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PREFACE

This study is conducted to understand the internal workings of reinforcement
learning. In the movie called “Terminator II”, in a clip, Arnold Schwarzeneger told
the little boy he was protecting from the Terminator that “My CPU is a neural net
computer. The more I interact with humans, the more I will learn and understand
about humans.” Reinforcement learning (RL) is one mechanism that improves an
agent’s intelligence by evaluating the feedback that it receives from the environment
with which it interacts. RL rewards well chosen actions and punishes bad decisions.
The RL algorithm that was experimented with in this study is @ -learning. The agent
was given the task of learning to play the trivial game of tic-tac-toe. Without any
winning strategy encoded into the agent, the agent improved its moves selection by
playing against its opponent. The first half of the study examined the parameters of
@@-learning. The second half of this study used a neural network to generalize the
agent’s experience. The advantages and disadvantages of both generalized ()-learning

and Q-learning are discussed.
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CHAPTER I

LITERATURE REVIEW

1.1 Introduction

In recent years, researchers from different fields have shown growing interest in the
field of reinforcement learning (RL). RL methods have been applied in many different
domains [9] as a practical computational tool for constructing autonomous systems
that improve themselves with experience. The report of National Science Foundation
(NSF) Winter 1996 Workshop in RL [13] states that researchers are surprised by the
failures and successes of RL and there are still many open questions to be answered.

Game playing has been an important topic in the Artificial Intelligence world and
much RL research has examined this problem domain. One success story that stands
out in the domain of game playing is Gerry Tesauro’s TD-Gammon backgammon
(32, 33, 34]. This program plays backgammon as well as the best human players.
Since then, many researchers have attempted to recreate the success of TD-Gammon
in other games such as Go and Chess. However these attempts have been less suc-
cessful.

This thesis presents research for conducting an experiment with RL applied in the
domain of game playing. This study serves mainly as a theoretical tool for studying
the principles of agents learning to act by constructing an RL agent that learns to

play the game of tic-tac-toe.



1.2 Markov Decision Processes

Each day we make many decisions, and today’s decisions have impacts on tomorrow’s
and tomorrow’s on the day after tomorrow’s. We observe the situation that we are
in at a point in time and choose one of the available actions. We, the decision maker,
receive an immediate reward or cost and evolve into a new situation at a subsequent
point in time. At this subsequent point in time, we repeat the same process over and
over again. This process is known as sequential decision making.

The key ingredients of this sequential decision making model are the following:
1. A set of decision epochs.

2. A set of system states.

3. A set of available actions.

4. A set of state and action-dependent immediate rewards.

5. A set of state and action-dependent transition probabilities.

At each decision epoch (or time), the system provides the decision maker with all
necessary information for choosing an action from the set of available actions in that
state. As a result of choosing an action in a state, two things happen: the decision
maker receives an immediate reward and the current state evolves into a new state
at the next decision epoch. As this process evolves through time, the decision maker
receives a sequence of rewards, some positive and some negative.

A Markov decision process model (MDP) [19] is one particular sequential decision
model whereby the set of available actions, the rewards, and the transition proba-
bilities depend only on the current state and action and not on states occupied and

actions chosen in the past. In other words, if the current state summarizes everything



important about the actions that produced it, then the sequential decision model is
said to have the Markov property.

MDP is studied extensively in operation research and optimal control. If an MDP
has a finite number of states and a finite number of actions for each state, then it is a
finite MDP. The context of this study deals only with finite MDP. MDP is important
because it plays a critical role in the theory of reinforcement learning. For more
information about MDP, please refer to [19].

Classical optimization methods for sequential decision problems, such as dynamic
programming, can compute an optimal solution. Dynamic programming is a term
that refers to the mathematical formulation of a sequential decision problem. If the
problem is formulated, then we can find the optimal solution to the problem telling
us which action to choose in a situation at a point in time. The formulation of the
problem requires the five ingredients mentioned above.

However there are several disadvantages of using this method. A major disadvan-
tage of dynamic programming is that it involves exhaustive sweeps through the state
space. This makes it very inappropriate for large problems. Secondly this method
requires a complete specification of the transition probabilities of each state. This in-
formation is normally not available a priori for the vast majority of practical problems.
On the other hand, such information can be estimated from experience through trial-
and-error with the system. This is the key idea in the field of reinforcement learning;

learning from interaction to achieve long-term goals.

1.3 Reinforcement Learning

Reinforcement learning (RL) has attracted a lot of attention from researchers in
different fields especially in the past ten years. This happened because there were

reports of several breakthroughs in learning different tasks using this method. As




mentioned in the introduction, Gerry Tesauro’s TD-Gammon (32, 33, 34] learns the
game of backgammon and it is capable of playing at a grandmaster level. Crites and
Barto [4] used Q-learning (explained later in Section 1.5.1) in an elevator scheduling
task. The average squared waiting time for passengers was approximately 7% less
than the best alternative algorithm and less than half the squared waiting time of the
most frequently used elevator scheduling algorithms.

Another attractive property of this learning mechanism is that it enables the
agent to learn the tasks autonomously. In reinforcement learning, the decision maker
or the learner is called the agent. Autonomous learning means learning without the
assistance from a teacher. Instead an autonomous agent learns by experiencing the
task. The agent improves its knowledge by evaluating the feedback that it receives
from the environment for all chosen actions.

Reinforcement learning is studied predominantly in the field of animal behavioral
sciences. Reinforcement learning is a major part of the human learning process, thus
making it easy to understand. Do you remember how you learned to ride a bicycle
when you were young? You probably fell dozens of times before you successfully
learned the appropriate ways to steer, brake, and pedal the bicycle. The objective is
to learn to ride a bicycle without falling.

In reinforcement learning, the computer is given a goal to achieve. Reinforcement
learning then learns a mapping from situations to actions by trial-and-error interac-
tions with a dynamic environment, as depicted in Figure 1. The agent’s goal is to
discover which actions yield the most reward by trying them based on its experience
with the environment.

There are four fundamental parts in reinforcement learning. These are the policy,

environment, reward function, and value function.



Situation Action

Figure 1. Reinforcement learning system

1.3.1 Policy

The policy 7 is the decision-making function of the agent, telling it what action to
perform in each state. A policy is a mapping from states to actions. In reinforcement

learning, we are trying to obtain the optimal policy 7* where

*
T = {Slah320'2333331---:sTv—laT—laST}-

At each point of time, or epoch t, each pair s;a; of the optimal policy 7n* tells us
that taking action a;, when the agent is in state s; yields the highest value in the long
run [3, 19]. State sr is the terminal state. The terminal state sy is our goal.

This is the core of the reinforcement learning agent because the other components
serve to improve the policy. Ultimately it is the policy itself that determines how well

the agent performs.

1.3.2 Environment

The environment is a simulation model with which the agent interacts. For example,
an RL game-playing agent interacts with its opponent to increase its experience. In
this case, the opponent is the environment. A decision-making agent seeks to achieve
its goal or goals despite uncertainty about its environment. Consider a tic-tac-toe

learning agent that is in state s, with three possible actions a,, a;, and a3 to choose.
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If it chooses action a;, that means the opponent has action as, and a3 to select. Then
the uncertainty of the environment is the action that will be chosen by the opponent.
Thus, the agent is uncertain about the next state s;,; because it does not know which

action will be chosen by the opponent as depicted in Figure 2.

x
x
|
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v
>
x

X| o Agent
S ¥ X X| o0 - 5
0| X |0 . ol xlo Xl ol x Oppmt
\\\ 0| X
S, % X|e1x 020 | TEEE—== >
 [x h Not chosen
| X 141
o/x|o
— 4 >
t V t+1 Epoch t
uncertainty

Figure 2. A tic-tac-toe example

1.3.3 Reward Function

The reward function is also known as the reinforcement function or the utility func-
tion. The reward function defines the goal of the reinforcement learning system. It
maps the state of the environment to a single number. When the agent achieves the
goal, then the action that leads to the goal state is rewarded or reinforced with a
positive reward. On the other hand, if the agent makes a mistake, then the agent
is punished for making that bad decision. This punishment is also refered as the
negative reward. For instance, if the goal of a tic-tac-toe agent is to learn to win, a

positive reward of 1 is assigned for taking the action that leads to the winning state.



Similarly the move that loses a game is punished with a negative reward of -1. So

the reward function for a tic-tac-toe agent is

-

+1 win
R (z) 0 draw
) =
1 —1 loss
[ 0  otherwise

where win, draw, and loss are terminal states, and otherwise defines the reward for
all other intermediate moves of a game. As you may have noticed, all the other
intermediate actions are neither punished nor rewarded. Let us take the game of
chess as an example using the same reward function. The game of chess is won by
good defenses and traps throughout the game. So what is wrong if a positive reward
is assigned for a good chess move such as a knight fork (knight fork is an attacking
move where the knight is in a position to attack more than one of its enemy)? In
this case, the agent will choose the intermediate move that has the highest immediate
reward. As a result, the agent prefers actions that are advantageous in the short term,
not actions that leads to a win. Unless one of the agent’s goal is to learn knight fork
instead of winning the game, it should not be encoded in the reward function for an
agent. It is crucial to indicate again the importance of rewarding and punishing only
actions that meets the goal or goals. This is the reason why all intermediate moves
are not rewarded nor punished.

In contrast to reinforcement learning, all of today’s successful chess-playing pro-
grams that search the position-tree for every move, material winning is the most
important component of the objective function. In chess and checkers, the end of
the game is usually not visible for being too far down the tree. Thus intermediate
positions are evaluated in a tree-searching method.

The reward function is myopic; it determines the immediate reward that an agent



will receive by taking a certain action. It is only one component of reinforcement
learning that defines the goal or goals of the learning system. The objective of an RL
agent is to maximize the total reward it will receive in the long run, meaning, in this
case, over many games played. So we need something else that tells the agent which
action to choose from the beginning till the end of every trial. To do this, we need a

value function.

1.3.4 Value Function

The value function is the means that specifies what action selection is the best in the
long run. Values indicate the long term desirability of a state taking into consideration
all the states that are likely to follow. The value function is helpful because it can
be used to improve the policy. A reinforcement learning system changes its value
functions to make them close to the optimal solution.

A heuristic evaluation function is a form of value function that we are mostly fa-
miliar with. Heuristic search is an efficient and intelligent search method to generate
good solutions without having to search exhaustively. Heuristic search, however, in-
corporates prior knowledge about state values into the search algorithm, thus making
it inflexible [23]. Q-learning (explained later in Section 1.5.1) does not require prior
knowledge of the domain, but rather, learns a value function through experience.

To have a better understanding about the value function, let us look at how the
heuristic search and the value function are used to find a solution. Let us consider the
branch and bound heuristic search. At each step of the branch and bound process, we
select the most promising of the states we have so far. We expand all the branches
of the most promising state. We stop if one of them is a solution. The left half of
Figure 3 shows an example where state A is the beginning state. First, expand all

of state A’s branches, producing two successor states, B and C. In this example, we
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attempt to minimize the value of the objective function. Next, state C is chosen to
be expanded because it has a lower value, 4, than AB which is 5. Now the paths that
are expanded are AC(4), ACD(6), ACK(11), and ACL(12). These paths are put into
a list that is sorted by the path’s value. Now branch AC is expanded to ABF(6) and
ABI(8). This time, ABF and ACD have the same value of 6. Thus state D and F
are expanded and generate ABFH(10), ABFG(12), and ACDE(15). This make path
ABI the shortest path with a value of 8. Finally when ABI is expanded to ABIJ(11),
path ABFH becomes the optimal solution with its path value of 10. This is because

there is no other branch that has a smaller value than ABFH.

— actwated
transition

____ transition
not activated

-=== back up

®  ferminal

® state

12 11 14 1216 14 15 G H J M N O P E

Figure 3. Branch and bound heuristic search (left) and value updates of the second
iteration of path ACDE(right)

Next, let us look at the value function. Reinforcement learning updates each value
of the transition that the agent has chosen. This process of re-estimating values is
called the back up process. As mentioned before, RL learns through experimentation.

A simple value update function can be written as

Utransition = Ttransition + TITL Unext transition

where Uiransition 15 the value of a transition, T ansition 15 the reward of a transition, and

AN Vnert transition 18 the minimum value of the next transition. Each transition value
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is initialized to zero. Suppose that the agent has chosen path ACDE for the first two
trials. Table I shows how the value of each transition of path ACDE is backed up
for two iterations. In the second iteration, min v of C—D is 9 because the value of
branch D—E is updated to 9 in the first iteration. Through trial and error, the agent
keeps backing up transition values of paths that it chooses. If the agent continues to

choose different actions, it will eventually learn that the optimal path is ABFH.

Table I. The process of backing up transition value

Transition | A—=C C-D D—E

Vac =Tac + min v | vep =Tecp + min v | vpg = rpp+0

[teration 1 | 44+0=4 2+0=2 9+0=9

Iteration 2 | 4+0=4 24+9=11 9+4+0=9

But how does the agent decide which transition to choose? This is the topic of

discussion in the next section.

1.4 Exploration vs. Exploitation

A reinforcement learning agent’s objective is to maximize the total expected reward
over some time period. If we always choose the action that yields the highest estimated
value, as in greedy search, then we are ezploiting the current knowledge of the value
of the actions. Otherwise we are ezploring. Exploration enables us to improve the
estimate of the non-greedy action’s value that may generate greater total reward in
the long run. Consider the example shown in Figure 4 where the starting state is 1.
If the agent always chooses the path that leads to the highest immediate reward, it
takes path 1 — 3. It is obvious that the agent needs to explore to realize a better
path by trying 1 — 2 — H that yields a total reward of 10, which is higher than path

1 — 3 — H that has a cumulative reward of 6.



11

Figure 4. The need for exploration

The example given above can be applied to learn the optimal policy of general
decision problems. This example is based on the reinforcement learning method that
is applied in this study that learns the mapping from each state-action pair to a value.
However most games like chess or checkers that uses heuristic search method to find
for moves, the value depends on the position (state).

To ensure that the agent will keep exploring all actions, it is necessary for the
agent to continue to select them. There are two approaches to ensure this, called
the on-policy learning and off-policy learning [30]. On-policy methods attempt to
evaluate and improve the same policy that they use to make decisions. In off-policy
methods, the policy used to generate behavior, called the behavior policy, is unrelated
to the policy that is evaluated and improved, the estimation policy. This separation
has the advantage that the estimation policy can keep getting more greedy while the
behavior policy can continue to sample all possible actions. One behavior policy that
is commonly used in RL is the e-greedy policy [30] where 0 < e < 1. If € is set to 0.1,
this means that the agent chooses one action randomly in every ten decisions. The
agent behaves greedily for the other nine moves.

e-greedy action-selection is not suitable for problems in which it is unacceptable
for the agent to experiment with a non-greedy action that is very bad. This is because

when the agent explores, it chooses an action with equal likelihood among all actions.
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A slightly more sophisticated alternative to e-greedy is softmax or Boltzmann explo-
ration [30]. This is used in simulated annealing [10]. In this case, an action is chosen
probabilistically according to the distribution

Qa)/7

Z eQ(a')/f'

a' €A

Pla)=

@ (a) is the value of action a, and 7 is the temperature parameter that can be
reduced over time to reduce exploration. If 7 is set high, each action is chosen with
equal probability. As 7 approaches 0, the values of the actions are distanced from

each other.

1.5 Temporal Difference Learning

The key idea to reinforcement learning as agreed by many researchers is temporal dif-
ference learning (TD) [28], which is a technique for recursively learning an evaluation
function.

The power behind TD learning is that it eliminates the “rollout” method [29] used
in a traditional method such as dynamic programming. The “rollout” method backs
up or refines values of the policy only when it reaches the final state. TD learning
improves its policy by making estimates from another estimates. This mechanism is
actually closer to how humans learn. Suppose you have experience drawing a circle;
you do not need to wait till the circle is completely drawn before knowing what ad-
justments are needed if you want to draw a well-rounded circle.

Temporal-difference learning is separated into two categories: multi-step predic-
tion learning or single-step prediction learning. In single-step prediction problem,
you know the correctness of a prediction after a step of the prediction. Whereas in
multi-step prediction problem, the correctness of a prediction is not determined until

more than one step after the prediction. It is beneficial to update the prediction
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made several steps in the past using new observations gathered after that. For ex-
ample, a bad move made in a chess game may not be revealed until several sequence
of moves later. It has been shown that treating most prediction problems as multi-
step converges faster. However the algorithm of multi-step prediction is slightly more
computationally intensive and harder to implement. The algorithm of multi-step pre-
diction, called TD()) is discussed after the discussion of artificial neural network.
The algorithm of single-step prediction is a special case of TD(A) known as TD(0).
The single-step algorithm that is very well known is @-learning. A variation of Q-

learning called SARSA is also discussed in detail later.

1.5.1 @-Learning

@-learning is an example of an off-policy TD control algorithm that was developed
by Watkins in 1989 [39]. The notation Q(s, a) is used to represent the estimated value
taking action a in state s. The goal is to learn the value function, @ : S x A = R.
Traditionally this function is implemented as a table, with a value for each state-action

pair. Its simplest form, 1-step @Q-learning is defined by

AQ (s,a) :a[r-d—’ymazaaQ(s',a’) —Q(s,a)] (1.1)

where 7 is the reward, o is the step-size parameter or learning rate, 7 is the dis-
count rate, s’,a is the state-action pair in the subsequent point in time ¢ + 1, and
maz, Q (SJ,a’) is the maximum Q-value for picking any action @ in state s. The
algorithm for @-learning using table lookup is shown in Figure 5. To illustrate how
the learning function is used, consider the following settings for a tic-tac-toe agent
that learns to win where @ = 0.5, v = 0.5 and all values of Q(s, a) are set to 0. The
opponent selects its moves randomly, and the agent wins the first game. Thus, the

agent receives a reward of 1 for winning the game by taking action a, in state s,,.
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Initialize Q(s,a) arbitrarily
Repeat (for each trial):
Initialize s to start state
Repeat (for each step of trial):
Choose a from s using policy derived from Q(e.g., e-greedy)
Take action a, observe r, s’
Q(s,a) = Q(s,a) + al[r + ymazy Q(s,a’) — Q(s,a))
§=18

until s is terminal

Figure 5. @-learning: An off-policy TD control algorithm

According to (1.1),

AQ (sw,aw) =0.5{1+ [0.5(0) — 0]]
—0.5(1+0)
= 0.5

Since the initial value of Q(s,, ay) is 0, the updated value of Q(s,,a,) is 0.5.
The agent continues to play another game, and the agent reaches state s,_;.
The opponent responded by taking an action that ended up in state s,. So the

mazyQ(s,a) is Q(5y,ay) which is 0.5. Thus Q(Sy_1,aw-1) is

Q (Sw—lraw—l) - Q (Sw—ls a'w—l) + a[rt-l-l =& ’YQ (Sw: a-w) - Q (Sw—h aw-l)]
=0+0.5[0+0.5(0.5) — 0]

= 0.125

A discounted positive Q-value is assigned to Q(s,—1, ay—1) because the agent may

reach state s,. If each action is executed in each state an infinite number of times

on an infinite run and « is decayed appropriately, the @-values will converge with |
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probability 1 to @Q* where @Q)* is the optimal Q-value [8].

