BRIDGEVIEW™ FOR HYBRID CONTROL SYSTEM:
AN APPLIED CASE STUDY OF AUTOMATING

AN INDUSTRIAL ASSEMBLY LINE

By
SYED M.M. MANZOOR
Bachelor of Electronic Engineering
NED University
Karachi, Pakistan

1992

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
July 1998

OKLAHOMA STATE UNIVERSITY

BRIDGEVIEW™ FOR HYBRID CONTROL SYSTEM:
AN APPLIED CASE STUDY OF AUTOMATING

AN INDUSTRIAL ASSEMBLY LINE

Thesis Approved:

L XDl St

Thesis Advisor

\ o e

2L il

(A Eum B o wold

Dean bf the Graduate College

1i

PREFACE

Advancement in computer, sensors and controllers technology requires control engineers
to deal with larger and more complicated control systems. It is no longer sufficient to
choose between a discrete or analog system because both types are often needed in
today’s sophisticated systems. As discrete and analog control systems are both extending
rapidly to accommodate crucial properties of each other, the line of demarcation between
them is becoming fuzzy. A new type of control system — Hybrid Control System (HCS)
- 1s emerging that combines the benefits of both. HCS's synergistic effect creates a

control system that encompasses the features and functionality of each type and beyond.

This work describes a case study of such a system. It involves design and
implementation of supervisory software for a propriety Hybrid Control System project
involving a robotic assembly line for a cellular relay-station motherboard manufacturer.
The scope of the project included system analysis of the robotic assembly line, selection
of networking and communication protocols, database selection, and the design of an
intuitive GUI or Man Machine Interface (MMI). Commercially available Supervisory
Control and Data Acquisition (SCADA) packages were reviewed to select a suitable
environment. The software implementation on one station of the line is shown as an

example.

1

ACKNOWLEDGEMENTS

First and foremost, my family (Father, Syed M. Usman, Mother. Anis Fatima, brothers,
and sisters) deserves credit for providing me the love and support throughout my life,

especially during my graduate studies.

I am very thankful to my advisor, Dr. Nick Street, for providing me guidance, exercising
patience, and extending encouragement on numerous occasions, like a friend more than
an advisor. Dr. John Chandler and Dr. John Hatcliff also deserve credit for serving as
thesis committee members and facilitating the thesis process despite of my being on the

field a thousand mile away.

My special thanks goes to Spencer Sullivan (District Manager, VI Engineering) for
providing me the opportunity to work on this exciting thesis project His eternal optimism
and trust in people make him one of the best managers 1 have encountered in my life |
learned a great deal working with him and his team of engineers And of course, this
thesis would not have been possible without the understanding and full support of Robert

Jacobs (President, VI Engineering).

TABLE OF CONTENTS

Chapter Page
IL b5, 87000 91T ()1 N U PN, SO S |
Lok BDSUICE. acammms insn o s s e s e S S AN SR e I
R R IO ot arms ot et i o A M e e R e AR l
11 HYBRID CONTROL SYSTEM. . ..ottt 4
2.1 Introduction 1o/ Contml SYSIEIIS. ... coxvmonvnimiiss domn samiesssam s osmmm 4

2.2 Robot Assembly Line Operation as an Example of Hybrid Control System.7

2.3 Bybrid Control System ArchIteCtune. . ..o cummsmmissnsinn spmsmmumassssvas v 8
2.4 Formal Definition of Hybrid Control System Automata...............oooe.n. 10
2.5 Hybrid Control System: AdVANAZES. .. cvuws susswnmsssswsamess sovs casssnsn srusass 12
I11. SUPERVISORY CONTROL AND DATA ACQUISITION............ooooonnn . 13
3.1 WHEE IS BEADIN oo s s o SRR SR A v s s 2
3.2 Where is it suitable?.......ooooeiinii 13
3.3 Main Fedtures of 4 SCADA SYSIeM. ... cuniisssissmmmoiniessssansiss suasssss 14
1) Data Acquisition And Supervisory Control..........................o 14

2 IR PTOSEIATIOT s :co0s w5 o o 7048w s S o S AR 16

3) NetWOrk AN SOCUTILY. vonnsmmnsnenmms ssmeim sinrnd meims b men babo s sl b L4508 17

4) Database CONMECIIVILY . < cumussmisviivasmssmsis sasssminiassass s aressesssuas sone 17
3.4 Overview of some widely used SCADA Packages............................ 17
CIMPHCHY: o comsssasmmmimasmm s s asms s b s s s S s 18
EARITEI. . omrmrmirs ammemn B RS A L SAE S S i de g o8& S alp: Seeaa ot 20
Bridge VIEW .ou s swasmssnmsmsanismossist s s s sssas e s i s sagsaso s 22

IVi: "TRX ASSEMBLY LINE PROJECT... .. .cooneessrassestssphnsnisassissisnssssssiss 27

4.1 Project OVEIVIBIW: «. v suessuisiiinmesne s vassasems suesefee s s s s assnscavesiissns 28
4.2 System AnalysiS......cccvieeinniane SR R R s e
4.2.1 TRX Assembly Line Project Management...... .. ||

a) Variables List.....onuasinmmiamsmnnnanisissmesn dossiiiina 3y

D) PrOtOCOLS . e e 33
Automatic and Fixes Board Mode Protocol......................... 33

Purge Protocol.ooe v e 03D

Board Be-ehtiy PISOE0] i snamvsamsmma s sam sss s ammsia, 36

Benchmark Test for Database.............coovviiiiiiiiiiiiiiiieenn 36
CIEBEIDRTAITES +-c v e s e i s o 3 A A B RS N 38

C) EVERtilow IDIABEAINS. oo vensie Socbensess s ieisg s Fanssane, vm s sas 38

4.22 Supervisory System HardWareuscsmvimimmsavisemsnsnvmsessoast 4]
4.2.3 Supervisory Software Architecture...............ccoviiiiiiiiinieninnn. 41

a) Hybrid Supervisory Control Software...............cooooiinn. 42
Graphical User Intetface (GUN)..ovissummnininsussisiasavemiions 42
HandshaKing.........coooiiiiiiii e 45

EIEADASE. <o ot s by o R S AT R A A 46

1) Product DIALABASE. . ocmesmeesnmssomssmisesns smanm st B85 ¢ s sasmimin s 46

Product Database ArchIVIlE .. «usesiwmmnuesssissnonss snmsiss 49

2Y Historian Database...c..caisnmis s s isoirsasdisim 49

C ORI INICAION covvivnsunressin onsimmmrsm s ma s ase s R S S T s o3 53

b) Supervisory Software Algorithm...................oocoiniin e 53

¢) SCADA Packape SEROON. -5 sunvimmersessmnsmensammsnmimeiesmms sl

Y- DESCRIPTION OFSTATION Traommsmmammemrenmmms s sermmcsssaosit)
5.1 Protocol Description through Eventflow Diagrams........................... 56
5.2 Supervisory Software Hierarchy......c..coviciiiniiniiiecsnnrnincncenianinne 62
PYRUIL. . ..cs nomme moisammmes s0 A SN N SR TR TR S A R AR 62

2) HandSHAKING .«.ocomasisimummnsnssomims cosasasssns aasmss s samsas s5amsmens sosmess 64
Synchronization (Critical Timing) Issues..........civvviivennsnimiananis 67

Vi

Y DAADASE s v s s e S S S S R R SRR 69

SN @07y 1301013) (o0 1A Te) | (RSO SO S Sy & Sy S S 71

5.3 Station'1-Block DIageamfis: . . c.cusvimsmissnsissormsmmsnmessnsmus s mamsimasemsses 73

VL SUMMARY OF OBSERVATION iiiiiisssssssssasessssssnnnnsn 86
S e B e B et e e e e e 89

Vil

Figures

Figure 2-1
Figure 2-2
Figure 2-3
Figure 3-1
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9a
Figure 4-9b
Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13
Figure 4-14
Figure 5-1a
Figure 5-1b
Figure 5-1c¢
Figure 5-2
Figure 5-3

Figure 5-4

LIST OF FIGURES

Page
RoDot AsSembly Nl eninmiimsiss snieinfinmsots sinsss s atis s s sns s mmymtdinns 8
Hybrid Control System ArchiteCture...............coooeeiiviiiiininiiiaeiieannn. 9
Hybrid Control System Automaton..................... T T 11
An outline of a typical SCADA System...........oovvviiiiiiiiiiiiiiinennn, 15
The TRX assembly HNe .« c.crimuvnammnmana s s mmsimisg, 29
A part of the list of the vanables................ocooiiiiiiiiiiiiiiiiein. .34
A samiple of Fix board mode protocol. ... qoumamammimismsasssssmisssisodd
A sample of Purge mode protocol.........coooiiiiiiiiiiiiii i 37
Table of Board reentry Flag definitions..... cooovwsvimissmenns oras s s 31
Results of the benchmark tests on three databases using three front-ends...38
A S e ORI ovonssimrmmosstio s e s s oy A U SRR e
A part of the eventflow diagram of one station..................ooooiieiinnn. 40
The *Main” GUI command Center...............ooviviiiiieiiiiiiiiiiiiiaeennn. 43
ThEMOVerHew’” QUL cuvnimivmvnas s eian sty s e s sl e v 44
A part of the product Database functionality requirements................ 47-48
Example of Database Field defintions..........................cool .50
Access™ Database archiving procedure.................oooiiiiiiiiii, 51
Historian Database TeqUireIBnLs: oo vismmsmis sssmmsismims s iaus sosmimd D
Networking and Data sharing Scheme......................o 54
Stiation:) Eventblow diagrami .. cusscrmmimsaimimmsinsimomass smems i ey 57
Station | Eventflow diagram...................coeen0 059
Station: 1- EVEItfIOW QRAGTATH - cuwswsammmsmmas mmmamssnsmsisi s s S aewasin 61
Station 1 GUILL ..o 63
Station | Automatic and Fixed Board Mode protocol.......................... 65
Station | Purge protocol.........oeineiieiiie e 66

viii

- Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 5-10
Figure 5-11

Figure 5-12

Figure 5-13

Figure 5-14

Figure 5-15

Figure 5-16
Figure 5-17

Figure 5-18
Figure 5-19

Stationy. 1 Board reentry Protocolsssivmmssivesmsssisuss suviusise savais 68
Product Database entries for Station L..........c.ocvviiiiiiiiiiiiiiiiniiinn 70
A part of BridgeVIEW engine configuration file...............ccocoiiiiininn. 72
Station 1 Hierarchy..........oiieiiie e 74
Station 1 Readin State Machine Icon and Block Diagram...................... 75
States in Readin State Machine...............coooviiiiiiiiiiiii i, 76-78

Icon and Block diagram of the subprogram in state “Readin Board

INTOIVGE BIalaaNE " o aan s ahec B8 000 0, Vo £ hrs Sps N A A SRR 08 A A W 78
Icon and Block diagram of the subprogram that queries the database

in’program Reéadin State Maching...q:cosimmms i vevemssi 79
Icon and Block diagram of the subprogram that determines board status

in Board Reentry protocol in program Readin State Machine.......... 80
Icon and Block diagram of the subprogram that writes to Adept

Cottroller |1 intReadin ' State Machine.....c.ccvvvivannaninsincaasens 81
Icon and Block diagram of the subprogram that reads from Adept

Controller] intReadot State Machine.c.sv v msarinansnimn mansesnve 81
Station 1 Readot State Machine Icon and Block Diagram...................... 82

Icon and Block diagram of the subprogram that updates the database

in program Readot State Machine............cc.coviviiiiiiinniiiiiiennn. 83
Station | Purge State Machine Icon and Block Diagram....................... 84

Icon and Block diagram of the subprogram that updates the database

in program Purge State Machine. oo covss suranesmusmosmsrnmarsarses 85

CHAPTER 1

INTRODUCTION

1.1 Abstract

This thesis describes the supervisory software design and program for a hybrid control
system industrial assembly line involving three robots controlling nine stations. It enables
the software engineers to develop a hierarchical structure for integrating GUI, database,
handshaking and network protocols in a single program Its one-program-for-the-whole-
sytem approach allows users to monitor the effect of a change in a process parameter of
one robot over the whole assembly line. Moreover 1t stores and displays the product,
process and statistical data for better optimization of the assembly line The supervisory
software 1s written in BridgeVIEW™ which utilizes the object oriented graphical

programming environment for the development of the code.

1.2 Introduction

Automation is recognized as an integral part of the industrial world. Though its benefits
extend to many areas such as office automation, it is most extensively used in the
manufacturing industry for its indispensable benefits to areas such as production,
information management, and safety features It not only provides better data acquisition
and control systems but also enhances the coordination between different instruments,
thus reducing the need for manual intervention in batch processes. The net results are

increased productivity, safer operations, and consequently, reduced cost of production

Traditionally, two distinct types of control systems are employed in industry. Distributed
Control Systems (DCS) are used for continuous control systems. DCS’s are
microprocessor-based replacements for the panel board controllers and recorders DCS
systems are extensively used, for example, in refineries and petrochemical plants
Programmable Logic Controllers (PLC), on the other hand, are used for discrete systems
mostly involving On/Off or digital controls. PLC’s are also microprocessor-based

replacements for hardwired relays and mechanical timers.

Advancement in computer, sensors and controllers technology required control engineers
to deal with larger and more complicated control systems. It was no longer sufficient to
choose between a discrete or analog system because both types were often needed.
Gradually, both continuous and discrete control systems were extended to accommodate
crucial properties of each other {La Fauci 97], and the line of demarcation between them
became fuzzy A new type of control system — Hybrid Control System (HCS) — emerged
that combines both Distributed Control Systems and Programmable Logic Controllers
The synergistic effect creates a control system that encompasses the features and

functionality of each type and beyond.

The overlapping of continuous and discrete control system boundaries with one another
increased the complexity of the resulting control systems The combined controllers
involve not only the complexity of continuous and discrete controllers but also the added
complexity of mutual interaction. The increased complexity required the use of higher
level (preferably graphic) languages. Desktop computers’ role rapidly increased in

automation and control systems because of their ability to run higher level (especially

visual) languages and capabilities such as networking and databases The major hurdle in
their use - reliability — was significantly reduced with the implementation of parallel

architectures, multitasking and multiprocessing operating systems.

Canned commercial software is now available for desktop computers requiring very little
programming; just configuring the 1/0’s and logic using built-in functions provided rapid
development and reliability. However, extensive training is required to configure the
system, and unique instrumentation and modification requires professional help from the

manufacturers of the software package

High level autbmation languages are also becoming popular They afe more flexible then
canned packages and are relatively easy to use, especially if they have a graphical
environment An example is “iconic programming” in which functions are depicted as
icons. Icons are copied from a built-in library, arranged, and wires drawn between them
to show data flow path and sequence This kind of programming is gaining popularity as

it frees the programmer from mastering a text-based language.

How eftective and suitable are these high level graphical languages for Hybrid Control
Systems and what are their cons and pros? This thesis addresses this question with a case
study using a popular graphical language, BridgeVIEW [National Instruments Corp 96].
to complete a proprietary hybrid control project involving a robotic assembly line for a

cellular relay station motherboard manufacturer

CHAPTER 11

HYBRID CONTROL SYSTEMS

2.1 Introduction to Control Systems

The history of automation is as old as the history of human civilization Right from the
making of the first tool on earth there has been a constant trend towards automation The
first efforts for automation utilized stones and wood, followed by mechanical automation.
With the introduction of electricity, mechanical parts were replaced by electrical parts.
Today, there is a large number of automatic electrical controls in homes, businesses and

industries

Automation 1s the act of controlling processes with minimal human involvement A
typical control has the ability to start and maintain the process variables within their
specified ranges, and eventually, stop the process when needed Thus an automatic

control system replaces the human input required for the process control.

A control system for any process can be designed by knowing the inputs, control actions.
and outputs. Physical or chemical inputs to a process are generally transformed to
electrical signals using transducers [Warnock 88]. Transducers generate an electrical
signal proportional to the applied physical or chemical stimulus These signals can be
discrete (High/Low) or analog (continuous) For example, an On/OfT switch produces a

discrete signal while a thermocouple produces an analog signal (millivolts)

There are two major classes of electrical control systems “Continuous control systems”

involve addition, subtraction, differentiation and integration of the continuously incoming

signals (current/voltages) and provide correct output in real time. “Discrete control
systems” output High/Low signals based on binary inputs (0 or 1) and Boolean control
logic. Examples are “Proportional, Integral and Derivative” (PID) controllers for
continuous control systems and “Programmable Logic Controllers” (PLC) for discrete

control systems.

