
ABAYESIAN NETWORK FOR

MEDICAL DIAGNOSIS

By

HAOBOLIU

Bachelor of Medical Science

Hunan Medical University

Changsha, Hunan

People Republic ofChina

1993

Submitt'ed to the Faculty of the
Graduate CoUege of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1998



A BAYESIAN NETWORK FOR

MEDICAL DIAGNOSIS

Thesis Approved:

11 )



ACKNOWLEDGMENTS

I have been blessed with a grand opportunity to further my education in America.

Many people have made the pursuit of my Master's Degree a positive experience. First

and foremost, I would like to express my sincere appreciation to my advisor, Dr. Nick

Street,. for his intelligent guidance, invaluable expertise, and friendship during this study,

and for his patience in correcting this thesis. Without him, I am sure I would not have

finished my degree in a timely manner. I also wish to express the gratitude to my other

two committee members: Dr. John Chandler and Dr. Jacques LaFrance for their kind

suggestions and assistance during this study, which made the process of earning my

degree enjoyable as well as educational. I feel very fortunate to have had such intelligent

and kind individuals on my committee. Furthermore, I would like to thank the dean of

Computer Science department, Dr. Blayne Mayfield, agreed to be my advisor alternative

in my [mal defense. And I will surety cherish the valuable instruction provided by other

facuHy and staff during these past two years forever.

I would also like to express my special thanks to my family and friends, without

whose support and encouragement I would not have been able to complete the

requirements for my degree in the manner that I have. In particular, I am deeply indebted

to my dear wife, Haihui Huang whose understanding, unconditional love and support

have upheld me during this study and throughout my life. I will never be able to thank

her enough.

11l



'\ (

TABLE OF CONTENTS

Chapter Page

1. INTROD'UCTION 1

Probability in Expert System '" 2
Bayesian Network " 3
Applications - 4
Suitability 5
Intent of Study 6

II. LITERATURE REVIEW 9

Expert System 9
Expert System in Medicine 11
Functions 12
Methodologies 13
History 15

III. PROBABILISTIC REASONING 19

Probability 19
Kolmogorov's Axioms 20
Prior Probability 20
Conditional Probability 21
Bayes' Rule 21
Normalization 22
Properties of Bayesian Networks 24
Joint Probability Distribution 24
Conditional Probability Table 25
Conditional Independence Relations 26

IV. MESSAGE-PASSING ALGORlTHM 29

Computation with Single Parent 30
Computation with Multiparents 34
Propagation 37

IV



V. DIAGNOSTIC AGENTS DESIGN AND CONSIDERATION .40

Steps ofBuilding an Expert Agent .40
Knowledge Collection 41
Building Network 43

VI. TESTING RESULT 47

List of Results 47
Analysis 49

VII. DISCUSSIO,N 51

Summary " 51
Future Work " 52

REFERENCES 54

v



Figure

LIST OF FIGURES

Page

1. Bayesian network., ' 25

2. X and Y are blocked by E and z in E (TaiI-to-Tail) 27

3. X and Yare blocked by E and z in E (Head-to-Tail) 27

4. X and Yare blocked by E and Z not in E (Head-to-Head) 28

5. Fragment of a singly-connected network showing the partition of parents

and children to the computing variable X 31

6. The message passing in local network during updating ofvariable

X (only single parent) 35

7. A part of a belief network 36

8. Beliefpropagation by message passing process 38

9. The Bayesian network of ectopic pregnancy and acute salpingitis .44

10. The Bayesian network of ectopic pregnancy : .45

11. The Bayesian network of acute salpingitts .46

VI



LIST OF TABLES

Table Page

1. Conditional probability table for X4 25

2. Conditional probability table for ~ .26

3. Relations among P, C and ectopic pregnancy .42

4. Probability of symptoms,. signs and lab tests for ectopic pregnancy and acute

salpingitis 42

5. Information often made-up patients 48

6. The comparing of diagnosis by doctor and agent .48

Vll

(

i

/



.I

CHAPTER I

lNTRODUCTION

Artificial intelligence (AI) is a branch of computer science that deals with

symbolic representation of knowledge and its use in problem solving. It has been

regarded as a revolution in software by some ,experts. As an important sub-field of AI,

expert systems are knowledge-based systems that symbolically encode concepts derived

from experts in a certain field. The resulting system performs problem analysis based on

that knowledge and provides advise and solutions. What's more, an expert system can

extend the analysis and decision-making ability of ap expert to general users and even

provide valuable advise for the experts themselves. Obviously, the expert system has a

better "memory" than the experts. It can collect and keep all the knowledge in its "head",

Therefore, it is not a surprise when the expert system makes a better judgement than

human experts.

Expert systems often implement a rule-based approach that uses boolean logic to

process input from the user, using its knowledge base to generate a prediction or

suggestion. But the problem with this approach is that it can not deal effectively with

lIDcertainty. In the real world, not everything is crystal clear; not everything can be

answered with "yes" or "no." Actually, in many situations, people use probability to

express their decisions or judgements.

/
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Probability in Expert System

Probability is a powerful tool to express uncertainty in an expert system. The

problem of dealing with uncertainty is crucial in the entire expert system field, because

most everyday reasoning and decision making is based on uncertain premises. Most of

our actions in daily life are based on guesses, often requiring explicit weighting of

conflicting evidence. Probability theory was created by Thomas Bayes4
, who was a

British minister, in 18th-century. It was seldom used in the computer industry before the

1980s. Previous work in knowledge representation had focused on symbolic logic

programs. The modularity of if-then rules contributed to the success of the expert

systems during that period. From the 1980s on, things changed as scholars realized the

importance of dealing with uncertainty.

The certainty factor (CF) has been created as a basis for the system MYCIN to

deal with uncertainty34. It is a relatively informal mechanism for quantifying the degree

to which, based on the presence of a given set of evidence. Certainty factors have been

most widely applied to domains that use incrementally acquired evidence.

The Dempster-Shafer theory33 was designed to deal with the difference between

uncertainty and ignorance. Instead of computing the probability of a proposition, it

computes the probability that the evidence supports the proposition. But most current

scholars regard it as merely an alternative way to use probability.

Fuzzy logic44 does not use a precise probability figure to represent uncertainty.

Instead, it uses ranges of values to represent input variables in a fuzzy system, coupled

with rules that produce output ranges based upon the input values. Fuzzy set theory is

(
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very controversial. On the one hand, it is an exuemely popular area of research. It is

successfully used in all sorts of conswner and industrial products. The Japanese have

used it to control passenger trains, digital cameras, washing machines, air conditioners,

antilock brakes etc. On the other hand, there is a lot of opposition to fuzzy set theory in

the AI community because it is unable to describe uncertainty. Some scholars even

question the fundamental rules of fuzzy set theory.

Many expert systems that used probability paid little attention to the theory of

probability. They just used probabilities to express the strength of the evidence. But they

ignored the rules of probabi]ity to evaluate and organize the information. When some

important pieces of evidence are changed, expert systems such as MYCIN34 are not

sensitive enough to correctly modify their conclusions. That's why they are unreHable in

practical usage. Most expert systems were used just for research purposes. However

things changed after the establishment of probabilistic structure. Probability has

flourished both on the practical side and on the scholarly side. Many articles on this

structure have been published in the recent years. This structure is called the Bayesian

network.

