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CHAPTER I

INTRODUCTION

Purpose

This thesis describes an enhanced sinusoidal reconstruction method for Multi

Band Excitation (MBE) based coders used to produce high quality speech at moderate bit

rates of approximately 8,000 bits per second. The research and development for this

reconstruction was spawned from prior work done on the low bit rate Enhanced Multi

Band Excitation (EMBE) 2.4kbps vocoder developed at Oklahoma State University by

Dr. Keith Teague, Walter Andrews, Bryce Leach, and Buddy Walls [1-6].

In recent years, there has been a demand for low bit rate (approximately

2,400bps) coding of speech due to limitations in bandwidth for applications such as hand

held cellular phones, low bandwidth/low power radio systems, secure communication

systems, and telephone systems. Although current advancements in communication

technology have produced more efficient use of bandwidth and, in many cases, the

capability of handling higher bit rates, reduction of bit rates, as compared to the standard

telephone quality bit rate (64kbps), is still needed. However, emphasis is currently being

placed on increasing the quality of speech at tbe expense of slightly higher bIt rates. The

tradeoff of bit rate for increased quality is desirable in many applications. Therefore, it is

advantageous to design a speech coder which can produce high quality speech at low to

moderate bit rates.

MBE-based coders such as EMBE 2.4kbps and Improved Multi-Band Excitation

(IMBE) model speech signals well in tenus of pitch, voicing, and the magnitude



spectrum. However, these coders were designed for low bandwidth~ .l0w nit rate

applications. To reduce the bandwidth, the frame rate is reduced and phase is

synthetically generated in the synthesizer using a linear excitation model with

randomized jitter in the upper harmonics~ Altlhough'the human, auditory system is usuaUy

considered phase deaf, this synthetic phase model is not sufficient to produce particularLy

natural tonal quality f(j)rlvoiced and 'mixed 'excitation. speech.

Tlierefore, the m;ain goal of this tllesis is 10 develop an enhanced reconstruction

for MBE-based coders which makes use of the inoreased bit rate to improve the tonal

quality of reconstructed voiced speech. The addition, of a new phase model and a phase

based sinusoidal voiced reconstruction proceduI'e will be central, to the improvement of

tonal quality. Methods presented in this thesis are based on sinusoidal-based coders such

as EMBE, IMBE and STC, along with new enhancements developed specifically for the

coder discussed here. Both MBE and STC are important ,in the developm~t of the

enhanced reconstructi0n:'and will be discussed in more detail in later chapters.

The enhanced sinusoidal reconstruction method introduced in this thesis has 'b(~efl

fully implemented in a test coder to analyze the quality of reconstnJ~ti0nas compared to

other speech coders currently available. The test 'Cod6Lused is the'EMB'B 8.0kJbps,

vocoder[7}.

Thesis Outline

The remainder of this thesis details the development of the enhanced sinlllsoidal

reconstruction method. Chapter 2 provides a general background which lays the

foundation for speech coding work. It covers briefly the categories of speech coders.
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Then, more specifically, the basic speech model used for vocoders is presented. Finally,

the two speech codmng models used for this research, MBE and STC, are described..

Chapter 3 gives specific background concerning the MBE and STC models. The

particular reconstruction methods used by each one are covered in more detail. The

benefits and limitations of the reconstruction methods are discussed as an introduction to

the work presented in the following chapters.

Chapter 4 describes the topics covered for the development of an enhanced

sinusoidal reconstruction method. These include the basic synthesis structure,

reintroducing phase as a parameter, smooth frame connection and, finally, parameter

smoothing. In particular, Chapter 4 addresses the first topic, the basic synthesis structure,

in detail.

Chapter 5 provides a more detailed discussion of the second topic, the

reintroduction of phase as a parameter. Several methods of analyzing phase are

considered in detail, and an alternate model for generating synthetic phases is presented.

Chapter 6 concludes the development of the synthesizer with an in depth

discussion of two methods available for connecting frames. This also leads to a detailed

discussion of issues involving parameter connection and smoothing necessary for one of

the methods.

Chapter 7 summarizes the design of the enhanced reconstruction procedure and

concludes with a brief discussion of the quality of the fully-implemented reconstruction

procedure. In addition, potential research topics for further study are discussed.
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Basic Speech Model

Before discussing sinusoidal vocoders, it is important to have a fundamental

understanding of the speech characteristics utilized by these vocoders. Although the real

speech process is quite complex, a sinusoidal model for speech production considers two

distinct mechanisms for exciting the vocal tract. "Voiced" speech is produced by

excitation of the vocal cords at a fundamental frequency and results in the production of

harmonics-integer multiples of the fundamental frequency. Voiced speech may be -

successfully reproduced using a sum of harmonically related sinusoids weighted by a set

of harmonic amplitudes (1.1).

Sv (t)= I AI (t )cos(O{ (t»
I

( 1.1)

"Unvoiced" speech is produced without excitation of the vocal cords and is the

result of turbulent air flow caused by a constriction in the vocal tract. Unvoiced speech

can be reproduced using band-limited white noise produced either in the frequency

domain or the time domain. For example, a simple pseudo-random noise generator can

serve as the source, followed by a suitable band-pass filter. Alternatively, a bank of

sinusoidal oscillators having random phase can be used [17]. In the case of a sinusoidal

representation, each peak in the frequency spectrum (regardless of whether it is

harmonically related to a fundamental frequency) is considered to represent an

underlying sinusoid. Regardless of which method of representation is used, both voiced

and unvoiced speech are weighted by the response of the vocal tract.

Because speech is quasi-stationary, it must be divided into sections, or frames, of

short duration for analysis. Many frames exhibit characteristics of both voiced and
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unvoiced speech. These frames are referred to as having mixed excitation. When

analyzed in the frequency domain, some harmonics in these frames may be clearly

present while others are not. The frequency ranges where harmonics are not present are

noisy. Therefore, speech in such mixed frames can be described by a fundamental

frequency with harmonics that are classified as either voiced or unvoiced, all shaped by

the vocal tract response. Figure 1 shows three examples of speech spectra, each

illustrating the basic types of speech frames-all voiced, all unvoiced, and frames with

mixed excitation.

Examples 01 Speech Spectra
106,......----,-----,------,---,.----,-----r---r-------,

4000350030002500200015001000500
102 L...-__....L-__---.L__----l ...L.-__---L..__---l. J.....-_---'

o

1d.-------.-----r-----,---..,.------,------r---~-__,

1d L...-__....l...-__---l.. I...-__-L-__-L.__----'- -'--__-'

o 500 1000 1500 2000 2500 3000 3500 4000

106 ,-------:--,-----,------,---,.----,------"T---r--__,

102L-__....L.-__--L__----l ...L.-__---L..__----L J....-__-'

o 500 1000 1500 2000 2500 3000 3500 4000
Frequency (HZ)

Figure 1. Examples of Speech Spectra
a) Completely voiced spectrum
b) Completely unvoiced spectrum
c) Mixed excitation spectrum
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Again, since voiced and unvoiced speech are produced from independent sources,

speech can be divided into separate voiced and unvoiced components. In this case, a

speech signal is treated as the sum of voiced components produced using a hannonically

weighted sum of sinusoids and a sum of unvoiced components produced by band-limited

white noise shaped by the vocal tract.

In a more general sense, a speech signal can be treated as the sum of a set of

arbitrary sinusoids, located at frequencies baving significant amplitude. Those located at

harmonics will be related by phase and thus contribute to the voiced components.

Sinusoids not located at harmonics of the fundamental frequency will exhibit randomness

in their phase and thus contribute to the unvoiced components of the overall speech

signal. Such a representation can be thought of as being based on an under-sampled

Discrete Fourier Transform (OFf) spectrum.

Sinusoidal Vocoders

Vocoders make maximum use of this simplified model of speech. They use the

fundamental models of voiced and unvoiced components to describe the speech and then

reconstruct it so that it retains these characteristics. To do so, the basic vocoder is broken

into two parts-an analyzer and a synthesizer. The analyzer divides the original speech

signal into frames, analyzes each frame to determine the characteristics (parameters) of

that frame of speech, encodes and quantizes the parameters for storage or transmission,

and sends these to a synthesizer. The synthesizer then decodes these parameters and

reconstructs the speech on a frame by frame basis. Sinusoidal vocoders use a sum of
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sinusoids to model (at the very least) the voiced components of the speech in

reconstruction.

This paper will be dealing with two specific types of sinusoidal speech coders.

The first is Multi-Band Excitation (MBE), and the second is Sinusoidal Transform

Coding (STC). Each uses a unique set of parameters while still reconstructing at least the

voiced components of the speech as a sum of sinusoids.

Multi-Band Excitation (MB£)

MBE was developed by Daniel Griffin and lae Lim in the mid- to late-1980's.

MBE makes use of both the harmonic nature of speech and its voiced/unvoiced nature.

Although not the first to make use of the harmonic nature of speech, MBE was one of the

first to allow for multiple voicing decisions. Prior to the introduction of MBEt harmonic

sinusoidal vocoders were usually given only a single voicing decision. The resulting

reconstructed speech was often "buzzy," due in part to reconstructing unvoiced parts of

mixed excitation frames with periodic sinusoids. MBE sought to eliminate this quality by

introducing multiple voicing decisions per frame. For each frame, the spectrum is

subdivided into frequency bands and a voicing decision is made for each band.

MBE as developed by Griffin and Lim requires four sets of parameters--pitch,

harmonic amplitudes, harmonic phases, and voicing decisions for grouped harmonics

{13]. After these four sets of parameters are determined, they are encoded and sent to the

synthesizer where the voiced harmonics and unvoiced harmonics are reconstructed

independently and summed. A general block diagram of an MBE vocoder is shown in

Figure 2.
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Figure 2. MBE analyzer and synthesizer block diagrams

Voiced bands are built using a sum of sinusoids, but unvoiced bands are built

using band-limited white noise. This mixture of permitting voiced and unvoiced speech

within a single frame effectively represents mixed excitation speech.

For implementing MBE as a mid-rate coder, Griffin and Lim were able to

differentiaHy encode and send only the first 12 hannonic phases. This was due to the

limited number of bits and the inability to accurately predict the phases of higher

harmonics using a hnear excitation phase model [12]. As a result, they generated the
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upper harmonic phases synthetically in the receiver using the average fundamental

frequency of the current and subsequent frames and, presumably, a linear excitation

phase. The lack of phase infonnation for synthesis was acknowledged as a contributing

factor to the quality degradation of their mid-rate implementation.

Sinusoidal Transform Coding (STC)

During the approximate time period that MBE was being developed by Griffin

and Lim, STC was being developed by Robert McAulay and Thomas Quatieri. Rather ..

than using a harmonic model, STC approaches sinusoidal reconstruction by using a non

harmonic model based on arbitrarily located sinusoids. STC is based on peak picking in

the frequency domain. Each peak in the spectrum is assumed to represent an underlying

sinusoidal component with an associated frequency, amplitude, and phase. Fi.gure 3

illustrates spectral peak picking as performed in STC analysis. Usually, only a fixed

number of peaks (marked by the x's in Figure 3) is selected.
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STC Spectral Peak-PlckJng
10

6
.-------:------.---.----------.----r-----...;.~--_.___--__..,._--____.,

10' '

4000350030001500 2000 2500
Frequency (Hz)

1000500
102 1..-__--'- -'--__--'- .L-.__-----l.. -'--__---'-__---'

o

Figure 3. STC spectral peak-picking

The corresponding amplitudes, phases, and peak locations are encoded and sent to

the synthesizer where they are decoded and used to reconstruct the speech using Equation

(1.1) summed over the number of peaks. Figure 4 shows the basic STC analyzer and

synthesizer.

