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PREFACE

The purpose of this research was to design a high-temperature. vapor phase

reactor for the production of Group ll-VI compounds for specialty applications. There is

a reactor in use by the sponsor. but it suffers from poor process control that inevitably

results in low product yield and waste generation. The reactor is lUlique in that it is

diffusion mass transfer limited, as opposed to kinetically controned. This situation

necessitated extensive computational fluid dynamic (CFD) modeling to produce a

proposal for an improved design. The model entailed the adaptation of expressions to

account for the undetermined kinetics, as well as empirical coefiicients to adequately

describe critical secondary flow phenomena within the reactor.

A reactor design was proposed that fully addresses the technical and business

hurdles posed by the process. The new reactor's operating and physical parameters were

optimized via statistically designed experiments that were performed within the computer

model. The product yield was maximized while achieving the desired batch output

quantity and proper product distribution within the reactor. Additionally, functions were

generated to allow for prediction of reactor performance across a range of input

conditions.

There are several persons and organizations that deserve my gratitude for the

successful completion of this work. My advisors, Drs. AJ. Johannes and Gary Foutch,
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CHAPTER I

INTROnUCTION

Group II-VI Compounds and Applications

The focus of this work is the design and optimization of a high temperature

reactor for the production of Group II-VI compounds by Eagle-Picher (E-P) Industries,

Incorporated. Specifically, the compounds include zinc and cadmium sulfides and

selenides. The basis of this research will primarily rely upon zinc selenide as the

compound of interest for modeling purposes and represents the greatest commercial

potential for E-P, Inc.

Group II-VI compmmds have several properties that lend themselves to unique

applications. The dominant property that enables this class of compounds to be adapted

for opto-electronic applications is their direct energy band gap (Marfaing, 1991). The

band gap is defmed as the gap between conducting and valence electronic energy bands.

Group II-VI compounds occupy two ranges on a scale of energy gap vs. lattice constant

when compared to other semiconductors. The low-energy materials in the infrared (IR)

wavelength range are well suited for IR detectors and IR laser emitters. The high-energy

gap materials include the zinc and cadmium sulfides and selenides that reside in the

visible wavelength range. High band gap materials are actively sought for use in devices

for emission of light at a specific wavelength light in the blue-green range of the

spectrum. Zinc selenide has an energy band gap of2.7eV and 480 nm and hence an ideal



emitter of blue light. These high band gap materials are the least developed and thus

provide the impetus for this research.

The zinc selenide product is a powder that is eventually converted by proprietary

crystal growth methods to a single crystal substrate. The methods of crystal growth

include the Bridgman technique, as well as various casting and recrystalJization

techniques. The multi-zone capsule growth method, as outlined by Burr and Woods

(1971), is an example of one such technique. The single crystal substrates are then

incorporated into several devices of commercial interest There is a particularly high

potential for the use of ZnSe substrates as light emitting diodes (LEDs) employed in laser

optical devices. ZnSe is used in high-powered CO2 lasers due to its low absorption at

specific wavelengths. It also has uses in medical, industrial, and military applications

such as thennometry, spectroscopy, and High Resolution Forward Looking Infrared

Radar (FLIR), respectively (Morton Advanced Materials, 1998).

The advent of optical memory storage devices is an area of extremely high

interest for application of ZnSe materials. The use of blue diode light as a means of

reading optical memory (as opposed to IR light) has the potential of increasing the

storage capacity of devices four-fold or more (Lerner, 1998). Additionally, specific

wavelength LED technology may eventually evolve to a level where the diodes can be

included in flat panel displays and in room lighting devices when combined with other

primary color diodes. With a commercial potential of this magnitude, competition in this

area is understandably fierce and currently revolves around diode mit cost and lifetime.

A competing technology for a blue-green diode source material is gallium nitride that has

a lifetime of approximately one thousand hours. Currently, ZnSe diodes have
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demonstrated several hundred hours of continuous operation, but will need to operate for

several thousand hours at a reduced per unit cost. Interest in reducing the cost of

synthesizing the ZnSe powder is consequently an important element in the economic

viability ofthe entire process.

Current Synthesis Reactor and System

The reactor and production system presently ill use at Eagle-Picher IS

approximately 50 years old and is shown in Figure 1-1:

~f--...."..------====~±i:=:F ..===ARGON

. TO 0'1 -- ---------.:""'-'
BUBBLER CONDENSER REACTOR TUBE WELDED

LOWER
BOILER

Figure 1-1. Sketch of Current Eagle-Picher Reactor (Source: Foutch, 1996)

The high-temperature quartz reactor system consists of two boilers where the

solid reactants of zinc and selenium are introduced into the upper (horizontal) and the

lower (vertically oriented) boilers, respectively and vaporized. The reactant vapors are
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then carried into the high temperature (1000°C)-reactor tube by argon gas where they

react and condense to fonn a ZnSe powder. Byproducts and unreacted starting materials

flow into and condense in the jacketed condenser outside of the reactor zone. The

eftluent then passes through a bubbler solution to scrub the uncondensed materials from

the inert carrier stream. The entire synthesis unit is quartz welded to provide ajoint-free

(with the exception of the grOlmd glass joint condenser) closed system. Joint-free

construction prevents the introduction of contaminants, especially oxygen, which can

produce metal oxides and other impurities. The constituent parts of the reactor are all

constructed in-house at E-P. The reactor tube is enclosed in a three zone furnace

consisting of a MuHite™ tube surrounded by wire wrapped ceramic heating elements.

The heating elements are insulated by firebrick and enclosed in a steel shell. A 240-volt

three-phase rectifier supplies power to the fumac1e. The boilers are heated by 240-volt

portable elements. The upper cylindrical heating element is slid around the boiler from

the back and supported by a steel apparatus. The lower boiler is heated by a 'pot-shaped'

element that is raised into place by a jack stand. Gaps between the boiler heaters and the

furnace around the boiler transfer tubes are hand wrapped with insulating fiberfrax

material prior to the beginning of each run. Temperature control is facilitated by

thermocouples placed within the boiler and furnace elements that are in contact with the

quartz surface of interest. The thennocouple settings and readouts are made via a system

of digital and analog controllers. Thennocouple fouling by molten metals precludes

temperature readings or control of either the starting materials or inside the reactor tube.

The reactor is appropriately teaned an aerosol flow reactor. This type of reactor

is characterized by the flow of aerated particles into a reacting zone where the products

4



are formed. An analogous reactor type that will be retied upon in this work is the

chemical vapor deposition (CVD) reactor. In a typical CVD process, thin solid films are

synthesized from the gas phase via chemical reaction and deposited on thin wafers

located within the reactor (Hitchman and Jensen, 1993). While our process of interest is

concerned with the deposition of bulk material within the reactor, many of the transport

processes and chemical kinetic phenomena are similar, if not identical, to CVD

processes.

The historical design basis for the reactor is difficult to establish. Little

information exists within E-P as to the evolution of the system. A few facts are known,

however. The horizontal orientation of the reactor is necessary to prevent void spaces

from forming within the crystal structure of the product. The use of quartz as the

material of construction is necessary due to its high purity and high temperature

performance characteristics.

Analysis ofHistorical Performance of the Current System

In the present system, a batch synthesis run requires approximately three days

tum-around-time per run due to lengthy steps in the set-up and breakdown procedures.

These procedures involve welding of the boilers to the reactor inlet tubes prior to each

run and the breakdown steps require disassembling of the reactor components by sawing.

The reactor tube and boiler components are then cleaned with a concentrated mixture of

sulfuric and nitric acids. The components are then dipped in a hydrofluoric acid bath to

remove metal traces, rinsed with deionized water, and allowed to air dry. Each run

results in approximately 700g of ZnSe product.
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Current product specifications require five-nines (5N's or 99.999%) purity. The

current system produces acceptable product purity. but anticipation of future trends

indicates a probable need for 6N's purity.

Product production cost is an obvious concern and represents an area for design

and process improvement. Analysis of historical data indicates an average yield based on

zinc of only 40%. Further, the number of runs that are aborted approaches one for every

five attempted. Aborted nms are most often due to plugging of inlet tubes by product

material, which necessitates the shut down of the system to avoid over-pressurization.

These aborted runs result in the waste of expensive high purity starting materials.

Additionally, significant time losses occur as a result of the time necessary for the system

to cool down as well as that required to breakdown and clean the reactor components.

The cause of the low yield and high run failure rate is primarily attributable to the

low level of knowledge as to the actual process variables which inevitably results in poor

process control. Successful setup and operation of the system is apparently heavily

dependent upon operator experience. The process requires a bit of "wizardry" to produce

a desirable quantity and quality of product. Historically, documentation of the process in

tenns of output data, observations, performance characteristics, and evolution of

operating conditions was minimal. System operation has been geared toward the

production of research quantities of high value materials. The commercial demand for

the product has shifted towards a need for larger quantities of competitively priced

material. Successful competition in the new marketplace will require a much greater

level ofprocess control.
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Objectives

The need for a reactor with perfonnance characteristics that will enhance the

economic viability of the process is well founded. We are charged with developing a

design that is capable ofproviding the following:

1) Reduced turnaround time.

2) Increased product output per run.

3) Improved product purity.

4) A high degree ofprocess control.

5) Increased ease of operation.

6)Reducedlaborcos~.

7) 'Scale-ability' for future increases in production.

8) Adaptability for production of other Group II-VI compounds.

9) Improved safety characteristics.

The focus of this work is to provide assistance toward achieving these goals by

accomplishment of the following objectives:

1) Conduct experimentation to analyze the present system and gain perfonnance

data that will aid in the design of a new reactor.

2) Submit recommendations as a result of the experimental analysis to enhance the

performance of the present system.

3) Develop a concept that will meet all of the design objectives.

4) Develop a FLUENTTM Computational Fluid Dynamics (CFD) model of the new

design concept.
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5) Analyze the CFD model via a statistical Design of Experiments (DOE) study and

validate the model by comparison and reconciliation with available data.

6) Optimize the new reactor design by use ofDOE methods applied to the process

variables within the CFD model.

8



CHAPTERll

LITERATURE REVIEW

Introduction

While there is little infonnation in the literature related closely to this research;

there is information available by analogy. The intent of this review is to provide a broad

overview of specialized semiconductor vapor deposition processing. An initial review of

related (some loosely so) alternative methods of production of similar compounds will

lead into a discussion of various chemical vapor deposition technologies. From this

fundamental ground, we will- proceed into a review of the factors that regulate these

processes and attempt to lay a basis from which to begin reactor design work. The

literature related to design of high temperature vapor phase reactors, modeling and

simulation will be reviewed. Statistical techniques to optimize reactor designs with

computer models will also be explored.

Review of Production Methods

There are several alternatives for the synthesis of Group II-VI compounds as bulk

powders, single crystals, and thin films. The emphasis of this work is the bulk synthesis

ofthe various crystalline powders; however, various methods related to single crystal and

thin film fabrication will be discussed as well. High temperature vapor phase synthesis

from elemental metal reactants and wet solution methods are the two primary routes for
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bulk synthesis. Methods for monocrystalline epitaxial growth for large single crystals

include seeded physical vapor transport (SPVT) and seeded chemical vapor transport

(SCVn. Thin film production methods for device fabrication can be grouped into the

general categories of electrochemical, high temperature, and electrical field (electron

beam and plasma). Many of the thin film methods are incorporated within Chemical

Vapor Deposition (CVD) technology.

Bulk Synthesis

Group ll-VI bulk synthesis can result from the transport of vaporized metal

reactants through a reactor constructed of a suitable high-temperature material such as

quartz by an inert carrier gas. Alternatively, hydrogen sulfide, or other gaseous

metalorganic compounds of the Group VI metal, can react with vaporized Group IT metal.

An example is the reaction of dimethylzinc «CH3hZn) and hydrogen sulfide (H2S) to

form zinc sulfide (ZnS). The vaporization of the reactants is followed by condensation of

the product within a cooler reactor zone. This method approximates the present system

in use at E-P. Literature related to system design, either batch or continuous, of this

nature is scarce. The fifty-year evolution of the E-P design did not include publication of

articles or patents and remains an ill-house trade secret. Further, there is little research or

production documentation available. One notable exception is the effect of reactor tube

orientation. Brown (1964) experimented with synthesis ofll-VI compounds in a vertical

reactor and observed a greater tendency towards plugging of the inlets with product

material. This orientation also is known to produce defects within the product crystal

structure (Kucharczyk and Zabludowska, 1986). The bases for other physical aspects of
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the design are available piecemeal in the literature. The necessity for using quartz as the

material for tbe r,eactant boilers and reactor tube is well founded. The high purity of

quartz eliminates product contamination and also provides high thermal stability (Spirin

et aI., 1996). The quartz vessel allows for operation at high temperatures (up to 1500K)

while maintaining low thermal expansivity, good thennal conductivity, and high tensile

strength. Also, quartz allows for in-house fabrication of the various vessels, and pieces

can be welded with relative ease.

The operating parameters were arrived at over a great length of time by analytic

experimentation at E-P and have little basis in the literature. There are analogous

references from crystal growth methods, especially those that employ the ampoule

methods as outlined by Kucharczyk and Zabludowska (1986). Although not directly

transferable to our· synthesis system, the trends related to residence time, carrier gas

velocities, and cooling time provide a basis for gauging the effects on the product crystal

quality, size and morphology (Foutch et aI., 1995).

The second type of production method includes several wet chemistry techniques.

These methods are usually performed by precipitation of the reaction product from either

an organic or aqueous solution. Product purity is limited by the quality of the solutions,

as well as the apparatus, therefore, the vapor methods usually yield higher purities.

Chemical Bath Deposition (CBD) is one wet chemistry technique for the production of

cadmium sulfide from cadmium salts in an ammonia medium (Chopra et aI., 1982):

Cd (NH3)n
2
+ <=> Cd2

+ + nNH3

SC (NH2)2 + 20If ~ S2- + CN2H2 +2H20

Cd2++ S2- ~ CdS(s)
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Wet methods pennit production under ambient conditions and there exist

schemes to enable control of product characteristics. Bredol et aI. (1996) controlled the

nucleus size of zinc sulfide by addition of the reactants to an organic phase that forms a

"nuclei organosol" when added to an aqueous zinc salt solution. The ZnS precipitates on

the nuclei by treatment with HzS gas. Films of cadmium selenide were grown. layer-by­

layer from CBD solutions containing cadmium sulfate, sodium selenosulfate, and a

sodium nitrilotriacetate (NTA) complexing agent (Cachet et aI. 1996). Further, Cachet et

at. (1997) achieved epitaxial growth. ofCdSe on (111) single crystal substrates ofInP.

Growth ofSingle Crystals

There are numerous methods ofpreparing single crystal II-VI compounds. Only a

few will be addressed here to illustrate the importance of transport processes in the

production ofthese materials - regardless of final morphology.

Kucharczyk and Zabludowska (1986) reviewed the methods of crystal

preparation by first categorizing the crystallization as one-component or multi­

component. The distinction is due to the composition of the mixture from which the

crystals are grown. If the crystals are formed from a mixture where the compound is

relatively pure, the method is termed "one-component." "Multi-component" refers to a

mixture ofmaterials that includes the compound of interest. Further, the processes can be

grouped by the phase transition involved in the crystallization, i.e.- solid to solid, gas to

solid, or liquid to solid.

Korostelin et aI. (199631) described the methods of monocrystal formation from

polycrystalline ZnSe using both SPVT and SCVT. The process uses helium for physical

12
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transport, or an argon-helium mixture for chemical transport, of ZnSe within a sealed

quartz growth ampoule enclosed in a furnace at approx. 1200°C. The cooler,Lower end of

the furnace contains a single crystal wafer of (Ill) ZnSe as the seed. that is placed on a

polished quartz rod. The authors grew crystals up to 50mm in diameter and found that

the mass transport rate varies with the square of the ampoule radius, and concluded that

there is a strong influence of diffusion on the mass transfer, i.e.- the growth is a diffusion

limited process.

Crystallization from one-component molten material is known as the Bridgman ­

Stockbarger method. It involves drawing a cylindrical, pointed crucible through a highly

controlled temperature gradient· to· produce monocrystals from a single, unidirectional

nucleus contained in the point. The process is extremely sensitive to the temperature

profile and crucible rate of travel (Kucharczyk and Zabludowska, 1986). Deviations

from ideal conditions caused variation in stoichiometric composition and crystal

morphology. Kimura and Komiya (1973) note that the crucible can be modeled as a three

phase equilibrium maintained between the melt, the diffusing gases, and the growing

crystal.

Crystal growth from the vapor phase is referred to as the sublimation­

condensation method. The method, with its heat and mass transfer c.onsiderations, is

analogous to the process of this research. Transport of the vapor can be made by active

(or dynamic) flow by using an inert carrier gas, or by static transfer. Static transfer relies

on the high vapor pressures of molten II-VI materials, whereas dynamic transfer rates are

augmented by the addition of the inert stream. Korostelin et 311. (1996b) notes that the

vapor phase method is "preferable to obtain pure and highly perfect single crystals." In
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an extension of their work, the authors found that the composition of the resulting

crystals is dependent upon the growth conditions that vary with the steady-state

composition of the vapor phase material. Their work centered on relating the flux of Cd

and Zn to the diffusivities, partial pressures, physical properties, and the geometric

factors related to the ampoule. Battat et at (1976) assumed interfacial equilibrium to

estimate diffusion-controlled mass transfer rates that limit the crystal growth rate.

In their review, Kucharczyk and Zabludowska (1986) make note of two

interesting observations relevant to vapor phase crystal growth: I) the quality of the

monocrystal is improved with longer residence time of the vapor(s). 2) Clark and Woods

(1968) report that crystals produced in a vertically configured furnace contain a greater

number of void defects that impact physical and el'ectrical properties. Single crystals are

also grown by homoepitaxial methods, where the growth occurs on a substrate of the

same material as the crystal. Heteroepitaxial growth occurs on a substrate of a different

material.

Thin Film Methods and Device Fabrication

The unique properties of deposited films can be utilized as decorative and

protective coatings such as those used for reactor walls (Mattox, 1979), high-pressure

valves (pierson, 1981), and specialty bearings (Hinterman and Laeng, 1983). Many

products such as machine parts and medical devices also require highly specialized

coatings to improve strengtb, durability, and appearance characteristics. Electronic

applications include fabrication of thin film transistors, capacitors, resistors, and solar

devices, among others (Jackson, 1993). Optic-electronic applications, such as laser
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storage devices, represent the greatest area of commercial potential as discussed in the

introduction. These films also have unique photonic applications in long distance fiber

optic systems with low optical loss characteristics (Dupois, 1984), as weU as the next

generation of computer and video displays.

Thin film synthesis methods can be grouped as either reactive or physical. In a

reactive process, the film is deposited following a gas phase chemical reaction. Or, the

film can be deposited directly from the source material in a physical process (Hitchman

and Jensen, 1993). Examples of physical thin film methods include evaporation,

sublimation, sputtering, and various high-energy routes such as pulsed laser deposition

and Molecular Beam Epitaxy (MBE). The reactive methods include electrosynthesis of

thin film layers and Chemical Vapor Deposition (CVD). CVD is the primary means that

a chemical reaction in the gas phase can lead to epitaxial or non-epitaxial deposition of

the thin film. Since they are analogous to our process, examples of each of these methods

will be explored with particular attention to reactive CVD processes.

Physical Methods

Physical vapor deposition originates directly from an evaporating source of the

same material contained in a Knudsen cell or open boat. The evaporation and

sublimation of the source material can be facilitated by techniques such as MBE, where a

molecular beam is formed by heating the material within an ultra-high vacuum (Dupuis,

1984; Jackson et ai., 1987). Alternate means of obtaining the energy for evaporation

include the use of a pulsed laser (Misiewicz et aI., 1994) and high energy sputter

deposition (Greene and Eltoukhy, 1981).
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Chemical (Reactlv:e) Methods

Many ofthe non-reactive methods ofdepositing thin films can be used to perform

reactive vapor deposition of layers. For ,example, Nouhi and Stirn (1986) discuss the

deposition of ZnSe films on glass substrates via reactive magnetron sputtering. Also,

pulsed lasers, plasmas, and other photo-assisted means have been employed to enhance

reactive CVD - e.g. plasma-enhanced chemical vapor deposition (PECVD).

While seldom used, electrochemistry is another technology that can be used to

produce thin films by reaction. Ham et at (1991) discuss the electrosynthesis of thin

films of Group II-VI compound semiconductors. The authors differentiate the

electrochemical methods as anodic or cathodic. The cathodic route involves reduction of

both the Group II metal and the Group VI chalcogen (selenium) in either an aqueous or

organic solvent. Alternatively, a film can be fonned by anodization of the metal in a

basic solution of the chalcogen - e.g. Cd metal in a 1M K2Se and KOH solution. Using

this method, the authors were successful in, forming thin films of CdSe.

Chemical Vapor Deposition (CVD)

Examples

Thin films of Group IT-VI compounds can be produced by numerous types of

reactive chemical vapor deposition techniques; only a few of which will be discussed

here. The metallorganic t,echniques discussed earlier can be applied to a dynamic flow

horizontal reactor containing parallel rows of wafer substrates. Alternativily, deposition
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can occur within a static flow "pancake reactor barrel" with flatly distributed wafer

substrates. This method is referred to as metallorganic chemical vapor deposition

(MOCVD). Su et at (1997) fabricated thin films of ZnS on nine inch diagonal wafers

from (CH3hZn (DMZn) and H2S in a low pressure horizontal reactor (LPMOCVD) with

a dynamic carbon substrate. The authors found the deposition quality and unifonnity was

heavily dependent upon reactor temperature and pressure, substrate temperature, reactant

flow rate, and nozzle widths. The use of organometallic precursors allows for operation

at much lower temperatures. This method of MOCVD is distinct from MOPVD and

MOVPE, which are physical deposition processes for thin film and reactive epitaxial

growth methods, respectively (Moon and Houng, 1993). Other acronyms that are

commonly used to describe CVD processes' inClude: low pressure (LPCVD), high

pressure (HPCVD), plasma-enhanced (PECVD). laser-induced (LCVD), and photo­

assisted (PCVD) (Wahl, 1993). There are many lesser-used permutations of the CVD

reactor including supercritical fluid transport (SCTCVD) and aerosol-assisted (AACVD)

(XU et aI., 1995). The authors note the advantages of aerosol aided CVD by improving

the transport of compounds with low vapor pressures (non-metallorganics) and low

thennal stabilities.

Deposition Processes and Theory

An introduction to CVD technology will illustrate the many of the same

principles that govern our process. A thorough source of theoretical and applied

information regarding CVD processing is available by Hitchman and Jensen (1993).
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The authors sununarize the essential! steps of CVD technology by describing

sequentially the mass transport steps:

1) mass transport in the bulk gas flow region from the reactor inlet to the

deposition zone;

2) gas phase reactions leading to the formation of film precursors and

byproducts;

3) mass transport offilm precursors to the growth surface;

4) adsorption of.film precursors on the growth surface;

5) surface diffusion offilm precursors to growth sites;

6) incorporation offilm constituents into the growingfilm;

7) desorption ofbyproducts ofthe surface reactions; and

8) mass transport of byproducts away from the deposition zone towards the

reactor exit.

