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P'REFACE 

This research is about the design of experiments, and the combinatorial problems that are 

intrinsic to the subject. The poss,ibility of being able to make judgmental decisions to control or 

modify a process, s'elect (or deseiect) significant (or trivial) factors based on information gathered 

from very few runs, in what is commonly referred to as screening experimentation is very 

optimistic, both in its scope and importance .. However, the design plans applicable for such 

experiments, whi le being simple in concept and creation for symmetrical experiments, pose 

interesting challenges for the case of asymmetrical experiments, both in attempting a generic 

tractable solution and remaining true to their intent, i.e., easy to comprehend and use by the 110t­

so-naive experimenter. To this end, this research attempts to establish and propound a new 

method for generating orthogonal plans, orthogonality being a necessary attribute of the design 

plans to maximize ·confidence in the screening experiment's outcome(s) and subsequent decisions 

therefrom. 

The method of symmetric constructions is the outcome of this research effort and 

contends as a g,eneric solution methodology for the construction of2k.,\p (s~2) o.rthogonal plal1ls ill 

s( 1 +k) runs, uses for which are numerous, inasmuch as industrial experimentation is concerned. 

Also, rules for modifying these design plans, to incorporate any user-specified combination are 

explored and elaborated. It would only seem fair to admit that this res,earch is incomplete, either 

in fu lly exploiting this technique or in achieving the desired objective of completely orthogonal 

estimates of all higher order factor main effects. The design plans constructed using the method 

of symmetric constructions allow for orthogonal estimates of all linear effects while the higher 

order factor effects (for quantitative factors) are slightly correlated with each other. However, the 

pros and cons of near-orthogonal arrays are not elaborated in this report. Also, generic design 

templates for use in the constructions of asymmetrical experiments are derived and presented 

herein. 

It is the fond hope of the author that the method of symmetric constructions wiU find 

applications in other allied fields as well and in this context, the ideas initiated and shared in this 

rep0l1 shall be found useful by interested researchers ill the years to come. 
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SCREENING IN INDUSTRIAL EXPERIMENTATION 

1.0 INTRODUCTION 

For "i.s" and "is-!not" though with rule and Une 
And "'up-and-down'" by logic I define, 
Of aU that one should care to fathom, I 
Was never deep In anything but - books and wine . 

.. . Adapted trom Omar Khayyam's "Rubaiyal" 

Designed experiments provide organized means for scientifically determining the 

relationships of inputs to outputs in a given process. A designed experiment involves purposeful 

changes to the inputs (factors) of a process in order to observe the corresponding changes in the 

outputs (responses) so as to understand and characterize how the inputs affect the response(s). 

The general situation consider,ed is one in which there is a response (or, an output) variable which 

is thought to be dependent on controllable variables or inputs. This type of situation is of quite 

common occurrence, as may be se,en from the following list of examples from widely different 

fields: 

Table 1.1: Some Examples to Illustrate Relevance of Designed Experimentation 

I RESPONSE lNPllTS 

1. Taste of Coffee %Fat in milk, # of spoons of sugar, # of spoons of 
coffee powder used, etc. 

2. Quality of an alloy - Hardness, Amounts of differ,ent metals, rate of cooling, 
Strength temperatllre of alloying element addition, etc. 

3.. Torque applied to meet design • Turning surface (Nut/Head) 
specification for pre-load forces in • Lubricant (Dry/Lube) 
high strength fasteners - from • Lube type (Aliphatic acid/Anti-Seize) 
Bingham (1997). • Sealant (Y eslNo) 

• Sealant Viscosity (Thin/Thick) 
• Rotation (30/600 RPM) 
• Hardness of joint (SoftlHard) 
• Nut plating (Cadmium/Dry film) 
• Finish (structure being fastened) - White Lacquer 

/Prime Aluminum 
• Washer (Bare/Cadmium plated) 
• Re-apply torque (YeslNo) 
• BaIt material (Titanium/CRES) 

i. Nut geometry - Thin (hex)/Tbick (12-point) 



This list, which could be extended indefinitely, was intended to demonstrate the range of 

situations that have the same essential structure. 

When an experiment involves several input variables, the effect of all such variables on a 

characteristic of interest, namely the response, may be investigated s.imultaneously by varying 

each factor (input variable), so that all or a suitable subset of all possible combinations of the 

input variables are considered for experimentation. An experiment in whi.ch this procedure is used 

is commonly known as a Factorial Experiment. An experiment that involves all the possible 

treatment combinations is called a Full Factorial Experiment. 

It is frequendy the situation, wherein several factors may be considered relevant, rather, 

significant in 'explaining' the response. It is common knowledge that brainstorming within a team 

in advanoe of any scientific study brings up a plethora of judiciously relevant factors (Tabl,e 1 ... 1, 

example 3). In such situations, the scalpel of experience and maturity of judgement is used to 

further whittle down the list of factors to a pool of genuinely relevant factors that cannot be 

dismissed using rules of thumb or by word of experience alone. It is in such cases that designed 

experimentation bears tremendous relevance in providing an 'organized' method of study and 

analysis as opposed to 'hit-and-run-shop-f1oor-trial' methods which may seem attractive in 

prospect, but in reaitty, are of no use. 

However, when the cost of experimentation is prohibitive, and economy of resources is 

preferred, an experimenter cannot afford' to examine all possible tTeatment combinations in 

detail, either at leisure or at pleasure. This idea is better brought home with an example. In the 

TorquelPre-Load experiment (refer Table 1.1 ,example 3), where each 'relevant' factor is stated 

with 2 possible options, the total number of different experiments possible is 8192 (2'''). If it takes 

a conservative I-minute to apply pre-toad torque 011 one fastener joint, the total time taken for all 

experiments would be 5.69 days, working non-stop, the futility of which deserves no further 

elaboration. In such situations, experimenters tak,e recourse in performing Screening 

Experiments. 

Screening experiments are intended for what their name implies, i.e., screen the set of 

'known' factors to find out which factor(s) is truly significant in explaining the response and 

which otbers are just 'in-for the ride'. Thus, the purpose of the scre,ening experiment is not so 

much to better the process as to determine which factors are essential for making improvements. 

I 'Affording' may be interpreted in monetary terms, although, it is frequently the case, that time is the actual · 
constraint. 
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Screening experiments allow the testing of many factors for their irdluence on the major 

process response(s); while the estimation of factor effects may often be imprecise, they allow the 

experimenter to identify the tru'y important factors from the many possible choices. A screening 

experiment usually helps conclude that only a sman number of factors (usually 2-5) are truly 

significant in affecting the average response, the detailed analysis of which is carried out by 

following up with more refined experiments to completely model the effects of the 'selected' 

factors on the response(s). Also, the well designed screening experiment weeds out all factors 

affecting just the variance in the response, allowing the ,experimenter to set them at levels that 

will minimize the variation in subsequent experiments or process performance in general. 

It i.s only appropriate that a formal definition be stated for a screening experiment: 

"A Screening experiment is an educated start towards understanding a 

process, supported with a lot of intuition and blind spots, a blend of facts noted and 

Jacts ignored, to expedite the identification of the'vital Jew', i.e., the truly important 

Jactors affecting the desired response(s) from the many possible choices. " 

........... [Adapted from Crichton (1969)] 

Peace ( 1993) summarizes the objectives of a screening experiment as being both short­

term and long-term. The short-term objective not only is complementary to the latter, but also 

paves the way for its success. The long-~erm goal is to reduce process variability by optimizing 

the significant process variables. To achieve this, the short-term intent is to identify which factors 

should be optimized. 

1.1 DESIGNED EXPERIMENTS - TERMINOLOGY AND SOME PRELIMINARIES 

In order to avoid confusion and ambiguity, a list of terms relevant to designed 

experimentation, which will be used throughout this report, is presell1ted below. It is hoped that 

the terseness of introduction and explanation would deem adequate. For further elaboration,. 

readers are r·eferred to Kempthome (1952), Schmidt and Launsby (1994) or Anderson and 

McLean (1974), all of which are excdlent referenc·es for the subject. 

1.1.1 A Factor is at particular 'force' that is varied in the experiment at the will and under the 

control of the experimenter. A factor may sometimes be called an input or a contro.llable 

variable, but all references within this report will be restricted to 'factar(s)'. A factor may 

be qualitative or quantitative. A quantitative factor is one whose vaitl,es can be measured 

on a numerical scale, e.g., amount of sligar, temperature, pressure, speed of rotation, etc. 

A qualitative factor is one whose values are not usually arranged in order of magn itude, 
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e.g .. , SuppJi,er A, B, C; the Good, Bad and Ugly coke varieties (for cast iron production); 

Yes/No, etc. The values ofa qualitative factor cannot usually be measured on a numerical 

scale. 

1.1.2 Leveh are the various values at whkh a factor is tested, e.g., 3-coke varieties - G/B/U; 

temperature for degassing mo,lten aluminum - 720/680/640 °C, etc. 

1.1.3 A Treatment Combination is one of the possible combinations of levels of all factors 

under investigation. 

1.1.4 An Experimental Unit is that entity on which a treatment combination is applied, e.g., a 

cup of coffee prepared with 5 spoons of sugar, 3 spoons of coffee powder, and 8% fat 

milk is an experimental unit. 

1.1.5 A Trial or Run is the application of one treatment combination to one experimental unit. 

The tenns, treatment combination, run and trial are however, used interchangeably in this 

report. 

] .1.6 A Plan or Design is a specified set oftreatment combinations. 

1.1.7 A Symm.etrical Factorial Experiment involves experimentation with factors each 

having the same number of levels. A factorial experiment in which at least one of the 

factors has its number of I.,evels different from those of the other factors is called an 

Asymmetrical or a Mixed F.actorial or a Mixed Model Experiment. 

1.l .8 The Effect of a factor as has been alluded to earlier in the report, ret:ers to the quantifiable 

change in the output response caused by a unit change in the quantity of the factor 

concerned, keeping all other factors and conditions constant. To better illustrate this, it is 

said that the effect of sugar is to 'sweeten' coffe,e. For example, if it can be better phrased 

that the 'effect' of a spoon of sugar is to increase the taste of coffee by 2 units, where the 

response (taste of coffee) is rated on a scale of I-10,. then the 'main-effect', of sugar is +2 

units. The effects of factors are classified as main-effects or interactions, the explanation 

of which follow from the next definition. 

1.1 .9 The concept of Degrees of Freedom bears great relevance to the idea of a factor's effect 

as ilntroduced above. A crude but intuitive explanation will be attempt,ed here. For furth·er 

details, readers are referred to Kempthome (1952) or Anderson and McLean (1974). 

A single factor at N levels can be tested once at aU possible levels in N runs; let the 

output responses be termed V], Y2, ... , YN respectively. The input (only one) factor is 

tenned X. Thus, with the N output values,. a polynomial can be fitted to explain the data 

as shown below: 

Y. = Ao + A.*X + A2*X2 + ... + AN_,*XN-t 
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It is easily noted that the order of the polynomial is N-l, which in statistical terms is 

referred to as N- l degrees of freedom for the factor X. This means that, a factor at N 

levels has N-l degrees of freedom, which in the vocabulary of designed experimentation 

means that a factor at N levels has N-I effects. For e.g., a factor at 2 levels has 1 degree 

of freedom, i.e., one effect; likewise,. a factor at 3 levels has 2 effects, and so on. 

A factor at 2 levels (i.e., with one effect) is also referred to as having a 'linear' main 

effect, which is intuitively obvious if one stops and verifi,es that only a straight line can 

be plotted between 2 points (the responses for the 2 levels of the factor). Similarly, a 

factor at 3 levels is explained with a linear (e.g., A, B) and a quadratic (e.g., A 2, B1) main 

effect. The tenn 'main-effect' refers to the effect attributable to the factor and that factor 

alone. When two or more factors interact in their effe·ct on the response, an 'interaction' 

effect (e.g., AB, ABC, AB2C, etc.) is defined. 

An intuitive generalization of the cone,ept of degrees of freedom leads to the usefu l idea, 

that for a full factorial experiment of 'n' factors at 2-levels each, alii treatment 

combinations being experimented with in 2n mns, the number of effects that can be 

estimated is 2n -1. This is explained with an illustration as below: 

Consider three 2-level factors, called A, B, and C. 

Total # oftreatment combinations = 2" = 2} = 8 

Thus, total # of effects that can be estimated = 2} - 1 = 8 - I = 7 

The 7 effects that are ,estimated are: 

• Linear 'main' effects: A, B, C 

• Interaction effects : AB, AC,. BC, ABC 

1.1.10 Two factors (or input variables) are said to interact if one factor's effect Oil the response 

is dependent upon the 1evel of the other. Examples drawn from tbe physical world 

include the case of alcohol and drugs, which when taken together compound in tlleir 

disastrous effects than when taken alone. Consider the case of nitric acid and glycerin. , 
Taken alone, they are just two chemical compounds, of interest only to tbe curious 
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scientist. But when brought together, the term dynamite (FalLet, 1982) needs no furth.er 

elaboration. This is a classic example of an interaction effect. Similarly, the synergy 

exhibited by teams, pulling together is an example of an additive interaction effect. 

The above definitions were intended to be a crude, but intuitive attempt at explaining 

some basic, but, nevertheless, very important concepts of designed experimentation. They are 

however, not intended, to replace a thorough and rigorous treatment, fuller understanding of 

which is highly pertinent before the study of designed experimentation can be attempted. 

1..2 SOME ASPECTS OF FRACTIONAL REPLICATION 

When a factorial experiment involves many factors, each of which is tested at several 

levels, economy of time and material may be attained by using only a fraction from all possible 

combinations of levels of the factors. Such a fraction may result in a loss of information on some 

interactions, but, if chosen properly, will anow the estimation of at least the main effects of all 

factors concerned. Following definitions stated earlier in Sections 1.0 and 1.1, it is obvious that 

such fractions constitute design plans for screening exp,eriments. The technique for reducing the 

number of observations, by sacrificing information on selected interactions, is known as 

fractional replication. 

Fractional replication is a natural outgrowth of the device of confounding, by which a 

complete replicate (full factorial design) is divided into several equally sized blocks. The 

interested reader is referred to Kempthorne (952). Anderson and McLean (974) or Fisher 

(1942) for an excellent treatment of the same. The higher the degree of fractionation, the greater 

is the number of interactions on which information is sacrificed. For the practical experimenter, 

who attempts screening trials, the pre-supposition is that interactions, if any, are negligibl.e and 

are not considered relevant in the preliminary stages of scientific study, of which screening is 

such an important aspect. The general case of fractional replication deals with a lis' repl icate of 

the Sll experiment (full factorial plan for 'n' factors at s-levels each), in S'H runs where s is a prime 

or the power of a prime. 