Bayesian Network

A Bayesian network (or belief network) is used to model uncertainty in a domain.

Both quantitative and qualitative techniques are used. The basic idea of the Bayesian

network is that the problem domain is modeled as a set of nodes interconnected by

directed lines and arcs. Each node in the network represents a particular occurrence or

/ '>
./
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oondition, called a variable. The lines indicate the causal effect of the variables on each

other. Actually a Bayesian network is an acyclic directed graph. The lines represents

causal relationships between nodes, and the natural flow of the graph does not enable

conditions to cycle back to prior conditions. This prevents the algorithm, which we will

introduce, from getting into infinite loops or becoming deadlock.

In addition to storing the relationships among nodes, a Bayesian network contains

the probabilities associated with each relationship and the distinct possible output states

of each node in the network. These states are mutually exclusive and comprehensive. A

Bayesian network represents the entire joint probability distribution (see chapter 3) over

the domain variables. After the Bayesian network is established, it must be seeded with

an initial estimation for all of the probabilities involved. Prior probability is also called

unconditional probability. It means the probability of an event occurring in the condition

of having no other information. For the root nodes, they mean the random probability of a

certain state occurring. When new evidence is given, the network automatically updates

the probabilities for the parent and child nodes. The recalculation continues to propagate

across the network, fine-tuning the accuracy of all probabilities. The ability to revise the

probability of an event by considering the new states of events, that are caused by the

first event is the main advantage of the bayesian fonnalism.

Applications

Bayesian networks provide a practical use of AI. A Bayesian network is

generally applied to problems when there is uncertainty in the data or in the knowledge
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about lthe domain. It has been applied particularly to problems which require diagnosis of

problems from a variety of input data. Some of the most well-known examples of

Bayesian networks are medical diagnostic tools such as PATHFINDER. BNG13
.. Recently

more products have been created in other areas. Following are some general areas in

which Bayesian networks are used:

• Medical diagnostic systems

• Analysis in the natural. biological and social sciences

• Real-time weapons scheduling

• Intel processor fault diagnosis (Intel)

• Generator monitoring expert system (General Electric)

• Troubleshooting (Microsoft)

Both scholars and businessman are fascinated with Bayesian networks. That means

more research and more money will be directed into this area. So we can predict more

applications be found in the future.

Suitability

Bayesian network technology is similar to two of the most creative computational

technologies available today: fuzzy logic and neural networks. Although the fundamental

concepts behind each of the three areas are quite different. they are all used to make

systems more intelligent and practical. A fuzzy system can learn from experiences. It

can develop its fuzzy rules based on its own experiences. A neural network is a system

that emulates the cognitive abilities of the brain by establishing recognition of particular

.//
( '>:, //
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inputs and producing the appropriate output. A neural network is trained using pFesented

inputs to establish their own internal weights and relationships guided by feedback. The

Bayesian networks resemble neural networks in their variable dependency. The

probabilities in a Bayesian network are roughly analogous to the internal weights in a

neural network. Neural networks, however, are free to form their own internal workings

and adapt on their own.. Compared to neural networks, Bayesian networks have the

foHowing advantages:

• The expert can provide knowledge in the form of causal structure.

• The network is understandable and extensible.

• They can be used easily with missing data.

Bayesian networks can be used whenever dassical knowledge-based systems might

be used. Compared with the classical knowledge-based systems, a Bayesian network has

the following advantages:

1.. a more modular representation of uncertain knowledge, which makes them easier to

maintain and to adapt to different contexts,

2. a more intuitive knowledge representation (polytree diagrams) for domain experts,

and

3. making it easier for them to be involved in maintaining a system.

Intent of Study

Computer programs to assist with medical decision making have long been

anticipated by physicians with both curiosity and concern. Scientists have worked on this

( -'»
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field for almost forty years,. They have succeed in some areas. But the progress in

patient-specific consultation systems has been stow. A wide variety of techniques have

been used in the experimental design and implementation of such systems, which in,elude

simple logic, mathematical modeling, pattern recognition, and the analysis of large data

bases35
. Also some systems have been deployed, such as ATTENDIN018

, ONCOCINI2
,

36,37, and MYCIN34
• But the results were not satisfactory. All of them were used only by

the research unit that created them. In 1959, some researchers recognized the relevance

of Bayes's themem4 to the task of diagnosis. Because computers were traditionally

viewed as numerical calculating machines, it was clear that they could be used to

compute the pertinent probabilities based on observations of patient-specific values.

Many Bayesian diagnosis programs have been developed by using the Bayesian network.

Some of them have been shown to be accurate in selection among competing

explanations of a patient's disease state26
. In England, De Dombal and associates8 made a

Bayesian system for the diagnosis of acute abdominal pain. It works well and is used

extensively in British emergency departments.

The goal of this research is to build a diagnostic agent with a Bayesian network.

This agent can help doctors in emergency departments to make a differential diagnosis

between ectopic pregnancy and acute salpingitis. Acute salpingitis is one of most

common diseases in obstetric and gynecologic areas. Ectopic pregnancy is a very

dangerous disease though it is not as common as acute salpingitis. They have a lot of

similar symptoms which could easily confuse the physician. Acute salpingitis is the most

common misdiagnosis in cases of ectopic pregnancy. Its misdiagnosis could even cause

the death of a patient. In my thesis, I will do the foUowing work:

--- ..........
/~ "'-
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1. Compare these two diseases and collect the medical data for building the diagnostic

agent.

2. Construct the Baysian network with those data.

3. Implement the message-passing algorithm introduced by Judea Pearl in 198622 to

estimate the probability of the two diseases.

4. Evaluate the result and discuss the work further.

The reasons why I adopt this algorithm are: First, it is sensitive and accurate.

When new evidence appears, the probability is modified accordingly. This feature fits

the situations found in medical diagnosis. Secondly, this algorithm is efficient. Third, the

algorithm is understandable. Fourth, it is one. of the most popular algorithms used in the

real medical world.
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CHAPTER II

LITERATURE REVIEW

Expert System

The study of expert systems is an important subfield of artificial intelligence

(Ali9
. It is a knowledge-based system and is regarded as an "intelligent" system. What

is generally considered to be "intelligence" can be divided into a collection of

observations or facts and a means for utilizing these facts to reach goals. For example, a

goal might be to detennine why a car will not start. The expert system pnmes these facts

to eliminate from consideraiion any facts and rules that won't lead the user to a specified

goal. The portion of inteHigence that generates new facts from existing ones and arrives

at the goal is the ~'inference mechanism."

Expert systems can be applied to problems that are solved primarily using formal

reasoning. The problem is solved through a dialog, or "consultation," with the expert

system. In a simple expert system, each question is answered with "yes" or "no". After

each question, either the program may request an answer to another question or it makes

an inference based on the facts it already has accumulated.

Knowledge engineers are used to develop expert systems. They are skilled at

observing and analyzing the methods used by human experts to solve problems in a

particular discipline. These methods, or heuristics, are stored as part of the data.
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There are three basic components of an expert system. The first component, the

rule-base, is a static database that contains all the knowledge about the domain. The

second component, the working memory, houses the dynamic database to store the new

facts obtained from the user or inferred from known facts. The inference engine is the

third component which contains the general problem-solving logic.