Figure 6. An example MDP with rewards

A discount rate, 7, is introduced to account for the time value of rewards. It
measures the value at time ¢ of a one-unit reward received at time ¢ + 1. A one-unit
reward received ¢ periods in the future has present value of y*. To see the effects of 7,
let us look at Figure 6. The figure shows that a positive reward of 1 is only assigned

when state H is reached. The effect of v on each @—value is shown in Table II.

Table II. Effect of discount on Q-value

Path 122 |23 [ 3—H | 124 | 4-H
Discounted @-values (y =0.5) [0.25 | 0.5 |1 0.5 |1
Undiscounted @-values (y =1) | 1 1 1 1 1

Taking the discount rate into account affects the agent’s preference for policies. If
this example is an undiscounted problem, then both paths to state H have the same
@-value of 1. In contrast, using the discount rate, the agent prefers path 1—-4—H
because the goal state H is reached in fewer steps.

The Q-value of the terminal state is always 0. A QQ—value is assigned to every
state-action pair that involves a state transition. The terminal states are the only

exception since they are the only states that have no transition to another state.
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1.5.2 SARSA

SARSA is a variation of Q-learning that was developed by Sutton [30]. Just like
Q-learning, the SARSA agent begins by taking an action a in state s. It then waits
for the opponent to respond. After the opponent has moved, state s evolves into
state s. Then the SARSA agent needs to choose an action a based on its behavior
policy. This is the step that distinguishes SARSA from @-learning. SARSA'’s chosen
action, a’, may be an exploratory action. So Q(s’,a’) of SARSA will not always be
the highest value, while QQ-learning always backs up each (s, a) by discounting the
highest @-value of the s',a’ pair. The SARSA algorithm is shown in Figure 7.

SARSA is an on-policy learning algorithm because it learns by improving the same

Initialize Q(s, a) arbitrarily
Repeat (for each trial):
Initialize s, o
Repeat (for each step of trial):
Take action a, observe r,
Choose a from s using policy derived from Q (e.g., e-greedy)
Q(s,a) = Q(s,a) + afr + 1Q(5',d) — Q(s,0a)]

i r

8i=al87=3%

until s is terminal

Figure 7. SARSA: An on-policy TD control algorithm

policy that it uses to select all actions. If the behavior policy of SARSA always acts

greedily, then SARSA and @-learning are the same.
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1.6 Generalization in Reinforcement Learning

The artificial neural network functions as an approximation mechanism of the Q-
values instead of storing them in a table. Why do we want to approximate the Q-
values when we can have the actual Q-values stored in a table? The table Q-values are
updated each time the corresponding state-action pair is encountered during training.
This means that at the end of the learning process, there are possibly many @Q-values
that have not been updated because these state-action pairs were not experienced.
The ability of an artificial neural network to generalize experiences allows the agent
to make better decisions even in situations that it has never experienced before. Gen-
eralization allows the network to evaluate a state and generates a response based on
features that are similar to some states that the network has encountered. Therefore,
generalization may speed up learning by discovering commonalities among states.

In addition, because of the large number of states in many environments, using
a lookup table to represent the function is not feasible. This shortcoming is known
as the ‘curse of dimensionality’. Generalization of these large spaces can be achieved
using a function approximator such as artificial neural network (ANN) [1]. This is a
very powerful learning tool. It is essential to understand artificial neural networks if

we want to scale up reinforcement learning to solve larger problems.

1.7 Artificial Neural Networks

Today, there is a large body of literature on the subject of artificial neural networks,
ANN for short. An ANN is a simplified model of the brain cells, or neurons that
are massively interconnected, usually simulated in software by using a computer. In
the 1950s and 1960s, when the mass enthusiasm began, this field was known as con-
nectionism. That was when the perceptron was introduced by Frank Rosenblatt [21],

and this is the first network we will discuss.
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output neuron

Figure 8. Two-layer perceptron

Figure 8 illustrates a two-layer perceptron. The connections between neurons
determine the function of the network. Associated with each connection is a weight
w;. The strength of the weights is represented by real numbers. The neurons sum
up the weights of the activated inputs. If the sum of the inputs is greater than some
threshold value, #, the neuron turns on (outputs a 1), otherwise it is off (outputs a
0). The function that represents the threshold value is called the activation function.

In supervised learning, an artificial neural network including the perceptron learns
a mapping from a set of inputs to the corresponding target outputs. Learning takes
place by updating the weights and thresholds so that the network generates the desired

outputs corresponding to the given inputs. The output of the perceptron is given by

o = hardlim (Z (wiz;) + 9) )
i
where z; is the i*" input neuron, w; denotes the weight that connects input neuron #

to the output neuron, and # is the threshold value. Let us denote net as the weighted

sum of inputs. The hardlim activation function is defined as

1 ifnet >0
o = hardlim()_ w;z; +8) =

0 otherwise

net
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The perceptron learning rule indicates how the weights and thresholds are adjusted
if the network is not producing all the desired outputs. In other words, the perceptron
keeps changing both its adjustable parameters. The error of the network, e, is the
difference between the desired output’s value, y, and the estimated output value
produced by the network, o. The perceptron stops adjusting the parameters if it
generates all the desired outputs based upon the examples that the perceptron has

seen. The perceptron learning rule is

w=w-+ezx,
f=0+e, where

e=1y—o.

Let us now look at a trivial example to see how a perceptron works. Suppose
you would like a vending machine that accepts one and two dollar bills. The way the
machine separates them is by using its somewhat primitive scanning device to read
in three selected features on the face of the bill. The first feature is the seal of the
Department of the Treasury (both bills have this), then the fullness of the president’s
hair (Jefferson has more hair than Washington does), and finally whether there exist
the word “THE UNITED STATES OF AMERICA” on top of the president’s picture
(the one dollar bill has it whereas the two dollar bill does not). The features of the

input can be represented as a vector such that

seal
Z = | hair

USA

If any of the feature exists, a 1 can be used to indicate that; and a -1 to indicate

otherwise. So the respective input vector for the one dollar bill and the two dollar
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bill are

T =| -1 | and zg=| 1

First of all, we need to select a network architecture to represent this task. Since
there are three features that the vending machine scans, so we need three input
neurons. And we want only one answer, whether it is a one dollar or a two dollar
bill. Hence one output node is essential. The output is either a 0 or a 1 because
the hardlim activation function is used. In this example, an output of 1 means a one
dollar bill and vice versa. This artificial neural network architecture is a two-layer 3-1
network. In this example, it is a two-layer network because it consists of one layer of
three input neurons, and another layer that consists of one output neuron.

The weights and thresholds of the perceptron are commonly initialized with small
random numbers. Let us pick 0.2, 0.3, 0.1, and -0.4 for w,, w,, w3, and @ respectively.
Now we are ready to train the perceptron to recognize both the one and two dollar bill.
Let us see if these initial values of the network parameters actually produce the two
outputs that we desire. This could happen because this is not a complicated example.
We begin the training with a one dollar bill where w, = 0.2,w, = 0.3, w; = 0.1,
=1,z =-1,z3=1and 8§ = —-0.4.

Iteration 1:

o = hardlim (Z W;iT; + 9)
t
= hardlim(0.2(1) + (0.3)(—1) + (0.1)(1) + (—0.4))
= hardlim(-0.5)
=0
We expect the perceptron to output a 1; instead it outputs a 0 which is an error.

The perceptron learning rule needs to be applied to change the weights and threshold




in order to yield the correct answer. First we need to calculate the error.

e=‘y—0=1“-0=1-

Then the weights update are
w =w-+tex
w, =02+ (1)1=1.2
w; =03+ (1)—1=-07
wy =01+ (1)1=1.1

The threshold update is

f=0+e=-04+4+(1)=06
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These are the adjustments to the weights and threshold where now w, = 1.2, wy =

—0.7,w3 = 1.1 and § = 0.6. But does the perceptron recognizes the one dollar bill

right now? Let us find out.
o = hardlim(1.2(1) + (—0.7)(—1) + 1.1(1) + 0.6)
= hardlim(3.6)

= 1.

Next we look at whether the perceptron recognizes the features of a two dollar

bill with its current weights and threshold values where z; = 1,z = 1,23 = —1.

Iteration 2:

o = hardlim(1.2(1) + (-0.7)(1) + 1.1(-1) + 0.6)
= hardlim(0)
=1.

e =y—o0=0-1=-L

w, =124+ (-1)1=0.2

w, =-03+(-1)1=-13

wy =14+ (-1)(-1) =24

g =06+ (-1)=-04
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Let us prove that the network recognizes the two dollar bill:

o = hardlim(0.2(1) + (~1.3)1 + (2.4)(=1) + (—0.4))
= hardlim(—3.9)
=0.

We know that the perceptron recognizes the two dollar bill now, but does it still
recognizes the one dollar bill? Since we have only two training samples, the third
iteration tests the network with the one dollar bill again.

Iteration 3:

o = hardlim(0.2(1) + (-1.3)(—1) + (2.4)1 + (—0.4))
= hardlim(3.5)
=1
Well since the weights and threshold generate the correct output of 1 indicating
that the input is a one dollar bill, no adjustment to the parameters is needed after
the third iteration. So the network parameters have converged after two iterations
with w; = 0.2, ws = —1.3, w3 = 2.4, and § = —0.4. The perceptron learning rule is
proved to converge to parameters that accomplish the desired classification [7], given
that such parameters exist. Remember that this perceptron is trained to recognize
only the one and two dollar bill. If the perceptron is presented with a twenty dollar
bill in which all three features are present, the perceptron will output a 0. It is not
capable of always classifying correctly any inputs other than one and two dollar bills
because it is not trained to do so. This simple example presented above is a pattern
recognition problem, for which artificial neural networks are often used.
The neural network parameters draw a hyperplane in the three-dimensional weight
space (since there are three inputs in this example) to linearly separate the one and
two dollar bill into two categories. That is why a twenty dollar bill is classified as

a two dollar bill, because it falls into the two dollar half of the weight space. The
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perceptron keeps adjusting the parameters because it has not found the hyperplane
in the weight space that correctly separates the two patterns.

Even though the perceptron is powerful enough to solve many classification prob-
lems, it is limited to problems that are linearly separable. In 1969, Minsky and Papert
documented the shortcomings and capability of the perceptron [15]. One problem that
is not linearly separable by one hyperplane is the classical ezclusive-or, as depicted

in Figure 9.

Input 1 Input2 Output

0
0
1
1

O o D

1
0
0
1

Figure 9. The exclusive-or, a classification problem that is not linearly separable

In order to learn problems that are not linearly separable, we can build a multi-
layer neural network with one or more “hidden” layers to learn a more sophisticated
function. This is also known as a multilayer perceptron or multilayer feedforward
network. Multilayer neural networks can be trained to solve problems that are not
linearly separable, such as the exclusive-or, by using the backpropagation algorithm.
But before looking at backpropagation, first we have to understand the learning sys-

tem behind it. This learning system is known as the Least-Mean-Square rule.
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1.7.1 LMS, Delta Rule, ADALINE, or Widrow-Hoff rule

In 1960, Widrow and Hoff introduced an adaptive algorithm known as the Least-
Mean-Square (LMS) rule. It is also known as the delta rule, the Adaptive Linear
Neuron (ADALINE), and the Widrow-Hoff rule. Like the perceptron rule, the LMS
algorithm is also an adaptive or optimization algorithm which means the parameters
(weights and thresholds) can be properly adjusted to achieve the correct values. The
LMS algorithm is applicable to a two-layer network, consisting of a layer of input
neurons and another layer of output neurons. However, the LMS algorithm also
suffers from not being capable of learning nonlinear functions. Yet it is essential to
understand the LMS algorithm because the backpropagation algorithm is a powerful
extension of the LMS rule.

The LMS algorithm observes the performance of the network during training.
The performance of a network is better when the network is closer to classifying all
the patterns correctly. As mentioned before, if not all the patterns are classified
correctly, then the network has erroneous parameters. Consequently, if we have a
way to measure the error of the network parameters, we know the performance of the
network.

The performance measure of the LMS rule is the approzimate mean square error.
The LMS rule tries to reduce the approximate mean square error in order to obtain
the best performance network. This is where the name Least-Mean Square (LMS)

comes from. The mean square error (MSE) is defined as

MSE 1; = 00] = 2 (6]

where 7 is the number of input-output pairs, y; is the 7** desired output, o; is the i*"

estimated output, and d; is the difference between y; and o;. At each iteration, the
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LMS algorithm estimates the mean square error by
MSE = (y — 0)* = (6)°

where the mean square error is replaced by the square error. The error of the output
is reduced through adjustment of the weights and thresholds. A space has dimension
n when points in it can be specified by n coordinates. The two-dimensional plane
requires two coordinates (z,y), three-dimensional space requires three, and so on.
Thus the approximate mean square error at each point in time is a coordinate on the
error surface that is specified by the weights and thresholds. For a two-layer network,
the error surface with respect to the network parameters is a paraboloid as shown in

Figure 10.

Figure 10. The mean square error surface

The bottom of the paraboloid, the minimum or the optimum point, is where the
error is reduced to zero. To reduce the approximate mean square error is to descend
downhill to the minimum point on the error surface. The steepest slope downhill is
the negative of the gradient, V. MSE because the gradient vector is pointing uphill.

This method of minimizing the error is known as steepest descent or gradient descent.
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The gradient with respect to the network weights is defined as

OMSE OMSE

vaMSE= aw: ' awi+1 g
such that
OMSE _ 06*
6‘21),; - Bw,-
_ o5 00
36 _ Oy—o)
E?wi - Bw,-
&)
— —Q’:i
OMSE _
i = —26z;
OMSE _ _;
g =

where 25E is the first derivative of the MSE along the w; axis, n is the number of

neurons in the input layer, and z; is the i** input neuron. The derivative is zero at the
minimum point, therefore the gradient is orthogonal (perpendicular or tangent) to
the previous search direction. Thus, consecutive search directions of gradient descent

are always orthogonal to each other as illustrated in Figure 11.

Figure 11. Gradient descent orthogonal search direction

3 v iaida
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Using the approximation of V,MSE, the LMS algorithm is

w; = w; + Aw;
= 0+2ad
such that
Aw; = a(-V,MSE;) (negative gradient)
= —a(—26;z;)
= 20;x;

where a is a constant learning rate. The learning rate decides the magnitude of the

gradient. Hence a small learning rate is normally used to keep the gradient from
changing too fast. If the magnitude of the new gradient is greater than the previous,
then the parameters may not converge (illustrated in Figure 12) [7]. The selection of

the best learning rate is obtained through trial and error.

Figure 12. A small learning rate converges (top) and a slightly larger learning rate
may diverge (bottom)



28

1.7.2 Multilayer Neural Network

Up to this point, we understand that both the perceptron and the ADALINE network
are incapable of solving problems that are not linearly separable. Researchers believed
that this barrier could be overcome by building a different network architecture and
using a more powerful algorithm to train the network. Studies were conducted in
constructing an algorithm to train a multilayer neural network. An additional layer
of neurons, called the “hidden layer”, was added in between the input and the out-
put layer. Finally Rumelhart, Hinton, and Williams introduced the backpropagation
algorithm that is capable of training a multilayer neural network. By applying the
backpropagation algorithm, a multilayer network is capable of classifving nonlinear
problems. Figure 13 illustrates a 2-3-1 multilayer feed-forward neural network archi-

tecture that has 2 input units, 3 hidden units, and 1 output unit.

Figure 13. A multilayer feedforward neural network

The notation w,; denotes the weight connecting neuron unit i in a previous layer



29

with neuron unit 7, z; is the input to unit 4, y; is the desired output of the current
input, and o; is the output value of neuron j.

There is no clear understanding as to how many hidden layers should be used.
Normally, a network of either one or two hidden layers are used in practice. In
addition, it has been shown that a one-hidden-layer MLP, if given enough hidden
units, is capable of classifying any nonlinear function. Thus a three-layer network is

sufficient for handling most classification problems.

1.7.3 Backpropagation or Generalized Delta Rule

The backpropagation technique of Rumelhart, Hinton, and Williams [22], has become
the most commonly used neural networking algorithm. The term “backpropagation”
refers to the way the partial derivatives are efficiently computed in a backward prop-
agating sweep through the network [28]. It is the choice of optimization algorithm
used for this experiment because it is very well-studied.

Backpropagation is a simple optimization method, but it is obsolete and probably
should never be used for production work. Conjugate gradient methods are always

faster and, if properly coded, just as robust.

Figure 14. The sigmoid threshold function
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The backpropagation algorithm will work with many activation functions. The

most. commonly used activation function is:

1

e V7 € hidden, output

05

where o; is the output value of the 7 neuron either in the hidden or in the output
layer. The input to neuron ¢ is denoted by z;. The S-shaped activation function
depicted in Figure 14 is known as a sigmoid. Let w;; denote the weight connecting
neuron i in a previous layer to neuron j in the successive layer. Please note that the
output of neuron ¢ is essentially the input to neuron j such that o; = x;. So the

definition of net;, the weighted sum of neuron j is computed by:
net; =Y w0, +0;  Vj € hidden, output
i
= Z w;;T; + 0,
i
where neuron j is either a neuron of the output layer or a neuron of a hidden layer,
and 6; represents the bias value corresponding to the j** neuron. Every hidden and
output neuron has its own bias value.
In gradient descent, the current value of the weights is moved in the direction in
which the expected error falls most rapidly, the direction of steepest descent. The
gradient, VwagE can be obtained by using the chain rule. This way, the mean

square error can be distributed among all the weights of the network. The first part

of the problem is to find how MSE changes as the weight wjx changes

ag;fu .ka' = afgoi E a‘?l‘;’%k ag;ik Vj € hidden, Yk € output

= —(yx — 0k)or(1 — 0k )0;

= —(yx — ok)ox(1l — or)zk

where w;; denotes the weight connecting the j** hidden neuron to the k"* output

neuron, and y; denotes the target output for the £** neuron in the output layer.

e i aind £ ST b
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Secondly, we nced to relate the change in MSE to the change in w;;, the weights
that connect neurons from the input layer to the hidden layer. Any change to the
weight w;; changes o;, which becomes the input of unit k. By using the chain rule,
the gradient with respect to w;; is therefore the sum of the changes to the output
value of each hidden and output neuron of the network. Let us denote that : € input,

J € hidden, and k € output, then

OMSE _ OMSE 0oy Onet, 0o; Onet;
dw;;  Oox Onety Owy Onet; Ow;
Ok)

= Z (yk — ok)ok(1 — ox)wjko;(1 — 0;)
= ? —0kw;x0;(1 — 05)o0;.

= —0;05(1 Z‘skwﬁ

= —0;0;.