Carrier gas + -------~. Carrier gas + unreacted
reactants reactants+products

t
Transfer of reactants

to surface Gas-phase
reactions

Transfer of products
to mainflow

t
Adsorption Desorption of
of reactants products

l~__ ~I

• l .s.u.b.stra_te_Surfi_a.c.e__

Surface diffusion +
Surface reactions

Fig. 2-1: CVD Processes (Source: Hitchman and Jensen, 1993, pg.13)
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As with the process that is the focus, of this work, each step in the CVD process is critical

to the successful completion of a run. Note that the reactor walls or other particles,

either in the bulk fluid or deposited as a layer, can act as a substrate in the Figure 2-1.

Mass Transport

Fluid flow and species transport is governed by the equations of conservation of

mass (continuity) and momentum as given by Bird et ai., (1960). These basic balance

equations are relied upon for reactor modeling. Jensen (1993) notes that a pseudo-

steady-state condition can be assumed for most CVD reactors. By analogy, this

assumption appears to be applicable to our system as well. For the fluid flow; the x, y,

and z velocity components are obtained by solution of the equation (in vector notation)

for total momentum balance (Bird et aI., 1960):

p(DvfDt) = -Vp - [V·t] + pg (2-1)

The equation of continuity is given from conservation of mass by (Bird et aI., 1960) and

provides the local pressure:

V-(pv) = 0 (2-2)

The diffusive flux of a speCIes i is due to the concentration and thermal driven

components by (Jensen, 1993):

J ·C ·T
j= Ji + Ji (2-3)

Where the concentration flux IS solved from the Stefan-Maxwell equation (Bird et

811.,1960; Jensen, 1993):

(2-4)

The diffusion due to thermal forces is given by (Jensen, 1993):
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j/ = D? V (In T) (2-5)

The effective thermal diffusivity, DjT, is estiniated by (Kleij,n et aL, 1989; Jensen, 1993):

Di
T =L (c2/p) MjMj Dijk/ (2-6)

The density of the reactor gases cannot be calculated by linear extrapolation due to the

large gas expansion from the heat flux. Therefore, the density should be detennined by

the ideal gas law (Jensen, 1993):

p = (pMJRT) (2-7)

Finally, the balance for each species includes contributions from diffusion, convection,

and nG gas reactions (Jensen, 1993):

V· (PVVO)i) = -V·ji + L vt Mi 9tjG fori = 1. .. , S-1 (2-8)

Where S is total number of species undergoing transport, and 91 is a surface or bulk phase

reaction rate.

In addition to the above sources; a firm footing in the theoretical basis of mixing

phenomena related to dispersion and diffusion in open systems can be gained from

Nauman and Buffham's (1983) signature book on mixing in flow systems.

Heat and Energy Considerations

The two sources of energy that must be accounted for in the total energy balance

for the reactor are the external heat sourc,es that contribute via conduction, convection,

and radiation, and the heat of reaction(s). The theses of Brent Foster (in progress) and

Zeljko Nikolic (in progress) deal extensively with the heat transfer aspects of our process

and will be deferred to for a complete description of those issues. We will concern

ourselves here with the energy considerations relevant to the design of vapor deposition
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reactors. Neglecting viscous energy tenns; the energy balance taking into account nG

vapor phase reactions9t (Jensen, ]993):

pCpv· VT = V· (kY'T) - L [jj . VHj + Hi L vl Mj 9tlJ (2-9)

Where k is the thermal conductivity of the gas species and Cp is the heat capacity at

constant pressure of the gas species.

Reaction Kinetics

Considering that most gas phase reaction equations have little relation to the

actual mechanism; it is essential to gather data or estimate kinetic expressions for each

step in the mechanism. Further, there is a need to understand the surface reactions in

addition to the gas phase reactions. There is, unfortunately, little data available in the

literature as to kinetic parameters of high temperature gas phase or surface reactions.

Notable exceptions are the well studied reactions for silane chemistry (White et aI., 1985;

Jasinki et aI., 1987; and Moffat and Jensen, 1991) and GaAs free radical chemistry

(MoWltziaris and Jensen, 1991).

Due to the dearth of kinetic infonnation, it is usually necessary to estimate the

required parameters. Jensen (1993) swnmarizes the two primary means of accomplishing

this task. The first route is to empirically fit the parameters of a simplified rate form to

experimental data. Levenspiel (1972) outlines the steps involved in this approach.

Essentially, the method entails fitting the temperature dependency of the rate constant to

a plot of inverse temperature to obtain the activation energy from the slope. Various

schemes with log plots of concentration versus time data are used to ascertain the overall
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order.. The rate constant k is obtained from the slope of such a plot, once a suitable linear

log plot is found.

The second method involves the more rigorous approach of estimation of the

kinetic parameters from transition state theory and statistical thermodynamics.

Gavrishchuk and Dadanov (1990) estimated the value of rate constants for the deposition

of ZnSe layers by using a mathematical model for the deposition process that accounts

for the geometry ofth,e material. Jackson et aI. (1987) determined the rate of the growth

of a physicaUy deposited layer from constitutive relationships that describe incident

fluxes towards the substrate, as well as adsorption and reflection ofthe species deposited.

Wang and Pollard (1995) present a methodology for the estimation of the rate

constants of elementary surface reactions from statistical mechanics and transition state

theory. They detennine activation energies from bond dissociation energies and heats of

adsorption. While rooted in thermodynamic theory, the method appears rather

exhaustive; as a description of the surface structure and bonding configurations must be

available. However, if thermodynamic data are available; the authors review the

straightforward method ofdetermining the equilibrium constant from:

(2-10)
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Nucleation and Aerosol Dynamics

Product nucleation and aerosol dynamics playa critical role in the design of a

deposition reactor. Specifically, the behaviors ofparticles dictate the perfonnance of the

system to a large extent.

Hitchman and Jensen (1993) are primarily concerned with the formation of thin

films within reactors, but those processes are also relevant to the bulk deposition of

powder product. Nucleation effects both the growth and the microstructure of the

developing film. Hitchman and Jensen (1993) remark that the film characteristics are,

"detennined by surface diffusion and nucleation processes on the growth interface, which

are influenced by the substrate temperature, reactor pressure, and gas-phase

composition." The process of this research involves the condensation of product nuclei

on themselves as well as the reactor walls. It, therefore, can be described as a dual-

substrate system. Alternatively, the process may be considered a three-phase reaction

process. The reactor is an aerosol assisted chemical vapor deposition (AACVD) reactor

for bulk. synthesis. An alternative designation is a laminar flow aerosol reactor (LFAR).

The various nucleation and aerosol related literature that has been researched will be

reviewed.

Types ofNucleation

Reist (1993) thoroughly covers the many aspects related to aerosol dynamics. He

describes the different types of nucleation as homogeneous or heterogeneous. He notes

that the formation of an aerosol initially requires a surface for condensation - the
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condensation nucleus. Homogeneous, or spontaneous, nucleation is the condensation of

vapor molecules onto molecules of the same materiaL Conversely, heterogeneous

nucleation is the condensation onto a dissimilar material. In our process, the bulk

production of powders will involve both homogeneous and heterogelleous nucleation of

particles onto themselves as well as the reactor walls as a substrate. Reist describes the

steps necessary for nucleation as: 1) supersaturation of the vapor, 2) formation of small

clusters of molecules that he calls, 'embryos,' and 3) the condensation of the

supersaturated vapor onto these clusters. He further notes that heterogeneous nucleation

only involves the first and third steps where in the case of the third step, the reactor walls

fulfill the role as the substrate embryo or cluster.

Condensation Phenomena

Reist (1993) gives the saturation ratio of a vapor in a gas as:

(2-11)

Where p is the partial pressure of the vapor in the gas, and pa;,(T) is the saturated vapor

pressure of the vapor over a volume of the liquid at temperature T. Further, he lists

equations for the calculations of '8' for adiabatically expanding gases from

thermodynamic relationships based on Clausius-ClapeYron's equation; He states that

when S > 1, the gas is supersaturated with vapor. The gas is saturated at S = I and is

unsaturated at values less than 1. Reist states that once supersaturation is achieved, the

formation rate of critical nuclei (in terms of the number of clusters reaching critical size

per unit time) is given by the following expression developed by Pruppacher and Klett

(1978):
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(2-12)

Where the required condition for spontaneous nucleation is J ~ 1.0. The author also

discusses heterogeneous nucleation and gives an excellent review of kinetic gas theory,

molecular speeds, mean free path calculations, drag coefficients, Stoke's Law, and

particle diffusion from Fick's Law. He also includes a chapter devoted to coagulation of

particles, which plays a role in most aerosol reactor processes.

Another source for aerosol dynamics infonnation that emphasizes mathematical

descriptions of the various phenomena is given by Wen (1996). Wen covers some

interesting problems pertaining to the relationship between rate of mass transfer of

aerosol particles and the reactor dimensionless parameters that will be addressed later.

Specifically, he relates the aerosol mass transfer rate to the zero-Peelet number mass

transfer rate Qo:

(2-13)

Where a is the particle radius, Dm is the molecular diffusivity , Do is the vapor molecular

diffusivity, C1 is the concentration at the particle surface, and Co =is the concentration at

some distance from the particle. Pratsinis and Vemury (1996) also offer a review of

recent progress in the area of particle fonnation in the synthesis of powders.

On a more practical front; there are several references to aerosol related issues

that relate to chemical reactors. In these cases, the objective is often to produce very

exact distributions of particles in high temperature reactors designed to produce ceramic

particles from the gas phase. These phenomena are closely related to the present

research, inasmuch that experimental data will attempt to associate reactor conditions to

Scanning Electron Microscopy (SEM) analysis of product particles.
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Pratsinis (1988) reviews the general dynamic equations for simultaneous aerosol

nucleation, condensation, and coagulation in reactors and suggests that there are five

dimensionless parameters that determine the particle characteristics. Kodas et a1. (1987)

conducted experiments that confirmed that aerosol dynamics in a tubular flow reactor are

controlled by reactant mixing above the critical saturation ratio. Likewise, below the

critical saturation ratio; the dynamics were not influenced by mixing since formation and

growth of particles occurred primarily in the laminar region. They determined the

particle size distributions for a range of mixing head configurations. Okuyama et a1.

(1992) measured the ,effects of concentration, temperature profile, and carrier gas on the

formation of Ti02 particles formed in a LFAR. They found that under dilute conditions

and slow rates of reaction, smaller particles were produced.

Rao et a1. (1998) investigated the formation ofborophosphosilicate glass (BPSG)

particles in a commercial LPCVD reactor. Here, the authors were concerned with

another interesting facet of aerosol dynamics in reactors - the prevention of contaminant

particle formation on CVD deposited layers on wafers.

Bilodeau and Proulx (1996) report the development of a 2-dimensional model that

simulates particle formation, nucleation, and growth by condensation and Brownian

coagulation ofultrafme metal powders in a thennal plasma reactor. They were successful

in applying the model to optimization of the system operating parameters.
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Reactor Design Methods

AU ofthe above aspects pertinent to the lcinetic and transport processes playa role

in the successful design and operation of a vapor deposition reactor. In addition to these

equations, there are many references in the literature that explore other reactor parameters

and design considerations. A brief review of these sources will be presented here.

Dimensionless Parameters

Transport phenomena within a deposition reactor are affected by the flow regime,

reactor geometry, inlet nozzle characteristics, exhaust manifold design, reaction kinetics,

and species transport properties.. The complex nature of these interactions necessitate the

use of dimensionless design parameters to gauge the effects measured by experimental

data gathering, computer, or flow visualization models.

The dimensionless parameters are based, in theory, on scaling of the applicable

transport equations (Jensen, 1993; Bird et aI., 1960). Hitchman and Jensen (1993)

summarize the various dimensionless parameter groups. This table is reproduced as

Table 2-1. The relevant parameters includes the Knudsen (Kn) number, which is a

measure of the mean fre,e path relative to the reactor length and is also a function of the

reactor pressure. It is an indication of whether the reactor is operating in a high-pressure

regime termed as a "continuwn" or, a stat,e characterized by predominantly wall

collisions referred to as the "free molecular flow" regime (Jensen, 1993). Also, the

Peelet nwnber is a valuable tool to gauge the degree of mass and thermal convection

relative to diffusion.
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Table 2-1: Dimensionless Parameter Groups Characterizing Transport Phenomena in
CVD (Source: Hitchman and Jensen, 1993, pp 54-55)

Typical Order
fM

Physical
I to fi ·6Narne e IDJi·on n eroretation 0 amitude

Knudsen
K.n=AJL

Mean free path <10-2

Characteristic length
Prandtl

Pr = J1la. Momentum diffusivity
0.7

Thermal diffusivity
Schmidt

Sc = /lJ'Dm Momentum diffusivity
1 -10

Mass diffusivity
Reynolds

Re = <u>LI!-!
Momentum flux by convection 10-1 _ 102

Momentum flux by diffusion
Peclet (thermal)

Peh = Re Pr
Thermal flux by convection 10-] - 102

Thennal flux by diffusion
Peelet (mass)

Pern =Re Sc
Mass flux by convection 10-1 _ 103
Mass flux by diffusion

Grashof(thermal) Grt = g~L3~T Buoyancy force
1 - lOSv'- Viscous force

Grashof (solutal) Grs = gpL3~c Buoyancy force
1 - 102

v'- Viscous force
Rayleigh (thermal)

Rat = Grt Pr
Buoyancy force 1 - lOs
Viscous force

Rayleigh (solutal)
Ras = GrsSc

Buoyancy force
1 - 102

Viscous force

Damkohler Dag=R(C,n~ Characteristic time for flow
10-3 - 103

(gas phase) Cref<u> Char. time for gas phase rxn.

Das = R(C,DrefL
Char. time for diffusion to

Damkohler surface 10-3 - 103
CfefDm(surface) Char. time for surface rxns.

Predicting the presence of flow conditions conducive to the production of

convective "rolls" is also necessary. This is the phenomena that results in the formation

of product "wormholes" in the current E-P system that were mentioned briefly in the

Introduction. This topic will be discussed in greater detail in the main body of this thesis.

This phenomenon can be described in terms of characteristic Rayleigh eRa) and Reynolds
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(Re) number relationships (Jens.en, 1993). Secondary flow patterns, in the form of rolls,

are indicated at flow between infirrite plates in excess of critical Ra values of 1708

(Jensen, 1993; Jackson and Winters, 1984).

Other Design Calculations

There are many other references available that describe calculations relevant to

deposition reactor design. Proper design of inlet nozzles is critical in achieving the

desired mixing pattern for the reaction interface. The basic design calculations for

nozzles are well presented by Tung (1925) and Abramovich (1963). Zambov et. 311.

(1998) relates inlet nozzle diameter to Reynolds numbers required to prevent product

formation on the inlets. The fundamental design equations for plug flow and other

reactors are available in the texts by Levenspiel (1972, J996) and others.

Examples of Reactor Design Methods

Sadakata and Harano (1996) describe a systematic procedure for the design of an

industrial scale aerosol reactor based on characteristic mixing times established by

desired product characteristics.

KI,eijn et a1. (1996) contends that tbe scale-up of a stagnation flow reactor be

performed at a constant Peelet number, i.e. - the reactor should be scaled by increasing

the gas flow proportionally to the square of the diameter of the reactor. Habuka et a1.

(1995) provides an examination of the pancake reactor flow patterns by flow

visualization techniques. Zambovet 311. (1998) describes the design of a LPCVD reactor

using horizontal injection. A two-dimensional model was used to optimize the design
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and operating parameters with the goal of constant reactant concentrations. Weerts et al.

(1997) describe the design of an industrial-scale LPCVD reactor via a one-dimensional,

two zone reactor model with equations that neglect the effects ofmixing.

Examples ofCommercial Reactors and Processes

While there is little information in the literature describing reactors that are

similar to the current system at E-P, there are many examples of other high temperature

reactors for the production of other metallic and semiconductor compounds that can be

used to provide a conceptual framework.

ffiavacek and Puszynsli (1996) discuss the design concepts for the production of

advanced ceramic materials. Their report describes plasma, flame combustion, Los

Alamos, and laser reactors for the production of SiC. Many of the reactors are vertically

oriented and though not directly applicable to most semiconductor systems; offer some

interesting ideas such as a continuous system that employs a "sweep" gas stream to aid in

the migration of product material. Gupta et al. (1996) report a schematic for a concept

for a counter-flow jet reactor where the reaction occurs at a cross-flow region of the two

streams. Konig (1995) has patented the process of a vertical gas phase reactor that forces

the condensation of a fmely divided powder product directly from the gas phase without

wall reactions.

Other novel features of reactors have been patented. Gebben and Bruce (1995)

have developed a system to monitor minute pressure fluctuations within a high

temperature reactor to aid in the control of the system. Detering et al. (1998) developed a

reactor that quickly quenches the product through use of a convergent-divergent nozzle.
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Examples of other patents for novel high temperature reactors exist for the continuous

production of silicon nitride (Bachelard et aI., 1997), aluminum nitride (Pratsinis et aI.,

1996) and nanoparticle synthesis (Johnson et a1., 1997).

Reactor Models and Simulations

Computational models and/or computer simulations can facilitate successful

vapor deposition reactor design. The interaction of the operating parameters with both

the mass transport characteristics and the reaction kinetics presents a challenging problem

to contend with when designing an optimal reactor. Mathematical models can iteratively

solve the differential equations for transport alid energy balances, either as stand-alone

computations or interfaced with a graphical computer simulation. A solution of the

aggregate equations over a set of shell or grid points for the total volume of the reactor is

referred to as a fmite-element analysis.

Elements of a Reactor Model

Figure 2-3 illustrates the many considerations that must be incorporated into a

CVD reactor model.
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Figure 2-2: Elements ofa CVD Reactor Model (Source: Jensen, 1993, p71)

Examples ofNumerical Models

Krishnan and Zhou (1995) present a succinct overview of the modeling equations

for a deposition process and discuss the methods of reducing the complex kinetics of

silicon and tungsten chemistry to a simple Arrhenius format. Moffat and Jensen (1986)

report an approach to modeling the complex patterns such as the convective 'rolls'

discussed earlier. They summarize the modeling equations and their solution via the

Galerkin finite element analysis method. The numerical solution to the 3D model
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accurately predicted the velocity and temperature profiles as compared with experimental

observations of the secondary flow patterns that are driven by buoyancy ·effects. Further,

they note that the buoyancy driven roll formation decreases with decreasing aspect ratio

of the reactor and is increased with the use of Ar or N2 carrier gases as compared with

either H2 or He.

Computational Fluid Dynamic (CFD) Models

Computer simulations that employ finite element analysis of the governing model

equations have the added benefit of time savings and graphical depiction of the equation

outputs in terms of temperature profiles, velocity vector profIles, concentration of

individual species profiles, and dimensionless parametric variables. The commercial

packages that have been applied to vapor deposition reactors are FLUENpM, FIDAPTM,

and PHOENICSTM CFO software. Few examples of the PHOENICSTM and FIDApTM

systems appear in the literature as compared to FLUENTI'M, which was used in the course

ofthe reactor modeling efforts presented here.

Ranade (1997) offers a good overview of the advantages and disadvantages of

CFD models applied to reactors and includes the basic steps involved in the development

and validation of the model. The primary impetus behind the use of CFD models for

reactors is the ease with which complex transport equations, including turbuJent flow, can

be solved for mass transfer limited reaction processes.

Hamby et al. (1995) report a FLUENTTM computational model and a reduced

control oriented model with an estimation of uncertainty. The authors list the

simplifying assumptions made in the development of the control model. The control
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model simplifies the partial differential equations to be solved via theasswnptions of

spatial uniformity, isothermal operation, and reduced kinetics expressions for silane

(SilLt) deposition.

Gobbert et 311. (] 997) describe a LPCVD FIDApTM simulator that contains three

levels of detail; a large "reactor scale" level, a finer "feature" scale model, followed by a

"mesoscopic" scale. The third level of detail allowed the authors to couple mesh scales

across a range of sizes to resolve the appropriate detail dependent upon the reactor

configuration. Also noteworthy, the authors simplified the diffusion components of the

mass transport equations by use of the "multi-component dilute approximation."

Angermeier et 311. (1997) present a fu]l 3-dimensional FLUENTI'M model for

epitaxial growth with 80,000 cubic finite elements. Their model represents a rigorous

solution, but also includes a step whereby the authors transform the set of non-linear

conservation equations to a global set of algebraic equations. Their model also relied

upon simplified kinetics of Si growth. They note the effects of buoyancy on convective

currents and the relationship that the sidewalls impart relative to the reactor aspect ratio.

There are references to CFD models for other systems such as plasma-enhanced

CVD (PECVD) that illustrate the ability of the software to handle even complicated

reaction schemes if the kinetics are available or can be empirically estimated (Collins et

aI., 1994).
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Optimization of the Reactor and Process Design

Design ofExperiments (DOE)

The FLUENTrM model developed by Collins et a1. (1994) incorporated the extra

step of optimization of the chemical kinetics by tuning the appropriate parameters

through the use of experimental design analysis. The techniques collectively referred to

as design of experiments (DOE) are commonly relied upon as a process quality control,

system and device design, and process optimization tool in the manufacturing industries.

The tools are less frequentIyemployed as a means of optimizing computer models,

simulators, or computer aided design (CAD) applications.

The methods of Statistical Process Control (SPC) and Design of Experiments

(DOE) as pioneered by_Deming (1950) and Taguchi (1987) are well studied and applied

in the literature. The statistical based methods are presented by Mori (1990) as a set of

methods that, "combines engineering and statistical methods to achieve improvements in

cost and quality by optimizing product design and manufacturing processes." Morl

(1990) differentiates between the research objectives of analysis and design by stating

that the purpose of design is to fmd the optimum solution of an engineering objective,

whereas analysis is concerned with the creation of a model to "express" the system.

Since the intent of this research is to effectively combine these two functions via DOE

methodology; a brief foray into the literature that provides a basis in these methods will

be presented..

Mori (1990) illustrates the four main approaches to determining the optimum

solution (or condition) to a design or process problem:
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Table 2-2: Comparison ofFour Experimental Approaches (Source: Mori, 1990, p23)

Rli
No. of

C t t fM th d EfM th dN

*The number of expenments needed to determme the optunwn condition for four
factors with three levels (e.g.81).

ameo e 0 on en 0 e 0 xpenments e abilit
1 Multi-factor layout Every combination of Many High

Levels tested (81)

2 One-factor-at-a-time Effect ofeach factor Several Low
I

experiment (precision Test) confirmed (one-at-a- (12)
time) by fixing levels of

other factors

3 Target method Only 2 or 3 possible Few Lowest
"best" combinations of (2-3)

levels (2 or 3) tested
4 Experimental design Experiment using Several Highest

method Orthogonal arrays (9)

. . .

As shown from the table; a statistical analysis where the experiments are planned

via orthogonal arrays (matrices) yields the highest reliability of the conclusions that can

be derived from the data. The fundamental advantage of the experimental design

approach is the high reliability that is obtained without performing the full array of

experiments. Interestingly, Mon (1990) states that often. "engineers use the one-factor-

at-a-time method because they know of no other method for optimum condition

determination for many variables with many levels."

The mechanics of planning and designing an experimental matrix are well

presented by Taguchi (1992. 1993), Mori (1990), Moen et aI., (1991), and Barker (1990).
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Analysis of Variance (ANOVA)

The optimum condition can be ascertained from an analysis of a plot of the effects

that are attributable to each factor studied. As a further degree of confidence in the

interpreted results; an analysis of variance (ANOVA) can be conducted. Mori (1990)

defines the method as one that, "is a mathematical method that quantifies and verifies the

relationship between factors and characteristic values that engineers judge intuitively."

Although he states that optimization can be perfonned without ANOVA analysis, it is

required to perfonn signal-to-noise determinations and applying tolerance design.