11



NALYZER
~ Peak -

Locations

Input To- ~speech Spectral Parameter synthesizer...Window ~ Analysis .... Peak .... Encoding, , , ,
Phases

~-

Peak
~ Amplitudes -

A

THEsrZER
Peak

-)0 Locations t--

From Synthetic
analyzer Parameter - Peak ...... Sinusoidal speech

.... Decoding ~ Phases ~ Reconstruction ...., ,
- ......

Peak

~ Amplitudes -

SYN

Figure 4. STC analyzer and synthesizer block diagrams

STC can be thought of as a generalized case of MBE. For voiced speech, MBE is

only concerned with peaks that occur at a harmonic relation to the fundamental

frequency. STC doesn't make that distinction and, as a result, is capable of representing

arbitrary signals which aren't composed of hannonically related components. Both

models are capable of representing speech with excellent intelligibility and tonal

naturalness.

12



CHAPTER ill

SPECIFIC BACKGROUND

MBE and STC Synthesis

Although parameters for both MBE and STC are sent for every frame of speech,

these parameters must be connected smoothly from frame to frame so that the

reconstructed speech has no discontinuities at frame boundaries. The reconstructed

speech must evolve smoothly from frame to frame as it did in the original speech signal.

Each harmonic or peak has its own set of parameters, and each must be smoothly

connected to the parameters of the corresponding harmonic or peak in the next frame. In

order to smoothly connect the parameters, a criterion for matching harmonics or peaks

from frame to frame must be estabhshed. Thus, deciding which harmonics or peaks to

connect from frame to frame for sinusoidal reconstruction becomes an important issue.

In STC, each frequency peak in a frame is assigned to a frequency track. The

frequency of each track is matched to the peak with the closest frequency in the

subsequent frame. If the current frequency track has no future match, then that frequency

track must "die." Its amplitude in the future frame will be assigned a value of zero. If a

future frequency track has no current match, then that frequency track must be "born."

Its amplitude in the current frame will be assigned zero [17]. Figure 5 shows a simplified

version of track matching with the three main cases of track birth, matching, and death

illustrated. (0 is the frequency in radians, k is the frame number, n is the number of the

harmonic in the current frame, and m tS the number of the harmonic in the next frame.
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Figure 5. STC track matching (generalized)
a) Birth of an unmatched track
b) Confirmed track matches
c) Death of an unmatched track

MBE uses a simpler method of matching voiced harmonics. Voiced harmonics

are matched by harmonic number unless the frequency change is greater than a threshold,

usually about ten percent. In that case, the voiced harmonics are no longer matched, but

are treated as if they are preceded and followed by unvoiced harmonics, similar to the

birth and death cases of STC's frequency matching, respectively [13]. All unvoiced

harmonics are assigned an amplitude of zero during voiced reconstruction so they will

not be reconstructed using sinusoids.

Once the criterion has been established for matching harmonics or peaks, the set

of parameters for each harmonic or peak must be smoothly interpolated between frames.

MBE and STC vary in their lnterpo)ation methods, but the same set of three parameters is

involved in representing the sinusoidal components. The first parameter is amplitude, the

second is frequency, and the third is phase. Only on amplitude do both MBE and STC

use somewhat similar interpolation schemes.

Both STC and MBE use linear amplitude interpolation in the time domain. Since

STC builds all speech using sinusoidal reconstruction in the time domain, linear

14



amplitude interpolation is used to smoothly connect the amplitudes of all peaks between

frames [17]. However, in MBE, the linear amplitude interpolation previously described

is used on voiced hannonics only. Unvoiced components are built in the frequency

domain using a noise source typically based on band-limited white noise. The unvoiced

components are then smoothly connected in the time domain using a weighted overlap

addition method [13]. Equation (3. ndenotes triangularly tapered overlap addition for

unvoiced reconstruction, where k is the frame number, t is the time in seconds, and Tis

the frame shift in seconds.

t=[O:T] (3.1 )

After overlap addition, no further parameter interpolation for the unvoiced components is

needed. Figure 6 shows a block diagram of typical MBE-based unvoiced synthesis.

Unvoiced Spectral
Envelope

White Noise
Sequent"!!

----J...~ STFr,

.frequen:y

/ 'om""
r.' # ,· ••••••,.,•••_ •••.••• n •••~.!

! " iI Replace I Inverse
i" Envelope I -... STFf

1----i:c-3,~ i ,

I i

~ _" ___ l
,

Weighted
Overlap
Addition

Uf/voiced
Speech

"

Figure 6. MBE unvoiced reconstruction block diagram

Phase and frequency interpolation for voiced hannonics are not as simple as

amplitude interpolation for voiced harmonics. Because phase is the integral of frequency,

phase and frequency are related. MBE assumes voiced hannonics exhi bit a linear

frequency variation in time. The phase is allowed to vary quadraticall y such that the

15
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frequencies and phases at the beginning and ending of each frame match the original

frequencies and phases sent by the analyzer [13]. Equation (3.2) denotes the linear

frequency interpolation in time for voiced harmonics, and Equation (3.3) denotes the

resulting quadratic phase interpolation.

m ·(t) =al (T -t) +mk+I .!..-+ 8m
I I T J T I

Note that l is the harmonic number, k is the frame number, t is the time in

(3.2)

(3.3)

seconds, and T is the frame shift in seconds. AU) and <1>0 are the frequency deviation and

initial phase, respecbvely, such that the phase and frequency parameters match the

measured phases and frequencies at frame boundaries. Again, since MBE treats unvoiced

components differently, frequency and phase interpolation in time do not apply to the

unvoiced reconstruction.

MBE-based coders such as IMBE and EMBE 2.4kbps do not send phase at all in

order to further reduce the bit rate; phase is synthesized entirely in the receiver. Both

IMBE and EMBE assume zero starting phase for voiced harmonics and generate

subsequent phases by tracking the phase in time using a quadratic phase rnodeLWithin a

frame, the phases for the voiced harmonics are calculated using a linear excitation phase

model. The excitation phase is calculated using (3.4) where k is the frame number, w is

the pitch in radians, S is the number of samples per frame shift, andis is the sampling

frequency. Equation (3.5) denotes the excitation phase for each harmonic, where l is the

harmonic number.

16



¢o (k) = ¢o (k - 1)+ (Q)~-I + w~· )(!-J
2 fs

¢t =l¢o(k)

(3.4)

(3.5)

In IMBE, random jitter is added to the upper three-fourths of the phases of voiced

harmonics to produce more natural sounding speech [16]. This is shown in Equation

(3.6). Note that Luv denotes the number of unvoiced "harmonics" in the frame, L is the

total number of harmonics in the frame, and p is a random number in the interval [-1t, n).

t/J/
L

fori ~ I ~-

et =
4

t/Jk + Lu.pi' L
(3.6)

for-<l~L
I L 4

STC treats frequency and phase differently than typical MBE models do; STC

assumes cubic phase variation in time. The frequency of each sinusoidal component is

allowed to vary quadratically such that the frequencies and phases at the beginning and

ending of each frame match the original frequencies and phases sent [17]. Equation (3.7)

denotes cubic phase interpolation in time as used by STC.

(3.7)

Increasing the phase order from quadratic to cubic results in more freedom of

variation for the sinusoidal frequency tracks. In addition, as shown in Figure 7, there is

no longer a unique solution for the phase track from frame to frame. Finding the path

with the least frequency variation (finding the optimal M and calculating a(M) and ~(M)

for each track) requires a significant increase in computation.

17
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Figure 7. STC phase trajectories

Limitations of MBE and STC

MBE and STC have certain inherent strengths and weaknesses. MBE makes

more efficient use of speech qualities such as harmonic relationships and

voiced/unvoiced characteristics to reduce the amount of information that must be

transmitted. Because the MBE sinusoidal reconstruction is based on frequency rather

than phase, the phases can be generated synthetically to reduce the bit rate. This is the

method used by IMBE, EMBE, and the mid-rate implementation of MBE by Griffin and

Lim. As noted before, for IMBE the synthetic phase model is based on the exdtation

with added phase jitter at hlgher harmonics. Although this produces very intelligible

speech,. the speech often has a slightly synthetic, reverberant tone.
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Sending both phase and peak: location information for ,each sinusoidal component,

as is done in STC,. results in very high quality reconstruction. The reconstructed signal

can be virtually indistinguishable from the original. STC is also extremely flexible in

that signals without a hannonic structure can be successfully reconstructed. However,

this is at the expense of significantly increasing the bit rate. Sending peak locations for

highly periodic speech is very redundant and unnecessarily costly in bits. For this reason,

mid-rate and low-rate implementations of STC typically assume hannonically related

components for voiced speech. Under this constraint, the MBE and STC models are .

quite similar.

Thus, the MBE and STC methods of reconstruction are well established as high

quality methods of reconstructing speech using sinusoidal reconstruction. However, both

methods have weaknesses that leave room for improvement. The synthetic phase model

used for lower bit rate MBE-based coders is not sufficient to produce high quality speech

with natural tonal qualities. The STC model, although it fully incorporates measured

phases and is capable of producing high quality speech with natural tonal qualities,

requires sending too much information. As a result, the full STC model is not practical

for low to moderate bit rate speech coding. Even the MBE model with all phases

encoded is not practical for low to moderate bit rate speech coding. Therefore, there is a

need to develop an enhanced sinusoidal reconstruction method aimed at low to moderate

bit rate coders which utilizes the efficient speech modeling of MBE coders while

reincorporating phase such that the tonal naturalness of coders which use measured phase

is restored.
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The development of a new, enhanced sinusoidal reconstruction method for high

quality mid-rate speech coding is the topic of the rest of this paper. The next chapter will

begin with the discussion of this development.

20
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CHAPTER IV

OVERVIEW OF THE RECONSTRUCTION DEVELOPMENT

Overview of Topics

The development of a reconstruction method for any type of speech coder

involves many topics. What underlying models will be used for voiced and unvoiced

components? Will the models assume a harmonic structure like MBE or a non-harmonic

structure like STC? What parameters are necessary for the models? Are new parameters

introduced that must be analyzed and sent in the analyzer? How will all the parameters

be smoothly ,connected between frames?

The questions are numerous. However, the development of the enhanced

sinusoidal reconstruction approach can be broken down into three specific topics. These

include i) the basic synthesis structure, ii) the analysis of any new parameters not

included in the target coder model (MBE, in this case), and iii) the smooth connection of

parameters from frame to frame.

Before any other topics can be discussed, the basic synthesis structure must be

addressed. A decision must be made concerning whether to choose a harmonic structure

like MBE-based coders use, or a non-harmonic structure like STC coders use. Assuming

the simplified speech mode! of voiced and unvoiced components discussed in Chapter 2,

choosing a harmonic structure such as the one MBE uses represents voiced components

well, but does not represent unvoiced components well. Thus, the use of a harmonic

structure raises the question of how to deal with speech containing unvoiced non

harmonically related components. Therefore, the end of this chapter deals not only with
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the basic structure, but also how to model speech components which are not modeled

well by a harmonic structure.

Once the structure is established, the analysis of any parameter not included in

typical MBE-based coders must be discussed. The analysis of pitch, harmonic

amplitudes, and voicing decisions is already well-established in MBE-based literature.