Therefore, the negative gradient of the sample error, é;, is computed by a back-

propagation process defined by:
5j =05 (1 = OJ') (yj = Oj) 3 V_? € output

(53' = 0y (1 e O_-j) Z wj,kék, V‘}‘ € hz’dden,

kcoutput
If §; is computable, the update equation can be written. The weight update rule

is
wit = w;; + adjo;
= w}; + adiz!
where « is the learning rate, and o; is the output value of neuron ¢ which is equivalent
to z;. Each neuron in the hidden and output layer has a bias value. The bias of unit

7, 0, is adjusted by

gt = 0; + ™.

A momentum coefficient, 1, can be used to speed up convergence. This is because

it keeps the process moving in a consistent direction. Using momentum, the weight

hadadd faiend £ 7 BALA T Adhhe
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update formula becomes:

Awf;'l = nAwfj + cxcf;-:z;.

1.7.4 Batch and Online Training

There are two ways to train a neural network; batch and online training. Batch or
offline training means a set of training examples is obtained and used to approximate
the function before it is used in the application. Thus the parameters are updated
only when the entire training set is presented to the network. Then the gradients
of all examples are computed, and the average of all the gradients is used to get a
better estimate of the gradient [7].

Online training involves continuous weight adjustment of the network by using
the data gathered while the system is in operation. This way of training is capable of
adapting to a time-varying function. This is essential in temporal difference learning
because the target functions change over time. However, there are mixed successes
in online applications. This problem exists because the network “forgets” previously
learned examples as more new examples are presented for training. In practice, it can
be overcome by storing old examples and retraining on them, or by learning slowly

and training extensively [31].

1.8 TD(A)

TD(A) is a multi-step prediction algorithm. This multi-step algorithm makes greater
alteration to more recent predictions. This algorithm uses an exponential decay, A,
where predictions n steps in the past are weighted according to A" for 0 < A < 1.
The weight update equation of TD()) is given by

L
Awy = a(Py1 — B) Y A"V, Py

n=1
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where «a is a constant learning rate, P, is the prediction at time t, P, stands for the
prediction made in time ¢ + 1, and VP, is the gradient of the n'* prediction error
with respect to the weights.

It is important to note that this TD rule is an offline algorithm. So each VP,
needs to be recorded and the weights are changed at the end of the trial. The case
of TD(0) is very like that of conventional backpropagation. TD(0) is essentially a
single-step prediction algorithm. The TD error (TDE) is backpropagated to each
weight and it is determined only by the most recent observation when A is 0. The
weight update rule is

Awy = Q(Pt+1 — PVl

So each individual weight, w;;, is updated using

OTDE" 9o
wf;l :wfj—a Z (—30t au’:’)
k€output . k ]
_ .t __9TDE" 00;
=g 303- Bwij

— ut; - QM Onet!
Onet; Ow;
= w!; + adlo}.
where o; is the estimated output of neuron z, and ¢ is computed using the backprop-
agation process discussed in the previous section.

But TD(A) is treated slightly differently. The process of backpropagation pro-
duces an “eligibility” term for each weight. The gradient of each prediction error that
is exponentially decayed is known as the eligibility. As a temporal difference is deter-
mined at each time step, it is broadcast to all weights. Then the temporal difference
is combined with their eligibility to determine the changes to the weights [28]. In

order to reduce the computational resources, the online version of the algorithm is

normally preferred. If we have a way to compute the eligibility incrementally, we can

e F i iirdd 7 Adsde
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do the computation online. The eligibility, e, in every time step is computed by

t
e E : t+l—nv
€t+1 = A w-Pn

n=1

t
= VP + 3 M"Y, P,

n=1

t
s Vng+1 + Z A A:_nvan

n=1

t
=B +A Y NPV P,

n=1

= VwPH—l + )l.eg.

If the neural network has k£ output neurons, then each weight has k eligilibility

traces. Then the k** eligibility of the weight from neuron i to neuron j is defined as

t+1
t+1 _ OP
€ijk = a—“ﬁr
_ 3PH! Onetit!
= 1 3, 1+1
Onet;" Ow;;

— t t+1 t+1

where o; is the output of neuron unit i, P{*! is the new prediction of the k* output
node, and eﬁjk is the k** eligibility at time ¢ of the weight connecting unit i to unit j.
11
The &;; = F?%T is computed using the backpropagation algorithm defined as:
Z |

05(1 — of) if k=
51‘:3':‘0 if k € output and k # j

OPt Onet; o g
- - kot
! Zseo onet; o) Onet; 25€0, Ok;Wis s

(1 —yf) otherwise.

Let us try to understand the equation for updating . The first and second
conditions indicates how to compute ¢ that corresponds to weights that connect to
the output layer. So if we are trying to determine the k** § of a weight that connects
to the k** output neuron, then ¢ is computed using the first condition. The rest of
the ds are set to 0. The § that corresponds to a weight that connects an input neuron

to a hidden neuron is calculated by following the third condition. It should be noted

{ F§ airdd 7 deagr
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that the equation of TD()) for computing ¢ is slightly different when A > 0. The
incremental version of TD(A) weight update rule is
wil =wji+a ) (‘PEISH = Ptk) €jk-
k€Eoutput

TD(0) is the focus of this study. It has been shown in Tesauro’s TD-Gammon and
Thrun's NeuroChess papers that 0 is the optimal value for A. The TD(A) algorithm
is provided because most of the literature that discusses TD(\) does not provide the
details of the implementation. The details of the algorithm provided above comes
from an unpublished paper written by Sutton [27]. This paper by Sutton is a follow-

up of his introductory paper to temporal difference learning and TD(A) [28].

1.9 Game Playing

1.9.1 General

Many outstanding names in the history of computer science touched upon the domain
of game playing. These researchers include Claude Shannon, the father of informa-
tion theory; Alan Turing, renowned for his contributions to the theory of computation
and for his work during World War II in deciphering German war codes; and Herbert
Simon, the father of artificial intelligence.

From the very beginning of the development of digital computers, researchers
became interested in studying how computers might solve complex problems by ex-
amining the game of chess. In 1944, John von Neumann presented the minimazr
algorithm for selecting the move to make in chess [16]. In 1950 Claude Shannon pub-
lished the paper that detailed the procedures to implement computer chess [26]. Till
today, chess programs that are written are based on Shannon’s ideas. Simultaneous
with Shannon’s work, Alan Turing published his approach to the automation of chess

strategy [38]. His ideas were very similar to Shannon’s. Finally in 1955, Alan Newell,
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John Shaw, and Herbert Simon wrote the Newell, Shaw, and Simon (NSS) program
that attempted to simulate the human mind’s approach to selecting moves in chess
(18].

In recent game playing developments, an IBM’s supercomputer named Deep Blue
defeated the current World Champion and possibly the best ever human chess player,
Garry Kasparov, 3.5 to 2.5 in a six-game match [17]. Table III shows the facts
about both the contenders. The most shocking news about the match happened in
the sixth game, in which Deep Blue defeated the World Champion in just nineteen

moves. Figure 15 shows the final position of the historical sixth game. "

Table III. Facts about the most publicized chess match between a computer and a

human
Facts Garry Kasparov Deep Blue :1
Height 510" 6’5" 3
Weight 176 lbs. 1.4 tons )
Age 34 years 4 years
Birthplace Azerbaijan Yorktown, NY
Number of processors | 50 B Neurons 32 P2SC Processors
Moves per second 2 200 million
Power source electrical/chemical | electrical
Next career champion pharmaceutical design

1.9.2 Reinforcement Learning in Game Playing

The one application that is always mentioned for its pioneering success applying rein-
forcement learning (RL) in game playing is Samuel’s checkers playing system [24, 25].
The value function is learned and represented by a linear function approximator, and

the training is done similarly to TD updates.
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Figure 15. Garry Kasparov versus Deep Blue: Game 6 final position

TD-Gammon is successful in applying TD in learning to play backgammon (32,
33, 34]. Backgammon has approximately 10%° states. Tesauro uses a combination
of TD and a three-layer ANN with 80 hidden units as the function approximator
for generalizing the experience. The successful result was achieved by constant self
play. The program always acts greedily in choosing the move with the best chance to
win. The success of using this strategy is rather surprising considering all the studies
that have been done to discover better exploration methods. The training required
several months of computer time for training on 1,500,000 games. This program has
competed at the very top level of international human play.

Many researchers have attempted to reproduce the success of TD-Gammon by
using the TD learning approach in other games such as chess. Gould [6] implemented
Morph by using Adaptive Predictive Search (APS), a learning framework that, given
little initial domain knowledge, increases its predictive abilities in complex problem
domains such as chess. The result shows that the GnuChess [14] level of play is

higher than Morph. Sebastian Thrun [35] combined TD learning and Explanation
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Based Neural Network (EBNN) to train NeuroChess. The EBNN learning algorithm
[36] enables the computer to learn more accurately from less training data by taking
advantage of other previously acquired knowledge, even if it is inexact, to signifi-
cantly improve accuracy for the new learning task. His research shows that EBNN's
generalize better than ANN’s using backpropagation. The main drawback of Neu-
roChess is that it does not develop good chess openings. Jonathan Baxter (2] created
KnightCap, a chess program that learns by combining TD(A) with minimax search.
This program learns to play only the middle and end games. KnightCap selects chess
openings from a database. These results are not very successful compared to TD-
Gammon. Several very successful chess-playing programs have been developed over

the years [12, 11, 17]. However, none of these programs used reinforcement learning.




CHAPTER II

RESEARCH OBJECTIVE AND METHODOLOGY

2.1 Research Objectives

The main objective of this research is to conduct a study in the area of reinforcement
learning. This study attempts to understand the internal workings of an RL agent
learning to act. This is accomplished by implementing the reinforcement learning
framework and experimenting with it in the domain of game playing. The learning
mechanism that is of interest in this study is the temporal difference learning method.

Tic-tac-toe is commonly used to begin the understanding of reinforcement learn-
ing method in the domain of game-playing. Tic-tac-toe is a small-size problem with
3? states in its state space. It is used to answer most of the questions of this study.
The first area of concern is to find out how learning is affected by the learning rate,
the discount rate, the exploration rate, and by the difference in off-policy method
and on-policy learning method. The agent is implemented to play many games of
tic-tac-toe by trial and error. Then its performances are recorded to conduct the
analysis. In this part of the study, the Q-value of each state-action pair is stored in
a lookup table.

This research then switches its attention to examine the effectiveness of approx-

imating the value function using a multilayer feedforward network trained by the

39
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backpropagation algorithm. It is not the intention of this research to optimize the
learning rate of the backpropagation algorithm. The goal of this part of the research
is to know how reinforcement learning and a function approximator are combined to
solve sequential decision problems. This is important because generalization scales
up reinforcement learning to solve practical problems that have a large state space.
It is the objective in this part of the study to find out whether an RL agent will learn
an optimal policy. Analysis will be carried out to find factors that could lead to the

success of generalized reinforcement learning.

2.2 Details of Implementation

Simulation is the evaluation tool for this research. The simulation is written in C++
to utilize the power of object-oriented programming. It allows convenient interaction
between the various modules of the program, as well as for run-time speed. I am
using Microsoft Visual C++ 4.0 as the tool for coding and debugging.

The class diagram of this experiment is shown in Figure 16:

1. SIMULATOR: The main function of this module is to provide the user with

a user interface to configure the experiment model.

2. RLFRAMEWORK: A module that models the framework shown in Figure 1.
Learning through trial-and-error is done here. The learning algorithms are Q-

learning and SARSA.

3. POLICY: In this module, the agent decides which action to take, given the
state that it is in at a given time, by following its behavioral policy. The

behavior policy that is implemented is e-greedy.

4. ENVIRONMENT: This is the opponent that the agent is playing against.

After the opponent has chosen its move, it returns two things to the agent:

T
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the subsequent state that the system has evolved into, and the reward of the
agent’s move selection. The opponent used in this experimentation for learning

tic-tac-toe is discussed in further detail in Section 2.3.

@—value: The Q-value is either stored in a lookup table or it is approximated

(&4

by using an ANN. Double hashing [40] was implemented for storing and looking
up the @-values. The multilayer neural network using the backpropagation
algorithm was implemented using source code from Rogers’s book [20]. The
ANN and the lookup table are both subclasses of @—value. This module returns

and modifies the @Q-value of each state-action pair.

o SIMULATOR
)| ofCinen
:] s RL FRAMEWORK *
——>  Inheritenee = =
Q-value Environment
’_T_| Policy *
vv | | Hash T
ANN [
oy

Figure 16. Reinforcement learning simulation class model

2.3 Details of the Opponent

The tic-tac-toe opponent is a minimax player that searches two plies for a move. The
minimax algorithm has random noise added to its move selection, thus causing it to
lose games by missing blocks or missing the winning moves. The stochastic property

of this opponent should be ideal for testing reinforcement learning effectiveness in
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making decisions under uncertainty.
This opponent is put to a test by playing against a random move generator. The
performance of the opponent is averaged over ten thousand games. The equity is the
expected value of the number of losses subtracted from the number of wins. The skill

of this opponent is shown in Table IV.

Table IV. Performance of the tic-tac-toe opponent that is used in the experiments.
Its performance is tested by playing against a random move generator

Opponent Wins | Draws | Losses | Equity

Minimax 2-ply with random exploration | 70.51 | 8.63 20.86 | 49.65

2.4 Details of Neural Network Training

The update equation for TD learning used in value function approximation is in

accordance with Thrun’s [37] training strategy where:

P

41 win
0 draw
Q (s,a) = <
-1 loss
ymaz() (s’, a*) otherwise

b3

It is not the primary goal of this project to fine-tune the network parameters
for the fastest learning rate possible. These are the common settings used in the

experiments:
e Network weights are initialized randomly between -0.1 and 0.1.
e Weights of the network are adjusted online.

e The original backpropagation algorithm is used. No momentum coefficient is

used.
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e Each network has one layer of hidden units.

e The sigmoid function is used as the activation function for both the hidden and
output layer. The sigmoid function scales its output value in [0, 1]. In order to

scale the reward signal which is in the range of [—1,1]:

— Before training the network, the Q-value in [—1,1] is scaled down to the

range [0, 1] before it can be used as the target (denoted by o) using

o _Q+1
==

— The output of the network is scaled back into the range of [—1, 1] before
it is used for TD learning:

Q=20-1.

A multilayer neural network is used to learn the mapping from each state-action
pair to its Q—value. Two input units are used to represent one tic-tac-toe square; 00,
01, and 10 for * ’, ‘O’, and ‘X’ respectively. The @Q-value of each action is represented
by nine output neurons, where each neuron represents a tic-tac-toe square. Each
time, only one of the nine neurons is updated according to the square which is played.
Then the training examples are fed to the network to approximate Q*, as shown in
Figure 17.

Studies have shown that feature selection is important in the effectiveness and
success of representing the problem [35]. There are eight different positions in which
a player can win a game in tic-tac-toe. The player either wins in one of the three
columns, one of the three rows, or one of the two diagonals. Since these are the
key features that we look for in a game, this information is used as the input. This
neural network uses 00, 01, and 10 to represent ‘ ’, ‘O’, and ‘X’. Then, it uses 48
neurons to represent all eight different winning positions whereby six neurons are

used to represent each winning position. These inputs are mapped to nine output
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Figure 17. Evaluation function neural network for a tic-tac-toc example

nodes. Each output node represents the @Q—-value of one possible action. The results

of using this representation are reported in Chapter III.

2.5 Method of Analysis

Data were gathered by running the simulation. The data include the wins, losses,
draws, mean square error, and equity. The agent’s ability to win is measured by its
equity. The performance is analyzed by generating charts using these data.

The results were gathered when the agent halted learning temporarily and played
one hundred games greedily. It is important to halt learning temporarily because there
are explorations involved during the learning process. These data were gathered after
every one thousand games of training. The effectiveness of using generalization in
reinforcement learning is determined by using results from the lookup table as the

benchmark.




CHAPTER III

EMPIRICAL RESULTS

3.1 Bounded Random Walks

To test whether both @-learning and SARSA actually converge to the optimal policy,
a simple test was conducted with a bounded random walk. In this experiment, there
are seven states that the agent can be in. The agent starts at state 4 and takes a
step to a neighbor randomly. A positive reward of +1 is assigned if the agent reaches
state 7, and a negative reward of -1 is assigned for ending the walk at state 1. This

problem is shown in Figure 18.

starting state
=1, !
‘ ‘ I ’
A=

Figure 18. Bounded random walks

The Q-values of each state-action pair are shown in Table V and Table VI after

1000 trials.
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Table V. Q-values generated by SARSA

State/Action Left Right
4. -0.0811 0.0559175
3. -0.260868 | -0.0120768
2. -0.921006 | -0.0876725
5. -0.00294266 | 0.264135
6. 0.0762577 | 0.921555

Table VI. @-values generated by Q-learning

State/Action Left Right
4. 0.466433 | 0.473384
3. 0.460682 | 0.463019
2. -0.927747 | 0.46221
3. 0.462804 | 0.463898
6. 0.481388 | 0.928404

Both SARSA and Q-learning have learned the optimal policy. However, the @)
values produced by @Q-learning are somewhat misleading. This is because it only
punishes the action for walking to the left from state 2 to state 1. The rest of the -
values are all positive because of its maz operator. On the other hand, the QQ-values
generated by SARSA are more informative. Starting from state 4, a negative Q(4, 3)
of -0.0811 tells us that we will probably ended up getting punished for walking to
the left; and Q(4,5) of 0.056 tells us that the agent is more likely to be rewarded by

choosing to walk to the right.
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3.2 Tic-Tac-Toe

The @-values of experiments 1, 2, 3, and 4 are stored in a lookup table. Using the
actual @-value allows us to observe the effects of changing the parameters of temporal
difference learning. Experiment 5 approximates the Q-value using an ANN trained
with backpropagation. It uses the network architecture that is illustrated in Section

2.4.

3.2.1 Experiment 1. Learning Rate

The first experiment tested the learning rate. SARSA was selected to learn the game
of tic-tac-toe. The agent played against a minimax opponent that searched 2-ply
deep for a move. It followed the e-greedy behavior policy to handle exploration. The
exploration rate was set to 0.1 and a total of 50,000 games were played by the agent,
using two different learning rates of 0.1 and 1.0. Figures 19 and 20 show how the

learning curve was affected by the learning rate, .

Mean square error

0.00 Lo
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1000 games per unit

Figure 19. Mean square error: Effects of learning rate on the performance
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Figure 20. Equity: Effects of learning rate on the performance

When the learning rate was set to 1.0, each @-value added the actual temporal
difference between Q(sy, a:) and @Q(si41,a:4+1) instead of a fraction of the temporal
difference. So, Q(s:, a;) was replaced by Q(s:41, ar41) every time Q(s,, a;) was backed
up. When the agent explored, a positive (s, a;) could be replaced by a negative
@(Se41,ae+1). This is the reason that caused the fluctuations of the mean square

eITor.

3.2.2 Experiment 2. Discount Rate

In Section 1.5.1, we say that the usage of a discount rate in the update equation should
only affect the agent’s preference for policies. This also says that it should not affect,
the agent’s performance. An experiment was carried out to verify if this statement
holds. The agent played 50,000 games. The learning algorithm is SARSA. The
objective in this experiment was to compare undiscounted learning with discounted

learning. The learning rate used was 0.1, and the exploration rate was set to 0.1. The
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discount rates used were 0.8 and 1.0. Figure 21 and Figure 22 show the equity and

the mean square error for both discount rates.