Screening experiments are undertaken using fractionated plans under the assumption that 

the interactions that have been confounded to create the plan are negligible. Often, industrial 

applications encounter usage of designs for screening trials under the assumption that two-way 

and higher order interactions (e.g., AB, ABC, AB2C, etc.) are negligible. The primary objective 
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of such screening ex.periments is to get an estimate .of the main effects of all the factors being 

experimented with, so as to make judgmental inferences about which factDrs are truly significant. 

1.3 FRACTIONAL FACTORIALS AND MAIN EFFECT PLANS FOR SCREENING 

Experirnenta~ plans that allow the estimation of all main effects of a factorial experiment 

shall henceforth be referred to as main-effect plans. These plans may be particularly useful in 

preliminary studies on many factors when there is good reason to believe or assume that 

interactions among the factors are small, as is necessitated in screening experiments. When the 

cost of making an observation in a factorial experiment necessitates the use of fractional 

factorials, an important aspect of the design problem, when cDnducting screening trials. is to 

obtain reliable estimates of the important main effects with as few observations as possible. 

It has been proved (Plackett and Burman, ] 946) that experimental plans for which the 

maximum precision of estimation is attained are those which correspond to columns of an 

orthogonal matrix. Such plans that allow the estimation of all main-effects without correlation are 

termed orthogonal main effect plans. The extension of usage of orthogonal main effect pl.ans for 

screening is straightforward and obvious. 

The existing knowledge of orthogonal main effect plans is considerable but not 

exhaustive. The pl.ans that are now available to the experimenter for screening designs are the 

standard Taguchi, Plackett-Burman type of designs (Schmidt and Launsby ( 1946); Plackett and 

Burman, 1946) relevant mainly for factors at two levels. For the general case of symmetrical 

factorial experiments, the construction of confounded plans using Galois field theory has been 

well elaborated in Kempthorne (1952) and Fisher (1942), extraordinary developments in wh ich 

were presented by Addelrnan (1961, 1962a, 1962b). For all practical purposes, industrial 

experimenters rely on available catalogued designs (Connor and Ze.len, 1959; Connor and YOLlng, 

1961 ; Lorenzen and Anderson, 1993; National Bureau of Standards - AMS #48 , 1957) for 

symmetrical and asymmetrical factorials or consult software programs like SAS, RS/Discover for 

the construction of orthogonal or near orthogonal fractions to facilitate screening trails. A number 

of methods have been designed to generate needed orthogonal main-effect plans for the 

construction of symmetrical and asymmetrical fractions, a comprehensive review of which appear 

in Lorenzen and Anderson (1993), Cheng (1989), Raktoe et al. (1981), Dey (1985), and more 

recently, in Barton 09'98), Bingham (1997), Meyer and Nachtsheim (1995), Wang and Wu 

(1991,1992). 
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1.4 OVERVIEW OF RESEARCH 

The major work on fractional factorial designs can be broadly classified into the 

following sUb-topics: (Raktoe et a!., 1981; Dey, 1985) 

(i) Study of orthogonal fractional factorial plans for symmetrical and asymmetrical factorials 

of resolution III, IV and V (Dey, 1985). 

(ii) Study of optimality and construction of non-orthogonal fractions, with special emphasis 

on 2- and 3-level symmetrical factorials (Fedorov, 1972; Kiefer, (1959, 1974); Atkinson 

and Donev, 1992; Liao et al., 1996; Meyer et al., 1995). 

(iii) Search models and search designs (Srivastava, 1975, 1976, 1977, 1980; Raktoe, 1981). 

The objective of this r,esearch report is rather modest in comparison with some of the 

extraordinary developments in the sub-topics above, in the sense that it is relevant to only sub­

topic (i) involving orthogonal asymmetrical factorial designs of resolution Ill. 

1.5 RESEARCH OBJECTIVE 

A new and unifying methodology for building mix,ed model orthogonal design pl.ans 

incorporating any user-desired factor combination(s) in minimum number of runs will be 

developed. Design plans constructed thus are intended primarily for use in screening experiments. 

Relevant sub-objectives pertinent to this research effort are present,ed below. 

1.5.1 Review existing methods for COllstruction of Orthogonal Main Effect Plans (OMEPs). 

Specific tasks include: 

(i) Identify existing criteria for evaluation of design plans as may be relevant for 

screening experiments. 

Oi) Identify and track in chronological sequence, relevant developments ill the 

construction of orthogonal design plans useful for designed experimentation. 

(iii) Present an index of existing OMEPs. 

1.5.2 Develop a method for the construction of Orthogonal Linear Effect Plans2 (OLEPs) 

applicable for any factor combination(s) in a minimum number of runs. 

Specific tasks include: 

(i) Define vocabulary relevant to proposed method of .!Jymmetric constructions 

(MSC) and elaborate for ease of discussion and generality. 

2 Design plans that allow uncorrelatedestimates of all linear effects, while higher order factor main effects ' 
are correlated with one another. 
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(ii) Present general propositions and suitable design templates relevant to the 

construction of OLEPs using MSC. 

(iii) Present and detail a systematic walkthrough ofMSC. 

(iv) Catalogue and tabulate some useful design plans to highlight uses and advantages 

ofMSC. 

15J Present valid rules for replacing andlor collapsing of factor levels, to modify OLEPs to 

include higher order factors and also to allow for estimation of higher order factor main 

effects. 

Specific tasks include: 

(i) Define generic rules to modify lower level factors into higher level factors and 

vice-versa. 

(ii) Describe tedmiques to adapt OLEPs constructed using the method of symmetric 

constructions to include any user-specified factor combination(s) and illustrate 

with suitable examples. 

(iii) Present an elaborate index of modified OLEPs that may be used as screening 

designs involving at most 9 level factor(s) with guidelines for usage and further 

manipulations. 

1.6 PLAN OF THIS REPORT 

Chapter 2 is a review of all the existing techniques for the construction of orthogonal 

fractions as is relevant to this research ·effort. Chapter 3 includes brief discussions on number 

theory concepts and its relevance for designed experimentation. Chapter 4 is an exposition on The 

Method of Symmetric Constructions, its uses and extensions. Chapter 5 highlights applications 

and examples intended to augment the scope of Chapter 4. Chapter 6 concludes this report 

inasmuch as the scope of this undertaking is conoerned, but includes recommendations for futur,e 

research to extend the ideas introduced in Chapters 4 and 5. 
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Chapter 2: 

2.0 INTRODUCTION 

REVIEW OF THE LITERATURE 

Ashes to Ashes, Dust to, Dust, 
If Death is aU that is left for us, 
I ask, then why aU this fus·s? 

... Eswar 

It is expected that readers are aware of the basic principles underlying confoundlng and 

fractional replication, for much of what is discuss'ed in the next section is based on these 

principles. 

2.1 THE mSTORY OF ORTHOGONAL FRACTIONAL FACTORIALS 

The literamreconceming fractional replication is a direct extension of the work on 

confounding of factoria l experiments. Confounded plans were originally suggested by Fisher 

(1926), practical implications of which were detailed by Yates (1933), including discussions on 

appropriate methods of analysis. Yates (1935) gave more illustrations of confounded plans and 

included discussions on the advantages of reducing block sizes using confounded plans. A very 

elegant treatment of the same concept appears in Kernpthome (1952), whos,e book is, thus far, the 

best and most concise treatment on the subject of designed experimentation. 

Barnard ([936) made an enumeration ofthe confounded arrangements that are possible in 

a 2n factorial experiment, wherein, he showed how the concept of generalized interaction may be 

used to construct fractionated plans. Yates (1933) expounded the importance of orthogonality in 

factorial experiments and included a detailed discussion of its practical implications .. Since the 

number of treatments to be tried increases rapidly with the number of factors, the important 

concept of fractional replication, (i.e., trying ollly a subset of the treatments), whereby only one 

bloek of a confounded plan is consider,ed, was proposed by Finney (1945). As a direct offshoot of 

this idea, Plackett and Burman (1946) introduced a class of plans, called multi-factorial plans, 

which accommodated a maximum number of factors and preserved only the main effects for 

symmetrical factorial experiments. This appears to be the earliest reference 011 the use of 

confounded plans for industrial screening. These multi-factorial plans actually constitute a class 

of orthogonal main effect plans (henceforth referred to as OMEPs) for symmetrical factorial 

experiments. They included a catalogue of OMEPs for symmetrical factorial experiments, 
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involving factors at two, three, five, or seven~evels. These plans were based on Hadamard 

matrices, a comprehensive discussion of which is presented in Hall (1967), and Hedayat and 

Willis (1978). Paley (1933) first formulized the construction of Hadamard matrices, and derived 

several lemmas to allow for the existence of Hadamard matrices .. Paley also derived the important 

result that the necessary condition for the existence of a Hadamard matrix of order N is that N be 

a multiple of four, N=l, 2 beingtriviaJ cases. 

2.2 OMEPs DERIVABLE FROM HADAMARD MATRICES 

The use of Hadamard matrices for the construction of OMEPs for asymmetrical factorial 

experiments has receiv,ed considerable attention and has spawned several new approaches. Dey 

and Ramakrishna (1977) introduced a result for the construction of main effect plans for 4·in•4 

factor combinations in 2n runs, where n is a multiple of four such that a Hadamard matrix of 

order n exists. Chacko, Dey and Ramakrishna (1979) derived further extensions of the sameiclea 

to construct main effect plans for 43_2'" experiments. They obtained a series of plans for 43_24n- 10 

experiments in 4n runs, where 'n' is a multiple of 4. Agrawal and Dey (1982) modified the plans 

for 43.2'" in 4n runs to obtain OMEPs for n·4r_3s·23n-3(r+s) experiments in 4n runs, where rand s 

are non-negative integers, 29"+s~3, (r. s);t:(O,O). Agrawal and Dey (1982) also derived another 

series of plans, using Hadamard matrices for t-4·2n-1 experiments in 2n runs (where n is a 

multiple of four). Also, Nigam and Gupta (1984), Cheng (1989) have derived several new classes 

of OMEPs for asymmetrical factorial experiments using Hadamard matrices, which in the interest 

of space limitations are not mentioned herein. The interested reader is referred to Raktoe et al. 

(1981), Dey (1985), and Raghavarao (1971) for a concise treatment of the subject of orthogonal 

fractional factorial designs. 

2.3 OMEPs DERIVABLE THROUGH FINITE GEOMETRIES AND GROUP THEORY 

The foundation oftne general theory of confounded S" factorial designs was developed by 

Bose and Kishen (1940), where s is a prime power (i.e., a prime number or a power of a prime 

number) through the use of Galois fields and related fin ite projective geometries. The interested 

reader is referr,ed to Carmichael (1937), Stahl (1997) for an excellent introduction to the subject 

of group theory and allied concepts of abstract algebra. Bose (1947), in his epic paper, 

"Mathematical Theory of the Symmetrical Factorial Design." definitively formalized the 

geometric foundations of symmetrical factorial designs employing the theory of finite projective 

geometry. Vajda (1967a, 1967b) has written two elegant monographs, giving a very 

comprehensive treatment of the mathematical foundations of experimental design. 
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Fisher (1942) developed a system of confolilinding for factors, each having two levels, 

whereby no main effects or two factor interactions were confounded with blocks using group 

theory. This system of confounding permits the estimation of aU main effects when up to 211_ 1 

factors, each at two levels are experimented with, in 2" trials .. Fisher (1945) further extended this 

concept to a generalized system of confounding to allow for the arrangement of (g" -1 )/(s-I) 

factors, each at s levels, in S" trials, where s is a prime power, without confounding any main 

effects. A large class of designs, popularized by Taguchi (see for e.g., Schmidt, 1994; Peace, 

1993)., which is in use for screening 2-level and 3-leveI factors or combinations thereof are based 

on either Fisher's principle of confounding or Hadamard matrices, which were di.scussed earlier. 

Kempthorne (1952) has made a great simpiificati.on of the underlying concepts for representing 

effects, interactions, confounding and the analysis of the general sn factorial system. All index of 

useful plans that may be construct,ed using Fisher's principle of confounding is presented in Table 

2.1. 

Table 2.1: Index of Some OMEPs constructed using Fisher's Principle of Confounding 

NlUub('r of Numhcl' of Numhcl' of 
Levels F~ICt<II'S RUlls 

2 3 4 
I 
I 2 7 8 

2 15 16 

2 31 32 

2 63 64 
3 4 9 

3 13 27 
3 40 81 

4 5 16 
4 21 64 
5 6 25 

7 8 49 

8 9 64 

9 10 81 

Addelman and Kempthome (1961) developed a method to augment a Sill (m=(s" -I )/(s-l )) 

OMEP with i' runs to generate a plan for a s' OMEP in 28" runs, where I = [2(s"-] )/(,<;-1) - I], in 

what may be viewed as a very ingenious extension of Fisher's theory of confounding. Some plans 

constructed through this procedure are .an IS-run plan for a 37 experiment, a 54-run plan for ]25, a 

32-run plan fOf 49, and a 50-run plan for a 511 experiment. 
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2.4 CONSTRUCTION OF SYMMETRICAL OMEPs BASED ON LA TIN SQUARES 

It is difficult to trace the origins of the use of Latin squares for constructing orthogonal 

plans. Yates (1933) details a few Latin square arrangements for field triJals. Yates (1935) also 

gives some r,esu\ts on the efficiencies of complete randomization relative to randomiZied blocks 

(blocks confounded with some higher order interaction) and Latin Squares for fi,eld experiments. 

A Latin square of side s (also termed LS of order 8) is an arrangement of s symbols in s 

rows and s columns such that each symbol occurs in each row and each column only once. Two 

Latin squares of the same order are said to be orthogonal, if, when one is superimposed over the 

other, every ordered pair of symbols appears precisely once. A set of Latin squares is said to be a 

set of mutually orthogonal Latin squares (MOLS) if every pair of Latin squares in the set is 

orthogonal. It is known that the maximum number of MOLS for a Latin square of order s is s-1, 

when s is a prime power. Interested readers are referred to Raghavarao 09'71). The concept of 

MOLS has been fully exploited in the construction of OMEPs for s+ 1 factors in i rims, each 

factor occurring at s levels (s being a prime power). An index of OMEPs obtained through Latin 

squares is presented in Table 2.2. 