For specific infonnation on these topics, see [21-28] for pitch, [27-28] for voicing, and

[29-30] for spectral analysis. Analysis information for specific MBE-based coders is also

provided in [1-3], [12-13], and [15-16]. Therefore, in this paper, it is assumed that thes~

parameters are estimated accurately in the analyzer and are available for use in the

synthesizer.

Although pitch, amplitude, and voicing are well covered in other literature, MBE-

based vocoders largely ignore phase,. choosing to generate it synthetically as a byproduct

of pitch. As mentioned in Chapter 3, it appears that the phase models used by IMBE and

EMBE are not sufficient to retain tonal naturalness in reconstructed speech. Therefore,

the second topic of discussion is the reintroduction of phase as a parameter, covered in

Chapter 5. Since the reintroduction of phase is central to the efforts to improve the

reconstructed speech quality, the analysis of phase and an alternate form for generating

natural-sounding synthetic phases will be discussed in depth.

After the synthesis structure and reintroduction of phase are established, the third

and last topic to consider is how to smoothly connect all of the parameters from frame to

frame. The frame-to-frame connection of parameters is a broad topic and will be divided

into several subtopics in Chapter 6. The first is choosing whether to use overlapping or

non-overlapping frames. Depending on this decision, further parameter smoothing
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subtopics follow. These include deciding which harmonics to connect from frame to

frame and evaluating methods to smoothly connect the harmonic amplitudes, frequencies,

and phases in time so that the resulting speech has no discontinuities at frame boundaries.

Indeed, the synthesis of speech is very involved. Now that a general overview has

been given, the first of the three main topics, the basic synthesis structure, will be

discussed in detail.

The Basic Synthesis Structure: Harmonic vs. Non-Harmonic

The structural model is the basis for synthesis. The structural model will

determine what parameters are needed, how the parameters will be matched, and how the

voiced and unvoiced components will be reconstructed.

There are two basic sinusoidal models to consider-a harmonic model and a non-

harmonic model. The harmonic model, typically used in MBE-based coders, assumes

that speech has a fundamental excitation frequency (pitch) with harmonics located at

integer multiples of the pitch. It represents voiced components very well, but does not

accurately represent unvoiced non-harmonically related unvoiced components. A non-

harmonic model, such as the one used in STC, does not assume any fundamental

excitation frequency. Instead, reconstruction is based on the locations of peaks in the

spectrum, as discussed in Chapter 3. The STC model represents both voiced and

unvoiced speech well, but models unvoiced speech more efficiently than voiced speech.

Ideally, using different models for different types of speech would be best.

Voiced components could be modeled using the harmonic model and unvoiced

components could be modeled using the non-harmonic model. However, because any
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use of a non-harmonic model requires sending the locations of peaks. using different

models for different types of speech is not feasible for mid-rate speech coding. Using a

harmonic model for the basic reconstruction model is the most realistic choice. In fact, a

harmonic model is used not only in MBE-based vocoders such as MBE and EMBE, but

also in the 8kbps STC coder [18]. In the latter case, a harmonic model was required in

order to reduce the bit rate to a moderate level.

Reconstruction of Non-Harmonic Components

The selection of a harmonic model introduces the problem of how to reconstruct

non-harmonically related speech components. Unvoiced speech and unvoiced

components in frames of speech with mixed excitation are not harmonically related to an

underlying fundamental frequency. Hence, applying a harmonic model in such cases

does not accurately represent the speech.

Although unvoiced components are not harmonicany related, unvoiced areas can

be reconstructed using a sinusoidal harmonic model if the phases of the sinusoids are

randomized. This has been shown to work well if the frame update rate is at least once

per 12.5ms so that the phases are randomized frequently [18] and the frequency spacing

between unvoiced sinusoidal components is sufficiently small such that the Karhunen

Loeve expansion for noise-like signals [17] is satisfied. This requires that sinusoids used

to reconstruct noisy areas be at most about 100 Hz apart in frequency. However, this

presents another problem.

To use a sinusoidal harmonic model to reproduce unvoiced components in a

frame with mixed excitation, the fundamental frequency must be less than or equal to 100
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Hz to fulfill the frequency spacing requirements. In practice, this is rarely the case since

the pitch of typical speakers ranges from 70Hz for a low-pitched male to 400Hz for a

high-pitched female. The average pitch for most speakers is above 100 Hz. To

overcome the insufficient frequency spacing problem, unvoiced areas can be resampled

in the synthesizer. SpecificaUy, the spacing of sinusoids for voiced bands will be

determined by the fundamental frequency, while the spacing of sinusoids for unvoiced

bands will be determined such that the frequency spacing is appropriate.

To resample the unvoiced components, a smooth curve is fitted through the

spectral amplitudes of the harmonics so that the spectrum can be resamp}ed at frequency

locations in between the harmonics. The amplitude spectrum is then evenly resampled in

unvoiced areas so that the sinusoids representing the unvoiced areas are not more than

100 Hz apart in frequency. The amplitudes of the resampled sinusoids must be rescaled

by the ratio of the previous number of harmonic sinusoids in the unvoiced band to the

number of new resampled sinusoids in the unvoiced band. This preserves the proper

energy ratio between the voiced and unvoiced components in frames with resampled

areas. Equations (4.1) and (4.2) reflect this change. Equation (4.1) is the sum of

sinusoids from (1.1) with I restricted to be voiced harmonics only. Equation (4.2) is the

rescaled sum of sinusoids in the unvoiced areas. Note that N(b) is the previous number of

harmonic sinusoids in the unvoiced band, and M(b) is the number of new resampled

sinusoids in the unvoiced band.

:.
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I:>
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-

Sv ~)= LAI ~ )cos(O, ~») I = voiced harmonic
I
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As an alternative to using a sinusoidal model to reconstruct unvoiced components,

MBE diverges from sinusoidal hannonic reconstruction completely to reproduce

unvoiced components. Rather than using a sum of harmonically related sinusoids with

random phases, unvoiced components are independently reconstructed using band-

limited white noise shaped by the vocal tract response. Since unvoiced components and

voiced components can be reconstructed separately and then summed together to produce

the final synthetic speech, unvoiced components may be reconstructed using this method

without altering the voiced sinusoidal harmonic reconstruction. However, using band-_

limited white noise to reconstruct the unvoiced components requires two completely

separate reconstruction techniques, whereas using all sinusoidal reconstruction requires

using only the sum of sinusoids given in (4.1) and (4.2).

Comparison of Unvoiced Reconstruction Methods

To perform a comparative study of the quality of synthesis resulting from the use

of different types of reconstruction for unvoiced components, informal tests were run.

The different reconstruction methods were implemented in the synthesizer of at fuBy

functional EMBE-based speech coder. Speech files containing both male and female

speakers in quiet environments were processed through the coder using different

unvoiced reconstruction methods. The analysis method was held constant in each case.

Three to four people were asked to listen to the reconstructed speech and give their

opinion as to which version of reconstructed speech they preferred and why.

Overall, the listeners preferred completely unvoiced speech reconstructed using

band-limited white noise over completely unvoiced speech reconstructed using resampled
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sinusoids with randomized phases. The listeners all agreed that the unvoiced speech

reconstructed using sinusoids had a slightly buzzy quality that the unvoiced speech

reconstructed using band-limited white noise did not have. However, the same listeners

felt speech containing both voiced and unvoiced components sounded more natural when

reconstructed using resarnpled sinusoids with randomized phases for unvoiced

harmonics. Speech with mixed excitation sounded like it had a superimposed "whisper"

in the reconstructed speech when the unvoiced components were built using band-limited

white noise. Part of the latter result may be due to limitations in voicing decisions

inherent to MBE analysis.

As a result of this informal testing of the unvoiced reconstruction methods, the

following combination of the two unvoiced reconstruction methods was chosen:

1. Completely unvoiced frames are reproduced using band-limited white noise

as is done in MBE.

2. Frames with any voiced components are reproduced using a sinusoidal

harmonic model with randomized phases for unvoiced sinusoids.

Resampling in unvoiced areas is performed so that the spacing between

sinusoids in unvo.iced areas is less than 100 Hz to ensure the most natural

sounding unvoiced components.

Regardless of what components (voiced or unvoiced) make up the frame of

speech, a harmonic model is used. A harmonic model is used even in the case of

completely unvoiced frames (a minimum pitch is assigned), but this "pitch" is used only

to provide dense sampling of the spectrum. In unvoiced cases, the pitch does not

represent a true harmonic structure. Therefore, the selection of a harmonic model as the

basic structure for synthesis results in the need for four sets of parameters. First, a

fundamental frequency is required to serve as the basis for the harmonics. Second, the
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harmonics must be assigned voicing decisions. Each voiced harmonic must then have a

corresponding amplitude and phase. For the synthesis of entirely unvoiced frames, only

the corresponding amplitudes of the "harmonks" of a minimum pitch are required for

representing the vocal tract response.

Accurate pitch, harmonic amplitude, and voicing analysis are already a large part

of IMBE and EMBE analysis. Thus these parts of the analyzer will not be discussed.

However, phase analysis is not discussed in Th1BE and EMBE literature and is only

mentioned briefly in MBE.. This is because phase has previously been considered

secondary to other parameters and, in the case of IMBE and EMBE, it is generated

synthetically during reconstruction-it is not analyzed at all during analysis. Therefore,

the next chapter is dedicated to the discussion of the reintroduction of phase as a

parameter.
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CHAPTER V

THE REINTRODUCTION OF PHASE AS A PARAMETER

Phase Analysis

With IMBE, EMBE, and the mid-rate implementation of MBE, it appears that the

use of a synthetic phase model based only on the linear excitation phase with randomized

jitter (3.4-6) results in loss of tonal naturalness for voiced areas. This phase model does

not seem to accurately represent the relationship between hannonic phases. Since the·· ~'i.
\,' I

goal of designing a new synthesis approach is to enhance the overall quality of MBE-

temporarily ignored.

be analyzed and coded in the transmitter. In MBE and STC, analysis of spectral

voiced reconstruction is an intuitive first step if the desire for a moderate bit rate can be

(5.1 )
1 '!,j].

5(UJ)=- 2.,.s(n)exp(- jnUJ)
N + 11l=-N/2

In order to use measured phases in reconstruction, the hannonic phases must first

(STFf) of the framed speech. Equation (5.1) below denotes the STFf [] 8].

parameters is performed in the frequency domain using the short-time Fourier transform

based vocoders, especially the tonal quaJity, incorporating the measured phase back into

The length (N) of the STFT is an issue critical to parameter estimation. Assuming

a fixed frame length, M, then N ~ M. Points outside the frame length (from M to N- J )

are assigned values of zero (zero padded). Zero padding does not alter the STFT results.

Rather, it allows for longer STFT's which improve the frequency resolution. This is very

desirable for accurate analysis of frequency domain characteristics. However, due to the
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computational complexity of the STFT, any increase in length also increases the number

of calculations required to perfonn the analysis. The increased computation makes real-

time applications more difficult to realize. A tradeoff must be reached between the

feasibility of long STFfs for real applications and the need for increased frequency

resolution. Typically the length of the STFf for analysis is limited to about 512 points.

This results in a frequency resolution of 15.625 Hz per STFf sample with acceptable

computational complexity for real-time applications.

Phases may be calculated from the real and imaginary parts of the STFf using_

(5.2) [31J. Unfortunately, the fundamental frequency and its harmonics rarely occur at

problem. The first is computing the phase using the closest integer STFf index. The

complex spectrum between STFT indices and calculating the phase from the complex

second is interpolating the phase between STFf indices, and the third is interpolating the

(5.2)11('"l= ARG[S('"l] = arctan[ :: i:~]
integer indices of the STFf. The phase must generally be determined at arbitrary

frequencies which correspond to locations between STFf indices. Assuming that we are

limited to a STFf of length 512, there are three methods considered to solve this

interpolation.

