet design
specification for pre-load forces in
high strength fasteners — from
Bingham (1997).
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This list, which could be extended indefinitely, was intended to demonstrate the range of

situations that have the same essential structure.

When an experiment involves several input variables, the effect of all such variables on a
characteristic of interest, namely the response, may be investigated simultaneously by varying
each factor (input variable), so that all or a suitable subset of all possible combinations of the
input variables are considered for experimentation. An experiment in which this procedure is used
is commonly known as a Factorial Experiment. An experiment that involves all the possible

treatment combinations is called a Full Factorial Experiment.

It is frequently the situation, wherein several factors may be considered relevant, rather,
significant in 'explaining' the response. It is common knowledge that brainstorming within a team
in advance of any scientific study brings up a plethora of judiciously relevant factors (Table 1.1,
example 3). In such situations, the scalpel of experience and maturity of judgement is used to
further whittle down the list of factors to a pool of genuinely relevant factors that cannot be
dismissed using rules of thumb or by word of experience alone. It is in such cases that designed
experimentation bears tremendous relevance in providing an 'organized' method of study and
analysis as opposed to ‘hit-and-run-shop-floor-trial' methods which may seem attractive in

prospect, but in reality, are of no use.

However, when the cost of experimentation is prohibitive, and economy of resources is
preferred, an experimenter cannot afford' to examine all possible treatment combinations in
detail, either at leisure or at pleasure. This idea is better brought home with an example. In the
Torque/Pre-Load experiment (refer Table 1.1, example 3), where each 'rclevant' factor is stated
with 2 possible options, the total number of different experiments possible is 8192 (2'). If it takes
a conservative 1-minute to apply pre-load torque on one fastener joint, the total time taken for all
experiments would be 5.69 days, working non-stop, the futility of which deserves no further
elaboration. In such situations, experimenters take recourse in performing Screening

Experiments.

Screening experiments are intended for what their name implies, i.e., screen the set of
‘known’ factors to find out which factor(s) is truly significant in explaining the response and
which others are just "in-for the ride'. Thus, the purpose of the screening experiment is not so

much to better the process as to determine which factors are essential for making improvements.

!'Affording' may be interpreted in monetary terms, although, it is frequently the case, that time is the actual
constraint.




Screening experiments allow the testing of many factors for their influence on the major
process response(s); while the estimation of factor effects may often be imprecise, they allow the
experimenter to identify the truly important factors from the many possible choices. A screening
experiment usually helps conclude that only a small number of factors (usually 2-5) are truly
significant in affecting the average response, the detailed analysis of which is carried out by
following up with more refined experiments to completely model the effects of the 'selected'
factors on the response(s). Also, the well designed screening experiment weeds out all factors
affecting just the variance in the response, allowing the experimenter to set them at levels that

will minimize the variation in subsequent experiments or process performance in general.
It is only appropriate that a formal definition be stated for a screening experiment:

"A Screening experiment is an educated start towards understanding a
process, supported with a lot of intuition and blind spots, a blend of facts noted and
Sacts ignored, to expedite the identification of the 'vital few', i.e., the truly important
Jactors affecting the desired response(s) from the many possible choices."

........... [Adapted from Crichton (1969)]

Peace (1993) summarizes the objectives of a screening experiment as being both short-
term and long-term. The short-term objective not only is complementary to the latter, but also
paves the way for its success. The long-term goal is to reduce process variability by optimizing
the significant process variables. To achieve this, the short-term intent is to identify which factors

should be optimized.

1.1 DESIGNED EXPERIMENTS - TERMINOLOGY AND SOME PRELIMINARIES

In order to avoid confusion and ambiguity, a list of terms relevant to designed
experimentation, which will be used throughout this report, is presented below. It is hoped that
the terseness of introduction and explanation would deem adequate. For further elaboration,
readers are referred to Kempthorne (1952), Schmidt and Launsby (1994) or Anderson and

McLean (1974), all of which are excellent references for the subject.

1.1.1 A Factor is a particular 'force' that is varied in the experiment at the will and under the
control of the experimenter. A factor may sometimes be called an input or a controllable
variable, but all references within this report will be restricted to 'factor(s)'. A factor may
be qualitative or quantitative. A quantitative factor is one whose values can be measured
on a numerical scale, e.g., amount of sugar, temperature, pressure, speed of rotation, etc.

A qualitative factor is one whose values are not usually arranged in order of magnitude,



1.1.6
1.1.7

e.g., Supplier A, B, C; the Good, Bad and Ugly coke varieties (for cast iron production);
Yes/No, etc. The values of a qualitative factor cannot usually be measured on a numerical
scale.

Levels are the various values at which a factor is tested, e.g., 3-coke varieties - G/B/U;
temperature for degassing molten aluminum - 720/680/640 °C, etc.

A Treatment Combination is one of the possible combinations of levels of all factors
under investigation.

An Experimental Unit is that entity on which a treatment combination is applied, e.g.. a
cup of coffee prepared with 5 spoons of sugar, 3 spoons of coffee powder, and 8% fat
milk is an experimental unit.

A Trial or Run is the application of one treatment combination to one experimental unit.
The terms, treatment combination, run and trial are however, used interchangeably in this
report.

A Plan or Design is a specified set of treatment combinations.

A Symmetrical Factorial Experiment involves experimentation with factors each
having the same number of levels. A factorial experiment in which at least one of the
factors has its number of levels different from those of the other factors is called an
Asymmetrical or a Mixed Factorial or a Mixed Model Experiment.

The Effect of a factor as has been alluded to earlier in the report, refers to the quantifiable
change in the output response caused by a unit change in the quantity of the factor
concerned, keeping all other factors and conditions constant. To better illustrate this, it is
said that the effect of sugar is to 'sweeten' coffee. For example, if it can be better phrased
that the 'effect’ of a spoon of sugar is to increase the taste of coffee by 2 units, where the
response (taste of coffee) is rated on a scale of 1-10, then the 'main-effect’, of sugar is +2
units. The effects of factors are classified as main-effects or interactions, the explanation
of which follow from the next definition.

The concept of Degrees of Freedom bears great relevance to the idea of a factor's effect
as introduced above. A crude but intuitive explanation will be attempted here. For further

details, readers are referred to Kempthorne (1952) or Anderson and McLean (1974).

A single factor at N levels can be tested once at all possible levels in N runs; let the
output responses be termed Y, Y5, ..., Yy respectively. The input (only one) factor is
termed X. Thus, with the N output values, a polynomial can be fitted to explain the data
as shown below:

Y= Ag+ Ay X + A3 X2 + ...+ A * X!




1.1.10

Yz = Ao + AI*X + A;*Xl ek AN-l*xN-l

YN = A.o + Al *X + AI*XJ' 2 PR o AN_|*XN"

It is easily noted that the order of the polynomial is N-1, which in statistical terms is
referred to as N-1 degrees of freedom for the factor X. This means that, a factor at N
levels has N-1 degrees of freedom, which in the vocabulary of designed experimentation
means that a factor at N levels has N-1 effects. For e.g., a factor at 2 levels has 1 degree

of freedom, i.e., one effect; likewise, a factor at 3 levels has 2 effects, and so on.

A factor at 2 levels (i.e., with one effect) is also referred to as having a 'linear' main
effect, which is intuitively obvious if one stops and verifies that only a straight line can
be plotted between 2 points (the responses for the 2 levels of the factor). Similarly, a
factor at 3 levels is explained with a linear (e.g., A, B) and a quadratic (e.g., A’, B?) main
effect. The term 'main-effect' refers to the effect attributable to the factor and that factor

alone. When two or more factors interact in their effect on the response, an 'interaction’'
effect (e.g., AB, ABC, ABC, etc.) is defined.

An intuitive generalization of the concept of degrees of freedom leads to the useful idea,
that for a full factorial experiment of 'n' factors at 2-levels each, all treatment
combinations being experimented with in 2" runs, the number of effects that can be

estimated is 2"-1. This is explained with an illustration as below:

Consider three 2-level factors, called A, B, and C.
Total # of treatment combinations = 2" =2’ = 8
Thus, total # of effects that can be estimated =2’ - 1=8-1=7
The 7 effects that are estimated are:

e Linear 'main' effects : A, B, C

¢ [nteraction effects : AB, AC, BC, ABC
Two factors (or input variables) are said to interact if one factor's effect on the response
is dependent upon the level of the other. Examples drawn from the physical world
include the case of alcohol and drugs, which when taken together compound in their
disastrous effects than when taken alone. Consider the case of nitric acid and glycerin.

Taken alone, they are just two chemical compounds, of interest only to the curious



scientist. But when brought together, the term dynamite (Follet, 1982) needs no further
elaboration. This is a classic example of an interaction effect. Similarly, the synergy

exhibited by teams, pulling together is an example of an additive interaction effect.

The above definitions were intended to be a crude, but intuitive attempt at explaining
some basic, but, nevertheless, very important concepts of designed experimentation. They are
however, not intended, to replace a thorough and rigorous treatment, fuller understanding of

which is highly pertinent before the study of designed experimentation can be attempted.

1.2 SOME ASPECTS OF FRACTIONAL REPLICATION

When a factorial experiment involves many factors, each of which is tested at several
levels, economy of time and material may be attained by using only a fraction from all possible
combinations of levels of the factors. Such a fraction may result in a loss of information on some
interactions, but, if chosen properly, will allow the estimation of at least the main effects of all
factors concerned. Following definitions stated earlier in Sections 1.0 and 1.1, it is obvious that
such fractions constitute design plans for screening experiments. The technique for reducing the
number of observations, by sacrificing information on selected interactions, is known as

fractional replication.

Fractional replication is a natural outgrowth of the device of confounding, by which a
complete replicate (full factorial design) is divided into several equally sized blocks. The
interested reader is referred to Kempthorne (1952), Anderson and McLean (1974) or Fisher
(1942) for an excellent treatment of the same. The higher the degree of fractionation, the greater
is the number of interactions on which information is sacrificed. For the practical experimenter,
who attempts screening trials, the pre-supposition is that interactions, if any, are negligible and
are not considered relevant in the preliminary stages of scientific study, of which screening is
such an important aspect. The general case of fractional replication deals with a 1/s" replicate of
the s" experiment (full factorial plan for 'n' factors at s-levels each), in s" runs where s is a prime

or the power of a prime.

Screening experiments are undertaken using fractionated plans under the assumption that
the interactions that have been confounded to create the plan are negligible. Often, industrial
applications encounter usage of designs for screening trials under the assumption that two-way

and higher order interactions (e.g., AB, ABC, AB’C, etc.) are negligible. The primary objective



of such screening experiments is to get an estimate of the main effects of all the factors being

experimented with, so as to make judgmental inferences about which factors are truly significant.

1.3 FRACTIONAL FACTORIALS AND MAIN EFFECT PLANS FOR SCREENING
Experimental plans that allow the estimation of all main effects of a factorial experiment
shall henceforth be referred to as main-effect plans. These plans may be particularly useful in
preliminary studies on many factors when there is good reason to believe or assume that
interactions among the factors are small, as is necessitated in screening experiments. When the
cost of making an observation in a factorial experiment necessitates the use of fractional
factorials, an important aspect of the design problem, when conducting screening trials, is to

obtain reliable estimates of the important main effects with as few observations as possible.

It has been proved (Plackett and Burman, 1946) that experimental plans for which the
maximum precision of estimation is attained are those which correspond to columns of an
orthogonal matrix. Such plans that allow the estimation of all main-effects without correlation are
termed orthogonal main effect plans. The extension of usage of orthogonal main effect plans for

screening is straightforward and obvious.

