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CHAPTER I

INTRODUCTION

1. 1 Background

Neural Networks and Fuzzy Logic have been attractive to researchers and engineers in

the field of Artificial Intelligence (AI) for a little longer than a decade. Both approaches

were introduced to emulate the way human beings leam (Neural Networks) and think

(Fuzzy Logic). Neural Networks have made modeling problems easier by self-learning

from a given set of training data. Successful applications using fuzzy logic and fuzzy

systems also have emerged. In addition, the concept of fuzzy logic has been applied to

other research fields, such as neural network training.

Although many people claim that Neural Networks have self-learning abilities for

complicated problems, the degree of success varies from application to application. It is

not easy to construct appropriate neural networks for the following reasons. First, when

training parameters do not fit the problem, they may degrade the perfonnance of the

trained neural network. Secondly, the neural network's training time is not always

acceptable. Finally, that the expert's expertise and experience cannot be incorporated into

the neural network for certain problems. Constructing proper neural networks and training

the network is more of an art than a science.

1



-
Dr. Lotti A. Zadeh of the University of California at Berkeley introduced the concept

of fuzzy sets in 1965. Fuzzy logic is based on fuzzy sets and offers a new mathematical

model to express imperfection -- the way humans describe their experiences, expertise,

thoughts, or reasoning from facts. Engineers and scientists then employ fuzzy logic to

modeling problems, which are called fuzzy systems. Because it is a much easier and are

intuitive approach to integrate engineers or scientists I experience and expertise to

modeling problems, the applications of fuzzy systems have been adapted by some

engineers in building control systems. Requirements for building well-performed fuzzy

systems include well-defined antecedent and consequent membership functions, and

inference rule base. That is, the performance of a fuzzy system is definitely determined by

the experiences and expertise provided by engineers or experts. Compared to neural

network systems, the main drawback of fuzzy systems is that they cannot learn from

representation data, which, on the other hand, is the main advantage ofneural network

systems.

While seeking to improve the performance of neural networks and give fuzzy system

self-intelligence, the fusion ofneural network and fuzzy logic has become a very popular

research field in recent years. The major research direction includes the following aspects:

(1) In order to improve the neural networks' performance, fuzzy neurons may be

introduced to incorporate the expert's experience on neural networks' training

procedure. Experienced scientists believe neural networks have the ability to learn

faster and better establish fuzzy rules.

2



(2) Use neural network techniques to make fuzzy systems self-adaptive. Neural

network techniques may be used to generate inference rule base, antecedent

membership functions, and consequent membership functions from given data sets.

1.2 Research Objective

Though fuzzy logic is often used to design control systems rather than forecasting

systems, it is reasonable to utilize fuzzy logic to model forecasting problems since both

systems usually try to model the target system by applying existed knowledge to the

problem. In addition, we often use observed data (inputs and outputs) in modeling

procedures and try to give accurate predictions from future input for both systems.

In this research, we build a simple water demand forecasting system using fuzzy logic

as the modeling method. But, instead of producing the membership functions and fuzzy

rules intuitively, we utilize a program, FuNeGen, to generate the membership functions

and fuzzy rules, and a neural network representing the fuzzy system. We study the

generated neural network and fuzzy rules, and then we build and tune the simple water

demand forecasting system.

The experimental data used in this research includes daily water flows from the Water

Treatment Plant, City of Stillwater, and weather data (temperature) from Stillwater

Research Station.
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CHAPTER II

LITERATURE REVIEW

2.1 Neural Networks

Neural networks (NN), or artificial neural networks (ANN), are "an. abstract

simulation ofa real nervous system that contains a collection of neuron units

communicating with each other via axon connections." [Kung 93] The fundamental neural

net model was proposed by McCulloch and Pitts in 1943 as a computational model called

"nervous activity." The neuron proposed was a simple binary device with a fixed threshold

to perform simple threshold logic. The model leads the work of John von Neumann,

Marvin Minsky, Frank Rosenblatt, and many others, in the development ofmodern

computer. Researchers believe that, by embedding an enormous number of simple neurons

in an interacting nervous system, it is possible to provide computational power for very

sophisticated information processing [Anderson 1972].

A simple typical neural network including an input layer, a hidden layer, and an output

layer is shown in Figure 1.

Neural networks may have an unlimited number ofhidden layers and, in each hidden

layer, an unlimited number ofneurons, while the number of neurons in input and output

4



layers is most likely determined by the problem itself Some researchers claimed that one

hidden layer is good enough for all problems~ however, it has not been proven true. Even

if it is true, how to choose the number of neurons in the hidden layer is still an open

question. The number of hidden layers and neurons are critical because they determine the

network's performance. Iftoo few neurons are placed, the network may not have enough

"degree of freedom" to accurately model the target problem. On the other hand, if too

many neurons or hidden layers are placed in the network, the training progress may

become unacceptably slow. In addition, if the network is trained for a long time, it starts

memorizing the specific training sets, including the imbedded noise, rather than developing

a generalized model for the underlying problem. In practice, constructing a precise

network requires more knowledge for neural networks than the underlying problem.

Input Layer Hidden Layer Output Layer

Figure 1 A typical neural network

The first learning procedure for neural networks was proposed by Rumelhart, Hinton

and Williams [86]. With the goal of minimizing the error (measure of difference) between

5



the actual output of the network and the desired output according to current input, the

procedure repeatedly adjusts weights in the network. The procedure is called Back

Propagation and still is one of the most popular learning algorithms for training neural

networks. The Back Propagation learning algorithm is described below.

2.2 Back-Propagation Learning

The standard back-propagation algorithm is a simple version of gradient descent that

aims to find a set ofweights (weight space) which ensures that for each input vector the

output vector gained from the trained network is the same as (or very close to) the desired

output vector. The schematic diagram from [Kung 93] describing the back-propagation

process is shown in Figure 2.
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Target

Error signal to
previous layer

aj)+--.., Actual Output

w

Layer

w

Input from
previous layer

Figure 2 The schematic diagram for the back-propagation process

Note that ~ is the error signal that feeds back to the previous layer, and!} is the first

derivative ofjj, the activation function, which usually is a threshold function for firing a

neuron's output. The general concept ofback-propagation algorithm is to calculate error

signal from each layer's output and then propagate the error signal to the previous layer

for weights adjustment, so as to adjust the previous layer's output. A more detailed

description ofback-propagation algorithm is given below.

Every neuron in a neural network can have one or more than one input and one or

more than one output. In the standard Back-Propagation learning algorithm, each neuron

has at least one input and only one output, as described below.
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Figure 3: Calculation of total input for neuron Xj

As shown in Figure 3, the total input from neurons Yi to neuron Xj is a linear function

X j =LYiWj; , (1)
I

where wji is the weight from neuron Yi to neuron X;'.

The output for neuron Xj is a non-linear function of its total input, as shown below.

1
-l-+-e--z-J '" (2)

The learning procedure aims to find a set of weights (weight space) which ensures

that, for each input vector, the output vector gained from the trained network is the same

as (or very close to) the desired output vector. The total error, E, is computed by

following equation:

1 2
E=2~~(yj,p -dj,p) , (3)
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wherep is an index over cases (input-output pairs. or patterns).} is an index

over output units, Y is the actual state (output) of an output unit. and d is its

desired state (output).

The standard back-propagation algorithm involves two phases. In the first phase, the

input vector is presented and propagated forward through the network to calculate the

actual output value for each output neuron (unit). Then this output value is compared with

the desired output and an error signal 4j is generated for each output unit j.

8Ep
op} =- 8net . , (5)

PJ

where Ep is the total error ofpatternp, and

netpj =LWjiYpi , (6)
I

whereYpi is the total output ofneuron i over pattemp, and wjI is the weight

between neuron i and neuron j.

The second pass is a backward pass through the network. It passes the error signal to

each unit in the network and an appropriate weight change is made. The weight change is

defined by

L1w ji (t + 1) =1J (0pjYpJ + a L1W ji (t) , (7)

where the subscript t indexes the time, 1J is the learning rate, and a is a

constant that detennines the effect of past weight changes on the current

direction of movement in weight space, also known as momentum.

9



The learning rate '1 is a constant used to determine how much the weight should

change, while the momentum a is used to determine the relative contribution of the past

weight change gradient to the current weight change.

The standard back-propagation algorithm, however, generally lacks the ability to

produce an effective neural net for a given task within a reasonable time. (Hinton 87]

[Fahlman 88] In some cases, the training time a network takes is too long to be accepted.

[XWB 92] The first issue causing a slow training time is the learning rate 17. It has to be

small enough in order not to overshoot the goal [Fahlman 88]; however, the learning rate

is a constant in standard back-propagation algorithm and can not be adjusted in the

training session. To improve the training time, the momentum a was then introduced, as

described in equation (7).

Some researchers also proposed other methods other than the momentum parameter.

Weir [Weir 91] proposed a method. The method also adjusts the learning rate only, but in

tenns of the length and direction of the next step in the weight space towards the goal

weight space.

Another major reason causing slow training time is that the activation functions in

standard back-propagation algorithm are not changeable [XWB 92.] The sigmoid

function,

1
a=--­

1+ e -(7 x
, (8)

uses ()= 1 (ais steepness parameter) for all inputs during the entire training session in

standard back-propagation algorithm. The training process may be v,ery slow for (J"= 1,

but may be overshooting the goal if (J" is too large.
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Researchers accumulate their experiences of how the learning rate and activation

function can affect the training performance over different situations. When the fuzzy logic

became more acceptable, they found that the embedded fuzzy logic rules, which

dynamically adjusts the learning rate and activation function in training session, can greatly

improve the training time. The concept offuzzy logic is briefly described below.

2.3 Fuzzy Sets, Fuzzy Logic and Fuzzy Systems

Conventional binary logic is based on binary outputs, true and false in linguistic, or 1

and 0 in numeral. The technique is good enough to design modem computers, but not

appropriate to describe all events in the real wortd, especially human experiences and

expertise, which can not always be covered by the true-false cases. Therefore, fuzzy

theory was introduced by Dr. Lotfi Zadeh to deal with the problem. Fuzzy theory involves

fuzzy sets, fuzzy logic and is applied to fuzzy system. More detailed descriptions are given

below.