One of the most common types of expert systems is the ruled-based system. In a

rule-based system, knowledge is represented as IF-THEN statements (rules). When the

IF portion of a rule is true in the current situation, the action specified by the THEN

portion is executed or said to fire.

The working memory contains facts that describe what is known about a

particular problem. When a program is started, the working memory is empty. As the

consultation progresses and the system learns more about the problem, the new

knowledge is put into working memory. The knowledge in working memory is used to

fire additional rules. As each rule fires, the conclusion is added to working memory with

the facts already known.

Th.e inference engine has two tasks: one is inference, and the second is control.

The inference component uses the facts in working memory to try to create new rules.

After all conditions of a rule are triggered, the rule fires and the conclusions are added to

working memory. The control component determines the order in which the rules are

scanned.

----------------
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Expert Systems in Medicine

Expert systems in medicine are the computer programs used to support clinical

decision making. They are also called medical decision-support systems. They deal with

medica] data about patients and the relative medical knowledge that is necessary to

interpret such data. Generally, these systems are divided into three types:

1. Systems for information manag€ment. These systems provide enviromnents for

storing and retrieving clinical data and knowledge. For example, Hospital

Information Systems provide access to patients' data needed for clinical decision

making. Bibliographic Retrieval Systems allow rapid access to pertinent

information from current literature. These systems are similar to other commercial

information systems.

2. Systems for focusing attention. Examples are Clinical Laboratory Systems that flag

abnormal values and possible explanations for those abnonnalities and Pharmacy

Systems that provide information about effects and side-effects of drugs and

possible interactions39 among the drugs. Such programs are designed to remind the

physician of diagnosis or problems that might otherwise have been overlooked.

They typically use simple logic, displaying fixed lists or paragraphs as a standard

response to a definite or potential abnonnality. These systems need professional

medical knowledge for correct perfonnance. They help ensure that physicians don't

ignore the potential damage caused by routine treatments.

3. Systems for patient-specific consultation. Such systems provide diagnosis and

advice based on sets ofpatient-specific data. They may follow simple logic, such as

------------------
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algorithms, and may be based on statistical theory and cost-benefit analysis. Some

ofthe diagnostic assistants suggest differential diagnoses. With additional evidence,

they can narrow the range of etiologic possibilities..

The boundaries among these three categories are not sharp, but the distinctions

can help us to understand the different functions of the systems.

Functions

The goals of developing expert systems for medicine are as follows35 :

1. To improve the accuracy of clinical diagnosis through approaches that are

systematic, complete, and able to integrate data from diverse sources.

2. To improve the reliability of clinical decisions by avoiding unwarranted influences of

similar but not identical cases.

3. To improve the cost efficiency of tests and therapies by balancing the expenses of

time and inconvenience against the benefits and risks of definitive actions.

4. To improve our understanding ofthe structure of medical knowledge, with the

associated development of techniques for identifying inconsistencies and

inadequacies in that knowledge.

5. To improve our understanding of clinical decision-making, in order to improve

medical teaching and to make the system more effective and easier to understand.

The third type of medical decision-support system mentioned above generally

falls into two categories: those that assist physicians with determining what is true about
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a patient (usually the correct diagnosis) and what to do for the patient (such as, what test

to order, whether to treat, what therapy plan to institute). Many systems assist clinicians

with both activities (for example, diagnostic programs often help physicians to decide

what additional information would be most useful in narrowing the differential diagnosis

for a given case), but the distinction is important, because advice about what to do for a

patient cannot be formulated without balancing the costs and benefits of possible actions.

Assessments of what is true about a patient, based on a fixed set of data that are already

available, can theoretically be made without consideration of cost and risk. That means

we need to pay more attention to the first question before we make the decision. Thus, a

"pure" diagnostic program leaves to the user the task of determining what data to gather,

or it requires a fixed set of data for all patients. From this point, it is easier for engineers

to build an expert system to answer the second question rather than the first one.

However, it is wrrealistic to view diagnosis as a process separable from considerations of

the available options for data collection and therapy.

Methodologies

Since the beginning of expert systems technology, knowledge acquisition and

representation have been considered the major constraint in the development of expert

systems in the medical field. Knowledge acquisition and representation is a kind of

knowledge model that can be used to predict or explain behavior in the world. Thus,

diagnosis is based on a causal explanation of what is happening to the patient, and

-
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therapy is based on predictions about how the disease process can be modified. The

knowledge models people have used in medicine are the following l3 :

1. Bayesian Networks.

As introduced in Chapter One, a Bayesian network is a mechanism2 to calculate the

probability of a disease, in light of specified evidence, from the a priori probability

of the disease and the conditional probabilities relating the observations to the

diseases in which they may occur. We will discuss it in detail later.

2. Rule-Based Reasoning

Rule-based reasoning is the most general structure. It uses knowledge encoded in

generation rules (IF ...THEN). Rules usually have a conditional part and an action

part. Each rule represents one of the knowledge units related to an expert field ..

Many related rules may correspond to an inference chain, which deduces a useful

conclusion from several known facts. Rule-based reasoning has been the most

popular choice of knowledge engineers for building expert systems in medicine.

3. Neural Network

A neural network is essentially a type of infonnation processing technology inspired

by studies of the designs in the brain and nervous system. These systems are made

up of many simple, highly interconnected processing elements that dynamically

interact with each other to "learn" or "respond to" infonnation rather than carrying

out algorithmic steps or programmed instructions.

4. Case-Based Reasoning

Medical doctors solve new problems by analogy with old cases and explain reasons in

terms of prior experience. Computer systems that solve by analogy with old ones are
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called case-based reasoning (CBR) systems27
. CBR systems solve problems by

searching a collection ofstored cases to find and retrieve the cases that most closely

resemble a newly presented case using some similarity criteria.

5. Object-Oriented Programming

Object-oriented programming refers to all data structures as objects. Each

object contains two basic types of infonnation: information that describes the object

and infonnation that specifies what the object can do. It provides a natural way of

representing real-world objects.

History

Since the earliest days of computers, health professionals have anticipated the day

when machines would assist in the diagnostic process. The fIrst articles dealing with this

possibility appeared in the late 1950s (by Ledley and Lustedl6
) and experimental

prototypes were shown to be accurate within a few years thereafter41
. Several problems

prevented the clinical introduction of such systems, however, ranging from the

limitations of the scientific underpinnings to the logistical difficulties developers

encountered when encouraging clinicians to use and accept the systems. But diagnostic

systems received enhanced opportunities for progress from several sources, including the

rapid development of the technological base (the hardware, software and the methods for

interacting with them), the rapid growth of awareness of and interest in computers and

information-management systems, and the growth of medical infonnation systems for

helping professionals with other biomedical research. A wide variety of techniques have

---------------
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been used in the design and implementation of decision-support systems. The simplest

logic has been problem-specific algorithms designed by clinicians and then encoded for

use by a computer. Although such algorithms have been useful for triage purposes and as

a didactic technique used in journals and books where an overview for a problem's

management has been appropriate, they have been largely rejected by physicians as too

simplistic for routine usell
. In addition, the advantage of their implementation on

computers are not clear.