Table 2.2: Index of Useful OMEPs Obtained througb Latin Squares 

NlJmbel' of Numher of Number of 
LeveEs I;·al·tor"~ HtlllS 

2 3 4 

3 4 9 
I 

4 5 16 , 

5 6 25 

7 8 49 

8 9 64 

9 10 81 

2.5 CONSTRUCTION OF OMEPs BASED ON ORTHOGONAL ARRAYS 

Fractional factorial plans for symmetrical factorials ar,e closely connected with 

Orthogonal Arrays, a modern convolution of the concept of Hypercubes. Rao (1946) introduced 

the concept of Hypercubes of strength d; since this concept is relevant for the construction of 

confounded plans, the following definition is presented. Let there be n factors, each of which may 

take on s values. Consider a subset of sm factor combinations (out of a total of SO possible 

combinations). This subset is called a hypercube of strength d and represented by (sm, n, s, d) jf 

all combinations of any d of the n factors occur an equal number of times (=sm-d). The . 
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construction of hypercubes and relevant theories are based on concepts of projective geometry, 

the intricate details of which are not relevant to this discussion. 

Rao (1946) showed that (i) a system ofconfoumded plans that accommodated a maximum 

number of factors and preserved main effects and up to d-factor interactions could be constructed 

for the symmetrical factorial experiment if a hypercube of strength d existed, and (ii) hypercubes 

of strength two supplied confounded plans for some asymmetrical factorial experiments. Rao 

(1947) extended the definition of a hypercube of strength d to an orthogonal array of strength d. 

An orthogonal array of strength d consists of a subset of N treatment combinations from an s" 

factorial experiment with the property that all Sd treatment combinations corresponding to any d 

factors chosen from n occur an equal number of times in the subset. It is us'eful to note that when 

N is of the form sm, the orthogonal array is a hypercube of strength d. Rao (1947) noted that an 

orthogonal array of strength two could be used as an OMEP for a symmetrical factorial 

experiment. Rao (1947) utilized orthogonal arrays of strength d to construct (i) Multifactorial 

plans similar to those of the Plackett-Burman type, but leading to the estimation of main ·effects 

and up to d-factor interactions when higher order interactions are absent, (ii) block designs for 

symmetrical factorial experiments involving only a subset of the treatment combinations and 

preserving main effects and interactions up to a given order when higher order interactions are 

assumed to be absent, and (iii) a series of asymmetrical factorial plans derivable from arrays of 

strength two. 

An index of useful plans that can be constructed by utilizing hypercubes of strength d is 

presented in Table 2.3. 

Table 2.3: Confounded Plans for Symmetrical Factorial Experiments (frOID Rao, 1947) 

Levels of a Numher of 
Stren~H}, ,d 

Maximum numhCl' of' 
f'a('{or RllIns f~lctClI'S attainahle 

s sm I 

(5"-1 )/(s-I) 
(prime power) 

2 

2 2m 3 2m- I 

24 4 5 
25 4 6 
26 4 8 

3 33 3 4 
34 3 10 
34 4 5 

4 43 3 6 

5 53 3 6 
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Bose and Bush (1952) gave another series of orthogonal arrays of strength two (or 

equivalently, OMEPs). Suppose A and s are both powers of the same prime, p. Then, it was 

shown by Bose and Bush (1952) that all. orthogonal array of type (N= AS2, n=A.s, s, d=2) can be 

constructed. A plan constructed thus is a (27, 9, 3, 2), i.e., 39 OMEP in 27 runs. Bose (1947) 

formulated methods for attacking the probl,em of balancing and partial confounding for a class of 

symmetrical factorial experiments. By employing the theory of finite projective geometry, Bose 

also constructed confounded symmetrical plans which preserved all main effects and up to d­

factor interactions when higher order interactions were absent. 

Chakravarti (1956) considered the construction of all. asymmetrical fractiol1 by combining 

two or more corresponding symmetrical fractions, thus enabling the estimation of all main 

effects, and interactions among the factors. For instance, suppose an OMEP is desired for a 34 _27 

experiment. A plan may be derived by combining a 9-run OMEP for a 34 plan and a 8-run 27 

OMEP to produce a 72-run plan for 34 _27, which however, is far from being saturated or being 

economical. 

2.6 OMEPs BASED ON CONDITION OF PROPORTIONAL FREQUENCIES 

In a complete full factorial experiment, the levels of one factor appear equally oft,en with 

each of the levels of any other factor, and, this condition is sufficient to provide uncorrelated 

estimates of the main effects. However, for OMEPs, the condition of equal frequencies, though 

sufficient, is not a necessary one. Plackett (1946) introduced the idea of proportional frequencies 

of levels and showed that the estimates of the main effects of a factorial experiment may be 

determined with maximum precision if the levels of any factor occur together in the plan with 

each of the levels of every other factor with proportional frequencies. Addelman (1961) 

consolidated the use of proportional frequencies in the construction of asymmetrical factorial 

plans .. The idea of proportional frequencies may be formally stat,ed as follows. 

Let the two factors be A and B with r ancl s levels respectively. Suppose 11;. denotes the 

number of times the i1h level of A occurs in the plan, n.j, the number of times the jlh level of B 

occurs in the plan, and nij, the number of times the ith level of A occurs with the /" level of B in 

the plan, and n the number of runs in the plan. Then the proportional frequency condition may be 

stated as: 

i = 0, I, 2, ... , r-\; j = 0, 1, 2, ... , s-l . 
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The proportional frequency condition helps primarily in obtaining OMEPs for an 

experiment with fewer numbers of levels from a plan with the next higher number of levels. Thus, 

from the OMEP for a 45 experiment in 16 runs, coHapsing the levels of the 4-level factor to a 3-

level factor will derive a 35 experiment in 16 runs by a many-to-one correspondence scheme, as 

shown below. 

Levels of 4-level factor 

o 
1 
2 
3 

Levels of 3-level factor 

o 
1 
2 
1 

The designs constructed, thus, are also orthogonal, as they are based on the condition of 

proportional frequencies. Addelman (1962a, 1962b) first derived these results, and further 

applications for 2"_3m designs permitting estimation of two-factor interactions were illustrated by 

Margolin (1969). Addelman (l962a) also introduced the highly useful system of replacement and 

collapsing whereby a factor at s=st levels may be collaps,ed into (5-1 )/(sj-l) factors, each at Sj 

levels with s(u runs and vice-versa, an illustration of which is shown below: 

Levels of 4-1evel factor Levels of 2-1evel factor 

o 
1 
2 
3 

Collapse ~ 

"Repiace 

00 0 
011 
101 
110 

The above principle of collapsing (and equivalently replacement, wnen the opposite is 

done) has been used to obtain OMEPs for as;' • S~2 .... S~k factorial in Sin runs, where Sl is 

a prime or a prime power, S(>S2>S)", >Sk and 

This procedure is due to Adldlelman (1962a), wherein, both replacement and collapsing 

are used in such constructions. An example design built using this technique is a 23_3 2_41 

experiment in 16 runs, from a basic 45 experiment in 16 runs. The construction is detailed below: 

• Collapse one 4-Jevel factor into three 2-level factors using the correspondence: 

o 
1 
2 
3 

000 
011 
101 
110 
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• CoUapse two 4-level factors into two 3-1evel factors using the correspondence: 

o 
1 
2 
3 

o 
1 
2 
1 

Note that this plan is based on proportional frequencies. Also, doubling the number of 

runs and the number of levels of one factm in an OMEP leads to plans of the type t-s ill • These 

results were also derived by Addelman (1962a). 

A trick to be used when mixed level designs are required and a few fractional interactions 

need to be estimated is to alter orthogonal main effect plans by combining the main effects having 

the product of the levels of the original main effects. For example, the AB interaction for two 

level factors A and B can be estimated by combining A and B into a four level factor, say C, to be 

used in an orthogonal main effect design. When data are collected, the 3 degrees of freedom for C 

must be broken down into the two main effect degrees of freedom (clf) and the interaction df. 

Elaborate discussion of these ideas is presented in Lorel'lZen and Anderson (1993), a practical 

application of which is given by Bingham (1997). 

2.7 OTHER USEFUL CONTRIBUTIONS 

A very simple treatment of the subject of fractional factorials is presented by Box and 

Hunter (1961a, b), Youden (1961), and Fry (1961). The most important contribution by Box and 

Hunter (1961 a, 1961 b) was the idea of Resolution ofa design plan. A fractional factorial design is 

said to be of Resolution R, if the smallest interaction in the identity gl'Oup (same as the 

confounded block) is an R-factor ilnteraction. As a consequence of this definition, in a R'esolution 

R design, no p-factor interaction is aliased (i.e .. confounded) with any other effect containing less 

than (R-p) factors . For instance, a Resolution III design is one in which no main effect is aliased 

with any other main effect, but main effects could be aliased with two-factor interactions. In this 

context, it is easy to note that OMEPs are designs of Resolution HI, for they allow the estimation 

of main effects under the assumption that two-factor and higher order intemctions are negligible. 

Also, these are designs that are very conducive for use in screening trials as part or preliminary 

experimentation. 

Webb (1968) offered a generalizatioll for the definition of Resolution. According to 

Webb, a fractional factorial is of Resolution (2R+ I) ifit penn its the estimation of all effects up to 

R-factor interactions, when all effects involving (R+ 1) factors are assumed negligible. Further, a 

fractional factorial design is of Resolution 2R if it permits the estimation of all effects up to (R-l) 
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factor interactions when all interactions involving (R+ 1) factors or more are assumed to be zero. 

Tllus, a plan is of Resolution Ill, ilf it permits the estimation of all main effects under the 

assumption that all interactions are absent. Likewise, a Resolution IV design is one which pemlits 

the estimation of all main effects when all three-factor and higher order interactions are assumed 

negligible. 

Lin (1986, ]987a, 1987b) introduced a novel procedure for the construction of mixed 

factorial experiments IJsing the Chinese Remainder Theorem, which result in design plans similar 

to many of those discussed above. 

Wang and Wu (1991) derived an approach for the construction of Orthogonal Arrays 

extending ideas proposed by Bose and Bush (1952), Addelman (1961a), Hadamard matrices and 

Kronecker sums, the elaboration of which is too detailed to be included here .. Lorenzen and 

Anderson (1993) have catalogued an extensive listing of OMEPs built using the methods of 

Wang and Wu (1 991), and all the techniques discussed above, for experiment combinations 

involving up to factors at six levels. 

2.8 SUMMARY OF EXISTING OMEPs 

An elaborate index of all availabl,e OMEPs for asymmetrical and symmetrical Factorials 

IS present,ed in Lorenzen and Anderson (1993), and Dey (1985), with adequate instructions 

concerning the judicious use of the same for appl ications in screening experiments. 

In Table 2.4, an index of all available orthogonal main effect plans for symmetrical 

factorial experiments requiring at most g I runs is presented. All these plans are derivable from 

the general techniques described in this chapter. PI.ans for experiments with less number of 

factors than those given in Table 2.4 can be obtained by deleting an appropriate number of factors 

from a plan with more number of factors. 

The task of presenting a catalogue of all possible orthogonal main effect plans for 

asymmetrical factorials, even with a fixed maximum number of runs, is enormous and would 

require too much of space. Instead, therefore, in Table 2.5, an index of hitherto known, basic 

asymmetrical orthogonal main effect plans requiring at most 50 runs is presented. Other plans 

may be derived by collapsing/replacing the factor(s) levels in these basic plans. 
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Table 2 . .4: Index of Orthogonal Main Effect Plans for Symmetrical Factorial Experiments 

Experiment # of Runs ExpCl"inu.'nt # of Runs Expl'riml'nl # of Runs 

23 4 255 56 46 25 
27 8 259 60 49 32 
2 11 12 263 64 411 50 

215 16 2&7 68 56 25 

219 
I 

20 271 72 1 58 49 ! 

223 24 275 76 5 11 50 
227 28 279 

, 

80 68 49 

231 32 34 9 78 49 

235 36 ! 37 16 713 81. 

239 i 40 313 27 89 64 

I 243 44 325 54 9 10 8] 
247 48 ,,40 81 Ii :> 

251 52 45 16 

Table 2.5: Index of Orthogonal Main Effect Plans for Asymmetrical Factorial Experiments 

4_24 8 8_224 32 ,a2_24 1 48 

3_24 12 8_4_221 32 8_240 48 
6_22 12 37 _2'6 32 6_4_235 48 
4_2 12 16 8_42_2'8 32 8_6_231 48 

8_28 16 8_43_2'5 32 48_22'1 48 

2._37 18 8-48 32 6_44_2 26 4& 

6_36 18 312_2" 36 4 10_2 11 48 
6_2 14 24 6_3 12_22 36 6_4"_25 48 

4_3_2 13 24 4_3 13 36 412_3_24 48 
4_22/l 24 4_236 40 2-S 11 SO 

6-4-2' I 24 5_228 40 10_5 10 50 

43_2 22 32 5_4_225 40 
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Chapter 3 

THE BARE NECESSITIES 

"'One cannot escape the feeling that these mathemaUcal 
formulae have an indep,endent existence and an iintellig.ence of 
their own, that they are wiser than we are, wiser even than their 
discoverers, and that we get more out of them than was 
originally put into them." 

... Heinrich Hertz 

3.0 INTRODUCTION 

This chapter is intended as a printer to some of the elementary aspects of abstract algebra 

and its related applications in designed experimentation. The basic concepts of modular 

arithmetic are presented first followed by Fi.sher's theory of confounding to augment discussions 

initiated in chapter 2, such as is essential for understanding this report. 

3.1 RUDIMENTS OF MODULAR ARITHMETIC 

For .any positive integer n, the two integers a and b are said to be congruent modulo n, 

and the notational representation is: 

a ~ b (mod n) 

whenever n is a divisor of (a-b). Thus I 0 ~ 4 (mod 6), 6 ~ 0 (mod 2), 2 = 14 (mod 6). 

The operations of addition and multiplication can also be extended to modular arithmetic 

as illustrated below: 

ADDITION 

10 + 16 = 26 = 2 (mod 6) 
10 + 16 = 4 + 4 = 8 = 2 (mod 6) 

MULTIPLICATION 

10-16= 160=4(mod6) 

10-16 == 4-4 == 16 = 4 (mod 6) 

Observe that when performing arithmetic modulo n, it suffices to consider the appl icatioll 

of the arithmetic operations to the integer 0, 1,2, ... , n-l alone. The set of positilve integers, when 

restrkted to the set {O, J, 2, ... , n-I} is denoted by Z", It is also referred to as the set of positive 

integers reduced modulo n. 

