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Chapter |

INTRODUCTION

Artificial neural networks are computational models of the human brain. In
contrast with conventional single-processor computers, the brain has a multiprocessor
architecture that is highly interconnected. This architecture can be described as parallel
distributed processing. Paralle] distributed processing has many advantages over single-
processor models for many difficult computer science problems. It allows problems that
were once very difficult to solve on a computer to be attacked with relative ease.

Neural networks can be trained to develop operational capabilities to respond to
an information environment. Supervised learning and unsupervised learning are the two
main learning regimes used in neural network training.

A supervised learning algorithm adjusts the strengths or weights of the inter-
neuron connections according to the difference between the desired and actual network
outputs corresponding to a given input. Thus, supervised learning requires a teacher or
supervisor to provide desired or target output signals. Examples of supervised learning
algorithms include the delta rule [1], the generalized delta rule or backpropagation

algorithm [2] and the LVQ algorithm [3].



Unsupervised learning algorithms do not require the desired outputs to be known.
During training, only input patterns are presented to the neural network that automatically
adapt the weights of its connections to cluster the input patterns into groups with similar
features. Examples of unsupervised learning algorithms include the Kohonen [3] and
Carpenter-Grossberg Adaptive Resonance Theory (ART) [4] competitive learning
algorithms.

Neural Networks have been used in many fields including economics,
transportation, defense, electronics, manufacturing, medicine, robotics, speech and
telecommunications [1].

The Multi-layer Perceptron (MLP) will be discussed in this research. MLPs are
perhaps the best-known type of feedforward networks. One of the interesting properties
of a feedforward neural network is its capability of learning, i.e., a feedforward neural
network can adjust its behavior using information from the environment. When a
feedforward neural network is used to solve a problem, it is trained by a set of input-
output sample data. Based on this data set, the network, when properly trained, will not
only try to reproduce the sample set correctly, but also to generalize from the training
examples to the entire problem domain.

A learning algorithm is applied a set of training data, then it is applied to make
predictions on new data points. The goal is to maximize its predictive accuracy on the
new data points. If it is trained too hard to find the very best fit to the training data, there
is a risk that the data noise will be fitted by memorizing various peculiarities of the
training data rather than finding a general predictive rule. For continuous domains, or

large discrete ones, it is impossible to provide samples of every possible input. For a



large network, if the system simply memorizes the training patterns, it may do quite well
during the training process but it may give spurious and misleading outputs if the input is
slightly different from the sample inputs. This phenomenon is called overfitting.
Overfitting is thought to happen when the network has more degrees of freedom than the
number of the training samples. Obviously, a network can obtain a good generalization
only when the number of parameters is less than the number of data points in the training
set. Unfortunately, it is difficult to find the smallest neural network size that can learn the
training data best.

Many techniques for reducing overfitting have been developed. The penalty-term
method is one of the most popular methods. The basic approach used in a penalty-term
method is adding penalty terms to the usual error function in order to constrain the search
and cause weights to decay differentially. By modifying the cost function, the
backpropagation will drive unnecessary weights close to zero and, in effect, remove them
during training. Even if the weights are not actually removed, the network acts like a
smaller system.

This thesis focuses on the possibilities of reducing the overfitting by using the
penalty-term method in artificial neural networks. Many penalty terms have been
developed to reduce overfitting. Some of them are complicated; some of them include a
user-dependent constant factor. Each penalty term has different advantages and
disadvantages. The question remains of whether there is a penalty term or a combination
of penalty terms that can produce superior results and, if there is, what the penalty term
could be. This research will compare and summarize different penalty terms through

their performance. An improved penalty term method will be proposed in this research.



It is expected that the improved penalty method will improve the generalization
performance of neural networks significantly. The paper is organized as follows:

In Chapter I, a general introduction to neural networks and the problems of
interest is given.

In Chapter II, a review of different algorithms for reducing overfiting, especially
the penalty term methods, will be conducted.

Chapter IIT will explain the architecture of the neural network that will be
discussed in this research, and the application of optimization theory in the algorithm. A
new penalty term method will be developed to reduce overfitting in this chapter.

In Chapter IV, an overview of methods that will be tested is given. The regular
learning algorithm without a penalty term, the penalty method with different penalty
terms, and the improved penalty method will be tested. All the methods and different
penalty terms tested will be compared with each other through their generalization
performance in the research.

Finally, the test results will be placed in Appendix A and the source program that
is used in the implementation of the penalty term method and the improved penalty term

method will be placed in Appendix B.



Chapter 11

METHODS FOR REDUCING OVERFITTING

Overfitting and Generalization in Artificial Neural Networks

Mathematically, the objective of learning in the neural network is to infer a
function from a given sample data set. Learning algorithms are designed essentially to
search for a function that best fits the given data in a space of functions. After learning,
the neural network is applied on the new data set. If it is trained too hard to find the best
fit to the training data, there is a risk that we will fit the noise in to the data by
memorizing various peculiarities of the training data rather than finding a general
predictive rule [5]. When a network is trained, the weights are modified in order to
decrease errors on the training data set. If the network is tested on a new set of data, the
errors on the test data set tend to decrease in step with the training error as the network
tries to generalize from the training data set to the underlined function. However if the
training data is incomplete, it may contain spurious and misleading regularities due to
sampling [6]. Figure 2-1 illustrates this situation schematically.

It is generally agreed that overfitting is closely related to the architecture of the
network, i.e., the size of the network. If training starts with too small a network for the

problem, good results cannot be obtained. If the network is too large, it may be



vulnerable to overfitting {20]. B. Baum and David Haussler [19] analyzed theoretically
the lower and upper bounds on the size of the sample vs. the network size needed to
achieve a valid generalization. Subutai Ahmad and Gerald Tesauro [21] analyzed how
many training patterns and training cycles are needed for a problem of a given size and
difficulty, how to represent the input. and how to choose training examples.

In general. overfitting is related to the degree of freedom of neural networks. The
degree of freedom of neural networks includes not only the number of weights but also
the potential non-linearity of the network, the architecture and the amount of time and the

number of data used during training [22].

Error
Testing Error
¥ Training Error
0 Traning Time

Figure 2 1 The Relationship Between Training Error and Testing Error



Methods of Reducing Overfitting

There are many methods to reduce overfitting and improve generalization [6]
such as pruning methods, stopped training methods and penalty term methods. The
pruning method is to train a network that is larger than necessary and then remove parts
that are not needed. The large initial size allows the network to learn reasonably quickly
with less sensitivity to initial conditions, while the reduced complexity of the trimmed
system favors improved generalization. The stopped training method is to estimate the
generalization ability during training and stop when it begins to decrease. The simplest
method is to divide the data into a training set and a validation set. The training set is
used to modify the weights, the validation set is used to estimate the generalization
ability, and training is stopped when the error on the validation set begins to rise. The
penalty term method is another way to reduce overfitting. The basic approach involves
adding penalty terms to the usual error function in order to constrain the search and cause
weights to differentially decay.

Actually, stopped training and penalty term methods are two widely used
categories. The detailed penalty machines and penalty terms are presented in the

following section.

Penalty Mechanism and Algorithm

Penalty Function Methods: Usually, penalty function methods are used in
determining a solution of a constrained nonlinear programming problem [10]. Currently,
there is not a universally accepted method of dealing with such a problem. A penalty

function method is to replace a constrained problem with one that is unconstrained. The



latter problem is then solved using an iterative technique. A general penalty function
method, a barrier penalty function method and a quadratic penalty function method are
introduced in the following sections.

In penalty function methods, the constrained problem is converted into an
unconstrained problem by adding a penalty function, p(x), to the objective function f{x).
The resulting unconstrained objective function has the form f{x) +2 p(x), where g > 0.
The function p(x) imposes a penalty of f p(x) whenever x does not satisfy the
constraints of the original problem. Actually, a sequence { f{x) +£ p(x) } of functions are
minimized (or maximized). The solution, {xy}, of the sequence will usually approach the
solution of the original problem. Normally, each xx is not a feasible solution of the
original problem. The process terminates whenever the required accuracy has been
obtained, or whenever some solution, x , is generated that is a feasible solution of the
original problem. In a penalty function method, an expression involving the constraints
is added to the objective function. The expression is selected so that the value of the
updated objective function is excessively high (or low) at a point x where the problem is
infeasible.

In general, one penalty function for the problem (2-1) is function (2-2)

Minimize f{(x)
subject to (2-1)
gix) = b; for i=1,..../

gi(x) <=b; for i=H1,...m



p(x)= 216~ 8,(x) + Y (max{0,g,(x) - 5}) (2-2)

i=l+]

where k is a natural number. Notice that p(x) > 0. In fact p(x) = 0 if and only if x is
feasible.

Problem (2-1) could be converted into the form

Minimize f(x)
subject to (2-3)

hi(x)=0for i=1,....m

by adding the square of an unrestricted variable to the left side of each inequality
constraint, and then moving each b; to the left side of each constraint. A typical penalty

function for (2-2) is

P =X hi(x)| (2-4)

where k is a (usually even) natural number. Again notice that p(x) >=0. The remainder
of this section deals with problem (2-3).

Barrier function methods: A Barrier function method is an improved penalty
function method. Again a sequence of functions {f{x) +(1/8 )b(x)} is minimized (or
maximized) and the sequence of solutions {xx} normally tends to a solution of the

original problem. The difference in barrier function is that the solutions, xi, are all



feasible solutions of the original problem. The function A(x) is called a barrier function
because it imposes a penalty near the boundary of the set of feasible solutions of the
original problem.

For the problem:

Minimize f{(x) subject to g;(x)<0 for i=1,...,m (2-5)

Notice that problem (2-5) does not contain any equality constraints. Barrier function
methods are similar to penalty function methods in that a barrier function is added to the
objective function, and the resulting function is minimized. The difference is that the
solutions are interior points of F (rather than points exterior to F). The purpose of the
barrier function is to prevent the solutions from leaving the interior of F.

Some common barrier functions for Problem (2-5) are

(2-6)

1
b(X) - _'g gi(x)

and

b(x) = Zln/g () (2-7)

Notice that b(x) is, in either case, continuous throughout the interior of F. Moreover,
b(x)-> o as x approaches the boundary of F via the interior of F. Rather than solve (2-

5), we intend to solve the following problem:

1

7 b(x) subject to each gj(x) <0 (2-8)

Minimize f(x)+

10



where p>0.

The Quadratic penalty function method: Both penalty function and barrier
function methods can possess the undesirable property of slow convergence. In [25], the
penalty function method is modified using Lagrange multipliers to obtain a more efficient
method. The technique is called the method of multipliers and has emerged as an
important tool for solving constrained nonlinear programming problems. The quadratic
penalty function method is one of these methods. It is briefly introduced as following.

For the problem

Minimize f{x) subjectto hi{x)=0 I=1,...m (2-9)

where f, hy,....h, are continuously differentiable, assume that the set, F, of feasible
solutions of (2-9) is nonempty. The continuity of the h; ensures that F is closed. As
mentioned in [10], the Weierstrass theorem guarantees the existence of a solution, x ', of
problem (2-9).

In [10], a method for determining x* was suggested, Namely, compute vectors x_
and A" that satisfy

e é’_h
ox

0= P iy N AT )
ox
and (2-10)

s w %
0=—(x,4)=h(x)
ax

11



where L(x, A) = fix)+A"h(x) and h(x) = [hi(x)...hs(x)]". Unfortunately, the system of
equations (2-10) is difficult to solve.
Consider a solution x” of (2-9). Let A" be the corresponding vector of Lagrange

multipliers for which equations (2-10) hold. Notice that whenever xeF, then

Lix', M) =fix) <fix) = fix) + A Th(x) = L(x, A
Thus, min {L(x, A):xe F}=L(x, A" and (2-11)

min {f(x) :x € F }=min{L(x, A" ) : x e F }

This suggests that rather than solve (2-9), we could solve the problem on the right side of

(2-11), possibly using a penalty function method. That is
Minimize f{x) + A" h(x) +§Z(h,-(x))2 (2-12)
=1

where B > 0. Of course the problem is that A" is not known at the onset of the problem.
The next result suggests an alternate strategy consisting of solving a sequence of

problems of the form

Minimize f{x) + Ax"h(x) +§i(h,(x))2 (2-13)

i=1

where Ay € Ruxi-



The above discussions concern the penalty function methods and the penalty
mechanism. They have some similarity with the penalty term method used in neural
network training and can be used to evaluate the penalty terms and penalty mechanism
used in neural network training.

To evaluate the different penalty terms developed in neural network training, a

summary of different penalty terms is presented in the following.

Penalty Term Method of Reducing Overfitting
A. Weigend et al Penalty Term

Weigend et al. [11]-[13] suggested the following cost function:

Z(t& 0,) +AZ Wi/ W (2-14)

1+w, W

where C is the set of all connections and T is the set of training patterns. The second
term is the penalty term that represents the complexity of the network as a function of the
weight magnitudes relative to the constant w, if | w]| >> w,, then the cost of a weight will
approaches A. If |w,] << w, the cost is close to zero. The value of A depends on the
problem. If it is too small, it won’t have any significant effect; if it is too large, all the

weights will be driven to zero.

B. Chauvin Penalty Term

In [14], Chauvin minimize the cost function

13



C= 1, 33 (dio0p) + 1, > Te(ol) @-15)

where e is a positive monotonic function. The sums are over the set of output units O, the
set of patterns P, and the set of hidden units H. The first term is the normal back-
propagation error term, the second term measures the average “energy” expended by the
hidden units. The parameters z, and zz, balance the two terms. The “energy” expended
by a unit--how much its activity varies over the training patterns--is an indication of its
importance. If the unit changes a lot, it probably encodes significant information; if it
does not change much, it probably does not carry much information.

A magnitude-of-weights term may also be added to the cost function, giving
i Q 2 P H 2 W 2
C= luer - Z(dl.l_olp) +ﬂmzze(0ﬂ)+#wzwﬁ (2-16)
] i J ot I

Since the derivative of the third term with respect to wy is 2 z,wy, this effectively
introduces a weight-decay term into the back-propagation equations. Weights that are

not essential to the solution decay to zero and can be removed.

C. JiPenalty Term

Ji et al. [18] modify the error function to minimize the number of hidden nodes
and the magnitudes of the weights. A single-hidden-layer network with one input node
and one linear output node is investigated in their research. Beginning with a network

having more hidden units than necessary, the output is computed as



g(x,w,8)= jZlvif(uix—ai) (2-17)

where Oy is the threshold, f is the sigmoid function 1/ (1+e™), and u and v are the input
and output weights of ith hidden unit respectively.
The significance of a hidden unit is computed based on its input and output

weights

s;=o{u)o(v) (2-18)

where o(w) = w/(1+w?).
The error is defined as the sum of €,, the normal sum of squared errors, and €,

term measuring node significance.

e(w, 6') =n&0(w.0)+ e, (w)

. 2-19
=??%[g(x";w,é’)—y"]"ﬂ“lizl&sj o

i=1 j=1

where 7 indexes the training patterns and x™ and y" are the input and desired output for
pattern 7, and p and A are learning rate parameters. The £(w) term makes the algorithm
favor solutions with fewer significant hidden units.

It is suggested the second term be added only after the network has learned the
training set sufficiently well because conflict between the two error terms may cause

local minim.

15



D. Bishop Penalty Term
Chris M. Bishop [16] proposed another penalty term. For error function (2-20), the
penalty term is given by (2-21).

E=E°+AE" (2-20)

) pL N[Oy i
E =21PZZZ[ "”J (2:21)

Where y, and x; denote the components of y and x, respectively, and the parameter A
controls the degree of smoothness of the network mapping. Bishop indicated:
“Unfortunately, the optimum value for A is problem dependent. It may be found by
seeking the minimum error with respect to a cross-validation data set, or by a variety of

techniques based on the statistical properties of the training data.” [16].

E. Simple Penalty Terms

Ishikawa [15] proposed another simple cost function

C=Y (00 +AYIw, | (2-22)

kel 1

If wij > 0, the weight is decremented by A, otherwise, if w;; <0, then it is incremented by
A.

Russel Reed [6] described the following simple cost function:

= Z(;, —o) + AZ W, 2 (2-23)

kel iJ



Russel Reed evaluated the simple penalty term: “One of the characters of the Aw;;
penalty term is that it tends to favor vector with many small components over ones with a
single large component, even when this is an effective choice.”

A constant A is used in most of the penalty terms. There is no criteria to select a
A. Weigend et al. [11] indicated that “the value of A requires some tuning and depends
on the problem. Ifit is to small, it won’t have any significant effect; if it is too large, all
the weights will be driven to zero.” Bishop [19] indicated that the optimum value for A
will be problem dependent, and may be found by seeking the minimum error with respect
to a cross-validation data set, or by a variety of techniques based on the statistical
properties of the training data. Ji et al. [18] suggested that the A can be made a function
of €, such as A = },¢ *&. They suggested the second penalty term be added only after
the network has learned the training set sufficiently well, because of the conflict between
the two error terms may cause local minimal. Ping Jiang [24] said, “the optimum point of
A is network architecture dependent. We need to choose A to close to optimum point to

improve the generalization performance.”



Chapter 111
ARTIFICIAL NEURAL NETWORK ARCHTECTURE AND LEARNING

ALGORITHMS

Architectures of Feedforward Artificial Neural Networks

Some artificial neural networks were introduced in Chapter I. This thesis focuses
on the most widely used multilayer feedforward networks. The architecture of a
multilayer feedforward network is shown as Figure 3-1. This type of network arranges
neurons in layers. All neurons in a layer are connected to all neurons in the adjacent
layers through unidirectional links. These links are represented by synaptic weights. The
input layer of the network is treated as connection nodes. All the layers except the output
layer of the network are hidden layers. So the number of hidden layers is the number of
layers in a network minus one.

The notations used are shown in Figure 3-1. All neurons in a layer are
consecutively indexed starting from 1, in a top-down fashion. The layers are indexed in a
left-to-right order and are identified by square-bracketed superscripts. All inputs to a
neuron in layer k are denoted as a*"' !, where I = 0, 1, 2,...Sy.s (S.1 is the number of
neurons in the (K-1)th layer). In the case of k-1 = 0, a;!” are the inputs of the network.

For each layer, we assumed an extra bias node that has a constant output value of -1, i.e.
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Figure 3-1 A Three Layer Feedforward Network
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aom = -1. Notice that for each k > 2, a*" is also the output of neuron I in (k-1)th layer.
The outputs in the kth layer of the network can be written in vector form as a/*. A
weight is represented as w;*), where k is the layer index and “j,i” means that the weight
is the connection from the ith neuron in layer k-1 to the jth neuron in layer k. In vector
form, weights can be represented by witl = (Wji[kl)T. The nj“‘] represents the weighted sum
of a neuron j in layer k. The weighted sum of the inputs of a neuron j in layer k can be

expressed as

o= Swik-al*" G-

The output of the neuron j in layer k can be expressed as
g™ = MnM)  j=12..n (3-2)

Where £ is the activation function of the neuron. We will discuss the activation

function in the following section. In vector form, the formulas can be written as
nlk] - (wlk} )T al"(-ll (3-3)

¥l = X1 (g¥)) (3-4)

where %! = (%" is a vector of the activation function.
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Activation Function

The original activation function is a binary function [18]. This limits the
application of perceptron neural networks to classification problems only. In order to
solve a general type of mapping application problem, we need to use nonlinear
continuous activation functions. There are many nonlinear activation functions that can
be used in multilayer networks as long as the functions are differentiable. The most
commonly used functions are the sigmoid function and the hyperbolic function which are

expressed as

Si id I f(x)= -5

igmoid function f(x) 7 e (3-5)

Hyperbolic function f(x) = —e” (3-6)
e +e

The graphs of signoid and hyperbolic functions are shown in Figure 3-2 and 3-3. Since
we can always scale down the input and output values to the interval (0,1) or (-1,1), there
is no significant difference between the two functions. The sigmoid function is used in

this paper.

