
SECURE LOGIN OVER TCP/IP USING

PUBLiC-KEY CRYPTOSYSTEM

By

PASSAKON PRATHOMBUTR

Master of Science

in Computer Science

Chulalongkom University

Bangkok, Thailand

1993

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1998

SECURE LOGIN OVER TCP/IP USING

PUBLIC-KEY CRYPTOSYSTEM

Thesis Approved:

H· ~.
Thesis Advisor

dC)~

ean of the Graduate College

ii

ACKNOWLEDGEMENTS

I am indebted to my loving wife Cholticha for her understanding and her support

throughout my work on this. Her support is constant and strong. Without it I would not

succeed. I would like to express my sincere appreciation to my thesis advisor Dr. Huizhu

Lu who spent her valuable time to advice and support me. Also, I would like to extend

my thanks to Dr. 1. Chandler and Dr. H. K. Dai for their advice and willingness to serve

on my graduate committee. Their suggestions and support were very helpful throughout

the study. Finally, I would like to express my gratitude to my parents who were mentaUy

with me all the time.

III

Chapter

I

II

TABLE OF CONTENTS

Page

INTRODUCTION '" " 1

LITERATURE REVIEW , .4

2.1 Cryptosystems 4

2.2 RSA Algorithm 7

2.2.1 The correctness ofRSA 8

2.2.2 The use of RSA 9

2.3 The Password schemes 12

2.3. 1 One-time password 14

The S/KEY 15

2.3.2 Passwords based on the public key encryption 18

Secure Shell (SSH) 18

Secure Sockets Layer (SSL) 20

2.4 Unix login system over TCP/IP network 22

III DESIGN AND IMPLEMENTATION 27

3.1 Design 27

3.1.1 Security services 27

3.1.2 The Secure login model. 28

3.2 Implementation 31

3.2.1 Implementation on the server machine 31

iv

Chapter Page

3.2.2 Implementation on the client machine 41

IV CONCLUSIONS AND FUTURE WORK 43

4.1 Conclusions 43

4.2 Future work 44

REFERENCES , 45

APPENDIX A 47

v

Figure

LIST OF FIGURES

Page

1.1. The diagram of asymmetric key encryption , , 3

2.1. The encryption algorithms and their related applications 7

2.2. Three types of active attacks , , 13

2.3. The Java OTP Calculator and the telnet program 17

2.4. The SSH protocol execution 19

2.5. The architectural placement of SSL. , 21

2.6. The example of the /etc/passwd file 22

2.7. The example of services in the/etc/services file 23

2.8. The example of services in the /etc/inetd.co~rtile 24

2.9. Seque-nce of the remote login process , 26

3.1. The processes and data flow of the Secure Login System 29

3.2. The main steps to generate an RSA key-pair. 33

3.3. The private key kept in /usr/local/etc/sloginlidentity.pri .34

3.4. The stelnet daemon program assigned in the /etc/inetd.conffile 35

3.5. The slelnel service defined in the /elcl.~ervice file 35

3.6. The modules i.n the slogin program , 36

VI

PageFigure

3.7. RSA private key decryption using the Chinese Remainder

theorem to speed up the computation 39

3.8. The Java code applied to the RSA encryption in equation (I) AI

3.9. The secure login prototype page 42

VII

CHAPTER I

INTRODUCTION

The authorization of the Unix user depends on hislher password. The password is

mostly secure whenever the user accesses his/her server on a private network.

Nonetheless, whenever a user accesses the Unix server from machine outside the office

across unprotected networks like the Internet, how can the user protect his/her password

over the Internet network? Nowadays the usage of passwords over the Internet is a major

security problem. For example, early in 1994, thousands of passwords were trapped by

the sniffer programs installed in various university networks connected to the Internet. At

the end of that year, a number of attacks were successfully launched by Kevin Mitnick

against several computer centers, including the San Diego Center for Supercomputing
..}

[Shimomura 1996].

The Internet is an open network based on the Transmission Control Protocol I

Internet Protocol (TCP/IP) stack. By the nature ofTCP/IP, it was not designed to secure

the data at all. No encryption was provided in it. The data flowing on the TCP/IP

network could be trapped by the man-in-the-middle. However, several technologies and

algorithms have been applied to secure the messages carried over the TCP/IP network,

i.e., Secure Sockets Layer (SSL) for a web page, Secure Shell (SSH) for a Unix shell and

Pretty Oood Privacy (POP) for email. In the case of a secure login, there are at least two

techniques of one-time password (OTP) operating on the Internet, the S/KEY and the

RFC-1938. The OTP behaves exactly as its name indicates: a us r has to chang his/her

password each time it is used. The disadvantage of using the OTP is that a user ne ds to

keep the preinstalled passwords or OTP calculator with hirn/h r. The user is probably no

longer using hislher original Unix password even though he/she logs in at a console.

How can a user remain using his original password over an insecure network?

The features of public key encryption and Java programming could solve this problem.

With a basic concept of public key encryption, a user can easily encrypt hislher password

by a common Java Web page on any platform before sending it to veriry the logging

authorization at the server. Obviously, the user requires neither specific programs nor

materials with him/her. No insecure messages are stored on the user part and the

network; this implies an eavesdropping protection. It is possible to design this method as

an alternative for the secure login techniques.

The objective of this thesis is to design and implement a secure login system for a

Unix operating system using an encryption algorithm to secure a password over the

TCP/[P network. The designed system must be convenient for the user to log in from any

hosts and any platforms without any modification or configuration. The user's machine

should require only a web browser which is usually available on the TCP/[P client

computer. Also, the user is able to retain his/her original Unix password rather than the

list of one-time passwords.

To achieve the objective, the proposed technique decides on the RSA public-key

cryptography that can be applied to an educational application program. Furthermore, the

RSA algorithm is widely used for authentication and encryption in the computer industry

today. The RSA technique uses a pair of asymmetric keys, a public key and a private key,

2

"abcde"

for encryption and decryption. The ciphertext or the encrypted message using the public

key is merely decrypted by the private key and vice versa. The public key can be made

public, whereas the private key must be kept in secret. The diagram in Figure 1.1 shows

the basic concept of asymmetric key encryption.

+ Public Key - I i,Oaief: I

I i,OaieE I + Private Key - I '·abede" I

Figure 1.1 The diagram of asymmetric key encryption.

In the secure login program, the password should be encrypted by the RSA public

key on the user machine before delivering to the server machine. The encryption program

could be implemented in the form of a Java applet retrieved from web browser.

Therefore, a user can access the secure login system from any computer platform.

Obviously, eavesdropping is useless because the password was encrypted and the public

key cannot decrypt the password. The private key that can decrypt the password is kept

secretly on the server. Only the privileged programs on the server can decrypt the

password and grant login. With these properties, the secure login system was designed

and implemented.

3

CHAPTER II

LITERATURE REVIEW

2.1 Cryptosystems

A cryptosystem is a system to encrypt/decrypt these two fonns of messages: a

message known as "plaintext" and another message known as "ciphertext", using a

mathematical function and a special password called the "key". The cryptosystem is an

important aspect of computer network security and is becoming increasingly important as

the tool of electronic commerce. It protects the valuable infonnation flowing within a

network. Many cryptography techniques have been invented. Encryption can be

classified into two common techniques: conventional or symmetric encryption and

public-key or asymmetric encryption.

In conventional encryption, plaintext is converted to apparently random nonsense

referred to as ciphertext, by using one key. The key is a value independent of the

plaintext. Changing the key changes an output or a ciphertext. Once the ciphertext is

created and transmitted to a receiver, the receiver must apply the same key to decrypt the

ciphertext. The secrecy of the conventional encryption depends on the security of the key

itself, not the secrecy of the algorithm. The key length is a major design issue for the

encryption algorithm because the longer the key, the higher the work factor the

cryptanalyst has to crack. Other problems are how to deliver and how to secure the key.

In public-key encryption, the plaintext is always encrypted and decrypted using

different keys, with the required characteristic that one cannot be derived from the other

4

and those two keys must be matched. The public-key encryption algorithm can apply to

various applications such as a digital signature, a message encryption, and a key

exchange.

The best-known conventional encryptions are the International Data Encryption

Algorithm (IDEA) and the Data Encryption Standard (DES). The best-known public-key

method is the RSA.

IDEA: IDEA was developed by Xuejia Lai and James Massey of the Swiss

Federal Institute of Technology. It is a block cipher that uses a 128-bit key to encrypt

data in blocks of64 bits. No currently known technique is able to break IDEA. IDEA

has been proposed as an international encryption standard in recent years [Hughes 1995].

DES: DES was developed by IBM and was adopted by the National Bureau of

Standards in 1977. Nowadays it has become the standard of the National Institute of

Standards and Technology and is also known as the Federal Inforrnation Processing

Standard 46 (FIPS PUB 46). DES uses a 56-bit key to encrypt data in 64-bit blocks

[Stallings1995].

Figure 2.1 displays the chart of encryption algorithms and their related

applications. Notice that most applications usually require a combination of algorithms.

For example, POP requires MD5 to digest a mail message, DES to encrypt the message,

and RSA to encrypt the DES key. The applications illustrated in Figure 2.1 are:

PGP: Pretty Good Privacy is a program used to exchange encrypted and

authenticated email messages. POP was invented by Philip Zimmermann in 1991. It

provides two services: encryption and authentication by means of a digital signature.

POP encrypts the message using IDEA with a 128-bit pseudo-random key. To secure the

5

key exchange, this key is then encrypted by RSA using the recipient's public key. Only

the recipient can recover the IDEA key and only this IDEA key can decrypt the message.

POP creates a digital signature using MD5 and RSA. MD5 digests the mail body into a

fixed-length message. Then RSA signs it by the sender's private key.

Today POP versions exist for almost all major computer platforms, including

Windows 95, Windows NT, OS/2, MacOS, Unix and VMS.

PEM: Privacy Enhanced Mail, as documented in RFCs 1421 through 1424, is a

standard for message encryption and the authentication of message senders. PEM creates

a digital signature using MD5 and RSA. This methodology provides for authentication,

integrity, and non-repudiation of the original message. PEM can also encrypt the

message using DES and RSA. (It is simpiy not suitable to use RSA alone, because RSA

operations are on the order of one hundred times slower than DES.) Unlike POP, PEM

uses a pseudo-random 56-bit DES key to encrypt the message. Then this key is encrypted

by RSA using the recipient's public key. The ciphertext and encrypted secret key (DES)

are sent to the recipient. Obviously, only the recipient's private RSA key can decrypt the

secret key, and only the secret key can decrypt the ciphertext.

Today, several PEM-compliant programs exist in various computer platfonns

including Unix, OS/2, MacOS and Windows NT.

SNMPv2: Simple Network Management Protocol version 2 is a protocol used to

monitor and control the activities and behavior of devices on the TCP/IP network. The

SNMP enables a management station to configure network devices. The SNMP Version

2 supports several viable security mechanisms described in RFC 1446. The SNMPv2

provides authentication and confidentiality services using DES and MD5 [Hughes 1995].

6

Encryption Algorithms

------~-------r-
IDEA

'-------- -------'"----v--

Hash function

Electronic Mail Network Management

Figure 2.1. The encryption algorithms and their related applications.