2.3.1 Fuzzy Sets

Fuzzy set theory has a strong relationship with classical set theory. In classical set

theory, a subset ofA can be defined as a mapping from set B to set {I,O} ,

A: B ~ {I,O}

The mapping can be represented as ordered pairs. The first element of the ordered pair

is an element from set B, and the second element from set {I,O}. That is, the possible

mapping for each element in B is either 1 or 0, where value 1 is used to represent

membership (true) and value 0 is used to represent non-membership (false).
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In fuzzy set theory, the set A can be defined as a mapping from set B to interval [0,1],

that is, the second element of the ordered pairs is a value between 0 and 1. Compared to

classical set theory's membership-non-membership (true-false) mapping, the second

element in fuzzy sets is used to represent the «degree of membership" for each element in

set B. The value 1 represents a complete membership and the value 0 represents complete

non-membership. In practice, membership functions are used to describe the relationship

between an input and its correspond membership. In addition we can find that fuzzy set is

a superset of classical set, or classical set is a special case in fuzzy set.

2.3.2 Fuzzy Logic

As that fuzzy set is a superset of classical set, fuzzy logic is a superset ofconventional

logic (binary logic, or Boolean logic). The results of conventional logic operation map to

binary set {O, I}; the results of fuzzy logic operation map to fuzzy set that is in interval

[0,1]. Operators commonly used in binary are used in fuzzy logic operation but have more

complicate inter-operations. For example, the standard definitions in fuzzy logic are:

Truth (not x) ==

Truth (x and y)

Truth (x or y) ==

2.3.3 Fuzzy Systems

1.0 - Truth (x)

Minimum (Truth(x), Truth(y)

Maximum (Truth(x), Truth(y))

Systems that use fuzzy logic for reasoning data are called Fuzzy Systems. A fuzzy

system involves collections of membership functions and inference rules. The rules can be

represented as linguistic form, such as

12



Ifx is LOW and y is mGH then z is MEDIUM

Dr. Lotfi Zadeh thinks that the fuzzy theory should be regarded as the process of

"fuzzification" and as a methodology to generalize any specific theory from a crisp

(discrete) to a continuous (fuzzy) foon.

Fuzzy systems are mostly applied and known in designing control system, or fuzzy

control system. Engineers may build a control system very easily without the process of

mathematics modeling; instead, they use fuzzy theory to model the system in an intuitive

manner. A typical fuzzy system is illustrated in Figure 2.

Crisp
input

---~'I Fuzzifier

Fuzzy
input

Inference
engine

11
Fuzzy rule base

Fuzzy
output

Defuzzifier

Crisp
output

Figure 4: A typical fuzzy control system

As shown above, the crisp input is translated (or fuzzified) to fu.zzy input with respect

to the antecedent membership function. For example, a crisp input of75 degrees in

temperature can be represented as 80% mGH and 15% VERY IDGH. Note that an input

can have membership in more than one category. Then the fuzzy inputs are applied to the

inference engine and consult all applied rules, which gives the result of one or more fuzzy

outputs. Simple fuzzy rules can be:

13



IF Temp is IllGH Then Fan-Speed is IllGH, and

IF Temp is VERY IllGH Then Fan-Speed is VERY mGH.

Here, according to our example, the fuzzy output is 80% HIGH and 15% VERY

HIGH for fan speed. Therefore, the fuzzy output needs to be converted (defuzzified) to a

crisp target output with respect to consequent membership functions. Then the result is

sent to the fan speed controller.

Designing a fuzzy system is quite intuitive and fairly easy for experienced engineers

and scientists. With relative small amounts of time, they can build up the antecedent

membership functions, the fuzzy inference rules, and the consequent membership

functions. However, for an unknown question, tests and experiments are still necessary to

design proper membership functions and inference rules. Furthermore, a fuzzy system is

inherently not self-adaptive to given input-output patterns.

2.4 Fusion of neural networks and Fuzzy Logic Techniques

2.4.1 Improve Neural Networks with Fuzzy Logic

The standard back-propagation algorithm can train neural networks and is quite easily

to implement, hence most improvement works are focused on optimizing the standard

back-propagation algorithm. The problems of standard back-propagation algorithm

include high convergence time and the possibility of ending up in a local minimum.

Approaches proposed to improve the quality of back-propagation algorithm were mostly

14
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for dynamic adaptation of network parameters, especially for the learning rate. Among

them are global optimization approaches, which adjust learning rate and sometimes also

momentum parameters for all weight in the network globally; and local optimization

approaches, which assign each synapse a different learning rate and parameters are

adapted locally in the network [RG 94]. The results are successful for some applications

and the neural networks can be tuned to obtain excellent performance. Unfortunately, the

tuned parameters are application dependent. Along with the empirical knowledge gained

from the researches, however, the fuzzy rule base was built.

Fuzzy controlled dynamic adaptation of back-propagation algorithm was introduced in

1992 by several researchers [XWB 92] [ACMC 92]. Xu et. al. developed a Fuzzy

Associative Memory (FAM) system and used 24 FAM rules to define a self-adjusting

activation function and learning rate function. The FAM system was integrated in their

neural network and back-propagation algorithm. The following section is adapted from

[XWB 92] which briefly describes the FAM system.

(1) The learning rate function C(E,t) is defined as a function of overall error, E,

and training time, t, rather than a constant in standard back-propagation. The

underlying principles of adjusting the function are briefly explained below:

(a) C(E,t) should be large when the error E is considered big, indicating that

the weights are far away from the desired ones; C(E,t) should become

small when the error E is very small, showing that the weights are modified

close to the desired.

15



(b) If training time t is fairly short, C(E,t) should be large to promote the

learning speed ofback-propagation. C(E,t) should become small toward

better convergence in the final stage when t is significant long.

(2) The self-adjusting activation function is defined by

SeE t a)= __l__
, 'I 1+ e- C7(E,I)"t '

where a; is the sum of weighted input to the neuron, and a{E, t) is a constant,

1, in standard back-propagation but called an accelerator determined by FAM

systems.

The underlying adjusting principles of the function are briefly described below:

(a) Iftraining time is relatively short and the error is quite big, the smaller

numerical value of the accelerator a(E,t) can relax aU inputs to the

neurons being considered, so that the function S(E,t,a;) becomes flat and

"soft" in order to allow the initial weights of related connections to adjust

quickly and easily.

(b) When the error is very small and/or training time is very long, a(E,i)

should be larger and S(E,t,a;) should become steep and "hard" to all inputs

to the neurons, such that the weights are convergent toward the desired

goals precisely.

The approach (called Fuzzy neural networks, or FNN) did show exciting results in

improving learning speed compared to standard back-propagation (SBP) and back-

propagation with self-adjusting learning rate function (BP+C). According to their reports,

16
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the FNN was more than ten times faster than the BP+C and almost 30 times faster than

the SBP to converge to minimum error. Halgamuge et. al. [HMG 93] used the same

approach with additional fuzzy rules and showed even better results than the FNN

proposed by Xu. The additional statements of the used fuzzy rules presented by

Halgamuge are described below.

"(1) A high error means being far away from the minimum. Hence the learning rate

should be high.

(2) The change of the error (CE in short) from iteration to iteration is the most

important and significant measure:

CE(/) = E(t) - E(/-1)

As long as it is high the learning rate can be increased quite safely. Negative

CE indicates that the minimum has been past.

(3) Since the idea is to use a very large learning rate if possible, it is important to

know when to decrease it again as to avoid overshot. The experiments have

shown that the most reliable measure is the second change oferror. Originally

only the sign of this value was regarded. Positive sign means an increase in CE

which in tum means it is safe to increase the learning rate. But it also proved

beneficial to take the magnitude of this value into account because it contains

information about the trend in CE: Even CE remains positive for consecutive

iterations, its decrease gives an early hint that the minimum is being

approached. To be independent of the magnitude ofCE the QCE measure is

introduced as a quotient computed as

17



QCE = CE(t) / CE(t-l)

Values of QCE smaller than 1 should lead to a decrease of the learning rate.

Additionally, these statements are introduced under the assumption that the

error surface for each weight can be approximated by parabola."

2.5 Neural Networks for Fuzzy Systems

Since neural network is capable of learning from given data set, it is natural. to use

neural networks to improve fuzzy systems. Among the proposed approaches, Halgamuge

et. al. [HG 94] constructed a special multi-layer neural network for generating fuzzy

systems that had showed great perfonnance. The fuzzy-neural network (FNN) can be used

to generate antecedent membership functions, consequent membership functions, fuzzy

rule base, and defuzzification function from the given data set.

The FNN is implemented based on mapping fuzzy systems into a feed-forward type of

neural networks. Major components of the FNN structure included Fuzzification section,

Rule Generation section, and Defuzzification section. The system is briefly described by

Halgamuge et al in [HG 94] as follows.

" (1) Rule neurons were used to implement the premise of fuzzy rules. Three types

of rules can be created:

(a) simple rules with premises containing a single fuzzy variable

(b) conjunctive rules with many fuzzy variables in premises

(c) disjunctive rules with many fuzzy variables in premises

18



(2) The generated antecedent and consequent membership functions are sigmoidal

functions, among all other options. The number of categories per input in

antecedent membership functions was assigned by user. The FNN will try to

reshape the function and reduce the number ofcategories.

(3) Linear neurons were used to generate consequent membership functions, rather

than the sigmoid function.

(4) Instead ofchoosing the standard defuzzification method such as Center of

Gravity (COG), the FNN utilized Customizable Basic Defuzzification

Distributions (CBADD), which was said to have an optimizable approach with

theoretical or application oriented considerations.

(5) Each generated rule is given a weight (or bias) and is used to compute the

rule's strength.