Weights in the Neural Network
The weights in a neural network are initially chosen to be small random numbers.
An activation function is active only in a small domain interval as shown in Figure3-2. If

the initial weights are too large, the activation functions may saturate at the beginning of
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the training and the network is prone to get stuck in a local minimum near the starting
point [19]. In this paper, the initial weights of all neural networks are chosen as random

-0.5
b iforml distributed betw:
numbers uniformly istribute een e de it i and

0.5
fan— in of that node

[20], where the fan-in of that node is the number of inputs

including bias input to that node.

Optimization Algorithm

From an optimization point of view, training a network is equivalent to
minimizing a global error function, which is a multivariate function that depends on the
weights in the network. In this paper we use the Conjugate Gradient Optimization
Method. The method is introduced simply as shown below.

The Conjugate Gradient Method searches the minimum in the conjugate direction
to guarantee the quadratic termination. Suppose that we want to minimize the following

function:

F(x)=1/2x"Ax+d"x + ¢ (3-7)

From the Taylor series we know that the first order necessary condition for x” is equal to

Zero, 1.e.

VE(9),_. =0 (3-8)
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Any point that satisfies the above equation is called a stationary point. Even though the
above equation is satisfied, there is no guarantee that the local minimum is reached. The
second order necessary condition for a strong minimum is that the Hessian matrix to be
semidifinite. Sufficient conditions for a strong minimum to exist require the Hessian
matrix to be positive definitely.

The conjugate gradient method is to search the minimum in the conjugate
direction to guarantee the quadratic termination. The conjugate direction is defined as
follows:

A set of vectors {Py} is mutually conjugate with respect to a positive definite

Hessian Matrix A if and only if
P"AP; =0 k#j (3-9)
Many vectors that satisfies (3-9). One set consists of the eigenvalues of A.

It can be shown [21] that if we make a sequence of exact linear searches along
any set of conjugate directions {pi1, p2.....Pa}, then the exact minimum of any quadratic
function with n parameters, will be reached in, at most, m searches. Recall that for a
quadratic function, the gradient is

VF(x) = Ax +d (3-10)

If we calculate the change in the gradient at iteration k+1, we have
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&g(k} i g(kﬂj . gﬂ‘) =( Ax(HD 4 d y=¢ Ax® 4 d)= AAX(” (3-11)

Based on the Steepest Descent Method [21], we have

Ax® = (x*D - &) = g®p® (3-12)

where a® is chosen to minimize F(x) in the direction p®.
We can now restate the conjugate conditions by substituting (3-10) and (3-11) to

(3-9).

a[k)p(K)TAp[J] o AX(K)TAP(J] == ﬁg(K)Tp[”: 0 (3_13)

Usually we use steepest descent method to begin the search, i.e.
p = gt (3-14)

Then at each iteration we need to construct a vector p* which is orthogonal to {Ag‘"’,

Ag?, ...,Ag®}. Tt can be simplified [21] by for following form
p(k} - _g(lt) x ﬁ(k)pﬂi-l) (3-15)

The B™ can be chosen by several different methods, which will produce
equivalent results for quadratic functions. One of the most common choice [21] is
k-1)" w0

w_ AB g :
p= Ag(k-l)lpm =19
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The algorithm is as follows:
Algorithm 3-1. The algorithm for the conjugate gradient method is as follows:
1. Setk =1, guess x'";
2. Select the first search direction according to the steepest descent method, i.e.

ph = g

[

. Calculate g®
g¥=VF (D=

4. Calculate p* according to (3-16);

Ln

. Calculate p™ according to (3-15);

6. Calculate Ax® according to (3-12), i.e.

AX® = (x K _ 50y = (WK

7. Calculate x**"

D = () 4 A

as the following

[= 2]

. If xX**! satisfies the convergence criteria, stop. Otherwise,

=]

. Go to step 3.

Forward Computations

As we know from Chapter I, the neural network learning process includes two
phases: forward computation and backward computation. During forward computation, a
set of input data is given to the neurons in the first layer (input layer). These neurons are
activated and pass the results to neurons to next layer. The process continues until the
output layer is reached and the outputs of the network have been calculated. The process

can be summarized as follows:
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Algorithm 3-2. Forward algorithm

1. Given input vector x, set n’ = x;

2. The weight matrix and activation function f*/, k=1,2,... K are known, where k
is the number of layers in the network;

3. Compute n™ = (w)Ta%! and a®= ™) for k=12,.. K;

4. a™ is the output of the network;

Backpropagation Computation

We have discussed the forward computation in feedforward artificial neural
networks in the last section. We will now formulate the backprogagation computation for
feedforward artificial networks. We know that a feedforward artificial neural network
changes its behavior (weights) dynamically during the training session. The error made
by the network during training is measured by a predefined function called the error
function (performance) [22], cost function, or energy function [23]. The error function is
used to calculate errors and the distribution of errors among all neurons of a network.
Then the connection weights are changed to reduce the error of the network. This
dynamic adaptation of weights ends when the error is within a tolerance limit at an
optimum point with respect to some optimization criterion. Considering a neural network

of K layers, the general performance function can be shown as:

E(w) =%§((f*“‘(p,w>— t) (£%p, w)-t)+ zpij] (3-17)

The first term is the performance function (error function). The second term is the

penalty term. It could be the Weigend penalty term [11], Charvin penalty term [14], Ji
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penalty term [18] or some other form. Q is the number of input/output samples. p; is the
ith input data, t; is the desired ith output, and wp are constants that are adjusted during
training. Because the differentiation is additive, it is convenient to consider one
input/output sample I. In practice, this is used for on-line training {22]. Summation over

the entire input/output samples constitutes off-line training [22]. So we have

E, =%[(f’*'(p,,w)—:,)'(f“‘(p,,w)—:,)+ ap) (3-18)

To calculate the gradient element g, we take the derivative of E; with respect to

wji["' and using the chain rule, we have

& & onf
g[k] J[k] +Pji (3-19)

Ji

i oWl only) ow
where pji is an element of the penalty term and is defined as

(kly,,2
P,'i = AALZ (3-20)
((wiky + w2)

or

p; = Aw;’ (3-20)°

- G
For Bishop’s penalty term P = 12‘, f} 0 J:” ; 6_}’2,, can be expressed as
I=1n=1 ax, ax;
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8"y, _ Wi+ ) - y(x))-0x,) - ¥z~ b))

Bx; h
h -h)-2
— y(x.‘ + )+ y(;; ) y(.x}') (3_20)11
The pjj can be shown as :
_opP
p, dw,
N L +h)+ —h)-2
= %E Y(x;+ h) J’(:; ) —2y(x:) (3-20)"
« 1[G +h) P y(x;—h) Hza}’(x;)
From (3-1), we have
5’1!” =
—— =g 3-21
FeT a (3-21)
Here we define s; as:
JE, .
= i k] _[k-1]
s =§W%]-§j -a; '+ p, (3-22)

where s; is the sensitivity of E; to change in the jth element of the net input at layer [k].

Then (3-19) becomes
K] E; k-1] _[k-1]
AL (-23)
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Using the Jacobian matrix [24], we can derive the recurrence relationship for the

sensitivities.

[, [k+ kil k+l
oni™ oy oni' ™"
k K k
on®  opM on
k+1 k+1 k+
5n[2+] I5,-'.1_1[2-1-] (?nlz 1]
[k] [k] k]
5nlk+i] ) an, an; 6"1’13“
o™ (3-24)
[k+1) [k+1] (k+1]
51131“ ansLu T ank
k K k
ol ol o

the element ij in (3-24) can be shown as:

%iw"‘*”a'”}
k+l I 1 [k]
‘-'?nii = = k+1198j

= k Wj k]
an,” oni” 'oon; (3-25)

M = wlu_kﬂlfikl(n!jtl]

o [k+1]
ij é,n!ik]

where

Ay

k
énﬂ J

il | (3-26)

So the Jacobian matrix can be written as
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an[kﬂ}

= W) 6-27)
where
rfltl[nllkl] 0 o 0 ]
0 f{k|( nlzkl 0 0
- 0 ;
Flkl(nlkl) _ ‘ | ‘ (3-28)
|0 0 5 b o f{"'(nzlj

Now the sensitivity recursively in matrix form is seen as:

FE ; é’n[“”] GE . T JE .
[k] i i (k] [k+1) i
= = =Fln Aw e
e [ an™ Jan™ (n)-{ ) &ty

= F(n[k]]'{wlk*rl!),slhll

(3-29)

The sensitivities are propagated backward through the network from the last layer to the

first layer. The starting point can be obtained from the output layer.

a da,
M =Sl —a) (3-30)
Since
[£]
oa, oa, _ f[“(n,.[“) (3-31)

ont’ ~ o1

sj can be expressed as
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4 = (¢, — a,)f)(nl) (3-32)

(3-31) has the following matrix form

L _Fltl{nlkl](t_a) (3-33)

So we can recursively calculate the sensitivities from the last layer to the first

layer. Knowing the sensitivities, we can calculate the gradient according to (3-22).

Algorithms of Penalty Method and Improved Penalty Method

The penalty method and the improved penalty method used in this research are
discussed in the following. The basic approach used in the penalty method involves
adding penalty terms to the usual objective function in order to constrain the search and
cause weights to differentially decay. By using the penalty method, the neural network
generalization error can be reduced [24].
Algorithm 3-3 (penalty method):

Given a set of S = {(p;, t;) | pi is input, t; is desired output of p;} of d training
samples, and given a network of K layers with an input dimension u and an output
dimension of v.

. Initialize all weights w* = (w;1), 1= 1,2,....K as random numbers uniformly

05 ’ 05
fan—in of thatset - fan— in of thatset

distributed between . Set wy.

2. For each sample (x;, t;) € S, repeat the following steps:

Initialize g* = 0.
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2.1 Compute the actual outputs of network according to (3-3) and (3-4)
using the weight w®
2.2 Calculate the gradient g(x;) according to (3-3)
2.3 Sumup g(xy), i.e., g*=g® +g(x)
3. Ifk=1 then set p'") = r'" = gV
4. Compute o using a line search technique [23).
5. Compute w**V = w® + o®p® ysing step 2 to compute g**".
6. Compute p* according to (3-16).
7. Compute p**" =g 4 g p®
8. Ifall the weights are such that the following convergence criterion is satisfied,
then go to 9, otherwise set k=k+1 and go to step 2.

\/i(a(wm“)) < Jf(ﬁ(wm))

i=1 i=1
d

< tol

(k+1)

9. Set w=w""" and stop.

Actually the overfitting problem is not exactly a constrained optimization problem
because the constrained condition is unknown. There is not a universally accepted
method for a constrained nonlinear optimization problem.

Based on the penalty method, an improved penalty method is developed in this
research. The main idea is training the network without adding any penalty term. Once
the performance function value (RMS) begins to increase, a penalty term is added to the
usual error function, and the network training process becomes continuous as same as the

penalty method. If the generalization value (RMS) begins to increase again, then stop the
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training. A performance function value (RMS) is used as a stopping criteria both in the

penalty method and the improved penalty method.

Algorithm 3-4 (Improved penalty method 1):

Given a set of S = {(pi, t;) | pi is input, t; is desired output of p; } of d training
samples, and given a network of K layers with an input dimension u and an output
dimension of v.

1. Initialize all weights w! = (w;1), 1=1,2,...,K as random numbers uniformly

-05 P 05
fan — in of that set an fan — in of thatset

distributed between . Set wp and A.

2. For each sample (x;, t;) € S, repeat the following steps.
Initialize g* = 0.
2.1 Compute the actual outputs of network according to (3-3) and (3-4)
using the weight w®
2.2 Calculate the gradient g(x;) according to (3-3)
2.3 Sumup g(x), i.e., g% =g® + g(x)
3. Ifk=1 then set p’ = r'V = gV
4. Compute o'’ using a line search technique [23].

(k) (k)

5. Compute w**" = w® + a®p® using step 2 to compute g*".

6. Compute B* according to (3-16).
7. Compute p*™= g + p® p®),
8. Before setting the value of A, if all the weights are such that the following

convergence criterion is satisfied, then set A, otherwise set k=k+1 and go to step 2. After
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setting the value of A, if all the weights are such that the following convergence criterion

is satisfied, then go to step 9, otherwise set k = k+1 and go to step 2.

‘jg(E{w(Hn)) _ ‘/g(E(Wm))

d d

< tol

9. Set w=w"*"" and stop.

Based on algorithm 3-4, one more improved penalty method is given as algorithm
3-5. The main difference between algorithm 3-4 and algorithm 3-5 is that a series of A is
given for a penalty term in algorithm 3-5. The objective function is dynamically changed
based on the performance of each different penalty parameter A.

Algorithm 3-5 (Improved penalty method 2):

Given a set of S = {(p;, t)) | pi is input, t; is desired output of p; } of d training
samples, and given a network of K layers with an input dimension u and an output
dimension of v.

1. Initialize all weights w™ = (w;"), 1=1, 2, ..., K as random numbers

05 | 05
fin-mof thatset " fan—in of thatset

uniformly distributed between . Set wy.

2. Select parameter A,
3. For each sample (x;, t;) € S, repeat the following steps:
Initialize g = 0.
3.1  Compute the actual outputs of network according to (3-3) and
(3-4), using the weight w'.
3.2  Calculate the gradient g(x;) according to (3-3)

33 Sumup g(x), ie., g¥=g" +g(x)

35



4, Ifk=1 then set p"’ = r) = g
3. Compute ™ using a line search technique [23].
Calculate w**" = w® + ¢®p®

2 Compute B™ based on equation (3-16).

8. Calculate p**= -g®*) 4+ g® p®).

9. Compute ¥ E(W,*""). For each A; repeat steps 2 to 9 and obtain

SE(Wy, &),

10.  Set TE(W*™) = Minimum{Z E(W»,*™"), £ E(W.®"), TE(W,**D),...}.
Let w* = w; ¥ w, &Y corresponds to the minimum value of the error. Ifall the
weights are such that the following convergence criterion is satisfied, then go to step 11,
otherwise set k = k+1 and go to step 2.

G B

d

11. Set w=w*" and stop.
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CHAPTER IV

METHODS AND IMPLEMENTATION

Neural Network Architecture Design

To compare the effectiveness of different penalty methods, the performance of
three training methods are studied in this research. These methods are the regular
learning algorithm without a penalty term, the penalty method with different penalty
terms, and the improved penalty method proposed in this research. The performance of
each method is calculated using a computer program written in the ANSI Standard
FORTRAN 77 language.

A small network is tested first. Then the hidden nodes will be added to the
network. When the network becomes larger, the generalization error becomes larger and
larger. Usually, the generalization error can be reduced by inducing a penalty term [1].
The improved penalty method proposed in this research has proved to be able to reduce
the generalization error significantly.

Three penalty terms are tested in this research. There are many different types of
penalty terms used in neural networks to reduce overfitting. Some of them are very
complicated. Some of them have a disadvantage in that large weights decay at the same

rate as small weights. Some of them include a few of user-dependent parameters. The
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Wi Wo 2

three penalty terms which will be tested in this research are A4 s AW
(W5 + wd)

and

The performance function value (RMS) is used as the stopping criterion. When to
stop the training process is very important for a given problem. Therefore, an optimal
stopping point is needed to obtain better generalization performance so that the network
has a good generalization performance. This is especially important when a network is
overfitting. In this thesis, the sample data are divided into two sets. One is the training
set and the other is the validation set. When the network is trained, the generalization
performance will be tested at certain numbers of iterations using the validation set.

The weights are initialized with random values which are uniformly distributed
between -0.5 and 0.5 {2]. A curve fitting criterion is used to test all the learning
algorithms. Tow data sets are used. One is the training data and the other one is the
validation data. Both of them contain 49 pairs. The training and validation data sets are
listed in table A-35 and A-36 respectively. For all the methods tested, the same sample
data were used.

In total seven methods are tested. Method A is the regular method and method B
and C are penalty term methods based on Algorithm 3-3 with different penalty terms.
Method D and E are improved penalty term methods based on Algorithm 3-4 with
different penalty terms. Method F is an improved penalty term method based on
Algorithm 3-5. Method G is an simplified Bishop’s penalty term method.

The overview of the methods tested in this paper is shown in Table 4-1.
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Table 4-1 Overview of methods tested

Methods* Penalty Term
A R No
Wt i
B P ;L—-"‘:.E'_z
(O#41) + i)
C P Kw;jz
wilws
D NP A——
(Wit + wh)
E NP Aw;
Wi
F NP2 A——
(Wi + wi)
8y, )
P LN
G p L S&s 2o
2Pp=h'=-ln=l axfp

* R — Regular method without any penalty term.
P — Penalty term method
NP — New penalty term method
NP2 — New penalty term method 2, the objective function will be
changed dynamically.
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Discussion of Test Results

First, a network with two imput nodes, seven hidden nodes, and one output node
(2/7/1) is tested. The network has 29 weights and methods A, B, C, D, and E are tested.
The training and generalization performance of different method is listed in table A-1
through A-9. The training and generalization performance of method A is listed in table
A-1. It takes about 11 epochs of training to get the training RMS value of 0.0707211and
generalization RMS value of 0.0724163. The training and generalization performance of
method B is listed in table A-2 and A-3. It takes 5 epochs of training to get the training
RMS value of 0.0706896 and generalization RMS value of 0.0741628. It is found that
method B makes the generalization performance slightly decrease (-2.35%). The
performance of method C is listed in table A-4 and A-5. It takes 7 epochs to get the
training RMS and generalization RMS value of 0.0725740 and 0.0758244. It makes the
generalization error increased by 4.49% and the training error increased by 25.07%. The
performance of method D is listed in table A-6 and A-7. It takes about 12 epochs to get
the training RMS value of 0.0691364 and generalization RMS value of 0.0698246. It
improved the generalization performance by 3.71% and reduced the training error by
2.3%. Comparing with the penalty method (method B), the improved penalty method
(method D) improved the generalization and training performance by 6.2% and 2.25%
respectively. The performance of method E is listed in table A-8 and A-9. It has the
same training and generalization performance as the method A because the penalty the
term used in this method makes the training error increase.

Next, the network with two input nodes, eight hidden nodes, and an output node

(2/8/1) is tested. Similarly, training and generalization performance of each method of A,
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B, C, D and E are listed in table A-10 through A-17 respectively. The comparison of the
performance of different method is listed in Table 4-3. Method A takes 8 training epochs
to get the training RMS value of 0.0730081 and generalization RMS value of 0.0767580.
The performance of method B is listed in table A-11 and table A-12. It takes 6 training
epochs to get the training RMS value of 0.071706 and generalization RMS value of
0.0751127. It improved the training and generalization performance by 1.81% and
2.19% respectively. The performance of method C is listed in table A-13 and A-14. It
takes 10 epochs to get the training RMS value of 0.0718936 and generalization RMS
0.0744065. It improved the training and generalization 1.5% and 3.06% respectively.
However, the value of A should be selected very carefully. Otherwise, it will increase the
training and generalization error. The performance of method D is listed in table A-15
and A-16. It takes about 15 training epochs to get the training RMS value of 0.0681585
and generalization RMS value of 0.0669311. It improved the training and generalization
performance by 7.11% and 14.68% respectively. Comparing with the penalty term
method, it improved the training and generalization performance by 5.2% and 12.22%.
The performance of method E is listed in table A-17. It takes 15 epochs to get the
training RMS value of 0.0718534 and the generalization RMS value of 0.0737869. It
improved the training and generalization performance by 1.6% and 4.03% respectively.
Thirdly, the network with two input nodes, ten hidden nodes, and an output node
(2/10/1) is tested. Methods A, B, C, D and E are tested. The performance of different
method is listed in table A-18 through A-26. The performance of method A is listed in
table A-18. It takes about 12 epochs to get the training RMS value of 0.0823795 and

generalization RMS value of 0.0865625. In this case, the network is overfitting. Method
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B takes about 13 training epochs to get the training RMS value of 0.0782682 and
generalization RMS value of 0.0865625. It improved the training and generalization
performance by 5.25% and 6.46% respectively. The performance of method C is listed in
table A-21 and A-22. The performance of method D is listed in table A-23 and A-24. It
takes about 17 epochs to get the training and generalization RMS value of 0.0753999 and
0.0763246 respectively. It improved training performance by 9.26% and the
generalization performance by 13.41%. Comparing with the penalty term method, the
improved penalty term method improved the training and generalization performance by
3.8% and 6.53% respectively.