Method 1: Computing the Phase from the Closest Integer STFf Index

The easiest and most direct solution is to compute the phase from the dosest

integer STFf index. Seldom is the easiest solution the best, however. When using a

512-point STFf, this method results in audible roughness in the reconstruction every
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time the closest integer goes from being rounded down to rounded up or vice-versa.

Figure 8 shows an example of this roughness using a MATLAB simulation of McAulay

and Quatieri's original STC reconstruction method. A single linearly chirped sinusoid

was analyzed frame by frame. The frequency was estimated from the magnitude

spectrum by cubically interpolating the 512-point STFT magnitude spectrum to simulate

a 4096-point magnitude spectrum and picking the peak from the simulated 4096-point

spectrum. The phase of the closest integer 512-point STFf index was used. The errors at

the index skips are clearly visible in the reconstructed signal. Severe deviations in the

waveform have occurred, although the wavefonn is not actually discontinuous.

ENecl III CalcUlaIing Phase Uq 512-POOil SlFT AnaIIsis El!tct til CakUaIing Phue IJsilg CbleSI-"PoiIt STFllnde'

J~-UY~"o 200 400 600 800 1IlOO 1200 1400 1600 1800 2000 0 200 400 600 a:xJ 1000 1200 1400 1600 IIIlO 2000

~~~~
5 10 15 20 2.S 30 36 W 45 50 5 10 15 20 25 30 35 4G 4S 50

'~~'~~
5 'C 15 20 25 30 35 40 45 50 5 10 15 20 25 JO 35 W 4S so

::[~t~-~-~
5 10 15 20 25 3D 35 40 45 50 5 10 15 20 25 JO 35 40 45 50

Figure 8. Using 512-point STFT Figure 9. Using 4096-point STFT
Effect of calculating phase from closest integer STFT index

a) Reconstructed sinusoid at 8000kHz sampling rate.
b) Unwrapped phase (in radians) versus frame number.
c) Sl2-point index number selected for phase estimate versus frame

number.
d) Frequency (in Hertz) versus frame number. (512-point STFf

frequency estimated from peak. of 512-point STFf cubically
interpolated to simulate 4096-point STFT spectrum.)
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Figure 9 shows the same simulation using a 4096-point STFf. The reconstructed

chirped sinusoid no longer has the severe deviations that were seen in Figure 8. Both

Figure 8 and 9 have approximately equal frequencies, but their phases are different.

Therefore, the frequency has not caused the severe deviations-phase has. Although

Figure 9 no longer has visible wavefonn deviations at the index skips, the skips are still

audible although much less severe than in the 512-point STFf illustration. This results in

what can be described subjectively as "rough"-sounding reconstructed speech.

Method 2: Interpolation of the Phase Between STFf Indices

Obviously, using the closest integer STFf index to compute the phase when using

a 512-point STFf is not sufficient to produce high quality results. The next solution is to

interpolate the phase between the STFf indices. This may not seem intuitively difficult,

but it rapidly becomes an arduous task.

The phases obtained from (5.2) are ambiguous, i.e., the principle phase is

obtained rather than the continuous phase, denoted by arg[S(ro)]. Principle phases are

limited to the range [-n, n). This is referred to as being "wrapped" in the range [-n, 1t ).

Therefore, the phase response will have discontinuous jumps of 2n radians. The

continuous phase between consecutive indices may travel outside [-n, n ) on the uni I

circle, but it is "wrapped" back to this range [31]. Therefore, to properly interpolate

between consecutive phases using (5.2), the phase must first be "unwrapped" to simulate

continuous phase. Phase unwrapping can be perfonned using the relationship described

by Equation (5.3) [32]. Note that e/ is the wrapped phase at index number n.
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e; + 21Z' (r _en-I <-1Z'
w w

()" = e"-21Z' en -e,,-I > 1Z' (5.3)
UHI HI HI HI

e; Ie.: -e:-'I < 1Z'

Accurate interpolation between unwrapped phases requires that phase aliasing is

not occurring. Phase aliasing occurs when the frequency resolution is greater than half
I

I ,

the frequency at which the phase is rotating through 21t radians. For example, if the

phase is rotating an average of 21t radians every 40 Hz in the spectrum, the frequency

resolution of the spectrum must be at most 20 Hz to prevent phase aliasing. If this

requirement is not met, the spectrum is essentially under-sampled, and the "decimated"

knowing the continuous, or unwrapped, phases. Using the phase slope from (5.4), the

The maximum frequency resolution can be calculated using Equations (5.4-5).

maximum frequency resolution,fR (Hz), required to prevent phase aliasing is calculated

(5.4)arg [S (OJ n )]- arg [S (OJ m )]

= Cr Xn - m)

resolution (Hz), and nand m are STFf indices. Note that calculating m$ requires

phases between spectral indices cannot be recovered through interpolation.

Equation (5.4) denotes the phase slope, m$ (radianslHz), where fr is the STFf frequency

using Equation (5.5).

(5.5)

As an example of how phase aliasing affects interpolation using unwrapped

phases, let's look at two specific examples using Figure 10 as a reference. Figure 10 was

generated from the phase calculations of the STFf of a voiced frame of speech using
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(5.2). Figure lOa shows principle phases calculated using an 8192-point STFf in gray,

and principle phases calculated using a 512-point STFf in black. From the calculated

phases of the 8192-point STFf, the phases appear to be nearly linear in nature although

there are obvious exceptions (near index 10.5). Therefore, we will linearly interpolate the

phase at the 512-point STFf indices 2.5 and 6.S-two areas where the phase appears to

be approximately linear. If phase aliasing does not occur, we should obtain values

approximately equal to the corresponding 8192-point STFT phases.

, l

r
1

I
'.1
I
~

Wrapped Phase Comparison of 512-Polnt VB. 6192-Polnl STFT of Voiced Speech Frame

Unwrapped Phase Comparison 01 512-Polnl vs. 6192-Polnl STFT 01 Voiced Speech Frame

1412106 6
512-Poinl STFT Index
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Figure 10. Phase interpolation example using a 512-point STFT
a) Wrapped phase comparison ofa 512-point vs. 8192-point STFr of a

voiced frame of speech,
b) Unwrapped phase comparison of a 512-point vs. 8192-point STFf of a

voiced frame of speech.

The phase at index 2 is -2.74 radians, and the phase at index 3 is 0.51 radians.

The difference between the two is 3.25 radians. Using (5.3), the phase at index 3 is

unwrapped to -5.77 radians. Linearly interpolating to obtain the phase at index 2.5
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results in -4.26 radians. Wrapped back to the range [-1t, 7t), the interpolated phase at

index 2.5 is 2.03 radians. As shown in Figure lOa by the asterisks, the interpolated phase

at index 2.5 is approximately equal to the phase calculated from the 8192-point STFf

(1.71 radians).

Now let us interpolate the phase at index 6.5. The phase at index 6 is -1.59

radians, and the phase at 7 is 0.98 radians. This is only a difference of 2.57 radians.

Using (5.3), the unwrapped phase equals the wrapped phase. Linearly interpolating the

phase for index 6.5 results in an interpolated phase of -0.31 radians, as indicated by the

asterisk at index 6.5 on Figure 1031. However, the phase calculated from the 8192-point

STFf is 2.35 radians. Obvious from the 8192-point STFf, the phase should have

unwrapped between these indices, but could not using (5.3).

Upon further investigation using the continuous phases shown in Figure lOb and

Equations (5.4) and (5.5) to calculate the maximum frequency resolution,fR, the reason

for the radically different results obtained from interpolating the phases at indices 2.5 and

6.5 becomes clear. For interpolating at index 2.5, the phase slope, m4l, between indices 2

and 3 is -0.19 radianslHz. This results in a maximum frequency resolution of 16.22 Hz.

Therefore the 512-point STFf with a frequency resolution of 15.625 Hz is below the

maximum frequency resolution, fulfilling the frequency resolution requirement to prevent

phase aliasing.

For interpolating at index 6.5, m41 between indices 6 and 7 is -0.24 radianslHz.

This results in a maximum frequency resolution of 13.23 Hz. Thus the frequency

resolution of 15.625 Hz exceeds the maximum frequency resolution required to prevent

phase aliasing. Attempts to interpolate between these indices may result in incorrect
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phase values, as we saw in our example. As shown in the continuous phase plot in Figure

lOb, phase aliasing occurs beginning at index 4 and continuing through index 11. Few of

the phases in this area are properly unwrapped. An especially severe problem area occurs

between indices 10 and 11 where the phase s[ope increases dramatically.

Unfortunately, phase aliasing as seen in Figure 10 is not a rare occurrence when

using a 5I2-point STFf. Figure 11 shows the calculated phases of a 512-point STFT of a

voiced frame of speech versus the calculated phases of an 8192-point STFf taken from

the same speech signaL

..

Calcuialed Phase 01 8192-Polnt STFT of Voiced Speech Frame
4.--------,---.-------r------,-----.-----.---,----"T""'1

-4l---_--L -'-- L-- ----'-- ...J.....J

o 50 toO 150 200 250
512-Poin. STFT Index

Calculaled Phase of 512-Poinl STFT 01 Voiced Speech Frame
4.---------r-----r--------,-------.-----,..-,

-4 L.-_---'__----I.__----L__---'-- -'--__--'----__...LJ

a 500 1000 1500 2000 2500 3000 3500 4000
81S2-POInl STFT Index

Figure 11. Phase comparison of a 512- VS. 8192-point STFT (voiced frame)

The phases between indices 0 and 1000 on the 8I92-point STFf index scale are

clearly problem areas for the 512-point STFf. Throughout this area, rn$ averages

between -0.25 radianslHz and -0.21 radianslHz. This restricts the maximum frequency
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resolution to 12.5 Hz. The 5I2-point STFf falls far short with a frequency resolution of

IS.625Hz.

Muhiple voiced speech frames were analyzed for phase aliasing problems, and

phase aliasing was found to occur frequently. In most instances, an 8192-point STFf

was required to prevent phase aliasing, although phase aliasing still occurred occasionally

even with that length STFf. Again, due to the computational restrictions necessary for

real time implementation, such lengthy STFT's are not realistic. Therefore, this method,

like the first, is not sufficient for accurate analysis of phase.

Method 3: Complex Interpolation of the STFT

The third solution to the phase interpolation problem is to perform a complex

cubic interpolation of the STFf and calculate the phases from the interpolated STFT.

Cubic splines are computationally expensive, but this factor can be reduced by

calculating onl y the values needed rather than fitting a cubic spline to the entire 512-point

STFf. Figure 12 shows the real part of a 512-point STFT of the same voiced frame of

speech used in Figure 11 as compared to the real part of an 8192-point STFT.
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Figure 12. Comparison of real part of 512-vs. 8192-point STFf -....
The imaginary part of each is similar in structure to the real part. In the complex domain,

the sampling is dense enough that all of the peaks in the 8192-point STFf are present in

the 512-point STFf. Therefore, the real and imaginary parts of the STFf can be easily

interpolated to simulate an 8192-point STFT using a cubic spline, as shown in Figure 13.

However, note that the spline fit is not always a good fit. In fact. between the range of

200 and 400 on the 8192-point STFf index, the error is as high as 100%.
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Figure 13. Complex interpolation of 512-point STFT
a) Real part of 8192-point STFT (interpolated 512-point STFT in

gray).
b) Imaginary part of 8192-point STFf (interpolated 512-point

STFf in gray).

After the real and imaginary parts of the 512-point STFf are interpolated. the

phase is calculated from (5.2) using the interpolated complex STFf values. Figure 14

shows the results of complex-interpolation from the voiced frame used in Figure 13

before.
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Figure 14. Phase results of complex-interpolated 512-point STFf "
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Unfortunately, as Figure 14 shows, the differences in the cubic interpolation of

the real and imaginary parts of the STFf significantly alter the phase calculations.

Complex interpolation of the 512-point STFf still produces incorrect phase estimates at

an increased computational cost.

Analysis Conclusion

Because using an STFT with a length greater than 512-points is not realistic for

real-time applications, none of these three methods for phase analysis produces results

accurate enough for good phase estimation. All require further heuristic smoothing to

reduce roughness in the sinusoidal reconstruction. None of these methods permits

production of high quality reconstruction of speech due to the roughness in the sinusoidal

reconstruction. Even so, if the roughness can be overlooked, the natural tonal quality is

retained, indicating that phase is important for tonal naturalness. Unfortunately, to
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reduce the audible roughness produced by inaccurate phases to an acceptable level, an

extremely long STFf (greater than or equal to 8192 points) must be used. Again, this is

not realistic due to the significant increase in computation. Thus another method for

obtaining phase must be sought.

Synthetically generating phases seems to be the only other solution, since phases

cannot be analyzed accurately at reasonable STFf lengths. This brings us back to the

original problem of an insufficient synthetic phase model-the excitation phase model

with additional noisy jitter added to the phases in higher hannonics does not sufficiently _

