
r

...

PENALTY METHODS TO REDUCE OVERFITTING

IN ARTIFICIAL NEURAL NETWORKS

By

ZHONG XIANG LUO

Bachelor of Engineering
Gezhouba Hydroelectric Engineering

University
Yichang, China

1982

Master of Engineering
Wuhan Hydraulic and Electric

Engineering University
Wuhan, China

1989

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
In partial fulfillment of
The requirements for

The Degree of
MASTER OF SCIENCE

December, 1998



PENALTY METHODS TO REDUCE OVERFITTING

IN ARTIFICIAL NEURAL NETWORKS

Thesis Approval:

-------'LJ"--'='----~e-~f> . {ow-eJ1__man ofthe Graduate College

ii



ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my major advisor, Dr. John P.

Chandler, for his invaluable guidance and encouragement throughout this research.

Thanks are also due my other graduate committee members, Dr. B. E. Mayfield, and Dr.

G. E. Hedrick, for their time and valuable assistance and cooperation. I also want to

thank the faculty and staff in Computer Science Department at Oklahoma State University

for their support.

More over, I would like to express my special thanks and love to my mother, Ying

Tong, my uncles, Shu Chen Luo, You Chen Luo, myoId sisters Vue Luo, Yuewo Luo,

for their support and W1derstanding throughout my life.

Finally, I would like to give my special thanks to my wife, Dr. Ming Yu, myoId

daughter, Brooke T. Luo, and my new born baby Rynel Luo, for their love, patience, and

support during this research. My wife's encouragement and faith always provided me

strength and comfort. Myoid daughter's Jove always makes me happy and helped me get

through aU difficulties. My new born baby brings me excitement and joys.

111



Cbapter

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

II. METHODS FOR REDUCING OVERFITTING 5

Overfitting and Generalization in Artificial Neural Networks 5
Methods ofReducing Overfitting 7
Penalty Mechanism and Algorithm 7
Penalty Terms as a Method ofReducing Overfitting 13

III. NEURAL NETWORK ARCHTECTURE
AND LEARNING GORITHMS 18

Architectures ofFeedforward Artificial Neural Networks 18
Activation Function 21
Weights in the Neural Network 21
Optimization Algorithm 23
Forward Computations 26
Back-propagation Computation 27
Algorithms for the Penalty Method and Improved Penalty Method 32

VI. METHODS TESTED AND IMPLEMENTATION 37

Neural Network Architecture Design 37
Discussion ofTest Results 40

v . CONCLUSION 45

REFERENCES 47

APPENDIX A 50

Testing Tables 50

APPENDIX B 65

Computer Programs 65

IV



LIST OF TABLES

T~~ P~e

4 1 Overview ofmethod tested 39

4 2 Performance Comparison ofDifferent M.ethod for Network

with 7 hidden nodes ... ... . . . .. . .. . .. . .. .. .. ... ... . .. ... . .. . . . ... ... .. . ..... .. .. 44

4 3 Performance Comparison ofDifferent Method for Network

with 8 hidden nodes ... .... .. ... .. . ... ... .. .. .. 44

4 4 Performance Comparison of Different Method for Network

with 10 hidden nodes 44

A 1 Performance ofTraining and Generalization(RMS)

Method A with 7 hidden nodes and A= 0.01 50

A 2 Performance ofTraining and Generalization(RMS)

Method B with 7 hidden nodes and A = 0.01 50

A 3 Performance ofTraining and Generalization(RMS)

Method B with 7 hidden nodes and A= 0.0001 51

A 4 Performance of Training and Generalization(RMS)

Method C with 7 hidden nodes and A= 0.0001 51

A 5 Performance of Training and Generalization(RMS)

Method C with 7 hidden nodes and A = 0.01 51

A 6 Performance ofTraining and Generalization(RMS)

v



Method D with 7 hidden nodes and A= 0.0001 52

A 7 Perfonnance ofTraining and Generalization(RMS)

Method D with 7 hidden nodes and A=0.01 52

A 8 Perfonnance ofTraining and Generalization(RMS)

Method E with 7 hidden nodes and A= 0.01 52

A 9 Performance ofTraining and Generalization(RMS)

Method E with 7 hidden nodes and A= 0.0001 53

A 10 Perfonnance ofTraining and Generalization(RMS)

Method A with 8 hidden nodes 53

A 11 Performance ofTraining and Generalization(RMS)

Method B with 8 hidden nodes and A= 0.01 53

A 12 Performance ofTraining and Generalization(RMS)

Method B with 8 hidden nodes and A= 0.0001 54

A 13 Perfonnance ofTraining and Generalization(RMS)

Method C with 8 hidden nodes and A= 0.0001 54

A 14 Perfonnance ofTraining and Generalization(RMS)

Method C with 8 hidden nodes and A=0.01 54

A 15 Performance ofTraining and Generalization(RMS)

Method D with 8 hidden nodes and A= 0.01 55

A 16 Performance ofTraining and Generalization(RMS)

Method D with 8 hidden nodes and A= 0.0001 '" 55

A 17 Performance ofTraining and Generalization(RMS)

VI



Method E with 8 hidden nodes and A. = 0.001 55

A 17 Performance of Training and Generalization(RMS)

Method E with 8 hidden nodes and A. = 0.01 56

A 18 Perfonnance ofTraining and Generalization(RMS)

Method A with 10 hidd.en nodes , 56

A 19 Performance ofTraining and Generalization(RMS)

Method B with 10 hidden nodes and A. = 0.01 .. 57

A 20 Performance ofTraining and Generalization(RMS)

Method B with 10 hidden nodes and A. = 0.000 I 57

A 21 Performance ofTraining and Generalization(RMS)

Method C with 10 hidden nodes and A. = 0.00001 57

A 22 Performance ofTraining and Generalization(RMS)

Method C with 10 hidden nodes and A. = 0.01 .. S8

A 23 Perfonnance ofTraining and Generalization(RMS)

Method D with 10 hidden nodes and A. = 0.000 I 58

A 24 Performance ofTraining and Generalization(RMS)

Method D with 10 hidden nodes and A. = 0.01 58

A 25 Performance ofTraining and Generalization(RMS)

Method E with 10 hidden nodes and A. = 0.01 59

A 26 Performan.ce ofTraining and Generalization(RMS)

Method E with 10 hidden nodes and A= 0.00001 59

A-27 Performance of Training and Generalization (RMS)

V1l



Method F with 7 hidden nodes and different A(0.008 0.006, 0.004

0.002,0.001,0.0006,0.0001,0.00006,0.00004, 0.00001) 60

A 28 Performance ofTraining and Generalization (RMS)

Method G with 7 hidden nodes and A= 0.001. 60

A 29 Performance of Training and Generalization (RMS)

Method G with 7 hidden nodes and A = 0.0001 60

A 30 Perfonnance ofTraining and Generalization (RMS)

Method G with 7 hidden nodes and A= 0.0002 61

A 31 Performance ofTraining and Generalization (RMS)

Method G with 8 hidden nodes and A= 0.0002 61

A 32 Performance ofTraining and Generalization (RMS)

Method G with 8 hidden nodes and A= 0.0001........ .. .. 62

A 33 Perfonnance ofTraining and Generalization (RMS)

Method G with 10 hidden nodes and A = 0.0001 62

A 34 Performance of Training and Generalization (RMS)

Method G with 10 hidden nodes and A = 0.00001 62

A 35 The Training Data Set.. .. .. .. .. .. 63

A 36 The Validation Data Set 64

Vlll



LIST OF FIGURES

Table Page

2.1 The Relationship Between Training Error and Testing Error................... 6

3.1 A Three Layer Feed forward Network 19

3.2 The Sigmoid Function .. . ... . . . 22

3.3 The Hyperbolic Function .. .. . .. .. . . .. . . .. .. . .. .. . .. .. .. .. .. . ... .. . .. .. . . . . . ..... 22

IX



Chapter I

INTRODUCTION

Artificial neural networks are computational models of the human brain In

contrast with conventional single-processor computers, the brain has a multiprocessor

architecture that is highly interconnected. This architecture can be described as parallel

distributed processing. Parallel distributed processing has many advantages over single

processor models for many difficult computer science problems. It allows problems that

were once very difficult to solve on a computer to be attacked with relative ease.

Neural networks can be trained to develop operational capabilities to respond to

an information environment. Supervised learning and unsupervised learning are the two

main learning regimes used in neural network training.

A supervised learning algorithm adjusts the strengths or weights of the inter

neuron connections according to the difference between the desired and actual network

outputs corresponding to a given input. Thus, supervised learning requires a teacher or

supervisor to provide desired or target output signals. Examples of supervised learning

algorithms include the delta rule [1], the generalized delta rule or backpropagation

algorithm [2] and the LVQ algorithm [3].



Unsupervised learning algorithms do not require the desired outputs to be known.

During training, only input patterns are presented to the neural network that automatically

adapt the weights of its connections to cluster the input patterns into groups with similar

features. Examples of unsupervised learning algorithms include the Kohonen [3] and

Carpenter-Grossberg Adaptive Resonance Theory (ART) [4] competitive learning

algorithms.

Neural Networks have been used in many fields including economics,

transportation, defense, electronics, manufacturing, medicine, robotics, speech and

telecommunications [1].

The Multi-layer Perceptron (MLP) will be discussed in this research. MLPs are

perhaps the best-known type of feedforward networks. One of the interesting properties

of a feedforward neural network is its capability of learning, i.e., a feedforward neural

network can adjust its behavior using information from the environment. When a

feedforward neural network is used to solve a problem, it is trained by a set of input

output sample data. Based on this data set, the network, when properly trained, wilt not

only try to reproduce the sample set correctly, but also to generalize from the training

examples to the entire problem domain.

A learning algorithm is applied a set of training data, then it is applied to make

predictions on new data points. The goal is to maximize its predictive accuracy on the

new data points. If it is trained too hard to find the very best fit to the training data, there

is a risk that the data noise will be fitted by memorizing various peculiarities of the

training data rather than fmding a general predictive rule. For continuous domains, or

large discrete ones, it is impossible to provide samples of every possible input. For a
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large network, if the system simply memorizes the training patterns, it may do quite well

dwing the training process but it may give spurious and misleading outputs if the input is

slightly different from the sample inputs. This phenomenon is called overfitting.

Overfitting is thought to happen when the network has more degrees of freedom than the

number of the training samples. Obviously, a network can obtain a good generalization

only when the number ofparameters is less than the number of data points in the training

set. Unfortunately, it is difficult to find the smallest neural network size that can learn the

training data best.

Many techniques for reducing overfitting have been developed. The penalty-term

method is one of the most popular methods. The basic approach used in a penalty-tenn

method is adding penalty terms to the usual error fimction in order to constrain the search

and cause weights to decay differentially. By modifying the cost function, the

backpropagation will drive unnecessary weights close to zero and, in effect, remove them

during training. Even if the weights are not actually removed, the network acts like a

smaller system.

This thesis focuses on the possibilities of reducing the overfitting by using the

penalty-term method in artificial neural networks. Many penalty terms have been

developed to reduce overfitting. Some of them are complicated; some of them include a

user-dependent constant factor. Each penalty term has different advantages and

disadvantages. The question remains of whether there is a penalty term or a combination

of penalty terms that can produce superior results and, if there is, what the penalty term

could be. This research will compare and summarize different penalty terms through

their perfonnance. An improved penalty term method will be proposed in this research.

3
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It is expected that the improved penalty method will improve the generalization

performance of neural networks significantly. The paper is organized as follows:

In Chapter I, a general introduction to neural networks and the problems of

interest is given.

In Chapter II, a review of different algorithms for reducing overfiting, especially

the penalty term methods, will be conducted.

Chapter III will explain the architecture of the neural network that will be

discussed in this research, and the application of optimization theory in the algorithm. A

new penalty term method will be developed to reduce overfitting in this chapter.

In Chapter IV, an overview of methods that will be tested is given. The regular

learning algorithm without a penalty term, the penalty method with different penalty

terms, and the improved penalty method will be tested. All the methods and different

penalty terms tested will be compared with each other through their generalization

performance in the research.

Finally, the test results will be placed in Appendix A and the source program that

is used in the implementation of the penalty term method and the improved penalty term

method will be placed in Appendix B.
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Chapter II

METHODS FOR REDUCING OVERFITTING

Overfitting and Generalization in Artificial Neural Networks

Mathematically, the objective of learning in the neural network is to infer a

function from a given sample data set. Learning algorithms are designed essentially to

search for a function that best fits the given data in a space of functions. After learning,

the neural network is applied on the new data set. If it is trained too hard to find the best

fit to the training data, there is a risk that we will fit the noise in to the data by

memorizing various peculiarities of the training data rather than finding a general

predictive rule [5]. When a network is trained, the weights are modified in order to

decrease errors on the training data set. If the network is tested on a new set of data, the

errors on the test data set tend to decrease in step with the training error as the network

tries to generalize from the training data set to the underlined function. However if the

training data is incomplete, it may contain spurious and misleading regularities due to

sampling [6]. Figure 2-1 illustrates this situation schematically.

It is generally agreed that overfitting is closely related to the architecture of the

networ~ i.e., the size of the network. If training starts with too small a network for the

problem, good results cannot be obtained. If the network is too large, it may be

5



vulnerable to overfitting (20). B. Bawn and David Haussler [19] analyzed theoretically

the lower and upper bounds on the size of the sample vs. the network size needed to

achieve a valid generalization. Subutai Ahmad and Gerald Tesauro [21] analyzed how

many training patterns and training cycles are needed for a problem of a given size and

difficulty, how to represent the input, and how to choose training examples.

In general. overfitting is related to the degree of freedom of neural networks. The

degree of freedom of neural networks includes not only the number of weights but also

the potential non-linearity of the network, the architecture and the amount oftirne and the

number of data used during training [22].

Error

Testing Error

Training Error

o l- TraIDing Time

Figure 2_1 The Relationship Between Training Error and Testing Error
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Methods of Reducing Overfitting

There are many methods to reduce overfitting and improve generalization [6]

such as pruning methods, stopped training methods and penalty term methods. The

pruning method is to train a network that is larger than necessary and then remove parts

that are not needed. The large initial size allows the network to learn reasonably quickly

with less sensitivity to initial conditions, while the reduced complexity of the trimmed

system favors improved generalization. The stopped training method is to estimate the

generalization ability during training and stop when it begins to decrease. The simplest

method is to divide the data into a training set and a validation set. The training set is

used to modify the weights, the validation set is used to estimate the generalization

ability, and training is stopped when the error on the validation set begins to rise. The

penalty term method is another way to reduce overfitting. The basic approach involves

adding penalty terms to the usual error function in order to constrain the search and cause

weights to differentially decay.

Actually, stopped training and penalty term methods are two widely used

categories. The detailed penalty machines and penalty terms are presented in the

following section.

Penalty Mechanism and Algorithm

Penalty Function Methods: Usually, penalty function methods are used in

determining a solution ofa constrained nonlinear programming problem [10]. Currently,

there is not a universally accepted method of dealing with such a problem. A penalty

function method is to replace a constrained problem with one that is unconstrained. The

7



latter problem is then solved using an iterative technique. A general penalty function

method, a barrier penalty function method and a quadratic penalty function method are

introduced in the fo Bowing sections.

In penalty function methods, the constrained problem is converted into an

unconstrained problem by adding a penalty function, p(x), to the objective functionj{x).

The resulting unconstrained objective function has the fonn j{x) +fJ p(x), where fJ> O.

The function p(x) imposes a penalty of fJ p(x) whenever x does not satisfy the

constraints of the original problem. Actually, a sequence {f(x) +fJp(x) } of functions are

minimized (or maximized). The solution, {Xk}, of the sequence will usually approach the

solution of the original problem. Normally, each Xlo; is not a feasible solution of the

original problem. The process tenninates whenever the required accuracy has been

obtained, or whenever some solution, x" , is generated that is a feasible solution of the

original problem. In a penalty function method, an expression involving the constraints

is added to the objective function. The expression is selected so that the value of the

updated objective function is excessively high (or low) at a point x where the problem is

infeasible.

In general, one penalty function for the problem (2-1) is function (2-2)

Minimize t{x)

subject to

gj(x) = bi for i = 1, ,1

gj(x) <= bi for i = 1+1, ,m

8
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1 m k.

p(x) =LIb; - g;(x)Ik.+ L(max{O,g,(x) - b,})
;=1 ;=1+1

(2-2)

where k is a natural number. Notice that p(x) ~ O. In fact p(x) = 0 if and only if x is

feasible.

Problem (2-1) could be converted into the form

Minimize :t{x)

subject to

hi(x) = 0 for i = 1,.... ,m

(2-3)

by adding the square of an unrestricted variable to the left side of each inequality

constraint, and then moving each bi to the left side of each constraint. A typical penalty

function for (2-2) is

(2-4)

where k is a (usually even) natural number. Again notice that p(x) >=0. The remainder

of this section deals with problem (2-3).

Barrier function methods: A Barrier function method is an improved penalty

function method. Again a sequence of functions (f(x) +(l/f3k )b(x)} is minimized (or

maximized) and the sequence of solutions {xd nonnally tends to a solution of the

original problem. The difference in barrier function is that the solutions, Xk, are all

9



feasible solutions of the original problem. The function hex) is called a barrier function

because it imposes a penalty near the boundary of the set of feasible solutions of the

original problem.

For the problem:

Minimize fl:x) subject to gi(X)~O for i = 1,...,m (2-5)

Notice that problem (2-5) does not contain any equality constraints. Barrier function

methods are similar to penalty function methods in that a barrier function is added to the

objective functio~ and the resulting function is minimized. The difference is that the

solutions are interior points of F (rather than points exterior to F). The purpose of the

barrier function is to prevent the solutions from leaving the interior ofF.

Some common barrier functions for Problem (2-5) are

b(x)=_~_l- (2-6)
i=1 gj(x)

and

b(x) = 2:lnlg j (x)1 (2-7)
I~J

Notice that b(x) is, in either case, continuous throughout the interior of F. Moreover,

b(x)-> CX) as x approaches the boundary of F via the interior of F. Rather than solve (2-

5), we intend to solve the following problem:

1
Minimize I(x) +/ib(x) subject to each gj(x) < 0

10
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where rl>O.

The Quadratic penalty function method: Both penalty function and barrier

function methods can possess the undesirable property of slow convergence. In [25], the

penalty function method is modified using Lagrange multipliers to obtain a more efficient

method. The technique is called the method of multipliers and has emerged as an

important tool for solving constrained nonlinear programming problems. The quadratic

penalty function method is one of these methods. It is briefly introduced as foUowing.

For the problem

Minimize f(x) subject to hlx) = 0 1= 1,....,m (2-9)

where f, h1, •••• hm are continuously differentiable, assume that the set, F, of feasible

solutions of (2-9) is nonempty. The continuity of the hi ensures that F is closed. As

mentioned in [10], the Weierstrass theorem guarantees the existence of a solution, x·, of

problem (2-9).

In [10], a method for determining x· was suggested, Namely, compute vectors x·

and A.. that satisfy

O_OL(." O)_'l7'f( o)T oroh( 0)- - X,A - v x + A - xox ox

and

11
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where L(x, A) = f\x)+ATh(x) and hex) = [h,(x)...hm(X)]T. Unfortunately, the system of

equations (2-10) is difficult to solve.

Consider a solution x· of (2-9). Let A" be the corresponding vector of Lagrange

multipliers for which equations (2-10) hold. Notice that whenever xEF, then

L(x", A") = f\x"):::;; f(x) = f\x) + A"Th(x) = L(x, A")

Thus, min {L(x, A") : x E F} = L(x·, A") and

min {f(x) : x E F }= min{L(x, A·) : x E F }

(2-11)

This suggests that rather than solve (2-9), we could solve the problem on the right side of

(2-11), possibly using a penalty function method. That is

Minimize ftx) + A"Th(x) + p i:(h;(X»2
2 ;=1

(2-12)

where ~ > O. Of course the problem is that A· is not known at the onset of the problem.

The next result suggests an alternate strategy consisting of solving a sequence of

problems of the fonn

where Ak E Rmxl.

1.2
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The above discussions concern the penalty function methods and the penalty

mechanism. They have some similarity with the penalty term method used in neural

network training and can be used to evaluate the penalty terms and penalty mechanism

used in neural network training.