To test the effectiveness of the method F, a series of A (0.008, 0.006, 0.004, 0.002,
0.001, 0.0006, 0.0001, 0.00006, 0.00004, 0.00001) are tested in a network with two input
nodes, seven hidden nodes, and an output node. The performance of training and
generalization of different A is listed in table A-27. The best performance is obtained
when A equals 0.0001. It is helpful to use the improved penalty term method 2 to get the
best A from a set of A values. Once the A is selected, the rest of the training process of the
improved penalty term method 2 (method F) is as same as the penalty term method. So
the weakness of the penalty term method still exists in the improved penalty term method
2.

Finally, the performance of Bishop’s penalty term method G is tested. The
performances of different networks are listed in table A-28 through table A-34. For the
net work with two input nodes, seven hidden nodes, and an output node (2/7/1), Bishop’s
penalty term method takes 10 training epochs to get the training RMS value of 0.0707547

and generalization RMS value of 0.0724433. The generalization performance is very
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close to the generalization performance of method A (Table 4-2). For the network
(2/8/1), it takes 13 training epochs to get the training RMS value of 0.0788628 and
generalization RMS value of 0.0748189. It improved the generalization performance by
2.5%. For the network with two input nodes, ten hidden nodes, and an output nodes
(2/10/1), it takes 8 training epochs to get the training RMS value of 0.0823851 and
generalization RMS value of 0.0855824. It improved the generalization performance by
1.13%. The performance comparison of different method for different networks is listed

in table 4-2 through tab 4-4.
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Table 4-2 Performance Comparison of Different Method

For the Network with 7 hidden nodes

Method Epoch Training RMS Generalization RMS
A 10 0.0707211 0.0724163
B-1 5 0.0706896 0.0741628
B-2 6 0.0895382 0.0892582
C-1 7 0.0725740 0.0758244
C-2 2 0.0884512 0.0866356
D-1 12 0.0691364 0.0698246
D-2 10 0.0707211 0.0724163
E-1 10 0.0707211 0.0724163
E-2 10 0.0707211 0.0724163
G 10 0.0707547 0.0724433

Table 4-3 Performance Comparison of Different Method
For the Network with 8 hidden nodes

Method Epoch Training RMS Generalization RMS
A 8 0.0730081 0.0767580
B-1 6 0.0717076 0.0751127
B-2 10 0.0728760 0.0764509
C-1 10 0.0718936 0.0744065
C-2 2 0.0865809 0.0864760
D-1 16 0.0681907 0.0677225
D-2 15 0.0681585 0.0669311
E-1 15 0.0718534 0.0737869
G 13 0.0728628 0.0748189

Table 4-4 Performance Comparison of Different Method
for Network with 10 hidden nodes

Method Epoch Training RMS Generalization RMS
A 12 0.0823795 0.0865625
B-1 5 0.0878567 0.0872217
B-2 13 0.0782682 0.0813108
C-1 7 0.0823783 0.0855836
C-2 2 0.0853115 0.0865137
D-1 17 0.0753999 0.0763246
D-2 12 0.0823741 0.0855825
E-1 10 0.0823793 0.0855825
E-2 10 0.0823793 0.0855822
G 8 0.0823851 0.0855824




CHAPTER V

CONCLUSION

Overfitting is a very important issue in artificial neural networks. Penalty term

methods are useful way to reduce overfitting. Seven different training algorithms are

studied in this research. The following conclusions can be drawn from this study:

1.

Overfitting does exist in artificial neural networks. As the neural network
becomes larger, the generalization performance becomes worse. It is better to
use the smallest network that fits the data.

For a network which is not overfitting, the penalty term method has no
significant improvement for training and generalization performance of the
network. If the penalty term or the constant A is not chosen properly, the
penalty term method will decrease the performance significantly. On the
other side, the improved penalty method can slightly increase the
generalization performance of the network if the penalty term and A are
chosen properly. If the penalty term and A are not chosen properly, the
improved penalty term method can also be used to train the network and has
no risk to decrease the performance. Usually it is difficult to know if the
network is overfitting or not. Therefore, it is better to use the improved

penalty term method than to use the penalty term method in any situation.
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3. When the network is overfitting, the penalty method can be used to improve

1.

the generalization performance of the networks. Compared with the penalty
term method, the improved penalty method improves the training and
generalization performance more significantly and has no risk to decrease the

performance.
Penalty term and the constant A are problem and network architecture
dependent. The improved penalty method 2 can be used to chose a A properly

and improve the performance significantly as well.

Future work could be done in several areas as listed below:

To investigate the performance of each method, a training data set and a
validation set are used in this research. Since the training procedure used in
the research can itself lead to some over-fitting to the validation set, the
performance of each training method may be confirmed by measuring its

performance on a third independent set of data called a test set.

2. A constant A is used in most of the penalty methods. There is no criteria to

select a A. It is valuable to conduct a method to choose A to close to the

optimum point to improve the generalization performance.

3. Another method that can be investigated is an interactive method in which the

designer checks the trained network and decides which nodes to remove.
Several heuristics are used to identify units that don’t constant output over all
training patterns. When a number of nodes have highly correlated responses

over all patterns, they can be combined into one node.

46




Bibliography

(1]

[2]

[3]

[4]

[5]

(6]

(7]

(8]

(1

Hecht-Nielsen, Robert, Neurocomputing, Addison-Wesley Publishing Company,
1990.

Rumelhart, D. and McClelland, J., Parallel distributed processing: exploitations in
the micro-structure of cognition, Volumes 1 and 2, Cambridge: MIT Press, 1986.
Kohonen, T., Self-Organising and Associative Memory (3rd ed.), Berlin:
Springer-Verlag, 1989.

Albus, J. S., A new approach to manipulator control: cerebellar model articulation
control (CMAC). Trans. ASME, J. of Dynamics Syst., Meas. and Contr., 97, 220-
227, 1975.

Dietterich, Tom, Overfitting and Undercomputing in Machine Learning, ACM
Computing Survey, Vol. 27, No. 3, pp.326-327, Sept. 1995.

Reed, Russell, Pruning Algorithms-A Survey, IEEE Transactions on Neural
Networks, Vol. 4, No. 5, 1993.

Hoerl, Arthur E. and Kennard, Robert W., Applications to Nonorthorgonal
Problems, Eechnometrics, Vol. 12, No. 1, pp. 69-82, Feb.1970.

Subatai, Ahmad and Tesauro, Gerald, Scaling and Generalization in Neural
Networks:A Case Study, Advances in Neural Information Processing 1, D.S.
Touretzky, Ed. pp. 160-168, 1989.

Chauvin, Y., Generalization Performance of Overtrained Back-propagation
Networks, in Lecture Notes in Computer Science, Edited by L. B. Almieda and

C.J. Wellekens, Springer-Verlag, 1990.

47




[10]

[11]

[12]

[13]

(14]

[15}

[16]

[17]

Melvyn, W. J., Mathematical Programming, An Introduction to Optimization,
Marcel Dekker, Inc. 1986.

Weigend, A.S., Rumelhart, D. E., and Huberman, B. A., Back-propagation,
weight-elimination and time series prediction, in Proc. 1990 Connectionist
Models Summer School, D. Touretzky, J. Elman, T. Sejnowski, and G. Hinton.
Eds., 1990, pp. 105-116.

Weigend, A. S., Rumelhart, D. E., and Huberman, B. A., Generalization by
weight-elimination applied to currency exchange ra te prediction, in Proc. Int.
Joint Conf. Neural Networks, Vol. I (Seattle), 1991, pp. 837-841.

Weigend, A. S., Rumelhart, D. E., and Huberman, B. A., Generalization by
weight-elimination with application to forecasting, in Advances in Neural
Information Processing (3), R. Lippmann, J. Moody, and D. Touretzky, Eds.,
1991, pp. 875-882.

Chauvin, Y., A back-propagation algorithm with optimal use of hidden units, |
Advances in Neural Information Processing (1), D.S. Touretzky, Ed. (Denver),
1989, pp. 519-526.

Ishikawa, M., A structural learning algorithm with forgetting of link weights,
Tech. Rep. TR-90-7, Electrotechnical Lab., Tsukuba-City, Japan, 1990.

Bishop, C. M., Curvature-Driven Smoothing: A Learning Algorithm for
Feedforward Networks, IEEE Transactions on Neural Networks, Vol. 4, No. 5,
September 1993.

Valiant, L. G., A theory of the learnable, Commun. ACM, Vol. 27, No. 11, pp.

1134-1142, 1984.

48




(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

McCulloch, W.S. and Pitts, W., A Logical Calculus of the Ideas Immanent in
Nervous Activity, Bulletin on Math. Bio., 5, 1943.

Hagan, Martin T., Neural Network Design, Lecture Notes, Oklahoma State
University, 1995.

Cichocki, A. and Unbehauen, R., Neural Networks for Optimization and Signal
Processing, Wiley, 1993.

Scales, L. E., Introduction to Nonlinear Optimization, New York, Springer-
Verlag, 1985.

Cichocki, A. and Unbehauen, R., Neural Networks for Optimization and Signal
Processing, Wiley, 1993.

Chauvin, Y., Dynamic Behavior of Constrained Back-Propagation Networks, in
Advances in Neural Information Processing 2, D.S. Toretzky, Ed. Pp.642-649,
1989.

Jiang, P., A Penalty Method to Reduce Overfitting in Artificial Neural Networks,
Masters degree thesis, Oklahoma State University, 1996.

Hestenes, M. R., Multiplier and Gradient Methods, Journal of Optimization

Theory and Applications, No. 4, pp. 303-320, 1969.

49




Table A-1 Performance of Training and Generalization (RMS)

APPENDIX A

TESTING TABLES

Method A with 7 hidden nodes
Epoch Training RMS Generalization RMS Convergence Error

0 0.214704E-00 0.209518E-00

1 0.812552E-01 0.841985E-01 0.133448E-00
2 0.801644E-01 0.834818E-01 0.109082E-02
3 0.790322E-01 0.825625E-01 0.113216E-02
4 0.779749E-01 0.816252E-01 0.105730E-02
5 0.750445E-01 0.787846E-01 0.293044E-02
6 0.736659E-01 0.774192E-01 0.137859E-02
7 0.722210E-01 0.755748E-01 0.144488E-02
8 0.717990E-01 0.732518E-01 0.422016E-03
9 0.718357E-01 0.732768E-01 0.366718E-04
10 0.707211E-01* 0.724163E-01* 0.111452E-02
11 0.707575E-01 0.724437E-01 0.363737E-04

Table A-2 Performance of Training and Generalization (RMS)
Method B with 7 hidden nodes and A = 0.01

Epoch Training RMS Generalization RMS Convergence Error

0 0.214709E-00 0.209518E-00

| 0.896909E-01 0.891520E-01 0.125540E-00
2 0.895401E-01 0.892551E-01 0.150718E-03
3 0.895380E-01 0.892587E-01 0.218302E-05
4 0.895385E-01 0.892578E-01 0.506639E-06
5 0.895382E-01 0.892583E-01 0.275671E-06
6 0.895382E-01* 0.892582E-01* 0.447035E-07
7 0.895383E-01 0.892581E-01 0.596046E-07
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Table A-3 Performance of Training and Generalization (RMS)

Method B with 7 hidden nodes and A = 0.0001

Epoch Training RMS Generalization RMS Convergence Error
0 0.214709E-00 0.209518E-00
1 0.813377E-01 0.842336E-01 0.133371E-00
2 0.801080E-01 0.834001E-01 0.122967E-02
3 0.782553E-01 0.818001E-01 0.185277E-02
4 0.774735E-01 0.810877E-01 0.781715E-03
5 0.706896E-01* 0.741628E-01* 0.678393E-02
6 0.711018E-01 0.745780E-01 0.412233E-03
Table A-4 Performance of Training and Generalization (RMS)
Method C with 7 hidden nodes and A = 0.0001
Epoch Training RMS Generalization RMS | Convergence Error
0 0.214709E-00 0.209518E-00
1 0.812634E-01 0.842007E-01 0.133440E-00
2 0.801132E-01 0.834342E-01 0.115024E-02
3 0.788925E-01 0.824305E-01 0.122075E-02
4 0.778096E-01 0.814628E-01 0.108288E-02
5 0.744281E-01 0.781553E-01 0.338145E-02
6 0.732613E-01 0.769954E-01 0.116679E-02
7 0.725740E-01* 0.758244E-01* 0.687353E-03
8 0.729824E-01 0.743964E-0] 0.408381E-03
Table A-5 Performance of Training and Generalization (RMS)
Method C with 7 hidden nodes and A = 0.01
Epoch Training RMS Generalization RMS Convergence Error
0 0.214709E-00 0.209518E-00
1 0.886283E-01 0.867396E-01 0.126221E-00
2 0.884512E-01* 0.866238E-01* 0.177145E-03
3 0.884734E-01 0.866356E-01 0.221804E-04
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Table A-6 Performance of Training and Generalization (RMS)

Method D with 7 hidden nodes and A = 0.0001

poch Training RMS Generalization RMS Convergence Error
0 0.214709E-00 0.209518E-00
1 0.812552E-01 0.841985E-01 0.133448
2 0.801644E-01 0.834818E-01 0.109082E-02
3 0.790322E-01 0.825625E-01 0.113216E-02
4 0.779749E-01 0.816252E01 0.105730E-02
5 0.750445E-01 0.787846E-01 0.293044E-02
6 0.736659E-01 0.774192E-01 0.137859E-02
7 0.722210E-01 0.755748E-01 0.144488E-02
8 0.717990E-0] 0.732518E-01 0.422016E-03
9 0.718357E-01 0.732768E-01 0.366718E-04
10 0.707211E-01 0.724163E-01 0.111452E-02
11 0.723729E-01 0.728283E-01 0.909194E-03
12 0.691364E-01* 0.698246E-01* 0.323655E-02
13 0.704434E-01 0.708009E-01 0.130697E-02

Table A-7 Performance of Training and Generalization (RMS)
Method D with 7 hidden nodes and A = 0.01

poch Training RMS Generalization RMS Convergence Error
0 0.214709E-00 0.209518E-00
1 0.812552E-01 0.841985E-01 0.133448

2 0.801644E-01 0.834818E-01 0.109082E-02
3 0.790322E-01 0.825625E-01 0.113216E-02
4 0.779749E-01 0.816252E-01 0.105730E-02
5 0.750445E-01 0.787846E-01 0.293044E-02
6 0.736659E-01 0.774192E-01 0.137859E-02
7 0.722210E-01 0.755748E-01 0.144488E-02
8 0.717990E-01 0.732518E-01 0.422016E-03
9 0.718357E-01 0.732768E-01 0.366718E-04
10 0.707211E-01* 0.724163E-01* 0.111452E-02
11 0.707750E-01 0.724481E-01 0.422075E-04

Method E with 7 hidden nodes and A = 0.01

Table A-8 Performance of Training and Generalization (RMS)

poch Training RMS Generalization RMS Convergence Error

0 0.214709E-00 0.209518E-00

1 0.812552E-01 0.841985E-01 0.133448

2 0.801644E-01 0.834818E-01 0.109082E-02
3 0.790322E-01 0.825625E-01 0.113216E-02
4 0.779749E-01 0.816252E-01 0.105730E-02
5 0.750445E-01 0.787846E-01 0.293044E-02
6 0.736659E-01 0.774192E-01 0.137859E-02
7 0.722210E-01 0.755748E-01 0.1444388E-02
8 0.717990E-01 0.732518E-01 0.422016E-03
9 0.718357E-01 0.732768E-01 0.366718E-04
10 0.707211E-01* 0.724163E-01* 0.111452E-02
11 0.708656E-01 0.724377E-01 0.282601E-04




Table A-9 Performance of Training and Generalization (RMS)

Method E with 7 hidden nodes and A = 0.0001

Epoch Training RMS Generalization RMS Convergence Error

0 0.214709E-00 0.209518E-00

I 0.812552E-01 0.841985E-01 0.133448

2 0.801644E-01 0.834818E-01 0.109082E-02
3 0.790322E-01 0.825625E-01 0.113216E-02
4 0.779749E-01 0.816252E-01 0.105730E-02
5 0.750445E-01 0.787846E-01 0.293044E-02
6 0.736659E-01 0.774192E-01 0.137859E-02
7 0.722210E01 0.755748E-01 0.144488E-02
8 0.717990E-01 0.732518E-01 0.422016E-03
9 0.718357E-01 0.732768E-01 0.366718E-04
10 0.707211E-01* 0.724163E-01* 0.111452E-02
11 0.707701E-01 0.724475E-01 0.415072E-04

Table A-10 Performance of Training and Generalization (RMS)
Method A with 8 hidden nodes

Epoch Training RMS Generalization RMS Convergence Error
0 0.213003E-00 0.207839E-00
1 0.818643E-01 0.848730E-01 0.131138
2 0.815437E-01 0.847499E-01 0.320621E-03
3 0.813113E-01 0.846303E-01 0.232413E-03
- 0.808220E-01 0.842961E-01 0.489302E-03
b 0.796452E-01 0.833113E-01 0.117680E-02
6 0.778920E-01 0.816870E-01 0.175317E-02
7 0.737960E-01 0.775554E-01 0.409602E-02
8 0.730081E-01* 0.767580E-01* 0.787854E-03
9 0.733293E-01 0.770622E-01 0.321187E-03
Table A-11 Performance of Training and Generalization (RMS)
Method B with 8 hidden nodes and A = 0.01
Epoch Training RMS Generalization RMS Convergence Error
0 0.213003E-00 0.207839E-00
1 0.819372E-01 0.848970E-01 0.131071
2 0.816100E-01 0.847689E-01 0.327244E-03
3 0.812510E-01 0.845630E-01 0.358932E-03
4 0.800752E-01 0.836221E-01 0.117583E-02
5 0.791521E-01 0.828127E-01 0.923134E-03
6 0.717076E-01* 0.751127E-01* 0.744448E-02
7 0.722484E-01 0.756384E-01 0.540763E-03
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Table A-12 Performance of Training and Generalization (RMS)
Method B with 8 hidden nodes and A = 0.0001

Epoch Training RMS Generalization RMS Convergence Error
0 0.213003E-00 0.207839E-00
1 0.818717E-01 0.848753E-01 0.131132
2 0.815524E-01 0.847525E-01 0.319220E-03
3 0.813135E-01 0.846287E-01 0.238933E-03
4 0.807856E-01 0.842638E-01 0.527889E-03
5 0.796023E-01 0.832680E-01 0.118332E-02
6 0.776854E-01 0.814787E-01 0.191688E-02
7 0.739080E-01 0.776723E-01 0.377746E-02
8 0.728923E-01 0.766369E-01 0.101567E-02
9 0.730239E-01 0.767609E-01 0.131637E-03
10 0.728760E-01* 0.764509E-01* 0.147901E-03
11 0.735858E-01 0.771347E-01 0.709720E-03
Table A-13 Performance of Training and Generalization (RMS)
Method C with 8 hidden nodes and A = 0.0001
Epoch Training RMS Generalization RMS Convergence Error
0 0.213003E-00 0.207839E-00
1 0.818691E-01 0.848744E-01 0.131134E-00
2 0.815431E-01 0.847472E-01 0.325955E-03
3 0.812866E-01 0.846118E-01 0.256523E-03
4 0.806990E-01 0.841960E-01 0.587605E-03
5 0.794732E-01 0.831542E-01 0.122583E-02
6 0.772993E-01 0.811025E-01 0.217392E-02
7 0.738339E-01 0.776072E-01 0.346541E-02
8 0.728451E-01 0.765909E-01 0.988781E-03
9 0.728672E-01 0.766129E-01 0.221059E-04
10 0.718936E-01* 0.744065E-01* 0.973582E-03
11 0.722725E-01 0.747144E-01 0.378869E-03
Table A-14 Performance of Training and Generalization (RMS)
Method C with 8 hidden nodes and A = 0.01
Epoch Training RMS Generalization RMS Convergence Error
0 0.213003E-00 0.207839E-00
1 0.866797E-01 0.865098E-01 0.126489E-00
2 0.865809E-01* 0.864760E-01 0.987947E-04*
3 0.865913E-01 0.864781E-01 0.103712E-04
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Table A-15 Performance of Training and Generalization (RMS)

