
BRIDGEVIEWTM FOR HYBRID CONTROL SYSTEM:

AN APPLIED CASE STUDY OF AUTOMATING

AN INDUSTRIAL ASSEMBLY LINE

By

SYED M.M. MANZOOR

Bachelor of Electronic Engineering

NED University

Karachi, Pakistan

1992

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July 1998

OKLAHOMA S'f. TE UNIVERSITY

BRIDGEVIEWTM FOR HYBRID CONTROL SYSTEM:

AN APPLIED CASE STUDY OF AUTOMATING

AN INDUSTRlAL ASSEMBLY LINE

Thesis Approved:

Thesis Advisor

CJJ

11

PREFACE

Advancement in computer, sensors and controllers technology requires control nglll r

to deal with larger and more complicated contr I ystern. It i no longer suff! i nt t

choose between a di crete or analog sy tern becau e both types are often ne ded in

today's sophisticated systems. A di crete and analog control y terns are both ext nding

rapidly to accommodate crucial propertie of each other, the line of demarcation between

them is becoming fuzzy. A new type of control sy tern - Hybrid Control Sy tern (H S)

- is emerging that combines the benefits of both. HCS's synergistic effect create a

control system that encompasses the features and functionality of each type and beyond.

This work describes a case study of such a system. It involves design and

implementation of supervisory software for a propriety Hybrid ontrol ystem proje t

involving a robotic assembly line for a cellular relay-station moth rboard manufactur r.

The scope of the project included system analysis of the robotic a'embly line, selection

of networking and communication protocols, database selection, and th de ign of an

intuitive GUI or Man Machine Interface (MMI). Commercially availabl upervlsory

Control and Data Acquisition (SCADA) packages were reviewed to select a suitable

environment. The software implementation on one station of the line is shown a an

example.

III

ACKNOWLEDGEME TS

First and foremost, my family (Father, Syed M. Usman, Mother Anis Fatima, brothers,

and sisters) deserves credit for providing me the lov and support throughout m life,

especially during my graduate studies.

I am very thankful to my advisor, Dr. Nick Street, for providing me guidance, exercising

patience, and extending encouragement on numerous occasions, like a friend more than

an advisor. Dr. John Chandler and Dr. John HatclifT also deserve credit for serving as

thesis committee members and facilitating the thesis process despite of my being on the

field a thousand mile away.

My special thanks goes to pencer Sullivan (District Manager, VI Engineerin) for

providing me the opportunity to work on this exciting the is project. His eternal optimism

and trust in people make him one of the best managers 1 have encountered in my life. I

learned a great deal working with him and his team of engineer. And of course, thi

thesis would not have been possible without the understanding and full support of Robert

Jacobs (President, VI Engineering)

IV

Chapter

TABLE OF CONTENTS

Pag

I. INTRODUCTION 001

1.1 Abstract 1

1.2 Introduction 1

U. HYBRID CONTROL SYSTEM .4

2.1 Introduction to Control Systems .4

2.2 Robot Assembly Line Operation as an Example of Hybrid Control System.7

2.3 Hybrid Control System Architecture 8

2.4 Fonnal Definition of Hybrid Control System AutOmata 10

2.5 Hybrid Control System Advantages 12

III. SUPERVISORY CONTROL AND DATA ACQUI ITION 13

3.1 What is SCADA 1

3.2 Where is it suitable? 13

3.3 Main Features of a SCADA System 14

1) Data Acquisition And Supervisory Control. 14

2) Data Presentation 16

3) Network and Security 17

4) Database C.onneclivity 17

3.4 Overview of some widely used SCADA Packages 17

Cimplici ty 18

InTouch 20

BridgeVIEW 22

v

IV. TRX ASSEMBLY L E PROJECT , 27

4.] Project Overview 2R

4.2 System Analy i 31

4.2.1 TRX Assembly Line Project Management. 31

a) Variables List. 3

b) Protocols 33

Automatic and Fixes Board Mode Protocol. 33

Purge Protocol 35

Board Re-entry Protocol 36

Benchmark Test for Database '" 36

Questionnaires 38

C) Eventflow Diagrams 38

4.2.2 Supervisory System Hardware .41

4.2.3 Supervisory Software Architecture .41

a) Hybrid Supervisory Control Software .42

Graphical User Interface (GUI) .42

Handshaking .45

Database , 46

1) Product Database 46

Product Database Archiving .49

2) Historian Database 49

Communication 53

b) Supervisory Software Algorithm 53

c) SCADA Package Selection 54

V. DESCRIPTION OF STATION] " 56

5.1 Protocol Description through Eventflow Diagrams 56

5.2 Supervisory Software Hierarchy , 62

]) GUI. 62

2) Handshaking _ 64

Synchronization (Critical Timing) Issues 67

VI

3) Databa e 69

4) Communication 71

5.3 Station 1 Block Diagrams 73

VI. SUMMARY OF OBSERVATION 86

VII. REFERENCES 89

\'11

Figures

LIST OF FIGURES

Page

Figure 2-1 Robot assembly line 8

Figure 2-2 Hybrid Control System Architecture 9

Figure 2-3 Hybrid Control System Automaton II

Figure 3-I An outline of a typical SCADA system 15

Figure 4-1 The TRX assembly line 29

Figure 4-2 A part of the list of the variables 34

Figure 4-3 A sample of Fix board mode protocoL 35

Figure 4-4 A sample of Purge mode protocol 37

Figure 4-5 Table of Board reentry Flag definitions 37

Figure 4-6 Results of the benchmark tests on three databases using three front-ends 38

Figure 4-7 A sample Questionnaire 39

Figure 4-8 A part of the even ttlow diagram of one station .40

Figure 4-9a The "Main" GUI command center. .43

Figure 4-9b The "Overview" GUI. , .44

Figure 4-10 A part of the product Database functionality requirements .47-48

Figure 4-1 J Example of Database Field defintions 50

Figure 4-12 Access™ Database archiving procedure 51

Figure 4-13 Historian Database requirements 52

Figure 4-14 Networking and Data sharing Scheme 54

Figure 5-1 a Station I Event-flow diagram 57

Figure 5-1 b Station I Eventtlow diagram 59

Figure 5-1 c Station 1 Eventflow diagram 61

Figure 5-2 Station 1 GUI. 63

Figure 5-3 Station 1 Automatic and Fixed Board Mode protocol 65

Figure 5-4 Station 1 Purge protocol.. 66

VIII

Figure 5-5 Station 1 Board reentry protocoL 68

Figure 5-6 Product Database entries for Station 1 70

Figure 5-7 A part of BridgeVrEW engine configuration file 72

Figure 5-8 Station I Hierarchy 74

Figure 5-9 Station I Readin State Machine Icon and Block Diagram 75

Figure 5-10 States in Readin State Machine 76-78

Figure 5-11 Icon and Block diagram of the subprogram in state "Readin Board

Info from Database" 78

Figure 5-12 Icon and Block diagram of the subprogram that queries the database

in program Readin State Machine _ 79

Figure 5-] 3 Icon and Block diagram of the subprogram that determines board status

in Board Reentry protocol in program Readin State Machine HO

Figure 5-14 Icon and Block diagram of the subprogram that writes to Adept

Controller I in Readin State Machine 8]

Figu re 5-15 Icon and Block diagram of the subprogram that reads from Adept

Controller 1 in Readot State Machine 81

Figure 5-] 6 Station I Readot State Machine Icon and Block Diagram 82

Figure 5-17 Icon and Block diagram of the subprogram that updates the database

in program Readot State Machine 83

Figure 5-18 Station I Purge State Machine Icon and Block Diagram 84

Figure 5-19 Icon and Block diagram of the subprogram that updates the database

in program Purge State Machine 85

IX

CHAPTER I

INTRODUCTION

1.1 Abstract

This thesis describes the supervisory software design and program for a hybrid control

system industrial assembly line involving three robots controlling nine stations. It enable

the software engineers to develop a hierarchical structure for integrating GUI, database,

handshaking and network protocols in a single program lts one-program-for-the-whole

sytem approach allows users to monitor the effect of a change in a process parameter of

one robot over the whole assembly line. Moreover it stores and displays the product,

process and statistical data for better optimization of the assembly line. The supervisory

software is written in BridgeVIEWTM which utilizes the object oriented graphical

programming environment for the development of the code.

1.2 Introduction

Automation is recognized as an integral part of the industrial world. Though its benefits

extend to many areas such as office automation, it is most extensively used in the

manufacturing industry for its indispensable benefits to areas such as production,

information management, and safety features It not only provides better data acquiSItion

and control systems but also enhances the coordination between different instruments,

thus reducing the need for manual intervention in batch processes. The net results are

increased productivity, safer operations, and consequently, reduced cost of production

Traditionally, two distinct types of control systems are employed in industry. Distributed

Control Systems (DCS) are used for continuous control systems. DCS's are

microprocessor-based replacements for the panel board controllers and recorders DeS

systems are extensively used, for example, in refineries and petrochemical plants

Programmable Logic Controllers (PLC), on the other hand, are used for discrete systems

mostly involving On/Off or digital controls. PLC's are also microprocessor-based

replacements for hardwired relays and mechanical timers.

Advancement in computer, sensors and controllers technology required control engineers

to deal with larger and more complicated contfol systems. [t was no longer sufficient to

choose between a discrete or analog system because both types were often needed.

Gradually, both continuous and discrete control systems were extended to accommodate

crucial properties of each other [La Fauci 97], and the line of demarcation between them

became fuzzy A new type of control system - Hybrid Control System (HCS) - emerged

that combines both Distributed Control Systems and Programmable Logic Controllers

The synergistic effect creates a control system that encompasses the features and

functionality of each type and beyond

The overlapping of continuous and discrete control system boundaries with one another

increased the complexity of the resulting control systems The combined controllers

involve not only the complexity of continuous and discrete controllers but also the added

complexity of mutual interaction. The increased complexity required the usc of higher

level (preferably graphic) languages Desktop computers' role rapidly Increased in

automation and control systems because of their ll;bility to run higher level (especially

2

visual) languages and capabilities such as networking and databases. The major hurdle in

their use - reliability - was significantly reduced with the implementation of parallel

architectures, multitasking and multiprocessing operating systems.

Canned commercial software is now available for desktop computers requiring very little

programming; just configuring the I/O's and logic using built-in functions provided rapid

development and reliability. However, extensive training is required to configure the

system, and unique instrumentation and modification requires profcs ional help from the

manufacturers of the software package

High level automation languages are also becoming popular They arc more flexible then

canned packages and are relatively easy to use, especially if they have a graphical

environment An example is "iconic programming" in which functions are depicted as

icons. Icons are copied from a buill-in library, arranged, and wires drawn between them

to show data flow path and sequence This kind of programming is gaining popularity as

it frees the programmer from mastering a text-based language.

How effective and suitable are these high level graphical languages for Hybrid Control

Systems and what are their cons and pros? This thesis addresses this questIon with a case

study using a popular graphical language. BridgeVIEW [National Instruments Corp 96].

to complete a proprietary hybrid control project involving a robotic assembly line for a

cellular relay station motherboard manufacturer

]

-

CHAPTER II

HYBRiD CONTROL SYSTEMS

2.1 Introduction to Control Systems

The history of automation is as old as the history of human civilization Right from the

making of the first tool on earth there has been a constant trend towards automation The

first efforts for automation utilized stones and wood, followed by mechanical automat ton.

With the introduction of electricity, mechanical parts were replaced by electrical parts.

Today, there is a large number of automatic electrical controls in homes, businesses and

industries

Automation is the act of controlling processes with minimal human involwment A

typical control has the ability to start and maintain the process variables within their

speci fied ranges, and eventually, stop the process when needed Thus an automatic

control system replaces the human input required for the process control

A control system for any process can be designed by knowing the inputs, control actions,

and outputs. Physical or chemical inputs to a process are generally transformed to

electrical signals using transducers [Warnock 88]. Transducers generate an electrical

signal proportional to the applied physical or chemical stimulus These signals can be

discrete (High/Low) or analog (continuous) For example. an On/OfT switch produces a

discrete signal while a thermocouple produces an analog signal (millivolts)

There are two major classes of electrical control systems "Continuous control systems"

involve addition. subtraction, differentiation and integration of the continuously incoming

4

-

signals (current/voltages) and provid corr ct output In real time. "Dis rete ntr

systems" output HighILow signals ba ed on binary inputs (0 or 1) and Boolean contr

logic. Examples are "Proportional, Integral and Oeri ati "(PIO) ontrollers for

continuou control ystems and "Programmable Logic Controll rs" (PL) for dis r t

control systems.

Initially, all controllers were hardwired and were applicabl onl for the proces for

which they were designed These controllers would 10 e reliability if any design

parameter had to be changed in the process Integrated circuit gave software/control

engineers the flexibility to use software routines for developing the logic for these

controllers. A controller can now be used to handle different processes ju t by changing

the software code. Controllers are now more robust, modular and portable

Control system reliability is a primary concern for control engmeers because of

significant productivity (and financial) loss incurred by breakdown. Whereas controllers

for both discrete and continuous control systems were specifically design d for reliable

operation as standalone independent units, desktop computers lagged behind In

reliability, partly because their operating system was not designed with automation In

mind Operating systems of the early computers encountered frequent freeze-ups, usually

because of viruses, low resource allocations, process disruptions, etc.

With the implementation of parallel architectures, multitasking and multiprocessing

operating systems, desktop computer became more reliable A problem in a single

process does not freeze up the computer anymore, other processes continue to run, thus

making computers reliable enough for uninterrupted control system operations With the

5

._-----------------------

-

increasing reliability of desktop computers, their role rapidly increased in automation

because of their high potential for augmenting control system flexibility. Computers add

capabilities such as networking, database, and ability to run higher level (especially

visual) languages.

The advancement in computer, sensor and controller technology paved the way for the

control engineers to deal with larger and more complicated control systems. It was no

longer sufficient to choose between a discrete or analog system because both types were

often needed Thus, research vvas conducted in areas previously thought difficult to deal

with [Lygeros 98]. As a result, both continuous and discrete control systems were

extended to accommodate crucial properties of each other [La Fauci 97], and the line of

demarcation between them became fuzzy

The conventional design algorithms for discrete and continuous control systems were

also modified. The overlapping of continuous and discrete control system boundaries

with one another increases the complexity of the resulting control system. The combined

controllers involve not only the complexity of continuous and discrete controllers but also

the added complexity of mutual interaction A hierarchy was developed to define the

control structure for designing the combined continuous and discrete control system. In

this hierarchy, continuous control systems carry out the lower level tasks and discrete

control systems supervise these lower level tasks and issue the top-level commands. The

control systems with the above hierarchical control structure are known as "Hybrid

control systems"

6

-

2.2 Robot Assembly Line operation as an example of Hybrid Control System

A robot assembly line operation is a typical example of hybrid control system. In the

example shown in figure 2-1, a printed circuit board Y is moving on the conveyor belt

As it reaches position 1. Robot A picks it up and places it on position 2 inside the station

#1, where specific parts are inserted on it. When insertion is complete at position 2,

Robot A picks it up and puts it on position 3 Here too, some process is done on the

board. Robot A then transfers it to position 4. After completion of the board process at

position 4, the board is placed on the conveyor belt again, which takes the board to

position 5 Here Robot B continues to advance the board to let all the processes at

positions 6,7 and 8 inside station #2 be completed The assembled board is then picked

up by Robot B and is placed on the "Product box"

Each "position" in this assembly line operation represents a "Discrete Event System",

while the work done on the board at each position is the "Continuous System" As the

board reaches position I, an event is triggered and Robot A is told to pick the board up

An actuator controls the movement of Robot A, governed by differential equations When

Robot A grips the board, another event is triggered commanding the Robot to put the

board at position 2. Such discrete states and events govern the control algorithm for a

complete assembly line operation. describing the movement of robots and conveyor belts

at each state. The combination of such continuous and discrete systems makes the

assembly line operation a hybrid control system

7

-

Fig 2-1: Robot assembly line.

2.3 Hybrid Control System Architecture

Hybrid control systems form a class of controllers typically built on a 3-layer hierarchical

model. Though most industrial hybrid controllers today encompass a wider range of

diversified control functions representing more than three layers of architecture, they can

still be represented by the 3-layer abstract model [Godbole, Lygeros and Sastry 9)]

shown in Figure 2-2 The lowest layer of this architecture. "Continuous System ".

interacts directly with the plant control processes This layer is modeled by using the

integral, proportional, differential or difference equations The upper layer, "Discrete

Event System", acts as supervisory controller The combination of the discrete events in

this layer follows the hybrid system control algorithm These algorithms are usually

depicted by Finite State Machines, Petri Nets, etc. The middle or "Interface" layer does

the communication between the continuous and discrete layers. It translates the action of

8

-

continuous layer to events for the discrete layer and conversely convert the responses

(events) from the discrete layer to signals for the continuous system. In this 3-layer

hybrid system architecture, any component not in the domain of the continuous system

can be treated as a part of the discrete layer. This hierarchy of the multi-layer hybrid

system is somewhat similar in concept to Open System Interconnection (OSI)

[Tanenbaum 96] model of networking in which information gets condensed in the

ascending order of layers. The topmost layer is the most abstract]n it, a single command

carries all the information regarding the work performed by the subsequent layer and

down all the way to the lowest layer.

Generalized
Digital/Analog
Converter

DISCRETE EVENT SYSTEMS
Finite State Machines. Pelri Nets

. _.