Further, tbe method allows the designer to specifically quantify the effect of any given

factor within a group of factors studied.

Response Surface Methodology (RSM)

The formal development of response surface methodology (RSM) was initiated

within the chemical industry in England by Box and Wilson who sought to relate several

input variables that were believed to have an influence on a process yield (Khuri and

Cornell, 1996). The authors describe RSM as a method of developing a mathematical

model from experimental data that will allow the researcher to establish the optimum

levels of the factors explored in the study. This technique is an extension of traditional

DOE methods in that the factors are reduced to a set of fimctions that can be used to

establish the appropriate lev,els even if the experimental ranges are not sufficient. The

functions then serve the role of providing a greater understanding of the system outside

the bounds of the experiments.
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Khuri and Cornell (1996) establish the validity of the assumption that a ftmction

describing the effe·ct imparted to a response variable is continuous when measured with a

given nwnher of levels. The response is reduced to a polynomial or Taylor expansion

function that fonus a surface plot called a "hypersurface" which can be used as a

predictive tool. This method will allow for subsequent prediction of system performance

extrapolated from the available experimental data.

Examples of DOEIRSM Applied to Process Models and Simulators

Boning and Mozumder (1993) report the coupling of DOE and RSM to process

and device simulator tuning and process parameter detennination. Their system, that

mcorporates DOE, RSM, and optimization models, can be applied to a variety of

manufacturing and design processes. For example, their system can work from a TCAD

(Technology CAD) framework and graphically interface with existing simulation tools

for wafer fabrication processes.

Similarly, Gaston (1995) presents the integration of DOE for sensitivity analysis

to a full 2D TCAD industrial CMOS process problem. Wang et al. (1995) employed a

DOE study and RSM functions to optimize the design of a opto-electronic integrated

circuit (OEIC) that requires PECVD from the use of both physical experimental data and

process simulators.

A three level DOE was used to reveal non-linear response effects in the course of

optimizing the operating parameters of inlet nozzles for a vertical polysilicon LPCVD

reactor by Balasubramanian et a1. (1996). Polynomial equations were then developed to

prepare response surface curves to predict wafer uniformity.
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Process Prediction and Optimization by Artificial Neural Networks (ANN)

Wang and Mahajan (i995) present the adaptation of DOE and RSM methods to

the development ofan artificial neural network (ANN) for the modeling and optimization

of a CVD barrel reactor for siHcon epitaxial growth. . The authors establish that RSM

optimizations are limited in effectiveness when applied to processes that are affected by

many nonlinear variables. This fact is evident in the shortcomings of low-order

polynomials that are fit. to more complex surfaces. The authors' report that DOE data are

used to train an ANN by a "back propagation proced.ureH and is subsequently tested by

another set of DOE data. They present a case example of the predictive perfonnance of

an 18th order polynomial as compared to that of an ANN model. Also, Mahajan and

Walker (1996) report the on-line prediction of a CVD reactor by a DOE trained ANN that

is interfaced with a PC for the control of inlet nozzle f1owmeters. A similar feedback

controller for PECVD of silicon nitride was developed by Mozumder et a1. (1994) that

determines a change of state in the process by comparison with a DOE tuned model. The

system is then capable of adapting both the process parameters and the model.
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CHAPTERffi

RESEARCH AND OPTIMIZATION OF THE PRESENT SYSTEM

Introducticm

As mentioned in the Introduction, the reactor at Eagle-Picher has been in use for

approximately fifty years and requires a high degree of experience to successfully

compl,ete a production run. The fact that the system is subject to the experience of the

operator indicates that the process is essentially uncontrolled, with relatively few of the

variables monitored, controlled, or even apparent. Therefore, research was conducted on

the system to gain information to aid in the design of a new reactor. The intent was to

provide E-P with short-tenn improvements in production efficiency through optimization.

The work presented in this chapter was conducted during the summer of 1997 and

was limited by both time and resources. Given the limited time to run actual

experiments, a statistical Design of Experiments (DOE) approach was relied upon. The

DOE approach permitted the maximum gain of information with th.e fewest runs and the

least resources. While not comprehensive; valuable knowledge was gained for the

formulation of a new reactor concept. Additionally, the analyzed data were forwarded to

E-P and resulted in the improvement of the system that was to remain in use until the new

reactor couId be phased into operation.

This chapter win cover the sd-up and analysis of the experimental matrix in

detail. Computer DOE experiments reviewed in Chapter V will assume the basis in DOE
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as described here and hence, will refer the reader to an appendix for the specifics related

to the those experiments.

Experimental Study

Basis for the Study

In close collaboration with E-P, initial investigations into the chemistry and the

physical operation of the current system yidded insight into the important perfonnance

parameters. Reynolds number calculations indicate the system to be operating in the

laminar flow regime.

Dimensionless Parameter Analysis

The Reynolds number for the reactor tube is given by:

NRe= pDV / J.! (3-1)

As a first approximation, the flow velocity (V) is assumed to be pure argon at 10000 C.

For a gas viscosity (J.!) of 0.066 cP, density (p) of 0.378 kg/m3
, and reactor diameter (D)

= 90 rom, the Reynolds number is found to be less than 1.0 (Rhodes, 1997). When the

actual flow components are included in tbe stream density, the Reynolds number remains

in the range of about 20-25 (Morrison, 1998).

Also, the mass Peelet (Pern) number relates the ratio of convective to diffusive

transport and is given by Pern = Re x Sc where the Schmidt (Sc) number is given by

Jensen (1993) to be the ratio of kinematic viscosity to diffusivity. The Pern for our system

is < 1.0; indicting highly diffusion controlled conditions. Both dimensionless numbers
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appear to be essentially constant regardless of velocity, further affmning the relative

importance of diffusive transport in the reactor.

The performance of the present reactor is severely limited by the fast reaction

kinetics in conjunction with the laminar flow. Observations, as well as historical analysis

of the reactor performance, substantiate these assertions. The product yield is erratic, and

often low, with the bulk of product contained within tube-like structures referred to as

'wormholes.' This situation is indicative of poor mass flow of reactants interacting with

heat transfer gradients and results in the formation of the wormholes. The structures are

more properly referred to as "convective rolls" as described by Jensen (1993).

It is apparent that the process requires a bit of ''wizardry'' to produce a desirable

product output. Thus, the graduate students (T. Morrison, Z. Nikolic, and myself)

proceeded to document the process in terms of output variability. Historically,

documentation of the process ill terms of output, observations, perfonnance

characteristics, and evolution of knowledge as to operating conditions was minimal. The

students gathered data related to the system operation including: temperature ramp

profiles for the furnace and reactant boilers, run time, stoichiometry, yield, carrier gas

flow rates, and the heat distribution and temperature control features. As an example,

thennocouple measurements were compiled following calibration of new thermocouples

for both the reactor furnace and boilers. Additionally, a heat distribution study was

conducted of the reactor tube in real time with process runs. This necessitated the design

and fabrication of an apparatus for the measurements, which was interfaced with a PC for

online data acquisition. A more complete analysis of that data will be available in the

thesis of Z. Nikolic (in progress). Historically, temperature measurement and control
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wer,e limited to analog readouts logged by hand. Additionally, a high degree of process

variability was apparently related to operator judgment and experience.

The product quality can be described in tenns of non-subjective analysis such as

purity, crystal structure, stoichiometric ratios, and particle size as well as more subjective

criteria that include color and consistency. The historical reactor data lacked definition in

terms of these product characteristics. The students' activities were consequently aimed

at quantifying the product characteristics and investigating the impact of the reactor

operating conditions. In close conjunction with E-P analytical staff, approximately 20

products of student produced material were analyzed via Scanning Electron Microscopy

(SEM-EDS) and X-Ray Diffraction (XRD) for purity, crystal structure, and particle

sizing. This thorough design approach, while certainly more exhaustive as compared to

simply designing on the basis of target yield, should further E-P's ability to effectively

compete in the increasingly demanding microelectronics industry.

A statistical-based experimental design study was conducted in an attempt to

optimize the current process and provide data for the scale-up. While design and analysis

of the study was delegated as my primary responsibility; proper credit must be extended

to T. Morrison and Z. Nikolic, as well as R. Divis and T. Potts of the E-P staff, for the

successful completion of the experiments.

The study's intent was to discern and evaluate the main parameters affecting the

synthesis of ZnSe. Seven process factors and their interactions were mathematically

analyz,ed for effects on the response variables. The goal was to perform the first phase of

process optimization as well as Wlveil the critical parameters that must be considered in

the new design. The experiments were conducted in conjunction with the temperature
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measurements and analytical efforts mentioned above. A summary of the study is

presented in outline format in the following section.

Outline ofZnSe Experimental Study

I. Objective: Conduct a factor screening study with the intent of discerning and

evaluating the main parameters affecting the PVT synthesis of ZnSe. The effects,

relative effects, and interactions of seven parameters on the product quality and yield

were studied.

II. Background Information: There is a lengthy history ofthe process although the

variation in yields and number of aborted runs indicates only a low to moderate

knowl,edge of the actual process parameters.

III. Experimental Variables:

A. Response Variables: Evaluation Technique:

1. Yield

2. Product Quality

B. Factors Under Study:

Calculated based on Zn

Appearance, XRD, SEM-EDAX

- Level + Level

(Current Level)

l. (AF) Argon Flow (ml/min, Se/Zn) 225/219

2711262

2. (BR) Boiling Rates (BP + deg C, Se/Zn) 33/43

35/46

3. (FT) Furnace SS Temp (deg C) 975

1000
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4. (Rn Reactor Tube Dimensions Tube A TubeB
(See Table 3-1)

5. (BRT) Boiler Ramp Time (hrs, Se/Zn) 2:00/2:03 1:00/1:03

1:45/1:48

6. (XS) Amount ofXS Se (moles) 1.00 2.00

1.21

7. (CD) Cooldown Time Slow Fast

c. Background Variables:

l. Reactant Loading

2. Fore/Aft Tube Positioning

3. Reactor Tube Centering

4. Welding/Sealing

5. Starting Material Quality

6. Condensation Temp.

7. Furnace Temp. Ramp Rate

8. Extent ofReaction

9. Relative Boiling Rates

to. Insulation

1I. Back Pressure

Method of Control:

Maintain 500g Zn loadings in all runs.

Measure and maintain consistency.

Use thermocouple collars to center tube.

Pressure checks

Use same supplier and specs for each run.

Maintain constant with chiller.

Use set profile.

Boil off reactants each run.

Keep Se rate higher.

Be consistent.

Monitor and minimize each run.

IV. Replication: None.

V. Run Order: Randomized.

VI. Design Matrix: 2 7-4 fractional factorial (See Table 3-2)

Vll. Data Collection: Lab notebook form, plots, analytical reports, etc.
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VIII. Statistical Analysis: Statistical analysis of effects, paired comparison plots, results

cube, 3D plots,etc.

IX. Resource Considerations:

A. Time to Complete - Approx. 3 weeks + time for data analysis and any follow-up

runs, ifnecessary.

B. Schedule - Tentatively, 717/97 - 7/28/97 or 7/14/97 - 8/l/97.

C. Costs- (8 runs x Cost per run) - Value of good product.obtained = Costs of

experiments.

Table 3-1: Reactor Tube Dimensions

TUBE A TUBEB
Total Tube Length (in) 45.75 45.0

Length ofReaction Section (in) 40.0 39.5
Main Tube Diameter (O.D.) (in) 3.75 3.75

Zn Inlet Outside Length (cm) 5.0 3.0
Zn Inlet Diameter (O.D.) (cm) 2.0 2.3

Zn Inlet Inside Length (em) 18.0 16.0
Se Inlet Outside Length (cm)

8.5 7.0
(end of faceplate to center ofdown tube)

Se Downtube Section Length (cm) 3.0 2.0

Rationale for Establishment ofFactor Levels

As described by Moen et 311. (1991), the most important consideration when

designing an experimental study is the establishment of the levels for the factors under

study. If varied improperly, the analyzed data may reflect inaccuracies and lead the

researcher to erroneous conclusions. As an example, if the flow rate levels are chosen
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too narrowly; they may appear to have less relative effect on a given process parameter

than may actually be the case. For this reason, great care was placed on reasonable level

establishment. The following outline summarizes the reasoning for each experimental

variable that was arrived at after consultation with the other graduate students as well as

E-P personnel.

1. Argon Flow-(AF): Levels set at -+/- 15% variation of currently used flows

while keeping Se argon flow = Zn to prevent plugging.

2. Boiling Rates (DR): Boiler controllers currently set to hold at: Se = 721°C

(or BP + 36°C) and Zn = 953°C (or BP + 46°C). Experimental levels are +/-

3°C of these levels. Historical knowledge indi.cates a significant rate

difference with as little as a 3 degree change.

3. Furnace Temp (FT): Steady-State furnace temperatures now set 81t lOOO°C,

lOOO°C, and 92SoC (front, center, rear, respectively). Experimental values are

for the front and center zones only. History indicates that the rear zone temp

needs to be set at 925°C to prevent deposition of Zn on the condenser joint.

4. Reactor TRbe (RT): There is a relationship between wormhole formation,

yield, and reactor tube centering. The new thermocouple collars should give

an indication of the delta T across a centered tube, as well. The runs will

involve the use of two different reactor tubes (A & B) with the intent of

measuring the effects of the dimensions of the tube on product yield and

quality.
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5. Boiler Ramp Time (BRT): Current time to bring boilers to BP are: Se = ] hr

45 min and Zn = 1 hr 48 min. (Faster Se assures flow of Se prior to flow of

Zn to prevent plugging.)

6. Amount of XS Se (XS): Richness of Se in the product is desired and current

XS loading is 1.21 moles Se.

7. Cooldown (CD): The time to cool the reactor after a rWl has been questioned

as a possible source of contamination. Currently, the reactor cools overnight

with one fan directed towards the front of the reactor. Experimental plans are

to vary the time to cool via the addition of extra fans to channel cool air

directly aroWld the reactor.

Experimental Design Matrix

Table 3-2 is a layout of the design matrix used in the experimental study. Note

that the column headings are the factor numbers corresponding to the above list. The two

digit numbers below the factor number in each column correspond to two-factor

interactions where again, each digit signifies the individual factor as given in the above

list. The factor and interaction number codes are explained in Tables 3-3 a,b. The plus

and minus signs indicate the level setting of the factors as summarized in Tables 3-4 and

3-5.
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Table 3-2: Experimental Design Matrix (Source: Moen et al., 1991)

Factors and Interactions

1 2 3 4 5 6 7

24 14 15 12 13 23 34

35 36 26 56 46 45 25

Test 67 57 47 37 27 17 16

1 - - - + + + -

2 + - - - - + +
I

3 - + - - + - +

4 + + - + - - -

5 - - + + - - +

6 + - + - + - -
7 - + + - - + -

8 + + + + + + +
Note: All divisor effects = 4

The above design is a 27
-
4 matrix where 2 is the number of levels of each factor to

be studied and the 7- 4 = 3 exponent is the portion of the full matrix that is to be run. A

full factorial study with 2 levels and 7 factors would require 27 or 256 runs. Thus, a 2
7
-
4

fractional factorial study requires only 23 or 8 runs (Mori, 1990). The matrix is one-

sixteenth of a 27 full-factorial matrix. The nature of fractional factorial statistical design

is that the completeness of the data, versus full factorial designs, is compromised in the

interest of expediency. This trade-off is advantageous when analyzing processes that are
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inherently costly to experiment upon, such as the process that concerns this research.

Resolution of data is recovered, to a degree, by statistical manipulation and experience

and judgment. The primary advantage of the design is that substantially greater volume

of information is gained with a modest expenditure of time and resources.

This particular matrix is commonly used when there is low to moderate process

knowledge and the researcher wishes to screen the maximum number of factors with the

fewest possible runs. Given our level of knowledge as to the process variables and the

time constraints, this appeared to be a prudent choice. Also characteristic of this design,

there are numerous two-factor interactions that must be evaluated. Recall that theses are

given in Table 3-2 as two digit combinations. These interactions must be resolved since

the analysis will result in a single weighted value of the importance ofeach colunm ofthe

matrix. The value may represent the single factor's importance or one of the two factor

interactions that appears below it. These interactions are important and represent the

most powerful departure from single variable analytic experimentation. They are

resolved by experience and judgment combined with appropriate follow-up experiments

which will be reviewed in subsequent sections of this chapter.
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Table 3-3 a,b: Factors and Interactions Key

NUMBERS

1 2 3 4 5 6 7
24 14 15 12 13 23 34
35 36 26 56 46 45 25
67 57 47 37 27 17 16

SYMBOLS

BR/RT AFfRT AFIBRT AF/BR AFIFT BRIFT FTIRT
FTIBRT FTIXS BRlXS BRTIXS RTIXS RT/BRT BRlBRT
XS/CD BRT/CD RT/CD FT/CD BRJCD AF/CD AFIXS

AF BR FT RT BRT XS CD

I
I I

i I
I ,

, I

" I

Experimental Design Grid

Table 3-4: 27
-
4 Matrix Design Grid

RUN 1 RUN 2 RUN 3 RUN 4

AF=- = 225/219 AF=+ = 305/305 AF= - = 225/219 AF=+ = 305/305

BR=- = 718/950 BR= - = 718/950 BR= += 724/956 BR=+ = 724/956

FT= - = 975 FT= - - 975 FT= - = 975 Ff= - = 975

RT=+ = tube B RT= - = tube A RT= - = tube A RT=+ = tube B

BRT=+= fast BRT=-= slow BRT=+= fast BRT=-= slow

XS=+ = 2.00 XS= + = 2.00 XS= - = 1.00 XS= - = 1.00

CD= - = slow CD=+ = fast CD=+ = fast CD= - = slow

RUN 5 RUN 6 RUN 7 RUN 8

AF=- = 225/219 AF=+ = 305/305 AF= - = 225/219 AF= + = 305/305

BR=- = 718/950 BR=- = 718/950 BR=+ = 724/956 BR=+ = 724/956

FT= + = 1075 FT= + = 1075 FT= + = 1075 FT= + = 1075

RT=+ = tubeB RT= - = tube A RT= - = tube A RT=+ = tubeB

BRT= - = slow BRT=+ = fast BRT= - = slow BRT=+ = fast

xs=- = 1.00 xs= - = 1.00 XS= + = 2.00 XS= + = 2.00

CD=+ = fast CD= - = slow CD=- = slow CD=+ = fast

Note: Umts giVen ill Table 3-5
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Table 3-5: Summary of Factor Levels

(+) IDGH LEVELUNITS(-) LOW LEVELFACTORS
LAP Argon Flow 225/219 ml/min Se 1mlfmin Zn 305/305

(12/11) (meter settings) (16115)
,2.BR Boiling Rates deg C Se 1deg C Zn

718/950
(final set points) 724/956

3.FT Furnace Temp (front and
center)

975 °C 1075

4.RT Reactor Tube
Tube A Tube Dimensions TubeB

5. BRT - Boiler Ramp Time
2:00/ 2:03 (s.ow) hrs:min Se 1 hrs:min Zn 1:00/ i :03 (fast)

6. XS - Amount ofXS Selenium 1.00 XS moles Se 2.00
(683.0) (total g ofSe) (762.0)

7. CD - CooldoWD Time (Rate)
One Fans (slow) Rate ofCooling Three Fans (fast)

.
I

I"
ill'

Tables 3-4 and 3-5 were constructed to summarize the set of run conditions for

each experiment and facilitate the run's set-up.

Experimental Design Results

The first stage of the process analysis was to observe and quantify the effects of

varying the factors on each response variable. The response variables analyzed include

both subjective and non-subjective data. The non-subjective responses include product

yield, SEM, EDS, and XRD patterns analyzed qualitatively for impurities.

The results were tabulated and analyzed statistically from the matrix operations

discussed below.
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Method of Tabulating Results:

The results for each run were summarized following the cool-down and system

breakdown using the foUowing criteria as given by Table 3-6:

Table 3-6: Results Criteria and Tabulation Method

Yield (%):
Wt. of Condensate I Mass %:
Wt. ofUnreacted Material in Condenser (g):

In Boilers:
In Condenser:

Blowthrough ofProduct ?:
Quantity (g):

Distribution of Products (aoPfox %):
Front:
Center
Rear:

Wonnhole Present ?:
Location:

Length (em):
Color of Product:
Product Consistency:

The percent yield was calculated on a zinc molar basis:

,
"

,-
ii

- I

[
ActualZnSeMass(g) ]XIOO%

TheoreticalZnSeMass

Where the theoretical ZnSe mass yield is computed as:
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Statistical Analysis ofRun Data

Data from the eight runs were incorporated into the matrix in the following

manner. First, each factor (e.g. - argon flow) for each run is assigned the sign (- or +)

from the experimental design matrix grid and is inserted into the analysis table. The

magnitude of the response variable (e.g. - % product yield) is then inserted into the table

and multiplied by the appropriate sign. The data are then multiplied as follows:

r.
I
I'I

LRuns at Low Factor Level
AvgLow =='----------­

Divisor Effect
(3-4)

Where the characteristic divisor effect for the eight run 27
-4 matrix is 4 (Moen et aI.,

1991). Similarly, the average for the high level for each factor is analyzed for each

response variable of interest. The delta (L\) represents the magnitude of the response

variable that can be attributed to the particular factor:
, I

,.I

L\ =IAvg Low - Avg High I (3- 5)
1"1
1,'/1

The weight (ro) is a nonnalized value assigned to each factor that represents its relative

magnitude of the delta as compared to the factor having the highest delta value for that

response variable:

L\i
(j) =--

I! maxi

(3-6)

A weighted factor effect of 0,45 - 0.50 or greater is considered significant. The ranking

is a listing of the relative importance of the factors from 1, the most important, to 8, the

least important.

The response variables are outlined and classified in the following Tables 3-7a

and 3-7b (Morrison, 1998).
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Table 3-7 a, b: Response Variables and Classifications for the Experimental Runs

VI
VI

Run Yield Wormhole Product Product Condensate Distribution Sectional Distribution Wormhole
Length Consistency Color Yield

Front Center Back Zone
Zone Zone

1.5
-

1 51.1 0.80 3 42.2 I 3 I 2 70.0

2 41.4 0.67 1.5 8 44.4 2 I 3 2 80.0

3 45.5 0.67 4 4 53.9 3 I 2 3 45.0

4 67.7 0.75 3.5 2 23.5 2 2 3 1 55.0

5 61.8 0.67 2 7 44.0 2 2 3 1 75.0

6 58.0 0.67 2.5 6 42.4 2 2 3 I 75.0

7 35.1 0.33 3 1 48.1 I 3 1 1 90.0

8 26.8 1.00 2 5 48.1 3 2 1 3 40.0

midpoint 44.9 0.67 1 9 58.1
-

Response Variable Classifications.
Yield Yield is percent yield calculated on a molar basis with zinc as the limiting reagent.

Wormhole Length The fraction of total tube length (not including the rear connector section) is displayed.

Color The powders were assigned a number 1-9 with 9 being the brightest.

Consistency The powders were assigned a number 1,2,3, or 4 corresponding to fluffy, fine, grainy, or coarse.

Condensate Condensate is percent yield of total mass of reactants.

Distribution 1 designates front zone with most product, 2 center, and 3 back.

Distribution; Front Zone 3 = greatest amount of product contained in this zone.

Distribution: Center Zone 2 =second greatest amount of product.

Distribution: Back Zone I ;; least amount of product contained in this zone.

Wormhole Position None (0) - Bottom (1) - Top (2) - Complex (3)

Wormhole Yield Yield is percent of total yield.



