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Background

Oxidative DNA damage has been correlated with mutagenesis and carcinogenesis

in both animal model systems and human tissues [1-10]. For example, DNA base

modifications such as 8-hydroxyguanine and 8-hydroxyadenine have been shown to occur

after exposure to oxidative agents, and to be present at higher concentrations in tumor

tissue than in surrounding tissue [9,10]. [t has therefore been suggested that these

modified products may be used as markers for predicting mutagenic and carcinogenic risk

in human tissues [9]. Currently, oxidative DNA damage is detectable through a variety of

labor intensive methodologies, including gas chromatography-mass spectrometry with

select ion monitoring (GC-MS/SIM) [11], 32p post-labeling [12], and high pressure liquid

chromatography (HPLC) [J3]. The original goal of my work as an M.S. candidate was to

develop a novel detection methodology based on fluorescence spectroscopy, whereby

oxidative DNA damage could be detected more easily and more sensitively than methods

previously employed.

Wark by Barcellona and Gratton [14] had shown that, upon intercalation of the

fluorophore 4'-6-diamidino-2-phenylindole (DAPI) into the minor groove of calf thymus

DNA, a characteristic fluorescence spectra was obtained in both continuous wave and

lifetime modalities. We successfully repeated these continuous wave fluorescence

experiments, and proceeded to expose calf thymus DNA to a hypoxanthine/xanthine

oxidase enzyme system known to cause oxidative DNA damage [15]. Calfthyrnus DNA

thus treated and bound to DAPI was examined using continuous wave fluorescence
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spectroscopy to determine if the fluorescence spectra had been altered by the oxidatively

damaged bases. No significant alteration in fluorescence spectra was detected between

treatment groups and controls.

This was not an unexpected! result, as continuous wave fluorescence spectroscopy

has a limited sensitivity. However, we intended to utilize lifetime fluorescence

spectroscopy, a much more sensitive system, to resolve the lifetimes of normal calf thymus

DNA and oxidatively darnaged calf thymus DNA. For several months we attempted to

run lifetime measurements on DNA-DAPl conjugates using an SLM 48000 Lifetime

Spectrofluorometer capable of resolving fluorescent lifetimes in the nanosecond range.

Unfortunately, the SLM 48000 system available to us had technical problems that we

could not resolve, and we were unable to obtain the data necessary to answer our

questions.

We knew that attempting to develop a novel methodology had a relatively high

likelihood of yielding negative results, and therefore had planned a second pr~ject. We

intended to use GC-MS/SIM, a proven methodology, to look at the role of oxidative

DNA damage in tumor formation in rainbow trout (Oncorhynchus mykiss). DNA was

extracted from normal rainbow trout livers, as wen as from liver carcinomas induced by

exposure to aflatoxin B1. In addition, DNA was extracted from control rainbow trout

hepatocytes and from hepatocytes exposed to varying levels of hydrogen peroxide (H20 z),

an agent known to cause oxidative DNA damage [l]. DNA was derivitized (see Materials

and Methods for details) and analyzed with GC-MS/SIM by Dr. Dilip Senshanna of the

Oklahoma State University Department of Chemistry. However, the

-2-
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peaks obtained using GC-MS/SIM were not consistent with previously published results

[e.g. 11]

DNA samples were therefore sent to Dr. Miral Dizdaroglu at the Institute of

Standards and Technology for analysis. In contrast to results obtained in Dr. Sensharma's

laboratory, Dr. Dizdaroglu's GC-MS peaks conformed to previously published data. We

concluded that there was a problem with Dr. Senshanna's GC-MS/SIM detection system

at Oklahoma State. As there was no precedent for detecting this type of DNA base

damage at O.S.u., we set out to modify the GC-MS/SIM system at O.S.U. in order to

collect this data. We changed several parameters on Dr. Sensharma's GC-MS/SIM in an

attempt to repeat Dr. Dizdaroglu's results. These attempts failed. Dr. Nicholas Basta was

also kind enough to allow us to use his GC-MS/SIM system, but again we were unable to

obtain the results produced by Dr. Dizdaroglu. After changing several components of Dr.

Basta's GC-MS/SIM system, including the column, the project was altered as 1 moved on

to the Penn State College of Medicine to pursue my Ph.D.

