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PREFACE

The purpose of this study was to model basal area growth using a system of

equations that accounts for tree interdependency within a plot by using seemingly

unrelated regression (SUR) to estimate the parameters. A major regression assumption is

that the error tenus are independent. For Forestry applications, trees within a plot are not

independent. If the independent observation assumption is violated the parameter

estimates standard errors may be underestimated and the mean square error may be

overestimated. Using seemingly unrelated regression to estimate the parameters of a

system of equations accounts for the correlation between error terms and tree

interdependency within a plot.
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CHAPTER I

INTRODUCTION

The shortleaf pine (Pinus echinata Mill.) forest type is classified by the USDA

Forest Service as forests in which pine occupy at least 50% of the stocking of all live

trees with shortleafbeing the main pine species (USDA Forest Service 1972). Shortleaf

pine has a range of over 440,000 square miles in twenty-two states and is the most widely

distributed of the southern yellow pines (Willet 1986). Shortleaf pine distribution ranges

from Texas to New York and is second to loblolly pine (Pinus taeda L.) in terms of total

softwood volume for the southern pines. In recent years there has been concern about

loblolly pine being planted outside its natural geographic range which has renewed an

interest in the shortleaf pine resource (Willet 1986).

Oklahoma has approximately 765,000 acn:s of shortleaf pine located in the

Ouachita Highlands in the southeastern area of the state. Shortleaf pine has a slower

juvenile growth rate and regeneration is difficult when compared with the other southern

pines, but stern and crown form are generally better (Guldin 1986), and although shade

intolerant, shortleaf pine has the ability to tolerate drier upland sites (MeWilliams et al.

1986). More than 94% of shortleaf pine stands originate from natural regeneration and

these stands outperfonn other southern pines in areas where there are cold temperatures,

ice, and drought conditions (Williston and Balmer 1980).
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The primary timber region for shortleafpine is found in the Ouachita Highlands

of eastern Arkansas and western Oklahoma and south into Louisiana and Texas (Braun

1950). Shortleafpine volume currently accounts for approximately 22% of the southern

pine compared with 57% for loblolly pine for the southern pines (McWillams et a1.

1986), but in the Ouachita Highlands shortleaf pine is the dominant pine species and

represents more than 50% of the softwood volume (van Hees 1980). Shortleafpine has

been steadily declining since the 1960's, mainly due to the replacement of mature stands

with other southern pines, predominantly loblolly pine (McWilliams et al. 1986).

Because shortleaf pine in the Ouachita Highlands has been characterized as slow growing

with below average volume per acre when compared with the other southern pines of the

region (Smith 1986), national corporations such as Weyerhaeuser have steadily converted

harvested shortleaf pine stands to loblolly plantations. However, non-industrial private

individuals own the majority of the timberland throughout the Ouachita Highlands.

Because of the high cost of planting, shortleaf pine should continue to be a valuable

resource. Loblolly pine has been the dominant southern pine for commercial use in the

South and has been extensively managed and planted, but there is renewed interest in the

management of shortleaf pine.

Objectives

The purpose of this study is to develop a basal area growth model for natural

even-aged shortleaf pine in the Ouachita Highlands of southeastern Oklahoma and eastern

Arkansas. Currently the forest projection system for southeastern Oklahoma and eastern

Arkansas uses a basal area growth model developed by Hitch (1994). This study seeks to
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improved upon Hitch' s basal area growth model used in the shortleaf pine stand simulator

(SLPSS) (Huebschmann et al. 1998) by:

(l) developing a system of equations based on tree diameter rank classes and

using seemingly unrelated regression (SUR) to estimate the common

parameters;

(2) compromising between a tree and stand-level model and accounting for

error correlation between tree diameter classes;

(3) using variables that are biologically reasonable while minimizing the use of

highly correlated variables; and

(4) recommending the suitability of the model through validation and evaluation.



CHAPTER II

LITERATURE REVIEW

This literature review focuses on growth and yield models for shonleaf pine and

models of other species that penain to developing a basal area growth model for natural

even-aged shortleaf pine of the Ouachita Highlands. Extensive research has been

conducted for growth and yield models of the southern pines with most studies

concentrating on loblolly and slash pine. Growth and yield models typically use linear

and nonlinear regression techniques to estimate the parameters. The classifications for

system of equations and parameter estimation for seemingly unrelated regression (SUR)

will be discussed. Murphy (1986) compiled a summary of growth and yield studies for

shortleaf pi.ne.

Data Classification

Growth and yield studies begin with data collection. Moser and Hall (1969)

suggested that forest growth can be considered a time series and that data collection over

time approximates a record of forest growth. They suggested three data classifications:

"real growth series", "abstract growth series", and "approximated real growth series."

The ideal data source for developing growth and yield equations would be a

complete chronological record of several stands from establislunent to harvest known as a

4
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"real growth series.' Because of the time and expense involved in collecting data from

establishment to harvest, the "real growth series" is not practical or efficient for data

collection. While the 'real growth series' has an advantage of following a stand through

its entire life span, it is difficult to maintain and record data from stands representing a

wide variety of stand conditions for a species study.

One data collection method that has often been employed in yield studies is

known as an "abstract growth series." The "abstract groVvth series" consists of data

collected from numerous temporary plots covering a wide range of sites and ages to

accurately reflect stand conditions. The "abstract growth series" is desirable for efficient

data collection but individual trees can't be monitored for growth over time.

A common method for growth and yield research data collection is a compromise

between the two preceding methods and is known as an "approximated real growth

series" which consists of permanent plots that are remeasured at fixed intervals to

approximate the rate of growth within a geographical location. While an "approximated

real growth series" lacks the complete chronological history of the stand, since the

remeasurement of permanent plots may approximate the ideal data source for a particular

geographical location in a relatively short time it has been widely used by researchers.

The "real growth series" would be the ideal method for data collection for growth

and yield equations. However, the most economical and practical method for developing

growth models is based on a few repeated measurements of stands representing a variety

of ages, site indices, and densities. The "approximated real growth series" gives a good

approximation of actual forest growth through remeasurement of numerous plots that

incorporate a variety of stand ages and site qualities.
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Biological Considerations

Mathematical models for describing growth should be biologically reasonable in

light of what is known concerning natural laws and biological processes. Empirical

equations may be developed for data sets that accurately describe the data but have no

biological basis and therefore may not accurately predict future growth (Vandal' 1994).

Among the biological considerations for models of tree growth are that there is an upper

asymptote relating to the maximum tree size for a given species, the growth rate after the

juvenile stage is inversely related to age, and that growth rate is inversely related to the

amount of competition. There are numerous biological processes restricting and limiting

the growth and size of a tree that should be considered when developing a model to

describe and predict growth. A common teclmique is to predict the maximum potential

growth for a species and then modify the potential growth based on the competition for

resources.

Zeide (1989) stated that growth results from cell division and is an inherently

exponential process. However, except in the earliest stages of tree development, a simple

exponential function may not accurately describe growth because of catabolic processes

that restrict the growth of a tree. Some growth equations have two components to

account for the anabolic and catabolic interaction of tree growth (e.g. Bertalanffy 1951).

Growth equations may differ in structure, but all growth models should conform to

reasonable biological behavior.

Bertalanffy (1951) hypothesized that growth of an organism could be thought of

as the difference between the anabolic and catabolic rates. The anabolic and catabolic
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components are opposing forces that are usually described by subtraction or division in a

differential equation describing gro\\.th. The Chapman-Richards (Chapman 196 J"

Richards 1959) function is a generalization of Bertalanffy 's (1951) growth model, which

although empirical has been used extensively in growth and yield equations and has the

following fonn:

7

(1)

where

ay r- =py -qyat

y = tree size,

t = tree age, and

p, q, and r = constants (p, q > 0, 0 < r < 1).

The Chapman-Richards fimction's positive or anabolic term describes the cell

division while the negative or catabolic components describes environmental and self-

regulatory forces that oppose growth (Pienaar and Turnbull 1973). The anabolic and

catabolic components conceptually describe the biological processes of tree growth. The

Chapman-Richards function is widely used in forest growth and yield studies but is more

empirical than theoretical because it is based on a the generalization of Bertalanffy"s

growth model (Yang et al. 1978). Equations in the differential fonn usually describe

growth as either a linear function or a power function. The Chapman-Richards function

is typical of the family of growth equations with the catabolic term (-qy) becoming more

prominent and restrictive as a tree ages.

Zeide (1989) stated that growth equations are usually combinations of power and

exponential functions but the relative growth rate of tree diameter is a power rather than
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an exponential function of age. Therefore, he proposed the following growth equation

form:

(2)

where

y'

y

y = tree size,

t = tree age, and

a, b = constants (a, b > 0).

Zeide (1989) referred to equation 2 as the power decline since the incremental

increase at any given age is proportional to tree size. Because of the correlation between

diameter and crown size, the diameter indicates the amount of resources available. The

"a" parameter is interpreted as the initial relative growth rate and parameter "b"

represents the rate of aging. The power decline equation becomes a Schumacher type

equation (Schumacher 1939) when the "h" parameter equals two. Typically the power

decline predicts larger growth ratio than exponential equations because power functions

decrease more slowly.

There is an extensive body of work relating mathematical models to the biological

processes for describing growth processes. Zeide's (1989) study compared conventional

equation forms such as the Chapman-Richards function with the power decline. The

study results represented by the data set used show that the power decline equation

describes growth better than the conventional equations for different species, site

qualities, locations, and growth rates. A concern with the power decline was that all

predicted diameters were less than actual diameters for all site indices.
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Martin and Ek (1984) conducted a study which concluded that empirical

equations may be more accurate than theoretical equations for a variety of data. but that

theoretical equations are usually more accurate for extrapolating predictions beyond the

range of the data. Yang et a1. (1978) found that a modified Weibull function was flexible

enough to describe most biological growth processes and possesses some desirable

theoretical characteristics for modeling growth. Regardless of whether an equation is

empirical or theoretical, careful consideration of explanatory variables is needed to

provide realistic and robust predictions by a model (Vanclay 1994).

Model Types

In order to meet the need for growth and yield information to effectively manage

the shortleaf pine resource, several types of shortleaf pine growth models have been

developed. Munro (1974) suggested the following three classifications for growth and

yield models: (1 ) stand-level models, (2) distance-independent tree-level models, and (3)

distance-dependent tree-level models. These three classifications can be divided into

subclasses (Davis and Johnson 1987).

According to Murphy (1986), regardless of the growth and yield model

classification, models are typically either inferential or predictive. Inferential studies are

designed statistically to answer specific questions about stand or tree structure.

Predictive studies are designed to produce mathematical models that are used to predict

growth and yield given certain stand characteristics.

The Davis and Johnson (1987) classificatiop. system will be used throughout this

paper for growth and yield model classification. Relatively little growth and yield
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research has been conducted for shortleaf pine in comparison to the other southern pines,

particularly loblolly pine.

Stand Models

Stand-level models use stand statistics such as basal area per acre, site index, trees

per acre, and volume and are classified by Davis and Johnson (1987) as either density

free or variable-density models. Stand-level models require relatively little information

to predict stand growth and yield but only general information is obtained about future

stand conditions.

Density-free models

Density-free models use the concept of fully stocked stands to develop "normal"

yield tables or average stand density empirical yield tables. The term "normal" refers to

ideal fully stocked stands and is based upon the density of a stand that produces the

maximum cubic-toot volume. Because "normal" fully stocked stands are subjective, few

stands in reality approach the yield of "nonnal" yield tables. "Normal" yield tables are

developed from temporary plots located in the fully stocked portion of a stand

representing various ages and site indices. The plot observations are sorted by volume

per unit area and site index classes, and volume is then plotted over age to obtained

"normal" yield curves. The earliest "normal" yield tables for natural even-aged shortleaf

pine are in the USDA Forest Service Miscellaneous Publication 50 (USDA Forest

Service 1929) which also provide site index curves. The Miscellaneous Publication 50

data were obtained from 188 temporary plots located throughout the southern United
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States and results are presented in tabular and graphical form. ince plots wer elected

based on "normal" stocking, an adjustment for yield prediction should be made when

applying Miscellaneous Publication 50 to stands that are not normally stocked.

Sylvester (1938) constructed yield tables using data collected from 240 repeated

measurement plots of loblolly pine in Louisiana and Arkansas and compared anamorphic

guide curves and statistical methods for constructing yield tables with the yield tables of

Miscellaneous Publication 50, He inferred that the yield tables of Miscellaneous

Publication 50 were erroneous. In the comments appearing with Sylvester's (1938)

paper, F. X. Schumacher questioned the results because of a lack of information provided

in the analysis. Schumacher did note that the difference between the results and

Miscellaneous Publication 50 was probably due the subjective nature of what a fully

stocked or "normal" stand is and illustrated concerns associated with "normal" yield

tables. "Normal" yield tables have been used to predict the growth of a stand by

computing the periodic annual increment but are unreliable because the subject stand

usually has less density and therefore less growth and stocking than a "normal" stand.

Empirical yield tables are developed from plots having average stand density. A

volume versus age relationship is developed for these plots and thus the problem of

defining "normal" is eliminated, but the average stocking is still subjective.

The next major growth and yield study for natural even-aged shortleaf pine was

by Schumacher and Coile (1960) consisting of density-free growth and yield equations

that have been extensively used but have some limitations concerning stocking because

density is not a variable in the model. The results are presented in equation form from

data collected from 74 temporary plots located in the North Carolina Piedmont district.
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Variable-density models

Variable-density models use stand density as an explicit independent variable,

usually expressed as basal area per acre or number of trees per acre. Multiple regression

techniques are usually used to estimate parameters. Stand-level variable-density models

were improvements over density-free models. Schumacher (1939) developed the

prototype for the foHowing variable-density model (Clutter et. a1. 1983):

where

v = an expression of per acre yield.