(6) The crisp output is computed by function

r

OJ =a;(L~j*K)
}=I

Where Wij is the weight from connection ofjth rule node to the ith output

node, ~. is the rule strength, r is the number of rules, and at is the sigmoidal

activation function." Note that the function differs from that used in the

conventional neural network, which sums up the weights only. Here the rule

strengths are considered as input also.
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CHAPTER ill

EXPERIMENTAL RESULTS

3.1 Data Used for Training and Testing

The data used in the research includes

1. Date (month and day),

2. Daily flow data from Stillwater Water Treatment Plant, and

3. Daily high and low temperatures data from Stillwater Research Station.

A diagram of the original data is shown in Figure 3. Compilations included 267

records from the training, file and 91 records from the testing file. Each record in the

training and testing files has two lines, input vector and actual output for the first line and

the second line respectively, arranged in the form shown below.

Where

Month

Flow

Temp_High Temp_Low Prev Flow

Month: The number value ofmonth, from 1 to 12

Temp_High: The high temperature of the day in OF

Temp_Low: The low temperature of the day in OF

Prev Flow: The water flow ofthe previous day

20
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Flow: The flow ofthe day
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The compiled experimental data set excludes the value of day because our training

experiences showed degraded training performance when day is included. We include the

previous flow in the data set. Because, according to our observations, it shows the

influence on next day's flow and we want to prove it.

In addition, the input data is not normalized to domain [0,1]. The original values are

preserved because the training program FuNeGen vl.l does the normalization work

internally. It is a great advantage for users to easily observe the generated output.

The FuNeGen program has many options for users to set and some ofthese options

affect the training performance. Among all the options, the number ofrules is the major

cause that affects the performance. It can be easily understood as giving the training neural

network sufficient space for all possible rules. It is like choosing an appropriate number of

neurons for the target network. We consider this an advantage over constructing a

conventional neural network. According to our experience, if all of them are effective to

the target system, the number of rules should be about two times the number of inputs.

We also find that the number of antecedent membership functions affects the training

performance. But, since the FuNeGen program tunes the shape and number of

membership functions, it is safe to set the number to 5, the maximum value allowed in

FuNeGen.

3.2 Training Results

The training results extracted fu.zzy rules, antecedent membership functions, and a

neural network representing the fuzzy system.
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3.2.1 The Extracted Fuzzy Rules and Discussions

The extracted fuzzy rules of the target neural network are shown below in the order of

rule weight. Note that the number of rules and the number of antecedent membership

functions were set and were decided by experiences from experiments.

Table I The extracted fuzzy rules

Rule
No Weights Fuzzy Rules

------ -----------------------------------------
1 1.163 IF (11 mf4) THEN outputO
2 -1.274 IF (10 mfO) AND (il mf4) THEN NOT outputO
3 0.788 IF (10 mf2) AND (i1 mf1) THEN outputO
4 -0.561 IF (10 mf2) THEN NOT outputO
5 -0.533 IF (10 mfO) OR (i3 mfO) THEN NOT outputO
6 -0.370 IF (10 mf4) THEN NOT outputO
7 -0.304 IF (10 mfl) THEN NOT outputO
8 0.278 IF (11 mf3) OR (i2 mf4) THEN outputO
9 0.240 IF (10 mf2) OR (i2 mf2) THEN outputO

10 -0.144 IF (10 mf3) OR (i2 mf2) THEN NOT outputO
11 -0.105 IF (11 mf3) THEN NOT outputO
12 -0.022 IF (12 mf2) OR (i3 mf3) THEN NOT outputO

------ --------------------------------------

The 10, II, 12, and 13 represent Month, Temp_High, Temp_Low and Prev_FLow

respectively. The classifier mfa, mfl, mf2, mf3, and mf4 for membership functions can

be usually translated to Very Low, Low, Medium, High, and Very High memberships

respectively. Therefore, the extracted rules can be rewritten into more readable form. Note

that a negative weight means the rule has negative effect on the output flow.

25



•

Table II The translated fuzzy rules

Action

......

Then Output = RS • 0.788

Then Output = RS • 1.163

Rule Rule Description
1 IfHigh Temperature is Very High

.. :...Z'i:m .:: :If¥onthis Very Low AND":'"

jlilllil!llli!!!lllij!I@I:n;"HlmmgnL~entJ~~e:i$;V~~~t~
......;;."::::::;';::::;:;.:;"::: o.

3 IfMonth is Medium AND

High Temperature is Low

::.·!i.ili·~·lii;·.·i:!!;:·ii:'····lfM6nth·lS·Med~u.~.;:•..•.:•..•.~ ... :••...,..!;.,••,,;:;.•••:;.•" •..•.•':.~-~~':~.!.,~~~~:;.~ ...:'
5 IfMonth is Very Low OR Then Output = RS • -0.533

Previous Flow is Very Low

;:':.6 '::' ... 'lfMorith is VeryHigh.Thei1..···i::::·i·:l.:.•:~h.~.n..... ,.'.' .. ,:·,:·.•... :... ·,..O.l...:.....u,:.·.•.·.·.tpj;J... ;.:...·.. ·...•·.j.;.. :::....•:.:RS:;:•.:..,;'.•..,; .•..,:.,...;.,: ..:.,~.,:.,•.,..,..,I.,r.,:..,:.O,•.,:.:',..• ::.,!:~,•.,·:;.:,~.•...•.,;,•.O::.. :.:: •. i...... :::,:; .. ::;. ::: _mHmgiiH+~:n!;~:j;::;:,~H;:)~:Wi:E~:;:i;~jj~;:' ;:. . :;: . '::, ::::: "., .,.,.0_. • '.

7 IfMonth is Low Then Output = RS • -0.304

i.·l.~'·i'iE·II:I·lillil··I~~~rer>~attire1~;H18,hi~~·i:,·:g:'i:i'I'·~~~~~i'!iii·~~~~~;~!~!::i:~~1~~!'·!li'!1

:..,: •.i••" .•••:l.W.;.:.~'Y::[I)~f'1p.e1"~[~~s,~~iy;Hi~~::,:lj" ,., "<> Tn,:,' ";HE<·...... ...•

9 IfMonth is Medium OR Then Output = RS * 0.240

Low Temperature is Medium

: :·10" :,u·i·:';.::ii!fM9rlih is;Htgh·64t'':i·::·+'·'FT.~~''':A'!;'!!·>'The'h::'!n!outPut:::g.R.~li!i',:. !.':.~.O.•:,:"·!:.:~~m\!H
; :;. " .. ,;: :" .. : . .

.• . .::':"ii'i..::: ..Lp.wr~p~at.Ur:e is L9W ....

11 If High Temperature is Low Then Output =RS * -0.105

i·:·i~:~'·!'··;m·:I·<If~()\V:tbrtlperatur~i~·id~:~It'" .. ..,The1r·!'09tp}1f=·~S,i~ii:i~~R~~.'
.. ..i ,·Previous Flow is High ' ., .

:::::.. "-"='"'-"-"---"---..::.-........~~~---"-~~~~~.,•.. ,.. ~.. _ ..= _ '.~:.~.'' ' ' --

RS : Rule strength

There are a few good results in the extracted fuzzy rules.

1. The first rule is a very convincing rule. It says that if the high temperature ofa

day is very high, then the output flow has the largest weight, 1. 163. That

reflects our assumption as well as the collected data very well.
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2. Rules 4, 5,6 and 7 are good examples too. Ru1e 4 says that if the month is

either May, June, July or August, then the output flow has a negative weight of

-0.561. Rule 5 says that if the month is very low, e.g., January, or the previous

flow is very low, then the: output flow has a negative weight -0.533. Rule 6

says that if the month is very high, e.g., December, then the output has a

negative weight -0.370. Rule 7 says that if the month is low, e.g., April and

May, then the output flow has a negative weight -0.304. These rules support

the facts in our collected data that the lowest flow values occur in January,

May and December.

3. Rule 10 and 11 also make sense. They both indicate that low temperature has

negative effect on flow, though not very much.

4. Rule 12 somehow proves our reasonable guess - if the previous day's flow is

high then the day's flow tends to be low. However, the rule's weight is the

smallest, among all rules.

3.2.2 The Extracted Membership Functions

Figure 5 to .Figure 8 are screen snaps of the extracted membership function for our

inputs. They are generated and optimized by the FuNeGen program. In FuNeGen, the

degree of membership is determined by following two sigmoidal functions.

1
f..l = 1 -S(J-a) (9)

+e

1
f..l =1+ eS(J-a) (10)

f..l : Degree of membership

27



a

S : Steepness factor, or gradient factor

I : Nonnalized input

a : Shift factor

Equation (10) is actually a mirror ofEquation (9). Suppose S is a positive number,

Equation (9) represents a curve with rising edge, which can be used to describe the Very

High membership function. On the contrary, Equation (10) represents a curve with falling

edge that describes Very Low membership function, as shown in Figure 3.

jJ

1

0.5

a

Very Low

J

jJ

1

0.5

Very High

1

Figure 6: Antecedent Membership Functions for Very Low and Very High

Membership functions having both rising and falling edges, such as Medium, can be

considered as a combination ofEquations (9) and (10), as shown in Figure 4,
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Medium

0.5

I

Figure 7: Antecedent Membership Function for Medium

Initially, the steepness factor Sis 14.0. The shift factors a for membership functions,

which can be found in FuNeGen's option settings, are listed below.

Table III The initial shift factors before optimization

(1) Very Low: 0.15 (falling edge)

(2) Low: 0.2 (rising edge) and 0.38 (falling edge)

(3) Medium: 0.4 (rising edge) and 0.6 (falling edge)

(4) High: 0.62 (rising edge) and 0.8 (falling edge)

(5) Very High: 0.85 (rising edge)

FuNeGen optimizes membership functions by adjusting S and ~ the steepness and

shift factors.

Pursuant to the five shift factor values and the steepness factor, a set of membership

functions are obtained by substituting each shift factor value, the a value, and the
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steepness factor, the S value, into Equations (9) and (10). The result graph is shown with

gray curves in Figure 8 to Figure 11. The dark curves, on the other hand, show the

optimized membership functions.