In the 19605, medical expert systems with the implementation of programs that

performed well-known statistical analysis appeared. These programs focused on the

diagnosis part of the consultation. Some of the programs also used simple logic and

mathematical modeling. They took as input a set of findings and selected the appropriate

disease from a fixed set, using methods such as pattern recognition through discriminant

functions, Bayesian decision theory, and decision-tree techniques.

Since the early 1970s, a growing body of researchers have been applying the

techniques of AI to the development of diagnostic and therapy management consultation

programsI5 ,21,36. The AI field is closely tied to psychology and to the modeling of logical

processes by the computer. Psychological studies of problem solving by medical experts

have accordingly been influential in medical AI research. Medical expert systems

became a hot topic in AI research and several applications of expert systems were

developed. lntemist-l for example, was a large system designed to assist with diiagnosis

in general internal medicine19. MYClN was a program designed to assist with therapy

selection for patients with bacteremia or meningitis38
. It explored the power of inferential

rules as a mechanism for storing knowledge in a computer and was among the first

-
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system to emphasize the importance of explanatory capabilities in medical decision­

support tools43
• CASNET demonstrated the utility of detailed models of causal or

pathophysiological relationships as the basis for pursuing diagnoses or proposing

management strategies24
. It was designed to assist physicians with the management of

patients with glaucoma. But none of these systems was in routine clinical use because of

limitation of knowledge representation techniques and physician resistance.

In the 1980s, medical expert systems developed very fast. They had a great

impact on many areas of the medical field where knowledge provides the power for

solving important medical problems. According to a survey conducted in 1992
13

, the

total number of expert systems uncovered in aU fields was approximately 2500 in the

1980s. It shows that this field was very attractive to expert system developers in the

1980s. Comparing the growth rate of the expert systems between 1970s and 1980s, the

trend is encouraging. In the 1970s, researchers were focusing on developing intelligent

programming techniques. Only a handful of systems were built. During the 1980s, the

number of developed expert systems increased from 50 in 1985 to 2200 in 1988
13

• The

impressive growth rate of expert systems is an indicator of the acceptance of the

technology by industry. These surveys also showed that expert systems were merging

with the mainstream of information processing that was previously dominated by

conventional data processors.

Again, we can attribute the large growth rate in developed systems in part to the

new hardware and software technologies. In the 1970s, most expert systems were

developed on powerful and expensive workstations, using languages like LISP,

PROLOG, and OPS. Only the few people who could afford the platforms, and had the



18

patience to learn the complexities of the available languages, had the chance to develop

an expert system. During the 1980s, pes became prominent in the computer world.

Engineers developed easy-te-use expert system software development tools called

"shells". A shell is a programming environment that contains all of the necessary utilities

for both developing and running an expert system. These well-known shells like ProMD,

HUGIN, NEXPERT, KAPPA, and CiassicaD3 were created for use on pes. Therefore,

the opportunity to develop an expert system was placed in the hands ofmany individuals.

In the 1990s, the complexity and volume of medical knowledge have increased

continuously. A total of 233 medical expert systems were found between 1992 and

1996)
3

. Researchers are trying to develop these expert systems with medical knowledge

at all levels of medical. care in order to achieve high-quality medical care and to reduce

costs. Some scholars said the basic methodological problems like knowledge

representation and inference mechanisms were no longer bolding the spotlight and

problems of introducing the systems in the clinical environment and questions of

application-oriented research were receiving the attention.

The applications for expert systems in medicine appear to be increasing at an

almost exponential rate. However, among the expert systems that have been

implemented, there are questions concerning the actual success of at least some of these

implementations. Most of the systems published in papers have not been successful in

practice, especially in the clinical environment. Why? The answer is complex. We do

have lots oflogistic and scientific challenges that lie ahead. But people's enthusiasm for

making diagnostic machines has never cooled down. More money and more people are

focusing on it. This makes the future bright for medical expert systems.
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CHAPTERUI

PROBABILISTIC REASONING

Probability

The concept of probability has been debated for hundreds of years. The scholars

are divided into two main camps - thee-subjectivists and the freguen~sts. The

subjectivists think. the probability of a certain event is the degree to which someone

believes it, as indicated by their willingness to bet or take other actions. Meanwhile, the

frequentists contend that the probability of certain event is the frequency with which it

occurs. From the history, both of them were partially right. The result seems to be a kind

of combination of the two definitions. Most Bayesian statisticians compromise on the

meaning of probability. They agree that their goal is to calculate objective probabilities

from frequency data, but they advocate the use of subjective prior probability to improve

the calculations. Bayesian and frequentist statisticians tend to agree on the objective. The

Bayesian prefers to assess prior subjective probabilities for the different possible

statistical models and uses the data to update these prior probabilities to posterior

probabilities, while the frequentists prefer to rely on the data alone to estimate the model.
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Kolmogorov's Axioms

In order to express the probability clearly, we will use some logic symbols in the

formulas. A. N. Kolmogorov29 introduced the following three axioms:

Rule 1: (non-negative rule). Any probability P (A) is a number between Q..and 1.

0::;; P (A)::;; 1

Rule 2: The outcome of an event which is true has probability I, the outcome of an

event which is false has probability is O.

P (True) = 1 P(False) = 0

Rule 3: -(additive rule) The union of two probability events is given by

P (A v B) = P (A) + P (B) - P (A /\ B).

Note: If A and B are mutually exclusive (disjoint sets), then

P (A v B) = P (A) + P (B).

Prior Probability

Prior probability is also called unconditional probability. It is denoted as P (A). It

means the probability of an event occurring in the condition of having no other

information. Usually it is an assigned value or a value from statistics. In a belief

network, it is the initialized data stored in each root node before the estimation. A is

called a random variable. It can be multi-valued. For example, if there are five balls with

different colors (red, blue, black, green, white) in a box, and we regard the color as our

concerned variable, the probabilities ofgetting each color are:

-



P (Color = red) = 0.20

P (Color = green) = 0.20

P (Color = black) = 0.20

P (Color = blue) = 0.20

P (Color = white) = 0.20.
, j :
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In this example, the variable A has a domain' of five values.

,,'

Conditional Probability

When we know some evidence before we estimate the probability of certain

events, prior probability is no longer' appropriate. For instance, c~msider the question

"Will Lee go to school? It is said he is ill". We assume A = "Lee won't (or will) go to

school", B = "Lee is ill". If we want to estimate A, we use the follov:ing notation:

P (A IB). It means the probability ofA given condition B.

Product rule: P (A /\ B) =P (A IB)P (B) where P (B) > 0; or

P (A 1\ B) = P (B IA)P (A) where P (A) > 0;

Note: Most of the time, we use P (A, B) instead ofP (A /\ B) for convenience.

Independence rule: P (A IB) = P (A) if and only if P (A 1\ B) = P (A) P (B).

Bayes' Rule

If we rearrange the two forms of the product rule, we can get the following Bayes'



P(A I B)= P(B I A)P(A)
PCB)

(1)
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This rule is very useful In many cases, we know three members and need to calculate

the fourth member. The diagnostic processes in medicine are often such a situation. 'For

example, the doctor may know that patients havi.q.g hepatitis have a 70% chance to be

jaundiced. The prior probability ,of hepatitis in the society is 1/5,000, and the frequency
• \ • l .j. E ~

of people to be jaundiced is 1/10,000. According to Bayes' rule, we get:

P (II) = 1150000

P (.1) = 1/10000

P(JIH)=O.7

P (H IJ) = P (JI Jl) P (H)IP (J) =:: (0.7 * 1/50000) 10.0001 = 14%

In our daily life, we often have conditional probabilities on causal relationships and want

to derive a diagnosis. It is ~so e~sier for .people to estimate causal probabilities than

diagnostic ones.