Analysis ofNon-Subjective Response Variables

The 'primary criterion that the experimental run analysis was based, is the product

yield. The non-subjective response variables were product yield, as well as the wonnhole

length as measured from the front to the rear ofthe reactor tube. The results are tabulated

in Table 3-8.

Table 3-8: Results for Yield Response Variable

FACTORS

RUN NO. 1 =AF 2=BR 3=FT 4=RT 5=BRT 6=XS 7=CD
1 -51.1 -51.1 -51.1 51.1 51.1 51.1 -51.1
2 41.4 -41.4 -41.4 -41.4 -41.4 41.4 41.4
3 -45.5 45.5 -45.5 -45.5 45.5 -45.5 45.5
4 67.7 67.7 -67.7 67.7 -67.7 -67.7 -67.7
5 -61.8 -61.8 61.8 61.8 -61.8 -61.8 61.8
6 58.0 -58.0 58.0 -58.0 58.0 -58.0 -58.0
7 -35.1 35.1 35.1 -35.1 -35.1 35.1 -35.1
8 26.8 26.8 26.8 26.~ 26.8 26.8 26.8

AVG" - " -48.38 -53.08 -51.43 -45.00 -51.50 -58.25 -52.98

AVG"+" 48.48 43.78 45.43 51.85 45.35 38.60 43.88

t1 0.10 9.30 6.00 6.85 6.15 19.65 9.10

CO 0.01 0.47 0.305 0.35 0.313 1.00 0.46

RANKING 7 2 6 4 5 1 3

Note that the inconsistent use of significant figures is due to the need to carry the weight

{o, to the one-hundredths decimal place.
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Factors 6 and 2 columns have the greatest impact on the yield. Note that the

cooldown time (CD) is the third factor weighted higher than 0.40, but is asswned to be

inconsequential in terms of yield. It was included in the study to explore the impact that

the factors have on product quality. It is, however, a relative gauge of background noise

with respect to yield.

Recall from the design matrix (See Table 3-2), that the factors must be resolved

from the interactions. For example, factor 2 is the boiling rate but must be resolved :from

the interactions of: 1-4 (AF-RT),. 3-6 (FT-XS), 5-7 (BRT-CD). As stated above, CD is of

no effect; thus the 5-7 interaction can be neglected. The remaining factors and

interactions are then: factor 2, interactions 1-4 and 3-6. Similarly, column 6 of the design

matrix was analyzed. These interactions are best resolved graphically by response plots

where a departure from parallel is an indication of significant interaction. These plots

with respect to yield and column 2 and 6 are shown in Figures 3-1 through 3-5.

Interactions for Yield
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Figure 3-1: RT/AF Interaction Check
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The plots indicate a slight interaction between the amount of excess selenium

(XS) and tbe rate at which the reactants, are vaporized (BR), which corresponds to the two

most important individual factors. The effect of these two parameters on the product

yield is illustrated in a 3-dimensionaJ surface plot as shown by the Figure 3-6. It is

apparent that a high amount ofexcess selenium is not required as previously believed.

60
"'tJ

55a
c.
c: 50
~

-< 45ii"
e:: 40.......
~0 35......-'

30

1.0

Figure 3-6: Interaction of Boiling Rate (BR) and XS Se
on the Product Yield

Similarly, the other important interaction is the choice of reactor tube and the

amount of time that is allowed for the boilers to ramp to their respective fmal setpoints.

Although less understood due to the vagaries of the different tubes, the RT effect on yield
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does emphasize the importance of the manufactming specifications. This effect is a

result of the added radial dimension of 2 cm to tube B, which allows for slightly more

residence time and radial mixing. It is also displayed as a 3D plot in Figure 3-7. All

other possible interactions were deemed negligible from similar examination of their 3

dimensional shapes.
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Reactcr Tube
(~ ::A, 2:: B)

Figure 3-7: Interaction ofReactor Tube (RT)
and Boiler Ramp Time (BRT) on

the Product Yield

60

tr!
1 •
• I

;j I
I

'J
I,



Table 3-9: Results for Wonnhole Length Response Variable

FACTORS

RUN NO. I-AF 2-BR 3-FT 4=RT 5=BR.T 6=XS 7=CD
1 -0.80 -0.80 -0..80 0.80 0.80 0.80 -0.80
2 0.67 -0.67 -0.67 -0.67 -0.67 0.67 0.67
3 -0.67 0.67 -0.67 -0.67 0.67 -0.67 0.67
4 0.75 0.75 -0.75 0.75 -0.75 -0.75 -0.75
5 -0.67 -0.67 0.67 0.67 -0.67 -0.67 0.67
6 0.67 -0.67 0.67 -0.67 0.67 -0.67 -0.67

7 -0.33 0.33 0.33 -0.33 -0.33 0.33 -0.33

8 1.00 1.00 1.00 1.00 1.00 1.00 1.00

AVG" _II -0.62 -0.70 -0.72 -0.59 -0.61 -0.69 -0.64

AVG"+" 0.77 0.69 0.67 0.81 0.79 0.70 0.75

f!1 0.16 0.02 0.06 0.22 0.18 om 0.12
I

ill 0.70 0.07 0.25 1.00 0.82 0.05 0.52

RANKING 3 6 5 1 2 7 4

KEY: FractIOn of total tube length is displayed.

As shown in Table 3-9, the important factors (or columns) are AF, RT, and BRT. The

possible interactions for wormhole length were examined similarly as for yield. The only

apparent significant interaction is AFIBR as illustrated in the next section.

Interactions for Wonnhole Length

Figure 3-8 indicates that high boiling rate, high carrier gas flows, and again, the

dimensions of the reactor tube exacerbate lengthening of the wormhole structure.
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Figure 3-8: Interactions Check for AFIBR on
Wormhole Length

Other Non-Subjective Response Variables

Attempts were made to analyze the system in terms of condensate quantity,

distribution of product within the tube., position of the wormhole within the reactor tube,

and the yield contained within the wormhole. These results were inconclusive due to the

inaccuracy of the data collection methods, e.g. - the mass of product deposited within

various zones was estimated visually as opposed to taking actual measurements.

Analysis of Subjlective Response Variables

As described in the Introduction, the process output has historically been

described by ambiguous tenninology. Typically, a run would be characterized as good

when the product was, "nice and bright," or "loose and fme," etc. It was necessary to

attach a degree of reproducibility and consistency to the product descriptions. The data

were analyzed for the effects of the factors on semi-standardized descriptors of the
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product appearance. The results and keys for the quantification of the response variables

are given in Tables 3-10 through 3-12.

Table 3-10: Subjective Response Variables Results and Key

Experiment No. Run No. Product Color* Product
Consistency**

5 1 3 1.5
9 2 8 1.5
8 3 4 4

7 4 2 3.5
4 5 7 2

3 6 6 2.5
6 7 I 3

2 8 5 2

10 midpoint 9 1
Key: '"

*'"
9=Bnghtest
Fuffy = 1, Fine = 2, Grainy = 3, Coarse = 4

Table 3-11 : Product Color Response Variable Results

FACTORS
RUN NO. 1 =AF 2=BR 3=FT 4=RT 5=BRT 6=XS 7=CD

1 -3 -3 -3 3 3 3 -3
2 'I 8 -8 -8 -8 -8 8 8

3 -4 4
1

-4 -4 4 -4 4

4 2 2 -2 , 2 -2 -2 -2
5 -7 -7 7 7 -7 -7 7
6 6 -6 6 -6 6 -6 -6

7 -1 1 1 -I -1 1 -1

8 5 5 5 5 5 5 5

AVG" - " -3.75 -6.00 -4.25 -4.75 -4.50 -4.75 -3.00

AVG"+" 5.25 3.00 4.75 4.25 4.50 4.25 6.00

DELTA 1.50 3.00 0.50 0.50 0.00 0.50 3.00

WEIGHT 0.50 1.00 0.17 0.17 0.00 0.17 1.00

RANKING 2 1 I 3 3 4 3 1,
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Table 3-12: Product Consistency Response Variable Results

FACTORS
RUNNO. 1 =AF 2=BR 3=fT 4=RT 5=BRT 6=XS 7=CD

1 -1.5 -l.5 -1.5 l.5 1.5 ],5 -1.5
2 1.5 -1.5 -1.5 -1.5 -1.5 1.5 1.5
3 -4.0 4.0 -4.0

,

-4.0 4.0 -4.0 4.0
4 3.5 3.5 -3.5 3.5 -3.5 -3.5 -3.5
5 -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0
6 2.5 -2.5 2.5 -2.5 2.5 -2.5 -2.5
7 -3.0 3.0 3.0 -3.0 -3.0 3.0 -3.0
8

I
2.0 2.0 2.0 2.0 2.0 2.0 2.0

AVG" _" -2.63 -1.88 -2.63 -2.75 -2.50 -3.00 -2.63

AVG"+" 2.38 3.13 2.38 2.25 2.50 2.00 2.38

DELTA 0.25 1.25 0.25 0.50 0.00 1.00 0.25

WEIGHT 0.20 1.00 0.20 0.40 0.00 0.80 0.20

RANKING 4 1 4 3 5 2 4

The product color is a sharper, brighter yellow if the system is given a longer (an

additional 6 hours or more) time to coo] down and lower boiling rates and AI flows. It

may be that rapid cooling entails removing the reactor tube containing the product while

it is still quite hot which exposes the product to the air at a higher temperature which

promot,es oxidation and thus dulling.

High amounts of excess selenium appear to decrease the coarseness of the fmal

product. Again, lower boiling rates are preferred with respect to the consistency, as welL

Experimental Design Follow-up Runs

Response VmabIe Linearity

The linearity of the factors effects on the response variables was evaluated

graphically following insertion of a midpoint data point. If a factor is not linear within
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the range tested; the effect could be erroneously reported. Figure 3-9 illustrates the

technique with respect to the effect of excess Se on the product yield.

31.5 2 2.5
XS Se (moles)

35 +--------,--------,r------.---~

1

Figure 3-9:
Linearity Check for XS Se Effects
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In addition to the midpoint run,. an attempt at confinning the preliminary

conclusions was made. The conditions for these two runs are listed in Table 3-13.

I

L

I
j
•

Table 3-13: Follow-up Run Conditions

FACTOR SYivlBOL MIDPOINT CONDITIONS CONFIRMAnON
(EXP 10 1RUN MP) (EXP 11 1RUN CC)

1 AF 245/262 mlImin (Se/Zn) 305 ml/min (both Se/Zn)

2 BR 721/953 (final setpoints: Se/Zn) 718/950

3 FT 1025 C 975 C

4 RT TubeB TubeB

5 BRT 1.5 hrs 2.0 hrs

6 XS 1.5 moles (723g total) 0.50 moles (644g total)

7 CD Semi-Fast (two fans) Fast (three fans)
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Experimental Design Conclusions and Discussion

Smnmary of Results

For the response variables studied, the design matrix reduces from a 27-4 to a 23 or

22 thus eliminating confounding effects and simplifying analysis of the data.

The dominant factor affecting yield is the quantity of excess selenium in the

reactor with a lower loading of XS Se preferred. We conjecture that the reactor has

typically been nUl while 'flooded' with Se. This condition produces a favorable

environment for the formation of wormholes. The wormholes reduce the yield by

limiting the quantity and efficiency of the Se/Zn contacting pattern. A preferred design

would allow the two reactants to flow together with turbulence thus limiting wormhole

formation and improving yields. All other factors had effects that were less than 50% of

the XS Se loading's effect on yield. It should be noted that the other factors exhibited

little or no effect on yield in the range studied - i.e. any given factor may not exhibit an

appreciable effect on a response at the levels that were studied.

The second most important factor that affects the yield is the boiling rate. A

lower BR is preferred and has a weight of 0.47 relative to the XS Se factor. Additionally,

these two factors for this response variable exhibit a slight interaction'with one another

(see 3D plot Fig. 3-5). Optimized conditions for highest yields should be: low XS Se (XS

= O.5moles), low boiling rate (BR = final boiling setpoints 718/950° C Se/Zn), high Ar

flow (AF = 600 total mllmin), low furnace temp (FT= 975°C), reactor tube B (Rn, and

slow boiler ramp times (BRT = 2.0 hrs).
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Following the-above analysis, it was decided to gauge the yield as a fimction of

the wonnhole length. There are three factors and one interaction that affect this response

variable. The dominant factor is the reactor tube that is used (see Tab~e 3-1 for the

dimensions of the two tubes) with tube A preferred. The reactor tube used results in a

20% difference in the length of the wormhole fonned. However, the preferred tube in

terms of yield is tube B that can a,ccount for a 7% greater yield. The second most

important factor witl:J. a weight of 0.82 relative to the reactor tube is the boiler ramp time

with slower BRT preferred. Of third highest importance is the flow of argon, with lower

preferred, and a weight relative to the reactor tube of 0.70. There is a slight interaction

between the flow of Ar and the boiling rate on the length of the wormhole as shown in

Figure 3-6. According to this analysis, the length of the wormhole can be minimized by

operation with low Ar flow and low boiling rate or; due to the interaction, at high Ar flow

and high boiling rates. This makes intuitive sense given that plugs are more likely to

develop due to the migration ofone reactant to the opposite inlet Wlder low flow and high

boiling rates. By similar reasoning, the converse should be equally likely.

The preferred settings for less wonnhole formation can be coordinated with those

for yield. There is a conflict, of sorts, with respect to the tube preferred by the two

response variables, however. It was decided to choose the appropriate reactor tube for

the confmnation run on the basis of the less subjective analysis ofthe yield.

As opposed to the examination of its length, an analysis of the quantity of

material that is contained within the wormhole would be preferable. This approach

should prove to be more reliable, but again it was difficult to objectively analyze the data

in these tenus after the fact. The analysis of ''wonnhole yield" is therefore not included
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in this report, as it does not lend itself to accurate analysis or definitive conclusions.

Likewise, it was attempted to break the data down in terms of wormhole position and the

distribution ofproduct, both by individual zone and general location of deposition within

the reactor. However, linking the yield! with location or distribution of products within

the reactor did not prove to be reliable.

The two remaining subjective response variables of product color and cons.istency

were analyzed as follows. Each of the runs were characterized on a comparative basis

relative to the other eight products.

Color is impacted only by the boiling rate with a lower rate producing a brighter

yellow product. Similarly, the product's consistency is affected by the boiling rate with

the lower rate giving a "fluffier" product, while a lower excess Se loading results in a

coarser product. Neither of these response variables is affected by a significant

interaction.

The midpoint run did not reveal a non-linearity of the important factors with

respect to yield. The more subjective response variable factors exhibited poor linearity

which gives a rough indication of the degree of subjectivity and, hence, the reliability of

the analysis..

Results of Initial Confirmation Run

It was essential that a confirmation run be completed in the time remaining to

validate the conclusions drawn from the data with respect to the yield. The conditions

were derived from a listing of the net effects of each factor taking into account the

relevant interactions. The levels for the confmnation run were chosen from ranges
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within the study's experimental values, with the exception of the loading ofSe. Perhaps

if low XS Se was advantageous; it assumed that the effect would be linear if the

experimental range were extended. Thus the run was made at an excess Se loading that

was one-half of the level previously attempted.

The confIrmation run completed· at the end of the summer 1997 resulted in a ZnSe

yield of only 35% with a large wormhole. Probable explanations for the confirmation

producing a yield less than expected are as follows:

1) The experimental runs contain one or more anomalies leading to incorrect factor

analysis. One example may be a run that plugged midway through the experiment.

The solution is to replicate one or more of the runs and check for repeatability.

2) A lack of repeatability could indicate a special cause ofvariation within a run.

3) A lack of repeatability could also indicate that there is a parameter that is not

identilled within the process. Any unknown factor would then have introduced

uncontrolled variation within one or more of the experimental runs thus skewing the

analysis of factors.

5) A strong interaction was overlooked in the analysis.

6) The excess selenium level was set at a level outside the linear range that was

previously studied.

Follow-up Analysis and Confinnation

The above data were further analyzed during the Fall of 1997 to detennine a cause

for the low yield of the confinnation run. The most likely (and simplest to test)
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hypothesis is that of number six listed above. An opportunity was available in the first

week ofJanuary 1998 to conduct an experiment on-site at E-P.

The conditions for the new run are identical to the confinnation run (EXP11) as

listed above in Table 3-13 with the exception of increasing the amount of excess

selenium (XS) to 1.0 mole (644g). This quantity brings the parameter within the linear

range previously tested.

Additionally, it was conjectured that the front-end heat loss through the Fiberfrax

insulation material was substantial. The first run conducted during the week entailed the

collection of additional temperature data via thermocouples placed at various locations at

the front-end of the inlet tubes. The temperature readings indicated temperature drops of

200°C from the boiler settings. It was also discovered that the time for the front-end

temperatures to reach steady state was approximately 15-30 minutes more than

anticipated. The subsequent conftrmation run, in addition to adjusting the XS level,

incorporated a two-stage ramp of the boiler temperatures prior to reaching boiling points

of the two reactants. Also, the front-end insulation was increased to prevent heat loss.

The second confirmation run resulted in a yield of 69.8% with an evenly

distributed bed of brightly colored product. The run represented perhaps the best result in

terms of yield and product distribution to date.

Based on this and the pr,evious summer's results, the following report was

submitted to Eagle-Picher outlining the recommendations for process improvement and

optimization of the current system. The initial feedback was positive with respect to

improvement and reproducibility ofprocess.
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Recommendations and Conclusions

I. Recommended Operating Parameters for ZnSe Synthesis:

A. Carrier Gas (Ar) Flow: 305 ml/rnin (both boilers)

B. Current Calibrated Flowmeter Settings: 15 Zn 116 Se

C. Furnace Temperature Settings: 975°C (front and center), 912°C (rear)

D. Tube Size: Small (Tube 'B' preferred)

E. Boiler Ramp Time: approx. 2.0 hrs (see also Section III)

F. Final Boiler Ramp Temperatures: 950°C (Zn), 718°C (Se)

G. Reactant Loading: 500.0 grams (Zn), 685.0 grams (Se)

ll. Heat Transfer Considerations

Run success and reproducibility can be greatly enhanced with attention to three

areas of operation within tlle present system that relate directly to the transfer of heat to

the reactor.

A. Front- End Temperature Control:

It is highly desirable that the temperature profile of the front (boiler) end of the

apparatus be aUowed to reach a steady-state prior to boiling of the reactants. Our

reconunendatiton is to monitor the temperatures of the boiler inlet tubes that transfer

reactants to the reactor. This is easily accomplished by the addition of two or three

thermocouples in this area.
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B. Front-End Heat Loss:

To aid in the minimization of reactant reflux in the bottom boiler, as well as

providing a measure of steady state temperature control, it is recommended that

additional insulating material be heavily layered around the front end. Preferably, a

modular two-zone heater that encompasses the exposed areas of the front of the apparatus

should be used.

C. Furnace Temperatures:

The analysis of the experimental data indicates a decreased tendency towards

''wormhole'' formation at the slightly lower furnace temperature setting of 975°C.

Secondary velocity profiles due to convective heat transfer are decreased when the

interaction ofthe temperature and carrier gas flow is considered.

ID. Mass Transfer Considerations

There are several areas in which the current system procedures can be slightly

modified to allow for greater control of both the rate of transfer of material into the

reactor and the reacting interface. Here, the goal is to improve the run yield by avoiding

the blowthrough of reactants and the formation of wormholes.

A. Carrier Gas Flow:

The semi-optimized flowrates for the ZnSe synthesis represent a 10 percent

increase in the current procedure. This raises the reactor tube inlet velocities to minimize

plugging. These conditions allow the system to increase reactant residence time slightly

and should result in higher yields.
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B. Boiler Ramp Procedure:

As stated above, it is advantageous to allow the system to arrive at a steady state

temperature before allowing the reactants to come to a boil. This is best achieved by

setting the programmable boiler controllers at temperatures that are 10 degrees below the

respective boiling points of the reactants (approx. 67SoC for Se and 897°C for Zn). The

second step of the ramp then includes the final set points. This method of assuring

constant temperature at the front end assists in the establishment of constant mass transfer

rates at the critical early stage of the run that is otherwise prone to plugging. This

procedure also prevents overshooting the final setpoints, which can disturb the balance of

the two mass transfer rates.

C. Final Boiler Setpoints:

The new final setpoints represent a three-degree decrease in the current settings.

This should result in a slightly more dilute reactant gas phase concentration in the tube to

assist in the prevention of plug fonnation. Also note that the recommendation does not

include sdting the Se to boil first. This serves the purpose of producing an optimwn

contacting pattern within the reactor and reducing the amount of Se waste.

Summary

The above recommendations should provide a degree of optimization to the

production of ZnSe in the present system. This is accomplished by establishment of

procedures and operating parameter setpoints that result in the following: 1) Reduction in

the number of sources of uncontrolled variation within the process, 2) operation of the
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reactor at as near steady state as possible, and 3) transport of reactants into the reactor at

nearly the same initial point in time and at the same rate. These procedures and operating

param,eters should result in improved run yield and reproducibility with minimal ouday

of expense and effort.
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CHAPTER IV

PROPOSED NEW REACTOR DESIGN AND MODELING

Introduction

The infonnation that was gained as a result of the experimentation with the

CWTent system was used to establish the basis for the new reactor design. Also, close

collaboration with Eagle-Picher staff provided the research group the opportwlity to

learn, in greater detail, the sponsor's corporate objectives.

This chapter will outline the new reactor design basis and the objectives that were

interfaced with E-P goals. Presentation of the new reactor design will cover the theory

and the methods related to the chemical, kinetic, thennodynamic, and transport

phenomena associated with the process.

We will proceed from the themetical foundation to a review of the computational

fluid dynamics (CFD) modeling used in the course of fmalizing the reactor's design. The

model's background theory, approach, assumptions, and limitations win be discussed in

detail.

Basis for the Design

The following list of design criteria and rationale outlines the constraints

considered in the development of the various design concepts. Table 4-1 summarizes the

design basis for the new reactor.
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Product Specifications:

Obviously, E-P's product purity specification was a primary consideration. The

current acceptable assay is 5-9's (99.999% pure) ZnSe. Although there is no empirical

evidence requiring a particular crystal morphology or particle size distribution~ the

objective is to produce a hexagonal particle with a fineness of approximately 20 microns

or less.

Product Yield and Throughput:

The target yield is 80% averaged across runs and based on moles of zinc. This

can be compar,ed to the historical yield of approximately 35-40% which may be lower if

the aborted runs with zero yields were included (Morrison, 1998).

The product output per batch run is targeted to be 2 kgs; as compared to an

approximate output of0.60 kg with the present system.

Process Performance:

As discussed earlier; the historical performance of the process is erratic. The goal

is to address all of the probable process variables intrinsic to the new design. Next, we

will establish reasonable ranges for operation with the objective of reducing the number

of wasteful aborted runs.

Proc,ess Familiarity and Ease of Operation

Implementation of a new reactor would be facilitated by a design that does not

represent a great departure from the present system. This translates to mean that a
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horizontal, batch process is the preferred mode. Although there are continuous mode

concepts that could be explored, they would entail a great deviation from the present

L em. Furthermore, the modest increase in batch size with the new reactor does not

the radical process change to a continuous-based system. Also, vertical

'ppears to adversely affect product crystal structure. The emphasis ofthe new

, controllability and ,eas,e of operation as opposed to high throughput and

'<)duct is termed a high-value, specialty material, as opposed to a

't has a substantially lower profit margin. Therefore, this design

\y the current and projected economic value of the final

v a great degree of unnecessary complexity.

my's needs can be met by a design that

• the operating procedures. The welding

.;as with the greatest potential for improvement.