Equiry

-dix

1000 games per unir

Figure 21. Equity: Discounted versus nondiscounted learning

Mean square error

[t

1000 games per unit

Figure 22. Mean square error: Discounted versus nondiscounted learning

The tic-tac-toe opponent used in this experiment uses a minimax search algorithm
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to determine its moves. However, the algorithm has incorporated random moves. This
randomness caused the opponent’s move selection to be nondeterministic. Using the
method of temporal difference learning, the Q—value of each action will converge to
its asymptotic @—-value if sufficient training time is provided. By not discounting the
@-value, the agent does not prefer moves that win the game in fewer moves. So when
the agent does not prefer to win the game immediately, it indirectly increases the
chances for its opponent to settle for more ties. That is the reason why the agent
that used a discount rate has better performance. Therefore, the use of a discount

rate in a certain class of problems may greatly improve the solution.

3.2.3 Experiment 3. Exploration Rate

Exploration enables the agent to discover better decisions given that such decisions
exist. When the exploration rate was varied, there was an unexpected result. The
experiment used an e-greedy strategy as the exploration strategy to test the perfor-
mance difference between a greedy agent and an agent that explores. Figures 24 and
23 show the differences in the learning curve between an agent that explores (¢=0.1)
and an agent that does not (e=1.0). The learning rate was 0.1, the discount rate was
0.8, and the learning algorithm was SARSA.

The information shown in the graphs is misleading. If you look at the equity
graph, it seems as though the agent that does not explore performed better than
the agent that does. The mean equities obtained by averaging the equity of the
last 20,000 games are 61.0 and 50.48 for the greedy agent and non-greedy agent
respectively. Without exploration, the equity is higher because the greedy agent has
only experienced a small subset of the state space, whereas, when the agent explores,
it is learning to act in all possible states. Thus, if both agents are allowed to play

against a human player after training, the greedy agent will lose more games because it
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has many states that are left unexplored. So exploration is a key factor in determining

the overall performance of the agent.

Mean square error
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Figure 23. Mean square error: Exploration versus exploitation
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Figure 24. Equity: Exploration versus exploitation
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3.2.4 Experiment 4. Q-learning Versus SARSA

This section reports the results obtained by comparing Q-learning with SARSA. This
was an effort to find out if there is any advantage in @Q-learning and its variation,
SARSA. The agent was trained to learn the game of tic-tac-toe. In both cases, the
learning rate was set to 0.1, exploration rate was 0.1 using the e-greedy exploration
strategy, and discount rate was 0.8. The equity and the mean square error charts are

illustrated in Figure 25 and 26.
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Figure 25. Equity: @Q-learning versus SARSA

@-learning and SARSA were expected to learn the optimal policy. Indeed, the
results show that there are virtually no differences in their performances after they
stabilize. To prove this, the equity of both @Q-learning methods were averaged before
and after 25,000 games of training. The average equity of the first 25,000 games
shows us the agent’s speed of learning to win of both algorithms. The remaining
25,000 games were used to determine the mean equity of both (J-learning methods
after the equity stabilized. The results are shown in Table VII. In both cases, the

equity increases at almost the same rate. The mean equity of both )-learning for the

|
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Figure 26. Mean square error: (Q-learning versus SARSA

remaining 25,000 games differs only by 0.47. The mean square error of Q-learning
and SARSA were properly reduced at a similar rate too. Thus, there is no visible

advantage of using either one of them over another.

Table VII. @-learning versus SARSA: Mean Equity of the first and next 25,000

games
Games 1 - 25,000 | 26,000 - 50,000
@-learning 31.37 49.88
SARSA 30.96 50.35

3.3 Function Approximator

This section discusses the results obtained by applying a multilayer feedforward neural
network using the backpropagation algorithm to approximate the value function. By
doing this, we hope to obtain a near-optimal value function. The results obtained by

generalizing the value function with different network architectures are provided and
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discussed.

3.3.1 Experiment 1. Raw Board Representation

The first experiment dealt with using a 3-layer 18-15-9 network architecture to learn
the mapping from states to Q-values of actions. The input to the neural network
was the raw board representation of the game in progress (explained in Section 2.4).
The learning rate was set to 0.1, discount rate was 0.8, the exploration rate was
0.1, and the agent played 500,000 games. The learning algorithm was SARSA. The
objective of this experiment was to find out the efficiency of using this method and
the performance of the agent.

As shown in Figure 28, the average mean square error over the last 100,000 games

was 0.059. It stabilized after approximately 250,000 games of training.
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Figure 27. Equity: An 18-15-9 network trained with backpropagation is used to ap-
proximate the value function

Comparing the equity obtained by using a lookup table, the equity obtained in

this experiment is very much lower than with the lookup table. The equity of this
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experiment is shown in Figure 27. Averaging over the last 50,000 games of this
experiment, the mean equity was 26.98. This was significantly lower compared to the

mean equity of using a lookup table which was approximately 50.
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Figure 28. Mean square error: An 18-15-9 network trained with backpropagation is
used to approximate the value function

Secondly, the gradient descent method for approximating the value function is
slow. It takes close to 350,000 games to reach its maximum equity around 25, whereas
when a lookup table was used to store Q-values, the agent reached the equity of 25
in less than 10,000 games of training. In this case, generalization did not speed up
learning and it took a significantly higher number of games to learn a sub-optimal

solution using this representation.

3.3.2 Experiment 2. Feature Selection

This section reports the findings about using all eight winning positions in tic-tac-toe
to represent the input. Let us call this network NETFS and the network that uses

raw board representation NETBP. In each case, the agent was trained for 150,000
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games. The learning rate was 0.1, the exploration rate was 0.1, and the discount
rate was 0.8. The learning algorithm was SARSA. The results of the lookup table,
NETFS, and NETBP are compared in this section.

The mean square error of NETFS is much lower than for the lookup table which
is shown in Figure 29. However, lower mean square error does not mean that a better
policy was learned. The convergence of the mean square error does not necessarily

imply that an optimal policy is learned [5].

Mean square error

1000 games per unit

Figure 29. Mean square error of a network in which the input representation incor-
porated hand-selected features and was trained with backpropagation

Figure 30 compares the equity of the lookup table, NETBP, and NETFS. Aver-
aging the equity of the last 25,000 games, the averaged equity of the lookup table is
17.03 units higher than NETFS. On the other hand, NETFS reached higher equity
than NETBP using this representation.

However when we look at the number of losses of the lookup table and NETFS,
the numbers are pretty close. This is shown in Figure 31. NETF'S resulted in more

draws than the lookup table. NETFS has learned a near-optimal policy compared to
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Figure 30. Equity: A network in which the input representation incorporated hand
selected features (feature) and was trained with backpropagation com-
pared to ANN using raw board representation (regbp) and lookup table
(table)

the policy obtained by the lookup table. In another comparison, NETFS learns sig-
nificantly faster and it has better performance than NETBP. This experiment shows
that the selection of input features to represent problems plays a major role in deter-

mining the success of approximating the value function.
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Figure 31. Number of losses: Comparing the results obtained by the lookup table to
a network in which the input representation used hand-selected features




CHAPTER IV

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

4.1 Summary

This research studies the internal workings of reinforcement learning. Reinforcement
learning solves sequential decision problems through trial and error. This gives it the
upper hand for its ability to learn in real time. The learning algorithms of this exper-
imentation were Q-learning and a variation of it called SARSA. Both these learning
mechanisms are one-step learning prediction algorithms that learn a value function, a
mapping from a state-action pair to a real number. They update a prediction at time
t to be a fraction closer to the prediction at time ¢ + 1. These algorithms are con-
sidered special cases of a multi-step prediction algorithm known as TD(A). At every
time step, TD({\) updates a prediction by exponentially decaying previous predictions
based on recency, where A is the decay factor. @Q-learning and SARSA are essentially
TD(0), a one-step prediction algorithm in which A is 0. TD is the abbreviation for
temporal difference learning.

In this study, temporal difference learning was used to learn the game of tic-
tac-toe. The ()-values were either stored in a lookup table, or approximated by a
multilayer neural network using backpropagation algorithm. The effects of the learn-

ing rate, the discount rate, the exploration rate, and both forms of Q-learning were

29
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experimented with. In these experiments, the QQ-values were stored in a lookup table.
If a function approximator was used, then the objective was switched to analyzing
the effectiveness and efficiency of generalization in reinforcement learning.

When using a lookup table to store the @—values, the results of learning tic-tac-toe
were successful. The constant learning rate did not affect the solution except when
the learning rate was set close to 1. This was less effective because we want each
prediction to be a fraction closer to the next prediction, not taking on the value of
the next prediction. Otherwise, a good action could be updated to become a bad
action when the next prediction is an exploratory move. The second test dealt with
examining discounted versus nondiscounted learning. The effect of a discount rate
should affect only the selection of the optimal policies. By using a discount rate, the
tic-tac-toe agent prefers actions that leads to a win in the least number of moves.
However, this experiment showed that using a discount rate generates a better policy.
By not having a preference on the winning strategy when no discount is used, increas-
ing the length of the game inadvertently increases the probability of not winning the
game. This is why a discount rate should be used in learning to win in tic-tac-toe.

The third experiment dealt with the exploration rate. A test was conducted to
experiment with the outcome of using the greedy policy versus a ten percent explo-
ration rate in its decision makings. When no exploration was used, the result shows
a very misleading statistical report. The mean square error was reduced significantly
faster compared to the latter. Secondly the results show that the greedy agent actu-
ally learned to win at tic-tac-toe better than the agent that explores. However, this
does not mean that no exploration is a better strategy. If the agent does not explore,
it leaves a lot of the state space unexplored. So when the greedy agent is put into
a test after training by playing against a better player, say a human player who will

not lose, it will be clear that the agent that explores is a better overall player. Thus
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exploration is an important factor in determining the overall performance of an agent.

The second half of the experiment dealt with using a multilayer feedforward net-
work that was trained by the backpropagation algorithm to approximate the value
function. A function approximator is commonly used to generalize the value function
because it may speed up learning. In addition, the ability to generalize also provides
the ability to scale up reinforcement learning for solving problems that have large
state spaces. In the first experiment, the input was encoded using the raw board rep-
resentation. The network then mapped the state of the game to the action’s Q-value.
The empirical results showed that it was learning much slower when it is compared
to storing the ()—values in a lookup table. It took literally 3000 percent additional
games to reach the performance attained by table (Q-learning. In the second experi-
ment with a generalized value function, the tic-tac-toe board was represented by eight
winning positions of tic-tac-toe as the input. By mapping the winning positions of
tic-tac-toe to each action’s (Q—value, the agent was capable of learning a comparable
policy to the results of table @Q-learning. Although this representation of tic-tac-toe
reduced the mean square error faster than the table )-learning, table @Q-learning had
a slightly higher equity. This finding suggests that selection of features for input rep-
resentation of the problem is critical towards the success of generalized reinforcement

learning.

4.2 Conclusions

The experiments conducted in this study show that applying (?-learning in learning
the game of tic-tac-toe is indeed successful. The optimal policies of the agent beat
the opponent close to seventy percent of the time in just 50,000 games of training.
The selection of the discount rate, learning rate, and the exploration rate affects the

policy that is learned by the agent.
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Experimental findings about combining a multilayer feedforward network using
backpropagation and @Q-learning show that it is not very reliable. Different results
can be obtained if different representation of the same problem is used. It needs a lot
of experience and understandings of the tricks and tips in this field of study in order to
make them to work together more successfully. In my experiments, when a function
approximator is used, the tic-tac-toe agent learned to win at a pace similar to table
@-learning. After 10,000 games of training, it reached a point as if it had stopped
learning. At this point, the agent lost half of its games. It was discovered later that
the agent was actually reducing the mean square error at a very slow pace. Without
the analysis of the mean square error, I would not have realized that the agent was
improving its value function slowly. After an additional 300,000 games of training, the
agent improved its equity from approximately 0 to approximately 25. However it was
learning very slowly. It will be beneficial to look at some of the algorithms that are
designed to speed up backpropagation. My final conclusion concerning generalized
reinforcement learning is that it needs a lot of experimentation to test with different
network architectures to represent the same problem, and analyzing the mean square
error during the learning process are keys to a better success in the generation of a

better policy.

4.3 Recommendations

Here are some suggestions for potential future research:

1. Find algorithms that can speed up the backpropagation algorithm and imple-
ment it to generalize the value function. Use them to train an RL agent that
learns to win tic-tac-toe and several other sequential decision problems. Com-

pare the results to see if every approach produces the optimal solution.

2. First find optimization algorithms for backpropagation. Use them to train an



63

RL agent to play tic-tac-toe. If they are successful, then apply this method in
the domain of backgammon, chess, or go. Find out how other researchers select
features that they think are important in one of those games. Then use those

hand-selected features to represent the input and use it to learn that game.

4.4 Concluding Comment

This study provides a close-up understanding of the internal workings of reinforcement
learning methods. The empirical results obtained in the experiments are successful
when a lookup table is used to store the @Q—value. This method of learning through
trial-and-error proved to be very robust only when a lookup-table was used, and using
a lookup table is prohibitively costly for games with a large state space such as chess.

In my opinion, even though reinforcement learning and supervised learning are
considered as two separate fields of study, it seems like the understanding of both
fields is compulsory when studying reinforcement learning. I am saying this because
most published literature that I have read was concerned with the scalability of rein-
forcement learning. Researchers hope that the reinforcement learning mechanism can
be integrated with different function approximators more successfully in solving large
real world problems. Many papers were published that proved the convergence of
temporal difference learning algorithms used with different function approximators.
But convergence does not mean that an optimal policy is learned. Local function
approximators such as CMAC, and radial basis networks are recommended to be ap-
plied together with TD learning. However CMAC is not fully scalable even though
hashing provides better and more efficient memory usage. Alternative scalable global
function approximators such as an artificial neural network trained by the backprop-
agation algorithm showed that this method of generalizing the value functions may

produce only sub-optimal solutions, or in the worst case, may diverge. It is still an on-
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going research area to discover better approaches to scaling up reinforcement learning.
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Appendix A

GLOSSARY

e—greedy: A policy whereby e denotes the exploration rate.
Agent: The decision maker or the learner.

Artificial Neural Network: A simplified model of the brain cells, or neurons that are
massively interconnected, usually simulated in software using a computer.

Autonomous Learning: Learning by experiencing the task through trial and error
interactions with the environment.

Backpropagation: An optimization algorithm that is capable of training a multilayer
neural network by computing the partial derivatives in a backward

propagating sweep through the network.

Environment: A simulation model with which the agent interacts with to increase
its experience.

Exploitation: Choose actions greedily that yields the highest value.

Exploration: Choose actions that does not necessarily yield the highest value.

Least Mean Square: An algorithm that is applicable to a two-layer network that
optimizes the performance of the network by reducing the approximate
mean square error.

Markov Decision Process: One particular sequential decision model whereby the
current state summarizes everything important about the actions that
produced it.

Off-Policy: The policy used to generate behavior is unrelated to the policy that is

evaluated and improved.
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On-Policy: This method evaluates and improves the same policy that it uses to make
decisions.

Policy: The decision-making function of the agent, telling it what action to
choose in each state.

@-Learning: An off-policy temporal difference learning algorithm developed by
Watkins.

Reinforcement Learning: A learning mechanism that rewards good decisions and
punishes bad choices made by the agent; and the learning is autonomous.

Reward Function: The definition of the agent’s goal that maps the state of the
environment to a single number.

SARSA: An on-policy temporal difference learning algorithm.
TD()): A multi-step temporal difference learning algorithm whereby at each time
step, TD(A) updates a prediction by exponentially decaying previous

predictions based on recency, where A is the decay factor.

Temporal Difference Learning: A reinforcement learning method that updates a
prediction at time ¢ to be a fraction closer to the prediction after £.

Value Function: The function that specifies what action selection is the best in the
long run.
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Appendix B

SAMPLE PROGRAM CODE

// main.cpp

LITIETELTIELITLLL T EEELEELEP L0202 LTTL LI R ETTE LT EEETIL i iiieriiiti il iieily

#include <iostream.h>
#include <fstream.h>
#include "str.h"
#include "clock.h"
#include "simulator.h"

LELLTELILLZETLLLIE2EEL7IT LTI T L2 L L2 LLT 2L EELI I 27 EI i I rizeriiieliieiitiiiiieili

// Main program of reinforcement learning system

R e e

int main()

{

ofstream fout;
RL_Simulator_Class simulator;
if (simulator.setup(cout, cin) == 1) // if simulator setup is completad
{
cout << endl << "Constructing RL system ..." << endl;
simulator.construct();
cout << "Done.™ << endl;
clockClass clock;

cout << endl << "Agent is learning ..." << endl;
clock.start();
simulator.learn(cout, fout); // RL agent is learning

clock.stop();
cout << "Learning is done in " << clock << endl;

}

// allow user to train more games if data gathered is inadequate
cout << endl << "Do you want to train more games (y, n)7" << endl << "> ";
char response;
long numQfGames;
double explorationRate;
cin >> response;
while (response == ’y’)
{ // netvwork weight, move selection, score stat files
cout << "Please save weights, play, and score file" << endl << endl;
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cout << "How many additional games do you want to train?" << endl << "> ";
cin >> num0OfGames;
simulator.setNumOfGames (num0DfGames) ;

// experiment the effects of changing exploration rate if wanted
cout << "What exploration rate do you want to use?" << endl;
cin >> explorationRate;
simulator.setExplorationRate(explorationRate) ;
clockClass clock;
cout << endl << "Agent is learning ..." << endl;
clock.start();
simulator.learn(cout, fout);
clock.stop(};
cout << "Learning is done in " << clock << endl;
cout << endl << "Do you want to train more games (y, n)?" << emndl << "> ";
cin >> response;
}

return 0;
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JIEILILEELIEEI LRI IE T I T L E 7L E LT I ET I i i T il iiiiiizitirireiliiei/
// simulator.h - interface file
LIHELLEELEEEILEEI LTI LR E b L E LI i LI e LI i L i iiieireiri i/
#ifndef SIMULATOR
#define SIMULATOR

#include <iostream.h>
#include <fstream.h>
#include "str.h"
#include "rl.h"
LILEETIETILLLETIELL L LTI LI LTI AL L E L L i il iiir i tliiiiltililiield