To evaluate the different penalty terms developed in neural network training, a

summary of different penalty terms is presented in the following.

Penalty Term Method of Reducing Overfitting

A. Weigend et al Penalty Term

Weigend et al. [11]-[13] suggested the following cost function:

2/ 2
" 2" Wi W,
~ (I .. -Ok) +A~ 2/ 2
kET ieCI+w; W o

(2-14)

where C is the set of all connections and T is the set of training patterns. The second

term is the penalty term that represents the complexity of the network as a function of the

weight magnitudes relative to the constant Woo if Iwil >> wo, then the cost of a weight will

approaches A. If I wil « Wo, the cost is close to zero. The value of A depends on the

problem. If it is too smal~ it won't have any significant effect; if it is too large, all the

weights will be driven to zero.

B. Chauvin Penalty Term

In [14], Chauvin minimize the cost function

13



(2-15)

where e is a positive monotonic function. The swns are over the set of output units 0, the

set of patterns P, and the set of hidden units H. The first term is the normal back-

propagation error tenn, the second term measures the average "energy" expended by the

hidden units. The parameters Jler and Jlen balance the two terms. The "energy" expended

by a unit--how much its activity varies over the training patterns--is an indication of its

importance. If the unit changes a lot, it probably encodes significant information; if it

does not change much, it probably does not carry much information.

A magnitude-of-weights term may also be added to the cost function, giving

(2-16)

Since the derivative of the third term with respect to Wij is 2 fJ.wwij, this effectively

introduces a weight-decay term into the back-propagation equations. Weights that are

not essential to the solution decay to zero and can be removed.

C. Ji Penalty Term

Ji et al. [18] modifY the error function to minimize the number of hidden nodes

and the magnitudes of the weights. A single-hidden-Iayer network with one input node

and one linear output node is investigated in their research. Beginning with a network

having more hidden units than necessary, the output is computed as

14



N

g(x,w,B) = LVif(UjX-OJ
i~1

(2-17)

where Sr is the threshold, f is the sigmoid function II (l +e-X
) , and u and v are the input

and output weights of ith hidden unit respectively.

The significance of a hidden unit is computed based on its input and output

weights

where cr(w) = ~/(l +~).

(2-18)

The error is defined as the sum of 80 , the nonnal sum of squared errors, and 81,

tenn measuring node significance.

M N i-I

= 1] L[g(x1r ;w,B )_ylt]2 +ALLSiSj
1r~1 i~1 j~1

(2-19)

where 1t indexes the training patterns and x1t and y1t are the input and desired output for

pattern 1t, and !-l and A are learning rate parameters. The El(W) term makes the algorithm

favor solutions with fewer significant hidden units.

It is suggested the second term be added only after the network has learned the

training set sufficiently well because conflict between the two error tenns may cause

local minim.

15



D. Bishop Penalty Term

Chris M. Bishop [16] proposed another penalty tena For error function (2-20), the

penalty term is given by (2-21).

(2-20)

( 2-21)

Where Yn and XI denote the components of y and X, respectively, and the parameter A.

controls the degree of smoothness of the network mapping. Bishop indicated:

''Unfortunately, the optimum value for A. is problem dependent. It may be found by

seeking the minimum error with respect to a cross-validation data set, or by a variety of

techniques based on the statistical properties of the training data." [16].

E. Simple Penalty Terms

Ishikawa [15] proposed another simple cost function

c = L(/, -OK)2 +ALI wi! I
KeT IJ

(2-22)

IfWij > 0, the weight is decremented by A., otherwise, if Wij < 0, then it is incremented by

A.

Russel Reed [6] described the following simple cost function:

c= L(I'-0.)2 +A.LWij 2

keT i,j

16
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Russel Reed evaluated the simple penalty term: "One of the characters of the AWij

penalty tenn is that it tends to favor vector with many small components over ones with a

single large component, even when this is an effective choice."

A constant Ais used in most of the penalty terms. There is no criteria to select a

A. Weigend et al. [11] indicated that ''the value of A requires some tuning and depends

on the problem. If it is to small, it won't have any significant effect; if it is too large, all

the weights will be driven to zero." Bishop [19] indicated that the optimum value for A

will be problem dependent, and may be found by seeking the minimum error with respect

to a cross-validation data set, or by a variety of techniques based on the statistical

properties of the training data. Ji et al. [18] suggested that the A can be made a function

of Eo such as A =Aoe-;&0 They suggested the second penalty term be added only after

the network has learned the training set sufficiently well, because of the conflict between

the two error terms may cause local minimal. Ping Jiang [24] said, ''the optimum point of

A is network architecture dependent. We need to choose A to close to optimum point to

improve the generalization performance."

17



Chapter III

ARTIFICIAL NEURAL NETWORK ARCHTECTURE AND LEARNING

ALGORITHMS

Architectures of Feedforward Artificial Neural Networks

Some artificial neural networks were introduced in Chapter 1. This thesis focuses

on the most widely used multilayer feedforward networks. The architecture of a

multilayer feedforward network is shown as Figure 3-1. This type of network arranges

neurons in layers. All neurons in a layer are connected to all neurons in the adjacent

layers through unidirectional links. These links are represented by synaptic weights. The

input layer of the network is treated as connection nodes. All the layers except the output

layer of the network are hidden layers. So the number of hidden layers is the number of

layers in a network minus one.

The notations used are shown in Figure 3-1. All neurons in a layer are

consecutively indexed starting from 1, in a top-down fashion. The layers are indexed in. a

left-to-right order and are identified by square-bracketed superscripts. All inputs to a

neuron in layer k are denoted as a/k
-
I I, where I = 0, 1, 2,,,,Sk-1 (Sk-I is the number of

neurons in the (K-l )th layer). In the case of k-l = 0, ajlOl are the inputs of the network.

For each layer, we assumed an extra bias node that has a constant output value of -1, i.e.

18



nP) n[::!] (21 n[31 a';1
5, 51 ~ 51 ~I

f(lJ fPI [PIPR

Wi a[OJ ,
a[ll

,
a[2JW- W-

s,.R a s, .5, a .,.~ a

nPI a~ll a~1
2

fill [PIP, f(3)

a[OI all)
a a

Figure 3-1 A Three Layer Feedforward Network
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3o(k] = -1. Notice that for each k > 2, aj[k-I] is also the output of neuron I in (k-1)th layer.

The outputs in the kth layer of the network can be written in vector fonn as aj(k]. A

weight is represented as Wj)kJ, where k is the layer index and 'j,i" means that the weight

is the connection from the ith neuron in layer k-l to the jth neuron in layer k. In vector

form, weights can be represented by w1k] = (wikl)T. The nj(kJ represents the weighted sum

of a neuron j in layer k. The weighted sum of the inputs of a neuron j in layer k can be

expressed as

The output of the neuronj in layer k can be expressed as

(3-1)

j = 1,2,... nk (3-2)

Where fj1kJ is the activation function of the neuron. We will discuss the activation

function in the following section. In vector form, the formulas can be written as

(3-3)

(3-4)

where :fkl = (:fkJ)T is a vector of the activation function.
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Activation Function

The original activation function is a binary function [18]. This limits the

application of perceptron neural networks to classification problems only. In order to

solve a general type of mapping application problem, we need to use nonlinear

continuous activation functions. There are many nonlinear activation functions that can

be used in multilayer networks as long as the functions are differentiable. The most

commonly used functions are the sigmoid function and the hyperbolic function which are

expressed as

1
Sigmoid function f(x) = 1+ e-x

x -xe -e
Hyperbolic function f(x) = x -x

e +e

(3-5)

(3-6)

The graphs of signoid and hyperbolic functions are shown in Figure 3-2 and 3-3. Since

we can always scale down the input and output values to the interval (0,1) or (-1, I), there

is no significant difference between the two functions. The sigmoid function is used in

this paper.

Weights in the Neural Network

The weights in a neural network are initially chosen to be small random numbers.

An activation function is active only in a small domain interval as shown in Figure3-2. If

the initial weights are too large, the activation functions may saturate at the beginning of
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the training and the network is prone to get stuck in a local minimum near the starting

point [19]. In this paper, the initial weights ofall neural networks are chosen as random

numbers uniformly distributed between
-0.5

fan - in of that node
and

0.5 [20], where the fan-in of that node IS the number of inputs
fan- in of that node

including bias input to that node.

Optimization Algorithm

From an optimization point of view, training a network is equivalent to

minimizing a global error function, which is a multivariate function that depends on the

weights in the network. In this paper we use the Conjugate Gradient Optimization

Method. The method is introduced simply as shown below.

The Conjugate Gradient Method searches the minimum in the conjugate direction

to guarantee the quadratic termination. Suppose that we want to minimize the following

function:

(3-7)

From the Taylor series we know that the flIst order necessary condition for x· is equal to

zero, l.e.

VF(x)lx=x' =0
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Any point that satisfies the above equation is called a stationary point. Even though the

above equation is satisfied, there is no guarantee that the local minimum is reached. The

second order necessary condition for a strong minimum is that the Hessian matrix to be

semidifinite. Sufficient conditions for a strong minimum to exist require the Hessian

matrix to be positive defmitely.

The conjugate gradient method is to search the mmmlUm in the conjugate

direction to guarantee the quadratic termination. The conjugate direction is defined as

follows:

A set of vectors {Pd is mutually conjugate with respect to a positive defmite

Hessian Matrix A if and only if

(3-9)

Many vectors that satisfies (3-9). One set consists of the eigenvalues of A.

It can be shown [21] that if we make a sequence of exact linear searches along

any set of conjugate directions {Ph P2,...,P.}, then the exact minimum of any quadratic

function with n parameters, will be reached in. at most, m searches. Recall that for a

quadratic function, the gradient is

VF(x) = Ax + d

Ifwe calculate the change in the gradient at iteration k+l, we have
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~g(k) = g(k+I) _ g(k) =( Ax(k+I) + d ) _(Ax(k) + d ) =MX(k)

Based on the Steepest Descent Method [21), we have

where a.(k) is chosen to minimize F(x) in the direction p(k).

(3-11 )

(3-12)

We can now restate the conjugate conditions by substituting (3-10) and (3-11) to

(3-9).

(3-13)

Usually we use steepest descent method to begin the search, i.e.

(3-14)

Then at each iteration we need to construct a vector p(k) which. is orthogonal to {~g(l),

~g(2), ...,~g(k)}. It can be simplified [21] by for following form

(3-15)

The ~(k) can be chosen by several different methods, which will produce

equivalent results for quadratic functions. One ofthe most common choice [21] is

(3-16)
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The algorithm is as follows:

Algorithm 3-1. The algorithm for the conjugate gradient method is as follows:

1. Set k = 1, guess x(l);

2. Select the first search direction according to the steepest descent method, i.e.

p(l) = _gO)

3. Calculate g(k)

g(k) = VF(x)I~'

4. Calculate ~(k) according to (3-16);

5. Calculate p(k) according to (3-15);

6. Calculate ~X(k) according to (3-12), i.e.

~X(k) = (X(k+l) _ X(k~ = a(k)p(k)

7. Calculate X(k+l) as the following

X(k+l) = x(k) + L\x(k)

8. Ifx(k+') satisfies the convergence criteria, stop. Otherwise,

9. Go to step 3.

Forward Computations

As we know from Chapter I, the neural network learning process includes two

phases: forward computation and backward computation. During forward computation, a

set of input data is given to the neurons in the first layer (input layer). These neurons are

activated and pass the results to neurons to next layer. The process continues until the

output layer is reached and the outputs of the network have been calculated. The process

can be summarized as follows:
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Algorithm 3-2. Forward algorithm

1. Given input vector x, set nO = x·

2. The weight matrix and activation function tiki, k:=l,2, ...,K are known, where k

is the number of layers in the network;

4. al"k] is the output of the network;

Backpropagation Computation

We have discussed the forward computation in feedforward artificial neural

networks in the last section. We will now formulate the backprogagation computation for

feedforward artificial networks. We know that a feedforward artificial neural network

changes its behavior (weights) dynamically during the training session. The error made

by the network during training is measured by a predefined function called the error

function (performance) [22], cost function, or energy function [23]. The error function is

used to calculate errors and the distribution of errors among all neurons of a network.

Then the connection weights are changed to reduce the error of the network. This

dynamic adaptation of weights ends when the error is within a tolerance limit at an

optimum point with respect to some optimization criterion. Considering a neural network

ofK layers, the general performance function can be shown as:

(3-17)

The first tenn is the performance function (error function). The second term is the

penalty term. It could be the Weigend penalty term [11], Charvin penalty tenn [14], Ji
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penalty term [18] or some other form. Q is the number of input/output samples. Pi is the

ith input data, tj is the desired ith output, and Wo are constants that are adjusted during

training. Because the differentiation is additive it is convenient to consider one

input/output sample L In practice, this is used for on-line training [22]. Summation over

the entire input/output samples constitutes off-line training [22]. So we have

(3-18)

To calculate the gradient element gij, we take the derivative of Ej with respect to

Wikl and using the chain rule, we have

[k]
[k] DEi DEi ofiji

gji =~=.::l [kJ·~+Pji
v W ji (/ fiji (/ W ji

where Pji is an element of the penalty term and is defined as

or

( J
2

1 L N a2y a2 y
For Bishop's penalty term P =- L L ----:f ' ----f can be expressed as

2'=ln=1 Ox, aXI
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8
2
Yn _ (Y(x, + h) - y(x,»)- (y(x, ) - y(x,- h»)

a 2 - h2
X,

_ y(x/ + h) + Y(Xr - h) - 2y(x,)
- h2

The Pij can be shown as :

ap
PiJ=-a

wij

From (3-1), we have

a [ilnl _ (i-I)

~-a,

U WII

Here we define Sj as:

-lk) = dE; = .-IxJ. [HI P
Sj - ow[X] Sj a; + ji

JI

(3-20)"

(3-20)'''

(3-21)

(3-22)

where Sj is the sensitivity ofE; to change in the jth element ofthe net input at layer [k].

Then (3-19) becomes

[k]=~_ .lk-I). [k-I) ..gj -.-'J (x] - Sj a, +PJ1
VWji
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Using the Jacobian matrix [24], we can derive the recurrence relationship for the

sensitivities.

a [hi] a [k+l] a [k+l]
nl nl nl

a [k] a [k] on[k]
n. n2 Sk

a [k+I] a [k+l] a [k+1)
n2 n2 n2

a [k] a [Il] a [k]
on[k+l] nl n2 n Sk

on[k]
- (3-24)

on[k+IJ on[k+l] () [k+J]
Sk +1 Sk +1 nk

t3 [k] a [k] a [k]
nl n2 n Sk

the element ij in (3-24) can be shown as:

where

aIkl( [kl)
.clkl( [hI J) _ nj
I nj - () [kl

nj

So the Jacobian matrix can be written as
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o lk+l]
n _ Wlk+l] d nlkl )onlle] - "\ (3-27)

where

f1k](n\k l) 0 0

0 f[kl(n~k]) 0 0

F[k1(n1k ]) =
0

(3-28)

0 0 tik{n~l)

Now the sensitivity recUIsively in matrix form is seen as:

[

[k+I])[Ie] OE i on OE j [k] lk+I) T OE j

S = 0 n lk ] = 0 n lk ] 0 n lk+11 = F(n ).(w ). 0 n rkH ]

= F(n[k J).( w [k+I I), S!k+ll

(3-29)

The sensitivities are propagated backward through the network from the last layer to the

fIrst layer. The starting point can be obtained from the output layer.

Since

.:J .:J lk]
~_~_ [kJ( lkJ)

l4-] - [kJ - f n,on, on,

Sj can be expressed as
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(3-31) has the following matrix fonn

(3-32)

(3-33)

So we can recursively calculate the sensitivities from the last layer to the ftrst

layer. Knowing the sensitivities, we can calculate the gradient according to (3-22).

Algorithms of Penalty Method and Improved Penalty Method

The penalty method and the improved penalty method used in this research are

discussed in the following. The basic approach used in the penalty method involves

adding penalty terms to the usual objective function in order to constrain the search and

cause weights to differentially decay. By using the penalty method, the neural network

generalization error can be reduced [24].

Algoritlun 3-3 (penalty method):

Given a set of S = {(Pi, ti) I Pi is input, tj is desired output of Pi} of d training

samples, and given a network of K layers with an input dimension u and an output

dimension of v.

I. Initialize all weights w(k] = (w/1), 1= 1,2,...,K as random numbers uniformly

-05 0.5
distributed between. and c. . f h . Set woo

fan - m of that set Ian - In 0 t atset

2. For each sample (Xi, tl) E S, repeat the following steps:

Initialize g(k) = o.
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2.1 Compute the actual outputs of network according to (3-3) and (3-4)

using the weight wlk
)

2.2 Calculate the gradient g(Xi) according to (3-3)

2 3 S ( .)' (k) - (k) (.). urn up g Xl , I.e., g - g + g XI

3. Ifk=l then set p(l) = r(l) = _g(l)

4. Compute a(k) using a line search technique [23].

5. Compute W(k+l) = W(k) + a(k)p(k) using step 2 to compute g(k+I).

6. Compute ~(k) according to (3-16).

8. If all the weights are such that the following convergence criterion is satisfied,

then go to 9, otherwise set k=k+1 and go to step 2.

d <

9. Set w = W(k+l) and stop.

Actually the overfitting problem is not exactly a constrained optimization problem

because the constrained condition is wUmown. There is not a universally accepted

method for a constrained nonlinear optimization problem.

Based on the penalty method, an improved penalty method is developed in this

research. The main idea is training the network without adding any penalty term. Once

the performance function value (RMS) begins to increase, a penalty term is added to the

usual error function, and the network training process becomes continuous as same as the

penalty method. If the generalization value (RMS) begins to increase again, then stop the
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training. A performance function value (RMS) is used as a stopping criteria both in the

penalty method and the improved penalty method.

Algorithm 3-4 (Improved penalty method 1):

Given a set of S = {(Pi" q I Pi is input, ti is desired output of Pi } of d training

samples, and given a network of K layers with an input dimension u and an output

dimension ofv.

I. Initialize all weights w[k] = (w}ll ), 1= 1,2,...,K as random numbers uniformly

-os OJ
distributed between ~ . f h and ~ . f b . Set Wo and A.

Ian - mot at set Ian - In 0 t at set

2. For each sample (Xi, ti) E S, repeat the following steps.

Initialize g(k) = O.

2.1 Compute the actual outputs ofnetwork according to (3-3) and (3-4)

using the weight W(k)

2.2 Calculate the gradient g(Xi) according to (3-3)

2 3 S ( ) . (k) - (k) (). urn up g Xi , I.e., g - g + g Xi

3. Ifk=l then set p(I) = r(l) = _g(J)

4. Compute U(k) using a line search technique [23].

5. Compute W(k+l) = W(k) + a(k)p(k) using step 2 to compute g(k+I).

6. Compute p(k) according to (3-16).

8. Before setting the value of A., ifall the weights are such that the following

convergence criterion is satisfied, then set A., otherwise set k=k+1 and go to step 2. After
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setting the value of A, ifall the weights are such that the following convergence criterion

is satisfied, then go to step 9, otherwise set k = k+l and go to step 2.

d <

d

L(E(W(kl))

,=1 d < to1

9. Set w = W(k+l) and stop.

Based on algorithm 3-4, one more improved penalty method is given as algorithm

3-5. The main difference between algoritlun 3-4 and algorithm 3-5 is that a series of Ais

given for a penalty tenn in algorithm 3-5. The objective function is dynamically changed

based on the perfonnance ofeach different penahy parameter A.

Algorithm 3-5 (Improved penalty method 2):

Given a set of S = {(Pi, ti) I Pi is input, t i is desired output of Pi } of d training

samples, and given a network of K layers with an input dimension u and an output

dimension of v.

1. Initialize all weights w1k1 = (w/1), 1= 1,2, ... , K as random numbers

-os 0.5
uniformly distributed between ~ . f th and ~ . f tha . Set woo

Ian - m 0 at set Ian - m 0 tset

2. Select parameter Ai

3. For each sample (Xi, t i) E S, repeat the following steps:

Initialize g(k) = o.