SIGNAL EVENTS/
GENERATOR INTERFACE SYMBOL

GENERATOR

.-.

CONTINUOUS SYSTEMS
Differential - DiITerence Equations

Generalized
AnalogIDigHal
Converter

Fig 2-2: Hybrid Control System architecture
([Godbole, Lygeros and Sastry 95], page 167)

-

2.4 Formal Definition of Hybrid Control System Automata

"Hybrid control systems are continuous-variable and continuous-time systems with

phased operations" [Deshpande and Varaiya 95]. Inside each phase of operation, the

control system carries out the tasks set by static or dynamic rules of that phase. Transition

between the phases takes place when the control system status within a phase evolves to a

point where certain predefined transition criteria are met. At any instant, the control

system can be viewed as a binary tuple of continuous and discrete states. Each phase is a

discrete variable representing a single state within the state flow architecture of the

control system. The continuous system defines the position of the control system within a

single state.

The automata for the hybrid control systems were generalized by Deshpande and Varaiya

[Deshpande and Varaiya 95]. They generalized the "hybrid system" as a tuple

H = (Q, Rn
, I, E, cP)

where:

Q is a finite set of discrete states,

Rn is a set of continuous states,

.I'is a finite set of discrete e~ents,

E is a finite set of edges. The edges model the discrete event system dynamics of the

system.

An edge e E E is denoted as (qe. Xe. Ve, reo q.J and is enabled when the discrete

state is qe and the continuous state is Xe When a transition through e is taken, the

JO

-

event Ve E }; is accepted by the system. The continuous state IS then reset

according to map 1"e, and the system enters the discrete state q 'e,

ifJ is a set of differential inclusions that models the continuous dynamics of the system.

An example depiction of hybrid system automata is shown in Figure 2-4, with three

discrete states namely 1,2 and 3. A transition from state I to state 2 on edge el can only

take place if the continuous state is X, and discrete event is VI Mapping it to 1"/ then

resets the continuous state Similarly, the transition from state 2 to state 1 is possible on

edge e4 when the continuous state is X4 , discrete event is V" and the map is 1"4. As a

generalization each discrete state can go to another if the continuous state X respective to

its discrete state is running and creates a discrete event V for transition to the other

discrete state using its map r.

XI. VI. r, XI. V j • r1

el 2 c, 1e. e,

X •• V •. r. X,. V,. rj

Fig 2-4: A Hybrid Control System automaton

11

-

2.5 Hybrid Control System Advantages

A hybrid control system is oft.en the best solution for a process involving both discrete

and continuous systems [Robinson and Salkas 95]. It allows all process I/O's to be

configured within a single program, yielding a better organization for controlling the

whole system. Also, networking is integrated at all levels - along with the system

database - smoothly, securely and efficiently. Its one-program-for-the-whole-system

approach allows maintenance engineers to maintain a single source code instead of

multiple sources required for control systems configured separately as discrete and

continuous.

An operator of a hybrid system is given a uniform interface to the processes. making it

possible to recognize the problems more precisely. Since the configuration of all the

processes is done within a single program, a process can be modified easily and its

consequences on other processes can be seen readily. In summary, the diverse control

requirements of a system can be met with reliability, flexibility, modularity and

scalability by hybrid control algorithms within a single program

12

-

-

CHAPTER III

SUPERVISROY CONTROL AND DATA ACQUISITION

3.1 What is SCADA ?

Supervisory Control And Data Acquisition (SCADA) is defined as a system in which a

central computer or operator measures and controls the processes which may be

distributed at several locations, some of which may even be remote [Boyer 93]. An

example is a central computer gathering information from all the processes, and based on

that information, taking appropriate actions to control valves, switches, motors etc. A

SCADA "package" is a set of software tools for industrial applications that facilitates

acquisition, presentation, sharing, and storage of data and control equipment Data is

conditioned by SCADA packages to display real time process information in the form of

graphs, tables, etc. and is passed to the control algorithms to provide a precision control

to the industrial instruments. Networking protocols like TCP, UDP, and ODE are

generally built into SCADA packages for sharing information Relational databases arc

used for storing and viewing historical data. Databases can be programmatically accessed

by Standard Query Language (SQL) queries In summary, SCADA package prOVide a

comprehensive solution for industrial automation.

3.2 Where is it suitable?

SCADA packages are suitable for large-scale and enterprise-wide automation They have

built-in capabilities for configuring, data sharing over the network, error handling, stonng

13

-

data, and generating reports. The SCADA packages can handle for a very large number

of analog and digital inputs from instruments distributed plant-wide. The ability to handle

complexities of large-scale automation makes the initial cost of installing the SCADA

package quite high. The initial cost, however, is justified due to the ability of these

packages to handle complexities involved in a large-scale automation project. Though

SCADA packages can be used for smaller projects, their yield versus price ratio is much

lower than lower-level software which could just as easily handle the same project

3.3 Main Features of a SCADA System

A typical SCADA system is shown in Figure 3-1. The main features of the SCADA

system are listed below and discussed further in the following sections:

I) Data Acquisition and Supervisory Control

2) Data Presentation

3) Networking and Security

4) Database Connectivity

I) Data Acquisition And Supervisory Control

All SCADA packages have quite powerful and diverse capabilities in this area. They

can acquire data from Programmable Logic Controllers, Distributed Control Systems,

Hybrid Control Systems; besides a large number of analog, digital, text-string and

boolean inputs and outputs. They usually include a library of device drivers (built-in

programs that provide an interface between computer software and the device

hardware) for the large number of instruments available in the market. Most of these

device drivers can easily be configured for retrieving data and sending control

14

-

Client\
Viewer

Client\
Viewer

Client\
Viewer

0 0 0- - -
- ~o: - ~o: - i DID:--8.