Figure 8: Membership functions vs Months (IO)

The initial membership functions vs input Months are shown with gray curves in

Figure 8. The membership functions' shapes and scales are adjusted during optimizations.

We can see that the degree of membership for months of Very Low (such as January and

February) is lowered. In addition, the coverage of membership function for months of
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Medium is wider than the initial setting, and makes August have a higher degree of

membership in Medium Months. The normalized input values ofMonth are listed below.

Table IV Normalized input values of input Month (10)

January February March April May June
0.0 0.0909 0.1818 0.2727 0.3636 0.4545

July August September October November December
0.5455 0.6364 0.7273 0.8182 0.9091 1.0

Let f.1. be the degree of membership, I the normalized input ofmonth, and Min the

minimum function, the optimized membership functions of input month are illustrated

below.

}

f.1.VeryLow =}+ e 15.0243(1-0.0312)

} 1
fJLow =Mine} + e-14.0217(l-0.2518) , 1+ e13.8484(J-0410»)

. 1 1
fJMedilJm = Mine

l + e-14.2724(!...().3546) '} + e13.3074(l...().7174»)

. 1 1
f.1.High =Mine

l + e-14.2350(l...().5740) '1 + e14.0182(l-0.7996»)

1
fJveryHigh = 1+ e -13.9762(1-0.8540)
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Figure 9: Membership functions vs High Temperatures

In Figure 9, the number of membership functions is reduced from five to three (Low,

High, and Very High, see the dark curves) after optimization. The degree of membership

for Low High-Temperature, the left curve, is lowered, which decreases the effect to the

water flow when the high temperature is low. According to our input data, High­

Temperature ranges from 103 of to 26 of. Therefore, the Low High-Temperature is

around 49 OF ( (l03-26) * 0.3 + 26 ), and the High High-Temperature is around 78 OF (

(103-26) * 0.68 + 26). The membership functions for High-Temperature are listed below.
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M' .( 1 1
f.JLow = In 1+ e-13.7816(J-O.2S07) '1 + e14.3758(J-O.3245))

M' (1 1
f.JIfigh =111 -1-+-e---14-.3-73-2C-I--O-S72-3-) , 1+ e14 o233(J-O 7994) )

1
f.JVeryHigh = 1+ e-13m3(l-O.8961)

Figure 10: Membership functions vs Low Temperatures

In Figure 10, the number of membership functions is reduced to two (Medium and

Very High) after optimization. The highest and lowest Low-Temperatures are 82 of and 8

OF respectively, according to our data. The Medium Low-Temperature is around 50 of
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and the highest degree of membership is about 0.9 by observation ofthe graph above or

from the membership functions listed below.

M' (1 1
JiMedium = In 1+ e -14.on4(I-O.3953) , 1+ e13.2717(l-O.7091) )

J.JVeryHigh =1+e -13.8988(1-0.8439)

Figure 11: Membership functions Vs Previous Flows

In Figure 11, just like the previous one, the number of membership functions is

reduced to two, Very Low and High. Figure 11 shows that the highest degree of
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membership is 1, full scale, for Very Low Previous-Flow, and close to 1 for High. This

fact gives larger rule strength for input Previous Flow. According to the input data, the

highest and lowest flow values are 11.803 and 4.356 respectively. The largest degree for

High Previous-Flow is when the previous flow is around 9.5. We also find that the High

membership function covers a wider area. That gives previous flow more influence on the

rule strength. Again, the membership functions are listed below.

1
flVeryLow = 1+ e-I3.0589(J-O.4101)

flHigh =Min(l+e-1492~I(J-O.457J)'l+eI294~I(l-O.9545»)
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3.2.3 The Trained Neural Network

Figure 12: The trained neural network representing the fuzzy system

The diagram shown above is the trained and optimized neural network that represents

the fuzzy system we have described. Excluding node J4, the network has 43 neurons

spread over 7 layers. Notice that the right-most node, 14, in the bottom layer is not really

an input neuron. In fact, node 14 stores a fixed value 1.0 and has edges (weights) to every

neuron that use sigmoidal function as its output function. The edges from node 14 to those

neurons store weights that actually are the shift factors, a values, of the sigmoidal

functions.

36



In Figure 12 and 13, two capital letters among S, L, A, and 0 written in vertical are

used to denote each neuron's input and output functions. The letter at the top position

denotes the output function of the neuron, and the letter at the bottom position denotes

the input function to the neuron. The notation is given below.

1. S is a sigmoidal function for output. It indicates that the neuron's

output is a sigmoidal function of the neuron's value.

2. L: Linear function is used as an output function only. The

neuron uses its input value as its output value directly.

3. A is a:MIN function that is used as an input function only. :MIN

function takes the minimum value of all input values to the

neuron. This function is used in conjunctive (AND) rules.

4. 0 is a MAX function that is used as an input function only.

MAX function takes the maximum value ofall input values to

the neuron. This function is used in disjunctive (OR) rules.

We need to number the network's neurons before illustrating how the trained neural

network represents the fuzzy system. The numbering counts from bottom layer to top

layer and from left to right. For example, n(i,j) denotes the neuron positioned in layer i and

node j. Hence, n(O,O) denotes the bottom leftmost neuron in the network. Figure 13 shows

the resulting network.
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Figure 13: The trained neural network with neurons numbered and categorized
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3.2.4 A description of how the trained network represents the fuzzy system

As shown in Figure 13, there are 3 groups, Membership functions, Rules, and Output,

in the neural network that perfonn the fuzzifier, inference engine, and defuzzifier functions

respectively. How the fuzzy system is represented can be described by showing how the

neurons are constructed and how the fuzzy functions are perfonned in each layer.

Membership Functions Layer (Fuzzifier)

In general, the neurons in first three layers, layer 0 to layer 2 represent the membership

functions used in the fuzzy system. Fuzzy rules are represented by neurons in layer 3, layer

4, and layer 5. The only neuron in layer 6 is the final output neuron. We, however, explain

one of the rules in detail. The rest of the fuzzy system can be explained in a similar way.

The described rule is Rule 4,

If (10 mf2) THEN NOT output o.

Where 10 denotes Month and mf 2 denotes a membership function ofMedium as

described in section 3.2.
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Very Low Low Medium High Very High

s
'--_--'s

Figure 14: Neurons represent membership functions for Month (IO)

Recall that there are five membership functions used for input ofmonths. The network

has 11 neurons to implement the membership function. Very High and Very Low

membership functions need only one neuron, respectively. The Low, Medium, and High

membership functions need 3 neurons for each. The following table shows the neuron(s)

used for each membership function for input Month.

Membership
Very Low

Low

Medium

High

Very High

Neuron(s)
n(2,0)

n(1,O), n(I,I), n(2,1)

n(1,2), n(1,3), n(2,2)

n(I,4), n(1,5), n(2,3)

n(2,4)
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Very low and Very High membership functions need only one sigmoidal function each

to determine the degree ofmembership for the input. Each of the other three membership

functions (Low, Medium, and High), on the other hand, needs two sigmoidal functions

and a MIN function. Therefore, two neurons are used to store the two sigmoidal function

outputs and one neuron to store the minimum value of them.

Rules Layer (Inference engine)

Excluding the first 3 layers and the output neuron, there are 12 neurons left to

represent the 12 fuzzy rules in our target fuzzy system. Each of the rules has either one

(for simple rules) or two inputs (for conjunctive and disjunctive rules). For simple rules,

the rule neurons use the degree of membership of its input neuron as the output, the rule

strength. For conjunctive (AND) rules, the rule neurons use MIN input function to choose

the minimum degree of membership from its input neurons and then use the value as the

rule strength, RS. For disjunctive (OR) rules, the rule neurons use MAX input function to

choose the maximum degree of membership from its input neurons and use the values as

the rule strength, RS.

In our example, neuron n(3,2) is used to implement rule 4,

If (10 mf2) THEN NOT output 0 (or output = RS * -0.561)

The following figure shows how it starts from 10 to the output neuron.
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Output

-0.561

Rule 4

Very High (mf4)

S
L-..:::>'r""-----l S

S
L-.._-----l B

10

Figure 15 The diagram shows how the 10 contribute to Rule 4 and the Rule 4

contribute to Output.

Since rule 4 is a simple rule, neuron n(3,2) has one input neuron only, node n(2,2),

which represents membership function of medium for input O.
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Similarly, Neuron n(5,0) can be used as an exampLe for conjunctive rule since its input

function is a MlN (denoted as A) function. Neuron n(5,0) has two input neurons, IO

mf2 and il mfl, and it is used to implement rule 3,

If (10 mf2) AND (il mfl) THEN outputO.

The understanding of the network architecture is the essence to implement a water

demand forecasting system.

Output Layer (Defuzzifier)

The fuzzy system uses a different defuzzification scheme from conventional fuzzy

systems. A weight value is assigned to each rule to determine how much the rule will

affect the actual output. In the system, the actual output, neuron n(6,0), is the summation

of rule strength times its assigned weight, where the summation is calculated over all

inputs.

3.3 Test Results

The trained network is tested with a test file consisting of 91 known observations.

According to the output generated from FuNeGen, the standard deviation of the error is

0.9697. The error is defined as the difference of actual value and target value, where the

resulting value is the value generated by the fuzzy system and the target value is the

observed value. Figure 16 shows the testing results. A list of the testing results is also

attached in Appendix A.
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3.4 A Simple Water Demand Forecasting System

We implemented a simple water demand forecasting system in Visual Basic 5.0 (VB5).

The program includes an interactive user interface for users to enter data, as shown in

Figure 17. The entered data are fed into the trained neural network. Then the interface

displays the calculated result(s) including values in each neuron and the predicted water

flow. The code implementing the trained neural network is a rewritten VB5 version. The

original version comes from the C code generated by FuNeGen.

The implementation also includes a batch evaluation function to evaluate a set of test

values, as shown in Figure 18. The function is used to test the performance of modified

neural networks. That is, when the neural network is modified to reflect our thoughts, the

function is provided for us to test it.