The existing knowledge of orthogonal main effect plans is considerable but not
exhaustive. The plans that are now available to the experimenter for screening designs are the
standard Taguchi, Plackett-Burman type of designs (Schmidt and Launsby (1946); Plackett and
Burman, 1946) relevant mainly for factors at two levels. For the general case of symmetrical
factorial experiments, the construction of confounded plans using Galois field theory has been
well elaborated in Kempthorne (1952) and Fisher (1942), extraordinary developments in which
were presented by Addelman (1961, 1962a, 1962b). For all practical purposes, industrial
experimenters rely on available catalogued designs (Connor and Zelen, 1959; Connor and Young,
1961; Lorenzen and Anderson, 1993; National Bureau of Standards - AMS #48, 1957) for
symmetrical and asymmetrical factorials or consult software programs like SAS, RS/Discover for
the construction of orthogonal or near orthogonal fractions to facilitate screening trails. A number
of methods have been designed to generate needed orthogonal main-effect plans for the
construction of symmetrical and asymmetrical fractions, a comprehensive review of which appear
in Lorenzen and Anderson (1993), Cheng (1989), Raktoe ef al. (1981), Dey (1985), and more
recently, in Barton (1998), Bingham (1997), Meyer and Nachtsheim (1995), Wang and Wu
(1991, 1992).



1.4 OVERVIEW OF RESEARCH
The major work on fractional factorial designs can be broadly classified into the

following sub-topics: (Raktoe et al., 1981; Dey, 1985)

(i) Study of orthogonal fractional factorial plans for symmetrical and asymmetrical factorials
of resolution III, IV and V (Dey, 1985).

(ii) Study of optimality and construction of non-orthogonal fractions, with special emphasis
on 2- and 3-level symmetrical factorials (Fedorov, 1972; Kiefer, (1959, 1974); Atkinson
and Donev, 1992; Liao et al., 1996; Meyer ef al., 1995).

(iii) Search models and search designs (Srivastava, 1975, 1976, 1977, 1980; Raktoe, 1981).

The objective of this research report is rather modest in comparison with some of the
extraordinary developments in the sub-topics above, in the sense that it is relevant to only sub-

topic (i) involving orthogonal asymmetrical factorial designs of resolution III.

1.5 RESEARCH OBJECTIVE

A new and unifying methodology for building mixed model orthogonal design plans
incorporating any user-desired factor combination(s) in minimum number of runs will be
developed. Design plans constructed thus are intended primarily for use in screening experiments.

Relevant sub-objectives pertinent to this research effort are presented below.

1.5.1 Review existing methods for construction of Orthogonal Main Effect Plans (OMEPs).
Specific tasks include:
(i) Identify existing criteria for evaluation of design plans as may be relevant for
screening experiments.
(ii) Identify and track in chronological sequence, relevant developments in the
construction of orthogonal design plans useful for designed experimentation.

(iii)  Present an index of existing OMEPs.

1.52 Develop a method for the construction of Orthogonal Linear Effect Plans’ (OLEPs)
applicable for any factor combination(s) in a minimum number of runs.
Specific tasks include:
(i) Define vocabulary relevant to proposed method of symmetric constructions

(MSC) and elaborate for ease of discussion and generality.

? Design plans that allow uncorrelated estimates of all linear effects, while higher order factor main effects’
are correlated with one another.



(i)  Present general propositions and suitable design templates relevant to the
construction of OLEPs using MSC.

(iii) Present and detail a systematic walkthrough of MSC.

(iv)  Catalogue and tabulate some useful design plans to highlight uses and advantages
of MSC.

1.5.3  Present valid rules for replacing and/or collapsing of factor levels, to modify OLEPs to
include higher order factors and also to allow for estimation of higher order factor main

effects.

Specific tasks include:

(1) Define generic rules to modify lower level factors into higher level factors and
vice-versa.

(ii) Describe techniques to adapt OLEPs constructed using the method of symmetric
constructions to include any user-specified factor combination(s) and illustrate
with suitable examples.

(iii) Present an elaborate index of modified OLEPs that may be used as screening
designs involving at most 9 level factor(s) with guidelines for usage and further

manipulations.

1.6 PLAN OF THIS REPORT

Chapter 2 is a review of all the existing techniques for the construction of orthogonal
fractions as is relevant to this research effort. Chapter 3 includes brief discussions on number
theory concepts and its relevance for designed experimentation. Chapter 4 is an exposition on The
Method of Symmetric Constructions, its uses and extensions. Chapter 5 highlights applications
and examples intended to augment the scope of Chapter 4. Chapter 6 concludes this report
inasmuch as the scope of this undertaking is concerned, but includes recommendations for future

research to extend the ideas introduced in Chapters 4 and 5.



Chapter 2

REVIEW OF THE LITERATURE

Ashes to Ashes, Dust to Dust,
If Death is all that is left for us,
| ask, then why all this fuss?

...Eswar

2.0 INTRODUCTION
It is expected that readers are aware of the basic principles underlying confounding and
fractional replication, for much of what is discussed in the next section is based on these

principles.

2.1 THE HISTORY OF ORTHOGONAL FRACTIONAL FACTORIALS

The literature concerning fractional replication is a direct extension of the work on
confounding of factorial experiments. Confounded plans were originally suggested by Fisher
(1926), practical implications of which were detailed by Yates (1933), including discussions on
appropriate methods of analysis. Yates (1935) gave more illustrations of confounded plans and
included discussions on the advantages of reducing block sizes using confounded plans. A very
elegant treatment of the same concept appears in Kempthorne (1952), whose book is, thus far, the

best and most concise treatment on the subject of designed experimentation.

Barnard (1936) made an enumeration of the confounded arrangements that are possible in
a 2" factorial experiment, wherein, he showed how the concept of generalized interaction may bc
used to construct fractionated plans. Yates (1933) expounded the importance of orthogonality in
factorial experiments and included a detailed discussion of its practical implications. Since the
number of treatments to be tried increases rapidly with the number of factors, the important
concept of fractional replication, (i.e., trying only a subset of the treatments), whereby only one
block of a confounded plan is considered, was proposed by Finney (1945). As a direct offshoot of
this idea, Plackett and Burman (1946) introduced a class of plans, called multi-factorial plans,
which accommodated a maximum number of factors and preserved only the main effects for
symmetrical factorial experiments. This appears to be the earliest reference on the use of
confounded plans for industrial screening. These multi-factorial plans actually constitute a class
of orthogonal main effect plans (henceforth referred to as OMEPs) for symmetrical factorial

experiments. They included a catalogue of OMEPs for symmetrical factorial experiments



involving factors at two, three, five, or seven levels. These plans were based on Hadamard
matrices, a comprehensive discussion of which is presented in Hall (1967), and Hedayat and
Willis (1978). Paley (1933) first formulized the construction of Hadamard matrices, and derived
several lemmas to allow for the existence of Hadamard matrices. Paley also derived the important
result that the necessary condition for the existence of a Hadamard matrix of order N is that N be

a multiple of four, N=1, 2 being trivial cases.

2.2 OMEPs DERIVABLE FROM HADAMARD MATRICES

The use of Hadamard matrices for the construction of OMEPs for asymmetrical factorial
experiments has received considerable attention and has spawned several new approaches. Dey
and Ramakrishna (1977) introduced a result for the construction of main effect plans for 4¢2”"
factor combinations in 2z runs, where » is a multiple of four such that a Hadamard matrix of
order n exists. Chacko, Dey and Ramakrishna (1979) derived further extensions of the same idea
to construct main effect plans for 4°«2™ experiments. They obtained a series of plans for 472"
experiments in 4» runs, where 'n' is a multiple of 4. Agrawal and Dey (1982) modified the plans
for 4°2™ in 4n runs to obtain OMEPs for ne4"+3°2°™*%) experiments in 4n runs, where » and s
are non-negative integers, 2<r+s<3, (r, 5)#(0,0). Agrawal and Dey (1982) also derived another
series of plans, using Hadamard matrices for te42™' experiments in 2r runs (where n is a
multiple of four). Also, Nigam and Gupta (1984), Cheng (1989) have derived several new classes
of OMEPs for asymmetrical factorial experiments using Hadamard matrices, which in the interest
of space limitations are not mentioned herein. The interested reader is referred to Raktoe er al.
(1981), Dey (1985), and Raghavarao (1971) for a concise treatment of the subject of orthogonal

fractional factorial designs.

2.3 OMEPs DERIVABLE THROUGH FINITE GEOMETRIES AND GROUP THEORY
The foundation of the general theory of confounded s" factorial designs was developed by
Bose and Kishen (1940), where s is a prime power (i.e., a prime number or a power of a prime
number) through the use of Galois fields and related finite projective geometries. The interested
reader is referred to Carmichael (1937), Stahl (1997) for an excellent introduction to the subject
of group theory and allied concepts of abstract algebra. Bose (1947), in his epic paper,
"Mathematical Theory of the Symmetrical Factorial Design,” definitively formalized the
geometric foundations of symmetrical factorial designs employing the theory of finite projective
geometry. Vajda (1967a, 1967b) has written two elegant monographs, giving a very

comprehensive treatment of the mathematical foundations of experimental design.
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Fisher (1942) developed a system of confounding for factors, each having two levels,
whereby no main effects or two factor interactions were confounded with blocks using group
theory. This system of confounding permits the estimation of all main effects when up to 2'-1
factors, each at two levels are experimented with, in 2" trials. Fisher (1945) further extended this
concept to a generalized system of confounding to allow for the arrangement of (s"-1)/(s-1)
factors, each at s levels, in s" trials, where s is a prime power, without confounding any main
effects. A large class of designs, popularized by Taguchi (see for e.g., Schmidt, 1994; Peace,
1993), which is in use for screening 2-level and 3-level factors or combinations thereof are based
on either Fisher's principle of confounding or Hadamard matrices, which were discussed earlier.
Kempthorne (1952) has made a great simplification of the underlying concepts for representing
effects, interactions, confounding and the analysis of the general s" factorial system. An index of
useful plans that may be constructed using Fisher's principle of confounding is presented in Table
2.1,

Table 2.1: Index of Some OMEPs constructed using Fisher's Principle of Confounding

Number of Number of Number of

Levels Factors Runs
2 3 4
2 7 8
2 15 16
2 31 32
2 63 64
3 4 9
3 13 27
3 40 81
4 16
4 21 64
5 6 25
7 49
8 64
9 10 81

Addelman and Kempthorne (1961) developed a method to augment a s” (m=(s"-1)/(s-1))
OMEP with s” runs to generate a plan for a s’ OMEP in 2s” runs, where ¢ = [2(s"-1)/(s-1) - 1], in
what may be viewed as a very ingenious extension of Fisher's theory of confounding. Some plans
constructed through this procedure are an 18-run plan for a 37 experiment, a 54-run plan for 3%, a

32-run plan for 4°, and a 50-run plan for a 5'' experiment.




2.4 CONSTRUCTION OF SYMMETRICAL OMEPs BASED ON LATIN SQUARES

[t is difficult to trace the origins of the use of Latin squares for constructing orthogonal
plans. Yates (1933) details a few Latin square arrangements for field trials. Yates (1935) also
gives some results on the efficiencies of complete randomization relative to randomized blocks

(blocks confounded with some higher order interaction) and Latin Squares for field experiments.