I

~
I

Supervisor PCI----B-I
~ ~

1---=1
I~~I

Database
C~ Server

~~~~~~~ -
~

DOOOO[J~
~ I 1

Local Area Network

I

1110 fFJ.J"-..
:-
~n n !c::J U,q)I I

~ - :

Image
- Processing

I+<=', I
PLC's

Distributed
Control

Fig 3-1 An outline of a typical SCADA system

15

~j



-

-

values to the controllers. Apart from the built in drivers, SCADA packages allow the

users to write their own code for customized hardware application in many text

based and graphical languages.

2) Data Presentation

The rich Graphical User Interfaces (GUI) in most SCADA packages make it easy to

mimic the instruments or systems. GUI's are often called Man Machine Interface

(MMl). MMI's contain a variety of graphical displays including switches, knobs. bulb

indicators, meters, gauges, slide indicators, pumps and other digital/analog displays

and controls. Using these graphical symbols, the' process flow diagram of a large

scale factory can effectively be depicted. Objects can also be animated with or

without linking them to actual data points.

Real-Time (recent) or historical (stored) data can also be viewed uSing graphical

displays. The graphs are quite flexible and can be configured, ego for the scale and

the units of data to be viewed beside many many other features. Or. an automatic

option can be selected to let the program adjust them Some SCADA packages even

give users options to create their own graphical displays or edit existing ones. A

report generation facil ity is provided to obtain current or historical data in spreadsheet

word processor format. Reports can be configured to view the desired data in tabular

or graphical forms

Alarm management is provided for vlewlllg and acknowledging them. DifTerent

levels of alarm like low-low, low, high-high, high, etc can be set for input and output

16



-

data points Alarms can be grouped together and viewed as a group or according to

the priorities set for each group.

3) Networking and Security

SCADA packages provide the multilevel security options for different level of users

The security levels are hierarchical giving full privilege to the top level

(administrator) and very little privilege to the bottom level (observer). Besides peer

to-peer networking, standard network protocols are supported for sharing data along

with other users and/or nodes. SCADA packages usually support TCPIIP. UDP, and

DOE for transferring data over different network topologies such as Ethernet Many

SCADA packages support the client/server model for supervisory control and

management of distributed systems in large-scale industrial automations where

equipment is spread all over the plant

4) Database Connectivity

Data is logged by SCADA packages in a database on user-selected time intervals.

from once a second to once a year These databases suppOl1 the open database

connectivity (ODBC) at the back end of a relational database The front end of the

relational database uses standard query language to access data Standard databases

like Oracle and Access can also be plugged in to store or retrieve data from the

database. When configured in sharing mode. remote users can also read and write to

the database over the network



-

-

3.4 Ovcniew of somc widelv lIsed SCADA Packages

SCADA packages popular in industrial applicat,ions share similar features described in

the previous section The difference between SCADA packages, lies mostly in user

friendliness, richnesss of graphical user interface, network capabilities especially in

handling large number of nodes, and database efficiency. Cimplicity by GE foanuc

Automation, InTouch® by Wonderware Corporation and BridgeVIE\\rTM by National

Instruments SCADA packages are described below.

CIMPLICITY®

CIMPLICITY® is the SCADA package made by GE Fanuc Automation Its features are

summed up below·

• It is easy to use for people familiar with Microsoft Windows™ environment

• It conforms to the 32-bit architecture of the PC's, fully capitalizing upon the inherent

multiprocessing, multitasking, and multithreading capabilities [GE f'anuc Automation

95].

• Custom applications can be developed with Visual Basic language Cimplicity's

Program Editor provides an object interface to alarms, data values, elc. to create, edit.

or browse for existing data points, and log status, etc Data points can also hL:

configured in a standard text editor or spreadsheet and saved as a comma-delimited

file and imported to the Program Editor By the same token, a confIguration fi Ie can

be exported to several third party packages Changes in the configuration file can be

made on the fly while running the ImportlExport utility

18



•

-
The "Event Editor" In Cimplicity manages the events during the program run like

acknowledging the alarms, logging data and triggering devices. Events can be

invoked through a single preset action or through a combination of actions like

changing values and alarm status or on reaching at a specific time. Actions can also

be enforced as a result of more than one event

• A front end GU] can be created using "ClMEdit" editor The editor has a set of

drawing tool to create 2-d or 3-d graphics It can embed OLE 2.0 objects.

spreadsheets, video files etc Objects can be animated for representing input or

control actions via a dialogue box of "Object Properties" in the CIMEdit using

geometric coordinates. Object can be placed at various locations on the screen

Cimplicity objects can be linked to data via "Cimplicity points" located anywhere on

the network to view continuous changes

• Trending is provided to compare current and previous data from multiple sources

• Data values can be plotted by configuring different colors, lines, etc Multi-axis

plotting is achieved with unlimited numbers of pens per chart; each pen call have a

different color, plotting rate, and separate axis [GE Fanuc Automation 961

• Cimplicity allows scalability from a single Man Machine Interface all the way up to a

large-scale supervisory system

• Cimplicity supports a distributed architecture that not only provides peer-to-peer

networking but also a client/server model. Either the server, or each node in a peer to

peer network must run Cimplicity. TCP/1P, ODE. Data Highway Plus. Modbusl"\'

RTU, Modbus Plus, Siemens HI-TF. and serial RS-232 protocols are supported for

peer-to-peer and client/server models.

I')



-

• Alarms, events and other values can be logged dynamically, as contigured via a

dialog box with options to log values. alarm states. re ources. time stamp etc. for any

point. An Open DataBase Connectivity (ODBC) driver is provided for logging data to

ODBC compl iant databases Iike Microsotl Access and 1'v1lcrosoft SQL Server

Database size is maintained by purging the older data, with an option to archive the

purged data in a Comma Separate Variable (CSV) file

• Reports can be generated for data and alarms by retrieving them from the database.

Data can be exported to spreadsheet files for turther analysis

• A remote computer on the network running Cimplicity can also be used to log data In

the database to reduce cpu load or as a redundant backup.

• Security features allow only the authorized users to retneve data from the database.

InTouch:

InTouch SCADA package is the product of Wonderware CorporatIon It has the larg 51

share of the SCADA packages in the industrial market

• lnTouch has two different versions for Windows 95 and Windows NT. but later

versions (7 0) are compatible with both Windows 95 and NT

• It has a library of wizards that create graphics and database tags automatically The

"WindowMaker" facility allows the user to define and configure tags. alarms. etc

using the "Special" tab A Script Editor provIdes the necessary tools to write a custom

base program with built-in logical. string, and mathematical expressions to help In

writing syntaet1cally incorrect code Tag names and alarms can also be included In

these expressions

20



•

-
Microsoft's ActiveX controllers can be integrated fully 10 the application'

[Wonderware 97].

• InTouch uses the standard Windows GUI format. GUl's can be developed with a

large number of objects using a variety of object-oriented design tools. InTouch

supports any type of graphic resolution. Objects in the GUI can be animated with

links to the tagged discrete, analog and string values and alarms. Though a library of

pre-configured yet editable objects is present, more sophisticated wizards like

"AutoCAD conversion" and "OEM's" wizard can also be utdized for creating data

and graphic tags automatically.

• A large number of alarms can be configured with 999 alarm priorities and alarm

organized into a hierarchical placement with eight levels of alarms group, each

supporting up to sixteen subgroups. Alarms can be simultaneously watched from

multiple remote applications using a dynamic referencing utility Individual and

group alarms can be acknowledged using a global alarm acknowledgment facility

• The historical trending graphs are capable of simultaneously plotting sixteen charts

from one or more data til'es. Though any number of historical or real-time data graphs

can be displayed on the screen, only four charts can be displayed on a real-time graph

at one time.

• [nTouch supports both peer-to-peer and client/server models Multi-platform

connectivity between computers running Windows, VMS and UNIX is provided with

InTouch's proprietary NetDDE protocol TCP/lP, NetBIOS, Novell, Token Ring,

Arcnet, DEC net and serial communication protocols are all supported

Communication protocols of several Programmable Logic Controllers are also

21



•

•

-

-

supported such as Allen-Bradley, Siemens, Modicon, Opto 22 and Square D

[Wonderware 95}.

110 data sources as well as the GUI of a process rl.mning on a remote PC can be

viewed using DOE protocol or Wonderware SuiteLink protocol.

Applications can be developed using Object Linking and Embedding (OLE) for

Process Control (OPC), a Microsoft standard of communication to provide a standard

interface between business systems, control systems and industrial de\ ices [National

Instruments Corp 97d].

• Discrete, real, integer and string values can be configured as database tags Intouch

can access databases such as ORACLE, Microsoft SQL Server, Industrial SQL

server, Sybase, dBase and Microsoft's ODBC compliant databases Any number of

CSV spreadsheets can be used for the database tag configurations The Dynamic

Referencing utility allows to toggle between change database referenced tags and

input /output tags on the fly

BridgeVIEW

National lnstrument's SCADA package, BridgeVIEW, is somewhat unique among

traditional packages. It provides the test and measurement capabilities in addition to the

utilities of a typical SCADA package, and includes a fully functional, user-friendly yet

powerful high-level graphical programming language called "G". This seamless

integration of graphical programming environment along with the SCADA functionality

provides an unprecedented flexibility to the end user for customizing their applications

22



-

BridgeVIEW (1.0) SCADA Properties

• BridgeVIEW also supports 32-bit architecture ofWindows95 and NT

• The BridgeVIEW Engine is the heart of this CADA software [National Instrument

Corp 97c] It has a proprietary real-time database that keeps track of tag and process

information. When the engine launches, it reads a configuration file (with an

extension of scf - SCADA ConfIguration File) that contains all the required

information for each tag in the system. The Engine runs separately frolll the rest of

the SCADA application and device servers to increase data logging efficiency.

• BridgeV1EW Engine uses tags for data acquisition The "Tag Configuration Editor"

creates/edits a string, memory, discrete or analog tag to define Its link with the

physical I/O point, and associated process information such as name description,

engineering units, scaling, alarming etc. The information regarding all the tags is

saved in a confrguration file, which can be exported or imported to/from delimited

text files or spreadsheets.

• The Graphical User Interface (GUT) can support a large number of objects.

BridgeV1EW has a built-in library of a variety of graphical displays, trend charts,

push-buttons, alarms etc. Pictures and symbols from many commercial drawi ng

packages can also be imported into the GUI The MMI wizard allows user to create

and configure the objects easily Objects on the front panel can be linked to any of the

tags (as configured in the Tag Configuration Editor) and can be anllllated as well

• Alarms can be configured for any non-text tag using the Tag Configuration Editor

Alarms can be enacted for hi-hi, hi, 10, 10-10 conditions against the limits set for the

tag There are 15 priority levels and user groups In which alarms can be distributed

23



BridgeVIEW alarm summary display facility allows for selective viewing, e.g. the

alarms of highest priority level, or of a particular group Besides alarms, events slich

as start, stop, and faults can be logged to the disk and viewed by the Event History

Display facility.

• Historical data can be logged using a high throughput threaded Citadel™ database.

Citadel utilizes the 32 bit Cyclic Redundancy Check (CRC) for data integration and

compression techniques [National Instruments Corp 97a) Historical Trend Viewer

allows the user to display logged data for any number of tags. Each GUI can have

several Historical Trend Viewers Real-time data for any number of tags can be

displayed on the GUI using the Real-Time Trend graph

• Peer-to-peer networking and client/server model are both supported. Device servers

are the link between the BridgeVIEW Engine and the hardware devices. Devices like

PLC's, PC DAQ boards, and remote I/O's communicate with the device servers

BridgeVIEW Engine in turn communicates with the device server to get the I/O

values associated with the tags BridgeVIEW has the device servers for several PLC's

like Allen Bradley, Siemens, Modbus, GE Fanuc, Ormon etc and I/O networks like

National Instrument DAQ, Optomux, Foundation field Bus etc Device servers can

be configured using DOE, OPC, Industrial Automation Kernel OAK), Vinual

Instrument (VI), TCP/IP and UDP network protocols Tags are assigned to device

servers using the Tag Cbnfiguratlon Editor to get their respective values

• Citadel™ database is used for logging the discrete, analog and string values of the

tags Lt timestamps each data value entered in the database, so data in Citadel can be

accessed by defining the time limits and tag names The data stored in the Citadel can

2.t



-

-

be exported to Microsoft Excel. Citadel is also accessible to other applications via

SQL and ODBC interface.

Test And Measurement in BridgeVIEW (1.0)

• BridgeVIEW uses a graphical language for test, measurement and analysis, a very

useful feature providing flexibility not available in other SCADA packages

• BridgeVIEW combines the graphical editing and execution system upon the object

oriented, graphical, dataflow language G in which programs are created in block.

diagrams As a dataflow language, any section of G code can execute as soon as it

receives all of its input data, hence G applications have a potential of executing much

faster than the sequential text based languages. This combination of object-oriented

and dataflow programming style makes the G language easy to program, easy to

debug, and faster. In addition, its GUI's can be very intuitive

• BridgeVIEW has the same programming concepts and style as Lab VIEW A program

in LabVIEW (or BridgeVIEW) is written using three editors [Mahmood 961, front

panel. block. diagram and icon/connector editor A "Virtual Instrument" can be

created on the front panel by mimicking the actual electrical instrument The input

terminals of the actual instrument are depicted as "Controllers" in the Virtual

Instrument and the display units as "Indicators" BridgeVIEW has an extenSIve

library of controllers and indicators in the "Control" palette tool. Every Virtual

instrument has a "Block Diagram" associated with it. The block diagram editor is

used to write the actual graphical code. The function palette In the block diagram

contains structures, string, array, mathematical, statistical analysis, file 110, time,

communication, data acquisition and several other functions Any number of third

25



-
party functions can also be included in the functions palette library. Sin e the

programs in BridgeVIEW are written using objects, there are various tools in the tools

palette to help define the flow of the program. Arguments of one program can be

passed to another using the connections made by an icon/connector editor, which

allows a program to be used as a subroutine inside other programs.

• BridgeVIEW programs are hierarchical and modular [National Instrument Corp 96]

Complex problems can be divided into subtasks and the programmer can create an

object for every subtask in BridgeViEW G code. By interconnecting these objects,

the main program is developed just like a flowchart. Main programs in BridgeVIEW

are much easier for the non-programmers to understand

26



-
CHAPTER IV

TRX ASSEMBLY LINE PROJECT

The TRX line assembles communication boards for the booster stations (repeaters) of a

cellular (mobile) telephone network. The communication boards are processed through

various stages in the assembly line where parts are automatically inserted and oldered

into the board Somewhere during the process, covers and labels are also put on the

board. After assembly completion, boards are passed through test stations for

functionality tests. The TRX assembly line is a hybrid control model Each stage in the

assembly line is unique in that each assembly line operation uses either continuous or

discrete control system technique for gripping, holding, inserting, and soldering parts.

The BridgeVIEW SCADA package was selected to provide the supervisory control

software for the TRX assembly line. The supervisory software s role was to create a link

with several standalone automated units using Dynamic Data Exchange (DOE), track the

location and process information of each board on the TRX assembly line, and provide

this information to all units that require it. Supervisory control software was also

responsible for updating the product database information in real time for review by

authorized users on the network.

The primary goal of this TRX assembly line was to have a 11lgh production rate at

economical cost Ideally each board should take about eight minutes from stan to finish

As multiple boards are processed concurrently the boards are produced successively after

the initial startup of eight minutes This TRX assembly line should be capable or

producing five different types of communication boards as per demand and without

27



-
interruption With regard to the complexity of TRX assembly line operation, this overall

production rate goal is considered to be highly ambitious. The line is fully automated,

eliminating human involvement, and reducing breakdown frequency and percentage,

which is very important since a breakdown costs about five thousand dollars per minute

and a rejected board costs $500 because of gold and rare metal plating. The cost of

running the line would be economical with high profit ratio if the goals are met.

4.1 I)roject Overview

The overall TRX assembly line is shown in Figure 4-1. The TRX assembly line can be

divided in nine stations A conveyor belt runs through the stations. There is a system

computer for supervisory control and a plant computer for user interface Stations I, 3.

and 6 are robotics driven by Adept microprocessor-based controllers Though each

station performs its job using its own proprietary control systems, they all depend on the

supervisory computer to tell them what to do and then relay the processing information

back to the system computer.

The TRX assembly line operation starts with the plant computer, where the operator

provides a list of the type-coded serial numbers of the boards to be processed. This list is

relayed to the system computer, which keeps these serial numbers in its database This

serial number is used to store and retrieve production information for a panicular board

tol from the database. The board's sequential flow begins with the board coming from a

loader through the conveyor belt and stopping at Station I' s prequeue stop. It then goes to

the queue stop where it waits to be processed. It enters Station I as the station becomes

available. First, its serial number is read by the bar code reader This serial number is

28



-
Slallon #9

Test Slallon

Slallon jt4

Tole Conveyor

DDDDDDD
Stallon #S

Shull!e Slaloon

Slallon #7

Tole on\,cvOf

Stallon #~

Shull!e Slallon

Plant

Computer

POlnl·lo

p0101

",,1<kr

St..lll0n lUi

Robol

Slallon #3

Robot

System

CQmputer

MIn,wave

Solder

Stallon #'2

Preheat. PreOux

Station # 1

Robot

r
Future SlallOo

r-uturc Robol

Conveyor Beil

Fig 4-1 The TRX assembly line

passed on to the System Computer vIa Adept Controller I, which returns important

information needed by the Adept Controller I to process the board, such as board type,

etc

The board is then picked up by he robot arm in Station I and put at the work stop Based

on the information provided by the System Computer about the board, Adept Controller I

requests several machines associated with Station I to provide the right parts (mostly

electrical) for that particular board type. The robot arm then goes to these machines one

by one to get these parts and place them at the right location on the board. The exact

location for insertion of parts is found using image processing techniques After parts

insertion is complete, the board is picked up again by the robot arm and placed on the

conveyor belt for processing in Station 2

29

L



-

...

Before entering Station 2, the board stops at prequeue and queue stops waiting for Station

2 availability. As board enters Station 2, its serial number is read again by the bar code

reader and sent to the System Computer via Adept Controller I in a manner similar to the

previous station. Station 2 takes the board now loaded with parts through a preheat and a

preflux oven, where the board is heated and flux is put on the parts which are then

soldered by the Miniwave soldering machine.

The board coming out of Station 2 on the conveyor belt waits at prequeue and queue

stops prior to getting processed in Station 3. Like in previous stations, its serial number is

read by the bar code reader as the board gets into Station 3. The serial number is passed

to the Adept Controller 2 and System Computer in a way similar to Adept Controller I

The information received back from System Computer is then transferred to Station 4's

tote conveyor, which passes the frames for the particular board to assembly nest in

Station 3 for placement by its robot arm The frame is labeled and more electrical parts

are inserted and screwed to the frame/board assembly, all using a robot arm which finally

places the frame/board assembly to a shuttle (Station 5) that takes It to Station 6

Having received related information about the board at Station 6 the serial number or the

board is read again, and passed to Adept Controller 3 Station 6's robot arm picks the

frame/board assembly up. inserts some more electrical parts, then put it into the Point-to

point soldering machine for soldering the electrical parts.

Station 7's tote conveyor gets the board information through Adept Controller 3 and

passes the right cover for the board to the assembly nest at Station 6 to be put onto the

10



-
frame/board assembly and screwed to the frame. The robot arm in Station 6 takes the

finished board out and puts it on the shuttle (Station 8) for delivery to Station 9

Station 9 reads the board serial number again and lets Adept Controller 3 get the board

information from the System Computer in a way similar to other Adept Controllers. The

finished board is then taken into Station 9's test fixture by the Gantry Robot controlled by

Adept Controller 3 for a battery of tests. After tests are completed, the board is taken out

from the test fixture by the Gantry Robot, and depending upon the test outcome, put into

the pass or fail cart which thereby marks the end of the TRX assembly line operation.

Though narrated above as the sequence of operations on a slingle board, it is in reality an

assembly line operation, where each machine is processing multiple boards not

necessaril y in serial order. Boards are manually taken in and out for various reasons. It is