Soon after arriving at Penn State I initiated a collaboration with Dr. Eugene

Rannds to determine if rat type II alveolar cells were vulnerable to oxidative DNA

damage. Given their position on the surface of the lung. type II ceHs are very likely to be

exposed to oxidative insult in vivo. As Penn State did not have a GC-MS/SIM system

available, we arranged a collaboration with Dr. Jeremy Spencer of King's College,

London. We were able to show that type II cells are indeed vulnerable to oxidative DNA

damage. and what follows is a paper submitted to FEBS Letters reporting the data we

have obtained.
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]. Introduction

Formation of molecular oxygen as a photosynthetic by-product of ancient

au~otrophs is believed to have mediated the evolution of aerobes on earth. The energetic

benefits ofaerobic respiration are not, however, without cost. Metabolic oxygen-derived

species such as hydrogen peroxide (H20 2) and the superoxide radical (02-) can form the

extremely reactive hydroxyl radical (OHO) [16], which is thought to react with critical

biomolecules in aerobic organisms. The resulting oxidative damage has been implicated in

several human diseases [17]. DNA in particular has been shown to be vulnerable to

oxygen radical insult both in vitro and in vivo [1-3]. Moreover, oxidative damage to

DNA has been s~rongly correlated with carcinogenesis [4-10].

Type II pulmonary epithelial cells line the alveolar surface of the lung, and are

exposed to a variety of potential oxidative stresses. Type II cells comprise approximately

15% of cells in the distal lung, and occupy approximately 10% of the alveolar surface

[18]. Type I pulmonary epithelial cells account for the majority of alveolar surface area,

but type II cells are better-characterized, primarily due to development of reliable

procedures for their isolation and primary culture [19]. Type II cells have three primary

functions: (a) synthesis and secretion of pulmonary surfactant, (b) maintenance of alveolar

surface by proliferation and differentiation into type I cells, and (c) minimization of

alveolar fluid via sodium transport from the apical to the basolateral epithelial surface

[18].

In the present study rat type II pulmonary epithelial cells were exposed to H20 2 in
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vitro. DNA was then extracted and monitored for fourteen different DNA base

modifications using gas chromatography/mass spectrometry with select ion monitoring

(GC/MS-SIM). Twelve of fourteen base products increased significantly above baseline

levels, as detailed below. These base modifications are typical of the types of DNA

damage caused by exposure to oxygen radicals [1], and several have been correlated with

carcinogenesis [4-10].

2. Materials and Methods

2.1 Reagents

8-Azaadenine, 6-azathymine, 8-bromoadenine, 5-hydroxyuracil (isobarbituric

acid), 4,6-diamino-5-formamidopyrimidine (FAPy-adenine), 2,5,6-triamino-4

hydroxypyrimidine, and 5-(hydroxymethyl)uracil were purchased from Sigma Chemica1

Co. (Poole, Dorset, UK). 8-Hydroxyguanine was from Aldrich (Poole, Dorset, UK). 6

amino-8-hydroxypurine (8-hydroxyadenine) and 2,6-Diamino-4-hydroxy-5

fonnamidopyrimidine (FAPy-guaninc) were synthesized (courtesy of Dr. J-l Kaur, King's

College, London) by, respectively, treatment of 8-bromoadenine with concentrated formic

acid (95%) at ]50°C for 45 min with purification by crystallization from water [20], and

treatment of2,5,6-triamino-4-hydroxypyrimidine with concentrated formic acid and

purification by recrystallization from water [21]. Thymine glycol was synthesized by

reaction of 5-methyluracil with OS04 for] hr at 60°C, and excess OS04 was removed by

freeze-drying [11]. 2-hydroxyadenine, 5-hydroxycysteine, and 5-
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(hydroxymethyl)hydantoin were gifts from Dr. Miral Dizdaroglu (National Institute of

Standards and Technology, Gaithersburg, MD). Soybean trypsin inhibitor, triton-X-l 00.

phenol, and cWoroform:isoamyl alcohol (24:1) were purchased from Sigma Chemical Co.