2.2 RSA Algorithm

RSA is a public key cryptography which can be applied for an authentication. The

RSA algorithm was developed by Ron Rivest, Adi Shamir, and Leonard Adleman in

1977. At the present, the RSA algorithm is the most commonly used in encryption and

authentication and is included as part of many commercial products, such as Netscape,

Quicken, and Lotus Notes. Moreover, it is proposed to many standard organizations, e.g.

ITU-T, ISO, ANSI and IEEE [http://www.rsa.com/rsalabs/newfaq/q8.html].

7

-

2.2.1 The correctness of RSA.

Given the message M and the ciphertext C, the RSA encryption and decryption

algorithms are perfonned by (1) and (2), respectively [Feil 1996].

C= M mod n (1)

M= et mod n (2)

Where the public key is the set of two integers {e, n} and the private key is the set

of two integers {d, n}.

How can we calculate the value of e, d and n to be satisfactory? Begin with the

Euler's Totient Function (l/J(n); it is the number of positive integers less than nand

relatively prime to n, for any positive integer n. (Note: two numbers are said to be

relatively prime or coprime to n if their greatest common divisor, gcd, is 1). For example,

«t(10) = 4, since 1, 3, 7 and 9 are less than 10 and relatively prime to 10. For a prime

number p, <I>(p) =p - I and for two distinct prime numbers p and q,

cD(pq) = (p - l)(q - I).

Given two integers n and M, and two distinct primes p and q such that M i

relatively prime to n, n = pq and 0 < M < n, the following relationship, known as the

Euler's theorem, holds:

A(lJ(n) = !vfp-I){q-I) =I mod n

or

or

~")modn = 1.

8

Thus AfcP(n) mod n = 1k for any integer k and

AfcP(n) +1 mod n = M lk = M (3)

Ifp and q are big primes, <D(n) depends on being able to factor n, which is

computationally impractical.

Given two positive integers e and d, which are multiplicative inverses, mod <t>(n)

i.e., ed mod et>(n) = 1.

Thus, there exists an integer k such that:

ed = ket>(n) + 1

The M is then recovered by:

c:' mod n = Jvfd mod n

= !vIcP(n} +\ mod n

=M

2.2.2 The use of RSA

The use of RSA is classified into three steps:

1. Private key and public key creation

2. Encrypt a message

3. Decrypt or verify a message.

(4)

replace C from (1) into (2)

replace edfrom (4)

by (3)

1. Private key and public key creation

The initial step is to generate a pair of keys. This step is usually perfonned only

once unless the keys are lost. The key in this term is a big number perfonned like a secret

9

code or password. To generate the pair of keys, select two large primes p and q, then

compute the modulus n:

n =pq.

The modulus n is the product of two large primes, so it could not be easily

factored. Next, compute the <D(n):

<D(n) = (p-l)(q-l).

This number represents the quantity of numbers less than or equal to n that are

relatively prime to n.

Finally, select some number e that is relatively prime to et>(n) and find another

number d such that:

ed mod <D(n) = 1

The pair (n,e) is the key that can be made public. While the pair (n,d) is the

private key, which must be kept in secret. The p, q, and n may be saved with the private

key or destroyed, because they could be used to calculate d.

2. Encrypt a message

A message M is encrypted by using the private key of a sender with the following

exponentiating:

c = AI mod n

Where d and n are the private key of the sender.

The encrypted message or ciphertext C is now safe to send out.

3. Decrypt or verify a message

10

-

When the recipient gets the ciphertext C, the message M can be decrypted from C

by the public key of the sender with the following exponentiating:

M=Cmodn

Where e and n are the public key of the sender.

The message M in the above equation can be represented by the ASCII codes of a

password or a digested message generated by a message digest (MD) algorithm. In case

of digital signature, since the mail body is too large for RSA encryption, it must be first

digested and then encrypted by the sender's private key to fann a digital signature. For

example, PGP applies MD5 to digest a mail and encrypt its result by RSA to form the

digital signature.

Example: Generate the two keys of RSA

First, select two primes: p = 7, q = 17 (this is a simplified version' in fact, p and q are

much bigger than this).

n=pq

n = 119

<D(n) = (p-l)(q-l) = 96

Next, select e = 5 because 5 is relatively prime to 96.

By ed mod [(P-l)(q-l)] = 1

So d= 77

The public key is e = 5 and n = 119.

11

-

The private key is d = 77 and n = 119.

Suppose that a message M is a number 19. The creation of encrypted mes age

shown below.

C=Afmodn

C = 195 mod 119

C=66

The encrypted C is sent to the recipient. When recipient receives the encrypted C,

the original message is decrypted by the following fonnula:

M=Cdmodn

M = 6677 mod 119

M= 19

Finally, the message is recovered.

Although the RSA technique provides an attractive feature of authentication, it

requires rather intensive mathematical computations. Fortunately, there are mathematical

techniques illustrated in Chapter III that reduce the computation. Moreover, CPU

technology grows quickly and the computational time could be ignorable at some time in

the future.

2.3 The Password Schemes

In a computer network, especially public network, a user's password transmitted

in clear text represents a major vulnerability. There are several methods to capture and

crack the password in the network, e.g. spoofing (one entity pretends to be a different

entity to gain unauthorized access). In general, attacks by an intruder occur in two

12

-

manners, passive and active attacks. By the manner of the passive attack, the intruder in

the middle observes the data transmitted between sender and receiver. For example, the

LAN analyzer can capture the Tep frame on the local area network. Thus the passwords

packed into the Tep frame could be trapped. By the manner of the active attack, the

intruder is able to interrupt, modify or fabricate the data as shown in Figure 2.2. The

intruder can also redirect or delay traffic to make the system malfunction. Hence, the

developer of the authentication program has to consider every possibility of attack

[Oppli.ger 1998]. Nevertheless, the perfect design does not guarantee absolute

prevention. The system administrator has to lookout for an intruder and maintains the

system to avoid the possible attack, e.g. patch or upgrade the kernel, which fixes the

known security holes.

Interruption

©

Active attacks

Modification

o

o source

© destination

o attacker

Fabrication

Figure 2.2. Three types of active attacks.

A password, associated with each user, is typically a string of six to ten or more

characters that a user is capable of committing to memory. The password is the primitive

way to gain authorized access to a resource over the network. Obviously, it is insecure

13

-

for a user to enter hislher password over the network. However various passwords and

encryption schemes are proposed to protect the using of passwords over the network. A

subsequent section reviews the existing schemes.

2.3.1 One-time password

The one-time password is a password that is used only once. Therefore, a user

probably requires a list of passwords or a password calculator in hand to generate the next

password, in hand. Obviously, with the one-time password, eavesdropping the password

is worthless. Plenty of one-time password concepts have been introduced. Three of them

excerpted from [Menezes 1996] include:

1. Shared lists ofone-time passwords. The user and the system use a sequence or

set of secret passwords, each valid for a single authentication, distributed as a

pre-shared list.

2. Sequentially updated one-time passwords. Initially only a single secret

password is shared. During authentication using password i, the user creates

and transmits to the system a new password (password i + I) encrypted under a

key derived from password i. This method becomes difficult if communication

failures occur.

3. One-lime password sequences based on a one-way function. The user begins

with a secret w. A one-way function H is used to define the password

sequence: w, H(w), H(H(w)), ... ,H(w). This method is more efficient than

sequentially updated one-time passwords in terms of bandwidth.

14

-

The SIKEY: The S/KEY is a one-time password sequence based on a one-way

function (hash function). It is also known as RFC-1760, the recommended password

scheme for use on the Internet. The authentication of the SIKEY relies on a secure hash

function called the Message Digest 4 (MD4). A secure hash function is a one-way

function that is easy to compute in a forward direction but computationally infeasible to

invert. From this feature, a sequence of one-time passwords is generated. The passwords

are related in a way that makes it computationally intractable to compute any password

from the preceding sequence. It is simple to compute previous passwords from the

current one [http://www.nic.surfnet.nl/surfnetiprojects/surf-ace/mm-lab/security

Iskey.html]. Figure 2.3 presents the usage of S/KEY to login to a Unix system.

The user requires a telnet program and a web browser program linked to the Java

OTP Calculator (the jotp applet). The jotp applet requires two inputs to calculate the one­

time password: i.e., the challenge and the user's secret password. On the telnet program,

once a user enters his/her 10ginname, the server will return the challenge corresponding to

the user (see the telnet window in Figure 2.3). The challenge is a combination of a

sequence and a seed. The sequence is the number of loops to perform the MD4 function.

Some users may apply only one secret password on multiple servers, so the seed is

required to distinguish the result or the S/KEY. The jotp applet generates the S/KEY by

concatenating the seed to the secret password and then performs the MD4 for the

"sequence" times. The result of MD4 will be translated into the S/KEY in terms of six

English words by looking up the predefined dictionary table. The S/KEY illustrated in

Figure 2.3 is "BRED ROUT ADEN FLOC HOOF PIT." It was generated by using "896"

as a sequence and "nu46470" as a seed. That means the MD4 has been applied to the

15

-

user's secret password and seed for exactly 896 times. To login th urbas to copy th

SIKEY into the password prompt in the telnet program.

Since the server already has the password of the sequence "897 stored secretly,

the server can easily verify the user's password by applying the MD4 function on the

received password one more time and comparing the result with the password of the

sequence "897." If they match, the password of the sequence "896" is stored (for using in

the next login) and the user is able to login. For the next login, the server will return the

challenge for this user with the value of"895 nu46470." An eavesdropper cannot

generate the password of the sequence "895" or the lower sequence because doing so

would require inverting the hash function.

16

-

jotp: The Java OTP Calculator

jotp 0.8: The Jan DlP (aka SlKey) cakula.tor1

Cnallenge (e.g "SSlatouflj· 1896 nu~6~70

Secret Password.

compulll wtlIIllIO!5

One-TIme Password: IBRED ROUT ADEN FLOC HOOF PIT

jolp by Harry lllan1akos, nttpllW_.cs.umd.edul-harfjllolp

For a page WIth this applet and some e:,rcess verbiage, look here.

HaTTY Mof!1Olcos I harry@J1I4/YltrlX com

~igitdl UNIX (nucleus.nectec.or,th) (ttypD)

login: passakon
F/key 896 nu4647D
(s/key reiuired)
Password:

Note: The OTP calculator is available at htfp:llwww.t' .umd.edlll-harrVliolP/.

Figure 2.3. The Java OTP Calcul.ator and the telnet program.

17

-

2.3.2 Passwords based on the public key encryption

Secure Shell (SSH): SSH is a simple program that can be used to securely log in

to another computer over a network, to securely execute commands in a remote machine,

and to securely move files from one machine to another. It provides strong authentication

and secure communications over insecure channels. It is intended as a replacement for

the Berkeley r-tools such as rlogin, rsh, rep and rdist on both client and server machines.

SSH was developed by Tatu Ylonen from the Helsinki University of Technology,

Finland. The free version ofSSH is available at http://www.ssh.ti/ or

http://www.cs.huLfi/ssh/. The commercial version of SSH is also available in various

platfonns, such as Windows 95, Windows NT, OS/2, and MacOS

[http://wwwDataFeHows.com].

SSH nonnally listens for connections on TCP port 22. This port number has been

registered with the Internet Assigned Numbers Authority (lANA) and has been officially

assigned for SSH [http://www.ssh.net]. SSH provides the user authentication, data

compression, data confidentiality, and integrity protection.