Initially, all controllers were hardwired and were applicable only for the process for
which they were designed These controllers would lose reliability if any design
parameter had to be changed in the process Integrated circuits gave software/control
engineers the flexibility to use software routines for developing the logic for these
controllers. A controller can now be used to handle different processes just by changing

the software code. Controllers are now more robust, modular and portable

Control system reliability 1s a primary concern for control engineers because of
significant productivity (and financial) loss incurred by breakdowns Whereas controllers
for both discrete and continuous control systems were specifically designed for reliable
operation as standalone independent units, desktop computers lagged behind 1n
reliability, partly because their operating system was not designed with automation in
mind Operating systems of the early computers encountered frequent freeze-ups. usually

because of viruses, low resource allocations, process disruptions, etc

With the implementation of parallel architectures, multitasking and multiprocessing
operating systems, desktop computers became more reliable A problem in a single

process does not freeze up the computer anymore, other processes continue to run, thus

making computers reliable enough for uninterrupted control system operations With the

increasing reliability of desktop computers, their role rapidly increased in automation
because of their high potential for augmenting control system flexibility. Computers add
capabilities such as networking, database, and ability to run higher level (especially

visual) languages.

The advancement in computer, sensor and controller technology paved the way for the
control engineers to deal with larger and more complicated control systems. It was no
longer sufficient to choose between a discrete or analog system because both types were
often needed Thus, research was conducted in areas previously thought difficult to deal
with [Lygeros 98]. As a result, both continuous and discrete control systems were
extended to accommodate crucial properties of each other [La Fauci 97], and the line of

demarcation between them became fuzzy.

The conventional design algorithms for discrete and continuous control systems were
also modified. The overlapping of continuous and discrete control system boundaries
with one another increases the complexity of the resulting control system The combined
controllers involve not only the complexity of continuous and discrete controllers but also
the added complexity of mutual interaction A hierarchy was developed to define the
control structure for designing the combined continuous and discrete control system. In
this hierarchy, continuous control systems carry out the lower level tasks and discrete
control systems supervise these lower level tasks and issue the top-level commands. The
control systems with the above hierarchical control structure are known as “Hybrid

control systems”

6

2.2 Robot Assembly Line operation as an example of Hybrid Control System

A robot assembly line operation is a typical example of hybrid control system In the
example shown in Figure 2-1, a printed circuit board Y is moving on the conveyor belt
As it reaches position 1, Robot A picks it up and places it on position 2 inside the station
#1, where specific parts are inserted on it. When insertion is complete at position 2.
Robot A picks it up and puts it on position 3 Here too, some process is done on the
board. Robot A then transfers it to position 4. After completion of the board process at
position 4, the board is placed on the convevor belt again, which takes the board to
position S Here Robot B continues to advance the board to let all the processes at
positions 6,7 and 8 inside station #2 be completed The assembled board is then picked

up by Robot B and is placed on the “Product box”

Each “position” in this assembly line operation represents a “Discrete Event System’.
while the work done on the board at each position is the “Continuous System™ As the
board reaches position 1, an event is triggered and Robot A is told to pick the board up
An actuator controls the movement of Robot A, governed by differential equations When
Robot A grips the board, another event is triggered commanding the Robot to put the
board at position 2. Such discrete states and events govern the control algorithm for a
complete assembly line operation, describing the movement of robots and conveyor belts
at each state. The combination of such continuous and discrete systems makes the

assembly line operation a hybrid control system

Posituon _ Product box
Station #1

/ Station #2 Y
G
’ §

Convevor belt
hrection of movament of conveyor belt
I |
w Tl
o UL

RRobot A Robot B

Fig 2-1: Robot assembly line.

2.3 Hybrid Control System Architecture

Hybrid control systems form a class of controllers typically built on a 3-layer hierarchical
model. Though most industrial hybrid controllers today encompass a wider range of
diversified control functions representing more than three layers of architecture, they can
still be represented by the 3-layer abstract model [Godbole, Lygeros and Sastry 95]
shown in Figure 2-2 The lowest layer of this architecture, “Continuous Systems .
interacts directly with the plant control processes This layer is modeled by using the
integral, proportional, differential or difference equations. The upper layer, “Discrete
Event System”, acts as supervisory controller The combination of the discrete events in
this layer follows the hybrid system control algorithm. These algorithms are usually
depicted by Finite State Machines, Petri Nets, etc. The middle or “Interface™ layer does

the communication between the continuous and discrete layers. It translates the action of

continuous layer to events for the discrete layer and conversely converts the responses
(events) from the discrete layer to signals for the continuous system. In this 3-layer
hybrid system architecture, any component not in the domain of the continuous system
can be treated as a part of the discrete layer. This hierarchy of the multi-layer hybrid
system is somewhat similar in concept to Open System Interconnection (OSI)
[Tanenbaum 96] model of networking in which information gets condensed in the
ascending order of layers. The topmost layer is the most abstract In it, a single command
carries all the information regarding the work performed by the subsequent layer and

down all the way to the lowest layer.

DISCRETE EVENT SYSTEMS
Finite State Machines, Petni Nets

Generalized Sics - Genceralized

Digital/Analog IGNAL . EVENTS/ Analog/Digntal

Converter GENERATOR LiasEi g nEE SYMBOL Converter
GENERATOR

CONTINUOUS SYSTEMS
Differential - DifTference Equations

Fig 2-2: Hybrid Control System architecture
([Godbole, Lygeros and Sastry 95], page 167)

9

2.4 Formal Definition of Hybrid Control System Automata

“Hybrid control systems are continuous-variable and continuous-time systems with
phased operations” [Deshpande and Varaiya 95]. Inside each phase of operation, the
control system carries out the tasks set by static or dynamic rules of that phase. Transition
between the phases takes place when the control system status within a phase evolves to a
point where certain predefined transition criteria are met. At any instant, the control
system can be viewed as a binary tuple of continuous and discrete states. Each phase 1s a
discrete variable representing a single state within the state flow architecture of the
control system. The continuous system aeﬁnes the position of the control system within a

single state.

The automata for the hybrid control systems were generalized by Deshpande and Varaiya

[Deshpande and Varaiya 95]. They generalized the “hybrid system” as a tuple

H=(O.R" Z E, &)
where:
O is a finite set of discrete states,
R"is a set of continuous states,
Z1s a finite set of discrete events,
E is a finite set of edges The edges model the discrete event system dynamics of the
system.
An edge ¢ € I is denoted as (¢e, Xe, Ve, re. g'o) and is enabled when the discrete

state is g. and the continuous state is X.. When a transition through ¢ is taken, the

10

event V. € X is accepted by the system. The continuous state is then reset

according to map r,, and the system enters the discrete state g ',
@ is a set of differential inclusions that models the continuous dynamics of the system.

An example depiction of hybrid system automata is shown in Figure 2-4, with three
discrete states namely 1, 2 and 3. A transition from state 1 to state 2 on edge e; can only
take place if the continuous state is .X; and discrete event is J/;. Mapping it to r; then
resets the continuous state Similarly, the transition from state 2 to state 1 is possible on
edge e; when the con_tinuous state is Xy, discrete event is }, and the map _is rs As a
generalization each discrete state can go to another if the continuous state X respective to
its discrete state is running and creates a discrete event V for transition to the other

discrete state using its map r

Fig 2-4: A Hybrid Control System automaton

2.5 Hybrid Control System Advantages

A hybrid control system is often the best solution for a process involving both discrete
and continuous systems [Robinson and Salkas 95] It allows all process 1/O's to be
configured within a single program, yielding a better organization for controlling the
whole system. Also, networking is integrated at all levels — along with the system
database — smoothly, securely and efficiently. Its one-program-for-the-whole-system
approach allows maintenance engineers to maintain a single source code instead of
multiple sources required for control systems configured separately as discrete and

continuous.

An operator of a hybrid system is given a uniform interface to the processes, making it
possible to recognize the problems more precisely. Since the configuration of all the

processes i1s done within a single program, a process can be modified easily and its
consequences on other processes can be seen readily. In summary, the diverse controi
requirements of a system can be met with reliability, flexibility, modularity and

scalability by hybrid control algorithms within a single program

CHAPTER 111

SUPERVISROY CONTROL AND DATA ACQUISITION

3.1 What is SCADA ?

Supervisory Control And Data Acquisition (SCADA) is defined as a system in which a
central computer or operator measures and controls the processes which may be
distributed at several locations, some of which may even be remote [Boyer 93]. An
example is a central computer gathering information from all the processes, and based on
that information, taking appropriate actions to control valves, switches, motors etc. A
SCADA “package” is a set of software tools for industrial applications that facilitates
acquisition, presentation, sharing, and storage of data and control equipment Data is
conditioned by SCADA packages to display real time process information in the form of
graphs, tables, etc. and is passed to the control algorithms to provide a precision control
to the industrial instruments. Networking protocols like TCP, UDP, and DDE are
generally built into SCADA packages for sharing information Relational databases are
used for storing and viewing historical data. Databases can be programmatically accessed
by Standard Query Language (SQL) queries In summary, SCADA packages provide a

comprehensive solution for industrial automation.

3.2 Where is it suitable?

SCADA packages are suitable for large-scale and enterprise-wide automation They have

built-in capabilities for configuring, data sharing over the network, error handling, storing

data, and generating reports. The SCADA packages can handle for a very large number
of analog and digital inputs from instruments distributed plant-wide The ability to handle
complexities of large-scale automation makes the initial cost of installing the SCADA
package quite high. The initial cost, however, is justified due to the ability of these
packages to handle complexities involved in a large-scale automation project. Though
SCADA packages can be used for smaller projects, their yield versus price ratio is much

lower than lower-level software which could just as easily handle the same project

3.3 Main Features of a SCADA System

A typical SCADA system is shown in Figure 3-1. The main features of the SCADA

system are listed below and discussed further in the following sections:

1) Data Acquisition and Supervisory Control
2) Data Presentation
3) Networking and Security

4) Database Connectivity

1) Data Acquisition And Supervisory Control

All SCADA packages have quite powerful and diverse capabilities in this area. They
can acquire data from Programmable Logic Controllers, Distributed Control Systems,
Hybrid Control Systems; besides a large number of analog, digital, text-string and
boolean inputs and outputs. They usually include a library of device drivers (built-in
programs that provide an interface between computer software and the device
hardware) for the large number of instruments available in the market. Most of these

device drivers can easily be configured for retrieving data and sending control

Client\ Client\
Viewer Viewer
e _i-_ I = 1-
- e [1}~ — pr— H 1

== ==
I. ——
|

[L — ‘—-j Supervisor PC

;:::'__—"

L—=

NI

Client\
Viewer

Cla

Server

Database

K_,/

Local Area Network

=

Distributed
Control

Image
Processing

Fig 3-1 An outline of a typical SCADA system

2)

values to the controllers, Apart from the built in drivers, SCADA packages allow the
users to write their own code for customized hardware application in many text-

based and graphical languages.

Data Presentation

The rich Graphical User Interfaces (GUI) in most SCADA packages make it easy to
mimic the instruments or systems. GUI's are often called Man Machine Interface
(MMLI). MMI’s contain a variety of graphical displays including switches, knobs, bulb
indicators, meters, gauges, slide indicators, pumps and other digital/analog displays
and controls. Using these graphical symbols, the process flow diagram of a large-
scale factory can effectively be depicted. Objects can also be animated with or

without linking them to actual data points.

Real-Time (recent) or historical (stored) data can also be viewed using graphical
displays. The graphs are quite flexible and can be configured, e g. for the scale and
the units of data to be viewed beside many many other features. Or, an automatic
option can be selected to let the program adjust them Some SCADA packages even
give users options to create their own graphical displays or edit existing ones. A
report generation facility is provided to obtain current or historical data in spreadsheet
word processor format. Reports can be configured to view the desired data in tabular

or graphical forms

Alarm management is provided for viewing and acknowledging them. Different

levels of alarm like low-low, low, high-high, high, etc can be set for input and output

data points Alarms can be grouped together and viewed as a group or according to

the priorities set for each group.

3) Networking and Securitv

SCADA packages provide the multilevel security options for different level of users
The security levels are hierarchical giving full privilege to the top level
(administrator) and very little privilege to the bottom level (observer). Besides peer-
to-peer networking, standard network protocols are supported for sharing data along
with other users and/or nodes. SCADA packages usually support TCP/IP, UDP, and
DDE for transferring data over different network topologies such as Ethernct Many
SCADA packages support the client/server model for supervisory control and
management of distributed systems in large-scale industrial automations where

equipment is spread all over the plant

4) Database Connectivity

Data 1s logged by SCADA packages in a database on user-selected time intervals,
from once a second to once a year These databases support the open database
connectivity (ODBC) at the back end of a relational database The front end of the
relational database uses standard query language to access data Standard databases
like Oracle and Access can also be plugged in to store or retrieve data from the
database. When configured in sharing mode, remote users can also read and write to

the database over the network

3.4 Overview of some widely used SCADA Packages

SCADA packages popular in industrial applications share similar features described in
the previous section The difference between SCADA packages, lies mostly in user
friendliness, richnesss of graphical user interface, network capabilities especially in
handling large number of nodes, and database efficiency. Cimplicity® by GE Fanuc
Automation, InTouch® by Wonderware Corporation and BridgeVIEW™ by National

Instruments SCADA packages are described below.

CIMPLICITY®

CIMPLICITY® is the SCADA package made by GE Fanuc Automation Its features are

summed up below

e It s easy to use for people familiar with Microsoft Windows™ environment

e [t conforms to the 32-bit architecture of the PC’s, fully capitalizing upon the inherent
multiprocessing, multitasking, and multithreading capabilities [GE Fanuc Automation
95].

¢ Custom applications can be developed with Visual Basic language Cimplicity’s
Program Editor provides an object interface to alarms, data values. ctc to create, edit.
or browse for existing data points, and log status, etc. Data points can also be
configured in a standard text editor or spreadsheet and saved as a comma-delimited
file and imported to the Program Editor By the same token, a configuration file can
be exported to several third party packages Changes in the configuration file can be

made on the fly while running the Import/Export utility

18

The “Event Editor™ in Cimplicity manages the events during the program run like
acknowledging the alarms, logging data and triggering devices. Events can be
invoked through a single preset action or through a combination of actions like
changing values and alarm status or on reaching at a specific time Actions can also
be enforced as a result of more than one event

A front end GUI can be created using “CIMEdit” editor The editor has a set of
drawing tool to create 2-d or 3-d graphics It can embed OLE 2.0 objects.
spreadsheets, video files etc Objects can be animated for representing input or
control actions via a dialogue box of “Object Properties” in the CIMEdit using
geometric coordinates. Object can be placed at various locations on the screen
Cimplicity objects can be linked to data via “Cimplicity points” located anywhere on
the network to view continuous changes

Trending 1s provided to compare current and previous data from multiple sources
Data values can be plotted by configuring different colors, lines, etc Multi-axis
plotting is achieved with unlimited numbers of pens per chart, cach pen can have a
different color, plotting rate, and separate axis [GE Fanuc Automation 96|

Cimplicity allows scalability from a single Man Machine Interface all the way up to a
large-scale supervisory system

Cimplicity supports a distributed architecture that not only provides peer-to-peer
networking but also a client/server model Either the server, or each node in a peer to
peer network must run Cimplicity. TCP/IP, DDE, Data Highway Plus. Modbus'"
RTU. Modbus Plus, Siemens HI-TF, and serial RS-232 protocols are supported for

peer-to-peer and client/server models.

19

Alarms, events and other values can be logged dynamically, as configured via a
dialog box with options to log values. alarm states. resources. time stamp etc for any
point. An Open DataBase Connectivity (ODBC) driver is provided for logging data to
ODBC compliant databases like Microsoft Access and Microsoft SQL Server
Database size is maintained by purging the older data, with an option to archive the
purged data in a Comma Separate Variable (CSV) file

Reports can be generated for data and alarms by retrieving them from the database
Data can be exported to spreadsheet files for further analysis.

A remote computer on the network running Cimplicity can also be used to log data in
the database to reduce cpu load or as a redundant backup.

Security features allow only the authorized users to retrieve data from the database

InTouch:

InTouch SCADA package is the product of Wonderware Corporation [t has the largest

share of the SCADA packages in the industrial market

[nTouch has two different versions for Windows 95 and Windows NT. but later
versions (7 0) are compatible with both Windows 95 and NT

It has a library of wizards that create graphics and database tags automatically The
“WindowMaker™ facility allows the user to define and configure tags. alarms, etc
using the “Special™ tab A Script Editor provides the necessary 100ls to write a custom
base program with built-in logical, string, and mathematical expressions to help in
writing syntactically incorrect code Tag names and alarms can also be included in

these expressions

20

Microsoft’s ActiveX controllers can be integrated fully in the application:
[Wonderware 97].