3.1 Compute the actual outputs of network according to (3-3) and

(3-4), using the weight w(k).

3.2 Calculate the gradient g(Xi) according to (3-3)

3.3 Sum up g(Xi), i.e., g(k) = g(k) + g(Xj)
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4.

5.

6.

7.

8.

9.

Ifk=1 then set p(l) = r(l) = _g(l)

Compute a.(k) using a line search technique [23].

Compute p(k) based on equation (3-16).

Compute L E(WA/k.+l~. For each Ai, repeat steps 2 to 9 and obtain

Let W(k+l) = WA./
k
+

l >, WA./k+I) corresponds to the minimum value of the error. Ifall the

weights are such that the following convergence criterion is satisfied, then go to step 11,

otherwise set k = 1<.+1 and go to step 2.

11. Set W = W(k+l) and stop.
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CHAPTER IV

METHODS AND IMPLEMENTATION

Neural Network Architecture Design

To compare the effectiveness of different penalty methods, the performance of

three training methods are studied in this research. These methods are the regular

learning algorithm without a penalty tenn, the penalty method with different penalty

terms, and the improved penalty method proposed in this research. The performance of

each method is calculated using a computer program written in the ANSI Standard

FORTRAN 77 language.

A small network is tested fIrst. Then the hidden nodes will be added to the

network. When the network becomes larger, the generalization error becomes larger and

larger. Usually, the generalization error can be reduced by inducing a penalty term [1].

The improved penalty method proposed in this research has proved to be able to reduce

the generalization error signifIcantly.

Three penalty terms are tested in this research. There are many different types of

penalty terms used in neural networks to reduce overfitting. Some of them are very

complicated. Some of them have a disadvantage in that large weights decay at the same

rate as small weights. Some of them include a few of user-dependent parameters. The
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three penalty terms which will be tested in this research are A. W~PW~ 2 A,W;.2 and
(

-HI ._.2)' JI,
(WJi ) + Wo

( J
2

1 P L N a2 y
-LLL~
2p p=ll=ln=1 aX~

The performance function value (RMS) is used as the stopping criterion. When to

stop the training process is very important for a given problem. Therefore, an optimal

stopping point is needed to obtain better generalization performance so that the network

has a good generalization performance. This is especially important when a network is

overfitting. In this thesis, the sample data are divided into two sets. One is the training

set and the other is the validation set. When the network is trained, the generalization

performance will be tested at certain numbers of iterations using the validation set.

The weights are initialized with random values which are uniformly distributed

between -0.5 and 0.5 [2]. A curve fitting criterion is used to test all the learning

algorithms. Tow data sets are used. One is the training data and the other one is the

validation data. Both of them contain 49 pairs. The training and validation data sets are

listed in table A-35 and A-36 respectively. For all the methods tested, the same sample

data were used.

In total seven methods are tested. Method A is the regular method and method B

and C are penalty term methods based on Algorithm 3-3 with different penalty terms.

Method D and E are improved penalty term methods based on Algorithm 3-4 with

different penalty terms. Method F is an improved penalty term method based on

Algorithm 3-5. Method G is an simplified Bishop's penalty term method.

The overview of the methods tested in this paper is shown in Table 4-1.
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Table 4-1 Overview of methods tested

--------------------------------------------------------------
Methods* Penalty Term

--------------------------------------------------------------

A

B

c

D

E

F

G

R

P

P

NP

NP

NP2

P

No

. HI 2
Wj. Wo

[
2 J21 P L N aYnp

2P ~U~:;I ax~

• R - Regular method without any penalty term.
P - Penalty term method
NP - New penalty term method
NP2 - New penalty term method 2, the objective function will be

changed dynamically.
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Discussion ofTest Results

First, a network with two imput nodes, seven hidden nodes and one output node

(2/7/1) is tested. The network has 29 weights and methods A, B, C, D, and E are tested.

The training and generalization performance of different method is listed in table A-I

through A-9. The training and generalization performance of method A is listed in table

A-I. It takes about 11 epochs of training to get the training RMS value of 0.070721 land

generalization RMS value of 0.0724163. The training and generalization performance of

method B is listed in table A-2 and A-3. It takes 5 epochs of training to get the training

RMS value of 0.0706896 and generalization RMS value of 0.0741628. It is found that

method B makes the generalization performance slightly decrease (-2.35%). The

performance of method C is listed in table A-4 and A-5. It takes 7 epochs to get the

training RMS and generalization RMS value of 0.0725740 and 0.0758244. It makes the

generalization error increased by 4.49% and the training error increased by 25.07%. The

performance of method D is listed in table A-6 and A-7. It takes about 12 epochs to get

the training RMS value of 0.0691364 and generalization RMS value of 0.0698246. It

improved the generalization performance by 3.71 % and reduced the training error by

2.3%. Comparing with the penalty method (method B), the improved penalty method

(method D) improved the generalization and training performance by 6.2% and 2.25%

respectively. The performance of method E is listed in table A-8 and A-9. It has the

same training and generalization performance as the method A because the penalty the

term used in this method makes the training error increase.

Next, the network with two input nodes, eight hidden nodes, and an output node

(2/8/1) is tested. Similarly, training and generalization performance ofeach method of A,
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B, C, D and E are listed in table A-lO through A-17 respectively. The comparison of the

performance of different method is listed in Table 4-3. Method A takes 8 training epochs

to get the training RMS value of 0.0730081 and generalization RMS value of 0.0767580.

The perfonnance of method B is listed in table A-II and table A-12. It takes 6 training

epochs to get the training RMS value of 0.071706 and generalization RMS value of

0.0751127. It improved the training and generalization performance by 1.81% and

2.19% respectively. The performance of method C is listed in table A-13 and A-14. It

takes 10 epochs to get the training RMS value of 0.0718936 and generalization RMS

0.0744065. It improved the training and generalization 1.5% and 3.06% respectively.

However, the value of A. should be selected very carefully. Otherwise, it will increase the

training and generalization error. The perfonnance of method D is listed in table A-IS

and A-16. It takes about 15 training epochs to get the training RMS value of 0.0681585

and generalization RMS value of 0.0669311. It improved the training and generalization

performance by 7.11% and 14.68% respectively. Comparing with the penalty term

method, it improved the training and generalization perfonnance by 5.2% and 12.22%.

The performance of method E is listed in table A-17. It takes ] 5 epochs to get the

training RMS value of 0.0718534 and the generalization RMS value of 0.0737869. It

improved the training and generalization performance by 1.6% and 4.03% respectively.

Thirdly, the network with two input nodes, ten hidden nodes, and an output node

(2/10/1) is tested. Methods A, B, C, D and E are tested. The performance of different

method is listed in table A-18 through A-26. The performance of method A is listed in

table A-18. It takes about 12 epochs to get the training RMS value of 0.0823795 and

generalization RMS value of 0.0865625. In this case, the network is overfitting. Method
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B takes about 13 training epochs to get the training RMS value of 0.0782682 and

generalization RMS value of 0.0865625. It improved the training and generalization

performance by 5.25% and 6.46% respectively. The performance ofmethod C is listed in

table A-21 and A-22. The performance of method D is listed in table A-23 and A-24. It

takes about 17 epochs to get the training and generalization RMS value of0.0753999 and

0.0763246 respectively. It improved training perfonnance by 9.26% and the

generalization performance by 13.41 %. Comparing with the penalty term method, the

improved penalty term method improved the training and generalization perfonnance by

3.8% and 6.53% respectively.

To test the effectiveness of the method F, a series of A(0.008,0.006,0.004,0.002,

0.001,0.0006,0.0001, 0.00006, 0.00004, 0.00001) are tested in a network with two input

nodes, seven hidden nodes, and an output node. The performance of training and

generalization of different A is listed in table A-27. The best performance is obtained

when A equals 0.0001. It is helpful to use the improved penalty term method 2 to get the

best A from a set of A values. Once the A is selected, the rest of the training process ofthe

improved penalty term method 2 (method F) is as same as the penalty term method. So

the weakness of the penalty term method still exists in the improved penalty term method

2.

Finally, the performance of Bishop's penalty term method G is tested. The

performances of different networks are listed in table A-28 through table A-34. For the

net work with two input nodes, seven hidden nodes, and an output node (2/711), Bishop's

penalty term method takes 10 training epochs to get the training RMS value of 0.0707547

and generalization RMS value of 0.0724433. The generalization performance is very
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close to the generalization performance of method A (Table 4-2). For the network

(2/8/1), it takes 13 training epochs to get the training RMS value of 0.0788628 and

generalization RMS value of 0.0748189. It improved the generalization performance by

2.5%. For the network with two input nodes, ten hidden nodes, and an output nodes

(2110/1), it takes 8 training epochs to get the training RMS value of 0.0823851 and

generalization RMS value of 0.0855824. It improved the generalization performance by

1.13%. The performance comparison of different method for different networks is listed

in table 4-2 through tab 4-4.
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Table 4-2 Perfonnance Comparison of Different Method
For the Network with 7 hidden nodes

Method Epoch Training RMS Generalization RMS
A 10 0.0707211 0.0724163

B-1 5 0.0706896 0.0741628
B-2 6 0.0895382 0.0892582
C-l 7 0.0725740 0.0758244
C-2 2 0.0884512 0.0866356
D-l 12 0.0691364 0.0698246
D-2 10 0.0707211 0.0724163
E-l 10 0.0707211 0.0724163
E-2 10 0.0707211 0.0724163
G 10 0.0707547 0.0724433

Table 4-3 Perfonnance Comparison ofDifferent Method
For the Network with 8 hidden nodes

Method Epoch Training RMS Generalization RMS
A 8 0.0730081 ! 0.0767580

B-1 6 0.0717076 0.0751127
B-2 10 0.0728760 0.0764509
C-l 10 0.0718936 0.0744065
C-2 2 0.0865809 0.0864760
D-l 16 0.0681907 0.0677225
D-2 15 0.0681585 0.0669311
E-l 15 0.0718534 0.0737869
G 13 0.0728628 0.0748189

Table 4-4 Performance Comparison of Different Method
for Network with 10 hidden nodes

Method Epoch Training RMS Generalization RMS
A 12 0.0823795 0.0865625

B-1 5 0.0878567 0.0872217
B-2 13 0.0782682 0.0813108
C-l 7 0.0823783 0.0855836
C-2 2 0.0853115 0.0865137
D-l 17 0.0753999 0.0763246
D-2 12 0.0823741 0.0855825
E-l 10 0.0823793 0.0855825
E-2 10 0.0823793 0.0855822
G 8 0.0823851 0.0855824
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CHAPTER V

CONCLUSION

Overfitting is a very important issue in artificial neural networks. Penalty term

methods are useful way to reduce overfitting. Seven different training algorithms are

studied in this research. The following conclusions can be drawn from this study:

1. Overfitting does exist in artificial neural networks. As the neural network

becomes larger, the generalization performance becomes worse. It is better to

use the smallest network that fits the data.

2. For a network which is not overfitting, the penalty term method has no

significant improvement for training and generalization performance of the

network. If the penalty term or the constant A is not chosen properly, the

penalty term method will decrease the performance significantly. On the

other side, the improved penalty method can slightly increase the

generalization performance of the network if the penalty term and A are

chosen properly. If the penalty term and A are not chosen properly, the

improved penalty term method can also be used to train the network and has

no risk to decrease the performance. Usually it is difficult to know if the

network is overfitting or not. Therefore, it is better to use the improved

penalty term method than to use the penalty term method in any situation.
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3. When the network is overfitting, the penalty method can be used to improve

the generalization performance of the networks. Compared with the penalty

term method, the improved penalty method improves the training and

generalization performance more significantly and has no risk to decrease the

performance.

4. Penalty term and the constant A are problem and network architecture

dependent. The improved penalty method 2 can be used to chose a Aproperly

and improve the perfonnance significantly as well.

Future work could be done in several areas as listed below:

1. To investigate the performance of each method, a training data set and a

validation set are used in this research. Since the training procedure used in

the research can itself lead to some over-fitting to the validation set, the

performance of each training method may be confirmed by measuring its

performance on a third independent set ofdata called a test set.

2. A constant A is used in most of the penalty methods. There is no criteria to

select a A. It is valuable to conduct a method to choose A to close to the

optimum point to improve the generalization performance.

3. Another method that can be investigated is an interactive method in which the

designer checks the trained network and decides which nodes to remove.

Several heuristics are used to identify units that don't constant output over all

training patterns. When a number of nodes have highly correlated responses

over all patterns, they can be combined into one node.
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APPENDIX A

TESTING TABLES

Table A-I Performance ofTraining and Generalization (RMS)
Method A with 7 hidden nodes

Epoch Training RMS Generalization RMS Convergence Error
0 0.214704E-OO 0.209518E-OO
1 0.812552E-01 0.841985E-B1 0.133448E-00
2 0.80 1644E-Ol 0.834818E-0 I 0.109082E-02
3 O.790322E-0 I 0.825625E-Ol 0.113216E-02
4 0.779749E-01 0.8 16252E-O 1 0.105730E-02
5 O.750445E-01 0.787846E-Ol 0.293044E-02
6 O.736659E-0 1 0.774 192E-O I 0.137859E-02
7 0.7222IOE-Ol 0.755748£-0 I 0.144488E-02
8 O.717990E-Ol 0.732518E-Ol 0.422016E-03
9 0.71 8357E-Ol O.732768E-O I 0.366718E-04
10 0.707211 E-O 1* 0.724163E-01* 0.1 11452E-02
11 O. 707575E-0 I 0.724437E-0 I 0.363737E-04

-

Table A-2 Performance ofTraining and Generalization (RMS)
Method B with 7 hidden nodes and Ie = 0.01

Epoch Training RMS Generalization RMS Convergence Error
0 0.214709E-00 0.209518E-OO
I 0.896909E-Ol 0.891520E-Ol 0.125540E-00
2 0.895401£-01 0.892551E-Ol 0.150718E-03
3 0.895380E-O 1 0.892581£-01 0.2 I8302E-05
4 0.895385E-O I 0.892578E-Ol 0.506639E-06
5 0.895382E-OI 0.892583 E-O I 0.275671 E-06 ,

6 0.895382E-0 1* 0.892582E-0 '* 0.447035E-07
7 0.895383 E-O I 0.892581E-Ol 0.596046E-07
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Table A-3 Performance of Training and Generalization (RMS)
Method B with 7 hidden nodes and A. = 0.000 I

Epoch Training RMS Generalization RMS Convergence Error
0 0.2 I4709E-OO 0.2095 I8E-oO
1 0.813377E-o I 0.842336£-0 I 0.13337IE-OO
2 0.80 I080E-o I 0.83400IE-01 0.122967E-02
3 0.782553E-ol 0.818001 E-ol 0.185277E-02
4 O.774735E-o I 0.81o877E-o1 0.781715E-03
5 0.706896E-ol* 0.741628E-oI· 0.678393E-02
6 0.711018E-ol O.745780E-0 I 0.412233E-03

Table A-4 Performance ofTraining and Generalization (RMS)
Method C with 7 hidden nodes and A. = 0.0001

Epoch Training RMS Generalization RMS Convergence Error
0 0.2 I4709E-00 0.209518E-oO

I

1 0.812634E-01. 0.842007E-01 0.133440E-oO
2 0.801 132E-ol 0.834342E-ol 0.115024E..Q2
3 0.788925E-ol 0.824305E-ol 0.122075E-02
4 O.778096E-o 1 0.814628E-01 0.108288E-02
5 0.74428 lE-O 1 O.781 553E-o I 0.338145E-02
6 0.732613E-o 1 O.769954E-0 I 0.1 16679E-02
7 O.725740E-0 I· 0.758244£-01 * 0.687353E-03
8 0.729824£-0 I O.743964E-o I 0.408381E-03

Table A-5 Performance ofTraining and Generalization (RMS)
Method C with 7 hidden nodes and A. = 0.01

Epoch Training RMS Generalization RMS Convergence Error
0 0.214709E-00 0.2095 18E-oO
] 0.886283E-o I 0.867396E-ol 0.126221 E-oO
2 0.884512E-Ol· 0.866238E-ol· 0.177145E-03
3 0.884734E-ol 0.866356E-ol 0.221804E-04
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Table A-6 Perfonnanoe of Training and Generalization (RMS)
Methoo D with 7 hidden nooes and A. = 0.0001

Epoch Training RMS Generalization RMS Convergence Error
0 0.214709E~0 o.209518E-oO
1 0.812552E~1 0.841985E~1 0.133448
2 0.801644E-01 0.834818E~1 0.109082E-02
3 0.790322E-o 1 0.825625E~ I 0.1 13216E-02
4 O.779749E-o I 0.816252E~1 0.105730E-02
5 O.750445E-O 1 O. 787846E-O 1 0.293044E-02
6 0.736659E-OI 0.774192E-01 0.137859E~2

7 0.722210E-ol O.755748E-O 1 O. I44488E-02
8 0.71 7990E-Ol 0.732518E-Ol 0.422016E-03
9 0.718357E-01 O.732768E-o 1 0.366718E-04
10 0.7072IIE-Ol 0.724163E-ol 0.11 1452E-02
11 0.723729E-Ol O.728283E-O 1 0.909194E-03
12 0.691364E-O 1* 0.698246E-O I· 0.323655E-02
13 O. 704434E-0 1 0.708009E-01 0.130697E-02

Tab]e A-7 Perionnanoe of Training and Generalization (RMS)
Methoo D with 7 hidden nooes and A. = 0.0 I

Epoch Training RMS Generalization RMS Conver~ence Error
0 0.214709E-OO 0.209518E-OO
1 0.8 12552E-O 1 0.841985E-0 1 0.133448
2 0.801644E-O] 0.834818E-01 0.109082E-02
3 O.790322E-01 0.825625E-O 1 0.1132]6£-02
4 0.779749£-01 0.816252£-01 0.105730E~2
5 0.750445£-01 0.787846E-01 0.293044E-02
6 O.736659E-0 1 0.774192E-01 0.137859E-02
7 0.722210E-O 1 0.755748E-01 0.144488E-02

I 8 0.717990E-01 0.732518£-01 0.422016E-03
9 0.718357£-01 O.732768E-0 1 0.366718E-04
10 0.707211 E-Ol· 0.724163E-Ol· 0.1 11452E-02
11 O.707750E-0 I 0.724481 E-O 1 0.422075E-04

Table A-8 Performance ofTraining and Generalization (RMS)
Methoo E with 7 hidden nooes and A. = 0.01

Epoch Trainin~ RMS Generalization RMS ConverRence Error
0 0.214709E-OO 0.209518E-OO
1 0.812552E-Ol 0.841 985E-O I 0.133448

2 0.80 1644E-O I 0.834818E-Ol 0.109082E-02

3 O.790322E-0 I 0.825625E-01 0.113216E-02

4 0.779749E-O I, 0.816252£-01 0.105730E-02

5 0.750445£-01 0.787846E-Ol 0.293044E-02

6 0.736659£-01 O.774192E-O I 0.137859£-02

7 0.722210E-Ol 0.755748E-OI 0.144488E-02

8 0.717990E-OI O.7325 18E-O 1 0,422016E-03

9 0.718357E-Ol O.732768E-0 1 0.366718E-04

10 0.707211E-OI* 0.724163E-Ol· 0.11 1452E-02

11 0.708656E-Ol 0.724377E-01 0.28260 1E-04
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Table A-9 Performance ofTraining and Generalization (RMS)
Method £ with 7 bidden nodes and A. = 0.0001

Epoch Training RMS Generalization RMS Convergence Error
0 0.2 I4709E-OO 0.209518£-00
I 0.8 12552E-O I 0.841985£-01 0.133448
2 0.801644£-01 0.834818£-01 0.109082£-02
3 0.790322£-01 0.825625£-01 0.113216E-02
4 O.779749E-O 1 0.816252£-01 0.105730£-02
5 0.750445£-01 0.787846£-01 0.293044£-02
6 0.736659£-01 0.774192£-01 0.137859£-02
7 0.722210£-01 0.755748£-01 0.144488£-02
8 0.7 17990E-0 1 0.732518£-01 0.422016£-03
9 0.718357£-01 0.732768£-01 0.366718E-04
10 0.707211£-01· 0.724163£-01· 0.1 I 1452E-02
Il 0.707701£-01 0.724475£-01 0.415072£-04