A = stand age,

f(S) = function of site index,

g (Ds ) = function of stand density, and

Pi = parameters.

Buckman (1962) published the first study that directly predicted growth from

current stand variables in a way that was compatible with yield using data from Red pine

in Minnesota. Compatible growth and yield models are defined as yield models that are

derived by the mathematical integration of growth models (Davis and Johnson 1987).

Clutter (1963) at about the same time as Buckman (1962) developed a compatible growth

and yield model for loblolly pine. The general steps involved in Clutter's (1963)

compatible equations are: (1) obtain models for current cubic foot volume and basal area

per acre as functions of current age, site index, and basal area. (2) derivatives of the

volume and basal area models are taken with respect to age to obtain growth models, (3)
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coefficients for the growth equations are estimated using linear regression, and (4) growth

equations are integrated to obtain the volume and basal area projection models. The

major contribution by Buckman (1962) and Clutter (1963) is the compatibility of growth

and yield equations.

Murphy and Beltz (1981), using permanent plot data in Arkansas, Louisiana.

eastern Oklahoma, and eastern Texas, developed the first variable-density models for

natural even-aged shortleaf pine. The volume growth prediction is obtained by using the

basal area growth projection equation in conjunction with the stand volume equation.

The future basal area per acre is projected as a function of stand density and age and then

used to predict volume as a function of site index, age, and stand density (Murphy and

Beltz 1981). The following year Murphy (1982) used the same data and basal area

projection equation to predict sawtimber volumes for natural even-aged shortleaf pine.

Stand volume variable-density equations for natural even-aged shortleaf pine of

eastern Oklahoma and western Arkansas (Lynch et a1. 1991) were developed using a

stand volume equation that is related to the "Schumacher type yield model" through a

logarithmic transfonnation. The data are from 191 permanent plots that were established

in 1985-1987 in a cooperative effort between the USDA Forest Service and Oklahoma

State University. These equations may be used to estimate per acre merchantable cubic

foot, sawtimber cubic-foot, boardfoot volumes of natural even-aged shortleaf pine. The

volume equations have the following general fonn:
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wh re

v= volume per unit area,

B = basal area per unit area,

H = average total height of dominants and codominants, and

fJi = parameters.

Future volume is predicted by using the projected basal area and predicted height

from the site index equation. The basal area is projected using an equation that was

developed by Murphy and Beltz (1981) for shortleaf pine. The projected height for the

dominant and codominant shortleafpines for the Ouachita region is obtained using the

following equation (Graney and Burkhart 1973):

where

H = average height of dominants and codominants,

Sf = site index,

AGE = stand age, and

Q j = regression coefficients.

Equation 5 is used to predict the average height of the dominant and codominant

trees given stand age and site index. An alternative for predicting the average dominant

and codominant heights is to use the site index curves in Miscellaneous Publication 50

(USDA Forest Service 1929). Once the height and basal area are projected, equation 4

can be used to predict volume. The basal area projection equation developed by Murphy
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and eltz (1981) has a tendency to underestimate future basal area because the model

development did not account for ingrowth. A basal area projection equation is presently

being developed for natural even-aged shOltleaf pine of the Ouachita Highlands which

should improve the volume predictions.

Diameter Class Models

Diameter class models provide more information than stand level models since

they provide volumes by diameter classes. Tree diameters are placed in diameter classes

and volume is computed for each diameter class. The stand volume is calculated by

aggregating the diameter class volumes. Diameter class models typically use a

probability distribution function such as the Weibull distribution function to allocate trees

to diameter classes. Other probability distribution functions have been used with varying

success such as the exponential and beta distributions. Bailey and Dell (1973) found the

Weibull to be a flexible funchon that has the capability to assume the full range of

unimodal continuous shapes of diameter distributions. The Weibull probability

distribution function has the following form:

(6)

( )
C-I [( )C]c X-a X-a

f(X)=[; -b- exp - .-b-· a~X<C()

where

I(X) =0 otherwise

x = random variable,

a;::: 0, and

b, c >0.
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The Weibull probability function has three parameters commonly denoted as a, b.

and c. The "a" parameter is the location parameter that indicates the lower end of the

diameter distribution and must be greater than or equal to zero for forest stands (Clutter et

al. 1983). The "b" parameter is referred to as the spread parameter and indicates the

width of the function and thus indicates the width of the diameter classes. The "c"

parameter describes the shape of the function (Avery and Burkhart 1994). When the "a"

and "c" parameters are zero and one respectively, the Weibull distribution function is

reduced to the exponential distribution function with the inverse ".T' shape that is

characteristic of uneven-aged forests (Clutter et a1. 1983). When the "c" parameter is

approximately 3.6, the distribution is approximately normal (Johnson and Kotz 1970).

Once the parameters of the Weibull probability function have been estimated the

probabilities associated with each diameter class can be calculated and multiplied by the

number of trees in a stand to derive the number of trees for each diameter class.

Smalley and Bailey (1974) used a Weibull distribution function as part of a yield

prediction system for shortleafpine plantations in the Highlands of Tennessee, Alabama,

and Georgia. Tree diameter, height, and age were recorded on 104 plots of shortleaf pine

plantations. The tree height, survival, and age data were used to estimate the Weibull

distribution parameters. Mortality was estimated by the presence of dead or dying trees.

The maximum-likelihood estimates of the Weibull function parameters on each plot were

related to plot age, density, and site by regression analysis. The Weibull function was

then used to estimate the number of trees surviving in each diameter class and a stand

table was constructed. The volumes by diameter classes were aggregated to obtain

volume per acre.
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Individual Tree Models

Individual tree models may have advantages over stand-level models for certain

applications since they can simulate the competitive environment of each tree

individually by simulating the growth of each individual tree in diameter, height, and

crown. These models usually contain equations for prediction of individual tree growth,

probability of survival, and volume. Results for all trees in the simulated stand are

aggregated for per- acre attributes, volumes, and growth rates (Davis and Johnson 1987).

Mortality and growth of an individual tree is dependent upon its relative position and size

in comparison to neighboring trees. A major distinction between stand level and

individual tree models is that individual tree models aggregate the stand volume after

each individual tree's growth and volume is calculated whereas the stand level model

aggregates individual tree data into stand characteristics before development of model

equations. While individual tree models are data intensive and more time consuming to

develop than stand level models, they provide more information about stand and tree

dynamics.

There are two types of individual tree models, distance-dependent and distance

independent. The primary difference between the two types of individual tree models is

competition accountability.

Distance-dependent

Distance-dependent individual tree models have been developed to more

accurately simulate competition measures between neighboring trees. According to
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Clutter et al. (1983), distance-dependent models may provide more detail concerning tree

growth and the relationships between tree biological and ecological interactions but

require a tree list with the spatial separation between trees as a major component of the

input data. If spatial locations are unknown the simulator must generate a reasonable

map of tree locations before beginning the simulation.

The main assumption of distance-dependent models is that better predictions of

individual tree growth can be obtained if each neighboring tree size and location is

known, but this assumption has not been empirically validated (Clutter et a1. 1983). In

addition to basic tree measurements, each tree's location must be plotted on X- Y

coordinates which gives the location of each tree within a plot. Distance-dependent

growth projections usually proceed through the following steps:

(1) competition index is computed for each tree,

(2) mortality probabilities are computed as functions of the competition indices,

(3) periodic growth rate of each tree is predicted over the projection period

(usually one year), and

(4) individual tree volumes are predicted from the final projection

and aggregated for stand level statistics.

PTAEDA is a distance-dependent model developed for loblolly pine (Daniels and

Burkhart 1975) which grows trees individually and assumes that each tree has a

theoretical maximum growth potential. PTAEDA was developed for managed loblolly

pine plantations to estimate the influence of different sites, spatial patterns, and

silvicultural regimes on tree growth. The growth potential is based upon the maximum
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growth of an open grown tree and tree vigor and competition factors modify the potential

growth. The initial stand is determined by the location of each tree in the planting spatial

pattern. The PTAEDA model works in two stages: first a Weibull probability distribution

function determines the diameter for each individual juvenile tree and the model grows

the initial juvenile stand until inter-tree competition begins. Then in the second stage the

model accounts for inter-tree competition. The PTAEDA model grows in the juvenile

stage until the CCF' (Crown Competition Factor) (Krajicek et a1. 1961) reaches 100

percent, at which time it is assumed the inter-tree competition begins (Davis and Johnson

1987). The distance-dependent competition measure used by the PTAEDA model is a

distance-weighted size ratio (DR) index developed by Hegyi (1974). Distance-weighted

size ratio indices are defined as the sum of the ratios between the dimensions of each

competitor to the subject tree weighted by a function of intertree distance. This definition

ofcompetitors has been preferred in recent years and has an advantage of being easy to

compute and explaining variation in growth with precision similar to that of other

distance-dependent competition indices (Tome and Burkhart 1989). The PTAEDA

model has proven to be effective for southern pine plantations but has shortcomings for

natural regenerated stands (Davis and Johnson 1987).

In addition to the distance-weighted size ratio competition index used in

PTAEDA, numerous competition indices have been developed in an attempt to increase

the precision of gro'Wth and yield predictions. Most distance-dependent competition

indices begin with Staebler's (1951) concept of a circular influence zone around a subject

ICCF is a stand density measure that describes the available area for the average in relation to maximum
area of an open grown tree (Avery and Burkhart 1994).
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tree in which the competing trees reduce the rate of growth of the subject tree. The

overlap from circular influence zones of competing trees measures the amount of

competition. Spurr (1962) developed a point density measure in which trees included in a

fixed point sampling angle gauge (prism) sweep are considered to be competitors. Brown

(1965) developed the area potentially available index as a measure of point density in

which the area available for each tree was calculated as the area of the smallest polygon

bisecting the intertree lines.

Studies show that distance-dependent competition indices contribute little or no

improvement in growth prediction when compared to use of distance-independent

measures of competition (Tome and Burkhart 1989).

Di stance-independent

Distance-independent models usually project tree growth as a function of diameter

and stand level variables, typically having three main components: diameter growth.

height gro\\'1h, and mortality (Avery and Burkhart 1994). Distance-independent models

assume that the spatial separation and tree diameters are uniformly distributed throughout

the stand (Davis and Johnson 1987). Since the exact location of each tree within a stand is

unknown, competition is normally defined by a comparison of a tree's characteristics

with that of other trees within a stand. Since distance-independent models do not use

spatial information to formulate competition indices, they are less data intensive than

distance-dependent models. An assumption of distance-independent models is that if a

tree is smaller than the average tree within the stand r~garding crown, diameter, and

height then the tree lacks competitive vigor in comparison with larger trees.
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Two commonly used competition indices are DD (ratio of the quadratic mean

diameter to an individual tree DBH) and BAL (the cumulative basal area of trees larger

than the su~ject tree). As the DD index decreases the tree is considered to be increasingly

vigorous and will grow at rates closer to its maximum theoretical potential. The BAL

index indicates that as the cumulative basal area of the trees larger than the subject tree

decreases, the subject tree is more competitive. The BAL index is used in Stage's (1973)

PROGNOSIS forest projection system. Krumland (1982) developed a competition index

that is based upon a tree's crown and is defined as the percentage ofland covered by a

live tree crown (measured at a height of 66 percent up the Jive crown of a subject tree).

This competition index has been shown to be effective but is difficult to measure.

Basal area growth is often used as the dependent variable for increase in stem

thickness because studies show that the correlation between various competition indices

are higher with tree basal area increment than with diameter increment (Bella 1971;

Johnson 1973). Since competition among trees for resources is a major component of

individual tree models it seems intuitive that basal area growth might yield the better

model. A study by West (1979) compared the results of growth equations using both

basal area growth and diameter growth as the dependent variable and found that the

correlation between tree basal area growth and parameters detennining the growth were

higher than for tree diameter increments. There was no evidence that the precision of

estimates of predicted diameters made with either diameter or basal area growth as the

dependent variable differed significantly. West (1979) concluded that the higher

correlation of basal area growth equations was probably due to the partial dependence of

basal area growth on the initial tree diameter.
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The two primary methods for modeling distance-independent tree growth are

composite modeling of tree growth as a function of tree, site, and stand characteristics

and the potential-modifier growth function. The potential-modifier fW1ction models tree

growth as a theoretical maximum potential based on an individual's tree characteristic

which is multiplied by a modifier to account for stand and tree characteristics as well as

competition.

PROGNOSIS is a composite distance-independent individual tree model

developed by the USDA Forest Service for the western United States (Stage 1973) that

directly predicts the growth of a tree. The PROGNOSIS forest projection system uses the

composite growth model approach because the difficulty in obtaining dominant-age site

relationships for mixed species stands makes potential growth difficult to estimate. The

PROGNOSIS growth model has the following general form (Wykoff 1990):

l7) In (dds) = COMP + SITE + f3 l In (dbh) + f3 2 dbh 2

where

CONI? = function of competition measures,

SITE = function of site quality,

dbh = diameter at breast height,

dds = IO-year periodic change in squared diameter (inches) and

f3i = regression coefficients.

The PROG:-.JOSIS model predicts the natural logarithm of new growth in square

inches (dds) as a function of site, tree, stand, and competition characteristics and is easily

converted to either basal area or diameter. Since PROGNOSIS was developed for mixed
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conifers it uses habitat type, geographic location, slope, aspect, and elevation to express

site quality rather than site index. Crown ratio, crown competition factor (CCF), and the

cumulative basal area of trees larger than the subject tree (BAL) measure competition.

The composite model approach has performed adequately and is used extensively

throughout the western United States but is not often applied to southern pines. Wykoff

(1990) presents a detailed discussion of the model development and performance.