// Provides a user interface to setup and construct the simulation framework

LILLELLLLITLETTIEL LI I T T L LRI I L L L EL LI 2 LTI P LT LT EE I Ir e iiieieie iy

class RL_Simulator_Class

{
private:
RL_Framework_Class *agent;
int tableOrNN; // bash table of neural network
int learning; // RL learning algorithm selection
int restore; // restoring network weight or not
double stepSize; // step size of Q-learning
double discount; // discount rate of (Q-learning
double learningRate; // learning rate of neural network
double momentum; // neural net’s momentum
double exploration; // agent’s exploration rate
int policy; // types of behavior policy
int difficulty; // opponent’s playing level
int numOfHidden; // number of neural net hidden nodes
double rewardWin; // reward for a win
double rewardTie; // reward for a tie
double rewardLoss; // reward for a loss
double rewardNone; // reward for intermediate moves
long numOfGames; // number of games for training
stringClass scoreFile;
int display; // whether to display
public:
RL_Simulator_Class();
“RL_Simulator_Class();
void comstruct();
void displaySetup(ostream¥); // display system information
void systemMenu(ostream);
void editMenu(ostream&) ;
void editSystem(ostream¥, istreamk) ;
int setup(ostream&, istreamk); // setup system
void learn(ostream&, ofstreamé) ;
void printSetupToFile(ofstreamk) ;
void genScoreFileName();
void setNumOfGames(long);
void setExplorationRate(double);
}i

#endif SIMULATOR
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LILITTEELTLIIILIILTELTIL DL LI P2 L IL LTI EEELIL LTI L IR ITLEEEIelieeliiiiiieeiees
// simulator.cpp - implementation file
LIELITETELELILELTELEL L LE RS L LT L E P TPT L LI E L i il iriieiit el
#include <iomanip.h> // for setw()

#include <strstrea.h>

#include <time.h>

#include "rlstd.h™

#include "simulator.h"

LLLLEITTEITTEIITELETL LI LTI LI L L LTI I ELLLEET L TIL LI L il iiirizeeiieeires/

// Comstructor

LITELILILEEELILLELEE LT LA EL LT L L L L L LT L L LI LL L LI L L Eiriiiiieirirelie/
RL_Simulator_Class::RL_Simulator_Class()

1{
display = 0;
rewardWin = 1.0;
rewardLoss = -1.0;

rewardTie = 0.0;
rewardNone = 0.0;

restore = 0; // create new network, default

tableOrNN = NEURAL_NET; // Hash table or neural network approximation
learning = Q_LEARNING; // Sarsa or Q-learning

stepSize = 0.2; // default step-size for update equation (alpha)
discount = 0.8; // discount rate for update equation (gamma)
learningRate = 0.1; // neural network learning rate

momentum = 0.9; // neural network momentum

exploration = 0.1; // exploration rate

policy = EPSILON_GREEDY; // behavior policy of agent

difficulty = MEDIUM; // opponent’s difficulty level, or intelligence
numOfHidden = 20; // number of hidden nodes for neural network
num0fGames = 40000; // number of trials or games for learning

}
LIETIEETILELEEILLLEL I LTI IR I T LT L2 2P E A I TP III I LI LT i ittt riniieriesl
// destructor
LIVLTLIIILLEIPELEELELILEL LD LR L LT LN LL I it liiisiitililessl
RL_Simulator_Class:: RL_Simulator_Class()
{

delete agent;
}
LILELTITET LRI PE LTI L E I E I EE IR E L I EE L E i i i irr it firss
// generate a file that store the score based on the setup
JILLLELLELLEEL LD LTI LI LS P LTLLEL LR i e i iIriiiiriiiesiiitlrerirrls
void RL_Simulator_Class::genScoreFileName ()
{

char g0rSarsa, epsilonOrSoftmax, diff;

switch (learning)

{

case (Q_LEARNING : gOrSarsa = ’q’; break;

case SARSA : g0rSarsa = ’'s’; break;

}

switch (policy)

{

case EPSILON_GREEDY : epsilon0OrSoftmax = ’e’; break;

case SOFTMAX : epsilonOrSoftmax = ’s’; break;
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}

switch (difficulty)

{

case EASY : diff = ’e’; break;

case MEDIUM : diff = 'm’; break;
case DIFFICULT : diff = ’d’; break;
1

char tmptime[20], tmpdate[20];

/* Set time zone from TZ environment variable. If TZ is not set,
* operating system default is used, otherwise PST8PDT is used

* (Pacific standard time, daylight savings).

*/

_tzset();

/* Display operating system-style date and time. */
_strtime( tmptime );

_strdate( tmpdate );

for (int i=0; i<20; i++)

{
if (tmptime[i] == 7:’)
tmptime[i] = ’.7;
if (tmpdate[i] == ’/’)
tmpdate[i] = ’.?;
}

ostrstream *ostr = new ostrstream;

if (tableOrNN == NEURAL_NET)
*0str << gOrSarsa << "n" << numOfHidden << epsilonOrSoftmax << exploration
<< "a" << stepSize << "g" << discount << "_1" << learningRate << "m"
<< momentum << diff << numOfGames << rewardWin << rewardTie << rewardLoss
<< "_" << tmpdate << tmptime << ".txt" << ends;

else *ostr << g0rSarsa << "t" << epsilonOrSoftmax << exploration << "_a"
<< stepSize << "g" << discount << diff << numOfGames << rewardWin
<< rewardTie << rewardLoss << "_" << tmpdate << tmptime << ".txt" << ends,

char *name = ostr->str(); // generate data file name based on the setup
scoreFile = name;

delete ostr;

delete name;

LILEELELELLLLL LI I LI L LI I LTI LI L L i i i i i i iiiielriititriiitl/
// construct the simulator
LILLEEETELTLLELT LR LIS L P LI EE LT LT E L LI L L LI EE i r el ririiiririel/

void RL_Simulator_Class::construct()

{

if (tableOrNN == NEURAL_NET)
agent = new RL_Framework_Class(restore, stepSize, discount,
learningRate, momentum, exploration, policy, difficulty,
num0fHidden, rewardWin, rewardTie, rewardlLoss, rewardNone,
display, tableOrNN);

else if (tableOrNN == HASH_TABLE)



agent = new RL_Framework_Class(stepSize, discount, exploration, policy,
difficulty, rewardWin, rewardTie, rewardLoss,
rewardNone, display);

}
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LIELLTTLILLTLLILELITLTEL T TI 2L ELEETII 0T AL 120010000000 02 00000000 10100100000111111

// display the setup to screen

LILELITITEL LTI PELLTELL LR EL LI LLL I LI LI LI EL I TP L I Ei it ieesy

void RL_Simulator_Class::displaySetup(ostream& out)

{
out << "Learning algorithm ";
if (learning == Q_LEARNING)
out << "Q-learning" << endl;
else if (learning == SARSA)
out << "Sarsa" << endl;
out << "Behavior Policy W
if (policy == EPSILON_GREEDY)
out << "epsilon-greedy" << endl;
else out << "softmax" << endl;
if (tableOrNN == NEURAL_NET)
{
out << "Neural Network " << num0OfHidden << " hidden nodes" << endl
<< "Restore weight " << restore << endl
<< "Learning rate " << learningRate << endl
<< "Momentum " << momentum << endl;
}
else out << "Hash Table " << endl;
out << "Step size " << stepSize << endl
<< "Discount rate " << discount << endl
<< "Exploration rate " << exploration << endl
<< "Reward for win " << rewardWin << endl
<< "Reward for tie " << rewardTie << endl
<< "Reward for loss " << rewardLoss << endl
<< "No reward " << rewardNone << endl
<< "Opponent Difficulty ";
if (difficulty == EASY)
out << "easy" << endl;
else if (difficulty == MEDIUM)
out << "medium" << endl;
else out << "difficult" << endl;
out << "Number of Games " << num0fGames << endl;
F

ey

// print system setup information into a file

LILITIIILELILILIIIIT AL EL L7 ELLETITEL P LTI L2207 1000001710717 1001700017171111

void RL_Simulator_Class::printSetupToFile(ofstreamk& fout)
{
fout << "Learning algo I
if (learning == (_LEARNING)
fout << "Q-learning" << endl;
else if (learning == SARSA)
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fout << "Behavior Policy "3
if (policy == EPSILON_GREEDY)

fout << "epsilon-greedy" << endl;
else fout << "softmax" << endl;

if (tableOrNN == NEURAL_NET)

{
fout << "Neural Network " << num0fHidden << " hidden nodes" << endl
<< "Restore weight " << restore << endl
<< "Learning rate " << learningRate << endl
<< "Momentum " << momentum << endl;
}
else fout << "Hash Table " << endl;
fout << "Step size " << stepSize << endl
<< "Discount rate " << discount << endl
<< "Exploration rate " << exploration << endl
<< "Reward for win " << rewardWin << endl
<< "Reward for tie " << rewardTie << endl
<< "Reward for loss " << rewardLoss << endl
<< "No reward " << rewardNone << endl

<< "Opponent Difficulty ";
if (difficulty == EASY)
fout << "easy" << endl;
else if (difficulty == MEDIUM)
fout << "medium" << endl;
else fout << "difficult" << endl;
fout << "Number of Games " << num0fGames << endl << endl;
5
LILETLLETLIITIT LA LTELIT LT L LI LI I 2L 80720 L0 010800117 EEiEEE71EEr T
// print the choice of menus
/7 - type "q 0" to use SARSA as the learning algo
LITEIIITLLTIT LT LI LTI TEL R L PP T EL AT LTI i iniriiriiiel i
void RL_Simulator_Class::systemMenu(ostreamk out)

{
out << "¢ setup complete" << endl
<< "d display system setup" << endl
<< "e edit system" << endl
<< "1 load system from file" << endl
<< "x exit or abort" << endl << endl;
}

LLELTLITELLLL LI LT LEEL LT LEL LTI LT L LTI i i iiiiitiiiritiislef
// print the setup options
IITETEEILILELIEIT LTI LTI 7T EP IR EE1 7017 EEEEEL i rilri11171111117

void RL_Simulator_Class::editMenu(ostream& out)

{

out << endl
<< "q Learning algorithm (0 Sarsa, 1 Q-learning" << endl
<< "b  Behavior policy (0 Softmax, 1 Epsilon-greedy)"
<< endl
<< "t  Method to set value (0 Hash Table, 1 Neural Network"
<< endl
<< "d Update equation discount (0 =< d <= 1)" << endl

<< "s  Update equation step-size (0 =< s <= 1)" << endl
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<< "1  Neural network learning rate (0 =< 1 <= 1)" << endl

<< "m Neural network momentum (0 =< m <= 1)" << endl
<< "e Exploration rate (0 =< e <= 1)" << endl
<< "r  Restore (1 true O false)" << endl

<< "o  Opponent Difficulty" << endl
<< "+ Reward for a win" << endl
<< "= Reward for a tie" << emndl
<< M- Reward for a loss" << endl
<< "0 No reward" << endl
<< "g  Number of games (g > 0)" << endl
<< "mn  Score file name" << endl;
if (tableOrNN == NEURAL_NET)
%
out << "h  Number of hidden nodes" << endl;
1
out << "x exit edit menu" << endl << endl
<< "Choose the option follow by the value (eg. > d 0.25)"
<< endl << endl << endl;
}
LILLITEELTTILT LT ELEIRIS LTI L LT T LA TP LT LTI EE P LI LI iLEEriiiieiitiriiitiiey
// modify the setups provided by the user
LILETEELLLLELIELLELEE LI EL LI LELL LI P LTI i i iiiiiiliriireiiie’
void RL_Simulator_Class::editSystem(ostream& out, istream& in)
{
out << "Type 7 for edit help" << endl << endl
g ity .
char choice;
in >> choice;

while (choice != ’x’) // continue until exit option is chosen
{

switch (choice)

{

case ’'?’ : editMenu(out); break;

case 'q’ : in >> learning; break;

case 'b’ : in >> policy; break;

case 't’ : in >> tableOrNN; break;
case 'r’ : in >> restore; break;

case 'd’ : in >> discount; break;
case ’'s’ : in >> stepSize; break;

case 1’ : in >> learningRate; break;
case 'm’ : in >> momentum; break;
case ’e’ : in >> exploration; break;
case ’o’ : in >> difficulty; break;
case ’+' : in >> rewardWin; break;
case 0’ : in >> rewardNone; break;
case ’-' : in >> rewardlLoss; break;
case ’=' : in >> rewardTie; break;
case ’g’ : in >> numDfGames; break;

case 'n’ : in >> scoreFile; break;
case ’h’ : if (tableOrNN==NEURAL_NET)

in >> num0DfHidden; break;
default : out << "Invalid edit option" << endl;

}

Out << l!) II;
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in >> choice;

}

LITITEITILELELTEIEELL LTI TP P LI EEEL LTI LTI L eI iiEeiieletisieiieieiliieiel
// setup the simulation

LLELHLLTLLELTLLL T EL L LI L LT EL LT EL I ELL 2T I LIS LL LT EiLELirirtiirll/
int RL_Simulator_Class::setup(ostreamk out, istream& in)

{

}

out << "Reinforcement learning system" << endl << endl;
systemMenu (out) ;

out << "Type 7 for help" << endl << endl
<< I|> II;

char choice;

in >> choice;

while (choice != ’x’ &% choice != ’¢’)
{
switch (choice)
{
case 'c’ : break;
case ’?’ : systemMenu(out); break; // display system menu

case ’d’ : displaySetup(out); break; // display current system setup
case ’e’ : editSystem(out, in); break;
default: out << "Invalid option" << endl;

}
out << "> ";
in >> choice;
}
if (choice == ’x’)

return 0;
else return 1;

LIILELTEEITELT IR LI LI ETEL L P L LTI L LTI E 2L i eI idiiititizeiieiie/
// The selected RL learning algo is called

LIPEPIT2E0 0L 1T LRI P LT L2 E LI i I iEE il iiiirlizilrreeirtilirits
void RL_Simulator_Class::learn(ostreamk& out, ofstreamk fout)

{

genScoreFileName() ;
fout.open(scoreFile, ios::out);
fout.flags(ios::left | ios::fixed | ios::floatfield | ios::showpoint);

// output system setup into a file
RL_Simulator_Class::printSetupToFile(fout);

fout << setw(10) << "Win" << setw(10) << "Tie" << setw(10) << "Loss" << endl;

if (tableOrNN == NEURAL_NET)

{
if (learning == Q_LEARNING)
agent->Approx_{Q_Learning(numOfGames, fout, out);
else if (learning == SARSA)
agent->Approx_Sarsa_Learning(numOfGames, fout, out);
}

else



79

if (learning == Q_LEARNING)
agent->Table_Q_Learning(numOfGames, fout, out);
else if (learning == SARSA)
agent->Table_Sarsa_Learning(numOfGames, fout, out);
b
fout.close();
3
LILEELTITTEITELI LTI LTI LTI EL LRI L LT IP L L AR i L i i i i Eiiiiliieeireri
void RL_Simulator_Class::setNumOfGames(long games)
{
num0fGames = games;
}
LITTETILTELIE LI LTI ELE T T L EL I P EE T LD T DL LI TP T E LA LTI E T i i ireiiiiiirirel
// set exploration rate, only called when we want to train additional games
IILELETLLEIIT I LTI I LER LI T LTI PP E L IR LI L LT LA L AT i I LT i EiEEliriiezetiieef
void RL_Simulator_Class::setExplorationRate(double exploration)
{

agent->setExploration(exploration);

}
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LELLTETITITILELLIELEL LA IIEL LI LI P I LTI AL LI E i 1EiEililrlEtEtllill/
// rl.h - RLClass interface file

LITTLLTIELILILII LTI LRI LE LI L P E I iitletiiiteizetliitierils
#ifndef RL

#define RL

#include <fstream.h>

#include <iostream.h>

#include "str.h"

#include "environment.h"

#include "experience.h"

#include "policy.h"

LELILELITIEL LI LE I LA P2 E L LTI i il il iiiiiiiiidsreriteltitly

// Reinforcement Learning Framework Class

//

// - The reinforcement learning framework is coded here whereby the agent
// interacts with its environment and learn by receiving feedbacks from
// the environment whether its decision is good or bad.

IIITTEERIIIITLETETELEEPETLLLEP T I AT I T I LT LR R T EL LTI LTI LT i i i iiiriizie s

class RL_Framework_Class

{
private:
RL_Policy_Class *policy;
RL_Environment_Class *envir,;
RL_Qvalue_Class *0Q;
stringClass curState;
stringClass nextState;
double alpha; // learning rate
double gamma; // discount rate
BOOL net; // flag - neural net or hash table
void initialize();
ofstream gameFile; // file output learning statisfic
ofstream playFile; // play selection file output
public:

RL_Framework_Class(int, double, double, double, double,

double, int, int, int, double, double, double, double, int, int);
RL_Framework_Class(double, double, double, int, int, double,

double, double, double, int);

“RL_Framework_Class()
{
delete policy;
delete [;
gameFile.close();
playFile.close();
}

void Approx_Sarsa_Learning(long int, ofstream&, ostreamk);



void Approx_Q_Learning(long int, ofstream&, ostreamk);
void Table_Q_Learning(long int, ofstreami, ostreami);
void Table_Sarsa_Learning(long int, ofstream&, ostreami);

void printState();

void approx_GreedyPlay(ostream&) ;
void table_GreedyPlay(ostreamk) ;
void setExploration(docuble);

double get_alpha() { return alpha; }
double get_gamma() { return gamma; }

¥

#endif RL
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LITITITEITLTLTELTIII P2 P2 LT ELEEI I LI T AL LRI L2 i1 IET1171110111111177
// rl.cpp - Implementation file for class reinforcementLearningClass
LILETTIILLLTTTEETITEILEI I EE 2L ETEL LI I I i 0PI i i b i iririzizeiriieiiietiiei
#include <iostream.h>

#include <fstream.h>

#include <string.h>

#include <iomanip.h>

#include <math.h> // for exponential function

#include "random.h" // random number generator to choose who to start the game
#include "rl.h"

#include "rlstd.h"

LILEELLETTLIT LTI L E2 I LT EL L LT L2 LTI 20 TP PP LT L EL i it iEiietiiites
// allow change of the exploration rate when user wants to train more games
LITETITTETLIITEIITTEEEE LI LI L 20T 20 8L LT L0700 007008080000 0000ILE0ET78211711¢11171117
void RL_Framework_Class::setExploration(double rate)
{
policy->setExploration(rate);
¥
LIEETELLELIILT LA ELTEL LTI E L EL L EL LTI LE L Pt Er i iir it iidriritirniiid
// qlearning constructor, construct learning system
LIITTTTETTTITIT I L L P LTI L LT P LTI riiiiiziiiiriiify
RL_Framework_Class::RL_Framework_Class(double stepSize, double discount,
double exploration, int bPolicy, int difficulty, double
rewardWin, double rewardTie, double rewardLoss,
double rewardNone, int display)

gameFile.open("state.txt", ios::out);
gameFile.flags(ios::left | ios::fixed | ios::floatfield | ios::showpoint );
playFile.open("play.txt", ios::out);
playFile.flags(ios::left | ios::fixed | ios::floatfield | ios::showpoint );
playFile << setw(10) << "Win" << setw(10) << "Draw" << setw(10)

<< "Loss" << setw(10) << "MSE" << endl;

alpha = stepSize;
gamma = discount;
net = FALSE; // means it is using (-table

if (bPolicy == EPSILON_GREEDY)
policy = new RL_Epsilon_Greedy_Class(exploration);
else policy = new RL_Softmax_Class(exploration);