Method D with 8 hidden nodes and A = 0.01

Epoch Training RMS Generalization RMS Convergence Error

0 0.213003E-00 0.207839E-00

I 0.818643E-01 0.848730E-01 0.131138

2 0.815437E-01 0.847499E-01 0.320621E-03
3 0.813113E-01 0.846303E-01 0.232413E-03
4 0.808220E-01 0.84296 1 E-01 0.489302E-03
5 0.796452E-01 0.833113E-01 0.117680E-02
6 0.778920E-01 0.816870E-01 0.175317E-02
7 0.737960E-01 0.775554E-01 0.409602E-02
8 0.730081E-01 0.767580E-01 0.787854E-03
9 0.733293E-01 0.770622E-01 0.321187E-03
10 0.731537E-01 0.765954E-01 0.175618E-03
1 0.759106E-01 0.774551E-01 0.186249E-02
12 0.757639E-01 0.773498E-01 0.146680E-03
13 0.762574E-01 0.775192E-01 0.493556E-03
14 0.763435E-01 0.768638E-01 0.860468E-04
15 0.747234E-01 0.740842E-01 0.16201 1E-02
16 0.681907E-01* 0.677225E-01* 0.653267E-02
17 0.695431E-01 0.688462E-01 0.135239E-02

Table A-16 Performance of Training and Generalization (RMS)
Method D with 8 hidden nodes and A = 0.0001
Epoch Training RMS Generalization RMS Convergence Error

0 0.213003E-00 0.207839E-00

1 0.818643E-01 0.848730E-01 0.131138

2 0.815437E-01 0.847499E-01 0.320621E-03
3 0.813113E-01 0.846303E-01 0.232413E-03
+ 0.808220E-01 0.842961E-01 0.489302E-03
5 0.796452E-01 0.833113E-01 0.117680E-02
6 0.778920E-01 0.816870E-01 0.175317E-02
7 0.737960E-01 0.775554E-01 0.409602E-02
8 0.730081E-01 0.767580E-01 0.787854E-03
9 0.733293E-01 0.770622E-01 0.321187E-03
10 0.759254E-01 0.774626E-01 0.186847E-02
11 0.757737E-01 0.773533E-01 0.151746E-03
12 0.731537E-01 0.765954E-01 0.175618E-03
13 0.713689E-01 0.703227E-01 0.510639E-02
14 0.695947E-01 0.682037E-01 0.177421E-02
15 0.681585E-01* 0.669311E-01* 0.143620E-02
16 0.681996E-01 0.669665E-01 0.410751E-04
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Table A-17 Performance of Training and Generalization (RMS)
Method E with 8 hidden nodes and A = 0.01

poch Training RMS Generalization RMS Convergence Error
0 0.213003E-00 0.207839E-00
I 0.818643E-01 0.848730E-01 0.131138

2 0.815437E-01 0.847499E-01 0.320621E-03
3 0.813113E-01 0.846303E-01 0.232413E-03
4 0.808220E-01 0.842961E-01 0.489302E-03
5 0.796452E-01 0.833113E-01 0.117680E-02
6 0.778920E-01 0.816870E-01 0.175317E-02
7 0.737960E-01 0.775554E-01 0.409602E-02
8 0.730081E-01 0.767580E-01 0.787854E-03
9 0.733293E-01 0.770622E-01 0.321187E-03
10 0.731537E-01 0.765954E-01 0.175618E-03
11 0.756865E-01 0.775078E-01 0.187512E-02
12 0.747758E-01 0.767588E-01 0.910699E-03
13 0.743792E-01 0.763368E-01 0.975490E-03
14 0.735836E-01 0.754677E-01 0.156695E-02
15 0.718534E-01* 0.737869E-01* 0.173014E-02
16 0.724389E-01 0.726581E-01 0.585444E-03

Table A-18 Performance of Training and Generalization (RMS)
Method A with 10 hidden nodes

Epoch Training RMS Generalization RMS Convergence Error

0 0.210536E-00 0.205405E-00

1 0.825110E-01 0.855849E-01 0.128025

2 0.824249E-01 0.855839E-01 0.861138E-04
3 0.824023E-01 0.855835E-01 0.226125E-04
4 0.823923E-01 0.855831E-01 0.999123E-05
5 0.823858E-01 0.855828E-01 0.648201E-05
6 0.823841E-01 0.855827E-01 0.171363E-05
7 0.823805E-01 0.855825E-01 0.366569E-05
8 0.823793E-01 0.855825E-01 0.111759E-05
9 0.823794E-01 0.856824E-01 0.447035E-07
10 0.823790E-01 0.856824E-01 0.402331E-06
11 0.823793E-01 0.866823E-01 0.312924E-06
12 0.823795E-01* 0.865625E-01* 0.178814E-06
13 0.823806E-01 0.855825E-01 0.111759E-05
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Table A-19 Performance of Training and Generalization (RMS)
Method B with 10 hidden nodes and A = 0.01

Epoch Training RMS Generalization RMS Convergence Error
0 0.210543 0.205405
1 0.878857E-01 0.872232E-01 0.123397
2 0.878564E-01 0.872218E-01 0.293776E-04
3 0.878569E-01 0.872217E-01 0.514090E-06
1 0.878569E-01 0.872217E-01 0.00000
5 0.878567E-01* 0.872217E-01* 0.186265E-06
6 0.878574E-01 0.872217E-01 0.707805E-06
Table A-20 Performance of Training and Generalization (RMS)
Method B with 10 hidden nodes and A = 0.0001
Epoch Training RMS Generalization RMS Convergence Error
0 0.210543 0.205405
1 0.825718E-01 0.855999E-01 0.127972
2 0.824931E-01 0.855999E-01 0.787005E-04
3 0.824664E-01 0.855993E-01 0.266880E-04
4 0.824511E-01 0.855984E-01 0.153333E-04
5 0.824397E-01 0.855975E-01 0.113398E-04
6 0.824122E-01 0.855968E-01 0.753254E-05
7 0.823246E-01 0.855960E-01 0.759959E-05
8 0.814179E-01 0.857852E-01 0.672042E-05
9 0.814121E-01 0.835944E-01 0.582635E-05
10 0.804066E-01 0.825736E-01 0.544637E-05
11 0.782809E-01 0.813131E-01 0.562519E-05
12 0.782748E-01 0.813120E-01 0.648946E-05
13 0.782682E-01* 0.813108E-01* 0.693649E-05
14 0.782996E-01 0.813791E-01 0.901520E-05
Table A-21 Performance of Training and Generalization (RMS)
Method C with 10 hidden nodes and A = 0.00001
Epoch Training RMS Generalization RMS Convergence Error
0 0.210543E-00 0.205405E-00
1 0.825117E-01 0.855866E-01 0.128024E-00
2 0.824285E-01 0.855855E-01 0.832081E-04
3 0.824051E-01 0.855849E-01 0.234768E-04
4 0.823928E-01 0.855844E-01 0.122115E-04
5 0.823875E-01 0.855841E-01 0.533462E-05
6 0.823824E-01 0.855839E-01 0.509620E-05
7 0.823805E-01 0.855837E-01 0.195205E-05
8 0.823797E-01 0.855837E-01 0.789762E-06
9 0.823783E-01* 0.855836E-01* 0.137091E-05
10 0.823790E-01 0.855836E-01 0.707805E-06

57




Table A-22 Performance of Training and Generalization (RMS)
Method C with 10 hidden nodes and A = 0.01

Epoch Training RMS Generalization RMS Convergence Error
0 0.210543E-00 0.205405E-00
1 0.853625E-01 0.865173E-01 0.125381E-00
2 0.853090E-01 0.865138E-01 0.534728E-04
3 0.853115E-01* 0.865137E-01* 0.249594E-05
4 0.853128E-01 0.865136E-01 0.130385E-05

Table A-23 Performance of Training and Generalization (RMS)
Method D with 10 hidden nodes and A = 0.0001

Epoch Training RMS Generalization RMS Convergence Error
0 0.210536 0.205405
] 0.825110E-01 0.855849E-01 0.128025
2 0.824249E-01 0.855839E-01 0.861138E-04
3 0.824023E-01 0.855835E-01 0.226125E-04
4 0.823923E-01 0.855831E-01 0.999123E-05
5 0.823858E-01 0.855828E-01 0.648201E-05
6 0.823841E-01 0.855827E-0] 0.171363E-05
7 0.823805E-01 0.855825E-01 0.366569E-05
8 0.823793E-01 0.855923E-01 0.111759E-05
9 0.823792E-01 0.856874E-01 0.447035E-07
10 0.823790E-01 0.855824E-01 0.402331E-06
11 0.825205E-01 0.850717E-01 0.786036E-05
12 0.814152E-01 0.846813E-01 0.528991E-05
13 0.802317E-01 0.835607E-01 0.454485E-05
14 0.800074E-01 0.821903E-01 0.326335E-05
15 0.784048E-01 0.815800E-01 0.263005E-05
16 0.772402E-01 0.794055E-01 0.261515E-05
17 0.753999E-01* 0.763246E-01* 0.227243E-05
18 0.766967E-01 0.795789E-01 0.315905E-05
Table A-24 Performance of Training and Generalization (RMS)
Method D with 10 hidden nodes and A = 0.01
Epoch Training RMS Generalization RMS Convergence Error
0 0.210543E-00 0.205405E-00
1 0.825110E-01 0.855849E-01 0.128025
2 0.824249E-01 0.855839E-01 0.861138E-04
3 0.824023E-01 0.855835E-01 0.226125E-04
4 0.823923E-01 0.855831E-01 0.999123E-05
5 0.823858E-01 0.855828E-01 0.648201E-05
6 0.823841E-01 0.855827E-01 0.171363E-05
7 0.823805E-01 0.855825E-01 0.366569E-05
8 0.823793E-01 0.855825E-01 0.111759E-05
9 0.823794E-01 0.855824E-01 0.447035E-07
10 0.823790E-01 0.855824E-01 0.402331E-06
11 0.823841E-01 0.855824E-01 0.186265E-06
12 0.823741E-01* 0.855825E-01* 0.566244E-06
13 0.823931E-01 0.855824E-01 0.151992E-05
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Method E with 10 hidden nodes and A = 0.01

Table A-25 Performance of Training and Generalization (RMS)

Epoch Training RMS Generalization RMS Convergence Error
0 0.210543E-00 0.205405E-00

1 0.825110E-01 0.855849E-01 0.128025

2 0.824249E-01 0.855839E-01 0.861138E-04
3 0.824023E-01 0.855835E-01 0.226125E-04
4 0.823923E-01 0.855831E-01 0.999123E-05
5 0.823858E-01 0.855828E-01 0.648201E-05
6 0.823841E-01 0.855827E-01 0.171363E-05
1 0.823805E-01 0.855825E-01 0.366569E-05
8 0.823793E-01 0.855825E-01 0.111759E-05
9 0.823794E-01 0.855824E-01 0.447035E-07

Table A-26 Performance of Training and Generalization (RMS)
Method E with 10 hidden nodes and A = 0.00001

Epoch Training RMS Generalization RMS Convergence Error
0 0.210543E-00 0.205405E-00

I 0.825110E-01 0.855849E-01 0.128025

2 0.824249E-01 0.855839E-01 0.861138E-04
3 0.824023E-01 0.855835E-01 0.226125E-04
4 0.823923E-01 0.855831E-01 0.999123E-05
5 0.823858E-01 0.855828E-01 0.648201E-05
6 0.823841E-01 0.855827E-01 0.171363E-05
7 0.823805E-01 0.855825E-01 0.366569E-05
8 0.823793E-01 0.855825E-01 0.111759E-05
9 0.823794E-01 0.855824E-01 0.447035E-07
10 0.823790E-01 0.855824E-01 0.402331E-06
11 0.823795E-01 0.855823E-01 0.154972E-05
12 0.823793E-01 0.855823E-01 0.178814E-06
13 0.823779E-01 0.855822E-01 0.144541E-05
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Table A-27 Performance of Training and Generalization (RMS)
Method F with 7 hidden nodes and different A (0.008,0.006,
0.004, 0.002, 0.001, 0.0006, 0.0001, 0.00006, 0.00004, 0.00001)

| Epoch A Training RMS | Generalization RMS | Convergence Error
L1 0.80000E-02 0.860905E-01 0.848817E-01 0.128730E-00
2 0.60000E-02 0.846864E-01 0.847823E-01 0.465959E-03
3 0.40000E-02 0.837784E-01 0.847662E-01 0.478327E-04
4 0.20000E-02 0.828646E-01 0.846507E-01 0.511557E-04
5] 0.10000E-02 0.802596E-01 0.806985E-01 0.211523E-02
6 0.60000E-03 0.7913938E-01 0.792753E-01 0.787571E-03
7 0.10000E-03* 0.771920E-01* 0.786071E-01 0.133017E-02
8 0.60000E-04 0.774715E-01 0.784241E-01 0.323653E-03
9 0.40000E-04 0.774570E-01 0.784329E-01 0.331238E-03
10 0.10000E-04 0.774264E-01 0.784434E-01 0.333793E-03
11 0.10000E-03 0.771808E-01 0.783094E-01 0.358023E-03
12 0.10000E-03 0.771222E-01 0.782939E-01 0.586659E-04
13 0.10000E-03 0.813377E-01 0.842336E-01 0.133371E-00
Table A-28 Performance of Training and Generalization (RMS)
Method G with 7 hidden modes and A = 0.001
Epoch Training RMS Generalization RMS Convergence Error
0 0.214756 0.209518
1 0.817576E-01 0.841984E-01 0.132999
2 0.807776E-01 0.835390E-01 0.979960E-03
3 0.798116E-01 0.827304E-01 0.966057E-03
4 0.788325E-01 0.818250E-01 0.979044E-03
5 0.76678 |E-01 0.796450E-01 0.215444E-02
6 0.752509E-01 0.781470E-01 0.142720E-02
7 0.714120E-01* 0.736984E-01* 0.383891E-02
8 0.730710E-01 0.752282E-01 0.165908E-02
Table A-29 Performance of Training and Generalization (RMS)
Method G with 7 hidden modes and A = 0.0001
Epoch Training RMS Generalization RMS Convergence Error
0 0.214709 0.209518
1 0.813054E-01 0.841985E-01 0.133404
2 0.802277E-01 0.834886E-01 0.107767E-02
3 0.791121E-01 0.825798E-01 0.111558E-02
4 0.780597E-01 0.816429E-01 0.105239E-02
5 0.752288E-01 0.788873E-01 0.283096E-02
6 0.738405E-01 0.775041E-01 0.138825E-02
7 0.721871E-01 0.754372E-01 0.165343E-02
8 0.716075E-01 0.730340E-01 0.579566E-03
9 0.716354E-01 0.730538E-01 0.278950E-04
10 0.709259E-01* 0.725106E-01* 0.709549E-03
11 0.709502E-01 0.725289E-01 0.243112E-04
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Table A-30 Performance of Training and Generalization (RMS)
Method G with 7 hidden modes and A = 0.0002

Epoch Training RMS Generalization RMS Convergence Error
0 0.214705 0.209518
1 0.812652E-01 0.841985E-01 0.133439
2 0.801743E-01 0.834814E-01 0.109088E-02
3 0.790483E-01 0.825664E-01 0.112601E-02
4 0.779875E-01 0.816249E-01 0.106080E-02
5 0.750842E-01 0.788082E-01 0.290331E-02
6 0.736947E-01 0.774301E-01 0.138956E-02
7 0.721961E-01 0.755340E-01 0.149855E-02
8 0.717005E-01 0.731551E-01 0.495657E-03
9 0.717307E-01 0.731760E-01 0.302196E-04
10 0.707547E-01* 0.724244E-01* 0.976011E-03
11 0.707797E-01 0.724433E-01 0.250116E-04
Table A-31 Performance of Training and Generalization (RMS)
Method G with 8 hidden modes and A = 0.0002
Epoch Training RMS Generalization RMS Convergence Error
0 0.213004 0.207839
1 0.818767E-01 0.848726E-01 0.131127
2 0.815572E-01 0.847500E-01 0.319563E-03
3 0.813266E-01 0.846321E-01 0.230514E-03
4 0.808509E-01 0.843091E-01 0.475705E-03
] 0.796952E-01 0.833439E-01 0.115574E-02
6 0.779820E-01 0.817583E-01 0.171316E-02
7 0.738800E-01 0.776176E-01 0.410205E-02
8 0.730631E-01 0.767895E-01 0.816934E-03
% 0.733877E-01 0.770932E-01 0.324629E-03
10 0.731922E-01 0.766110E-01 0.195459E-03
11 0.733967E-01 0.768062E-01 0.204444E-03
12 0.731807E-01 0.750615E-01 0.215985E-03
13 0.732087E-01 0.750793E-01 0.279844E-04
14 0.730509E-01* 0.749718E-01* 0.157736E-03
15 0.730594E-01 0.749775E-01 0.849366E-05

61




Table A-32 Performance of Training and Generalization (RMS)
Method G with 8 hidden modes and A = 0.0001!