The potential-modifier growth function used in many forest projection systems

consists of the potential component which estimates the theoretical maximum diameter or

basal area growth of a tree growing free of competition and a modifier component that

reduces the potential based on competition factors. Parameters of potential-modifier

growth functions have been fitted in two ways: (1) parameters for a tree's potential

growth are fitted based on an individual tree characteristics, then the modifier parameters

which are a function of tree and stand characteristics are fitted while holding the potential

parameters constant, and (2) parameters for the potential-modifier function are fitted

simultaneously.

The STEMS forest projection system, which was developed for the Lake States of

the United States, uses a potential-modifier function to estimate individual tree growth

(Belcher et al. 1982). The STEMS potential diameter growth function that was

developed for 26 species by Hahn and Leary (1979) using data collected from the

dominant and codominant trees throughout the Lake States has the following form:

(8) Potential Growth = j3 J + j3 2 DfJ 3 + j3 4 (SI) (CR) (D jP 5
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where

Potential Growth = potential annual dbh growth (inches/year),

D = initial tree dbh (inches).

Sf = plot site index (base age = 50),

CR = tree crown ratio, and

fii = regression coefficients.

The potential diameter grov.rth was derived for each tree species over a ten-year

projection period. It uses the initial diameter, crown ratio. and site index as the

independent variables. In developing the potential growth function, Hahn and Leary

(1979) grouped the independent variables by species, one-inch diameter classes, 10-foot

site index classes and 1O-percent crown ratio classes. It was assumed that the diameter

growth was normally distributed around the mean diameter growth. The potential growth

was estimated as the mean growth plus 1.65 standard deviations corresponding to the

95th percentile of dominant and codominant tree diameter growth. The mathematical

fonn of the potential growth model was developed as a generalization of the Richards

function (Richards 1959) and has a species-specific intercept along with anabolic and

catabolic terms. The catabolic term is an allometric relation of tree diameter and the

anabolic term is a product of crown length, site index and an allometric relation of tree

diameter. Leary and Holdaway (1979) developed a modifier function for use with Hahn

and Leary's (1979) potential growth function which is a function of size, site, and

competitive status and has the following form:

(9) Competition Modifier = 1- e - f(R)g(AD)[ (BA max - BA)/ BA] 0.5
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where

Competition Modifier = competition index (bounded between 0 and 1),

f(R) = function characterizing the individual tree's relative diameter effect on

the modifier,

g(AD) = function characterizing the average stand diameter effect.

BAmax = maximum basal area per acre, and

BA = current basal area per acre.

In estimating the parameters of the modifier function, the parameters of the

potential growth function are held constant and because the competition modifier adjusts

potential growth which is constrained to be between zero and one. As the stand basal

area and competition increase the competition modifier approaches zero, and conversely,

the competition modifier approaches one as stand density and competition decrease to

allow trees growing relatively open and free of competition to approach the theoretical

potential growth.

The first distance-independent growth model for shortleafpine was developed as

part of the TWIGS and STEMS forest projection system for the central United States

(Shifley 1987). The growth model data came from Forest Inventory and Analysis (FIA)

plots in Missouri, Ohio and I.ndi.ana and the model uses a potential-modifier growth

function. Unlike the Lake States potential growth function. which is the sum of the two

components plus an intercept, the Central States potential growth function is the product

of two components and was developed as a function of tree size, crown ratio, and site

index for each species. The Central States potential growth function has the following

form:
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v. here

Potential Growth = potential tree basal area growth (ft2/year),

BA = tree basal area (ft2/ac),

Sf = plot site index (base age = 50),

CR = individual tree's crown ratio, and

Pi = regression coefficients.

The first bracketed component in the potential growth function above is the

growth form of the Chapman-Richards function which is used to model maximum

potential growth and the second bracketed component adjusts potential basal area growth

by the tree crown ratio and site index, increasing or decreasing maximum potential

growth. The potential growth function was constrained to achieve maximum tree

diameter within biologically reasonable limits by comparing results from the potential

growth model based on the fastest growing five percent of the trees by species and

diameter class to the National Register of Big Trees (American Forestry Association

1982).

Shifley and Brand (1984) used a variation of the Chapman-Richards function to

account for a maximum tree basal area since potential growth approaches zero as the

basal area approaches the biological upper limit. The constraint was implemented by

using the first bracketed component of equation ]0 and setting the potential growth to

zero. Solving for basal area yields the following equation:
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I

(11) Max Basal Area = (;;)1- fJ2

where

Max Basal Area = species estimated maximum basal area (ft2) and

/3i = estimated parameters.

The maximum basal area constrains equation 10 to a pre-specified upper

asymptote and was developed to ensure that the model behaves realistically when

predicting growth for large diameter trees. Solving equation 11 for /33 and substituting

into equation 10 yields the Central States TWIGS present potential growth equation form.

The Central States modifier component reduces the potential growth in response

to competition and expresses growth as a percentage of the estimated potential growth.

The modifier has the following form:

(12)

where

Mod~fier =/39

1

-(!!l+P8 D2 )(I. BA )2
1

BAL BAmax-e

lvfodijier = competition modifier (bounded between 0 and 1),

BAL = basal area (ft2/ac) of all trees larger than subject tree,

D = current tree dbh (inches),

BAmax = maximum basal area per acre,

BA = stand basal area (ft2/ac), and

/3i = regression coefficients.
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The Central states modifier decreases growth as the basal area of larger trees

increases and larger diameter trees receive a smaller proportion of potential growth.

Shifley (1987) defined a maximum stand density of 200 square feet of basal area per acre

(BA MAX ) to constrain the modifier within biological reasonable limits. The shortleaf pine

potential modifier function of TWIGS has perfonned adequately but was fitted to data

outside the Ouachita Highlands geographical region.

Hitch (1994) developed the first shortleaf pine distance-independent individual

tree for the Ouachita HigWands, which is currently being used in the SLPSS forest

projection system for even-aged natural shortleaf pine. The data for this study came from

permanent research plots established cooperatively by the USDA Forest Service and the

Forestry Department at Oklahoma State University. The plots were established in 1985

87 with remeasurements occurring at four or five year intervals. All shortleafpine having

a diameter of greater than or equal to one inch were recorded and each tree permanently

numbered. The following is a summary of basal area growth models Hitch (1994) fitted

and evaluated.

A modified PROGNOSIS type model was fitted using a single intercept in place

of the location effects and site effects were estimated by site index. PROGNOSIS was

developed for uneven-aged stands of mixed conifers in the western United States.

consequently Hitch (1994) modified the model to include an independent variable to

represent stand age. The model performed adequately with a fit index and MSE of 0.593

and 0.000046, respectively. However, the model predicted a maximum tree size of more

than 70 inches DBH. The large maximum tree diameter is a result of the fact that the

research plots do not include stands in which the basal area growth has culminated.
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Potential-modifier functions were fitted to the data and evaluated in an effort to

better describe groVv1h. Hitch (1994) used three methods to constrain the maximum

growth of the potential fW1ction. The first was a modified form of Hahn and Leary's

(1979) STEMS potential growth model with two-inch diameter classes in which the

potential growth was estimated as the mean growth plus 1.65 standard deviations

corresponding to the 95th percentile of basal area growth. The second method fitted the

fastest growing five-percent of the trees using the dominant and codominant trees in each

one inch diameter class with a modi.fied Chapman-Richards function (Shifley and Brand

1984; Shifley 1987) with tree size constrained to a biological reasonable maximum size.

The maximum tree size was derived as 36 inches (basal area = 7.068 W) by averaging the

maximum diameter found from local records and the largest shortleaf pine recorded in the

National Records of Big Trees (American Forestry Association 1992). The third method

was suggested by Amateis et al. (1 989) who proposed using the data from open grown

trees to approximate the potential growth for trees growing without competition. The

data for the potential function came from a study of open growing shortleaf pine in the

West Gulf Region (Smith et al. 1992). The potential-function was a variation of the

Chapman-Richards function that included an intercept component. All three methods

appear to constrain the maximum growth within biologically reasonable bounds and were

coupled with a modifier to determine which would best fit the data.

Hitch (1994) considered two modifier functions. The first modifier was Shifley's

(1987) variation ofthe STEMS and TWIGS function for the Central States. The second

modifier was a modified logistic function developed by Murphy and Shelton (1993).

This modifier easily adapts to a variety of stand and tree conditions by including more
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independent variables to explain more variation in tree growth and has the following

form:

(13 )

where

Mod(fier
1 + exp [,B I BAL + fJ 2 S1 + ,B 3 AGE + ,B 4 BA + ..... ]

Modifier = competition index (bounded between 0 and I),

BAL = basal area (ft2/ac) of all trees larger than subject tree,

S1 = plot site index (base age = 50),

AGE = plot age (years),

BA = stand basal area (ft2), and

/3i = regression coefficients.

The final model Hitch (1994) developed used the modified Chapman-Richards

potential growth function (Shifley and Brand 1984) coupled with the modifier developed

by Murphy and Shelton (1993). The model predicts grov,,1h adequately with a fit index of

0.609 and MSE of 0.000044. Although the model adequately predicts basal area growth.

there is concern about model bias because of under-predictions for stands with kss than

45 square feet of basal area per acre and a under-representation of young stands with a

site index greater than 65 (base age equals 50 years). The model was developed using

data from stands that have not reached culmination of basal area per acre and may over or

under predict for stands beyond the range of the data.

Bitoki et al. (1997) developed a distance-independent shortleaf pine individual

basal area growth model for uneven-aged stands in the Ouachita Highlands. The data

came from CFI plots established by the Deltic Farm and Timber Company Inc. in 1965-

66 with remeasurement occurring at five-year intervals. Individual trees were measured
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and recorded for all trees greater than or equal to five-inch dbh. Plots used to develop the

model had no harvesting activities or silvicultural treatments during the five-year

measurement interval and shortleaf pine comprised at least 70% of the basal area of each

plot. The basal area growth model was developed using a potential-modifier basal area

growth model for which the parameters were fitted in two steps. First the theoretical

potential growth was fitted separately using a variation of the Chapman-Richards

function (Shifley and Brand 1984) with one parameter eliminated by using Hitch's (1994)

estimate for maximum basal area of an individual shortleaf pine. The other two

parameters were fitted using nonlinear regression. The second step consisted of fitting

the modifier function parameters to the complete potential modifier model by using

nonlinear regression while holding the potential growth constant. This was a variation of

the model used in TWIGS and described by Shifley (1987). The model fit appears

adequate with a fit index of 0.44, but because the study data came from CFI plots. the

data do not represent all stand conditions equally. There is concern about diameter

growth predictions for large trees and under-represented site index classes because there

are few observations for trees greater than 16 inches DBH and for site index classes 40

and 70 (base age equals 50 years).

Potential-modifier models usually estimate the parameters by estimating the

maximum potential growth in isolation and then holding potential growth constant while

estimating the parameters for the modifier. The potential function is normally fitted

separately using either a subset of the data or open grown tree data and the modifier is

fitted to the complete data set while holding the potential function constant. Often a

series of iterations of the two steps are completed to stabilize the parameters. Murphy
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and Shelton (1996) proposed fining the data to the potential modifier function

simultaneously. Previously Wensel et al. (1987) fitted a potential modifier function

simultaneously for northern California conifers but found that it confounded the potential

and modifier effects. Murphy and Shelton's (1996) data are from a study on the growth

and development of loblolly pine in Arkansas and Louisiana. They selected a growth

function that is biologically reasonable for achieving a maximum growth rate. The

potential growth function selected bounded the function to an upper asymptote. Then a

variation of the logistic function (equation 13) was selected as the modifier, which is

constrained between zero and one. The potential function was fitted to obtain an estimate

of the parameters and then the potential-modifier function was fined simultaneously

using nonlinear OLS (Ordinary Least Squares) using the potential growth function

estimates as initial values. The results reveal the model achieved a good fit with a fit

index of 0.69 and root mean square error of 0.56 square centimeters. The model exhihits

logical results when compared with biological processes. The logistic function modifier

can be easily adapted to add more variables as needed. However because the components

are fined simultaneously, the potential component cannot be analyzed in isolation and

does not necessarily equal the maximum theoretical potential growth.

System of Equations

Growth and yield studies often use a system of equations to describe stand

development. Early applications of systems of equations in forestry fitted the parameters

of each equation independently using OLS (e.g. Moser 1972). Furnival and Wilson

(1971) suggested that fitting the parameters for each equation in a system independently
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was not satisfactory because a variable may be dependent in one equation and

independent in another equation. Therefore, coefficients of one equation may be

functionally related to coefficients in another equation. and the residuals of each equation

may be correlated. Fumival and Wilson (1971) proposed that parameters for a system of

equations describing forest growth and yield could be fitted simultaneously using known

econometric techniques. Simultaneously fitting parameters of a system of equations

provides an increase in parameter estimation efficiency.

The general simultaneous paranleter estimation technique for a system of

equations may be applied to linear or nonlinear systems with small, large, or unequal

sample sizes and with or without imposing constraints between parameters of the system

(Reed 1987). The optimal parameter estimation technique is defined by a given system

and empirical studies suggest efficiency is gained because of a reduction in the SSE (error

sum of squares) (Reed 1987). Parameter estimation for equations within a system is

accomplished using either linear or nonlinear regression techniques to minimize the SSE.

There are three steps typically used for estimating parameters of a system of

equations. First the parameters for each equation within a system are independently

estimated by using linear or nonlinear OLS. Second, the variance-covariance matrix is

estimated using the error tenns of the independently estimated equations. Third, the

generalized least squares is used to estimate the parameters of the system using the

residual variance-covariance matrix (parameter constraints may be imposed) (Reed

1987).

Pindyck and Rubinfeld (1981) classified systems of equations as simultaneous

equations, recursive equations, or seemingly unrelated equations. Systems of

......
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simultaneous equations have variables that are independent in one equation and

dependent in another equation and cross-equation error correlation exists (equation 14).