A Latin square of side s (also termed LS of order s) is an arrangement of s symbols in s
rows and s columns such that each symbol occurs in each row and each column only once. Two
Latin squares of the same order are said to be orthogonal, if, when one is superimposed over the
other, every ordered pair of symbols appears precisely once. A set of Latin squares is said to be a
set of mutually orthogonal Latin squares (MOLS) if every pair of Latin squares in the set is
orthogonal. It is known that the maximum number of MOLS for a Latin square of order s is s-17,
when s is a prime power. Interested readers are referred to Raghavarao (1971). The concept of
MOLS has been fully exploited in the construction of OMEPs for s+1 factors in s* runs, each
factor occurring at s levels (s being a prime power). An index of OMEPs obtained through Latin

squares is presented in Table 2.2.

Table 2.2: Index of Useful OMEPs Obtained through Latin Squares

Number of Number of Number of
Levels Factors Runs

2.5 CONSTRUCTION OF OMEPs BASED ON ORTHOGONAL ARRAYS

Fractional factorial plans for symmetrical factorials are closely connected with
Orthogonal Arrays, a modern convolution of the concept of Hypercubes. Rao (1946) introduced
the concept of Hypercubes of strength d; since this concept is relevant for the construction of
confounded plans, the following definition is presented. Let there be n factors, each of which may
take on s values. Consider a subset of s™ factor combinations (out of a total of s” possible
combinations). This subset is called a hypercube of strength 4 and represented by (s", n, s, d) if

all combinations of any d of the n factors occur an equal number of times (=s""). The
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construction of hypercubes and relevant theories are based on concepts of projective geometry,

the intricate details of which are not relevant to this discussion.

Rao (1946) showed that (i) a system of confounded plans that accommodated a maximum
number of factors and preserved main effects and up to d-factor interactions could be constructed
for the symmetrical factorial experiment if a hypercube of strength d existed, and (ii) hypercubes
of strength two supplied confounded plans for some asymmetrical factorial experiments. Rao
(1947) extended the definition of a hypercube of strength 4 to an orthogonal array of strength 4.
An orthogonal array of strength d consists of a subset of N treatment combinations from an s"
factorial experiment with the property that all s treatment combinations corresponding to any d
factors chosen from » occur an equal number of times in the subset. It is useful to note that when
N is of the form s, the orthogonal array is a hypercube of strength d. Rao (1947) noted that an
orthogonal array of strength two could be used as an OMEP for a symmetrical factorial
experiment. Rao (1947) utilized orthogonal arrays of strength d to construct (i) Multifactorial
plans similar to those of the Plackett-Burman type, but leading to the estimation of main effects
and up to d-factor interactions when higher order interactions are absent, (ii) block designs for
symmetrical factorial experiments involving only a subset of the treatment combinations and
preserving main effects and interactions up to a given order when higher order interactions are
assumed to be absent, and (iii) a series of asymmetrical factorial plans derivable from arrays of

strength two.

An index of useful plans that can be constructed by utilizing hypercubes of strength d is

presented in Table 2.3.

Table 2.3: Confounded Plans for Symmetrical Factorial Experiments (from Rao, 1947)

Levels of a Number of Maximum number of

Strength, d

factor Runs factors attainable
(primespower) s" 2 (s"-1/(s-1)
2 2m 3 2m-T
2‘ 4 5
25 4 6
¢ 4 8
3 4 3 4
3 3 10
34 4 5
4 43 3 6
5 5 3 6
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Bose and Bush (1952) gave another series of orthogonal arrays of strength two (or
equivalently, OMEPs). Suppose A and s are both powers of the same prime, p. Then, it was
shown by Bose and Bush (1952) that an orthogonal array of type (N= As?, n=As, s, d=2) can be
constructed. A plan constructed thus is a (27, 9, 3, 2), i.e., 3° OMEP in 27 runs. Bose (1947)
formulated methods for attacking the problem of balancing and partial confounding for a class of
symmetrical factorial experiments. By employing the theory of finite projective geometry, Bose
also constructed confounded symmetrical plans which preserved all main effects and up to d-

factor interactions when higher order interactions were absent.

Chakravarti (1956) considered the construction of an asymmetrical fraction by combining
two or more corresponding symmetrical fractions, thus enabling the estimation of all main
effects, and interactions among the factors. For instance, suppose an OMEP is desired for a 3"2’
experiment. A plan may be derived by combining a 9-run OMEP for a 3" plan and a 8-run 2’
OMERP to produce a 72-run plan for 3*2’, which however, is far from being saturated or being

economical.

2.6 OMEPs BASED ON CONDITION OF PROPORTIONAL FREQUENCIES

In a complete full factorial experiment, the levels of one factor appear equally often with
each of the levels of any other factor, and, this condition is sufficient to provide uncorrelated
estimates of the main effects. However, for OMEPs, the condition of equal frequencies, though
sufficient, is not a necessary one. Plackett (1946) introduced the idea of proportional frequencies
of levels and showed that the estimates of the main effects of a factorial experiment may be
determined with maximum precision if the levels of any factor occur together in the plan with
each of the levels of every other factor with proportional frequencies. Addelman (1961)
consolidated the use of proportional frequencies in the construction of asymmetrical factorial

plans. The idea of proportional frequencies may be formally stated as follows.

Let the two factors be A and B with r and s levels respectively. Suppose n;. denotes the
number of times the i" level of A occurs in the plan, n.;, the number of times the j" level of B
occurs in the plan, and n;;, the number of times the i™ level of A occurs with the j'h level of B in
the plan, and » the number of runs in the plan. Then the proportional frequency condition may be

stated as:

nj = Ni.n./n, =0, 12, cugtelf 1205152, o Bl



The proportional frequency condition helps primarily in obtaining OMEPs for an
experiment with fewer numbers of levels from a plan with the next higher number of levels. Thus,
from the OMEP for a 4° experiment in 16 runs, collapsing the levels of the 4-level factor to a 3-
level factor will derive a 3° experiment in 16 runs by a many-to-one correspondence scheme, as

shown below.

Levels of 4-level factor Levels of 3-level factor
0 0
1 1
> >
3 1

The designs constructed, thus, are also orthogonal, as they are based on the condition of
proportional frequencies. Addelman (1962a, 1962b) first derived these results, and further
applications for 2"*3™ designs permitting estimation of two-factor interactions were illustrated by
Margolin (1969). Addelman (1962a) also introduced the highly useful system of replacement and
collapsing whereby a factor at s=s;" levels may be collapsed into (s-1)/(si-1) factors, each at s;

levels with s;" runs and vice-versa, an illustration of which is shown below:

Levels of 4-level factor Levels of 2-level factor
0 Collapse gy
1 011
2 reieee 101
3 110

The above principle of collapsing (and equivalently replacement, when the opposite is
done) has been used to obtain OMEPs for a s’ 'Siz e..s} factorial in s," runs, where s, is

a prime or a prime power, $,>5,>s;... >s, and

,Z::"' <[(sr=1)/(s, -1)]

This procedure is due to Addelman (1962a), wherein, both replacement and collapsing
are used in such constructions. An example design built using this technique is a 2'¢3%e4

experiment in 16 runs, from a basic 4° experiment in 16 runs. The construction is detailed below:

e Collapse one 4-level factor into three 2-level factors using the correspondence:

0 000
1 011
2 ’ 101
3 110




e Collapse two 4-level factors into two 3-level factors using the correspondence:

0 0
1 5 1
2 2
3 1

Note that this plan is based on proportional frequencies. Also, doubling the number of
runs and the number of levels of one factor in an OMEP leads to plans of the type tes". These

results were also derived by Addelman (1962a).

A trick to be used when mixed level designs are required and a few fractional interactions
need to be estimated is to alter orthogonal main effect plans by combining the main effects having
the product of the levels of the original main effects. For example, the AB interaction for two
level factors A and B can be estimated by combining A and B into a four level factor. say C, to be
used in an orthogonal main effect design. When data are collected, the 3 degrees of freedom for C
must be broken down into the two main effect degrees of freedom (df) and the interaction df.
Elaborate discussion of these ideas is presented in Lorenzen and Anderson (1993), a practical

application of which is given by Bingham (1997).

2.7 OTHER USEFUL CONTRIBUTIONS

A very simple treatment of the subject of fractional factorials is presented by Box and
Hunter (1961a, b), Youden (1961), and Fry (1961). The most important contribution by Box and
Hunter (1961a, 1961b) was the idea of Resolution of a design plan. A fractional factorial design is
said to be of Resolution R, if the smallest interaction in the identity group (same as the
confounded block) is an R-factor interaction. As a consequence of this definition, in a Resolution
R design, no p-factor interaction is aliased (i.e. confounded) with any other effect containing less
than (R-p) factors. For instance, a Resolution III design is one in which no main effect is aliased
with any other main effect, but main effects could be aliased with two-factor interactions. In this
context, it is easy to note that OMEPs are designs of Resolution III, for they allow the estimation
of main effects under the assumption that two-factor and higher order interactions are negligible.
Also, these are designs that are very conducive for use in screening trials as part or preliminary

experimentation.

Webb (1968) offered a generalization for the definition of Resolution. According to
Webb, a fractional factorial is of Resolution (2R+1) if it permits the estimation of all effects up to
R-factor interactions, when all effects involving (R+1) factors are assumed negligible. Further, a

fractional factorial design is of Resolution 2R if it permits the estimation of all effects up to (R-1)



factor interactions when all interactions involving (R+1) factors or more are assumed to be zero.
Thus, a plan is of Resolution III, if it permits the estimation of all main effects under the
assumption that all interactions are absent. Likewise, a Resolution IV design is one which permits
the estimation of all main effects when all three-factor and higher order interactions are assumed

negligible.

Lin (1986, 1987a, 1987b) introduced a novel procedure for the construction of mixed
factorial experiments using the Chinese Remainder Theorem, which result in design plans similar

to many of those discussed above.

Wang and Wu (1991) derived an approach for the construction of Orthogonal Arrays
extending ideas proposed by Bose and Bush (1952), Addelman (1961a), Hadamard matrices and
Kronecker sums, the elaboration of which is too detailed to be included here. Lorenzen and
Anderson (1993) have catalogued an extensive listing of OMEPs built using the methods of
Wang and Wu (1991), and all the techniques discussed above, for experiment combinations

involving up to factors at six levels.

2.8 SUMMARY OF EXISTING OMEPs
An elaborate index of all available OMEPs for asymmetrical and symmetrical Factorials
is presented in Lorenzen and Anderson (1993), and Dey (1985), with adequate instructions

concerning the judicious use of the same for applications in screening experiments.

In Table 2.4, an index of all available orthogonal main effect plans for symmetrical
factorial experiments requiring at most 81 runs is presented. All these plans are derivable from
the general techniques described in this chapter. Plans for experiments with less number of
factors than those given in Table 2.4 can be obtained by deleting an appropriate number of factors

from a plan with more number of factors.