Table A-I0 Perfonnance of Training and Generalization (RMS)
Method A with 8 hidden nodes

Epoch Training RMS Generalization RMS Convergence Error
0 0.213003£-00 0.207839E-00
1 0.818643E-Ol 0.848730E-0 1 0.131138
2 0.815437E-Ol 0.847499E-0 1 0.320621 £-03
3 0.813113£-01 0.846303£-01 0.232413£-03
4 0.808220E-Ol 0.842961E-Ol 0.489302E-03
5 0.796452£-01 0.833113£-01 0.117680£-02
6 0.778920E-Ol 0.81 6870E-Ol 0.175317E-02
7 0.737960£-01 O.775554E-O I 0.409602£-02
8 0.730081 £-01· 0.767580E-Ol· 0.787854E-03
9 0.733293£-01 0.770622£-01 0.321187E-03

Table A-II Performance ofTraining and Generalization (RMS)
Method B with 8 hidden nodes and A. = 0.01

Epoch Training RMS Generalization RMS Convergence Error

0 0.213003E-OO 0.207839£-00

1 0.819372E-Ol 0.848970£-01 0.131071

2 0.816100£-0 I 0.847689E-O 1 0.327244E-03

3 0.812510£-01 0.845630E-0 1 0.358932E-03

4 0.800752E-OI 0.836221E-01 0.1 17583E-02

5 0.791521£-01 0.828127£-01 0.923134E-03

6 O.717076E-OI· 0.751127£-01- 0.744448£-02

7 0.722484£-01 0.756384£-01 0.540763E-03
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Table A-12 Performance of Training and Generalization (RMS)
Method B with 8 hidden nodes and A= 0.000 I

Epoch Trainin.l!: RMS Generalizatioo RMS Convenzence Error
0 0.213003E-OO 0.207839E-OO
I 0.818717E-Ol 0.848753E-Ol 0.131132
2 0.81 5524E-O I 0.847525E-O I 0.3 I9220E-03
3 0.813135E-01 o.846287E-O 1 0.238933E-03
4 0.807856E-O I 0.842638E-O 1 0.527889E-03
5 0.796023E-O 1 0.832680E-O I O. 118332E-02
6 0.776854E-O 1 0.8 I4787E-0 1 0.191 688E-02
7 0.739080E-Ol 0.776723E-01 0.377746E-02
8 O.728923E-0 I 0.766369E-01 0.101567E-02
9 O.730239E-O I 0.767609E-OI O.13 1637E-03
10 0.728760E-Ol* 0.764509E-Ol· 0.14790IE-03
11 O.735858E-0 I 0.771 347E-Ol 0.709720E-03

Table A-13 Performance ofTraining and Generalization (RMS)
Method C with 8 hidden nodes and A= 0.0001

Epoch Training RMS Generali.zatiOll RMS Convergence Error

0 0.213oo3E-00 0.207839E-00
1 0.81869IE-OI 0.848744E-O I 0.131 134E-00

2 0.815431E-OI 0.847472E-OI 0.325955E-03

3 0.812866E-OI 0.846118E-01 0.256523E-03

4 0.806990E-O1 0.841 960E-O I 0.587605E-03

5 0.794732E-OI 0.831542E-{)1 0.122583E-02

6 0.772993E-OI 0.811025E-OI 0.2 I7392E-02

7 O.738339E-01 O.776072E-{) I 0.346541 E-02

8 0.72845IE-OI 0.765909E-Ol 0.988781 E-03

9 0.728672E-Ol 0.7661 29E-O1 0.221059E-04

10 0.718936E-Ol· O.744065E-{) I· 0.973582E-03

II 0.722725E-OI 0.747 144E-O1 0.378869E-03

Table A-14 Performance of Training and Generalization (RMS)
Method C with 8 hidden nodes and A= 0.01

Epoch Training RMS Generalization RMS Converp,ence Error

0 0.213003E-OO 0.207839E-OO

I 0.866797E-OI 0.865098E-O I 0.126489E-00

2 0.865809E-0 I· 0.864760E-O I 0.987947E-04·

3 0.865913E-Ol 0.864781E-{)1 0.103712E-04
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Table A-15 Performance ofTraining and Generalization (RMS)
Method 0 with 8 hidden nodes and A= 0.01

Eooch Training RMS Generalization RMS Cooveflzence Error
0 0.213003E-OO 0.207839E-OO
1 0.8 I8643 E-O 1 0.848730E-O 1 0.131138
2 0.815437E-OI 0.847499E-OI 0.32062]E-03
3 0.813113E-Ol 0.846303E-OI 0.232413E-03
4 0.808220E-O I 0.842961E-OI 0.489302E-03
5 0.796452E-O] 0.833113E-OI 0.1 I7680E-02
6 0.778920E-OI 0.816870E-O] 0.1753] 7E-02
7 0.737960E-OI O.775554E-O 1 0.409602E-02
8 0.73008IE-Ol 0.767580E-O 1 0.787854E-03
9 0.733293E-OI 0.770622E-O 1 0.321 187E-03
10 0.731537E-Ol 0.765954E-Ol 0.175618E-03
II 0.759106E-01 0.774551 E-O I 0.186249E-02
12 0.757639E-Ol 0.773498E-OI 0.146680E-03
13 0.762574E-OI O.775192E-O 1 0.493556E-03
14 O.763435E-O 1 0.768638E-OI 0.860468E-04
15 0.747234E-Ol 0.740842E-O] 0.162011E-02

16 0.681907E-Ol* 0.677225E-Ol* 0.653267E-02

17 0.695431 E-O 1 0.688462E-Ol 0.135239E-02

Table A-16 Performance ofTrain ing and Generalization (RMS)
Method 0 with 8 hidden nodes and A= 0.0001

Eooch Training RMS Generalization RMS Convergence Error

0 0.2 13003E-OO 0.207839E-OO

1 0.8 18643E-Ol 0.848730E-O I 0.131138

2 0.815437E-Ol 0.847499E-O I 0.320621 E-03

3 0.813113E-OI 0.846303E-O 1 0.232413 E-03

4 0.808220E-OI 0.842961 E-O I 0.489302E-03

5 0.796452E-OI 0.833113E~01 0.117680E-02

6 0.778920E-0] 0.816870E-OI 0.175317E-02

7 O.737960E-0 1 0.775554E-Ol 0.409602E-02

8 0.73008IE-01 O.767580E-O 1 0.787854E-03

9 0.733293E-01 O.770622E-O1 0.321 I87E-03

10 0.759254E-OI 0.774626E-OI 0.186847E-02

II O.757737E-O 1 O.773533E-O 1 0.151746E-03

12 0.73 1537E-OI 0.765954E-01 0.1.75618E-03

13 0.713689E-Ol O.703227E-O I 0.510639£-02

14 0.695947E-Ol 0.682037E-O 1 0.177421 E-02

15 0.681585E-OI * 0.669311 E-O 1* 0.143620E-02

16 0.68 I996E-O 1 0.669665E-O I 0.410751 E-04
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Table A-17 Performance ofTraining and Generalization (RMS)
Method E with 8 bidder! nodes and A. = 0.01

Epoch Training RMS Generalization RMS Convergence Error
0 0.213003E-00 0.207839E-OO
I 0.818643E-01 0.848730E-Ol 0.131\38
2 0.81 5437E-OI 0.847499E-Ol 0.32062\ E-03
3 0.8131 13E-OI 0.846303E-O 1 0.232413E-03
4 0.808220£-0 \ 0.842961£-0\ 0.489302E-03
5 0.796452E-Ol 0.833113£-0\ 0.1 I7680E-02
6 O.778920E-Ol 0.816870£-0 \ 0.175317E-02
7 0.737960E-Ol 0.775554£-01 0.409602£-02
8 0.730081E-OI 0.767580E-Ol 0.787854E-03
9 0.733293E-Ol O.770622E-O1 0.321 I87E-03
10 0.731537£-01 0.765954E-Ol 0.175618£-03
II 0.756865E-01 0.775078£-01 0.187512E-02
12 0.747758£-01 0.767588£-0 I 0.910699E-03
13 0.743792£-01 O.763368E-O I 0.975490£-03
14 0.735836E-OI O.754677E-O 1 0.156695E-02
15 0.7 I8534E-0 I· 0.737869£-01· 0.173014E-02
16 O.724389E-O I 0.726581 E-O I 0.585444£-03

Table A-18 Performance ofTraining and Generalization (RMS)
Method A with 10 hidden nodes

Epoch Training RMS Generalization RMS Convergence Error

0 0.210536E-00 0.205405£-00
1 0.8251IOE-Ol 0.855849E-Ol 0.128025

2 0.824249E-01 O. 855839E-O1 0.861 I38E-04

3 0.824023E-Ol 0.855835E-0 I 0.226125E-04

4 0.823923E-Ol 0.855831 E-O I 0.999123E-05

5 0.823858E-OI 0.855828E-O I 0.64820 I E-05 :1

6 0.823841 E-Ol 0.855827E-0 1 0.171.363E-05

7 0.823805E-0 I 0.855825E-0 I 0.366569E-05

8 0.823793E-01 0.855825E-0 I 0.111759E-05

9 0.823794E-01 0.856824£-01 0.447035E-07

10 0.823790E-01 0.856824E-O I 0.402331 E-06

11 0.823793E-01 O.866823E-Ol 0.312924E-06

12 0.823795E-Ol· 0.865625E-O1· 0.178814E-06

13 0.823806£-01 0.855825E-O I 0.11 J759E-05
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Table A-19 Performance ofTraining and Generalization (RMS)
Method B with 10 hjddeo nodes and A. = 0.0 I

Epoch TraininR RMS Generalization RMS Convergence Error
0 0.210543 0.205405
1 0.878851£-0 I 0.872232E-0 1 0.123397
2 0.878564E-0 1 0.872218E-01 0.293776£-04
3 0.878569E-0 I 0.872211£-01 0.514090E-06
4 0.878569E-0 I 0.872217E-Ol 0.00000
5 0.878561£-01* 0.872211£-01* 0.186265E-06
6 0.878574E-OI 0.872211£-01 0.707805E-06

Table A-20 Performance of Training and Generalization (RMS)
Method B with 10 hidden nodes and A. = 0.0001

Epoch Training RMS Generalization RMS Convergence Error
0 0.210543 0.205405
1 0.825718E-01 0.855999E-ol 0.127972
2 0.824931 E-o I 0.855999E-01 0.787oo5E-04
3 0.824664E-0 I 0.855993E-o 1 0.266880E-04
4 0.824511 E-O 1 0.855984E-0 I 0.153333E-04
5 0.824397E-o1 0.855975E-o I 0.1 I 3398E-04
6 O. 824122E-01 0.855968E-o 1 0.753254E-05
7 0.823246E-ol 0.855960E-o 1 0.759959E-05
8 0.814179E-ol 0.857852E-0 I 0.672042E-05
9 0.814121E-ol 0.835944E-ol 0.582635E-05
1.0 0.804066E-ol 0.825736E-ol 0.544631£-05
II 0.782809E-Ol 0.813131 E-ol 0.562519E-05
12 0.782748E-ol 0.813120E-o I 0.648946E-05
13 0.782682E-ol* 0.813108E-oI* 0.693649E-05
14 O.782996E-o I 0.813791 E-O I 0.90 1520E-05

Table A-21 Performance ofTraining and Generalization (RMS)
Method C with 10 hidden nodes and It. =0.00001

Epoch Training RMS Generalization RMS Convergence Error

0 0.210543E-00 0.205405E-00

I 0.825111£-01 0.855866E-0 I 0.128024E-00

2 0.824285E-Ol 0.855855E-0 1 0.832081 E-04

3 0.824051 E-O I 0.855849E-0 I 0.234768E-04

4 0.823928E-Ol 0.855844E-0 I 0.1221 15E-04

5 0.823875E-0 I 0.855841 E-O I 0.533462E-05

6 0.823824E-0 1 0.855839E-01 0.509620E-05

7 0.823805E-Ol 0.855837E-Ol 0.195205E-05

8 0.823791£-0 I 0.855831£-01 0.789762E-06

9 0.823783E-01* 0.855836E-0 I· 0.137091 E-05

10 0.823790E-0 1 0.855836E-OI 0.707805E-06
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Table A-22 Performance of Training and Generalization (RMS)
Method C with 10 hidden nodes and A= 0.01

Epoch Training RMS Generalization RMS Conver~enceError
0 0.210543E-OO 0.205405E-OO
1 0.853625E-O I 0.865173E-Ol 0.125381 E-OO
2 0.853090E-Ol 0.865138E-01 0.534728E-04
3 0.853115E-O I* 0.865137E-Ol * 0.249594E-05
4 0.853128E-O I 0.865 136E-O I 0.130385E-05

Table A-23 Performance of Training and Generalization (RMS)
Method 0 with 10 hidden nodes and A. = 0.000 I

Epoch Training RMS Generalization RMS Convergence Error
0 0.210536 0.205405
1 0.82511 OE-O 1 0.855849E-O I 0.128025
2 0.824249E-Ol 0.855839E-O I 0.861138E-04
3 0.824023E-0 I 0.855835E-0 I 0.226125E-04
4 0.823923E-0 I 0.855831E-01 0.999123E-05
5 0.823858E-Ol 0.855828E-01 0.648201 E-05
6 0.823841 E-O I 0.855827E-01 0.171363E-05
7 0.823805E-0 I 0.855825E-Ol 0.366569E-05
8 0.823793E-0 I 0.855923E-O I 0.1 I I 759E-05
9 0.823792E-0 I 0.856874E-O I 0.447035E-07
10 0.823790E-01 0.855824E-OI 0.402331 E-06
II 0.825205E-O I 0.850717E-01

,

0.786036E-05
12 0.814152E-Ol 0.846813E-O I 0.528991 E-05
13 0.802311£-01 0.835607E-O I 0.454485E-05
J4 0.800074E-Ol 0.821903E-Ol 0.326335E-05
15 0.784048E-Ol 0.8 J5800E-0 I 0.263OO5E-05
16 0.772402E-Ol O.794055E-O I 0.261515E-05
17 0.753999E-OI * 0.763246E-OI· 0.227243 E-05
18 0.766967E-OI 0.795789E-O I 0.3 I5905E-05

Table A-24 Performance ofTraining and Generalization (RMS)
Method 0 with 10 hidden nodes and A = 0.0 I

Epoch Training RMS Generalization RMS Convergence Error

0 0.210543E-OO 0.205405E-OO

1 0.82511 OE-O I 0.855849E-OI 0.128025

2 0.824249E-0 1 0.855839E-Ol 0.861 I38E-04

3 0.824023 E-O1 0.855835E-Ol 0.226125E-04

4 0.823923E-01 0.855831 E-O 1 0.999123E-05

5 0.823858E-Ol 0.855828E-O I 0.64820 IE-05

6 0.823841 E-O I O. 855827E-O I 0.17 J363E-05

7 0.823805E-OI 0.855825E-O I 0.366569E-05

8 0.823793E-Ol 0.855825E-0 I 0.11 1759E-05

9 0.823794E-Ol 0.855824E-Ol 0.447035E-07

to 0.823790E-0 1 0.855824E-Ol 0.402331 E-06

II 0.82384IE-Ol 0.855824 E-O 1 0.186265E-06

12 0.82374IE-Ol* 0.855825E-Ol* 0.566244E-06

13 0.823931 E-O I 0.855824E-D I 0.151992E-05
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Table A-25 Performance ofTraining and Generalization (RMS)
Method E with 10 hidden nodes and A. = 0.01

Epoch Training RMS Generalization RMS Convergence Error
0 0.210543E-00 0.205405E-00
1 0.825I1OE-Ol 0.855849E-01 0.128025
2 0.824249E-0 1 0.855839E-Ol 0.861 I38E-04
3 0.824023E-OI 0.855835E-Ol 0.226125E-04
4 0.823923E-01 0.85583lE-0 I 0.999123E-05
5 0.823858E-01 0.855828E-Ol 0.64820IE-05
6 0.82384IE-OI 0.855827E-0 1 0.171363E-05
7 0.823805E-01 0.855825E-Ol 0.366569E-05
8 0.823793E-Ol 0.855825E-Ol 0.111759E-05
9 0.823794E-Ol 0.855824E-Ol 0.447035E-07

Table A-26 Performance ofTraining and Generalization (RMS)
Method E with 10 hidden nodes and A. = 0.00001

Epoch Training RMS Generalization RMS Convergence Error
0 0.210543E-00 0.205405E-00
1 0.825 I IOE-Ol 0.855849E-0 1 0.128025
2 0.824249E-0 J 0.855839E-0 1 0.861138E-04
3 0.824023E-OI 0.855835E-0 1 0.226125E-04
4 0.823923E-0 J 0.855831 E-O J 0.999123E-05
5 0.823858£-01 0.855828E-0 J 0.648201 E-05
6 0.823841E-Ol 0.855827E-Ol 0.171363E-05
7 0.823805E-01 0.855825E-O] 0.366569E-05
8 0.823793E-Ol 0.855825E-01 0.1 11759E-05
9 0.823794E-Ol 0.855824E-01 0.447035E-07
10 0.823790E-Ol 0.855824E-0] 0.402331E-06
11 0.823795E-0 1 0.855823E-01 0.154972E-05
12 0.823793E-Ol 0.855823E-0 1 0.178814E-06
13 0.823779E-0 1 0.855822E-0] 0.144541 E-05
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Table A-27 Perfonnance ofTraining and Generalization (RMS)
Method F with 7 hidden nodes and different A(0.008,0.006
0.004,0.002,0.001,0.0006,0.0001,0.00006, 0.00004, 0.00001)

Epoch "- Training RMS Generalization RMS Convergence Error
i 1 0.80000E-02 0.860905E-Ol I 0.848817E"{) I 0.128730E-OO

2 0.60000E-02 0.846864E-O I i 0.847823E-O 1 0.465959E-03
3 0.40000E-02 0.837784E-O 1 I 0.847662E"{) I 0.478327E..{)4
4 0.20000E-02 0.828646E-Ol 0.846507E"{) 1 0.51 I557E-04
5 0.10000E-02 0.802596E-01 0.806985E"{)1 0.211523E-02
6 0.60000E-03 0.791398E-OI O.792753E-O I 0.787571 E-03
7 0.10000E-03* 0.771920E-0 I* 0.786071E-Ol 0.133017E"{)2
8 0.60000E-04 O.774715E..{) 1 0.784241 E-Ol 0.323653E-03
9 0.40000E-04 0.774570£-01 0.784329E-01 0.331238£-03
10 O.IOOOOE-04 0.774264E-O I 0.784434E-01 0.333793E-03
1J 0.10000E-03 0.771808E-Ol O.783094E-O I 0.358023E-03
12 0.10000E-03 0.771222E-Ol 0.782939E-Ol 0.586659E-04
13 0.10000E-03 0.813377E-Ol 0.842336E-0 I 0.133371 E-OO

Table A-28 Performance of Training and Generalization (RMS)

Method G with 7 hidden modes and A = 0.001

Epoch Training RMS Generalization RMS Convergence Error
0 0.214756 0.209518
1 0.81 7576E-O I 0.841984E-Ol 0.132999
2 0.807776E-O 1 0.835390E-Ol 0.979960E-03
3 0.798116E-OI 0.827304E-O I 0.966057E-03
4 O.788325E-O 1 0.8 I8250E-0 I 0.979044E-03
5 0.766781E-Ol O.796450E..{) I 0.215444E-02
6 0.752509E-Ol 0.781470E-Ol 0.142720E-02
7 0.714120E-OI* 0.736984E-Ol* 0.38389IE-02
8 0.730710E-OI 0.752282E-Ol 0.165908E-02

Table A-29 Perfonnance of Training and Generalization (RMS)