Parameter restrictions may occur both within and across equations and independent

variables are either endogenous (determined previously in the system of equations) or

exogenous (determined independently of the system of equati.ons). Two stage and three

stage least squares may be used to estimate biased but consistent parameters (Borders

1989).

( 14)

where

Y 2 = ~20 + ~21YI + ~23Y3 + ~24XI + P25X 2 + e2

Y J = ~30 + ~31YI + ~32 Y2 + ~34XI + 035X2 + e3

Y j = endogenous variables,

Xi = exogenous variables, and

ei = error term.

Recursive systems of equations have sequential relationships between endogenous

variables and OLS can be used for parameter estimation if no cross equation correlation

between the err components exists. A recursive system of equations by definition has

no correlation between right-hand side endogenous variables and the error components of

the left-hand side endogenous variables. The OLS estimation for recursive system of

equations requires that error components for the system of equations be pairwise

uncorre1ated (Borders 1989). Because recursive systems of equations are not cross

correlated there is no gain in efficiency for simultaneous parameter estimation unless

constraints are imposed between equation parameters (Reed 1987).

-



-
35

Seemingly unrelated equations hav 110 analytical relationship between equations

but are linked because the error terms across equations are correlated (Pindyck and

Rubinfeld 198]). If the cov (ei, ej) = 0 for all combinations of i and j then SUR is

inappropriate, but if the cov (ei, ~j) ;;t:. 0 then a correlation between the errors of the

equations exists and SUR may provide a gain in parameter estimation efficiency. The

three step procedure for estimating parameters for a system of equations discussed

previously is appropriate and parameter estimation efficiency is improved by accounting

for the cross equation correlation. Zellner (1962) suggl:sts that efficiency in parameter

estimation may be gained if the system is viewed as a single equation and is

accomplished by using the generalized least squares estimation.

Lynch and Murphy (1995) used SUR for parameter estimation in developing a

compatible height prediction and projection system for natural even-aged shortleaf pine

of the Ouachita Highlands. The study data are from 208 pennanent growth and yield

research plots established from 1985-89 and the data include individual tree heights,

diameters, plot densities, ages, and site indices. The two compatible height equations

developed are: (1) height prediction for time one and (2) height prediction/projection for

time two given the height at time one. The SUR parameter estimation technique was

used because error correlation was expected from the common parameters and because

heights measured at different times are correlated. SUR was used for efficient parameter

estimates for both equations by providing consistency across equations with parameter

restrictions placed across equations. OLS estimates for each individual equation were

presented for comparison to SUR estimates but the OLS individually estimated

.....
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parameters differed by as much as 20% from the SUR parameter estimates. Since the

equations are compatible and interrelated using the first equation with OLS parameters to

project height in the second equation may be inaccurate. Studies have indicated that

parameter variances estimated from large samples using SUR may be less than parameter

variances obtained using OLS (Judge et al. 1988). The advantage of SUR in the

compatible height prediction and projection system is that the parameters may be used by

either equation depending upon available information for height prediction. SUR

provided a good fit for both equations while accounting for error correlation between the

two equations.

Hasenauer et al. (1998) recently fitted a system of three equations separately using

OLS, and simultaneously using two- and three-stage least squares. The three equations

are a basal area growth increment model, height increment model. and crown ratio model.

The data are from the Austrian National Forest Inventory which consists of over 7.500

Norway Spruce (Picea abies 1. Karst). Since the results indicated high cross-equation

correlation, the three-stage least squares was the most efficient technique.

-



CHAPTER III

DATA

The data are primarily from the cooperative study being conducted by the USDA

Forest Service and Oklahoma State University Department of Forestry to develop growth

and yield models for natural even-aged shortleaf pine stands of the Ouachita and Ozark

National Forests of southeastern Oklahoma and eastern Arkansas. These data constitute

an approximated real growth series. Original plot installation was during the dormant

season of 1985-1987 when basic forest measurements were recorded, subsequently

remeasurements were recorded on a four or five year interval for each plot. For a detailed

discussion of plot reconnaissance, installation, and location see the USDA Forest Service

establishment and progress report (Murphy 1988a).

A total of 191 plots located in the Ouachita and Ozark National Forests were

installed which covered a wide spectrum of site, age, and density classes. There are four

site index, age, and density classes for a total of 64 combinations (Table 1).

Each combination of the site-age-density classes originally was to have 3

replicates for a total of 192 plots. However only two plots were located for the age 20

years, site index> 75 feet, and residual basal area 30 square feet combination. Therefore,

only 191 plots were actually installed (Murphy 1988a).

37
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Table 1. Attributes and class ranges for the USDA Forest Service-Oklahoma State
University cooperative research plots for the natural even-aged shortleaf pine
gro~rth and yield study.

Attribute Class Range Class Midpoint

Basal area per acre (sq.ft.)

Site index (base age = 50 years)

Age (years)

16-~5 30
46-75 60

76-105 90
106-135 120

< 56
56-65 60
66-75 70
> 75

11-30 20
31-50 40
51-70 60
71-90 80

The original plots were selected based upon age-site-density classes and the

following stand criteria:

(1) naturally regenerated stands containing at least 70 percent shortleaf pine in terms

of basal area for trees 0.6 inches DBH and larger;

(2) maximum age range of dominant and codominant trees was 10 years or less;

(3) less than 10-foot variation for site index within a stand;

(4) even-aged forest distribution with no obvious holes or clumping and no more than

two age classes per plot; and

(5) no significant insect, disease, or fire damage and no harvesting during the

previous five years.

For plot reconnaissance, the shortleaf pine and other species plot basal area were

tallied separately using a 10-factor prism. Five dominant or codominant shortleaf pines
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were selected at each plot for height and age measurement. The initial stand information

was used for plot site-age-density classifications and to assign silviculture prescriptions.

The study design called for 0.2 acre circular plots, surrounded by a 33- foot

isolation butfer for each site-age-density combination. Silviculture prescriptions were

required to control any existing hardwoods greater than or equal to one-inch diameter at

ground level and shortleaf pine were thinned when necessary to achieve the desired basal

area for both the plot and buffer. The residual shortleaf pines on the 0.2 acre plot were

numbered, measured, located from plot center, and tallied for all trees greater than or

equal to one inch DBH. In addition, the crown class of each tree was recorded.

At each plot representative shortleaf pines for each diameter class were selected

for measuring total height and the height to live crown. The age for the representative

dominant and codominant sample trees was determined using an increment borer. The

annual rings of each increment core were counted and five years added to derive tree age.

The plot site index was calculated using a site index equation developed by Graney and

Burkhart (1973) for shortleaf pine of the Ouachita HigWands based on the average total

height and age of the representative dominant and codominant trees. The DBI-! was

measured to the nearest tenth of an inch for all shortleaf pine greater than or equal to one

inch. Stand basal area was derived by summing the basal area of individual trees on a

plot and expanding to a per acre basis. The crown ratio was computed as the ratio of the

crown length to the total height for trees that were measured for height. For trees not

measured for height, the crown ratio was predicted using the model form developed by

Dyer and Burkhart (1987) with the parameters fitted using nonlinear regression in SAS

(SAS Institute Inc. 1989). The following distance-independent individual tree
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competition measures were computed for each plot. The basal area of all trees as large or

larger than the subject tree (BAL) was calculated and expanded to a per acre basis. The

CCF was computed using a technique by Rogers and Sander (1984) for shortleaf pine and

the ratio of the quadratic mean diameter to individual tree dbh (DD) was calculated. For

individual growth models discussed previously additional attributes were computed when

appropriate. The midpoint of an attribute was calculated when appropriate by using the

observed values attained by an attribute at time one and two and averaging the two

observations. If mortality occurred for a given tree between measurement periods then

halfofthe initial measurement was used, a technique described by Bolton and Meldahl

(1990).

In addition, data from 25 plots comprising an "approximated real growth" series

were available from a study initiated by Frank Freese in thinned stands of even-aged

natural shortleaf pine in the Ouachita Highlands. The study was initiated in 1963-64 and

25 of the 35 O.2-acre plots that were installed in the Ouacita National For(:st still exist.

The initial 35 plots were installed with the foHowing stand residual basal area per acre:

45,65, 85, 105, and 125 square feet. The remaining 25 plots were assigned to these

residual basal area levels in 1988. Remeasurements of these plots during 1988 were

consistent with the methods discussed previously. In addition, the other 10 plots were

available for developing the growth model by utilizing the historical data on these plots.

One of these 10 plots was removed from consideration because of fire damage. This left

a total of 34 plots for developing the growth model. Murphy (1988b) provides further

details for this study.
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Eight plots from the cooperative growth and yield study were decommissioned

because of stand damage or failure to follow silvicultural prescriptions. The remaining

183 plots from this study, together with the 34 plots from Freese's study, constitute a

total of 217 plots that are available for developing growth and yield equations for natural

even-aged shortleaf pine of the Ouachita Highlands. The data set consists of 8928

individual tree observations for which the summary statistics (Table 2) were computed.

Table 2. Summary statistics for the complete data set of the Ouachita Highlands natural
even-aged shortleaf pine study for developing a basal area growth model (N =

8928).

Attribute Minimum Maximum Mean Standard Error

Plot Age (years) 21.0 96.0 45.1 18.71

Plot Site Index 38.9 87.1 57.3 9.70
(base age=50)

Stand Basal Area 22.53 177,12 106.80 30.93 ...
(sq. ft.)

i';
ce,

DBH (inches) l.2 24.9 7.93 3.74

Crown Ratio o1310 0.7636 0.3799 0.063

CCF 13.72 255.44 132.32 48.86

Avg. Annual -0.010 0.07l8 0,0124 0.0102
Individual Tree

Basal Area
Growth

Individual Tree 0.00723 3.383 0.4196 0.3795
Basal Area

Quadratic Mean 0.4424 4.241 1.0875 0.3205
Diameter to

Individual Tree
DBH(DD)

Basal Area of all 0 171.37 66.00 37.80
Trees as Large or

Larger than the
Subject Tree

(BAL)

-
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The number of trees by DBH class was calculated for the complete data set

(Figure 1). As illustrated by the graph, there are fewer observations in the 2, 14. 16. and

18-inch DBH classes in comparison with the other DBH classes. The number of trees in

the 14, 16, and 18 DBH classes should increase over time as trees grow into these classes.

Since the study entails thinning from below. the future number of trees in the 2-inch

DBH class may not increase and could decrease.
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Figure 1. Number of trees by diameter class for the complete data set (N = 8928).
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CHAPTER IV

METHODS

Model Considerations

Among the major linear regression assumptions is that the errors are independent

and identically normally distributed. Nonlinear and linear regression models differ in that

the nonlinear model least squares estimators of their parameters are not unbiased,

normally distributed, or minimum variance estimators. Ratkowsky (1990) stated that the

regression assumptions for nonlinear regression need only be correct approximately

because the least squares criterion tends to be robust in minor departures from the

assumptions. Major departures from the regression assumptions such as a dependency

between the error terms can lead to significant estimate errors. Except for the

independence assumption, nonlinear regression models tend to conform to the linear

regression assumptions asymptotically as the sample size approaches infinity. Trees

within a plot have some interdependency because of the competition for resources on the

plot. Also trees within a plot share a similar microenvironment, which may be above or

below average for tree growth. When the assumption of independent errors is violated.

the MSE and standard error of the parameter estimates may seriously underestimate the

variance of the error terms and the standard error of the parameter estimates when

calculated according to the OLS procedures (Neter et a1. 1996).. A system of equations

43
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was developed to account for tree interdependency within a plot and SUR was used for

parameter estimation. The SUR parameter estimation is an appropriate technique because

the error terms from trees within a plot are correlated. To determine the feasibility of

using a system of equations to model even-aged natural stands of shortleaf pine some of

the model forms discussed previously were examined.

Since the basal area growth model may be applied outside the data geographical

range, the model should behave within known biological limitations when predicting the

maximum basal area or diameter for shortleafpine. The model should follow a realistic

growth pattern and behave logically with respect to the independent variables. As growth

approaches zero the individual tree basal area should approach an upper asymptote that

corresponds to a biologically reasonable diameter.

Individual tree growth may be predicted as basal area increment or diameter

increment or as a function of either basal area or diameter. As discussed previously, West

(1979) concluded that for the species in his growth study, there was no significant

difference between the predictions obtained using either basal area or diameter increment

to model growth. Individual tree diameter growth culminates before basal area growth

and thus may have an advantage over basal area growth for predicting growth in young

stands. The fit index is nonnally higher for basal area growth than for diameter growth

using the same data because the range of diameter growth is smaller in comparison to the

range of basal area growth (Shiftey 1987). Consequently, the denominator of the fit

index (corrected total sum of squares) is smaller for diameter growth than for basal area

growth. Individual tree volumes are nonnally proportional to the product of tree height

and basal area and consequentiy it is logical to predict basal area growth directly. Also,
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because the initial diameter is knoVvTI for this study, diameter growth can be computed

from basal area growth. Whether to model growth using basal area or diameter is

normally detennined by study objectives. Since the growth model developed may be

used in the shortleaf pine simulator for the Ouachita HigWands, it is logical to use a basal

area growth model. The average annual basal area growth (AABAG) was used to model

growth since remeasurements occurred over different intervals. The AABAG facilitates

using the model over any projection period.

The dependent variables in model development focused on variables that are

currently obtained during the inventory and variables that can be derived from basic

forest measurements. Some measurements typically taken during an inventory include

DBH, site index, stand age, and basal area per acre. Competition measures such as CCF

can be computed from the inventory measurements. The model will be distance-

independent and attributes discussed earlier for distance-independent models will be

considered. Independent variables used in the model development will be examined for

significance using an alpha level of 0.05. Independent variables deemed insignificant

will be removed from the model.