For future study of the water demand forecasting problem, the implementation also

shows the neural network, the neurons' associated membership functions, rules, and the

stored value in each neuron. In addition, the edges are grouped by colors for easier

observation of the results of membership functions and rule strengths.
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Figure 17: An example of the simple water demand forecasting system

The source VB5 code is listed in Appendix B. Please note that the last line in the

function NN_Recall has been modified. The code generated by the FuNeGen seems not

de-scale the output neuron right. The original and modified code is listed below.

Original:

Corrected:

Yout = Xout(42) * (12.411668) - (6.838333)

Yout = Xout(42) * (12.411668) - (6.838333) + 8.71122

The adjustment value is obtained by evaluating the differences between values

calculated by the original code and values shown in FuNeGen's output fLle. Fortunately,
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the results show consistent differences in all comparisons. Therefore, we can correct it by

adding an adjustment value.

The neurons' values are updated whenever an input value is changed. Values in

neurons including input neurons 10 to 13 are normalized values to domain [0,1].

Figure 18 The Batch Evaluation window let user specify a test file

and the desired output file.

The batch evaluation function can be invoked from menu item [File]/(Batch Evaluate].

The window shown in Figure 18 lets users specify the source file they want to batch test

and the output file to store the resulting values ofeach evaluation. The source file is a

collection of test vectors whose format is the same as the test file described in section 3.1.

The Browse button lets users easily specify the file by using a dialog window. The View

Source button lets users check the content of the source file they specified, as shown in

Figure 19.
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~ 62 31 5.865066
'8.559000
_ 13 39 8.553000
6.109001
_ 17 56 6.709000
6.039000
_ 65 _7 6.039100

'6.572000
_ 66 39 6.512000
,6.692000
_ 7__1 6.692000
6.657000
_ 75 51 6.657000
8.333000
4 82 56 8.333000
7.238000
_ 89 56 7.238000
7.776000
4 68 52 7.776000
7.603000
_ 51 30 7.603000
7.2_0000
_ 56 31 7.2_0000
6.008000
_ 69 33 6.008000

...... :,;: ,;..;': ; .. ;.; ; ; : ;; :.: ,;,: : .

Figure 19 The window shows the content of the source file for testing.

The Start button is enabled when the Source File is valid. Default Output File name

will be assigned automatically according to the Source File field. A warning will pop up if

there is already a file there. When the evaluation is complete, the number of test vector

and the standard deviation of resulting values will be shown, as shown in Figure 20.
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Figure 20 The window shows number of vectors evaluated and

the resulting standard deviation.

The standard deviation is evaluated by the following fonnula.

nL,x2 _(L,X)2
StdDev =.1--='-----='----

n(n-l)

Where n is the number of test vectors, and x is the differences between target (the

observed) and resulting values.

The View Output button will be enabled if the evaluation is good. Users may use

this function to view the evaluation results of each test, the number of test vectors, and the

standard deviation of the batch evaluation, as shown in Figure 21.

49



>

62 31 5.865
8.553
5.939

Pattern 2
Input uector: 4 13 39 8.553
Target vector: 6.109

(Result vector: 1.213

r

I

pattern 3
Input uector: 4 77 56 6.109

'Target vector: 6.039
[Result vector: 6.319

!~:~~:r:.:tDr: ~ 65 ~7 6.Il39
"I Target uector: 6.572
lResult vector: 5.994
I'
I; Pattern 5
~Input vector: 4 66 39 6.572
1\,ITarget vector: 6.692
!Result vector: 6.084

I
i Pattern 6
!Input vector: 4 74 41 6.692
~Target uector: 6.657
kResult uector: 6.225
li. ,_ _........................................................................... . - .

Figure 21 The View Output function let user view the test results.
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CHAPTER IV

CONCLUSIONS AND DISCUSSIONS

This research presents an approach to modeling a water demand forecasting problem

with neurofuzzy technique. The data is trained by a specially constructed neural network

designed by Halgamuge. The trained neural network represents a fuzzy system, or

neurofuzzy network, which we may use to observe the knowledge leamed, or extracted,

from the training data sets. We explain the structure of the trained neural network, how it

represents a fuzzy system, and use the trained neural network to implement a simple water

demand forecasting system. The simple water demand forecasting system is developed in

Visual Basic 5.0 and can be run under Windows 95 or Windows NT. The program also

provides a batch test function that can be used to evaluate the neural network's

performance.

The results in Figure IS have shown the neural network's abilities to model the water

demand forecasting problem. In addition, the interpreted fuzzy system also demonstrates

that it is possible to extract reasonable knowledge from sets of training data. The results,

however, are not perfect because of the nature ofcomplexity of the water demand

problem. The training data we have at this time are not sufficient to build a perfect
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forecasting system. For example, daily population should be an important factor to water

demand, but it is almost impossible to gather the daily population data.

Furthermore, it is possible to improve the performance of the trained network with

fuzzy logic approach. That is, we may observe and modify the fuzzy system according to

our understanding in the water demand problem. Unfortunately, we are not able to

improve the performance by simply removing rules. The network should be retrained

whenever the structure is altered to get optimized performance.

As the problems are met in modeling with neural network, the parameter setting is

another important factor in which the designer has to take care, especially the number of

rules setting. Currently there is no convenient and precise approach to determine the

number of rules a fuzzy system should has, unless the problem has been well studied. In

this research, we set the number of rules by experiments. We think the problem can be a

major topic for future works.
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Pattern 1
Input vector: 3.9997 61. 9975 37.0006 5.8648
Target vector: 8.5536
Actual vector: 5.9397

Pattern 2
Input vector: 3.9997 73.0008 38.9986 8.5531
Target vector: 6.7093
Actual vector: 7.214 4

Pattern 3
Input vector: 3.9997 76.9971 55.9964 6.7093
Target vector: 6.0390
Actual vector: 6.3195

Pattern 4
Input vector: 3.9997 65.0005 46.9980 6.0390
Target vector: 6.5715
Actual vector: 5.9956

Pattern 5
Input vector: 3.9997 66.0015 38.9986 6.5722
Target vector: 6.6919
Actual vector: 6.0849

Pattern 6
Input vector: 3.9997 74.0018 40.9966 6.6921
Target vector: 6.6571
Actual vector: 6.2264

Pattern 7
Input vector: 3.9997 75.0028 51. 0014 6.6571
Target vector: 8.3327
Actual vector: 6.2649

Pattern 8
Input vector: 3.9997 82.0021 55.9964 8.3327
Target vector: 7.2380
Actual vector: 7.4180

Pattern 9
Input vector: 3.9997 89.0014 55.9964 7.2380
Target vector: 7.7754
Actual vector: 7.1809

Pattern 10
Input vector: 3.9997 68.0035 52.0004 7.7757
Target vector: 7.6029
Actual vector: 6.8607

Pattern 11
Input vector: 3.9997 51. 0019 30.0002 7.6029
Target vector: 7.2405
Actual vector: 6.8917

Pattern 12
Input vector: 3.9997 55.9992 30.9992 7.2402
Target vector: 6.0080
Actual vector: 6.6596

Pattern 13
Input vector: 3.9997 68.9968 32.9972 6.0077
Target vector: 7.7307
Actual vector: 5.8814

Pattern 14
Input vector: 3.9997 76.0038 36.0016 7.7310
Target vector: 8.2843
Actual vector: 6.8681

Pattern 15
Input vector: 3.9997 83.0031 52.9994 8.2843
Target vector: 7.0754
Actual vector: 7.4602
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Pattern 16
Input vector: 3.9997 77.9981 52.9994 7.07(9
Target vector: 6.8582
Actual vector: 6.5789

Pattern 17
Input vector: 3.9997 81. 0011 54.9974 6.8582
Target vector: 6.7304
Actual vector: 6.5094

Pattern 18
Input vector: 3.9997 69.9978 51.0014 6.7301
Target vector: 6.1656
Actual vector: 6.2289

Pattern 19
Input vector: 3.9997 61.0025 42.0030 6.1649
Target vector: 6.3865
Actual vector: 5.9844

Pattern 20
Input vector: 3.9997 63.9995 44.0010 6.3861
Target vector: 6.5045
Actual vector: 6.0775

Pattern 21
Input vector: 3.9997 69.9978 45.0000 6.5052
Target vector: 6.7614
Actual vector: 6.1211

Pattern 22
Input vector: 3.9997 67.0025 46.9980 6.7606
Target vector: 6.1111
Actual vector: 6.2264

Pattern 23
Input vector: 3.9997 48.9999 44.0010 6.1122
Ta rget vector: 6.6311
Actual vector: 6.4449

Pattern 24
Input vector: 3.9997 60.9965 36.0016 6.6311
Target vector: 5.6294
Actual vector: 6.1706

Pattern 25
Input vector: 3.9997 68.9968 35.0026 5.6302
Target vector: 5.8305
Actual vector: 5.8454

Pattern 26
Input vector: 3.9997 74.0018 60.9988 5.8313
Target vector: 7.4192
Actual vector: 5.9459

Pattern 27
Input vector: 3.9997 71.9998 35.0026 7.4190
Target vector: 7.9603
Actual vector: 6.5727

Pattern 26
Input vector: 3.9997 71. 9998 35.0026 7.9603
Target vector: 7.5595
Actual vector: 6.9066

Pattern 29
Input vector: 3.9997 68.9968 49.0034 1.5590
Target vector: 6.5454
Actual vector: 6.7403

Pattern 30
Input vector: 3.9997 13.0008 54.9974 6.5462
Target vector: 6.8321
Actual vector: 6.1631
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Pattern 31
Input vector: 9.0003 97.0017 66.0012 8.5911
Target vector: 8.9955
Actual vector: 8.9905

Pattern 32
Input vector: 9.0003 97.0017 67.9992 8.9947
Target vector: 8.2719
Actual vector: 9.1419

Pattern 33
Input vector: 9.0003 99.0031 69.9912 8.2716
Target vector: 10.9826
Actual vector: 9.3380