InTouch uses the standard Windows GUI format. GUI’s can be developed with a
large number of objects using a variety of object-oriented design tools InTouch
supports any type of graphic resolution. Objects in the GUI can be animated with
links to the tagged discrete, analog and string values and alarms. Though a library of
pre-configured yet editable objects is present, more sophisticated wizards like
“AutoCAD conversion” and “OEM’s” wizard can also be utilized for creating data
and graphic tags automatically.

A large number of alarms can be configured with 999 alarm priorities and alarms
organized into a hierarchical placement with eight levels of alarms group, each
supporting up to sixteen subgroups. Alarms can be simultaneously watched from
multiple remote applications using a dynamic referencing utility Individual and
group alarms can be acknowledged using a global alarm acknowledgment facility

The historical trending graphs are capable of simultaneously plotting sixteen charts
from one or more data files. Though any number of historical or real-time data graphs
can be displayed on the screen, only four charts can be displayed on a real-time graph
at one time.

InTouch supports both peer-to-peer and client/server models Multi-platform
connectivity between computers running Windows, VMS and UNIX is provided with
InTouch’s proprietary NetDDE protocol. TCP/IP, NetBIOS. Novell, Token Ring,
Arcnet, DECnet and serial communication protocols are all supported

Communication protocols of several Programmable Logic Controllers are also

21

supported such as Allen-Bradley, Siemens, Modicon, Opto 22 and Square D
[Wonderware 95].

e /0 data sources as well as the GUI of a process running on a remote PC can be
viewed using DDE protocol or Wonderware SuiteLink protocol.

e Applications can be developed using Object Linking and Embedding (OLE) for
Process Control (OPC), a Microsoft standard of communication to provide a standard
interface between business systems, control systems and industrial devices [National
Instruments Corp 97d].

* Discrete, real, integer and string values can be configured as database tags Intouch
can access databases such as ORACLE, Microsoft SQL Server, Industrial SQL
server, Sybase, dBase and Microsofi’s ODBC compliant databases Any number of
CSV spreadsheets can be used for the database tag configurations The Dynamic
Referencing utility allows to toggle between change database referenced tags and

input /output tags on the fly

BridgeVIEW

National [nstrument’s SCADA package, BridgeVIEW, is somewhat unique among
traditional packages. It provides the test and measurement capabilities in addition to the
utilities of a typical SCADA package, and includes a fully functional, user-friendly yet
powerful high-level graphical programming language called “G”. This seamless
integration of graphical programming environment along with the SCADA functionality

provides an unprecedented flexibility to the end user for customizing their applications

BridgeVIEW (1.0) SCADA Properties

* BridgeVIEW also supports 32-bit architecture of Windows95 and NT

* The BridgeVIEW Engine is the heart of this SCADA software [National Instruments
Corp 97c] It has a proprietary real-time database that keeps track of tag and process
information When the engine launches, it reads a configuration file (with an
extension of scf - SCADA Configuration File) that contains all the required
information for each tag in the system. The Engine runs separately from the rest of
the SCADA application and device servers to increase data logging efficiency

e BridgeVIEW Engine uses tags for data acquisition The “Tag Configuration Editor”
creates/edits a string, memory, discrete or analog tag to define its link with the
physical I/O point, and associated process information such as name description,
engineering units, scaling, alarming etc. The information regarding all the tags is
saved In a configuration file. which can be exported or imported to/from delimited
text files or spreadsheets.

e The Graphical User Interface (GUI) can support a large number of objects
BridgeVIEW has a built-in library of a variety of graphical displays, trend charts,
push-buttons, alarms etc Pictures and symbols from many commercial drawing
packages can also be imported into the GUI The MMI wizard allows user to create
and configure the objects easily Objects on the front panel can be linked to any of the
tags (as configured in the Tag Configuration Editor) and can be amimated as well

e Alarms can be configured for any non-text tag using the Tag Configuration Editor
Alarms can be enacted for hi-hi, hi, lo, lo-lo conditions against the limits set for the

tag There are 15 priority levels and user groups in which alarms can be distributed

23

BridgeVIEW alarm summary display facility allows for selective viewing, e g the
alarms of highest priority level, or of a particular group Besides alarms, events such
as start, stop, and faults can be logged to the disk and viewed by the Event History
Display facility.

Historical data can be logged using a high throughput threaded Citadel™ database
Citadel utilizes the 32 bit Cyclic Redundancy Check (CRC) for data integration and
compression techniques [National Instruments Corp 97a] Historical Trend Viewer
allows the user to display logged data for any number of tags. Each GUI can have
several Historical Trend Viewers Real-time data for any number of tags can be
displayed on the GUI using the Real-Time Trend graph

Peer-to-peer networking and client/server model are both supported. Device servers
are the link between the BridgeVIEW Engine and the hardware devices. Devices like
PLC’s, PC DAQ boards, and remote I/O’s communicate with the device servers
BridgeVIEW Engine in turn communicates with the device server to get the /0
values associated with the tags BridgeVIEW has the device servers for several PLC's
like Allen Bradley, Siemens, Modbus, GE Fanuc, Omron etc and 1/0 networks like
National Instrument DAQ, Optomux. Foundation Field Bus etc Device servers can
be configured using DDE, OPC. I[ndustrial Automation Kernel (IAK), Virtual
Instrument (VI), TCP/IP and UDP network protocols Tags are assigned to device
servers using the Tag Configuration Editor to get their respective values

Citadel™ database is used for logging the discrete, analog and string values of the
tags It timestamps each data value entered in the database, so data in Citadel can be

accessed by defining the time limits and tag names The data stored in the Citadel can

24

be exported to Microsoft Excel. Citadel is also accessible to other applications via

SQL and ODBC interface.

Test And Measurement in Bridge VIEW (1.0)

BridgeVIEW uses a graphical language for test, measurement and analysis. a very
useful feature providing flexibility not available in other SCADA packages
BridgeVIEW combines the graphical editing and execution system upon the object
oriented, graphical, dataflow language G in which programs are created in block
diagrams. As a dataflow language, any section of G code can execute as soon as it
receives all of its input data, hence G applications have a potential of executing much
faster than the sequential text based languages. This combination of object-oriented
and dataflow programming style makes the G language easy to program, easy to
debug, and faster. In addition, its GUI’s can be very intuitive

BridgeVIEW has the same programming concepts and style as LabVIEW A program
in LabVIEW (or BridgeVIEW) is written using three editors [Mahmood 96|, front
panel, block diagram and icon/connector editor A “Virtual Instrument”™ can be
created on the front panel by mimicking the actual electrical instrument The input
terminals of the actual instrument are depicted as “Controllers” in the Virtual
Instrument and the display units as “Indicators” BndgeVIEW has an extensive
library of controllers and indicators in the “Control” palette tool. Every Virtual
instrument has a “Block Diagram” associated with it. The block diagram editor is
used to write the actual graphical code The function palette in the block diagram
contains structures, string, array, mathematical, statistical analysis, file 1/0, time,

communication, data acquisition and several other functions Any number of third

25

party functions can also be included in the functions palette library. Since the
programs in BridgeVIEW are written using objects, there are various tools in the tools
palette to help define the flow of the program Arguments of one program can be
passed to another using the connections made by an icon/connector editor, which
allows a program to be used as a subroutine inside other programs.

BridgeVIEW programs are hierarchical and modular [National Instruments Corp 96]
Complex problems can be divided into subtasks and the programmer can create an
object for every subtask in BridgeVIEW G code By interconnecting these objects,
the main program is developed just like a flowchart. Main programs in BridgeVIEW

are much easier for the non-programmers to understand

26

CHAPTER IV

TRX ASSEMBLY LINE PROJECT

The TRX line assembles communication boards for the booster stations (repeaters) of a
cellular (mobile) telephone network. The communication boards are processed through
various stages in the assembly line where parts are automatically inserted and soldered
into the board Somewhere during the process, covers and labels are also put on the
board. After assembly completion, boards are passed through test stations for
functionality tests. The TRX assembly line is a hybrid control model Each stage in the
assembly line is unique in that eé.ch assembly line operation uses either continuous or

discrete control system technique for gripping. holding, inserting. and soldering parts.

The BridgeVIEW SCADA package was selected to provide the supervisory control
software for the TRX assembly line. The supervisory software’s role was to create a link
with several standalone automated units using Dynamic Data Exchange (DDE), track the
location and process information of each board on the TRX assembly line, and provide
this information to all units that require it. Supervisory control software was also
responsible for updating the product database information in real time for review by

authorized users on the network.

The primary goal of this TRX assembly line was to have a high production rate at
economical cost Ideally each board should take about eight minutes from start to finish
As multiple boards are processed concurrently the boards are produced successively after
the initial startup of eight minutes This TRX assembly line should be capable of

producing five different types of communication boards as per demand and without

27

interruption With regard to the complexity of TRX assembly line operation, this overall
production rate goal is considered to be highly ambitious. The line is fully automated,
eliminating human involvement, and reducing breakdown frequency and percentage,
which is very important since a breakdown costs about five thousand dollars per minute
and a rejected board costs $500 because of gold and rare metal plating. The cost of

running the line would be economical with high profit ratio if the goals are met.

4.1 Project Overview

The overall TRX assembly line is shown in Figure 4-1. The TRX assembly line can be
divided in nine stations A conveyor belt runs through the stations. There is a system
computer for supervisory control and a plant computer for user interface Stations 1, 3,
and 6 are robotics driven by Adept microprocessor-based controllers Though each
station performs its job using its own proprietary control systems, they all depend on the
supervisory computer to tell them what to do and then relay the processing information

back to the system computer.

The TRX assembly line operation starts with the plant computer, where the operator
provides a list of the type-coded serial numbers of the boards to be processed This list is
relayed to the system computer, which keeps these serial numbers in its database This
serial number is used to store and retrieve production information for a parnticular board
to/ from the database The board’s sequential flow begins with the board coming from a
loader through the conveyor belt and stopping at Station |'s prequeue stop. It then goes to
the queue stop where it waits to be processed. It enters Station | as the station becomes

available. First, its serial number is read by the bar code reader This serial number is

28

Stanon #9
Test Station =
L —
Station #7
Tole Convevor
= e e =
Binln
Station #¥
Station #4 Shuttle Station
Tote Conveyar
Station #8
| | U U Shuttle Station
Miniwave N) W
Solder \
b, Paint-to-
point
Preheat, Preflux salder

Future Station Station #2 Station €6

Kabot

Sation #3

Robot

Station #1

uture]
Iuture Robot Robot

Convevor Bell

Fig 4-1 The TRX assembly line

passed on to the System Computer via Adept Controller I, which returns important
information needed by the Adept Controller 1 to process the board, such as board type.

etc

The board is then picked up by he robot arm in Station | and put at the work stop Based
on the information provided by the System Computer about the board, Adept Controller |
requests several machines associated with Station | to provide the right parts (mostly
electrical) for that particular board type. The robot arm then goes to these machines one
by one to get these parts and place them at the right location on the board The exact
location for insertion of parts is found using image processing techniques After parts
insertion is complete, the board 1s picked up again by the robot arm and placed on the

conveyor belt for processing in Station 2

29

Before entering Station 2, the board stops at prequeue and queue stops waiting for Station
2 availability. As board enters Station 2, its serial number is read again by the bar code
reader and sent to the System Computer via Adept Controller 1 in a manner similar to the
previous station. Station 2 takes the board now loaded with parts through a preheat and a
preflux oven, where the board is heated and flux is put on the parts which are then

soldered by the Miniwave soldering machine.

The board coming out of Station 2 on the conveyor belt waits al prequeue and queue
stops prior to getting processed in Station 3. Like in previous stations, its serial number is
read by the bar code reader as the board gets int-o Station 3. The serial number is passed
to the Adept Controller 2 and System Computer in a way similar to Adept Controller |

The information received back from System Computer is then transferred to Station 4°s
tote conveyor, which passes the frames for the particular board to assembly nest in
Station 3 for placement by its robot arm The frame is labeled and more electrical parts
are inserted and screwed to the frame/board assembly, all using a robot arm which finally

places the frame/board assembly to a shuttle (Station 5) that takes it to Station 6

Having received related information about the board at Station 6 the serial number of the
board is read again, and passed to Adept Controller 3 Station 6's robot arm picks the
frame/board assembly up. inserts some more electrical parts, then put it into the Point-to-

point soldering machine for soldering the electrical parts.

Station 7’s tote conveyor gets the board information through Adept Controller 3 and

passes the right cover for the board to the assembly nest at Station 6 to be put onto the

30

- frame/board assembly and screwed to the frame. The robot arm in Station 6 takes the

finished board out and puts it on the shuttle (Station 8) for delivery to Station 9

Station 9 reads the board serial number again and lets Adept Controller 3 get the board
information from the System Computer in a way similar to other Adept Controllers The
finished board is then taken into Station 9's test fixture by the Gantry Robot controlled by
Adept Controller 3 for a battery of tests. After tests are completed, the board is taken out
from the test fixture by the Gantry Robot, and depending upon the test outcome, put into

the pass or fail cart which thereby marks the end of the TRX assembly line operation.

Though narrated above as the sequence of operations on a single board, it is in reality an
assembly line operation, where each machine is processing multiple boards not
necessarily in serial order. Boards are manually taken in and out for various reasons. It is
the System Computer’s supervisory role to keep complete information about every board
processed, in process, or to be processed. This supervisory control frees the system from

keeping any serial order on the boards for proper identification

4.2 System Analysis

This section describes the approach taken to understand the project along with the

software and hardware requirements

4.2.1 TRX Assembly Line Project Management

The project management for the TRX assembly line project involved
understanding the scope of the project, assigning roles to the team members in the

project, compiling the variables list, establishing the handshaking protocols for

31

communication between Adept controllers and System Computer, benchmark

testing, and numerous small issues.

The complexity and the size of the system warranted a team approach for
handling the project. The project was divided in the following categories; Project
Integration, GUI, Process Database, Communication, Handshaking, and Product
Database A team of three engineers was chosen by the management based on
their experience, expertise and availability. Project Integration. GUI and Process
Database categories were assigned to the two senior members of the team while
Communication, Handshaking and Product Database categories were assigned to

the author

The author’s primary role was to lay down the detailed supervisory control
software through research and extensive communication with the client’s
engineers who were installing the TRX assembly line Other roles included
setting up the network communication protocol between the Supervisory System
Computer. Adept controllers and the Plant Computer. define a Hybrid Control
model based on the set of discrete events (handshaking protocols between System

Computer and Adept Controllers), and developing the Product Database

For time management (schedules and milestones), the project was set into three
phases. In the first phase, a thorough study of TRX assembly line was done and
protocols were set. The second phase involved writing the actual code and
integrating different modules of the code The third phase was to install and debug

the program on the site.

32

a.

Variables List

A list of variables thought to be needed for handshaking, communication, GUI
and database was created These variables were needed to exchange process
information back and forth between the System Computer running supervisory
software and various machines including robot arms inside the stations.
Meaningful column names for System Computer’s Product Database were also
chosen to keep boards, status information linked to their serial numbers. Variables
and column names were chosen to depict the flow of the boards through different
stations in TRX assembly line. A part of the variables list is shown in Figure 4-2

as an example.

Protocols

Establishing protocols for handshaking between the Adept controllers and
supervisory System Computer was a core requirement for the supervisory control
software of this TRX assembly line. These handshaking protocols map to a set of
discrete events in Hybrid Control model, that take the supervisory software from
one state to another state These protocols are basically the same but differ in
details for each station A general description of the protocols and database is

provided below along with an example questionnaire used to set onc of these

protocols.

e Automatic and Fixed Board Mode Protocol

The automatic and fixed board mode protocols were defined to allow

operation of the TRX assembly line in.either of two modes (1) Automatic

33

(Normal), (2) Fixed (Debug) or semi-automatic. In Automatic mode, System
Computer will communicate with the TRX assembly line and run supervisory
software. In Fixed mode, the TRX assembly line will run with manual
intervention to debug. The modes can be set separately for each station, giving
the flexibility to debug the TRX assembly line station by station A part of the

automatic and fixed board protocol is shown in Figure 4-3.