Revised Data Set

The data set was revised for modeling basal area growth using a system of

equations. The current data set contains one record for each individual tree. This data set

was revised to create four classes corresponding to the individual tree diameters within

each plot. The revised data set for modeling basal area growth using a system of four

....
r.;
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equations was developed through the following steps. Individual tree diameters within

each plot were ranked in ascending order. The four DBH rank classes were computed by

dividing the ranked DBH tree list by four. If the ranked DBH tree list was evenly

divisible by four then each DBH rank class had an equal number of trees. The DBH rank

class one corresponds to the DBH of the smallest tree(s). A subroutine program was

written in SAS to place trees in the correct DBH rank classes if the number of trees on a

plot was not evenly divisible by four (Appendix A). For example (Table 3), if a plot has

six trees the first and second class would have two trees and the remaining two classes

would have one tree.

Table 3. Example ofranking and placing trees in correct DBH rank class by plot
for use in a system of equations.

Plot Number DBH (inches) Rank DBH Rank Class
134 6.3 I 1
134 7.1 2 1
134 8.2 3 2
134 10.3 4 2
134 10.9 5 3
134 13.2 6 4

A visual inspection of the revised data was conducted to insure that trees were

placed in the proper class. The revised data set has a total of 217 plot records. Plot 261

was removed when fitting the system of equations models to the complete data set

because it has only two trees and could not be used for parameter estimation in the system

of equations.

.......
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Development of a System of Equations

The revised data set was used for modeling the system of four equations. The

system of four equations for each model has the following general form:

1 nj

AABAGI =- IfCXj)+ej
nl )=1

1 n2
AABAG2 =-IfCX2 )+e2

n, . 1
- J=

1 n3
AABAG3 =- IfCX3 )+e3

n3 )=1

1 n4
AABAG4 =-IfCX4)+e4

n4 )=1

where

AABAGij = average annual basal area growth for tree) of class i within a plot,

f = a function of stand and individual tree characteristics,

Xi = a vector of stand and class i individual tree characteristics on a plot.

ni = number of trees in class i, and

ei = error component associated with each class within a plot.

Seemingly unrelated regression is an appropriate technique for estimating

parameters in this system of equations because a correlation is expected between the error

components within each plot for the four classes. The correlation is expected because

trees within a plot are ecologically interdependent and competing for finite resources.

(-

-
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The SUR parameter estimation technique has been proven to provide a gain in efficiency

when the error components are correlated and the structure of each equation differs

(Zellner 1962). When the generalized system of equations uses linear functions (f),

independent variables are the means of each attribute by class within each plot. Class

means could not be used for nonlinear functions (f) because a function evaluated at the

mean does not equal the mean of the function for nonlinear equations. Therefore a

program in SAS PROC MODEL (SAS Institute Inc. 1989) was written to estimate the

parameters using an iterative process. The program used 217 records corresponding to

the plots. Each individual tree within a plot and its respective attributes were arrayed

along one record. The program evaluated the function for each plot between iterations

and computed the mean of the function for each class within a plot (Appendix B).

Models

Three basal area growth models were developed for trial use in a system of

equations. Modell (Hitch 1994) is the current model being used in the shortl af pine

simulator and was used as a basis for comparison. The numerator of Model 1 is the

potential function developed by Shifley (1987) and is constrained for a biologically

reasonable tree size (M). A biologically reasonable tree size for shortleaf pine of this

geographical location was derived as having a 36-inch DBH and the equivalent basal area

is 7.068384 square feet. The potential function initial parameters were estimated by

fitting the potential function separately using the five-percent fastest growing trees by

one-inch diameter class. If a diameter class had less than 21 observations then aU trees

for that diameter class were used to estimate the initial potential function parameters.



--
49

The denominator of Model 1 is the competition modifier suggested by Murphy and

Shelton (1996) in which the parameters were estimated while holding the potential

function parameters constant. To reduce bias exhibited by Model I with respect to some

DBH classes, one iteration was completed to re-estimate the parameters of both the

potential and competition functions as suggested by Wensel et al. (1987). The Modell

basal area growth model has the following form:

/3 (PI BA JPIBA 2- (1-/32)

AABAG= M
1 (/33+/34SBA+/3sAGE+/36DD+/37BA)

+e

where
AABAG = average annual basal area growth,

BA = individual tree basal area,

M = maximum basal area (M = 7.068384),

SBA = stand basal area,

AGE = stand age,

DD = diameter of subject tree divided by quadratic mean diameter, and

Pi = parameters.

..
0/
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Model 2 uses an individual tree equation that is mathematically identical to Model

1 but to estimate parameters using SUR. a system of four equations was fonned

corresponding to the four diameter rank classes within each plot. Model 2 has the

following form:

P BA1h-( PIBA} J
1 n3 1 J M (1- fJ 2)

AABAG3 = -n3 I--(-fJ-3-+-P-4-SB-A-~-;fJ-s-A-'-.C-E-+-P-6-D- D'---i+-fJ-7-B-A-j-)
J=! 1+ e .

where

j = individual tree observation(s) within a class (class = 1,2,3,4) on a plot,

AABAG, BA, M.. SBA, AGE, 13i, and DD defined previously, and

ni = observations in class i on a plot.

...,
e....
~
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The parameters for Model 2 were stimated using the technique described for

Model I with the following modifications. The parameters were estimated using the

SUR option in the SAS PROC MODEL procedure with parameter restrictions placed

across the four equations.

Model 3 uses a modified Weibull probability function as the potential and the

same competition modifier used for Models 1 and 2.

51
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[P2 J[ BAjrr 'l
fAj t i

~

1 nl /3 0 PI /3 I e /31
~

AABAGI =- I 04

1+ //33+ /3 4SBAt /3 SAGET /36 DD) +/3 7BA))
.

nl ) =1
....
..
'"..

(P2 J( BA JrPr1
) t Jt .....

oJ

/3 0 PJ /3
1

e PI
..

1 n2 ",'..
AABAG2 =- I ~

1+ e(/3 3+ fJ 4 SBA +PSAGE+ fJ6DDj + /37 BAj) wi
n2 )=J el

~
(P2 J( BAjrr 1l

-( HAj t ,
1

n) Po P
J

/3
1

e PI
AABAG3 =- I

(/3)+/3 4 SBA +fJ SAGE+ /36 DD i +PTBA i)n3 ) = I l+e ..

where

AABAG, BA, SBA, AGE, DD, Pi, ni, and} are as defined previously.
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The Weibul1 probability density function was modified by adding a parameter (/30)

that scaled the function. The modified Weibull probability density function was selected

as the potential function because of its flexibility and to detennine the viability of using

the function to model basal area gro\\tth. The potential function was fitted to the fastest

growing five percent of the trees using the method described previousJy. Then the

competition modifier was fitted while holding the potential function constant. One

iteration of refitting the potential and modifier functions was completed as descri bed for

Models I and 2 to re-estimate the parameters and remove some bias with respect to

certain DBH classes.

The composite function (Mode14) selected is a variation of the PROGNOSIS

model (equation 7). Model 4 predicts the natural log of basal area growth as a linear

function of stand and tree characteristics. The system of four equations has the following

[onn:

..·0{..,..
·J..
'"'..
•....
;..

~
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where

AABAG(i = average annual basal area growth oftreej in class i (square feet).

DBH = tree diameter (inches).

BAL = cumulative basal area of all trees larger than subjective tree,

CR = crown ratio,

CCF = crown competition factor,

Sf = site index (base age = 50),

AGE = stand age (years). and

Pi = estimated parameters.

The dependent variable in this model requires computing the natural log which is

a problem because of the negative or zero growth observations. The data set consisted of

approximately five-percent of the average annual basal area growth measurements having

zero or negative growth. These observations may be attributed to logical reasons such as

peeling bark, which results in a smaller diameter being recorded during the second

measurement than at the first measurement. Because Model 4 required computing the

natural log of basal area growth, the observations that were less than or equal to zero were

constrained to be number that was less than the smallest observable basal area growth.

The smallest observable growth during a measurement period corresponds to a tree

growing from 1.0 to 1.1 inches with a basal area growth of 0.00 145 square feet. All

AABAG with less than or equal to zero growth were constrained to be 0.00125 square

feet.
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Calibration and Validation

To calibrate and evaluate the performance of the growth models, the complete

data set was divided into a calibration and validation data set. The plots were strati tied

by the site indices, stand ages, and basal area per acre combinations. Approximately 113 rd

of the plots within each combination of age, site index, and basal area classes were

selected randomly to fonn a validation data set. The calibration and validation data sets

contain 149 and 68 plots, respectively. The summary statistics for the calibration and

validation data sets are similar with no substantial differences. The summary statistics

for the calibration and validation data sets are presented in Tables 4 and 5, respectively.

The calibration data set was used to estimate parameters for the models. The

calibration of the models was focused on the statistical fitting process using either linear

or nonlinear regression techniques to assure that the models perform satisfactorily with

respect to the fit index and mean square error and to examine the residuals for

heterogeneity. The computer program was verified to ensure that the trees were placed in

the correct classes and that the program was operating correctly.

The validation process was used to detennine model performance using the

estimated parameters from the calibration data set to detennine the fit and performance of

the models on an independent data set. Validation tests were both subjective and

objective. The subjective tests were used to observe the predicted basal area growth and

determine if the projections were realistic with respect to current knowledge of shortlcaf

pine growth. Model predictions should follow known principles of tree and stand

development and should have biological integrity at the stand extremes. Models were

....
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examined under extreme conditions. such as for young and small diameter trees to

evaluate model perfonnance. The objective tests are outlined under model evaluation

criteria.

Table 4. Summary statistics for the calibration data set of the Ouachita Highlands natural
even-aged shortleaf pine study for developing a basal area growth model (N =
6099).

Attribute Minimum Maximum Mean Standard
Error

Plot Age 21.0 94.0 45.1 18.53
(years)

~

4

Plot Site Index 38.9 85.9 57.6 9.50 1
•(base age=50) ~

Stand Basal 29.57 177.12 108.22 31.66
Area (sq. ft.)

DBH (inches) 1.5 24.9 8.04 3.69

Crown Ratio 0.1310 0.7636 0.3785 0.062

CCF 26.46 255.44 133.05 50.90

Avg. Annual -0.008 0.0718 0.0127 0.0102
Individual Tree

Basal Area
Growth

Individual Tree 0.0123 3.383 0.4268 0.3757
Basal Area

Quadratic 0.4424 4.2410 1.0875 0.3191
Mean

Diameter to
Individual Tree

DBH(DD)

Basal Area of 0 171.37 66.74 38.47
all Trees as

Large or
Larger than the

Subject Tree
(BAL)
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Table 5. Summary statistics for the validation data set of the Ouachita Highlands natural
even-aged shortleaf pine study for developing a basal area growth model (N =
2829).

Attribute Minimum Maximum Mean Standard
Error

Plot Age 22.0 96.0 43.4 18.98
(years)

Plot Site Index 40.0 87.1 56.8 10.1
(base age=50)

Stand Basal 22.53 140.37 103.74 29.06
Area (sq. ft.)

DBH (inches) 1.2 23.2 7.70 3.86

Crown Ratio 0.1557 0.6619 0.3824 0.058

CCF 13.72 203.69 130.74 44.11

Avg. Annual -0.010 0.0700 0.0119 0.0100
Individual Tree

Basal Area
Growth

Individual Tree 0.00723 2.924 0.4041 0.3871
Basal Area

Quadratic 0.4520 3.725 1.0934 0.3235
Mean

Diameter to
Individual Tree

DBH(DD)

Basal Area of a 139.24 64.42 36.28
all Trees as

Large or
Larger than the

Subject Tree
(BAL)

.......
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Figure 2. Number of trees by DBH class for the calibration (N = 6099) and validation (N
= 2829) data sets.

The number of trees by DBH class graphs for the calibration and validation data

sets exhibit the same general pattern. The 4-inch DBH class has the largest deviation

from the complete data set number of trees by DBH class for both the calibration and

validation data sets. The calibration and validation data sets are under- and over-

represented for the 4-inch DBH class, respectively.

Model Evaluation Criteria

Model evaluation was conducted by computing the fit index and MSE and

examining model perfonnance across the data range with respect to DBH, site index,

basal area per acre, and age classes. The goal was to determine model perfonnance and

to examine the models developed by using a system of equations to evaluate the validity

of this method.
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The fit index for each model was computed to detennine how well the model fit~

the data. The fit index has the following form:

11

Ie;
FIT INDEX = I _------',_'=..:-1--

11

I(y;- r[
1=1

where

n = number of observations in validation, calibration, or complete data set

ei = residual of the ith observation, and

Yi = average annual basal area gro~1:h for tree i,

In addition to the fit index, several other statistics were computed to evaluate the

performance of the models for the calibration and validation data sets. The mean square

error (MSE) was computed as the sum of the squared difference between the predicted

basal area growth and the actual basal area growth divided by the degrees of freedom and

is a measure of the dispersion.

MSE

where

p = number of parameters, and

ei and n are defined previously.

II

IeT
;=1

n-p
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The MSE was computed for the complete calibration and validation data sets. In

addition, the MSE was calculated using the validation data set for the DBH, age, site

index, and basal area classes. The average deviation has the following form.

where

Average Deviation

ei and n are defined previously.

n

Iel
1=1

11

The average deviation by DBH, age, and basal area class was computed as the

sum of the errors divided by the total number of observations and is used to detect bias.

The mean absolute deviation was calculated as the sum of the absolute difference

between the predicted average annual basal area growth and the actual average annual

basal area growth divided by the number of observations. The mean absolute deviation

indicates the average absolute deviation from the mean AABAG and has the following

form:

17

Llel!
Average Absolute Deviation = ,-1=--,-1__

n

where

ei and n are defined previously.

~..
)
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The average absolute error as a percentage of the mean AABA G by attribute was

computed as the sum of the absolute deviations divided by the sum of the actual basal

area growth.