Table 3.1 illustrates the addition and multiplication tables for Z". 
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Table 3.1: Aritbmeti£ modulo 4 

+ 0 '\I 2 3 * 0 1 2 3 

0 0 1 2 3 0 0 0 0 0 

1 1 2 3 0 1 0 1 2 3 

2 2 3 0 1 2 0 2 0 2 

3 3 0 1 2 3 0 3 2 1 

~,+ 

Interested readers are referred to Stahl (1997) for further details and applications of 

abstract algebra. 

3.2 FISHER'S THEORY OF CONFOUNDING FOR SYMMETRICAL OMEPs 

Fisher's theol)' of confounding, as has been alluded to in the previous chapter is widely 

used in the construction of OMEPs for sm factor combinations in s" runs, where m=(s"-l )/(s-l) 

and n is a positive integer. An elementary discussion extending the concepts of Section 3.1 IS 

presented below and further details may be gleaned from Kempthome (1952) or Fisher (1942). 

This technique essentially augments a s" factorial for n factors in s" runs to include a total 

of m factors. Let the n factors of the 8" factorial be denoted by Xl> X2, ... , Xli' The treatment 

combinations ofthe S" factorial in factors XI, X2, ... , X/J are first written down. The other (m-n) 

factors' combinations are generated from these n columns by 'adding these columns in all 

possible ways over Z"" that is, by forming sums of the type kIXI+k2X2+ ... +knXII , where the k/s 

are elements of Zj, and further, in each sum, the coefficient of the fi rst factor is unity. This 

procedure will give the required plan, i.e., a total of m orthogonal columns in s" runs, which can 

be used for screening m factors at s levels each. 

This procedure for constructing OMEPs is illustrated by constructing a 9-run plan for a 34 

(4 factors at 3 levels each) experiment by modifying a 32 full factorial. In thi.s case, s=3, n=2, so 

that m=(s"-l)/(s-l) = 4. The 9 treatment combinations ofa 32 factorial in factors Xl, X2 are first 

written down. The other two factors are given by X1+X2 and X1+2X2• Note that the coefficients I 

and 2 used in the addition oftlle factors Xl and X2 are the elements of Z3. 

The treatment combinations for the 34 OMEP in 9 runs are shown in Table 3.2. 
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Table 3.2: A 34 OMEP in 9 Runs constructed using Fisher's Theory of Confounding 

X1 X2 X1+X2 X1+2X2 

0 0 a 0 

0 1 1 2 

0 
I 

2 2 I 1 

I 1 0 1 1 

1 1 .2 0 

1 2 0 .2 

i 
.2 0 .2 2 

2 1 
I 

0 1 

2 2 1 0 

Note that the addition of the elements of the columns conform to addition of integers in 

Z3 arithmetic, i.e., arithmetic modulo 3. Likewise, the construction of a 3'3 OMEP in 27 runs 

(readers may also know this as the Taguchi L27) is straightforward, the results of wlhich are: X" 

X2, X,+X2, X,+2X2, X), X,+X3, XL+2X3, X2+X), X2+2X3, X,+X2+X), X,+X2+2X3, X1+2X2+X3, 

and X,+2X2+2X3 respectively. Table 2.1 indexes some symmetrical OMEPs constructed using 

Fisher's theory of confounding. 

3.3 ORTHOGONAL MATRICES: PRELIMINARIES AND RELEVANCE 

All orthogonal design for an experiment can be defined as a way of collecting 

observations that will permit the experimenter to estimate and test for the variolls treatment 

effe·cts and for interactions (if any) separately. The importance of orthogonality draws from the 

concept of multiple regression, wherein the estimate of Ws (i.e., the factOif main effects and 

interactions) for the mode.! Y=X~ + E, are derived using the theory of least squares. The estimates 

of ~ are derived from (XTXrl(XTY) and the variance in the estimates for ~ is equal to (XTXr1c?, 

where ci is the prediction variance3, and it is desired that the estimates of the Ws be uncorrelated 

with each other. This is equivalent to having the columns of independernt variables in the X 

ma~rix uncorrelated with each other, so that (XTX) is a symmetric matrix, which, equivalently is 

the definition of an orthogonal matrix. 

The relevance of orthogonality as a property for designing an experiment arises largely 

from the efficiency of analysis and ease of interpretation of the individual estimates, and not so 

3 0 2 = SSResiduaL/(n-p) = ~(Yi - Ypred)2/(n-p) ; n = #of observations, p = #ofpararneters being estimated. 
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much as being an e",ercise in mathematical manipulations. As an example, consider two 

independent variates, temperature and pressure, in a chemical study, each at two levels, arranged 

in a design plan as shown below: 

Temperature Prcssu1't' Tl'mp X 
(dl'g F) (l\'1PA) PI'l'ssun: 

100 ]0 WOO 

100 15 1500 

200 10 2000 

200 15 3000 

It is obvious that (XTX) is not a symmetric matrix, though the design described above is a 

complete factorial, involving all treatment combinations. It is in situations like these, when a 

fixed variate is equally (or unequally) spaced in time or space, that the usual regression variates 

of the independent variables are replaced by orthogonal columns (also known as 0I1hogonai 

polynomials). The orthogonal columns are so constructed that any column is independent over 

any other column, and effectively replaces a complex higher order polynom ial regression 

equation to an additive linear model, expressed as functions of individual orthogonal linear forms . 

Each of the orthogonal linear forms, i.e., the columns in the X matrix represent the effects that 

they are used to estimate. Thus, the s-I main effects that can be derived from a s level factor, may 

be represented by s-1 orthogonal linear columns in the X matrix. An example is presented below 

and readers are referred to Anderson and Bancroft (1952) for further details. Fisher and Yates 

(1957) present tables of orthogonal polynomials, i.e., linear forms for factors with upto 75 equally 

spaced levels. 

A three level, equally spaced factor may be represented by its measurements, say A == (0, 

I, 2) and A2 == (0, 1, 4) or can be replaced by two orthogonal columns (- \ , 0, I) and (1, -2, 1) in 

the X matrix to represent the linear and quadratic effects of the factor. These orthogonal linear 

forms are so derived that the sum of individual values in the orthogonal columns is zero and the 

pair-wise product of any two columns sum to zero, which is essential to make the product (XTX) 

symmetric. 

Thus, the use of orthogonal polynomials to re-represent regressIon variates as an 

orthogonal matrix allows uncorrelated estimates of all effects as is possible from a regression 
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model. This principle of orthogonality becomes more important for the design and evaluation of a 

screen ing experiment, largely because of the nature of decisions that are likely to be effected 

based on its results. Since the purpose of the scr,eening experiment is to identify significant 

factors, based on estimates of their main effects, it is imperative that the screening experiment be 

orthogonal. 

3.4 CONCLUDING REMARKS 

The purpose of including such an elementary discuss ion was to introduce in advance the 

flavor of methods to come and establish a backbone for referencing and guiding the reader. The 

next chapter win introduce the vocabulary and elements necessary for the Method of Symmetric 

Constructions and references wi.lI be drawn from concepts presented in Sections 3.1-3.3. In brief, 

these are the bare necessities". 

4 This metaphor was inspired by the song "The Bare Necessities of Life" from the movie - The Jungle 
Book (Walt Disney, 1967). 
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Chapter 4 

THE METHOD OF SYMMETRIC CONSTRUCTIONS 

"No more fiction for us: we ca,lculate; but that we may 
cal'culate, we had to make fiction first." 

... Nietzsche 

"'For, contrary to the unreasoned opilnion of the 
iignoirant, the choice ofa system of enumeration is 
just a mere matter of convention." 

... Blaise Pascal 

4.0 INTRODUCTION 

The Method of Symmetric Constructions has made possible the construction of 

Orthogonal Linear Effect Plans5 (OLEPs) for 2k.t> factor combinations in s(l +k) runs, where s is 

any positive integer (22). This chapter introduces the basic components of this technique and 

details the notational and operational subtleties involved. Succeeding sections illustrate with 

examples relevant concepts and their interrelationship in the context of an OLEP. 

4.1 mE VOCABULARY OF THE METHOD OF SYMMETRIC CONSTRUCTIONS 

An OLEP consists of five basic eJ,ements6: build sets, constructs, addition s,ets, reflections 

and swaps. All the definitions described below pertain to the construction of a 2k.i' design plan, 

involving 'k' 2-level factors and 'p' s-Ievel factors in s(1+k) runs. 

Definition 1: A build set is a set of all ordered elements {ai}, (a; =0, 1, ... , s-l) from Zs, 

Consider, for instance, an OLEP for a 2'.34 factor combinations in 3( 1 +3)= 12 runs; here 

s=3, So, the build set in this context is (0, 1,2) and is denoted by the symbol B. 

(The reader is encouraged to verify for himself, that 12 runs are the theoretical minimum 

number .of runs nec,essary for estimating the main effects alone for a 21.34 factor 

combination. Recall from Sections 1.1.8, 1.1.9 - how many t.otal degrees of freedom, i.e., 

total number of effects are involved in a 23.34 combination; how many effects can be 

estimated in N runs?) 

'; Design plans that allow the complete estimation of all linear main effects while the higher order effects 
are slightly correlated. (refer Section 1.5.2) 

6 The author has created all these definitions. Any resemblance to concepts, dead or alive is purely 
incidental. 
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Definition 2: A construct is generated by adding one to all the elements of the build set, 

add~tion being penonned in arithmetic modulo s. The construct will be denoted by the 

symbol C. Thus, for tbe example of a 23.34 OLEP cited in definition 1, the build set B was 

(0, 1,2) and the construct is (1,2, 0). The calculation is as foHows: 0+ 1= 1 mod 3; 1 + 1 = 2 

mod 3; 2+1 = 0 mod 3; 

Definition 3: An addition set is generated by adding two to all the elements of the 

construct. The addition set will be denoted by A. Thus, for the example cited in definition 

I, the construct is (], 2, 0) and the addition set is (0, 1, 2). The calculation is as follows: 

1+2 = 0 mod 3; 2+2 = 4 = 1 mod3; 0+2 = 2 mod 3; 

Definition 4: A reflection is generated by taking a mirror image of the set in consideration 

(either a construct or an additiolJ) set or any set in general). Thus, the reflection of the 

addition set (0, 1, 2) is (2, 1, 0), which will be denoted by R3. The reflection of the 

construct (1, 2, 0) is (0, 2, I) and will be denoted by Re. 

Definition 5: The swap is generated by interchanging the (s-1 )Ih and Slh elements (i.e., the 

last two elements), and then the ,-til element with the (s-I-i)11> element of the set in 

consideration (i = 1,2, ... , (s-2)/2, if s is even, or i = 1,.2, ... , (s-3)/2 if s is odd). SC will 

denote the swap operation performed on the construct, and Sa, the swap operation 

performed on the addition set. This is illustrated below for both cases, Le., when s is even 

and when s is odd. Note that the elements oftlae construct are numbered L 2, ... ,s .. 

Case 1: s=5 (odd): The build s,et B is (0, 1,2,3,4); The construct Cis (1,2,3,41,0); The 

addition set is (3, 4, 0, 1,2); R" = (0,4, 3, 2, I); Ril = (2, 1,0, 4, 3). 

The swap performed on the construct and the addition sets are: 

S. No Construct, C Swap, SC Addition Set, A Swap, S" 

1 

~><!~ ~>~~ 2 

3 

4 

~~ 
0 
~~ 

2 

5 4 
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Cas'e 2: 8=6 (even): The bulld set is (0, 1, 2, 3, 4, 5); The construct is (1, 2, 3, 4, 5, 0); The 

addition set is (3, 4, 5, 0, 1, 2); RC=(O, S, 4, 3, 2, 1); R8=(2, 1, 0, 5, 4, 3); The swap is 

performed thus: 

S.No Construct, C Swap, SC Additi,on Set, A Swap., Sa 

4 2 5 
2 2 3 0 
3 3 2 0 

4 4 5 2 

5 
~~ 

0 
;~ 3 

6 5 4 

An index of some useful constructs and swaps is presented in Table 4.1 , 

Table 4.1: Index ofsome usefu~ Constructs and Swaps 

s Bui,ld Set, B Construct, C Swap of construct, Addition Set, A Swap of add ition 
SC s,et, Sa 

3 (0, 1, 2) (1, 2,0) (1, 0, 2) (0, 1, 2) (2., 1, 0) 

4 (0, 1,2,3) (1, 2, 3, 0) (2 , 1, 0, 3) (3, 0, 11, 2) (0, 3, 2, 1) 

5 (0, 1, 2, 3,4) (1, 2, 3, 4, 0) (3,2,1,0,4) (3, 4, 0, 1, 2) (0,4, 3,2, 1) 

6 (0, 1, 2, 3,. 4, 5) (1, 2, 3, 4, 5, 0) (4, 3, 2, 1, 0, 5) (3, 4, 5, 0, 1, 2) (0,5,4,3, 2, 1) 

71 (0,1, 2, 3, 4, 5, 6) (1,2,3,4,5, 6,0)' (5,4,3, 2,.1,0,6) (3,4,5,6, 0,1,2) (0,6 , 5,4, 3, 2, 1) 

8 (0,1,2,.3, 4,5,6,7) (1 , 2,3,4,5,6, 7,0) (6,5,4, 3,2, 1, 0,7) (3,4,5,6,7,0,1,2) (0,7,6,5,4,3,2, 1) 

The reflection of the swapped set may be generated as a straiglltforward extension of 

definition 4, and the reflection thus generated will be denoted by R S, or R S" as appropriate. 

4.2 USING THE VOCABULARY OF THE METHOD OF SYMMETRIC CONSRUCTIONS 

To highlight the significance of the above definitions in the construction of OLEPs, the 

following propositions are stated without proof. 

Proposition 1: It is possible to construct an orthogonal matrix X2,1' in 2.5 runs as shown 

below: 

x" ~ [: ~o ] 
where, B, C, RC, are column vectors consisting of the elements of.ZSI as per definitions 1, 

2,3,4, and 5. 
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Example Illustration: Consider s=3. Here, B = (0, 1, 2); C = 0 , 2, 0); RC = (0,2, 1). 

Then, using Proposition 1, 

o 1 

1 2 

X _ X _ [B C ] _ 2 0 
2.< - 4 - B R" - 0 0 

2 

2 1 

The above matrix is orthogonal and the development of OLEPs from X matrices 

will be detailed in sections to foUow. 