// reward for tie is used to initialize Q-table

Q = new RL_Hashing_Class(rewardTie, display);

envir = new RL_Connect3_Class(difficulty, rewardWin, rewardTie,
rewardLoss, rewardNone);

}

LILLLETETELEL LTI ELEL LIPS0 L LT L L il iitireiifiriiri/
// gqlearning constructor, construct learning system
LIITELITEIIIEILEE I PELL LRI ETLL P II PR 7L i E I EEEi i i ririiiilitiliieiril/
RL_Framework_Class::RL_Framework_Class(int restore, double stepSize,

double discount, double learningRate, double momentum,

double exploration, int bPolicy, int difficulty,
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int num0fHidden, double rewardWin, double rewardTie,
double rewardLoss, double rewardNone,int display, int net)

gameFile.open("state.txt", ios::out);
gameFile.flags(ios::left | ios::fixed | ios::floatfield | ios::showpoint );
playFile.open("play.txt", ios::out);
playFile.flags(ios::left | ios::fixed | ios::floatfield | ios::showpoint );
playFile << setw(10) << "Win" << setw(10) << "Draw" << setw(10)

<< "Loss" << setw(10) << "MSE" << endl;

alpha = stepSize;
gamma = discount;
net = TRUE; // is using Neural network

if (bPolicy == EPSILON_GREEDY)
policy = new RL_Epsilon_Greedy_Class(exploration);
else policy = new RL_Softmax_Class(exploration);

if (net == NEURAL_NET)
Q = new RL_Neural_Network_Class(restore, learningRate, momentum,
numOfHidden, curState, 0.5, rewardNone, display);

envir = new RL_Connect3_Class(difficulty, rewardWin,
rewardTie, rewardLoss, rewardNone);
}
LILELITIPTEI LTI LT 7T LS LTI T i EL TP riii i i firiiiiiziii/
// initialize state to the start of a game, empty board

LILITEEELITETEIT LTI L P T E TP i TP E T LT L i iiieeiniiierireires

void RL_Framework_Class::initialize()

{
curState = " L

nextState = " W
}
LILLEELLELP LIS LTI I DL T LRI EL LTI L i i P i i i i iriireriiriieeliirts
// DESCRITIDN: 0ff-Policy Q-learning where the Q-value is approximated using
// a neural network. Value function approximation is in
// accordance of Sebastian Thrun'’s method.
//
// PSEUDDCODE: Initialize Q(s, a) arbitrarily
// Repeat (for each trial):
I/ Initialize s,a
/! Repeat (for each step of trial):
/7 Choose a from s using policy derived from Q(e.g, e-greedy)
// Take action a, observe r, s’
// Q(s,a):= gamma * maxQ(s’,a’)
/" s :=8’;
// until s is terminal
//

LILIITIIIELLTLL 2T LTLLT LI PI 2T LI EEI 2L I 0L T2 I 0T AT 2 01 EE1 7700711711711

void RL_Framework_Class::Approx_Q_Learning(long int num0fTrial, ofstream& fout,
ostream& out)

{

stringClass action;



validActionClass move;
double reward, Qvalue;
double x_percent = 0.01, process;
randomNumClass random;

BOOL print = FALSE;

for (int i=0; i<numODfTrial; i++)

{ ;

initialize(); // reset state, or empty board

action = ""; // reset action to blank

if (random.randomInteger(1,2) == 1) // opponent to start
curState = envir->chooseAction(curState, action);

if (i % 1000 == Q)

{ // print every state transitions once every 1000 games
print = TRUE;
gameFile << "sxx*k*x* Game " << i+l << " kkkkkkk" << endl;

}

do // **x* Approx method **xx*

{
move.generate(curState) ;
action = policy->choose(*Q, move, curState);
if (print)

printState();
nextState = envir->chooseAction(curState, action);
reward = envir->feedback(nextState);
if (envir->gameQOver(nextState)==FALSE)

Qvalue = gamma * Q->max(nextState); // Sebastian’s method
else (Qvalue = reward; // end of Sebastian’s method
Q->setValue(curState, action, Qvalue);
if (print)

printState();
curState = nextState;

}
while (envir->gameOver(curState) == FALSE);
if (print)
printState();
print = FALSE;
envir->keepScore(curState, fout);
process = (double)i / (double)numOfTrial;
if (process >= x_percent) // indication of % learning completed
{
out << int(process * 100) << "J" << endl;
x_percent += 0.01;
}
if (i % 1000 == 0) // test agent’s knowledge every 1000 games
approx_GreedyPlay(out) ;
)

out << "100%" << endl;
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LELELETTIEETEETLTIEEIE LT P72 087208 E LT LTl eiiiieiieeiri el

// DESCRITION: 0ff-Policy Q-learning. The Q-value is stored in hash table
//

// PSEUDOCODDE: Initialize Q(s, a) arbitrarily

// Repeat (for each trial):

// Initialize s to start state

/! Repeat (for each step of trial):

/f Choose a from s using policy derived from Q(e.g, e-greedy)
// Take action a, observe r, s’

/! Q(s,a):= Q(s,a) + alphal[r + gamma.Q(s’,a’)-Q(s,a)]

Fil s := s’

// until s is terminal

1

LILTTTLLIILLEIIEP I TP EE T L L L P T LI P i ET b rie it iirieliiiiiei
void RL_Framework_Class::Table_{_Learning(long int numOfTrial,
ofstream& fout, ostream& out)

{

stringClass action;
validActionClass move;

double reward, error, Qvalue;
double x_percent = 0.01, process;
randomNumClass random;

double maxQ;

BOOL print = FALSE;
error = 0.0; // new trial from Sebastian’s book
for (int i=0; i<num0fTrial; i++)
{
initialize(); // reset state, or empty board
action = ""; // reset action to blank
if (random.randomInteger(1,2) == 1) // opponent to start
curState = envir->chooseAction(curState, action);

if ((i % 1000)==0) // for debug purposes

{
print = TRUE;
gameFile << "#x#kxkx Game " << i+l << " sksskxx! << endl;
}
do // **xxx*% TABLE Q-learning ***#xxx
{

move.generate(curState) ;
action = policy->choose(*Q, move, curState);
if (print)
printState();
nextState = envir->chooseAction(curState, action);
reward = envir->feedback(nextState);
if (envir->gameOver(nextState)==FALSE)
maxQ = Q->max(nextState);
else maxQ = 0.0;
Qvalue = Q->getValue(curState, action);
Qvalue += alpha * (reward + (gamma * maxQ) - Qvalue);
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Q->setValue(curState, action, Qvalue);
curState = nextState;

1

while (envir->gameOver(curState) == FALSE);

if (print)
printState();
print = FALSE;

envir->keepScore(curState, fout);

process = (double)i / (double)numOfTrial;

if (process >= x_percent)

{
out << int(process * 100) << ")" << endl;
X_percent += 0.01;

}

if (i A 1000 == 0) // test agent’s knowledge every 1000 games
table_GreedyPlay(out);

}
out << "100%" << endl;
}
LITELEELTILEELLIT L IR ET LT LI L 20 EETT LT E T I TP LT 0iE T i Ei i iiiieiiieiiriiries
// DESCRITION: On-Policy Q-learning where the {-value is approximated using
// a neural network. Value function approximation is in
// accordance of Sebastian Thrun’s method.
/7
// PSEUDOCODE: Initialize Q(s, a) arbitrarily
i Repeat (for each trial):
// Initialize s,a
/7! Repeat (for each step of trial):
// Take action a, observe r
// Choose a’' from s using policy derived from (Q(e.g, e-greedy)
// Q(s,a):= gamma * maxQ(s’,a’)
I/ 8 :=8%; a :=a';
// until s is terminal
r/

LIETETELELLLTTE L LRI TE P PLLL I P LT L LA L LL T E P LT A i i i i il ridriililt/
void RL_Framework_Class::Approx_Sarsa_Learning(long int numOfTrial,
ofstreami& fout, ostream out)

{

stringClass action, nextAction;

validActionClass move;

double reward;

double x_percent = 0.01, process, nextQ;

randomNumClass random;

BOOL print = FALSE;

for (int i=0; i<numOfTrial; i++) // for each game
{

initialize();

action = "";
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if (random.randomInteger(1,2) == 1) // opponent to start
curState = envir->chooseAction{curState, action);

move.generate(curState) ;

action = policy->choose(*Q, move, curState); // take action a

if (i 4 1000 == 0)

{ // print every state transitions once every 1000 games
print = TRUE;
gameFile << "#xxkxik Game " << i+l << " #kkkkxx" << endl;

}
// *kkkkkkkkkk ADpDroX Sarsa kkkEkdkkk
do // for each move of a game
{
if (print)
printState();
nextState = envir->chooseAction(curState, action);
rewvard = envir->feedback(nextState);
if (envir->gameOver(nextState)==FALSE)
{
move.generate (nextState) ;
nextAction = policy->choose(*Q, move, nextState); // choose a’
// Sebastian’s method
next(] = gamma * Q->getValue(nextState, nextAction);
}
else next(] = reward;
Q->setValue(curState, action, nextQ);
if (print)
printState();
curState = nextState; // s := s’
action = nextAction; // a = a’
}
while (envir->gameOver(curState) == FALSE); // until s is terminal
if (print)
{
printState();
print = FALSE;
}

envir->keepScore(curState, fout);

process = (double)i / (double)numOfTrial;

if (process >= x_percent)

{
out << int(process*100) << "%" << endl;
x_percent += 0.01;

}

if (i % 1000 == 0)
approx_GreedyPlay(out) ;

}

out << "100%" << endl;
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LELITEIITETITELIT LI LI IR LI L ELIE T EEILIT I EEL L L E2 i1 LEEIeielteiieeeiiiy

//
1/
1/
1/
1/
//
//
I
//
//
5,
1/

DESCRITION: On-Policy Q-learning. The Q-value is stored in hash table

PSEUDOCODE: Initialize Q(s, a) arbitrarily
Repeat (for each trial):
Initialize s,a
Repeat (for each step of trial):
Take action a, observe r
Choose a from s’ using policy derived from Q(eg. e-greedy)
0(s,a):=Q(s,a) + alphal[r + gamma.Q(s’,a’)-0Q(s,a)]
a :=a’; s :=8';
until s is terminal

LITITETITETLLETTI LI T LI LT ELPTLT LTI E0 L LTI IL i Tiiiieiiiriiieiiieiiiiiiiy

void RL_Framework_Class::Table_Sarsa_Learning(long int numQfTrial,

{

ofstream& fout, ostreamk& out)

stringClass action, nextAction;
validActionClass move;

double reward, Qvalue;

double x_percent = 0.01, process, next(;
randomNumClass random;

BOOL print = FALSE;

for (int i=0; i<num0fTrial; i++) // for each game
{
initialize();
action = "";
if (random.randomInteger(1,2) == 1) // opponent to start
curState = envir->chooseAction(curState, action);
move.generate(curState) ;
action = policy->choose(*Q, move, curState); // take action a

if (i% 1000 == 0)

{ // print every state transitions once every 1000 games
print = TRUE;
gameFile << "#xk#kkk Game " << i+l << " sckdkkx" << endl;

}
// *xxxkxxkk Table Sarsa Learning #xsxkxxxx
do // for each move of a game
!
if (print)
printState();

nextState = envir->chooseAction(curState, action);
reward = envir->feedback(nextState);

Qvalue = (->getValue(curState, action);
if (envir->gameOver(nextState)==FALSE)
{

move.generate(nextState);
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nextAction = policy->choose(*(, move, nextState); // choose a’
nextl = Q->getValue(nextState, nextAction);

}

else nextQ = 0.0;

Qualue += alpha * (reward + (gamma * nextQ) - Qvalue);
Q->setValue{curState, action, Qvalue);

if (print)
printState();

curState = nextState; // s := 8’

action = nextAction; // a := a’
¥
while (envir->gameQver(curState) == FALSE); // until s is terminal
if (print)
{

printState();

print = FALSE;
}

envir->keepScore(curState, fout);

process = (double)i / (double)numOfTrial;

if (process >= x_percent)

{
out << int(process*100) << "J" << endl;
x_percent += 0.01;

}

if (i %4 1000 == 0) // test agent’s knowledge every 1000 games
table_GreedyPlay(out);

}

out << "100%" << endl;

LIIIITILITITERIIET LI TTL T LT LT EL T L2 i i T i iiiriieliril s
// Print out state to analyse the decision selected by the agent...

LELLELTIEELLEELETELITETEIITEE T LT T LT L I T L LTI T iriieiriiey

void RL_Framework_Class::printState()

{

int 1i;

gameFile
<< curState[0] << "|" << curState[1]
<< "|" << curState[2] << endl

<< il_,+_+_,tl << n |I;
for (i=0; i<3; i++)
if (curState[i] == ' ?)
gameFile << setw(15) << [->getValue(curState, i);
else gameFile << setw(15) << " ¥;

gameFile
<< endl << curState[3] << "|" << curState[4]
<< "|" << curState[5] << " ".
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for (i=3; i<6; i++)
if (curStatefi] ==’ ?)
gameFile << setw(15) << (Q->getValue(curState, i);
else gameFile << setw(15) << " ";

gameFile << endl << "—+-+-" << " i
for (i=6; i<9; i++)
if (curState[i] == * ?)
gameFile << setw(15) << Q->getValue(curState, i);
else gameFile << setw(15) << " "

gameFile
<< endl << curState[6] << "|" << curStatel[7]
<< "|"™ << curState[8] << endl << endl;

LETEITTLIZILL LT ELTERELI I 207720000801 LI il Eriiiiiirizeiieieiiee
// Agent play greedily for 100 games. Only greedy play allows unbiased
// assessment of the agent’s ability to learn the task.

//

// This function is called if Q-value is stored in hash table
LIVELLELEIEIELLLLELEI LI PLELEL LI LI LI P27 L L i Il rEiiiiiieritesriti
void RL_Framework_Class::table_GreedyPlay(ostream& out)

{

stringClass action, nextAction;

validActionClass move;

randomNumClass random;

double reward, next(Q;

int win=0, draw=0, loss=0;

double meanSquaredError, sumMSE=0.0, error=0.0, target, output;
int numOfDecision=0;

for (int i=0; i<100; i++) // for each game
{
initialize();
action = "";
if (random.randomInteger(1,2) == 1) // opponent to start
curState = envir->chooseAction(curState, action);
move .generate (curState) ;
action = policy->exploit(*Q, move, curState); // take action a

/7 **kxkxxx*x Table Sarsa Learning k*kkmkkk
do // for each move of a game
{

nextState = envir->chooseAction(curState, action);
reward = envir->feedback(nextState);
if (envir->gameOver(nextState)==FALSE)

{
move.generate(nextState);
nextAction = policy->choose(*Q, move, nextState); // choose a’
next( = Q->getValue(nextState, nextAction);

}

else nextl] = 0.0;
output = (->getValue(curState, action);
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target = reward + (gamma * nextQ);
meanSquaredError = 0.5 * pow((target - output), 2);
sumMSE += meanSquaredError;

curState = nextState; // s := g’

action = nextAction; // a = a’
numOfDecision++;
}
while (envir->gameQOver(curState) == FALSE); // until s is terminal
if (envir->feedback(nextState) == 1)
win++;
else if (envir->feedback(nextState) == -1)
loss++;

else draw++;

}

// mean square error analysis

meanSquaredError = sumMSE / double(numOfDecision);

out << "Win(" << win << "), Draw(" << draw << "), Loss(" << loss << "), "
<< meanSquaredError << endl;

playFile << setw(10) << win << setw(10) << draw << setw(10)
<< loss << setw(10) << meanSquaredError << endl;

}

LILIEETIITELTT LI ETLLIIILL L7 0T 2L L LI I IF LI T LR 2 071008 EEEELEIEiiiriiizeiriiiiei
// Agent play greedily for 100 games. Only greedy play allows unbiased
// assessment of the agent’s ability to learn the task.
/!
// This function is called if (-value is approximated using neural network
LEELLLLELLEL AL LLL IO LELLT P LI P I i iitiiiiiirtiiriiielrt
void RL_Framework_Class::approx_GreedyPlay(ostreami out)
{

stringClass action, nextAction;

validActionClass move;

randomNumClass random;

int win=0, draw=0, loss=0;
double meanSquaredError, sumMSE=0.0, error=0.0, target, output;
int num0OfDecision=0;

for (int i=0; i<1i00; i++) // for each game
{
initialize();
action = "";
if (random.randomInteger(1,2) == 1) // opponent to start
curState = envir->chooseAction(curState, action);
move.generate{curState);

action = policy->exploit(*Q, move, curState); // take actiomn a
// **xxxkkx Table Sarsa Learning #xxsoksskkx

do // for each move of a game

{

nextState = envir->chooselAction(curState, action);
if (envir->gameOver(nextState)==FALSE)



—

{
move.generate(nextState) ;
nextAction = policy->choose(*Q, move, nextState); // choose a’
// Sebastian’s method
target = gamma * Q->getValue(nextState, nextAction);
}

else target = envir->feedback(nextState);

output = (Q->getValue(curState, action);
meanSquaredError = 0.5 * pow((target - output), 2);
sumMSE += meanSquaredError;

curState = nextState; // s := s’
action = nextActiom; // a := a’
numDfDecision++;
}
while (envir->gameDver{curState) == FALSE); // until s is terminal
if (envir->feedback(nextState) == 1)
win++;
else if (envir->feedback(nextState) == -1)
loss++;

else draw++;

}

// mean square error analysis

meanSquaredError = sumMSE / double(numOfDecision);

out << "Win(" << win << "), Draw(" << draw << "), Loss(" << loss << "), "
<< meanSquaredError << endl;

playFile << setw(10) << win << setw(10) << draw << setw(10)
<< loss << setw(10) << meanSquaredError << endl; // print to file
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LIITEEEITEITEE I LTI 7002 AT LTI EL LT ELELLTLEPITILL2EELLLLEEILLIIEEIILLEEtlLLitsl
// policy.h - interface file

LEELLITTELTEL LTI P2 EL L LI PP ELLE LT L LI EE i iitriilitiilieeiis
#include "str.h"

#include “"random.h"

#include "experience.h"

#ifndef POLICY
#define POLICY

LIFEEEEIIITTIELLTETELETEL LT TLLEL L LTI LTI TP LR EL i i 1007411111117
// Generate valid play or decision based on the state
LILETELETTLLLLLLREIL L EELI 2L 0T EIPIELIIE T LRI 2L EII 10011101 11171101117
class validActionClass
{
private:
int count; // number of valid action selection
stringClass action[9];
stringClass convToStr(int);
public:
validActionClass() { count=0; }
int getCount() comst { return count; }
stringClass get(int i) const { return action[il; }
void generate(const stringClassk);
Y
LILITETIIILLTIIILLELETIT LI EP 7 2P I L LTI PP FEL I PEL LI 2L T T L1120 1011117711777
// Policy Class - agent’s policy or strategy in decision making
1/
// Default policy is now epsilon greedy
LELLLELLILLLLIIL I ETLEL T TR AT 2L EE L L2 0T AT EEI LI T LI L i eeiiieriieilety
class RL_Policy_Class
{
protected:
randomNumClass rng;
int numOfGreedyAction;
double explorationRate;
public:
RL_Policy_Class(double expRate) { explorationRate = expRate;
numDfGreedyAction=0; }
stringClass exploit(RL_Qvalue_Class&, const validActionClassk,
const stringClass&);
virtual stringClass explore(RL_Qvalue_Class&, const validActionClassk,
const stringClass&) { return "NULL"; }
virtual stringClass choose(RL_Qvalue_Class&, const validActionClassk,
const stringClassk);
virtual double getExploration() { return explorationRate; }
virtual void setExploration(double e) { explorationRate=e;}