Nonnalization

This is a powerful technique we can use in the calculati0":l of probability. It

makes the estimation much easier. From Bayes' rule, we have (assume that A has n

possible values, and Aj is anyone ofthem):

PCB IA .)P(A.)
P(A. IB) = J' J

J PCB)
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We can change it to:

peAl! B)+P(A2 1 B)+ ...+P(A" IB)=

This process is called Normalization So we treat 1 / P (B) as a normalizing constant, and

(2)

(4)

PCB IA1)P(A,) + PCB IA2 )P(A2 )+···+P(B IA,,)P(A,,)

PCB)

P(A.I B)= PCBI Aj)P(A)
) PCB IA))P(A1)+P(B I~)P(AJ +...+ PCB IA.,)P(AII )

P(Y IX) =(J. P(X IY)P(Y)

We can extend this single evidence rule to a multiple evidence rule as:

obtain the following form for Bayes' rule:

then we have:

Since the left side of formula (2) is equal to I, we get:

P(Z If,X) =(J.P(X IZ)P(YI Z)P(Z) (5)

where (J. is a normalization constant.

For equation (5), if variables Z and X are conditionally independent, then

P(Z IY,X) =P(Z IY) (6)

Although the above simplified fonn of Bayesian updating is useful, note that it works

only when the conditional independence among the variables holds. We will use it a lot in

the following chapter.
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Properties of Bayesian Network

The most distinctive feature of Bayesian networks, stemming largely from their

causa organization, is their ability to represent and respond to changed configurations.

How does it accomplish this task? To answer this question, we need to know the

properties of this network. A Bayesian network is a graph with the following properties:

1. The nodes of the network present the variables (propositions).

2. The relation between two variables is denoted by a direct link between nodes. The

expression X ~ Y means that X is the parent ofY and it directly influences Y.

3. Each node has a conditional probability table to keep the specific influence ration

that all parents pass to this node.

4. The graph has no directional cycles.

With this data structure, we can compute any necessary probabilities in the domain
3

,7.

Joint Probability Distribution

Figure 1 illustrates a simple but typical Bayesian network. It describes the causal

relationships among the variables. The network provides a complete description of the

domain. For a belief network representing variables, a joint probability is given by the

following formula:

1/

P(XI'X2 , ...,Xn ) =TIP(Xj IF(Xj ))

jel

where F (Xj ) is the set ofparents of X. In the example from Figure 1,
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Figure 1. Bayesian Network

P (Xl,X2, X3,)4, XS,X6, X7)

= p (X71~, X3) p (X6/X., X3) P (XJIX1) P CX4IX,) P (XsIX2) P (X2IXl) P (Xl).

Conditional Probability Table

Table 1 and Table 2 are examples of conditional probability tables (CPT) for X6

and ~ in Figure 1. Assume that there are only two kinds of values for ~ and X6: true

and false.

X1 P (X4=1)

T 0.85

F 0.1

Table 1. Conditional probability table for ~.
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1 1

X3 X4 P (X6 = T)

T T 0.95

T F 0.85

F T 0.3

F F 0.02

Table 2. Conditional probability table for X6

For each node in the network, we need to specify a CPT. As shown above, each row in

the table contains a conditional probability of each node value for a conditioning case. A

conditioning case is just a possible combination of values for the parent nodes. For each

row in the table, the sum of values is equal to 1.

The disadvantage of using tables to store these values is the large space

requirement. Fora node with n parents that have m kinds of values, the space we need is

mn• However, in most real-world domains, each variable is directly influenced by only a

few other variables6
. Therefore, the storage requirement remains manageable.

Conditional Independence Relations

We have known that conditional independence could simplify the computation of

probability. But how can we know that the conditional independence relation holds in

the Bayesian network? Here we will introduce a method called d-separation or direction­

dependent separation30,31. For a triple set of nodes x, y, and z, two links are involved.

We define a set of nodes E as a subset of the network variables for which we have direct

evidence. We say Ed-separates two nodes x and y if every undirected path from the node
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x to the node y is blocked given E. Conditional independence is obtained in the

following three cases:

(1) Tail-to-Tail (Figure 2): x and y are conditionally independent ifz is in set E.

b'\1

® ....~f-------+--
z
--+--~---l~" CD

Figure 2. x and y are blocked by E and z E E (Tail-to~Tail).

(2) Head-to-tail (Figure 3): x and y are conditionally independent if z is in E.

X J..-----I-----..\

z
--+-----.0

Figure 3. x and y are blocked by E and z E E (Head-to-Tail)

(3) Head-to-head (Figure 4): x and yare conditionally independent ifz and

its descendants are not in E.

In Figure I, Xl and Xs are d-separated by X2; Xt and X3 are d-separated by X" but not

separated by {XI, X 6}.
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E

® .... ®
\

I \ ~ ",

0 0
I 'I ,

Figure 4. x and y blocked by E and Z not in E (Head-to-Head)

(Z is the set including z and its descendants)

. '.
The above concepts are very important to help us understand the calculation in a

, . '

Bayesian network. The derivation of a message-passing algorithm is .based on these

concepts. In the following chapter, we will introduce the message-passing algorithm in

detail.
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CHAPTER IV

THE MESSAGE-PASSING ALGORITHM

This algorithm was created by Judea Pearl in 198622
. It only works on singly-

connected networks. In Pearl's approach, "the network is not only a passive

parsimonious code for storing factual knowledge but also a computational architecture

for reasoning about that knowledge.,,22 The links in the network are treated as the

channels that direct and propel the flow of data in the process of querying and updating

beliefs. The nodes are treated as processors whose functions are not only maintaining the

parameters of belief for the host variables but also managing the communication links

which connect with its neighbors (parents and children). The computation can be

activated by a change of evidence or a clock or at random. When a certain processor is

activated, it interrogates the belief parameters associated with its neighbors and compares

them to its own parameters. If the parameters have no changes, no action is taken.

Otherwise, it needs to update its parameters. This wiH activate similar revisions at the

neighboring nodes and will begin a multidirectional propagation process20, 32. This chain

reaction will stop wben a new equilibrium is reached.
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Computation with Single Parent

After establishing the Bayesian network and the CPT for each node, we can

estimate the probability of any of the nodes. Since the multi-connected network is

extremely complicated, and the algorithm is stilI in discussion, we will introduce an

algorithm that works only in a singly-connected network, which is also called polytree.

A polytree has one more restriction compared with other networks. That is, there is only

one path between any two nodes in the network. Figure 1 is not a polytree, because there

between Xl and X7. But if we omit the links between X3 and XQ, X6 and X7, then it

becomes a polytree. Figure 5 is a local part of a singly-connected network. It describes
" ,

the relationship of nodes in a network, Suppose we want to compute the variable X given

the set of evidence E. The evidence E is divided into E; and E-;.

