
REINFORCEMENT LEARNING I

GAME PLAYING

By

KEAN GIAP LIM

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1995

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December 1998

REINFORCEMENT LEAR ING IN

GAME PLAYING

Thesis Approved:

U rk;/hL!6. f/; -----=---='--L...--_

Dean of the Graduate College

II

PREFACE

This study is conducted to understand the internal workings of reinforcement

learning. In the movie called "Terminator II", in a clip, Arnold Schwarzeneger told

the little boy he was protecting from the Terminator that "My CPU is a neural net

computer. The more I interact with humans, the more I will learn and understand

about humans." Reinforcement learning (RL) is one mechanism that improves an

agent's intelligence by evaluating the feedback that it receives from the environment

with which it interacts. RL rewards well chosen actions and punishes bad decisions.

The RL algorithm that was experimented with in this study is Q-Iearning. The agent

was given the task of learning to play the trivial game of tic-tac-toe. Without any

winning strategy encoded into the agent, the agent improved its moves selection by

playing against its opponent. The first half of the study examined th parameters of

Q-learning. The second half of this study used a neural network to generalize the

agent's experience. The advantages and disadvantages of both generalized Q-Iearning

and Q-learning are discussed.

11l

-I

ACKNOWLEDGEMENTS

r would like to sincerely thank all my committee members; Dr. J. P. Chandler

(Chair), Dr. William Nick Street (ex-Chair), Dr. Blayne Mayfield, and Dr. Mansur

Samadzadeh for assisting with my research. \iVithout their guidance, friendship, and

all the different kinds of help, I would not have completed this study. I would like

to extend my appreciation to the Computer Science Department for giving me the

opportunity to be a part of the graduate program.

I would also like to specially thank my mom and dad, who work very hard day

and night, to provide the opportunity for me to further my education at Oklahoma

Statl' University. Their sacrifices, unlimited love, and supports made my dream of

studying at the graduate school come true. I will never forget my sister, Lim Wei

Cheng, for putting up with me for six years of my educational life in Stillwater and

for the numerous suggestions that she gave me throughout this study.

Finally, I would like to express my appreciation for all the special people who work

at the Center for Computer Integrated Manufacturing, especially Dr. Manjunath

Kamath who gave me the opportunity to be a part of this research team. Without

this opportunity, I would not have enjoyed and appreciated the value of carrying out

mv research. My thanks also go to Partha Ramachandran who introduced and helped

me greatly with ~'IEX, and also for reviewing this report.

IV

TABLE OF CO TE TS

I LITERATURE REVIEW 1

1.1 Introduction . 1
1.2 Markov Decision Processes 2
1.3 Reinforcement Learning 3

1.3.1 Policy 5
1.3.2 Environment 5
1.3.3 Reward Function 6
1.3.4 Value Function 8

1.4 Exploration vs. Exploitation. 10
1.5 Temporal Difference Learning 12

1.5.1 Q-Learning 13
1.5.2 SARSA 16

1.6 Generalization in Reinforcement L-arning 17
1.7 Artificial Neural Networks 17

1.7.1 LMS, Delta Rule, ADALINE, or Widrow-Hoff rule. 24
1.7.2 Multilayer eural Network. 28
1.7.3 Backpropagation or Generalized Delta Rule 29
1.7.4 Batch and Online Training . 32

1.8 TD().) 32
1.9 Game Playing . 35

1.9.1 General 35
1.9.2 Reinforcement Learning in Game Playing. 36

II RESEARCH OBJECTIVE AND METHODOLOGY 39

2.1 Research Objectives. 39
2.2 Details of Implementation 40
2.3 Details of the Opponent 41
2.4 Details of Neural etwork Training 42
2.5 Method of Analysis 44

v

III EMPIRICAL RESULTS

3.1 Bounded Random Walks
3.2 Tic-Tac-Toe .

3.2.1 Experiment 1. Learning Rate
3.2.2 Experiment 2. Discount Rate
3.2.3 Experiment 3. Exploration Rate
3.2.4 Experiment 4. Q-Iearning Versus SARSA

3.3 Function Approximator
3.3.1 Experiment 1. Raw Board Representation .
3.3.2 Experiment 2. Feature Selection .

IV SUMMARY, CO CLUSIONS, AND RECOMME DATIONS

4.1 Summary.....
4.2 Conclusions ...
4.3 Recommendations
4.4 Concluding Comment

APPENDICES:

A. GLOSSARy .
B. SAMPLE PROGRAM CODE

VI

45

45
47
47
48
50
52
53
54
55

59

59
61
62
63

68
70

LIST OF TABLES

I The process of backing up transition value 10
II Effect of discount on Q-value , 15
III Facts about the most publicized chess match between a computer and

a human. .. 36

IV Performance of the tic-tac-toe opponent that is used in the experi­
ments. Its performance is tested by playing against a random move
generator .. 42