DATABASE STORAGE INFORMATION

STATION # 3 ADEPT ROBOT CELL (Stations 3 through 5)

Polling Flag Variable Name Description i Variable Definition
Hot Flag st3.need.readin System computer needs 1o read the mnput 0 = Do not read

values. A new board has amved. Read the I = Read

Adept data and write the data into Adept

systemn
Poll Always st3.cur.step Current step 1n AIM sequence (the array Stang

value equals the task assigned to the
sequence). Main sequence only

St3 read in st3.barcode.rd Barcode read from product al que stop 117204671
position to be read by Bridge View 117204672
1172046/3
1 172068/3
117229673
St3 read out brd status.pass Status of the board leaving robot cell. One 0 = False
brd status.fail and only one of these two variables can be 1 = True
Lrue Note: Brd status [l and
Brd status pass cannot
both be 1 _
As needed user.log.name User log on name Stnng ol user name
Note

* The information shown under Polling flag is as (ollows.

« Hot Flag - Bndge View should constantly monitor these variables and take the appropniate action
when vanable 1s true

* Si3 read in - BndgeView should poll these vanables whenever the ot Flag st3 need. readin gocs 1o
lrue

e St3 read out- BndgeView should poll these vanables whenever the Hot Flag 513 need readot goes Lo
true

e Poll Always - BridgeView should poll these vanables at set intervals

e As Needed - vanables that BndgeView may need Polling priority and interval dependent on
frequency of use by BridgeView

Fig 4-2: A part of the list of variables

34

Semi-Automatic (Fixed board) Mode Protocol

There will be two modes of operation for the TRX line. The most prominent mode bemg the Automatic
mode where the hine has direct communication with Svstem Computer. The second method will be the
semi-automatic or fixed board mode, which will have no communication with System Computer

Automatic Mode

The automatic mode will allow System Computer to read and wnite to the Aim vanables at cach robot
slation. System computer will be able to take informauion from these variables and track the boards through
the line along with storing data to the database and to the historian database. System computer will also be
able to provide information to the adept controllers such as deternuning what product type to run based on
the bar-code information and the pass/fail status [rom the upstream

station

Semi-Automatic or Iixed Board Mode

During debug of the machinery or (f System Computer 1s not functional, fixed board may be used to run the
TRX line

In order for the station Lo be locked-into fixed board mode the operator will need to go to the fixed board
menu and select the proper board type 10 be run This will have to be individually done for each station
controller After the operator has selected the fixed board mode the Adept Controller will no longer accepl
mformaton from System Computer. The Adept Controller will still read the bar code and conunue 1o track
the board through the cell as in automatic mode Attention should be taken that the board being processed
malches the board selected by the operator Otherwise the robol could urv 1o place parts at undesired
locauons, causing the robot o crash.

Station 3 will be slightly different from station | and 6 in that it will need Lo read data from a Noppy disk
The bar-code reader will read Lhe bar code just as in the automatic mode. The difference 1s that now the
Adept Controller will compare the bar code reading (printed circuit board senal number) with entries in a
table which has been read from the (loppy disk provided by the Plant Computer At that ime a search will
be done to find the same senal number in the table When a match has been tound the TRX seral number,
product number, revision number, and date will be read from the table and wnitten (o the label. which will
be placed. on the board [rame The serial number could now be deleted from the table to reduce the ime
needed for future searching

[t should be noted that in fixed board mode the station 6 controller would not know if a board has passed
station 9 tests. The station 9 pass/fail status 1s currently passed back to System Computer, not the station 6
Adept Controller

Fig 4-3 A sample of Fix board mode protocol

e Purge Protocol

The purpose of purge protocol was to inform the supervisory System
Computer about a board manually purged from the TRX assembly line

because of a problem in the board such as some parts of it broke down The

e
n

information regarding the purged board like serial number of board, time of
purge, etc. is passed to the supervisory System Computer to update the
product database and mark the board as purged. A part of the purge protocol is

shown in Figure 4-4.

Board Re-entry Protocol

This protocol was needed to able to rerun a board through the TRX assembly
line. Upon entering a station, the bar code reader reads the serial number of
the board and the Adept controller uses it to query the supervisory System
Computer about board’s status information. If the board doés not have status
information, it implies that the board never ran through the assembly line;
otherwise the board is reentering the station. The operator can either rerun or
remove the board from the station Figure 4-5 shows board re-entry flag

definitions.

Benchmark Test for Database

Benchmark tests were performed to select the commercial database with the
fastest access time. A board typically gets through a station within two
minutes during which several queries have to be made on the database. Some
events allow only a few seconds for the query. The benchmark testing results
for Microsoft® Access, BridgVIEW™ native databases “Citadel”, and
“dBASEV”, using Access front-end, Microsoft® Excel, and National
Instruments® Standard Query Language (SQL) Toolkit are shown in Figure

4-6.

36

Purge Protocol

The purge command has been introduced for the purposc of manually removing boards from the cell or

asscn}blvxf linc. Without the purge. it would be impossible to remove a board for any reason and record
such incidence 1o the database.

Thus, an operator will be allowed to purge by first removing the board from the work cell followed by
pressing a custom purge button on the Adept menu This in tum will bring up another menu where the
operator will be able 1o specify the location from which the board is being purged When the operator
presses Uic button to remove the board the Adept Controller will prompt the operator “Arc You Sure?”
If the operator responds “Yes”. the Adept Controller wili purge the product number. serial number.
revision number. and date/time for the board at that location That unit will also be reinitialized for the
next board (i.c.: clamps open. lift down. global vanables resct. ctc.). If the operator responds “No™ the

Adept Controller would skip to the end of the purge program and bypass the purge routine. No hot flags
would be sct.

System Compuler will also be tracking the boards through the cell The hot flags for the System
Computer to look for will be stl.purge. s12 purge. st3.purge. st6 purge. and st9.purge. These variables
will be set to 1™ duning a purge by the Adept Controller. who will also transfer the product number.
revision number, senal number, and date/time of the board being purged to the stX purge.prod. stX.
purge.rev. stX purge.ser and stX.purge.date vanables (where X is the station number). This will allow
System Computer not to miss recording the purged information. Afier a board has been taken out via the
purgc. the System Computer marks it as a failed board. sores other data. then scts the purge variables

to null (™) and the stX.purge cqual to 0"

Fig 4-4- A sample of Purge mode protocol

Board Re-entry Flags Definttion

The Tollowing are the proposed board re-entry procedure Nag conditons (The
combinavon ol “Pass”. “Fail”, and “Rerun™ status depiets the processimg history of
the board on the line)

Bar-code Reader AU Previous Status of Board Read Pass IFail Rerun
Station #1 Staton # | New Board |

Station #1 Stavon # | Failed Board I
Staton #1 Station # 2 Faled Board) - I | L
Station #2 Station # 2 New Board [

Station #2 Station # | Failed Board |

Station #2 Station # 2 Iwled Board ' |
Station #3 Station # 3 New Board |

Station #3 Station # 2 FFailed Board |

Station #3 Statton # 3 Farled Board ' | |
Station #6 Station # 6 New Board || S
Staton #6 Station # 3 Farled Board |

Station #6 Station # 6 wled Board |

Fig 4-5 Table of Board reentry Flag Definitions

37

Benchmark Tests (Citadel, DbaseV, and Access were used 1n testing. Worst case timings noted
involving multiple lests)

EXCEL/Query for Windows95:
Retrieve table (1000 rows by 30 columns Char*8 177K b data) - 2 seconds
Insert, delete. or update a row = faster than timer resolution of 0.1 seconds

Microsoft Access for Windows 95
Results are similar to the EXCEL/Query for Windows95

National Instruments SQL Toolkit:
Retrieve with selection criteria 1000 rows by 30 columns of Char®8 177Kb data -~ 11 70 seconds
Retrieve within a range 100 rows by 30 columns of data from above table ~ 1.7 seconds

(mixed data types: Char*6, Date/Time, Char*32. Char*8, [8.2], [8.2], [8.2]. Char®32)
Insert Single Row of 30 columns = 0.17 scconds (In 1000 rows by 30 columns of Char*8 177K b data table)
Find & Retrieve Single Row fram 1000 rows by 30 columns of Char*8 177Kb data table = 0 27 scconds
Find & Update Single Row from 1000 rows by 30 columns of Char*8 177Kb data table = 0.17 seconds
Declele Single Row from 1000 rows by 30 columns of Char®*8 177Kb data table - 0.17 sceonds
Retrieve with selection crileria 1020 rows by 7 columns of mixed data types | 1 MI3 data table - 3 85 sec

Fig 4-6. Results of the benchmark tests on three databases using three front-ends

e Questionnaires

Questionnaires were extensively used to get a clear and precise understanding
of the working of the TRX assembly line. Several questionnaires were sent to
the client’s engineers at different times to clarify the networking, handshaking
and database protocols in a multiple-choice format This was done to let the
client’s engineers explore all the possibilities of a situation before finalizing
the design Through these questionnaires, many small issucs were resolved
moothly and with consensus of all the engineers involved in the project A

part of the questionnaire is shown in Figure 4-7

¢ Eventflow Diagrams

Eventflow diagrams were drawn to depict the flow of board through each of the

stations in the TRX assembly line. Eventflow diagrams differ from the software

38

I Daes truth table on page | of 5 in “Board Re-entry Procedure™ lists all the possible situations?
A. Yes. Ifasituation outside this table occurs, send error signal.
B No. If a board was passcd from a station and reenters there again, write “Fail” so that 11
does not get processed again.
C. No. If a board was passed from a station and recnters therc again. wnite “Rerun” so that
opcrator could decide what to do

2. Sccond last line. Paragraph 1. page 1 of 5 in “Board Re-cntry Procedure™ reads “System Computer
will read this data and store the pass in the database then ...". Docs System Computer also write board
in/out datc/time as well in the database along with pass/fail status?
A Yes. BV should update variables as soon as (hey become available.
B. No. BV can hold some info in memory to combine scveral update operations when doing
so makes it more cfTicient.

3 Last linc. Paragraph 3, page 2 of 5 in “Board Re-entry Procedure”™ says “If the board did not pass
station 2, the Adept will writc a “1” in the station 2 vanable brd status. fail. ™ 1s it correct”?

A. Yes. The vanable referred to in “Station #1 Variables™ as stl.opr.res 1s typo crror.

B No. This is a typo crror. It should rcad “ ..will writc a ~0” n the station 2 vanable
combo.brd.stat.” Note that for station 2. only onc variable “combo.brd stat” 1s used 1o
indicate pass/fail status (0:fail. 1:pass) unlike for station | where (he two variables
“brd.status pass™ and “brd status.fail” werc used. Also note that possible inputs are 1.0 and
not pass.fail as listed in “Station #1 Variables™.

Figure 4-7: A Sample Questionnaire

flowcharts in a way that actual physical location is defined along with the
software actions. Each station in the TRX assembly line has its own eventflow
diagram because of their distinct physical locations Links are made between
different stations to depict board flow through each physical location in the TRX
assembly line. The software parts of the eventflow diagrams are the actions or
responses by the supervisory System Computer and/or the Adept Controller at a
particular physical location. The eventflow diagrams in fact, provide the blueprint
of the supervisory control software for the TRX assembly line. A part of the

eventflow diagram for one of the station can be seen in Figure 4-8

Wait until board arrives al
Barcode reader
AD-1
polls for board
arrval

Get st2 barcode td
ftom barcode reader

512 need readin = = 1_]

OF

Wait for AD-1 Signal
lor a new hoard

|
BV polls for
st2 need readin
until |

1 Read s12 barcode rd i

—

Prowvide Product Info
= W ==
Lookup "BPN" &
"HRN® from DB with
“BSN" as search col

Write
st pre prod BEN
si2 pre rev BRMN

l

Determine Historical Status

W —

Lookup Database & |
determine history

(pass, fa1l, rerun)

1 st2 need readin == 0]

Write 512 brd run %

Wait ttll BV sends

info update signal Heater Arca

a1l
[
pass |
pass
st2 brd run”)
~I combo brd stat ==
! (1 pass, 0 [al)
Rerun Menu \|/ il |
—— — —_—] ! combo brd stat == 0
! | AD-l Open Rerun Menu | I I %’l (1 pass, 0 fal)
i | " 55,

\\ it for nperator response

‘ I_ Read s12 opr res —I

! AD-1 Processes hoard
(see Annex 512-A)

AD-.1 polls for
st need readin

unttl O

Final Database UUpdate

BV polls lor
st2.need readot
until 1

Read & Update Database
“Start Time #2° == 512 pre date

| *Stop Time #¥2° == date ime ot mw

Status #2 == combo brd stat

512 need readot = = 0

i Gel st oprres | ! \V

y - .] st need readot = = |

V

B\ polls for
st oprores
until ~ > -

Write
s12 oprres == -]

I Process & Update
0 Don't Process or Update
AL-1 Board Removal

|2 —

% | Prompt for board removal) :

Tk

= — I

Fig 4-8 A part of eventflow diagram of one station

-

4.2.2 Supervisorv System Hardware

4.2.3

A supervisory system was required to provide the controlling link from the Plant
Computer to the three Adept controllers, besides the ability to monitor, analyze
and troubleshoot the TRX assembly line. Intel 233 MHz Pentium processors with
MMX technology, 64 Megabyte of RAM and 2.5 Gigabytes of hard drive were
found to provide adequate speed of execution and storage for the supervisory

system to achieve the above objectives

The computers and Adept controllers were interconnected and connected to the
outside world through 100 Megabits/sec Ethernet adapter cards and hubs, RJ-45

connectors, and twisted pair cables

Windows NT was preferred over Windows 95 to be the System Computer’s
operating system because of its superior architecture. Its multithreading capability
was needed to run different programs simultaneously and in a truly parallel
architecture not on a time-sharing basis. A crash in a single program causing the
whole operating system to crash was not acceptable for the TRX assembly line

operation, therefore, Windows NT was once again preferred over Windows 95

Supervisory Software Architecture

The architecture of the supervisory software of the TRX assembly line was
designed with modularity in mind, thus a layer was defined for each task Each
layer was encapsulated in a separate module, totally independent of, vet able to
interact with, the others. These layers or modules, acting collectively, formed the

supervisory software. Main considerations were. (a) Hybrid Supervisory Control

4]

Software, (b) Supervisory Software Algorithm, (c¢) SCADA Package Selection. A

brief description of each follows,

Hybrid Supervisory Control Software

The hybrid supervisory control software or supervisory discrete event system (see
Figure 2-1) for the TRX assembly line was made up of four different layers
These layers were GUI, handshaking, database and communication. All layers
were developed independently and then incorporated into the main program The
top-down architecture style of the main program had the GUI at the top layer,
handshaking at the middle layer, and database at the bottom layer. The
communication layer in the main program was separate and was running in
parallel to the other layers. Following is an explanation of the different layers in

the supervisory control software.

e Graphical User Interface (GUI)

The GUI of the TRX assembly line was composed of several screens There
were screens showing historical data, process 1/0, login, logout, alarms,
statistics, timer/counter, system configuration, contro! and overview of the
TRX assembly line. The main screen was able to call most but not all of the
other screens directly. There were also screens for each station and robot The

main GUI command center is shown in Figure 4-9a

The GUI screens provide the ability to control and display status information

for a selected part of the TRX assembly line For example, the Overview GU!

42

Lty

TRNX Assembly | Jine

vorning [NNORGNEN =~ e [i2seiaoew]

Station 1 Station 2 I Station 3 I Station 4 Station 6 Station 7 Station 9 Current Operator
[admin [
Robot 1 Robot 2 I Robot 3 Historical Process | Timer/ counter Alarms
Control System Config I Statistics Overview Login Log Out I i

General Description:

1) This panel will be the main panel of the system and will reside either at the very top or very bottom ol the page. The rest of the screen will be covered

with any open panels.

2) Status buttons will indicate station status with colors and text: Red - Error; Green - Running; Blue - [dle.
3) Historical data and Process /0 will be enabled only alter Station # or Robot # have been pressed. Global will be necessary (o indicate which station is

being used.