the System Computer's supervisory role to keep complete information about every board

processed, in process, or to be processed. This supervisory control frees the system from

keeping any serial order on the boards for proper identification

4.2 System Analysis

This section describes the approach taken to understand the project along with the

software and hardware requirements

4.2.1 TRX Assembly Line Project Management

The project management for the TRX assembly line project involved

understanding the scope of the project, assigning roles to the team members in the

project, compiling the variables list, establishing the handshaking protocols for

31



-
communlcation between Adept controllers and System Computer, benchmark

testing, and numerous small issues.

The complexity and the size of the system warranted a team approach for

handling the project The project was divided in the following categories; Project

Integration, GUI, Process Database, Communlcation, Handshaking, and Product

Database A team of three engineers was chosen by the management based on

their experience, expertise and availability. Project Integration. GUI and Proces

Database categories were assigned to the two senior members of the team while

Communication, Handshaking and Product Database categories were assigned to

the author

The author's pnmary role was to lay down the detailed supervisory control

software through research and extensive communication with the client's

engll1eers who were installing the TRX assembly line. Other roles included

setting up the network communication protocol between the Supervisory System

Computer. Adept controllers and the Plant Computer. define a Hybrid Control

model based on the set of discrete events (handshaking protocols between System

Computer and Adept Controllers), and developing the Product Database

For time management (schedules and milestones), the project was set into three

phases. In the fIrst phase, a thorough study of TRX assembly line was done and

protocols were set. The second phase involved writing the actual code and

integrating different modules of the code. The third phase was to install and debug

the program on the site.

32



-
a. Variables List

A list of variables thought to be needed for handshaking, communication, GUI

and database was created These variables were needed to exchange process

information back and forth between the System Computer running supervisory

software and various machines including robot arms inside the station.s.

Meaningful column names for System Computer's Product Database were also

chosen to keep boards, status information linked to their serial numbers. Variables

and column names were chosen to depict the flow of the boards through different

stations in TRX assembly line. A part of the variables list is shown in Figure 4-2

as an example.

b Protocols

Establishing protocols for handshaking between the Adept controllers and

supervisory System Computer was a core requirement for the supervisory control

software of this TRX assembly line. These handshaking protocols map to a set of

discrete events in Hybrid Control model, that take the supervisory software from

one state to another state These protocols are basically the same but differ in

details for each station A general description of the protocols and database is

provided below along with an example questionnaire lIsed to set one of these

protocols.

• Automatic and Fixed Board Mode Protocol

The automatic and fixed board mode protocols were defined to allow

operation of the TRX assembly line in. either of two modes (I) Automatic



-

....

(Normal), (2) Fixed (Debug) or semi-automatic In Automatic mode, Sy tem

Computer will communicate with the TRX assembly line and run supervisory

software. In Fixed mode, the TRX assembly line will run with manual

intervention to debug. The modes can be set separately for each station, giving.

the flexibility to debug the TRX assembly line station by station A part of the

automatic and fixed board protocol is shown in Figure 4-3.

DATABASE STORAG E INFORMATION

STATION # 3 ADEPT ROBOT CELL (Stations 3 throu!!h 5)

Polling F1ag Variable Name Descrifltion Variable Definition

Hot Flag stJ.necd.readin System wlllputer needs to read the input o= Do not read
values. A new board has amved. Read the I = Read
Adept data and write the data Into Adept
system.

PoU Always stlcur.step Current step in AIM sequence (the array Stong
value equals the task assigned to the
sequence). Main sequence only

StJ read in stlbarcode.rd Barcode read from product at que slop 1172046/1
posItion to be read by BridgeView 1172046/2

117204613
11720681:1
117229613

SO read out brdstatus. pass Status of the hoard leaving rohot cell. One 0= False
brd status fail and only OIle of these two variables can he I = True

true Note: Brd.statlldail and
Brd.status.pass canllol
both be 1.

As needed user.log.name User log on name Slnng of user name

Note:

• -Ibe mformation shown under Polling Ilag IS as follows:

• Hot Flag - BndgeView should consuUllly mOllltor these varIables and take the appropnate aC[IOI1
when variable is true

• St3 read in - BndgeVIew should poHthcse vanabk-s whenever the 1·lot Flag stJ nelXi.readm goes to
true

• S13 read out- BndgeVlew should poll these variables whenevl.'T' the Hot Flag stJ.nced.readot goes t(l

true

• Poll Always - BndgeView should poll these vanables at set Illtcrvals

• As Needed - vanables that BndgeVlew may need I'ollmg pnontv and mtcrval ut.1'Clldt.111 all
frequency of use hy Hndge View.

Fig 4-2: A part of the list of variables

]4



-

Semi-Automatic (Fixed board) Mode Protocol

There will be two modes of operation for the TRX line. The most promIncnt mode bemg the Automatic
mode where the Ime has dIrect communication with System Computer. The sceond method will be the
seml-automatlc or fixed board mode, \~hieh will have no communication wIth System Computer.

AutomaJic Mode

The automatic mode will allow System Computcr to read and wnte to the Aim vanahles at each robot
stallon. System computer will be able to take information [rom these variable. and track the boards through
the 11IIe along with storing data to the database and to the hIstorian database. System computer will also be
able to provide Information to the adept controll.::rs sut:h as deterlmning what product type to run based on
the bar-code informahon and the pass/fail status from the upstream
station

S'clI/i-Automatic 01' Fixed BoaI'd A10de

Dunng debug of the machlOery or If Syst.::m Computcr IS not functional. fixed board may he useu to I1ln the
TRX line.

In order for the station to be loeked ·111 to fixed board moue the operator will need to go to thc fixed hoard
menu and select the proper board type to be run ThIS will have to be IIldivldually done for each station
controller After the operator has selected the iixed board mode the Adept Comroller will no longer accept
IOformalion from 'ystem Computer. The Adept Controller will still read the bar code and continue to track
the board through the cell as in automatIc mode. AttentIOn should be taJ..:en that the board being processed
matches the board selected by the operator Otherwise the robot could try to pb:H;e parts at undeSired
locatIons. causlIIg the robot to crash.

StatIOn 3 will be slightly different from statIon land () lI\ that it will need to read data from a /loppy disk.
The har-code reader will read the bar code JUst as In tht.: automatic mode. The difference IS that now the
Adept Controller will compare the bar code reading (printed ClrcUlt hoard serial numher) With entries In <J

table wInch has been read from the !loppy disk provided hv lht: Plant Computer Al thaI tlllle a search will
be uone to find the same serial numher In the table When a match has been founu the TRX senal numher.
prouuet number, reVISIon number, and date will be read from the table and wrltlen to the label, which will
be plaecd, on the board frame The serial number coukl now he deleted from the table to reduce the time
needed for future searchmg

It should be noted that IJl fixed board mode the station () controller would not know If a board has passed
station 9 tests. The statIOn 9 pass/fall status IS currently passed bad: to System Computer. not the slatlon (1

Adept Controller

Fig 4-3' A sample of Fix board mode protocol

• Purge Protocol

The purpose of purge protocol was to inform the supervIsory System

Computer about a board manually purged from the TRX assembly line

because of a problem in the board such as some parts of it broke down The

35



-

..

information regarding the purged board like serial number of board, time of

purge, etc. is passed to the supervisory System Computer to update the

product database and mark the board as purged. A part of the purge protocol is

shown in Figure 4-4.

• Board Re-entry Protocol

This protocol was needed to able to rerun a board through the TRX assembly

line. Upon entering a station, the bar code reader rcads the serial number of

the board and the Adept controller uses it to query the supervisory System

Comp·uter about board's status information If the board does not have status

information, it implies that the board never ran through the assembly line:

otherwise the board is reentering the station. The operator can either rerun or

remove the board from the station Figure 4-5 shows board re-entry flag

definitions.

• Benchmark Test for Database

Benchmark tests were performed to select the commercial database with the

fastest access time. A board typically gets through a station within two

minutes during which several queries have to be made on the database. Some

events allow only a few seconds for the query. The benchmark testing results

for Microsoft® Access, BridgVIEWTM native databases "Citadel', and

"dBASEV", using Access front-end, Microsoft® Excel, and National

Instruments® Standard Query Language (SQL) Toolkit are shown in Figure

4-6 .



-
Purge Protocol

The purge command has been introduced for the purpose of manually remo\'lllg boards from the cell or
assembly Ilne. Without the purge, it would be impossible to remove a board for any reason and record
such incidence to Ule database.

Thus, an operator will be allowed to purge by first removing the board fro III the work cell followed b)
pressing a custom purge button on the Adept menu This In tum will bring up another menu where Ule
operator will be able to specify the lociltiol\ from which tlle board is being purged When the operator
presses tlle button to remove the board tJle Adept Controller WIll prompl Ihe operator "Are You Sure']"
If tlle operator responds "Yes". the Adept Controller will purge the product number. serial number.
reVISion number, ,l1ld date/time for tIle board al that location ThaI unit will also be reinitialized for the
next board (i.e.: clamps open, lift down. global variables rese!. etc.). Ir the oper<llor responds "No" the
Adepl Controller would skip to the elld of the purge program and bypass the purge TOutine. No hot nags
would be set

System Computer will also be tracking the boards through the cell The hot nags for the System
Computer to look for will be st I.purge, sll.purge, st3.purge, stC, purge. and stt) .purge. These variables
will be sel to "I" during a purge by the Adepl Controller. who wi II also transfer Ille product number.
revision number, senal number. and date/tjme of the board being purged to the stX purge. prod, st X.
purge.re\'. stX.purge.ser and stXpurge.date \'anables (where X is the station number). This will allow
System Computer nol to miss recording tJle purged Infonnatiol1. After a board has been taken out via the
purge, the System Computer marks il as a failed board. sores other dala. then sets the purge variables
to null (" "j and the stx.purge equal to"O"

Fig 4-4' A sample of Purge mode protocol

Board Re-entT)' Flags Definition
The rollowlIlg arc the proposed buaru re-entrv proceuure Ilaf! condlllOns (The
comblnallon 0" ··I'ass". ·'Fall". and "Rerun" status uerlels the processlllg Iwaory ur
thL' board on the It nc)
Bar-code Reader At· PrevIOus Status of Board Read Pass rail Renm
StatIOn # I StatIOn # I Nev.' Board I
Station # I StatIon # I rai.led BoanJ I
Station #1 Station # 2 Faded Board I
Station #2 Station # 2 l'kw 110anJ I
Station #2 Station # I I:ai led Board I
Slallon #2 StatIon # 2 r: ailed l{(lanJ I
StatIon #3 StatIon # .1 New Board I
Station #J Station # 2 Failed Hoard I
Slatlon #J Statiull # J 1<11lc.:d Iloard I
Stallon #() StatiOIl # (, New Hoanl I --
Station #(1 Station # J Failed Board I
Station #(l Station # (, Faded Iloard I ]

Fig 4-5 Table of Board reentry Flag DefinItions

J7



--

Benchmark Tests (Citadel. DbascV, and Access were used In testing. Worst case timings noted
Involving multiple tests)

EXCEL/Query lor Windows95:
Retrieve table (1000 rows by 30 columns Char"8 177Kb data) = 2 seconds
Insert, delete, or update a row = fastcr than timer resolution of 0.1 seconds

Microso/l Access/or Wit/dow'\" 95
Results are SI milar to the EXCEUQuery/or U"indows95

Natiolla/lnstruments SQL Too/kii:
Retrieve with sclectLon criteria 1000 rows by 30 colulTlns ofChar"8 177Kb data = II 70 seconds
Retrieve within a range 100 rows bv 30 columns ofdala from above table = 1.7 seconds

(mixed data Iypes: Char"G, DalelTlme, Char*32. Char"S. 18,2/.IS.2J,18,2], Char"32)
Insert Single Row of30 columns = 0.17 seconds ([n 1000 rows bv 30 columns ofChar"8 I77Kb data table)
Find & Retrievc Single Row from 1000 rows b\' 30 columns of Char"S 177Kb data table = () '27 seconds
Fi nd & U pdatc Single Row from 1000 rows by'30 col umns of Char"8 InK b data table = 0.17 seconds
Delete SL ngle Row frol11 1000 rows by 3D columns of Char" 8 177K b data table - 0.17 seconds
Retrieve with selection enteria 1020 rows by 7 columns ofrnlxed data types I I M13 data table ~ 3.85 sec

Fig 4-6. Results of the benchmark tests on three databases using three front-ends

• Questionnaires

Questionnaires were extensively used to get a clear and precise understanding

of the working of the TRX assembly line. Several questionnaires were sent to

the client's engineers at different times to clarify the networking, handshaking

and database protocols in a multiple-choice format This was done to let the

client's engineers explore all the possibilities of a situation before finalizing

the design Through these questionnaires, many small issues were resolved

moothly and with consensus of all the engineers involved In the project A

part of the questionnaire is shown in Figure 4-7

c Eventflow Diagrams

Eventflow diagrams were drawn to depict the flow of board through each of the

stations in the TRX assembly line. Eventflow diagrams differ from the software

38



Does truth table on page I of 5 in "Board Re-entry Procedure" lists all thc possible situations'~

A. Yes. [f a situation outside this tablc occurs. send error signal.
B No. If a board was passcd from a station and reenters there again, write "Fail" so that II

does not get processed again.
C. No. If a board was passed from a station and reenters there again. write "Rerun" so that

operator could decide what to do.

2. Second last line. Paragraph I. pagc I of 5 In "Board Rc-cntry Procedurc" rcads "Systcm Computcr
will rcad this data and store thc pass in thc database then .... ". Docs Systcm Computcr also write board
in/out datc/limc as well in the database along with pass/fail stalus')

A. Yes. BY should updale variables as soon as lhc)' becomc available.
B. No. BY can hold somc info in memory to combine several update operalions whclI doing

so makes it more cfficlent.

3 Last linc. Paragraph 3, page 2 or 5 in "Board Re-entry Proccdurc" says "If the board did 1101 pass
stallon 2, the Adept will writc a''\'' in the station 2 vanable brd.slalusJail." Is il correc!,1

A. Ycs. The vanable referred to in "SlallOn #1 Variables" as stl.oprres IS lypo error.
S No. This is a typo error. II should read" .. will wrile a "0" In the station 2 vanable

combo.brd.stat." Note thal for station 2. only one variable "col1lbo.brd.slat" IS used to
indicate pass/fall status (O:faiL I:pass) unlike for station I where the IWO' variables
"brd.status.pass" and "brd.status.fail" were used. Also notc that possible inputs arc \.0 and
not passJail as listed in "Stalion # I Variables".

Figure 4-7: A Sample Questionnaire

flowcharts in a way that actual physical location IS defined along with the

software actions. Each station in the TRX assembly line has its own eventflow

diagram because of their distinct physical locations Links are made between

different stations to depict board flow through each physical location in the TRX

assembly line. The software parts of the eventflow diagrams are the actions or

responses by the supervisory System Computer and/or the Adept Controller at a

particular physical location. The eventflow diagrams in fact, provide the blueprint

of the supervisory control software for the TRX assembly line. A part of the

eventflow diagram for one of the station can be seen in Figure 4-8

]1)



,

BY polls for

sl2.need roadol

un til 1

Read & Updale D..abase·

"Stlrt T,me #2" == st2 pre date

'Stop Time #2' == dale l,me 01 mIV

'Status #2' == com bo brd stal

I sl2 necd reldol = E 0 I

i

FInal Database UpdateHeat<r Arca

---------------1
I AD-\ Proe«s<s board I
: (soc 'Annex SI2·A)

I
I
I
I
I
Ipass

---1

I Process 8: Update

o Don'l Process 01 Update

Remo"al

\1"-.
B \. pol Is for

~l~ opr rt:~

until, > ,I

,\0-1

C Read;;2 opr~s~

i .. ,

I \\' flte I
sl~ opr re! .: ~ -I

Rerun l\lenu I rerun

- -- -~------l
II AD,I Open R<run r-Ienu II

I
I Oct ,t2 apr r<S I I

I
I

\\' 31l Cor nperalor response

fa II

1-

r< <st2 hrd run'> ,,\~

Walt 1111 B\' .. nds

,nfo update SIgnal

r--------~---i

I AD·I polls for I
I sl2 need road,n I

... ">l until 0 II .
------.------~

--- ---'

B V polls for

st2 need readln

until I

Lookup Databas<~
det<rmlne hlStor~ I
\Vrlte Sl~ brd run I

(pass. fa.l. rorun)

r

Prn\'lde Product Info

I Read $12 barcode rd I

\\'a" for AD· 1 SIgnal

(or a new board

I
I
I
L __

D(tcr"un~ Historical Statu)

y

OCI sl2 barcodc rd

from barcode road«

\Valt until board arrt\'CS at
Barcode road«

! ,- st~ need r~adin = ~ D

r------
I ,-\D·\
I polls for boa rd

I arrl"al
I
I
I

I
I

.t
O

- ~----------,
I Prompt fa. board romo"al I:

-~-

Fig 4-8 A part of eventflow diagram of one station



-

-

4.2.2 Supervisorv System Hardware

A supervisory system was required to provide the controlling link from the Plant

Computer to the three Adept controllers. besides the ability to monitor, analyze

and troubleshoot the TRX assembly line. lntel 233 MHz Pentium processors with

MMX technology, 64 Megabyte of RAM and 2.5 Gigabytes of hard drive were

found to provide adequate speed of execution and storage for the supervisory

system to achieve the above objectives

The computers and Adept controllers were interconnected and connected to the

outside world through 100 Megabits/sec Ethernet adaptet cards and hubs, RJ-45

connectors, and twisted pair cables

Windows NT was preferred over Windows 95 to be the System Computer's

operating system because of its superior architecture. Its multithreading capability

was needed to run different programs simultaneously and in a truly parallel

architecture not on a time-sharing basis. A crash in a single program causing the

whole operating system to crash was not acceptable for the TRX assembly Iinc

operation; therefore, Windows NT was once again preferred over Windows 95

4.2.3 Supervisory Software Architecture

The architecture of the supervisory software of the TRX assembly line was

designed with modularity in mind, thus a layer was defined for each task ach

layer was encapsulated in a separate module, totally independent of, yet able to

interact with, the others. These layers or modules, acting collectively, formed the

supervisory software Main considerations were. (a) Hybrid Supervisory Control

41



-
Software, (b) Supervisory Software Algorithm, (c) SCADA Package Selectioll. A

brief description of each follows,

a. Hybrid Supervisory Control Software

The hybrid supervisory control software or supervisory discrete event system (see

Figure 2-1) for the TRX assembly line was made up of four different layers

These layers were GUI, handshaking, database and communication. All layers

were developed independently and then incorporated into the main program The

top-down architecture style of the main program had the GU] at the top layer,

handshaking at the middle layer, and database at the bottom layer. The

communication layer in the main program was separate and was runnmg In

parallel to the other layers. Following is an explanation of the different layers in

the supervisory control software.

• Graphical User Interface (GUn

The GUI of the TRX assembly line was composed of several screens. There

were screens showing historical data, process I/O, login, logout, alarms,

statistics, timer/counter, system configuration, control and overview of the

TRX assembly line. The main screen was able to call most but not all of the

other screens directly. There were also screens for each station and robot The

main GUI command center is shown in Figure 4-9a

The GU] screens provide the ability to control and display status information

for a selected part of the TRX assembly line For example, the Overview GUI

42



7~X d'\s§emblU -tine

,

Control Overview

Warning

St81ion 6

LogOUt

I 1121983:30 PM I

Current Operator
I admin I

~
'.;j

General Description:
I) This pam::l will be the main ranel of the systelll and \.... 111 reside either at the very top or very naltom of the page. The reSI of the screen will be covered
with any oren panels.
2) Status hUllons will indicate station st,llus with colors and lext: Red - Error; Green - Running; Blue - Idle.
~) Historicill data and Process I/O will he enabled only after Station # or Rohot # have been pressed. Global will be necessary 10 indicate which station is
being used.
4) Dynamic loading and unloading will be used here. - Each bulll1n will unlond the last program and rdoad Ihe new onl',
5) The huill-in BridgeVIEW security system will he used When a low-security-Ievel operator logs into the system, bultons will be disabled and grayed oul
to limit their aCCesS
0) Station:; anL! 8 do not have variahies heing monitorl'd hy this systel1l.
7) IndIcators will show l'urrent daY/lime :.Ind current operator logged into system

NOle: One of thl' several screens will alwnys be opened depending upon operalor selection

Fig 4-9a: The "Main"' GUI command center

J



r-

1

Ovcrv1c.?'W

StAtion 1 (p~f)e"t C'ven)

Frame Row 1 C' 47 ---j
Frame Row 2 r 120 '

Fram.. Row 3 j SO

Frame Row 4 f 145

tAtion 4 ( ...frArne 7of1.> Cell),

Estimated Frame Count

Robot 2 Sp...ed ('" Full Speed) I75:iiO

StAtion; (cl\rlerr ..~olJ.of 1)

Alarm Cod..3 ~

Error Code3 0

Board S..rial 1¥3 MPX0007894-014

Pass/Fail status3 I PASS I
~ Passed3 j13'8'ii"

TotalProc.3 I 1401 ~13
Fail ..d3 I , ..

Ov ..n Error

III
Cycle Count

j"142

Alarm Code2 p

Board S..rial 112 MPl0007894-012

Pass/Fail Status2 l PASS I
~ Passed2 r-;389

Total Proc.2 I 1402 ~
Failed2 I 13

Ov..n Mod.. [PASS JOv..n T.. mp loC)1

System state I PASS I 14'5

Robot 1 5p....d I'M. Full Speed)~

Alarm Code1 ~

Error Cod.. 1 0

StAtion 1 (c1\4ept ~o~, 1)

Board 5 ..rial ...1 MPX0007894-000

Pass/Fail status1 lIN PRODUCTlQi!j

~ Pass..d1 f1390
TotalProc.1 I 1403 ~

Fail ..d1 I 13

Error Code2 0

..,...,.

\.1\"0 ~Atio.. ; 01' ....~Atioo 8 ~rnr1ao b (c1ltfepr ,~o~t ;)

Board S..rial"" MPl0007B94 147

Pass/Fail StatusS I FAll~=

r-:-::::::- PassedS f13ii5
Total Proc.S I 1399 ..--:7

Failed6 I 14

Alarm CodeS ~

Error CodeS 0

Robot 3 Speed ("'- Full Sp....d) Iii'5.OO

StAtioo 7 (COWl' 70te Cell)

Estimated Cover Count

Cover Row 1 I 47 I
Cover Row 21 13

,stAtiao 9 (7est .$rAtioo)

Status

Test station 1 fT;~i;;;;-';g-;'-;;;'

T..st Station 2 I Pass

T..st station 3 I Fail

Test Station 4 I"~ E';;'pty

Test Station 5 I Empty

Test stationS ITest in progress j
Test Station 7 C Pass I
Test station 8 ITest in progress I

(;t>ncnli Description:
I ) Thi~ panel will Shl)W general informalinn ah(lut cJeh stallon,
~) Information on lhi~ panel \\ill he updaled ('vcry five seconds or \\hen a l'hange occurs - whil'he\'er happens fir~t.

Fig -t-9b: The "Overview" GUI



-
screen gives an overview of boards process information in all the stations of

the TRX assembly line, as shown in Figure 4-9b. The GUI screens were also

assigned security levels to restrict access from operators with lower access

levels. The GUI screen of login and logout required a valid name and

password for security level verification before allowing the user to access the