The task of presenting a catalogue of all possible orthogonal main effect plans for
asymmetrical factorials, even with a fixed maximum number of runs, is enormous and would
require too much of space. Instead, therefore, in Table 2.5, an index of hitherto known, basic
asymmetrical orthogonal main effect plans requiring at most 50 runs is presented. Other plans

may be derived by collapsing/replacing the factor(s) levels in these basic plans.
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Table 2.4: Index of Orthogonal Main Effect Plans for Symmetrical Factorial Experiments

2 4 25 56 45 25
2! 8 g 60 4° 32
2! 12 2 64 4" 50
2% 16 2" 68 5t 25
21* 20 g+ 72 58 49
o 24 2% 76 54 50
2% 28 2% 80 6* 49
2! 32 3! 9 7 49
L 36 37 16 i 81
2% 40 3" 27 8’ 64
2% 44 o 54 9'0 81
2% 48 3¥ 81

2% 52 4 16

Experiment #of Runs  Experiment  #of Runs Experiment # of Runs

402! 3 ge2% 32 4%e2% 48
3e2° 12 gege2?%! 32 8e2% 48
602’ 12 374216 32 6o402% 48
402" 16 Be4%e2'® 32 Be6e2’! 48
ge2° 16 Be4’e2"s 32 4*e2% 48
2e37 18 8e4® 32 Ged’e2? 48
6e3° 18 3%e2" 36 4'%2"7 48
6.2“ 24 6.3|2.22 36 6.4”-25 48
4e3e2" 24 403" 36 4'%e302" 48
492%° 24 402 40 205" 50
Gede2' 24 5027 40 10e5' 50
4627 32 5e402% 40
19




Chapter 3

THE BARE NECESSITIES

"One cannot escape the feeling that these mathematical
formulae have an independent existence and an intelligence of
their own, that they are wiser than we are, wiser even than their
discoverers, and that we get more out of them than was
originally put into them."

...Heinrich Hertz

3.0 INTRODUCTION

This chapter is intended as a primer to some of the elementary aspects of abstract algebra
and its related applications in designed experimentation. The basic concepts of modular
arithmetic are presented first followed by Fisher's theory of confounding to augment discussions

initiated in chapter 2, such as is essential for understanding this report.

3.1 RUDIMENTS OF MODULAR ARITHMETIC

For any positive integer », the two integers a and b are said to be congruent modulo n,

and the notational representation is:
a=b (mod n)
whenever # is a divisor of (a-b). Thus 10 =4 (mod 6), 6 = 0 (mod 2), 2 = 14 (mod 6).

The operations of addition and multiplication can also be extended to modular arithmetic

as illustrated below:

ADDITION MULTIPLICATION
10+ 16 =26 = 2 (mod 6) 10016 = 160 = 4 (mod 6)
10+16=4+4=8=2(mod 6) 10016 = 4e4 = 16 =4 (mod 6)

Observe that when performing arithmetic modulo #, it suffices to consider the application
of the arithmetic operations to the integer 0, 1, 2, ..., n-1 alone. The set of positive integers, when
restricted to the set {0, 1, 2, ..., n-1} is denoted by Z,. It is also referred to as the set of positive

integers reduced modulo 7.

Table 3.1 illustrates the addition and multiplication tables for Z,.
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Table 3.1: Arithmetic modulo 4

+ | 0| 1| 2|3 « Lo |1 | 2|3

o|o ]| 1|23 o o | o] oo

1 112113 1|o0 1 | o | 1 3

2 | 2| 3]0 1 2 | o 2|02

3| 3| o 1|2 3o |3 ]| 2|1
Zy* "

Interested readers are referred to Stahl (1997) for further details and applications of
abstract algebra.

3.2 FISHER'S THEORY OF CONFOUNDING FOR SYMMETRICAL OMEPs

Fisher's theory of confounding, as has been alluded to in the previous chapter is widely
used in the construction of OMEPs for s” factor combinations in s” runs, where m=(s"-1)/(s-1)
and » is a positive integer. An elementary discussion extending the concepts of Section 3.1 is

presented below and further details may be gleaned from Kempthorne (1952) or Fisher (1942).

This technique essentially augments a s” factorial for » factors in s runs to include a total
of m factors. Let the n factors of the s” factorial be denoted by X,, X3, ..., X,. The treatment
combinations of the s” factorial in factors X;, X,, ... , X,, are first written down. The other (m-n)
factors' combinations are generated from these » columns by 'adding' these columns in all
possible ways over Z,,, that is, by forming sums of the type k,X,+k,X;+... +k,X,, where the &/'s
are elements of Z,, and further, in each sum, the coefficient of the first factor is unity. This
procedure will give the required plan, i.e., a total of m orthogonal columns in s" runs, which can

be used for screening m factors at s levels each.

This procedure for constructing OMEPs is illustrated by constructing a 9-run plan for a 3
(4 factors at 3 levels each) experiment by modifying a 3% full factorial. In this case, s=3, n=2, so
that m=(s"-1)/(s-1) = 4. The 9 treatment combinations of a 3 factorial in factors X, X, are first
written down. The other two factors are given by X;+X; and X,+2X,. Note that the coefficients |

and 2 used in the addition of the factors X, and X, are the elements of Z;.

The treatment combinations for the 3* OMEP in 9 runs are shown in Table 3.2.
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Table 3.2: A 3 OMEP in 9 Runs constructed using Fisher's Theory of Confounding

X4 X, X+ Xy | X4+2X;
0 0 0 0

0 1 1 2

0 2 2 1

1 0 1 1

1 1 2 0

1 2 0 2

2 0 2 2

2 1 0 1

2 2 1 0

Note that the addition of the elements of the columns conform to addition of integers in
Z, arithmetic, i.e., arithmetic modulo 3. Likewise, the construction of a 3'> OMEP in 27 runs
(readers may also know this as the Taguchi L,;) is straightforward, the results of which are: X,
Xy Xi+Xs, Xi+2X, X, X+ X5, Xi+2X3, X+ X5, Xo1t2X5, X+ Xo+Xs, X+X+2Xs, Xi+2X,+X,,
and X,+2X,+2X; respectively. Table 2.1 indexes some symmetrical OMEPs constructed using

Fisher's theory of confounding.

3.3 ORTHOGONAL MATRICES: PRELIMINARIES AND RELEVANCE

An orthogonal design for an experiment can be defined as a way of collecting
observations that will permit the experimenter to estimate and test for the various treatment
effects and for interactions (if any) separately. The importance of orthogonality draws from the
concept of multiple regression, wherein the estimate of B's (i.e., the factor main effects and
interactions) for the model Y=XP + €, are derived using the theory of least squares. The estimates
of B are derived from (X"X)"(X"Y) and the variance in the estimates for B is equal to (X™X)y"o?,
where o’ is the prediction variance’, and it is desired that the estimates of the B's be uncorrelated
with each other. This is equivalent to having the columns of independent variables in the X
matrix uncorrelated with each other, so that (X'X) is a symmetric matrix, which, equivalently is

the definition of an orthogonal matrix.

The relevance of orthogonality as a property for designing an experiment arises largely

from the efficiency of analysis and ease of interpretation of the individual estimates, and not so

? 6% = SSpesiduals/(1-P) = Z(Yi - Yoret) /(n-p) ; n = #of observations, p = #of parameters being estimated.
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much as being an exercise in mathematical manipulations. As an example, consider two
independent variates, temperature and pressure, in a chemical study, each at two levels, arranged

in a design plan as shown below:

Temperature Pressure Temp X
(deg F) (MPA) Pressure
100 10 1000
100 15 1500
200 10 2000
200 15 3000

Desired model: Y = b,,, + breT + bpeP + bypeTeP

It is obvious that (X"X) is not a symmetric matrix, though the design described above is a
complete factorial, involving all treatment combinations. It is in situations like these, when a
fixed variate is equally (or unequally) spaced in time or space, that the usual regression variates
of the independent variables are replaced by orthogonal columns (also known as orthogonal
polynomials). The orthogonal columns are so constructed that any column is independent over
any other column, and effectively replaces a complex higher order polynomial regression
equation to an additive linear model, expressed as functions of individual orthogonal linear forms.
Each of the orthogonal linear forms, i.e., the columns in the X matrix represent the effects that
they are used to estimate. Thus, the s-1 main effects that can be derived from a s level factor, may
be represented by s-1 orthogonal linear columns in the X matrix. An example is presented below
and readers are referred to Anderson and Bancroft (1952) for further details. Fisher and Yates
(1957) present tables of orthogonal polynomials, i.e., linear forms for factors with upto 75 equally

spaced levels.

A three level, equally spaced factor may be represented by its measurements, say A = (0,
1, 2) and Al= (0, 1, 4) or can be replaced by two orthogonal columns (-1, 0, 1) and (1, -2, 1) in
the X matrix to represent the linear and quadratic effects of the factor. These orthogonal linear
forms are so derived that the sum of individual values in the orthogonal columns is zero and the
pair-wise product of any two columns sum to zero, which is essential to make the product (X'X)

symmetric.

Thus, the use of orthogonal polynomials to re-represent regression variates as an

orthogonal matrix allows uncorrelated estimates of all effects as is possible from a regression
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model. This principle of orthogonality becomes more important for the design and evaluation of a
screening experiment, largely because of the nature of decisions that are likely to be effected
based on its results. Since the purpose of the screening experiment is to identify significant

factors, based on estimates of their main effects, it is imperative that the screening experiment be

orthogonal.

3.4 CONCLUDING REMARKS

The purpose of including such an elementary discussion was to introduce in advance the
flavor of methods to come and establish a backbone for referencing and guiding the reader. The
next chapter will introduce the vocabulary and elements necessary for the Method of Symmetric

Constructions and references will be drawn from concepts presented in Sections 3.1-3.3. In brief,

these are the bare necessities’.

* This metaphor was inspired by the song "The Bare Necessities of Life" from the movie - The Jungle
Book (Walt Disney, 1967).
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Chapter 4

THE METHOD OF SYMMETRIC CONSTRUCTIONS

"No more fiction for us: we calculate; but that we may
calculate, we had to make fiction first.”
...Nietzsche

"For, contrary to the unreasoned opinion of the
ignorant, the choice of a system of enumeration is
just a mere matter of convention.”

...Blaise Pascal

4.0 INTRODUCTION

The Method of Symmeiric Constructions has made possible the construction of
Orthogonal Linear Effect Plans’ (OLEPs) for 2*es” factor combinations in s(1+k) runs, where s is
any positive integer (=2). This chapter introduces the basic components of this technique and
details the notational and operational subtleties involved. Succeeding sections illustrate with

examples relevant concepts and their interrelationship in the context of an OLEP.

4.1 THE VOCABULARY OF THE METHOD OF SYMMETRIC CONSTRUCTIONS
An OLEP consists of five basic elements®: build sets, constructs, addition sets, reflections
and swaps. All the definitions described below pertain to the construction of a 2*es” design plan,

involving ‘A’ 2-level factors and ‘p’ s-level factors in s(1+k) runs.

Definition 1: A build set is a set of all ordered elements {a;}, (a; =0, 1, ..., s-1) from Zs.
Consider, for instance, an OLEP for a 2%e3* factor combinations in 3(1+3)=12 runs; here

5=3. So, the build set in this context is (0, 1, 2) and is denoted by the symbol B.

(The reader is encouraged to verify for himself, that 12 runs are the theoretical minimum
number of runs necessary for estimating the main effects alone for a 2'e3* factor
combination. Recall from Sections 1.1.8, 1.1.9 - how many total degrees of freedom, i.e.,
total number of effects are involved in a 2’e3* combination; how many effects can be

estimated in N runs?)