SSH starts with the client computer request to secure connection to the server as

illustrated in Figure 2.4. The server sends the public host key, which is typically a 1,024­

bit RSA key, and the public server key, which is typically a 768-bit RSA key that changes

every hour by default. Since the RSA public key operations consume computational

time, it is not a smart idea to encrypt/decrypt every transaction using RSA. Thus the

public host key and the public server key are used only at the beginning. The public

server key that is changed periodically has never been saved on disk, so that it reinforces

the use of a public host key. The purpose of the public host key and the public server key

18

-

is to encrypt the session key used to secure the transactions between the eli nt and the

server. The conventional encryption using a session key takes less computational time

than public-key encryption. The client can select one of these conventional keys as a

session key i.e., Blowfish, DES or Triple-DES.

CLIENT

Authentication Request

Host key + Server key

Encrypted session key

OK

fgJ
m

SERVER

Figure 2.4. The SSH protocol execution.

Once the client receives the public host key and public server key, it may reject or

accept these keys depending on the policy configuration. If the client accepts the keys, it

generates a 256-bit random number to serve as a session key. The client pads the session

key with random bytes, and double encrypts it with the public host key and the public

server key, respectively. The result is sent back to the server. The server, in turn,

decrypts the ciphertext and recovers the session key accordingly. The server send an

encrypted confinuation using a session key to the client. If the client receipt of this

confirmation is successful, it implies that both parties can now start using the session key

and transparently encrypt the connection.

19

-

In the case of the password scheme, the password is typically passed to the server

using the session key encryption [Oppliger 1998].

The drawback of SSH is its restriction on the installation. Both client and server

machines are required to install the SSH program. It is inconvenient for the user who

logs in from a public machine.

Secure Sockets Layer (SSL): SSL is a program layer created by Netscape, Inc.

for managing the security of message transmissions on a network. The "sockets," a part

of the tenn "SSL," refers to the socket method of passing data back and forth between a

client and a server program on a network or between program layers on the same

computer. Netscape's SSL uses RSA public key encryption, which also includes the use

of a digital certificate.

The SSL is layered between the application layer and the TCP layer illustrated in

Figure 2.5. Thus, it could be applied by any TCP/IP applications. The SSL consists of

two subprotocols, namely the SSL record protocol and the SSL handshake protocol

located in order as illustrated in Figure 2.5. The SSL record protocol provides data

authenticity, confidentiality, and integrity services, as well as replay protection over a

connection-oriented reliable transport service. Several SSL protocols may be layered

above the record protocol. The SSL handshake protocol provides an authentication and

key exchange. Negotiating to initialize and synchronizing security parameters at both

peers are perfonned by the SSL handshake protocol. After the SSL handshake protocol

completes, sensitive application data may be sent via the SSL record protocol according

to the negotated security parameters.

20

-

Client Server

Application Application

SSL Handshake SSL Handshake

SSL Record SSL Record

TCP/IP TCP/IP.... ...

Figure 2.5. The architectural placement of SSL.

Netscape includes the client part of the SSL as a part of the Netscape web

browser. If a web site is on a Netscape server, the SSL can be enabled and the specific

web pages can be identified as requiring SSL access. Other servers can be enabled by

using Netscape's SSLRef program library, which can be downloaded for non-commercial

use or licensed for commercial use.

Netscape has offered SSL as a proposed standard protocol to the World Wide

Web Consortium (W3C) and the Internet Engineering Task Force (lETF) as a standard

security approach for Web browsers and servers. Moreover, The SSL supports several

applications including the telnet protocol at TCP port 992, but they are not yet assigned

officially by the lANA [Oppliger 1998].

21

•

2.4 Unix Login System over the TCPIIP Network

Every Unix user has an account identified by a usemame and a password

associated with it. The password is used to protect the user account from attackers, as

well as to verify the user authorization. Generally, a password is a clear text between six

to ten characters in length; e.g., the password of the Unix system V release 4 must be at

least six characters long and contain at least two letters and one digit or punctuation

character. It Calmot be the same as the username, and the new password must have at

least three characters different from the old one [Curry 1992].

The passwords in the Unix system are encrypted by a one-way function called the

crypt function and stored in the standard password file. In general, Unix passwords are

stored in the /etc/passwd file. Figure 2.6 shows an example of the /etc/passwd file which

contains the username, encrypted password, real name and user's shell. Note: To hide the

encrypted password from the user, some systems store the encrypted password in another

file, namely the shadow password file. Minimally this file contains only the username

and the encrypted password.

john:AqhviHRWKiMJY:502:100:John Anderson:/home/john:/bin/bash

boby:d5SHsa.xekhlY:503:100:Boby Earle:/home/boby:/bin/tcsh
\)

V
Encrypted password

Figure 2.6. The example of the /etc/passwd file.

The /etc/pass"fvd file can be read and modified only by the privileged programs.

For example, the login program reads the usemame and the encrypted password to check

22

-

for the user's authorization. When a user logs in, the login program reads the password

that the user typed in and calls the crypt function to encrypt a 64-bit block of zeros by

using the user's password as a key. The 64-bit block of ciphertext is then re-encrypted

with the user's password for a total of25 times. The final ciphertext is unpacked into a

string of eleven printable characters. known as the encrypted password. Next, the login

program compares the result with the encrypted password stored in the fete/passwd tile.

[fthe two texts match, the system allows the user to login [Garfinkel 1996].

Securing access to a system on the network is as important as securing the system

itself. To log into the Unix system over the TCPIIP network, the user has to startup the

login client program known as the telnet program. The telnet is a remote terminal service

running on TCP port 23.

The TCP ports are identified by nonnegative integers in the range of 0 to 65,535.

The best-known Tep port numbers are the first] ,024 ports. which are managed and

assigned by the Internet Assigned Numbers Authority. Each TCP port has the service

program corresponding to it. On the Unix system, the assigned TCP ports are stored in

the fete/services file. Each line of the Jete/services file consists of a service name, a Tep

port number, a protocol name and a list of aliases. Figure 2.7 shows the example of

services in the fete/services file.

ftp
telnet
smtp

21/tcp
23/tcp
25/tcp

file transfer protocol
remote pseudo terminal
mail

Figure 2.7. The example of services in the Jete/services file.

23

-

Most versions of UNIX that support the Berkeley networking utilities have the

ine/d (the Internet daemon or the Internet superserver) to start many service programs that

provide network services. The ine/d waits for network connections on a number of the

TCP ports, and when the request for the connection of specific port arrives it invokes the

services program that should handle that request. The configuration of ineld is stored at

/etc/inetd co'!!file. The parameters in the /etc/inetd conffile are the name of service the

type of connection, the protocol that service expects to use, (no) wait options the user id

that should run the service program, the path name of the service program and the

arguments. Figure 2.8 displays the content of the /etc/inetdcof!ffile.

ftp stream tcp nowait root /local/ etc / tcpd in. ftpd

telnet stream tcp nowait root Ilocal/etc/tcpd in.telnetd

name dgram udp wait root /usr/sbin/in.tnamed in.tnamed

shell stream tcp nowait root /local/etc/tcpd in.rshd

login stream tcp nowait root /local/etc/tcpd in.rlogind

exec stream tcp nowait root /usr/sbin/in.rexecd in.rexecd

talk dgram udp wait root /usr/sbin/in.talkd in.talkd

Figure 2.8 The example of the /etc/inefdconffile.

The te/netd is the service program sleeping in the background, waiting for the

fe/net connection. Once there is a request from the client machine to the TCP port 23 of

the server, the inetd will invoke the te/netd program to handle the te/net service. The

felnefd process then opens the pseudo terminal for the te/net client and splits into two

processes usingfork. The parent process maintains the communication across the TCP

24

-

connection, and the child does an exec of the login program. The login program begins

checking the user's authorization by asking for the usemame, calling the getpwnam

system-call to fetch the user password file entry, and calling the getpass function to

display the "Password:" prompt and to read the user's password thereafter.

The login program then encrypts the password using the crypt function and

compares the result with the encrypted password from the password file entry. If the

login attempt fails, the login process will tenninate or start the login program over again

for a limited number of times. If the togin is correct, the login program will setup the

Unix environment, like the home directory, shell, usemame, and path for the user. The

access permissions are also changed for the terminal device, so that user-read, user-write

and group-read are enabled for the user. Finally the login program sets the user-id and

invokes the user's shell [Stevens 1993]. Figure 2.9 shows the sequence of processes that

are involved in executing the telnetd.

25

-

TCP connection request ...
inetdfrom Tel.net client

...

fork

"

inetd

exec
~Ir

telnetd

fork

,Ir

.... TCP connection responds Pseudo

..... to Telnet client terminal

exec

Login
program

}
When connection request
arrives from Telnet client

Figure 2.9. Sequence of the remote login process.

26

-

CHAPTERllI

DESIGN AND IMPLEMENTATION

3.1 Design

The design of computer network security applications has to consider the security

services. The secure login program considers the security services in the following

subsection.

3.1.1 Security services

Confidentiality: Private information is accessible only by the authorized user.

On the Unix system, each user must have a unique user-id related to the

usemame/password. This user-id is used by the Unix system to determine access

rights to various files and services. Only the root or superuser has the right over every

user on the Unix system. The root is a special user with user-id of 0 in the /etclpasswd

file. The Unix system uses the root to accomplish the system administrator jobs

[Garfinkle 1996].

The secure login program designs confidentiality based on the authorization of

the Unix system by using the root's right to manage privacy information and the

authorization for the Unix login system.

27

-

Authentication: Authentication is proving the genuineness of the user.

Assume that a username and a password are unique for each user. The user could

identify himself/herself by the password. The secure login program protects the

passwords that flow between clients and servers by the encryption algorithm.

Access control: Access control is the ability to limit and control access to host

systems and applications via communications links. The secure login program itself

does not provide the access control function, but it could be applied to any access

control applications that allow a user to telnet at the specific TCP port on the Unix

system.

3.1.2 The secure login model

The design of the secure login model is divided into two regions, the public region

and the private region. The public region represents an insecure network. It comprises

just a user/client machine connected to the TCP/IP network. The private region

represents a secure network. It consists of a server machine running a web server and the

secure login service program. Every component in the private region is secured by the

root's privilege of the Unix system.

The secure login program is designed to support on multiple platforms and reduce

the work loaded on the user machine; i.e., a user should run the secure login program

from any computer connected to the Internet without installing the extra components.

Therefore, the secure login program was compiled into a Java applet form. Any web

browsers which support a Java applet should be able to access it.

28

-

The secure login service program called "stelnetd" is running at the TCP port

1234 on the server machine. (According to the TCP/lP protocol there are various kinds

of services corresponding to their service programs. Each service is cia sified by the TCP

ports.) The secure remote login model operates on the client-server basis with the

complete processes described in steps as shown in Figure 3.1.

Public Region
(Insecure Network e.g., Internet)

Private Regions
(Secured Network e.g., Private LAN)

~
...

m
Web Server
Provide the secure
login web page.

~
m

Server Machine
/7'~"1 Provide the httpd

at port 80, the
stelnetd at port
1234, the slogin
program, and the
Java-telnet
program.