Pattern 34
Input vector: 9.0003 98.0021 69.9912 10.9823
Target vector: 11.8030
Actual vector: 9.4171

Pattern 35
Input vector: 9.0003 103.0000 67.9992 11.8030
Target vector: 10.0201
Actual vector: 10.0368

Pattern 36
Input vector: 9.0003 93.9981 69.9912 10.0209
Target vector: 8.6070
Actual vector: 8.8006

Pattern 37
Input vector: 9.0003 96.0007 67.0002 8.6067
Target vector: 7.2976
Actual vector: 8.8664

Pattern 38
Input vector: 9.0003 83.9964 59.0008 7.2983
Target vector: 5.8305
Actual vector: 6.8458

Pattern 39
Input vector: 9.0003 67.0025 59.9998 5.8313
Target vector: 7.6960
Actual vector: 5.7970

Pattern 40
Input vector: 9.0003 80.0001 60.9988 1.6960
Target vector: 8.6045
Actual vector: 6.9364

Pattern 41
Input vector: 9.0003 80.0001 64.0032 8.6053
Target vector: 7.1816
Actual vector: 7.3385

Pattern 42
Input vector: 9.0003 81. 0011 59.0008 1.7824
Target vector: 7.4366
Actual vector: 7.0729

Pattern 43
Input vector: 9.0003 85.9984 65.0022 7.4368
Target vector: 5.9745
Actual vector: 6.9935

Pattern 44
Input vector: 9.0003 91.0034 66.0012 5.9142
Target vector: 6.3642
Actual vector: 6.1477

Pattern 45
Input vector: 9.0003 91.0034 67.0002 6.3637
Target vector: 6.6323
Actual vector: 6.8495
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Pattern 46
Input vector: 9.0003 74.0018 67.0002 6.6318
Target vector: 6.8160
Actual vector: 6.1160

Pattern 47
Input vector; 9.0003 81.0011 67.0002 6.8157
Target vector: 6.6658
Actual vector: 6.4002

Pattern 48
Input vector: 9.0003 84.9974 67.0002 6.6661
Target vector: 7.6327
Actual vector: 6.4734

Pattern 49
Input vector: 9.0003 81.0011 67.0002 7.6327
Target vector: 6.3506
Actual vector; 6.9128

Pattern 50
Input vector: 9.0003 77.9981 57.0028 6.3511
Target vector: 5.7027
Actual vector: 6.2388

Pattern 51
Input vector: 9.0003 63.9995 46.9980 5.7032
Target vector: 6.4796
Actual vector: 5.9397

Pattern 52
Input vector: 9.0003 47.9989 35.0026 6.4799
Target vector: 5.8305
Actual vector: 6.6683

Pattern 53
Input vector: 9.0003 50.0009 35.0026 5.8313
Target vector: 6.5069
Actual vector: 6.5094

Pattern 54
Input vector: 9.0003 52.9962 40.9966 6.5067
Target vector: 6.6894
Actual vector: 6.6782

Pattern 55
Input vector: 9.0003 54. 9982 51. 0014 6.6899
Target vector: 6.6236
Actual vector: 6.6311

Pattern 56
Input vector: 9.0003 61.9975 46.9980 6.6229
Target vector: 6.5467
Actual vector: 6.2041

Pattern 57
Input vector: 9.0003 73.0008 46.9980 6.5469
Target vector: 5.8367
Actual vector: 6.2314

Pattern 58
Input vector: 9.0003 74.0018 54.9974 5.8372
Target vector: 5.8367
Actual vector: 6.0465

Pattern 59
Input vector: 9.0003 84.9974 67.9992 5.8372
Target vector: 6.1594
Actual vector; 6.2401

Pattern 60
Input vector: 9.0003 86.9994 72.0026 6.1589
Target vector: 9.5354
Actual vector: 6.4660
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Pattern 61 I
Input vector: 10.0002 83.0031 4,9.0034 9.5346
Target vector: 9.1270
Actual vector: 7.9939

Pattern 62
Input vector: 10.0002 80.0001 52.0004 9.1273
Target vector: 5.8591
Actual vector: 7.8499

Pattern 63
Input vector: 10.0002 65.0005 51.0014 5.8588
Target vector: 4.8028
Actual vector: 6.1209

Pattern 64
Input vector: 10.0002 76.0036 45.9990 4.8028
Target vector: 5.2869
Actual vector: 6.2326

Pattern 65
Input vector: 10.0002 78.9991 49.0034 5.2869
Target vector: 5.7225
Actual vector: 6.3630

Pattern 66
Input vector: 10.0002 69.9978 50.0024 5.7218
Target vector: 5.6853
Actual vector: 6.1458

Pattern 67
Input vector: 10.0002 76.0038 37.9996 5.6853
Target vector: 6.7800
Actual vector: 6.2227

Pattern 68
Input vector: 10.0002 71.9998 50.0024 6.7800
Target vector: 6.6906
Actual vector: 6.4908

Pattern 69
Input vector: 10.0002 80.0001 47.9970 6.6906
Target vector: 6.6757
Actual vector: 6.6857

Pattern 70
Input vector: 10.0002 83.0031 47.9970 6.6757
Target vector: 6.2761
Actual vector: 6.7614

Pattern 71
Input vector: 10.0002 84.9974 55.9964 6.2758
Target vector: 5.7213
Actual vector: 6.6571

Pattern 72
Input vector: 10.0002 88.0004 56.0018 5.7210
Target vector: 5.6876
Actual vector: 6.7279

Pattern 73
Input vector: 10.0002 85.9984 59.9998 5.8871
Target vector: 6.0899
Actual vector: 6.5901

Pattern 74
Input vector: 10.0002 75.0028 38.9986 6.0897
Target vector: 6.4995
Actual vector: 6.2686

Pattern 75
Input vector: 10.0002 70.9988 42.0030 6.5000
Target vector: 8.5089
Actual vector: 6.3121
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Pattern 76
Input vector: 10.0002 86.9994 44.0010 8.5092
Target vector: 7.5284
Actual vector: 8.0249

Pattern 77
Input vector: 10.0002 86.9994 45.0000 7.5277
Target vector: 5.9013
Actual vector: 7.5048

Pattern 78
Input vector: 10.0002 83.0031 57.0028 5.9013
Target vector: 5.6965
Actual vector: 6.4759

Pattern 79
Input vector: 10.0002 84.9974 59.0008 5.6972
Target vector: 5.7362
Actual vector: 6.5156

Pattern 80
Input vector: 10.0002 76.9971 43.0020 5.7359
Target vector: 6.8917
Actual vector: 6.3071

Pattern 81
Input vector: 10.0002 68.9968 34.0036 6.8917
Target vector: 6.3394
Actual vector: 6.3443

Pattern 82
Input vector: 10.0002 77.9981 34.0036 6.3399
Target vector: 7.7506
Actual vector: 6.3493

Pattern 83
Input vector: 10.0002 83.0031 53.9984 7.7503
'rarget vector: 7.0270
Actual vector: 7.4242

Pattern 84
Input vector: 10.0002 61.9975 30.0002 7.0272
Target vector: 6.4188
Actual vector: 6.3580

Pattern 85
Input vector: 10.0002 67.0025 30.0002 6.4188
Target vector: 6.6981
Actual vector: 6.0291

Pattern 86
Input vector: 10.0002 75.0028 45.9990 6.6981
Target vector: 6.5007
Actual vector: 6.5268

Pattern 87
Input vector: 10.0002 84.9974 45.9990 6.5007

Target vector; 5.7784
Actual vector: 6.7663

Pattern 88
Input vector: 10.0002 69.9978 38.9986 5.7776

Target vector: 5.7809
Actual vector: 6.0936

Pattern 89
Input vector: 10.0002 69.9978 38.9986 5.7814

Target vector: 7.4316
Actual vector: 6.0936

Pattern 90
Input vector: 10.0002 74.0018 45.9990 7.4309

Target vector: 6.2748
Actual vector: 6.9488
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Pattern 91
Input vector:
Target vector:
Actual vector:

10.0002 60.9965 54.9914
5.9956
6.2612

6.2151

-

Results:
Nu.mber of test vectors: 91
Standard Deviations:
OutputO: 0.9691
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Project Settings

Type
lconForm
Startup
ExeName32
CommandJ2
Name
HelpContextID
CompatibleMode
MajorVer
MinorVer
RevisionVer
AutoIncrementVer
ServerSupportFiles
VersionCompanyName
CompilationType
OptimizationType
FavorPcntiumPro(tm)
CodeViewDebugInfo
NoAliasing
BoundsCbeck
OverflowCbeck
FlPoiotCbeck
FDIVCbeck
UnrouodedFP
StartMode
Unattended
TbreadPerObject
MaxNumberOITbreads

Project References

Reference
Object

FUNE.VBP

Exe
frmFune
frmFune
fune.exe

Projectl
o
o
1
o
o
o
o
OSU
o
o
o
o
o
o
o
o
o
o
o
o
o
1

OLE Automation
COMDLG32.OCX
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Mod Date
Size

BATCHFRM

Sun Feb 22 15:34:32 1998
10706

Declarations

Attribute VB Name = "fnnBatchEvaluate"
Attribute VB-GlobalNameSpace = False
Attribute VB-Creatable = False
Attribute VB-PredeclaredId = True
Attribute VB-Exposed = False
Option Explicit
Dim SourceFile As String
Dim OutputFile As String
Dim NumVectors As Integer
Dim ArraySize As Integer
Dim Diffs() As Single
Dim Out In Focus As Integer
Public Stop Flag As Integer

Subroutines

IcmdBrowseSource Click

Qualifiers: Private

Private Sub cmdBrowseSource_Click()