* Design plans that allow the complete estimation of all linear main effects while the higher order effects
are slightly correlated. (refer Section 1.5.2)
® The author has created all these definitions. Any resemblance to concepts, dead or alive is purely
incidental.
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Definition 2: A construct is generated by adding one to all the elements of the build set,
addition being performed in arithmetic modulo s. The construct will be denoted by the
symbol C. Thus, for the example of a 2°3* OLEP cited in definition 1, the build set B was
(0, 1, 2) and the construct is (1, 2, 0). The calculation is as follows: 0+1 = 1 mod 3; 1+1 =2

mod 3; 2+1 =0 mod 3;

Definition 3: An addition set is generated by adding two to all the elements of the
construct. The addition set will be denoted by A. Thus, for the example cited in definition
1, the construct is (1, 2, 0) and the addition set is (0, 1, 2). The calculation is as follows:
1+2=0mod 3;2+2 =4 =1 mod 3; 0+2 =2 mod 3;

Definition 4: A reflection is generated by taking a mirror image of the set in consideration
(either a construct or an addition set or any set in general). Thus, the reflection of the
addition set (0, 1, 2) is (2, 1, 0), which will be denoted by R". The reflection of the
construct (1, 2, 0) is (0, 2, 1) and will be denoted by R".

Definition 5: The swap is generated by interchanging the (s-1)™ and s™ elements (i.e., the
last two elements), and then the i™ element with the (s-1-i)" element of the set in
consideration (i = 1, 2, ..., (s-2)/2, if siseven, or i = 1, 2, ..., (5-3)/2 if 5 is odd). §° will
denote the swap operation performed on the conmstruct, and §', the swap operation
performed on the addition set. This is illustrated below for both cases, i.e., when s is even

and when s is odd. Note that the elements of the construct are numbered 1, 2, ..., s.

Case 1: s=5 (odd): The build set B is (0, 1, 2, 3, 4); The construct C is (1, 2, 3, 4, 0); The
addition set is (3,4, 0, 1,2); R°=(0,4,3,2,1); R*=(2, 1, 0, 4, 3).

The swap performed on the construct and the addition sets are:

S.No| Construct, C Swap, S° Addition Set, A Swap, §"

P P T e e
3 P 0o — A
4 1
5 2
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Case 2: 5=6 (even): The build set is (0, 1, 2, 3, 4, 5); The construct is (1, 2, 3, 4, 5, 0); The
addition set is (3, 4, 5, 0, 1, 2); R=(0, 5, 4, 3, 2, 1); R*=(2, 1, 0, 5, 4, 3); The swap is

performed thus:
S.No | Construct, C Swap, S°  Addition Set, A Swap, §*
1 1 4 2 5
2 2 3 1 0
3 3 2 0 1
4 4 1 5 2
5 5 >_<: 0 4 3
6 0 5 W e M

An index of some useful constructs and swaps is presented in Table 4.1.

Table 4.1: Index of some useful Constructs and Swaps

s Build Set, B

Construct, C

Swap of construct,
c

Addition Set, A

Swap of addition

(0,1,2,3,4,5,6)

(1,2,3,4,5,6,0)

(5.4,3,2,1,0,6)

(3.4,5,6,0,1,2)

(0,6,5 43,2, 1)

(0,1,2,3,4,5,6,7)

(1,2,3,4,5,6,7,0)

(6,5,4,3,2,1,0,7)

(3,4,5,6,7,0,1,2)

S set, §8°
3 (0,1,2) (1,2,0) (1,0, 2) (0,1, 2) (2,1.0)
4 0,1,2,3) (1,2,3,0) (2,1,0, 3 (3,0,1,2) (0,3,2, 1)
5 (0,1,2,3,4) (1,2,3,4,0) 3.2,1,0,4) (3,4,0,1,2) (0,4,3,2 1)
6 0,1,2,3,4,5) (1,2, 3, 4,5, 0) 4,3,2,1,0,5) (3,4,501,2) (0,5,4,3,2,1)
7
8

(0,7,6,5,4,3,2,1)

The reflection of the swapped set may be generated as a straightforward extension of

definition 4, and the reflection thus generated will be denoted by R ™% or R® as appropriate.

4.2 USING THE VOCABULARY OF THE METHOD OF SYMMETRIC CONSRUCTIONS

To highlight the significance of the above definitions in the construction of OLEPs, the

following propositions are stated without proof.

Proposition 1: It is possible to construct an orthogonal matrix X, in 2s runs as shown

B C
xz-‘ ) [ -}
B R

where, B, C, R°, are column vectors consisting of the elements of Zs, as per definitions 1,

below:

2,3,4,and 5.
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Example Illustration: Consider s=3. Here, B = (0, 1, 2); C = (1, 2, 0); R*= (0, 2, 1).

Then, using Proposition 1,

B C
XZJ=X4=B Ru =

M = O N= O
L ™ == I == T o T

The above matrix is orthogonal and the development of OLEPs from X matrices

will be detailed in sections to follow.

Proposition 2: It is possible to construct an orthogonal matrix X, in 4s runs as shown
below:

B C § A

B R° R* C

B C C R°

B R° R° R*

X, =

X

Example Illustration: Here, B=(0, 1,2); C=(1,2,0); R°*=(0,2,1); A=(0,1,2); 8=

(2, 1, 0). Then, using Proposition 2,

==l
o)
)

B C §° A
B R° R° C
; "IB C C R
B R° R° R*

— N O O N = O NN~
S = N NS O N =N = O

_N O O N =N O O N

D= O N = O N = O N =
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The matrices thus constructed, using the above propositions and others that will be stated
later, in 2"s runs, will be denoted as 'X' matrices of order 2"s. It is now appropriate to state a few

additional definitions to supplement the ideas presented in propositions 1 and 2.

4.3 WHY IS IT CALLED THE METHOD OF SYMMETRIC CONSTRUCTIONS?
This section is intended to introduce in context, very intuitively, the reason for naming
this technique the method of symmetric constructions and it is towards this end that the following

definitions are presented.

Definition 6: There exists in X matrices of order 2"s a line of major symmertry that
divides the design plan into two symmetric halves. The line of major symmetry in an X
matrix of order 2"s will share 2"'s elements on either side of it. This is illustrated using

the X, matrix (i.e., X4, matrix for s=3).

01 10

1 2 0 1

2 0 2 2

0 0 2 1

B C § A 1 2 0 2
B R° R’ C] 2110 This is the Line of
X=X = B C C R o 1 1 0 Major Symmetry

B R° R R"J 1L 2 2 2

2 0 0 1

0 0 0 2

1. 2 2 |

2 1 1 0

Definition 7: There exists in X matrices of order 2"s, minor planes about which the
individual reflections are performed. Minor planes exist only when the order of the
matrix >4s. These minor planes segment the columns above and below the line of major

symmetry and serve as pivotal points about which the reflections are performed.

Definition 8: There exists in all X matrices of order 2"s, a wall that constitutes the

column of build sets, B, repeated 2" times.

The ideas underlying definitions 6, 7, and 8 (and some more) are illustrated in Figure 4.1,

wherein a Xy, has been dissected to show its component sections.
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Figure 4.1: Visual Illustration to Support Definitions 6, 7, and 8

This is the Wall et "7~~~ .__| These are the
F i -
Ny - . minor planes

1y

\: \ soc ‘1,
Bl /C\y§ AI},

- = EB= ,Rcl R’ ,Q Line of Major
SO RTT e e
B {CI CyR Symmetry
it A I K
B RY R° R“}

This is the -
Main Zone

Some comments about Figure 4.1 that will be useful in subsequent discussions are:

(1) The swap performed in Xy, to generate the third column, is done keeping the
lower half of the matrix same as the 2" column, while the upper portion is
replaced by swapping the construct and writing its reflection beneath it. This is
termed a manipulation, the formal definition of which will be presented later.

(2) The swap and its reflection, (which constitutes a swap-reflection pair) that is
observed in the 3™ column of Xy, is pivoted about the minor plane in the upper
half of the matrix.

Figure 4.1 includes an additional term, the main zone, the definition and description of which

follow:

Definition 9: Apart from the Wall, all the other columns in the X matrices are derived
from individual stems, that form the basis for further development in their individual

zones, the definition of which is presented next.

Definition 10: A Zone is defined in the matrix, within which all the columns are
generated by manipulating the upper half of the corresponding stem and then
progressively proceeding across the line of major symmetry. A Main Zone is defined
wherein, the stem is the column vector (C R® C R°...C R®)". The reader is directed to
note that the 2" column, i.e., the column apart from the Wall, in both X, and X4, match

the above description.
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Step-down Zones are generated by bringing two adjacent minor planes towards
each other, stepping them down (up) by s units each and continuing till they coincide
with each other or they merge with the line of major symmetry. Along with the minor
planes, the construct-reflection (i.e., C-RY pairs, pivoted about the corresponding minor
planes are also stepped down, and this operation is performed symmetrically on either
side of the line of major symmetry, making minor planes unique to each zone. The zones
thus created are numbered 1, 2, 3, etc and the main zone is given a zone number of zero.
However, before the discussion furthers into more details, it is necessary to introduce the
idea of manipulating a stem, which is very useful for generating additional orthogonal

columns.

Definition 11: The stem in a particular zone can be manipulated to generate other

columns in the following ways:

(1) The lower half of the stem is kept constant and their corresponding swap-
reflection pairs replace all the construct-reflection or addition-reflection
pairs above the line of major symmetry. This will generate 2"*' swap-
reflection pairs, where i is the number of the zone to which the stem belongs
and n is the exponent of 2 in the order of the X matrix (e.g., for the Xy,
order = 2%, n=2). This is possible so long as the minor planes in the
corresponding zones are distinct and different from the line of major
symmetry. This step will be referred to as swapping and the column thus
generated referred to as the swapped column. This is the procedure for

generating the 3 column of Xa,, and is described in Figure 4.2,

(2) Following swapping, if more than 1 swap-reflection pair is generated’
above the line of major symmetry, switches can be performed as follows:
Keep the first 2" swap-reflection pairs above the line of major symmetry
(Note: The order of the matrix is 2s) in the swapped column constant.

2" swap-reflection pairs, as a block, with the 2"

Permute the remaining
construct-reflection (or addition-reflection pairs, as the case may be) pairs
in the lower half of the column (i.e., below the line of major symmetry) to

generate two additional columns. Such manipulations (swapping and

" This is possible when the order of the X matrix > 8s, propositions for which will be presented later in
Section 4.4.
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switches) in any zone will generate a maximum of 4 orthogonal columns in

a zone, i.e., one stem, one swapped column and two switches.

Figure 4.2: Visual Illustration to support Definitions 9, 10 and 11

| The Main Zone; zone number i=0 |

T .

-‘:_',:}
[0} Q The upper half is replaced by
= £ 9 N2 _ 4220 _
0§ o gE 275 = 2% = 1 swap-
9 9 o 9 reflection pair
= =3 8
= =

X

Line of Major Symmetry

2
[
I

3 3lo »

[The minor planes in the main zonel

The C-R° pair is kept
constant on the lower half

Line of major Symmetry

>
&
|

\Z

The mincr plane(s) on either sida of the line of major symmelry are sleppad
down (up) symmelrically by s unils. Observe that the C-R® pair In the stem
is slepped down, alongwith the mincr plane by s unils; The void above C is
filled by Ihe addilion sal, A and correspondingly on the opposile side of the
line of major symmelry, a reflection of the addition set, 1.e., R* is insertad

The 1
stepdown zone

Note: In the 1st stepdown zone, since the minor planes are not different from
the line of major symmetry, additional manipulations are not possible.

Figure 4.2 was intended to illustrate the basic notion of stepping down, swapping and their

relevance in generating the corresponding X matrices.