V Q-values generated by SARSA .. 46
VI Q-values generated by Q-learning. 46
VII Q-'learning versus SARSA: Mean Equity of the first and next 25,000

games .. 53

\'11

LIST OF FIGURES

1 Reinforcement learning system .. 5
2 A tic-tac-toe example. .. 6
3 Branch and bound heuristic search (left) and value updates of the

second iteration of path ACOE(right) 9
4 The need for exploration 11
5 Q-Iearning: An off-policy TD control algorithm 14
6 An example MDP with rewards 15
7 SARSA: An on-policy TO control algorithm . . 16
8 Two-layer perceptron 18
9 The exclusive-or, a classification problem that is not linearly separable 23
10 The mean square error surface .. 25
11 Gradient descent orthogonal search direction 26
12 A small learning rate converges (top) and a slightly larger learning rate

may diverge (bottom). 27
13 A multilayer feedforward neural network 28
14 The sigmoid threshold function 29
15 Garry Kasparov versus Deep Blue: Game 6 final position 37

16 Reinforcement learning simulation class model 41
17 Evaluation function neural network for a tic-tac-toc example 44

18 Bounded random walks. 45
19 Mean square error: Effects of learning rate on the performance 47
20 Equity: Effects of learning rate on the performance 48
21 Equity: Discounted versus nondiscounted learning 49
22 Mean square error: Discounted versus nondiscounted learning 49
23 Mean square error: Exploration versus exploitation 51
24 Equity: Exploration versus exploitation.51
25 Equity: Q-Iearning versus SARSA 52
26 Mean square error: Q-Iearning versus SARSA 53
27 Equity: An 18-15-9 network trained with backpropagation is used to

approximate the value function 54
28 Mean square error: An 18-15-9 network trained with backpropagation

is used to approximate the value function 55
29 Mean square error of a network in which the input representation in­

corporated hand-selected features and was trained with backpropagation 56

Vlll

30 Equity: A network in which the input representation incorporat d
hand selected features (Jeature) and was trained with backpropaga­
tion compared to A N using raw board representation (regbp) and
lookup table (table) .. 57

31 umber of losses: Comparing the results obtained by the lookup ta-
ble to a network in which the input representation used hand-selected
features .. 58

IX

CHAPTER I

LITERATURE REVIEW

1.1 Introduction

In recent years, researchers from different fields have shown growing interest in the

field of reinforcement learning (RL). RL methods have been applied in many different

domains [9] as a practical computational tool for constructing autonomous systems

that improve themselves with experience. The report of National Science Foundation

(NSF) Winter 1996 Workshop in RL [13] states that researchers are surprised by the

failures and successes of RL and there are still many op n questions to be answer d.

Game playing has been an important topic in the Artificial Intelligence world and

much RL research has examined this problem domain. One success story that stands

out in the domain of game playing is Gerry Tesauro's TO-Gammon backgammon

[32, 33, 34]. This program plays backgammon as well as the best human players.

Since then, many researchers have attempted to recreate the success of TO-Gammon

in other games such as Go and Chess. However these attempts have been less suc­

cessful.

This thesis presents research for conducting an experiment with RL applied in the

domain of game playing. This study serves mainly as a theoretical tool for studying

the principles of agents learning to act by constructing an RL agent that learns to

play the game of tic-tac-toe.

1

2

1.2 Markov Decision Processes

Each day we make many decisions, and today's decisions have impacts on tomorrow's

and tomorrow's on the day after tomorrow's. We observe the situation that we are

in at a point in time and choose one of the available actions. We, the decision maker,

receive an immediate reward or cost and evolve into a new situation at a subsequent

point in time. At this subsequent point in time, we repeat the same process over and

over again. This process is known as sequential decision making.

The key ingredients of this sequential decision making model are the following:

1. A set of decision epochs.

2. A set of system states.

3. A set of available actions.

4. A set of state and action-dependent immediate rewards.

5. A set of state and action-dependent transition probabiliti .

At each decision epoch (or time), the system provides the decision maker with all

necessary information for choosing an action from the set of available actions in that

state. As a result of choosing an action in a state, two things happen: the decision

maker receives an immediate reward and the current state evolves into a new state

at the next decision epoch. As this process evolves through time, the decision maker

receives a sequence of rewards, some positive and some negative.

A Markov decision process model (MOP) [19] is one particular sequential decision

model whereby the set of available actions, the rewards, and the transition proba­

bilities depend only on the current state and action and not on states occupied and

actions chosen in the past. In other words, if the current state summarizes everything

3

important about the actions that produced it, then the sequentia.l decision model is

said to have the Markov property.