~1 quartz breakage can be reduced with a system that

...l and handling. Ancillary to these improvements, the safety

... the new process should be improved. A major consideration was the

• .1 of the hazards associated with high-temperature quartz welding during the

..~tup and the handling of concentrated nitric, sulfuric, and hydrofluoric acids during the

cleanup procedures.
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Table 4-1: Summary of the Design Basis

tTD' C 't 'eSl2n n ena arge
Reactor Orientation Horizontal

Capacity 2.0 kg/run

Operation Mode Batch

Product Purity 99.999+ %

Product Morphology Hexagonal

Failed Run Rate < 5.0 % ofruns
..

Yield 80+%

Alternative Design Concepts Considered

Several concepts were considered in the course of arriving at a final design, First,

those concepts involving continuous operation and/or vertical orientation of the reactor

tube were eliminated as possible routes.

The more radical schemes that were also discarded included wet methods,

insertion of a rotating extruder to aid in product removal during the run, and a cyclone

reactor.

As presented in a design review meeting with E-P personnel early in 1998,

various horizontal batch systems were originally proposed and rejected. The other

physical modifications to the reactor tube that were considered include: I) injection of an

inert stream at various points within the reactor to alleviate plugging, 2) insertion of
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various items including hames, obstacles, etc. into the reactor tube to either segregate

reactant flows for a period of time or to aid in mixing, and 3) counter-current and

crosscurrent orientation of injection nozzles. All of the above physical modifications

were rejected on the basis that the added complexity in the fabrication, system

breakdown, or clean-out procedures would be prohibitive. From an engineering design

perspective, the schemes would unnecessarily complicate the modeling efforts.

Additionally, all the advantages offered by the various concepts could be attained by an

even simpler approach.

Overview of the New Reactor Design

Design Concepts

The new reactor design is based on the following features: 1) horizontal,

concentric reactor tubes, 2) optimized nozzle orientation, and 3) vertically oriented

boilers with back pressure monitoring and controL The new design features are best

explained by discussion of the inherent design and operational problems associated with

the present system. The new design's resolution of each problem is swnmarized in Table

4-2.
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Table 4-2: Characteristics of the Proposed New Design

Old System Problem New Design Solution

Frequent aborted runs due to plugging, low Optimized design and orientation of inlet
yields as a result of poor flow nozzles via CFD modeling.
characteristics,. wormhole formation, etc. :

Time and labor intensive system
turnaround, hazardous cleanup, frequent
welding, quartz breakage, inconsistencies
of reactor dimensions, process variation
due to run-to-run set-up methods, etc.:

Poor heat transfer control at front end of
system:

Poor mass flow control of reactants,
uncertain run times:

New Design Features and Advantages

Reactor system designed to be essentially
static. Tube-in-a-tube reactor where main
outer tube remains in place with boilers
welded semi-permanently. The inner tube
is withdrawn from the rear of the apparatus
following each run, the product is dumped,
and the main tube is "reloaded" with the
same or other inner tube for the next run.

Redesign front-end heaters to include full
enclosure of boilers and inlet tubes, add
thermocouple system for monitoring.

Reorient both boilers vertically, add argon
carrier feed tube positioned at bottom of
boiler to measure back pressure. From head
pressure correlation, calculate height of
molten reactants and thus mass flow. Set
boiling rates VIa feedback loop from
pressure readings.

1. Horizontal reactor technology and expenence can be readily transferred and

implemented to the new system.
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2. Improved turnaround time and fewer aborted runs via reduction in plugging, welding,

and breakage frequency. Simplified cleanup procedures whereby the inner tube that

contains the product is :inverted, scraped, and re-inserted for the next run. Acid

washing is required infrequently and each new run setup is not limited by quartz-

ware since inner tubes are readily available.

3. Greater process control. Static system eliminates many sources of variation in the

process. Back-pressure controlled boilers allow for "dialed" in mass flow rates and

run times.

4. Overall improved/increased capacity, yield, efficiency, and safety.

Illustration of New Reactor System

Depicted below in Figure 4-1 is the new reactor system. Detailed Autocad

drawings are available in the thesis of Morrison (1998).

Se Boiler

Argon Carrier Gas __-,

Tr.nsport Reactor and Product Tube
Tubes _f------------

'""'" CmriuGti S
l

Zn Boiler

Figure 4-1: New Reactor System Drawing
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New Design Research Objectives

Several engineering aspects of the new design required research to achieve the

aforementioned performance characteristics. The areas emphasized in this work include

nozzle design. system component sizing. reactor modeling, and process optimization.

CFD Modeling ofProposed Design

The complex nature of the flow phenomena necessitated the use of computer

simulations in the course of designing the new reactor. This section will give a brief

overview of the modeling theory, equations, assumptions, software basics, and the

development steps. The model was developed in collaboration with Morrison (1998)

whose thesis may be relied upon for additional information as well as an alternative

modeling approach.

Modeling Theory and Steps

Swnmarized below are the steps given by Himmelblau and Bischoff (1968) that

outline the theory behind computer and mathematical modeling of chemical processes.

The steps provided a conceptual guide used in the course of the development of the

model. (See also: Figure 2-2 ofLiterature Review.)

1. Formulation ofthe problem and establishment of criteria and requirements.

2. Classification ofthe process and establishment of subsystems.

3. Determination of relationships between subsystems.

4. Analysis ofvariables.
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5. Mathematical modeling of process variables.

6. Evaluation ofhow well the model represents reality.

7. Interpretation of results and application ofthe model.

Purpose and Classification ofthe Model

A phenomenological model that can accurately describe the transport phenomena

was required to gauge the effects that the complex flow phenomena have on the

performance of the reactor. The model can only then be applied to the formulation of the

new system. Finally, the model should then facilitate the optimization of the new design

through the use ofparametric variation of the model inputs.

Computational Fluid Dyanamic (CFD) mode'ls are ideally suited for application to

the above goals. Specifically, the approach in this work is classified as a multiple­

gradient, detenninistic transport modeL The model incorporates reacting flow and also

accounts for heat transfer effects. FLUENT (version 4.0) was chosen as the modeling

software.

FLUENT CFD Basics

FLUENT is a commercially available CFD package that incorporates many

subsystems such as fluid flow, heat and mass transfer, and chemical reactions that can be

applied to a myriad of physical models. The subsystems are integrated and solved via

numerical fmite volume difference equations. The resulting profiles depicting species,

velocity, temperature, or other phenomena can be observed as outputs.
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The package has many readily applied "structured" models, however, oW' unique

application is an "unstructured" problem that requires the user to input a geometry.

FLUENT geometries can be two or three dimensional, depending on the

application needs. For simplicity's sake, the model developed in this work was based on

a 2-D axi-symmetric geometry. Subsequent work by Nikolic (In progress) should

improve upon this approach by the development ofa full, 3-D geometry.

The physical geometry is divided into finite volumes in the form of a mesh over

which the applicable differential equations are iteratively solved. A greater mesh density

produces a higher resolution of results. The user then designates the faces that comprise

the physical. mode], which includes walls, inputs, outputs, and zones.

The physical model is then combined with user-inputs for the reacting mixture

subsystem that includes kinetics, physical and chemical properties, and other necessary

parameters that will be discussed in detail later.

Basic Steps for Creation of a Physical Model

A chart outlining the essential steps used to develop a physical model within

FLUENTfUNS is given as Figure 4-2. The chart is by no means comprehensive, but is

intended to provide a broad overview of the many steps that FLUENTIUNS modeling

requrres.
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Summary of Governing Equations

FLUENT V4.0 (1996) lists the following equations that apply to our model of interest.

FLUENT solves the Navier-Stokes equations for conservation of mass and momentwn

for laminar flows.

Mass Conservation (Continuity) Equation

op 0 0 av
-+-(pu)+-(pv)+- =Smot Ox or r (4-1)

Where, x and u are the axial coordinate and velocity, respectively and r, v are the radial

coordinate and velocity, respectively for 2D axi-symmetric geometries. The Sm term is

for accumulation (used in some FLUENT structured models, but is equal to zero here.)

Mass Conservation (Continuity) Equation for Multicomponent Systems

Where, l.I' is the binary diffusivity coefficients for the components and products.

Momentwn Conservation Equations

o 10 loop 10[ (au 2 _)]-(ou) +--(rpuu) +--(rpvu) =--+-- rJ1 2---(V' ·v)ot r ox r Or ox r ox Ox 3

+!~[rJ1(Ou + Bv)]+Fs
ror Or ax
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o 10 la' fJp 18[ (a a)]-(pv)+--(rpuv)+--(rpvv)=--+-- rfj -+_.at rax ror Or rOx Ox Or

1 a[ (Ov 2 _ )] v 2 fj _ w
2

+-- rf-l 2---(V·v) .-2f-l-+--(V.v)+p-+Fr
r Or ar 3 r 2 3 r r

_ ou av y
V·y=-+-+­

Ox or r

(4-4)

(4-5)

Where, w is the swirl velocity and Fi denotes force terms that may be used by FLUENT

to include other phenomena such as coriolis, centrifugal, or user defmed, etc.

Turbulence Equations

For turbulent or transitional flows, FLUENTIUNS offers the choice of a

"Standard k-e Model" as well as a "Renormalization Group (RNG) Model." The RNG

model is particularly applicable to models that may involve swirling flows and hence,

was the choice to describe localized areas of turbulence such as the convective roll

formations that may occur in our reactor. It is assumed that regions of low Reynolds

number default to the conventional Navier-Stokes equations for laminar flows. More

detailed explanations of the turbulent models are detailed in the FLUENT V4.0 Volume 2

manuals (1996). The RNG equations for momentum are given as:

a a. a [ [aUt au} ]] ap-(pUt) + -(pliUj) =- j.1eff - +- --at aX) Ox} Oxj Oxi Oxi

where, l-teff is the effective viscosity given by:
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k and E are the turbulent kinetic energy and rate of dissipation, respectively and are given

by:

and,

o a a ( ak) 2-(pk) +-(pk) =- aJc/-kff- + j.1JS - P&at Ox; Oxi Ox;
(4-8)

(4-9)

Where, the a terms are effective Prandtl numbers, S is the modulus of the mean rate-of-

strain tensor, C terms are 1.42 and 1.68, and the R tenn is given by:

R = Cppq 3(1- q/ qo) &2

1+ fJq 3 k

Energy Equations for Flow

o 0 0 00" Dp ow
-(ph)+-(pwh) =-(k + kt)---LA,hl./j- +-+(m)eff-+Sh
ot ox; OXi OXt Oxi j' Dt Oxk

(4-10)

(4-11)

Where, k is the molecular conductivity, kt is the conductivity due to turbulent transport, Jj

is the diffusion of the jib species and the Sh term accounts for the heat of chemical

reaction given by:

" h~_. [fref ]Sh, reaction =LA - + cp,j'dT Rj'
j' U- refj

Energy Equation for Solids

(4-12)

In conductimg solids, o 1_ _ a (k OT) .Ifl-pu-- -- +q
ot Ox; ox;
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Where, h is the sensible heat from the integral of Cp dT and q"'" is the volwnetric heat

source.

Rate Equations

The Arrhenius reaction rate equation solved by FLUENT is:

RI'.k =r(V'i'.leMI'TfiAle . n Cj'V/k exp(-AE/ RT)J
j'reac tants-and-products

(4-14)

Where, Vi,k is the stoichiometric coefficient for species i in reaction k, M is the molecular

weight of the ith species, fl is the temperature exponent, Ak is the pre-exponential factor,

C/ is the molar concentration of species j, Vj.k is the exponent on the concentration of

species j (order), and AE is the activation energy for the reaction. The r term

incorporates species third body efficiencies and is usually omitted in FLUENTIUNS.

Modeling Methods and Approach

While FLUENT solves the governing equations; the user is required to enter the

kinetics rate forms for the reactions, as well as other terms and parameters. This section

will outline the methods used to develop the necessary inputs for the model as well as the

related assumptions.

Reactions and Kinetic Rate Forms

The solid ZnSe product is formed in the reactor from the gas phase in two steps:

2 Zn(g) + Se2(g) ¢::> 2 ZnSe(g)

89

(4-15)



ZnSe(g)~ ZnSe(s) (4-16)

The literature provides no lcinetic data or exact mechanism for the gas phase reaction.

For modeling purposes, a simple second order overall Arrhenius rate form is assumed:

R - 1. (-AEI RT)C1 C I
ZnSe - /l,Ce Zn Sel (4-17)

The first step of Eqn. (4-15) is slightly exothennic and the second (Eqn. 4-16)

condensation step is appreciably more exothermic for a total heat of reaction of -176

KJ/mol. The thesis of Morrison (1998) contains a more complete approach to the

system's thermodynamic considerations. A rate constant was idealized via calculation

from the plug flow reactor (PFR) design equation. The asswnptions when applying this

approach are related to the nature of the controlling mechanism of the process. The

process is not kinetic controlled. The equilibrium ofEqn. (4-15) lies far to the right with

a k value of the order of 105 or higher and can be assumed to be irreversible. It is not

necessary to derive a rate constant from kinetic theory when the process is predominately

controlled by other phenomena. As discussed in Chapter ill, the actual Reynolds number

is approximately 20. Species transport in regimes of creeping flow are characteristically

diffusion controlled (Nauman, 1983 and Jensen, 1993). Hence, the CFD model was

based on an idealized rate constant that was 'backed out' of the PFR design equation

given by Levenspiel (1972):

(4-18)

Solution of this mass balance PFR design equation in an integrated fonn for a 2nd order

irreversible reaction yields a rate constant.

k = [2&4(1 + &4) 10(1- XA) + &4 2XA + (&4 + 1)2~] I zCAO
l-XA
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A detailed solution of this equation is contained in Appendix A. The basic steps involved

estimating residence times and reactant volumetric flow rates based on experimental data

and operating conditions of the present reactor. The resulting idealized k value of

6.89xl05 L/mol-sec is most likely a low estimate and can be compared to the value

calculated from kinetic theory by Morrison (1998) of 3.0xl06 L/mol-sec.

The activation energy was estimated from experimental data and solution of the

following equation (Levenspiel, 1996).

(4-20)

The equation was solved with estimated reaction rates from experimental data and rate

constant k values from Eqn. (4-18) taken at two different temperatures from the present

system. The resulting activation energy of 8.1x107 JlKmol is admittedly dubious, given

the nature of the experimental data with respect to the uncertainty in the run time

estimates (see Design Basis section). This calculation is also detailed in Appendix A.

The value can be compared to that derived from transition state theory by Morrison

(1998) of 1.9xl08 J/Kmol. Again, the kinetics parameters are not controlling, but the

values derived via experimental data here compare reasonably well with those from

molecular theory calculations.

The reactions of Equations (4-15) and (4-16) were modeled on the assumption

that all of the gas phase ZnSe product results in deposited solid material. FLUENT can

solve multiple reactions, but development of a model that can simulate the growth of a

deposited bed presents many problems. The model can simulate condensation, but it has

difficulty displaying non-steady state processes. Thus, the process was simplified for

modeling purposes to a steady state process where the gas phase product represents a
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'pseudo' solid product. The validation of this approach is presented in subsequent

sections.

Transport Properties

FLUENT has the capability of calculating most properties including viscosity,

density, conductivity and diffusivity simply from tabulated Lennard-Jones parameters for

each of the reactants and products. However, these properties were entered individually

as temperature dependent piece-wise functions since certain properties were used as fitted

empirical coefficients. The Lennard-Jones calculations within FLUENT are an "all-or­

nothing" approach that must be applied to aU parameters and, therefore, would not have

allowed the fitting of certain parameters. Tabulation of the temperature functions for the

transport properties as well as the thermodynamic quantities of heat capacities and heats

offonnation are available in an appendix ofMorrison's thesis (1998).

Empirical Parameter Fitting

As mentioned above, the process is strongly controlled by diffusive mass

transport. Hence, the diffusivity parameter was the focal point of this phase of research.

The following diffusivity pairs need to be entered into the model.

Group I (reactants): ZnJSe2, ZnJAr, Se2/Ar

Group II (products): ZnSe/Zn, ZnSe/Se, ZnSe/Ar

The reactant combinations were available in the literature (Wahlbeck, 1992) or entered as

polynomial functions derived from Chapman-Enskog parameters (Morrison, 1998). The

product pairs involving ZnSe were used as coefficients in the CFD model to empirically
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fit the yield results to experimental data. An optimized run that was completed during the

first week of January 1998 as discussed in the preceding chapter was used as the basis for

comparison. The diffusivities of the Group II pairs were adjusted iteratively to arrive at a

yield as exhibited by concentration profile ouput of the model equal to 70%. The

theoretical basis for this approach is that the controlling mechanism (difIusivity of ZnSe

product) is the obvious choice to adjust in order to simulate the condensation reaction

(Eqn. 4-16). The CFD profiles were analyzed for distribution of product within the

reactor and the backflow of reactants, in addition to the product yield. The target was to

adjust the diffusivity parameter until the target product yield was achieved with an even

distribution and no backflow of reactants into the boilers as observed in the experimental

test case. The diffusivity of ZnSe in Ar was established to be 1.0xlO-6 (m2/sec) via this

method.

Summary of Assumptions

1- The reactor dimensions are well represented as a 2D axisymmetric geometry.

2- DiffiIsivity rather than convective mixing detennine the reaction's rate.

3- The kinetics are not controlling and can be derived from idealized conditions.

4- The overall reaction is depicted as a second order Arrhenius rate fonn.

5- The overall reaction is exothennic.

6- For modeling purposes, the reactor walls are assumed to operate isothennally·

(i.e. - Eqn. 4-13 equals zero.)

7- The deposition of solid product can be simulated form gas phase concentrations

by the fitting of empirical parameters.
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8- The process is assumed to be a pseudo-steady-state.

9- Radiation effects are negligible.

10- The RNG model for turbulent flow is applicable and defaults to Navier-Stokes in

the laminar region.

Summary of Key Kinetic and Transport Model Parameters

Table 4-3: Key Kinetic and Transport Variables

Rate Constant 6.89xlOJ Umol-s

Reaction Order 2nd

Activation Energy 8.0 x lO-r J/Kmol

Group I (See above): 1.0 x 10-=4 mT/sec
DifIusivities

Group II (See above): 1.0 x 10-6 m2/sec

Boundary Conditions

The model requires that the following conditions be entered: 1) The inlet initial

concentration of each reactant in terms of mass fraction, 2) Initial velocity of each inlet,

3) Inlet stream temperatures, 4) Wall temperatures or heat fluxes.
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Modeling Results and Discussion

The following strategies were employed in the course of fitting the

kinetic/transport model described above to reproduce the experimental results obtained

from the system in use at E-P.

Flow Regime and Product Rate Determining Phenomena

A test of the critical modeling assumption related to the controlling mechanism

was made by inducing a higher degree of convective mixing wiiliin the model.

Modeling experiments that ramped the inlet velocities as high as fifteen times the

operating conditions (approx.. 5.0 liters/min) were entered into the FLUENT model of the

current system. The maximum Re number at the front of the reactor was approximately

50. This confirms that the reactor operation will remain within the laminar to creeping

regime, regardless of the operating flow. Further, the reaction interface is heavily

dependent upon diffusion ofthe reactants.

Elimination of Backflow within the Model

During the course of fitting the diffusivity of ZnSe to the experimental runs, the

FLUENT output was also monitored for presence of bacldlow of product into the reactant

boilers. It was observed that as an additional measure of 'fit'; the backflow of product

material would become apparent with increasing diffusivity of ZnSe. Conversely, the

backflow would retreat at lower diffusivities. Since no backflow of product material

occurred within the experimental reactor regardless of operating conditions, the empirical

fit then became a matter of adjusting the product diffusivity to produce the optimized
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experimental yield with no backflow. A small sampling of the parameter fitting runs is

shown in Table 4-4 (note that the target yield is 69.7 %.):

Table 4-4: Sample ofEmpirical Parameter Fitting Regimen

Group II Diffosivity
(m2/sec)

Product
Yield (%)

Backflow
Present?

0.25 X 10-5 68.8 YES

1.0 x 10-5 34.0 NO

1.0 x lO-b 75.9 NO

1.0 x 10-' 48.3% YES

Follow-up Test with Experimental Data

The model was further tested against an additional experimental run that was

believed to have a good estimate of mass flow rates. Recall that the experimental mass

flows are based on estimates of run times. The nm times are derived from observation of

the boiler analog power output readings where a marked decrease in power occurs when

the boilers are emptied of reactant material. The experimental run chosen resulted in a

yield of 87.6%. The estimated mass flow rates, velocities, and inlet mass fractions of

reactants were calculated via spreadsheet (Appendix C) and entered into the model. The

model produced a simulated yield of 78.1 %. This value is within the error associated

with the uncertainty of the mass flow rates estimates.
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Conclusions and Recommendations

There are a limited munber of experimental runs that were available to correlate

with the CFD modeL The model represents the experimental data within ermr as

provided by mass flow rate uncertainty. Measurements of simulated yields, backflows,

and velocity profiles appear reasonable when compared to experimental observations and

theoretical background.

The modeling work that is ongoing by other students should build upon the

foundation presented here. The efforts at 3D modeling and resolution of the flows on a

non-reacting basis will add a higher degree of confidence to the results. Further, the

boiler design should be implemented to provide exact measures of reactant mass flow

rates. The improved quality ofexperimental data would then enhance the accuracy of the

parameter correlations within the modeL
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CHAPTER V

NEW DESIGN OPTIMIZATION

Introduction

With the development of a representative CFD model of the new reactor

complete; efforts were then directed towards opti.miZing the reactor's design within the

model. The original intent had been to construct an experimental prototype to perfonn

final testing and development work. However, changes in the business climate obviated

the availability of funds for such a prototype. It then became necessary to conduct all

experiments within the computer model. The objective was to optimize the product yield

as well as the flow characteristics to avoid the formation of plugs. The computer

experiments entailed the variation of the process operating and physical parameters.

Examples of operating parameters are reactant flow rates and the reactor temperature.

The physical parameters include the size and configuration of the nozzles, and the

dimensions ofthe reactor tube..

The Literature Review chapter contains examples of device design optimization

within CFD models. Collins et at. (1994) and Gaston (1995) successfully incorporated

DOE and RSM techniques to the optimization of computer models for the design of

semiconductor devices. The purpose of this chapter is to detail the experimental design

approach applied to the FLUENT model as a substitute for prototype testing.
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FLUENT Model Experimental Designs

Chapter II outlines a theoretical foundation for DOE methodology that will not be

reiterated here except to note that the advantages are especially applicable to computer

models. High-performance computer simulations allow for almost unlimited

experimental freedom given the speed with which individual experiments can be

completed. The matrix chosen for the initial battery of FLUENT experiments involved

64 runs, which would have been a prohibitively large number if performed on an actual

physical apparatus. There were two phases to the experimental optimization to be

referred to as Study I and Study II.

Design Optimization: Study I

Given the experience gained with both the present reactor process and the

computer model; the following factors were deemed most important and are given in

Table 5-1.. The rationale for the experimental levels is shown in Table 5-2.