};
LITEEITIETTLELTIE T AT I P70 0001007 EEP 7L T EE LI ETEEl T i E1tiiiiiily
// Epsilon Greedy... inherit most functions from Policy_Class

LILTELLLLLLIELLTLLLILLELLEI LTI P TL LI L LT I AL i ieiirriitrl1y/
class RL_Epsilon_Greedy_Class : public RL_Policy_Class
{
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public:
RL_Epsilon_Greedy_Class{double epsilon) : RL_Policy_Class(epsilon) {}
virtual stringClass explore(RL_Qvalue_Class&, const validActionClassk,
const stringClassk);
ks
SIELEEILILLILEILRITLETL TP L2 LS 2L LI I LTI IRI L LTI iEliE7ir117100111171]
// Softmax_Class or simulated annealing or boltzmann distribution
TIELLTLLIIHLL LI EL T LIITE L LI LS P2 L P LI I EiiEiiiiiiiiliieies/
class RL_Softmax_Class : public RL_Policy_Class
{
public:
RL_Softmax_Class(double tau) : RL_Policy_Class(tau) {}
virtual stringClass choose(RL_Qvalue_Class&,
const validActionClass&, const stringClassk);
virtual stringClass explore(RL_Qvalue_Class&,
const validActionClass&, const stringClassk);

¥;

#endif POLICY
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LITETETILITILEL LTI EELIEELL LT IE LI LT ELELLTLLLII LTI 00E1E00Ei11771111110111111¢07
// policy.cpp - implementation file
LILIEELTIITEELLL L2 2L P EI2 L ELL 20T ELEL AT I EE LI I 7 2l i7 i1 tieiirieiieeilriy
#include <stdlib.h>
#include <string.h>
#include <math.h> // for exponential function in softmax
#include "policy.h"
LEEITELETITILELL T EET IR EL LI L L2 I L L LI AL LTI P I Eririiridiiieriieieieiieeiri
// convert the valid action from character to stringClass
IINTLITILTEI LI LTI EPL L L LR IR P I T I LL LT 2L LT 71271771021 10712011177111
stringClass validActionClass::convToStr(int i)
{
stringClass temp;
char num[3], *s;
s = num;
num[0] = 0’ + i;
num[1] = ’\0?;
temp = s;
return temp;
}
LETLTETELITEETT LTI ELT L LT 0P LT LTI L LI L L EE LA T i ieiiiiriietliriire’
// Generate the legal decisions based on the tic tac toe state
LITIEEPITITITEL LA PIELL PP T2 L0020 E LI EEEIELEL LI PI i L i LErizilliiiilieliresi
void validActionClass::generate(const stringClassk state)
{
count = 0;
for (int i=0; i<9; i++)
if (state[i] == 7 ?)
action[count++] = convToStr(i);
¥
LITLLTIIIIILELEI LI TE LT LI I L0 TP I 2700001078717 E1711E117117
// Greedy policy. Choose the best action available
LITIEELLTIELTIELN LI EL P EL LTI LTI P I L e it i iiiriiiesriteriief
stringClass RL_Policy_Class::exploit(RL_Qvalue_Class& value,
const validActionClass& action, const stringClassk state)
{
stringClass tempAction;
stringClass *tie = new stringClass[action.getCount()];
int num0fTie = O;
if (action.getCount() > 0)
{
tempAction = action.get(0);
tie[0] = action.get(0);
}
else
{
cerr << "No available action" << endl;
exit(0);
¥
double greatest, tempVal;
greatest = value.getValue(state, tempAction);

for (int i=1; i<action.getCount(); i++)

{
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tempAction = action.get(i);
tempVal = value.getValue(state, tempAction);
if (tempVal > greatest)

{

greatest = tempVal;

num0OfTie = 0;

tie[num0fTie] = action.get(i);
}

else if (tempVal == greatest)
tie[++num0fTie] = action.get(i);
}
if (num0fTie == 0)
return tie[numDfTie];
else
{
int tieBreak = rng.randomInteger (0, numOfTie);
return tie(tieBreak];
¥
}
LHIPILEIILILLLLP T T LT L LS LI PP LTI r i e iririrririeiesl
// Default policy is epsilon greedy. If epsilon is 0.1 that means the agent is
// exploring 10 percent of the time. The rest are all greedy moves.
LITILILITLLITTIII I LTI P20 ELTI 1001702 L 070708012 ErEL710E71171711¢4717
stringClass RL_Policy_Class::choose(RL_Qvalue_Class& value, const
validActionClass& action, const stringClass& state)
{
nunOfGreedyAction++;
double greedyness = (double) (1.0/num0fGreedyAction);
stringClass chosen;
if (greedyness <= explorationRate)
{
chosen = explore(value, action, state);
num0OfGreedyAction = O;
¥
else chosen = exploit(value, action, state);
return chosen;
¥
LILELTEIELILL LTI EL L LTI LI TP DT E LT L LA E TP r i il iiiiiriiiiriiii
// make random decisions
LITIEIEITELIELLLITET LI I LT LTI LIS L L EL I E2 L EE LI IL i E T E el 1 il Ir1iiirlrie
stringClass RL_Epsilon_Greedy_Class::explore(RL_Qvalue_Class& value,
const validActionClass& action,
const stringClassk state)

int random = rng.randomInteger(0, action.getCount()-1);
return action.get(random);
}
LITILITIILELELLTELEIIEIII I LTI L LR P LT 7007010200100 E 0TI i1y
// explorationRate is a positive parameter called the temperature. High
// temperatures causes the actions to be all (nearly) equi-
// probable. Low temperatures cause a greater difference in
// selection probability for actions that differ in their
// value estimates.

/!
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// The most common soft-max method uses a Gibbs or Boltzmann
// distribution. It chooses action a on the (t+1)st play with
// probability

//
i

policy t+i(a) = (e~ (Qt(a)/tao))/(summ (e~Qt(b)/taoc))

LILLLLTITITLITIIEIEIIEEL I ILL L L7200 E PP L LL T T I TEL T LA T IR EEL L1111 1117

stringClass RL_Softmax_Class::explore(RL_Qvalue_Classk value, const

{

validActionClass& action, const stringClass& state)

double preference, HIGHEST;

stringClass tempAction;

stringClass *tie = pew stringClass[action.getCount()];
stringClass ties;

int num0fTie = 0;
if (action.getCount() < 0)
{
cerr << "No available action" << endl;
exit(0);
¥
double summ = 0.0;
for (int i=0; i<action.getCount(); i++)
{
tempAction = action.get(i);
summ += exp(value.getValue(state, tempAction) / explorationRate);
}
tempAction = action.get(0);
HIGHEST = exp(value.getValue(state, tempAction) / explorationRate) / summ;

for (i=1; i<action.getCount(); i++)
{
tempAction = action.get(i);
preference = exp(value.getValue(state, tempAction)/explorationRate) / summ;

if (preference > HIGHEST)
{
HIGHEST = preference;
num0fTie = 0;
tie[num0fTie] = action.get(i); // reset tie action
}
else if (preference == HIGHEST)
tie[++num0fTie] = action.get(i); // add tie action to list

}

// handle tie if there exist any

if (num0fTie == 0)
return tie[num0fTie];

else

{
int tieBreak = rng.randomInteger (0, numOfTie);
return tie[tieBreak];
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LIETELITEIIL LTI ELI L7 2 T P LN T I EP L Er it irtiiitiiiririiiiiiretrl/
// environment.h - interface file

LILIELLLTILLP P EIL L E L2 77 L EL LRI LI il it rtititirelly
#ifndef ENVIRONMENT

#define ENVIRONMENT

#include <fstream.h>
#include "rlstd.h"
#include "str.h"
#include "random.h"

LILITITLLLELI LIS P TLEL L L2 LT T L EI L LT i il riiiliilisisi/
// RL_Enviromment_Class definition
LEIILLTEELEL L LTI ELEL LTI EL ST EL LI ETEL LI B EL AL i i it iriitiriiie
class RL_Environment_Class
.[
protected:

int gameCount;

int num0OfWin;

int num0fLoss;

int numOfTie;

double rewardWin;

double rewardTie;

double rewardLoss;

double rewardNone;

public:
RL_Environment_Class(double w, double t, double 1, double n)
{ gameCount=0; num0fWin=0; num0fLoss=0; num0fTie=0;
rewardWin = w; rewardTie = t; rewardlLoss = 1; rewardNone = n; }
virtual “RL_Environment_Class();

virtual stringClass chooseAction(const stringClassk, const stringClass&)=0;

virtual double feedback(const stringClassk)=0;

virtual BOOL gameOver(const stringClass&)=0;

virtual void keepScore(const stringClass&, ofstreami)=0;

virtual stringClass chooseRandomly(const stringClassk, const stringClass&)=0;
}
LILLPILELELLLELEIILLL 20 TL 20020 LL0 0 TEELETI0 0TI 70 AT 1L 0000100000 7170007100171
// Connect3 == Tic Tac Toe : Class definition
TIETEELLILLLITILE T TP R T IT LT 2L LTI P T T LT L L I IETTT L LI P AT IE AL iirey
class RL_Connect3_Class : public RL_Environment_Class
{
private:

enum { Xwins=1, Owins=-1, Tie=2, None=0 };

enum { X=1, 0=-1 };

int vals[19683]; // 379 -- not all positions are accesible, however

int difficulty;

int player;

int type;

randomNumClass random;

public:
RL_Connect3_Class{int, double, double, double, double);



virtual “RL_Connect3_Class();

int boardToInt(const stringClass&);

int testWon(const stringClassk);

int minimax(const stringClass&, int, int);

stringClass chooseAction(const stringClassk, const stringClass);
BOOL gameQOver(const stringClass&);

double feedback(const stringClass&);

void keepScore(const stringClass&, ofstreamk);

stringClass chooseRandomly(const stringClass&, const stringClassk);

¥

#endif ENVIRONMENT

99
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LITELILETILETEITII2EITEL 222 EELILEEELEEEEELLEETRELLLEELELLEELIIELERILEEEELEIEELEE
// environment.cpp - implementation file

LIITILELLLELELLEEL LA 0T E L L EL LI LI I L LE I EL i i Etiitlieitititiey
#include <iostream.h>

#include <iomanip.h>

#include <stdlib.h>

#include <time.h>

#include "environment.h"

LILELELLITELLETLEL TP LI L LS LI L LT LI L LI L LI EE i iiitiitlieietietiisl
// default destructor

LIITELLIITEL L L2800 EL LR LRI EL LTI LL i iiitizitiilitielieiliss
RL_Environment_Class:: RL_Environment_Class()

{}
LIIIELLEELELTELZELLELLIL LT ELELLETEELL LIS EL LI LR PLL AL ELLEL L L L L1 ELL T
// default destructor

LELLLLILELLELELI I EPILEL IR0 E0 8027107108000 EEL T LA LI e dEilililiiiiill
RL_Connect3_Class:: RL_Connect3_Class()

{

}

LITTETELELLLLEL I T LTI L LA ELEL L L LA ELTE I L iiiiriniriilliitil/
// Print score every 100 games into a file

LILIETTLLLLEEL LTI LR L L ELEL LTI EL L L ELEL LI i E e i il tiririell/
void RL_Connect3_Class::keepScore(const stringClass& state, ofstream& fout)

{

gameCount++;
switch(testWon(state))

{

case Xwins: numOfWin++; break;

case Owins: numOfLoss++; break;
case Tie: numDfTie++; break;
default: fout << "The game is not ended, big error <keepScore()>!" << endl;
}
if (gameCount == 100)
|
fout << setw(10) << numOfWin << setw(10) << numOfTie
<< setw(10) << numOfLoss << endl;
gameCount = 0;
num0fWin=0;
num0OfLoss=0;
num0fTie=0;
}
}
LELLLLELEL I ELLL LI LT L LI E L L L L L LI LI T Il iitiitiriiitiflit/
// constructor - the agent is playing X and the opponent is using 0
LILELLIIEI LI LR PRI 0PI L L T I P L E i i I i I il iiiilliir/
RL_Connect3_Class::RL_Connect3_Class(int diff, double w, double t,
double 1, double n) : RL_Environment_Class(w, t, 1, n)

{
srand (time(NULL)) ;
player = X;
difficulty = diff;
}

LILITITLTELLLLLELLIITLIILLLTLIIIELEELIL I L L L LTI iiiiririielieiy

// return true if game is over or vice versa
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LITELITELLTTELI T L 202 P T I 2L 7L L7 iP i i it iiiiilinieiieiiiriry
BOOL RL_Connect3_Class::gameOver(const stringClass& state)
{

int over;

over = RL_Connect3_Class::testWon(state);

switch(over)

{

case None: return FALSE;

default: return TRUE;

}
}
LITTLIEEELT I ET LT L LT L EL I L L il iirliiieellrilil
// feedback that the agent receives concerning the agent’s decision
LITLEELLEELLETI I LIS E LI i Ll iiriiiriititiitifirtiriidrirediredirifiiriesii
double RL_Connect3_Class::feedback(const stringClassk state)
{

int status;

status = RL_Connect3_Class::testWon(state);

switch(status)

{

case Owins: return rewardLoss;

case Xwins: return rewardWin;

case Tie : return rewardTie;
default : return rewardNone;
}

}
THEHEETEEEEETITITELEI LT IL IR EEE I EF P TP I fEEETEE T I i T T it i iiiiiieirtliiiiitiss’
// maps the board to a number that used as an index entry in an array
TILETLELTLESEL LT LTI LT ELE LI L L LTI EF LTI PP LTI i L i ri it iriridritily
int RL_Connect3_Class::boardToInt(const stringClass& board)
{

int i, out = 0, exp = 1;

for (i=0; i<9; i++, exp *= 3)

{
switch(board[i])
{
case ' ': // zero
break;
case 'X': // one
out += exp * 1;
break;
case '07: // two
out += exp * 2;
}
}
return out;

5
LILEELTETLLETILEE LI LTL LTI ETLLELLEFELLEILLTIIL I IR LI PET P EI i itriitiiriii
// test whether board configuration is a winning one..
LILETLLLLLLITTLIILLL PRI I TLLETLLI I 2L L 7000008010007 TEEIE e TiEr i riiiiediisy
int RL_Connect3_Class: :testWon(const stringClass& board)
{

int 1, flag=0;

stringClass b(board) ;
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if ((b[0] == ’X’ && b[1] == X’ && b[2] == °X’) ||

(b[3] == ’X’ && b[4] == X’ && b[5] == X’) |
(b[6] == ’X’ && b[7] == ’X’ && b[8] == ’X’) ||
(b[0] == ’X’ && b[3] == ’X’ && b[6] == ’X’) ||
(b[1] == "X’ && b[4] == ’X’ && b(7] == ’X*) ||
(b[2] == X’ && b[5] == ’X’ && b[8] == 'X*) ||
(b[0] == ’X’ && b[4] == 'X’ && b[8] == 'X’) ||
(b[2] == ’X’ &% bl[4] == X' && b[6] == 'X’))

return Xwins;

if ((b[0] == '0’ && b[1] == ’0’ && b[2] == ’0’) ||
(b[3] == 0’ &% b[4] == ’'0’ && b[5] == ’0°) ||
(b[6] == 0’ && b[7] == 0’ &k b(8] == ’07) ||
(b[0] == '0’ && b[3] == 'D’ &k b[6) == '0’) ||
(b[1] == 0’ && b[4] == '0’ &% b[7] == ’0’) ||
(b[2] == 0’ && b[5] == ’0’ && b[8] == '0’') ||
(b[0] == 0’ && b[4] == 0’ && b[8] == ’0’) ||
(b(2] == ’0’ && b[4] == 0’ && b[6] == '0’))

return Owins;

// test for tie

for (i=0; i<9; i++)

{
if (b[i] == 1 ?7)

flag=1;

1

if (!flag)
return Tie;

return None; // game’s not over

}
LITELELETELEEITTIIEEP LTI 20 TL 7000 E 7770000120000 EE i 20 LTIl iriiiriiiiierieel
// Minimax algorithm
LILTELELIL I LTI LI PP LTI AL LTI PP LI ES LI P E i i it iitriiis/
int RL_Connect3_Class::minimax(const stringClass& state, int pl, int depth)
{

stringClass board(state);

int best, val;

int i, index;

index = boardToInt(board);

if ((vals[index] % 10) >= depth)

return vals[index] - (vals[index] % 10); // since 0 is a valid value

// we don’t want use the memorized value if it is shallower than
// we’'re allowed to go--in fact, this doesn’t matter since the memoization

// goes away with each move, but otherwise it would.

if (depth > difficulty)
return 0;

if ((val = testWon(board)) != None)

switch(val)
{
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case Xwins:
case Owins:
return 1000 * val;
case Tie:
return 0;
1
}
best = -pl * 1000000;
for (i=0; i<9; i++)

{
if (board[i] == "’ ?)
{
board[i] = (pl == X) 7 ’X’ : ‘0%,
val = minimax(board, -pl, depth+1);
if (val * pl > best * pl)
best = val;
board[i] = * ';
}
}

vals[index] = best + depth;
return best;
}
LIETLLTIIIEIIL I LT TEL I I LI T L0 LL P TITL LI E L2 i LI LI iEietltiiieiiiiy
// find move based on the state of the game using the minimax algo
LITIEITLLILELZIIIEITL R L LT TETII LT AL LPT LTI T i i i iriiiiiiiirizeiiiieiill
stringClass RL_Connect3_Class::chooseAction(const stringClassk& state,
const stringClass& action)
.[
stringClass board(state);
stringClass tempAction{action);
int act;
if (tempAction !'= "") // if action is "", it means it is the start of game
{
act = (int)tempAction;
if (player == X)
board[act] = *X’;
else board[act] = ’'0’;
¥
stringClass nextState(board);

if (!gameDver(nextState))
{

int best, val, besti[9], i, bestcount = 0;

// find the computer’s move, not the player’s
int pl = -player;
best = -pl * 1000000;
for (i=0; i<9; i++)
{
if (board[i] == ? ?
{
board[i] = (pl == X) ? ’X’ : ’0’;
val = minimax(board, -pl, 1);
if (val == best)



}
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best = val;
besti[bestcount++] = i;
¥
else if (val * pl > best * pl) {
best = val;
bestcount = 0;
besti[bestcount++] = i;
¥
board[i] = ! ’;
}
}
if (bestcount > 0)
{
i = rand()%bestcount;
nextState[besti[i]l] = ’D’;
}
¥

return nextState;

LEIPITEELTLLLIIELEIITLLELLLLLLTLLEL 220000008 L0 0000 E0ELI2 008200000000 0000707700101017
// like the name suggest, make a random move

LILITETILLELILTL LI LI LL R LL LI LLEELTTELE LI L L L0 EL 2L Ii i Eririrel iy
stringClass RL_Connect3_Class::chooseRandomly(const stringClass& state,

{

const stringClass& action)

stringClass board(state);
stringClass tempAction{action);

int act;
if (tempAction != "") // if action is "", it means it is the start of game
{

act = (int)tempAction;
if (player == X)
board[act] = ’X’;
else board[act] = '0D’;
}
stringClass nextState(board);
int valid[9], vcounter=0;

if (!gameOver(nextState))

{
for (int 1=0; i<9; i++) // looking for winning moves
if (nextState[i] == ’
valid[vcounter++] = 1i; // store valid move
if (vcounter > 0)
i = valid[random.randomInteger (0, vcounter-1)]; // random moves
nextState[i] = ’'0’;
}

return nextState;
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LITETILILETITIIII L LI 2SI TIL LI LR LE LTI AL LTI TE 2 EEEiiLEelIzLi1ile/
// experience.h - interface file

TIITEELEETELLELLLL L0 L2 P L L L I E LTI LI EEliiiiiiieseses
#ifndef EXPERIENCE

#define EXPERIENCE

#include <fstream.h>

#include "rlstd.h"

#include "backpropl.h"

#include "str.h"

LITTIITITIIT LI LEEIEEI LI E 1L LTI EP 217 EEE 7T i riieiltieil i
// The parent class that implement the Q-values

// - Q value is either stored in a hash table (RL_Hashing Class) or

// - approximated using a neural network trained by backpropagation algorithm
£ (RL_Neural_Network_Class).