(St. Louis, MO, USA). BaS04, hydrogen peroxide (30%). and NH40H were purchased

from Fisher Scientific (Pittsburgh, PA, USA). Dulbecco's minimum essential medium

(DMEM), Hank's balanced salt solution (HBSS), and Joklik's modified eagle's medium

(JMEM) were from GIBCO (Gaithersburg, MD, USA). CeUu.Sep dialysis membranes

with relative molecular mass cut off of 3500, silylation grade acetonitrHe, and

bis(trimethylsilyl)trifluoro- acetamide (BSTFA) (containing 1% trimethy1chlorosilane,

TMS) were obtained from Pierce Chemical Co .. (Rockford, IL, USA). Pentobarbitol was

from Dodge Laboratories; elastase was from Elastin Products, Inc.; DNase 1 from

Calbiochem (La Jolla, CA, USA); newborn calf serum from ICN Biochemicals (Costa

Mesa, CA); and percoll from Pharmacia (Piscataway, NJ, USA). Dialysis membranes of

molecular mass cut off of 3500 were purchased from Spectrum supplied by Pierce

Chemical Co., USA.

2.2 Isolation and primary culture q(type II cells.

Type II cells were isolated from lungs of male Sprague-Dawley rats (200-250 g

body weight; Charles River Laboratories). Rats were anesthetized with pentobarbitol

sodium (60 mg/kg body wt). Procedures for type II cell isolation are detailed elsewhere

[19]. Briefly, after washout of the pulmonary circulation and repeated lavage of the

airways, alveolar ceUs were dispersed by intratracheal instillation of Joklik's minimal
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essential medium (JMEM} containing elastase and BaS04 • After 30 min, proteolysis was

inhibited by instillation of JMEM containing soybean trypsin inhibitor, deoxyribonuclease,

and newborn calf serum. Lungs were then minced and filtered through Nitex-HC 160

nylon mesh (Tetko, Elmsford, NY); cells were collected by centrifugation and were

resuspended in JMEM containing deoxyribonuclease. Type II cells were purified by

density centrifugation on discontinuous Percoll gradients and by differential attachment.

The final cell preparation was plated in six-well tissue culture plates (Falcon) in Dulbecco's

modified Eagle's medium containing 10% fetal calf serum at 2 x 106 cells/well. The day of

cell isolation is designated as day O.

2.3 Exposure oftype II cells to hydrogen peroxide

H20 2 was diluted in Hank's balanced salt solution (HBSS) immediately prior to

exposure to achieve the desired concentration. HBSS was used because the pyruvate in

culture media has been shown to scavenge H20 2 [l]. On day 1 growth medium was

removed and cells at 90% confluency were washed 2 times with sterile, filtered PBS.

H20 2 was then added to six-well plates (2 ml per well) and cells were incubated for 60 min

at 37°C.

2.4 DNA isolation

After incubation cells were immediately washed twice with sterile, filtered PBS.

Cells from an entire six-well plate were pooled to obtain one sample for analysis

(approximately 1.2 x 107 cells). Harvested cells were pelleted, resuspended in I M
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NH40H/O.2% Triton-x-lOO, and left at 37°C tor 30 min with periodic agitation. After

extractions with phenol and cWoroform:isoamyl alcohol (24: 1), DNA was precipitated

with 100% ethanol/O.l M NaOAc and purity was verified using A26r/A2&o ratios.

2.5 Analysis ofDNA Base Modifications by Gas Chromatography-Mass Spectrometry

Derivitized samples were analyzed by GC-MS (Hewlett-Packard 5890II gas

chromatograph interfaced with a Hewlett Packard 5917A mass selective detector).

Preparation, derivitization, and analysis of samples were perfonned as described

previously [15,22] with the fonowing modifications. The injection port and the GC-MS

interface were kept at 250 and 290°C, respectively. Separations were carried out on a

fused silica capillary column (12 m x 0.2 rnm i.d.) Coated with cross-linked 5%

phenylmethylsiloxane (film thickness 0.33 Ilm) (Hewlett-Packard). Helium was the carrier

gas with a flow rate of 0.93 mLlmin. Derivatized samples (1.0 ilL) were injected into the

GC injection port using a split ratio of 8: 1. Column temperature was increased [Tom 125

to 175°C at gOC/min after 2 min at 125°C, then from 175 to 220°C at 30°C/min and held at

220°C for 1 min, and finally from 220 to 290°C at 40°C/min and held at 290°C for 2 min.

Selected-ion monitoring was performed using the electron ionization mode at 70 eV with

the ion source maintained at 185°C.