TRX assembly line

The GUI screen's data was updated through different sources. Process 1/0,

Alarm and many other GUI's were updated in real time as soon as a change or

event occurred on the TRX assembly line. The HistOrical GUl, on the other

hand, reads historical data from the Citadel database for updating the screen

• Handshaking

The handshaking layer was the core of the supervisory control software as it

was responsible for controlling the actions of the Adept controllers In the

context of the H.ybrid Control model, the handshaking layer was the discrete

event layer. The automatic and fixed board mode protocols, purge protocol,

and the board reentry protocol were all implemented in this layer

The handshaking layer continuously monitored for the events to activate

various protocols on time response For example, the board reentry protocol is

activated whenever a new board enters the station for processing. The product

database is then queried by another protocol to check the status of the entering

board. The handshaking layer also monitors the mode of each station, and if it

finds that the fixed board mode flag is set for one or more stations, stops the

45



-

--

supervisory control software for those stations. Similarly, if the purge protocol

is set to true or the board is exiting the handshaking layer, it updates the

product database.

• Database

The functionality of the database layer is to maintain the product and process

databases of the TRX assembly line. The product database is queried or

updated using SQL whenever a board enters or leaves a station, normally or

upon manual purge. The process database is accessed to display the historical

process data for one or more stations. Product and process databases are

further described below

1. Product Database

The product database keeps the record of each board ever entered through

the TRX assembly line. The records were kept on a station-by-station

basis for interrelated reasons. First, it prevented a board which had already

processed through a station from rerun, which would crash the robol as it

tries to assemble parts over the ones already assembled in previous run

Second, it alarms the operator of a station where boards are failing

frequently. A part of the Product Database functionality requirement is

shown in Figure 4-10.

The product database was developed uSing Microsoft® Access 97

database as per client's requests based on benchmark test results The

database field definitions for the Access 97 Product Database were Board

46

--



-

-

AUTOMATION PROJECT
PRODUCT DATABASE INTERFACE

1.0 Introduction

This specification will describe the functional requirements needed to design and implcmcnt a nm
time database (DB) for automated production The DB will be an extension of a factory floor
cnabler (i.c. BridgeVIEW). and will be transparent to the user. The enabler will work mteracllvely
with scveral workcells constructing the products.

The line today will produce 5 different varieties of product. but must be easily expandable for
addillon types. TIle main function of the system (Enabler and DB) will be to provide product
Information to the various workcells in the line.

Each product produced will be labeled with a unique serial number via a bar code. This serial
number will be logged in the DB with various addiLional information included but nol Iinllled 10.

• Module product number
• Module serial number
• Module revision number
• Board product number
• Board serial number
• Board revision number
• Year and week
• Pass/fail status for each station
• Time m and time out for each station

Each workcell (except I) will read the serial nwnber when the producl reaches Ule entry pOIllL and
convey it 10 the enabler. The enabler will then relay product information back to the workcell.
ThiS information will identify the product to be built the serial number does not contain the
product

lllree (3) of the controllers will require product information onJy. That IS. I I"lve a serial number.
browse Ihe DB and tell me what product it is. The last controller will be plaCing tJIC module serial
numbers on the products and therefore requires additional mfonnatjon.

2.0 Datahase functions

lllC DB chosen WIll be an industry standard SQL DB capable of simultaneous users (Access 1)7).
It shall be easily expandable to include additional product information such as SPC (StalJSlica
Process Control) data from each workcell.

Capabilities 10 conducL a query on any fteld in the DB must be provided. For example. a query 011

all scnal numbers related Lo a specific product and revision.

Though this functionality does not need to be provided within this workscope. II most likely will
be needed In !Jle future.

Several Lags ....·ill also be logged to the DB after the product IS complcte

Fig 4-10' A part of Product Database functionality requirements

47



PassfFail status
Time in
Time alit

Integer
String

String

Each tillle a query is conducted on the DB for a serial number. Ule current board location rield will
be updated. TIle product location values will be as follows:

• Cell I 110
• Celf 2 no
• Cell 3 130
• Cell G 160
• Auto. Unlimited 165
• Cell 9 190
• Final Test 200

• Test station 1-9 201-209

TIle product database contains Integer fields for the location of each assembly and assembly status
for each workcd}

LocaLJon
The location is represented by a 8 bit unsigned integer. The integer is defined as given below

Value
o

1-254
254
255

Definition
Board not processed. An entry has been made IOta the database. but productIon
of the assembly has not begun.
The value represents the defined location in the assembly hne.
The assembly is assembled and failed finaltesL.
Board complete. TIle assembly is assembled and has passed final test

Status
The status is represented by an 8 bit signed lIlteger The Integer is defined as given below

Value
-I
o
I

2
:1

Definition
Product has not entered the workcd!. (Null)
Product failed workcell process. (Fail)
Product passed workcell process. (Pass)

Product passed workcell process after retry. (Retry)
Product passed workce\1 process after manual IfIlervenllon. (Manu.al)

TIlls Will allow an easy query of the database. A value of <() indicates all products not yet
processed at an indIvidual workcell. A value of 0 indicates a failed product. A value of >()

indicates a product which has passed either normally or wllh asslstance A value of> I indicates
products that required assistance to pass.

Fig 4-10 (Continued): A part of Product Database functionality requirements

48



-

serial number, Board product number, Board revIsion number, Module

serial number, Module product number, Module reVISIon number, Build

date, and Board location The database fields for each station were

Pass/Fail status, Time in and Time out. A part of the field definitions call

be seen in Figure 4-1 ].

• Product Database Archiving

The product database is archived to keep the size of the database

reasonably small for fast queries and updating The archiving was

done on monthly, weekly, daily or hourly basis either automatically or

manually Archived data was saved in a separate database file, which

was made available on the network for researchers and investigators

interested in analyzing the performance of the TRX assembly line A

part of the archiving mechanism for the product database is shown In

the Figure 4-12

2. Historian Database

The real time process data from each of the stations was stored in the

historian database. The historian database was created to improve the

quality of the product and the performance of the TRX asscmbl y line

through off-line statistical process control (SPC) Continuous online

process monitoring facilities are also included such as historical and real

time trend charts and statistical charts, all accessing data from the historian

database for optimization of the TRX assembly line.

49



Database Table Definitions Tuesday. September 09. 1997

Properties
Date Created'
Last Updated

Columns

Name

8112/97 5: I I :06 PM
9/4/97 3:46:02 PM

Type Size

BPN

I3SN

BRN

MPN

Allow Zero Length
Allributes:
Collating Order'
Column Hidden.
Column Order.
Column Width'
DescnptlOn.
Ordll1al Position
Required:
Source Field:
Source Table:

Allow Zero Length
Attributes:
Collating Order'
Column Hidden
Column Order'
Column Width
DeSCrIptlOl)"
Ordmal PositIon.
RequIred.
Source FJeld'
Source Table

False
Vanabk Lcngth
Gcneral
False
Default
Default
Board Product Number
I
False
I3PN
Station nunbl:r

False
Vanablc Length
General
False
Default
Default
Board SerIal Number
2
Falsc
BSN
StatIon number

Tcxt

Text

26

IS

User PermIssions

-

Operator

AdmIn

Read Data, Insert Data, Update Data, J)elctt: Data

Operator permIssIons + Delete. Read Penni '51Ons, Sd PCrml.'SIOnS,
Change Owner. Read DefinitIOn, Wntt: J)..:fmllion

Fig 4-11: Example of Database Field definitions

50



Product Database Archiving

llle BridgeVIEW superYlsor (System Computer) wll/ be maintaining a "Product DB" (Access DB) 10

coordinate. mOnitor. and operdte the line Tills "Product DB" will be constantly polled ,uld lJJxlalcd by th
robolS on the assembly line. When a product has completed assembly (and passed final test) the record
associated with that product IS no longer needed and should be archived. Gnly records or products that have
been completed (and passed from the final test stalion) and records that have been marked "Expired" will
be archived and purged from the "Product DB"

"E:,pired" is marked when = Current Date - "Build Date" (Ficld in the Producl DB) > BridgeVIEW user
sellable and editable variable (in Days).

Manually deleting indiVIdual and sorted records WIll be allowed via Access front-end while the Ime is
nlnrung. and musl be proved that there IS no connict between Access and BridgeVIEW via field tests.
Manual archiVing should be on demand and via push button on the appropriate page.

.··Iutomatic archivmg should be based on Ule system clock TIle possible selections should be:

Monthly selected
If'eekly selected
Dai(v selected:

Houri}' selected

Illputthe monU1 day (I" to 31 ") and time
input the day (Sun to Sal) and time
mpu! U1e time
mpu! the stiul lime and a pick list for interval (Note: Ule stan time 1112)' reset tJ1e
arcluve clock If the duration does not divlde evenly 1010 24 hours) and the pick
list should suppon L 2.4.6.8. 12.24

-

File Storage Name should be user selectable. nle file name and path should be in an edil<1ble field on-hne.
Shutting down tl1e system and starting it should not change the file name. Also, durmg archiving. if he rile
does not eXist create it (any newly created file must include the Field Names). If the file eXists. append to It

Note The Plant Computer will delete the file after it has been arcilived

Fig 4-12 Access™ Database archiving procedure

The historian database was developed uses Citadel, a real-time database

facility built into the BridgeVIEWTM SCADA package The process

values for each station were assigned tags (the variable name) in

BridgeVIEW, their properties configured, and their logging into the

database turned ON. The BridgeVIEW engine updates the Citadel

database whenever the values are changed for any of the process tags A

part of the historian database requirements is shown in Figure 4-13. The

archiving of the Citadel database is done by BridgeVIE\VTM engine itself

51



-

Historian Tags

Any yanables In BndgeVTEW can be logged in tl~ historian. However. only the tags rxnIcd for monitoring ar~:1

analyzing the ~I~ should be logged tn Cita:lcl.

xx Techoology will select a group of tags 10 be logged based on tlcir insight to IJc fuoction of IJc System PC
am toc Adept robots \\llh Uleir field lesl of tJ~ Adept controllers perfonnaoce dunllg IJc debug phc1SC. TIc idea of
rmnilODrlg tic process based on t.tc different product types is essential for this multi-produCI line. In Additioll Cdl
umiflg tags (nunbcr of tags = # Cells X Per Producl types) will be logged. llocse tags rreasurc (Ioc product
assembly Unt:: in each cell arrl for ca:h product. TI~ resolution for this lag sllJuld be in tenths of a secord nc
calculation is based on product type exit tiIre (stop ti~) mirrus entry tim: (start tJlre) at each cell. Agairt ea:h cell
Villi have several logged tags (Different varictlles) based on product type to gel an aw1cs to apples con1J31ison.
With this information an cngireer can detennire whe~r an 1ITIproverrenlis n:xx1ed am wlcre. Will have (0

rmnually navigate 1.0 furl this umingbascd on Glade! approach.

Robot performarce calculation (rnmber of tags = # Cells) ....'ill be logged. TIc resolution for litis tag sl"'Ould be in
lenths ofa second. ll~ calculation soouJd be = Up Tirre/ Tolal Tim:. lloc tenlhs of secorrls IS acceptable IF lJ~

Adept controller can accept~ speeds.

Up Tirre = TIx: celllS mt in enor (Green LIght lit)
Total Tim: =Tirre strce lJ~ eounter .....as reset
Robot Utibntion (nwrber of lags = # Cells) "...ill be logged. TIle resolutJon for lIlis tag soould be ill leruhs ofa
secOlU. 11lC caJeuJ.at.jon sl"'Ould be = Busy TlrreI TotaJ Tim: (mt i.ocludiflg any Down Tirrc)
Busy Tinoc = Tirre Ite rell was working, aCluaJJy assenuhng son~tJung.

Total TiIT~ = Tirrc strce~ counter \\as reset mt m:luding any OC}\\·ll tinc.
DoWll TUlle =TiIlOC Ite cells red light \\'as iiI.
All tiJllers aru couIUers (up tinc, busy tilll~. dO\\1l tilT'&::. etc.) shall be scparale from ea::h otJlCr am be capable of
bemg reset OI~ station at a tirrc marnally or autolnatjcaJly (up (0 6l.il11cs a day). No Weekly or M:uuhly
capabilities are needed at this Im~.

TIc foUo\\1ng will de[ule tile ligiU locanings
Blue LIght = Ceu idle
Green Light = Cell nuuuflg
Yellow Liglll = Operalor attcntion
Red Light = Cell dO\\1l
Note I TIoc adept nny nol be able to handle 125 vaDllble belllg passed 10 BridgeViEW In ;rldiLiolllo lIlC words
for tJle discrete I/O If this seems 10 bog dO\\IIl Adept COnlroJlcrs. Ik variables Imrkcx.l ..As Nro:lcd" could be
taken oul.

Fig 4-13: Historian Database requirements

A new archive file IS created whenever the database sIze exceeds more

than one megabyte.

52



-

-

• Communication

The communication layer manages the network communication between the

System Computer, Adept controllers and the Plant Computer using Dynamic

Data Exchange (DOE) over TCP/IP. a standard inter-process protocol for

Windows NT. DOE was selected because of its ability to transfer data

between two processes running on the same or remote computers by

command level execut ion of programs. The network connections are shown in

Figure 4-14

ODE-aware programs communicate by establishing a conversational channel

[Wonderware 94]. A client program needing data requests the server program

to provide data. "Application" name, "Topic" name and "Item" (variable

name) are provided to identify the data being requested. For reading and

writing to the Adept controllers, the communication layer uses the

BridgeVIEWTM engine, which was configured to support ODE protocol.

b. Supervisory Software Algorithm.

The finite state machine automaton [Pori 96] was applied in the supervisory

control software of the TRX assembly Iine. The control laws for different stations

were defined in the Continuous System Layer of the Hybrid Control model. The

complete process flow was divided into different states in the supervisory discrete

layer. Each state in the finite state machine automaton was responsible for dealing

with events as per control laws governing the process at that particular instant.

53



- ,

Slalion I Slalion i... Sla1ion n...

f!l~M. ., ,.System Computer
(Supervisory Control
& Data A.:qulsit,on)
Fasl Elhernet Card
Windows NT 4.0

g. Nel?~EI~~e~~~Pf[P £
/

NelDDE over TCPlI P

192.168.1440
-._._ . ., 1'-'-'-'-'

Plant Computer
Fast Ethernet C:lId
Windows NT ·1.0

I eIDDF. over TCPII ":
192.168 1442 ,Ne\l)DE over Tel'/l ":

/ \- 0 0'.'_0'0,000.00 .0 - 1921681443,

fE===3Y '0-"0-' 00.'_-••_ooo. '.0.'_-. '00.'••• '_- .-. o· 00 ••. _-"00 0- _-.'•••- '.0. '0- _0 '_0 '0- ~- 0'.'.' _.0 •• _. _ .:

Fast Elhemet Hub
lOO-base-T

Net DDE over TCPIIP
192.168.1444

Fig 4-14 Networking & Data sharing Scheme

These control laws were applied at different times or at the same time on different

stations, depending on the process flow of the TRX assembly line

c. SCADA Package Selection

The supervisory software architecture of the TRX assembly was implemented

using a SCADA package A SCADA package was preferred over a software

language because of several in-built facilities such as password protection, rich

graphical user interface, networking and database handling capabilities

National Instrument's BridgeVIEWTM SCADA package was selected for

implementing the TRX assembly line. BridgeVIEW has a built-in object-oriented

graphical language, LabVIEWTM, which allows programming flexibility within

the SCADA package Sophisticated test and measurement programs can be

seamJessly integrated within BridgeVIEW's environment. Moreover programs in

graphical languages are easy to write, understand, and debug [Mahmood 96]

54



These features gave BridgeVIEW an edge over the other SCADA packages

considered for this application

55



CHAPTER V

DESCRlPTION OF STATION I

A separate software code was developed for each station In the TRX assembly line.

Though the algorithm was somewhat similar, the functional requirements of each station

were different, warranting separate codes. The module for each station was seamlessly

integrated into the main program within the supervisory layer of the TRX assembly line

software. Since a similar design approach was taken for all stations, the following

description of Station I will hopefully give a general idea of the overall approach taken

for this proj ect

5.1 Protocol Description through EventOow Diagrams

Board flow through a station was depicted with an eventflow diagram, which ties

together the events, board locations, and software responses (actions) by the Supervisory

Software (System Computer) or Adept Controller. The eventflow diagrams for Station I

are shown in Figures 5-1 a, 5-1 band 5-1 c.

The processing in Station I begins when a board arrives at the "Queue stop" (see Figure

5-la). First, the barcode reader reads the serial number of the board to identify the board

and sends it to the Adept Controller (AD-I), which signals the board arrival to the

Supervisory Software BridgYIEW (BY) by setting the flag "stl.need.readin".

BY, having been polling continuously for this flag to be set, gets the serial number from

AD-I and uses tt to retrieve the product and status information of thi~ board (i.e its



,

Wait till B\' s~ntls

info updat~ signal

t

BV polls l()r
5t) .need.rcauol

until I

Read PCB Uniqu~ serial # from
sll. work.ser & Updat~ dalahase
"Slart Time # I" == sl1. work.dale
"Stop Time It I" -= datc.lime,out
"Status It I" == 1.0
I ifbrd stalus.pass = I
oifbrd.slatus.fail = I

I sll.need.readot - 0 I

FlJlal Dalabas~ llpdate

Set.
stl.\\'ork scr Emply Siring
sll.work.rc\' - Empty Siring

11

511. work. prod Empty string
sll work.dale == Empty sITing

Workn~st Area

~ "pass
~.hrd.run?/:- • ~

rerun' fail

AD-I polls for
st I.need.readin

!lIltilO

I
I
I
I
I
I
I

I Il\love board to workstopl :

L-----l:-----J

R¢run \Ienu t
r--------------
:I :\0-1 Open Rerun/fail Menu I!
:IG~t operalors response I '

I
I
I

Ii ~

BV polls tor
st I.neoo.readin

until. )

Write
st I.qu~.prod == BPN
st I.que.rev == BRN

Lookup "BPN" &
"BRN" from DB \\;111
"BSN" as search col

Provide Product Info

I Read sl l.barcode.rd I

Wait for AD-I Signal
for a new boo rd

Dclcrl11l1l~ Historical Slanls

Wail until board arriv~s al
Que Stop (Barcode read¢r)

r-----------
I AD-I
I
I polls for board
I arrival
I
I
I G~t stl.barcode.rd
I from barcod~ reader
I

: I stl.neoo.readin = = 1 I
I

VI
-....J

I-------~--------,
I I\love board to St#2 Que Stop I
I Prompt for board removal I

I [}
AD-I Board R~mo\'al

I: Proc~ss & Update
0: Don't Process or Upd8t~

" ")1
"

li~1

<:. " operators
" ~spons~

Write sll.brd.run
(pass. fail. r¢run)

I sl I.need.readin == 0 I

Fig 5-1 a. Station 1 Eventflow diagram



prevIOus processing history, if any, with the resulting outcome) from the Product

Database (Microsoft® Access97). Using "Board reentry protocol", BV determines the

status of the board (rerun, pass, or fail). It also updates database to the fact that this board

has been entered into Station 1. At this point, it resets the flag "st I.need. readin" to signal

AD-I that the board status and product information it is waiting for is now ready to be

read.

When AD-l sees that "st 1. need. readin" fl ag has been reset, it moves the board to the

"Work stop". It then looks at the board status information provided by BY and starts

processing the board if the status is "Pass". Otherwise, it pops out the "Rerun/Fail" menu

to get operator input on whether to process or remove the board If operator chooses to

go ahead, it begins processing, else it moves the board to the "Queue stop" of the next

station (Station 2) and signals it to remove the board from the assembly line.

A "Pass" board at the "Queue Stop" waits till there is no board in the "Pre Stop" (see

Figure 5-1 b) As" Pre Stop" gets empty, AD-I moves the board to the "Pre stop" and

also transfers its product information from the "Queue stop" variables to the "Pre stop"

variables. At "Pre stop" the board waits for the "clearance signal" until there is no board

in the" Work Stop", "Flip Stop" and Robot Arm Gripper. When clearance is grantccl, the

board is moved to the "Work Stop", from where the Robot Arm Gripper picks the board

up and puts it in the "Flip Stop" where processing on the board begins When processing

is finished, the Robot Arm Gripper picks the board up and puts it back on the "Work

stop". AD-I accepts no board at the "Work stop" until the previous board completely

gets out of the "Work stop".

58

,



1

I , ,. , I
, I \

,.
Board a ... Board a Hoard al Board al, , Board at, ,.

-I1rlo: :ito \I ork statlll tlin n1l"\.; stallo

~ AD-l action~)" ~ AD-I action~ ~ AD-I action~)~ ~ AD-I actlon~ i'

---- --- - ---------
Copy PCB Umque ,,'" Poll st I.pre.prod" .' Poll st I work pr~a \

st I. fl'l)prod == st leoaprod SII \I ork prod == Sl leoa prod

serial # from 5t I.barcode
,

" " lJl}.tLJ _eQlpt;y- ...
, "1 I

Sl). tlip rev == 51 leoare,' sl I \\'orkn:v == sl ICOil re,'

rd 10 5t Iquc.ser ., --- - -- - - ...... . ' 1.11!t~ ~1~1 c~lpl':"'" 511.fllpser == stleoaser st I \\ork.ser == st l.eoa scr

.,--------
.' Poll st 1 \\ork. prod~ st l.eoa prod == 5t I. work. prod st I.flip.date == :it Ieoadatc 511. \\ork.dalc == sl Ieoadate

... , '" - .lIDtil_clIUllr"'''' :it I eoarev == 511 work rev
.' Poll st I.pre.prod\ ------ .... - ... st I.eoaser == st I. \\orkscr

Clear ,'ariables st 1eoa prod Clt.:ar \'al'lables st 1coaprod,
,

' __ until erne!)· ... I ... " st 1.coa re,', st \coaser &
\' Poll st l.flipproo,

stl eoa.rc\',stlcoa5cr&
----_ ... ,

- " UIIILI_e!}1'p~'- ...
,..

I
st l.eoa.date sl I coadateStamp dale & lime In

5t I .pre. prod == st Ique. prod ..,.------~- ...... st I.eoadate frocess the board 1192168.144 I
st 1. pre.rev == stlque.rev " Poll 5t Ieoa prod 'I

NetDllr

st lpre.ser == st I ue scr
,

" - 11!} tiI_CIl1j)l~:" ...
, Clear van abies 511 \\ork Prod1st l.eoaprod == st 1 fllp.proc 'VI

5t I. work.re'·, 5tl \\orkser 5t leoan:" == sll fllp.re,· DI5pl a\ vanablcs at \\(lrk
Clear variables st I.barcodc.
rd. st Ique5er, 5t I.que-rcv & 5t 1.\\'ork. prod == st I. pre proc 192 loR 144 I NelDDE

sll.eoaser == sl I lllp:;er stallon and Lnd or Ami

st I. ue rod 5t I \'·ork. re,' == st I pre rev ,II sl I.eoaclate == 5t 1 1110 date linnner

st I. \\'orkser == st) .prcser Clear "anahks sll !lIp prod
~ BY actll\ns~

192 168.144.1 NclDDE Displa\ vanahks al \\ ork sta- st I.l1ip re\', sll tllpser &
Clean'araihlcsst I pre. prod. lion and End Of Ann Gripper 5t I 1l111.dale
st I. pre. re,' & st 1.preser includlll~ st I. \\ork.status

Display \'anables sll !Jlle
192 168 144 1 NetDDE

prod, st Iqllc.rc,· & st 1que 192 168 144.tIi NetDDE ~ BY aCll()n~ \

ser
j i Display ,'ariables 5t I.pre.

D1Spla\' ,'ariables at flip stop

1 8V action§
and End Of Ann Grinner

prvd, st l.pre.rev &
~BV actlOns~st I. pre. ser , st 1. pre. status

~action~

v,
-.=>

~ BY aClion~

Fig 5-1 b. Station I Eventf10w diagram



BY keeps track of a board through each stop and displays it on demand. AD-I determines

the failure status of the board at the "Work Stop", updates its pass and fail variables

accordingly, then sets the flag "st I.need. readot" to signal BV that it has finished

processing the board (see Figure S-la). Upon getting this signal. BY reads the board's