model real phases. Synthetic phases produced from this model result in speech which has

varying degrees of synthetic tonal quality. Another model must be used if tonal quality is

to be improved. Indeed, another model exists which takes into account not only the

excitation phase but the phase due to the vocal tract response. It is the cepstral phase

model.

Cepstrum Theory

It has been shown that the phases of voiced speech can be divided into the sum of

two separate phases-linear excitation phase, which is the result of vocal fold excitation.

and system phases, which are the result of the vocal tract response [18]. The linear

excitation phases are calculated using (3.4) and (3.5). For convenience, they are restated

here as Equations (5.6) and (5.7).

"
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(5.6)

(5.7)

4]



The excitation phases are used in modeling the synthetk phases in IMBE and

EMBE. This much of the phase model is not new to MBE-based coders. However, the

introduction of system phases from the cepstrum is.

The system phases are calculated from the set of cepstraI coefficients generated

from the harmonic amplitudes [18]. Equation (5.8) denotes the system phase calculations

where M is the number of cepstral coefficients and ffi is the frequency in radians.

M

<t>(m)= -2Lcm sin(mm)
m=1

It has been shown that M greater than approximately 44 is sufficient to produce good

(5.8)

phase estimation [18]. In the simulations that foHow, M is chosen to be 50. The final

phase is then the sum of the excitation and system phases. This is denoted by Equation

(5.9).

(5.9)

Two important notes need to be made before the discussion of cepstral phase

continues. First, notice from (5.6) that the excitation phase depends on the current and

past fundamental frequencies as well as the past excitation phase. Due to this

dependence on the past, an incorrect pitch in one frame results in a cascade of errors in

current and future excitation phase cakulations. Secondly, notice from (5.8) that the

system phases, in contrast to the excitation phase, depend only on the current cepstral

coefficients which are a function of the current vocal tract response onl y. There is no

dependence on past calculations. This makes the system phases computed from the

cepstrum much more dynamic and robust to errors than the excitation phase.

"
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The cepstral coefficients (cm) are generated from the natural logarithm of the

magnitude spectrum. The ~og is used so that the convolution of the excitation and vocal

tract response (5.10) can be separated into an additive function (5.13). This general idea

is illustrated in Equations (5.10-5.13), where s(n), e(n), and B(n) refer to the inverse

STFf of (5.12).

7'

coefficients produced are linearly separable into an excitation response and a vocal tract

response. This is shown by Equations (5.15a) and (5.15b) [33]. Note that P is the pitch

s(n)= e(n)*8(n)

S(m)= E(m )e(m)

loglS (ml = 10g1E(m~ + logle(ml

s(n) = e(n)+B(n)

After taking the inverse STFf, denoted by Equation (5.14), the cepstral

period in time-domain samples.

1 12Tr )s(n)= - S(m )exp (jf1Jn dm
21l 0

(5.10)

(5.11 )

(5.12)

(5.13)

(5.14)

(5.1Sa)

(S.15b)
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From (5.15b), it is clear that the coefficients of the excitation response and vocal

tract response are easily separated. The cepstral coefficients representing only the vocal

tract response are then filtered out and used in (5.8) to calculate the system phase. Figure

15 shows this process. For further detail on cepstral theory and representation see [33].
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Figure 15. Block diagram of cepstral phase calculations

The eepstral calculation process of Figure 15 can be altered so that only the

harmonic amplitudes are needed rather than the whole magnitude response of the SFTF.

Because the vocal tract response needs to be isolated anyway, the natural log can be

applied to the harmonic amplitudes only. A eubic spline is then filted to the log of the

harmonic amplitudes to recreate the vocal tract response. At this point, the recreated

spectrum has no excitation left. The inverse STFT of the spline fit is taken, producing the

cepstral coefficients of only the vocal tract response. No filtering is needed to separate

the coefficients of the vocal tract response. Figure 16 shows a basic block diagram of the

process.

44



Filial
Phases

System
PhasesEquation

(5.8)
Ca(n)

Equations
Past Excitation (5.6), (5.7) Excitation

Phases Phases

Inverse
STFf

CurrentiPastPitch
in Radians

Cubic
Spline

Fit

Natural
Log

Harmonic
Amplitudes

Figure 16. Modified block diagram of cepstral phase calculations

By eliminating the need for the entire spectrum and only requiring the harmonic -

amplitudes, the cepstral phase model can now be generated entirely in the synthesizer.

This eliminates the need to send any additional information in the analyzer than what is

already sent by MBE-based coders such as IMBE and EMBE.

I
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Cepstral Phase Model Results

Phases generated using the cepstral model produce very natural-sounding voiced

speech which is superior to voiced speech reproduced using any the three previously

mentioned methods of estimating phase. The two methods of generating the cepstral

coefficients-using the entire spectrum or only the harmonics-produce audibly

indistinguishable results. Both methods completely remove the audible roughness

produced from using analyzed phases, eliminating the need for heuristic smoothing of the

phase. In addition, since the second method for producing the cepstral coefficients

requires using only the pitch and harmonic amplitudes, the second method can be used to

generate the harmonic phases entirely in the synthesizer.
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However, in contrast to the high quality reconstruction of voiced speech, using the

cepstral phase model for sinusoidal reconstruction of unvoiced speech components results

in very buzzy-sounding speech. By replacing the cepstral phase model with random

phases in unvoiced components, as was discussed earlier, unvoiced areas can again be

reproduced well using sinusoidal reconstruction [18].

Cepstral Limitations

Before leaving the phase issue, the limitations of the cepstral model need to be

addressed. The cepstral phase model produces very high quality reconstructed voiced

speech under normal conditions. However, it is not as robust as using measured phases

even though measured phases introduce their own difficulties.

The cepstral phase model is adversely affected by pitch errors and incorrect I..

-

representation of the vocal tract response. Unvoiced areas incorrectly classified as voiced

which are located immediately prior to voiced areas, are highly susceptible to the

production of incorrect cepstral phases which can cause synthetic tonal qualities over the

entire voiced area. This generally occurs when the pitch changes dramatically between

frames. Measured phases, since they stand alone and are not derived from other

parameters, are not affected by such errors. Fortunately, the problem of extended

synthetic tonal qualities can be eliminated by using a specific method of frame smoothing

(overlap addition) discussed in Chapter 6.

Such problems which are the result of incorrect parameter estimation are a

drawback of any synthetically generated data. If the data used in a calculation is

incorrect, the calculated data will not be correct either. Therefore, correct parameter
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estimation in the analyzer is critical to high quality results when using the cepstral phase

model. Unfortunately, hannonic coders such as MBE are particularly susceptible to pitch

errors. However, correct parameter estimation is critical to high quality results for any

type of speech reconstruction model. Even the quality of the best coders wiJ] degrade as

the number of parameter estimation errors increases.

Despite the cepstral phase dependence on correct parameter estimation, the phases

generated using the cepstral phase model are better than those obtained by any of the

other methods discussed. Reconstructed speech based on the cepstral phase model is

smoother than any of the speech reconstructed using the methods discussed for measuring

phase. Of the two synthetic phase models discussed (the linear excitation model with

additional noise jitter and the cepstral phase model), the cepstral phase model produces

reconstructed speech with more natural tonal quality. Using cepstral phases also has the

additional benefit of eliminating the need to send any additional information in the

analyzer since the phases can be generated completely in the synthesizer.

This completes the foundation necessary for the development of an enhanced

reconstruction method. Now let us briefly review the decisions made up to this point in

our discussion.

1) A harmonic model serves as the basic synthesis structure.

a) Frames with any voiced components are reproduced using a sinusoidal

harmonic model with randomized phases for unvoiced sinusoids.

Resampling in unvoiced areas is performed so that the spacing

between sinusoids in unvoiced areas is less than 100 Hz.

b) Completely unvoiced frames are reproduced using band-limited white

noise as is done in IMBE and EMBE.

47

,
1

",I

I
I



2) Phases are generated synthetically in the synthesizer using the cepstraJ phase

model based on the sum of a linear excitation phase and a system phase.

Now the basic structure is established and all the parameters are available for use

in the synthesizer. The development of the enhanced sinusoidal reconstruction method

will proceed with the issue of how to connect parameters smoothly from frame to frame.
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CHAPTER VI

CONNECTION OF PARAMETERS FROM FRAME TO FRAME

Even if all the parameters are estimated correctly and the basic structure fits the

speech perfectly, the reconstructed speech will not be of high quality unless all the

parameters can be connected smoothly from frame to frame. Pi votal to all of the

smoothing and interpolation is the selection of a frame connection method. The method

for connecting frames affects how much smoothing and interpolation must be done to t.he

parameters. Certain methods such as overlap addition inherently smooth the parameters

as the frames are connected. Others, such as non-overlapping methods, require explicit

smoothing of parameters. Therefore, the type of frame connection must be established

before the parameter smoothing discussion can continue with any sense of relevance.

Two basic methods of frames connection are considered. The first is overlap

addition. It is by far the simpler of the two and has many benefits related to this

simplicity. It is a_so a method which inherently smoothes the other parameters as the

frames are connected, so no further parameter smoothing is required for this method. The

other method is a non-overlapping method developed by McAulay and Quatieri for STC.

It is much more complex and, for convenience, this method will be called the "STC non-

overlapping method." The STC non-overlapping method is quite computational and

requires explicit smoothing of every parameter. However, it offers the advantage of

precise (explicit) "contro]" of aU aspects of the reconstruction. A necessary discussion of

parameter smoothing follows the discussion of the STC non-overlapping method.
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Overlap Addition

The process of overlap addition is very straight-forward. Basically, for each

harmonic in the current and future frames, the amplitudes, phases, and frequencies are

used to construct time-domain sine waves two frames long. All the sinusoids are

summed using Equations (6.1) and (6.2), where n is the sample number, S is the number

of samples per frame shift,fr is the sampling frequency.l is the harmonic number. and k

is the frame number. -

r

8, (n)= 8, + m!!:- n=[- S : (S -1)]
is

L

s,mp (n) =LAI cos[lll (n)] n=[- S :(S - 1)]
1:\

Note that since the frequency is held constant, phase (the integral of the

frequency) is linear (6.1). The sum is weighted by a tapered window. The only

(6.1 )

(6.2)

restriction on the tapered window is that the overlapped sum of the tapered windows must

equal one at every point. The simplest overlapping taper is the fully overlapping

triangular window, shown in Figure ]7. Note that N is the number of samples generated

for each synthesis frame.

Frame
k-l

Frame
k

NPoints N Points

Frame
k+1

Frame
k

Figure 17. Overlap addition tapering (triangular, fully overlapping)
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The second half of the triangular-tapered reconstruction from the current frame IS

overlapped and added to the first half of the triangular-tapered reconstruction from the

future frame to produce a very smooth transition between frames (6.3) [17}.

(6.3)

This same method works for unvoiced reconstruction and is in fact always used to

connect the unvoiced frames. Two frames of band-limited white noise are constructed in

the time domain using the parameters of the current frame. A triangular window is

applied, and the unvoiced data is overlapped and added as indicated above. In both the

voiced and unvoiced case, the resulting transition is completely smooth.

Overlap addition has numerous advantages, the first of which is simplicity. Only

a simple sum of two linear tapers, involving only real operations, is required. The only

additional computation is the cost of reconstructing the sinusoids for two frames instead

of one. All frames, regardless of whether or not they are voiced, unvoiced, or contain

mixed excitation, can be connected this way.

Secondly, overlap addition requires no further parameter smoothing. There is no

consideration of which hannonics to connect from frame to frame or how to smooth