Proposition 2: It is possible toconstmct an orthogonal matrix X4s, in 4s runs as shown 

below: 

B C SC A 

X 4.\' = 
B RC R " C 

B C C RC 

B RC R C Ra 

Example Dlustration: Here, B = (0, 1, 2); C = (l, 2, 0); R C = (0, 2, 1); A = (0, 1, 2); Sc = 

(2, 1, 0). Then, using Propositi Oil 2, 

0 I 1 0 

2 0 1 

2 0 2 2 

0 0 2 

B C SC A 2 0 2 

B Rt' R S C 2 1 1 0 
X 4s = X L2 = = 

B C C Rt: 0 1 1 () 

B RC Rt: R" 2 2 2 

2 0 0 

0 0 0 2 

1 2 2 ] 

2 1 1 0 
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The matrices thus constructed, using the above propositions and others that will be stated 

later, in 2"s runs, will be denoted as 'X' matrices of order 2"s. It is now appropriate to state a few 

additional definitions to supplement the ideas presented in propositions 1 and 2. 

4.3 WHY IS IT CALLED THE METHOD OF SYMMETRIC CONSTRUCTIONS? 

This sedion is intended to introduce in ,context, very intuitively, the reason for naming 

this technique the method of symmetric constructions and it is towards this end that the following 

definitions are presented. 

Definition 6: There exists in X matr.ices of order 2"s a line of major symmetry that 

divides the design plan into two symmetric halves. The line of major symmetry in an X 

matrix of order 2"s will share 2,,·1 s elements on either side of it. This is illustrated llsing 

the X12 matrix (i.e., ~.\ matrix for s=3). 

0 1 1 0 

1 2 0 1 

2 0 2 2 

0 0 2 1 

B C SC 
., 

A 1 2 0 2 

B RC RS C 2 1 I 0 This is the Line of 
Major Symmetry t---

B C C RC 0 1 I 0 

B RC RC Rtl 1 2 2 2 

2 0 0 1 

0 0 0 2 

1 2 2 1 

2 1 1 0 

Definition 7: There exists in X matrices of order 2"8, minor planes about which the 

individual reflections are performed. Minor planes exist only when the order of the 

matrix ~4s. These minor planes segment the columns above and below the line of major 

symmetry and serve as pivotal points about which the reflections are performed. 

Definition 8: There exists in all X matrices of order 2"s, a wall that constitutes the 

column of build sets, B, repeated 2" times. 

The ideas underlying definitions 6, 7, and 8 (and some more) are illustrated in Figure 4. 1, 

wherein a ~.\ has been dissected to show its component sections. 
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Figure 4.1: Visua.E Illustration to Support Definitions 6, 7, and 8 

This is the 
Stem 

~- - --- --?--, -__ These are the 

, 
A /' 

,1'''/ minor planes 

Line of Major 
Symmetry 

Main Zone 

Some comments about Figure 4.1 that will be useful in subsequent discussions are: 

(1) The swap performed in ~s to generate the third column, is done keeping the 

lower half of the matrix same as the 2nd column, while the upper portion is 

replaced by swapping the construct and writing its reflection beneath it. This is 

termed a manipulation, the formal definition of which will be presented later. 

(2) The swap and its reflection, (which constitutes a swap-reflection pair) that is 

observed in the 3rd column of X4s is pivoted about the minor plane in the upper 

halfofthe matrix. 

Figure 4.1 includes an additional term, the main zone, the definition and description of which 

follow: 

Definition 9: Apart from the Wall, all the other columns in the X matrices are derived 

from individual stems, that form the basis for further development in their individual 

zones, the defi,nition of which is presented next. 

Definition 10: A Zone is defined in the matrix, within which aU the columns are 

generated by mallipulating the upper half of the corresponding stem and then 

progressivdy proceeding across the line of major symmetry. A Main Zone is defined 

wherein, the stem is the column vector (C RC C RC ••• C Rcl. The reader is directed to 

note that the 2nd column, i.e., the column apart from the Wall, in both X2s and ~'\' match 

the above description. 

30 



Step-down Zones are generated by bringing two adjacent minor planes towards 

each other, stepping them down (up) by s units ,each and continuing till they coincide 

with ,each other Of they merge with the line of major symmetry. Along with the minor 

planes, the construct-reflection (i.e., C_Rc) pairs, pivoted about the corresponding minor 

planes are also stepped down, and this operation .is performed symmetrically on either 

side of the line of major symmetry, making minor planes unique to each zone. The zones 

thus created are numbered 1,2, 3, etc and the main zone is given a zone number of zero. 

However, before the discussion furthers into more details, it is necessary to introduce the 

idea of manipulating a stem, which is very useful for generating additional orthogonal 

columns. 

Definition 11: The stem in a particular zone can be manipulated to generate other 

columns in the following ways: 

(]) Th.e lower half .of the stem is kept constant and their corresponding swap­

reflection pairs replace aU the construct-reflection or addition-reflection 

pairs above the line of major symmetry .. This will generate 2/1·2-; swap­

refle·ction pairs, where i is the number of the zone to which the stem belongs 

and n is the exponent of 2 in the order of the X matrix (e.g., for the Xts, 

order = 22s, n=2). This is possible so long as the minor planes in the 

corresponding zones are distinct and different from the line of major 

symmetry. This step will be referred to as swapping and the column thus 

generated referred to as the swapped column. This is the procedure for 

generating the 3rd column ofX4.\·, and is described in Figure 4.2. 

(2) Following swapping, if more than 1 swap-reflection pair is generated7 

above the line of major symmetry, switches can be performed as follows: 

Keep the first 2,,-3-; swap-reflection pairs above the line of mqjor symmetry 

~ote: The order of the matrix is 2"s) in the swapped column constant. 

Permute the remaining 2,,-3-1 swap-reflection pairs, as a block, with the tt.2.i 

construct-reflection (or addition-reflection pairs, as the case may be) pairs 

in the lower half of the column (i .e., below the line of major symmetry) to 

genemte two additional columns. Such manipulations (swapping and 

7 This is possible when the order of the X matrix ~ 8s, propositions for which will be presented later in 
Section 4.4. 
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switches) in any zone will generate a maximum of 4 orthogonal columns in 

a zone, i.e., one stem, one swapped column and two switches .. 

Figure 4.2: Visual Illustration to support Definitions 9, 10 and 11 

How the Swapped Column is generated in the NI matrix (n=2): A ylsual walk=1:hrouglh 

t\i 
~ 
Q) 

-5 

B 

The MaIn Zone; zone number i=O 

Q) 

:5 E .!!2 Q) 

.!!2 Q5 
. .s:::: 
I-

~ 
.~ 
E 

1---~1£ 

The upper half is replaced by 
2,,·2./ = 22-2•0 = 1 swap­
reflection pair 

---+-....;..;---------l.~ c C c; 
X4s = B 

B 

A 

C Line of Major Symmetry 

B 
--o$~=So--~! 

L­
o 
S 
E 
Q) 
.c .... 

How the 1st stepdown zon,e and Its stem are generated: A ylsual walk-through 

X4s = 
B 
B 

B 

B 

I-l;.;t-_....:...;=---,t~-f~""""",....-___ .....:L::::in~e:::....o:::.;f~m.:.::::ajor Symmetry 

The 1st 

stepdown zone 

The minor plane(s) on either side of the line or major symmetry are slepped 

down (up) symmetrically by s units. Observe thal lhe C·R" pair In the .tem 
Is stepped down. alongwllh the minor plane by 5 units; The void above C Is 
filled by Ihe addillon ssl . A and correspondingly on Ihe opposile side of the 

fine o( major symmetry. a reflection or \he addition sel, i.e .. R" is inserted 

~ In the 1st stepdown zone, since the minor planes are not different from 
the !I!ine of major symmetry, additional manipul.ations ar,e not possible. 

Figure 4.2 was intended to illustrate the basic notion of stepping down, swapping and their 

relevance in generating the corresponding X matrices. 
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The fonnulae presented below are relevant to deteJ1Dining the individual elements of an X 

matrix, relevant for the construction of an OLEP, and are suitable for algorithmic implementation. 

Foran X matrix of order 2"s: 

The Wall, ~.e., the col,umn of build sets repeated 2n times (from Definition 8) is first written 

down. Then the Stem for the main zone, i.e., the column of C_Rc pairs, is written down 20 •1 

times, a,fier which the following calculations may be performed. 

n = exponent of 2 appearing in order of the matrix .. (for the X2s, n =1; for the X4$, n = 2) 

i = zone identification # (for main zone, i =0; i = 1, 2, ... for step-down zones) 

m, = Number of minor planes in zone i = 2J?o I-1 

PI = Number of swap-refiect1ilOn pairs in the swapped column for zone i = in t(ml2) 

If PI = 0, then a swapped column can't be Qlenerated, => # of columns in zone i = C1 = 1, 

Le., the stem 

If P, = 1, then # of columns in zone i = C1 = 2, i.e., the stem and the swapped column 

If PI is greater than 1, then switches can be performed to manipulate the swapped 

column and g,enerate two additional columns. => C,I = 4 

Figure 4.3 illustrates the use of these formulae in calculations relevant to the design ofX2s and 

~s. 

Figure 4.3: Design Calculations Relevant to X2s and X45 

[~l X" ~ B I R' 

B C SC 

X 4., = 
! B RC RS 

B C C 

B RC RC 

n = 1; 

rna = # of minor planes in the main zone = 2.1-1-0 = 1 

mo = 11 => minor planes coincide with the line of major symmetry. 

=> can additional zones be created? - NO 

Po = int(mo/2) = 0 => number of columns in main zone = Co = 1 

Total # of columns = 1 + Co = 1 -+ 1 = 2 

A 

C 

RC 

RO 

n = 2; 

mo = # of minor planes in the main zone = 22-1-0 = 2 

Po = int(2/2)= 0 => Co = 2 

m1 = # of minor planes in the step-down zone 1 = 22-1-1 = 1 

P1 = int(1/2)= 0 => C1 = 1 

Total # of columns = 1 -+ Co + C1 = 1 + 2 +1 = 4 
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4.4 CONSTRUCTING HIGHER ORDER 'X' MATRICES 

Proposition 3.: It is possible to construct an orthogonal matrix X&, in 8s runs. The 

foHowing calculations are relevant to determine the operational subtleties involved. 

• n = 3 

• Create the wall, i.e., the column vector [8 B ... BlT ,the build sets repeated 2A (= 8) 

times. 

• Create the stem of the main zone, Le. , the column vector [C RC C RC ... C R'1T, the 

construct-reflection pairs repeated 4 (=2n-1) times. 

• mo = # of minor planes in the main zone = 23-1-0 = 4 

• Po = # of swap-relfi,ection pairs in the swapped column for main zone (i =0) = 23-2-0 = 2 

=> Can switches be performed in the main zone? - Yes .. (since Po>1) 

• Total # of columns in main zone = 4 (=1 stem, 1 swapped column, 2 switches) 

The steps involved in generating the columns for the wall and the main zone are detailed 

in Figure 4.4 below: 

Step #1: The Wall 
is created 

8 
B 
B 
B 

B 

B 
B 
B 

Figure 4.4: Steps in the Construction of the Xss matrix-I 

Step #2: The stem for the 
Main zone is created. 

Step #3: The swapped column 
for the main zone Is created. 

B C B C SC 
------8-- ----Rl:" -----. ---- -----8 --- --R-e-'k1)-RS:---------- -} 

C Inor planes 
B C B C S 

-- ---- ----- - -- ., -;1;:". --... -- - - -- -----.--.---- --.c; .EI. __ f.! .. -;s ..... -.- '-.'_ .- -.... ... .. 
B R B R Wi R Line of Major Symmetry 

B C Bee 
------------------------- ---------------.:=>------------} B RC B RC RC 

Inor planes 
B C Bee --- ------------e---------- --- ----------e- a::::::>::-cr --------- -B R B R R' 

Step #4: Generatingl the switches for the 4th 
column In the main zone 

Step #5: Generatilng the switches for the 

5th column In the main zone 

B 

B 
B 
B 
B 

B 
B 
B 

C SC SC B C SC SC SC 
--k1:"'---FiP-RS --- -- --------- -- - ----ef ---- .. R~-- ----R"S-=>-R"S-a::::::>'--RS - -, 

C S Bee C 
-- R"C" --

C 
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The 4 possible columns in the Main zone have been created. Since the 4 minor planes in 

the minor plane are distinct and different from the line of major symmetry, it is possible 

to create a step-down zone, and the swapped column for step-down zone #1, as is 

illustrated in Figure 4.5. 

Filgure 4.5: Steps in the construction of tbe Xss matrix - II 

B ® Sc sc S' 
B 

- -~ --Rs;--Rs~--R-sc 

B c SC C C 
----------------------

Xgs 
B RC RSr RC RC 

= 
B C C Sc 

----------------------
B RC RC RSc 

B C C C 
----------------------

B RC RC RSc RSc 

The stem in the step-down zone 

The swapped column 

Step-down 
Zone #1 

A Sa 

@---~~ 
~ RSc 

R U RS,I 

A A 

C C ---------
R" RC 

R U RU 

t 

Note: For the Step-down Zone # 1, observe that tbe 2 adjacent C_Rc pairs in the upper 

half of the main zone are brought together and merged as one and the voids above 

and below are filled with the addition set, A and iits reflection RA. 

The next logical st,ep would be the construction of an X l6s matrix in 16s runs, the 

description of which is presented next. 

Proposition 4: It is possible to construct an orthogonal matrix X II6s in 16s runs, IIlsing the 

method of symmetric constructions as was introduced in the previous sections. The maiTix 

is presented in Figure 4.6 and necessary enumeration is included to bring out the specific 

details. 
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-

Figure 4.6: Design Template for the XUis Matrix 

Wan Main Zone Step-down Zone # 1 Step-down Zone #2 
+-~~<---------------~~,~--------------~~ » 

B C S" SC SC A Sa S" Sa R" R S'" RS..I R S.4 

B 

B 

B 

B 

B 

B 

B 

----------------------~ 

RSc C SC SC 

R C RSc RSc R Sc 

c C C A A , C 
----------------------, 
R C RSc R C R C c SC C C / R C 

---------------------~ 

C c c 

c c A sa 
---------------- - -----~ 

RC R C ' \ C 
A 

C 

A 

C A 

C C 

SC 
R5'c 

R S" 

st' 
R" 

A 

C 

S" 

A 

C 

st· 
R Sc 

RS.I 

Sa 

S' 

C 

R" 

A 

A 

C 

B 

B 

B 

B 

B 

B 

B 

B 

A ~ R~" ~: }~----~----~----i~ 
i 

R C R C R C RSc \. _~ ____ £ _____ ~ _____ ~~/ R C R C R C R'c 
C C C Sc, R C R e RSc R U R a R U RSA 

RC RC A A A 

This concludes the list of propositions that will be presented detailing the list of X 

matrices constructed using the method of symmetric constructions. The next section will discuss 

the construction of 2k.S' OLEPs in s( I +k) runs from the above defined X matrices. 