serial number along with the board's process start and stop times and status from AD-I

and updates product database. A separate record is kept by BridgeVIEW, which

automatically records every event in its embedded real-time database (Citadel)

Additionally, Supervisory Software also stores statistical information in Citadel such as

the number of boards processed through Station I, number of passed and failed boards in

Station I, etc

There are many smaller protocols runmng In parallel Supervisory software runs the

"Automatic" and "Fixed Board Mode" protocols separately It continuously watches the

flag "st I.fixlocal" to determine which mode Station 1 is supposed to be In, i e, normal or

debug mode (see Figure 5-1 c) In Purge Protocol, BY monitors the flag II st I purge" As

soon as it is set, BV reads board identification, purge locatlon, and status information

from AD-I, updates the product database, then re-initializes AD-I variables to empty

string. BY also coordinates with a remote computer (Plant Computer) to periodically

receIve information about new boards which will be processed in near future. Plant

Computer's software takes operator entries, writes it into an ASCII file, and signals BV

that new product data is now available. BY, which is continuously polling for this flag,

then reads the file and updates the Product Database with the new board serial numbers

and types. BV is also responsible for reading and displaying the user name, messages

and current information from various locations inside Station I.

....



r

Purge Station # I

Read as needed

User.logname (ll(l)
Userlogmull (Ill)

Statistical paras (112-119)

'='

BY polls for
sll.purge

Read stl.purge.prod
st l.purge.re\'
st l.purge.ser
st l.purge.date

I Reset st I. purge I
I Write "" to above I
Update DB after reading

serial #'s at \'arious
locations to determine

location Dure.ed

Read
st l.cur.step

stl.erroLcode
st I.runstatus

Rcad
blue.litc

green. lite
red.lite

yellow lite

o

SII fix local == (0.1 )

States.
Auto Mode: Run on nonnal mode
Fixed Mode: Debugging mode

()

I Read message. line. I
I Read message.line.2
I Read message.line.3
I Read message. lineA
I Reset rness.read.in

~BV actions~

,' , BY-p~lls- f~; , ,
" mcss. read.in..' I

.... _------

Rcad and update look
up

table from the plant
computer running

NT(-lO)

~BV actions~

Fast Ethelllct
, .... ------- .......

I ~ B\' po 11s to see '\
I' \I ;., \ if a new lookup table I

" , fi Ie has arri\'ed~ "
.... _-------

Plant computer
pro\'ides Lookup

table for each
board

~ Plant Co;puter Actions)

~AD-l actjon~

II Delete AIM-DB-I once a week II

Fig 5-1 c Station I Eventtlow diagram



5.2 Supervisory Software Hierarchy

The superviSOry functions for Station I constitute an important part 111 the layered

software architecture described in Chapter IV The main program is run at the uppermost

layer of the TRX assembly line supervisory software. This layer also runs, independent of

each other, various subprograms like Log In, Log Out, Robot l, Robot 2, Historical

Trending etc. Most other subprograms run in the second layer including Adept 1, Adept

2, and Adept 3 (the three computers controlling robots) subprograms for all stations (1 to

9) separately. Handshaking protocols, however, are implemented in the third layer for all

stations. Interfaces with the product database via SQL Queries and OOSC are in the

lowermost layer of the software architecture.

The Station I supervIsory software runs three subprograms in the second layer of

hierarchy under the Robot I program These programs run separately and describe the

software actions on the board when the board gets in, gets out and is purged from Station

I. lnside each program, a finite state machine algorithm is appl1ied to implement

handshaking protocol (third layer) and database (fourth layer) Station I GUI,

handshaking protocols layer, database, and communication are described below

1. GUI

The GUI of Station I (Figure 5-2) displays information about all boards at various

stages of processing It shows the serial numbers of the boards at each stop, serial

number and the type of the board currently in production (at Flip Stop), start and stop

times and Pass/Fail status of the last board processed through Station 1. It also shows

if the fixed board mode is ON, which would take Station I imo debugging mode.

62

cq



1

..st~tiOf' 1 (o1t1ept ~obot 1J QeoerAI vlJfo rmRt10fJ

Board Infonnatioll
Queue Stop Board I UAI004BF06 I

Pre Stop Board I UAI004BF45 I
Work Stop Board I UA1004BF24 I

Board In Production I UA1004BF05 I
Board Type In Production I TRX 1.5 Watt I

Board Stcu1 Time I 1/6/988:00:00 AM I
Board Stop Time I 1/6/988:02:00 AM I

Board Cycle Time (sec) I 120 I
PassIFall Status I PASS I

Misc. Illfonnation

Osdllatol'TI'ilJ' Position~
Oscillator TI'ilJ' Count 0-

Connector TI'ilJ' Position 0

Connector (213/104) TI'ilJ' Count .. 0
Connector (209/102) TI'ilJ' Count 0

Robot Speed I 0001
(% Full Speed) .

Process Statistics
Total proc.1 1403]

Passed 1390
Failed 13
~u Fail 0.00

TRX 15 W 100
TRX 10 W 642
TRX30 W 345

DBC TRX 30 W 202
TRX 1900 MHz 114

Last Reset 11/41988:15 AM I

Error Infonnation

· 'I :J

Operator's Message l~luionONIJNB

I J Alarm Code I 01
Error Code

",
S'

~'",' ..
"",'\;

~\.

Board Type

.Bit m~p a/board "
~'~~\;' ~l' ;-'

f;Jo: ...i:'- ",•

...
,~

(J\
'.,.J

Fig 5-2: Station 1 GUI

1



-

The GUI also shows the statistical information like total number of boards processed

through Station ], number of boards passed or failed, numbers for different types of

boards processed. and the time when this statistical information was last reset

Additionally, it displays several miscellaneous pieces of information such as the pans

count in the tray, position of the tray, error information regarding the board in

production and operators message. The bit-map of the actual board in production and

some other information is blanked out or tampered because of their propriety nature.

2. Handshaking

The handshaking layer of the supervisory software was responsible for implementing

the Automatic/Fixed Board Mode, Purge, and Board Re-entry protocols All stations

had separate implementations of these protocols, thus for example, if Station 1 goes

into the fixed board mode, System Computer will continue to respond to other Adept

controllers and continue operation of other stations.

Figure 5-3 shows the Automatic and Fixed Board protocols for Station I In brief.

System Computer polls the flag "stl.fix.local" and continues running the line in

automatic mode as long as this flag is not found to be set. In automatic mode, System

Computer passed the information back and fonh to the Adept Controller I. If,

however, the flag is found to be set, Station I goes to the fixed board mode, which is

basically a do nothing loop. System computer vinually breaks the connection with

the Adept Controller, except the polling of the flag continues so that the program can

revert itself to the automatic mode protocol upon operator request.



Automatic & Fixed board Mode Protocol

There will be two modes of operauon for the TRX line. TIle most prominent mode being the Automatic
mode where the line has directs communication wiLlI System Computer The second method will be the
semHlUtomatic or fixed board mode, which WIll have no comll1unicaLJon WiUI Svslem Compuler.

...

Automatic Mode Ii/ill app~v 10 nil slat/OIlS. 1-9

llle automatic mode will allow System Computer 10 read and write to the Aim variables at each robot
stauon System Computer will be able to take infomlation from ulese variables and tmck the boards
uHough the line along with storing data to the database and to the historian. System Computer will also be
able to prOVide infonnation to the Adept controllers such as determIning what producl type to run based on
the bar-code Information and the pass/fail status from Ule upstream station.

Fixed Board Mode Will app~v to all stations. 1-9

llle fixed board mode has been developed for debug of the machillery and sllOuld be used onl~ for
debugging the TRX hne and/or newly implemented software. In order for the station to be locked illto
fixed board mode the engineer will need to go to the fixed board menu and select the proper board to be
run. ThJS will have to be done for each station controller. After the board has been selected by the engmeer
the Adept controller will set the variable stX.fix.brd eqlL:11 to "I" and will no longer accept mfonnation
from System Computer The Adept controller will not read the bar code llle variable stX.fix.brd will be
reset to "0" when Ule enemeer has take Ule station out of fixed board mode.

Fig 5-3 Station 1 Automatic & Fixed Board Mode protocol

The purge protocol (Figure 5-4) IS implemented in the supervisory software's

subprogram "Station I Purge State Machine". In this protocol, supervIsory software

updates the product database for the purged board. Adept Controller I sets the nag

"st I purge" when a board gets manually purged by the operator of Station I The

supervisory software, polling for "stlpurge", responds when it is found to be set by

reading the purged board's serial number, product number, revISion number and purge

date from the Adept Controller 1.

Using the serial number as the reference key, the Product Database record for this purged

board is updated with the purge date, purge location and failed board status. Each station

65



--

Purge Protocol

Station / purge

If the robot has tried to pick or place a part unsuccessfully three times an error will be called. The operator
will be given a message to elUler retry 1.0 pick. do not ret.ry to pick, reset the paJleL or purge the board
location If U\e operator chooses to purge [he board location a purge menu will pop up on Ule monitor
screen. At this time the operator will be given the option to purge Ule Adept end of anll. workstation or Ihe
flIpper station. When the operator presses the purge Adept end of ann, purge workstation or purge nipper
station button thc Adept system will prompt thc operator "Are you sure". If the operators rcsponse "'Arc
you sure" IS yes then Llle Adept system will transfer the product number, reVision number. scrial number,
and date/time of the board at ilia I station to the st I.purge.prod, stl.pUJge.rev, stl.purge.ser. and
stl purgc.date variables Ulen set Llle variable st I.purge equal to" I". 11lis will alert Systcm Computer Ihal a
purge has been madc. After a board has been taken out via thc purge. tlle board should be marked by
System Computer as a failed board. System Computer will thcn store Ule purged dal<:1 and reset the
stl.purge.prod, stl.purge.rc\', stl.purge.ser. and stJpurge.datc variables to null C ") and the stl.purge equal
to "'0". If the operator's response" Are you sure" is no tben the Adept system would sk ip to the end of Ule
program and bypass the purgmg boards. No hot flags would be set for Systcm Computcr

Fig 5-4' Station 1 Purge protocol

is given a different purge location number to identify the station from which the purge

took place. The supervisory software then resets the flag "st l.purge" to signal Adept

Controller 1 to reset itself and start processing the next board

The Board Re-entry protocols, one for each station, determine the status of a board

entering into a station. Figure 5-5 shows the Board Reentry protocol for Station 1 It

is implemented in subprogram "Station I Readin State Machine" of Station

supervisory software.

When a board enters Station 1, Adept Controller 1 reads the board's serial number

and sets the flag "stl.need.readin". The Station 1 supervisory software polls for this

flag, and upon finding it set, queries the Product Database (using board's serial

number as search key) for board's status in Station 1 and Station 2. It then runs an

algorithm to determine if the board is new or has already run through Station 1

66



The algorithm writes writes "Pass" to variable "st I.brd.run" if Station I Status field

of the Product Database record is empty and Station 2 Status field LS not "0" It writes

"Rerun" if Station J Status fIeld shows "0", or it is empty with the Station 2 Status

field showing "0"

The supervisory software resets the flag "st I.need.readin'· Adept Controller 1 then

reads the variable "st 1 brd.run" If the board is "Pass" (new board, never processed

before), it begins processing through Station I. 1n case of "Rerun", the operator is

given a choice via a pop-up menu to take the board out of Station I or let it run

through

• Synchronization (Critical Timing) Issues

The difference in the speed of execution between the System Computer and the

Adept Controllers created the synchronization problcll1S. Coele execution at the

System Computer was an order of magnitude faster than at the Adept controllers

This necessitated the use of robust handshaking protocols at the software level as

well

The problem is as follows Let us say Unit A & Unit B want to communicate

with each other with handshaking Normally, a single tag protocol is sufTlcient

Unit A sets a flag X at Unit B's memory directly, then waits for Unit B to reset its

flag X after finishing the assigned tasks. The problem arises when Unit B is much

slower than Unit A, in which case there could be a significant time lapse between

Unit A's attempt to set flag X and the moment it actually gets set. As Unit A

(,7



Board Re-entry Procedure

The following IS the proposed board re-entry procedure [or Stauon I.

Bar-code Reader At Previous Status of Board Read: Pass Fail Rerun
Station # I Station # I New Board I
St'llion # I Station # I Failed Board I
Station # I Station # 2 Failed Board I

How docs the s)'stem process ~ood boards

The bar-code reader at Station I WIll store the senal number 111 the variable stl.barcode.rd. The Adept will
then set the variable st I.need.readm equal to "I" and wait for the System Computer to reset the \'anable to
"'0". TIllS will let the Adept know that System Computer read the variables. After Ihe vanable
st l.need.readln is set to 'T' System Computer will read 5t I.barcode. rd. scan the database and dctcrnllne If
this board has passed Stallon I previously If the board has not run 111 StatIon I System Compuler will
write a "pass" in tJle vanable 5t l.brd.run, write the product number In thc variable st I.qlJcprod and the
revisIOn number in stl.que.rev. then set the stl.need.readin equal to "0" The board will conlllllJe to Stal10n
2

How docs the s~'stem process bad boards

The operator may re-enter the failed board in front of Station 1 If the operator re-enter the board al
Stauon 1 the bar-code reader will read IllC senal number and store the daw in ule variable sll.barcode.rd
System Computer will scan the database and detemllne if the board has been run at Station I or StatIon 2.
Since Iltis board has already been through Station I, System Computer will write "Rerun" in the variable
sl I.brd. TUll. Once the board has traveled from the que-stop (bar-code reader) to tJle work stop the Adept
will pop up a menu and give the operator the choice to reruIl this board in Station 1 or to not renin tJus
board in SwtJon 1. In order for the board 10 be able to rerun In StallOn I the board must be sl.nped of all
pans mitiallv placed by Station I. The operator will either press the Rerun Board button or the Do Not
Rerun Board butt.on. If the RenlJ1 Board button is pressed the operator will be promoled "'Arc You Sure".
If the "Arc You Sure" illlswer is ycs the board wtll rcrun the stalion. If the "Arc You Surc"' answer IS no
then the operator will agall1 be gIven the choice to rerun UlC board or 10 nol renm UIC board.

If the Do Not Rerun Board button IS pressed the operator will be prornoted "Arc You Surc" If the . An.:
You Sure" answer is yes the work stop will be lowered and the board will simply pass to StallOIl 2 quc
stop The Adept will write a "0" In the vanable stl.opr.res and System Complllcr will nol change Ihe dala
stored In the d:ltabase for thiS board's status in Stalian L. At this lime a message :lnd amber light will be
displilyed aJcl1ll1g the operator if he or she wallts to run the fa ilcd board at Statj,on 2. If Ihe ,. Arc YOII SlIrc"
answcr is no then tIle operator will again be given llle chOIce to remn the board or to not rerun Ihe bO;lTd

Fig 5-5 Station I Board Re-Entry Protocol

begins polling after a fixed interval, it finds flag X to be reset and thinks Unit 13 is

done with the tasks, while In reality the flag was still reset because it never got set

due to Unit B's CPU backlog. Even though the possibility is remote. the

GS



consequences for a robotics assembly line could be disastrous as it may try to

install parts over existing parts causing a crash.

This problem was resolved by implementing a "Two Flag Scheme", which IS

robust albeit complicated In "Two Flag Scheme" Flag I is the original protocol

flag while Flag 2 is the acknowledge flag The protocol flag was set and reset by

the Adept Controller while acknowledge flag was set and reset by the System

Computer Since both the Adept Controller and System Computer were not

sharing the same flag (protocol flag) and writing to their own flags, the timing

conflict was avoided

The scheme works as follows: When the Adept Controller sets Flag 1. System

Computer runs its routine and then it sets Flag 2 to signal completion While

System Computer's routine is executing, the Adept controller waits for Flag 2 to

get set. When Flag 2 gets set, Adept Controller resets Flag I Meanwhile, System

Computer waits for Flag I to get reset When Flag 1 gets reset, System Computer

resets Flag 2, then goes back and starts waiting for Flag I to get set The Adept

Controller in the mean time waits for Flag 2 to get reset and after Flag 2 was reset

it further processed the board in station #1.

3 Database

The Product Database was handled in the last layer of the supervisory software

hierarchy "Queries" were built in this layer for the Product Database (Microsoft®

Access97) using SQL [National Instruments Corp 97b] via ODBC. A sample of

Product Database entries for Station I is shown in the Figure 5-6. A typical query



I:.;:;:::)!1::~:·::::t·t::::J:::::::::t)t.$N:::::::::~:::(M1'Nn:'::·:rl:::·::'::::l\f&~':I~j:nm@1:1Jg~(lJ~~1::$~~rl·Whil~##6.1StDp:TinlC#i!{j-:ISti@~tWjij:1
ROA I 17 20461 I UAI004BFUI R IA KRC 12 I 1011 UA 1005010 1 R4A 97W3 110 1/30/98 13·32 17 1/.10/98 IL1146 I
ROA 117 204611 UAIOO4BF02 RIA KRC 121 1011 UAI0050102 R4A 97W3 110 1130/98 13:33 17 1/30/9813:.l·U3 I
ROA 1172046/1 UAIOO-lBF03 RIA KRC 121 lOll VA 10050:10J R-IA 97W3 110 1/30198 13·34:-13 1130/98 J) .36: 16 I

.....
ROA 117 204611 UA IOO-lBFO-l RIA KRC 121 lOll UAIOOS030-l R4A 97W3 110 1/30/98 1336: (() 1/30/98 13:3737 I
ROA 117 20-1611 UAI004BF05 RIA KRC 121 lOll UA IOOS030'i R4A 97Wl I 10 1/30/98 11 37 36 1/30/98 13 19:1)7 1
ROA 117 204611 :UA 1004BF06 RIA KRC 12 I 1011 UAI00SD306R4A 97W.' 110 1130/98 LU9:0.1 1/30198 I1AO:35 I

" , " ......... .......
ROA I 17 20461 I UAI00-lBF07 RIA KRC 12 I lOll UA I0050~07 R-IA 97W3 llO 1130/98 13-1029 WON8 11 -1202 I

ROA 117 204611 :UAIOO-lBFOS RIA KRC 121 lOll UA 100'iD308 R4A 97W3 110 1/30/98 13.41.S5 1/30/98 L3.·D:23 1

UA IOO4BF09
: "

ROA 117 204611 RIA KRC 121 lOll UAI0050309 :R4A 97W3 110 1/30/98 134322 1/]0/98 134452 I

ROA 117 204611 UA IOO-lBF I0 RIA KRC 121 lOll UAI005D310 :R4A 97W3 110 1/30/98 13.-I·U8 1130/98 LU(): 15 I
ROA 117 204611 UA 1004BFII RIA KRC 121 lOll UAIOO50311 :R4A 97W3 110 1130/98 IJ46: IS 1/10198 13:47:47 I

ROA 117 20-1611 UA 100·lBF12 RIA KRC 121 1011 UA 10050.,12 R4A 97W3 110 1/30/98 13-1741 1/30/98 1.1-19: 15 1

ROA 117 20-1611 :UA 100-lBF 13 R IA KRC 121 1011 UAI005D313 R4A 97WJ I 10 l/J0/98 13 H:07 1130/':)8 1.3: 50.1 X I

ROA 117204611 ,UAIOO4BFI-I RIA KBC 12 I 10/1 UA In()50:; 1-1 R4A tJ7W.1 110 II:>O/9R 13.50.14 II.10/n 1.15201 I

ROA 117 2046/l UAIOO4BF15 RIA KRC 121 10/1 UAIOO5D315 R4A 97W3 I 10 1130/98 1,52:00 11.,0/98 1353:.31 I

ROA 117 20-161 I UA I004BF I6 RIA KRC 121 10/1 UA 10050116 R4A 97W.1 110 11.10/98 IJ 5.1 27 11.10198 1.15500 I

~ ROA 117204611 UAI004BFI7 RIA KRC 121 lOll UA 10050,17 R4A 97W.1 110 1l:>O/9R 13:54.53 InONR 13:56:26 1

ROA 1172046/1 UA I004BF 18 RIA KRC 121 10/1 UAI0050 ..118 'R4A 97W3 110 1/30/98 1356 19 1130198 l.\57:46 I

ROA 117 20-1611 UAIOO4BFI9 RIA KRC 121 10/1 UA IOOSO, 1<) R4A 97W3 lID 11:>0/98 1Lq4t) 1130/98 13.5914 I

ROA I 17 204612 UAIOO-lBF20 RIA KRC I~ I 10/2 UA 10050120 .R4C 97W3 I I0 InO/98 I, 'i912 11:>0198 1-1 O(U9 I

ROA II? 204612 UAI004BF21 RIA KRC 121 10/2 UAIOO5D321 :R-IC 97W3 I 10 1130/98 14003~ 1130/98 14:02:05 I
.. ~... ... ... , .. ............... . ..............

ROA 117 204612 .UA 10O-l13F22 RIA KRC 121 10/2 UAIOO5D322 R4C 97W, 110 1/30/98 140205 1/30/98 14:03:34 I
. ........ , ....................

ROA 117 20-16/2 UAI004BF23 RIA KRC 121 10/2 UAI005DJ23 R4C 97\\1.1 110 1130/98 1403 31 1130/98 140S:05 I
........;.........

ROA 11720-16/2 UAIOO-lBF2-1 RIA: KRC 121 10/2 UAI0050324 R4C 97W, 110 1/10/98 140458 1/30/98 1406:29 1
.. ,_ .............. .. ..

ROA 117 204(J/2 UA IOO-lBF25 RIll. KRC 121 10/2 UA 10050325 R-IC 97\\13 1I() lI30/98 1-1.06:2-1 1/30/98 1-It)]:S5 I

ROA 117 204612 UA 100-lBF26 RIA KRC 1211012 UAI0050126R4C 97W3 110 1130/98 140751 IIJO/98 140924 I

ROA 117 2n4612 UAIOO4BF27 RIA KRC 121 IO!2 UA 10050127 R4C nw, 110 1/30/98 IH19: 17 1/30/9814.(():44 I

ROA I 17 204M2 UA IOO-lBF2H RIA KRC 121 1012 UA!OO:'iD 32 X R-IC 97W3 110 1/l0/98 14 J() 41 1/30/98 )-I. I2· 18 I

Figure 5-6 Product database entries for Station 1



contained the source name (alias defined in GOBC to point to the database name), the

table name (tabie within the database source containi ng targeted data). The "Select"

command was frequently used with serial number as the search key to retrieve data

from the se).ected fields (columns). "Update" was another command extensively

used, again with serial number as the reference key, along with data and

corresponding field names where update had to occur

The process information for all stations was also stored in the Citadel database, along

with the statistical information. A tag (variable) in BridgeVIEW was defined for each

field of information desired to be stored. Tags are configurable for how to store data

in Citadel. The data could be stored continuously, at preset time intervals, upon a

change in value, or a combination thereof The Citadel database was accessed by the

second layer programs like "Historical Trending" and "Statistical Process Control"

(SPC) to display the station-by-station process and statistical data using charts and

graphs

4. Communication

The communication between the Adept Controllers and the supervIsory System

Computer was established using the BridgeVIEW Engine. The tags (variables) were

configured to use ODE as the communication protocol Example configuration to

establish communication with an Adept variable "stl need.readin" was

"Adeptladept IIAi m\trx 1\st I need .readin", where "Adept", "adept I ", and

"aim\trx I\st I.need.readin" are application, topic, and item names, respectively

About fifty tags were configured for every station to handle alarms, networking.

71



-.J
1-'

T(~N~ _ !~a T::~ ~9rour lT~~tA~cess _ SCl\er _ __ _I Qe\lce _ __ :Iten~ _ _
st I.need readot Analog Station I :Input ,DOE Seryer IAdeptladept I jaim\trx l\st I.need. readot
stln~readin 1.~aJog- - Station I ri~lpl~----- 'DD(Se6'~-- -_l~d~tlad_eetl c~~<trxl\stT~eed.~~~n
s!!blue.:.lite __.___ jAnalog ~t~tionl :Input__ DDESen'er ;Adeptladep!1 ~aim\!.f\.!~bllle.li~ __
stl.gre~nlite _ l~alog _?tation! :_Input _P~~~er:~~r lA~~tL'ill..fjJtl laim\tr::~\~reenlile

s~ l.meSSread~. I~a1~ __.__ 'StationJ ~Inp0 .__ _ qDE ~ener ..'~~~Jl~'!...ept 1 ~ alln\trx~\mess!~d III

~tl re<!lite __ . ~al~ S~tiOl.!J.. ~E.ut _ DDESen'er !Adeptla£!eptI iam~trxl\:r~li~e_

st lc~?tep .__+Anal~. _. ?_tation 1 Iln2~ __ DD~ S~'er !~_d~ptlad~..!.!_ ~aim\tnJ\stlcur_~tep _
st I.error code Analog Station 1 !Input DOE Sener Adeptladept I :aim\trx l\st 1 error code

__ • - -----,_ 0- _ _ •••• _. • __

stlpurge I Analog Station I t1nput DDESener AdeptIadept I ,aim\trxl\stlpurge
---------.. -r------ ~- - ~ - - . ~ -- -

stl:~.sta~us _ -~m'Ar.l~~ - - ;~tationl__ .. llnl~~ _ _ .!?!?~?~~r __ .!\dep..tl~eptl aif!l\t~!\stlrun~atus
stl.lello\\~ Anal?,,~ _ IStation 1~__. fr'DD~Sen'er _;Adept/adeptl ai~~l\:.'ellO\\.lite
st] ux.local Analog Stationl Iinput- DDESen'er IAdeptladeptl aim\trxl\st I. fix. local
~~~~ck.r~_,:- _ -~-=- Analog Stationl- -~lP~Output -iQ"DE Sen'er---!Adeptladeit I ~m\trxl\s!~~k.reac!!!:l
st l.aclreadot jAnalog ~tation 1 !Input/Output :DDE Sen'er ~deptladeptl aim\tnl\st l.ackreadot
5t l.aclPllfge-·---- Analoii IStatiOil i-~ iInptNOutput rDDE Sen'er - IAdeptladept i- aim\trxl\stlackpurge