Method G with 7 hidden modes and A = 0.000 I

Epoch Training RMS Generaljzation RMS Convergence Error

0 0.214709 0.209518
I 0.813054£-01 0.841985E-Ol 0.133404

2 0.802277E-01 0.834886E-0 I 0.107767E-02

3 0.791121E-Ol 0.825798E-0 I 0.1 11558E-02

4 0.780597£-01 0.816429E"{)1 0.105239E-02

5 O. 752288E-O 1 0.788873E-OI 0.283096E-02

6 0.738405E-OI 0.775041 E-O 1 O. ]38825E-02

7 0.721871 E-Ol 0.754372E-O I O. ]65343E-02

8 0.716075E-01 0.730340E-O] 0.579566E-03

9 0.716354E-OI 0.730538E-Ol 0.278950£-04

10 0.709259£-01 * 0.725106E-Ol* 0.709549£-03

II 0.709502E-01 O. 725289E-O 1 0.243112£-04
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Table A-30 Performance ofTrain.i.ng and Generaljzation (RMS)

Method G with 7 hidden modes and A= 0.0002

Epoch Training RMS Generalizatioo RMS Convergence Error
0 0.214705 0.209518
1 0.812652E..Q 1 0.841985E..QI 0.133439
2 0..801 743E-ol 0.834814E-o I 0.1 09088E-02
3 0.790483E-OI O.825664E-o 1 0.11260 1E-02
4 0.779875E-OI O.816249E-o 1 0.106080E-02
5 O.750842E-O I O.788082E-o 1 0.29033 I E..()2
6 O.736947E-o I 0.774301E-ol 0.1 38956E-02
7 0.72196IE-Ol 0.755340E-ol 0.149855E-02
8 O.717005E-ol 0.731551E-ol 0.495657E-03
9 O. 71 7307E-0 I O.731 760E-o I 0.302196E-04
10 0.707547E-ol* O.724244E-o 1* 0.976011E-03
11 0.707797E-ol 0.724433E-ol 0.250116E-04

Table A-31 Perfonnance of Training and Generalization (RMS)

Method G with 8 hidden modes and A = 0.0002

Epoch Training RMS Generalization RMS Convergence Error
0 0.213004 0.207839
I 0.8 I8767E-O I 0.848726E-01 0.131127
2 0.815572E-ol 0.847500E-ol 0.319563E-03
3 0.813266E-o 1 0.846321E-ol 0.230514E-03
4 0.808509£-01 0.843091£-01 0.475705E-03
5 0.796952E-ol 0.833439E-Ol 0.1 15574E-02
6 0.779820E-Ol 0.817583E-ol 0.171316E-02
7 0.738800£-01 0.776176E-ol 0.410205E-02
8 0.730631E-01 O.767895E-o 1 0.81 6934E-03
9 O.733877E-0 I O.770932E-o I 0.324629E-03
10 0.73 I922E-o 1 O.766110E-01 0.195459E-03
II 0.733967E-01 O.768062E-o 1 0.204444E-03
12 O.731807E-0 I 0.750615E-01 0.21 5985E-03
13 0.732087E-01 O.750793E-o I 0.279844E-04
14 0.730509E-Ol* 0.749718E-oI* O. J57736E-03
15 O.730594E-0 I O.749775E-O I 0.849366E-05
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Table A-32 Performance ofTraining and Generalization (RMS)

Method G with 8 hidden modes and A = 0.0001

Epoch Training RMS Generalization RMS Convergence Error
0 0.213003 0.207839
I 0.818695E-ol 0.848729£-0 I 0.131134
2 0.815518£-01 0.847507£-01 0.3 I7685E-03
3 0.813209E-o I 0.846324E-o I 0.230849E-03
4 0.8084IIE-OI 0.843060£-01 0.479840E-03
5 0.796791 E-o 1 0.833353 E-O 1 0.116200E-02
6 0.779562£-01 0.8 I 7408E..{) 1 0.172289E-02
7 0.738410E-01 0.775888£-0 I 0.411511£-02
8 O.730438E-0 I 0.767817E-OI 0.7971 75E-03
9 0.733867E-01 0.771038E-ol 0.342883E-03
JO O.73 1672E-0 I O.765858E-O I 0.219509E-03
11 0.733556E-ol O.767654E-O I 0.188418E-03
12 0.728855E-ol O.748343E-0 1 0.470124E-03
13 0.728628E-ol* 0.748189E-Ol* 0.227 168E..{)4
14 O. 729582E-o 1 O.748835E-O 1 0.954 196E-04

Table A-33 Performance of Training and Generalization (RMS)

Method G with 10 hidden modes and A = 0.0001

Epoch Training RMS Generalization RMS Convergence Error
0 0.210543 0.205405
1 0.825592£-01 0.855851 E-O I 0.127984
2 0.824773E-Ol 0.855839E-0 I 0.819638£-04
3 0.824542E-Ol 0.855834E-0 I 0.230819E-04
4 0.824432E-0 I 0.855830E-Ol 0.109598E-04
5 0.824401 E-o 1 0.855829E-OI 0.310689E-05
6 0.824371 E-ol 0.855827E-Ol O.302494E..{)5
7 0.824355E-0 I 0.855827E-o I 0.164658E"{)5
8 0.824354E-OI 0.855827E-0 1 0.745058E-07
9 0.824343E-Ol· 0.855826E-o 1- 0.1 10269E-05
10 0.824355E-OI 0.855827E-ol 0.122935E-05

Table A-34 Performance of Training and Generalization (RMS)

Method G with 10 hidden modes and A= 0.0000 1

Epoch Training RMS Generalization RMS Convergence Error
0 0.210537 0.205405
1 0.825 160E-o1 0.855848E-0 1 0.128021

2 0.824300E-ol 0.855838E-0 I 0.860468E"{)4

3 0.824081 E-O 1 0.855834E-0 I 0.2 18600E-04

4 0.823960E-0 I 0.855830E-OI 0.120923E-04

5 0.823906E-0 I 0.855821£-01 0.540167E-05

6 0.823877E-01 0.855826E-O 1 0.288337E"{)5

7 0.823852E-Ol 0.855824£-01 0.255555E-05

8 0.823851 E..{) 1* 0.855824£-0]- 0.968575E-07

9 0.823867E-01 O. 855825E-0 1 0.166 L48E-05
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Table A-35 The Training Data Set

O.OOOOOOOOE+OO O.OOOOOOOOE+OO 0.00000000£+00
0.00000000£+00 0.83333336E-0] 0.69444450E-02
0.00000000£+00 0.16666661£+00 0.27777780E-0]
0.00000000£+00 0.25000000E+00 0.62500000E-0]
0.00000000£+00 0.33333334£+00 0.11] 11112£+00
0.00000000£+00 0.4] 666666E+00 0.17361110£+00
0.00000000£+00 0.50000000£+00 0.25000000E+00
0.83333336£-01 0.00000000£+00 0.69444450E-02
0.83333336E-0 1 0.83333336£-01 0.13888890£-01
0.83333336E-0 1 0.16666661£+00 0.34722224E-0 1
0.83333336E-0 1 0.25000000£+00 0.69444448E-0 1
0.83333336E-0 1 0.33333334£+00 0.] 1805556E+00
0.83333336E-0 1 0.41666666E+00 O. ]8055555£+00
0.83333336E-O 1 0.50000000E+00 0.25694445E+OO
0.16666667E+00 O.OOOOOOOOE+00 0.27777780E-0 1
0.16666667E+00 0.83333336E-0 1 0.34722224E-0 1
0.16666661£+00 0.16666661£+00 0.55555560E-0 1
0.16666661£+00 0.250oo000E+00 0.90277776E-0 1
0.16666661£+00 0.33333334E+00 0.13888890E+00
0.16666661£+00 0.4 1666666E+00 0.20138888E+00
0.16666667£+00 0.50000000E+00 o.27777779E+00
0.25000000E+00 O.OOOoooOOE+OO 0.62500000E-0 1
0.25000000E+00 0.83333336E-0 I 0.69444448E-0 1
0.25000000E+00 0.16666667£+00 O.90277776E-0 1
0.25000000£+00 0.25000000£+00 0.125OOO00E+00
0.25000000E+00 0.33333334E+00 0.17361112£+00
0.25000000£+00 0.41666666E+00 0.23611110E+00
0.25000000£+00 0.500oo000E+00 0.3 1250000E+00
0.33333334E+00 0.00000000£+00 0.11111112£+00
0.33333334E+00 0.83333336£-01 0.] 1805557E+00
0.33333334E+00 0.16666667£+00 0.13888890E+00
0.33333334£+00 o.250oo000E+00 0.17361112E+00
0.33333334E+00 0.33333334E+00 0.22222224E+00
0.33333334E+00 0.41666666E+00 0.28472221 E+OO
0.33333334E+00 0.500oo000E+00 0.361111] OE+OO

0.41666666E+00 O.OOOOOOOOE+oo 0.17361 JlOE+oo
0.41666666E+00 0.83333336E-0 1 0.18055555E+OO

0.41666666£+00 0.16666661£+00 0.20138888E+OO

0.41666666£+00 0.25000000£+00 0.23611 110E+OO

0.41666666£+00 0.33333334£+00 0.28472221E+00

0.4 1666666E+00 0.41666666£+00 0.34722221£+00

0.41666666E+00 o.50000000E+00 0.42361110£+00

0.50000000£+00 O.OOOOOOOOE+OO 0.25000000£+00

0.50000000£+00 0.83333336E-0 1 0.25694445£+00

0.500oo000E+00 0.16666661£+00 0.27777779£+00

0.50000000£+00 0.25000000£+00 0.31250000E+00

0.50000000£+00 0.33333334E+OO 0.36] 11110£+00

0.50000000E+00 I 0.41666666£+00 0.423611 ]0£+00

0.500oo000E+00 0.50000000£+00 0.500oo000E+00
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Table A-36 The Validation Data Set

0.99999998E-02 O.99999998E-02 O.19999999E-03
0.99999998E-02 O.93333334E-O I 0.88] II] ]6E-02
0.99999998E-02 0.17666666E+00 0.3] 3 11I1 OE-O 1
0.99999998E-02 O.25999999E+00 0.67699999E-0 I
0.99999998E-02 0.34333333E+00 0.1 I797778E+00
0.99999998E-02 0.42666668E+00 0.18214445E+OO
0.99999998E-02 O.50999999E+00 0.260 19999E+OO
0.93333334E-01 0.99999998E-02 0.881 11106E-02
0.93333334E-01 0.93333334E-0] 0.] 7422222E-0]
0.93333334E-0] 0.17666666E+00 0.39922219E-0 I
0.93333334E-0 I 0.25999999E+00 0.76311104E-01
0.93333334E-0 I 0.34333333E+00 O.12658890E+00
O.93333334E-0 1 0.42666668E+OO 0.19075556E+00
0.93333334E-0 I 0.50999999E+00 O.26881111E+OO
0.17666666E+00 0.99999998E-02 O.313111IOE-OI
0.17666666E+00 0.93333334E-01 O.39922222E-0 I
0.17666666E+00 0.17666666E+OO 0.62422220E-0 I
0.17666666E+00 0.25999999E+00 0.98811105E-OI
0.1 7666666E+00 O.34333333E+OO 0.14908889E+00
0.17666666E+00 0.42666668E+00 O.21325557E+00
0.17666666E+00 0.50999999E+00 O.29131109E+OO
0.25999999E+00 0.99999998E-02 0.67699999E-O I
o.25999999E+00 0.93333334E-0 I 0.76311111 E-O I
0.25999999E+00 o.17666666E+00 0.98811105E-OI
0.25999999E+00 o.25999999E+00 0.135 I9999E+00
0.25999999E+00 0.34333333E+00 0.1 8547778E+00
0.25999999E+00 0.42666668E+00 0.24964444E+00
0.25999999E+OO 0.50999999E+00 0.32769999E+00
0.34333333E+OO 0.99999998E-02 0.1 I797778E+00
0.34333333E+00 0.93333334E-0] 0.12658890E+00
0.34333333E+00 0.17666666E+00 0.14908889E+00
0.34333333E+00 0.25999999E+00 0.1 8547778E+00
0.34333333E+00 0.34333333E+00 0.23575556E+00
0.34333333E+00 0.42666668E+00 0.29992223 E+00
0.34333333E+00 0.50999999E+00 0.37797776E+OO
0.42666668E+00 0.99999998E-02 0.1 82 I4445E+00
0.42666668E+00 0.93333334E-O 1 0.19075556E+00
0.42666668E+00 0.17666666E+00 0.2 I325555E+00

O.42666668E+00 O.25999999E+OO 0.24964444E+00

0.42666668E+00 0.34333333E+00 0.29992223E+00

0.42666668E+00 0.42666668E+00 0.36408889E+00

0.42666668E+00 0.50999999E+OO 0.442 I4442E+OO

0.50999999E+00 0.99999998E-02 0.260 I9996E+00

0.50999999E+00 0.93333334E-OI 0.2688] 108E+00

0.S0999999E+00 0.17666666E+00 0.29131109E+00

o.s0999999E+00 o.25999999E+00 0.32769996E+00

0.50999999E+00 0.34333333E+00 0.37797776E+00

0.50999999E+00 0.42666668E+OO , 0.442 I4442E+OO

0.50999999E+00 0.S0999999E+00 0.S2019995E+OO
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APPENDIXB

COMPUTER PROGRAMS

PROGRAM DRIVER

C······*·········*·····*···········*·**············*··•..**••••••

•

•

•

•

•
•

•

•

TillS DRIVER IS TO GENERATE THE RANDOM WEIGHTS
W(MlAYR MNODE, O:MNODE) --THE WEIGHT OF

EACH LAYER. •
P(MNODE) -- THE INPUT DATA OF THE SAMPLE. •
O(MNODE) -- THE OUTPUT CALCULATED FROM THE INPUT

DATA SAMPLE. *
N(MLAYR, MNODE) -- THE WEIGHTED SUM OF THE

INPUTS OF A NEURON MNODE IN LAYER MLAYR
REF (3.1.l) •

A(O:MLAYR O:MNODE) -- THE OurPUT OF THE NEURON
MNODE IN LAYER MLAYR. REF (3.1.2) •
NOnCE THAT A(O,·) REPRESENTS THE INPUT
LAYER. A(·,0) REPRESENTS THE BIAS. •

NNODE(O:MLAYR) -- THE NUMBER OF NODE IN EACH
LAYER. •

LAYER -- THE ACTUAL TOTAL LAYER OF THE NET. (EXCLUDING *
THE INPUT LAYER) •

MLAYR -- THE MAXMUM LAYER A NET CAN HAVE. •
MNODE -- THE MAXMUM NODE ONE LAYER Of A NET CAN HAVE *
LL -- SAMPLE INDEX •

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C·**··························*······*······*······**·.......•*..
PARAMETER(MLAYR = 4, MNODE = IOO,MSAMP = 200)
DOUBLE PRECISION DRANDOM, W(MLAYR, MNODE, O:MNODE),

+ SEED,TOL,WO,LAMDA,LAMDA2,P(MSAMP,MNODE),O(MSAMP,MNODE),
+ N(MLAYRMNODE), A(O:MLAYR,O:MNODE),
+ SENSI(MLAYR,MNODE),T(MSAMP,MNODE),ERROR2,ERROR1,
+ G(MLAYR,MNODE,O:MNODE),TG(MLAYR,MNODE,O:MNODE),
+ FRET,TOLl,ERROR,ERRORV

INTEGER K,1,J,LL,NNODE(O:MLAYR),METHOD,LAYER,NSAMP
INTEGER NUM,ITERMAXNUM,NWEIG,PSTAT,JUDGE

C
C THE FOLLOWING DATA IS USED IN CONJUGATE GRADIENT METHOD
C

DOUBLE PRECISION PP(MLAYR,MNODE,O:MNODE),BETA,
+ TGO(MLAYR,MNODE,O:MNODE),PPO(MLAYR,MNODE,O:MNODE)

PSTAT=lO
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C
C SET UP NETWORK
C

CALL NETSETUP(LAYER.,MLAYR.,NNODE,SEED,WO,LAMDA,LAMDA2,METHOD)
WRITE(*, 123)LAMDA, LAMDA2

123 FORMAT(lx,'LAM1=',FI6.12, 'LAM2=',FI6.12)
CALL NETPRINT(LAYER,MLAYR,NNODE,SEED,WO,LAMDA,LAMDA2,METHOD)

C
C INITIAL WEIGHT WITH RANDOM NUMBER.
C

CALL INIWEIGHT(W, LAYER, MLAYR,NNODE. MNODE,SEED,
+ NWEIG)

C
C PRINT THE NUMBER OF WEIGHT
C

WRJTE(*,1001)NWEIG
1001 FORMAT(lX,'THE NUMBER OF WEIGHT IS: ',15)
C
C READ IN TRAINING DATA P(l) AND T(l)
C READ IN THE INPUT AND DESIRED OUTPUT OF ONE TRAINING SAMPLE
C

CALL GETINPUTDATA(P,T,MNODE,NNODE(O),NNODE(LAYER),
+ MSAMP,NSAMP)

C
C CALCULATE THE PERFORMANCE FUNCTION
C

ERROR = SQRT(TEST(MSAMP,MNODE,W,MLAYR,LAYER,
+ NNODE,LAMDA,WOYNSAMP)

PRINT*, 'BEFORE TRAINING GENERALlZAnON ERROR: .,ERROR
C
C LOOP OVER ITERATION
C SET TOLERANCE AND MAXIMUM ITERATION NUMBER
C

TOL = 4.Of>.. I0
TOLl = 3.5f>..2
MAXITER=IO
lTER=O
JUIXiE=O

C
1000 ITER = ITER + 1
C
C ENTER ITERATION
C

CALL JNITG(LAYER,MLAYR,NNODE,MNODE,TG)
C
C SUM TOTAL GRADIENT
C

DO 320 LL=l,NSAMP
C
C FEEDFORWARD COMPUTAnON
C

CALL FORWARD(P,O,N,MLAYR,LAYER,MNODE,A,
+ NNODE,W,LL,MSAMP)

C
C CALCULATE THE SENSITIVITY MATRIX
C
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CALL SENSITIVITY(SENSl,W,LAYER,MLAYR,NNODE,
+ MNODE,T,O,N,LL,MSAMP)

C
C CALCULATE THE GRADLENT OF THE PERFORMANCE FUNCTION
C

CALL GRAD(SENSI,A,W,LAYER, MLAYR,
+ NNODE,MNODE,G,WO,LAMDA)

C
C SUM UP THE TOTAL GRADLENT
C

CALL SUMGRAD(G,LAYER,MLAYR,NNODE,MNODE,TG)
320 CONTINUE
C
C FIND THE PERFORMANCE FUNCTION VALUE, BEFORE LINE SEARCH
C

ERRORI = SQRT(FINDE(P,T,MSAMP,NSAMP,MNODE,
+ W,MLAYR,LAYER,NNODE,O,LAMDA,WO) INSAMP)

TF (MOD(ITER,PSTAT) .EQ. l) THEN
C WRITE(*,l600)ITER,ERRORI
1600 FORMAT(IX,'BEFORE LINE SEARCH, ITER #',I5,2X,

+ 'ERRORl VALUE = ',G25.20)
ENDIF

C
C FfRST START AND RESTART USING STEEPEST DESCENT
C

IF (ITER .EQ. I .OR. MOD(ITER.,NWEIG) .EQ. 0) THEN
CALL GETPP(pP,PPO,TG,MLAYR.,LAYER,MNODE,NNODE,

+ O.DO)
ENDIF

C
C ASSIGN THE TG TO TGO
C

CALL ASSIGN(TG,TGO,MLAYR,LAYER.,MNODE,NNODE)
CALL ASSIGN(PP,PPO,MLAYR,LAYER,MNODE,NNODE)

C
C COMPUTE ALGORITHM 3.6.1 (4) AND (5).