Table 5-1: Design Optimization Study I Factors and Levels

EXPERIMENTAL LEVELS 1
PHYSICAl FACTOR SYMBOL LOW units HIGH

1 NOZZLE ANGLE NA 0 degrees 45
2 NOZZLE DIAM. ND 2.5 mm 6
3 NOZZLE P051nON NP 1 cm 3
4 REACTOR LENGTH RL 750 mm 900

OPERATING
5 REACTANT FLOW RATE FR 5e= 3.10x10-JI I mol/sec 1.67x10·3

Zn= 6.20x104 mol/sec 13.30x10·3

6 I REACTOR TEMP. ZT 1223 ! K
I

1323I
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Table 5-2: Rationale for Experimental Levels (Morrison, 1998)

Species Parameter Level Value Rationale for Levels

+
3.3x10-3 Stoichiiometrically equal flow for Selenium (+) mole

mol flow
mollsec flow

6.2x10-4 'This was the max mol flow rate estimated from the 3-
moUsec wormhole runs

+ 6mm Same as Selenium (-) nozzle diameter
nozzle dia

I - 2.5mm Set not to exceed 85% speed of sound in pure Se2Co)
c
N + 45,0 Set at 50% of "best mixing case"

nozzle angle
Set at pure cocurrent mixing, 100% diffusion- 0°
oontrolled

i
10mm arbitrary, 1 nozzle diam.+

nozzle
position

30mm arbitrary, 5 nozzle diam.-

+
1.67x10·3 Estimated from bubble transport through molten
mollsec metal.

mollflow
3.1x10-4- mol/sec

Stoichiometrically equal flow for Zinc (-) mole flow
I

+ 6mm Set to exceed 1.5 m/sec exit velocity

E nozzle dia

::s - 2.5mm Same as Zinc (-) nozzle diameter.-c
G)

45,0 Set at 50% of "best mixing case"G) +
en nozzle angle

- 00 Set at pure cocurrent mixing, 100% diffusion
controlled

+ 10 mm arbitrary, 1 nozzle diam.
nozzle
position

30mm arbitrary, 5 nozzle diam.-

Argon mole flow Iconstant
2.0x10-4

Corresponds to 300 ml/min at 300K
mollsec

*Se,e Morrison 1998, Nozzle design for CFD
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Background Variables

Table 5-3: Background Variables: Study I

VARIABLE SETTING Notes/Units
OPERATING

Carrier Gas (Ar) Flow Rat.e 2.0x10-4 mol/sec =300mUmin @300K

KINETICfTHERMO PARAMETERS
Rate Constant 3.00x10+ti
Overall Order 2nd

Activation Energy 8.10x10+7

TRANSPORT PROPERTIES

Thermal Conductivity Ar Piecewise Linear Functions
Thermal Conductivity Zn Piecewise Linear Functions
Thermal Conductivity Se Pi.ecewise Linear Functions

Viscosity Zn Piecewise Linear Functions
Viscosity Se Piecewise Linear Functions

Viscosity ZnSe Piecewise Linear Functions

Diffusivity Zn/Ar 1.00E-04 Wahlbeck
Diffiusivity Zn/Se Piecewise Linear Functions Chapman-Enskog
Diffusivity Se/Ar 1.00E-04 Wahlbeck

Diffusivity ZnSe/Ar 1.00E-06 Expr. Data
Diffusivity ZnSe/Se 1.00E-06 Expr. Data
Diffusivity ZnSe/Zn 1.00E-06 Expr. Data

Design Matrix

The computer model DOE studies allowed for the completion of a 26 full factorial

design that eliminated confounding interactions. Documentation of the design is left to

the reader to explore further in Appendix C. The design matrix, FLUENT DDN reactor

dimension coordinates, spreadsheet calculations for the model operating parameters, run

data, and spreadsheet analysis of the data, are all contained in the appendix.

101



Study I Results and Analysis

As shown in Appendix C, the data for the 64 nms were reduced by spreadsheet

calculation to quantify the variation that is attributable to each factor and interaction.

Single Factor Results

Table 5-4: Study I Factor Results (Yield)

PHYSICAL PARAMETERS OPERATING
1 = N,A 2= N,D 3 = NP 4=RL 5=FR 6=ZT

AVG- 51.5 50.2 59.1 51.9 65.3 53.9
AVG+ 61.5 62.8 53.9 58.6 47.7 59.2

t'!. 10.0 12.6 5.2 6.7 17.6 5.3
0) 0.57 0.72 0.30 0.38 1.00 0.30

RANK 3 2 5 4 1 5
SIG? YES YES NO NO YES NO

Table 5-1 can be referred to as a guide to the symbols used in the Table 5-4. Note

that the response variable is product yield. The yield is based on zinc as described by

Equations (3-2) and (3-3). The component concentrations were analyzed from FLUENT

prof1les, after convergence to a steady state solution, by integration of the component

mole fractions within the reactor volume. Also, recall from Chapter ill that the averages,

L1, and co values are calculated from Equations (3-4) to (3-6) in the results tables.

From the above analysis; the dominant factors are the nozzle. angle (NA), the

nozzle diameter (ND), and the flow rates of reactants (FR). The nozzle position (NP) and

the temperature of the reactor (RT) have little effect on yield relative to the other factors

within the range studied. As will be discussed later, the reactor length will be analyzed

further in an attempt to elucidate its effect.

The two factors of reactant flow rate and nozzle diameter are plotted with a

midpoint run in Figures 5-1 and 5-2.
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Figure 5-2: Effect ofNozzle Diameter
on Product Yield

The plots indicate a non-linearity of the factor's relative effects, however the

effects of the other factors are not nonnalized. In other words, a single midpoint run can

not account for the variation introduced by the other four factors. It is, however, a

relative gauge of the 4'reasonable-ness" of the chosen levels. The levels are typically

103



chosen to encompass the optimum conditions as narrowly as possible. The higher yield

at the midpoint confirms that the levels are centered near the optimum conditions.

Reactor Sizing and Conversion

To confirm that the reactor length has a minimal impact on product yield, a

separate run was made following the midpoint run. The run was executed at the midpoint

conditions with the exception of lengthening the reactor by 25% from lOOOmm to

1250mm. The result was a product yield of 74.8% as compared to the midpoint run of

76.2%. The lack of gain in yield that may have been expected is explained from

residence time considerations. There is a reactor length at which the diffusive forces are

in effect balanced by the convective mixing forces. Therefore, given a constant flow rate;

increasing the length of the reactor serves no purpose i.e.- maximum conversion is found

at a finite reactor volume for a specified molar flow rate and batch size. This is the

converse of a turbulent flow regime system where conversions can approach 100% with

infInite residence times and when the equilibrium is highly favorable to products

(LevenspieI, 1972).

Two-Factor Interactions

Table 5-5: Study I Interactions Results (Yield)

Factor Combinations
1 2 1 3 1-4 1 5 1-6 2-3 2-4 2-5 2-6 3-4 3-5 3-6 4-5 4-6 5-6- - -

avg- 53.8 55.4 56.0 56.4 56.8 58.1 55.3 54.1 57.0 55.5 1 55.8 56.1 56.2 56.6 55.8
avg+ 57.4 57.7 57.1 56.7 56.2 54.9 57.8 56.8 56.1 57.5 57.2 57.0 56.9 56,4 57.3

I!:. 3.5 2.3 1.1 0.3 0.6 3.2 2.5 2.7 0.9 2.0 1.3 0.9 0.7 0.3 1.5
(i) 1.00 0.66 0.32 0.08 0.17 0.91 0.71 0.78 0.24 0.57 0.38 0.27 0.21 0.07 0.43

rank 1 5 9 14 13 2 4 3 11 6 8 10 12 15 7
sig NO NO NO NO NO NO NO NO , NO NO NO NO NO NO NO
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The analysis does not reveal any significant interactions between the factors.

Also characteristic of this matrix; there are no three factor interactions, or confounding

effects (Moen et aL, 1991).

Study I Preliminary Conclusions

As discussed above, the experiments show that the optimum set of operating and

physical parameters should maximize the product yield with a minimum reactor vohune.

The experiments in this study screened the factors and directed our attention to the flow

rates and nozzle diameters. Interactions within this set of factors are negligible. A

second study was needed to arrive at the final optimum design.

Design Optimization: Study II

The objective of the second study was to gather results from a new experimental

matrix that centered on the important factors of flow rate and nozzle diameter as

established in Study I. Study II's purpose was to vary the nozzle diameters and flow

rates ofreactants itndependently from one another.

Design Matrix and Factor Levels

The two nozzles and the two flow rates constitute four factors of a 34
-[ fractional

factorial matrix. Th,e matrix includes a third level that will allow for development of

prediction functions. The new background variables that are held constant include the

angle of the nozzles (perpendicular to face plate), the nozzle positions (1.0 cm from the

centerline), the reactor length (900mm), and the reactor temperature (950° C). The
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background variables listed in Table 5-3 are still held constant in Study II, as well. The

new factor levels are summarized in Table 5-6:

Table 5-6: Study II Factors and Levels

Factor Symbol Previous Rane-e Low Level (-) Mid Level (0) Hie:h Level (+)
NDZ 2.5- 6.0 nun 5.0 mm 8.5 rom 12.0mm
NDS 2.5-6.0mm 5.0mm 8.5mm 12.0mm

FRZ
0.000620 - 0.000728 molls 0.00201 moVs 0.00330 moVs

0.0033 molls ;

FRS
0.00031-

0.000364 molls 0.00102 molls 0.00167 moVs
0.00167 molls

Prediction of Plugging Within the Steady State Model

Trends that were observed in Study I indicated improved yields at lower flows

and larger nozzle diameters. Study II incorporated a criterion to estimate plugging from

the model output. The simulations conducted tmder tmoptimized conditions revealed that

the velocity profiles of the reactants near the nozzle inlets into the reactor occasionally

tum into the radial direction. Further, there are run conditions that will produce higher

quantities ofZnSe near the nozzle orifices.

The secondary flow patterns occur as a result of thennally driven natural

convective forces and bouyancy effects that result in radially oriented flow vectors. This

phenomenon contributes to the formation of the convective rolls or "wormholes" (Jensen,

1993; Jackson and Winters, 1984). The model is a steady state solution that otherwise

will not reveal the presence of such a plug or wormhole structure. However, it was

necessary to attach a quantifiable value to this phenomenon that can be analyzed within

the matrix for the prediction of plugging. This was accomplished by quantifying the
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product at the inlets by taking an average surface integral of the ZnSe mole fraction

present at that location. The data was then compiled within the matrix as a "plugging

factor." The criteria for plugging was established by inspection of representative runs at

conditions that were known to be conducive to plugging as observed in low yield

experimental data. The criteria for plugging was set at a plugging factor greater than

0.0 I. Consequently, there are two response variables in this second study - the product

yield and the plugging factor.

Study II: Results and Analysis

Again, the compendium of run data, results, analysis spreadsheets, etc. pertinent

to Study IT is available in Appendix C. The calculated results are summarized in Tables

5-7 and 5-8:

Table 5-7: Study IT Results (Yield)

FACTOR
NOZ NOS FRZ FRS

AVGLOW 50.9 66.4 78.3 44.2
AVGMID 59.7 59.5 54.4 65.5

AVG HIGH 68..5 53.2 46.5 69.5
RANGE (H-L) 17.6 -13.3 -31.8 25.3

Total Avg Yield (%) 59.72

(j 21.74

Table 5-8: Study II Results (plugging Factor (PF»

FACTOR
NDZ NOS FRZ FRS

AVG LOW 0.01045 0.00399 0.00516 0.00918
AVGMID 0.00629 0.00564 0.00863 0.00880

AVGHIGH 0.00535 0.01246 0.00831 0.00411
RANGE (H-L) -0.0051 0.00847 0.00315 -0.00507
Total Avg. PF 0.007364

(J' 0.008319
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Where, (J' is the standard deviation ofthe entire population across the 27 runs and is given

by the positive square root of the variance (Bethea and Rhinehart, 1991):

(
1 n 2)112

a = - L:(Xi- Jl)
n 1=1

(5-1)

Several trends are apparent from the Tables 5-7 and 5-8. With respect to yield;

the two nozzles have an inverse relationship, where a small Se but a larger Zn nozzle are

preferred to produce higher yields. Likewise, a high mole flow of Zn with a low flow of

Se will increase the product yield. Comparison of the actual inlet velocities is necessary.

This combination of physical and· operating parameters produces inlet velocity ratios of

10 Se to 1 Zn. These phenomena are best investigated graphically. The following 3-D

figures relate the effects of flow rate and Dozzle diameter on the product yield and the

plugging factor. Figure 5-3 shows the effect of the zinc nozzle diameter and flow rate

versus th,e product yield.

90r=::s~fffE1:n80L-
N
~ 70.1----­
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......- 40

Figure 5-3: Effect ofZinc Nozzle Diameter and Flow Rate
on ZnSe Product Yield
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Figure 5-4 also illustrates the fact that lower flows (velocities) and smaller

diameters favor higher yields:

80

N
~ 70
ro
~ 60
CD

a. 50
----cf!.
- 40

Figure 5-4: Effect of Zinc Nozzle Diameter and Velocity
on ZnSe Product Yield

Figure 5-5 shows the same relationship for Se flow and nozzle diameter, but it

also reveals that high yields can be attained with higher flows and larger nozzles.
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Figure 5-5: Effect of Selenium Nozzle Diameter and Flow Rate
on ZnSe Product Yield

As discussed above, higher yields can be attained with a given combination of

nozzles and flow only if they do not produce plugs at the nozzles. With the plugging

factor set by a line drawn on the plot at 0.010, Figure 5-6 shows that the smaller zinc

diameters are permissible if the flows are at least 0.0010 mol/sec for nozzle diameters

less than 6.0mm. The figure notes this area with an arrow that indicates the "sweet spot."

This area corresponds to an operating region where small (5.0-6.0mm) nozzles may

actually utilize low flow rates while maintaining an acceptable plugging factor.
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Figure 5-6: Effect ofZinc Nozzle Diameter and Flow Rate
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Similarly, Figure 5-7 shows, that for any flow rate, the maximum diameter IS

approximately 9.0 - 10.0 mm.
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Figure 5-7: Effect of Selenium Nozzle Diameter and Flow Rate
on the Plugging Factor
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Confirmation Runs

Several confirmation runs were conducted to further ''tune'' the parameters. The

nozzle diameters were established to be 8.5 mm and the appropriate flows calculated

from the spreadsheet in Table C-4. The exact data points are located in the table and

listed as "confirm" runs. Attempts were made to maximize the yield while maintaining a

plugging factor of < 0.010. All runs resulted in plug factors < 0.010, but the flows that

were < 0.001 moVsec were in the range of 0.007. The optimwn was chosen to be at flow

rates of 0.000728 mol/sec and 0.00364 mol/sec Zn and Se~ respectively. These flows

were near the minimum allowable to achieve the desired product batch size and

reasonable run time. Appendix B contains the calculations for actual yields and run times

for the design basis batch size. The runs are shown in Figure 5-8.
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Figure 5-8: Reactant Flow Rates Effect on ZnSe Product Yield

(from confinnation runs 1-6)
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Summary ofNew Design

Table 5-9: Optimal·Reactor Dimensions and Conditions

stparame er ettin~

Reactor: Tube Length (nun) 1000
Inside Diameter (mm) 90

Nozzles: Inside Diameters (nun) 8.50
Lengths (mm) 20.0

Angles (degrees) 0
Positions from Centerline (nun) 20.0

Temperature (deg. C) 950
Flow Rates: Selenium (mol/sec) 3.64 x 10-4

Zinc (mol/sec) 7.28 x 10-4
At Carrier (total ml/min) 600

FLUENT/UNSProfiles oillie System

Figures 5-9 through 5-15 are output contour plots of the FLUENTIUNS model

configured and operated as shown in Table 5-9. Figures 5-9 and 5-10 profile the

compositions of the reactor tube in tenns of mole fractions of Zn and Se2, respectively.

The profiles of the ZnSe product are shown in Figure 5-11. It should be noticed in this

figure that the product is evenly distributed with an increasing concentration of product

going down the reactor length. Also, there is an absence of appreciable amounts of ZnSe

near the inlet nozzles. The product profile of Figure 5-11 should be compared to that of

Figure 5-12. Figure 5-12 is an experimental run from the Study II matrix and

corresponds to a set of poor operating conditions. The product distribution, in this nul,

was obviously poorly distributed with the largest concentrations located at the end and

the very front of the reactor tube. There is also a large amount of material at the nozz e
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inlets, which would likely produce a plug. Note also that the run corresponds to a

plugging factor of approximately 0.0150, well in excess of the 0.010 criteria. The

validity of the PFC methodology is apparent from the graphical output ofthis run.

Similar to the concentration profile comparisons, the velocity vectors appear to

substantiate the optimum conditions as given in Table 5-9. Figure 5-13 shows the

optimmn condition velocity, whe~e there is an absence of radially-oriented vectors

characteristic of secondary flow patterns. Recall that these structures were minimized in

the experimental designs by the analysis of the plugging factor. This run can be

compared to the unoptimized run depicted in Figure 5-14, where the Se2 inlet vectors are

perpendicularly oriented towards the· Zn inlet. Recall that this run produced a PFC of

greater than 0.0150.

Figure 5-15 depicts the interior temperature profiles of the reactor. Recall that

although the model was developed as an isothermal wall, the system certainly does not

operate isothermally due to the exothermic reaction. Forthcoming work by Foster and

Nikolic (in progress) will address this issue.
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Discussion ofDesign Results

The following points related to the model and the resulting design need to be

considered. The diameter was kept the same while adjusting the reactor length to

maintain constant Peclet numbers. As recommended by KJeijn et aL (1996), this

approach to stagnation flow reactors is advantageous rather than fixing the height to

length aspect ratio.

The optimum nozzle design was limited by plugging phenomena and represents a

compromise between the run time that is dictated by the desired batch size, and the

residence time required for sufficient diffusive mixing, i.e.- yield. Zambov et a1. (1998)

gives an explanation of the above compromise through analysis of the governing

equations that dictate radial and axial mixing and plugging.

Inert Carrier Gas Effects

The modeling experiments did not include variation of the carrier gas flow rate. It

was discerned in the experiments with the present system discussed in Chapter ill, that

the system prefers lower Ar flow rates. The interactions are such that the higher flows

may aid in the prevention of plugging but also have the deleterious effect of decreasing

the residence time, thus limiting diffusive mixing. The chosen Ar flow rates were based

on those earlier studies and are further substantiated by calculations made by Morrison

(1998).

Another conceptual approach to the effect of carrier gas flow rates in diffusion

controlled systems is offered by Gebhart (1971). By analogy to heat transfer systems, the

noncondensable, inert carrier has the effect of increasing the resistance to mass transfer in
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product yield that a given set of reactant flows will produce with both nozzle diameters

set at 8.5mm.

Notice that Figure 5-17 reaffirms the optimum nozzle diameter sizing for flows

within this range. At approximately 8 - 9 m:m diameters, there is a maximwn plug factor

that approaches (but remains less than) 0.010.
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Figure 5-16:

Response Surface for the Effect of Reactant Flow Rates

at Constant Inlet Diameters on the Product Yield
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Response Surfac,e for the Effect ofNozzle Diameter

and Total Flow Rate on the Plugging Factor

Equations for the Surfaces

Although the 3D plots can be read directly, it would be of greater use if the

functions could be solved nwnericaUy for the two response variables. This would allow

for more accurate value detennination as well as possible computer coding, if desired.

Therefore, an attempt was made to fit the two surfaces to appropriate and dependable

functions. A background in the theory and procedure is outlined by Khuri and Cornell

(1996). Examination of the statistics of the ftmction fits was based on a review of Bethea

and Rhinehart (1991).
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The surfac·e for yield is assumed to be approximately planar and fit to the

following equation by regression analysis via SigmaPlot 4.0 software.

II = 83.61+-18128.87x+11432.79y (5-2)

Where, the dependent variable f} is the yield, x is the diameter, and y is the total mole

flow. The standard error of estimate is given to be 6.02 % with a regression coefficient

(R) of 0.93. It should be noted that the function only applies to diameters within a few

tenths of 8.5 rnm..

The surface for the plugging factor closely resembles a Gaussian distribution of

the factor about a mean value. The equation fit to this surface is:

[( )2( )2]-050 x-8.8769 + y+O.Cl299

12 =0084e 2.5583 4.7836
(5-3)

Where, f2 is the dependent plug factor, x is the diameter,. and y is the total mole flow rate

with a standard estimate error of 0.0008 and an R coefficient of 0.91. This equation can

apply across a range of diameters and total flow rates and should be used as a check for

the conditions established by the first function (f1). Again, 6 should have a value of less

than 0.010 for successful operation.

Summary of Steps to Establishing New Operating Conditions

Figure 5-18 gives one pennutation that will allow the application of the above

functions to develop operating conditions different from those given in Table 5-9. There

are, of course, many other possibilities, but each approach would require development of

new response surfaces. The data contained in Appendix C can be readily adapted to yield

many other surfaces such as temperature, reactor length, etc. These can then be applied

in a similar fashion to the procedure given below in terms of flows and diameters:
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STEP 1:
Establish

Desired Batch
Size

STEP 2:
Calculate Required Quantity
ofReactants at 100% Yield

STEP 3:
Establish Target Yield

or 'Guess'

Step 4:
Read Reactant Flows

from Fig. 5-14

STEP 5:
Check Plug Factor

from Eqn. (5-3)

STEP 6:
Calculate Run Time

Conduct Run

YES

NO

Figure 5-18: Steps to Establishing New Operating Conditions
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The present and the newly designed reactor systems are both strongly influenced

by diffusion controlled operating conditions. The diffusive transport of reactants exceeds

that of convective transport at the reaction interface. The process produces the desired

hexagonal crystals with particle size distributions of less than approximately 20 microns.

However, the mass transfer limited nature of the process complicates the physical

operation of the system. There is a propensity for the reactor inlets to plug as a result of

the development of se,condary flow characteristics within the reactor tube. The proposed

new reactor was designed to address these technical issues. The following conclusions

relevant to the new design are noted.

Overall New Design

The system, as proposed, accomplishes the design basis targets with respect to

batch size, run time, product yield, and elimination of plugged runs. Additionally, the

new system offers substantial improvements in the areas of; ease of operation, process

controllability and predictability, simplification of operating procedure, and safety.
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Consequently, the system should provide enhanced economic competitiveness to the

overall process.

Computer Modeling

The computer model is wen correlated to the experimental data within the bounds

of uncertainty in the present system data. A 2-dimensional, pseudo-steady-state, finite

volume CFD model can reasonably represent the new reactor design. Insertion of

idealized kinetic expres.sions and empirically fit diffusion coefficients into the model

allows for the simulation of an actual 3-dimensional system.

Optimization ofParameters

The inlet velocities and flow rates of reactants -primarily dictate the new reactor

performance. Optimal operating conditions and physical dimensions of the reactor can

be established from an experimental matrix executed within the computer model. The 2D

model can be adapted to adequately predict the 3D phenomena associated with secondary

flow characteristics. The likelihood that plugging conditions may develop can be

accounted for in the determination of the ideal operating conditions. Various

combinations of RSM functions can be used as predictors of reactor performance or as a

means of establishing new operating conditions.

Recommendations

Implementation

The new reactor design should be implemented in tandem with follow-up

modeling efforts. The system performance, once built, can be tuned using the model as
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developed in the course ofthis work and by others. The model accuracy can be enhanced

with improved mass flow rates provided by the new system. This would allow for

iterative improvement -in both the accuracy of the model and performance of the new

reactor.

Other Group II-VI compOlmds could be synthesized in the proposed reactor with

additional modeling (that includes new kinetics and properties) to establish separate

operating conditions. Experimental yield and mass flow data will need to be collected

prior to the modeling work for each new product.