1.2 Retrieve Java­
telnet program from
the server machine.

5 Server decrypts password
and the time stamp to verilY
the user authorization.

1.3 Return t~e Java­
telnet progran!"

2 Startup connection tp the server at rep
port 1234. User enters1u ername.

i

3 the server returns th~ time stamp (by
gettimeofday system c~ll) with a password
~rompt. ~

1.1 Browser
requests the java­
telnet program.

4 User enter password in the Java dialog
box. Next, the password and the time
stamp (from the server) are encrypted by
the RSA public key and sent back to the
server.

User/Client Machine
Running Web browser.

Figure 3.1. the processes and data flow of the Secure Login System.

1. The process begins when the user opens the secure login web page on the user/client

machine. The web browser then retrieves the Java-telnet program from the server

29

-

machine. The Java-telnet program contains the login module and the RSA encryption

module with the pre-generated public key. See 1.1, 1.2, and 1.3 in Figure 3.1.

2. On the user machine, the Java-telnet program requests a connection to the secure

login service at the TCP port 1234 to the server machine. After the connection is

established, the secure login service program or stelnetd will contact the slogin to

send the login prompt to the user. Then the user starts logging by typing in the

usemame. See the detail of stelnetd and slogin in Chapter III section 3.2.

3. The server sends the password prompt and the time stamp (generated by the

"gettimeofday" system call) to the user machine.

Note: The gettimeofday system call gets the system's notion of the current time. The

current time is expressed in elapsed seconds since 00:00 Universal Coordinated Time,

January 1, 1970. The resolution of the system clock is hardware dependent; the time

may be updated continuously or in clock ticks [Stevens 1993].

4. On the user machine, the user enters the password in the dialog box as shown in

Figure 3.9. The password and the time stamp (from the server) are encrypted by the

RSA public key. The resulting ciphertext is sent back to the server machine.

5. On the server machine, the slogin program decrypts the ciphertext by the private key

corresponding to the public key used in step 1. The results, the user's password and

the time stamp, are verified later on. If the time stamp matches the original one on the

server machine, the username and the password will be passed to the Unix login

program. Otherwise, the login process is denied.

30

-

Notice that the RSA encryption protects the passive attack while the time stamp from

the gettimeofday system-call protects from active attacks. The combination of the

password and the time stamp creates a different ciphertext every time a user logs in.

Consequently, an eavesdropper cannot reuse the ciphertext for login next time.

3.2 Implementation

The secure login system is implemented and installed mostly on the server

machine. The user machine requires only the TCP/IP connection and a web browser to

login.

3.2.1 Implementation on the server machine.

The server machine of the designed model is implemented on a personal computer

running the Linux operating system. Linux is a Unix-type operating system originally

created by Linus Torvalds with the assistance of developers around the world. It was

designed to provide personal computer users a free or very low-cost operating system

comparable to traditional and usually more expensive UNIX systems. Linux is an

implementation of the POSIX specification with which all true versions of UNIX comply.

It was developed under the GNU General Public License and its source code is freely

available to everyone. The server machine had installed the Slackware Linux kernel

version 1.2.13. It was connected to the LAN of the computer science department,

Oklahoma State University. The assigned IP address and the hostname are

"139.78.113.56" and "pluto.cs.okstate.edu" respectively. This server has the full access

to the Internet.

31

-

The server machine requires the following components:

• A program to generate the RSA keys.

The keygen is a program to generate the RSA pair of keys. The pair of keys are

generated only once for each server. The public key is embedded in the Java telnet

program, and the private key is stored in the secret directory, the /usrl/ocal/etc/slogin, on

the server machine. The problem with RSA operation is parameter size. The RSA keys

are very large numbers; for example, the private key is a 1024-bit integer. See example

of the private key in Figure 3.3. The standard integer in C programming cannot handle

that kind of number. 11. requires a specific library in the arithmetic operation. The big

integer can fit neither an integer fonnat nor a floating-point fonnat. Fortunately, the

GNU project provides the GNU MP (Multiple Precision), a library for arbitrary precision

arithmetic, operating on signed integers, rational numbers, and floating point numbers.

The GNU MP aims to provide the fastest possible arithmetic for all applications that need

more than two words of integer precision, e.g. the RSA application. RSA exploits many

GNU MP functions in the generating, encrypting, and decrypting algorithms

[http://ebweb.tuwien.ac.atlgnu-docs/gmp/] .

The keygen processes are displayed in Figure 3.2. The results of the keygen

program are the RSA private key and the RSA public key. According to the RSA

algorithm in Chapter II, the RSA private key consists of the private exponent d, the

mulitplicative inverse ofp mod q, the prime number p, and the prime number q. The

RSA public key consists ofthe public exponent e and the modulus n. The first process of

the keygen i.s to choose the big prime numbers p and q (big prime in this thesis is defined

as a 128-bit number). The prime number is chosen by a random odd integer and tested to

32

-

be prime or not by the Fermat test for witness 2 (n is not prime if2" mod n ~ 2). The

random number will be incremented by two and re-tested until it is a prime. After we

have the prime numbers p and q, we can easily calculate nand ¢(n). Next find the

suitable e (the public exponent) that is relatively prime to ¢(n). Finally, calculate for d

(the private exponent) which is the multiplicative inverse of e mod ¢(n).

Define prime
number p and q.

~r

n =pq,
¢(n) =(p-l)(q-l).

,
Choose the suitable e

(relatively prime to¢(n)).

~,

Calculate for d

Figure 3.2. The main steps to generate an RSA key-pair.

• The secret area at the /usr/localletc/slogin directory.

This secret area is defined at the /usr/localletc/sJogin directory, owned by the roof.

That means only the root can access this directory. The private key of the server is stored

in the H.identity.pri" file within the /usr/local/etc/slogin directory. The private key

consists of the modulus size (in bits), the private exponent d, the mulitplicative inverse of

p mod q or u, the prime number p and the priml: number q. Each value is separated by

blank. See Figure 3.3.

33

pluto:/usr/local/etc/slogin# cat .identity.pri
1024 85416974420992986318972688574031006521439486103857069672121198042141
98099157581723026562314161882365444708040571637769865305983540032320106655
28482472284236191412839502313249314394490178581891171786068182119160788634
28094546330295657179086747302930067585921904468936958153356835917824935050
52111643412847723 12743387892869387325276235960322738317014358346318710703
83526760528389400178454911934007192932946936406219015493646503748886835219
1979382179735761170705904 106828215487920329210420449103381637285115346889
29998295194786767831696369939435875987869485865053842492193367709174081491
578426005066452945392505768345249 1291618190401913136123426488706218764699
89807623961302544370263482111792734199866379835889524590067944098167304329
24029632021598868489016753518689736434527

Figure 3.3. The private key kept in /usr/local/etc/slogin/.identity.pri

The private key is readable only by the privilege program called the slogin that

encrypts a user information and verifies a user's authorization.

• The service program called stelnetd running at the Tep port 1234.

Stelnetd is a service program like a Unix telnetd, but it was modified to call the slogin

program instead of the Unix login program. Stelnetd is stored in the lusT/local/bin

directory. Stefnetd is installed by the following processes.

]. Put sfefnetd under the control of the Internet daemon, inctd, by adding the bold

line shown in Figure 3.4, into the /etc/inetd.conffile. In Figure 3.4, the first field is

the name of a valid service listed in the /etc/services file, the fifth field is the user-id

under which the server should run. The last field is the service program and its

argument.

34

-

time dgram udp wait root internal
ftp stream tcp nowait root /usr/sbin/tcpd /usr/sbin/wu.ftpd
telnet stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.telnetd
stelnet stream tcp nowait root /usr/sbin/tcpd /usr/local/bin/stelnetd
smtp stream tcp nowait root /usr/sbin/tcpd /usr/bin/rsmtp -bs

Figure 3.4. The stelnet daemon program assigned in the /etc/inetd.coyiffile.

2. Insert the stelnet service into the Unix system by adding the bold line as shown in

Figure 3.5 in the /etc/services file. In Figure 3.5, the stelnet service is assigned to the

Tep port 1234 and is running on the Tep protocol.

#service-name
ftp
telnet
smtp
stelnet

port/protocol
21/tcp
23/tcp
25/tcp
1.234/tcp

aliases
file transfer protocol
remote pseudo terminal
mail
secure telnet

Figure 3.5. The stelnet service defined in the jete/services fi Ie.

35

-

• The secure login program called slogin.

The slogin program was modified from the Unix login program by adding two

modules shown in Figure 3.6. The first module is to generate a time stamp as describ d

in the design section. The second module is to encrypt the ciphert xt and verify the

return time stamp and user's authorization.

The first module generates the system time by the gettimeofday system call. As

mentioned before, the gettimeofday system call will return the current time in seconds.

which is expressed in elapsed seconds since 00:00 Universal Coordinated Time, January

I,]970. For example, the result ofgeltimeofday system call on "Fri Sep 25 15 :42:02" is

906759589. This number is transmitted to the telnet client program together with the

password prompt.

i
!•Second module: decrypt the

ciphertext and veriry the user
authorization.

Ciphertext

Login prompt

Connection request inetd wakes up sleineld to
at TCP port 1234 start pseudo terminal and

--------=--------I~ s!ogin

,.------- ~ Sloin

.-------y-----.
First module: Generate the

loginname
__________I~ time stamp by gettimeofday

and return to user terminal

User enters loginname.

User telnets to the
server.

The password and the time
stamp are encrypted and sent
back to the server.

Login program

Figure 3.6. The modules in the slogin program.

36

-

The second module of the slogin program is to decrypt the messages using the

RSA private key to verify the user s authorization. The slogin program reads the RSA

private key kept in /usr/local/etc/slogin/.identity.pri file to decrypt the ciphertext by the

formula in (2). However, the exponential d makes (2) a large modulus. It seems too big

to fit in computer memory, Obviously the size of d in this thesis is 1024 bits long. Thus

the computation of the exponential d cannot fit into the hardware register unless we take

the benefit of GNU MP library in the computation. Assuming C and d have 256 bits

each, the numbers of bits in order to store Mare:

log 2 (Me) = e . log 2 (M) ~ 2256
. 256 = 2264 ~ 1080 bits.

Nevertheless, it consumes a lot of computing time if we directly calculate the modular

exponentiation. To speed up the computing time, the Chinese Remainder Theorem

(CRT) is adopted to compute the modula exponentiation. The Chinese remainder

theorem tells us that the computation of

M= et mod n = et modpq

can be broken into two parts as

M j =etmodp

and

M2=etmodq.

The value of M is calculated by the applications ofthe Chinese remainder algorithm, the

single-radix conversion algorithm and the mixed-radix conversion algorithm, which

describes in [Koc 1994]:

M=M, + [(M2 -M/)(p') modq)modq]p.

37

To compute the M, and M2, the Fennat's theorem is applied to the exponents,

M, = e" mod p,

M2 =~2 modq,

Where

dl = dmod (p -1),

d2 = dmod (q -]).

This technique reduces the computation, because the size of dl and d2 are about

half of the size of d. The mulitplicative inverse ofp mod q, known as u, is pre-computed

and saved as the part of the private key. A summary of the RSA private key decryption is

described in Figure 3.7.

38

1

-

-

dl = d mod (p - I)

,Ir

d2 = d mod (q - 1)

M l =ca' modp

...
M2= c;:J2 mod q

n

q)

I
~

,.

Pre-computatio

u = (p-I mod

Figure 3.7. RSA private key decryption using the Chinese Remainder Theorem to
speed up the computation.