/I

Ileil
Average Percent Absolute Deviation = i=l (100)

n

LYi
i=l

where

ei, Yi, and n are defined previously.

The above model evaluation criteria are presented in tabular form. Box plots of

the residuals were constructed by DBH, site index, age, and basal area classes to illustrate

model biases and departures from normality.

The model(s) that performed best were then fitted to the complete data set 0 f 217

plots. Further analysis was then conducted by computing the fit index, MSE, and average

deviations by attribute classes for the complete data set. Bar charts of the average

deviation by attribute classes and AABAG were constructed using the complete data sel to

detect biases and compare model performance.

)



CHAPTER V

RESULTS

Calibration

All four models used the same calibration data set, which consists of 149 plots

and 6099 individual tree observations. Model 1 parameters were fitted using nonlinear

regression using the 6099 individual tree records. Models 2 and 3 used a system of four

nonlinear equations to fit the parameters using the plot mean of the function for each

DBH rank class. Model 4 used the plot means of each DBH rank class to fit the

parameters to a system of four linear equations. Models 2, 3, and 4 used the DBH rank

classes by plot with 149 plot observations used for fitting the parameters. The parameter

estimates, standard errors, and descriptions for Models I and 2, Model 3, and Model 4 are

presented in Tables 6, 7, and 8, respectively.

Table 6. Parameter estimates, standard errors, and descriptions for Models I and 2 when
fitted to the calibration data set.

Parameter
Modell

Estimate Standard Error
0.081555 0.001626

0.573986 0.010216

-3.453924 0.095805

0.015943 0.00040 I

0.029879 0.001049

1.191026 0.075979

-1.065994 0.049297

61

Model 2
Estimate Standard Error
0.081248 0.005159

0.572551 0.037990

-2.816660 0.323730

0.015596 0.001332

0.023381 0.003361

0.895971 0.209410

-0.982284 0.144010

Description
SA

BA Power

Intercept

SBA

AGE

DD
BA
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Table 7. Parameter estimates, standard errors, and descriptions for Model 3 when fitted
to the calibration data set.

Description
Weibull Multiplier

Weibull Spread Parameter

Weibull Shape Parameter

Logistic Intercept

SBA

AGE

DD
BA

0.237509 0.029240

3.432234 0.383970

1.482893 0.039310

-2.662908 0.312800

0.014920 0.001283

0.024019 0.003245

0.837411 0.202140

-0.977300 0.138470

Parameter Estimate Standard Error

Models 1, 2, and 3 used the same competition modifier and consequently the signs

of parameters /33-/37 are logically identical. The logical properties of the signs for the

estimated parameters were examined while holding the other estimated parameters

constant. Although illogical coefficient signs are possible in a valid predictive model due

to multicolinearity, logical signs are desirable. For Models 1, 2, and 3, the signs for the

estimated parameters /3~ (stand basal area). /35 (stand age), and /36 (quadratic mean

diameter to individual tree DBH) are logically positive. This implies that as these

attributes increase, such as stand age, the rate of growth decreases, and conversely,

parameter Pc (individual tree basal area) is negative and indicates that as the individual

tree basal area increases its growth rate increases.

Table 8. Parameter estimates, standard errors, and descriptions for Model 4 when fitted
to the calibration data set.

Parameter Estimate Standard Error Description
-6.567868 0.232430

1.457768 0.088260

-0.003002 0.000727

1.388672 0.344310

-0.016536 0.001858

-0.004905 0.000577

Intercept

Natural Log DBH

BAL

CR

CCF
AGE
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Model 4 is a variation of the PROG OSIS model, with crown ratio squared, DBH

squared, and site index excluded from the final model because they were insignificant

(alpha level of 0.05). The signs of Model 4 attributes are logical and consistent with

known forest growth patterns. Model 4 estimated parameters /3J (basal area of all trees as

large or larger than the subject tree), 135 (plot age), and /36 (CCF) have negative signs

which are consistent with growth patterns. For instance, as CCF increases, tree

competition increases and hence the rate of growth decreases. The signs for the estimated

parameters /32 (DEli) and /34 (crown ratio) are logically positive.

Models 1 and 2 use the same potential function, which was initially fitted

separately from the competition modifier. The potential function has a fit index of

0.7593 and MSE of 0.000052. Model 3 uses a modified Weibull probability density

function as the potential function which has a fit index of 0.7749 and a MSE of 0.000048

when fitted to the fastest growing five percent of the trees by one-inch diameter class.

The individual tree growth function used in Models I and 2 are identical mathematically

but the degrees of freedom for the standard errors differ. Model I estimated parameters

are based upon 6099 individual tree observations whereas Model 2 uses a system of

equations that are based upon 149 plot observations.

The fit index and MSE for all four models are presented in Table 9. Modell had

the highest fit index (0.6270) and Model 4 the lowest (0.5740). Models 2 and 3 fit

indices and MSE's are similar to those of Modell. All models provide a reasonable fit

with a small variance of the error terms.
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Table 9. Fit index and mean square error for aJI models using the calibration data set.
Model Fit Index MSE

1 0.6270 0.0000391
2 0.6206 0.0000397
3 0.6180 0.0000400
4 0.5740 0.0000450

All model residuals were plotted against their respective model attributes and

DBH to detect any trends. Except for DBH, there was no evidence of trends. The plots of

residuals versus the DBH classes for models I, 2, and 3 revealed some bias and slight

heterogeneity of variance. As discllssed in Methods (Chapter 4), one iteration for the

potential and modifier functions was performed to re-estimate the parameters. The

iteration removed some of the bias with respect to DBH and provided a better fit.

To determine whether SUR was an appropriate technique, the correlation among

residuals was examined for the system of equations models. The residual correlation

matrix is presented below for Model 2 with Models 3 and 4 illustrating similar results.

The DBH rank classes are 1-4 (left to right, top to bottom). As illustrated by the matrix,

there is a moderate amount of correlation between the plot DBH rank classes.

Consequently SUR may provide a gain in parameter estimation efficiency.

fl.O 0.5684 0.6341 0.5099

l
1.0 0.6532 0.5165

1.0 0.6440

1.0

The pairwise correlation for DBH rank classes might be positive due to the fact

that the study entails thinning from below and consequently the suppressed trees are
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removed. Since the microenvironment on a plot is similar for all DBH rank classes, if

growth in the first rank class is above the mean, growth in the second rank class tends to

be above the mean. Therefore, the residuals tend to be positively correlated.

The parameter correlation matrices were examined to detect multicollinearity

between independent attributes. The correlation matrix for Modell is presented below

with the other models showing similar results. There is a strong inverse correlation

between the intercept (/33) and both stand basal area (/34) and quadratic mean diameter to

individual tree DBH (/36)' There is also a significant inverse correlation between stand

age (P~) and individual tree basal area (/37)' The asymptotic correlation of parameters

matrix for Modell P.1-/37 (left to right, top to bottom) is

1.0 - 0.64510426

1.0

0.04746676

- 0.11238271

1.0

- 0.81875629

0.29022445

- 0.40950827

1.0

- 0.33982952

0.18386998

- 0.80374116

0.51353762

1.0

Multicollinearity may cause the parameter estimates to differ substantially when using

different techniques for parameter estimation or when the data are updated.

Validation

The validation data set consists of 68 plots and 2829 individual tree observations.

All models were evaluated using the individual tree observations in the validation data set

to determine model performance. The validation summary statistics for all models are

presented Table 10.
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Table 10. Summary statistics for all models using the validation data set.
Model Fit Index MSE Average Error Error Percentage Mean Absolute Error

I 0.6074 0.0000393 0.0007998 37.11 0.0044087
2 0.6036 0.0000397 0.0005774 37.47 0.0044513
3 0.6016 0.0000399 0.0005439 37.62 0.0044693
4 0.5821 0.0000418 -0.00103900 38.84 0.0046148

Note: Error Percentage = average absolute error as a percentage ofmeanAABAG

The fit index and MSE results for the validation data set when compared to the

calibration data set for Models], 2, and 3 are inferior, while Model 4 improved. Model 3

illustrated the smallest absolute value of average error (0.0005439) while Model 4 has the

largest absolute value of average error (0.00 I039). All models except Model 4 exhibit an

overprediction for average error. The variance among the average absolute error as a

percentage of the mean AABAG for Models 1,1, and 3 is relatively small while Model 4

has the highest error percentage. The mean absolute error among the four models is

similar with Model 4 having the highest absolute error.

The validation data set was used to detect any trends by DBH, site index, basal

area, and age classes for average deviation, M.,,)E, average absolute error, and average

absolute error as a percentage of the mean AABAG by attribute class. The results for the

average deviation by DBH class are presented in Table 11.

Table 11. Average deviation for all models by DBH class using the validation data set.
DBH Class N Modell Model 2 Model 3 Model 4

2 215 0.0009295 0.0010123 0.0011487 -0.0000192
4 683 0.0009268 0.0005659 0.0005602 -0.0017151
6 496 -0.0002946 -0.0008933 -0.0009947 -0.0028879
8 433 0.0006813 0.0003399 0.0002422 -0.0011852
10 391 0.0009385 0.0008093 0.0007911 -0.0002121
12 321 0.0020258 0.0021786 0.0022184 0.0010329
14 ]73 0.0025150 0.0027801 0.0028366 0.0011660
16 67 -0.0008632 -0.0007556 -0.0007553 -0.0014970
18 50 -0.0022730 -0.0024204 -0.0032815 -0.0033731
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Models 1,2, and 3 have identical signs by DBH class for average deviation.

Model 4 has the smallest average deviation for DBH class 2. Model 2 underpredicts for

the 2-inch DBH class while the other models overpredict. Model 4 performs better for

DBH classes 10, 12, and 14. Model 3 performs better for the 4 and 8-inch DBH classes.

Model 1 is superior for the 6-inch DBH class and for the 16 and 18-inch DBH classes all

models underpredict. The average deviation by site index. basal area, and age classes

were computed and are presented in Table 12.

Table 12. Average deviations by site index, basal area per acre, and age classes for all
models using the validation data set.

N Modell Model 2 Model 3 Model 4
Site Index

<56 1485 0.0004838 0.0001059 0.0000623 -0.0018454
60 622 0.0006002 0.0005599 0.0005223 -0.0005920
70 568 0.0019515 0.0019576 0.0019641 0.0005699

>75 154 0.0004048 0.0001030 0.0000358 -0.0010047

Balac
30 229 -0.0020835 -0.0025523 -0.0026437 -0.0038334
60 239 0.0027902 0.0030303 0.0028908 0.0009413
90 608 0.0007943 0.0005074 0.0004648 -0.0017232
120 1753 0.0009070 0.0006760 0.0006677 -0.0007069

Age
20 1024 -0.0002492 -0.0008470 -0.0008633 -0.0029609
40 797 0.0017839 0.0012287 0.0012309 -0.0000471
60 722 0.0022831 0.0024280 0.0024225 0.0014040
80 286 -0.0019318 -0.0008095 -0.0010751 -0.0030910

Models 1, 2, and 3 have similar trends for site index, basal area, and age classes.

For site index classes, Models 1,2, and 3 all overpredict for average deviation. Model 4

has underpredictions for site indices <56, 60, and >75 and performs best for the site index

class 70. Models 1,2, and 3 results are similar for all four basal area classes. They
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underpredict for basal area of 30 square feet per acre and overpredict for the other three

basal area classes. Model 4 has more variation within attribute classes when compared

with the other models. Model 4 performs the best for basal area class 60 and is inferior

for the basal area class 90. Models 1, 2. and 3 underpredict for age classes 20 and 80, and

overpredict for the other two age classes. Model 4 performs best for age class 40. Model

1 perfonns best for the age class 20, and Model 2 is superior for the older age class (80).

The MSE for all models was computed by DBH class and presented in Table 13.

Table 13. Mean square error for all models by DBH class using the validation data set.
Class N Model 1 Model 2 Model 3 Model 4

2 215 0.0000023 0.0000024 0.0000027 0.0000019
4 683 0.0000077 0.0000073 0.0000073 0.0000113
6 496 0.0000266 0.0000295 0.0000297 0.0000385
8 433 0.0000382 0.0000412 0.0000409 0.0000401
10 391 0.0000522 0.0000519 0.0000517 0.0000463
12 321 0.0000626 0.0000593 0.0000600 0.0000581
14 173 0.0000921 0.0000913 0.0000917 0.0000882
16 67 0.0001854 0.0001835 0.0001826 0.0002026
18 50 0.0002300 0.0002309 0.0002380 0.0002652

With the exception of 4-inch DBH class where Model 4 performs best, all models

perform similarly by DBH class for mean square error. The mean square error hy site

index, basal area per acre, and age classes are presented in Table 14.
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Table 14. Mean square error for all models by site index basal area per acre, and age
classes using the validation data set.

N ModeJ 1 Model 2 Model 3 Model 4
Site Index

<56 1485 0.0000275 0.0000278 0.0000279 0.0000310
60 622 0.0000402 0.0000408 0.0000408 0.0000432
70 568 0.0000572 0.0000579 0.0000587 0.0000560

>75 154 0.0000920 0.0000914 0.0000926 0.0000974

Balac
30 229 0.0000710 0.0000766 0.0000766 0.0000759
60 239 0.0000967 0.0000937 0.0000933 0.0000982
90 608 0.0000355 0.0000348 0.0000350 0.0000382
120 1753 0.0000295 0.0000300 0.0000303 0.0000318

Age
20 1024 0.0000147 0.0000169 0.0000173 0.0000251
40 797 0.0000438 0.0000431 0.0000430 0.0000415
60 722 0.0000510 0.0000513 0.0000519 0.0000466
80 286 0.0000895 0.0000864 0.0000866 0.0000951

The mean square error for all models reveals little variation among models by site

index. basal area per acre. or age class. The validation data set results for mean absolute

deviations by DBH, site index, basal area per acre, and age classes for all models are

presented in Tables 15 and 16.