Modeling Follow-up Efforts

The model reliability can be further improved with the development a 3­

dimensional representation of the reactor for better resolution of the secondary flow

patterns.. Additionally, effort should be focused on development of a non steady-state

model that can predict the deposition of the product layer. This would entail significant

work devoted to the determination of appropriate kinetic expressions for the reaction

mechanism that are presently unknown. There are other researchers currently working on

the heat transfer aspects of the -reactor model, which can be incorporated at a later date.

However, the effects of radiation need to be addressed, as well. As noted in a preceding

chapter, the data gathered in the course of this work can be analyzed further to yield

additional predictive functions. The run results presented here could be augmented with

new data that becomes available from improvements in the computer model.

The analytical data related to particle size distributions of the product powder

provided by the sponsor were incomplete at the time of conclusion of this manuscript, but
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could eventually be included in the experimental matrix to provide size distributions of

the product from the model output.

As outlined in the literature review, it is possible to incorporate the DOE data into

a computer model that can be used to develop an artificial neural network. The DOE data

can "train" a network that can take in back pressure measurements from the new boilers

and adjust the mass flow of reactants, temperatures, etc. to yield an optimal product yield

and deposition pattern. Now that my thesis is complete, it is safe to recommend this and

other interesting projects for further work.
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APPENDIX A

DERIVED IONETIC AND THERMODYNAMIC PARAMETERS

Derivation of Idealized Rate Constant

The following is a calculation of an idealized rate constant for a reaction of

overall second order. Units typically used in the relationships are given in the

Nomenclature section. Also, specific assmnptions relative to the calculations are

discussed in the body ofChapter N.

For an ideal plug flow reactor, a material balance written in tenus of the

disappearance of component A results in the PPR design equation (Levenspiel, 1996):

(A-I)

The equation applies for any expansion coefficient, EA, for an ideal gas at constant

pressure and temperature with changing number of moles in the gas phase:

(VXA = I) - (Vx. =0)
&t =-"-----=------:.--..:...

VXA = 0

(A-2)

Where, V is the component gas phase volume or volumetric flow rate, and XA is the

conversion of reactant A:

XA =1- CA
CA.

Where, CA and CAo refer to the concentrations of A at the inlet and any time t,

respectively.

(A-3)

For a general second order, irreversible reaction, the rate equation is given by:
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(A-4)-RA = k CAl Cal

The integration of the design equation (A-I) results in the following for SA '* 0:

k = [(2 SA(l + SA) (In(l-XA)) + S2
AXA+ (S2AXA + (SA + Ii XA/(l-XA)] /"t CAo (A-5)

Where, "t is the reactor residence time given by the ratio of the reactor volume and the

volumetdc flow Yo:

't=VNo (A-6)

The volumetric flow rates and inlet concentrations are calculated by equations given in

Appendix B and incorporated into an Excell spreadsheet given by Tables C-4 (a & b).

Assuming that the conversion ofA (Zn) approaches 100 %, Eqn. (A-5) is solved for k ~

6.89 X 106 L1mol-s.

Activation Energy Estimates From Experimental Data

The activation energy (AE) was estimated by the following methods from

experimental data gathered from the system in operation at Eagle-Picher.

Method I

The first method is based on the Arrhenius temperature dependence of the rate

constant given by:

(A-7)

Table A-I was developed from two experiments conducted at different temperatures that

have reliable nm time estimates based on the boiler power readings:
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Table A-I: Experimental Rate Data (Method 1):

Rate
oJ

Temp. Est. Run Product ProdUlCtRun
ill (K) Time (s) (~ams) (moles) (moUrn -s) (%) (Rate)
E3R6 1348 165 641 4.40 0.0776 58.0 -2.556
E9R2 1248 190 614 4.26 0.0648 55.6 -2.764

With only two reliable runs, we assume linearity, and take a slope of the points and take

the slope given by Levenspiel (1996) as:

Slope (In(rate) vs. r 1
) = -AE!R (A-8)

Where, R is the universal gas constant with the value of 8.314 J/mol-K and the activation

energy, AE• is found to be 2.93 x 107 JI Kmol.

Methodll

The second method evolves from the following relationship given by Levenspiel

(1972.,1996):

(A-9)

Using experimentally detennined conversions, the appropriate rate constant k values are

calculated from Equation (A-5) to arrive at AE = 8.1 0 x 107 J/Kmol.

The values determined from the two methods can be compared to that reported by

Levenspiel (1996) for typical gas phase reactions that proceed only at high temperatures

of 2.0- 4.0 x 108 J/Kmol. Transition-state theory based calculations performed by

Morrison (1998) resulted in an AE of 1.90 x 108 J/Kmol. These values are summarized in

Table A-2.
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Table A-2: Comparison of Calculated Activation Energies for ZnSe Reaction

Source AE lJlKmol

Method I 2.93 x 107

Method II 8.10 x 10,7

Levenspiel* 3.0 x 108

Transition-State Theory** 1.90 x 107

Note: "'1996, "''''Morrison (1998)
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APPENDIXB

DESIGN BASIS CALCULATIONS

Dimension~essParameter Calculations

The Reynolds number equation for a cylinder:

(B-1)

Where, D is the cylinder diameter, v is the velocity, p and ~ are the fluid density and

viscosity, respectively. Combining B-1 with the equations of continuity and cylinder area

where V0 is the fluid volumetric flow rate:

A = (1t/4)D2

Re -- (~.J(VtDo)Results in the following form: '~r-

The mass Peelet number is given by:

Pem = Re x Sc

The Schmidt number, Sc, is given by:

(B-2)

(B-3)

(B-4)

(B-5)

(B-6)

Where, Drn is the mass diffusivity of the fluid components and we arrive at the final from

for the mass Peclet number:

Pern = (D v )/Dm
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The volumetric flow rate, Vo, velocity, v, and the properties of p, 11, and Dm can be

calculated at inlet conditions or averaged for the length of the reactor to accmmt for

changes in composition and temperature. Temperature dependent property functions are

available in the thesis of Morrison (1998).

Basic Flow Calculations

The above calculations for our system can be made via the following basic

relations. The formulas are in spreadsheet fonnat in Appendix C for quick calculation of

operating conditions. The volmnetric flow rate, Vo• of individual reactants is derived

from the ideal gas law and assumes the fonn of:

Vi = rllRT
o p

Where, the molar flow rate of component i, ill, is foWl.d from:

. rrli
ni=-­

MWi

(B-8)

(B-9)

And the mass flow rate, nli. is determined from flowmeter calibrations in cm3/sec as:

(
em3). em3/ sec 10007 MWi

mi= o
(8-10)

Where, 8 refers to the molar volume (m3/mol) gas constant taken from an appropriate

plot or temperature dependent function.

The inlet velocities are then calculated as follows. For inlet 1, v I is given by:

146



Inlet 2 velocity is calculated similarly:

v Zn + V Ar

V - 0 0
I - 2

mlnlelI

V Zn + V Ar
V2 = 0 0

2
mlnlell

(B-11)

(B-12)

The inlet mass fractions., Xi, required as for input boundary conditions by FLUENT are

calculated in the spreadsheet as follows:

mSe2x - -----=.;=---Se2 - • •
m'Se2 + mAr

Conversion ofFLUENT Steady State Yields to Actual Yields

(B-13)

(B-14)

The following is an exampl,e calculation that estimates a time-dependent batch

product yield from tbe steady state output data given by the FLUENT CFD modeL With

the batch output set at 2.0 kgs ZnSe, the required number of moles of Zn and Se is given

by:

[1:~:Z7; ]
_-'- km_o_l-'---_ = 17.88molesZn & Se
(yield(%)/lOO = 0.775)

(B-15)

Based on run conditions as outlined in Chapter V and inlet flow rates calculated from the

above relationships or Spreadsheets C-4 (a&b); the batch run. time is calculated as:
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[

17.88moleszn ](3600sec) = 6.82hours (B-16)
7.28xl0--4 mol hr

sec

It is apparent :from above that run times can be shortened with higher flows. Recall,

however, that the higher flows will require larger nozzles to maintain proper flow

characteristics given by Eqns. (5-2) and (5-3). Table B-1 gives the FLUENT species

mole fractions taken from steady state integration of the reactor interior for the confirm05

run.

Table B-I: Steady State Mole Fractions from FLUENT for Confrrm05 Run

C t M I F tiomponen oe rae on
Zn 0.130
Se2 0.065

I

ZnSe 0.477 I

Ar 0.328
Total 1.000

For an ideal gas at constant pressure and temperature with a change in the number

of moles in the gas phase due to reaction, the expansion coefficient, gA, is given by Eqn.

(A-2). The volumetric flow rates,Vo, for Zn, Se2, and Ar are calculated from Eqn. (B-8)

and sumarized in Table B-2.

Table B-2: Inlet Volwnetric Flow Rates for Confum05 Run

3Component Vo(m Isec)
Zn 7.310 x 10-4
Se2 3.653 x 10·)
Ar 2.007 x 10·.)

I

Total 1.297 x 10-4
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The volumetric fraction of argon, V:r
, is calculated as:

(B-1 7)

EA is then calculated from the volume fractions as follows:

£I = (l + 0.30) - 2.3 = -0.43
2.3

(B-18)

Levenspiel (1996) gives the conversion of reactant A as:

.xA = CAo-CA
Cto+ £lCA

(B-19)

Alternatively, the expressions can be given in terms ofYA. mole fraction ofA:

yA CA l-XA
-=-=
YAo CA. 1+ &tA:A

(B-20)

Where, the inlet mole fraction of A is calculated from inlet flow rates, n" given by (B-9).

The inlet YAo. where A = Zn is then given by:

YZIIO =. ~z" . = 7.28xlO-4 = 0.563
nz" + nSe2 + nAr 7.28xlO-4 + 3.64xlO-4 + 2.00xlO-4

(B-2l)

And, the outflow mole fraction is computed from FLUENT profiles as an area weighted

average surface integral at the outflow face of the reactor geometry. The component

mole fractions are given in Table B-3.

Table B-3: Outflow Mole Fractions from FLUENT for Conftrm05 Run

M I F titcomponen oe rae on
Zn 0.0227

ZnSe 0.596
Sez 0.0430
Ar 0.338

Total 0.9997
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Values from Table B-3 and Eqn. (B-2!) result in the following ratio for Zn:

yz" = 0.0227 =0.0403
yZno 0.563

(B-22)

Finally, Eqn. (B-20) is solv,ed to arrive at an estimate for the actual conversion ofZn:

0.0403 = (l- XZn)
(1- 0.43XlII)

The conversion obtained by iteration: XZn = 0.977 or 197.7 %.1

(B-23)

The XZn value is an estimate only of the actual yield that can be derived from the

FLUENT steady state output model of the new reactor operated at the optimum

conditions outlined in Chapter V.
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I. Experimental Design Study I

Table C-l: De'sign Optimization Study I Experimental Grid

RUN PHYSICAL PARAMETERS OPERATING
NO. 1 =NA 2=ND 3=NP 4= RL 5= FR 6=ZT

1 -1 -1 -1 -1 -1 -1
2 -1 -1 1 -1 -1 -1
3 1 -1 -1 -1 -1 -1
4 1 -1 1 -1 -1 -1
5 -1 1 -1 -1 -1 -1
6 -1 1 1 -1 -1 -1
7 , 1 1 -1 -1 -1 -1
a 1 1 1 -1 -1 -1
9 -1 -1 -1 1 -1 -1
10 -1 -1 1 1 -1 -1
11 1 -1 -1 1 -1 -1
12 1 -1 1 1 -1 -1
13 -1 1 -1 1 -1 -1
114 1 -1 . 1 1 1 -1 -1
15 1 1 -1 1 -1 -1
16 1 1 1 1 -1 -1
17 -1 -1 -1 -1 1 -1
18 ...-1 ... -....1·.,.~ .. 1 -1 1 -1
19 1 -1 -1 -1 1 -1
20 1 -1 1 -1 l' -1
211 -1 1 -1 -1 1 -1
22 -1 1 1 -1 1 -1
23 1 1 -1 -1 1 -1
24 1 1 1 -1 1 -1
25 -1 -1 -1 1 1 -1
26 -1 -1 1 1 1 -1
27 1 -1 -1 1 1 -1

I 28 I 1 -1 1 1 1 -1
I 29 I -1 1 -1 1 1 -1

30 -1 1 1 1 1 -1
31 1 1 -1 1 1 -1

1

32 1 1 1 1 1 -1
: 33 -1 -1 -1 -1 -1 1

34 -1 -1 1 -1 -1 1
35 1 -1 -1 -1 -1 1
36 1 -1 1 -1 -1 1
37 -1 1 -1 -1 -1 1
38 -1 1 1 -1 -1 1
39 1 1 -1 -1 -1 1
40 1 1 1 -1 -1 1

Table Continued Next Page
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I. Continued:
RUN PHYSICAL PARAMETERS OPERATING
NO. 1 =NA 2=ND 3= NP

, 4= RL 5=FR 6=ZT
41 -11 -1 -1 1 II -1 1 i

42 -1 -1 1 1
,

-1 1
43 1 -1 -1 1 -1 1
44 1 -1 1 1 -1 1
45 -1 1 -1 1 -1 1
46 -1 1 1 1 -1 1
47 1 1 -1 l' -1 1
48 1 1 I 1 1 -1 1
49 -1 -1 -1 -1 1 1
50 -1 -1 1 -1 1 1
51 1 -1 -1 -1 1 1
52 1 -1 1 -1 1 1
53 -1 1 -1 -1 11 1
54 -1 1 1 1 -1 1 , 1
55 1

,

1 -1 -1 1 1,

56 1 1 1 -1 1 1
57 -1 -1 -1 1 ! 1 1
58 -1 -1 1 1 1 1
59, 1 -1 -1 1 1 1
60 1 -1 1 1 1 1
61 -1 1 -1 1 1 1
62 -1 1 1 1 1 1
63 1 1 -1 1 1 1
64 1 1 1 1 I 1 1
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Table C-3: FLUENT Nozzle Coordinates (mm)

Nozzle Coordinates

Left RI,ght

Block NA NO NP RL 1 2 3 4 1 2 3 4

1 .' . ., . 0,32.5 0,35 0,55 0,57.5 ' 10,32.5 10,35 10,55 10,57.5

2 - - + . 0,12.5 0,15 0,75 0,17.5 10,12.5 10,15 10,75 10,77.5

3 + - - - 0,32.5 0,35 0,55 0,,57.5 7.1,39.6 7.1,42.1 7.1,47.9 7.1,50.4

4 + - + - '0,12.5 0,15 0,75 0,77.5 7.1:,19.6 7.1,22.1 7.1,67.9 7.1,70.41

5 . + - - 0,29 0,35 0,55 0,61 ,.10,29 10,35 10,55 10,61

6 - + + - 0,9 0,15 0,75 0,81 10,9 10,15 10,75 10,81

7 + + - - 0,29 0,35 0,55 0,61 7.1,36.1 7.1,42.1 7.1,47.9 7.1,53.9

8 + + -+ - 0,9 0,15 0,75 0,81 7.1,16.1 7.1,22.1 7.1,67.9 7.1,73.9

9 - - - + 0,32.5 0,35 0,55 0,57.5 10,32.5 10,35 10,55 10,57.5

10 - - + + 0,12.5 0,15 0,75 0,17.5 10,12.5 10,15 10,75 10,77.5

11 + - - + 0,32.5 0,35 0,55 0,57.5 7.1;39.6 7.1,42.1 7.1,47.9 7.1,50.4

12 + - + + ' 0,1i2.5 0,15 0,75 0,77.5 7.1,19.6 7.1,22.1 7.1,'67.9 7.1,70.4

13 - + . + 0,29 0,35 0,55 0,61 10,29 1,0,35 10,55 10,61

14 - + + + 0,9 0,15 0,75 0,81 10,9 10,15 10,75 10,81

15 + + - + 0,29 0,35 0,55 0,61 7.1,36.1 7.1,42.1 7.1,47.9 7.1,53.9

16 + + + + 0,9 0,15 0,75 0,81 7.1,16.1 7.1,22.1 7.1,67.9 7.1,73.9

Notes: all values in mm, NP =distance from centerline to inside edge of nozzle, all nozzles 1em
lonQ
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III. Operating Parameters Flow Calculations

Table C-4A: Flow Calculations Spreadsheet
DOEOPT RUNS FLOW CALCULATIONS (A)

Ar Zn
RUN INLET AREA @300K @inletT @inletT

DIA
SET TEMP(K) (mm) (m2) ml/min m3/sec moVsec m3/sec g/sec moVsec g/sec m3/sec

doeopt1 1223 2.5 4.909E-06 300 5.000E-06 2.000E-04 2.007E-OS 0.007561 6.20EA 04 4.05E-02 6.22E-05
doeopt1 1223 2.5 4.909E-Q6 300 5.000E-06 2.000E-04 2.007E-05 0.007561 3.30E-03 2.16E-01 3.31 E-04
doeopt1 1223 6 2.827E-05 300 5.000E-06 2.000E~04 2.007E-05 0.007561 6.20E-04 4.05E-02 6.22E-05
doeopt1 1223 6 2.827E-05 300 5.000E-06 2.000E-04 2.007E-05 0.007561 3.30E-03 2.16E~01 3.31 E-04
doeopt1 1323 2.5 4.909E-06 300 5.000E-06 2.000E-04 2.171 E-05 0.007561 6.20E-04 4.05E-02 6.73E-05
doeopt1 1323 2.5 4.909E-06 300 5.000E-06 2.000E-04 2.171E-05 0.007561 3.30E-03 2.16E-01 3.58E-04
doeopt1 1323 6 2.827E-05 300 5.000E-06 2.000E-04 2.171E-05 0.007561 6.20E-04 4.05E-02 6.73E-05
doeopt1 1323 6 2.827E-05 300 5.000E-06 2.000E-04 2.171E-05 0.007561 3.30E-03 2.16E-01 3.58E-04

midpoint 1273 4.25 1.419E-05 300 5.000E-06 2.000E-04 2.089E-05 0.007561 1.96E-03 1.28E-01 2.05E-04

doeopt2 1223 5 1.963E-05 300 5.000E-06 2.000E-04 2.007E-05 0.007561 7.28E-04 4.76E-02 7.31E-05
doeopt2 1223 5 1.963E-05 300 5.000E-06 2.000E-04 2.007E-05 0.007561 2.01 E-03 1.31E-01 2.02E-04

doeopt2 1223 5 1.963E-05 300 5.000E-06 2.000E-04 2.007E-05 0.007561 3.30E-03 2.16E-01 3.31 E-04

doeopt2 1223 8.25 5.346E-05 300 5.000E-06 2.000E-04 2.007E-05 0.007561 7.28E-04 4.76E-02 I 7.31E-05
doeopt2 1223 8.25 5.346E-05 300 5.000E-OB 2.000E-04 2.007E-05 0.007561 2.01 E-03 1.31 E-01 2.02E-04
doeopt2 1223 8.25 5.346E-05 300 5.000E-06 2.000E-04 2.007E-05 0.007561 3.30E-03 2.16E-Q1 3.31E-04

doeopt2 1223 12 1.131E-04 300 5.000E-06 2.000E-04 2.007E-05 0.007561 7.28E-04 4.76E-02 7.31E-05
doeopt2 1223 12 1.131E-04 300 5.000E-06 2.000E-04 2.007E-05 0.007561 2.01 E-03 1.31 E-01 2.02E-04
doeopt2 1223 12 1.131E-04 300 S.000E-06 2.000E-04 2.007E-05 0.007561 3.30E-Q3 2.16E-01 3.31 E-04

confirm 1223 8.5 5.674E-05 300 5.000E-06 2.000E-04 2.007E-05 0.007561 0.0025 1.63E-01 2.51E-04
confirm 1223 8.5 5.674E-05 300 5.000E-06 2.000E-04 2.007E-05 0.007561 0.0030 1.96E-01 3.01E-Q4
confirm 1223 8.5 5.674E-05 300 5.000E-06 2.000E-04 2.007E-05 0.007561 0.0035 2.29E-01 3.51E-Q4



IV. FLUENT Information

Table C-5: Operating Parameters Inpu.t Grid

Zn Se
TEMP CIA - + . +

- - 16.7635 71.5514 10.42,61 38.2289

- + 2.9103 12.4221 1.8101 6.637
I

!

+ - 18.11342 77.4019 11.2786 41.3547

-
+ + 3.1483 13.4378 1.9581 7.1796

MOLE FRAC: 0.8428 0.9661 0.8662 0.9721
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V. Design Optimization Study I

Table C-6: Study [ Run Data

RUN RUN
NO. its Zn ZnSe yield NO. its Zn ZnSe yield

1 138 0.236 0.448 65.50 . 33 134 0.208 0.329 61.20
2 526 0.225 0.237 51.30 34 543 0.198 0.273 58.00
3 156 0.221 0.328 59.70 35 151 0.196 0.361 64.80
4 248 0.204 0.328 61.70 36 242 0.178 0.362 67.00
5 83 0.183 0.360 66.30 37 82 0.161 0.387 70.60
6 109 0.257 0.254 49.70 38 110 0.238 0.276 53.70
7 211 0.126 0.430 77.30 . 39 222 0.108 0.457 80.90

I
a 145 0.204 0.342 62.60 40· 143 0.181 0.372 67.30
9 150 0.238 0.287 54.70 41 149 0.210 0.323 60.60
10 275 0.214 0.250 53.90 42 277 0.187 0.285 60.40
11 171 0.190 0.367 65.90 43 175 0.187 0.370 66.40
12 1010 0.200 0:352 63.80 44 1000 0.176 0.382 68.50
13 89 0.156 0.394 71.60 45 84 0.139 0.416 75.00
14 102 0.228 0.284 55.40 46 101 0.210 0.307 59.40"

·15 . 135 0.133 0.444 76.90 47" 135 0.115 0.468 80.30
16 113 .. 0.122 0.446 78.50 48 105 0.107 0.466 81.30

17 131 0.457 0.209 31.40. 49 128 OA·16 0.268 39.20
18 1000 "<t409 0.160 21.10 50 1000 0.371 0.212 36.40•. ._. ..