Quantitation of modified bases was achieved by relating the peak area of the

compound with the internal standard peak area and applying the following formula:

concn (nmol/mg of DNA) = AlA'ST x [1ST] x (IlK)
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where K = relative molar response factor for each base, A = peak area of product, A1ST

=the peak area of internal standard, and [1ST] = concentration of the internal standard (5

nrnol/mg of DNA). K constants were calculated from the slopes of the calibration curves

constructed using known concentrations of internal standards and authentic compounds.

3. Results

Using in vitro cultures of rat type nlung epithelial cells, fourteen DNA base

modifications were measured by GCIMS-SIM after exposure to H20 2• Twelve of

fourteen base products rose significantly (P < 0.05, Student's t-test) upon exposure to 5.0

mM H20 2 for 60 min at 37°C. These twelve products were 8-hydroxyguanine (8-0H-

Gua), 2,6-diamino-4-hydroxy-fonnamidopyrimidine (FAPy-Gua), 8-hydroxyadenine (8-

OH-Ade), 4,6-diamino-5-fOlmamidopyrimidine (FAPy-Adc), 2-hydroxyadenine (2-0H-

Ade), 5-hydroxyhydantoin (5-0H-Hyd), 5-(hydroxymethyl)hydantoin (5-0HMeHyd), 5-

(hydroxymethyl)uracil (5-0HMeUra), 5-hydroxycytosine (5-0H-Cyt), cis-thymine glycol,

trans-thymine glycol, and xanthine. The two products that did not change significantly

from baseline were 5-hydroxyuracil (5-0H-Ura) and hypoxanthine. (See Table I). Of the

products that increased in concentration, the largest net increase was seen in FAPy-Gua,

which increased from 0.423 ± 0.300 to 3.865 ± 0.650 nmol/mg DNA. Increases in other

base products ranged from 2.3 to 9.5-fold and final concentrations ranged from 0.100 ±

0.030 nmol/mg (5-0HMeUra) to 2.270 ± 0.150 nmol/mg DNA (cis-thymine glycol).

I
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Several base modifications increased significantly from baseline levels upon

exposure to comparatively low concentrations of H20 2, but did not incur proportional

levels of damage when exposed to higher H20 2 concentrations. For example, xanthine

concentrations rose from 1.278 ± 0.286 nmol/mg DNA to 2.289 ± 0.306 nmol/mg DNA

upon exposure to 0.2 mM H20 2, but rose to only 2.255 ± 0.342 nmol /mg DNA after

exposure to 5.0 mM H20 2, a value statistically equivalent to the concentration reached

upon exposure to 0.2 mM H20 2• Similar patterns were also observed for other base

modifications, including 2-0H-Ade, 8-0H-Ade, and 5-0HMeHyd. FAPy-Gua and 5-0H

Hyd diverged from this pattern and followed a more linear dose-response curve (See

Figures 1-4, noting differences in scale for each figure).

4. Discussion

H20 2 was used for incubation because it is a by-product of normal aerobic

metabolism. In addition, high local concentrations of H20 2 and other oxidizing agents can

be formed by polymorphonuclear leukocytes (PMNs) and macrophages during

inflammation [23]. H20 2 is known to penetrate cell membranes easily [24], and will in the

presence ofa transition metal react to form OH" in a Fenton-type reaction. For example:

-10-



Table 1
Levels of DNA base modifications increase in rat type II lung epithelial cells following
exposure to H~O_.

Modified Control Levels + 5.0 ffij\rl H~O~ P value
Base Product nrool/mg DNA nmol/mg DNA
5-0H.Me-Hyd 0.095 ± 0.031 0.374 ± 0.068 0.003