4.5 CONSTRUCTION OF OLEPS USING THE X MATRICES 

The construction of all relevant OLEPs disclIssed in this section is a direct extension of 

the X matrices defined and delivered i.n Sections 4.3 and 4.4 and they use the Fisher's theory of 

confounding (Section 3.2) as the underlying principle. The following propositions are now stated 

without proof. 

Proposition 5: It is possible to construct a 2.i orthogonal matrix, sX2s in 2s runs as 

shown below: 

,x" = [~ : ~, ] 
where, 0 and 1 are column vectors of zeros and ones. 
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Proposition 6: ]t is possible to construct an 23.S4 orthogonal matrix, s~s in 4s runs as 

shown below, where 0 and 1 are column vectors of zeros and ones. 

0 0 0 B C SC A 

1 1 0 B R'< R" C 
"X 4s = 

1 0 1 B C C R C 

0 1 1 B RC RC RO 

Both propositions essentiaUy modify an X matrix into a i'.f' matrix through the 

fa Hawing steps, stated genericaUy for a X matrix of order 2/1s. 

• To the X matrix of order 2/1s, append 'n' 2-level columns corresponding to the 

n factors in a 2" factorial, i.e., write out a 2" full factorial alongside the 

existing columns ofthe X matrix. This is illustrated for the Xu matrix (s=3). 

The Xl2 matrix is of order 22.3, where n=2. Therefore, two additional 2-1evel 

columns will be appended to the existing Xu matrix as described 111 

proposition 6. 

000 1 1 0 
o 0 1 201 
o 0 2 0 2 2 

o 100 2 1 
o 
o 
1 

1 

1 

1 

1 

1 

1 1 2 0 2 

12110 

o 0 1 1 0 

o 1 222 
I} 2 001 

1 000 2 
1 1 221 
12110 

• Generate a total of 2"-1 two level columns from the existing 'n' 2-level 

columns using Fisher's theory of confounding (Section 3.2). In the example 

ofaXu cited above, one additional 2- level column may be generat,ed fr-om 

the two existing ,columns using Fisher's theory of confounding. The compl,ete 

matrix, i.e., the 3X12 matrix is shown in Figure 4.7. 
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Figure 4.7: Orthogonal Linear Effect Plan for a 21.34 Factor Combination in 12 Runs 

0000110 

0001201 

000:2022 

1010021 

1011202 

1012110 

1100110 

1101222 

1102001 

0110002 

0111221 

0112110 

All the matrices constructed thus are orthogonal Hnear ,effect plans. They allow 

complete estimatiol1 of all linear main effects, while the higher order effects of the factors 

are correlated with each other. In the sections to come, methods will be described 

wherein, the problem of correlated higher order effects may be remedied. Next, 

additional propositions are presented, wherein the Xss and the Xl6s are modified into 

OLEPs based on the generic rules stated earlier. 

Proposition 7: It is possible to construct a 27.S7 OLEP, sXss in 8s runs as shown below, 

where, 0 and 1 are column vectors of zeros and ones. 

0 0 0 0 0 0 0 B C SC Sc SC A sa 
1 1 1 0 1 0 0 B RC RSc RSc R'~'( C S" 

1 1 0 1 0 1 0 B C SC C C R" RSc 

0 0 1 1 1 1 0 B RC RSc RC RC R(J RS" 
sXss = 

1 0 1 1 0 0 1 B C C Sc C A A 

0 1 0 1 1 0 1 B RC RC RSc RSc C C 

0 1 1 0 0 1 1 B C C C Sc R C RC 

1 0 0 0 1 1 1 B RC RC RSc RSc R(J R(J 

Proposition 8: It is possible to constTuct a 2 J 5.S 13 OLEP, sXI6s in 16s runs as shown in 

Figure 4.8, where, 0 and 1 are column vectors of zeros and ones .. 
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Figure 4.8: Design Template for the sX16s Matrix in 16s Runs 

o 0 000 000 0 0 0 0 000 B 

1 1 101 001 1 1 0 1 000 B 

1 101 0 1 0 1 1 0 1 0 1 0 0 B 

001 1 1 1 000 1 1 1 100 B 
101 100 1 101 100 1 0 

o 1 0 1 1 0 1 010 1 100 

o 1 1 001 101 100 1 1 0 
10001 1 1 1 000 1 110 

, XI6, == 11 1 1 1 1 1 1 0 0 0 0 0 0 0 1 

000 1 011 1 110 100 1 
00101 011 1 0 101 0 1 

1 1 0 0 0 0 1 001 1 1 101 

o 1 001 1 0 1 0 1 100 1 1 

101 001 0 0 101 1 011 

B 

B 

B 

B 

B 

B 

B 

B 
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c Sc Sc SC A sa sa So R O RSA RSA R ',./ 

R C R Sc R Sc R Sc esc S esc A Sa sa S G 

esc S c S e Re R Sc R Sc R Sr esc S a S c 

R c R Sc R Sc R Sc R a R SA R S.1 R S .. , R L R Sc R Sc R Sc 

c 
RC 
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R' 
C 

R C 

C 

R e 

C 

R C 

SC C 
R Sc R C 

SC C 
R Sc R C 

c SC 

R C R Sc 

C SC 

R C RSc 

C C 
R C R C 

c 
RC 

c 
RC 

c 
RC 

c 
R C 

sa 
RSc 

A 

C 

R C 

R" 

A 

C 

RC 

RO 

A 

C 

S" A 
SC C 

R Sc R C 

R S " R" 

A Sa 

C SC 
RO R Sc 

R C R S" 

A A 
C C 

A 

C 

R C 

RO 

A 

C 

R C 

RO 
So 

SC 

C sa 
R C R Sc 

R O R S"/ 

A So 

R O R O 

A A 
C C 

R C R C 

c c 
R C R C 

R O C 

A RC 

C R" 

RC A 
SC R G 

R Sc A 

R SA C 

So R C 

C sa 
R C RSc 

1 0 0 1 1 0 0 0 1 1 0 0 1 lIB C C esc R C R C R C R Sc R a R Q R a R S.l 

o 1 1 1 0 0 0 1 0 0 0 1 1 lIB R C R eRe R Sc R a R a R a R SA A A A So 

-"~"'~~:l'::-- ';::.:~,;:-;;. '-'~ ... 
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4.6 CONCLUDING REMARKS 

The discussion on the method of symmetric constructions and the related construction of 

OLEPs is now complete. The next chapter win discuss techniques to modify the oriliogonallinear 

effect plans so as to remedy the problem of correlated higher order effects and iUustrate with 

examples, methods to incorporate any user specified factor combination(s). 
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Chapter 5 

APPUICATIONS AND EXTEINSIONS OF ORTHOGONAL LINEAR 
EFFECT PLANS 

"Experiments aire the only means of knowledge at 
everyone's disposal. The rest is poetry, and 
iimagination." 

.... Max Planck 

"But what has been said once, can always be repeated." 
... Zeno 

5.0 INTRODUCTION 

This chapter is intended to extend the definition and scope of orthogonal linear effect 

plans (OLEPs) that were introduced in Chapter 4 and discuss applications, underlying 

assumptions, and advantages of the method of symmetric constructions. 

5.1 MODIFYING ORTHOGONAL LINEAR EFFECT PLANS 

The method of symmetric constructions was defined and described as a viable technique 

for the construction of OLEPs involving i".sp factor combinations, whilst mentioning the 

drawback that the higher order main effects for the factors are ·correJated with each other. To 

better illustrate this, a lX12 design, (i.e., a 23.34 OLEP in 12 runs) is dissected il1to its component 

factor main effect columns, using orthogonal linear transforms as is representative of a typical 

regression analysis in Figure 5. L The results of the inter-intra column correlation coefficients of 

the matrix are also presented. 

It is easily noted that the linear main effect(s) of the factors A - G are uncorrclated with 

each other while the quadratic effects, i.e., D2, E2, F2, G2 are correlated with each other and this is 

why they are called orthogonal linear effect plans. This research does not address de-merits of 

these correlated higher order effects since near-orthogonal arrays are indeed used widely in 

industry (Nguyen, 1996; Wang and Wu, ] 991), primarily because of advantages of economic run 

size and usefulness of estimates derived therefrom in effecting decisions. 

The orthogonal Linear transforms that are used to represent the linear and quadratic 

coefficients for the 2-level and 3-1evel factors shown in Figure 5.] and for other higher level 

factors are shown in Table 5 .. 1. Fisher and Yates (1957) present complete tables of orthogonal 

transforms for up to 75-level equally spaced factors. 
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Figure 5.1: Inter-Intra Column Correlation Coefficient Calculations for the 3X12 Matrix 

A B C 0 E F G A B C 0 D2 E E2 F F2 G G2 

0 0 0 0 1 1 0 -1 -1 -1 -1 1 0 -2 0 -2 -1 1 
0 0 0 1 2 0 1 -1 -1 -1 0 -2 1 1 -1 1 0 -2 
0 0 0 2 0 2 2 -1 -1 -1 1 1 -1 1 1 1 1 1 
0 1 1 0 0 2 1 -1 1 1 -1 1 -1 1 1 1 0 -2 
0 1 1 1 2 0 2 -1 1 1 0 -2 1 1 -1 1 1 1 

X - I 0 1 1 2 1 1 0 -1 1 1 1 1 0 -2 0 -2 -1 1 
3 12 - I = 

1 0 1 0 1 1 0 1 -1 1 -1 1 0 -2 0 -2 -1 1 
1 0 1 1 2 2 2 1 -1 1 0 -2 1 1 1 1 1 
1 0 1 2 0 0 1 1 -1 1 1 1 -1 1 -1 1 0 -2 
1 1 0 0 0 0 2 1 1 -1 -1 1 -1 1 -1 1 1 1 
1 1 0 1 2 2 1 1 1 -1 0 -2 1 1 1 1 0 -2 
1 1 0 2 1 1 0 1 1 -1 1 1 0 -2 0 -2 -1 1 

.t.. 
N 

A B C 0 0 2 E E2 F F2 G G2 

A 1 

B 0 
C 0 0 1 

Results of the Inter-Intra COlumn}--. 0 0 0 0 1 
correlation calculations for the 0 2 0 0 0 a 1 

sX12 matrix E 0 0 0 0 -0.87 
E2 0 a 0 a -0.5 a 1 
F 0 0 0 0 0 0 0 1 
F2 0 0 a 0 -0.5 0 1 0 1 

G 0 0 0 0 -0.43 a 0.87 0 0.87 1 

~ 0 0 0 0 0.25 0 -0.5 0 -0.5 0 1 



Table 5.1: Table ofOrthogon.al Transforms 

Ordered factor levels 

# of factor Orthogonal 

levels , s Transform 
0 1 2 3 4 

2 Linear -11 1 

3 Linear -1 0 

Quadratic -2 

4 Linear -3 -1 3 

Quadratic 1 -1 -1 1, 

Cubic -1 3 -3 11 

5 Linear -2 -1 0 1 2 

Quadratic 2 -1 -2 -1 2 

Cubic -1 2 0 -2 1 

Quartic -4 6 -4 1 

6 Linear -5 -3 -1 1 3 5 

Quadratic 5 -1 -4 -4 -11 5 

Cubic -5 7 4 -4 -7 5 

Quartic 1 -3 2 2 -3 

Quintic -1 5 -10 10 -5 

Methods to modify and extend the OLEPs to include higher level factors will be 

discussed and in this regard, the following propositions are stated without proof. 

Proposition 1: It is possible to replace a s-level factor and a 2-1evel factor with a 2s-level 

factor as shown below: 

2-level 

o 
a 
a 

0 
0 

s-/evel 
o 

2 

s-2 
s-1 

0 
1 

2 

s-2 
s-1 

<III 

Replace 
~ 

Collapse 
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2s-level 

o 
1 
2 

s-2 
s-1 
8 

8+1 

25-2 
28-1 
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By an extension ofthe above proposition, it is also possible to rep.Jace a 28 level 

factor with a s-Ievel and a 2-level. factor. This is illustrated with the example of collapsing 

(and replacing) a 2-leveland a 3-level factor into a 6-leve! factor in the fonowing page. 

2-leveL 3-1evel 6-1evei 

0 0 0 

0 1 
Replace • 

1 

0 2 2 ... 
1 o Collapse 3 

1 1 4 

1 2 5 

Proposition 2: It is possible to coHapse a 2s-level factor into a k-Ievel factor, where, 

2s<k<s as illustrated below for the case of s=3. 

2-1evel & 3-level 6-level 5-I.evel 4-level 

0 0 0 0 0 0 0 

0 1 0 

0 2 Rep/ace 2 Col/apse 2 Collapse 2 1 • • • 01" or 
1 0 3 2 2 2 2 

1 I 4 3 2 3 3 

2 5 4 3 3 3 

The above propositions are based largely on Addehnan's (1962a) principle of 

replacement and collapsing based on the concept of proportional frequencies. 

The principle of replacement and collapsing of lower level factor into a higher order 

factor level can be used to modify OLEPs to incilide a mix of several factor levels and allow for 

flexibility in experimenting with a greater mix of factor Ievels. In addition, this principle of 

replacement and collapsing is necessary to modify the swapped column, the switches in the main 

or step-down zones of the OLEP into a higher order factor. This is because the swapped column 

and the switches are generated solely by a symmetric exchange of elements of the stem about the 

origin. Consequently, the quadratic effect (and other even higher order effects) for the factors 

represented by these columns will be completely correlated with the factor represented by the 

corresponding stem. For example, in Figure 5.1, observe that the quadratic effect of factor F is 

completely correlated with that of factor .E, where factors E and F belong to the main zone of the 

Xu matrix. Since the swapped column and switches are possible only i.n X matrices of order~4s, 

the following discussion details techniques to replace the switches with higher order factors. 
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Consider theexatmple of aX matrix of order 2Ds, ~. The swapped column and switches. 

are combined with the 2-level factors and are replaced by 2s-level factors to modify the OLEPs. 

The 2-1evel columns chosen to combine with the s-level factor must be columns 

generated using Fisherls theory of confounding. This is illustrated in Figure 5.2 with the example 

of modifying the s~s, and sXss matrices. The extension of this technique to the sX.6s. matrix is 

straightforward and obvious. 