• E-; stands for the descendants ofX.

• E; stands for the ancestors ofX.

We can begin with following equation:

P(X IE) =P(X IE; ,E~).

Using Bayes' rule we get:

From Figure 5, we know that E~ and E; are conditionally independent. We can treat

1 I P (E; IE; ) as a nonnalizing constant. Therefore, the above equation becomes:

!

I

.J
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P(X IE) =a P(X IE; )P(E; l X)

([)

\
GJ
1\

Figure 5. Fragment ofa singly-connected network showing the partition of

parents and children to the computing variable X.(From E. Rich 1991)

For the convemence of illustration,. we win use the following symbols which are

introduced by Pearl.

• Be/(X)) = P(X) IE), Xj means the jth possible value of X. Bel(X j) stands for

belief in Xj and denotes the dynamic actual value of the updated node probability.

• 1t (X j) =P(X) IE;), which represents the causal support attributed to X.

• A. (X)) =peE; IX)) > which means the diagnostic support from X's descendants.

So

-------------------



emanating from X. Since X d-separate these subtrees, conditional independence holds.

Be/(X) =0. A(X)1t (X).

As we observed, E'x can be partitioned into E1
., E2

',

We get:

A(X) =IT P(E K-, X}).
K
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(7)

, En., one for each subtree

(8)

The values of A and 1t are stored with each node of the network. Then A and 1t of query

variable X are determined by its parents and children. For instance we want to compute

the gth multiplicand in the product of (8). S is the gth child of X and Sk has K possible

values. We use:

P(Eg- !X;)'= LP(E; \Xj,SK)P(SK IX})
K

We can replace (9) with the following:

P(Et;-1 X) =LP(SK IX)A(SK)
K

(9)

(10)

This equation means that the gth multiplicand is obtained by the A stored in the gth child

of X times the entries in its conditional independent table. To make the step meaningful,

we treat each multiplicand as a message sent by gth child of X. If the child is called S, the

message will be denoted by AS eX). Therefore, equation (10) is changed to

A.s(Xj ) =LP(SK IXj)A.(SK)
K.

For the second part. in (7), we have

7t (X j )= LP(X j IFe)P(Fe ~E;)
e

(II)

where F is a parent of X and e is the number of values ofF. We can rewrite the above

equation as follows:



n (X) =LP(X j ! Fe)[an CFe)nAm(F";,)],
e m

(12)
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where m varies over the siblings of X. We call the ex.pression in the brackets the

message nx (F) which F transmits to X:

n xCF) =an(F)D""",(F).
1/1

A more useful ex.pression of (13) is

So now we rewrite (7) as

Bel(XJ ) =aTI""x (XJ)I P(Xj IFe)n x (FJ.
x e

(13)

(14)

(15)

Figure 6 iHustrates the message passing among the node X and its parents and children. It

also shows the processes of propagation:

1. Processor X is activated, and updates its parameters by using (7).

2. Belief updating and belief revision involve updating and transmitting two types of

messages. First, the strength of the evidential support that X obtains from its

descendants is updated using the following equation:

",,(Xj) = AI (Xj )A2 (XJ) ...AK (XJ) ::;: DAK(Xj ).

K

(16)

3. The second message refers to the strength of a causal support that X obtains from its

ancestors, which is computed by:

11;(Xj ) ::;: pI P(Xj IFK )n X (FK ) •

K

(17)

4. Bottom-up propagation. The message which X sends to its parent F computed by:

-----------------z-.



34

"'xCF'.) =.IP(Xj IFeP.. (X}).
j

5. Top-down propagation. The message which X sends to the gth child S is computed

by:

7t s(X j ) =an(Xj)IlAm(Xj ), or
m~'K

Bel(X .)
1t (X) -a J

S j - AS(X
j

)

Computation with Multiple Parents

Since we understand the computation with single parent, the multiple parents

computation is the extension of the previous one. Figure 6 is a classical diagram from

Pearl's article :Cor illustration of the propagation in the network: Although it is only a

fragment of the network, the rest of the computation is a recursive repetition of the same

process.

In Figure 7, the node A in the network is the query variable. The possible values

of A are denoted At, A2, "', An. Incoming evidence to node A through instantiated

variables, will be denoted D.

The arc B~A from Figure 7 partitions the graph into two parts: an upper

subgraph G;A and a lower subgraph G;A' Data contained in G;A and G;A will be

denoted D;A and D;A' respectively. Similarly, each of arcs C~A, A~X, and A-7Y

partitions the graph into two subgraphs, containing corresponding data. As we see from
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the Figure 7, nodle A separates the network into four groups: G;A' G~A' G:a and G:r .

Using Bayes' rul,e,

,Ir

a (A7t)

Message from parent F

..·~ ·· ·· · t·· ·..·..······· ·1

1t x(F) !
I
i

1
!
\
i
1

~
!
i
j
;
!
!

Ax(F)

A(X}

Message to parent F

, ·····························1············· ·· .. ····•· ..

... '4

Be/(X)
a

I A1(X)

Be/(X)
a

j AJ(X)
I

................, , , · · ·1·· · ·..· ·.."..· ·" ..·· · ·..t· ·..·..· · ·..·..·..·""

7t I (X) 7t j(X)

o [IJ~ ...... [IJ
Messages from children of X Messages to children of X

Figure 6. The message passing in local network during updating

of variable X (only single parent) (From Pearl 1986)

.1

f
I
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. !

1tx(A) 7t.,(A)

...............

......

\- /o G;A

'" ,..../'
~ .

, .
. , ,..

,
"

,

1tACC)········ .

,'.

'" A.x(A)

........

...........

\o
1\

.........~ .

Figure 7. A part of a belief nelwork (from Pearl 1986).

where a is a normalizing constant. Furthermor,e,

BelCAj ) =aP(D:V: IAj)P(D~y IAj)(Ip(Aj , Bj,Ck)P(B; In;A)p(Ck In;A»
I,k

In the last equation, the current strengths of incoming arcs to A will be denoted as 7tA (Bi)

and 1tA (Ck), which are called casual supports. The current strengths of outgoing arcs

from A will be denoted as A.x (Aj) and A.y (Aj), which are called diagnostic supports.

Now, we rewrite the above equation as following:

Be/CAj ) =aA.x(Aj)A.y(A)Ip(Aj IBj>CkJrt ABJ7t ;I(ek ) (18)
;,k
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We can compute the parent B's belief distribution by:

(19)

The next step is to update the values of parameters on the basis of values of A. and 1t of

the neighboring arcs. We can use the same derivation to get the following equations:

AA(B;) =0. L(1t A(Ck)LP(Aj IBj,Ck)Ax(Aj)Ay(A}»
k j

1t x(A) =O:Ay(Aj)(LP(Aj ! Bj,C,Jn AB;)n ACk »
/,k

(20)

(21)

From equations (20) and (21), we observe that both AA (B j) and 1tx (Aj ) are determined by

their neighboring parameters and a change in the value of the causal parameter 7t will not

affect the value of the diagnostic parameter Aat the same arc, and vice versa. Therefore,

no circular reasoning will take place.

Propagation

Figure 8 depicts five successive stages of belief propagation through a binary tree.

Our example is similar to that of Pearl22
. White tokens represent values AA(Bi) that A

sends to its parent B,. while black tokens represent value 1tx(Aj) that A sends to its child:

x.