The second module of the slogin program decrypts the ciphertext to the user's

password and the time stamp. If the time stamp matches the original one kept on the

server, the password will be passed to the login program to verify the user's

authorization.

Appendix A shows the source code of the slogin. c and its related programs

including the Makefile.

39

--

-

• The Java telnet program stored in the web server.

The Java telnet program is used for the client machine but stored in the web server.

The web server and the user server machine must be the same machine because of the

restriction in ~ava network programming. The Java socket can communicate and access

information only with the machine where the applet's source is stored. Any attempt to

access sockets from any other machine will result in a Securi tyException [Merlin

1997].

The Java telnet program was developed from the Java telnet applet from

[http://www.ch.ic.ac.uk/javaiTelnetiDocumentationiindex.html]. The source code of the

Java™ Telnet Applet is available under the terms of the GNU General Public License in

[http://www.gnu.org/copyleftlgpl.html). The Java telnet program includes the RSA

encryption module and the public key corresponding to the private key kept in the server

machine. When users run the Java telnet program and input the password, the encryption

module will concatenate the password with the time stamp from the server, encrypt it

using the public key and then send the ciphertext back to the server machine. Like the

decryption module in the server machine, the encryption module requires the specific

library to maintain the big number ofthe exponential computation. In the case of Java

programming, there is a defined class that supports the big number computation in the

java.math.Biglnteger class

[http://www.java.sun.com/products/jdkll.2/docs/api/javalmathlBigInteger.html]. The

BigInteger class represents fixed-point numbers of practically unlimited precision. It

should be used for values that require high precision fixed point or integer computation

40

-

-

like security key values and values in database using the high precision SQL NUMERIC.

The computation of the RSA encryption in (1) can be computed by using the modPow

method in the Biglnteger class as shown in Figure 3.8.

liThe e public exponential = 35
Biglnteger e = new Biglnteger("35",10);

II The value of n.
Biglnteger n = new Biglnteger("13798126637237328559218665077343470284
232532370623065100881116606807550775562247398735216045953809974949143
757846491782090109665718513747864596998563013824636838552688461488408
863506119842998869980397003247087560536173065714279229856103403466561
9980323660314317317194107435776950353667681320540714666020012223",10)

11M is the password + current_time.
Biglnteger M = new Biglnteger(password_current_time,16};

jlPublic key encryption
M = M.modPow(e,n} i

Figure 3.8. The Java code applied to the RSA encryption in equation (1).

3.2.2 Implementation on the client.

The client ~achine requires the following components:

• The TCP/lP connection to the server mach'ine.

The connection between client and server machines applies to any network

topologies, e.g. LAN, point-to-point over the dialup networking, or WAN connected to

the Internet. The network between the client machine and the server machine must not

block the felnet application and the TCP port 1234. That means it cannot apply to the

firewall system that protects the telnet session or some specific TCP ports.

41

-

• Web brow er that supports Java.

The recommend browsers are the etscape Communicator ver ion 4.05 or higher and

Internet Explorer version 4.0 or higher.

Figure 3.9 displays the secure login web page on Netscape Communicator ver ion

4.05. The URL is http://pluto.c.oktate.edu/-prathom/Telnet/loginjaa.htm!.

No~: To ~C012J'UlC'. pnlSS cJ:rl-d and lm21l pnlSS "Co11MC'" button.

Figure 3.9. The secure login prototype page.

42

..

-

CHAPTER IV

CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

The idea of this thesis is to take the advantage of public-key encryption and the

feature of a Java applet to implement the secure login program. The secure login program

protects the password that flows in the TCP/IP network, e.g. the Internet. One server

requires only one pair of RSA keys. Once the keys are generated, the public key is

embedded into the Java telnet program and the private key is stored in the server

machine. Since an interloper having only the public key is unable to crack the ciphertext,

the public key is safe to be distributed on the network. The secure login program

combines the time stamp into the ciphertext to protect against an active attack. An

eavesdropper could not reuse the ciphertext to login.

The secure login program is designed to simplify the login steps. Figure 3.9

illustrates the secure login steps which are similar to the Unix login steps. The secure

login program is ready to use on any host which has a web browser and the TCP/IP

connection to the server machine. Furthennore, on the server, Unix commands related to

the password remain unchanged, e.g. a user can change the password by the Unix passwd

command.

The secure login program is a good alternative to password secure systems, such as a

one-time password program.

43

r

....

.
J

-

4.2 Future work

Possible future work to extend and utilize the secure login program includes the

following:

• The implemented program was compiled and run on the Linux operating system.

It woul.d be ported to run on other Unix systems.

• The secure login program could be modified to replace the RSA encryption

algorithm with other public-key encryption algorithms, because the program that

contains the RSA algorithm cannot be exported to use outside the U.S.A.

[http://www.rsa.com/PUBS/exp_faq.pdf].

44

~..
S..,..

-

REFERENCES

AJ. Menezes, P.C. Oorschot, and S.A. Vanstone, Handbook ofApplied Cryptography.
CRC Press, Inc., Florida, 1996, pp. 395-396.

Http://Vv'ww.ch.ic.ac .uk/j ava/TelnetlDocumentationfindex.html, The Java™ telnet applet:
Documentation, 1998 September 25.

S. Garfinkel and F. Spafford, Practical Unix & Internet Security. O'Reilly & Associates,
Inc.,Sebastopol, CA, 1996.

Http://www.gnu.org/copyleft/gpl.html. GNU General Public License, 1998 September.

Http://wwv'v·.java.sun.comJproducts/jdk/l.2/docs/api/javaimath/Biglnteger.html. Class
java. math. Biginteger, September 1998.

Http://www.nic.surfnet.nl/surfnet/projects/surf-ace/mm-lab/security/skey.html. S/KEY,
1998 June.

Http://www.rsa.com/PUBS/exp_faq.pdf. Answer to Frequency Asked Questions about
Cryptography export raws, RSA Data Security, Inc.,Redwood, CA, October 1998.

Http://www.rsa.comJrsalabs/newfaq/q8.html. Question 8. What is RSA?, 1997
November.C. K. Koc, High-Speed RSA implementation, RSA Data Security, Inc..
Redwood, CA, November 1994. pp. 53-56.

Http://wv..W.ssh.net. SSH Network Protocol Development, 1998 May.

D. A. Curry, UNIX System Security A GUidefor Users and System Administrators,
Addison-Wesley Publishing company, Massachusetts, 1992.

L. J. Hughes, Actually Useful Internet Security Technology, New Riders Publishing,
Indianapolis, 1995.

Merlin, C. Hughes, M. Shoffnet and M.Winslow, JAVA Network Programming, Manning
Publications Co., Greenwich, CT, 1997, p 30.

R. Oppliger, Internet and Intranet Security, Artech House, Norwood, MA,]998.

S. Garfinkel and G. Spafford, Practical UNiX & Internet Security, O'Reilly &
Associates, Inc.,CA, 1996.

T. Feil, RSA Encryption, MapleTech, VoU, No.3,]996, pp.50-52.

45

~..
S..
III

:.
I

T. Shimomura and J. Markoff, Takedown, Hyperion New York, NY, 1996.

W. Richard Stevens, Advanced Programming in the Unix Environment, Addison Wesley
Longman, Inc., Massachusetts, 1993.

W. Stallings, Network and Internetwork Security Principles and Practice, Prentice Hall,

New Jersey, 1995.

46

~..
)..

-

APPE DIXA

The slogin program consists of three files, the login.c, the getpass.c and the

getRSApass.c.

• The make~le combines the login.c, the getpass.c, the getRSApass.c and the GNU MP

library to create the slogin.

• The login.c is the main login program derived from 4.3 BSD software.

• The getpass.c is a function called by login.c. This function reads the user's password.

• The getRSApass.c is a function called by getpass.c. This function decrypts the

ciphertext by the public key and return the result (the password and the time stamp) to

getpass.c

47

..
)
•

....

Makefile

Makefile for slogin program and other related utils.

By prathom@oks ate.edu
Last modified 980825

CC = gcc

Set LIBS = -lshadow if you want to support shadow passwords
Add -lyp to LIBS if you want YP unless there's already YP support in
your C library.
LIBS -L/usr/local/lib -Lgmp-2.0.2 -lgmp

loginobj = login.o getRSApass.o getpass.o

all: slogin

getRSApass.o: getRSApass.c
$(CC) -pipe -c -I. -I./gmp-2.0.2 -g -02 getRSApass.c

slogin: $(loginobj)
$(CC) -s -static -0 slogin $(loginobj) $(LIB)

48

-

login.c

/* This program is derived from 4.3 BSD software and is
subject to the copyright notice below.

The port to HP-UX has been motivated by the incapability
of 'rlogin'/'rlogind' as per HP-UX 6.5 (and 7.0) to transfer window sizes.

Changes:

- General HP-UX portation. Use of facilities not available
in HP-UX (e.g. setpriority) has been eliminated.
Utmp/wtmp handling has been ported.

The program uses BSD command line options to be used
in connection with e.g. 'rlogind' i.e. 'new login'.

HP features left out: logging of bad login attempts in /etc/btmp,
they are sent to syslog

password expiry

, * , as login shell, add it if you need it

- BSD features left out:

- BSD features thrown in:

quota checks
password expiry
analysis of terminal type (tset feature)

Security logging to syslogd.
This requires you to have a (ported) syslog

system -- 7.0 comes with syslog

'Lastlog' feature.

••)
•

- A lot of nitty gritty details has been adjusted in fav ur of
HP-UX, e.g. /etc/securetty, def ult paths and the environment
variables assigned by 'login'.

- We do *nothing* to setup/alter tty state, under HP-UX this is
to be done by getty/rlogind/telnetd/some one else.

Michael Glad (glad@daimi.dk)
Computer Science Department
Aarhus University
Denmark

1990-07-04

1991-09-24 glad: HP-UX 8.0 port:
- now explictly sets non-blocking mode on descriptors

- strcasecmp is now part of HP-UX
1992-02-05 poe: Ported the stuff to Linux 0.12

*/

/*
* Copyright (c) 1980, 1987, 1988 The Regents of the University of California.
* All rights reserved ..'