Figure 5.2: Techniques to Modify the sx.s. and sXss Matrices 

Combine these two columns 
enerate a 2s-level actor 

+ 
0 0 0 B e Sc A 

1 1 0 B RoY R'" e 
.r X 4. = 

1 0 1 B C C R C 

0 1 1 B R C R C RU 

Combine these columns to generate four 2s-/evel factor columns 

I ~ ~ + + ~ l 1 
0 0 0 0 0 0 0 B C SC Sc S· A S" 

1 1 1 0 1 0 0 B RC RSc R.I"c RSc C SC 

1 1 0 1 0 1 0 B C S" C C RC R Sc 

0 0 1 1 1 1 0 B RC R Sr RC RC RU RSA 
X = s 8s 

1 0 1 1 0 0 1 B C C sc C A A 

.0 1 0 1 1 0 1 B R" RC R Sc RSc C C 

0 1 1 0 0 1 1 B C C C S' R' RC 

I 0 0 0 I 1 I B R' R' RSc RSc Rt( R" 
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This principle ofreplacement and collapsing is illustrated with an example. Figure 5.3 

illustrates a 23.34, i.e., a 3X12 OLEP, (as was used in Figure 5.1) which has been modified into a 

22.33.61 OLEP. 

Figure 5.3: Steps in Modifying a 2334 OLEP 

Original 233,4 OLEP lin 12 runs 

ABC D E F G 
a 0 1 0 1 2 a 1 
1 1 a a a 0 2 
0 1 I 1 1 2 a 2 
1 a 1 2 a 0 1 
a 0 a a 1 1 a 
1 1 0 2 1 1 o ' 
a 1 1 2 1 1 0 
1 0 1 0 1 1 0 
a a a 2 0 2 2 
1 1 0 1 2 2 1 
0 1 1 a a 2 1 
1 0 1 1 2 2 2 

Note: The columns of the origlinal matrix have 
been re-arranged for sake of convenience 

SubstituUon used: 

0 0 0 
0 1 1 
0 2 -----.. 2 
1 o 3 
1 1 4 
1 2 5 

I 

= 

Modified 22336 OLEf i~n 12 runs 

A B D E G H 
0 0 1 2 1 0 

1 1 0 0 2 0 
0 0 0 1 0 1 
1 1 I 2 11 I 0 1 
0 0 2 0 2 2 
1 1 1 2 1 2 
0 1 1 2 2 3 
1 0 2 0 1 3 
0 1 2 1 0 4 
1 a I 0 1 0 4 
0 I 1 0 0 1 5 
1 0 1 2 2 5 

Note: Factor H generated by 
rep!lacing factors C and F. 

This procedure of replacement and collapsing improves the orthogonality of the basic 

OLEP considerably and will be demonstrated with an example. However, the modified matrix 

remains an OLEP, since the even higher order effects of the modified columns remain correlated 

with each other, although to a much lesser degree. The improvement in the orthogonality of the 

basic design is demonstrated with a complete inter-intra column corrdation analysis for the 

modified 22.33.61 OLEP, and the results are presented in Figure 5.4. Also, observe that this 

matrix can (theoretically) be used to estimate 13 main effects 0 3=2*1 +3*2+ ]*5) in 12 runs, 

making the design supersaturated. 
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Figure 5.4: Inter-Intra Column Correlation Coefficient Calculations for the Modified 3X12 Matrix 
A B D E G H A B 0 OZ E EZ G G2 H HZ H3 H4 H5 

0 0 1 2 1 0 -1 -1 0 -2 1 1 0 -2 -5 5 -5 1 -1 
1 1 0 0 2 0 1 1 -1 1 -1 1 1 1 -5 5 -5 1 -1 
0 a 0 1 0 1 -1 -1 -1 1 0 -2 -1 1 -3 -1 7 -3 5 
1 1 2 1 0 1 1 1 1 1 0 -2 -1 1 -3 -1 7 -3 5 
0 0 2 0 2 2 ·1 -1 1 1 -1 1 1 1 -1 -4 4 2 -10 

_ I 1 1 1 2 1 2 1 1 0 -2 1 1 0 -2 -1 -4 4 2 -10 
3X12 - = - I 0 1 1 2 2 3 -1 1 0 -2 1 1 1 1 1 -4 -4 2 10 

1 0 2 0 1 3 1 -1 1 1 -1 1 0 -2 1 -4 -4 2 10 
0 1 2 1 0 4 -1 1 1 1 0 -2 -1 1 3 -1 -7 -3 -5 

1 0 0 1 0 4 1 -1 -1 1 0 -2 -1 1 3 -1 -7 -3 -5 
0 1 0 a 1 5 -1 1 -1 1 -1 1 0 -2 5 5 5 1 1 
1 0 1 2 2 5 1 -1 0 -2 1 1 1 1 5 5 5 1 1 

Note: This is the modified 3X12 matrix 

~ 
-..l 

A B D D2 E E2 G G2 H H2 H3 H4 H5 

A 
B 0 
0 0 0 1 

0 2 0 0 0 
E 0 0 o -0.87 1 

Results of the inter-intra column } E2 0 a 0 -0.5 0 
correlation calculations for the ........ G 0 0 o -0.43 o 0.866 1 

modified ~12 matrix G2 0 0 0 0.25 0 -0.5 0 
H 0 0 0 0 0 0 0 0 1 
H2 a o -0.49 -0.09 o 0.189 0.164 ...Q.09 0 1 
H3 0 0 a 0 0 0 0 0 0 0 1 
H4 0 o 0.094 -0.49 o 0.982 0.85 -0.49 0 0 0 

H5 0 0 0 0 0 0 0 0 0 0 0 0 



Also, this modified 22.33.61 OLEP may be further modified to incorporate a 12-level 

factor, O.f the 6-level factor can be collapsed to a five or four-level factor using proposition 2 . 

5.2 APPLICATIONS FOR OLEPs 

The design plans that have been described in Chapters 4: and Sare all intended for use in 

screening experiments, as is relevant for prdirninary industriaiexperimentation. A very elaborate 

listing of OLEPs constructed using the method of symmetric constructions is included in 

Appendix A, which also includes guidelines for modifying and augmenting higher level factors 

with a basic i'.sP plan. However, it is only appropriate the assumptions underlying the use of 

these design plans be stated. 

The most important assumption is that interactions, if any, among the factors are 

negligible, and only the main effects of the factors are to be estimated. The main effect estimates 

are then used to identify and select significant factors relevant for further study. Also, in Table 

5.1, the orthogonal polynomials that have been presented are applicable olTlly for equally spaced 

factors, or factor values which can be transformed into equally spaced variates (e.g., a logarithmic 

transfonnation). Orthogonal polynomials may however be derived for unequally spaced levels, 

although, the mathematical manipulations increase in complexity as the number of levels 

increase. Though the interpretation of a factor's higher order main effect(s) bears relevance only 

for quantitative factors, the design plans may be made to accommodate qualitative even level 

(e .. g .. , 2-level, 4-1evel, etc.) factors. This is possible because the 2-lev,el columns in the OLEPs are 

designed such that each level is tested at every other level for the other factors, and so an average 

estimate of its effect at each level will be complete and based on equal frequencies. Finally, the 

potential drawback of these OLEPs is that even higher order effects ar,e correlated with each 

other. Depending on the experimenter's preference, this mayor may not be considered relevant 

considered the widespread use of nearly orthogonal arrays for industrial experimentation. 

The advantages, however, accrue from the fact that all the OLEPs i.ncur the theoretically 

minimum mlumber of runs possible and the possibilities for modifying and incorporating any user­

specified factor combination using the propositions stated earlier are numerous, limited only by 

the ingenuity of the experimenter. Moreover, the method of symmetric constructions makes 

redundant earlier restrictions that factor levels need to be prime powers, as is made evident in the 

simplicity of construction of tile 27.67 OLEP tabulated in Appendix A. 

Apart from their intended use in screening experiments, it is envisaged that the OLEPs 

may be used for some additional uses as presented in the following page. 
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• Useful for Accelera~ed Reliability Testing and/or Performance Parameter (e.g., 

failure rate) estimation, wherein, additive linear models may be derived from 

logarithmic transformation of experimental data. 

• These OLEPs may be useful as random balance designs, extending ideas proposed by 

Satterthwaite (1959), wherein the analysis is to declare the treatment combination 

with the highest (or desired) response as the winner (pick-tbe-winner) approach. 

Also, if the number of treatment combinations used in the experiment is more than 

the number of factors, a multiple regression analysis using only the linear main 

effects may be used assuming all the other effects and interaction as negligible. 

• OLEPs would be ideal for screening in situations involving only qualitative factors, 

e.g., supplier-customer-machine evaluations, nOll-parametric modeling for marketing 

decisions involving qualitative customer-focused factors, coffee tasting, etc. 

5.3 ANALYSIS TECHNIQUES FOR OLEPs 

This section shall attempt to highlight possible techniques for analyzing the results from a 

screening experiment. Box and Meyer (1986) present a technique for analyzing unreplicated 

fractional factorial experiments, and Barton (1998) presents a novel approach for graphically 

summarizing the results from a fractional factorial experiment. These teclmiques are essentially 

intended for quantitative factors, although references are provided in Davies (1971), Anderson 

and McLean (1974), Hicks (1982), and Cox (1958) about analysis involving qualitative factors. 

5.4 CONCLUDING REMARKS 

This chapter presented techniques for modifying OLEPs and to incorporate any us~r­

specified factor combination into a 2k.sp OLEP, including generic rules for replacing and 

collapsing of factor levels to allow for generation of saturated mixed model design plans. Also, 

related issues regarding orthogonality of higher order effect estimates were discussed, and the 

advantages and assumptions underlying OLEPs were presented. This concludes the scope of this 

research undertaking and the next chapter summarizes the research effort complete with 

recommendations for future research . 
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Chapterr 6 

SUMMARY 

"Whenever one lights upon more exact proofs, then we 
must be grateful to the discoverer; but, for the pres,ent, 
we must state what seems plausible." 

... A.ristotlle 

"'What is beautiful, definite and the object of knowledge 
is by nature pri,or to the indetini,te, the incomprehensible 
and the ugly." 

... Nicomachus 

6.0 SUMMARY 

This thesis was concerned with orthogonal design plans for screening experiments, which 

would penn it tile estimation of all factor main effects, so as to allow for judgmental inference 

about (non) significance of a factor(s). To this end, a technique called the method of '!'ymmetric 

constructions for construction of design plans was devel.oped which yielded: 

(i) Uncorrelated estimates of all linear main effects 

(ii) Slightly correlated estimates of higher even-order main effects. 

The method of symmetric constructions has been elaborated in Chapter 4 and relevant 

tenninology devdoped therein. Finally, the construction of 2k.sp design plans in s(1+k) runs has 

been detailed. 

Techniques for modifying a 2k.sp orthogonal I inear effect plan to incorporate higher order 

factors have been discussed in Chapter 5, complete with suggestions for use and analysis of the 

design plans. 

6.1 SCOPE FOR FUTURE RESEARCH 

This section highlights possibilities for extending the scope of the ideas initiated in this 

report and to the subject of orthogonal screening in general. Ideas that merit further investigation 

include: 

L Establish valid rules for replacing and/or collapsing factor levels so as to maxim ize 

information content per observation. 

2 . Simulate and validate performance ofOLEPs. 
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3. Undertake a comparative study to compare designs based on the principle of 

orthogonality and others based on criteria such as 0-, E-, A-, V-, G-optimality, etc. 

4. Investigate possibilities for modifying OLEPs to an ow for estimation of main effects 

and some/all interactions. 

5. Consolidate all available methods of construction for OMEPs including the method of 

symmetric constructions, as a computer program to generate design plans tailored to 

user's needs. 

6. Attempt formal proofs for all the propositions stated in Chapters 4 and 5 so as to 

extend the method of symmetric constructions as a generic and robust technique, 

independent in its approach and method of solution. 

7. Investigate the potential far using the concept of random balance designs, and 

establish precedent for use afOLEPs in 'pick-the-winner' solution methods. 

An age or a culture is characterized less by the extent of its knowledge than by the nature 

of the questions it puts forward (Jacob, 1989). To this end, it is hoped that the method of 

symmetric constructions, while being just a man-made, conceptual shorthand to abstract and 

shape the authors ideas, will prove useful to interested researchers in the times to come. The 

merits, de-merits and appl ications of the technique are yet to be fully laundered, and inasmuch as 

the scope of this report is concerned, it deems necessary to conclude the report with the mention 

that - so all things time will mend and so this report shall come to an end. 
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Appendix A: Tables Of Useful Orthogonal Linear Effect Plans 

Ah , my computations, people say, 
Reduced the year to better reckoning? - Nay, 
'Twas only striking from the calendar, what was 
Unborn tomorrow and dead yesterday_ 

. _ .. Omar Khayyam 
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Notes on usage and Interpretation: 
1. All the individual designs are enclosed within marked rectangular regions, 

which can be selected for use based on experimenter's needs. 

2. All designs are named according to the following notation: 
sXk - These designs are of type 2n.sp requiring k trials 

- The sXk type designs involve 2-level and s-Ievel factors 
For e.g., 

3X12 is a design involving 2-level and 3-level factors requiring 12 runs. 

3. The names for the individual designs appear near the top left corner 
of the rectangular region enClosing the design plan. 
Likewise, the designs that have been shown in the plan alongside are: 

3X24, 3X12, 3XS the interpretation of which is straightforward. 

4. The specifications for the corresponding OLEP is shown near the top right 
comer of the rectangular region enclosing the design plan. 