4) Dynamic loading and unloading will be used here. - Each button will unload the last program and reload the new one.
5) The built-in Bridge VIEW sccurity system will be used. When a low-security-level operator logs into the system, buttons will be disabled and grayed out
to limit their access

6) Station 5 and 8 do not have variables being monitored by this system,

7) Indicators will show current day/time and current operator logged into system

Note: One ol the several screens will always be opened depending upon operator selection

Fig 4-9a: The “Main™ GUI command center

147

verview

Station 1 [Adepr Pobor 1)

Board Serial #1 MPX0007834-000
Pass/Fail Status1

IN PRODUCTION

Passedi | 1390
TotalProc.1 [1403 5 e
Failed1 13

Error Codei1 O

Robot 1 Speed (% Full Speed) 55_00

Station 2 (fIceheat (Iven)

PASS
—————

Oven Mode Oven Temp (oC)

System State | PASS | [a5
Cycle Count QOwven Error
[142 | 0

Board Serial #2 MPX0007894-012

Pass/Fail Status2 | ~PASS I

PassedZ’ 1389
Failed2 I 13

warm cosez B [N

Error Code2 ©O

TotalProc.2 1402

Station 3 (Adepr Lobor 2)

Board Serial A3 MPX0007894-014

Passed3 1388

Failed3 i 13

TotalProc.3 1401

aarm codes b [N

Error Code3 O

Robot 2 Speed (% Full Speed) ﬁs_oo

 Station 4 (_Leame Tore Cell)

Estimated Frame Count

Frame Row 1 | a7

Frame Row 2 | 120

Frame Row 3 [_) E_d_
185

Frame Row 4 | T

Vo Sration § or Station 8

Station 6 (Adeps Pobot 3)

Board Serial M MPXD0DT894 147
Pass/Fail Statusé

Passedt I 1385
Failed6 14

Error Codeé O

TotalProc .6 1399

Robot 3 Speed (% Full Speed) 55‘00

Station 7 (Cover Tore Cell)
Estimated Cover Count

Cover Row 1

Cover Row 2]

Station 9 (Test Station)
Status
Test Station 1 !Tesi-in (;rogte_-s_s
Test Station 2 | i
Test Station 3 [

Pass

Test Station 4 |
Test Station 5 |
Test StationE | Test in progress

Test Station 7 | Pass

Test Station 8 ﬁe_s_i in pr—t_:g_ress

General Description:

1) This panel will show general information about each station
2) Information on this panel will be updated every five seconds or when a change occurs - whichever happens first.

Fig 4-9b: The "Overview™ GUI

screen gives an overview of boards process information in all the stations of
the TRX assembly line, as shown in Figure 4-9b. The GUI screens were also
assigned security levels to restrict access from operators with lower access
levels. The GUI screen of login and logout required a valid name and
password for security level verification before allowing the user to access the

TRX assembly line

The GUI screen’s data was updated through different sources. Process 1/0,
Alarm and many other GUI’s were updated in real time as soon as a change or
event occurred on the TRX assembly line. The Historical GUIL, on the other

hand, reads historical data from the Citadel database for updating the screen

Handshaking

The handshaking layer was the core of the supervisory control software as it
was responsible for controlling the actions of the Adept controllers In the
context of the Hybrid Control model, the handshaking layer was the discrete
event layer. The automatic and fixed board mode protocols, purge protocol,

and the board reentry protocol were all implemented in this layer.

The handshaking layer continuously monitored for the events to activate
various protocols on time response For example, the board reentry protocol is
activated whenever a new board enters the station for processing The product
database is then queried by another protocol to check the status of the entering
board. The handshaking layer also monitors the mode of each station, and if it

finds that the fixed board mode flag 1s set for one or more stations, stops the

45

supervisory control software for those stations. Similarly, if the purge protocol
is set to true or the board is exiting the handshaking layer, it updates the

product database.

Database

The functionality of the database layer is to maintain the product and process
databases of the TRX assembly line. The product database is queried or
updated using SQL whenever a board enters or leaves a station, normally or
upon manual purge. The process database is accessed to display the historical
process data for one or more statiors. Product and process databases are

further described below:

1. Product Database

The product database keeps the record of each board ever entered through
the TRX assembly line. The records were kept on a station-by-station
basis for interrelated reasons. First, it prevented a board which had already
processed through a station from rerun, which would crash the robot as it
tries to assemble parts over the ones already assembled in previous run
Second, it alarms the operator of a station where boards are failing
frequently. A part of the Product Database functionality requirement is

shown in Figure 4-10.

The product database was developed using Microsoft® Access 97
database as per client’s requests based on benchmark test results The

database field definitions for the Access 97 Product Database were Board

46

AUTOMATION PROJECT
PRODUCT DATABASE INTERFACE

1.0 Introduction

This specification will describe the functional requircments needed to design and implement a run
time database (DB) for automated production. The DB will be an extension of a factory floor
cnabler (i.c. Bridge VIEW), and will be transparent to the user. The enabler will work interactively
with scveral workeells constructing the products.

The linc today will produce 5 different varictics of product, but must be casily expandable for
addition types. The main function of the system (Enabler and DB) will be to provide product
information to the various workeells in the line.

Each product produced will be labeled with a unique serial number via a bar code. This serial
number will be logged in the DB with various additional information included but not limited to.

* Module product number

* Modulc serial number

« Module revision number

* Board product number

* Board scnal number

e Board rcvision number

e Yecar and week

e Pass/fail status for cach station

+« Time tn and time out for each station

Each workeell (except 1) will read the serial number when the product reaches the entry point. and
convey it to the enabler. The enabler will then relay product information back to the workeell.
This information will identify the product to be built, the serial number does not contain the
product

Three (3) of the controllers will require product information only. That 1s. | have a sernial number,
browsc the DB and tell me what product it is. The last controller will be placing the module scnal
numbers on the products and therefore requires additional informauon.

2.0 Databasc functions

The DB chosen will be an industry standard SQL DB capablc of simultancous uscrs (Access 97).
[t shall be easily expandable to include additional product information such as SPC (Staustical
Process Control) data from each workcell.

Capabilitics to conduclt a query on any field in the DB must be provided. For example. a query on
all senal numbers related to a specific product and revision.

Though tlus functionality does not need to be provided within tlus workscope. 11 most likely will
be needed 1n the [uture.

Secveral lags will also be logged to the DB after the product 1s complele

Fig 4-10° A part of Product Database functionality requirements

47

Pass/Fail status Integer
Time in Stnng
Timc oul String,

Each time a query is conducted on the DB for a scrial number. the current board location ficld will
be updated. The product location valucs will be as follows:

e Celll 110
= Cell 2 120
« Cell3 130
e Celi6 160
e Auto. Unlimited 165
e Cell9 190
e Final Test 200
® Test station 1-9 201-209

The product databasc contains intcger ficlds for the location of each asscmbly and asscmbly status
for cach workeel!

Location
The location is represented by a 8 bit unsigned integer. The integer is defined as given below

Value Definition
0 Board not processed. An entry has been made into the databasc. but production
of the assembly has not begun.
1-254 The value represents the defined location in the assembly line.
254 The assembly is assembled and failed final test.
255 Board complete. The assembly is assembled and has passed final tcst
Status

The status is represented by an 8 bit signed integer The integer is defined as given below

Valuc Deflinition

-1 Product has not entered the workcell. (Null)
0 Product failed workcell process. (Fail)

I Product passed workcell process. (Pass)

2 Product passed workcell process after retry. (Retry)
3 Product passed workcell process after manual intervention. (Manual)

Thus will allow an easy query of the databasc. A value of <0 indicates all products nol vel
processed al an individual workceell. A value of 0 indicates a failed product. A value of >0
indicates a product which has passed either normally or with assistance. A valuc of > 1 indicates
products that required assistance to pass.

Fig 4-10 (Continued): A part of Product Database functionality requirements

48

serial number, Board product number, Board revision number, Module
serial number, Module product number, Module revision number, Build
date, and Board location The database fields for each station were
Pass/Fail status, Time in and Time out. A part of the field definitions can

be seen in Figure 4-11,

¢ Product Database Archiving

The product database is archived to keep the size of the database
reasonably small for fast queries and updating The archiving was
done on monthly, weekly, daily or hourly basis either automatically or
manually Archived data was saved in a separate database file, which
was made available on the network for researchers and investigators
interested in analyzing the performance of the TRX assembly line A
part of the archiving mechanism for the product database is shown in

the Figure 4-12

2_Historian Database

The real time process data from each of the stations was stored in the
historian database. The historian database was created to improve the
quality of the product and the performance of the TRX assembly line
through off-line statistical process control (SPC) Continuous online
process monitoring facilities are also included such as historical and real-
time trend charts and statistical charts, all accessing data from the historian

database for optimization of the TRX assembly line.

49

Database Table Definitions

Tuesday, September 09, 1997

Properties
Date Created-
LLast Updated

8/12/97 5:11:06 PM
9/4/97 3:46:02 PM

Columns
Name Type Size
BPN Text 26
Allow Zero Length [alse
Attributes: Varniable Length
Collating Order General
Column Hidden. IFalse
Column Order. Default
Column Width- Default
Description. Board Product Number
Ordinal Position 1
Required: False
Source Field: BPN
Source Table: Station nunber
BSN Text 15
Allow Zero Length False
Atlnibutes: Vanable Length
Collating Order General
Column Hidden False
Column Order Default
Column Width Default
Descniption Board Serial Number
Ordinal Position. 2
Required. False
Source Field 13SN
Source Table Station number
BRI | cnmomammsmmimmms st s s s s s e sl a5 A s S B RS B Y
WA suommrsiammmm oo st sl 33 0 8 S S 9 e S
User Permissions
Operator Read Data, Insert Data, Update Data, Delete Data
Admin Operator permussions + Delete, Read Permissions, Sct Permissions,

Change Owner. Read Definition, Write Definition

Fig 4-11: Example of Database Field definitions

50

Product Database Archiving

The BndgeVIEW supcrvisor (System Computer) will be maintaining a “Product DB (Access DB) (o
coordinate. monttor. and operate the linc. This “Product DB will be constantly polled and updated by the
robots on the asscmbly line. When a product has completed assembly (and passed final test) the record
associated with that product 1s no longer needed and shouid be archived Only records of products that have
been completed (and passed from the final test station) and records that have been marked “Expired™ will
be archived and purged from the “Product DB"

“Expired” is marked when = Current Datc - “Build Date™ (Field in the Product DB) > Bridge VIEW uscr
sctlable and editable variable (in Days).

Manually deleting individual and sorted records will be allowed via Access front-end while the hne is
runnung. and must be proved that there is no conflict between Access and BridgeVIEW via field tests
Manual archiving should be on demand and via push bulton on the appropriate page.

Automatic archiving should be based on the system clock. The possible sclections should be:

Monthly sclected mput the month day (1% to 31*) and time
Weekly selected input the day (Sun to Sat) and time
Daily selected: input the time
Hourly sclected input the start ume and a pick st for interval (Note' the start time may resct the
archive clock 1f the duration does not divide evenly 1nto 24 hours) and the pick
list should support 1. 2. 4.6. 8. 12, 24

File Storage Name should be user selectable. The file name and path should be in an editable field on-hne
Shutting down the system and starting it should not change the file name. Also, dunng archiving. if he file
does not exist create it (any newly crealed file must include the Field Names). if the file exists. append 10 1L

Note: The Plant Computer will delete the file after it has been arclhived

Fig 4-12 Access™ Database archiving procedure

The historian database was developed uses Citadel, a real-time database
facility built into the BridgeVIEW™ SCADA package The process
values for each station were assigned tags (the variable name) in
BridgeVIEW, their properties configured, and their logging into the
database turned ON. The BridgeVIEW engine updates the Citadel
database whenever the values are changed for any of the process tags A
part of the historian database requirements is shown in Figure 4-13. The

archiving of the Citadel database is done by BridgeVIEW™ engine itself

5]

Historian Tags

Any vanables 1n Bndge VIEW can be logged in the historian. However. only the tags needed for monitoring and
analyzng the line should be logged in Citadel.

XX Technology will sclect a group of tags 1o be logged based on their insight to the function of the System PC

and the Adept robots with therr ficld test of the Adept controllers performance dunng the debug phase. The idea of
monitonng the process based on the different product types is essential for thus multi-product line. In Addition, Cell
urng tags (mumber of tags = # Cells X Per Product types) will be logged These lags measure the product
assembly ume in each cell and for cach product. The resolution for thus tag should be in tenths of a second. The
calculation is based on product type exit time (stop time) mnus entry time (start time) at each cell. - Again, each cell
will have several logged tags (Different vanables) based on product tvpe to get an apples to apples companson
With this information an enginecr can determine whether an umprovement is needed and where. Will have to
marually navigate 1o find this uming based on Citadel approach.

Robot performance calculation (number of tags = # Cells) will be logged. Tlic resolution for this tag should be in
tenths of a second. The calculation should be = Up Time/ Total Time. The tenths of seconds 1s acceplable IF the
Adept controller can accept Lhese speeds.

Up Time = The cell 1s not in error (Green Light lit)

Total Time = Time since the counter was reset

Robot Utilization (number of tags = # Cells) wall be logged. The resoluuon for Uus tag should be i tenths of a
second, The calculation should be = Busy Time/ Tolal Time (nol including any Down Time).

Busy Time = Time the cell was working, actually assembling something

Total Time = Time since the counter was reset nol including any Down time

Down Time = Time Lhe cells red light was it

All imers and counters (up time, busy time, down tume, etc.) shall be separate [rom each other and be capable of
being reset one station at a ume mamually or automatically (up to 6 umes a diy). No Weekly or Monthly
capabilitics are needed at this ume.

The following will define the light meanings:

Blue Light = Cell idle

Green Light = Cell unnuing

Yellow Light = Opcrator attention

Red Light = Cell down

Notel The adept may not be able to hardle 125 vanable being passed to Bndge VIEW. In addition to the words
for the discrete VO. [f this scens 1o bog down Adept controllers. the variables marked **As Needed™ could be

taken out.

Fig 4-13: Historian Database requirements

A new archive file is created whenever the database size exceeds more

than one megabyte.

U
[

e Communication
The communication layer manages the network communication between the
System Computer, Adept controllers and the Plant Computer using Dynamic
Data Exchange (DDE) over TCP/IP, a standard inter-process protocol for
Windows NT. DDE was selected because of its ability to transfer data
between two processes running on the same or remote computers by
command level execution of programs. The network connections are shown in

Figure 4-14

DDE-aware programs communicate by establishing a conversational channel
[Wonderware 94]. A client program needing data requests the server program
to provide data. “Application” name, “Topic” name and “ltem” (variable
name) are provided to identify the data being requested. For reading and
writing to the Adept controliers, the communication layer uses the

BridgeVIEW™ engine, which was configured to support DDE protocol.

Supervisory Software Algorithm,

The finite state machine automaton [Pori 96] was applied in the supervisory
control software of the TRX assembly line. The control laws for different stations
were defined in the Continuous System Layer of the Hybrid Control model. The
complete process flow was divided into different states in the supervisory discrete
layer. Each state in the finite state machine automaton was responsible for dealing

with events as per control laws governing the process at that particular instant.

n
e

NetDDE over TCP/[P _ "
192.168.144| Station | Station1... Station n..

NetDDE over TCP/IP .w m w m m
192.168.1440 i | BN | | NN | NN

Plant Computer System Computer ! : :
Fast Ethemet Card (Supervisory Control ! ']
Windows N'1'4.0 '

1

: & Data Acquisition) y

3 Fast Ethemet Card I, '
: Windows NT 4.0 ' ‘
]

D S S ST L

NetDDE over TCP ']I‘: :

: : 192168 1442 . NelDDE over TCPAP :

%ffff::ff::ff RS - % © S L X ~

Fast Ethemet Hub NetDDE over TCP/IP
100-base-T 192 168. 1444

Fig 4-14- Networking & Data sharing Scheme

These control laws were applied at different times or at the same time on different

stations, depending on the process flow of the TRX assembly line

c. SCADA Package Selection

The supervisory software architecture of the TRX assembly was implemented
using a SCADA package A SCADA package was preferred over a software
language because of several in-built facilities such as password protection,' rich

graphical user interface, networking and database handling capabilities

National Instrument’s BridgeVIEW™ SCADA package was selected for
implementing the TRX assembly line. BridgeVIEW has a built-in object-oriented
graphical language, LabVIEW™, which allows programming flexibility within
the SCADA package. Sophisticated test and measurement programs can be
seamlessly integrated within BridgeVIEW’s environment. Moreover programs in

graphical languages are easy to write, understand, and debug [Mahmood 96]

54

These features gave BridgeVIEW an edge over the other SCADA packages

considered for this application

55

CHAPTER V

DESCRIPTION OF STATION 1

A separate software code was developed for each station in the TRX assembly line
Though the algorithm was somewhat similar, the functional requirements of each station
were different, warranting separate codes. The module for each station was seamlessly
integrated into the main program within the supervisory layer of the TRX assembly line
software. Since a similar design approach was taken for all stations, the following
description of Station 1 will hopefully give a general idea of the overall approach taken

for this project.

5.1 Protocol Description through Eventflow Diagrams

Board flow through a station was depicted with an eventflow diagram, which ties
together the events, board locations, and software responses (actions) by the Supervisory
Software (System Computer) or Adept Controller. The eventflow diagrams for Station |

are shown in Figures 5-1a, 5-1b and 5-1c.