Dim Pos As Integer, tmpS As String

, Set CancelError is True
CDialog.CancelError = True
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On Error GoTo ErrHandler
, Set flags
'CommonDialogl.Flags = cdlOFNHideReadOnly
• Set filters
CDialog.Filter = "All Files (*.*) 1*.*IData Files (*.datll*.dat"
I Specify default filter
CDialog.FilterIndex = 2
, Display the Open dialog box
CDialog.ShowOpen
txtSourceFile = CDialog.FileName
SourceFile = CDialog.FileTitle
If SourceFile = "" Then

cmdViewSource.Enabled = False
Exit Sub

End If
Call MakeOutFile(SourceFilel
cmdStart.Enabled = True
cmdViewSource.Enabled = True
Exit Sub

ErrHandler:
'User pressed the Cancel button
Exit Sub

End Sub

IcmdClose Click

Qualifiers: Private

Private Sub cmdClose_Click(l

Hide

End Sub

IcmdStart Click

Qualifiers: Private

Private Sub cmdStart_Click()

Dim ret
Dim InFileNum As Integer, OutFileNum As Integer
Dim InFile As String, OutFile As String
Dim M As Integer, HighTemp As Single
Dim LowTemp As Single, PrevFlow As Single
Dim Target As Single, tmpS As String
Dim R As Integer, SDev

cmdStart.Enabled = False
cmdStop.Enabled = True
cmdViewOutput.Enabled = False
InFile = txtSourceFile
Out File = txtOutputFile
StopFlag = False
'check if source file exists
If Dir(InFile) = "" Then
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ret = MsgBox("Source file not exist:" & vbCrLf & vbCrLf & InFiIe,
vbExclamation)

Exit Sub
End If
InFileNum = FreeFile
'On Error GoTo OpenError
Open InFile For Input Access Read As 'InFileNum
OutFileNum = FreeFile
Open OutFile For Output As H'OutFileNum
NumVectors = a
Do While Not EOF(InFileNum)

If StopFlag Then
cmdStop.Enabled = False
cmdStart.Enabled ~ True
Exit Sub

End If
Input HlnFileNum, M, HighTemp, LowTemp, PrevFlow
Input HlnFileNum, Target
NumVectors = NumVectors + 1
Yin(O) = M: Yin(l) = HighTemp:
Yin(2) = LowTemp: Yin(3) = PrevFlow
R = NN Recall(Yin())
'check-array size
If NumVectors >= ArraySize Then

ArraySize = ArraySize + 100
ReDim Preserve Diffs(O To ArraySize - 1)

End If
Diffs(NumVectors - 1) = Target - Yout
Print HOutFileNum, "Pattern" & NumVectors
tmpS = M &" "& HighTemp &" "& LowTemp &" "& PrevFlow
Print HOutFileNum, "Input vector: " & tmpS
Print HOutFileNum, "Target vector: " & Target
Print HOutFileNum, "Result vector: " & Format$ (Yout, "8. 000")
Print HOutFileNum,

Loop
ReDim Preserve Diffs(O To NumVectors - 1)
lblNumVectors = NumVectors
lblStdDev = StdDev(NumVectors, Diffs())
cmdStop.Enabled = False
cmdStart.Enabled = True
cmdViewOutput.Enabled = True
Close
ret = MsgBox("Evaluation completed successfully")
Exit Sub

OpenError:
ret = MsgBox ("Unable to open source file:" & vbCrLf & vbCrLf & InFile,

vbExclamation)
Exit Sub

End Sub

IcmdStop Click

Qualifiers: Private

Private Sub cmdStop_Click()

StopFlag = True

End Sub

IcmdViewOutput Click
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Qualifiers: Private

Private Sub cmdViewOutput_Click()

Dim RetVal As Double
Dim S As String

S = "notepad.exe " & txtOutputFile
RetVal = Shell(S, 1)

End Sub

IcmdViewSourc,e Click

QUalifiers: Private

Private Sub cmdViewSource_Click()

Dim RetVal As Double
Dim S As String

S = "notepad.exe " & txtSourceFile
RetVal = Shell(S, 1)

End Sub

IForm Load

Qualifiers: Private

Private Sub Form_Load()

cmdStart.Enabled = False
cmdStop.Enabled = False
cmdViewOutput.Enabled = False
txtSourceFile
txtOutputFile = ""
IblNumVectors = 0
IblStdDev

ArraySize 150
ReDim Diffs(ArraySize)

End Sub

ItxtOutputFile Change

Qualifiers: Private
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Private Sub txtOutputFile_Change()

Dim tmpS As String, ret

If OutInFocus Then
Exit Sub

End If

tmpS = txtOutputFile
If tmpS <> "" Then

If Dir(tmpS) <> "" Then
ret = MsgBox("The output file already exist, overwrite it?", _

vbYesNo + vblnformation)
If ret = vbYes Then

cmdStart.Enabled = True
Exit Sub

Else
txtOutputFile = ""
cmdStart.Enabled False

End If
End If

End If

End Sub

ItxtOutputFile GotFocus

I

Qualifiers: Private

Private Sub txtOutputFile_GotFocus()

OutInFocus = True

End Sub

ItxtOutputFile LostFocus

Qualifiers: Private

Private Sub txtOutputFile_LostFocus()

OutInFocus = False

End Sub

Functions

IMakeOutFile

Qualifiers: Private
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Arguments:
Returns:

Source
Variant

String By Ref.

Private Function MakeOutFile(Source As String)

Dim Pos As Integer, trnpS As String

Pos = InStr(SourceFile, ".")
If Pos <> 0 Then

OutputFile Left(SourceFile, Pos - 1) ,. ".OUT"
Else

OutputFile SourceFile"" . OUT"
End If
tmpS = Left$(txtSourceFile, Len (txtSourceFile) - Len(SourceFile))
txtOutputFile = trnpS ,. Output File

End Function
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Mod Date
Size

FUNE.FRM

Sun Feb 22 12:14:42 1998
49726

Declarations

Att~ibute VB Name = "f~mFune"

Att~ibute VB-GlobalNameSpace = false
Attribute VB-Creatable = false
Attribute VB PredeclaredId = True
Attribute VB-Exposed = False
Option Explici t
Dim I As Integer

Menu

Caption
&File

&Batch Evaluate

&Exit
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Shortcut Name
mnuFile
mnuBatchEvalute
mnuSpel
mnuExit



Subroutines

IcmdCaJc Click

Qualifiers: Private

Private Sub cmdCalc_Click()

Dim ret As Integer

tor I = 0 To NumInput - 1
Yin(I) = CSng(Val(txtlnput(I»))

Next I

ret = NN_RecallIYin(»)

txtOutput = tormat$(Yout, "0.*****")
tor I = 0 To NumNeurons - 1

IblXout(I) .Caption ~ tormat$(Xout(I), "O.UUII")
Next I
Refresh

End Sub

IcmdExit Click

Qualifiers: Private

Private Sub cmdExit_Click()

End

End Sub

IForm Load

Qualifiers: Private

IItI

Private Sub torm_Load()

tor I = 0 To NumNeurons - 1
IblXout(I).Caption = ""

Next I
tor I = 0 To Numlnput - 1

txtrnput (I)
Next I
txtOutput

End Sub
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ImnuBatchEvaJute Click

Qualifiers: Private

Private Sub mnuBatchEvalute_Click()

frmBatchEvaluate.Show

End Sub

ImouExit Click

Qualifiers: Private

Private Sub mnuExit_Click()

End

End Sub

Itxtlnput GotFocus

Qualifiers:
Arguments:

Private
Index Integer By Ref.

Private Sub txtInput_GotFocus(Index As Integer)

txtInput(Index).SelStart = 0
txtInput(Index).SelLength = Len(txtInput(Index)

End Sub

ItxtInput LostFocus

Qualifiers:
Arguments:

Private
Index Integer By Ref.

Private Sub txtInput_LostFocus(Index As Integer)

Dim ret As Integer

For I = 0 To NumInput - 1
Yin(I) = CSng(Val(txtInput(I»))

Next I
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ret = NN_Recall{Yin())

txtOutput = Fonnat$(Yout, "o ...... n)
For I = 0 To NumNeurons - 1

lblXout(I) . Caption = Format$(Xout(I), "o ....U")
Next I
Refresh

End Sub
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Mod Date
Size

Declarations

FUNE.BAS

Mon Feb 2308:35:26 1998
7210

Attribute VB Name = "Modulel"
Option Explicit
Public Const NumNeurons = 43
Public Const Numlnput = 4
Public Xout (0 To NumNeurons - 1) As Double I "/* work: arrays */
Public Yin(NumInput) As Double
Public Yout As Double
Dim I As Integer

Functions

IMax

Qualifiers:
Arguments:

Returns:

Public
A
B
Double

Double
Double

By Ref.
By Ref.

Function Max(A As Double, B As Double) As Double

Max = IIf(A > B, A, B)

End Function

IMin

Qualifiers:
Arguments:

Returos:

Public
A
B
Double

Double
Double

By Ref.
By Ref.

Function Min(A As Double, B As Double) As Double

Min = IIf(A > B, B, A)

End Function
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IStdDev

Qllalifiers:
Arguments:

Returns:

Public
N
P
Single

lnteger
Single

ByRd.
By Ref.

Function StdDev(N As Integer, PC) As Single) As Single
'Used to calculate standard deviation of an array
'StdDev = SQR( (n * sigma(x~2) - (sigma,x»~2 )) / (n*(n-l)}

Dim tmpl As Double, tmp2 As Double
Dim I As Integer

tmpl = 0
tmp2 = 0
For I = 0 To N - 1

tmpl tmpl + P(I) * P(I)
tmp2 = tmp2 + P(I)

Next I
tmp2 = tmp2 * tmp2
StdDev = Sqr(N * tmp1 - tmp2} / (N * (N - 1»))

End Function

INN Recall

Qualifiers:
Arguments:
Returns:

Public
Yin
Integer

Double By Ref

Public Function NN Recall(Yin() As Double) As Integer
'The implementation of the trained neural network
'repsenting the fuzzy system, a simple water demand
'forecasting system. The standard deviation of this
'network is 0.959 for original version.