Table 15. Mean absolute deviation for all models by DBH class using the validation data
set.

DBHClass N Modell Model 2 Model 3 Model 4
2 215 0.001 J 973 0.0012668 0.0013658 0.0010710
4 683 0.0022436 0.0021662 0.0021877 0.0026637
6 496 0.0039337 0.0041680 0.0041841 0.0049294
8 433 0.0046312 0.0048731 0.0048551 0.0048393
10 391 0.0054917 0.0054545 0.0054410 0.0051348
12 321 0.0062618 0.0061451 0.0061720 0.0058953
14 173 0.0077675 0.0077006 0.0077255 0.0074574
16 67 0.0101988 0.0102113 0.0101765 0.0100904
18 50 0.0108322 0.0108360 0.0110230 0.0119798
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The mean absolute deviation by DBH class reveals that all models behave

similarly and there is not a substantial amount of variation among models for the DBH

classes. All models exhibit the trend of mean absolute deviation increasing as the DBH

class increases with the 16 and 18-inch DBH classes having the highest mean absolute

deviation for all models.

Table 16. Mean absolute deviation for all models hy site index, basal area per acre, and
age classes using the validation data set.

N Modell Model 2 Model 3 Model 4
Site Index

<56 1485 0.0034833 0.0035020 0.0035275 0.0038789
60 622 0.0048433 0.0049299 0.0049] 77 0.0049857
70 568 0.0057531 0.0058382 0.0058661 0.0055378

>75 154 0.0066185 0.0065563 0.0065871 0.0068090

BaJac
30 229 0.0060362 0.0062881 0.0063330 0.0067268
60 239 0.0077023 0.0076989 0.0076447 0.0074454
90 608 0.0040877 0.0040347 0.0040476 0.0045127
120 1753 0.0038584 0.0039130 0.0039391 0.0039884

Age
20 1024 0.0027089 0.0028279 0.0028731 0.003576]
40 797 0.0048471 0.0048167 0.0048185 0.0047709
60 722 0.0053553 0.0054140 0.0054262 0.0049689
80 286 0.0069086 0.0068150 0.0067949 0.0070047

All models behave similarly for mean absolute deviation by site index, basal area

per acre, and age classes. For both site index and age, all models exhibit higher mean

absolute error as the site index and age class increases. All models exhibit the same trend

for basal area per acre mean absolute deviation. Their smallest respective absolute

deviations occur in the basal area classes 90 and 120, and their largest respective absolute

deviations occurring in the basal area per acre 30 and 60 classes.
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The average absolute error as a percentage of the mean AABAG by DBH, site

index, basal area per acre, and age classes for all models was computed and are presented

in Tables 17 and 18.

Table 17. Average absolute error as a percentage of mean average annual basal area
growth by DBH class for all models using the validation data set.

DBH Class N Modell Model 2 Model 3 Model 4
2 215 62.53 66.16 71.32 55.93
4 683 34.88 33.68 34.01 41.41
6 496 36.48 38.65 38.80 45.71
8 433 36.39 38.29 38.15 38.03
10 391 37.54 37.28 37.19 35.10
12 321 38.94 38.21 38.38 36.66
14 173 39.11 38.77 38.90 37.55
16 67 37.10 37.14 37.02 36.74
18 50 30.31 30.32 30.84 33.52

All models exhibit their respective highest average absolute error as a percentage

of average AABAG by DBH class for DBH class 2. Mode14 performs the best (55.93%)

and Model 3 performs the worst (71.32%) for the 2-inch DBH class. The average

absolute error as a percentage of average AABAG by DBH class for the other DBH classes

reveals that all models perform similarly with no substantial difference between the

respective models. The average absolute error as a percentage of the average AABAG by

site index, basal area per acre, and age classes are presented in Table 18.
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Table 18. Average absolute error as a percentage of mean AABAG by site index, basal
area per acre.. and age classes for all models using the validation data set.

N Model 1 Model 2 Model 3 Model 4
Site Index

<56 1485 35.93 36.12 36.38 40.01
60 622 37.29 37.96 37.86 38.39
70 568 42.79 43.42 43.63 41.19

>75 154 29.14 28.87 29.00 29.98

BaJac
30 229 26.59 27.69 27.90 29.63
60 239 39.23 39.21 38.94 37.92
90 608 31.10 30.69 30.79 34.33
120 1753 43.0 I 43.61 43.90 44.45

Age
20 1024 29.04 30.31 30.80 38.33
40 797 39.16 38.91 38.92 38.54
60 722 43.27 43.82 43.92 40.22
80 286 37.48 36.97 36.86 38.00

Models 1, 2, and 3 behave similarly for average absolute error as a percentage of

mean AABAG for site index, basal area per acre, and age classes. Model 4 behaves

similarly to the other models with a few exceptions. Model 4 behaves worse for site

index class <56 and slightly better for site index class 70. Model 4 average absolute error

as a percentage of the mean AABAG is higher with respect to basal area per acre classes

30,90, and 120 and lower for basal area class 60. All models have their respective

highest average absolute error as a percentage of the mean AABAG in the following

attribute classes: site index 70, basal area per acre 120, and age 60. Models 1, 2, and 3

have their respective lowest average absolute error as a percentage of the mean AABAG in

the following attribute classes: site index >75, basal area per acre 30, and age 20.
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Figure 3 illustrates the residuals box plots by DBH classes. Models l, 2, and 3

illustrate similar trends with respect to bias by DBH class with Model I and 2 performing

about equally and Model 3 illustrating slightly higher bias for the lower and higher DBH

classes. Model 4 exhibits the worst bias for the largest DBH class and least bias for the

smallest DBH class. All models demonstrate an underprediction bias for the largest DBH

class (18+). All four models have their highest skewness in the 18-inch DBH class.
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Figure 3. Box plots of residuals by DBH class for all models using the validation
data set.
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Figure 4 illustrates the box plots for residuals by site index class. Models I 2.

and 3 perfonn similarly with the difference between Models 1 and 2 negligible. Models 2

and 3 illustrates slightly less bias in the plot site index class >75 and slightly more in site

index class 70. Model 4 behavior is substantially different from the other models with

overprediction bias only in site index class 70. Model 4 does exhibit the least bias with

respect to site index classes 60 and 70.
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Figure 4. Box plots of residuals by site index class for all models using the
validation data set.
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Figure 5 illustrates the box plots of residuals by plot basal area class. Models 1 2

and 3 behave similarly with Models 2 and 3 performing slightly better for plot basal area

90 and Model 1 better for plot basal area 30. Model 4 has the least bias for basal area

class 120 and 60, but has substantially more underprediction bias for basal area class "'0.
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Figure 5. Box plots of the residuals by plot basal area class for all models using the
validation data set.
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The box plots of the residuals by age class are presented in Figure 6. Models 1, ,

and 3 behave similarly for all age classes. Models 1 and 2 perfoml the best for the age

classes 20 and 80. Model 4 has strong departures in biases with respect to the other

models. Model 4 exhibits the least bias for age class 40 but has significantly more

underprediction bias in age class 20 with respect to the other models.
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Figure 6, Box plots of residuals by plot age class for all models using the validation data
set.
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CHAPTER VI

DISCUSSION

The calibration and validation results reveal that Models L 2, and 3 perform well

with no substantial differences among the models. Model 4 performs adequately but its

biological integrity is compromised because it predicts a diameter larger than 70 inches.

There could be some concern about using Model 4 to simulate the future forest structure

for old stands. Model 4 performs best for the 2-inch diameter class for average error,

NISE, average absolute error, and average absolute error as a percentage of the mean

AABAG. Although Model 4 performs best for the 2-inch DBH class, it still performs

poorly for this diameter class. Model 4 was excluded from further consideration because

for the model calibration and validation results it has the least favorable fit index, MSE,

average error, average absolute error as a percentage of the mean AABAG, and mean

absolute error.

Models 1, 2, and 3 perform similarly for the calibration and validation data sets.

Although the Model 1 fit index, MSE, average absolute error as a percentage of the mean

AABAG, and mean absolute error are better, the differences among the three models is

negligible. For example, the respective fit indexes using the validation data set for

Models 1,2, and 3 are 0.6074,0.6036, and 0.6016, respectively. Model 3 has the

77
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smallest average error of 0.0005439, but the other models perform well with Models]

and 2 having average errors of 0.0007998 and 0.0005774, respectively.

Model 1 does perform best using the validation data set for the average deviation

criterion for DBH classes 2, 6, 12, 14 and] 8, but with the exception of DBH class 6 the

difference between models is negligible. The difference between Models l, 2, and 3 for

the 6-inch DBH class is -0.0002946, -0.0008933, and -0.0009947, respectively. Model 2

performs best overall for the average deviation by site index, basal area per acre and age

class. Although Model 1 performs best for some attribute classes, the difference between

Model 1 and Models 2 and 3 predictions is smaller than when Model 2 performs best.

There is little distinguishable difference in MSE and mean absolute deviation for

each of the attributes. Model 3 does perform worst overall for mean absolute deviation

but the difference is negligible among the models.

A concern with the shortleaf pine simulator has been the poor performance of the

2-inch diameter class. The 2-inch diameter class has the highest average absolute error as

a percentage of the mean AABAG. For the 2-inch diameter class, Models 1,2, and 3 have

average absolute error as a percentage of the mean AABAG of 62.53,66.] 6, and 71.32,

respectively. The 2-inch diameter class is more sensitive than the other diameter classes

because if all diameter classes have the same amount of measurable diameter growth the

2-inch diameter class will have the highest relative amount of basal area growth. For

example, a tree growing from 2.0 to 2.l-inches has approximately 10% increase in basal

area growth, whereas a tree growing from] 0.0 to 1O.l-inches has approximately 2%

increase in basal area growth. The average absolute error as a percentage of the mean

•
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AABAG for Models 1.2, and 3 by site index, age, and basal area per acre clas es provides

little basis for differentiation among respective models.

The box plots of Models 1, 2, and 3 reveal no substantial differences among the

three models with most attribute classes having a fairly symmetric distribution. Models

I, 2, and 3 have their highest DBH class skewness (negative) for the 16 and 18-inch

diameter classes. This skewness was expected because there are few observations in the

16 and 18-inch DBH classes. All three models exhibit their highest plot basal area

skewness (negative) for the plot basal area class 30. This was expected because there are

relatively few observations in this plot basal area class. The lO-year age class for all

three models has the greatest skewness (negative skewed) among age classes. Although

the 20-year age class has the most observations among age classes there has been a

tendency for the young age class to perfonn poorly. The box plots illustrate no

substantial differences for the overall bias pattern for Models 1. 2, and 3.

Complete Data Set

Models I, 2, and 3 were fitted to the complete data set for further evaluation. Plot

261 was removed from the data set for fitting the parameters for Models 2 and 3. There

were only two trees on plot 261 and it could not be used for estimating the parameters for

a system of equations. Models I and 2 and Model 3 parameter estimates, standard errors,

and descriptions are presented in Tables 19 and 20, respectively.
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Table 19. Parameter estimates, standard errors, and descriptions for Models 1 and 2
when fitted to complete data sel.

80

Parameter
Madej 1

Estimate Standard Error
0,0815392 0.0013261

0.5727113 0.0083359

-3.4613420 0.0787408

0.0160711 0.0003341

0.0295606 0.0008705

1.2477951 0.0629028

-1.0603063 0.0401967

Mode12
Estimate Standard Error
0.083670 0.004831

0.582591 0.033420

-2.768013 0.274390

0.015550 0.00 to77

0.023695 0.002699

0.916957 0,186520

-0.994703 0.120200

Description
BA

BA Power

Intercept

SBA
AGE
DD
BA

Table 20. Parameter estimates, standard errors, and descriptions for Model 3
when fitted to complete data set.

Parameter Estimate Standard Error Description
0.279316 0.03920

3.930101 0.49676

1.459578 0.03460

-2.667933 0.26603

0.015163 0.00105

0.023272 0.00261

0.907143 0.18089

-0.959767 0.11546

Weibull Multiplier

Weibull Spread Parameter

Weibull Shape Parameter

Logistic Intercept

SBA
AGE
DD
BA

SUR provides a gain in efficiency for large data sets but a comparison of the

standard errors for the estimated parameters for Model I and Models 2 and 3 could not bc

conducted. Model 1 estimated parameters are based upon 8928 individual tree

observations whereas Models 2 and 3 parameter estimates are based upon 216 plot

observations. Whil,e Model 1 appears to have a lower standard error for the estimates,

when the independence assumption of regression is violated there may be a significant

underestimation of the lvfSE and standard errors of the estimated parameters. Models 2

and 3 were fitted using OLS with no parameter restrictions placed across the equations

--
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for comparison with the SUR fit. There was a large gain in efficiency when Models 2

and 3 were fitted using SUR with parameter restrictions placed across equations.

However, it cannot be concluded that Models 2 and 3 provide a gain in parameter

estimation efficiency when compared with Model I. The fit index, MSE, and SSE for

Models 1, 2, and 3 when fitted to the complete data set are presented in Table 21.

Table 21. Models 1,2, and 3 fit index, mean square error, and error sum of squares when
fitted to the entire data set.

Model
I
2
3

Fit Index MSE
0.6224 0.0000390
0.6154 0.0000397
0.6144 0.0000398

SSE
0.3482911
0.3547762
0.3556626

Modell has the highest fit index (0.6224) and lowest MSE (0.000039) but as

expressed previously, when the independence assumption is violated the MSE may be

significantly underestimated. If the MSE is underestimated then the SSE would be

underestimated and the fit index would be overestimated. There is not a substantial

difference between the three models, with Models 2 and 3 having fit indices of 0.6154

and 0.6144, and MSE's of 0.0000397 and 0.0000398, respectively. Although MSE and fit

indices for Models 2 and 3 are less favorable than Model l, these models account for the

interdependency among trees within a plot.