Epoch Training RMS Generalization RMS Convergence Error
0 0.213003 0.207839
| 0.818695E-01 0.848729E-01 0.131134
2 0.815518E-01 0.847507E-01 0.317685E-03
3 0.813209E-01 0.846324E-01 0.230849E-03
4 0.808411E-01 0.843060E-01 0.479840E-03
5 0.796791E-01 0.833353E-01 0.116200E-02
6 0.779562E-01 0.817408E-01 0.172289E-02
7 0.738410E-01 0.775888E-01 0.411517E-02
8 0.730438E-01 0.767817E-01 0.797175E-03
9 0.733867E-01 0.771038E-01 0.342883E-03
10 0.731672E-01 0.765858E-01 0.219509E-03
11 0.733556E-01 0.767654E-01 0.188418E-03
12 0.728855E-01 0.748343E-01 0.470124E-03
13 0.728628E-01* 0.748189E-01* 0.227168E-04
14 0.729582E-01 0.748835E-01 0.954196E-04

Table A-33 Performance of Training and Generalization (RMS)
Method G with 10 hidden modes and A = 0.0001

Epoch Training RMS Generalization RMS Convergence Error
0 0.210543 0.205405
1 0.825592E-01 0.855851E-01 0.127984
2 0.824773E-01 0.855839E-01 0.819638E-04
3 0.824542E-01 0.855834E-01 0.230819E-04
4 0.824432E-01 0.855830E-01 0.109598E-04
5 0.824401E-01 0.855829E-01 0.310689E-05
6 0.824371E-01 0.855827E-01 0.302494E-05
7 0.824355E-01 0.855827E-01 0.164658E-05
8 0.824354E-01 0.855827E-01 0.745058E-07
9 0.824343E-01* 0.855826E-01* 0.110269E-05
10 0.824355E-01 0.855827E-01 0.122935E-05

Table A-34 Performance of Training and Generalization (RMS)
Method G with 10 hidden modes and A = 0.00001

Epoch Training RMS Generalization RMS Convergence Error
0 0.210537 0.205405
1 0.825160E-01 0.855848E-01 0.128021
2 0.824300E-01 0.855838E-01 0.860468E-04
3 0.824081E-01 0.855834E-01 0.218600E-04
4 0.823960E-01 0.855830E-01 0.120923E-04
5 0.823906E-01 0.855827E-01 0.540167E-05
6 0.823877E-01 0.855826E-01 0.288337E-05
7 0.823852E-01 0.855824E-01 0.255555E-05
8 0.823851E-01* 0.855824E-01* 0.968575E-07
9 0.823867E-01 0.855825E-01 0.166148E-05
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Table A-35 The Training Data Set

0.00000000E+00 0.00000000E+00 0.00000000E+00
0.00000000E+00 0.83333336E-01 0.69444450E-02
0.00000000E+00 0.16666667E+00 0.27777780E-01
0.00000000E+00 0.25000000E+00 0.62500000E-01
0.00000000E+00 0.33333334E+00 0.11111112E+00
0.00000000E+00 0.41666666E+00 0.17361110E+00
0.00000000E+00 0.50000000E-+00 0.25000000E+00
0.83333336E-01 0.00000000E+00 0.69444450E-02
0.83333336E-01 0.83333336E-01 0.13888890E-01
0.83333336E-01 0.16666667E+00 0.34722224E-01
0.83333336E-01 0.25000000E+00 0.69444448E-01
0.83333336E-01 0.33333334E+00 0.11805556E+00
0.83333336E-01 0.41666666E+00 0.18055555E+00
0.83333336E-01 0.50000000E+00 0.25694445E+00
0.16666667E+00 0.00000000E+00 0.27777780E-01
0.16666667E+00 0.83333336E-01 0.34722224E-01
0. 1666666 7TE+00 0.16666667E+00 0.55555560E-01
0.16666667E+00 0.25000000E+00 0.90277776E-01
0.16666667E+00 0.33333334E+00 0.13888890E+00
0.16666667E+00 0.41666666E+00 0.20138888E+00
0.16666667E+00 0.50000000E-+00 0.2777T7779E+00
0.25000000E+00 0.00000000E+00 0.62500000E-01
0.25000000E+00 0.83333336E-01 0.69444448E-01
0.25000000E+00 0.16666667E+00 0.90277776E-01
0.25000000E+00 0.25000000E+00 0.12500000E+00
0.25000000E+00 0.33333334E+00 0.17361112E+00
0.25000000E+00 0.41666666E+00 0.23611110E+00
0.25000000E+00 0.50000000E+00 0.31250000E+00
0.33333334E+00 0.00000000E+00 0.11111112E+00
0.33333334E+00 0.83333336E-01 0.11805557E+00
0.33333334E+00 0.16666667E+00 0.13888890E+00
0.33333334E+00 0.25000000E+00 0.17361112E+00
0.33333334E+00 0.33333334E+00 0.22222224E+00
0.33333334E+00 0.41666666E+00 0.28472221E+00
0.33333334E+00 0.50000000E+00 0.36111110E+00
0.4 1666666E+00 0.00000000E+00 0.17361 110E+00
0.41666666E+00 0.83333336E-01 0.18055555E+00
0.41666666E+00 0.16666667E+00 0.20138888E+00
0.41666666E+00 0.25000000E+00 0.23611110E+00
0.41666666E+00 0.33333334E+00 0.28472221E+00
0.41666666E+00 0.41666666E-+00 0.34722221E+00
0.41666666E+00 0.50000000E+00 0.42361110E+00
0.50000000E+00 0.00000000E+00 0.25000000E+00
0.50000000E+00 0.83333336E-01 0.25694445E+00
0.50000000E+00 0.16666667E+00 0.277777T79E+00
0.50000000E+00 0.25000000E+00 0.31250000E+00
0.50000000E+00 0.33333334E+00 0.36111110E+00
0.50000000E+00 0.41666666E+00 0.42361110E+00
0.50000000E+00 0.50000000E+00 0.50000000E+00
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Table A-36 The Validation Data Set

0.99999998E-02 0.99999998E-02 0.19999999E-03
0.99999998E-02 0.93333334E-01 0.88111116E-02
0.99999998E-02 0.17666666E+00 0.31311110E-01
0.99999998E-02 0.25999999E+00 0.67699999E-01
0.99999998E-02 0.34333333E+00 0.11797778E+00
0.99999998E-02 0.42666668E+00 0.18214445E+00
0.99999998E-02 0.50999999E+00 0.26019999E+00
0.93333334E-01 0.99999998E-02 0.88111106E-02
0.93333334E-01 0.93333334E-01 0.17422222E-01
0.93333334E-01 0.17666666E+00 0.39922219E-01
0.93333334E-01 0.25999999E +00 0.76311104E-01
0.93333334E-01 0.34333333E+00 0.12658890E+00
0.93333334E-01 0.42666668E+00 0.19075556E+00
0.93333334E-01 0.50999999E+00 0.26881111E+00
0.17666666E+00 0.99999998E-02 0.31311110E-01
0.17666666E+00 0.93333334E-01 0.39922222E-01
0.17666666E+00 0.17666666E+00 0.62422220E-01
0.17666666E+00 0.25999999E+00 0.98811105E-01
0.17666666E+00 0.34333333E+00 0.14908889E+00
0.17666666E+00 0.42666668E-+00 0.21325557E+00
0.17666666E+00 0.50999999E+00 0.29131109E+00
0.25999999E+00 0.99999998E-02 0.67699999E-01
0.25999999E+00 0.93333334E-01 0.76311111E-01
0.25999999E+00 0.17666666E+00 0.98811105E-01
0.25999999E+00 0.25999999E+00 0.13519999E+00
0.25999999E+00 0.34333333E+00 0.18547778E+00
0.25999999E+00 0.42666668E+00 0.24964444E+00
0.25999999E+00 0.50999999E+00 0.32769999E+00
0.34333333E+00 0.99999998E-02 0.11797778E+00
0.34333333E+00 0.93333334E-01 0.12658890E+00
0.34333333E+00 0.17666666E+00 0.14908889E+00
0.34333333E+00 0.25999999E+00 0.18547778E+00
0.34333333E+00 0.34333333E+00 0.23575556E+00
0.34333333E+00 0.42666668E+00 0.29992223E+00
0.34333333E+00 0.50999999E+00 0.37797776E+00
0.42666668E+00 0.99999998E-02 0.18214445E+00
0.42666668E+00 0.93333334E-01 0.19075556E+00
0.42666668E+00 0.17666666E+00 0.21325555E+00
0.42666668E+00 0.25999999E+00 0.24964444E+00
0.42666668E+00 0.34333333E+00 0.29992223E+00
0.42666668E+00 0.42666668E+00 0.36408889E+00
0.42666668E+00 0.50999999E+00 0.44214442E+00
0.50999999E+00 0.99999998E-02 0.26019996E+00
0.50999999E+00 0.93333334E-01 0.26881108E+00
0.50999999E+00 0.17666666E+00 0.29131109E+00
0.50999999E+00 0.25999999E+00 0.32769996E+00
0.50999999E+00 0.34333333E+00 0.37797776E+00
0.50999999E+00 0.42666668E+00 0.44214442E+00
0.50999999E+00 0.50999999E+00 0.52019995E+00




APPENDIX B

COMPUTER PROGRAMS

PROGRAM DRIVER
C**t*#t‘*###**tti***t‘*t‘**t*******i-*********ttttitt*.ttt*tt*!l*
THIS DRIVER IS TO GENERATE THE RANDOM WEIGHTS ~ *
W(MLAYR, MNODE, 0:MNODE) --THE WEIGHT OF c
EACH LAYER.
P(MNODE) -- THE INPUT DATA OF THE SAMPLE. ’
O(MNODE) — THE OUTPUT CALCULATED FROM THE INPUT ~ *
DATA SAMPLE. £
N(MLAYR, MNODE) -- THE WEIGHTED SUM OF THE »
INPUTS OF A NEURON MNODE INLAYER MLAYR  *
REF (3.1.1)
A(0:MLAYR, 0:MNODE) -- THE OUTPUT OF THE NEURON ~ *
MNODE IN LAYER MLAYR. REF (3.1.2) ¥
NOTICE THAT A(0,*) REPRESENTS THE INPUT ~ *
LAYER. A(*,0) REPRESENTS THE BIAS. .
NNODE(0:MLAYR) -- THE NUMBER OF NODE IN EACH ¢
LAYER. .
LAYER -- THE ACTUAL TOTAL LAYER OF THE NET. (EXCLUDING *
THE INPUT LAYER)
MLAYR -- THE MAXMUM LAYER A NET CAN HAVE. .
MNODE -- THE MAXMUM NODE ONE LAYER OF A NET CAN HAVE  *
LL -- SAMPLE INDEX
LR RS EE R R R R P R RS SR R R RS A R SR bR S bRt il E e R b L

PARAMETER(MLAYR = 4, MNODE = 100,MSAMP = 200)

DOUBLE PRECISION DRANDOM, W(MLAYR, MNODE, 0:MNODE),

+ SEED,TOL,W0,LAMDA,LAMDA2 P(MSAMP,MNODE),0(MSAMP,MNODE),
+ N(MLAYR,MNODE), A(0:MLAYR,0:MNODE),
+ SENSI(MLAYR MNODE),T(MSAMP,MNODE),ERROR2,ERRORI,
+ G(MLAYR,MNODE,0:MNODE), TG(MLAYR,MNODE,0:MNODE),
+ FRET,TOL1,ERROR,ERRORV

INTEGER K,[,J,LL,NNODE(0:MLAYR),METHOD,LAYER NSAMP

INTEGER NUM,ITER MAXNUM,NWEIG PSTAT, JUDGE

[oN®!

OO0O0OO000

OO0O0OO00000n0

THE FOLLOWING DATA IS USED IN CONJUGATE GRADIENT METHOD

a0

DOUBLE PRECISION PP(MLAYR,MNODE,0:MNODE),BETA,
+ TGO(MLAYR,MNODE,0:MNODE),PPO(MLAYR,MNODE,0:MNODE)
PSTAT=10
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c

C  SET UP NETWORK

€
CALL NETSETUP(LAYER,MLAYR ,NNODE,SEED, W0,LAMDA,LAMDA2 METHOD)
WRITE(*, 123)LAMDA, LAMDA2

123  FORMAT(1x'LAMI="F16.12, 'LAM2="F16.12)
CALL NETPRINT(LAYER,MLAYR NNODE,SEED,W0,LAMDA,LAMDA2, METHOD)

C

C  INITIAL WEIGHT WITH RANDOM NUMBER.

G

CALL INIWEIGHT(W, LAYER, MLAYR,NNODE, MNODE,SEED,
+ NWEIG)

&

C  PRINT THE NUMBER OF WEIGHT

&

WRITE(*,1001)NWEIG
1001 FORMAT(1X, THE NUMBER OF WEIGHT IS: ',I5)

READ IN TRAINING DATA P(I) AND T(I)
READ IN THE INPUT AND DESIRED OUTPUT OF ONE TRAINING SAMPLE

[oEPNe NS

CALL GETINPUTDATA(P,T,MNODE,NNODE(0),NNODE(LAYER}),
+ MSAMP,NSAMP)

CALCULATE THE PERFORMANCE FUNCTION

(e i b i

ERROR = SQRT(TEST(MSAMP,MNODE,W,MLAYR,LAYER,
+ NNODE,LAMDA,W0)YNSAMP)
PRINT*, 'BEFORE TRAINING GENERALIZATION ERROR: ',.ERROR

LOOP OVER ITERATION
SET TOLERANCE AND MAXIMUM ITERATION NUMBER

(2 W oo e ll 5

TOL =4.0D-10
TOLI =3.5D-2
MAXITER=10
ITER=0
JUDGE=0

(@

1000 ITER=ITER + I
ENTER ITERATION

CALL INITG(LAYER,MLAYR,NNODE,MNODE,TG)
SUM TOTAL GRADIENT

DO 320 LL=1,NSAMP

FEEDFORWARD COMPUTATION

oo o000 000

CALL FORWARD(P,0O,N,MLAYR,LAYER,MNODE,A,
+ NNODE,W,LL,MSAMP)
C
C CALCULATE THE SENSITIVITY MATRIX
C
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CALL SENSITIVITY(SENSLW,LAYER,MLAYR,NNODE,
+ MNODE,T,O,N,LL,MSAMP)
C
C CALCULATE THE GRADIENT OF THE PERFORMANCE FUNCTION
¢
CALL GRAD(SENSLA,W,LAYER, MLAYR,
+ NNODE,MNODE,G, W0,LAMDA)
C
C SUM UP THE TOTAL GRADIENT
¢
CALL SUMGRAD(G,LAYER,MLAYR,NNODE,MNODE,TG)
320 CONTINUE
C
C FIND THE PERFORMANCE FUNCTION VALUE, BEFORE LINE SEARCH
¢
ERROR1= SQRT(FINDE(P,T,MSAMP,NSAMP,MNODE,
+ W,MLAYR,LAYER,NNODE,O,LAMDA,W0) /NSAMP)
IF (MOD(ITER,PSTAT) .EQ. |) THEN
C  WRITE(*,1600)ITER,ERRORI
1600 FORMAT(1X,'BEFORE LINE SEARCH, ITER #,15,2X,
+ 'ERROR| VALUE =',G25.20)
ENDIF
C
C  FIRST START AND RESTART USING STEEPEST DESCENT
C
IF (ITER .EQ. 1 .OR. MOD(ITER,NWEIG) .EQ. 0) THEN
CALL GETPP(PP,PP0,TG,MLAYR,LAYER,MNODE,NNODE,
+ 0.D0)
ENDIF
C
C ASSIGN THE TG TO TG0
C
CALL ASSIGN(TG,TGO,MLAYR,LAYER,MNODE,NNODE)
CALL ASSIGN(PP,PPO,MLAYR,LAYER,MNODE,NNODE)
C
C COMPUTE ALGORITHM 3.6.1 (4) AND (5).
CALL LINMIN(FRET,P,T,MSAMP,NSAMP,
+ MNODE,W,PPO,MLAYR,LAYER,NNODE,O,LAMDA,W0)
C
C USING STEP 2 TO COMPUTE THE G(K+1)
C
CALL INITG(LAYER,MLAYR,NNODE,MNODE,TG)
DO 321 LL=1,NSAMP
C
C  FEEDFORWARD COMPUTATION
C
CALL FORWARD(P,0,N,MLAYR,LAYER,MNODEA,
+ NNODE,W,LL,MSAMP)
s
C CALCULATE THE SENSITIVITY MATRIX
C
CALL SENSITIVITY(SENSLW,LAYER, MLAYR,NNODE,
+ MNODE,T,O,N,LL,MSAMP)
C
C CALCULATE THE GRADIENT OF THE PERFORMANCE FUNCTION
c
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CALL GRAD(SENSLA,W,LAYER, MLAYR,
+ NNODE,MNODE,G,W0,LAMDA)
c
C SUM UP THE TOTAL GRADIENT
C
CALL SUMGRAD(G,LAYER,MLAYR,NNODE,MNODE,TG)
321 CONTINUE
C
C FIND THE PERFORMANCE FUNCTION VALUE, AFTER LINE SEARCH
C
ERROR2= SQRT(FINDE(P,T,MSAMP,NSAMP,MNODE,
+ W,MLAYR,LAYER,NNODE,O,LAMDA,W() /NSAMP)
C  IF(MOD(ITER,PSTAT) .EQ. 0) THEN
(& WRITE(*,1100)ITER,ERROR2
1100 FORMAT(1X,AFTER LINE SEARCH, ITER#',15,2X,
+ 'ERROR2 VALUE =',G25.20)
C  ENDIF

C  IF(MOD(ITER,PSTAT).EQ. 1) THEN
C  IF (ABS(ERROR2 - ERROR1) .LT. TOL) THEN
ERROR = ABS(ERROR2 - ERROR1)
C  WRITE(*101)ERROR
101 FORMAT (1X,ERROR =',G25.20)
STOP
ENDIF

(&
C
C VALIDATE THE NETWORK USING VALIDATION SET.
c

IF(MOD(ITER,PSTAT) .EQ. 1) THEN
ERRORYV = SQRT(TEST(MSAMP,MNODE,W,MLAYR,LAYER,
+ NNODE,LAMDA, WOYNSAMP)
WRITE(*,1211)ITER,ERROR2, ERRORV,ERROR
1211 FORMAT(I2,,,1x,G15.6,'",1x,G15.6,.,,1x,G15.6)
1200 FORMAT(1X'AFTER TRAINING GENERALIZATION ERROR: ',G25.20)
C ENDIF
G
BETA=FINDBETA(TG,TGO,MLAYR,LAYER,MNODE,
+ NNODE)
CALL GETPP(PP,PP0,TG,MLAYR,LAYER,MNODE,NNODE,
+ BETA)

PRINT TG, AFTER STEP 7
ASSING TG TO TG0, TG0 STORES P(K+1)

CALL ASSIGN(TG,TG0O,MLAYR,LAYER, MNODE ,NNODE)

M O n

[FOJUDGE.EQ.0)THEN
IF ((ABS(ERROR2 - ERRORI1) .GT. TOL .OR. ERRORI .GT. TOLI
+ .OR. ERROR2 .GT. TOL1) .AND. ITER .LT. MAXITER)THEN
ERROR1 = ERROR2
GOTO 1000
ELSE
JUDGE=1
LAMDA=LAMDA2
ITER=0
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GOTO 1000
ENDIF
ENDIF
IF(JUDGE.EQ.1)THEN
IF ((ABS(ERROR?2 - ERROR1) .GT. TOL .OR. ERROR! .GT. TOL1
+ .OR. ERROR2 .GT. TOL1) .AND. ITER .LT. MAXITER)THEN
ERRORI = ERROR2
GOTO 1000
ENDIF
ENDIF
WRITE(*,1300)
WRITE(*,1301)ITER, MAXITER
1301 FORMAT(1x,ITER="15,4x,'MAXITER=, I5)
1300 FORMAT(1X,'SOLUTION CONVERGE TO THE TOLERANCE')
WRITE(*,1400)ITER,ERROR1, ERROR2,ABS(ERROR2-ERROR1)
1400 FORMAT(1X,ITER=",15,2X,'ERRORI=",G25.10,2X '/ERROR2=",
+  G25.102X,’ERROR=', G25.10)
C
C TEST THE NETWORK USING TEST SET
C
ERROR = SQRT(TEST(MSAMP,MNODE,W,MLAYR,LAYER,
+ NNODE,LAMDA, WOYNSAMP)
WRITE(*,1500)ERROR
1500 FORMAT(1X,'AFTER TRAINING ERROR=",G25.10)
C
STOP
END

Ct‘**tt**t**t**#t*#***#*#****#***i#***t*t***‘*******#**t#*tt"*ttl‘*

SUBROUTINE ASSIGN(ORIG,NEW,MLAYR,NLAYR,MNODE,
+ NNODE)
C***#**#***t*“*"#t****ttt**t*#*#i***l**t***“*‘t‘t"‘**‘*."-“!“
C  THIS SUBROUTINE IS TO COPY A ORIG MATRIX TONEW MATRIX. *
C  ITIS USED TO COPY TG. .
C‘#t*tt**tt‘*ttt*‘*#***t*#***#*****‘***t*‘l*‘*.*#*#"ﬁ‘ﬁ*‘*!‘it**##‘
INTEGER MLAYR,NLAYR,MNODE,NNODE(0:MLAYR)
DOUBLE PRECISION ORIG(MLAYR,MNODE,0:MNODE),
+ NEW(MLAYR,MNODE,0:MNODE)

INTEGER LJK,KK,LL
C
DO 10 K=1,NLAYR
KK=NNODE(K)
LL=NNODE(K-1)
DO 20 J=1,KK
DO 30 I=0,LL
NEW(K,J,I)=ORIG(K,J,I)
30 CONTINUE
20  CONTINUE
10 CONTINUE
C
RETURN
END

C*#**‘***ii*tt**‘*“*#tt**ﬂSt*!*t***k*!*#*t**#t*‘tt*t*t‘**#tt*t*t

FUNCTION BRENT(AX,BX,CX,F,TOL,XMIN)
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Ctt****“‘t*ttt EE¥ sxkkkkkkkreb kb kkr kb kkbk kR kR kR