For I = 0 To NumNeurons - 1
Xout(I) = 0

Next I

,/* Read and scale input into network */

Xout(O)
Xout(l}
Xout(2)
Xout(3)

Yin(O) * (0.090909) + (-0.090909)
Yin(l) * (0.012987) + (-0.337662)
Yin(2) * (0.013514) + (-0.108108)
Yin(3) * (0.134282) + (-0.584933)

'/* Neurons representing membership functions */

'/* Generating Code for PE 0 in layer 1 */
'Prepare membership calculation for 10, Month
Xout(4) Xout(O} * (14.021662) + (-3.503057)
Xout(4) = 1 / (1 + Exp{-Xout(4'1)

'/* Generating Code for PE 1 in layer 1 */
Xout(5) = Xout(O} * (-13.848388) + (5.677543)
Xout(5) = 1 / (1 + Exp(-Xout(5}»
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'1* Generating Code for PE 2 in layer 1 *1
Xout(6) Xout(O) * (14.272412) + (-5.061203)
Xout(6) = 1 I (1 + Exp(-Xout(6))

'1* Generating Code for PE 3 in layer 1 *1
Xout(7) Xout(O) * (-13.307358) + (9.547252)
Xout(7) = 1 I (1 + Exp(-Xout(7)))

'1* Generating Code for PE 4 in layer 1 *1
Xout(8) Xout(O) * (14.284948) + (-8.19891)
Xout(8) = 1 I (1 + Exp(-XoutI8)))

'1* Generating Code for PE 5 in layer 1 *1
Xout(9) Xout(O) * (-14.018159) + (11.208872)
Xout(9) = 1 I (1 + Exp(-XoutI9)))

'1* Generating Code for PE 6 in layer 1 *1
'Prepare membership calculation for 11, High Temperature
Xout(10) Xoutll) * (13.781557) + (-3.455154)
Xout(10) = 1 I (1 + Exp(-Xout(10)))

'1* Generating Code for PE 7 in layer 1 *1
Xout(11) Xout(l) * (-14.375848) + (4.664914)
Xout(11) = 1 I (1 + Exp(-Xout(11)))

'1* Generating Code for PE 8 in layer 1 *1
Xout(12) Xout(l) * (14.373196) + (-8.22622)
Xout(12) = 1 I (1 + Exp(-XoutI12)))

'1* Generating Code for PE 9 in layer 1 *1
Xout(13) Xout(l) * (-14.023259) + (11.210794)
Xout(13) = 1 I (1 + Exp(-Xout(13)))

'1* Generating Code for PE 10 in layer 1 *1
'Prepare membership calculation for 12, Low Temperature
Xout(14) Xout(2) * (14.077441) + (-5.565)
Xout(14) = 1 I (1 + Exp(-Xout(14)))

'1* Generating Code for PE 11 in layer 1 *1
Xout(15) Xout(2) * (-13.271733) + (9.410386)
Xout(15) = 1 I (1 + Exp(-Xout(15)))

'1* Generating Code for PE 12 in layer 1 *1
'Prepare membership calculation for 13, Previous Flow
Xout(16) Xout(3) * (14.923055) + (-6.821737)
Xout(16) = 1 I (1 + Exp(-Xout(16)))

'1* Generating Code for PE 13 in layer 1 *1
Xout(17) Xout(3J * (-12.941121) + (12.352075)
Xout(17) ~ 1 I 11 + Exp(-XoutI17)))

'1* Generating Code for PE 0 in layer 2 *1
Xout(18) Xout(OJ * (-15.024256) + (0.469505)
Xout(18) = 1 I (1 + Exp(-Xoul(18)))

'1* Generating Code for PE 1 in layer 2 *1
Xout(19) = Min(Xout(4), Xout(5))

'1* Generating Code for PE 2 in layer 2 *1
Xout(20) = Min(Xout(6), Xout(7)

'1* Generating Code for PE 3 in layer 2 *1
Xout(21) = Min(Xout(8), Xout(9))

'1* Generating Code for PE 4 in layer 2 *1
Xout(22) Xout(O) * (13.976202) + (-11.935321)
Xout(22) = 1 I (1 + Exp(-Xout(22)))

'1* Generating Code for PE 5 in layer 2 *1
Xout(23) = Min(Xout(10), Xout(ll))

'1* Generating Code for PE 6 in layer 2 *1
Xout(24) = Min(Xout(12), Xout(13))
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'1* Generating Code for PE 7 in layer 2 *1
Xout(25) = Xout(lJ * (13.777318) + (-12.34531)
Xout(25) = 1 I (1 + Exp(-Xout(25))

'1* Generating Code for PE 8 in layer 2 *1
Xout(26) = Min(Xout(14J, Xout(15)

'1* Generating Code for PE 9 in layer 2 *1
Xout(27) Xout(2) * (13.898801) + (-11.729348)
Xout(27) = 1 I (1 + Expl-Xout(27)))

'/* Generating Code for PE 10 in layer 2 */
Xout(28) Xout(3) * (-13.058938) + (5.356061)
Xout(28) = 1 I (1 + Exp(-Xout(28)))

'/* Generating Code for PE 11 in layer 2 *1
Xout(29) = Min(Xout(16), Xout(17))

'/* Neurons representing rules

'/* Generating Code for PE 0 in layer 3 *1
'Rule 11
Xout(30) = Xout(24)

'1* Generating Code for PE 1 in layer 3 *1
'Rule 6
Xout(31) = Xout(22)

'/* Generating Code for PE 2 in layer 3 */
'Rule 4
Xout(32) = Xout(201
'Xout(32) = 0 'modified, 02/23/98, StdDev=0.972

,/* Generating Code for PE 3 in layer 3 */
'Rule 7
Xout(33) = Xout(191

,/* Generating Code for PE 4 in layer 3 *1
'Rule 1
Xout(34) = Xout(25l

'/* Generating Code for PE 0 in layer 4 *1
'Rule 12
Xout(35) = Max(XoutI26), Xout(29)

'/* Generating Code for PE 1 in layer 4 *1
'Rule 10
Xout(36) = Max(Xout(21), Xout(26)

'/* Generating Code for PE 2 in layer 4 *1
'Rule 9
Xout(37) = Max(Xout(20), Xout(26))

'/* Generating Code for PE 3 in layer 4 *1
'Rule 8
Xout(38) = Max(Xout(24), Xout(27))

'/* Generating Code for PE 4 in layer 4 */
'Rule 5
Xout(391 = MaxlXout(18), Xout(281)

'1* Generating Code for PE 0 in layer 5 */
'Rule 3
Xout(40) = MinlXout(20), Xout(23))
'Xout(40) = 0 'modified, 02/23/98, StdDev=0.970

'/* Generating Code for PE 1 in layer 5 */
'Rule 2
Xout(41) = MinlXout(18), Xout(25))

'1* Neurons evaluating weighted rules

'1* Generating Code for PE 0 in layer 6 */
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Xout(42) Xout(41) * (-1.273858) + Xout(34) * (1.163262)
+ Xout\40) * (0.787559) + Xout(33) (-0.304031)
+ Xout(32) * 1-0.560732) + Xout(31) * (-0.370114)
+ Xout(39) * (-0.533187) + Xout(38) * (0.278214)
+ Xout(30) * (-0.104999) + Xout(37) * (0.239863)
+ Xout(36) * (-0.143949) + Xout(35) * \-0.021554)
+ (-0.066442)

Xout(42) 1 / (1 + Exp(-Xout(42»))

'/r De-scale and write output from network */

'¥out = Xout(42) * (12.411668) - (6.838333)
Yout = Xout(42) * 112.411668) - (6.838333) + 8.71122

End Function
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Procedure List

Procedure Module Returns Arg Type

cmdBrowseSource Click BATCHFRM (None) (N/A)

cmdBrowseSource_Click BATCH.FRM (None) (N/A)

cmdCalc Click FUNE.FRM (None) (N/A)

cmdClose_Click BATCH.FRM (None) (N/A)

cmdExit_Click FUNE.FRM (None) (N/A)

cmdStart Click BATCHFRM (None) (N/A)

cmdStop_Click BATCH.FRM (None) (N/A)

cmdViewOutput_Click BATCH.FRM (None) (N/A)

cmdViewSource Click BATCHFRM (None) (N/A)

FOTIll_Load BATCHFRM (None) (N/A)

FOTIll_Load FUNE.FRM (None) (N/A)

MakeOutFile BATCH.FRM Variant Source String

Max FUNE.BAS Double A Double
B Double

Min FUNE.BAS Double A Double
B Double

mnuBatchEvalute Click FUNE.FRM (None) (N/A)

rnnuExit_Click FUNE.FRM (None) (N/A)

NN Recall FUNE.BAS Integer Yin Double

StdDev FUNE.BAS Single N lnteger
p Single

txtInput_GotFocus FUNE.FRM Index Integer

txtInput_LostFocus FUNE.FRM Index Integer

txtOutputFile_Change BATCHFRM (None) (N/A)
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txtOutputFile_GotFocus BATCH.FRM

txtOutputFile_LostFocus BATCRFRM
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Procedure Callirtg liist

Procedure Module CalIJ Module

cmdBrowseSource Click BATCH.FRM MakeOutFiIe BATCH.FRM
MakeOutFile BATCH.FRM

cmdCalc Click FUNE.FRM NN_Recall FUNE.BAS

cmdStart Click BATCH.FRM NN_Recall FUNE.BAS
StdDev FUNE.BAS

NN_Recall FUNE.BAS StdDev FUNE.BAS
Max FUNE.BAS

txtInput_LostFocus FUNE.FRM NN Recall FUNE.BAS
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Procedure Called By List

Procedure Module Called By Module

MakeOutFile BATCH.FRM cmdBrowseSource Click BATCH.FRM
cmdBrowseSource_Click BATCH.FRM

Max FUNE.BAS NN_Recall FUNE.BAS

NN_Recall FUNE.BAS cmdCalc_Click FUNE.FRM
cmdStart_Click BATCH.FRM
txtInput_LostFocus FUNE.FRM

StdDev FUNE.BAS cmdStart_Click BATCH.FRM
NN Recall FUNE.BAS
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