The processing in Station 1 begins when a board arrives at the “Queue stop” (see Figure
5-1a). First, the barcode reader reads the serial number of the board to identify the board
and sends it to the Adept Controller (AD-1), which signals the board arrival to the

Supervisory Software BridgVIEW (BV) by setting the flag “st1.need readin”.

BV, having been polling continuously for this flag to be set, gets the serial number from

AD-1 and uses it to retrieve the product and status information of this board (i.e. its

36

LS

Wait until board arrives al

AD-1
polls for board

arrival

Get st] barcode.rd
from barcode reader

stl.need.readin -~ = |]

______ P —

Wait for AD-1 Signal
for a new board

| Read stl barcode.rd |

Provide Product Info

l
Lookup "BPN" &
l "BRN" from DB with

“"BSN" as search col

Write
stl.que prod == BPN
stl que.rev == BRN

Determine Historical Status

B /2

| Lookup Database &
! determine history
1

Write stl.brd run e

(pass, fail, rerun) "
|

I stl.need readin == 0]

|

BV polls for ' AD-1 polls for

stl.need.readin : st]l need readin
until | /ﬁ until 0

Wait till BV sends
info update signal

Move board to workstop

pass

I
!
|
|

‘ sll brd run?

Rerun Menu \l/

rerun fail

AD-1 Open Rerun/fail Menu

 |Get operators response |
Get 0
operators —

response

| o
AD-1 Board Removal

N

| Move board 1o St#2 Que Stop]

]

[Prompt for board removal |

Worknest Area

AD-1 Processes hoard
(see Annex St1-A) i

brd status. pass == |
(1. pass, 0:default)

brd status.fail == |
(1: fail, 0:defaulr)

9

[_s!l.ncod.fcadnl = =]

1: Process & Update
0 Don't Process or Update

"Stop Time 21"

| [st] work date =

Final Database Update

BV polls for
st] need.readot
unnl 1

Read PCB Unique serial # from

stl.work ser & Update database
"Start Time #1" -~ st] work date
~= date ime out
“Status £1" 1.0

1 1f brd status pass - |

0 if brd status.fail = |

Sel.

st work ser
st] work rev
stl work prod

Emptvy string
Empty string
Empty string
Empty siring

[stl.need readot

]

Fig 5-la. Station | Eventflow diagram

previous processing history, if any, with the resulting outcome) from the Product
Database (Microsoft® Access97). Using “Board reentry protocol”, BV determines the
status of the board (rerun, pass, or fail). It also updates database to the fact that this board
has been entered into Station 1. At this point, it resets the flag “st].need readin™ to signal
AD-1 that the board status and product information it is waiting for is now ready to be

read.

When AD-1 sees that “stl.need.readin” flag has been reset, it moves the board to the
“Work stop”. It then looks at the board status information provided by BV and starts
processing the board if the status is “Pass”. Otherwise, it pops out the “Rerun/Fail” menu
to get operator input on whether to process or remove the board If operator chooses to
go ahead, it begins processing, else it moves the board to the “Queue stop” of the next

station (Station 2) and signals it to remove the board from the assembly line

A “Pass” board at the “Queue Stop” waits till there is no board in the “Pre Stop” (see
Figure 5-1b). As “ Pre Stop” gets empty, AD-1 moves the board to the “Pre stop” and
also transfers its product information fr‘om the “Queue stop” variables to the “Pre stop”
variables. At “Pre stop” the board waits for the “clearance signal” until there is no board
in the “ Work Stop”, “Flip Stop” and Robot Arm Gripper. When clearance is granted, the
board is moved to the “Work Stop”, from where the Robot Arm Gripper picks the board
up and puts it in the “Flip Stop” where processing on the board begins When processing
is finished, the Robot Arm Gripper picks the board up and puts it back on the “Work
stop”. AD-1 accepts no board at the “Work stop” until the previous board completely

gets out of the “Work stop”.

Boards

Board at

ue stop,
AD-1 action

Copy PCB Unique
serial # from stl barcode
rd to stlqueser

stl.pre.prod == stlque.prod
stl.pre.rev stlque.rev
stl preser st]que ser

Clear variables st barcode
rd, stlqueser, stlquerev &

stl.queprod

192 168.144 ll NetDDE

Display vanables stlque
prod, stlquerev & stlque
ser

Board al
work statiop

AD-1 action

AD-1 action

Board at
vork statio

——_——— - e —
-
Lé

/ Poll stl ,prc,pm:i‘,
*~ < until empty- -+~

3 Poll st1 work

pro& ;

-

" Poll st] work.prod},
~ -~ uptil_empty- -~

stl.eoaprod == stl work prod
stleoarev == stl work rev
stleoaser == stl workser

J Poll stl fip.prod,
S~ < until empiy- -~ Stamp date & tme 1n
------ - stl eoadate

J Poll stleoaprod ¥
*~ < until emppy -7

Clear vanables stl work prod,

st] work rev, st] work ser

stl flip prod == stleoaprod
stl.Mlprev ==stleoarev
stl.flipser == stleoaser
stl flip.date == stleoadale

stl work prod == stleoaprod
st] work rev
st] work ser == stl eoascr
stl work.date == stlecoadate

== stleoarev

Clear variables st] eoaprod,
stl.coarev, stleoaser &
stl.coadate

Clear vanables stleoaprod,
stl eoarev. stlcoaser&
stl coadate

Process the board

stl eoaprod == stl flip.prod
stl eoarev == stl flip.rev

192 168 144 |

Y

NetDDE

stl.work.prod == stl pre prod
stl work.rev == stl pre rev

st] evaser stl Mpser
st] eoadate == stl Mp date

192 168 144 |

Y

NetDDI

Display vanables at work
station and ind OF Arm
Ginpper

stl.workser == stl preser

Display variables at work sta-
nonand End Of Arm Gripper
mcludmg stl work status

Clearvaraiblesst] pre prod.
stl pre rev & stl preser

Clear vanables stl ip prod
st].Mip rev, st Mipser &
st].fhp.date

192 168 '“"l -

Display vanables stl.pre
prod, stl prerev &
stl.pre.ser, stl pre status

192 168 144 li NetDDE

Display variables at flip stop

land End Ot Arm Gripper

Fig 5-1b. Station | Eventflow diagram

BV achions

BV keeps track of a board through each stop and displays it on demand. AD-1 determines
the failure status of the board at the “Work Stop”. updates its pass and fail variables
accordingly, then sets the flag *“stl need readot” to signal BV that it has finished
processing the board (see Figure 5-1a). Upon getting this signal. BV reads the board's
serial number along with the board’s process start and stop times and status from AD-1
and updates product database. A separate record is kept by BridgeVIEW, which
automatically records every event in its embedded real-time database (Citadel).
Additionally, Supervisory Software also stores statistical information in Citadel such as
the number of boards processed through Station I, number of passed and failed boards in

Station 1, etc

There are many smaller protocols running in parallel Supervisory software runs the
“Automatic” and “Fixed Board Mode” protocols separately It continuously watches the
flag “stl.fix local” to determine which mode Station | is supposed to be in, i1 e . normal or
debug mode (see Figure 5-1c) In Purge Protocol, BV monitors the flag " stl purge” As
soon as it is set, BV reads board identification, purge location, and status information
from AD-I, updates the product database, then re-initializes AD-1 variabies to empty
string. BV also coordinates with a remote computer (Plant Computer) to periodically
receive information about new boards which will be processed in near future. Plant
Computer’s software takes operator entries, writes it into an ASCII file, and signals BV
that new product data is now available. BV, which is continuously polling for this flag,
then reads the file and updates the Product Database with the new board serial numbers
and types. BV is also responsible for reading and displaying the user name, messages

and current information from various locations inside Station |.

60

19

Purge Station #1

BV polls for
st1.purge

Read stl.purge.prod
st1.purge.rev
st1.purge ser
stl.purge.date

I

Resct st1 purge |

l

Write "" to above |

Update DB after reading
scrial #'s at various
locations to determine
location purged

Read as needed

User.log name (110)
User lognum (111)
Statistical paras (112-119)

Read Read
st1.cur.step blue lite
stl.error.code green.lite
stl.run.status red lite

yellow lite

[Delete AIM-DB-lonce a week I

Plant computer
provides Lookup
lable for each
board

fLPl:uu Computer Actions ,‘]

Fast Ethernet

o(J

Stales.

Auto
Mode

Stl fix local == (0.1)

0

Auto Mode: Run on normal mode
Fixed Mode: Debugging mode

——————
- -
-

7 BV polls to sce b

————>\ ifanew lookup table /

*~ _ file has arrived. -~

Read and update look
up
table from the plant
compulter running
NT(0)

Fig 5-1c Station | Eventflow diagram

‘‘‘‘‘ =

.~ BV polls for ‘:

| Read mcssagc.linc. |

| Read message line.2

[Read message. line 3

|_Read message.line.4

[Reset mess read in

BV actions

5.2 Supervisory Software Hierarchy

The supervisory functions for Station 1 constitute an important part in the layered
software architecture described in Chapter IV. The main program is run at the uppermost
layer of the TRX assembly line supervisory software. This layer also runs, independent of
each other, various subprograms like Log In, Log Out, Robot 1, Robot 2, Historical
Trending etc. Most other subprograms run in the second layer including Adept 1, Adept
2, and Adept 3 (the three computers controlling robots) subprograms for all stations (1 to
9) separately. Handshaking protocols, however, are implemented in the third layer for all
stations. Interfaces with the product database via SQL Queries and ODBC are in the

lowermost layer of the software architecture.

The Station 1 supervisory software runs three subprograms in the second layer of
hierarchy under the Robot 1 program These programs run separately and describe the
software actions on the board when the board gets in, gets out and is purged from Station
I. Inside each program, a finite state machine algorithm is applied to implement
handshaking protocol (third layer) and database (fourth layer) Station 1 GUI,

handshaking protocols layer, database, and communication are described below

1. GUI
The GUI of Station 1 (Figure 5-2) displays information about all boards at various
stages of processing. It shows the serial numbers of the boards at each stop, serial
number and the type of the board currently in production (at Flip Stop), start and stop

times and Pass/Fail status of the last board processed through Station 1. It also shows

if the fixed board mode is ON, which would take Station | into debugging mode.

62

£9

Station 1 (Adept Pobot 1) Ceneral uformation

Board Information Process Flags Process Statistics
Queue Stop Board | UA1004BF06 | || Fix Board Mode RN Total Frec, L 103
Pre Stop Board | UAIOO4BF45 | el
Work Stop Board | UAI004BF24 | % Fail |__0.00
Board In Producti UA1004BFO05 i i TRX15W | 100
on | | Misc. Information TRX10W [642
Board Type In Production | TRX15Watt | Oeliiates Do Peliien — TRX30 W |_345
& Oscillator Tray Count 0 DBCTRX30W 202
Board Start TmlE ! 1[6!'93 80000 AM I Connector Tray Position 0 TRX 1900 MHz 114
Board Stop Time | 1/6/98 8:02:00 AM | | | Connector (213/104) Tray Count 0 Last Reset |1/4/98 8:15 AM
Connector (209/102) Tray Count 0
Board Cycle Time (sec) [120 | Robot Speed -
Pass/Fail Status | PASS | (% Full Speed) 999
Error Information
- Operator's Message
Bit map of hoard
Error Code
Board Type

Fig 5-2: Station 1 GUI

The GUI also shows the statistical information like total number of boards processed
through Station 1, number of boards passed or failed, numbers for different types of
boards processed. and the time when this statistical information was last reset
Additionally, it displays several miscellaneous pieces of information such as the parts
count in the tray, position of the tray, error information regarding the board in
production and operators message. The bit-map of the actual board in production and

some other information is blanked out or tampered because of their propriety nature.

Handshaking

The handshaking layer of the supervisory software was responsible for implementing
the Automatic/Fixed Board Mode, Purge, and Board Re-entry protocols All stations
had separate implementations of these protocols, thus for example, if Station 1 goes
into the fixed board mode, System Computer will continue to respond to other Adept

controilers and continue operation of other stations.

Figure 5-3 shows the Automatic and Fixed Board protocols for Station | In brief,
System Computer polls the flag “stl.ﬁx.lolcal" and continues running the line n
automatic mode as long as this flag is not found to be set. In automatic mode, System
Computer passed the information back and forth to the Adept Controller I. If|
however, the flag is found to be set, Station 1 goes to the fixed board mode, which is
basically a do nothing loop. System computer virtually breaks the connection with
the Adept Controller, except the polling of the flag continues so that the program can

revert itself to the automatic mode protocol upon operator request.

04

Automatic & Fixed board Mode Protocol

There will be two modes of operauon for the TRX line. The most prominent mode being the Automatic
mode where the line has directs communication with System Computer The second method will be the
scmi-automauc or fixed board mode, which will have no communication with System Computer.

Automatic Mode Will apply to all stations, 1-9

The automatic mode will allow System Computer to read and write lo the Aim variables at cach robot
stauon System Computer will be able to take information from these variables and track the boards
through the linc along with storing data to the database and to the historian. System Computer will also be
able 1o provide information to the Adept controllers such as deternuning what product type 1o run based on
the bar-code information and the pass/fail status from the upstream station.

Fixed Board Mode Will apply to all stations, 1-9

The fixed board mode has been developed for debug of the machimery and should be used only for
debugging the TRX line and/or newly implemented software. In order for the station 1o be locked into
fixed board mode the engineer will need 1o go to the fixed board menu and sclect the proper board 1o be
run. This will have 1o be done for each station controller. Afier the board has been selected by the engincer
the Adept controller will set the varable stX.fix.brd equal 1o 1" and will no longer accept information
from System Computer The Adept controller will not read the bar code The vanable stX fix brd will be
reset 10 "0 when the engineer has take the station out of fixed board mode.

Fig 5-3 Station 1 Automatic & Fixed Board Mode protocol

The purge protocol (Figure 5-4) is implemented in the supervisory software’s
subprogram “Station | Purge State Machine”. In this protocol, supervisory software
updates the product database for the purged board. Adept Controller | sets the flag
“st] purge” when a board gets manually purged by the operator of Station 1 The
supervisory software, polling for “stl.purge”, responds when it is found to be set by
reading the purged board’s serial number, product number, revision number and purge

date from the Adept Controller 1.

Using the serial number as the reference key, the Product Database record for this purged

board is updated with the purge date, purge location and failed board status. Each station

65

Purge Protocol

Station | purge

If the robot has tried 1o pick or place a part unsuccessfully three times an error will be called. The operator
will be given a message to cither retry to pick. do not retry to pick, reset the pallet. or purge the board
location If the operator chooses to purge the board location a purge menu will pop up on the monitor
screen. Al this ime the operator will be given the option 10 purge the Adept end of arm. workstauon or the
flipper station. When the operator presses the purge Adept end of arm, purge workstation or purge Mipper
station button the Adept system will prompt the operator “Are you sure”™ If the operalors response “Arce
you sure” 1s yes then the Adept system will transfer the product number, revision number, scrial number,
and date/ime of the board at that station to the stl.purge.prod. stl.purgerev. stl.purgeser. and
stlpurge.date vanables then set the variable st1.purge equal to *1". This will alert System Computer that a
purge has been made. Afier a board has been taken out via the purge, the board should be marked by
System Computer as a failed board. System Computer will then store the purged data and reset the
stl.purge.prod, stl.purge.rev, stl.purge.ser. and stlpurge.date variables to null (") and the stl.purge equal
to “0”. If the operator's response “Are you sure” is no then the Adept system would skip to the end of the
program and bypass the purging boards. No hot flags would be set for System Computer

Fig 5-4- Station 1 Purge protocol

is given a different purge location number to identify the station from which the purge
took place. The supervisory software then resets the flag “st1.purge” to signal Adept

Controller 1 to reset itself and start processing the next board

The Board Re-entry protocols, one for each station, determine the status of a board
entering into a station. Figure 5-5 shows the Board Reentry protocol for Station 1 [t
is implemented in subprogram “Station | Readin State Machine” of Station |

supervisory software.