C  GIVEN A FUNCTION F, AND GIVEN A BRACKETING %

C  TRIPLET OF ABSCIESSAS AX, BX, CX(SUCH THAT BX IS s

C  BETWEEN AX, AND CX, AND F(BX) IS LESS THAN BOTH b

C  F(AX) AND F(CX)), THIS ROUTINE ISOLATES THE MINIMUM *

C  TO A FRACTIONAL PRECISION OF ABOUT TOL USING BRENT'S *

C  METHOD. THIS ABXCISSA OF THE MINIMUM IS RETURNED AS *

C  XMIN, AND MUNIMUM FUNCTION VALUE IS R.ETURNED AS BRENT, *
C  THE RETURNED FUNCTION VALUE
€
C
C
C
c
C

PARAMETERS: MAXIMUM ALLOWED NUMBER OF ITERATIONS; GOLDEN*
RATIO; AND A SMALL NUMBER THAT PROTECTS AGAINST TRYING *
TO ACHIEVE FRACTION ACCURACY FOR A MINIMUM THAT HAPPENS *
TO BE EXACTLY ZERO. *
bR bt L P P S A LR R R e R R R R P S R S s ]
INTEGER ITMAX
DOUBLE PRECISION BRENT, AX,BX,CX,TOL,XMIiN,F,CGOLD,ZEPS
EXTERNAL F
PARAMETER(ITMAX=100, CGOLD=.381966D0,ZEPS=1.0D-10)

INTEGER ITER
DOUBLE PRECISION A,B,D.E,ETEMP,FU,FV,FW,FX,P,Q,R, TOL1,TOL2,
+ U,V,W,X.XM
A=MIN(AX,CX)
B=MAX(AX,CX)
V=BX
W=V
X=V
E=0.D0
FX=F(X)
FV=FX
FW=FX
DO 11 ITER = I, ITMAX
XM = .SD0*(A+B)
TOL1 = TOL*ABS(X) +ZEPS
TOL2 = 2.D0*TOLI
IF(ABS(X-XM) .LE. (TOL2 - .5D0*(B-A))) GOTO 3
IF(ABS(E) .GT. TOL1)THEN
R=(X-W)*(FX-FV)
Q=(X-V)*(FX-FW)
P=(X-V)*Q<(X-W)*R
Q=2.D0*(Q-R)
IF(Q.GT.0) P=-P
Q=ABS(Q)
ETEMP=E
E=D
IF(ABS(P).GE.ABS(.5D0*Q*ETEMP).OR.P.LE.Q*(A-X).OR.
+ P.GE.Q*(B-X))GOTO |
D=P/Q
U=X+D
IF(U-A.LT.TOL2 .OR. B-U .LT. TOL2)D=DSIGN(TOL1,XM-X)
GOTO 2
ENDIF
| IF(X.GE.XM)THEN
E=A-X
ELSE
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E=B-X
ENDIF
D=CGOLD*E
2 [F(ABS(D).GE.TOL1)THEN
U=X+D
ELSE
U=X+DSIGN(TOL1,D)
ENDIF
FU = F(U)
IF(FU.LE.FX)THEN
IF(U.GE.X)THEN
A=X
ELSE
B=X
ENDIF
V=W
FV=FW
W=X
FW=FX
X=U
FX=FU
ELSE
IF(U.LT.X)THEN
A=U
ELSE
B=U
ENDIF
IF(FU.LE.FW .OR. W.EQ.X)THEN
V=W
FV=FW
W=U
FW=FU
ELSEIF(FU .LE. FV .OR. V.EQ.X .OR. V.EQ.W)THEN
v=U
FV=FU
ENDIF
ENDIF
11 CONTINUE
C
3 XMIN=X
BRENT=FX
RETURN
END

C#**t**#‘#*#t#****i**#t**tt*#*#tt*"*##tt¢**$¢*‘*#*‘***‘**t‘#*t*‘

SUBROUTINE CONVERT(TG,MLAYR,MNODE,NLAYR,
+ NNODE,A,MAXNUM,NUM)

Ct*#t#*t#*t#*‘t*tt*ttt*t***tt#‘**t##ttt*#*ttt*t*tt#tt*t*t*t***‘t*#

C  THIS ROUTINE IS TO CONVERT THE 3-DIMENSIONAL *
C  ARRAYSINTO I-DIMENSIONAL ARRAY. IT IS USED *
C  TOAPPLY LINE SEARCH ROUTINE *

C*#‘ttt***ttt“*tt**tt*t*‘t‘tttt*ttt‘ttt‘*“‘*‘*i*t#t*##***t*t*‘**

INTEGER MLAYR,MNODE,NLAYR,NNODE(0:MLAYR),
+ MAXNUM,NUM,1,J. K,KK,LL
DOUBLE PRECISION A(MAXNUM),TG(MLAYR,MNODE,0:MNODE)
C
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NUM=0
DO 10 K=I,NLAYR
KK=NNODE(K)
LL=NNODE(K-1)
DO 20 J=1,KK
DO 301=1,LL
NUM=NUM+1
ANNUM)=TG(K,J.I)
30 CONTINUE
20  CONTINUE
10 CONTINUE
C
RETURN
END

C**#**t*‘t‘tt*t*i*t*t**###‘*****t*t*t#**#****#‘*t****tt#*tt‘**‘**i

i i b

GIVEN A FUNCTION F AND ITS DERIVATIVE FUNCTION DF, AND *

C  GIVEN A BRACKETING TRIPLET OF ABSCISSAS AX, BX, CX[SUCH *

C  THAT BX IS BETWEEN AX AND CX AND F(BX) IS LESS THAN BOTH *

C  F(AX) AND F(CX)], THIS ROUTINE ISOLATES THE MINIMUM TO A *

C  FRACTIONAL PRECISION OF ABOUT TOL USING A MODIFICATION OF *
C

C

C

C

L

BRENT'S METHOD THAT USES DERIVATIVES. THE ABSCISSA OF THE *
MINIMUM IS RETURNED AS XMIN, AND THE MINIMUM FUNCTION ~ *
VALUE IS RETURNED AS DBRENT, THE RETURNED FUNCTION VALUE. *
Sk ok kR kR kR ko kR kR ke kR R Rk R

FUNCTION DBRENT(AX,BX,CX,F,DF,TOL,XMIN)

INTEGER ITMAX

DOUBLE PRECISION DBRENT,AX,BX,CX,TOL,XMIN,DF,F,ZEPS

EXTERNAL DF,F

PARAMETER(ITEM=100,ZEPS=1.0D-10)

INTEGER ITER

DOUBLE PRECISION A,B,D,D1,D2,DU,DV,DW,DX,E,FU,FV,FW,FX,OLDE,

+ TOL1, TOL2, U,U1,U2,V,W,X,XM

LOGICAL OK1,0K2

A=MIN(AX,CX)

B=MAX(AX,CX)

V=BX

DO 11 ITER=1,ITMAX

XM=0.5*(A+B)

TOL1=TOL*ABS(X)+ZEPS

TOL2=2.*TOL1

IF(ABS(X-XM) .LE. (TOL2 - .5%(B-A)))GOTO 3

IF(ABS(E) .GT. TOL1) THEN
DI=2.*(B-A)
D2=DI
[F(DW.NE.DX)D1=(W-X)*DX/(DX-DW)
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IF(DV.NE.DX)D2=(V-X)*DX/(DX-DV)
Ul=X+D1
U2=X+D2
OKI=((A-U1)*(U1-B).GT.0) .AND. (DX*DI .LE. 0.)
OK2=((A-U2)*(U2-B).GT.0) .AND. (DX*D2 .LE. 0.)
OLDE=E
E=D
[F(.NOT. (OK1.0R.OK2))THEN
GOTO 1
ELSEIF (OK1 .AND. OK2)THEN
[F(ABS(D1).LT.ABS(D2))THEN
D=Dl1
ELSE
D=D2
ENDIF
ELSEIF (OK1) THEN
D=DI
ELSE
D=D2
ENDIF
IF(ABS(D) .GT. ABS(0.5*OLDE))GOTO |
U=X+D
IF(U-A .LT. TOL2 .OR. B-U .LT. TOL2)D=SIGN(TOL[,XM-X)
GOTO 2
ENDIF
IF(DX.GE.0.)THEN
E=A-X
ELSE
E=B-X
ENDIF
D=.5*E
IF(ABS(D) .GE. TOL1)THEN
U=X+D
FU=F(U)
ELSE
U=X+SIGN(TOL1,D)
FU=F(U)
IF(FU.GT.FX)GOTO 3
ENDIF
DU=DF(U)
IF(FU.LE.FX)THEN
IF(U.GE.X) THEN
A=X
ELSE
B=X
ENDIF
V=W
EFV=FW
DV=DW
w=X
FW=FX
DW=DX
X=U
FX=FU
DX=DU
ELSE
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IF(U.LT.X)THEN
A=U
ELSE
B=U
ENDIF
IF(FU.LE.FW .OR. W.EQ.X)THEN
V=W
FV=FW
DV=DW
W=U
FW=FU
DW=DU
ELSEIF(FU .LE. FV .OR. V.EQ.X .OR. V.EQ.W)THEN
v=U
FV=FU
DV=DU
ENDIF
ENDIF
11 CONTINUE
3 XMIN=X
DBRENT=FX
RETURN
END

Ct‘tt!*‘****t#**********k**‘****##*t#**#*t**tt*tt**ttt**tt#ttttt*'

FUNCTION FINDBETA(TG,TGO,MLAYR,NLAYR,MNODE,
+ NNODE)

C*it#*****#*t***#***#**‘t#**1‘*1‘**t**‘t*it##t***#k*tt‘***#*

C  THIS ROUTINE IS TO FIND THE BETA ACCORDING TO  *

C  (2.4.8)--(24.10). *
C  TG(MLAYR, MNODE, 0:MNODE) STORES TOTAL *
C  GRADIENT *

Crrsiepicoobrk oo ok kR e ok R ok R R R Rk kR R R kR ko
C**##***t**t*t*‘*t*ttk*‘*****t#**‘**tt*tt*tt‘*#**tk*#t#*t**#tt*tt#

END
RETURN
FINDBETA=SUM/SUM1
C
10 CONTINUE
20  CONTINUE
FUNCTION FINDBETA(TG,TGO,MLAYR,NLAYR,MNODE,
+ NNODE)

c**k*ttt*t#****tttl****t*t**t*‘t**tt**‘**t**‘#*‘*#tt*t****t*

C  THIS ROUTINE IS TO FIND THE BETA ACCORDING TO  *

C  (24.8)--(24.10). *
C  TG(MLAYR, MNODE, 0:MNODE) STORES TOTAL .
C  GRADIENT .

Cttﬁtttt#tt*ttt*##*#**t****#***t**tttt*t#tt*tt'tt***#*tt#*‘*

INTEGER MLAYR,NLAYR,MNODE,NNODE(0:MLAYR)
DOUBLE PRECISION TG(MLAYR,MNODE,0:MNODE),
+ TGO(MLAYRMNODE,0:MNODE),FINDBETA,SUM,SUM |
INTEGER LJKKK,LL
C
SUM=0.D0
SUM1=0.D0
DO 10 K=1,NLAYR
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KK=NNODE(K)
LL=NNODE(K-1)
DO 20 J=1,KK
DO 30 1=0,LL
SUM = SUM + TG(K.J,1)*TG(K.J.])
SUMI = SUMI + TGO(K,J,)* TGO(K,J.I)
30 CONTINUE
20  CONTINUE
10 CONTINUE
C
FINDBETA=SUM/SUMI
RETURN
END

C*it*‘***t**#t*‘t*“tt**ttt#‘t"t‘***‘****‘#*t**iiti***‘**‘***#***

FUNCTION FINDE(P,T,MSAMP,NSAMP,MNODE,

+ W,MLAYR,NLAYR,NNODE,O,LAMDA, W0)
C*t¥******t#tt##t**t*‘**t‘tt*t*‘*t*t**t***““‘t“‘*t*'tt******.*
THIS FUNCTION IS TO FIND THE PERFORMANCE .
FUNCTION E(W) REF. (3.6.1).

FINDE -- THE PERFORMANCE VALUE. REF (3.6.1) .
T(MSAMP,MNODE)-- THE DESIRED OUTPUT OF THE NET ~ *
W(MLAYR,MNODE,0:MNODE)--WEIGHT MATRIX OF THE NET
O(MSAMP,MNODE)-- THE CALCULATED OUTPUT OF THE NET ~ *
LAMDA-- THE CONSTANT IN THE PENALTY TERM. *

WO -- THE CONSTANTS IN THE PENALTY. *

skkkkkkkkiokk ko kR Rk kR kR kR kR kR kR kR Rk Rk kR Rk k

OOOQAO0000

INTEGER MSAMP,NSAMP,MNODE,MLAYR,NLAYR,
+ NNODE(0:MLAYR)
DOUBLE PRECISION O(MSAMP,MNODE), T(MSAMP,MNODE),
+ W(MLAYR,MNODE,0:MNODE),LAMDA,W0,SUM,SUM1,FINDE,
+ P(MSAMP,MNODE)
DOUBLE PRECISION N(MLAYR,MNODE),A(0:MLAYR,0:MNODE)
INTEGER 1,J,K,L,KK,LL
C
C CALCULATE THE PENALTY TERM.
C
SUM =0.D0
SUMI1=0.D0
DO 100 K=1,NLAYR
KK=NNODE(K)
LL=NNODE(K-1)
DO 200 J=1,KK
DO 300 1=0,LL
SUM=SUM+LAMDA*(W(K,J,[)**2/(W0**2+W(K,J,[}**2))
300 CONTINUE
200  CONTINUE
100 CONTINUE
C
C CALCULATE THE FIRST TERM
e
DO 10 L=1,NSAMP
CALL FORWARD(P,O,N,MLAYR,NLAYR,MNODE,A,NNODE,
+ W,L,MSAMP)
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DO 20 K=1.NNODE(NLAYR)
SUMI=SUMI+(T(L,K)-O(L,K))**2
20 CONTINUE
10 CONTINUE
C
FINDE = 0.5D0* (SUM +SUM]1)
c
RETURN
END

Ct*tt*#**‘*##t*t*tt##tt‘**!tttt‘.*tt‘.*tt.“Qt‘*“t*ﬁ‘l‘***‘tttt*tt*#

SUBROUTINE FORWARD(P,0,N,MLAYR,NLAYR,MNODE, A,
+ NNODE,W,SN,MSAMP)
C**#***#*****t#tt***t#*tt*t***t#*tt‘itttttt‘“tt*tit*‘tt“"tt.‘*“‘.#‘tt
THIS SUBROUTINE IS TO CALCULATE THE SUM OF *
THE INPUTS OF A NEURON J IN LAYER K .
PLEASE REFER TO (3.1.1) .
N(MLAYRMNODE)--STORES THE SUM OF INPUTS OF .
NEURON J IN LAYER K
A(0:MLAYR,MNODE)--STORES THE OUTPUT OF *
NEURON J IN LAYER K ,
A(0:MLAYR,0:MNODE) -- STORES THE INPUT DATA. .
P(MSAMP,MNODE) — IS THE INPUT DATA FROM ONE SAMPLE .
T(MSAMP,MNODE) - IS THE DESIRED OUTPUT DATA FROM ONE *
SAMPLE
O(MSAMP,MNODE) -- IS THE OUTPUT CALCULATED FROM THE .
NET. *
W(MLA YR MNODE 0:MNODE) -- THE WEIGHT OF THE NET. .
SN -- THE SAMPLE INDEX.
dkkknekrdhokkkkkgokdkkkkkdkkkkrkkkkkkkkkkkkhkkkkkk kR ki ke kb kk kR kR k kR kkkkEk
INTEGER MLAYR,MNODE,NNODE(0:MLAYR),1,J K,
+ NLAYR,L,SN,MSAMP,KK,LL
DOUBLE PRECISION N(MLAYR,MNODE),A(0:MLAYR,0:MNODE),
+ W(MLAYR,MNODE,0:MNODE),SUM,P(MSAMP,MNODE),
+ O(MSAMP,MNODE)
e
C  STORE INPUT DATA INTO A(0,MNODE)
C

yRelolslicielvleclplisiolislipisialel

DO 100 I=1, NNODE(0)
A(0,[=P(SN,I)
100 CONTINUE
C
C STORE THE BIAS
C
A(0,0) = -1.D0

CALCULATE THE SUM OF THE INPUTS OF A NEURON J IN LAYER K

o000

LOOP OVER LAYER
C LOOP OVER LAYER
DO 10 K=1,NLAYR
C LOOP OVER CURRENT NODE (TARGET)
KK=NNODE(K)
LL=NNODE(K-1)
DO 20 J=1,KK
C LOOP OVER PRVIOUS NODE (SOURCE)
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SUM = 0.0D0
DO 30 I=0,LL
SUM = SUM + W(K,J,D*A(K-1,1)
30 CONTINUE

C
C CALCULATE THE SUM OF 1 NEURON J IN LAYER K
C

N(K,T) = SUM
C
C CALCULATE THE OUTPUT OF NEURON J IN LAYER K
i

A(K,J) = SIGF(N(K,J))
20  CONTINUE

¢
C THE BIAS
C

A(K,0)=-1
10 CONTINUE

C
C  STORED THE OUTPUT IN A(NNODE(NLAYR))
C

KK=NNODE(NLAYR)
DO 200 I=1, KK
O(SN,[FA(NLAYR,I)
200 CONTINUE
RETURN
END

i kb b L Lt

SUBROUTINE FRPRMN(P,N,FTOL,ITER.FRET)
C‘** ekt kkkkkk kR ke kb kok Rk Rk ke ko Rk Rk Rk
GIVEN A STARTING POINT P THAT IS A VECTOR OF LENGTH  *
N, FLETCH-REEVES-POLAK-RIBIERE MINIMIZATION IS *
PERFORMED ON A FUNCTION FUNC, USING ITS GRADIENT AS  *
CALCULATED BY A ROUTINE DFUNC. THE CONVERGENCE TOLERANCE *
ON THE FUNCTION VALUE IS INPUT AS FTOL. RETURNED &
QUANTITIES ARE P(THE LOCATION OF THE MINUMUM), ITER(THE *
NUMBER OF ITERATIONS THAT WERE PERFORMED),AND FRET(THE *
MINIMUM VALUE OF THE FUNCTION). THE ROUTINE LINMINIS *
CALLED TO PERFORM LINE MINIMIZATIONS. 2
PARAMETERS: NMAX IS THE MAXIMUM ANTICIPATED VALUE OF N; *
ITMAX IS THE MAXIMUM ALLOWED NUMBER OF ITERATIONS; EPS *
IS A SMALL NUMBER TO RECTIFY SPECIAL CASE OF CONVERGFNG v
TO EXACTLY ZERP FUNCTION VALUE.
o ek o ook ok ok ool o ol o ok ok o ok R sk ok ok ok ok kol R ok R ok R Rk kR kR R ok Rk ok ko R ok
INTEGER ITER,N.NMAX,ITMAX
DOUBLE PRECISION FRET,FTOL,P(N),EPS,FUNC
EXTERNAL FUNC
PARAMETER(NMAX=50,ITMAX=200,EPS=1.0D-10)

QAOAOOQQOO0COOODD

»
C USES DFUNC,FUNC,LINMIN
C
INTEGER ITS,)
DOUBLE PRECISION DGG,GAM,GG,GINMAX),HINMAX),XI(NMAX)
FP = FUNC(P)
CALL DFUNC(P,XI)
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DO 11 J=1,N
GI=-XI(J)
HI)=G()
XI(J)=HQ)
11 CONTINUE
DO 14 ITS=1,ITMAX
CALL LINMIN(P,XI,N,FRET)
[F(2.* ABS(FRET-FP) .LE. FTOL*(ABS(FRET)+ABS(FP)+EPS))RETURN
FP = FUNC(P)
CALL DFUNC(P,XI)
GG =0.D0
DGG =0.D0
DO 12 J=I)N
GG=GG+G(I)**2
DGG=DGGHXIJ}+G()*XI()
12 CONTINUE
IF(GG .EQ. 0)RETURN
GAM=DGG/GG
DO 13 J=1,N
G()y=-XI(J)
HA)=G(N+GAM*H(J)
XI(Jy=H(J)
13 CONTINUE
14 CONTINUE
C
RETURN
END