19 1000 0.425 0.274 39.20 51 1127 0.386 0.330 46.10
20 227 0.403 0.272 40.30 52 222 0.364 0.329 47.50
21 119 0.352 0.319 47.50 53 118 0.313 0.374 54.40
22 347 0.350 0.275 44.00 54 351 0.320 0.318 49.80
23 181 0.304 0.457 60.00 55 177 0.273 0.502 64.80
24 235 0.378 0.360 48.80 56 245 0.347 0.404 53.80
25 138 0.441 0.222 33.50 57 135 0.402 0.278 40.90
26 265 0.399 0.173 30.20 58 250 0.360 0.228 38.80
27 190 00409 0.297 42.10 59 187 0.371 0.352 48.70
28 1000 00425 0.282 40.00 60 1000 0.373 0.351 48.60
29 1000 0.325 0..370 53.20 61 99 0.289 0.421 59.30
30 204 0.313 0.285 47.70 62 204 0.280 0.329 54.00
31 121 0.263 0.518 66.30 63 127 0.252 0.535 68.00
32 130 0.279 0.485 63.50 64 128 0.248 0.529 68.10

Notes: 1) "its" = number of iterations for convergence
2) Values are Volume Integrals

159



VI. Data Analysis

Tabl,e C-7: Study I Factor Analysis

1

RUN PHYSICAL PARAMETERS OPERATING·
NO. 1 = NA 2= NO 3=NP 4=RL

,
5=FR 6=ZT

1 -65.5 -65.5 -65.5 -65.5 -65.5 -65.5
2 -51.3 -51.3 51.3 -51.3 -51.3 -51.3
3 59.7 -59.7 -59.7 -59.7 -591.7 -59.7
4 61.7 -61.7 61.7 -61.7 -61.7 -61.7
5 -66.3 66.3 -66.3 -66.3 -66.3 -66.3
6 -49.7 49.7 49.7 -49.7 -49.7 -49.7
7 77~3 77.3 -77.3 -77.3 -77.3 -77.3
8 62.6 62.6 62.6 -62.6 -62.6 -62.6
9 -54.7 -54.7 -54.7 54.7 -54.7 -54.7
10 -53.9 -53.9 53.9 53.9 -53.9 -53.9
11 65.9 -65.9 -65.9 65.9 -65.9 -65.9
12 63.8 -63.8 63.8 63.8 -63.8 -63.8
13 -71.6 71.6 -71.6 71.6 -71.6 -71.6
14 -55.4 55.4 55.4 55.4 -55.4 -55.4
15 76.9 76.9 -76.9 76.9 -76.9 -76.9
16 78.5 78.5 78.5 ·78.5 ~78.5 -78.5
17 -31.4 -31.4 -31.4 -31.4 31.4 -31.4
18 -21.1 -21.1 21.1 -21.1 21.1 -21.1
19 39.2 -39.2 -39.2 -39.2 39.2

.
-39.2

20 40.3 -40.3 40.3 -40.3 40.3 -40.3
21 -47.5 47.5 -47.5 -47.5 47.5 -47.5
22 -44.0 44.0 44.0 -44 44 -44

23 60.0 60.0 -60.0 -60 60 -60
24 48.8 48.8 48.8 -48.8 48.8 -48.8
25 -33.5 -33.5 -33.5 33.5 33.5 -33.5
26 -30.2

,

-30.2 30.2 30.2 30.2 -30.2
27 42.1 -42.1 -42.1 42.1 42.1 -42.1
28 40.0 -40.0 40.0 40 40 -40

29 -53.2 53.2 -53.2 53.2 53.2 -53.2
30 -47.7 47.7 47.7 47.7 47.7 -47.7
31 66.3 66.3 -66.3 66.3 66.3 -66.3
32 63.5 63.5 63.5 63.5 63.5 -63.5
33 -61.2 -61.2 -61.2 -61.2 -61.2 61.2

34 -58.0 -58.0 58.0 -58 -58 58

35 64.8 -64.8 -64.8 -64.8 -64.8 64.8

36 67.0 -67.0 67.0 -67 -67 67

37 -70.6 70.6 -70.6 -70.6 -70.6
, 70.6

3,8 -53.7 53.7 53.7 -53.7 -53.7 53.7

39 80.9 80.9 -80.9 -80.9 -80.9 80.9

40 67.3 67.3 67.3 -67.3 -67.3 67.3

41 -60.6 -60.6 -60.6 60.6 -60.6 '60.6

42 -60.4 -60.4 60.4 60.4 -60.4 60.4

43 66.4 -66.4 -66.4 66.4 -66.4 66.4
Table Continued Next Page
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VI. Continued
RUN PHYSICAL PARAMETERS OPERATING
NO. 1 = NA. 2= ND 3 = N'P 4= RL 5=FR 6=ZT

44 68.5 -68.5 68.5 68.5 -68.5 68.5
45 -75.0 75.0 -75.0 75 -75 75
46 -59.4 59.4 59.4 59.4 -59.4 59.4
47 80.3 80.3 -80.3 80.3 -80.3 80.3
48 81.3 81.3 81.3 81.3 -81.3 81.3
49 -39.2 -39.2 -39.2 -39.2 39.2 39.2
50 -36.4 -36.4 36.4 -36.4 36.4 36.4
51 46.1 -46.1 -46.1 -46.1 46.1 4£.1
52 47.5 -47.5 47:5 -47.5 47.5 47.5
53 -54.4 54.4 -54.4 -54.4 54.4 54.4
54 -49.8 49.8 49.8 -49.8 49..8 49.8
55 64.8 64.8 -64.8 -64.8 64.8 64.8
56 53.8 53.8 53.8 -53;8 53.8 53.8
57 -40.9 -40.9 -40.9 40.9 40.9 40.9
58 -38.8 -38.8 38.8 38.8 ,38.8, 38.8
59 48.7 -48.7 -48.7 48.7 48.7 48.7
60 48.6 -48.6 48.6 48.6 48.6 48.6
61 -59.3 59.3 -59.3 59.3 59.3 59.3
62 -54.0 54.0 54.0 54 54 54
6'3 68.0 68.0 -68.0 .68 68 68
64 68.1 68.1 66.1 68.1 68.1 68.1

AVG- 51.5 50.2. . 59,1 51.9 65.3 53.9
AVG+ 61.5 62.8 53.9 ' " 58.6 47.7 59.2
DELTA 10.0 12.6 5.2 6.7 17.6 5.3

wr 0.57 0.72 0.30 0.38 1.00 0.30
RANK 3 2 5 4 1 5
SIG YES YES NO NO YES NO
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Vll. Interactions

Table e-8: Study I Interactions Analysis (Yield)

RUN
No. 12 13 14 15 16 23 24 25 26 34 35 36 45 46 56 (%)
1 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5
2 51.3 -51.3 51.3 51.3 51.3 -51.3 51.3 51.3 51.3 -51.3 -51.3 -51.3 51.3 51.3 51.3 51.3
3 -59.7 -59.7 -59.7 -59.7 -59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7 59.7
4 -61.7 61.7 -61.7 -61.7 -61.7 -61.1 61.7 61.7 61.7 -61.7 -61.1 -61.7 61.7 61.7 61.7 61.7
5 -66.366.3 6'6.3 66.3 66.3 -66.3 -66.3 -66.3 -66.3 66.3 66.3 66.3 66.3 66.3 66.3 66.3
6 -49.7 -49.7 49.7 49.7 49.7 49.7 -49.7 -49.7 -49.7 -49.7 -49.7 -49.7 49.1 49.7 49.7 49.7
7 77.3 -77.3 -77..3 -77.3 -77.3 -77.3 -77.3 -71.3 -77.3 77.3 71.3 77.3 71.3 77.3 77.3 77.3
8 62.6 62.6 -62.6 -62.6 -62.6 '62.6 -62.6 -62.6 -62.6 -62.6 -62.6 -62.6 62.6 62.6 62.6 62.6
9 54.7 54.7 -54.7 54.7 54.7 54.7 -54.7 54.7 54.7 -54.7 54.7 54.7 -54.7 -54.7 54.7 54.7
10 53.9 -53.9 -53.9 53.9 53.9 -53.9 -53.9 53.9 53.9 53.9 -53.9 -53.9 -53.9 -53.9 53.9 53.9
11 -65.9 -65.9 65.9 -65.9 -65.9 65.9 -65.9 65.9 65.9 -65.9 65.9 65 ..9 -65.9 -65.9 65.9 65.9
12 -'63.8 63.8 63.8 -63.8 -63.8 -63.8 -63.8 63.8 63.8 63.8 -63.8 -63.8 -63.8 -63.8 63.8 63.8
13 -71.6 71.6 -71.6 71.6 71.6 -71.6 71.6 -71.6 -71.6 -71.6 71.6 11.6 -71.'6 -11.6 71.6 71.6
14 -55.4 -55.4 -55.4 55.4 55.4 55.4 55.4 -55A -55.4 55.4 -55.4 -55.4 -55.4 -55.4 55.4 55.4
15 76.9 -76.9 76.9 -76.9 -76.9 -76.9 76.9 -76.9 -76.9 -76.9 76.9 76.9 -76.9 -76.9 76.9 76.9
16 78.5 78.5 78.5 -78.5 -78.5 78.5 78.5 -78.5 -78.5 78.5 -78.5 -78.5 -78.5 -78.5 78.5 78.5
17 31.4 31.4 31.4 -31.4 31.4 31.4 31.4 -31.4 31.4 31.4 -31.4 31.4 -31.4 31.4 -31.4 31.4
18 21.1 -21.1 21.1 -21.1 21.1 -21.1 21.1 -21.1 21.1 -21.1 21.1 -21.1 -21.1 21.1 -21.1 21.1
19 -39.2 -39.2 -39.2 39.2 -39.2 39.2 39.2 -39.2 39.2 39.2 -39.2 39.2 -39.2 39.2 -39.2 39.2
20 -40.3 40.3 -40.3 40.3 -40.3 -40.3 40.3 -40.3 40.3 -40.3 40.3 -40.3 -40.3 40.3 -40.3 40.3
21 -47.5 41.5 47.5 -47.5 47.5 -41.5 -47.5 47.5 -41.5 47.5 -47.5 47.5 -47.5 47.5 -47.5 47.5
22 -44.0 -44.0 44 -44.0 44.0 44.0 -44.0 44.0 -44.0 -44.0 44.0 -44.0 -44.0 44.0 -44.0 44.0
23 60.0 -60.0 -60 60.0 -60.0 -60.0 -60.0 60.0 -60.0 60.0 -60.0 60.0 -60.0 60.0 -60.0 60.0
24 48.8 48.8 -48.8 48.8 -48.8 48.8 -48.8 48.8 -48.8 -48.8 48.8 -48.8 -48.8 48.8 -48.8 48.8
25 33.5 33.5 -33.5 -33.5 33.5 33.5 -33.5 -33.5 33.5 -33.5 -33.5 33.5 33.5 -33.5 -33.5 33.5
26 30.2 -30.2 -30.2 -30.2 30.2 -30.2 -30.2 -30.2 30.2 30.2 30.2 -30.2 30.2 -30.2 -30.2 30.2
27 -42.1 -42.1 42.1 42.1 -42.1 42.1 -42.1 -42.1 42.1 -42.1 -42.1 42.1 42.1 -42.1 -42.1 42.1
28 -40.0 40.040 40.0 -40.0 -40.0 -40.0 -40.0 40.0 40.0 40.0 -40.0 40.0 -40.0 -40.0 40.0
29 -53.2 53.2 -53.2 -53.2 53.2 -53.2 53.2 53.2 -53.2 -53.2 -53.2 53.2 53.2 -53.2 -53.2 53.2
30 -47.7 -47.7 -47.7 -47.7 47.7 47.7 47.7 47.7 -41.7 47.7 47.7 -47.7 47.7 -47.7 -47.7 47.7
31 66.3 -66.3 66.3 66.3 -66.3 -66.3 66.3 66.3 -66.3 -66.3 -66.3 66.3 66.3 -66.3 -66.3 66.3
32 63.5 63.5 63.5 63.5 -63.5 63.5 63.5 63.5 -63.5 63.5 63.5 -63.5 63.5 -63.5 -63.5 63.5
33 61.2 61.2 61.2 61.2 -61.2 61.2 61.2 61.2 -61.2 61.2 61.2 -61.2 61.2 -61.2 -61.2 61.2
34 58.0 -58.0 58 58.0 -58.0 -58.0 58.0 58.0 -58.0 -58.0 -58.0 58.0 58.0 -58.0 -58.0 58.0
35 -64.8 -64.8 -64.8 -64.8 64.8 64.8 64.8 64.8 -64.8 64.8 64.8 -64.8 64.8 -64.8 -64.8 64.8
36 -67.0 67.0 -67 -67.0 67.0 -67.0 67..0 67.0 -67.0 -67.0 -67.0 67.0 67.0 -67.0 -67.0 67.0
37 -70.6 70.6 70.6 70.6 -70.6 -70.6 -70.6 -70.6 70.6 70.6 70.6 -70.6 70.6 -70.6 -70.6 70.6
38 -53.7 -53.7 53.7 53.7 -53.7 53.7 -53.7 -53.7 53.7 -53.1 -53.7 53.7 53.7 -53.7 -53.7 53.7
39 80.9 -80.9 -80.9 -80.9 80.9 -80.9 -80.9 -80.9 80.9 80.9 80.9 -80.9 80.9 -80.9 -80.9 80.9
40 67.3 67.3 -67.3 -67.3 67.3 67.3 -67.3 -67.3 67.3 -67.3 -67.3 67.3 67.3 -67.3 -67.3 67.3
41 60.6 60.6 -60.6 60.6 -60.6 60.6 -60.6 60.6 -60.6 -60.6 60.6 -60.6 -60.6 60.6 -60.6 60.6
42 60.4 -60.4 -60.4 60.4 -60.4 -60.4 -60.4 60.4 -60.4 60.4 -60.4 60.4 -60.4 60.4 -60.4 60.4
43 -66.4 -66.4 66.4 -66.4 66.4 66.4 -66.4 66.4 -66.4 -66.4 66.4 -66.4 -66.4 66.4 -66.4 66.4
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Table e-8: Study I Interactions Analysis Yield (continued)

No. 12 13 14 I 15 16, I 23 I 24 25 2-6 I 34 35 I 36 I 45 I 4-6 56 (%)
44 -68.5 68.5 68.5 -68.5 68.5 --68.5 -68.5 68.5 -68.5 68.5 -68.5 68.5 -68.5 68.5 -68.5 '68.5
45 -75.0 75.0 -75 75.0 -75.0 -75.0 75.0 -75..0 75.0 -75..0 75.0 -75.0 -75.0 75.0 -75.0 75.0
46 -59.4 -59.4 -59.4 59.4 -59.4 59.4 59.4 -59.4 59.4 59.4 -5,9.4 59.4 -59.4 59.4 -59.4 59.4
47 80.3 -80.3 80.3 -80.3 80.3 -80.3 80.3 -80.3 80.3 -80.3 80.3 -80.3 -80.3 80.3 -80.3 80.3 '
48 81.3 81.3 81.3 -81.3 81.381.3 81.3 -81.3 81.3 81.3 -81.3 81.3 -81.3 81.3 -81.3'81.3
49 39.2 39'.2 39.2 -39.2 -39.2 39.2 39.2 -39.2 -39.2 39.2 -39.2 -39.2 -39.2 -39.2 39.2 39.2
50 36.4 -36.4 3'6.4 -36.4 -36.4 -36,.4 36.4 -36.4 -36.4 -36.4 36.4 36.4 -36.4 -36,.4 36.4 36.4
51 -46.1 -46.11-46.1 46.1 46.1 46.,1 46.1 -46.1 -46.1 46.1 -46.1 -46.1 -46.1 -46.1 46.1 46.1
52 -47.5 47.5 -47.5 47.5 47.5 -47.5 47.5 -47.5 -47.5 -47.5 47.5 47.5 -47.5 -47.5 47.5 47.5
53 -54.4 54.4 54.4 -54.,4 -54.4 -54.4 -54.4 54.4 54.4 54.4 -54.4 -54.4 -54.4 -54.4 54.4 54.4
54 -49.8 -49.8 49.8 -49.8 -49.8 49.8 -49.8 49.8 49.8 -49.8 49.8 49.8 -49.8 -49.8 49.8 49.8
55 64.8 -64.8 -64.8 64.8 64.8 -64.8 -64.8 64.8 64.8 64.8 -64.8 -64.8 -64.8 -64.8 64.8 64.8
56 53.8 53.8 -53.8 53.8 53.8 53.8 -53.8 53.8 53.8 -53.8 53.8 53.8 -53.8 -53.8 53.8 53.8
57 40.9 40.9 -40.9 -40.9 -40.9 40.9 -40.9 -40.9 -40.9 -40.9 -40.9 -40.9 40.9 40.9 40.9 40.9
58 38.8 -38.8 -38.8 -38.8 -38.8 -38.8 -38.8 -38.8 -38.8 38.8 38.8 38.8 38.8 38.8 38.8 38.8
59 -48.7 -48.7 48.7 48.7 48.7 48.7 -48.7 -48.7 -48.7 -48.7 -48.7 -48.7 48.7 48.7 48.7 48.7
,60 -48.6 48.6 48.6 48.6 48.6 -48.6 -48.6 -48.6 -48.6 48.6 48.6 48.6 48.6 48.6 48.6 48.6
61 -59.3 59.3 -59.3 -59.3 -59.3 -59.3 59.3 59.3 59.3 -59.3 -59.3 -59.3 59.3 59.3 59.3 59.3
62 -54.0 -54.0 -54 -54.0 -54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0

63 68.0 -68.0 68 68.0 68.0 -68.0 68.0 68.0 68.0 -68.0 -68.0 -68.0 68.0 68.0 68.0 68.0

64 68.1 68.1 68..1 68.1 68.1 68.1 68.1 68.1 68.1 68.1 68.1 68.1 68.1 68.1 68.1 68.1

•avg- 53.8 55.4 56.0 56.4 56.8 58.1 55.3 54.1 57.0 55.5 55.8 56.1 56.2 56.6',55.8

avq+ 57.4 57.7 57.1 ,56.7 56.2 54.9 57.8 56.8 56.1 57.5 57.2 57.0 56.9 56.4 57.3

delta 3.5 2.3 1,1 0.3 0.6 3.2 2.5 2.7 0.9 2.0 1.3 0.9 0.7 0.3 1.5

wt 1.00 0.66 0.32 0.08 0.17 0.91 0.71 0.78 0.24 0.57 0.38 0.27 0.21 0.07 0.43

rank 1 5 9 14 13 2 4 3 11 6 8 10 1,2 15 7

sig NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO
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VIII: FLUENT Infonnation (Study II)

Table C-9: Study II: FLUENT DDN Coordinates (rom)

Physical REACTOR NOZZLES
Confg Factors Left Right Left Ri~f1t

I Block II NDZ I NDS I 1 II 2 II 1 II 2 I Se I Se II Zn II Zn II Se I Se Zn Zn
-

1 - - 0,0 0,90 900,0 900,90 0,30 0,35 0,55 0,60 10,30 10,35 10,55 10,60
2 ° - 0,0 0,90 900,0 900,90 0,30 0,35 0,55 0,63.5 10,30 10,35 10,55 10,63.5
3 + - 0,0 0,90 900,0 900,90 0,30 0,35 0,55 0,67 10,30 10,35 10,55 10,67
4 - ° 0,0 0,90 900,0 900,90 0,26.5 0,35 0,55 0,60 10,26.5 10,35 10,55 10,60
5 ° ° 0,0 0,90 900,0 900,90 0,26.5 0,35 0,55 0,63.5 10,26.5 10,35 10,55 10,63.5
6 + ° 0,0 0,90 900,0 900,90 0,26.5 0,35 0,55 0,67 10,26.5 10,35 10,55 10,67
7 - + 0,0 0,90 900,0 900,90 0,23 0,35 0,55 0,60 10,23 10,35 10,55 10,60
8 ° + 0,0 0,90 900,0 900,90 0,23 0,35 0,55 0,63.5 10,23 10,35 10,55 10,63.5
9 + + 0,0 0,90 900,0 900,90 0,23 0,35 0,55 0,67 10,23 10,35 10,55 10,67

IX. Key to Study II Physical Factors

Table C -10: Factor Key

Fact Symbol
Levels (mm)

° +
Nozzle Diameter Zn NDZ 5.0 8.5 12
Nozzle Diameter Se NDS 5.0 8.5 12



x. Design Optimization Study II Results I

Table C-ll: Study n Run Data and Results (Yield)

DES:I,GN MATRIX GRID: 3(4-1) Results
RUN CONFG
NO. NO. NOZ NOS FRZ FRS YIELO(%)

1 I 1 65.7 I: 65.7 65.7 65.7 65.7I

2 9 38.7 38.7 38.7 38.7 38.7
3 5 21.3 21.3 21.3 21.3 21.3
4 6 69.2 69.2 69.2 69.2 69'.2
5 4 21.6 21.6 21.6 21.6 21.6
6 3 42.1 42.1 42.1 42.1 42.1
7 6 64.1 64.1 84.1 84.1 84.1
8 2 45.6 45.6 45.6 45.6 45.6
9

,

7 9.5 9.5 9.5 9.5 9.5
10 9 86.3 86.3 86.3 86.3 86.3
11 5 64.9 64.9 '64.9 64.9 64.9
12 11 70.4 7004 70.4 70.4 70.4
13 4 77.3 77.3 77.3 77.3 77.3
14 3 79.3 79.3 79.3 79'.3 79.3
15 8 37.2 37.2

,

37.2 37.2 37.2
16 2 84.0 84.0 84.0 84.0 84.0
17 7 27.6 27.6 27.6 27.6 27.'6
18 6 62.4 62.4 62.4 62.4 62.4
19 7 80.6 80.6 80.6 80.6 80.6
20 1 64.6 64.6 64.6 64.6 64.6
21 9 64.8 64.8 64.8 64.8 64.8
22 3 79.7 79.7 79.7 79.7 79.7
23 8 67.8 67.8 67.8 67.8 67.8
24

,
4 44.0 44.0 44.0 44.0 44.0

25 7 77.7 77.7 77.7 77.7 77.7
26 6 79.4 79.4 79.4 79.4 79.4
27 2 66.6 66.6 66.6 66.6 66.6

AVG LOW 50.9 66.4 78.3 44.2 59.72

AVG MID 59.7 59.5 54.4 65.5
AVG HIGH 68.5 53.2 46.5 69.5

RANGE H-L 17.6 -13.3 -31.8 25.3
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XI. Design Optimization Study II Results II

Table C-12: Study n Run Data and Results (Plugging Factor)

DESIGN MATRIX GRID: 3(4-1) Results
RUN CONFG Plugging
NO. NO. NDZ NDS FRZ FRS Factor

1 1 0.00362 0.00362 0.00362 0.00362 0.00362
2 9 0.00667 0.00667 0.00667 0.00667 0.00667
3 5 0.0156 0.0156 0.0156 0.0156 -.=
4 8 0.00704 0.00704 0.00704 0.00704 0.00704
5 4 0.00689 0.00689 0.00689 0.00689 0.00689
6 3 0.00424 0.00424 0.00424 0.00424 0.00424
7 6 0.00502 0.00502 0.00502 0.00502 0.00502
8 2 0.00286 0.00286 0.00286 0.00286 0.00286
9 7 0.0307 0.0307 0.0307 0.0307 •10 9 0.00629 0.00629 0.00629 0.00629

11 5 0.00456 0.00456 0.00456 0.00456 0.00456
12 1 0.00224 0.00224 0.00224 0,00224 0.00224
13 4 0.00233 0.00233 0.00233 0.00233 0.00233
14 3 0.00643 0.00643 0,00643 0.00643 0.00643
15 8 0.0133 0.0133 0.0133 0.0133 !!!=16 2 0.00443 0.00443 0.00443 0.00443
17 7 0.0379 0.0379 0.0379 0.0379 ~
18 6 0.00168 0.00168 0.00168 0.00168 0.00168
1,9 7 0.00495 ' 0.00495 0.00495 0.00495 0.00495
20 1 0.00283 0.00283 0.00283 0.00283 0.00283
21 9 0.0029 0.0029 0.0029 0.0029 0.0029
22 3 0.00845 0.00845 0.00845 0.00845 0.00845
23 8 0.00306 0.00306 0.00306 0.00306 0.00306
24 4 0.00327 0.00327 0.00327 0.00327 0.00327
25 7 0.00429 0.00429 0.00429 0.00429 0.00429
26 6 0,00645 0.00645 0.00645 0.00645 0.00645
27 2 0.000821 0.000821 0.000821 0.000821 0,000821

AVG LOW 0.01045 0.00399 0.00516 0.00918 0.007364

AVG MID 0.00629 0.00564 0.00863 0.00880
AVG HIGH 0.00535 0.01246 0.00831 0.00411

I RANGE H-L -0.'0051 0.00847 0.00315 -0,00507
Note: HlgblIghted results mdlcates runs m excess of 0.0 1 pluggmg cntena.
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