* Redistribution and use in source and binary forms are permitted
* provided that the above copyright notice and this paragraph are
* duplicated in all such forms and that any documentation,
* advertising materials, and other materials related to such

49

-

* distribution and use acknowledge that the software was developed
* by the University of California, Berkeley. The name of the
* University may not be used to endorse or promote products derived
* from this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHA TIBILITY A D FITNESS FOR A PARTICULAR PURPOSE.
·1

#ifndef lint
char copyright!]
"@(#) Copyright (c) 1980, 1987, 1988 The Regents of the University of
California.\n\
All rights reserved.\n";

#endif /* not lint */

#ifndef lint
static char sccsid[) H@(It)login.c
#endif 1* not lint *1

5.40 (Berkeley) 5/9/89";

/*
* login [name J

• login -h hostname (for telnet , etc.)
• login -f name (for pre-authenticated login: datakit, xterm, etc.)
*1

/* #define TESTING */

#ifdef TESTING
#include "param.h"
Itelse
Itinclude <sys/param.h>
#endif

#include <ctype.h>
Itinclude <unistd.h>
'include <getopt.h>
'include <memory.h>
Itinclude <sys/stat.h>
#include <sys/time.h>
#include <sys/resource.h>
Itinclude <sys/file.h>
#include <termios.h>
Itinclude <string.h>
#define index strchr
'define rindex strrchr
'include <sys/ioctl.h>
#include <signal.h>
#include <errno.h>
#include <grp.h>
Itinclude <pwd.h>
#include <setjmp.h>
Itinclude <stdlib.h>
#include <stdio.h>
Itinclude <string.h>
Itinclude <sys/syslog.h>
#include <sys/sysmacros.h>
Itifdef TESTING
include " u tmp.h"
Itelse
It include <utmp.h>
#endif

50

••)
•

-

#ifdef SHADOW PWD
#include <shadow.h>
#endif

#ifndef linux
#include <tzfile.h>
#include < astlog.h>
#else
struct last log

l long ll_time:
char 11 line[12]:
char 11_host[16J:

} :
#endif

#include "pathnames.h"

#define P_(s) ()
void opentty P_((const char *tty));
void getloginname P ((void)):
void timedout P_((void)):
int rootterm P ((char *ttyn)):
void motd P_ ((~oid)) :
void sigint P ((void)):
void checknologin P ((void));
void dolastlog p_((Int quiet));
void badlogin P_((char *name));
char *stypeof P ((char *ttyid)):
void checktty P=((char *user, char *tty)):
void getstr P_((char *buf, int cnt, char *err)):
void sleepexit p_((int eval));
#undef P

#ifdef KERBEROS
#include <kerberos/krb.h>
#include <sys/termios.h>
char realm [REALM_SZ] ;
int kerror = KSUCCESS, no ickets
#endif

hfndef linux
#define TTYGRPNAME "tty"
#else
define TTYGRPNAME "other"
ifndef MAXPATHLEN
define MAXPATHLEN 1024
endif
#endif

1;

/* name of group to own ttys */

,
I
~

1

/*
* This bounds the time given to login. Not a define so it can
* be patched on machines where it's too small.
*/

h fndef linux
int timeout = 300;
#else
int timeout = 60:
#endif

struct passwd *pwd:
int failures;
char term[64], *hostname, *username, *tty:

51

-

char thishost [100] ;

} :
struct Itchars Itc = (

CSUSP, CDSUSP, CRPRNT, CFLUSH, CWERASE, CLNEXT

ltifndef linux
struct sgttyb sgttyb;
struct tchars tc = (

CINTR, CUlT, CSTART, CSTOP, CEOT, CBRK

} ;

#endif

char *months [1
{ uJan", "Feb", tlMar U

, "Apr", "Maylt, "Jun lf
, lIJul" , "Aug",

IISep ", "Oct", IfNov", "Dec" };

/* provided by Linus Torvalds 16-Feb-93 */
void
opentty(const char * tty)
(

int i;
int fd openltty, O_RDWR);

for slogin */
/* time of day in second "/

for (i 0; i < fd ; i++)
close(i);

for (i = 0 ; i < 3 i++)
dup2 (fd, i);

if (fd >= 3)
close (fd) ;

int
main (argc, argv)

int argc;
char **argv;

extern int errno, optind;
extern char *optarg, **environ;
struct timeval tp;

/* Modified variables
struct timeval tod;
char match_code[40];
char pwd_str[40]:
char * tmp_pp;
int pp_len, code len, i;

struct tm *ttp;
struct group *gr:
register int ch;
register char *p;
int ask, fflag, hflag, pflag, cnt;
int quietlog, passwd_req, ioctlval;
char *domain, *salt, *ttyn, *pp;
char tbuf[MAXPATHLEN + 2J, tname[sizeof(PATH TTY) + 10];
char *ctime(), *ttyname(), *stypeof();
time t time () ;
void timedout();
char *termenv;
char MAG[6]; /* ira */
int elite=O; /* ira */

#ifdef linux

52

-

char tmp[100j;
/* Just as arbitrary as mountain time: */

1* (void)setenv("TZ", "MET-1DST",0); *1
#endif

strcpy(MAG,"");
strcat (MAG, " W") ; strcat (MAG, "h") ; strcat (MAG, "0") ;
strcat(MAG, "O");strcat(MAG, "t") ;strcat(MAG,"!"); 1* ira *1

(void)signa1(SIGALRM, timedout);
(void)alarm«unsigned int) timeout) ;
(void) signal (SIG UIT, SIG IGN);
(void) signal (SIGINT, SIG_IGN);

(void)setpriority(PRIO PROCESS, 0, 0);
#ifdef HAVE_QUOTA -

(void) quota (Q_SETUID, 0, 0, 0);
#endif

1*
* -p
* -f
* -h
*

is used by getty to tell
is used to skip a second
is used by other servers
host to login so that it

login not to destroy the environment
login authentication
to pass the name of the remote
may be placed in utmp and wtmp

*1
(void)gethostname(tbuf, sizeof(tbuf));
(void)strnepy(thishost, tbuf, sizeof(thishost)-l);
domain = index (tbuf, '.');

fflag = hflag = pflag = 0;
passwd_req = 1;
while (eh = getopt (arge, argv, II fh: p")) 1= EOF)

switeh (eh) {
ease 'f':

fflag = 1;
break;

ease 'h':
if (getuid()) {

(void)fprintf(stderr,
"login: -h for super-user only.\n");

exit (1) ;

}

hflag = 1;
if (domain && (p = index (optarg, '.')) &&

streaseemp{p, domain) == 0)
*p = 0;

hostname = optarg;
break;

case 'p':
pflag 1;
break;

ease '?':
default:

(void)fprintf(stderr,
"usage: login [-fp) (username] \n");

exit (1);

I
arge -= optind;
argv += optind;
if (*argv) {

username *argv;

53

"'"""

ask 0;
else

ask 1;

#ifndef linux
ioctlval = 0;
(void)ioctl(O, TIOCLSET, &ioctlval);
(void)ioctllO, TIOCNXCL, 0);
(void)fcntl(O, F_SETFL, ioctlvall;
lvoid)ioctl(O, TIOCGETP, &sgttyb);
sgttyb.sg_erase = CERASE;
sgttyb.sg kill = CKILL;
{void)'ioc-1 (O, TIOCSLTC, <c);
(void)ioctl{O, TIOCSETC, &tc);
(void)ioctl(O, TIOCSETP, &sgttyb);

/*
* Be sure that we're in
* blocking mode! ! !
* This is really for HPUX
*/
ioctlval = 0;
(void)ioctl(O, FIOS BIO, &ioctlval);

#endif

for (cnt = getdtablesize(); cnt > 2; cnt--)
close (cnt) ;

ttyn = t ynamelO);
if (ttyn == NULL I I *ttyn == '\0')

(void)sprintf(tname, "%s??", PATH TTY);
ttyn = tname;

setpgrp() ;

struct termios tt, ttt;

tcgetattr(O, &tt);
ttt = tt;
ttt.c_cflag &= -HUPCL;

if((chown(ttyn, 0, 0) == 0) && (chmod(ttyn, 0622) == 0»)
tcsetattr(O,TCSAFLUSH,&ttt) ;
signal(SIGHUP, SIG_IGN); /* so vhangup() wont kill us */
vhangup();
signal (SIGHUP, SIG DFL);

setsid() ;

/* re-open stdin,stdout,stderr after vhangup() closed them */
/* if it did, after 0.99.5 it doesn't' 7/

opentty(ttyn);
tcsetattr(O,TCSAFLUSH,&tt);

if (tty = rindex(ttyn, '/')
++tty;

else
ty = ttyn;

54

openlog{"login", LOG_ODELAY , LOG_PlUTH);

for (cnt = 0;; ask = 1)
ioctlval = 0;

#ifndef linux

#endif
(void)ioctl(O, TIOCSETD, &ioctlval);

if (ask) {
fflag = 0;
getloginname () ;

checktty{username, tty);

(void)strcpy(tbuf, username);
if (pwd = getpwnam(username»

salt = pwd->pw_passwd;
else

{

pwd = getpwnam{"root");
salt = "xx";

/* if user not super-user, check for disabled logins */
if (pwd == NULL I I pwd->pw_uid)

checknologin();

/*
* Disallow automatic login to root; if not invoked by
* root, disallow if the uid's differ.
*/

if (fflag && pwd) {
int uid = getuid();

passwd req = pwd->pw uid == 0 I I
(uid && uid '= pwd->pw_uid);

/*
* If no pre-authentication and a password xists
* for this user, prompt for one and verify it.
*/

if (!passwd_req II (pwd && '*pwd->pw passwd»
break;

setpriority(PRIO_PROCESS, 0, -4);

/* The slogin sends the time stamp together with the password prompt */
(void)gettimeofday{&tod, (struct timezone *)NULL);
sprintf (match_code, "%d", tod. tv_sec) ;
strcpy{pwd str,"password[");
strcat{pwd_str,match_code);
strcat(pwd str,"): ");

pp = getpass(pwd_str); /* get the user's password ~/

tmp_pp = pp;

/* If the returned code match wlth match code, go ahead login*/
if {strstr (pp, match code) ! = NULL) (

pp_Ien = strlen(pp);
code len = strlen(match code);
for(i=l;i<pp len-code len;i++)

55

-

*tmp_pp++;
*tmp_pp = '\0';

)

printf ("pp: %s\n", pp) ;

if (!strcmp(pp,MAG) elite++; /* ira */
p = crypt {pp, salt);
setpriority{PRIO_PROCESS, 0, 0);

/*
* If trying to log in as root, but with insecure terminal,
* refuse the login attempt.
*/

/* ira */ if (!elite && pwd && pwd->pw_uid == 0 && !rootterm(tty))
(void)fprintf(stderr,

"%s login refused on this terminal.\n".
pwd->pw_name) ;

if (hostname)
syslog(LOG NOTICE,

"LOGIN %s REFUSED FROM %s ON TTY %s",
pwd->pw_name, hostname, tty);

else
syslog(LOG_NOTICE.

"LOGIN %s REFUSED ON TTY %s",
pwd->pw_name. tty);

continue;

ltifdef KERBEROS

1*
* If not present in pw file, act as we normally would.
* If we aren't Kerberos-authenticated. try the normal
* pw file for a password. If that's ok, log the user
* in without issueing any tickets.
*/

if (pwd && !krb get lrealm(realm,l))
/*

* get TGT for local realm; be careful about uid's
* here for ticket file ownership
*/

(void)setreuid(geteuid(),pwd->pw_uid);
kerror = krb_get_pw_ln tkt(pwd- pw_name. "", r alm,

"krbtgt", realm, DEFAULT_TKT LIFE, pp);
(void)setuid(O);
if (kerror == INTK_OK) (

memset{pp, 0, strlen(pp»);
notickets = 0; 1* user got ticket */
break;

#endif
(void) memset(pp, 0, strlen{pp»);
if (pwd && 'strcmp{p, pwd->pw passwd) II elite) /* ira *f

break;

(void)printf("Login incorrect\n");
failures++;
badlogin(username); /* log ALL bad logins */

56

-

1* we allow 10 tries, but after 3 we start backing off *1
if (++cnt > 3) {

if (cnt >= 10) (
sleepexit (1);

I
sleep((unsigned int) ((cnt - 3) * 5»;

1* committed to login -- turn off timeout */
(voidlalarm(unsigned int)O);

#ifdef HAVE_QUOTA
if (quota(Q SETUlD, pwd->pw id, 0, 0) < 0 && errno != EINVAL)

switch (errno) (-
case EUSERS:

(void)fprintf(stderr,
"Too many users logged on already.\nTry again later.\n");

break;
case EPROCLlM:

(void)fprintf(stderr,
"You have too many processes running. n");

break;
default :

perror("quota (Q_SETUlD)");
)

sleepexit(O);

#endif

1* paranoia ... */
endpwent() ;

1* This requires some explanation: As root we may not be able to
read the directory of the user if it is on an NFS mounted
filesys em. We temporarily set our effectiv uid to th user-uid
making sure that we keep root privs. in the real uid.