Horizontal bar charts of the average deviation by class attributes and mean

AABAG are presented in Figures 7-10. Figure 7 illustrates the average deviation by DBH

class and meanAABAG for Models 1,2, and 3. This illustrates that the 2-inch DBH class

has the largest bias relative to basal area growth. Models 1 and 2 are relatively equal for

the 2-inch diameter class with Model 3 having a larger bias than growth. All three
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models overpredict for the 2-inch diameter class. Model 2 has virtually no bias for the 4

inch DBH class with Models I and 3 illustrating a small overprediction bias. Modell has

the least bias for the 6, 8, and 1O-inch DBH classes with all three models underpredicting

on average. Model I has the least bias for the 16-inch DBH class. Model 2 is superior

for the I8-inch DBH class with all three models having their largest bias for the I8-inch

DBH class. The 18-inch DBH class has the largest absolute bias (underprediction) for all

models which was expected because this DBH class contains few observations.

The average deviation by site index class and mean AABAG is presented in Figure

8. All models exhibit their respective smallest biases in the extreme site index classes

«56 and >75). For site index class <56, Model I has a slight overprediction while

Models 2 and 3 have underpredictions. All three models perform about equally for all

site index classes.

The plot basal area average deviation and mean AABAG graph is presented in

Figure 9. All models have their respective smallest and largest bias for plot basal area

class 90 and 30, respectively. All models underpredict for plot basal area on average

except for plot basal area class 90. Model I performs best for plot basal area class 30 but

there is little substantial difference among the models.

The graph of average deviation by age class and mean AABAG is presented in

Figure 9. All models have underprediction bias for age classes 20, 40, and 80 with Model

I performing best for age class 20 and worst for age class 80. There is little

differentiation between Models 2 and 3 for all age classes. The AABAG decreased from

age 40 to 60 before increasing substantially from age 60 to 80 and may be the result of

age class 60 having substantially more basal area per acre than age classes 40 and 80.
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Figure 7. Average deviation by DBH class and mean average annual basal area growth
for Models 1,2, and 3 when fitted to the complete data set.
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for Models 1, 2, and 3 when fitted to the complete data set.
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Conclusion

Model 4 was excluded as a candidate for use in the shortleaf pine simulator

because for the calibration and validation tests it has the least favorable fit index. MSE.

average error, average absolute error, and average absolute error as a percentage of the

mean AABAG. In addition, the biological integrity of Model 4 is compromise because it

predicts a DBH in excess of 70-inches.

The calibration, validation, and complete data set results reveal that neither Model

1, 2, or 3 is clearly superior. In practical terms, any of these models are viable candidates

for use in the shortleaf pine simulator. It appears that Models 1 and 2 are slightly

superior to Model 3, but Model 3 has better overall consistency. Model 3 uses a modified

Weibull potential function, which has demonstrated its viability as a potential function,

but further investigation is warranted. Models 2 and 3 account for the interdependency

among trees within a plot and are theoretically more correct. These models may be

enhanced by increasing the number of equations used in the system of equations.

As discussed earlier, major departures from the assumption of uncorrelated errors

may result in a significant underestimation for the standard error(s) of the estimated

parameter(s) and MSE. If the MSE is underestimated then the t-value for testing if fJi = 0

will be overestimated and consequently Pi may be rejected when it should not be rejected.

Since all three models behave similarly, it is recommended that Model 2 be used as the

basal area growth model for the shortleaf pine simulator because it has the same

mathematical form as the current basal area growth model (Model I) and accounts for

tree interdependency withi.n a plot.
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APPENDIX A

SAS~SUBROUTINE PROGRAM THAT RANKS AND CREATES FOUR CLASSES
WITHIN EACH PLOT CORRESPONDING TO THE INDIVIDUAL TREE DBH

WITHIN A PLOT

/*RANKING DATA SET BY DBH WITHIN EACH PLOT IN ASCENDING ORDER*/
/*IDENTICAL DBH'S WITHIN A PLOT ARE PLACED IN THE LOWER RANK*/
PRoe RANK DATA=SET3 TIES=LOW OUT=SET4;
BY PLOT;
RANKS RDBH_MID;
VAR DBH_MID;

/*CREATING DATA SET5 FROM THE RANKED SET4*/
DATA SET5;
SET SET4;

/*00 LOOP FOR COMPARING TREES WITHIN A PLOT FOR CREATING
FOUR CLASSES, EQUAL OBH RANKS ARE PLACED INTO THE LOWER CLASS*/

DO;
!*CREATING VARIABLES CORRESPONDING TO QUARTILES

A=25%, 8=50%, C=75%*/
A=NUM/4;
B=NUM/2;
C=NUM*(3!4);

/*USING MOD FUNCTION TO DETERMINE HOW MANY REMAINING TREES
THERE ARE PER PLOT AND WHAT CLASS THEY BELONG IN*!

/*FOR EXAMPLE, IF PLOT HAS 5 TREES, MOD(NUM,4) WILL RETURN 1,
THIS ONE TREE WILL BE PUT IN THE LOWER CLASS, IF MOD RETURNS
2, THEN THE TWO TREES WILL BE SPLIT BETWEEN CLASS ONE AND
TWO*!

!*USED A MOD FUNCTION FOR EACH OF THE FOUR POSSIBILITIES, COULD
HAVE A REMAINDER OF 0, 1,2, OR 3: ADDED ONE TO A, B, C,
TO INSURE PROPER PLACEMENT OF TREES WHEN MOD = 1, 2, OR 3*!

IF MOO(NUM,4)=0 AND
IF MOD(NUM,4)=O AND
IF MOD(NUM,4)=O AND
IF MOD(NUM,4)=0 AND

ROBH_MID<=A THEN CLASS=1;
ROBH MID>A AND RDBH MIO<=B- -
ROBH MIO>B AND ROBH MID<=C- -
RDBH_MIO>C THEN CLASS=4;

THEN CLASS=2;
THEN CLASS=3;



IF MOD(NUM,4)=1 AND RDBH_MID<=(A+1) THEN CLASS=1;
IF MOD(NUM,4)=1 AND RDBH_MID>(A+1) AND RDBH_MID<=(B+1) THEN CLASS=2;
IF MOD(NUM,4)=1 AND RDBH_MID>(B+1) AND RDBH_MID<=(C+1) THEN CLASS=3;
IF MOD(NUM,4)=1 AND RDBH_MID>(C+1) THEN CLASS=4;

IF MOD(NUM,4)=2 AND RDBH_MID<=(A+1) THEN CLASS=1;
IF MOD(NUM,4)=2 AND RDBH_MID>(A+1) AND RDBH_MID<=(B+1} THEN CLASS=2;
IF MOD(NUM,4}=2 AND RDBH_MID>(B+1} AND RDBH_MID<=(C+1) THEN CLASS=3;
IF MOD(NUM,4}=2 AND RDBH_MID>(C+1) THEN CLASS=4;

IF MOD(NUM,4}=3 AND RDBH_MID<=(A+1) THEN CLASS=1;
IF MOD(NUM,4)=3 AND RDBH_MID>(A+1) AND RDBH_MID<=(B+1) THEN CLASS=2;
IF MOD(NUM,4}=3 AND RDBH_MID>(B+1) AND RDBH_MID<=(C+1) THEN CLASS=3;
IF MOD(NUM,4)=3 AND RDBH_MID>(C+1) THEN CLASS=4;
END;
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I*ONCE TREES ARE PLACED INTO THE FOUR CLASSES, THE ATTRIBUTE MEANS
WITHIN A PLOT BY CLASS CAN BE COMPUTED FOR USE IN THE LINEAR SYSTEM OF
EQUATIONS (MODEL 4). THE DATA SET CAN ALSO NOW BE ARRAYED FOR USE IN
THE NONLINEAR SYSTEM OF EQUATIONS (MODELS 2 AND 3) (SEE APPENDIX B FOR
THE NONLINEAR PROGRAM)*I
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APPENDIX B

SAS® SUBROUTINE PROGRAM THAT COMPUTES THE MEANS FOR A
NONLINEAR FUNCTION BY DBH RANK CLASS WITHIN EACH PLOT

BETWEEN EACH ITERATION FOR FITTING A NONLINEAR SYSTEM OF
EQUATIONS

I*THE DATA SET ARRAY IS USED WITHIN THE SAS PROC MODEL PROCEDURE
TO COMPUTE THE NONLINEAR FUNCTION MEANS BY CLASS WITHIN
EACH PLOT*I

PROC MODEL DATA=PATH.ARRAY;

I*PARAMETER ESTIMATES FOR MODEL 2, UNCOVER THE POTENTIAL OR
COMPETITION PARAMETERS THAT ARE NOT ESTIMATED DURING
FITTING PROCESS. FOR EXAMPLE, WHEN FITTING THE COMPETITION
MODIFIER (DENOMINATOR) THE POTENTIAL PARAMETERS ARE NOT
ESTIMATED. POTENTIAL PARAMETERS=B1 ,B2 , MODIFIER
PARAMETERS=B3 -B7*I

I*B3=-2.820689; B4=.015676; B5=.023993; 86=.91717; B7=-.990005;*1
B1=.08367; B2=.582591;

I*ARRAYS FOR ATTRIBUTES BY DBH CLASS, NUMBER OF ELEMENTS MUST BE
LARGER THAN THE MAXIMUM NUMBER OF TREES IN A CLASS WITHIN A
PLOT, SET AT 150*1

array dbh1{150}; array dbh2{150}; array dbh3{150}; array dbh4{150};
array pba1{150}; array pba2{150}; array pba3{150}; array pba4{150};
array dd1{150}; array dd2{150}; array dd3{150}; array dd4{150};
array ba1{150}; array ba2{150}; array ba3{150}; array ba4{150};
array pa1{150}; array pa2{150}; array pa3{150}; array pa4{150};

I*DBH=INDIVIDUAL TREE DBH, PBA=PLOT BASAL AREA, DD=INDIVIDUAL
TREE DBH TO QUADRATIC MEAN DIAMETER, BA=INDIVIDUAL TREE
BASAL AREA, PA=PLOT AGE*/
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/*00 LOOP FOR COMPUTING THE NONLINEAR FUNCTION MEANS BY PLOT AND
CLASS BETWEEN EACH ITERATION*/

/*COMPUTING FUNCTION MEANS OF CLASS 1 BY PLOT*/
DO 1=1 TO 150j

IF 1=1 THEN N1=Oj
IF 1=1 THEN S1=Oj
IF BA1{I}A=-1 THEN DO;
s 1=s 1+ ( ( ( b1*ba 1{I} **b2 ) - (b 1*ba 1{I} /7 . 068384** (1-b2) ) )

/(1+exp(b3+b4*PBA1+b5*PA1+b6*DD1{I}+b7*BA1{I}))) ;
N1 =N1 +1 j

ENDj
ENDj

EST_G1=S1/N1;

/*COMPUTING FUNCTION MEANS OF CLASS 2 BY PLOT*/
DO 1=1 TO 150j

IF 1=1 THEN N2=0;
IF 1=1 THEN S2=Oj

IF BA2{I}A=-1 THEN DOj
s2=s2+(((b1*ba2{I}**b2)-(b1*ba2{I}/7.068384**(1-b2)))

/(1+exp(b3+b4*PBA2+b5*PA2+b6*DD2{I}+b7*BA2{I})));
N2=N2+1j

END;
END;

EST_G2=S2/N2j

/*COMPUTING FUNCTION MEANS OF CLASS 3 BY PLOT*/
DO 1=1 TO 150;

IF 1=1 THEN N3=Oj
IF 1=1 THEN S3=Oj

IF BA3{I}A=-1 THEN DO;
s3=S3+(((b1*ba3{I}**b2)-(b1*ba3{I}/7.068384**(1-b2)))

/(1+exp(b3+b4*PBA3+b5*PA3+b6*DD3{I}+b7*BA3{I})));
N3=N3+1;

END;
END;

EST_G3=S3/N3j
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!*COMPUTING FUNCTION MEANS FOR CLASS 4 BY PLOT*!
DO 1=1 TO 150;

IF 1=1 THEN N4=0;
IF 1=1 THEN S4=0;

IF BA4{I}~=-1 THEN DO;
s4=s4+(((b1*ba4{I}**b2)-(b1*ba4{I}!7.068384**(1-b2)))

/(1+exp(b3+B4*PBA4+b5*PA4+b6*DD4{I}+b7*BA4{I})});
N4=N4+1;

END;
END;

!*FITTING THE MEAN AVERAGE ANNUAL BASAL AREA GROWTH TO THE
ESTIMATED AABAG, PARAMETER RESTRICTIONS PLACED ACROSS
EQUATIONS*!

BAG1=EST_G1;
BAG2=EST_G2;
BAG3=EST_G3;
BAG4=EST_G4;

J*BAGi=MEAN OF THE AVERAGE ANNUAL BASAL AREA GROWTH FOR EACH DBH
CLASS WITHIN A PLOT, EST_G1=ESTIMATED AVERAGE ANNUAL BASAL
AREA GROWTH FROM THE FUNCTION ABOVE USING THE STARTING
PARAMETER VALUES DURING THE FIRST ITERATION*!

!*ESTIMATED STARTING VALUES FOR PARAMETERS FOR FITTING EQUATIONS,
COVER PARAMETERS VALUES THAT NOT ESTIMATED FOR THIS RUN*/

PARMS /*b1=.84 b2=.593*/ B3=-2.827049 B4=.015562 B5=.023576 B6=.876575
B7=-.951213;

J*USING ITERATIVE SUR TO FIT SYSTEM OF EQUATIONS,
FIT BAG1 BAG2 BAG3 BAG4!ITSUR METHOD=MARQUARDT CORR;

RUN;
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