C* LS bttt lt t t e L Lt e e e e e R e R S R LR e LR S e L

SUBROUTINE GETINPUTDATA(P,T,MNODE, DIMIN,DIMOUT,MSAMP,

+ NSAMP)
C***tttt#tt**tt*l*tt#t****t**t********tt***tt*ttt‘*#*#*t*t*#t‘tii‘.‘*!
C  THIS SUBROUTINE IS TO READ THE INPUT DATA FROM *

C  TRAINING SAMPLE AND THE TARGET OUTPUT DATA. *

C* 2 6 o 3 0o e o o R o o ool o o ol o o e e 3 o o o o o ok o o o o ok o 3 o oo o o0 o o o o o o ol ol o o o o oo o o o o ok

INTEGER MNODE, DIMIN,DIMOUT,I,NSAMP,MSAMP,J
DOUBLE PRECISION P(IMSAMP,MNODE), TIMSAMP ,MNODE)

IN=20
OPEN(UNIT = IN, FILE = 'TRAIN.DAT ,STATUS = 'OLD',JOSTAT=IOERR)
IF(IOERR .NE. 0) THEN
WRITE(*,10) [OERR
[0 FORMAT(1X,CANNOT OPEN NETWORK TRAINING DATA FILE(TRAIN.DAT),
+ 15)
STOP
ENDIF
C READ IN NUMBER OF TRAINING SAMPLE
READ(IN,*)NSAMP
C
DO 100 J= 1, NSAMP
C  READIN THE INPUT DATA
READ(IN,*}P(J,1),I=1,DIMIN)
¢
C  READ IN THE DESIRED OUTPUT DATA(TARGET DATA)
READ(IN, *XT(J,[),I=1,DIMOUT)
100 CONTINUE
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C

CLOSE (UNIT=IN)
&

RETURN

END

C**itttl**t!‘***‘*““##t‘*tt#*t‘*#*ittt‘*t#*t**“t“*“t*!“*‘#t“#*t#t-'

SUBROUTINE GETPP(PP,PP0,TG,MLAYR,NLAYR,MNODE,

+ NNODE, BETA)
C*ttt*#t**‘**t**‘*‘**‘ttt!ttt**‘*'!ﬁt#t*t‘*t**#*‘ttt“t#‘#*###ttt
THIS SUBROUTINE IS TO CALCULATE METRIX PP. REF.  *

ALGORITHM 3.6.1 (3) AND (7). IT ADDS THE PREVIOUS ~ *
GRADIENT TO THE CURRENT GRADIENT ACCORDING TO .
DIFFERENT BETA. REF.(2.4.8)-(2.4.10). STORED THE ~ *
WHOLE GRADIENT IN PP.
tt********"-t*‘*****t*‘t‘**t****‘t#**tt‘t‘t#‘***‘*‘*t“*‘tt#tt*
INTEGER MLAYR,NLAYR,MNODE,NNODE(0:MLAYR)
DOUBLE PRECISION PP(MLAYR,MNODE,0:MNODE),BETA,
+ TG(MLAYR,MNODE,0:MNODE),
+ PPO(MLAYR,MNODE,0:MNODE)
INTEGER LJ,K,KK,LL

islokeloNele!

C
C CALCULATE THE GRADIENT AND STORE IT IN PP
G
DO 10 K=I,NLAYR
KK=NNODE(K)
LL=NNODE(K-1)
DO 20 J=1,KK
DO 30 1=0,LL
PP(K,J,I) = -TG(K,J,]} + BETA * PPO(K.J,1)
30 CONTINUE
20  CONTINUE
10 CONTINUE
C
RETURN
END

C*‘t*#t***#*'ttt*'t#**t**it*til**i#ttt#**t*t*****‘*t‘**t.tﬁ“‘t***

SUBROUTINE GRAD(SENSLA,W ,NLAYR, MLAYR,
+ NNODE,MNODE,G,W0,LAMDA)

Ct#ttt'!‘ttt#t*#*tt***t#t**t*t‘*#*t*t#t**#t#**!‘!*'t‘ttt‘l“**tt*it*t**

C  THIS SUBROUTINE IS TO CALCULATE THE *

C  GRADIENT OF THE PERFORMANCE W.R.T WEIGHT. .
C  REF.(3.6.6). *

C  SENSI(MLAYR,MNODE)--THE SENSITVITY MATRIX. REF(3.6.12)

C  A(0:MLAYR,0:MNODE) -- THE OUTPUT OF A NEURON. REF(3.1 2) ¥
C  W(MLAYRMNODE,0:MNODE)-- THE WEIGHT MATRIX

C  G(MLAYRMNODE,0:MNODE)— THE GRADIENT OF THE NET *
&) OF ONE SAMPLE DATE. "

C WO -- THE CONSTANTS IN PENALTY TERM W0. a

C  LAMDA -- THE CONSTANT IN THE PENALTY. &

C

EE R E Rt Rt E e e R e s e e R R R e S R e R S R L L

INTEGER NLAYR, MLAYR,MNODE,LJ,K,KK,LL,
+ NNODE(0:MLAYR)

DOUBLE PRECISION SENSI(MLAYR,MNODE),A(0:MLAYR,
+ 0:MNODE), W(MLAYR,MNODE,0:MNODE),
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+ G(MLAYR,MNODE,0:MNODE),W0,LAMDA

C
C  CALCULATE THE GRADIENT OF PERFORMACE FUNCTION W.R.T
C  WEIGHTS ACCORDING TO (3.6.6)
C
C  LOOPOVER LAYER
C
DO 10 K=1,NLAYR
KK=NNODE(K)
LL=NNODE(K-1)
DO 20 J=1,KK
C
C BIAS TERM
€
G(K.J,0)=SENSI(K,J)+
+ LAMDA * (W(K,J.0) * WO*WOY((WO*WO0 + W(K.J,0)**2)**2)
DO 30 I=1,LL
G(K,J,))=SENSI(K,J) * A(K-1,I) +
+ LAMDA * (W(K,J1) * WO*WO)/((WO*WO0 + W(K,J,1)**2)**2)
30 CONTINUE
20 CONTINUE
10 CONTINUE
C
RETURN
END

C*t******tt*##****#tt*it#tt*#‘******#tttt*‘ﬂ"‘*t*‘*!**‘ttt**“**‘i‘

SUBROUTINE INITG(NLAYR,MLAYR,NNODE,

+ MNODE,TG)
Ct*‘*##ttttt*t‘**tt****t******#t*****#*t***t***t**t****##
C  THIS FUNCTION IS TO INITIALIZE THE TOTAL ~ *

C  GRADIENT TOO. *
C**t**t**#********#*'*‘**t#i‘****i**"“******Q*t*#*t**t#
INTEGER NLAYR, MLAYR,MNODE.I,J,K,KK,LL,

+ NNODE(0:MLAYR)

DOUBLE PRECISION TG(MLAYR,MNODE,0:MNODE)

INITIALIZE THE TOTAL GRADIENT TO 0
AND NUMOFSAMPLE TO 0

OO0

DO 10 K=1,NLAYR
KK=NNODE(K)
LL=NNODE(K-1)
DO 20 J=1,KK

DO 30 1=0,LL
TG(K.J,I)= 0

30 CONTINUE
20  CONTINUE
10 CONTINUE
C

RETURN

END

Ct***#****‘**tt*#*‘t*******‘tt*i#tt#.*#ttttt!tt#**#'****

SUBROUTINE INIWEIGHT(WEIGHT, NLAYR, MLAYR,NNODE,
+ MNODE, SEED,NWEIG)
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C*‘*t‘*** L2 RS2 PRS2 R Rt 2 2 R R R R a b P R T g L L]

INITIALIZE THE WEIGHT OF INPUT LAYER w
*x

NLAYR -- THE NUMBER OF LAYER (INCLUDING i
OUTPUT AND HIDDEN LAYERS). "
L 3

NUMNODE(I) — THE NUMBER OF NODE AT LAYER 1. .
NUMNODE(0) - THE NUMBER OF INPUT (NODE). *
NUMNODE(NLAYR) - NUMBER OF NODE INQUTPUT LAYER  *
NWEIG -- THE NUMBER OF WEIGHT
*
WEIGHT(LAYER. N, 0:N)-- LAYER IN THE LAYER INDEX  *
N,M CORRESPONDING TO W(J,1), LE., .
WEIGHT(LAYER, N, M) IS THE WEIGHT .
OF THE CONNECTION FROM NODE M OF .
THE (LAYER-1)TH LAYER TO NODE N OF .
THE LAYERTH LAYER. .
WEIGHT(LAYER, N, 0) IS THE BIAS. *
*

B T T T T T T T P T T T

INTEGER MLAYR, MNODE,NWEIG

INTEGER LJK,FANIN.NNODE(0:MLAYR),NLAYR,KK,LL

DOUBLE PRECISION WEIGHT(MLAYR, MNODE,0:MNODE), TEMP,
+ DRANDOM,SEED,TEMPI

plvielieirisliclicielickelelielcielolialeoRe)

C
C GENERATE THE RANDOM NUMBER BETWEEN -0.5 TO 0.5
C

TEMP1 = SEED
TEMP = DRANDOM(TEMPI) - .5D0
NWEIG =0
C
C LOOP OVER LAYER
C
DO 10 K=1, NLAYR
G
C CALCULATE THE FAN-IN OF THE LAYER.
C
KK=NNODE(K)
LL=NNODE(K-1)
FANIN = NNODE(K-1) + 1
C
C LOOP OVER ALL NEURONS IN CURRENT LAYER
C
DO 20 J=1, KK
C
C LOOP OVER ALL NEURONS IN PREVIOUS LAYER
C
DO301=0,LL
WEIGHT(K,J,) = TEMP/FANIN
NWEIG = NWEIG + |
30 CONTINUE
20 CONTINUE
10 CONTINUE

RETURN
END
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C*t*titt**#ttltt‘titt*t‘t**t**‘**t*’*#*‘*‘#tt*.*‘*.“‘*‘**

SUBROUTINE LINMIN(FRET,P,T,MSAMP,NSAMP,
+ MNODE, W, TG,MLAYR,NLAYR,NNODE,O,LAMDA,W0)

Ct*‘3*l*#*‘****t‘t‘“t-*t*#‘ﬁ*‘**ik*#*‘ttt*t‘itt‘t#‘t*tt‘l**i*t*‘
"

e

c
C
C
&
C
C
C
C
C
6
&

&

GIVEN AN N-DIMENSIONAL POINT P(1:N) AND AN
N-DIMENSIONAL DIRECTION XI(1:N), MOVES AND

RESETS P TO WHERE THE FUNCTION FUNC(P) TAKES ON

A MINIMUM ALONG THE DIRECTION XI FROM P AND

REPLACES XI BY THE ACTUAL VECTOR DISPLACEMENT

THAT P WAS MOVED. ALSO RETURNS AS FRET THE VALUE
OF FUNC AT THE RETURND LOCATION P. THIS IS

*

*

*

ACTUALLY ALL ACCOMPLISHED BY CALLING THE ROUTINES

MNBRAK AND BRENT.

*

REF "NUMERICAL RECIPIES"

+ NNODE(0:MLAYR)

*

DOUBLE PRECISION O(MSAMP,MNODE),T(MSAMP,MNODE),

+ W(MLAYR,MNODE,0:MNODE), TG(MLAYR,MNODE,0:MNODE),

+ P(MSAMP ,MNODE),LAMDA,W0,TOL,FRET

INTEGER MSCOM,NSCOM,MNCOM,MLCOM,

+ NLCOM

PARAMETER(MLCOM=4, MNCOM=100,MSCOM=200)

INTEGER NNCOM(0:MLCOM)

DOUBLE PRECISION OCOM(MSCOM,MNCOM), TCOM(MSCOM,
+ MNCOM), WCOM(MLCOM,MNCOM,0:MNCOM),
+ LAMCOM,W0COM, TGCOM(MLCOM,MNCOM,0:MNCOM),

+ PCOM(MSCOM,MNCOM)

DOUBLE PRECISION AX,BX,FA,FB,FX,XMIN,XX,BRENT

COMMON /FI/NSCOM,  NLCOM, NNCOM

*

*¥rFkkkkrkrrrkkkrkkkkk ek okhkkkkrkkkkrknk kR kR Rk Rk kR ¥k

INTEGER MSAMP,NSAMP,MNODE,MLAYR,NLAYR,

*

COMMON /F2/PCOM,0COM, TCOM,WCOM, TGCOM,LAMCOM,WO0COM

INTEGER LJ,K,KK,LL
EXTERNAL FIDIM

C INITIALIZE THE PARAMETERS

C

60
50

NSCOM=NSAMP
NLCOM=NLAYR
LAMCOM=LAMDA
W0COM=W0
TOL=1.0D-4
DO 10 I=0,NLCOM
NNCOM(I)=NNODE(T)
CONTINUE
DO 50 I=1,NSCOM
KK=NNCOM(NLCOM)
DO 60 J=1,KK
OCOM(LI)=O(L))
TCOM(LI=T(LJ)
PCOM(LJ=P(L.J)
CONTINUE
CONTINUE

DO 20 K=1,NLCOM
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KK=NNODE(K)
LL=NNODE(K-1)
DO 30 J=1,KK
DO 40 1=0,LL
WCOM(K,J,D=W(K.J,I)
TGCOM(K,J,)=TG(K, 1)

40 CONTINUE
30 CONTINUE
20 CONTINUE
C
C  USES BRENT,F1DIM,MNBRAK
C
AX=-1.0D0
XX =1.0D0

CALL MNBRAK(AX,XX,BX,FA,FX,FB,F1DIM)
FRET = BRENT(AX,XX,BX,F1DIM,TOL,XMIN)

C
C CALCULATE THE TOTAL GRADIENT
C
DO 70 K=1,NLCOM

KK=NNODE(K)

LL=NNODE(K-1)

DO 80 J=1,KK

DO 90 I=0,LL

TG(K,J,)=XMIN*TG(K,J,I)
WKL D=WKJIHTG(K, )
90 CONTINUE
80  CONTINUE
70  CONTINUE
C
RETURN
END

Ct*t##**t*t# LR a2 B P S Rl P P R L Lt b R LR Rttt Rl

FUNCTION F1DIM(X)
INTEGER MSCOM,NSCOM,MNCOM,MLCOM,
+ NLCOM
PARAMETER(MLCOM=4, MNCOM=100,MSCOM=200)
INTEGER NNCOM(0:MLCOM)
DOUBLE PRECISION OCOM(MSCOM,MNCOM), TCOM(MSCOM,
+ MNCOM),WCOM(MLCOM,MNCOM,0:MNCOM),
+ LAMCOM,W0COM,TGCOM(MLCOM,MNCOM,0:MNCOM),
+ PCOM(MSCOM,MNCOM)
DOUBLE PRECISION XT(MLCOM,MNCOM,0:MNCOM)

C
C THE COMMON BLOCK
&
COMMBON /FI/NSCOM,  NLCOM, NNCOM
COMMON /F2/PCOM,CCOM, TCOM,WCOM,TGCOM,LAMCOM,WOCOM
DOUBLE PRECISION FI1DIM,X
EXTERNAL FINDE
C
C USES FINDE

C  USED BY LINMIN AS THE FUNCTION PASSED MNBRAK AND BRENT
C
INTEGER LJ,K,KK,LL
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DO 100 K=1,NLCOM
KK=NNCOM(K)
LL=NNCOM(K-1)
DO 200 J=1,KK
DO 300 I=0,LL
XT(KJ,=WCOM(K,J, [+ X*TGCOM(K,J.[)
300 CONTINUE
200 CONTINUE
100 CONTINUE
F1DIM = FINDE(PCOM, TCOM,MSCOM,NSCOM,MNCOM,XT,
+ MLCOM,NLCOM,NNCOM,0COM,LAMCOM, WOCOM)
RETURN
END

C‘**t**tt‘t*#**tt**ttt‘t*t‘***t‘t*t#**#**tt#t*‘*‘**t*t*‘t*tttt*t**#*

SUBROUTINE MNBRAK(AX,BX,CX,FA,FB,FC,FUNC)
Ci***t***#*#‘**t*****#t**kt*#*#tt******‘*#‘tlt**t#*‘*‘*ttt‘t“-l‘
THIS ROUTINE IS TO INITIALLY BRACKETING .
A MININUM. REF " NUMERICAL RECIPIES *
IN FORTRAN, THE ART OF SCIENTIFIC COMPUTING" *
BY WILLIAM H. PRESS, ETC.
*
GIVEN A FUNCTION FUNC AND GIVEN DISTINCT *
INITIAL POINTS AX AND BX, THIS ROUTINE .
SEARCHES IN THE DOWNHILL DIRECTION (DEFINED -
BY THE FUNCTION AS EVALUATED AT THE INITIAL .
POINTS) AND RETURNS NEW POINTS AX, BX, *
CX THAT BRACKET A MINIMUM OF THE FUNCTION. *
ALSO RETURNED ARE THE FUNCTION VALUES AT *
THE THREE POINTS, FA, FB AND FC. *
PARAMETERS: GOLD IS THE DEFAULT RATIO BY *
WHICH SUCCESSIVE INTERVALS ARE MAGNIFIED; »
GLIMIT IS THE MAXIMUM MAGNIFICATION FOR *
A PARABOLIC-FIT STEP.
kkhkkkhhk kg kkhkk kR kb h bk bk kR ke ke kb kR kR
DOUBLE PRECISION AX,BX,CX,FA,FB,FC,FUNC,GOLD,GLIMIT,TINY
EXTERNAL FUNC
PARAMETER (GOLD=1.618034D0,GLIMIT=100.D0, TINY=1.D-20)
DOUBLE PRECISION DUM,FU,Q,R,U,ULIM
FA=FUNC(AX)
FB=FUNC(BX)
[F(FB .GT. FA) THEN
DUM=AX
AX=BX
BX=DUM
DUM=FB
FB=FA
FA=DUM
ENDIF

a0 0nn

C
C  FIRST GUESS FOR C
C
CX = BX +GOLD*(BX-AX)
FC = FUNC(CX)
C
C INITIALIZE THE ITERATION COUNT



C
ITER=0
1 IF(FB.GE.FC)THEN
R=(BX-AX)*(FB-FC)
Q=(BX-CX)*(FB-FA)
U=BX~((BX-CX)*Q-(BX-AX)*R)/(2.*SIGN(MAX(ABS(Q-R),
+ TINY),Q-R))
ULIM=BX + GLIMIT *CX-BX)
IF((BX-U)y*(U-CX) .GT. 0) THEN
FU = FUNC(U)
IF(FU .LT. FC)THEN
AX = BX
FA =FB
BX=U
FB=FU
RETURN
ELSE IF(FU .GT. FB) THEN
CX=U
FC=FU
RETURN
ENDIF
U = CX +GOLD*(CX - BX)
FU = FUNC(U)
ELSE IF((CX-U)*(U-ULIM) .GT.0)THEN
FU = FUNC(U)
IF(FU .LT. FC) THEN
BX = CX
CX=U
U= CX + GOLD*(CX - BX)
FB = FC
FC=FU
FU = FUNC(U)
ENDIF
ELSE IF((U - ULIM)*(ULIM - CX) .GE. 0)THEN
U = ULIM
FU = FUNC(U)
ELSE
U=CX + GOLD * (CX - BX)
FU = FUNC(U)
ENDIF
AX = BX
BX = CX
CX=U
FA =FB
FB = FC
FC=FU
ITER = ITER +]
GOTO 1
ENDIF
RETURN
END

SUBROUTINE NETPRINT(LAYER MLAYR,NNODE,SEED,WO0.
+ LAMDA,LAMDA2,METHOD)

CH*k* Fkkkkdorkk ok kkokkkk kR ko Rk kR koo kR Rk Rk kR kR kR kR Rk

C  THIS SUBROUTINE IS TO PRINT THE NETWORK ARCHITCTURE AND *
C  INITIAL PARAMETERS.
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CHerrrtdrkrrkktr bkt rhb bbb ehrr bbb bbbk kb rrhedrrdpriekey