For e.g., 
The specification for the OLEP named 3x12 is 23. 34, which is interpreted 
as a design for screening three 2-level and four 3-level factors 

5. Association of factors: To collapse &lor replace 
22 4 23 6 5 4 
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45 1 0 1 1 1 0 0 1 1 0 0 0 1 a 1 a 0 a 3 0 2 2 1 2 0 0 3 0 ' 
46 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 3 3 0 3 1 1 2 1 3 3 a 3 

47 1 0 1 1 1 a 0 1 1 0 0 0 1 0 1 2 2 2 1 2 0 0 J 0 2 2 1 2 
48 1 a 1 1 1 0 0 1 1 0 0 0 1 0 1 3 1 1 2 1 3 3 0 3 1 1 2 1 

49 1 1 0 0 0 1 1 1 1 0 a 0 1 I 0 0 1 1 J 2 3 3 ) 0 1 1 1 2 

50 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 2 2 2 1 0 0 0 3 2 2 2 1 

S1 1 1 0 0 a 1 1 1 1 0 a 0 1 J 0 2 3 3 3 a 1 1 1 2 3 3 3 0 

52 1 1 0 0 0 1 1 1 1 0 a 0 I I 0 3 0 0 0 3 2 2 2 1 0 0 0 3 1 
5 3 1 1 0 1 0 1 0 1 a I 0 1 0 0 1 0 0 0 a J 1 J 1 2 0 0 0 3 : 

54 1 1 0 1 0 1 0 1 0 J 0 J a 0 1 1 3 3 3 a 2 2 2 I 3 3 3 a 
55 1 1 0 I a 1. 0 1 0 1 0 1 0 0 1 2 2 2 2 1 3 3 3 0 2 2 2 1 

56 1 1 0 1 0 1 0 1 0 I Q 1 0 0 J J 1 1 1 2 0 0 0 3 J 1 J 2 

57 1 1 1 0 0 0 1 a 1 1 1 0 0 0 1 0 1 1 1 2 0 0 0 3 2 2 2 I 

58 1 J 1 0 a 0 1 a 1 I 1 0 0 0 1 1 2 2 2 1 3 3 3 0 1 ] J 2 

59 1 1 1 0 0 0 1 a 1 1 1 0 0 0 1 2 3 3 3 0 2 2 2 1 (J 0 0 3 

60 1 J 1 0 a 0 1 0 1 1 1 0 0 0 1 3 0 0 0 3 1 1 .1 2 3 3 :} 0 

61 1 1 1 1 a 0 0 0 a 0 1 I 1 1 0 0 0 0 0 3 2 2 2 1 3 J ). 0 

62 1 1 1 1 0 0 0 a 0 0 1 1 1 1 a 1 3 3 3 a 1 1 1 2 a 0 0 3 

63 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 2 2 2 2 1 a 0 0 3 1 1 1 2 

64 1 1 1 1 0 0 a 0 0 a 1 I 1 1 0 3 1 1 1 2 3 3 3 0 2 2 2 1 
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TABULATED ORTHOGONAL LINEAR EFFECT PILANS FOR 2-UEVEL AND 5-LEVEL FACTOR COMBINATIONS 

en en en 
'" t, .... 

~ X X It) 
It) ..f • ~ ;; • ':'"N N ON 

1 0 0 0 0 0 0 1 0 I) 1 3 3 3 3 1 
2 

I 
0 0 0 0 0 0 0 1 2 2 4 2 2 0 

3 1 0 0 0 0 0 0 0 2 3 11 0 1 1 4 
4 0 0 0 0 0 0 0 3 4 0 1 0 0 3 Association: 
5 0 0 0 0 0 0 0 4 0 4 2 4 4 2 2 5 10 
6 1 1 0 0 1 0 1 0 0 4 1 4 4 3 0 0 0 
7 1 1 0 0 1 0 1 1 4 0 2 0 0 2 0 1 1 
8 1 1 0 0 1 0 1 2 3 1 3 1 1 1 0 2 2 
9 1 1 0 0 1 0 1 3 2 2 4 2 2 0 0 3 3 
10 1 1 0 0 1 0 1 4 1 3 0 3 3 4 0 4 4 
11 1 0 1 0 1 1 0 0 1 1 0 3 1 4 1 0 5 
12 1 0 1 0 1 1 0 1 2 2 4 2 2 0 1 1 6 
13 1 0 1 0 1 1 0 2 3 3 3 1 3 1 1 2 7 
14 1 0 1 0 1 1 0 3 4 4 2 0 4 2 1 3 8 
15 1 0 1 0 1 1 0 4 0 0 1 4 0 3 1 4 9 
116 0 1 1 0 0 1 1 0 0 0 2 4 0 2 
17 0 1 1 0 0 1 1 1 4 4 1 0 4 3 
18 0 1 1 0 0 1 1 2 3 3 0 1 3 4 
19 0 1 1 0 0 1 1 3 2 2 4 2 2 0 
20 0 1 1 0 0 1 1 4 1 1 3 3 1 1 
21 1 1 1 1 0 0 0 0 1 3 3 1 1 3 
22 1 1 1 1 0 0 0 1 2 2 4 2 2 4 
23 1 1 1 1 0 0 0 2 3 1 0 3 3 0 
24 1 1 1 1 0 0 0 3 4 0 1 4 4 1 
25 1 1 1 1 0 0 0 4 0 4 2 0 0 2 
26 0 a 1 1 1 0 1 0 0 4 1 0 0 1 
27 0 0 1 1 1 a 1 1 4 0 2 4 4 2 
28 0 0 1 1 1 0 1 2 3 1 3 3 3 3 
29 0 0 1 1 1 0 1 3 2 2 4 2 2 4 
30 0 0 1 1 1 0 1 4 1 3 0 1 1 0 
31 0 1 0 1 1 1 0 0 1 1 0 1 3 0 
32 0 1 0 1 1 1 0 1 2 2 4 2 2 4 
33 1 0 1 0 1 1 1 0 2 3 3 3 3 1 3 
34 0 1 0 1 1 1 0 3 4 4 2 4 0 2 
35 0 1 0 1 1 1 0 4 0 0 1 0 4 1 
36 1 0 0 1 0 1 1 0 0 0 2 0 4 2 
37 1 0 0 1 0 1 1 1 4 4 1 4 0 1 
38 1 0 0 1 0 1 1 2 3 3 0 3 1 0 
39 1 0 0 1 0 1 1 3 2 2 4 2 2 4 
40 11 0 0 1 0 1 1 4 1 1 3 1 3 3 

I I I ~ Associate with ~ 
J 10-level factor I 

I I I 
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TABULATED ORTHOGONAL LINEAR EFFECT PLANS FOR 2-LEVEL AND 6-UEVEL FACTOR COMB'INATIONS 
en en ,en ... ... 
t >< >< '" CD CD 

CD • • 
~ ~ & 1:-.. ~ ,I'.) 

1 0 0 0 0 0 0 0 0 1 4 3 4 4 2 
2 0 0 0 0 0 0 0 1 2 3 4 3 3 1 
3 0 0 0 0 0 0 0 2 3 2 5 2 2 0 Association: 
4 0 0 0 0 0 0 0 3 4 1 0 1 1 5 2 6 12 
5 0 0 0 0 0 0 0 4 5 0 1 0 0 4 0 0 0 
6 0 0 0 0 0 0 0 5 0 5 2 5 5 3 0 1 1 
7 1 1 0 0 1 0 1 0 0 5 1 5 5 4 0 2 2 
8 1 1 0 0 1 0 1 1 5 0 2 0 0 3 0 3 3 
9 1 1 0 0 1 0 1 2 4 1 3 1 1 2 0 4 4 
10 1 1 0 0 1 0 1 3 3 2 4 2 2 1 0 5 5 
11 1 1 0 o ' 1 0 1 4 2 3 5 3 3 .0 1 0 6 
12 1 1 0 0 1 0 1 5 1 4 0 4 4 5 1 1 7 
13 1 0 1 0 1 1 0 0 1 1 0 4 1 5 1 2 8 
14 1 0 1 0 1 1 0 1 2 2 5 3 2 0 1 3 9 
15 1 0 1 0 1 1 0 2 3 3 4 2 3 1 1 4 10 
16 1 0 1 0 1 1 0 3 4 4 3 1 4 2 1 5 11 
17 1 0 1 0 1 1 0 4 5 5 2 0 5 3 I 

18 1 0 1 0 1 1 0 5 0 0 1 i 5 0 4 
19 0 1 1 0 0 1 1 0 0 0 2 5 0 3 
20 0 1 1 0 0 1 1 1 5 5 1 0 5 4 
21 0 1 1 0 0 1 1 2 4 4 0 1 4 5 
22 0 1 1 0 0 1 1 3 3 3 5 2 3 0 
23 0 1 1 0 0 1 1 4 2 2 4 3 2 1 
24 0 1 1 0 0 1 1 5 1 1 3 4 1 2 
25 1 1 1 1 0 0 0 0 1 4 3 1 1 3 
26 1 1 1 1 0 0 0 1. 2 3 4 2 2 4 
27 1 1 1 1 0 0 0 2 3 2 5 3 3 5, 
28 1 1 1 1 0 0 0 3 4 1 0 4 4 0 
29 1 1 1 1 0 0 0 4 5 0 1 5 5 1 
30 1 1 1 1 0 0 0 5 0 5 2 0 0 2 
31 0 0 1 1 1 0 1 0 0 5 1 0 0 1 
32 0 0 1 1 1 0 1 1 5 0 2 5 5 2 
33 0 0 1 1 1 0 1 2 4 1 3 4 4 3 
34 0 0 1 1 1 0 1 3 3 2 4 3 3 4 
35 0 0 1 1 1 0 1 4 2 3 5 2 2 5 
36 , 0 0 1 1 1 0 1 5 1 4 0 1 1 0 
37 0 1 0 1 1 1 0 0 1 1 0 1 4 0 
38 0 1 0 1 1 1 0 1 2 2 5 2 3 5 
39 0 1 0 1 1 1 0 2 3 3 4 3 2 4 
40 0 1 0 1 1 1 0 3 4 4 3 4 1 3 
41 0 1 0 1 1 1 0 4 5 5 2 5 0 2' 
42 0 1 0 1 1 1 0 5 0 0 1 0 5 1 
43 1 0 0 1 0 1 1 0 0 0 2 0 5 2 
44 1 0 0 1 0 1 1 1 5 5 1 5 0 1 
45 1 0 0 1 0 1 1 2 4 4 0 4 1 0 
46 1 0 0 1 0 1 1 3 3 3 5 3 2 5 
47 1 0 0 1 0 1 1 4 2 2 4 2 3 4 
48 1 0 0 1 0 1 1 5 1 1 3 1 4 3 

I I ,I LI Associate with W I I I J 12-level factor 

I 
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TABULATED ORTHOGONAL LINEAR EFFECT PLANS FOR 2-UEVEL AND 7-LEVEL FACTOR COMBINATIONS 

'I 'I ..... 1-. ' ... x x x 1-. • t-
~ ~ ~ ~ ':l..., , ...... 

N 
1 0 0 0 °1 0 01 0 0 1 5 3 5 5 3 
2 0 0 0 

° 
0 0, 0 1 2 4 4 4 4 2 

3 0 0 0 0 0 0, 0 2 3 3 5 3 3 1 Association: 
4 0 0 0 0 0 0' 0 3 4 2 6 2 2 0 2 7 1,4 
5 0 0 0 0 0 0 0 4 5 1 0 1 1 6 0 0 0 
6 0 0 0 0 0 0 0 5 6 0 1 0 0 5 0 1 1 
7 0 0 0 0 0 0 0 6 0 6 2 6 6 4 0 2 2 

I 
8 1 1 0 0 1 0 1 0 0 6 1 6 6 5 0 3 3 , 

9 ' 1 1 0 0 1 0 1 1 6 0 2 0 0 4 0 4 4 
110 1 1 0 0 1 0 1 2 5 1 3 1 1 3 0 5 5 
11 1 1 0 0 1 0 1 3 4 2 4 2 2 2 0 6 6 
12 1 1 0 0 1 0 1 4 3 3 5 3 3 1 1 0 7 
13 1 1 0 0 1 0 1 5 2 4 6 4 4 0 1 1 8 
14 1 1 0 0 1 0 1 6 1 5 0 5 5 6 1 2 9 
15 1 0 1 0 1 1 0 0 1 1 0 5 1 6 1 3 10 
16 1 0 1 0 1 1 0 1 2 2 6 4 2 0 1 4 11 
17 1 0 1 0 1 1 0 2 3 3 5 3 3 1 1 5 12 
18 1 0 1 0 1 1 0 3 4 4 4 2 4 2 1 6 13 
19 1 0 1 0 1 1 0 4 5 5 3 1 5 3 
20 1 0 1 0 1 1 0 5 6 6 2 0 6 4 
21 , 1 0 1 0 1 1 0 6 0 0 1 6 0 5 
22 ' 0 1 1 0 0 1 1 0 0 0 2 6 0 4 
23 ! 0 1 1 0 0 1 1 1 6 6 1 0 6 5 , 

1 24' 0 1 1 0 0 1 1 2 5 5 0 1 5 6 
25 0 1 1 0 0 1 1 3 4 4 6 2 4 0 
26 0 1 1 0 0 1 1 4 3 3 5 3 3 1 
27 0 1 1 0 0 1 1 5 2 2 4 4 2 2 
28 0 1 1 0 0 1 1 6 1 1 3 5 1 3 
29 1 1 1 1 0 0 0 0 1 5 3 1 1 3 
30 1 1 1 1 0 0 0 1 2 4 4 2 2 4 
31 1 1 1 1 0 0 0 2 3 3 5 3 3 5 
32 1 1 1 1 0 0 0 3 4 2 6 4 4 6 
33 1 1 1 1 0 0 0 4 5 1 0 5 5 0 
34 1 1 1 1 0 0 0 5 6 0 1 6 6 1 
35 1 1 1 1 0 0 0 6 0 6 2 0 0 2' 
36 0 0 1 1 1 0 1 0 0 6 1 0 0 1 
37 0 0 1 1 1 0 1 1 6 0 2 6 6 2 
38 0 0 1 1 1 0 1 2 5 1 3 5 5 3 
39 0 0 1 1 1 0 1 3 4 2 4 4 4 4 
40 0 0 1 1 1 0 1 4 3 3 5 3 3 5 
41 0 0 1 1 1 0 1 5 2 4 6 2 2 6 
42 0 0 1 1 1 0 1 6 1 5 0 1 1 0 
43 0 1 0 1 1 1 0 0 1 1 0 1 5 0 
44 0 1 0 1 1 1 0 1 2 2 6 2 4 6 
45 0 1 0 1 1 1 0 2 3 3 5 3 3 5 
46 0 1 0 1 1 1 0 3 4 4 4 4 2 4 
47 0 1 0 1 1 1 0 4 5 5 3 5 1 3 

! 
48 0 1 0 1 1 1 0 5 6 6 2 6 0 2 
49 0 1 0 1 1 1 0 6 0 0 1 0 6 1 
50 1 0 0 1 0 1 1 0 0 0 2 0 6 2 
51 1 0 0 1 0 1 1 1 6 6 1 6 0 1 
52 1 0 0 1 0 1 1 2 5 5 0 5 1 0' 
53, 1 0 0 1 0 1 1 3 4 4 6 4 2 6 
54 1 0 0 1 0 1 1 4 3 3 5 3 3 5 
55 1 0 0 1 0 1 1 5 2 2 4 2 4 4 
56 1 0 0 1 0 1 1 6 1 1 3 1 5 3 

1 1 I Y Associate with l=J" I I I 14-level factor 
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