32




The formulae presented below are relevant to determining the individual elements of an X

matrix, relevant for the construction of an OLEP, and are suitable for algorithmic implementation.

For an X matrix of order 2"s:

The Wall, i.e., the column of build sets repeated 2" times (from Definition 8) is first written
down. Then the Stem for the main zone, i.e., the column of C-R® pairs, is written down 2"
times, after which the following calculations may be performed.
n = exponent of 2 appearing in order of the matrix. (for the Xz, n = 1; for the Xy, n = 2)
i = zone identification # (for main zone, i =0; i= 1, 2, ... for step-down zones)
m,; = Number of minor planes in zone i = 2™"
p; = Number of swap-reflection pairs in the swapped column for zone i = int(m,22)
If p;= 0, then a swapped column can't be generated, = # of columns in zone i = C;= 1,
i.e., the stem
If p;= 1, then # of columns in zone i = C,; = 2, i.e., the stem and the swapped column
If p, is greater than 1, then switches can be performed to manipulate the swapped

column and generate two additional columns. = C, = 4

Figure 4.3 illustrates the use of these formulae in calculations relevant to the design of X, and

Xis.
Figure 4.3: Design Calculations Relevant to X, and Xy
n=1;
Bl c m, = # of minor planes in the main zone = 2'° = 1
25 = |: B Rf] my = 1 = minor planes coincide with the line of major symmetry.
= can additional zones be created? - NO
Po = int(my/2) = 0 = number of columns in main zone = Co = 1
Total #of columns =1+ Co=1+1=2
n=2
BlC s | A Mo = # of minor planes in the main zone = 2°™% =2
BIR° R*| C Po=int(2/2)=0= Cp =2
Xos = BlC C |[R° m; = # of minor planes in the step-down zone 1 =2*""=1
B|R° R°|R° p1=int(1/2)=0=C; =1

Total # of columns =1+ Co+ Cy=1+2+1=4
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4.4 CONSTRUCTING HIGHER ORDER 'X' MATRICES

Proposition 3: It is possible to construct an orthogonal matrix Xgs, in 8s runs. The

following calculations are relevant to determine the operational subtleties involved.

= n=3

» Create the wall, i.e., the column vector [B B ... B]" ,the build sets repeated 2" (= 8)

times.

* Create the stem of the main zone, i.e., the column vector [C R® C R® ... C R°]", the
construct-reflection pairs repeated 4 (=2"") times.

=  my= # of minor planes in the main zone = 0=y

= po= # of swap-reflection pairs in the swapped column for main zone (i =0) = 2**°=2

= Can switches be performed in the main zone? - Yes. (since pg>1)

= Total # of columns in main zone = 4 (=1 stem, 1 swapped column, 2 switches)

The steps involved in generating the columns for the wall and the main zone are detailed

in Figure 4.4 below:

Figure 4.4: Steps in the Construction of the Xy, matrix - I

Step #1: The Wall Step #2: The stem for the Step #3: The swapped column
is created Main zone is created. for the main zone is created.

B B C B Cc s¢

B ------ -B ------ -R-c" ---------- E ------ —R‘C-M_-R_s-m ], nor planes

B B Cc B Cc s¢

B | B RY ____E__m”_ﬁcm RS Uneof Majm Symmetry

B B C B C c
""‘“"""‘""‘""C_""'" "'""""""'c"".:)"é """"""""" 5

g : Fé 2 ':; I:: }Mlnar planes

E BRI BRI TR

Step #4: Generating the switches for the 4"
column in the main zone

Step #5: Generating the switches for the
5" column in the main zone

B c s° s¢ B
B "ﬁr:""ﬁp*'ﬁg ------------------ B R
B c S B
B Rfm """""""""""" B F
B c /C S B
B '"RT"(%}/"@ """"""""""""" B
B c B
B ——htf"'h'cm'R‘c """""""""""""" B R




The 4 possible columns in the Main zone have been created. Since the 4 minor planes in
the minor plane are distinct and different from the line of major symmetry, it is possible
to create a step-down zone, and the swapped column for step-down zone #1, as is

illustrated in Figure 4.5.

Figure 4.5: Steps in the construction of the Xg, matrix - I1

The Main Step-down
Zone Zone #1
~— —

(B| [C| s s° 8| A s

B| RY R% R¥%* R¥* 5

Bl _C___ s ¢ _¢/f® R

X, - B| R° R¥ R° R‘| R* R%™
S| B C_C 8 C|l A A
B| R R° R* R¥NC C

Bl € _C _C SR K

| B| R° R° R% R¥%|[ R’ R‘

The stem in the step-down zone J

The swapped column

Note: For the Step-down Zone #1, observe that the 2 adjacent C-R® pairs in the upper
half of the main zone are brought together and merged as one and the voids above

and below are filled with the addition set, A and its reflection R*.

The next logical step would be the construction of an X;s matrix in 16s runs, the

description of which is presented next.

Proposition 4: It is possible to construct an orthogonal matrix X, in 16s runs, using the
method of symmetric constructions as was introduced in the previous sections. The matrix
is presented in Figure 4.6 and necessary enumeration is included to bring out the specific

details.
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Figure 4.6: Design Template for the X s Matrix

Wall Main Zone Step-down Zone #1 Step-down Zone #2

< <— e — <€ -
B | C S s s| A 8 8 S8"|R' R% R% R%]

B | R R* R¥ R¥C 8 8§ 8§ | A s 8§ s
B|C s s s AR R* R*¥ R € 8§ § &

B | R® R* R* R*| R* R R% R }R ¢ R% R% R%
B|C s ¢ c| a s A Afc s rR ¢

B R¢ RSr R¢ Rc\ i __(_:_____S_c _____ {_: _____E_;; R¢ RS" A R

B _9____§j____£ _____ (_: _}:. Rc RS{' Rc Rc Ru RS__, C R:r

X, - B |R° R* R° R°|/ R” R* R R°| A S R° A
"|B|C € 8§ C| A A S A|R‘ R" S R
B | R® R° R* R° }C C 8§ €| A A R* A

B(cCc c s clfrR R R* RYC C R" C

B | R R° R% R°| R* R R%™ R“ 3_11_11___13_‘___ § R°
B|C Cc c s| A A Ao s*fAc ¢ ¢ s

B |R° R° R° R¥[yCc C C s8¢ R R‘ R‘ R¥*
B|C C C s }ﬁ“f"wfif T R° R¥| R R“ R° R%
B |R° R° R° R*| R R“ R* R"| A A A 8]

This concludes the list of propositions that will be presented detailing the list of X

matrices constructed using the method of symmetric constructions. The next section will discuss

the construction of 2*es” OLEPs in s(1+k) runs from the above defined X matrices.

4.5 CONSTRUCTION OF OLEPS USING THE X MATRICES

The construction of all relevant OLEPs discussed in this section is a direct extension of

the X matrices defined and delivered in Sections 4.3 and 4.4 and they use the Fisher's theory of

confounding (Section 3.2) as the underlying principle. The following propositions are now stated

without proof.

Proposition 5: It is possible to construct a 2es’ orthogonal matrix, Xz in 2s runs as

shown below:

” 0 B C
23711 B RS

where, 0 and 1 are column vectors of zeros and ones.
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Proposition 6: It is possible to construct an 2’es” orthogonal matrix, Xy, in 4s runs as

shown below, where 0 and 1 are column vectors of zeros and ones.

00 0B C S A
X_IIOBR"R"'C
%1191 B €C C RS

01 1 B R R° R

Both propositions essentially modify an X matrix into a 2*es” matrix through the

following steps, stated generically for a X matrix of order 2"s.

= To the X matrix of order 2"s, append 'n' 2-level columns corresponding to the
n factors in a 2" factorial, i.e., write out a 2" full factorial alongside the
existing columns of the X matrix. This is illustrated for the X, matrix (5=3).
The X,; matrix is of order 22.3, where n=2. Therefore, two additional 2-level
columns will be appended to the existing X;; matrix as described in

proposition 6.

0 0 0 1 1 0]
001201
0020 22
010021
01120 2
012110
Xe=l1 00110
101222
102001
11000 2
111221
1121 1 0]

* Generate a total of 2"-1 two level columns from the existing 'n' 2-level
columns using Fisher's theory of confounding (Section 3.2). In the example
of a X, cited above, one additional 2-level column may be generated from
the two existing columns using Fisher's theory of confounding. The complete

matrix, i.e., the 3X;; matrix is shown in Figure 4.7.
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Figure 4.7: Orthogonal Linear Effect Plan for a 2°.3* Factor Combination in 12 Runs

(0 0 0 0 1
000 12
00020
10100
10112
10121
X2 =11 10 0 1
1101 2
11020
01100
01 112
01 1 21

_— NS S N e DN N D -

=]
1

[T~ W U o T — R — T S T

All the matrices constructed thus are orthogonal linear effect plans. They allow

complete estimation of all linear main effects, while the higher order effects of the factors

are correlated with each other. In the sections to come, methods will be described

wherein, the problem of correlated higher order effects may be remedied. Next,

additional propositions are presented, wherein the Xg; and the X;¢s are modified into

OLEPs based on the generic rules stated earlier.

Proposition 7: It is possible to construct a 27es” OLEP, ,Xg, in 8s runs as shown below,

where, 0 and 1 are column vectors of zeros and ones.

0000000 B C
1110100 B R
1101010 B C
0011110 B R
X<l 9011001 B cC
0101101 B R
0110011 B C
1000111 B R

SC

R

S¢

R Se

C
R
C
R

Sl’.‘

R

C
RC
€

R

SC

R

g
g¢
R%
R
A
C
R
R

Proposition 8: It is possible to construct a 2'°es"* OLEP, (X4, in 165 runs as shown in

Figure 4.8, where, 0 and 1 are column vectors of zeros and ones.
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Figure 4.8: Design Template for the ;X5 Matrix in 16s Runs
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4.6 CONCLUDING REMARKS

The discussion on the method of symmetric constructions and the related construction of
OLEPs is now complete. The next chapter will discuss techniques to modify the orthogonal linear
effect plans so as to remedy the problem of correlated higher order effects and illustrate with

examples, methods to incorporate any user specified factor combination(s).
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Chapter 5

APPLICATIONS AND EXTENSIONS OF ORTHOGONAL LINEAR
EFFECT PLANS

"Experiments are the only means of knowledge at
everyone's disposal. The rest is poetry, and
imagination.”

...Max Planck

"But what has been said once, can always be repeated.”
...Zeno
5.0 INTRODUCTION
This chapter is intended to extend the definition and scope of orthogonal linear effect
plans (OLEPs) that were introduced in Chapter 4 and discuss applications, underlying

assumptions, and advantages of the method of symmetric constructions.

5.1 MODIFYING ORTHOGONAL LINEAR EFFECT PLANS

The method of symmetric constructions was defined and described as a viable technique
for the construction of OLEPs involving 2*es® factor combinations, whilst mentioning the
drawback that the higher order main effects for the factors are correlated with each other. To
better illustrate this, a ;X;; design, (i.e., a 2%3* OLEP in 12 runs) is dissected into its component
factor main effect columns, using orthogonal linear transforms as is representative of a typical
regression analysis in Figure 5.1. The results of the inter-intra column correlation coefficients of

the matrix are also presented.