INTEGER LAYER, MLAYR,NNODE(0:MLAYR),METHOD,NSAMP
DOUBLE PRECISION SEED, TOL, W0, LAMDA,LAMDA2

WRITE(*, 10)LAYER
10 FORMAT(1X, THE NUMBER OF LAYER IN THE NETWORK IS: ',14)
WRITE(*,20)NNODE(0)
20 FORMAT(1X, THE INPUT DIMENSION IS, 14)
DO 30 =1, LAYER
WRITE(*40),NNODE(I)
40  FORMAT(1X, THE NUMBER OF NODE IN LAYER ',14,"IS", I14)
30 CONTINUE
WRITE(* 60)NNODE(LAYER)
60 FORMAT(I1X,' THE OUTPUT DIMENSION IS, 14)
IF (METHOD .EQ. 0) THEN
WRITE(*,100)
100 FORMAT(1X, THE PENALTY METHOD IS USED')
ELSE IF(METHOD .EQ.1) THEN
WRITE(* 200)
200 FORMAT(1X, THE STOP TRAINING METHOD IS USED')
ELSE
WRITE(*,300)
300 FORMAT(1X,METHOD DATA ERROR')
STOP
ENDIF
C  PRINT THE PARAMETERS
WRITE(*,50)SEED,W0,LAMDA,LAMDA2
50 FORMAT(IX, THE SEED IS 'F10.4/1X,
+ /1X,'THE WO IS ' F16.12/1X, THE LAMDA IS ', F16.12,
+ /1x,'The LAMDA2 IS ', F16.12)
c
RETURN
END

CH*ErrriooR fop ook ook ok R kR ok okl ok Rk R o ok R R ook S

SUBROUTINE NETSETUP(LAYER,MLAYR,NNODE,SEED,
+ WO0,LAMDA,LAMDA2,METHOD)
C**t*t*******t***#****#***##**#*#****#**t#“*#t***‘*i‘#t**ttttt**
C *
C  THIS SUBROUTINE IS TO READ THE INPUT FILE AND SET UP  *
C  THE NETWORK ARCHITECTURE AND INITIALIZE PARAMETERS ~ *
*
g*##ﬂ**‘tttt*ttQ**#*t*t'tt*tt*!*******#*t#*#*"**ttt*it‘**‘*t*‘*‘
INTEGER LAYER, MLAYR, MAXNODE, NNODE(0:MLAYR),METHOD,
+ NSAMP
DOUBLE PRECISION SEED,TOL,W0,LAMDA,LAMDA2
C
IN=50
OPEN(IN, FILE = 'NET.DAT, STATUS ='OLD', IOSTAT= IOERR)
IF(IOERR .NE. 0) THEN
WRITE(*,10)JOERR
10  FORMAT(CANNOT OPEN NETWORK DATA FILE (NET.DAT), IOERR=",110)
STOP
ENDIF
¢
C  READ IN THE NUMBER OF LAYER
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READ(IN,*)LAYER

READ IN THE NUMBER OF NODE IN EACH LAYER, THE NUMBER OF NODE IN
INPUT LAYER IS IN NNODE(0).

READ(IN,*)}(NNODE(I),I=0,LAYER)

READ IN METHOD, (0 FOR PENALTY METHOD, 1 FOR STOP TRAINING METHOD)
READ(IN,*) METHOD

READ IN SEED NUMBER, TOLERANCE, W0 AND LAMDA LAMDA2

aOnn an oOcn O

READ(IN,*) SEED, W0, LAMDA
READ(IN,*) LAMDA?2
WRITE(*, 1111) LAMDA, LAMDA2

1111 FORMAT(LAMDA="F16.12,'LAMDA2="F16.12)
CLOSE (UNIT = IN)

C
RETURN
END

[ b bl

SUBROUTINE PRINT3D(A,MLAYR,NLAYR,MNODE,
+ NNODE)
C***#****‘t*t*#***it‘*ttt‘t****tt***K****‘******t*t*#***t*##**‘**it**
C  THIS SUBROUTINE [S TO COPY A ORIGINAL MATRIX TO NEW MATRIX. *
C  ITIS USED TO COPY TG. *
C#*#**#t**t*#*#****t‘*tt*#‘**t*#**#*tt**#*tt**t***t*t#**‘*t*t***‘*t‘*
INTEGER MLAYR,NLAYR,MNODE,NNODE(0:MLAYR)
DOUBLE PRECISION A(MLAYR,MNODE,0:MNODE)
INTEGER LJ,K.KK,LL
DO 10 K=I,NLAYR
KK=NNODE(K)
LL=NNODE(K-1)
DO 20 J=1,KK
DO 30 1=0,LL
WRITE(*, 100)K,J,1
100 FORMAT(IX,LAYER #']15, 'J#", 15, "4 | I5)

WRITE(*, 200)A(K,J,I)
200 FORMAT(IX,'A VALUE: 'E15.7)
30 CONTINUE
20  CONTINUE
10 CONTINUE
RETURN

END

CHFFFERERIRRH KK R F AR AR F KA KRR AAR KRR REF KRR KSR RRERRRAR KRR R R K

SUBROUTINE PRINTINPUTDATA(P,T,MNODE,DIMIN,DIMOUT,MSAMP,

+ NSAMP)
o b
C  THIS SUBROUTINE IS TO PRINT THE INPUT DATA OF L4
C  TRAINING SAMPLE AND THE TARGET OUTPUT DATA. *

C*‘t*‘**#‘*‘*#*i*i‘##******‘*****#*tt#****#*t*‘#****ttt#tttt!ttt**t#‘#

INTEGER MNODE, DIMIN,DIMOUT,],NSAMP,MSAMP, ]
DOUBLE PRECISION P(MSAMP,MNODE), T(MSAMP,MNODE)
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¢
C  PRINT IN THE INPUT DATA
WRITE(*,100)NSAMP
100 FORMAT(1X,'NUMBER OF SAMPLE IS: ',15)
¢
DO 200 J=1,NSAMP
WRITE(*,300))
300  FORMAT(IX,'SAMPLE #',15)
DO 20 I= 1,DIMIN
WRITE(*,400)P(1,J)

400 FORMAT(1X,' THE INPUT DATA ARE: "E15.7)
20 CONTINUE
C

DO 30 I= 1,DIMOUT
WRITE(*,500)T(1,J)

500 FORMAT(1X,' THE DESIRED OUTPUT DATA ARE: 'E15.7)
30 CONTINUE
200 CONTINUE
C

RETURN

END

C#‘*t**i**********‘t***###*#‘t*t#*t#“*tt*t‘tt““‘i‘t*tttt*t'*tt*t‘*ti‘*t

FUNCTION DRANDOM(DL)
CAS R R Rk R KRR R ORI HOK K A R
C  THIS FUNCTION IS TO CREATE A RANDOM NUMBER BETWEEN *
C 0TOI1 x
CHEEEEERRRRRERRE R AR R R KRR KR AR AR R AR AR A
DOUBLE PRECISION DL, DRANDOM
C
10 DL=DMOD(16807.0D0*DL,2147483647.0D0)
DRANDOM=DL/2147483648.0D0
IF(DRANDOM.LE.0.0D0 .OR. DRANDOM.GE.1.0D0) GO TO 10
END

Ctttttt‘t#*tt#t**t*ttt*tt'*‘!‘t*#t*i**t#**t*t*t#t!#‘*tt‘t‘

SUBROUTINE SENSITIVITY(SENSI,W,NLAYR,MLAYR,NNODE,
+ MNODE,T,OUT,N,SN,MSAMP)
Ct.*‘**#tt**¢*$t#*t*itt***K*‘1t**.ttt**t‘l‘&ttt**##*‘*t*‘t*#**t#**“*#*t‘
THIS SUBROUTINE IS TO CALCULATE THE *
SENSITIVITY DEFINED IN (3.6.6). PLEASE REFER *
TO (3.6.6)(3.6.16)
SENSI(MLAYR,MNODE)--THE SENS[TIVITY MATRIX. REF(36.12)  *
W(MLAYR,MNODE,0:MNODE)--WEIGHT MATRIX
T(MSAMP,MNODE)--THE DESIRED OUTPUT OF THE NET *
OUT(MSAMP,MNODE)-THE CALCULATED OUTPUT OF THE NET
N(MLAYR,MNODE)--THE SUMMATION OF THE WEIGHT. REFG3.1.1)
SN -- THE SAMPLE INDEX.
sokkkkkkkkokkkkkkkhk ko hkkkk ko hhhk ko ko ko kb kb ko kR ok
INTEGER NLAYR,MLAYR,NNODE(0:MLAYR),1,J,K,KK,LL,
+ MNODE,MSAMP,SN
DOUBLE PRECISION W(MLAYR,MNODE,0:MNODE),
+ SENSI(MLAYR,MNODE),T(MSAMP,MNODE),
+ OUT(MSAMP,MNODE),N(MLAYR,MNODE),SUM
C
C CALCULATE THE SENSITIVITY OF FINAL LAYER (3.6.16)

sleNoleRelelololelo)
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C
KK=NNODE(NLAYR)
DO 10 I=1,KK
SENSIINLAYR,1) = (T(SN,I) - OUT(SN, 1))
+ *SIGFD(N(NLAYR,I))
CONTINUE

CALCULATE THE SENSITIVITY OF EACH LAYER STARTING
FROM THE FINAL LAYER. (3.6.12)

LOOP OVER LAYER

Nnn0000O0Oz

DO 20 K=NLAYR-1,1,-1
KK=NNODE(K)
LL=NNODE(K+1)

DO 40 I = 1.KK
SUM =0.D0
DO 30 J=1,LL
SUM = SUM + SIGFD(N(K, Dy*W(K+1,J,1)*SENSI(K+1,J)
30 CONTINUE
SENSI(K,)) = SUM
40  CONTINUE
20 CONTINUE
C
RETURN
END

(St t bbbt bbb bttt bt b bt i b bt b

FUNCTION SIGF(X)
C*#*¥***¢¢“tt**tt#*‘*****#t**t#****#**#*
C  SIGMOID TRANSFER FUNCTION  *
C  INPUT: DOUBLE PRECISION: X  *
C  OUTPUT: DOUBLE PRECISION: SIGF *
C**#*t#*#‘*i#***#*i**t**‘*#*‘i‘tt*****##t
DOUBLE PRECISION X, SIGF
SIGF = 1.D0 /(1.D0 + EXP(-X))
RETURN
END

C*tt*i**#i#*t#t*##*it*#**ttt****‘i*tt**t#

FUNCTION SIGFD(X)
C**tt*t***#*t*i*#**i#*#t*t!t‘*tt**#tt*t#t
C  DERIVATIVE OF SIGMOID FUNCTION *
C  INPUT: DOUBLE PRECISION: X *
C  OUTPUT: DOUBLE PRECISION SIGFD *
c#**‘**#t***#**#**t#**#*tt*t*t'*st‘t*‘*t*
DOUBLE PRECISION X, SIGFD
SIGFD= EXP(-X) / (1.DO+EXP(-X))**2)
RETURN
END

Ctt##tt**#*****‘t*I*****‘*ﬂt*t*#t##t**itit**i

SUBROUTINE SUMGRAD(G,NLAYR,MLAYR,NNODE,

+ MNODE,TG)
CHEFREREREFFRRRRRRRREERERERE KRR RRR AR R RE KRR R R AR RS kR
C  THIS FUNCTION IS TO SUM UP THE GRADIENTS *
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C  OF EACH EPOCH. *

C TGMLAYRMNODE,0:MNODE) - STORES ¥

C  THE TOTAL GRADIENTS OF NUMOFSAMPLE SAMPLES ¥

C  REF. ALGORITHM 3.6.1 (2.2)

C  G(MLAYR,MNODE,0:MNODE)-THE GRADIENT OF THE NET OF »

C ONE SAMPLE.

C  TG(MLAYR,MNODE,0:MNODE)-- THE TOTAL(SUMMATION) GRADIENT

C OF ALL SAMPLES. REF. ALG(2.3)
(O

INTEGER NLAYR, MLAYR,MNODE,1,J,K,KK,LL,
+ NNODE(0:MLAYR)

DOUBLE PRECISION G(MLAYR,MNODE,0:MNODE),
+ TG(MLAYR,MNODE,0:MNODE)

CALCULATE THE GRADIENT OF PERFORMACE FUNCTION W.R.T
WEIGHTS ACCORDING TO (3.6.6)
LOOP OVER LAYER

[ lilep Bt o o)

DO 10 K=1,NLAYR
KK=NNODE(K)
LL=NNODE(K-1)

DO 20 J=1,KK
DO 30 1=0,LL
TGELIETGK, I + G(K,J,T)
30 CONTINUE
20 CONTINUE
10 CONTINUE
RETURN
END

C***‘#t**##ttt*t#ttttt*#**!t‘*1t**t**ttt**tt***tt*t***ﬂt!!*‘**#**t**tt

SUBROUTINE SUMWEIGHT(P,O,N,MLAYR,NLAY R, MNODE A,
+ NNODE,W,SN,MSAMP)
C**t*t*tt#**t$$t*‘t**‘***‘tt#‘*t##*it****#**tt**#**#t***t*"***t*t*t****t
THIS SUBROUTINE IS TO CALCULATE THE SUM OF :
THE INPUTS OF A NEURON J IN LAYER K .
PLEASE REFER TO (3.1.1) .
N(MLAYR MNODE)--STORES THE SUM OF INPUTS OF .
NEURON J IN LAYER K
A(0:MLAYR,MNODE)--STORES THE OUTPUT OF .
NEURON J IN LAYER K
A(0:MLAYR,0:MNODE) -- STORES THE INPUT DATA. i
P(MSAMP,MNODE) — IS THE INPUT DATA FROM ONE SAMPLE .
T(MSAMP,MNODE) -- IS THE DESIRED OUTPUT DATA FROMONE  *
SAMPLE
O(MSAMP,MNODE) -- IS THE OUTPUT CALCULATED FROM THE »
NET. *
W(MLAYR MNODE,0:MNODE) -- THE WEIGHT OF THE NET. .
SN - THE SAMPLE INDEX.
o ok e o o e ke ok o e e ok o ok o o ook ok e ok o o o ok ok e o ol ol ok o ol ok ol e ok ol ok ook e ROR R R ok sk ok s kok okl ok ok R ok R R kok ok
INTEGER MLAYR,MNODE,NNODE(0:MLAYR),LJ K,
+ NLAYR,L,SN,MSAMP
DOUBLE PRECISION N(MLAYR,MNODE),A(0:MLAYR,0:MNODE),
+ W(MLAYR,MNODE,0:MNODE),SUM,P(MSAMP,MNODE),
+ O(MSAMP,MNODE)

oloNoloRoNelvieloReleieRe o)
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C  STORE INPUT DATA INTO A(0,MNODE)

DO 100 I=1, NNODE(0)
A(0,I)=P(SN,])

C  PRINT *'SN=",SN,'P(SN,I)="P(SN,])

100 CONTINUE

C STORE THE BIAS
A(0,0)=1.D0

CALCULATE THE SUM OF THE INPUTS OF A NEURON J IN LAYER K

elleoRe e

LOOP OVER LAYER
C LOOP OVER LAYER
DO 10 K=1,NLAYR

C LOOP OVER CURRENT NODE (TARGET)

DO 20 J=1,NNODE(K)
C LOOP OVER PRVIOUS NODE (SOURCE)

SUM = 0.0D0

DO 30 1=0,NNODE(K-1)
SUM = SUM + W(K.J,)*A(K-1,I)

30 CONTINUE
C CALCULATE THE SUM OF | NEURON J IN LAYER K

N(K.J) = SUM
C  WRITE (*, 500) K,J,N(K,J)
C500 FORMAT(IX,/LAYER #",13, NODE #'13, N=", F16.10)
C CALCULATE THE OUTPUT OF NEURON J IN LAYER K

A(K,J) = SIGF(N(K,)))
C  WRITE (*, 400) K,J AK.T)
C400 FORMAT(IX/LAYER #',13, NODE #',J3, A =", F16.10)
20  CONTINUE

C THE BIAS
A(K.,0)= 1.D0
10 CONTINUE

C  STORED THE OUTPUT IN A(NNODE(NLAYR))
DO 200 I=1, NNODE(NLAYR)
O(SN,)=A(NLAYR,1)

200 CONTINUE
RETURN
END

C*#**t*ttt*t***#*#t*****t#*tU*t**t‘*!‘!t?#**‘t#tt**

THIS FUNCTION IS TO FIND THE PERFORMANCE

FUNCTION E(W) REF. (3.6.1) USING VALIDATION

DATA SET OR TEST DATA SET.

TEST--IS THE PERFORMANCE FUNCTION VALUE. REF(3.6.1)

T{MSAMP,MNODE)--THE DESIRED OUTPUT OF THE NET

W(MLAYR,MNODE, 0:MNODE)--WEIGHT MATRIX THAT
IS UPDATED BY TRAINING SAMPLES.

O(MSAMP ,MNODE)--THE CALCULATED OUTPUT OF THE
NET

LAMDA--THE CONSTANT IN THE PENALTY TERM.

W0--THE CONSTANTS IN THE PENALTY.

LR R S 2 R Rt S it 2 R R R Rl R 2l St R Rt L L

OO0 0000n
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FUNCTION TEST{MSAMP,MNODE,
+ W,MLAYR,NLAYR,NNODE,LAMDA,W0)

INTEGER MSAMP,NSAMP,MNODE,MLAYR,NLAYR,
+ NNODE(0:MLAYR)
DOUBLE PRECISION O(MSAMP,MNODE), T(MSAMP,MNODE),
+ W(MLAYR,MNODE,0:MNODE),LAMDA, W0,SUM,SUM1,FINDE,
+ P(MSAMP,MNODE)
DOUBLE PRECISION N(MLAYR,MNODE),A(0:MLAYR,0:MNODE)
INTEGER 1,JK,L,IN
C
C  READ IN VALIDATION/TEST DATA SET
IN=20
OPEN(UNIT=IN,FILE='VALID.DAT,STATUS='OLD',JOSTAT=IOERR)
[F(IOERR .NE. 0) THEN
PRINT 11, [OERR
11 FORMAT(CANNOT OPEN NETWORK VALIDATION/TEST DATA
+ FILE(VALID.DAT),[10)
STOP
ENDIF

READ(IN,*)NSAMP
DO 101 J=1,NSAMP
C READ IN THE INPUT DATA
READ(IN,*)(P(J,1),]=1, NNODE(0))
C READ IN THE DESIRED OUTPUT DATA
READ(IN, *)(T(J,I),]=1, NNODE(NLAYRY))
101 CONTINUE
CLOSE(UNIT=IN)
C CALCULATE THE PENALTY TERM.
SUM =0.D0
SUM1=0.D0

C  DO400K=1,NLAYR
C DO 500 J=1,NNODE(K)

C DO 600 1=0,NNODE(K-1)

e PRINT*,'IN FINDE, W="W(K,J.,I)
C600 CONTINUE

C500  CONTINUE

C400 CONTINUE

C DO 100K=I,NLAYR
C DO 200 J=1,NNODE(K)

C DO 300 I=0,NNODE(K-1)
e SUM=SUM+LAMDA*(W(K,J,[)**2/(W0**2+W(K,J,[)**2))
C300 CONTINUE

C200 CONTINUE
C100 CONTINUE

C CALCULATE THE FIRST TERM
DO 10 L=1,NSAMP
CALL FORWARD(P,O.N,MLAYR,NLAYR,MNODE,A,NNODE,

+ W,L,MSAMP)
DO 20 K=1,NNODE(NLAYR)
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SUM1=SUMI+{T(L,K)-O(L.K))**2
20 CONTINUE
10 CONTINUE
C PRINT *'SUM=",SUM
C PRINT *,'SUMI="SUMI
C PRINT *'LAMDA="LAMDA
C PRINT *W0="W0

TEST = .5D0*SUM1

RETURN
END
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