CALL L1NMJN(FRET,P,T,MSAMP,NSAMP,
+ MNODE,W,PPO,MLAYR,LAYER,NNODE,O,LAMDA,WO)

C
C USING STEP 2 TO COMPUTE THE G(K+ I)
C

CALL lNITG(LAYER.,MLAYR,NNODE,MNODE,TG)
00 321 LL=l,NSAMP

C
C FEEDFORWARD COMPUTATION
C

CALL FORWARD(P,O,N,MLAYR,LAYER,MNODE,A,
+ NNODE,W,LL,MSAMP)

C
C CALCULATE THE SENSITIVITY MATRIX
C

CALL SENSITIVlTY(SENSI,W,LAYER.,MLAYR,NNODE,
+ MNODE,T,O,N,LL,MSAMP)

C
C CALCULATE THE GRADIENT OF THE PERFORMANCE FUNCTION
C
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CALL GRAD(SENSI,A,W,LAYER, MLAYR,
+ NNODE,MNODE,G,WO,LAMDA)

C
C SUM UP THE TOTAL GRADlENT
C

CALL SUMGRA.D(G,LAYER,MLAYR,NNODE,MNODE,TG)
321 CONTINUE
C
C FIND THE PERFORMANCE FUNCTION VALUE, AFTER LINE SEARCH
C

ERROR2= SQRT(FINDE(P,T,MSAMP,NSAMP,MNODE,
+ W,MLAYR,LAYER,NNODE,O,LAMDA,WO) fNSAMP)

C IF(MOD(ITER,PSTAT) .EQ. 0) THEN
C WRITE(*,1100)ITER,ERR0R2
1100 FORMAT(lX,'AFTER UNE SEARCH, ITER#',J5,2X,

+ 'ERROR2 VALUE = ',G25.20)
C ENDIF

C IF(MOD(lTER,PSTAT) .EQ. 1) THEN
C IF (ABS(ERROR2 - ERROR1) .LT. TOL) THEN

ERROR = ABS(ERROR2 - ERRORI)
C WRITE(*, 101)ERROR
101 FORMAT (IX,'ERROR = ',G25.20)
C STOP
C ENDIF

C VALIDATE THE NETWORK USING VALIDATION SET.

C IF(MOD(ITER,PSTAT) .EQ. I) THEN
ERRORV = SQRT(TEST(MSAMP,MNODE,W,MLAYR,LAYER,

+ NNODE,LAMDA,WO)/NSAMP)
WRITE(*, 1211 )ITER,ERROR2,ERRORV,ERROR

1211 FORMAT(12,',',lx,GI5.6,',',lx,GI5.6,',',lx,GI5.6)
1200 FORMAT(IX,'AFTER TRAINING GENERAUZATION ERROR: ',G25.20)
C ENDIF
C

BETA=FINDBETA(TG,TGO,MLAYR,LAYER,MNODE,
+ NNODE)

CALL GETPP(PP,PPO,TG,MLAYR,LAYER,MNODE,NNODE,
+ BETA)

C
C PRINT TG, AFTER STEP 7
C
C ASSING TG TO TGO, TOO STORES P(K+1)
C

CALL ASSIGN(TG,TGO,MLAYR,LAYER,MNODE,NNODE)
C

IF(JUDGE.EQ.O)THEN
IF «ABS(ERROR2 - ERRORI) .GT. TOL .OR. ERRORI .GT. TOLl

+ .OR. ERROR2 .GT. TOLl) .AND. ITER .LT. MAXITER)THEN
ERRORI = ERROR2
GOTO 1000

ELSE
JUOOE=I
LAMDA=LAMDA2
lTER=O
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C

GOTO 1000
ENDIF

ENDIF
IF(JUDGE.EQ.l)THEN
IF «ABS(ERROR2 - ERROR1) .GT. TOL .OR. ERRORI .GT. TOLl

+ .OR. ERROR2 .GT. TOll) .AND.ITER .LT. MAXlTER)THEN
ERRORI = ERROR2
GOTO 1000
ENDIF
ENDIF

WRITE(·,1300)
WRITE(·,1301)ITER, MAXITER

1301 FORMAT(lx,'ITER=',15,4x,'MAXITER=',15)
1300 FORMAT(lX,'SOLUTION CONVERGE TO THE TOLERANCE')

WRITE(·, 1400)ITER,ERROR1,ERROR2,ABS(ERROR2-ERRORl)
1400 FORMAT(IX,'ITER= ',15,2X,'ERRORI= ',G25.10,2X,'ERR0R2=',

+ G25.IO,2X,'ERROR=', G25.10)
C
C TEST THE NETWORK USING TEST SET
C

ERROR = SQRT(TEST(MSAMP,MNODE,W,MLAYR,LAYER,
+ NNODE,LAMDA,WO}'NSAMP)

WRlTE(·,1500)ERROR
1500 FORMAT(1 X,'AFTER TRAfNfNG ERROR=',G25.1 0)
C

STOP
END

C*·*·**··*·····***····*··**·*·***·····*·*·········*··· *.***.*.
SUBROUTINE ASSIGN(ORlG,NEW,MLAYR,NLAYR,MNODE,

+ NNODE)

C****·*·*******·*····*········*·······················.•.••.....•...
C TIDS SUBROUTINE IS TO COPY A ORIG MATRIX TO NEW MATRIX. •
C IT IS USED TO COPY TG. •

C*·······*·*···········*·····························*....•.........
INTEGER MLAYR,NLAYR,MNODE,NNODE(O:MLAYR)
DOUBLE PRECISION ORlG(MLAYR,MNODE,O:MNODE),

+ NEW(MLAYR,MNODE,O:MNODE)
fNTEGER I,J,K,KK,LL

DO 10 K=I,NLAYR
KK=NNODE(K)
LL=NNODE(K-l)
0020 J=I,KK

00301=0,LL
NEW(K,J,I)=ORlG(K,J,I)

30 CONTINUE
20 CONTINUE
10 CONTINUE
C

RETURN
END

C·*·····*···*···****·······*·*·**·****·····***········.....****.*

FUNCTION BRENT(AX,BX,CX,F,TOL,XMIN)
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C

C·*·····*·*·························*·········*·······••••••••••••
C GIVEN A FUNCTION P, AND GIVEN A BRACKETING •
C TRIPLET OF ABSCIESSAS AX, BX, CX(SUCH THAT BX IS ..
C BETWEEN AX, AND cx, AND F(BX) IS LESS THAN BOTH ..
C F(AX) AND F(CX», TIDS ROUTINE ISOLATES THE MINIMUM •
C TO A FRACTIONAL PRECISION OF ABOUT TOL USING BRENTS •
C METHOD. THlS ABXCISSA OF THE MINIMUM IS RETURNED AS •
C XMIN, AND MUNlMUM FUNCTION VALUE IS RETURNED AS BRENT, •
C THE RETURNED FUNCTION VALUE. ..
C ..

C PARAMETERS: MAXIMUM ALLOWED NUMBER OF ITERATIONS; GOLDEN·
C RATIO; AND A SMALL NUMBER THAT PROTECTS AGAINST TRYING ..
C TO ACIDEVE FRACTION ACCURACY FOR A MINIMUM THAT HAPPENS ..
C TO BE EXACTLY ZERO. ..
C·*·*·*·*..··············*****··***·***·*****·*·**·**··.*•••*.***.

INTEGER ITMAX
OOUBLE PRECISION BRENT, AX,BX,CX,TOL,XMIN,F,CGOLD,ZEPS
EXTERNALF
PARAMETER(lTMAX= 100, CGOLD=.38196600,ZEPS=1.OD-l 0)

INTEGER ITER
OOUBLE PRECISION A,B,D,E,ETEMP,PU,FV,FW,FX,P,Q,R,TOLl ,TOL2,

+ U,V,W,x,XM
A=MIN(AX,CX)
B=MAX(AX,CX)
V=BX
W=V
X=V
E=O.oo
FX=F(X)
FV=FX
FW=FX
DO 11 [TER = 1, ITMAX

XM = .500·(A+B)
TOLl = TOL·ABS(X) +ZEPS
TOL2 = 2.00·TOLl
IF(ABS(X-XM) .LE. (TOL2 - .500·(B-A») GOTO 3
IF(ABS(E) .GT. TOLl )THEN

R=(X-W)*(FX-FV)
Q=(X-V)*(FX-FW)
P=(X-V)·Q-(X-W)*R
Q=2.00*(Q-R)
IF(Q.GT.O) p=-p
Q=ABS(Q)
ETEMP=E
E=D
IF(ABS(P).GE.ABS(.5DO*Q·ETEMP).0R.P.LE.Q*{A-X).OR.

+ P.GE.Q*(B-X»GOTO I
D=P/Q
U=X+D
IF(U-A.LT.TOL2 .OR. B-V .L1. TOL2)D=DSfGN(TOLl,XM-X)
GOT02

ENDIF
IF(X.GE.XM)THEN

E=A-X
ELSE
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E=B-X
ENDrF
D=CGOLD*E

2 fF(ABS(D).GE.TOL1)THEN
U=X+D

ELSE
U=X+DSIGN(TOLI ,0)

ENDIF
FU= F(U)
IF(FU.LE.FX)THEN

IF(U.GE.X)THEN
A=X

ELSE
B=X

ENDIF
V=W
FV=FW
W=X
FW=FX
X=U
FX=FU

ELSE
IF(U.LT.X)THEN

A=U
ELSE

B=U
ENDIF
IF(FU.LE.FW .OR. W.EQ.X)THEN

V=W
FV=FW
W=U
FW=FU

ELSEIF(FU .LE. FV .OR. V.EQ.X .OR. V.EQ. W)THEN
V=U
FV=FU

ENDIF
ENDfF

11 CONTINUE
C
3 XMIN=X

BRENT=FX
RETURN
END

C****************************************************************

*
THIS ROUTINE IS TO CONVERT THE 3-DfMENSIONAL
ARRAYS fNTO I-DIMENSIONAL ARRAY. rT IS USED
TO APPLY LINE SEARCH ROUTINE *

SUBROUTINE CONYERT(TG,MLAYR,MNODE,NLAYR,
+ NNODE,A,MAXNUM,NUM)

C*****************************************************************

*C
C
C
c************************·****************************************

rNTEGER MLAYR,MNODE,NLAYR,NNODE(O:MLAYR),
+ MAXNUM,NUM,I,J,K,KK,LL

DOUBLE PRECISION A(MAXNUM),TG(MLAYR,MNODE,O:MNODE)
c
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NUM=O
DO 10 K=I,NLAYR

KK=NNODE(K)
LL=NNODE(K-I)
DO 20 J=I,KK

DO 30 l=l,LL
NUM=NUM+I
A(NUM)=TG(K.J,I)

30 CONTINUE
20 CONTINUE
10 CONTINUE
C

RETURN
END

C****···***··***··**···*·········*····******···****·***.***.**••••

C·**··*··***··****·**··*·******·*·····**····**·****···*•••••**•••••
C GIVEN A FUNCTION F AND ITS DERIVATIVE FUNCTION DF, AND *
C GIVEN A BRACKETING TRIPLET OF ABSCISSAS AX, BX, CX[SUCH •
C THAT BX IS BETWEEN AX AND CX AND F(BX) IS LESS THAN BOTH •
C F(AX) AND F(CX)], THIS ROUTINE ISOLATES THE MINIMUM TO A •
C FRACTIONAL PRECISION OF ABOUT TOL USING A MODIFICATION OF •
C BRENTS METHOD THAT USES DERIVATIVES. THE ABSCISSA OF THE •
C MINIMUM IS RETURNED AS XMIN, AND THE MINIMUM FUNCTION •
C VALUE IS RETURNED AS DBRENT, THE RETURNED FUNCTION VALUE. •
C*·***·*·**··***··*****····**·*········**···*····*···· ••*••*•••••••

FUNCTION DBRENT(AX,BX,CX,F,DF,TOL,XMlN)
INTEGER lTMAX
DOUBLE PRECISION DBRENT,AX,BX,CX,TOL,XMIN,DF,F,ZEPS
EXTERNAL DF,F
PARAMETER(JTEM=IOO,ZEPS=J .OD-IO)
INTEGER ITER
DOUBLE PRECISION A,B,D,Dl ,D2,DU,DV,DW,DX,E,FU,FV,FW,FX,OLDE,

+ TOll, TOL2, U,UJ,U2,V,W,X,XM
LOGICAL OK1,0K2
A=MJN(AX,CX)
B=MAX(AX,CX)
V=BX
W=V
X=V
E=O.
FX=F(X)
FV=FX
FW=FX
DX=DF(X)
DV=DX
DW=DX
DO I I ITER=I,ITMAX

XM={).S·(A+B)
TOll =TOL*ABS(X)+ZEPS
TOL2=2.·TOLJ
IF(ABS(X-XM) .LE. (TOL2 - .S·(B-A»)GOTO 3
IF(ABS(E) .GT. TOll) THEN

D1=2.*(B-A)
D2=DI
IF(DW.NE.DX)Dl=(W-X)*DX/(DX-DW)
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IF(DV.NE.DX)D2=(V-X)*DX/(DX-DV)
UI=X+Dl
U2=X+D2
OKl=«A-UJ)*(UI-B).GT.O) .AND. (DX*Dl .LE. 0.)
0K2=«A-U2)*(U2-B).GT.O) .AND. (DX*D2 .LE. 0.)
OLDE=E
E=D
IF(.NOT. (OK I.OR.OK2»THEN

GOl'O I
ELSEIF (OKl .AND. OK2)THEN

IF(ABS(Dl ).LT.ABS(D2»THEN
D=Dl

ELSE
D=D2

ENDIF
ELSEIF (OKI) THEN

D=DI
ELSE

D=D2
ENDIF
IF(ABS(D) .GT. ABS(O.S*OLDE»GOTO I
U=X+D
IF(U-A .LT. TOL2 .OR. B-U .LT. TOL2)D=SIGN(TOLI,XM-X)
GOT02
ENDfF
IF(DX.GE.O.)THEN

E=A-X
ELSE

E=B-X
ENDIF
D=.5*E

2 IF(ABS(D) .GE. TOLI)THEN
U=X+D
FU=F(U)

ELSE
U=X+SIGN(TOLI,D)
FU=F(U)
IF(FU.GT.FX)GOTO 3

ENDIF
DU=DF(lJ)
IF(FU. LE.FX)THEN

IF(U.GE.X) THEN
A=X

ELSE
B=X

ENDIF
V=W
FV=FW
DV=DW
W=X
FW=FX
DW=DX
X=U
FX=FU
DX=DU

ELSE
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IF(U.LT.X)THEN
A=U

ELSE
B=U

ENDIF
IF(FU.LE.FW .OR. W.EQ.X)THEN

V=W
FV=FW
DV=DW
W=U
FW=FU
DW=DU

ELSEIF(FU .LE. FV .OR. Y.EQ.X .OR. V.EQ.W)THEN
V=U
FV=FU
DV=DU

ENDIF
ENDIF

11 CONTINUE
3 XMIN=X

DBRENT=FX
RETURN
END

C**************************************·**····**······**.**.*****.

•
THIS ROUTINE IS TO FIND THE BETA ACCORDING TO
(2.4.8) -- (2.4.10). *
TG(MLAYR, MNODE, O:MNODE) STORES TOTAL
GRADIENT *

FUNCTION FINDBETA(TG,TGO,MLAYR,NLAYR,MNODE,
+ NNODE)

C********·*********·*****·········**··*·*****·*··*·****.**.*
*C

C
C
C
C**·***·***·*··***·**·*·****·*·****·**·**····******·******.*
C*·****************·*·**********·*********··*··*·*··*·.*.*********

END
RETURN
FINDBETA=SUMISUMI

*

TillS ROUTINE IS TO FIND THE BETA ACCORDING TO
(2.4.8) -- (2.4.10). •
TG(MLAYR, MNODE, O:MNODE) STORES TOTAL
GRADIENT *

C
C
C
C

C
10
20

CONTINUE
CONTINUE

FUNCTION FINDBETA(TG,TGO,MLAYR,NLAYR,MNODE,
+ NNODE)

c***********************************··*···*·*·********.**••*
*

c***·******···***··**·***·******·*********·****·****·*••**••
INTEGER MLAYR,NLAYR,MNODE,NNODE(O:MLAYR)
DOUBLE PRECISION TG(MLAYR,MNODE,O:MNODE),

+ TGO(MLAYR,MNODE,O:MNODE),FINDBETA,SUM,SUM I
INTEGER I,J,K,KK,LL

C
SUM={).DO
SUMl=O.DO
00 10 K=1,NLAYR
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KK=NNODE(K)
LL=NNODE(K-l )
DO 20 J=l,KK

DO 30 I=O,LL
SUM = SUM + TG(K,J,I)*TG(K,J,I)
SUMI = SUMI + TGO(K,J,I)*TGO(K,J 1)

30 CONTINUE
20 CONTINUE
]0 CONTINUE
C

FTNDBETA=SUMJSUM I
RElURN
END

C*·········**·*···*··***·······**····*···*·········*··••••••••••••

•
•

•

THIS FUNCTION IS TO FIND THE PERFORMANCE
FUNCTION E(W) REF. (3.6.1). •
FINDE -- THE PERFORMANCE VALUE. REF (3.6. I) *
T(MSAMP,MNODE)-- THE DESIRED OUTPUT OF THE NET
W(MLAYR,MNODE,O:MNODE)--WEIGHT MATRlX OF THE NET
O(MSAMP,MNODE)-- THE CALCULATED OUTPUT OF THE NET
LAMDA-- THE CONSTANTIN THE PENALTY TERM. •
WO -- THE CONSTANTS TN THE PENALTY. *

C
C
C
C
C
C
C
C

FUNCTION FINDE(P,T,MSAMP,NSAMP,MNODE,
+ W,MLAYR,NLAYR,NNODE,O,LAMDA,WO)

C*···*····**·***··**··*··*·**·****··******·····**·****•••••******

*

C····*·*··**·***·*·*·*···***·*·***·*****·*··········*·•••••••*•••
C

INTEGER MSAMP,NSAMP,MNODE,MLAYR,NLAYR,
+ NNODE(O:MLAYR)

DOUBLE PRECISION O(MSAMP,MNODE),T(MSAMP,MNODE),
+ W(MLAYR,MNODE,O:MNODE),LAMDA,WO,SUM,SUM 1,FINDE,
+ P(MSAMP,MNODE)

DOUBLE PRECISION N(MLAY.R,MNODE),A(O: MLAYR,O:MNODE)
INTEGER I,J,K,L,KK,LL

C
C CALCULATE THE PENALTY TERM.
C

SUM =0.00
SUMI=O.DO
00 100 K=I,NLAYR

KK=NNODE(K)
LL=NNODE(K-l )
DO 200 J=l,KK

DO 300 J=O,LL
SUM=SUM+LAMDA·(W(K,J,I)**2/(WO··2+W(K,J,I)··2»
CONTINUE

CONTINUE
CONTINUE

300
200
100
C
C CALCULATE THE FIRST TERM
C

DO 10 L= I,NSAMP
CALL FORWARD(P,O,N,MLAYR,NLAYR,MNODE,A,NNODE,

+ W,L,MSAMP)
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00 20 K=l,NNODE(NLAYR)
SUM1=SUMI +(T(L,K)-O(L,K»··2

20 CONTINUE
10 CONTINUE
C

C
FlNDE = O.5DO· (SUM +SUMl)

RETURN
END

C····················································· .