It is easily noted that the linear main effect(s) of the factors A - G are uncorrclated with
each other while the quadratic effects, i.e., D? E?, F%, G? are correlated with each other and this is
why they are called orthogonal linear effect plans. This research does not address de-merits of
these correlated higher order effects since near-orthogonal arrays are indeed used widely in
industry (Nguyen, 1996; Wang and Wu, 1991), primarily because of advantages of economic run

size and usefulness of estimates derived therefrom in effecting decisions.

The orthogonal linear transforms that are used to represent the linear and quadratic
coefficients for the 2-level and 3-level factors shown in Figure 5.1 and for other higher level
factors are shown in Table 5.1. Fisher and Yates (1957) present complete tables of orthogonal

transforms for up to 75-level equally spaced factors.
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Figure 5.1: Inter-Intra Column Correlation Coefficient Calculations for the ;X;, Matrix
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Table 5.1: Table of Orthogonal Transforms

Ordered factor levels
# of factor Orthogonal
1 2 3 4
levels, s Transform
2 Linear -1 1
3 Linear -1 0 1
Quadratic 1 -2 1
4 Linear -3 -1 1 3
Quadratic 1 -1 -1 1
Cubic -1 3 -3 1
5 Linear -2 -1 0 1 2
Quadratic 2 -1 -2 -1 2
Cubic -1 2 0 -2 1
Quartic 1 -4 1
6 Linear -5 -3 -1 1 3 5
Quadratic 5 -1 -4 -4 -1 5
Cubic -5 7 4 -4 -7 5
Quartic 1 -3 2 2 -3 1
Quintic -1 5 -10 10 -5 1

Methods to modify and extend the OLEPs to include higher level factors will be

discussed and in this regard, the following propositions are stated without proof.

Proposition 1: It is possible to replace a s-level factor and a 2-level factor with a 2s-level

factor as shown below:

2-level s-level 2s-level
0 0 0
0 1 1
0 2 2
0 s-2 Replace s-2
0 s- L
1 0 Collapse -
1 1 s+1
1 2
1 5-2 2s-2
1 s-1 2s-1
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By an extension of the above proposition, it is also possible to replace a 2s level
factor with a s-level and a 2-level factor. This is illustrated with the example of collapsing

(and replacing) a 2-level and a 3-level factor into a 6-level factor in the following page.

2-level 3-level 6-level
0 0 0
0 t Replace N .
0 2 2
- o Collapse 3
1 1 4
1 2 5

Proposition 2: It is possible to collapse a 2s-level factor into a k-level factor, where.

2s<k<s as illustrated below for the case of s=3.

2-level & 3-level 6-level S5-level 4-level
0 0 0 0 0 0 0
0 1 1 1 0 1 1
0 2 Replace’ ?) CoHapse’ 2 Collapse | o 2 g 1
1 0 3 2 2 2 2
1 1 4 3 2 3 3
] 2 5 4 3 3 3

The above propositions are based largely on Addelman's (1962a) principle of

replacement and collapsing based on the concept of proportional frequencies.

The principle of replacement and collapsing of lower level factor into a higher order
factor level can be used to modify OLEPs to include a mix of several factor levels and allow for
flexibility in experimenting with a greater mix of factor levels. In addition, this principle of
replacement and collapsing is necessary to modify the swapped column, the switches in the main
or step-down zones of the OLEP into a higher order factor. This is because the swapped column
and the switches are generated solely by a symmetric exchange of elements of the stem about the
origin. Consequently, the quadratic effect (and other even higher order effects) for the factors
represented by these columns will be completely correlated with the factor represented by the
corresponding stem. For example, in Figure 5.1, observe that the quadratic effect of factor F is
completely correlated with that of factor E, where factors E and F belong to the main zone of the
X, matrix. Since the swapped column and switches are possible only in X matrices of order>4s,

the following discussion details techniques to replace the switches with higher order factors.
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Consider the example of a X matrix of order 2°s, n>2. The swapped column and switches,
are combined with the 2-level factors and are replaced by 2s-level factors to modify the OLEPs.

The 2-level columns chosen to combine with the s-level factor must be columns
generated using Fisher's theory of confounding. This is illustrated in Figure 5.2 with the example
of modifying the ;X4 and Xg, matrices. The extension of this technique to the (X matrix is

straightforward and obvious.

Figure 5.2: Techniques to Modify the ;X4 and ;X3 Matrices

Combine these two columns
to generate a 2s-level factor

* v

C S A
R* R" C
C C R°

0
1
0
1 R° R R”

e — ]
=<1 -~ B~ ~ -~ |

Combine these columns to generate four 2s-level factor columns

Il ]
0 0 !)' oro 00 B C g ls' S A S
1110100 B R RY R R* C §
1101010 B C€C & € C R R¥
< 0011110 B KR R* R° R° R’ R™
™ 11011001 B C C€C §& C A A
0101101 B R R RY R C C
0110011 B C€C C€C C §& R R
1 000111 B R R R RY R R“
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This principle of replacement and collapsing is illustrated with an example. Figure 5.3
illustrates a 2’3", i.e., a ;X OLEP, (as was used in Figure 5.1) which has been modified into a
2%3%6' OLEP.

Figure 5.3: Steps in Modifying a 2°3* OLEP

Original 2°3* OLEP in 12 runs Modified 2°3°6 OLEP in 12 runs
A B C D E F G A B D E G H
ojojo|l1]2|0]1 ojol12|1]0
1110|0002 111]0(0] 2] 0
oj1]11]1]2]0]2 ojojO]1]0]|1
1101|2001 11112 ([1]0]1
oj0j0jJ0|11]1]0 0j]0j2]|]0}|2]|2
Xyp= 11110121 1]1]0 _ 111112112
12 0|1|1]2[1]1]0 B 0|1]|1]2|2]3
1101|0110 110]12(0|1] 3
ojojolz2(o|2]2 o|112]1)0]| 4
1 1101121211 1]/]0)10]1])0| 4
o|j1|11|0f0f|2]1 0l1]10)10}1]5
1101112 2]2 110[1]2]2]|5
Note: The columns of the original matrix have Note: Factor H generated by
been re-arranged for sake of convenience replacing factors C and F.
Substitution used:

0 0 0

0o 1 1

0 2 2

1 0 3

1 1 4

1 2 5

This procedure of replacement and collapsing improves the orthogonality of the basic
OLEP considerably and will be demonstrated with an example. However, the modified matrix
remains an OLEP, since the even higher order effects of the modified columns remain correlated
with each other, although to a much lesser degree. The improvement in the orthogonality of the
basic design is demonstrated with a complete inter-intra column correlation analysis for the
modified 2%e3%6' OLEP, and the results are presented in Figure 5.4. Also, observe that this
matrix can (theoretically) be used to estimate 13 main effects (13=2*1+3*2+1*5) in 12 runs,

making the design supersaturated.
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Figure 5.4: Inter-Intra Column Correlation Coefficient Calculations for the Modified ;X,; Matrix

A B D E G H A B D D E Ef G G H HW H H W
ofo[1[2]1]0o A1 0] 21 1 1 o 2]-5] 561|511 -1
1]11/0]l0] 210 11 1] -1 1 | 1 1 1 5] 5] 5] 1 -1
oloJo[1[o0]1 A1 1] -1 1 o| 2] -1 1 3] A 71 -3 5
112101 11 1] 1 1 0| 2] 1 1 3 [ 7| 3] 5
ofof2]o0]2]2 A1-1] 1 1 =1 1 1 T EREE 2 | <10
X.= |11 [1[2]1]2 111 o 27 1 1 ol 2]-1] 4] 4 2 | -10
¥e o1 1223 Al 1] 0 2 1 1 1 1 11 4] 4 2 | 10
1{o]2[of[1]3 111 1 1 -1 1 o 21 1 4 4] 2] 10
ol1]l21]o0]a4 1] 1 1 1 o[ 21 -1 1 3| a7 -3] -5
1{o0]lo|[1]|0]| 4 1| 1] =1 1 0| -2 | -1 1 3| 1]-7| 3] -5
ol1]o]lo]1]5 J 1] =1 1 -1 1 o[ 2] 5 5 5 1 1
1{1o0|l1]2]2]5 1{-1] o[ 2] 1 1 1 1 5 5 5 1 1
Note: This is the modified 5X,, matrix
A B D D E E G G H H H H W
A 1
B 0 1
D 0 0 1
D?| o 0 0 1
E| 0 0 0 -0.87 1
Results of the inter-intra column E*| o 0 0 -05 0 1
correlation calculations for the —P G 0 0 0 -043 0 0.866 1
modified 3X;, matrix G’| o 0 0 025 0 -05 0 1
H| 0 0 0 0 0 0 0 0 1
H*| o 0 -0.49 -0.09 0 0.189 0.164 -0.09 0 1
H| o 0 0 0 0 0 0 0 0 0 1
H*| o 0 0.094 -0.49 0 0.982 0.85 -0.49 0 0 0 1
[ o o © o o o0 o o0 o0 o0 ©0 0 1




Also, this modified 2%¢3%¢6' OLEP may be further modified to incorporate a 12-level

factor, or the 6-level factor can be collapsed to a five or four-level factor using proposition 2.

5.2 APPLICATIONS FOR OLEPs

The design plans that have been described in Chapters 4 and S are all intended for use in
screening experiments, as is relevant for preliminary industrial experimentation. A very elaborate
listing of OLEPs constructed using the method of symmetric constructions is included in
Appendix A, which also includes guidelines for modifying and augmenting higher level factors
with a basic 2*es? plan. However, it is only appropriate the assumptions underlying the use of

these design plans be stated.

The most important assumption is that interactions, if any, among the factors are
negligible, and only the main effects of the factors are to be estimated. The main effect estimates
are then used to identify and select significant factors relevant for further study. Also, in Table
5.1, the orthogonal polynomials that have been presented are applicable only for equally spaced
factors, or factor values which can be transformed into equally spaced variates (e.g., a logarithmic
transformation). Orthogonal polynomials may however be derived for unequally spaced levels,
although, the mathematical manipulations increase in complexity as the number of levels
increase. Though the interpretation of a factor's higher order main effect(s) bears relevance only
for quantitative factors, the design plans may be made to accommodate qualitative even level
(e.g., 2-level, 4-level, etc.) factors. This is possible because the 2-level columns in the OLEPs are
designed such that each level is tested at every other level for the other factors, and so an average
estimate of its effect at each level will be complete and based on equal frequencies. Finally, the
potential drawback of these OLEPs is that even higher order effects are correlated with each
other. Depending on the experimenter's preference, this may or may not be considered relevant

considered the widespread use of nearly orthogonal arrays for industrial experimentation.

The advantages, however, accrue from the fact that all the OLEPs incur the theoretically
minimum number of runs possible and the possibilities for modifying and incorporating any user-
specified factor combination using the propositions stated earlier are numerous, limited only by
the ingenuity of the experimenter. Moreover, the method of symmetric constructions makes
redundant earlier restrictions that factor levels need to be prime powers, as is made evident in the

simplicity of construction of the 2’6’ OLEP tabulated in Appendix A.

Apart from their intended use in screening experiments, it is envisaged that the OLEPs

may be used for some additional uses as presented in the following page.
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e Useful for Accelerated Reliability Testing and/or Performance Parameter (e.g.,
failure rate) estimation, wherein, additive linear models may be derived from

logarithmic transformation of experimental data.

e These OLEPs may be useful as random balance designs, extending ideas proposed by
Satterthwaite (1959), wherein the analysis is to declare the treatment combination
with the highest (or desired) response as the winner (pick-the-winner) approach.
Also, if the number of treatment combinations used in the experiment is more than
the number of factors, a multiple regression analysis using only the linear main

effects may be used assuming all the other effects and interaction as negligible.

e OLEPs would be ideal for screening in situations involving only qualitative factors,
e.g., supplier-customer-machine evaluations, non-parametric modeling for marketing

decisions involving qualitative customer-focused factors, coffee tasting, etc.