amplitude, frequency, and phase. In effect, the tapered window takes care of an

smoothing.

In addition to the simplicity and the elimination of further parameter smoothing,

overlap addition eliminates the extremely synthetic tonal qualities produced by cepstral

phases when severe pitch errors occur. This makes the overlap addition method very

robust in cases of severe errors in parameter estimation. This is one of its most

recommending qualities.
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The only limitation of overlap addition is that reconstruction frame lengths must

be restricted to small sizes. As long as frames of l2.5ms duration or less [18] are used,

reconstructed speech using overlap addition is extremely smooth and of very high

quality. However, rapid decay of quality is experienced with the increase of the frame

duration above 12.5ms-a limitation at lower bit rates. By 23ms frame duration, overlap

addition produces poor quality speech [17). It was for this reason that the STC nOI1-

overlapping method of frame connection was developed.

The STC Non-Overlapping Method

As a contrast to the overlap addition frame connection method, the STC non-

overlapping method proposed by McAulay and Quatieri [17] is highly computational and

requires further smoothing of all the parameters. However, the STC non-overlapping

method is better able to produce quality speech when long frames are used. Again, this is

typically beneficial for low rate coders.

The basic concept of the STC non-overlapping frame connection method is that

each parameter is interpolated within each frame so that at frame boundaries the

parameters match exactly with no discontinuity. No overlapping is performed

whatsoever between adjacent frames. This method is very dependent both on the smooth

connection of parameters and on deciding which parameters to connect. If the parameters

are correctly smoothed, the STC method is known to produce very high quality speech

when using a non-harmonic model like the one used in the original STC design by

McAulay and Quatieri.
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However, tbe results of using this method with a harmonic model" voicing

decisions, and a separate unvoiced reconstruction method are not known. The original

STC design did not account for any of these conditions. In addition, the non-overlapping

connection method was specifically designed for the reconstruction of long frames-not

short ones. Since the enhanced reconstruction method being developed is designed for

MBE-based mid-rate speech coding with a harmonic model, voicing decisions, separate

unvoiced reconstruction, and typically shorter frames, it is the quality of reconstruction

resulting from the implementation of the STC non-overlapping frame connection method

under these new conditions that is of interest.

At this point, a comparison between the two methods of frame smoothing would

be appropriate. However, to implement the STC non-overlapping frame connection

method with high quality results, the issues of parameter connection and smoothing must

first be addressed. Because overlap addition does not require any further parameter

connection discussion, but the STC non-overlapping method does, the discussion of

parameter smoothing which follows relates only to the STC non-overlapping method.

The comparison between the two methods will continue at the end of this chapter. With

that in mind, we will pursue the issues related to parameter smoothing.

Parameter smoothing raises many questions. Which hannonics in the current

frame connect to which harmonics in the previous frame? Should the change in

frequency from frame to frame be an issue? What types of interpolation-linear,

quadratic, or cubic-are best to smooth the different harmonic parameters?

The questions are numerous and involved. To resolve these, we must begin by

deciding how to best connect harmonics from frame to frame. The parameters of
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harmonics cannot be correctly smoothed from frame to frame until they are correct.ly

matched, so the matching process becomes the first step.

Harmonic Matching

Harmonic matching is really a matter of deciding which set of parameters to

connect from frame to frame. There are several factors that must be considered when

harmonics are matched. Must the harmonic relationship from frame to frame always be

preserved? In other words, will the first harmonic always be connected to the first

harmonic, and the second to the second, etc.? Will the change in pitch from frame to

frame be allowed to affect the connection of parameter sets? For instance, a pitch change

of 15 Hz results in a frequency change of 300 Hz at the twentieth harmonic. Should such

frequency changes be considered as a factor for parameter set matching? Along those

same lines, is the true speech relationship not based on the matching of harmonics at all,

but on the matching of closest frequencies? Indeed, should harmonic numbers be

completely disregarded between adjacent frames and the parameter sets be matched

completely by which harmonic frequencies are the closest?

All of these ideas must be considered, but they can be broken down into the

combination of two basic techniques for match~ng parameter sets. The first technique is

matching harmonics directly one-to-one, and the second is matching closest frequencies

without regard to harmonic number.

Method I: Direct Harmonic Number Matching

Matching parameter sets by harmonic number is the simpler of the two basic

techniques. Each harmonic is matched to the corresponding harmonic number in the next
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frame regardless of pitch change. Thus the first hannonic always matches the first; the

second always matches the second, etc. Figure 18 shows an example of matching

harmonics direct!y by harmonic number.

HamlOlllc Matching By H.rmonlc NIl!'''''I''

-",

Harmonic 2

'·000

900

800

700

... 800
e
f500
~
""400

300

200

100

0
2 8

H."""n!c I

8 10 12
Fr...... Numbe'

14 16 18 20

Figure 18. Harmonic matching by harmonic number

As Figure 18 illustrates, sman changes in the pitch result in increasingly larger

changes in frequency as the harmonic number increases. For example, the frequency

change of the first harmonic from frames 7 to 8 is only 14 Hz. However, by harmonic 7,

the frequency change is nearly 100 Hz. Again, the frequency change of the first

harmonic from frames 11 to 12 is only 18.5 Hz. By hannonic 7, the frequency change is

130 Hz. Fairly insignificant frequency changes in the fundamental frequency result in

large frequency sweeps in the upper harmonics. Undesirable frequency sweeps can

become audible, especially if pitch errors such as doubling and halving occur. This

places more weight on pitch decisions, an area which is already inherently non-robust.

55

,
I,
I

l,

•



--

Therefore, it seems logical that direct harmonic number matching without further

modification is probably not the best method to use.

In MBE, harmonics are normally matched according to their harmonic numbers,

but the fundamental frequency change is considered during harmonic matching. This

seems like a logical modification to harmonic matching by harmonic number. If the pitch

changes by more than a set threshold, harmonic matching by number is abandoned and

the harmonics are treated as if preceded and followed by unvoiced harmonics [13]. This

is analogous to the birth and death of a track, which is part of the second method of

harmonic matching-matching by closest frequency.

Method 2: Matching by Closest Frequency

The second basic technique is the opposite extreme of direct harmonic matching

without regard to frequency change. With matching harmonics by closest frequency, the

harmonics with the smallest frequency changes are matched without regard to harmonic

number. Unfortunately, this is much more complex than direct harmonic number

matching. The actual description of the process is fairly simple although its

implementation is much more complex due to necessary iterative comparisons required

for confirming the frequency matches.

Because hannonic numbers are no longer used, an alternate method of keeping

track of the harmonic connections from frame to frame must be used. McAulay and

Quatieri assign parameter sets to "tracks." These tracks are used to follow the

connections of the harmonics from frame to frame. To perform the actual matching,

McAulay and Quatied developed a three step algorithm for track matching. [17] Figure

19 illustrates the different cases for each step in the algorithm. Note that (f) represents the
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harmonic frequency in radians, k represents the current frame, k+ I represents the

subsequent frame, n represents the harmonic number in the current frame, and m

represents the harmonic number in the future frame.
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Figure 19. Detailed steps for track matching

In the first step of the algorithm, tentative matches are made between all

harmonics in the current and future frames. Each harmonic in the current frame is

matched to the hannonic with the closest frequency in the future frame (Figure 19a),
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unless the frequency difference is greater than a "matching interval" /!". In that case, the

track "dies" (Figure 19b).

Second, the tentative matches are either confirmed (Figure 19c) or denied. For

example, if two harmonics in the current frame are matched to the same harmonic in the

future frame, the track of the harmonic with the largest difference in frequency in the

current frame must "die" (Figure 19d). If the first tentative match is not the best match,

then a reassignment to another match may occur (Figure 1ge). In the case of using a

harmonic model (MBE) rather than peak matching (STC), this particular case can be

eliminated. If two harmonics are matched tentatively to the same harmonic in another

frame, the closest frequency will be matched and the other must "die" or be Hborn." A

harmonic in the current frame will never be matched to a harmonic in the subsequent

frame which is not the initial tentative match.

The last step is to "birth" all unmatched future harmonics into new tracks. This is

illustrated in Figure 19f. Figure 20 illustrates the results of all three steps of matching

harmonics by frequency. It uses the same pitches from Figure 18 as a comparison.

Notice how different the contour for matching the parameter sets by frequency is

compared to the contour for matching directly by harmonic number.
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Figure 20. Harmonic matching by closest frequency

Between frames 7 and 8, a pitch change of 14 Hz occurs, resulting in harmonics

above harmonic number 3 no longer being matched to the same harmonic number.

Harmonic 4 is now connected to harmonic 5 from the previous frame; harmonic 5 is

connected to harmonic 6 from the previous frame, etc. Notice that although harmonic 4

is matched to harmonic 5 in frame 8, track 4 has no match in frame 8 and therefore dies

in frame 8.

Similarly, between frames 11 and 12 where a pitch change of 18.5 Hz occurs, the

harmonics switch tracks again. Note that harmonic 3, although it was assigned to a track

in frame 11, was not matched at frame 12 and therefore had to be born in frame 11 into a

new track, track N.
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Comparison of Hannonic Matching Methods

Both methods of harmonic match~ng were implemented into an STC-based

synthesizer of an EMBE-based coder for comparison. The analysis method was held

constant in each case, and the synthesizer was implemented using the STC non

overlapping frame method willi fuB parameter smoothing, which will be discussed later.

After informal listening tests were conducted with three or four volunteers, an

agreed that the direct hannonic matching method was not optimal. Though by far the

simpler method, matching by harmonic number had the adverse side effect of audibly

ramping upper hannonics (producing frequency sweeps) when the pitch change from

frame to frame was large. Otherwise, the tonal quality was excellent and very natural.

The frequency matching method removed all the frequency sweeps and also produced

speech with excellent tonal quality. Unfortunately, matching by closest frequency added

significant logical complexity and computation time to correctly match the tracks. The

complexity of implementing tracks greatly increased the difficulty in producing error-free

track matching.

Considering these results, it seemed that the best solution for harmonic matching

might be to modify the matching by harmonic number method so that pilCh changes are

accommodated a" they are in MBE. Using the MBE modification as precedence, testing

was performed to match harmonics directly unless the fundamental frequency change

was greater than ten percent. In these cases, harmonics were not matched at all, but were

"birthed" and immediately "kiUed,." similar to what was done to the tracks in frequency

matching when the track had no previous or subsequent track match.
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After further infonnal listening tests, the slightly altered harmonic matching by

harmonic number with pitch changes considered appeared to retain the high tonal quality

of both harmonic matching by harmonic number and frequency matching. In addition,

the audible high frequency sweeps which occurred as a result of hannonic matching by

harmonic number were removed while retaining the simplicity of this method. In fact,

listeners could not distinguish any audible change in the speech quality between

frequency matching and this method. For this reason, the somewhat altered harmonic

matching by harmonic number method was chosen as the method to match hannonics

from frame to frame.

Now that a good method for matching harmonics from frame to frame has been

established, interpolation must be performed to smoothly connect the parameters of each