5t Ipurgeser lAn~()<.6_ !S~tiOll} __ lnp'l~_ :DDE ~~~~ IAdeptl~~t..l .. aim\!~I\stl.p~~.ser_
5tl pllfge date ,Analog StatlOill Input DDE Sener IAdeptladept I :ai m\trx I\st 1 purge date
~tlq~~~. pr~ - . - 1Analog :StatiOll-'- 'Input/Output -_. DDESmB;- .Adeptladept I -illim\tr.d\st lque-prexf

__ - - I---,.---- ~ .- - ----;-- ._-- ------- -_.- -- l 1 - ._. - --- -

st Ique.re\ ;Analog IStatiOill Input/Output DDE Sen'er Adeptladept I 'aim\tnl\st I que. re\
5t I brd.n.u1 I Anal()<..s Station 1 Input/Output ODE Sen'er Adeptladeptl aim\trxl\stlbrd.run__ .._ . .__ _ _. . _ _.1.. - - _

5t I. barcode. rd Anal_og. ~tation1 _.!!lP~ .. DDE ?e.!'er Adeptlac!~! I :aim~trx l\st I. bar_code rd
stl date,tilllein Analog Stati0l11 ... ln~~~___ DDESeryer Ad~r!Lae~tl aim\t~l\date.tirnein

stl.lk1tetl1l1eOut Ana10g SlallOlI! Input DDESen'er Adeptladeptl alln\tf\.]\datetilneoUl
st I \\orkser An al O's Statim I Inpl~ DOE Ser\er Adep~ladept I illm\trx I,-?t I \\ork ser
stl brd.stalus.pass Analo¥ StatlOill InPL!.t DDESener Adeptladeptl ait~\t~l~brdstatllspass

Sl 1 brd.status.l"all Analog StatiOilI Input DDE Sener Adeptladeptl aim\trxl\brd.status faJ!

Fig 5-7 A part of BridgVIEW engine configuration tile

t Lcnoth ITag Status

~t I~_.-_-=
NlA Good. . --

NlA Good
NlA Good
N'A Good
NlA Good

8() Good
RO Good

NlA Good
NlA Good
NlA Good

_.. 0- • __

NlA Good.- --_._-

~A Good I
NlA Good
- -------

N/A Good
XOjQ?od __
ROll Good
SO Good
XOIGood
8()i~

80lGJod -- ..
8()1~
Xll Good
XIl,Good

'VA 'Good

"'JJA :Good

~

database, etc. Configuration information about all tags wa stored In a single

configuration file, part of which is shown in Figure 5-7.

The configuration file is the first to be loaded when BridgeVIEW Engine stans

running providing all the information for networking, data logging, alarms etc. The

engine, capable of updating thousand tags per second, wa configured for

specifications like the server input queue size, server output queue size, server shut

down time, number of retries for broken connection etc.

5.3 Station I Block Diagrams

The Station 1 supervisory software constituted three subprograms. The block diagrams of

these subprograms is shown in this section The common elements in the block diagrams

of these subprograms are shown only once.

7J

00'·/Jt.l
".';':';."

./

Readin
Board
Info

Fig 5-8: Station I Hierarchy

74

-

~
~ ... Icon

::"~~~~~~.

In I l.. f~;:·~)

Reads stUix.local.
If stUixJocill z" 1 then Go to case 'WAlT stUix.local 1" else Go to C3$e 'WAIT stl.needreadin·D 1,j

1St .·1· '. del il IPopup errOl dialog bolo: ~ error in reading st1.fix.local.
81 up· 8 Comments

~~I 0 [O.21~P:Oi:.tU ··WAIT stl fix local == 1 0::0 IStation1 Readin State Machinel

ICHE~~ stUiix.local == 1~'-1 WAIT st1flKIocai == 1

Tag • l' . b dod·lalUS tati011 In fix oar m e. :::
eads st1 fix.local. 3[

.' Popup error dialog box ~ errol in leadinQ stl.fix.local :(
r1~ ..i-o::o:u:n·:o:::o:)J:::;Q::u:.o: ~ hecks BVengine shutdown

--..J
v'

I'·WAIT st1needreadin ==1~ :. -I lINe>«CMe~

~ 11Y
[§l ~~> • I

1-------1 I~---I----lb

: ~
RAIT iterationsl

II I~2 "

~.mm

Fig 5-9 Station I Readin State Machine Icon & Block Diagram

WAIT sll.need.readin == 1

Reads sl1.need.readin.
1/ st1needJeadin == 1, go to stale "Readin Board Info from
Database" else loop t~1 st1.need.leadin == 1.

~ Popup error dialog box t error In reading stlneedleadin.
~ Checks BVengine shutdown.

I-----------,L....- ~.-----.

~IReadinBoard Info from Dalabase~1

I"SEND stlack.readin == 11-

COIlUlIt.:nts

Readin boald info vi gets the board selial number from Adept_
controller #1 and Query the database using board serial
number as a search key. It also writes board product number.
board revision number and bO<lrd slatus to Adept conlroller +~IE---' Commellts
~1 _

Go to state "SEND stlack.readin == 1".lI-, ~_.__~~....