5.3 ANALYSIS TECHNIQUES FOR OLEPs

This section shall attempt to highlight possible techniques for analyzing the results from a
screening experiment. Box and Meyer (1986) present a technique for analyzing unreplicated
fractional factorial experiments, and Barton (1998) presents a novel approach for graphically
summarizing the results from a fractional factorial experiment. These techniques are essentially
intended for quantitative factors, although references are provided in Davies (1971), Anderson

and McLean (1974), Hicks (1982), and Cox (1958) about analysis involving qualitative factors.

5.4 CONCLUDING REMARKS

This chapter presented techniques for modifying OLEPs and to incorporate any user-
specified factor combination into a 2“es” OLEP, including generic rules for replacing and
collapsing of factor levels to allow for generation of saturated mixed model design plans. Also,
related issues regarding orthogonality of higher order effect estimates were discussed, and the
advantages and assumptions underlying OLEPs were presented. This concludes the scope of this
research undertaking and the next chapter summarizes the research effort complete with

recommendations for future research.
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Chapter 6

SUMMARY

"Whenever one lights upon more exact proofs, then we
must be grateful to the discoverer; but, for the present,
we must state what seems plausible."”

...Aristotle

"What is beautiful, definite and the object of knowledge
is by nature prior to the indefinite, the incomprehensible
and the ugly.”

...Nicomachus
6.0 SUMMARY
This thesis was concerned with orthogonal design plans for screening experiments, which
would permit the estimation of all factor main effects, so as to allow for judgmental inference
about (non) significance of a factor(s). To this end, a technique called the method of symmetric
constructions for construction of design plans was developed which yielded:
(i) Uncorrelated estimates of all linear main effects

(ii) Slightly correlated estimates of higher even-order main effects.

The method of symmetric constructions has been elaborated in Chapter 4 and relevant
terminology developed therein. Finally, the construction of 2*es” design plans in s(1+k) runs has

been detailed.

Techniques for modifying a 2"es” orthogonal linear effect plan to incorporate higher order
factors have been discussed in Chapter S, complete with suggestions for use and analysis of the

design plans.

6.1 SCOPE FOR FUTURE RESEARCH
This section highlights possibilities for extending the scope of the ideas initiated in this
report and to the subject of orthogonal screening in general. Ideas that merit further investigation

include:

1. Establish valid rules for replacing and/or collapsing factor levels so as to maximize

information content per observation.

2. Simulate and validate performance of OLEPs.
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3. Undertake a comparative study to compare designs based on the principle of

orthogonality and others based on criteria such as D-, E-, A-, V-, G-optimality, etc.

4. Investigate possibilities for modifying OLEPs to allow for estimation of main effects

and some/all interactions.

5. Consolidate all available methods of construction for OMEPs including the method of
symmetric constructions, as a computer program to generate design plans tailored to

user's needs.

6. Attempt formal proofs for all the propositions stated in Chapters 4 and 5 so as to
extend the method of symmeitric constructions as a generic and robust technique,

independent in its approach and method of solution.

7. Investigate the potential for using the concept of random balance designs, and

establish precedent for use of OLEPs in 'pick-the-winner' solution methods.

An age or a culture is characterized less by the extent of its knowledge than by the nature
of the questions it puts forward (Jacob, 1989). To this end, it is hoped that the method of
symmetric constructions, while being just a man-made, conceptual shorthand to abstract and
shape the author's ideas, will prove useful to interested researchers in the times to come. The
merits, de-merits and applications of the technique are yet to be fully laundered, and inasmuch as
the scope of this report is concerned, it deems necessary to conclude the report with the mention

that - so all things time will mend and so this report shall come to an end.
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Appendix A: Tables Of Useful Orthogonal Linear Effect Plans

Ah, my computations, people say,

Reduced the year to better reckoning? - Nay,
‘Twas only striking from the calendar, what was
Unborn tomorrow and dead yesterday.

....Omar Khayyam
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TABULATED ORTHOGONAL LINEAR EFFECT PLANS (OLEP) FOR 2-LEVEL AND 3-LEVEL FACTOR COMBINATIONS

O oo~ O; b WN=>

w

Notes on usage and interpretation:
1. All the individual designs are enclosed within marked rectangular regions,
which can be selected for use based on experimenter's needs.

2. All designs are named according to the following notation:
sXk - These designs are of type 2".s” requiring k trials
- The sXk type designs involve 2-level and s-level factors
Fore.g.,
3X12 is a design involving 2-level and 3-level factors requiring 12 runs.

3. The names for the individual designs appear near the top left corner
of the rectangular region enclosing the design plan.
Likewise, the designs that have been shown in the plan alongside are:
3X24, 3X12, 3X6 the interpretation of which is straightforward.

4. The specifications for the corresponding OLEP is shown near the top right
corner of the rectangular region enclosing the design plan.
Fore.g.,
The specification for the OLEP named 3x12 is 2°.3°, which is interpreted
as a design for screening three 2-level and four 3-level factors

5. Association of factors: To collapse &/or replace
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TABULATED ORTHOGONAL LINEAR EFFECT PLANS FOR 2-LEVEL AND 4-LEVEL FACTOR COMBINATIONS

Association;

FeZ

2

1

3

0

wWrel

3

3 2]3

0 210

T

4X8}

0

0

2

4X16|

0 0jJ0 O
0 0jJ0 O
0 0ojo o

0
0
0

4X32

0

1

0

0

1

0

8-level factor

|_|: Associate with —,

10

11

12
13
14
15
16
17
18
19
20
21

2210

23] 0
24
25
26
27
28
29
30
31

32

60




E1X

(424

LLX

0LX

2 2 2 3 0 0 0 2

1

xR R % (R

[]

6 3 3 3 1

1 2 2 2 0 3 3 3
3 03 3 3 2
¢ 0 3 3 3

3

1

1

1 1 3 0 0 0
2 .2 2

1

3 000

1

300 0 2

1 10 3 3 13
300 01

i

2

2

1

1

2 2

1113000L
2 2 2 0
1

2 30 0 0 2

3 3 13

1

3

3

3 X2 1 1.0 3 3 3

3
3 000

2 2 2 3 0 0 0
0 3

1

1L

1

1

i

2

2 22 30 0 0 1

1

3

1 3 0 3 13

1

i
o
3

2 2 0 3 0 0 2

1
3 3
0 0

0
3

3 3

3

2

0

1 2 20

2

3.0

300

0
1

2 2 30 3 3

3 32 1
2

3

1

2

0 0 2 1

3

2 2 0 300

1
2

3 0 3 3
3 0 3 3

1
2

1

1

0 0

300 3 3 1

1
2

303 2 2 1

c o 3 0

2

1

2

00 3 0

1

3
3
0

2 3 3 0

1

3 30

1

0

21 2 0 0 3

2

0 3

2

1
2

21 0 0 3 0
2

1
2

3 3 0 3

0 0 3 0

1
2
1

3 02 . 2 1 0o 0 3 0
2

0 0 0

3 3 0 3

280 -3 622 I
1 3 3 0 3

1

2

0
3

00 0 0 3

3
3

2 2 21 000
o 0 0

1

1 33 30 2 2 2

2 222 2

2 00 0 3
14 3 3 9

3.0 2 2 2

1
2

1

Z 2 3

1
2

0 o
33 3.0

f

1

2
1

3
3 0 0 0

3

3 3 3 0
2 0 0 0 3

0 0 0 3

1

1

1

Q+J+8+V

a+J+8

a+J+v

a+a+y

J+8+Y

a+d

a+8__
0+8

q+v

Oty

8+v

< |mo |0 |Oo

0 0 00 O0OODOTOOODTO0OTO0CTO OO0

00000 O0O0UO0CO0OO0

00 0 0

0

000 O0O0CO0OO0OCOCO0OO0OO0OOCOODODOZ2 3 000

0 000 O0OUOCODOODODOOOO

0 0 0 1 0 0

1

1
1
1

0 0 01 00

| E |

1

0 1 10

1 0 0
0001 00

0 0 0

0 1 0 1

1
1

0 1 0 0
0

0

0 01 0 1 1

0

| |

1

1 0

0 0 00 0
00 0

1

0

1
1
3

¢ 0 0f 2 2

0 0 0

/]

1

0 0 1

1 1 1 01

1

01
01

100 11
1

00

00 1 0 0 1

1
1

i 00
1 ¢ 0

0 0

01 0 0

0 00 O

11 0 1

4]

00

0

1

0 0] 2 2
0

1
1

0

1 0

01 1 0

0 02 3 0 3 3 2

0 0/ 3 0 3 0 0

1
1
1

1
1

00 0O0O0OTO0

00
00
i
1
1
1
1
1
1

1

0
0

1

1
1

1
1

1
1

00 D0DOCO0OOCOQ
00 0 0 0 O
0 0 0D 0O 0
o0 0

o n 0

0 0 0

g

1

1

1
1

1
1
1

1
1
1
1
1
1
1

1 00 0
0o 0 0
00 9

L 00 0

1
1

0o 0 0 3

1 ¢ 01 11001
0 0
0 0

1
1

0 0 1
o 0

1

1

1 001 ¢

1
1

1
1

0 0 1

1

n o

1

0 0

0ol @

0 1

1 00 0 1

1

0

]
0

1

1
1
1
1
1
1

00 0
0o 0
1L 00 0

1
1

1
1
1
1
1

o o0

01 1100

1

ol 0

1
1

1

0 0 0
0 0 0
0 0 0

1

0 ¢ 0

1
1

1
1

1
1

1 002 3 3 3

0 ¢ 0

ol 3 :0 0 &
1

1
o0

0

1

00

0 1 0 1

1
1

1
1

00 0
0 0 o
0 o o0
a 0 0

1
1
1
1

1
1
1
1

1 0 0 @
1

1
1

0 0 0
0 0 0
00 0

1
1

] 1 0o 0 0 0 3 2 2 2

o o0 0

0

1 11 0f2 2 2 2
p ! 0] 3

1
1

000 000

00 0 D0 0 ¢

1
I

1

2
3
q
5
6
7

10

12
13
14

15
16
17
18

191 ©

20
21

2241 0
23

24

25

26

27
28

29) 0

30) 0
31

321 0
33

34

35

36
37

38

39

40
41
42
43
44

45

16
47
48
49
50
31

53

54

55

56
57

58

59
60
61

62

63

64

61



TABULATED ORTHOGONAL LINEAR EFFECT PLANS FOR 2-LEVEL AND 5-LEVEL FACTOR COMBINATIONS

Association;

10

-

282

5X10)

5X204

5X40)

1

10-level factor

|— Associate with —J

10

11

12
13
14
15
16
17
18
19
20
21

22
23
24
25
26

27
28
29
30
31

32

33] 0

3410
35
36

37

38
39
40

62



TABULATED ORTHOGONAL LINEAR EFFECT PLANS FOR 2-LEVEL AND 6-LEVEL FACTOR COMBINATIONS
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_LEVEL AND 7-LEVEL FACTOR COMBINATIONS

TABULATED ORTHOGONAL LINEAR EFFECT PLANS FOR 2
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