•
•

•

•

•
•

•

SUBROUTINE FORWAR.D(P,O,N,MLAYR,NLAYR,MNODE,A,
+ NNODE,W,SN,MSAMP)

C·········*·····························*············· .
•c

c
c
c
c
c
c
c
c
c
C
C
C
C
C

C····················································· *••
INTEGER MLAYR,MNODE,NNODE(O:MLAYR),I,J,K,

+ NLAYR,L,SN,MSAMP,KK,LL
OOUBLE PRECISION N(MLAYR,MNODE),A(O:MLAYR,O:MNODE),

+ W(MLAYR,MNODE,O:MNODE),SUM,P(MSAMP,MNODE),
+ O(MSAMP,MNODE)

C
C STORE INPUT DATA INTO A(O,MNODE)
C

DO 100 1=1, NNODE(O)
A(O,I)=P(SN,I)

100 CONTINUE
C
C STORE THE BIAS
C

A(O,O) = -I.DO
C
C CALCULATE THE SUM OF THE INPUTS OF A NEURON J IN LAYER K
C
C LOOP OVER LAYER
C LOOP OVER LAYER

00 10 K=I,NLAYR
C LOOP OVER CURRENT NODE (TARGET)

KK=NNODE(K)
LL=NNODE(K-l)
0020J=I,KK

C LOOP OVER PRVIOUS NODE (SOURCE)
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SUM =O.ODO
00301=O,LL

SUM = SUM + W(K,J,n*A(K-I,I)
30 CONTINUE
C
C CALCULATE THE SUM OF I NEURON J IN LAYER K
C

N(K,J) = SUM
C
C CALCULATE THE OUTPUT OF NEURON J IN LAYER K
C

A(K,J) = SIGF(N(K,J)
20 CONTINUE
C
C THE BIAS
C

A(K,O) =-1
10 CONTINUE
C
C STORED THE OUTPUT IN A(NNODE(NLAYR»
C

KK=NNODE(NLAYR)
DO 200 1= I, KK

O(SN,I)=A(NLAYR,I)
200 CONTINUE

RETURN
END

C*·*·**·······················*·······················••••••••••

GIVEN A STARTING POINT P THAT IS A VECTOR OF LENGTH
N, FLETCH-REEVES-POLAK-RIBIERE MJNIMIZATION IS •
PERFORMED ON A FUNCTION FUNC, USING ITS GRADIENT AS •
CALCULATED BY A ROUTINE DFUNC. THE CONVERGENCE TOLERANCE •
ON THE FUNCTION VALUE IS INPUT AS FTOL. RETURNED •
QUANTITIES ARE P(THE LOCATION OF THE MJNUMUM), ITER(THE •
NUMBER OF ITERATIONS THAT WERE PERFORMED),AND FRET(THE •
MINIMUM VALUE OF THE FUNCTION). THE ROUTINE LlNMlN IS •
CALLED TO PERFORM LINE MINIMIZATIONS. •
PARAMETERS: NMAX IS THE MAXIMUM ANTICIPATED VALUE OF N; •
ITMAX IS THE MAXIMUM ALLOWED NUMBER OF ITERATIONS; EPS •
[S A SMALL NUMBER TO RECTIFY SPECIAL CASE OF CONVERGING •
TO EXACTLY ZERP FUNCTION VALUE. •

C
C
C
C
C
C
C
C
C
C
C
C
C

SUBROUTINE FRPRMN(P,N,FfOL,ITER,FRET)

C····················································· .•

C·····················································.........•..*
INTEGER ITER,N,NMAX,ITMAX
DOUBLE PRECISION FRET,FTOL,P(N),EPS,FUNC
EXTERNALFUNC
PARAMETER(NMAX=50,ITMAX=200,EPS=I.OD-IO)

C
C USES DFUNC,FUNC,LINMIN
C

INTEGER ITS,J
DOUBLE PRECISION DGG,GAM,GG,G(NMAX),H(NMAX),XI(NMAX)
FP= FUNC(P)
CALL DFUNC(P,XI)
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00 II J=I,N
G(J)=-XI(J)
H(J)=G(J)
XI(J)=H(J)

II CONTINUE
00 14 ITS=I,ITMAX

CALL LlNMIN(P,XI,N,FRET)
IF(2.*ABS(FRET-FP) .LE. ITOL·(ABS(FRET)+ABS(FP)+EPS»)RETURN

FP=FUNC(P)
CALL DFUNC(P,XI)
GG=O.DO
OOG=O.DO

00 12 J=I,N
GG=GG+G(J)**2
DGG=OOG+(XI(J)+G(J)*XI(J)

12 CONTINUE
IF(GG .EQ. O)RETURN

GAM=DGG/GG
DO 13 J=I,N

G(J)=-XI(J)
H(J)=G(J)+GAM·H(J)
XJ(J)=H(J)

13 CONTINUE
14 CONTINUE
C

RETIJRN
END

C*********************************************·********.**.**********

SUBROUTINE GETINPUTDATA(P,T,MNODE,DIMlN,DIMOUT,MSAMP,
+ NSAMP)

C***********···**·*···***********·*·····***·····**···**•••*••••**•••••
C THTS SUBROUTINE IS TO READ THE INPUT DATA FROM •
C TRAINING SAMPLE AND THE TARGET OUTPUT DATA. •
C·*****·****···***·········**·*·····****·········*····*•••••*.*•••*•••

INTEGER MNODE, DIMIN,DIMOUT,I,NSAMP,MSAMP,J
DOUBLE PRECISION P(MSAMP,MNODE), T(MSAMP,MNODE)

C
IN=20
OPEN(UNIT= IN, FILE = 'TRAIN.DAT,STATUS = 'OLD',IOSTAT=fOERR)

IF(IOERR .NE. 0) THEN
WRITE(*, 10) IOERR

10 FORMAT(lX,'CANNOTOPEN NETWORK TRAINING DATA FILE(TRAIN.DAT)',
+ 15)

STOP
ENDfF

C READ IN NUMBER OF TRAINING SAMPLE
READ(IN,*)NSAMP

C
DO 100 J= I, NSAMP

C READ IN THE INPUT DATA
READ(IN,*XP(J,I),J=I,DIMlN)

C
C READ IN THE DESIRED OUTPUT DATA(TARGET DATA)

READ(lN,*XT(J,I),l=I,DIMOUT)
100 CONTINUE
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C
CLOSE (UNIT=IN)

C
RETURN
END

C**·**····**··**········*··****··*******•••••••••••••••••*••••••••••••••••

SUBROUTINE GETPP(PP,PPO,TG,MLAYR,NLAYR,MNODE,
+ NNODE, BETA)

C*·······*··***·*···*·***··**·*·*········*·*•••••••••••••*••••*.*
C THIS SUBROUTINE IS TO CALCULATE METRIX PPo REF. *
C ALGORITHM 3.6.1 (3) AND (7). IT ADDS TIlE PREVIOUS *
C GRADIENT TO THE CURRENT GRADIENT ACCORDING TO *
C DIFFERENT BETA. REF.(2.4.8)-(2.4.IO). STORED THE •
C WHOLE GRADIENT IN PP. *
C***·*··**·**·**···*****·***********·*·······*·*···.·**.*••••**.*

INTEGER MLAYR,NLAYR,MNODE,NNODE(O:MLAYR)
DOUBLE PRECISION PP(MLAYR,MNODE,O:MNODE),BETA,

+ TG(MLAYR,MNODE,O:MNODE),
+ PPO(MLAYR,MNODE,O:MNODE)

INTEGER I,J,K,KK,LL
C
C CALCULATE THE GRADIENT AND STORE IT IN PP
C

DO 10 K=I,NLAYR
KK=NNODE(K)
LL=NNODE(K-l)
DO 20 J=l,KK

D030I=O,LL
PP(K.,J,I) = -TG(K,J,I) + BETA • PPO(K,J,I)

30 CONTINUE
20 CONTINUE
10 CONTINUE
C

RETURN
END

C*·***··**·*·***··***·****··*···****··**····**·······*••••**••••••

•

*
*

*

SUBROUTINE GRAD(SENSI,A,W,NLAYR, MLAYR,
+ NNODE,MNODE,G,WO,LAMDA)

C*··**·*·*····**·*·**··*·**·*·**·····**···*****··*···******••**•••**.**

*C THIS SUBROUTINE [S TO CALCULATE THE
C GRADIENT OF THE PERFORMANCE WoR.T WEIGHT.
C REF. (3.6.6). •
C SENSI(MLAYR,MNODE)--THE SENSITVJTY MATRIX. REF(3.6.12)
C A(O:MLAYR,O:MNODE) -- THE OUTPlfT OF A NEURON. REF(3.1.2) *
C W(MLAYR,MNODE,O:MNODE)-- THE WE[GHT MATRJX
C G(MLAYR,MNODE,O:MNODE)- THE GRADIENT OF THE NET
C OF ONE SAMPLE DATEo *
C WO -- THE CONSTANTS IN PENALTY TERM WOo .*
C LAMDA -- THE CONSTANT IN THE PENALTY. *
C··*··**·*······*····****··**·····*****···**·*·*····*****.***********.*

INTEGER NLAYR, MLAYR,MNODE,I,J,K,KK,LL,
+ NNODE(O:MLAYR)

DOUBLE PRECISION SENSI(MLAYR,MNODE),A(O:MLAYR,
+ O:MNODE),W(MLAYR,MNODE,O:MNODE),
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+ G(MLAYR,MNODE,O:MNODE),WO,LAMDA
C
C CALCULATE THE GRADIENT OF PERFORMACE FUNCTION W.R.T
C WEIGHTS ACCORDfNG TO (3.6.6)
C
C LOOP OVER LAYER
C

DO 10 K=l,NLAYR
KK=NNODE(K)
LL=NNODE(K-l)
DO 20 J=I,KK

C
CBlASTERM
C

G(K,J,O)=SENSI(K,J)+
+ LAMDA *(W(K,J,O) * WO*WO)/«WO*WO + W(K,J,0)**2)**2)

DO 30 1=I,LL
G(K,J,I)=SENSI(K,J) • A(K-l,1) +

+ LAMDA • (W(K,J,I) * WO*WO)/«WO*WO + W(K,J,I)**2)**2)
30 CONTINUE
20 CONTINUE
10 CONTINUE
C

RETURN
END

C********·*··**********************·**·*·***········******.***.**.**

SUBROUTINE INITG(NLAYR,MLAYR,NNODE,
+ MNODE,TG)

C********·*·*********·****************·******************
C THlS FUNCTION IS TO INITIALIZE THE TOTAL •
C GRAD! ENT TO O. *
C**********************************·*·***·******····*****

INTEGER NLAYR, MLAYR,MNODE,I,J,K,KK,LL,
+ NNODE(O:MLAYR)

DOUBLE PRECISION TG(MLAYR,MNODE,O:MNODE)
C
C INITIALIZE THE TOTAL GRADIENT TO 0
C AND NUMOFSAMPLE TO 0
C

DO 10 K=I,NLAYR
KK=NNODE(K)
LL=NNODE(K-l )
D020J=1,KK

00301=0,I..L
TG(K,J,I)= 0

30 CONTINUE
20 CONTINUE
10 CONTINUE
C

RETURN
END

C**********·*****************************·***·***·******

SUBROUTINE INIWEIGHT(WEIGHT, NLAYR, MLAYR,NNODE,
+ MNODE, SEED,NWEIG)

80



•

*

•

•

•
•

•

•

•

WEIGI-IT(LAYER, N, O:N)-- LAYER IN THE LAYER INDEX
N,M CORRESPONDING TO W(J,I), I.E., •
WEIGHT(LAYER, N, M) IS THE WEIGHT
OF THE CONNECTION FROM NODE M OF
THE (LAYER-I )TH LAYER TO NODE N OF
THE LAYERTH LAYER. •
WEIGHT(LAYER, N, 0) IS THE BIAS.

•

INITIALIZE THE WEIGHT OF INPUT LAYER

NUMNODE(D - THE NUMBER OF NODE AT LAYER I.
NUMNODE(O) - THE NUMBER OF lNPUT (NODE). •
NUMNODE(NLAYR) -- NUMBER OF NODE IN OUTPUT LAYER
NWEJG -- THE NUMBER OF WEIGHT •

NLAYR -- THE NUMBER OF LAYER (INCLUDlNG
OUTPUT AND HIDDEN LAYERS). •

•

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

c····················································· .•

C····**·*······················*······················ .
INTEGER MLAYR, MNODE,NWElG
INTEGER I,J,K,FANIN,NNODE(O:MLAYR),NLAYR,KK,LL
DOUBLE PRECISION WEIGHf(MLAYR, MNODE,O:MNODE), TEMP,

+ DRANDOM,SEED,TEMP 1
C
C GENERATE THE RANDOM NUMBER BETWEEN -0.5 TO 0.5
C

TEMPI = SEED
TEMP = DRANDOM(TEMPI) - .5DO
NWEIG= 0

C
C LOOP OVER LAYER
C

DO 10K=I, NLAYR
C
C CALCULATE THE FAN-IN OF THE LAYER.
C

KK=NNODE(K)
LL=NNODE(K-l)
FANIN = NNODE(K-I) + I

C
C LOOP OVER ALL NEURONS IN CURRENT LAYER
C

DO 20 J=I, KK
C
C LOOP OVER ALL NEURONS IN PREVIOUS LAYER
C

DO 30 1= 0, LL
WEIGHT(K,J,I) = TEMP/FANIN
NWEIG = NWEJG + I

30 CONTINUE
20 CONTINUE

10 CONTINUE
RETURN
END
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C···*···**··**·········*·*···****·**··················.•..

•

•
•

•
•

•

SUBROUTINE LINMfN(FRET,P,T,MSAMP,NSAMP,
+ MNODE,W,TG,MLAYR,NLAYR,NNODE,O,LAMDA,WO)

C···*···*·····*··············*························ .
C GIVEN AN N-DIMENSIONAL POINT P( I:N) AND AN •
C N-D1JvfENSIONAL DIRECTION XI(I:N), MOVES AND •
C RESETS P TO WHERE THE FUNCTION FUNC(P) TAKES ON
C A MINIMUM ALONG THE DIRECTION XI FROM P AND
C REPLACES Xl BY THE ACTUAL VECTOR DISPLACEMENT
C THAT P WAS MOVED. ALSO RETURNS AS FRET THE VALUE
C OF FUNC AT THE RETURND LOCATION P. THIS IS •
C ACTUALLY ALL ACCOMPLISHED BY CALLING THE ROUTINES
C MNBRAK AND BRENT. •

C •
C REF "NUMERICAL RECIPJES"

C··**····*·····**·*·*·····*···*·········*·············..*...*....
INTEGER MSAMP,NSAMP,MNODE,MLAYR,NLAYR,

+ NNODE(O:MLAYR)
DOUBLE PRECISION O(MSAMP,MNODE),T(MSAMP,MNODE},

+ W(MLAYR,MNODE,O:MNODE),TG(MLAYR,MNODE,O:MNODE),
+ P(MSAMP,MNODE),LAMDA,WO,TOL,FRET

INTEGER MSCOM,NSCOM,MNCOM,MLCOM,
+ NLCOM

PARAMETER(MLCOM=4,MNCOM= IOO,MSCOM=2(0)
INTEGER NNCOM(O:MLCOM)
ooUBLE PRECISION OCOM(MSCOM,MNCOM),TCOM(MSCOM,

+ MNCOM),WCOM(MLCOM,MNCOM,O:MNCOM),
+ LAMCOM,WOCOM,TGCOM(MLCOM,MNCOM,O:MNCOM),
+ PCOM(MSCOM,MNCOM)

ooUBLE PRECISION AX,BX,FA,FB,FX,XMIN,XX,BRENT
COMMON IFIINSCOM, NLCOM, NNCOM
COMMON IF2/PCOM,OCOM,TCOM,WCOM,TGCOM,LAMCOM, WOCOM
INTEGER I,J,K,KK,LL
EXTERNAL Fl DIM

C
C INITIALIZE THE PARAMETERS
C

NSCOM=NSAMP
NLCOM=NLAYR
LAMCOM=LAMDA
WOCOM=WO
TOL=1.0D-4
00 .10 I=O,NLCOM

NNCOM(I)=NNODE(I)
10 CONTINUE

00 50 I=I,NSCOM
KK=NNCOM(NLCOM)
0060J=I,KK

OCOM(I,J)=O(I,J)
TCOM(I,J)=T(I.,J)
PCOM(I,J)=P(I,J)

60 CONTINUE
50 CONTINUE
C

DO 20 K=I,NLCOM
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KK=NNODE(K)
LL=NNODE(K-I)
00 30 J=I,KK

DO 40 T=O,LL
WCOM(K,J,I)=W(K,J,I)
TGCOM(K,J,I)=TG(K,J,I)

40 CONTINUE
30 CONTINUE
20 CONTINUE
C
C USES BRENT,FI DIM,MNBRAK
C

AX = -l.ODO
XX =1.000
CALL MNBRAK(AX,XX,BX,FA,FX,FB,Fl DIM)
FRET = BRENT(AX,XX,BX,Fl DTM,TOL,XMIN)

C
C CALCULATE THE TOTAL GRADIENT
C

DO 70K=1,NLCOM
KK=NNODE(K)
LL=NNODE(K-l)
DO 80 J=l,KK

DO 90 I=O,LL
TG(K,J,I)=XMIN*TG(K,J,I)
W(K,J,I)=W(K,J,l)+TG(K,J,I)

90 CONTINUE
80 CONTINUE
70 CONTINUE
C

RETURN
END

C********************·**···****·********··**····*·····••••••••
FUNCTION FIDlM(X)
INTEGER MSCOM,NSCOM,MNCOM,MLCOM,

+ NLCOM
PARAMETER(MLCOM=4,MNCOM= IOO,MSCOM=200)
lNTEGER NNCOM(O:MLCOM)
DOUBLE PRECISION OCOM(MSCOM,MNCOM),TCOM(MSCOM,

+ MNCOM),WCOM(MLCOM,MNCOM.O:MNCOM),
+ LAMCOM,WOCOM,TGCOM(MLCOM,MNCOM,O:MNCOM),
+ PCOM(MSCOM,MNCOM)

DOUBLE PRECISION XT(MLCOM,MNCOM,O:MNCOM)
C
C THE COMMON BLOCK
C

COMMON IF IINSCOM, NLCOM, NNCOM
COMMON IF2/PCOM,OCOM,TCOM,WCOM,TGCOM,LAMCOM,WOCOM
DOUBLE PRECISION FlDIM,X
EXTERNAL FTNDE

C
C USES FTNDE
C USED BY LTNMlN AS THE FUNCTION PASSED MNBRAK AND BRENT
C

INTEGER r,J,K,KK,LL
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DO 100 K=I,NLCOM
KK=NNCOM(K)
LL=NNCOM(K-I}
DO 200 J= I,KK

DO 300 1=<l,LL
XT(K,J,I)=WCOM(K,J,I}+X*TGCOM(K,J, I)

300 CONTINUE
200 CONTINUE
100 CONTINUE

FI DIM = FINDE(PCOM,TCOM,MSCOM,}.ISCOM,MNCOM,XT,
+ MLCOM,NLCOM,NNCOM,OCOM,LAMCOM,WOCOM)

RETURN
END

C*******************************************************************

*

*
*

*
*

*
*

*

*
*

*

*

*

THJS ROUTINE IS TO INITIALLY BRACKETING
A MININUM. REF " NUMERICAL RECIPIES
IN FORTRAN, THE ART OF SCJENTIFIC COMPUTING"
BY W1LLJAM H. PRESS, ETe. *

GIVEN A FUNCTION FUNC AND GIVEN DISTINCT
INITIAL POrNTS AX AND BX, THIS ROUTINE
SEARCHES IN THE DOWNHlLL DIRECTION (DEFfNED
BY THE FUNCTION AS EVALUATED AT THE INITIAL
POrNTS) AND RETURNS NEW POINTS AX, BX,
CX THAT BRACKET A MINIMUM OF THE FUNCTION.
ALSO RETURNED ARE THE FUNCTION VALVES AT
THE THREE POrNTS, FA, FB AND Fe. *
PARAMETERS: GOLD IS THE DEFAULT RATIO BY
WHJCH SUCCESSIVE INTERVALS ARE MAGNIFIED;
GUMIT IS THE MAXIMUM MAGNIFICATION FOR
A PARABOLlC-FJT STEP. *

SUBROUTINE MNBRAK(AX,BX,CX,FA,FB,FC,FUNC}
C****************************************************************

*C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C****************************************************************

DOUBLE PRECISION AX,BX,CX,FA,FB,FC,FUNC,GOLD,GUMIT,TINY
EXTERNAL FUNC
PARAMETER (GOLD=I.618034DO,GLlMIT=IOO.DO,TINY=I.D-20)
DOUBLE PRECISION DUM,FU,Q,R,U,ULIM
FA=FUNC(AX)
FB=FUNC(BX)
IF(FB .GT. FA) THEN

DUM=AX
AX=BX
BX=DUM
DUM=FB
FB=FA
FA=DUM

ENDIF
C
C FIRST GUESS FOR C
C

CX = BX +GOLD*(BX-AX)
FC = FUNC(CX)

C
C INITIALIZE THE ITERATION COUNT
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C
lTER=O
rF(FB.GE.FC)THEN

R=(BX-AX)*(FB-FC)
Q=(BX-CX)*(FB-FA)
U=BX-«BX-CX)*Q-(BX-AX)*R)/(2.*SIGN(MAX(ABS(Q-R),

+ TfNY),Q-R»
ULIM=BX + GLIMIT *(CX-BX)