Read".
Board
Info

t 'r~l

[Q]f---_
7

~«(lC«rtr.~~.MI'U-'AlWU~

Fig 5-10 States in Readin State Machine

1""1 SEND sl1.ack.readln == 1 rl

Sets st1.dck.readin == 1. -Go to state ''WAlT sll.need.leadin:= 0". '.':

Popup error dialoQ box if errOl in wriling 10 sll ack.readirl. ..
Checks BVengine shutdown

I<'WAIT 511 need readin -- 0

iSEND sl1 ack readln == 1l--1..-:::i=-,

~tatus

I.;; sll ack.leadln ,.... ~..:.:~

I1 OO}·· Wri1E'

10 t I··
........ "••. ···0_

0

1""1 WAIT sll.need.readin -- 0 ~

Reads sll.needreadiri.
~If st1.need.readin == O. go 10 stdle "SEND sll. aclueadin == 0"

else toop liU st1.need.readin == O. -
Popup error dialog box ~ elfor in reading sll .need.readin.

I"SEND 511. ack readln == 01

:.............._........._... [?.~~
y

I: lQ;~9J
: '.·WAIT sl1 needr",i.ldln == 01

~~IT st1~~:e:'~(!;adi~~~ :Qr+-'Y';;b,
ri ~

I- ,""ed".~"'l~
[JOOI .. · Ro.d

........... -, ,- ,

.... .. @C~

Fig 5-10 (continued): States in Readin State Machine

77

COllllllcnlS

Comments

["'I SEND sl1.ack readin -- 0 rl

Sets st1.aclueadin = O. - ...
Go back to case ''vIAIT stl.needreadin == 1" r-

Popup error dialog box if enol in W1~ing to stl.ack./eadin
Checks BVenqlne shutdown.

I"WAIT stl.need.readin --1

I§@p :s~S£:~idin == o}---_.._;
~

I~
I~ stl. ack readinBj=.:.~

raOO! : Writ~
Ii»' I..., .. -.- -...

fQl-

Fig 5-10 (continued) State in Readin State Machine

Comments

leon

Folse

[This VI cp..JeIies the dlllobose ond ~les the resu~ to Adept I

Fig 5-11. Icon and Block diagram of the subprogram in state "Readin Board Info from
Database"

78

Icon

~J ~.
~

SRLECT

(BPN1, IBRN) , [Status '1101, [Status '120)

FROM

\5

KRK (BSN = '\ 5');

Comments

i
IT his VI executes the SOL commands fOI database to get BPN,BRN and board status in station 1f1 l, stalior, "21

Fig 5-12: Icon and block diagram of a subprogram that queries
the database in program Readin State Machine.

79

I~;~~~ Icon

!This VI detelmines the board status in board reentry prolocol)

Comments

f station1 slatus l : 0 and 1
if station2 stalus DD 0

WI~e "Rerun" to stl.brd,lun
else

Wf~e "Pass" 10 sl1. brd.run
else

if slalionl status""" 0
Write "Rerun" 10 st1.brdrun

el~e

Write "Pass" to stl. brd. run

Fig 5-13: Icon and block diagram ofa subprogram that determines board status in
Board Reentry protocol in program Readin State Machine.

Icon

IT his VI writes the board p'oducl, ~evjsion, status to Adept Controller It, I

ISEND board inlo to Statio,nl!

rl@:-
OJ

N

,t4 st'.brd.run

,I. stlque prod

,t4 st1 ,que rev ...

Slatlon1 readln write to vars data

rites product number to stlque.prod, levision number to
stlquerev end board slatus to sl1.brcirun. ""..1--'
Popup enor dialog box if enor in wr~jng to Adept controller It 1.:

ConllncnlS

Fig 5-14 leon and Block diagram of a subprogram that writes to Adept
Controller 1 in Readin State Machine program

Icon

IT his VI leads the date and time board gets in &out. board status and serial number from Adept controller It,

Reads dale time in, date time out, boards status faR or pass and
board serial numbef.
Popup errol dialog box if enor In writing to Adept controller 1i1.

N

-
-'- 4 Comments

Stalionl readot vallables lei3d

~• .f:~.".<.1

lIT!

LI------I~Wo I~~l~jn--:-:

~ ,.;st1.dale.time.out "'I~:-""-

i ";stl.brd.sldlus.fail y:
;::. st1 brd. status. pas~ :

,.; sll work.ser y :

Fig 5- I5. leon and Block diagram of a subprogram that reads from the
Adept Controller] in Readot State Machine program

81

O¢,-.>

it<

rs;1l ...
~[con

Reads st1.fix.local.
If stLhxiocal == 1 then Go 10 Case 'WAlT slllix.locdl == 1" else Go to case 'WAIT st1need.readot= 1" Commc.nts

Is laftup delayl
Popup e.Hor dialog box if error in reading stl.fix.local

1',"

1 0.. 2 ;:; ··WAIT stlfixlocal == 1

ICHECK Write Board Info to Database

~

:::: .;. ::~ :.:

"""'AIT sll.need readal == 1 .. SEND sll ack readal == , Next Case

I
Update Board Lee vi gets the board seri~ number from Adepl .::
controller tn and update the database using board serial

sll.ack.readot ... number as a search key. It vvrites dale time in. date lime out 01 :
the board. board status and board location 10 database. .;
Go to state "SEND stl.ack.readat == 1"

I
twAI Titeralionsl UpdQI9

II I~211
Boo.rd I'~ ul 13> 1Q]
Loc.l

H 0 ...
",,~~mm@I""'!"llllll'''ll$l~mll:lllm~l:ll:llllml:ll:ll!lllllllSl!~lSllSlllllSllll!!!lllllllSl; 1;;;III!S!!II~lmllSmmlSm;llmllm mlllSmlllS;III!llllllllmliSlSlll~

Fig 5-16 Station I Readot State Machine Icon & Block Diagram

~

Icon

\5 ~SET BoardLocation = '110', [Start Time #110J = #\5#, [Status #1101 = '\d', [Stop Time U10I = #\5# .,
RRK (BSN = '\ 5');

Comments

~uccess?1

jinll

~~. ~rror in (no erronll' "";'!Ar.<XfiN ~

'e<;',,,'''.I"'"'"JI ~. -'~-L ",~~- • -,- ---"«.Fal" ~. _. __.. _.... __ '"~ -lITiiI:l__....__..,__ .__..... ..__ .. '"~r ~ .v.v. _,_.~~~;~ @- •.. _v..' v ~v.v..._v.v.v__v_v_v_v.v.v'~
outinfo :j~ Cl r-vv" -.v_

~ - ,

·"·<<:If:l~-f-l !~~ ; ------- .._,j~ Cl ~--,- -I ! -...._-_..__.._...•-. If b,d ,t.'u..r~1 .. '.u, If "0 , ~
'3" •• ,_--.. T'u, W Ie "'0 '0 St. __ 1 ,...

121' ~11iilJ c f"· n-- ". ;,"b,d.".'u,.pa" -Ii" 0 ~~ 0

ffi- ... IiI!,J [Q].~- e W,•• on, toS:;':'~ 0 , b~d ""u' p'"
' ...~. L?-'" el" , b'd.,t"u .. undefnedI'--~. 'V'- m'i',&b.. ! Sa~ "s '.'u

t

' I~tatus tt 110m ... LV iL'J!?,-' WW.!!!nt~e~nJ~n~eo~~__
L.v~8>· ... IN

00
w

I~:~is VI updates lh~-dat~base with dale time in, dale time out of the board. board stalus and board location using board serial number as a search key

Fig 5-17.Icon and block diagram of a subprogram that updates the
database in program Readot State Machine

r;l-L Icon
~JO'"

ISlarlupdef~y]

.1":' il1.1 2 [0 .211.

me
;:; :·;n;

~

Reads stUiKlocaL ...
II stUb<.local == 1 then Go to case 'WAIT sttfix.local ==: , .. else Go to case 'WAIT sttpurge ==," fJ·.- C
P d· I b:C . d· , f· I I . OmmCll[Sopup errol la 09 0:< u error In rea Iflg st . IX. Oed. ::.

~.':~'l 00 1 ~IS"'io"' P"g. 51". M,ch;oei

(CHECK stl .lllx.loc~·-i Pur e Board Info in Database
Tag
tatus

······---8>I~
r";""j
1.~.:.Ql

ex:... I'.WAIT st1.purge == l~-l'" I~'SEND stfackpurge==] l--t~

l,!,jstl aCkPUrge&~

@:;~

I' [ill· . : • I

Purge Board Loc vi gets the board serial number from Adept' _
controller It, and update the d3lab<!lse using b08Id serial
number as a search key It writes purge date time.board status.
and board location to database. •
Go to stale "SEND 5t' .ack.purge = "'.

i21oG>~

Purge
Board
Loc.tRAI T iterationsl

~m ~ 8:> L,... ""'" "''' ,~ ·I l
Fig 5-18: Station J Purge State Machine leon & Block Diagram

Icon

tupdat e
\5

SBT BoardLocation = '1110', (Start Time #110 I
IurnB P.R (BSN = '\ s');

#'5#, (Status #1101 '0'

[E,,:, :~: :~: ~:j:::~: ~.:7..~.J.:~i:11)]

r···:···
........ "!

I
• - I I

[~.!.::::.~!!:'.. .r.~~:.,I~.~J.~:~:;]

..- , - _'~<.

True

~el

~'71";~~'~...ZX:l
1,········IJ················l: •• 1 r . ,- _ ~: •;."::;';"1'"'' .r:-.; ~aI .. ~~__· ~~~~__~_~.M~.~ .._

1IIi),.:""",,,,;,,,,n,r""'3li11
~rror in (no·e~ror)~ ~

~
~
~
~

~
~-.
~
~".<x<"",.".<"".,,.'A<XOX'.<>.<"M·"·'l·'A"''<>'' ..L

[i·s-;~~~;I~;~iR·~~~i]

oc
Vl

Fig 5-19 leon and block diagram of a subprogram that updates the
database in program Purge State Machine

CHAPTER VI

SUMMARV OF OBSERVATIONS

This report was intended to share my experiences with a Hybrid Control project of an

industrial assembly line. It involved understanding, designing, coding, and debugging

almost all phases of the project. A literature review on the Hybrid Control model is

included describing the evolution, architecture, and the utility of Hybrid Control models

An example application utilizing Hybrid Control model is also presented SCADA

systems are also briefly described, along a brief survey on the capabilities of three

representative commercial SCADA packages.

The system analysis section includes design requirements and specifications A layered

software architecture was developed to implement various services and protocols, such as

the Man Machine Interface (MMI) or GUI, communication, network, and database

Only one station, Station), was selected as an example, though the methodology and

philosophy is discussed for the entire line. For Station I, samples of protocols and other

engineering documents, including the block diagrams (BridgeVIEW code), are included

Admittedly, it is difficult to understand these documents without knowing the project in

entirety, but they give some idea of the kind of activities involved in an industrial

automation project of this scope.

The designing phase of the project took 60% of the project time while implementation

took only 20%. The rest was in debugging and miscellaneous unaccountable activities

such as coordination between our team and the client's team of engineers. Apparently, in

86

my opmlon at least, the dataflow graphical environment of BridgeVIEW made the

software development much easier, especially at debugging. The code, in reality, looked

very similar to the Eventflow diagrams we had developed. An object was created for each

design block, BridgeVIEW functions and stmctures were copied (LlII of which are also

objects), and these objects were wired together. As compared to lhe text-based languages

I have used, this approach of connecting objects together increases the readability and

understandability of the program.

BridgeVIEW also saved a great deal of coding time by using several built-in

functionalities. The historical trending charts were handy in displaying the process

values of the entire assembly line by acces~ing data from its built-in rcal-time database

(Citadel). BridgeVIEW engine also handled the va functions and communications with

Adept Controllers, just by configuring some variables (Tags) to provide needed

information. BridgeVIEW provided built-in modularity, a prerequisite for this

supervisory program. For example, another station or function can be added just by

inserting and wiring one more object to the program.

The perfonnance of the Windows NT 4.0 platform exceeded our expectations. It

performed flawlessly and kept runnmg the software for the whole line, regardless of

problems in one or more stations.

Of course, there were limitations and tradeoffs. BridgeVIEWTM can only handle about a

thousand tags per second, beyond which its reliability is not guaranteed. Future

additions, which ceI1.ainly will occur. will have to work around this limitation.

87

The supervIsory software did not have exception handling capabilities. For example.

there were no provisions to react properly in cases of emergency shutdowns or power

failures The product database is currently available to local users only; it should be kept

in a database server to give engineers or managers global access for real-time evaluation

ofline's production performance

88

REFERE CES

[Boyer 93] Stuan A Boyer, SCADA ,)'upervisory cOlllrol ami daw acquisilioll,
Instrument Society of America, Research Triangle Park, NC, 1993.

[Deshpande and Varaiya 95] Akash Deshpande and Pravin Varaiya, "Viable Control of
Hybrid Systems", Hyhnd 5)/stems II, Lecture Notes in Computer Science 999, pp 128
147, Springer-Verlag, Berlin Heidelberg, Germany, 1995

[GE Fanuc Automation 95] GE Fanuc Automation, ClIl1plicity I/.. For Willdows NFM
Momtormg and Control Software Data Sheets, Part No. GFT-168, Charlottesville, VA,
Oct J995

[GE Fanuc Automation 96] GE Fanuc Automation, Ompilci/yol/..) MOlIIlOrtflg and
Control Products MMI & MES/SCADA, Pan No. GFW-0039, Charlottesville, VA, May
1996

[Godbole, Lygeros and Sastry 95] Datta N Godbole, John Lygeros and Shankar Sastry,
"Hierarchical Hybrid Control· A case study", Hybnd Systems II, Lecture Notes in
Computer Science 999, pp. 166-190, Springer-Verlag, Berlin Heidelberg, Germany,
1995

[La Fauci 97] Joseph La Fauci, "Users' demands narrow PLC-DCS gap", In tech, pp
36- 40, Feb 1997.

[Lygeros 98] John Lygeros, Hybnd System COll1rol,
httpJ/robotics.eecs berkeley.edu/-lygeros/Research/hybrid. html, (Jan 1998).

[Mahmood 96] Syed M Mahmood, General-Purpose AUlomation l)rograml11l1lg llslIJg
A Crap/ncal Language, Masters Thesis, Oklahoma State University, Stillwater,
Oklahoma, May 1996

[Nntional lnstmments Corp 96] National Instruments Corporation, HridgeV/F,WIM
llser Manual, Part No. 321294A-O I, Austin, TX, Oct 1996.

[National Instruments Corp 97a] National Instruments Corporation, "Historical
Trending", BndgeVIEwrM The Graphical Programming Approach to PC AlllomatlOn,
Part No 350313A-OI, Austin, TX, Feb 1997.

[National Instruments Corp 97b] National Instruments Corporation, BridgeVIEWI'M
andLabVIEW@SQL ToolkitforGReferenceManual, Pan No. 321525A-01, Austin, TX,
FebJ997.

89

[National Instruments Corp 97c) National Instruments Corporation, "BridgeVIEW
Architecture", The Graphical Programming Approach to Industrial A"tomalion,
Technical Seminar Series, Part No. 35033IA-01, pp 9, Austin, TX, Mar 1997.

[National Instruments Corp 97d] National Instruments Corporation, "OLE for Process
Control", Industria! SolutioJls lIsinK Advanced PC Techno!oKies, Technical Seminar
Series, Part No 350368A-OI. pp l2-15, Austin, TX, Aug 1997,

[Pori 96] Anuj Pori, What are Hyhnd Syslems.'),
http://www-path.eecsberkeley.edu/-anuj/what-are-hybrid/what.htm\. (Sep 1996)

[Robinson and Salkas 95] John J Robinson and John P Salkas. "DCS vs. PLC. Why
not a hybrid?", InTech, pp 40-43, Jul 1995

[Tanenbaum 96] Andrew S Tanenbaum, Computer Networks. Prentice Hall, Upper
Saddle River, NJ. 1996.

[Warnock 88J Ian G Warnock, Programmable Controllers Operatum and App!u.:atlOlI,
University Press, Cambridge, UK 1988

[Wonderware 94] Wonderware Corporation, NetDDE Product Data Sheet, Part No 15
306, Irvine, CA, July 1994.

[Wonderware 95] Wonderware Corporation, InTouch for Process Automation, Part
No 15-309, Irvine, CA, Oct 1995

[Wonderware 97] Wonderware Corporation, Visuali:ation Inl'olich™ 7.0, Part No 1S
7000, Irvine, CA, Nov 1994

90

VITA

Syed M. M. Manzoor

Candidate for the Degree of

Master of Science

Thesis: BRIDGEVIEWTM FOR HYBRID CONTROL: AN APPLIED CASE ST DY
OF AUTOMATI"'JG AN INDUSTRIAL ASSEMBLY LINE

Major Field: Computer Science

Biographical:

Personal Data: Born in Karachi, Pakistan, May 15, 1970, son of Syed M. Usman
and Anis Fatima.

Education: Received Bachelor of Engineering degree with major in Electronic
Engineering from NED University at Karachi, Pakistan in I<J92.
Completed the requirements for the Master of Science degree with a major
in Computer Science at Oklahoma State University in July 1<J<J~.

Experience: Worked as Instrumentation Engineer in Gatron (19<J2-1994), a Ryan
manufacturing and texturizing plant; Computer Science intern at BDM
Oklahoma Inc. (May, 1996- Aug, 1996); Computer Science intern at VI
Engineering, North Carolina (Currently working since Jan 1, 19(7).

Professional Membership: Engineering Council of Pakistan.