harmonic from frame to frame.. Again, the three parameters under consideration are

amplitude, frequency, and phase. We will begin with the discussion of amplitude

interpolation.

Amplitude Interpolation in Time

Amplitude interpolation is intuitively the most straight forward interpolation of all

the parameters. According to McAulay and Quatieri's original STC paper, the obvious

solution to the amplitude interpolation problem is to use linear amplitude interpolation

between frames [17]. Equation (6.4) is given where n is the sample number, k is the

frame number, and S is the number of samples per frame shift. This linear amplitude

interpolation technique is used in IMBE and EMBE also.

,

r

A k+l _ A k
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However, if the changes in amplitude are very large, linear amplitude

interpolation results in audible amplitude discontinuities at frame boundaries. This fact is

not addressed in the literature. Figure 21 a shows a single harmonic of a real voiced

speech segment reconstructed using STC reconstruction with linearly innerpolated

amplitudes. A discontinuity can be seen at sample number 170 when the amplitude

changes suddenly. Although this discontinuity is subtle in the plot, it is easily audible

when a single sinusoid is reconstructed.

Amplitude Interpolation In Time
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Figure 21. Amplitude interpolation in time
a) Linear amplitude interpolation
b) Cubic amplitude interpolation
c) Squared/square-root cubic amplitude interpolation
d) Linear amplitude interpolation with moving average filter
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Because this problem is not addressed in STC or MBE literature. several different

possible methods of removing these audibJe discontEnuities are explored. These methods

include cubic spline interpolation, squared/square-rooted cubic spline interpolation, and

linear interpolation with a moving average filter applied.

The first method used to eliminate the linear interpolation discontinuities is to

replace the linear interpolation with cubic amplitude interpolation. Figure 21 b illustrates

that these discontinuities are completely eliminated when a cubic spline is applied to the

same amplitudes.

Unfortunately, cubic amplitude interpolation. although it removes the

discontinuities, adds computational complexity and sometimes results in undesirable

amplitude undershoots and overshoots at the beginning and ending of voiced areas.

Undershoots (negative amplitudes) reverse the phase by 180 degrees, creating

discontinuities at the positive and negative transition. Overshoots produce audibly

"bursty'· and overemphasized voiced onsets and endings.

Neither case is desirable, and both are more likely to occur with increased severity

if harmonics are matched by closest frequency. With harmonic one-to-one matching, as

an area transitions from unvoiced to voiced and voiced to unvoiced, the harmonic

amplitudes will tend to ramp up and down, respectively, over several frames. However,

when using closest-frequency matching, a harmonic in the middle of a voiced area may

have a very high amplitude but may not be matched to a harmonic in the next frame due

to frequency matching. These harmonics must "die" by the next frame. This sudden

rapid change from high amplitude to zero amplitude creates severe undershoots in the

cubic interpolation, particularly with short frames. Likewise, harmonics which are
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suddenly "born" in the middle of a voiced area because of frequency matching tend to

severely overshoot.

Eliminating these two problems inherent to cubic interpolation is difficult because

they tend to occur at the places linear interpolation results in discontinuities. To remove

undershoots, the amplitudes returned from the cubic spline can be checked for negative

values. If any negative amplitudes are returned, the cubic interpolation may be replaced

with linear interpolation. However, this may reintroduce discontinuities into tbe

reconstructed signal.

The negative amplitudes cannot simply be replaced with amplitudes of zero

because this reduces the amplitude onset and decay time. The slowly tapered, continuous

changes required for smooth speech reconstruction are replaced by extremely abrupt

onsets and decays. In fact, this sounds little better than no interpolation. The waveforms

become audibly rough.

Overshoots are even more difficult to remove. They can be reduced by fitting the

spline to the square of the amplitudes rather than the amplitudes themselves and then

taking the square root of the spline fit This is the second method applied. The

overshoots are reduced significantly by using this method, as iItustrated in Figure 21 c. At

sample number 100, the amplitude overshoot of the cubic spline was approximately ten

percent. By applying the cubic spline to the square of the amplitudes and then taking the

square root of the spline fit, the overshoot is reduced to approximately one percent.

Although applying the cubic spline to the square of the amplitudes and then

taking the square root of the spline fit removes the overshoots, undershoots are created

which are much worse than the overshoot problems of the normal cubic spline.
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Assigning the negative amplitudes (undershoots) amplitudes of zero can result in the

complete loss of the harmonic amplitude in the middle of a voiced area. This is clearly

seen in Figure 21 c from sample numbers 170 to 195. The number of undershoots and

their severity are greatly increased, and rise and fall times are more abrupt. The

application of a cubic spline to the square of the amplitudes and then taking the squar,e

root of the spline fit is thus a very poor solution resulting in worse smoothing than the

original linear amplitude interpolation.

The final method used to resolve the amplitude interpolation problem involves

filtering the linear interpolation. A moving average filter is applied to the linearly

interpolated amplitudes. The moving average filter replaces the value at the center of the

filter with the average of all the values in the filter. Equation (6.5) denotes a simple

moving average filter of length N. N is normally chosen to be an odd number.

(6.5)

The filter is applied to every interpolated harmonic amplitude. It has no effect on

linear areas, smoothing off only the sharp corners produced at frame boundaries. A

moving average filter also cannot create any overshoots or undershoots. Although it adds

computational complexity to linear interpolation. it removes the discontinuities and

produces no overshoots or undershoots. Figure 21 d illustrates linear amplitude

interpolation with a 21-point moving average filter applied. Notice that the linear areas

are well preserved" and only the sharp transitions are smoothed. In addition, the

discontinuity at sample number 170 is completely removed.
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Because of the undesirable overshoots and undershoots of cubic interpolation, the

moving average filter was selected as the best amplitude interpolation method. It retains

the simplicity of linear interpolation with added computation and removes the amplitude

discontinuities that were a problem, without introducing undesirable overshoot.s and

undershoots. Further, if implemented recursively, the linear moving average filter adds

only a little overhead to the interpolation process.

FrequencylPhase Interpolation in Time

Now that the method of amplitude interpolation has been decided, the remaining

parameters, phase and frequency, will be discussed. These two parameters are probably

the most important in all the reconstruction done. Because frequency is the derivative of

phase, frequency and phase are inseparable. Any frequency interpolation in time wi.ll

determine the phase interpolation in time and vice versa.

To smoothly connect the frequency and phase parameters in the STC non-

overlapping frame connection method, McAulay and Quatieri use a sophisticated cubic

phase interpolation (quadratic frequency) technique rather than the more traditional linear

frequency interpolation which results in quadratic phase interpolation. As mentioned in

Chapter 3, this extra degree of freedom in the frequency and phase results in the loss of a

unique solution, making multiple frequency/phase paths legitimate solutions.

To overcome this, McAulay and Quatieri developed a method for unwrapping the

phase so that the slope (frequency) of the phase trajectory is maximally smooth.

Equations (6.6), (6.7), (6.8), and (6.9) denote the calculat~ons necessary to obtain the

interpolated phase. All of these calculations must be made for each harmonic for each

66

,
!



-

frame. The variable M denotes the minimum number of 21t radian wraps that the phase

goes through from the current frame to the next frame so that the phase path is maximally

smooth. For detail on the derivations, see [17}.

M = round(x)

(6.6)

(6.7)

[
a(M )l. =[:2
P(M)J -2

T3

(6.8)

(6.9)

This leaves the problem of how to generate a phase value for the birth and death

of tracks. McAulay and Quatieri calculate the birth and death phases using linear

excitation phase. This is accomplished by using Equations (6.10) and (6.11) for the birth

and death of a hannonic, respectively. In both cases, the frequencies for the current and

subsequent frames are equal (ol = O)k+l).

e k =ehI -(J) k+1 t

e k+1 = ek +(J) k t

(6.10)

(6.11 )

Taking the birth and death cases to the extreme, suppose that for every frame, we

birth all the current harmonics and kill all the previous ones using Equations (6. 10-1).

The phases are therefore all linear, the harmonics are not matched, and the amplitudes are

not smoothed. This should sound familiar. In fact, this is the overlap addition method

presented earlier. We have returned full circle and now have all the necessary parameter

connections and smoothing required to compare the two frame connection methods.
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Before returning to the comparison of the overlap addition and the STC non

overlapping frame methods begun at the first of the chapter, a brief review of the STC

non-overlapping frame method will help tie all the pieces together. The following four

properties of the STC non-overlapping method developed in this chapter are significant:

1. Frames are connected smoothly by the smooth interpolation of all parameters.

No overlapping of frames is performed.

2. Hannonics are connected by harmonic number except when the pitch change

is greater than ten percent. In that case, the hannonics are not matched at all.

They are "birthed" in the previous frame and "die" in the next frame.

3. Amplitudes are interpolated using linear interpolation with a moving average

filter. This removes the discontinuities associated with linear interpolation

without introducing overshoot and undershoot problems.

4. The phase is interpolated cubidy, resulting in quadratic frequency

interpolation. The phase trajectory is chosen such that the phase is maximally

smooth.

Overlap Addition vs. STC Non-Overlapping Method

In order to compare the quality of reconstruction resulting from the use of the two

different methods of reconstruction, informal tests were again performed. Using the

parameter connection and smoothing described above for the STC non-overlapping

method, the STC non-overlapping method was implemented in the synthesizer of a fully

functional EMBE-based coder. The overlap addition method was implemented in a

similar fashion. Speech files were processed through the coders using the same analysis

but different reconstruction methods. Several people were asked to listen to the
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reconstructed synthetic speech and give their opinion as to which version of reconstructed

speech they preferred.

Overall, listeners could not distinguish any quality difference between the two

methods. In fact, both methods sounded so similar that the listeners had difficulty

distinguishing any differences.

Because the results of both methods were so similar, a comparison of the

requirements for each of the two methods is useful. Overlap addition requires no

parameter connection or smoothing. The phase is interpolated linearly, so no higher

order calculations are required. The STC non-overlapping method requires smoothing of

all parameters. In addition, correct parameter smoothing is critical to the smoothness of

the reconstructed speech. Amplitude interpolation requires applying a moving average

filter to the linearly interpolated values. Phases are interpolated cubically. All of this

amounts to a significant increase in computation and logical complexity when compared

to the overlap addition method. When an of this is considered along with the fact that the

reconstruction results produced by the two methods are audibly indistinguishable from

one another, then obviously the better choice is overlap addition.

This decision completes the development of the enhanced sinusoidal model for

reconstruction. The following is a brief summary of all the final decisions:

1) A sinusoidal hannonic model is used for voiced and mixed excitatlon frames.

Unvoiced areas are resampled at less than 100 Hz spacing.

2) Unvoiced frames are built using band-limited white noise.

3) Phases are generated synthetically in the synthesizer using a cepstral phase

model.
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4) The overlap addition method is used to smoothly connect frames. No

additional parameter connection or smoothing is required.

This reconstruction method has been completely implemented in the EMBE

8.0kbps vocoder. The next chapter will conclude with the results of this implementation.
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CHAPTER VII

RESULTS AND CONCLUSION

The previous chapters have pres,ented several different approaches to improve the