IF«BX-U)*(U-CX) .GT. 0) THEN
FU = FUNC(U)
IF(FU .LT. FC)THEN

AX=BX
FA=FB
BX=U
FB=FU
RETIJRN

ELSE IF(FU .GT. FB) THEN
CX=U
FC=FU
RETURN

ENDIF
U = CX +GOLD*(CX - BX)
FU =FUNC(U)

ELSE IF«CX-U)*(U-ULIM) .GT.O)THEN
FU =FUNC(U)
IF(FU .LT. FC) THEN

BX=CX
CX=U
U = CX + GOLD*(CX - BX)
FB=FC
FC=FU
FU= FUNC(U)

ENDIF
ELSE !F«U - ULIM)*(ULIM - CX) .GE. O)THEN

U=ULlM
FU= FUNC(U)

ELSE
U = CX + GOLD * (CX - BX)
FU=FUNC(U)

ENDIF
AX=BX
BX=CX
CX=U
FA=FB
FB= FC
FC=FU

ITER = ITER + 1
GOTO I

ENDrF
RETURN
END

I •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

SUBROUTINE NETPRlNT(LAYER,MLAYR,NNODE,SEED,WO,
+ LAMDA,LAMDA2,METHOD)

c***··***·**·*·*************************··*···*··**·*· ••*•••*••*.
C THIS SUBROUTINE IS TO PRINT THE NETWORK ARCHJTCTURE AND •
C INITIAL PARAMETERS. •
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C

C*···············**····*······························•••••••••••
INTEGER LAYER,MLAYR,NNODE(O:MLAYR),METHOD,NSAMP
DOUBLE PRECISION SEED, TOL, WO, LAMDA.LAMDA2

C
WRITE(·, IO)LAYER

10 FORMAT(1 X,'THE NUMBER OF LAYER IN THE NETWORK IS: ',14)
WRJTE(·,20)NNODE(0)

20 FORMAT(lX,'THE INPUT DIMENSION IS ',14)
DO 30 1=1, LAYER
WRITE(*,40)I,NNODE(I)

40 FORMAT(1X,'THE NUMBER OF NODE IN LAYER ',14, 'IS', ]4)
30 CONTINUE

WRfTE(·,60)NNODE(LAYER)
60 FORMAT(IX,'THE OUTPUT DIMENSION IS ',14)

IF (METHOD .EQ. 0) THEN
WRITE(·,100)

100 FORMAT(IX,'THE PENALTY METHOD IS USED')
ELSE IF(METHOD .EQ.I) THEN

WRJTE(· ,200)
200 FORMAT(lX,'THE STOP TRAINING METHOD IS USED')

ELSE
WRITE(· ,300)

300 FORMAT(1X,'METHOD DATA ERROR')
STOP

ENDIF
C PRINT THE PARAMETERS

WRITE(·,50)SEED,WO,LAMDA,LAMDA2
50 FORMAT(I x,'THE SEED IS ·,FlO.4flX,

+ fIX, 'THE WO IS ',FI6.12fIX,'THE LAMDA]S', F16.12,
+ /lx,'The LAMDA2]S " FI6.12)

C
RETURN
END

C·····················································.....•......
SUBROUTINE NETSETUP(LAYER,MLAYR,NNODE,SEED,

+ WO,LAMDA,LAMDA2,METHOD)

C··*·****·***··**···***·**·········*·*·*········*·····* * .
C •
C THIS SUBROUTINE IS TO READ THE INPUT FILE AND SET UP •
C THE NETWORK ARCHITECTURE AND INITIALIZE PARAMETERS •
C *
C*·*···········**·**··*···*·**···***··················.....*..*.*

INTEGER LAYER, MLAYR, MAXNODE, NNODE(O:MLAYR),METHOD,
+ NSAMP

DOUBLE PRECISION SEED,TOL,WO,LAMDA,LAMDA2

IN=50
OPEN(IN, FILE = 'NET.DAT, STATUS = 'OLD', rOSTAT= 10ERR)

IF(IOERR .NE. 0) THEN
WRITE(·, 10)IOERR

10 FORMAT('CANNOT OPEN NETWORK DATA FILE (NET.DAT), 10ERR= ',110)
STOP

ENDIF
C
C READ IN THE NUMBER OF LAYER
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C
READ(IN, ·)LAYER

C
C READ IN THE NUMBER OF NODE IN EACH LAYER.,THE NUMBER OF NODE IN
C INPUT LAYER IS IN NNODE(O).
C

READ(IN,·)(NNODE(]),]=O,LAYER)
C
C READ IN METHOD, (0 FOR PENALTY METHOD, 1 FOR STOP TRAINlNG METHOD)

READ(IN,*) METHOD
C
C READ IN SEED NUMBER., TOLERANCE, WO AND LAMDA LAMDA2
C

READ(IN,*) SEED, WO, LAMDA
READ(IN,*) LAMDA2
WRlTE(*, 1111) LAMDA, LAMDA2

1111 FORMATCLAMDA=',F16.12, 'LAMDA2=',FI6.12)
CLOSE (UNIT = IN)

C
RETURN
END

C···**········**·***···**···*·····*·········*···*·····•••••••••••••••••••••••

SUBROUTINE PRJNT3D(A,MLAYR.,NLAYR,MNODE,
+ NNODE)

C···**····******··*****·**************···········*····••••*••••*****.
C TlITS SUBROUTINE IS TO COPY A ORIGINAL MATRIX TO NEW MATRIX. •
C IT IS USED TO COPY TG. *
C·********·******·***·*···****····********·*****··************.*.****

r~HEGERMLAYR,NLAYR.,MNODE,NNODE(O:MLAYR)
DOUBLE PRECISION A(MLAYR,MNODE,O:MNODE)
INTEGER I,J,K,KK,LL
DO 10 K=I ,NLAYR

KK=NNODE(K)
LL=NNODE(K-l)
0020 J=I,KK

00 30 I=O,LL
WRITE(·, 100)K,J,]

100 FORMAT(lX;LAYER # ',15, 'J#', ]5, ']# ',]5)
WRITE(*,200)A(K,J,[)

200 FORMAT(lX,'A VALUE: ',EI5.7)
30 CONTINUE
20 CONTINUE
10 CONTINUE

RETURN
END

C***·***************····*·********·**··*·*********·*·*••*••********

*
TIDS SUBROUTINE IS TO PRINT THE INPUT DATA Of
TRAINING SAMPLE AND THE TARGET OUTPUT DATA.

SUBROUTINE PRINTINPUTDATA(P,T,MNODE,OIMJN,DlMOUT,MSAMP,
+ NSAMP)

C**··********************************··*********************.****.****

*C
C
C·***·*···****··*···**·****···****·***·**···************.**.**••***•••

INTEGER MNOOE, DlMIN,DIMOUT,I,NSAMP,MSAMP,J
OOUBLE PRECISrON P(MSAMP,MNOOE), T(MSAMP,MNOOE)
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C
C PRINT IN THE INPUT DATA

WRITE(*, lOO)NSAMP
100 FORMAT(l)(.'NUMBER OF SAMPLE IS: ',IS)
C

DO 200 J= 1,NSAMP
WRITE{*,300)J

300 FORMAT(I X,'SAMPLE # ',]5)
DO 20 1= I,DTMIN

WRITE(*,400)P(I,J)
400 FORMAT(IX,'THE INPUT DATA ARE: ',£15.7)
20 CONTINUE
C

DO 30 1= I.DIMOUT
WRITE(*,500)T(I,J)

500 FORMAT( IX,'THE DESIRED OUTPUT DATA ARE: ',E15.7)
30 CONTINUE
200 CONTINUE
C

RETURN
END

C***********************************··*·****·*****··************.****.****

FUNCTION DRANDOM(DL)
C*****************************************************.**••**
C THlS FUNCTION IS TO CREATE A RANOOM NUMBER BETWEEN *
C OTOI *
C*****·*·********·*····*********·*****·*·****·*·**·********.*

DOUBLE PRECISION DL, DRANDOM
C

10 DL=DMOD(16807.0DO*DL,2147483647.0DO)
DRANDOM=DU2147483648.0OO
IF(DRANDOM.LE.O.OOO .OR. DRANDOM.GE.l.ODO) GO TO 10
END

C·**··*···*·*··******·***··*··***·**·**·**·***·*····*·****

•
•

*

*

*
TillS SUBROUTfNE JS TO CALCULATE THE
SENSITIVITY DEFINED IN (3.6.6). PLEASE REFER
TO (3.6.6)-{3.6.16) •
SENSI(MLAYR,MNODE)--THE SENSITIVITY MATRIX. REF(3.6.12)
W(MLAYR,MNODE,O:MNODE)--WEIGHf MATRIX •
T(MSAMP,MNODE}--THE DESIRED OUTPUT OF THE NET
OUT(MSAMP,MNODE)-THE CALCULATED OUTPUT OF THE NET
N(MLAYR,MNODE)--THE SUMMATION OF THE WEIGHT. REF(3.l.1)
SN -- THE SAMPLE INDEX. •

SUBROUTINE SENSITIVITY(SENSI,W,NLAYR.MLAYR,NNODE,
+ MNODE,T,OUT,N,SN,MSAMP)

C****·*···*·**·*********·****************·*****************.**••***•••*••
•C

C
C
C
C
C
C
C
C
C*******··**···**·**····*···**··***·*·*···***···***··**.*.****••*********

INTEGER NLAYR,MLAYR,NNODE{O:MLAYR),I,J,K,KK,LL,
+ MNODE,MSAMP,SN

DOUBLE PRECISION W(MLAYR,MNODE,O:MNODE),
+ SENSI(MLAYR,MNODE),T(MSAMP,MNODE),
+ OUT(MSAMP,MNODE),N(MLAYR,MNODE),SUM

C
C CALCULATE THE SENSITIVITY OF FINAL LAYER (3.6.16)
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C

LOOP OVER LAYER

CALCULATE THE SENSITIVITY OF EACH LAYER STARTING
FROM THE FINAL LAYER. (3.6.12)

KK=NNODE(NLAYR)
DO 10I=I,KK
SENSI(NLAYR,I) = -(T(SN,I) - OUT(SN,I)

+ • SIGFD(N(NLAYR,I»
10 CONTINUE
C
C
C
C
C
C

00 20 K=NLAYR-I,l,-I
KK=NNODE(K)
LL=NNODE(K+I)
0040 1= I,KK.

SUM =0.00
00 30 J=l,LL

SUM = SUM + SIGFD(N(K,I»·W(K+ 1,J,I)*SENSI(K+ I,J)
30 CONTINUE

SENSI(K,I) = SUM
40 CONTINUE
20 CONTINUE
C

RETURN
END

C··*·*******·*********···*·*·***·*·**·*···**·*········...*.......•*.

SIGMOID TRANSFER FUNCTION
INPlIT: DOUBLE PREClSION: X *
OUTPUT: OOUBLE PRECISION: SIGF *

C
C
C

FUNCTION SIGF(X)

C*****·*·*·······*···*·******************
*

C**·*···**···········*···**···*·*··*·*···
OOUBLE PRECISION X, SIGF
SIGF = 1.00 /(1..00 + EXP(-X»
RETURN
END

C······*·····*···*****··**····******·****
FUNCTION SIGFD(X)

C···*··**·······***********··*·**····*···
C DERIVATIVE OF SIGMOID FUNCTION *
C INPUT: DOUBLE PRECISION: X •
C OlITPUT: OOUBLE PRECISION SIGFD •

C·**··*********·**··**···*·******·*····*·
OOUBLE PRECISION X, SIGFD
SIGFD= EXP(-X) / «1.oo+EXP(-X»**2)
RETURN
END

C**····*****···*···*···*·······*····*····*···
SUBROUTINE SUMGRAD(G,NLAYR,MLAYR,NNODE,

+ MNODE,TG)

C*·······*·*·············***··***··*··*··*···*··**********.*.....*.***.*.
C TillS FUNCTION IS TO SUM UP THE GRADIENTS *
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•
•

•
•

•C OF EACH EPOCH.
C TG(MLAYR.,MNODE,O:MNODE) - STORES
C THE TOTAL GRADIENTS OF NUMOFSAMPLE SAMPLES.
C REF. ALGORITHM 3.6.\ (2.2) •
C G(MLAYR.,MNODE,O:MNODE)-THE GRADIENT OF THE NET OF
C ONE SAMPLE. *
C TG(MLAYR,MNODE,O:MNODE)-- THE TOTAL(SUMMATION) GRADIENT
C OF ALL SAMPLES. REF. ALG(2.3) •

C·········································*·*·········.........•.........
INTEGER NLAYR., MLAYR,MNODE,I,J,K,KK,LL,

+ NNODE(O:MLAYR)
DOUBLE PRECISION G(MLAYR.,MNODE,O:MNODE),

+ TG(MLAYR.,MNODE,O:MNODE)
C
C CALCULATE THE GRADIENT OF PERFORMACE FUNCTION W.R.T
C WEIGHTS ACCORDING TO (3.6.6)
C LOOP OVER LAYER
C

DO IOK=\,NLAYR
KK=NNODE(K)
LL=NNODE(K-I)
D020J=1,KK

DO 30 I=O,LL
TG(K,J,I)=TG(K,J,l) + G(K,J,I)

30 CONTINUE
20 CONTINUE
10 CONTINUE

RETURN
END

C····*·**························***··*··*·**·***····· * *.*.

•

•

•

•

•

•
•

•

SUBROUTINE SUMWEIGHT(P,O,N,MLAYR.,N LAY R,MNODE,A,
+ NNODE,W,SN,MSAMP)

C···*·········*·····················*·····**··········....•.........•....
•C THIS SUBROUTJNE IS TO CALCULATE THE SUM OF

C THE INPUTS OF A NEURON J IN LAYER K
C PLEASE REFER TO (3.1.1) •
C N(MLAYR.,MNODE)--STORES THE SUM OF INPUTS OF
C NEURON JIN LAYER K •
C A(O:MLAYR,MNODE)--STORES THE OUTPUT OF
C NEURON J IN LAYER K •
C A(O:MLAYR,O:MNODE) -- STORES THE INPUT DATA.
C P(MSAMP,MNODE) - IS THE INPur DATA FROM ONE SAMPLE
C T(MSAMP,MNODE) -- IS THE DESIRED OUTPUT DATA FROM ONE
C SAMPLE •
C O(MSAMP,MNODE) -- IS THE OUTPUT CALCULATED FROM THE

C NE~ •
C W(MLAYR.,MNODE,O:MNODE) -- THE WEIGHT OF THE NET.
C SN -- THE SAMPLE INDEX. •
C··················*·············*···················· .

INTEGER MLAYR,MNODE,NNOD.E(O:MLAYR),I,J,K,
+ NLAYR,L,SN,MSAMP

DOUBLE PRECISION N(MLAYR,MNODE),A(O:MLAYR,O:MNODE),
+ W(MLAYR,MNODE,O:MNODE),SUM,P(MSAMP,MNODE),
+ O(MSAMP,MNODE)
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C STORE INPUT DATA INTO A(O,MNODE)

DO 100 1=1, NNODE(O)
A(O,I)=P(SN,I)

C PRINT *,'SN= ',SN,'P(SN,I)= ',P(SN,I)
100 CONTINUE

C STORE THE BIAS
A(O,O) = 1.00

C
C CALCULATE THE SUM OF THE INPUTS OF A NEURON J IN LAYER K
C
C LOOP OVER LAYER
CLooPOVERLAYER

DO 10 K=I,NLAYR
C LOOP OVER CURRENT NODE (TARGET)

DO 20 J=I,NNODE(K)
C LOOP OVER PRVIOUS NODE (SOURCE)

SUM =0.000
00 30 I=O,NNODE(K-l)

SUM = SUM + W(K,J,I)*A(K-l,l)
30 CONTINUE
C CALCULATE THE SUM OF I NEURON J IN LAYER K

N(K,J)= SUM
C WRlTE (*, 500) K,J,N(K,J)
C500 FORMAT(IX,'LAYER #',13,' NODE # ',13,' N = " Fl6.10)
C CALCULATE THE OUTPUT OF NEURON J IN LAYER K

A(K,J) = SIGF(N(K,J)
C WRITE (*,400) K,J,A(K,J)
C400 FORMAT(lX,'LAYER # ',I3,'NODE #',I3,' A=', FI6.10)
20 CONTINUE
C THE BIAS

A(K,O) = 1.D<l
10 CONTINUE

C STORED THE OUTPUT IN A(NNODE(NLAYR»
DO 2001=1, NNODE(NLAYR)
O(SN.I)=A(NLAYR,l)

200 CONTINUE
RETURN
END

C**********·*·*···***********····*··**···**···*····
C THIS FUNCTION IS TO FiND THE PERFORMANCE
C FUNCTION E(W) REF. (3.6. I) USING VALIDATION
C DATA SET OR TEST DATA SET.
C TEST--IS THE PERFORMANCE FUNCTION VALUE. REF(3.6.1)
C T(MSAMP,MNODE}--THE DESIRED OUTPUT OF THE NET
C W(MLAYR,MNODE, 0: MNODE)--WEIGHT MATRIX THAT
C IS UPDATED BY TRAINING SAMPLES.
C O(MSAMP,MNODE)--THE CALCULATED OUTPUT OF THE
C NET
C LAMDA--THE CONSTANT IN THE PENALTY TERM.
C WO--THE CONSTANTS IN THE PENALTY.
C·····***··***·***··**···***************·*·**·*···**··••**.
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FUNCTION TEST(MSAMP,MNODE,
+ W,MLAYR,NLAYR,NNODE,LAMDA,WO)

INTEGER MSAMP,NSAMP,MNODE,MLAYR,NLAYR,
+ NNODE(O:MLAYR)

DOUBLE PRECISION O(MSAMP,MNODE),T(MSAMP,MNODE),
+ W(MLAYR,MNODE,O:MNODE),LAMDA,WO,SUM,SUMI ,FINDE,
+ P(MSAMP,MNODE)

DOUBLE PRECISION N(MLAYR,MNODE),A(O:MLAYR,O:MNODE)
INTEGER I,J,K,L,IN

C
C READ IN VALIDATIONlfEST OATA SET

IN=20
OPEN(UNIT=IN,FlLE='VALlD.DAT,STATUS='OLD',IOSTAT=IOERR)

IF(IOERR .NE. 0) THEN
PRINT II, 10ERR

II FORMAT('CANNOT OPEN NETWORK VALIDAnON/TEST DATA
+ FJLE(VALlD.DAT)',IIO)

STOP
ENDIF

READ(IN,*)NSAMP
DO 101 J=I,NSAMP

C READ IN THE INPUT DATA
READ(IN,*)(P(J,I),I=l ,NNODE(O»

C READ IN THE DESIRED OUTPUT DATA
READ(IN,*)(T(J,I),J=I,NNODE(NLAYR»

10 I CONTINUE
CLOSE(UNIT=IN)

C CALCULATE THE PENALTY TERM.
SUM =O.DO
SUM I=0.DO

C D0400K=1,NLAYR
C 00 500 J=I,NNODE(K)
C DO 600 J=O,NNODE(K- 1)
C PRINP,'IN FINDE, W=',W(K,J,I)
C600 CONTINlJE
C500 CONTINUE
C400 CONTINUE

C DO 100 K=I,NLAYR
C DO 200 J=I,NNODE(K)
C DO 300 I=O,NNODE(K-I)
C SUM=SUM+LAMDA*(W(K,J,I)"2/(WO"'*2+W(K,J,I)**2»
C300 CONTINUE
C200 CONTINUE
C I00 CONTINUE

C CALCULATE THE FJRSTTERM

DO 10 L= I,NSAMP
CALL FORWARD(P,O,N,MLAYR,NLAYR,MNODE,A,NNODE,

+ W,L,MSAMP)
DO 20 K=I,NNODE(NLAYR)
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SUMl =SUM 1+(T(L,K)-O(L,K))U2
20 CONTINUE
10 CONTINUE
C PRINT *,'SUM= ',SUM
C PRINT *,'SUMI= ',SUM]
C PRlNT *,'LAMDA= ',LAMDA
C PRlNT *,'WO= I,wa

TEST = .5DO*SUM 1

RETURN
END
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