State (a): Initially, the tree is in a state of equilibrium.

State (b): A datum activates a node, so a white token is sent to its parents.
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0 0 0

i
(a) datum (b) (c)

(d) (e)

Figure 8. Belief propagation by message passing process

State (c): The parent sends a black token to its children as response and sends a white

token to its parents.

State (d) to (eJ: The process continues until all tbe tokens are absorbed and the

network reaches a new equilibrium.

The message-passing algorithm has the following advantages:

1. It makes each step understandable and meaningful.

2. It is a natural mechanism for exploiting the independence embodied in a sparsely
'1

I
constrained system.
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3. Translating messages by subtask decomposition results in a substantial reduction in

complexity.
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CHAPTER V

DIAGNOSTIC AGENT'S DESIGN AND CONSIDERATION

Steps of Building an Expert Agent

As pointed out by Peppe~4, "All human diagnosticians, whether they work in

automotive repair or medicine, have certain characteristics in common. Both groups have

an internal mental model of the task domain. This model is a body of knowledge about

the parts of the mechanism or organism they are trying to fix and about how those parts

fit together. This model is closely tied to two additional knowledge sources: the expert's

formal understanding of the laws of the domain and a large loosely structured body of

knowledge consisting of common sense and experience gained simply by living in the

world. Taken together, these three knowledge sources are very powerful and enable

human beings to solve new problems ..." So, regardless of the type of diagnostics

perfonned, either industrial or medical, the same method can be used to build a

diagnostic agent. The design steps to be taken are as follows:

1. Collect the knowledge about the domain.

2. Analyze the acquired knowledge and choose the set ofrelevant variables that

describe the domain.

3. Choose an ordering for the variables and record their attributes and associated values

in conditional tables.

J
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4. Structure and model the knowledge.

5. Implement the model.

Knowt.ed.ge collection

As mentioned in Chapter One, the purpose of this research is to build a diagnostic

agent using a Bayesian network. Our domain is medical diseases and symptoms. This

agent will make a differential diagnosis between ectopic pregnancy and acute

salpingitis. This agent will be used to test if the message-passing algoritlun is sensitive

and accurate enough to make a differential diagnosis. I chose fifteen common

symptoms, two. predisposing factors and the above two diseases as variables. The.

attribution and relation among them are listed in Table 3 and Table 4. Since accurate

data are based on tremendous statistical research, I collected the statistical data which

was already published and also estimated some other data by myself after discussions

with some doctors. We can adjust those data if statistical data become available. The

f · d I' .. l' d' T bi 41 5 9 10 ]4. 17 23computable data 0 ectopIC pregnancy an sa pmgltIs are Iste 10 a e ", , , , ,

25, 40, 42. All the data related to ectopic pregnancy were obtained from statistical research

of over 1000 patients with ectopic pregnancy. Some of the data related to acute

salpingitis were from the estimation.

We use F to stand for fallopian tube infection or surgery llistory and C to stand for

Congenital abnormalities ofthe fallopian tube. Data in Table 3 are attributions which are

estimated by individual experience.
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Table 3. Relations among F. C and ectopic pregnancy

F C Ectopic Pregnancy (true)

T T 0.65

T F 0.40

F T 0.50

F F 0.004

Table 4. Probability of symptoms, signs and lab tests for

ectopic pregnancy and acute salpingitis

. j

Symptoms. Signs
And Lab test

Incidence (Percent)

Ectopic Pregnancy Acute Salpingitis

Symptoms:
1. Pregnancy symptoms
2. Abdominal pain
3. Amenorrhea
4. Vaginal bleeding
5. Dizziness and syncope
6. Fever

Signs:
7. Abdominal tenderness
8. Adnexal tenderness
9. Adnexal mass
10. Uterine enlargement
11. Cul-de-sac fullness
] 2. Orthostatic hypotension

Lab tests:
13. White cell count> l5000/J-ll
14. p-hCG ( +)
15. Pelvic Ultrasound

T
20
90
85
70
10
8

70
80
45
25
60
10

20
92
60

F
0.5
1
2
6
2
3

2
1
0.3
2
1
1

6
2
0.3

T

90

10
8

52

80
70
20

70
10

F

5
2
3

2
1

0.2

5
1
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Prior probability of F = 0.03.

Prior probability ofe = 0.00l.

Prior probability of acute salpingitis = 0.03.

Building Network

Usually, in medical diagnostic processes, doctors collect the inducing factors that

cause certain disease and the symptoms that are caused by the disease. That means only

three layers of variables ar,e needed for a medical diagnostic expert system. We divided

the variables into three layers: predisposing factors layer, disease layer and symptom

layer. With the variables above, we can build the network as in Figure 9. Since we use

the message-passing algorithm, the main design problem is already solved by Pearl. We

will separate the network in Figure 9 into two pal1s: the ectopic pregnancy part (Figure

10) and salpingitis part (Figure 11). This will simplify the calculation. What's more

important is that we can get more published data from medical references. It is obvious

that it is much easier to find the probability of fever given respiratory infection in

published material than find the probability of fever given diseases respiratory infection

and hepatitis. Since the properties of the network are not changed, Pearl's algorithm still

works, but is based on data that is easier to collect. As you win see, our results support

this point. The content stored in nodes in the network will list as follows:



Fallopian tube infection or
surgery history

o
Congenital abnonnalities of
the fallopian tube

o
I'
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Ectopic Pregnancy

2 3 4 5 6 7 8 9

Acut.e Salpingitis

10 11 12 13 14 15

Figure 9. The bayesian network of ectopic pregnancy and acute salpingitis.

Structure ofnode

{

char name[max_length]

int node ID

int parents_number

int parent[parent_number]

int child number

int child[child_numberJ

/*' the name of this node */

/* The ID number of this node in network *'/

/* the number of parents of this node *'/

/* the array of the parents of the node */

/* the number of children of the node */

/* the array of the children of the node */

Table c_table[MAX_ATTRlBUTION] /* Conditional table */
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float pi[2] 1* the causal support ofthis node. pi[O)

is false support, pi[l] is true support *1

float lamda[2] /* the diagnostic support of this node. *1

float parent_message[parent_number] /* the messages from the parents */

float children_message[child_number] 1* the messages from the children */

int evidence 1* 0 for false, 1 for true and 2 for unknown *I

o

Ectopic Pregnancy

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 10. The Bayesian network of ectopic pregnancy.
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o Acute Salpingitis

o
2 4 5 6 7 8 9 13 14

Figure 11. The Bayesian network of acute salpingitis

Since the network is established and the necessary knowledge is ready, the next

step is to implement and test this agent which is designed by using the message-passing

algorithm. The foHowing chapter shows experimental results and the analysis of my

agent. There, the capabilittes of this algorithm will be examined for its use in medicine

diagnosis.
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CHAPTER VI

TESTING RESULT

List of Results

In order to test this work, I made up ten cases. For each case, I created several

predisposing factors and symptoms, then I asked a doctor of gynecology and obstetric to

make a diagnosis. After comparing the results given by the doctor and the results

produced by this agent, I -believe that this algorithm matches the situations in the real

medical world. I realize that this algorithm has its limitations also and more work is

needed to be done in order to make the system appropriate for clinical medicine. Table 5

contains the ten made-up patients' symptoms and Table 6 lists the comparing results.