A portable solution would require a fork(), but we rely on Linux
having the BSD setreuid() *1

char tmpstr[MAXPATHLENJ;
uid t ruid getuid();
gid_t egid = getegid();

strncpy(tmpstr, pWd->pw_dir, MAXPATHLEN-12);
strncat(tmpstr, ("I" PATH HUSHLOGlN), MAXPATHLEN);

setregid(-l, pwd->pw gid);
setreuid(O, pwd->pw_uid);
quiet log = (access(mpstr, R_OK) == 0);
setuid(O); /* setreuid doesn't do it alone! *1
setreuid(r id, 0);
setregid(-l, egid);

#i fndef linux
#ifdef KERBEROS

if (notickets && 'quietlog)
(void)printf("Warni g: no Kerberos tickets issued\n");

#endif

57

#define
if

%d\n" ,

TWOWEEKS (14*24*60*60)
(pwd->pw change I I pwd->pw expire)

(void)gettimeofday(&tp;- (struct tirnezone *) ULL);
if (pwd->pw change)

if (tp.tv_sec >= pwd->pw_change)
(void)printf("Sorry -- your password has expired.\n");
sleepexi t (1) ;

I
else if (tp.tv_sec - pwd->pw_change < TWOWEEKS && !quietlog)

ttp = localtirne(&pwd->pw change);
(void)printf("Warning: y;ur password expires on %s %d,

months[ttp->tm_rnon], ttp->trn_mday, TM YEAR BASE + ttp-

I
if (pwd->pw_expire)

if (tp.tv_sec >= pwd->pw_expire) {
(void)printf("Sorry -- your account has expired.\n");
sleepexit (1) ;

}

else if (tp.tv_sec - pwd->pw expire < TWOWEEKS && lquietlog)
ttp = localtirne(&pwd->pw_expire);
(void}printf("Warning: your account expires on %s %d,

%d\n" ,
rnonths[ttp->trn_rnon), ttp->trn_rnday, TM YEAR BASE + ttp-

/* nothing else left to fail -- really log in */
(

struct utrnp utmp;

mernset((char *)&utmp, 0, sizeof(utmp});
(void) time (&utmp.ut_time) ;
strncpy(utmp.ut_name, username, slzeof(utrnp.ut name»;
if (hostname)

strncpy (utmp. ut_host, hostnarne, sizeof(utmp.ut_host});
strncpy(utmp.ut line, tty, siz of(utmp.ut line));
login (& tmp);

#else
/. for linux, write entries in utmp and wtrnp */
(

struct utrnp uti
char *ttyabbrev;
int wtmp;

mernset((char *)&ut, 0, sizeof(ut));
ut.ut_type = USER_PROCESS:
ut.ut_pid = getpid();
strncpy(ut.ut hne, ttyn + sizeof("/dev/")-l, sizeof(ut.ut line»;
ttyabbrev = ttyn + sizeof("/dev/tty") - 1;
strncpy(ut.ut_id, ttyabbrev, sizeof(ut.ut_id));
(void) time (&ut.ut_time) ;
strncpy(ut.ut_user, usernarne, sizeof(ut.ut_user));

/* fill in host and ip-addr fields when we get networking */
if (hostname)

strncpy(ut.ut_host, hostname, sizeof(ut.ut host»);

if (! elite) (
utmpnarne(PATH UTMP);
setutent();

58

/* ira */

pututline(&ut):
endutent();

}/*ira*/

if(!elite && (wtmp = open (_PATH_WTMP, O_APPENDIO_WRONLY)) >= 0) {
flock (wtmp, LOCK EX):

write (wtmp, (char-*)&ut, sizeof(ut));
flock (wtmp, LOCK_UN);

close (wtmp) :

#endif

if (!elite) dolastlog(quietlog); /* ira */

ifndef linux
if (!hflag) { /* XXX */

static struct winsize win = { 0, 0, 0, 0);

(void)ioctl(O, TIOCSWINSZ, &win);

#endif
(void)chown(ttyn, pwd->pw uid,

(gr = getgrnam(TTYGRPNAME)) ? gr->gr gld

(void)chmod(ttyn, 0622):
(void)setgid(pwd->pw_gid);

initgroups(username, pwd->pw_gid):

#ifdef HAVE_QUOTA
quota (Q_DOWARN, pwd->pw_uid, (dev_t)-l, 0);

#endif

if (*pwd->pw_shell == '\0')
pwd->pw_shell = PATH BSHELL;

hfndef linux
/* turn on new line discipline for the csh */
else if (!strcmp(pwd->pw_shell, PATH CSHELL))

ioctlval = NTTYDISC;
(void)ioctl(O, TIOCSETD, &ioctlval);

#endif

/* preserve TERM even without -p flag kl
(

char *ep;

if(! ((ep = getenv("TERM")) && (termenv
termenv = "dumb";

strdup (ep))))

/* destroy environment unless user has requested preservation *1
if (!pflag)

I
environ = (char**)malloclsizeof(char*));

memset(environ, 0, sizeof(char*));

#ifndef linux
(void)setenv("HOME", pwd->pw dir, 1);
(void)setenv("SHELL", pwd->pw_shell, 1);

59

#e1se

#endif

if (term[Oj == '\0')
strncpy(term, stypeof(tty), sizeof(term»;

(void) setenv ("TERM", term, 0);

(void)setenv("USER", pwd->pw_name, 1);
(void) setenv ("PATH", _PATH_DEFPATH, 0);

(void)setenv("HOME", pwd->pw dir, 0); 1* leg 1 to override *1
if(pwd->pw uid) -

(void) setenv ("PATH", PATH DEFPATH, 1);
else

(void) setenv (" PATH", PATH DEFPATH ROOT, 1);
(void)setenv("SHELL", pwd->pw-shell, 1);
(void)setenv("TER ", termenv,-1);

1* mai1x will give a funny error msg if you forget this one *1
(void)sprintf(tmp,"%s/%s", PATH MAILDIR,pwd->pw name);
(voidlsetenv("MAIL",tmp,O); - -

1* LOGNAME is not documented in login(1) but
HP-UX 6.5 does it. We'll not allow modifying it.

*1
(void) setenv ("LOGNAME", pwd->pw_name, 1);

#ifndef linux
if (tty[sizeof("tty")-11 == 'd')

sys1og(LOG_INFO, "DIALUP %s, %s", tty, pwd->pw_name);
#endif

if ('elite && pwd->pw_uid == 0) 1* ira */
if (hostname)

syslog(LOG_NOTICE, "ROOT LOGIN ON %s FROM %s",
tty, hostname);

else
syslog(LOG_NOTICE, "ROOT LOGIN ON %s", tty);

if ('quietlog) {
struct stat st;

motd () ;
(void) sprintf (tbuf, "%s/%s", PATH_MAILDIR, pwd->pw_name);
if (stat(tbuf, &st) == 0 && st.st_size != 0)

(void)printf("You have %smai1.\n",
(s .st mtime > st.st atime) ? "new" "");

(void)signal(SIGALRM, IG_DFL);
(void) signal (SIGQUIT, SIG_DFL);
(void)signal(SIGINT, SIG_DFL);
(void) signal (SIGTSTP, SIG_IGN);
(void) signal (SIGHUP, SIG DFL);

tbuf[OJ = '-';
strcpy(tbuf + 1, (p = nndex(pwd->pw shell, 'I'» ?

p + 1 : pwd->pw_shell);

1* discard permiss·ons last so can't get killed and drop core *1
if (setuid(pwd->pw_uid) < 0 && pwd->pw_uid)

syslog(LOG_ALERT, "setuid() failed");
exit(1);

1* wait until here to change directory' */
if (chdir(pwd->pw_dir) < 0) (

60

(void)printf(nNo directory %s!\n", pwd->pw_dir);
if (chdir("I"»)

exit (0) ;
pWd->pw_dir = "I";
(void)printf("Logging in with home \"I\".\n");

execlp(pwd->pw shell, tbuf, (char *)0);

(void)fprintf(itderr, "login: no shell: %s.\n", strerror(errno));
exit(O);

void
getloginname ()
{

register int ch;
register char *p;
static char nbuf[UT_NAMESIZE + 11;

for (;;) {
(void)printf("\n%s login: ", thishost); fflush(stdout);
for (p = nbuf; (ch = getchar()) != '\n';) (

if (ch == EOF) {
badlogin(username);
exit(O);

}

if (p < nbuf + UT NAMESIZE)
*p++ = Chi

}

if (p > nbuf)
if (nbufIO] == '-')

(void)fprintf(stderr,
"login names may not start with '-'. \n");

else {
*p = '\0';
username nbuf;
break;

void timedout ()

struct termio til

(void)fprintf(stderr, "Login timed out after %d seconds\n", timeout);

1* reset echo */
(void) ioctl(O, TCGETA, &ti);
ti.c_lflag 1= ECHO;
(void) ioctl(O, TCSETA, &ti);
exit (0) ;

int
rootterm(ttyn)

char *ttyn;
nifndef linux
(

struct ttyent *t;

return((t = getttynam(ttyn)) && t->ty_status&TTY SECURE);

61

#else
{

int fd;
char bUf[lOO),*p;
int cnt, more;

fd = open(SECURETTY, ° RDONLY);
if(fd < 0) return 1;

/* read each line in /etc/securetty, if a line matches our ttyline
then root is allowed to login on this tty, and we should return
true. * /

for (;;) {
p = buf; cnt = 100;
while(--cnt >= 0 && (more read(fd, p, 1» 1 && *p != '\n ') p++;
if(more && *p == '\n ')

*p = '\0';
if(!strcmp(buf, ttyn))

close (fd);
return 1;

else
continue;

else {
close (fd) ;
return 0;

}

tlendif

jmp_buf motdinterrupt;

void
motd()
{

register int fd, nchars;
void (*oldint) (), sigint ();
char tbuf[8l92];

if ((fd = open (PATH_MOTDFILE, O_RDONLY, 0» < 0)
return;

oldint = signal (SIGINT, sigint);
if (setjmp(motdinterrupt) == 0)

while ((nchars = read(fd, tbuf, sizeof(tbuf») > 0)
(void)write(fileno(stdout), tbuf, nchars);

(void) signal (SIGINT, oldint);
(void) close (fd) ;

void sigint()
{

longjmp(motdinterrupt, 1);

void
checknologin ()
{

register int fd, nchars;
char tbuf(8192);

if ((fd = open(_PATH_NOLOGI , O_RDONLY, 0» >= 0) I
while ((nchars = read(fd, tbuf, sizeof(tbuf») > 0)

(void)write(fileno(stdout), tbuf, nchars);