//
LEVITTTLZETIZLTLIETEEL I ELELI TP EI T L0007 1720700101 Eiriilieiiiieesl
const long TTT_STATE = 25001; // hash table number of rows, must be prime
const long TTT_ACTION = 9; // hash table number of columns

const long R = 24991; // a variable of the hash function given below

class RL_Qvalue_Class
{
protected:
fstream net;
double value;
double initValue;
int displayStatelnfo;
public:
RL_Qvalue_Class(double, int);

virtual “RL_Qvalue_Class() {};

virtual double getValue(const stringClassk, const stringClass&) = 0;
virtual void setValue(const stringClass&, const stringClass¥&, double)=0;
double getValue(const stringClassk, int);

void setValue(const stringClass&, int, double);

virtual double max(const stringClassk) = 0;

e
JIIILLIPELIPR I ELL I TEL L L LR L LTI DL L il ielirriiililiieili/
// Hash Table Class definition

!/ - implement double hashing from Mark Allen Weiss’s book

1/ - hash table is written to an output file to reduce memory requirement
1/ - hash table is State (X) x Action (Y), a two dimensional array file
// - h(x) =R - (x mod R) is the first hash

// - if collision happens, then probe h(x), 2h(x),. .so on.(double hash)
F£'4

LITLEILLETTEELLIEIL LR LI LI LR EL AL ET LI T L i L i i i T i iiiiiirtlirire’
class RL_Hashing_Class : public RL_Qvalue_Class
1
private: // Attributes
stringClass state[TTT_STATE];
stringClass fileName;
fstream stateAction; // state action pair Q-value hash table file
int key;
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int distance; // distance for rehashing if collision occurs
int hashValue; // the value mapped from input

long int collision; // number of collisions

int actionLength; // length of a stored Q-value in the file

int statelength; // length of one row
long int cellPosInFile; // cell position in the hash table
private: // Operations

int hash(const stringClassk);
int doubleHash(int);
void insert(const stringClassk);
BOOL find(const stringClassk);
void initStateAction();
public: // Operations
RL_Hashing_Class(double, int);
virtual "RL_Hashing_Class();
int getKey();
virtual double getValue(const stringClassk, const stringClassk);
virtual void setValue(const stringClassk, const stringClassk&, double);
virtual double max(const stringClass&);
};
v ivs

// Neural network abstraction

// - the key operations are stored in backpropl.h

// - the source code of the backpropagation algoe in backpropl.h is from
1/ Roger’s book Object Oriented Neural Networks in C++

1/

TILEIEELELITELI L LTI LTI L LTI LL LI LRI P LI L L L it i i i riiiiiitiretilrrs
class RL_Neural Network_Class : public RL_Qvalue_Class

{

// 2 binary numbers to represent a tic-tac-toe square.

// The network is a 3 layer 18:H:9 architecture.

enum { inSize = 18, outSize = 9, layer = 3 };

private:
double input[inSize];
double output[outSize];
Backprop_Network *BPnet; // the neural network trained using backprop
Pattern *datal(4];

void binaryInput(const stringClass&, int);

public:
RL_Neural_Network_Class(int, double, double, int, const stringClassk,
double, double, int);

virtual "RL_Neural_Network_Class();

virtual double getValue(const stringClassk&, const stringClassk);
virtual void setValue(const stringClass&, const stringClass&, double);
virtual double max(const stringClassg);

void initialize(const stringClass&, double);

g 57

#endif EXPERIENCE
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LILELITIEIELELTEL LI TP LTSI EL L LI LI LRI E L LRI E L i iiiiillieilzy
// experience.cpp - implementation file
IILFEILEEILEI IR I 207007000000 ET LRI ET I 7 tEliliilieiriitelirilss
#include "experience.h"
#include "random.h"
#include <iomanip.h>
#include <memory.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
LEELTLLLLLELLTEL I I LEL LI E LI LT L LI LPLL eI L i il iEsllitllLreiy
// constructor
LILTILELLL LT T ELELL L LT T LI LLL 2L LTI LE LT E i i e il iirifelly
RL_Qvalue_Class::RL_Qvalue_Class(double n, int d)
{

initValue = n;

value = (double)0.0;

displayStateInfo = d;
}
LITTHITIEIT I L ETLE LI E L P2 I I E LR i il riiifriiiieliieilll
// return state-action Q-value.
LILEELLTIZL LI ET LTI LE LI LT LTI i i i il iitrirriiiriiiiiiill
double RL_Qvalue_Class::getValue(const stringClass& s, int a)
.{

char act[3];

act[0] = a + '0’;

act[1] = °\07;

stringClass strAct = act;

return getValue(s, strAct); // virtual function
1
LILELLLEEI LTI T LE LI LT L2 TP T E I EIE T EE i il iiiliilitiriiriell
// set state-action Q-value
JILLLTELELEILL LTI P2 E LT T2 L L L i it il iriifiliititielil/
void RL_Qvalue_Class::setValue(const stringClass& s, int a, double Q)
{

char act[2];

act[0] = a + '0’;

act[1] = ’\0’;

stringClass strAct = act;

setValue(s, stréAct, Q); // virtual function
}
LITIELLEEITLELELLIIIEEL 2L PP L2008 L LI LTI LI 1l EE 17 iEttr1riieillr/
// Hash table constructor. g.txt is the file (Q-table. used to reduce memory req.
LILLLLELEELE L EL LI LI EL LR L PRI L P B L i i it iiitiiiieiriry/
RL_Hashing_Class::RL_Hashing_Class(double n, int d) : RL_Qvalue_Class(n, d)

{
collision = 0;
key = 0;
hashValue = 0;

fileName = "q.txt";
RL_Hashing_Class::initStateAction();
collision = 0;
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RN R Ry N naadii
// destructor
LITELITILLEIIIL 2000780000807 LI E I EL il il lrelrlrrirttiitlly
RL_Hashing_Class::~ RL_Hashing_Class()
{

stateAction.close();
}
LELIVITLELLLEL LI L LI LI LLE TP EL LI LI L i il i iirtilitisitilriris
// map the input (state) into a number, the hashing function
// h(x) = R - (x mod R)
N Ry
int RL_Hashing_Class::hash(const stringClassk s)
{

hashValue = 0;

int powerQOf = 0;

for (int i=TTT_ACTION-1; i>=0; i--)

hashValue += s[i] * (int)pow(2, powerOf++);

key = hashValue %, TTT_STATE;

distance = R - (hashValue % R);

return key;
}
LHEETLETITIIIIT P2 L LT LL LTI IILL 0PI T I E L LI T EEI L LTI 10717010 88877171117
// double hashing. Probe it i * distance if there is a collision
LIITIIETEEEIITLT L LT L EL LI 2RI LER LTI EI L LTI EL L iEr I itEiiiliiiiieiirisy
int RL_Hashing_Class::doubleHash(int i)
{

key += i # distance; // probe at ixdistance

while (key >= TTT_STATE)

key —-= TTT_STATE;

collision++;

return key;
}
LILETTTTTTIIIEEL LT LR LT T 7T T L2 0L EL LI L IL LT LI AT T L i L iiriirirelririliel
// find the entry (Q-value) of state s
LILETETITLET LI EEE PP L 2EL 1 2L T2 LT LI I IT I I LTI i i L iriririiiiliteiiisieel
BOOL RL_Hashing_Class::find(const stringClassk s)
{

stringClass tempState(s);

int index = hash(tempState);

BOOL found = FALSE;

int i=1;

// if entry in state table is not NULL, continue

if (state[index] != "\O")
{
do
{
if (state[index] !'= tempState)

index = doubleHash(i++);
else found = TRUE;
¥
while ((state(index] != "\0") && !found);
X
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else found = FALSE; // NULL, no matching data in state table

return found;
}
LITIPEILIILIEET IR0 2L 2000000070000 0 00070 TE0 2000 EEL70000007100000770102011700¢810117717
// insert an action-value pair (Q-value)
LITILEETLILITLELL LT L0700 0 0000000000080 T L7200 L7000 07000 ETIEPEE11ELEEIE17
void RL_Hashing_Class::insert(const stringClass& s)
{

int index;

stringClass tempState(s);

index = hash(tempState);

int i=1;

while (state[index] != "\0") // not NULL

index = doubleHash(i++);

state[index] = tempState;
}
LIEELETILTIEEEL L2 L LTI TEL LI LA LI L2771 iR LTI iIirlillieiieeiiieitiiiei
// return hash key
LILTETTELITIEEL L2 0 ELIIIILEILLIL LT ELTTLITELT P 2E LTI PP I E1 L IEEE T iitiiiiirire’
int RL_Hashing_Class::getKey()
{

return key;
}
TITELELETIILEETITIP LTI LR P T LI T I LT L LI P LT Ed T E i i 170 EE il iirireiirelsrs/
// initialize the hash table file
IILEPTELLLIELEI LTI L LRI EPE LTI 0L ET LI LTI 7T A0 T 000 EIELELEi T EriiililEtrli7
void RL_Hashing_Class::initStateAction()
{

stateAction.open(fileName, ios::out|ios::in);

stateAction.flags(ios::left);

stateAction.setf(ios::fixed, ios::floatfield);

// use stateAction because not enough memory

for (int j=0; j<TTT_STATE; j++)
{
for (int i=0; i<TTT_ACTION; i++)
{
stateAction << setfill(’0’) << setw(12) << 0.001;
if (i !'= TTT_ACTION)
stateAction << 7 ?;
}
stateAction << endl;
}
stateAction.seekg(0, ios::beg);
actionLength = 0;

char ch;

do // length of an action in the file
actionLength++;

vhile ({ch=stateAction.get())!=’ ’);

// find out the length of STATE * ACTION space
stateAction.seekg(0, ios::beg);
char q[200];
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stateAction.getline(q, 200, ’\n’);

stateLength = strlen(q)+2; // plus 2 because of \0 and \n
}
TIELETIIZELIIL LTI EEL LTI I LTI EEEI T L LI I i eiiiiereiel iy
// return a hash table Q-value
LITETETLIIELET I 22 L ELEITELIT 20020 LT LI RELELELEL I I TP ETIILELEfiirinieriieeiriieieilil
double RL_Hashing_Class::getValue(const stringClass& s, const stringClassk a)
{

int stateKey;

stringClass tempState(s);

if (find(tempState)==FALSE)

insert (tempState);

stateKey = getKey();

stringClass temp(a);
int action = (int)temp;

cellPosInFile = stateKey * statelength + action * actionLength;

stateAction.seekg(cellPosInFile, ios::beg);

stateAction >> value;

return value;
}
HHLITITEIIITIRIIT T T LT 7T A LI TP iT i iiiaiidriiiiiiziiiell
// change a Q-value in the hash table
LITTERTLITLEILLTLTEEI L LTI 2T L L2000 08000 E P L1780 I I il EliElLeiil11i1l7]
void RL_Hashing_Class::setValue(const stringClass& s,

const stringClass& a, double Q)

{

stringClass tempState(s);

int stateKey;

if (find(tempState)==TRUE)
stateKey = getKey();

else {
insert (tempState) ;
stateKey = getKey();

}

stringClass temp(a);

int action = (int)temp;

cellPosInFile = stateKey * statelLength + action * actionLength;
stateAction.seekg(cellPosInFile, ios::beg);
stateAction << setfill(’0’) << setw(12) << Q;
¥
LILIILLETELIEIILIL I ILELITLILIP LT ETLELELLELTLLIALLL LTI ELIL LI 1L 20E711001017177
// the maximum (-value, Q-value is state-action pair value,
// parameter provided the state, so .. check all actions for the maximum
TITTILEIITELLT I LTI EET LI P L P T L2 L 0 PP T2 EL T LTI L0 EiTiiiiirtirreieiy
double RL_Hashing_Class::max(const stringClassg s)
{
stringClass tempState(s};
char chAction[2];
stringClass strAction;
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double temp, max=(double)-1.0;
BOOL exist = FALSE;
for (int action=0; action<9; action++)

{
if (tempStatelaction] == ’ ?)
{
exist = TRUE;
chAction[0] = ’0’ + actionm;
chAction[1] = '\0’;
strAction = chAction;
temp = getValue(tempState, strAction);
if (temp > max)
max = temp;
}
}
if (exist)

return max,;
else return 0.0;

}
LELELLELEETIEL LIS L LI E LT T LTI LI P LT R LI T LI E i il
// neural network constructor
LELILLLLELELLL LI ELLL LI EL L LL LTI EL LI E LI Ll il iiieiiriietizsl/
RL_Neural_Network_Class::RL_Neural_Network_Class(int restore, double a, double
g, int hiddenSize, const stringClass& state, double value,
double n, int d) : RL_Qvalue_Class(n,d)

srand(123) ;

double learning_rate = (double)a;

double momentum = (double)g;

memset (input, 0, inSizexsizeof (double));

memset (output, 0, outSize*sizeof (double));

if (restore) // restore weights from weight.txt

BPnet = new Backprop_Network("weight.txt");
else // create a new network
BPnet = new Backprop_Network(learning_rate, momentum, layer,
inSize, hiddenSize, outSize);}

LIEELTITIIEE LI LI LTI EL I T I T LTI TP T L 100 T 8 AL I i i iiiriiiieiiiiiey
// save the neural network weight before it quits...
TILLTETIITLLEELET LI L TP LI 27T L2707 EE D11 LEri il i iiieriilieiiiiiliizi
RL_Neural_Network_Class:: RL_Neural_Network_Class()
{

// save network weight

ofstream outfile("weight.txt");

BPnet->Save(outfile);

outfile.close();

delete BPnet;
}
LITEEELLLIIIEELT LTI IZII T2 LTI EEPE R EE LI 1T L8P EEEE i iririzeiiriiieiel’
// setup input for state based on the tictactoe board..
£F W Sxog0 -y => 10 "pY=->01
LHILELLLLLELITELILELIIITTIZ LTI EI AL ELE LI I II L0121 8 008001000 171171711117
void RL_Neural_Network_Class::binaryInput(const stringClass& s, int action)
{

stringClass State(s);
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int j=0;
memset (input, O, inSize*sizeof (double));

memset (output, 0, outSizexsizeof(double));

for (int i=0; i<9; i++)

{
switch(State[i])
{
case * !:
input[j++] = 0.0;
input[j++] = 0.0;
break;
case 'X’:
input[j++] = 1.0;
input[j++] = 0.0;
break;
case ’0’:
input[j++] = 0.0;
input[j++] = 1.0;
break;
}
}

)
LETEELIEILITEIEI AL LI 222 LI 0T EL7 0L I7 LT EET I I TLLE20ir717771711180771071¢117
// return the value of an approximated value that is scaled back to range [-1,1]
// to be used in the value function
LIITITELLLITIITITIELIT AT LRI LTL LTI AL LRI PRI P II LTI I L LA 1 ELEI il i1111111171117
double RL_Neural Network_Class::getValue(const stringClass& s, const stringClassk& a)
{

stringClass tempState(s);

stringClass tempAction(a);

int action = {(int)tempAction;

binaryInput(tempState, action);

data[0] = new Pattern(inSize, outSize, 0, input, output);

BPnet->Set_Value(data{0]); // Set Input Node Values
BPnet->Run() ; // Forward Pass

double value;

value = BPnet->Get_Value(action); // 0.0 <= value <=1.0;

delete data[0];

return 2.0*value - 1.0;
}
LITELLLILLIILLTIEITI LT TE LT LLLT LI LTI 2P 0TI AP 2L LA L2 riliiiiiiiiieiitiey
// Q-value [-1, 1] is scaled down to range [0,1] because of the sigmoid function
LILETITETLITTTT LT IEEEII I LTI EE LI L LI I AT I P T i i i1l
void RL_Neural_Network_Class::setValue{const stringClass& s ,

const stringClass& a, double Q)

1

stringClass original(s);

stringClass tempAction(a);

int action = (int)tempAction;
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binaryInput(original, action);
data[0) = new Pattern(inSize, outSize, 0, input, output);

BPnet->Set_Value(datal[0]); // Set Input Node Values
BPnet->Run() ; // Forward Pass
for (int i=0; i<outSize; i++)

output [i] = BPnet->Get_Value(i); // 0.0 <= value <=1.0;

output[action] = (Q+1.0)x0.5;
data[l] = new Pattern(inSize, outSize, 1, input, output);

BPnet->Set_Value(data[1]); // Set Input Node Values

BPnet->Run() ; // Forward Pass
BPnet->Set_Error(data[l]l); // Set Desired Qutput in output layer
BPnet->Learn(); // Backward Pass

delete dataf[0];
delete datal[1];

LILTILETLEI LTSI DI LI ELL 120170777070 0007 00000080011l r177E7
// return maximum Q-value of state s
LILETEEEIILL LI L EL LI LR T EL T TP T T E L L T LI EE i Tt iiiriiiiirirelridy

double RL_Neural _Network_Class::max{const stringClassk s)

{

double tempVal, max = (double)-1.0;
stringClass strAction;
char cAct[3], *pAct;
pAct = cAct;
BOOL availAction = FALSE;
for (int action=0; action<9; action++)
{
if (s[action] == ' ?)
{
availAction = TRUE;
cAct[0] = ’0’ + action;
cAct[1] = ’\0?;
strAction = pAct;
tempVal = RL_Neural_Network_Class::getValue(s, strAction);
if (tempVal > max)
max = tempVal;
}
}
if (availAction == TRUE)
return max H
else return 0.0; // terminal
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