When a board enters Slation 1, Adept Controller | reads the board’s serial number
and sets the flag “stl need.readin”. The Station 1 supervisory software polls for this
flag, and upon finding it set, queries the Product Database (using board’s serial
number as search key) for board’s status in Station 1 and Station 2. It then runs an

algorithm to determine if the board is new or has already run through Station 1

66

The algorithm writes writes “Pass” to variable “st] brd run” if Station 1 Status field

of the Product Database record is empty and Station 2 Status field i1s not 0" It writes

“Rerun™ if Station 1 Status field shows “0”, or it is empty with the Station 2 Status

field showing “0"

The supervisory software resets the flag “stl need readin” Adept Controller 1 then

reads the variable “'st] brd.run” If the board is “Pass” (new board, never processed

before), it begins processing through Station 1. In case of “Rerun”, the operator is

given a choice via a pop-up menu to take the board out of Station | or let it run

through

Synchronization (Critical Timing) Issues

The difference in the speed of execution between the System Computer and the
Adept Controllers created the synchronization problems Code execution at the
System Computer was an order of magnitude faster than at the Adept controllers
This necessitated the use of robust handshaking protocols at the software level as

well

The problem is as follows Let us say Unit A & Unmit B want to communicate
with each other with handshaking Normally, a single tag protocol is sufficient
Unit A sets a flag X at Unit B’s memory directly, then waits for Unit B to reset its
flag X after finishing the assigned tasks. The problem arises when Unit B is much
slower than Unit A, in which case there could be a significant time lapse between

Unit A’s attempt to set flag X and the moment it actually gets set. As Unit A

67

Board Re-entry Procedure

The following 1s the proposcd board re-entry procedure for Station 1.

Bar-code Reader Al Previous Status of Board Read: Pass Fail Rerun]
Station #1 Station # | New Board | '
Stavon #1 Station # | Failed Board I
Stauon #1 Station # 2 Failed Board 1

How does the system process good hoards

The bar-code reader at Station 1 will store the serial number 1n the vanable stl barcode.rd. The Adept will
then set the vanable st1.need readin equal 1o 17 and wait for the System Computer lo reset the vanable o
“0”. This will let the Adept know that System Computer read the vamables. After the vanable
stl.nced.readin is sct to 1™ System Computer will read stl.barcode.rd. scan the dalabasce and determine 1f
this board has passed Station 1 previously [f the board has not run in Stauon 1 System Computer will
wrile a “pass” in the vanable stl.brd.run, write the product number in the variable stl.que prod and the
revision number in stl que rev. then set the stl.need.readin equal to “0" The board will continuc to Station
2

How does the system process bad boards

The operator may re-enter the failed board in front of Station 1 If the operator re-cnters the board al
Stauon | the bar-code reader will read the senaf number and store the data in the variable st1 barcode.rd
Svstem Computer will scan the database and determine if the board has been run at Station | or Statson 2.
Since this board has alreadv been through Station 1. System Computer will write “Rerun” in the vanable
stl.brd. run. Once the board has traveled from the que-stop (bar-code rcader) to the work stop the Adept
will pop up a menu and give the operator the choice to rerun this board in Station 1 or to not rerun this
board in Stauon 1. In order for the board to be able 1o rerun in Station | the board must be stnped of all
parts imuially placed by Station I. The operator will cither press the Rerun Board button or the Do Not
Rerun Board button, [f the Rerun Board bulton is pressed the operator will be promoled “Are You Surc”
If the “Arc You Surc™ answer is yes the board will rerun the station. If the “Are You Sure™ answer 1s no
then the operator will again be given the choice Lo rerun the board or (o not rerun the board.

If the Do Not Rerun Board button 1s pressed the operator will be promoted “Are You Surc™ If the ~Arc
You Sure” answer 1s yes the work stop will be lowered and the board will simply pass to Station 2 quce-
stop. The Adept will write a 07 in the vanable stl.opr.res and System Computer will not change the data
stored 1n the database for tUus board’s status in Station . At this tme a message and amber light will be
displaved alerting the operator if he or she wants to run the failed board at Station 2. If the “Arc You Surc”
answer is no then the operator will again be given the choice to rerun the board or 1o not rerun the hoard

Fig 5-5 Station |1 Board Re-Entry Protocol

begins polling after a fixed interval, it finds flag X to be reset and thinks Unit B is
done with the tasks, while in reality the flag was still reset because it never got set

due to Unit B’s CPU backlog. Even though the possibility is remote. the

68

3

consequences for a robotics assembly line could be disastrous as it may try to

install parts over existing parts causing a crash.

This problem was resolved by implementing a “Two Flag Scheme”, which 15
robust albeit complicated In “Two Flag Scheme” Flag | is the original protocol
flag while Flag 2 is the acknowledge flag The protocol flag was set and resct by
the Adept Controller while acknowledge flag was set and reset by the System
Computer Since both the Adept Controller and System Computer were not
sharing the same flag (protocol flag) and writing to their own flags, the timing

conflict was avoided

The scheme works as follows: When the Adept Controller sets Flag 1. System
Computer runs its routine and then it sets Flag 2 to signal completion While
System Computer’s routine is executing, the Adept controller waits for Flag 2 to
get set. When Flag 2 gets set, Adept Controller resets Flag 1 Meanwhile, System
Computer waits for Flag 1 to get reset When Flag | gets reset, System Computer
resets Flag 2, then goes back and starts waiting for Flag | to get set The Adept
Controller in the mean time waits for Flag 2 to get reset and after Flag 2 was reset

it further processed the board in station #1.

Database

The Product Database was handled in the last layer of the supervisory software
hierarchy “Queries” were built in this layer for the Product Database (Microsoft®
Access97) using SQL [National Instruments Corp 97b] via ODBC. A sample of

Product Database entries for Station | is shown in the Figure 5-6. A typical query

069

0L

ROA 117 2046/1
ROA 117 2046/1

ROA 117 2046/1

ROA 117 2046/1
ROA 117 2046/1
ROA 117 2046/1
ROA 117 2046/1
ROA 117 2046/1
ROA 117 2046/1
ROA 117 2046/1
ROA 117 2046/1
ROA 117 2046/1
ROA 117 2046/1
ROA 117 2046/1
ROA 117 2046/1
ROA 117 2046/1
ROA 117 2046/1
ROA 117 2046/1
ROA 117 2046/2
ROA 117 204672
ROA 117 2046/2
ROA 117 2046/2

ROA 117 2046/2

ROA 117 2046/2
ROA 117 2046/2
ROA 117 2046/2
ROA 117 2046/2

UA1004BFO1

UAL004BF02

"UA1004BF03
“UA1004BF04
{UA1004BF03
UA1004BF06
UAI004BF07

UA1004BFO8

UA1004BF09
UAL004BF10
UAT004BF11
"UAI004BF12
‘UAT004BF13
UAI004BF 14

UAT004BF 13
UAT004BF16
UAIOD4BF17?
UAIO04BF18
UATO004BF19
UALO04BF20
UAI004BE21

UAI004BF22
UAL004BF23

UA1004BF24
UA1004BF25
UAT004BF26
UA1004BF27
UAI004BF28

RIA

RIA
RIA
RIA
RIA
R1A
RIA
RIA
RIA
RIA
RIA
R1A
RIA
RIA
RIA
RIA
RIA
R1A
RIA
RI1A
RIA
RIA
RIA
RIA
RIA
RIA
RIA
RIA

KRC 121
KRC 121

}}i_RClzl
'KRC 121

KRC 121
KRC 121

KRC 121

KRC 121
KRC 121
KRC 121
KRC 121
KRC 121
KRC 121
KRC 121
KRC 121
KRC 121
KRC 121
KRC 121
KRC 121
KRC 121
KRC 121
KRC 121
KRC 121
KRC 121
KRC 121
KRC 121
KRC 121
KRC 121

10/1
10/1
10/1
10/1
10/1
10/1
10/1
10/1
10/1
10/1
10/1
10/1
10/1
10/1
10/1
10/1
10/1
10/1
10/
10/2
10/2
10/2
10/2
10/2
1072
1072
10)/2
1072

Figure

UA1005D30]
UA1005D302
UA1005D303
UA1005D304
UA1005D305
UA1005D306
UA1003D307
UA1005D308
UA1005D309
UA1005D310
UAL005D311
UAL005D312
UAT005D3 13
UA1005D3 14
UA1003D315
UAI005D316
UA1005D3 17
UAI005D3 18
UAT005D3 19
UAIDOSD320
UA1005D321
UAI005D322
UA1005D323
UAT005D324
UA1005D325
UA1005D326
UAIOO3D327
UA1005D328

R4A

R4A
R4A
R4A

R4A

R4A
R4A
R4A
‘R4A
R4A
‘R4A
‘R4A
‘R4A

R4A
R4A

‘R4A

R4A

‘RIA

R4A

R4C
R4C

9TW3
97W3
97W3
97W3

97W3

9TW3
97W3
97W3
97W3
97W3
97W3
97W3
9TW3
97W3
97W3
97W3
97W3
97W3
97W3
97W3
97TW3

9TW3
97W3

97W3
97W3
97W3
9TW3
97W3

110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110
110

110

110
110
110
110
110
110

1/30/98 13:32 17
1/30/98 13:33 17
1/30/98 133443
1/30/98 13:36.10
1/30/98 13 37 36
1/30/98 13:39.03
1/30/98 134029
1/30/98 13.41.55
1/30/98 13-43:22
1/30/98 13 4418
1/30/98 13-46:13
1/30/98 13:47 41
1/30/98 13 49:07
1/730/98 13.50.34
1/30/98 13°52:00
1/30/98 13 53 27
1/30/98 13:54.53
1/30/98 13°56°19
1/30/98 13:37 46
1/30/98 13 5912
1/30/98 14:00 39
1/30/98 1402 03
1/30/98 14.03.31
1/30/98 14 04:58
1/30/98 14.06.24
1/30/98 14.07 51
1/30/98 1409 17
1/30/98 14 10 43

5-6 Product database entries for Station |

1/30/98 1333 46
1/30/98 13:34.43
1/30/98 13 36.16
1/30/98 13:37:37
1/30/98 13:39:07
1/30/98 13 40:33
1/30/98 13 42:02
1/30/98 13.43:23
1/30/98 13:44:52
1/30/98 13 4615
1/30/98 13:47°47
1/30/98 13.49:15
1/30/98 13:50 38
1/30/98 13 52:01
1/30/98 13 33:31
1730/98 13 535:00
1/30/98 13:36:26
1/30/98 1353746
1/30/98 13.59:14
1/30/98 14 00 39
1/30/98 14:02:05
1/30/98 14 033

1/30/98 140505
1/30/98 14 0629
1/30/98 14 07:55
/30/98 140924
1/730/98 14 10 44
1/30/98 14 1218

|
1
|
|
!
1
I
I
I
1
1
1

|

I

|

I
|
|
I
1
1
1
1

1

1

|
1
I

contained the source name (alias defined in ODBC to point to the database name), the
table name (tabie within the database source containing targeted data) The “Select”
command was frequently used with serial number as the search key to retrieve data
from the selected fields (columns) “Update” was another command extensively
used. again with serial number as the reference key, along with data and

corresponding field names where update had to occur

The process information for all stations was also stored in the Citadel database, along
with the statistical information. A tag (variable) in BridgeVIEW was defined for each
field of information desired to be stored. Tags are configurabie for how to store data
in Citadel. The data could be stored continuously, at preset time intervals, upon a
change in value, or a combination thereof. The Citadel database was accessed by the
second layer programs like “Historical Trending” and “Statistical Process Control”
(SPC) to display the station-by-station process and statistical data using charts and

graphs

Communication

The communication between the Adept Controllers and the supervisory System
Computer was established using the BridgeVIEW Engine. The tags (variables) were
configured to use DDE as the communication protocol Example configuration to
establish communication with an Adept variable “stl need readin” was
“Adept|adept1!Aim\trxI\st] need.readin”, = where = “Adept”, “adeptl”, and
“aim\trx 1\st1 need.readin” are application, topic, and item names, respectively

About fifty tags were configured for every station to handle alarms, networking,

71

Tag Name ‘Data Type Group ' Tag Access Server - Device ltem) Length Tag Status
st1 need readot ‘Analog ‘Station]l Input 'DDE Senver Adeptadept | :mm\lrxlfxstl.nee_d. readot _'N-"A | Good
stl need readin \Analog ‘Stationl Input 'DDE Senver Adepljadept] aim\trx1\st] need.readin A IGood
stl.bluelite ‘Analog Station] Input DDE Server Adeptjadept] 'am\trx1\blue lite NA [Good
stl green lite Analog Station] Input DDEServer Adepljadept] aimitrx]\green lite NA |Good
st mess read in |Analog ‘Station| :lnpm 'DDE Server .Adept-ladept I amitrx]\mess.read.in NA |Good
stl red lite ‘Analog Stationl Input DDEServer Adeptjadept! ~ amitrxlired lite NA | Good
stl.cur step ‘Analog !Sl__z_uionl Input 'DDE Server Adeptjadept] aimitrx1'stl cur step 80| Good
stl.error code _Analog ‘Stationl Input DDE Server Adeptfadept] aimitrx]1\st] error.code 80| Good
stl purge Analog Stationl Input :DDE Server “Adept|adept | ‘a.im\trxi\sll purge NA |Good
stl.run.status 'Analog ‘Station] Input 'DDE Server Ade{)ﬂéﬂéﬁ{l am\trx1\stl nun status :N-'A {Gwd
stlyellow lite lAnalog Stationl | Input \DDE Server Adeptjadept] aimitrx!\yellowlite NA | Good
st fixloca Andog [Swtion] nput [DDESenver Adepladept] aimitrxl\stl fix local NA |Good
stl.ack.readin |Analog Station]l |Inpu/Output ~ DDE Server ~ Adeptjadept! ~ aim\trxI\stl.ack readin NA |Good
stl ack readot ‘Analog ‘Stationl Input/Output DDE Server ~ Adeptfadept] ~ aimitrx1'st] ack readot NA |Good
st] ack purge "Ana]og Stationl Input/Output 'DDE Server ‘Adeptjadept] ~ aimitrx1\stl ack purge NA |Good
stl.purge ser ‘Analog Station] Input 'DDE Server ~ Adeptjadept] ~ aimitrx1\st] purge ser 80 Good
stl purge date Analog Station] Input DDE Server Adeptjadept] aim\trx1\st! purge date 80, Good
st que prod ‘Analog i j_Slaliml ilnput-"OLrlpul :DDE Server Adeptjadept] aimitrx1\stl que prod SUIGJ()C]
stl querey 'Ana]og Staionl Input’Output DDE Server Adeptladept] aim\trxI\stl que.rev - 80, Good
st brdnn Analog Stationl InpuwOutput ~ DDE Server Adeptjadept] ~ aimitrx1'stl brd run 80,Good
st barcode rd Analog Station! Input DDE Server Adeptjadept] aim\trx1'st] barcode rd 80 Good
stl date.timein Analog Station]l Input 'DDE Server :Adepqadepl] “aimitrx]\date ime in 80! Good
stl date time out “Analog Station] .]l_lpLﬂ B ;QD_E_S_EDL:I’I Adeptiadept! amirxldateimeown &0 Good
st workser ~ Analog Stauonl Input 'DDE Server Adeptiadept! amitrxl'stl work ser 80, Good
st] brd status.pass Analog ‘Station| Input 'DDE Sener Adeptiadept] aimitrxl\brd status pass NA - Good
st] brd status. ful “Analog Station] Input DDE Sener Adeptladept] aimirx!\brd status fal NA Good
Fig 5-7 A part of BridgVIEW engine configuration file

database, etc. Configuration information about all tags was stored in a single

configuration file, part of which is shown in Figure 5-7

The configuration file is the first to be loaded when BridgeVIEW Engine starts
running providing all the information for networking, data logging, alarms etc. The
engine, capable of updating thousand tags per second, was configured for
specifications like the server input queue size, server output queue size, server shut

down time, number of retries for broken connection etc.

5.3 Station 1 Block Diagrams

The Station 1 supervisory software constituted three subprograms. The block diagrams of
these subprograms is shown in this section The common elements in the block diagrams

of these subprograms are shown only once.

Fig 5-8: Station 1 Hierarchy

74

T A
Reads stl.fix.local. -
If stt.fix local == 1then Goto case "WAIT st filocal == 1" else Goto case "WAIT stl.need.readin == 1"

Sti
Readin

—» lcon

]

W% st fix local

300}

oo onm g8 ‘

[WAIT st1 need.readin ==

§CHECK _st1 fiix local == 1}~

o

S Tailup deloy \ Popup arror dialog box i errar in reading st1.fix local.
PR e [*WAIT st fix local == 1}—— [[Z2]|[Station1 Readin State Machine]

g Hal WAIT stl fixlocal ==

P

lation1 in fix board mode.
eads st1.fix local.

'opup error dialog box # error n reading st1.fiv. local

hecks BVengine shutdown.

7

£ nable Error Dialog

BWAIT stl fiix local == 1j~~=n

Fig 5-9 Station | Readin State Machine Icon & Block Diagram

Comments

W WAIT stlneedreadin==1_pI

eads st1.needieadin.