quality of reconstruction through the development of a new enhanced sinusoidal

reconstruction method for mid-rate MBE-based coders. As discussed earlier, the goal of

the development of this new reconstruction method was to improve the tonal quality of

MBE-based coders by reintroducing phase as a parameter and then developing a

reconstruction method which utilizes phase and produces synthetic speech with more

natural quality. This chapter will serve to draw all the pieces together by summarizing

the design of the enhanced reconstruction procedure and reiterating the options, the

decisions made, and the deciding factors that led to the final enhanced sinusoidal

feconstruction method. To conclude, the quality of the fully-implemented enhanced

reconstruction method developed in this thesis will be discussed.

Basic Synthesis Structure

We discussed two basic sinusoidal synthesis structures which are available

harmonic, as is typically used in MBE. and non-hannonic, as is used in the original STC.

The hannonic model assumes a fundamental frequency and hannonic relationships to that

frequency. A sum of harmonically related sinusoids is used to reconstruct the voiced

components. A non-harmonic model does not assume a fundamental frequency; instead

all components are reconstructed using a sum of non-harmonically related sinusoids with

frequencies obtained by locating spectral peaks.
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The non-hannonic model requires sending spectral peak locations in addition to

amplitudes. This significantly increases the bit rate and makes a non-harmonic model

impractical for mid-rate speech coding. Therefore, a harmonic model was selected.

Because a harmonic model does not represent non-harmonically related noisy

speech components such as unvoiced areas well, an alternate method for reconstructing

these components is normaHy used. Two methods were discussed in Chapter 4. The first

used sinusoids with randomized phases in unvoiced areas. The limitation is that the

sinusoids must be spaced no further than 100 Hz apart in frequency to adequately

represent noise. The second method used band-limited white noise, as is done in MBE

coders such as WBE and EMBE.

Informal testing found that combining both methods for representing unvoiced

speech produced high quality results. Completely unvoiced speech sounded more natural

when reconstructed using band-limited white noise, and unvoiced components of speech

with mixed excitation sounded more natural when reconstructed using resampled

sinusoids with randomized phases.

The Rei ntroduction of Phase as a Parameter

Since MBE literature already covers in detail the analysis of pitch, voicing

decisions, and harmonic amplitudes, analysis of these parameters was not discussed. It

was simply assumed that suitable methods existed to estimate accurately these

parameters. However, phase as a parameter is not discussed in normal MBE literature.

Because phase would be an integral part of the new reconstruction method, phase

estimation was considered.
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To analyze phase, the most obvious solution is to use the STFf (5.1), since it is

already Illsed to calculate spectral amplitudes. Due to constraints on computational

complexity, STFf calculations were restricted to a length of 512 points. While sufficient

for analysis of the magnitude spectrum, this length proves to be insufficient for phase

analysis. However, three methods were discussed for phase estimation. The first,

picking the phase calculated at the closest STFr index, resulted in poor quality

reconstruction. The second method, interpolating the phase between STFf indices, also

did not result in high quality reconstruction. To properly interpolate between indices, the

STFf frequency resolution must be less than or equal to half the frequency at which the

phase is rotating through 27t radians. If this requirement is not met, the spectrum is

undersampled, and the decimated phases between spectral indices cannot be recovered

through interpolation. This is referred to as phase aliasing. In the example of the voiced

frame given in Chapter 5, the maximum frequency resolution necessary to prevent phase

aliasing was found to be 12.5 Hz. The 512-point STFf, which has a frequency resolution

of 15.625 Hz, was not sufficient for correct interpolation in such cases which,

unfortunately, occur frequently. The third method, complex interpolation of the STFf,

also did not result in high quality reconstruction. Inaccurate fit of the cubic spline to the

real and imaginary parts of the STFT during complex interpolation resulted in large phase

errors.

As a result of the inability to obtain accurate measured phases, the generation of

synthetic phases using an alternate phase model, the cepstral model, was pursued. The

cepstral phase model is based on the assumption that phase can be divided into two

components-linear excitation phases (5.6-7) and system phases (5.8). The system phase
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is based on the cepstral coefficients. To generate the cepstral coefficients, a cubic spline

is fitted to the natural log of the hannonic amplitudes so as to remove the excitation. The

inverse STFT is computed, producing the cepstral coefficients. Since phase generated

from the cepstral model is based on only the hannonic amplitudes (system phase) and the

pitch (excitation phase), and these parameters are already sent by the analyzer, the

cepstral phases can be generated completely in the synthesizer.

The cepstral phases proved to produce high quality, smooth reconstruction. Their

only limitation is that they are highly dependent on pitch. Severe pitch errors can

sometimes produce adverse effects such as brief bursts of synthetic tonal quality.

However, this effect can be eliminated by using an appropriate frame connection method.

Connection of Parameters from Frame to Frame

Two frame connection methods known to produce high quality reconstruction

were discussed. Overlap addition, the first method, is very simple. It reconstructs two

frames of speech using linear excitation phase interpolation, and then applies a triangular

window to the speech. The left half of the window is added to the right half of the

triangular-tapered previous frame, and the right half is added to the left half of the

triangular-tapered next frame, hence the name "overlap addition." No further

interpolation is required. The second method, referred to here as the STC non

overlapping method, connects frames smoothly without overlapping and adding. To do

this, each of the parameters must be smoothly connected and interpolated at frame

boundaries.
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Hannonic matching was the first parameter connection/smoothing topic for the

STC non-overlapping method. Two methods for connecting harmonics were presented.

First, harmonics may be matched directly by their harmonic number. For example, the

first hannonic is always connected to the first harmonic, the second harmonic is always

connected to the second harmonic, etc. This method resulted in speech with natural tonal

quality, but audible high frequency sweeps when the pitch changed significantly. The

second method, frequency matching, connects the harmonics with the closest frequencies

without regard to harmonic number. This method resulted in speech with excellent tonal

quality, but the algorithm for frequency matching is computational and complicated. The

final method, picked as the best solution, was to match harmonics by harmonic number

unless the fundamental frequency changes by greater than ten percent between frames. In

that case, the harmonics are not matched. Instead, they are "birthed" in the previous

frame and "die" in the next frame. This retained the natural tonal quality, removed the

audible high frequency sweeps, and kept the computation and logical compkxity to a

moderately low level.

The second parameter connection/smoothing topic for {he STC non-overlapping

method was amplitude interpolation in time. Although linear interpolation is normally

used, it was found to produce amplitude discontinuities when large changes in amplitude

occurred. Three alternate methods were tested to try to eliminate this problem. The first

cubic amplitude interpolation, completely removed the discontinuities but resulted in

overshoots and undershoots of ten percent or more. The second method, squaring the

amplitudes, applying the cubic spline and then taking the square root of the spline,

reduced the overshoot problem to about one percent, but created severe undershoots. The
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third method, linear interpolation with a moving average filter applied, proved to be the

best solution. The discontinuities resulting from linear interpolation were removed, and

no undesirable overshoots or undershoots were created.

The final topic of parameter connection/smoothing for the STC non-overlapping

method was frequency/phase interpolation in time. To smoothly connect each harmonic

in tenns of the phase and frequency, STC cubic phase interpolation was used. Phase is

interpolated cubicly so that the frequency trajectory has the smallest variation. The

resulting frequency trajectory is quadratic.

After the parameter connection/smoothing issues were finalized for the STC non

overlapping method, a comparison was made between the overlap addition frame

connection method and the STC non-overlapping method. Both produced equivalent

high quality, smooth speech with very natural tonal quality. The deciding factor was then

the computational difference between the two methods. Overlap addition requires no

parameter smoothing, and the phase is interpolated linearly. However, up to two times as

many frames (depending on the type of window taper) must be reconstructed because the

frames are overlapped. The STC non-overlapping method requires only the

reconstruction of the exact number of frames needed. However, further harmonic

connection decisions as well as the smoothing of aU parameters are required. A moving

average filter must be applied to the linearly interpolated amplitudes, and the phase is

interpolated cubicly. All of this together is very computationally expensive. As a result,

the overlap addition method was selected for the final destgn.

A brief summary of the final enhanced sinusoidal reconstruction method follows:
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1) A harmonic model serves as the basic synthesis structure.

a) Frames with any voiced components are reproduced using a sinusoidal

harmonic model with randomized phases for unvoiced sinusoids.

Resampling in unvoiced areas is perfonned so that the spacing

between sinusoids in unvoiced areas is less than 100Hz.

b) Completely unvoiced frames are reproduced using band-limited white

noise as is done in MBE.

2) Phases are generated synthetically in the synthesizer using the cepstral phase

model based on the sum of linear excitation phases and system phases.

3) The overlap addition method with full overlap and triangular tapering is used

to smoothly connect frames. No additional parameter connection or

smoothing is required.

Speech reconstructed using this enhanced sinusoidal reconstruction method is

high quality, has very natural tonal quality, and is comparable to other reconstruction

methods developed for mid-rate speecb coding.

The reconstruction described in this paper has been fully implemented in a speech

coder under development at Oklahoma State University, referred to as EMBE 8.0kbps.

Informal testing results show that this coder is comparable to other mid-rate coders such

as the 8.0kbps VSELP developed by Motorola [11]. However, the EMBE 8.0kbps coder

is still being enhanced, and full parameter quantization is not yet completed. Therefore.

definitive testing of this reconstruction method is incomplete. Final enhancements and

quantization should be finished within the next few months. Once quantization is

complete, objective testing will be performed so that appropriate comparisons can be

made with other mid-rate coders. The objective testing will include Diagnostic

Acceptability Measure (DAM) tests, which indicate the quality and naturalness of the
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reconstructed speech, and Diagnostic Rhyme Test (DRT) testing, which measures the

intelligibility of the reconstructed speech.
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Future Research

There are several issues not addressed in the reconstruction discussion of this

paper. These include the application of a post-filter and the use of other spectral

enhancements such as spectral warping and pre-emphasis and de-emphasis.

Probably the most important topic not discussed is post-filtering. Applying a

post-filter to the reconstructed speech is necessary to enhance the intelligibility and

overall quality of the synthetic speech. Post-filters typically lower the formant valleys to

reduce the amount of coding noise. The application of a post-filter removes much of the

"muffled" quality often inherent in syntheticaJIy generated speech and improves the

objective test results.

Other spectral enhancements may also be beneficial. Enhancements such as pre

emphasis and de-emphasis may further reduce the noise floor and require less post

filtering than is otherwise needed. In addition, spectral warping may be beneficial for

reducing the bit rate while maintaining the accuracy necessary for high quality

reconstruction.

A word of caution is included regarding spectral alterations. Because the phases

are generated from the cepstral phase model, alteration of the spectrum may alter the

cepstral phases, resulting in possible degradation of tonal naturalness. The effects of

such alteration are not known and should be considered when evaluating the results of

additional spectral enhancements.
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