5-0H-Hydanroin 0.091 ± 0.031 0.627 ± 0.061 <0.001
5-0H-Uracil 0.093 ± 0.030 0.162 ± 0.031 NS
5-0RMe-Uracil 0.019 ± 0.006 0.100 ± 0.030 0.010
5-0H-Cytosine 0.202 ± 0.016 0.600 ± 0.100 0.002
cis-Thymine Gly 0.258 ± 0.039 2.270 ± 0.150 <0.00 I
trans-ThyimeGly 0.727± 0.171 1.707± 0.227 0.004
Hypoxanthine 4.367 ± 0.245 4.289 ± 0.631 NS
FAPy-Adenine 0.152 ± 0.035 1.445 ± 0.283 0.00 I
8-0H-Adenine 0.072 ± 0.022 0.343 ± 0.078 0.004
Xanthine 1.278 ± 0.286 2.255 ± 0.3-l2 0.019
2-0H-Adenine 0.047 ± 0.028 0.122 ± 0.026 0.027
FAPy-Guanine 0.423 ± 0.300 3.865 ± 0.650 0.00 I
8-0H-Guanine 0.812 ± 0.233 2.136 ± 0.520 0.016
Cells were exposed to 5.0 mM H20 2. for 60 min at 37°C. Results are means of rhree
experiments ± S.D. A Student's t-test was used to determine P values. S = nor
significant at P < 0.05.
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Fe3
+ can be recycled back to Fe2T by 02- or other reducing agents:

The types of DNA modifications that occur during OH' exposure depend upon reaction

conditions [1]. For examp~e, iron-ion dependent OH'-generating systems result in

different patterns of DNA damage than systems dependent on copper ions [3]. Similarly,

OH-adducts such as 8-0H-Gua are favored under oxidative conditions while ring-opening

products such as FAPy-Gua are favored under reductive conditions [10]. Investigators

have thus noted the importance of screening DNA for several modified base products

rather than testing for one particular biomarker of oxidative stress [1]. We have therefore

looked at fourteen different modified bases in this study.

The observed increases in modified base products indicate that type II pulmonary

epithelial ceH DNA is vulnerable to oxidative damage. While it is clear that oxidat~ve

damage is correlated with risk ofmutagenes!s and carcinogenesis, it is more difficult to

interpret the meanings of specific patterns of DNA base damage. 8-0H-Gua has been

studied intensively and demonstrated to be mutagenic. Several groups have shown that

DNA templates with 8-0H-Gua adducts incorporated are misread by polymerases, both at

the site of adduct incorporation and at adjacent bases [26-29]. G-+T transversions are the

most commonly observed mutations, but other point mutations have been

documented. Increases in 8-0H-Gua levels have also been correlated with

carcinogenesis in numerous studies [30-34]. Therefore the 2.6-fold dose-dependent

increase of 8-0H-Gua levels observed in type II cells exposed to H20 2 suggests that they
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have been predisposed to mutagenesis.

Insertions of 8-0H-Ade into DNA templates have induced mammalian

polymerases to misincorporate bases, resulting in A-+G transitions and A-+C

transversions [35]. The mutagenic potential of8-0H-Ade suggests that the 4.7-fold

increase in 8-0H-Ade observed in type II cells increases mutagenic risk. In contrast to

OH-adducts, ring-opened FAPy residues appear to block DNA synthesis [36] and mRNA

transcription [37], and are putatively non-mutagenic. Correlations exist between

carcinogenesis and levels of 5-0H-Cyt [38,39], 5-0H-Hyd [39,40], and 5-0HMeUra

[41], but little is known about molecular mechanisms involved. The question of whether

these base modifications are mutagenic or simply occur concomitantly with other

mutagenic lesions remains unanswered. Similarly, while increases in levels of thymine

glycol have been linked to oxidative insult and carcinogenesis [1,41], molecular

mechanisms have yet to be elucidated. One mechanism of mutation that all oxidative

DNA damage is likely to induce is DNA repair. Modified bases are subject to repair in

living cells, and DNA repair is more error-prone than DNA replication by orders of

magnitude [34].

Recent studies of human tissues suggest a complex pattern of relationships

between oxidative base damage and oncogenic potential. In a study of human breast

carcinoma tissues, levels of 8-0H-guanine were found to be higher than in normal

tissues; however, FAPy-Ade residues in the same breast carcinomas were significantly

lower than in nOffi1al tissues [9]. In contrast, metastatic breast tissue was found to have

elevated levels of FAPy-adenine compared to non-metastatic breast tumor tissue [10],
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suggesting that conditions favoring tumor fonnation differ from conditions favoring

tumor progression [42]. As it is difficult to interpret patterns of oxidative damage at this

time, we conclude simply that type II cells are vulnerable to oxidative damage. Further in

vivo studies win be necessary to correlate patterns of base damage to mutagenicity and

carcinogenicity.
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