% Bl st1 needieadin == 1. go to stale "Readin Board Infa from :
iz fDatabase" else loop till st1.need.ieadin == 1 -5 Comments
ﬁ Popup enor dialog box if enor n reading st1.need readin :

Checks BVengine shutdown,

[+ Readin Board Infa from D atabase|

H {‘PWAIT st1 need ieadin == ll
§WAIT _stl need readin == Op~+~~=1

[st1 need readin |~}

g_ﬁg} Fllcu.d

Readin Board Info from Databaselk[” %

[oSEND sl ack readin == 1

“Readin boaid info vi gets the board sefial number from Adept _|
icontroller #1 and query the database using board serial
énumber as a search key. It also wiites board product number,
thoard revision number and board slatus to Adepl contioller - : Comments
i

“Go to state "SEND stl.ack readin == 1"

Readin|
Board
Info

Fig 5-10 States in Readin State Machine

76

" _SEND stlackreadn==1 P

Sets stl.ack.readin == 1.

Go to state "WAIT stl.need.readin == 0",

Popup error dialog box if error in wiiting to st1 ack readin
Checks BVengine shutdown.

[*WAIT sti need readin == 0

§SEND sl ack readin == T}

é '''''' L R R R R ‘ WAIT sll_need_leadin TR D } é

Reads stl.need readin.
If stl.need.readin == 0, go lo state "SEND sl ack readin == 0"
else loop till st1.need readin == 0.

Popup enor dialog box if error in reading st1.need.ieadin.

[#SEND st1 ack readin == 0

lll

- [oWAIT st need ieadn == 0]

BWAIT stl.need readin == Bi"”i*'”'”"]
: Tagh
tatus

%511 need readin|~}- ;
ﬁﬁﬂq
. By

Fig 5-10 (continued): States in Readin State Machine

77

Comments

Comments

t4 SEND sl ackieadn==0 P

Sets st1.ack.ieadin == 0, ; -
Go back to case "WAIT st1 need readin == 1" : Comments
Popup error dialog box if eror in writing to st1_ack.ieadin :
Checks BVengine shutdown

[»WAIT si1 need.readin == 1

ESEND st1.ack.readin == Of

Esﬂ.ack.readndv}-—— G0

0.00

Fig 5-10 (continued) State in Readin State Machine

Readin
Board — lcon

Info

grror n(noerro)

[{IERRY) | TSUSE—— - Ga—— -

[This V1 queries the database and wites the resuk to Adept |

Fig 5-11. Icon and Block diagram of the subprogram in state “Readin Board Info from
Database”™

78

SOL
st 1 > icon
f]
i rF @0 3ts Soures Nane ff
| !
SELRCT
[BPN], [BRN], [Status #110]), [Status §120]
FROM
%S
ERE (BSN = 'ss');
o extBoard
5 query results
2] M
-1

Error in (no error)

#Read st1 barcode. idi~

Enable Error Dialog|
......... I [20:1]

Reads st1.barcode.rd. ~
% $Popup enor dialog box il erorn - 3% A Comments
4 #reading st1 barcode.d. % |

[This VI executes the SOL commands for database to get BPN.BRN and board stalus in station #1 & stalion 2]

Fig 5-12: Icon and block diagram of a subprogram that queries
the database in program Readin State Machine.

79

alatoodobabobddatnty

4
K

]
[This VI deteimines the boaid status in board reentiy protacoll

[Query results

abc) ‘ﬁnle o Robol1]
pe i =] ST

e

[Check board stastus in steion 21— T Comments

[if station? status =0 and 1
f station2 status == 0

t . . - : ; Wiite "Rerun to st1 bid.run

" 5 : P - ! else
mt _' E) ' Wiite "Pass" to st1 brd.iun
~ i lelse

i

. i i it station? status == 0
{Check station 1 board status] : Wiite "Rerun™ to st brd.run
g else

Wiite "Pass’" to st1.brd.1un

Rerun

Fig 5-13: Tcon and block diagram of a subprogram that determines board status in
Board Reentry protocol in program Readin State Machine.

80

Wime

o
it 1—’ lcon

[This VI wiltes the board product. tevision, stalus to Adept Controller #1]

Enable Enor Dialog
TP} §SEND board info to Station1}

' Tag
m Ir’-r_s!'l que piod '_"ﬂ

tatus,
It querev |+
% st1 bid.run b

2~
Stationi_readin_wite_to_vars datal
{ih(::"

Evntes product numbet to st1.que prod. revision number to -
3

11.que rev and board status to st1.brd run ——» Comiments
Popup enar dialog box if efnror in wiiting to Adept controller B 1.

Fig 5-14 lcon and Block diagram of a subprogram that writes to Adept
Controller | in Readin State Machine program

Read

Board P Icon
outintol

[This VI 1eads the date and time board gets in & oul, board stalus and serial number from Adept contioller H1 |

N
Enable Enor Dialo
Cve)| Jooa EREAD board info sﬂl.readol‘f

=
7 0 = el — la?gs
il i[_;u <t datetimein |+ ; Slalion]_readal_vanables read
sl date lime.out |+ - ! %% A [awel |
: 33_00Eh [:(7h: B AR it S5 LA |

iPaost] brd stalusfaill |+

% st] brd status.pass|v

Fastl work ser -
R ———

Reads date time m, date time out, boards status fai or pass and

board serial number.] (
Popup erntor dialog box if enar in wiiting to Adept contecller B1. - Comnents

Fig 5-15. Icon and Block diagram of a subprogram that reads from the
Adept Controller 1 in Readot State Machine program

Startup dela

PO 110.2

3000

[st1.ack readot |*

:

e e e e e R L L L B L e R A e e 3 e B B B e L BT e S

Reads stl fix.local.

§ §lf stihclocal ==1then Goto case "WAIT stl fixlocal == 1" else Go to case "WAIT st1.need.readot==1" E
Y sPopup error dialog box if error in reading st1.fix.Jocal. =

[+WAIT 811 fix local == T}———

§CHECK st fixlocal == 1§~

J|[Station] Readot Stale Maching]

[Wiite Board Info to Databasepo orrermeeetgaasy

Enable Error Dialo

[+GEND i1 ack readot ==

Update Board Loc vi gets the board serial number from Adept |
controller #1 and update the database using board serial
number as a saarch kay. It wiites date time in, date time out of
the board. board status and boaid location to database.

Go to state "SEND stl.ack.readot == 1" =

AIT Iterations

Update

Board [:_l—jj

Loc.1

Fig 5-16 Station 1 Readot State Machine Icon & Block Diagram

£8

Update
Bf,;d —» [con

Loe 1
pdate
ks
SET BoardLocation = 'l110', [Starc Time §110] = #%s§, [Status #110] = 'sd', [Stop Time HL10] = §isp
ERE (BSN = ‘'as');

(]

o s
o)
s

=

= o
7
W]
a8
L]
3
| b
“wy

==
b

- — H
|@ 'Si;nui_ale."ﬂealt rror in (no error) I ;
‘.. 5 ,..... 0 ,._-...EE @ ;
B ﬁeal FEd E o] E
i [Read = ™ i Dol ingla Ji s SR s Ty
E 801“.1' e e B T e e, ’:\ A AANAN A u;u. i
oot s AR [[stetiss aphfucuced
13-4
e
3 ;
H
i
i
If bid status.fail == 1
Write zero to Status # 110
else if brd.status.pass == 1
Wiite one to status # 110 —» Comments

else if brd.status fad == 0 & brd stalus pass == 0
Say "'Stalus is undefined”
Wiite nine to status # 110

!T his VI updates the database with date time in_ date bma out of the board, board status and board location using board senal number as a seaich key]

Fig 5-17 Icon and block diagram of a subprogram that updates the
database in program Readot State Machine

8

Startup dela

‘S” —» lcon
Purge

Reads st tix.local o
N ilf sttfixlocal == 1 then Goto case "WAIT st fixlocal == 1" else Goto case “WAIT stl.purge == 1" ——
~ EPopup error dialog box if error in reading st1 fix local b

. [WAT_stl fixlocal ==

§CHECK st filocal == 1}~ e r—

[*WAIT st1 purge ==

Jstl ack. purge n e

| Write

+SEND stl.ack puige ==
|

e s £ A e

wee,

[TE || - 7051}

i Go to state "SEN

g

D stl.ack.purga == 1"

Purge Board Loc vi gets the board senal number from Adept i
controller #1 and update the database using board serial

number as a search key. It wites purge date ime board status,
and board location to database.

AlT Iterations

132

7/

N

Y

Fig 5-18° Station | Purge State Machine |

Purge
Board
Loc.

con & Block Diagram

Comments

Next Case

NN

c8

Purge
Bor:lird —p [con

Loc

pdate

is

SET BoardLocation = 'l1110', (Start Time $110] = g%sf, [Status fl10] = '0O'
ERE (BSN = 'ss');

[®0a:Soscetine)

[®F e ctcn Parcaaoter]|

Brror In (No error) =

{1 ata 1 bl 2 aene]

-

Ll |

1 a8t
AT ¢

ol AVETNE

T L T T e A A A A A v e

B

FRIHIA T RIH

[z ia)

[This V1 updates lhe database wilh puiged date, purged board status and purged board location using board serial number as a search key j

Fig 5-19 lcon and block diagram of a subprogram that updates the
database in program Purge State Machine

CHAPTER VI

SUMMARY OF OBSERVATIONS

This report was intended to share my experiences with a Hybrid Control project of an
industrial assembly line It involved understanding, designing, coding, and debugging -

almost all phases of the project. A literature review on the Hybrid Control model is
included describing the evolution, architecture, and the utility of Hybrid Control models
An example application utilizing Hybrid Control model is also presented SCADA
systems are also briefly described, along a brief survey on the capabilities of three

representative commercial SCADA packages.

The system analysis section includes design requirements and specifications A layered
software architecture was developed to implement various services and protocols, such as

the Man Machine Interface (MMI) or GUI, communication, network, and database

Only one station, Station |, was selected as an example, though the methodology and
philosophy is discussed for the entire line. For Station 1, samples of protocols and other
engineering documents, including the block diagrams (BridgeVIEW code), are included

Admittedly, it is difficult to understand these documents without knowing the project in
entirety, but they give some idea of the kind of activities involved in an industrial

automation project of this scope.

The designing phase of the project took 60% of the project time while implementation
took only 20%. The rest was in debugging and miscellaneous unaccountable activities

such as coordination between our team and the client’s team of engineers. Apparently, in

86

my opinion at least, the dataflow graphical environment of BridgeVIEW made the
software development much easier, especially at debugging. The code, in reality. looked
very similar to the Eventflow diagrams we had developed. An object was created for each
design block, BridgeVIEW functions and structures were copied (all of which are also
objects), and these objects were wired together. As compared to the text-based languages
I have used, this approach of connecting objects together increases the readability and

understandability of the program.

BridgeVIEW also saved a great deal of coding time by using several built-in
functionalities. The historical trending charts were handy in displaying the process
values of the entire assembly line by accessing data from its built-in real-time database
(Citadel). BridgeVIEW engine also handled the I/O functions and communications with
Adept Controllers, just by configuring some variables (Tags) to provide needed
information. BridgeVIEW provided built-in modularity, a prerequisite for this
supervisory program. For example, another station or function can be added just by

inserting and wiring one more object to the program.

The performance of the Windows NT 4.0 platform exceeded our expectations. It
performed flawlessly and kept running the software for the whole line, regardless of

problems in one or more stations.

Of course, there were limitations and tradeoffs. Bridge VIEW'™ can only handle about a
thousand tags per second, beyond which its reliability is not guaranteed. Future

additions, which certainly will occur, will have to work around this limitation.

87

The supervisory software did not have exception handling capabilities. For example,
there were no provisions to react properly in cases of emergency shutdowns or power
failures The product database is currently available to local users only; it should be kept
in a database server to give engineers or managers global access for real-time evaluation

of line’s production performance

38

REFERENCES

[Boyer 93] Stuart A Boyer, SCADA Supervisory control and data acquisition,
Instrument Society of America, Research Triangle Park, NC, 1993

[Deshpande and Varaiya 95] Akash Deshpande and Pravin Varaiya, “Viable Control of
Hybrid Systems”, Hybrid Systems I1, Lecture Notes in Computer Science 999, pp 128-
147, Springer-Verlag, Berlin Heidelberg, Germany, 1995

[GE Fanuc Automation 95} GE Fanuc Automation, (mmplicity® FFor Windows NT™
Monitoring and Control Software Data Sheets, Part No. GFT-168, Charlottesville, VA,
Oct 1995

[GE Fanuc Automation 96] GE Fanuc Automation, Cimplicity® Monitoring and
Control Products MMI & MES/SCADA. Part No. GFW-0039, Charlottesville, VA, May
1996

[Godbole, Lygeros and Sastry 95] Datta N Godbole, John Lygeros and Shankar Sastry,
“Hierarchical Hybrid Control- A case study”, Hybrid Systems 1I. Lecture Notes in
Computer Science 999, pp. 166-190, Springer-Verlag, Berlin Heidelberg, Germany,
1995

[(La Fauci 97] Joseph La Fauci, “Users’ demands narrow PLC-DCS gap”, /nlech, pp
36- 40, Feb 1997

[Lygeros 98] John Lygeros, Hybrid System control,
http://robotics.eecs berkeley edu/~lygeros/Research/hybrid html, (Jan 1998).

[Mahmood 96] Syed M Mahmood, General-Purpose Automation Programming Using
A Graphical Language, Masters Thesis, Oklahoma State University, Stillwater,
Oklahoma, May 1996

[National Instruments Corp 96] National Instruments Corporation, BridgeVi[zW™
{/ser Manual, Part No. 321294A-01, Austin, TX, Oct 1996

[National Instruments Corp 97a] National I[nstruments Corporation, “Historical
Trending”, BridgeVIEW™ The Graphical Programming Approach to PC Automation,
Part No 350313A-01, Austin, TX, Feb 1997

[National Instruments Corp 97b] National Instruments Corporation, BridgeViEW'™

and LabVIEW® SQL Toolkit for G Reference Manual, Part No. 321525A-01, Austin, TX,
Feb 1997,

89

[National Instruments Corp 97c¢] National Instruments Corporation, “BrnidgeVIEW
Architecture”, The Graphical Programming Approach to Industrial Automation,
Technical Seminar Series, Part No. 350331A-01, pp 9, Austin, TX, Mar 1997

[National Instruments Corp 97d] National Instruments Corporation, “OLE for Process
Control”, Industrial Solutions Using Advanced PC Technologies, Technical Seminar

Series, Part No 350368A-01, pp 12-15, Austin, TX, Aug 1997.

[Pori 96] Anuj Pori, What are Hybrid Systems?,
http://www-path eecs berkeley edu/~anuj/what-are-hybrid/what . html. (Sep 1996)

[Robinson and Salkas 95] John J. Robinson and John P Salkas, “DCS vs. PLC Why
not a hybrid?”, InTech, pp 40-43, Jul 1995

[Tanenbaum 96] Andrew S Tanenbaum, Computer Networks. Prentice Hall, Upper
Saddle River, NJ, 1996.

[Warnock 88] lan G Warnock, Programmable Controllers Operation and Apphcation,
University Press, Cambridge, UK. 1988

[Wonderware 94] Wonderware Corporation, NetDDE Product Data Sheet, Part No 15-
306, Irvine, CA, July 1994,

[Wonderware 95] Wonderware Corporation, /nTouch for Process Automation, Part
No 15-309, Irvine, CA, Oct 1995

[Wonderware 97] Wonderware Corporation, Visualization InTouch™ 7.0, Part No 15-
7000, Irvine, CA, Nov 1994

20

VITA
Syed M. M. Manzoor
Candidate for the Degree ol
Master of Science
Thesis: BRIDGEVIEW™ FOR HYBRID CONTROL: AN APPLIED CASE STUDY
OF AUTOMATING AN INDUSTRIAL ASSEMBLY LINE
Major Field: Computer Science

Biographical:

Personal Data: Born in Karachi, Pakistan, May 15, 1970, son of Syed M. Usman
and Anis Fatima.

Education: Received Bachelor of Engineering degree with major in Electronic
Engineering from NED University at Karachi, Pakistan in 1992,
Completed the requirements for the Master of Science degree with a major
in Computer Science at Oklahoma State University in July 1998.

Experience: Worked as Instrumentation Engineer in Gatron (1992-1994), a Ryan
manufacturing and texturizing plant; Computer Science intern at BDM-
Oklahoma Inc. (May, 1996- Aug, 1996); Computer Science intern at VI
Engineering, North Carolina (Currently working since Jan 1, 1997).

Professional Membership: Engineering Council of Pukistan.