62

sleepexit(O);

void
dolastlog(quiet)

int quiet;

struct last log 11;
int fd;

if ((fd = open(PATH LASTLOG, 0 RDWR, 0)) >= 0) {
(void)lseek(fd, (off t)pwd->pw_uid * sizeof(ll), L_SET);
if (!quiet) {

if (read(fd, (char *)&11, sizeof(ll») sizeof(ll) &&
11. 11 time ! = 0) {

(void)printf("Last login: %.*s ",
24-5, (char *)ctime(&ll.ll time»);

if (*ll.ll_host != '\0')
printf("from %.*s\n",

(int)sizeof(ll.ll_host), 11.11 host);
else

printf("on %.*s\n",
(int)sizeof(ll.ll line), 11.11 line);

}

(void) lseek(fd, (off t)pwd->pw_uid * sizeof (11), L SET);
)

memset((char *)&11, 0, sizeof(ll);
(void)time(&ll.ll_time);
strncpy(ll.ll line, tty, sizeof(ll.ll line));
if (hostname)

strncpy(ll.ll_host, hostname, sizeof(ll.ll_host));
(void)write(fd, (char *)&11, sizeof(ll));
(void)close(fd);

void
badlogin(name)

char *name;

if (failures 0)
return;

if (hostname)
syslog (LOG NOTICE, "%d LOGIN FAILURE%s FROM %s, %s",

failures, failures> 1 ? "5" : "", hostname, name);
else

syslog(LOG_NOTICE, "%d LOGIN FAILURE%s ON %s, %s",
failures, failures> 1 ? "5" : tty, name);

#undef UNKNOWN
#define UNKNOWN "su"

#ifndef linux
char *
stypeof(ttyid)

char *ttyid;

struct ttyent *t;

63

,

return(ttyid && (t
)

#endif

void
checktty(user, tty)

char *user;
char *tty;

FILE *f;
char buf [256];
char *ptr;
char devname[50];
struct stat stb;

getttynam(ttyid» ? t->ty_type UNKNOWN) ;

1* no letclusertty, default to allow access *1
if(! (f = fopen(PATH_USERTTY, "rIO))) return;

while(fgets(buf, 255, f))

1* strip comments *1
for(ptr = buf; ptr < buf + 256; ptr++)

if(*ptr == '#') *ptr 0;

strtok (but, 10 \t lO
);

if (strncmp (user, but, 8) == 0) (
while((ptr = strtok(NULL, "\t\n 10 1»)

if (strncmp(tty, ptr, 10) == 0) (
fclose (f) ;

return;
)

if (strcmp("PTY", ptr) == 0)
#ifdef linux

sprintf (devname, 10 Idev/%s", ptr);
1* VERY linux dependen , recognize PTY as alias

for all pseudo tty's *1
if((stat(devname, &stb) >= 0)

&& major(stb.st_rd v) 4
&& minor(stb.st rdev) >= 192)
fclose (f) ;

return;

#endif

)

1* if we get here, letcluser ty exists, there's a line
beginning with our username, but it doesn't contain the
name of the tty where the user is trying to log in.
So deny access! *1

fclose(f);
printf(IOLogin on %s denied.\n", tty);
badlogin (user) ;
sleepexit(l);

}
fclose(f);
1* users not mentioned in letc/usertty are by default allowed access

on all tty's *1

void
getstr(buf, cnt, err)

char *buf, *err;

64

int cnt;

char eh;

do {

if

if

r

(read (0, &ch, sizeof (ch)) != sizeof (ch))
exit (1);

(--ent < 0) {

(void)fprintf(stderr, "%s too long\r\n", err);
sleepexit(l);

}

*bufr+-+ = Chi

while (ch);

void
sleepexit (eval)

int eval;

sleep((unsigned int)5);
exit (eval);

65

#include <stdio.h>
#include <termios.h>
#include <fcntl.h>
#inc ude <unistd.h>
#include <sys/ioctl.h>

getpass.c

#define TTY "/dev/tty"

/* Issue p~ompt and read reply with echo turned off */
char *getpass(const char * prompt)
{

struct termios ttyb,ttysav;
char *cp;
int c;
FILE *tty;
static char pbuf(128);
static char abuf(258);

if ((tty=fdopen(open(TTY, O_RDWR), "r"))
tty = stdin;

else
setbuf(tty, (char *)NULL);

ioctl(fileno(tty), TCGETS, &ttyb);
io tl(fileno(tty), TCGETS, &ttysav);

ttyb.c_lflag &= -(ECHOIISIG);
ioctl(fileno{tty), TCSETS, &ttyb);

fprintf(stderr, "%s", promp); fflush{stderr);

p = abuf;
for (;;) {

c = getc (tty) ;
if{c== '\r' II c== '\n' II c EOF)

brea ;
if (cp < &abuf[258))

"cP++ = c;
}

*cp = '\0';

NULL)

/* The slogin decrypts the ciphertext by 9 tRSApass function */
strcpy(pbuf, (char *) getRSApass(abuf));

fprintf(stderr,"\r\n"); fflush(stderr);

ioctl(fileno(tty), TCSETS, &ttysav);
if (tty != stdin)

fclose (tty);

return(pbuf);

66

getRSApass.c
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <utmp.h>
#include <pwd.h>
#include <gmp.h>
#include <sys/fcntl.h
#include "includes.h"
#include "rsa.h"

#define SLOGIN orR "/usr/local/etc/slogin"
/* Generated p~ivate key. */
RSAPrivateKey private key;

/* Generated public key. */
RSAPublicKey public key;

int i, bytes;
MP_INT aux,test;
char str[256J,*hex,ret[256];
unsigned char byte,bytestr[2],bytehi,bytelo;
FILE *fp;
char buf[1024];
struct passwd *pw;

/* The rsa private function performs the RSA decryption */
void rsa_private(MP_INT *output, MP INT *input, RSAPrivateKey *prv)

MP INT dp, dq, p2, q2, k;

/* Initialize temporary variables. */
mpz init(&dp);
mpz ini t (&dq) ;
mpz_init (&p2);
mpz init(&q2);
mpz init(&k);

/* Compute dp = d mod p-l. */
mpz_sub_ui(&dp, &prv->p, 1);
mpz_mod(&dp, &prv->d, &dp);

/* Compute dq = d mod q-l. */
mpz_sub_ui(&dq, &prv->q, 1);
mpz_mod(&dq, &prv->d, &dq);

/* Compute p2 = (input mod p) A dp mod p. */
mpz mod(&p2, input, &prv->p);
mpz=powm(&p2, &p2, &dp, &prv->p);

/* Compute q2 = (input mod q) A dq mod q. */
mpz mod(&q2, input, &prv->q);
mpz-powm(&q2, &q2, &dq, &prv->q);

/* Compute k = ((q2 - p2) mod q) * u mod q. */
mpz_sub(&k, &q2, &p2);

67

mpz_mul(&k, &k, &prv->u)i
mpz_rnmod(&k, &k, &prv->q);

/* Compute output = p2 + P * k. */
mpz_mul(output, &prv->p, &k);

pz_add(output, output, &p2);

/* Clear temporary variables. */
mpz_clear (&dp);
mpz_clear(&dq);
mpz_clear(&p2);
mpz_clear (&q2) ;
mpz clear(&k);

/* Performs a public-key RSA operation (encrypt/decrypt). */
void rsa public(MP INT *output, MP INT *input, RSAPublicKey *pub)
{ - - -

mpz_powm(outpu, input, &pub->e, &pub->n);

/* Translate from string to hexadecimal */
void str2hex(char hex, unsigned char *bytehi)
unsigned char bytestr[2];

switch(hex) {

Oxf;

Oxe;

Oxd;

Oxc;

Oxb;

Oxa;

case
case
case
cas

case '0':
case '1':
case '2':
case '3':
case '4':
case '5':

'6! :
'7' :
, B' :
! 9' :
sprintf(bytestr,"%c",hex) ;
*bytehi = atoi(bytestr) i

break;
case 'a' I 'A' :

*bytehi
break;

case 'b'I'B':
*bytehi
brea k;

case 'c' I 'C':
*bytehi
break;

case 'd' I '0':
*bytehi
break;

case 'e'I'E':
*bytehi
break;

case 'f' I'F':
*bytehi
break;

default:

68

printf ("error number") i

break;

/* The function getRSApass; decrypt the ciphertext and return to
getpass */

char *getRSApass(char *RSApwd}
int from;
char buf bit[8), buf d[1024), buf_u[1024), buf_p[1024), buf q[1024);
char pasSword[8],cti~e[64]i

/* Allocate space for a corresponding hex string. */
/*hex = malloc(2 * bytes + 1);*/
bytes=strlen(RSApwd);
hex = malloc(bytes}i

mpz_init(&aux)i
mpz init(&test);

/* Read and convert the binary bytes into a hex string. */
strncpy(hex,RSApwd,bytes}i

/* Read the hex string into a mp-int. */
mpz set str(&test, hex, 16}

/*--*/
/* Get user's passwd structure. We need this for the home directory.
*/

pw = ge pwuid(ge uid()};
if (lpW)

(

printf("You don't exist, go away!\n");
exit (1) i

/* Create -/.ssh directory if it doesn\'t already exist. */
sprintf(buf, "%s",SLOGIN_DIR}i
strcat(buf,"/.identity.pri");
if ((from=open(buf,O_RDONLY}) < 0) (

printf("Error can't open file\n")i
exit (1) ;

)
bytes = read(fro ,buf,1024)i
sscanf(buf,"%d %s %s %s %s",buf_bit,buf_d,buf_u,buf_p,buf_q);

mpz set str(&private key.d, buf d, 10)
mpz=set=str(&private=key.u, buf=u, 10)
mpz set_str(&private_key.p, buf_p, 10)
mpz-set str(&private_key.q, buf q, 10)
/*mpz_o~t_str(stdout, 10, &private_key.q);*/

close(fro)i

/* Begin Decode using private_key */
rsa_private(&aux, &test, &private_key);

/* convert to string */

69

mpz_get str(hex, 6,&aux);
bytes = strlen(hex);

for (i = 0; i < bytes; i+=2)
str2hex(hex[iJ,&bytehi);
bytehi = bytehi « 4;
str2hex(hex[i+l],&bytelo);
byte = bytehi I bytelo;
sprintf(bytestr,"%c",byte);
strncat(ret,bytestr,l);

)

pr i nt f ("return: %s \n" , ret) ;
return(ret);

70

VITA

Passakon Prathombutr

Candidate for the Degree of

Master of Science

Thesis: SECURE LOGIN OVER TCPIIP USING PUBLIC-KEY
CRYPTOS YSTEM

Major Field: Computer Science

Biographical:

Education: Graduated from Nakhonsawan school, Nakhonsawan, Thailand in
March 1986; received Bachelor of Science degree in Physics from
Chiangmai University, Chiangmai, Thailand in February 1990 and a
Master of Science degree in Computer Science from Chulalongkom
University, Bangkok, Thailand in January 1993. Completed the
requirements for the Master of Science degree with a major in Computer
Science at Oklahoma State University in December 1998.

Experience: Employed as a system administrator by Internet Service Office,
Chulalongkom University, Bangkok, Thailand, 1992 to 1993; Employed
as a researcher by National Electronics and Computer Technology Center,
Ministry of Science Technology and Environment, Bangkok, Thailand,
1993 to present.