In Table 5:

"-" means this evidence is negative.

"+" means this evidence is positive.

"~,, means this evidence is unknown.

In Table 6:

"AS" means Acute salpingitis. The probability of AS larger than 50%.

"EP" means Ectopic pregnancy. The probability of EP is larger than 50%.

"UN" means unknown (need more evidence before making a diagnosis). Both
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probability of acute salpingitis and ectopic pregnancy are I.ess than 50%.

'"Both" means the patient has both of the diseases. The probability of both

diseases are higher than 50%.

"H" means healthy. All the abnormal symptoms are negative.

Table 5 Information of ten made-up patients

P1 P2 P3 P4 P5 P6 P7 P8 P9' P10

,F. tube inf./surg.history - + - + + - - - - -
Congo Abnor. Of F. tube - - - + - - - + - -,

Pregnancy symptoms - - - + + I - - - + -
Abdominal pain + + - - + - + + - +

Amenorrhea - - - + - - + + + -
Vaginal bleeding - - + - - + - - - -

Dizziness and syncope + - + + - + - - - -
Fever + - - - - - + - - -

Abdominal tenderness
r

I - - - + - - + - - +

Adnexal tenderness - + - - - + - - 1 - -
Adnexal mass

I
- - - - - - I - - - +

I'
Uterine enlargement - - - - - - - - + -
Cul-de-sac fullness - - - - - - - - + -

Orthostatic hypotension + , - - - - - - - - -
WBC count> 15000/ul + - - - + + + + - I +

Beta-HCG - - - + - - - + + -
Pelvic Ultrasound - - - + - - - - - -

Table 6 The comparing of diagnosis by doctor and agent

P1 P2 P3 P4 P5 P6 P7 P8 PH P10

Probability of E. P. 1 89 0.03 100 20 2.7 99 99 0 i 48.6

Probability of A. S. 99 93 0.07 15 44 69.6 99 89.5 a 99

Diagnosis by agent AS Both UN EP UN AS Both Both H AS
i I

Diagnosis by doctor .. ** UN EP UN AS *.'. Both H AS

"*,, (For PI) The evidence strongly supports any infection in the body, but the
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probability of getting EP'is very low.

"**,, (For P2) Both of these diseases ace possible, but doctor would not make a

diagnosis before getting the lab result.

"***,, (F P7) Th ..or e same suggestion as P2.

As we see in table 6, most of the diagnoses made by my agent match the doctor's

diagnoses. PI, P2 and P7 are different. The d0ctor's opinions-are listed above.

Analysis

Alt~ough the diagnostic matching rate is higher than 80%, as we noticed, there

are also several cases that are not matched. The reasons of these errors may lay in the

following areas:

1. The network is incomplete. That means the symptoms in my network are not caused

only by acute salpingitis and ectopic pregnancy, but can also be caused by other

diseases. For example, fever can be caused by any infection. That's the reason the

doctor didn't think the flIst patient (PI) has acute salpingitis. She thought other

infection diseases were possible.

2. The knowledge database is not accurate enough. In cases of P2 and P7, the

probability of both diseases are about 90%. That means the agent made a sure

diagnosis white the lab tests were unknown. But in the real world, most of the

doctors would not make a decision before some important lab examinations are done.

So, my agent over-estimated the probability of these diseases. On the other hand, if

aU the knowledge data are accurate, this may not be a shortcoming of this agent
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because if the symptoms obviously suggest certain disease, it is not always a mistake

to make a diagnosis.

3. The assumption of conditional independence of symptoms usually does not apply

and can lead to substantial errors in certain settings.

4. In many domains, it may be inaccurate to assume that relevant conditional

probabilities are stable over time. Furthennore, diagnostic categories and definitions

are constantly changing, as are physicians' observational techniques, thus

invalidating data previously accumulated.

The above fOUf problems may lead to the deviation of my agent's diagnosis from

that of the physician. Frankly, they are also the limitations of Pearl's algorithm. In order

to solve the first and second problems, we need the cooperation of knowledge engineers

and experts in medicine. With help from them, we can build a complete network and get

the most accurate knowledge database. Obviously, to solve the fourth problem, we need

to update the knowledge database frequently according to the changing situation. As for

the third problem, I think we still can't find an efficient way to deal with it today. The

best recommendation is don't believe the diagnostic agent with 100% confidence and

keep an eye on it. It may make mistakes like the human being.

i
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CHAPTER VII

CONCLUSION

SlUllmary

Computer programs to assist with medical decision making have long been

anticipated by physicians with both curiosity and concern. In the past forty years, a lot of

research has been done in this area and many medical expert systems have been

developed. Motivation for the development of expert systems in medicine has been

abundant. A physician may have knowledge of most diseases, but, due to the extensive

number of diseases, a physician could benefit from the support provided by an expert

system to quickly isolate the disease. This is also the task of my agent. In my research, I

built a medical diagnostic agent using the theory of Bayesian networks. I think the results

of this agent are encouraging. It demonstrated that this agent was sensitive enough to

handle a medical diagnosis, even though the Bayesian approach has its limitations. But I

do think we can narrow the chance of making errors. As we cannot expect a physician to

be 100% correct, neither can we expect the expert system to always be right. I think such

agent can be a powerful tool for physicians like other technical equipment. I don't think

it is realistic that the diagnostic machines will totally replace human physicians.

Compared with other methodologies like rule-based reasoning, neural networks and
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case-based reasoning, the Bayesian approach has 1 more potential for development.

Although, today· there are only a few applications that were built with the Bayesian

approachs in medicine expert .systems, I believe it is just begiIll1ing. With the'

development of the software technologies, more related tools and shells for the Bayesian

approach win be marketed. Then, researchers will feel at ease about developing the

practical medical agents with a Bayesian approach;

Future Work .

The development of medical expert systems brings with it many fonnidable

technicaj, behavioral, legal, and ethical problems that must be addressed by the

researchers in this field. These include acquiring and representing medical knowledge,

validating the systems, getting physicians and patients to accept them, and deciding who

will be responsible for clinical decisions made with the help of these systems. In

assessing applications, it is pertinent to examine the following research issues that affect

. d" 13the success of expert system III me lcme .

• What is the appropriate domain in medicine?

• How is the clinical knowledge to be acquired and represented? How does it

facilitate the performance goals of the system described?

• Is the system accepted by users for whom it is intended?

• Is the interface with the user adequate?

• Is it suitable for dissemination?

• What are legal and ethical problems?
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In recent years, the applications of expert systems in medicine appear to be growing at an

almost exponential rate. However, among the expert systems that have been

implemented, few of them have been successful in practice, especially in the clinical

environment. In some cases, failures have definitely occurred, and many of these failures

have been due to an improper selection of domains or a neglect of the critical factor of

expert system maintenance. In others, failure may be traced to the choice of the wrong

knowledge acquisition and representation methods. However, the most problems

encountered in the implementation of expert systems have not been a fault of the

methodology. My research results proved that the Bayesian network is a good approach

to building medical diagnostic systems. To make the real world realize the usage of this

theory and accept the expert systems built with this theory, the issues [ listed above will

require more attention in the future.

-
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