MDP is studied extensively in operation research and optimal control. If an MDP

has a finite number of states and a finite number of actions for each state, then it is a

finite MDP. The context of this study deals only with finite MDP. MDP is important

because it plays a critical role in the theory of reinforcement learning. For more

information about MDP, please refer to [19].

Classical optimization methods for sequential decision problems, such as dynamic

programming, can compute an optimal solution. Dynamic programming is a term

that refers to the mathematical formulation of a sequential decision problem. If the

problem is formulated, then we can find the optimal solution to the problem telling

us which action to choose in a situation at a point in time. The formulation of the

problem requires the five ingredients mentioned above.

However there are several disadvantages of using this method. A major disadvan­

tage of dynamic programming is that it involves exhaustive sweeps through the stat

space. This makes it very inappropriate for large problems. Secondly this method

requires a complete specification of the transition probabilities of each state. This in­

formation is normally not available a priori for the vast majority of practical problems.

On the other hand, such information can be estimated from experience through trial­

and-error with the system. This is the key idea in the field of reinforcement learning;

learning from interaction to achieve long-term goals.

1.3 Reinforcement Learning

Reinforcement learning (RL) has attracted a lot of attention from researchers in

different fields especially in the past ten years. This happened because there were

reports of several breakthroughs in learning different tasks using this method. As

4

mentioned in the introduction, Gerry Tesauro s TD-Gammon [32, 33, 34] learns the

game of backgammon and it is capable of playing at a grandmaster level. Crites and

Barto [4] used Q-Iearning (explained later in Section 1.5.1) in an elevator scheduling

task. The average squared waiting time for passengers was approximately 7% less

than the best alternative algorithm and less than half the squared waiting time of the

most frequently used elevator scheduling algorithms.

Another attractive property of this learning mechanism is that it enables the

agent to learn the tasks autonomously. In reinforcement learning, the decision maker

or the learner is called the agent. Autonomous learning means learning without the

assistance from a teacher. Instead an autonomous agent learns by experiencing the

task. The agent improves its knowledge by evaluating the feedback that it receives

from the environment for all chosen actions.

Reinforcement learning is studied predominantly in the field of animal behavioral

sciences. Reinforcement learning is a major part of the human learning process, thus

making it easy to understand. Do you remember how you learned to ride a bicycle

when you were young? You probably fell dozens of times before you uccessfully

learned the appropriate ways to steer, brake, and pedal the bicycle. The objective is

to learn to ride a bicycle without falling.

In reinforcement learning, the computer is given a goal to achieve. Reinforcement

learning then learns a mapping from situations to actions by trial-and-error interac­

tions with a dynamic environment, as depicted in Figure 1. The agent's goal is to

discover which actions yield the most reward by trying them based on its experience

with the environment.

There are four fundamental parts in reinforcement learning. These are the policy,

environment reward function, and value function.

Situation

- Environment

Reward

L-...+ Agent I--

Action

5

Figure 1. Reinforcement learning system

1.3.1 Policy

The policy 71" is the decision-making function of the agent, telling it what action to

perform in each state. A policy is a mapping from states to actions. In reinforcement

learning, we are trying to obtain the optimal policy 71"* where

At each point of time, or epoch t, each pair Stat of the optimal policy n* tells us

that taking action at when the agent is in state St yields the highe t value in the long

run [3, 19]. State ST is the terminal state. The terminal state Sr is our goal.

This is the core of the reinforcement learning agent because the other components

serve to improve the policy. Ultimately it is the policy itself that determines how well

the agent performs.

1.3.2 Environment

The environment is a simulation model with which the agent interacts. For example,

an RL game-playing agent interacts with its opponent to increase its experience. In

this case, the opponent is the environment. A decision-making agent seeks to achieve

its goal or goals despite uncertainty about its environment. Consider a tic-tac-toe

learning agent that is in state St with three possible actions aI, a2, and a3 to choose.

6

If it chooses action al, that means the opponent has action a2, and a3 to select. Then

the uncertainty of the environment is the action that will be cho en by the opponent.

Thus, the agent is uncertain about the next state St+l because it does not know which

action will be chosen by the opponent as depicted in Figure 2.

~x x

¥/
o x 0 IAction I

~

~
Agent

o x ~ ,-----) X x

~o x 0 x 0 x Opponent, , , o x 0,
S

,

~
--------)-)I

I

8'+1 Not chosen

o x 0

I I .-
t ~ t+l Epoch t

-uncertainty

Figure 2. A tic-tac-toe example

1.3.3 Reward Function

The reward function is also known as the reinforcement function or the utility func-

tion. The reward function defines the goal of the reinforcement learning system. It

maps the state of the environment to a single number. When the agent achieves the

goal, then the action that leads to the goal state is rewarded or reinforced with a

positive reward. On the other hand, if the agent makes a mistake, then the agent

is punished for making that bad decision. This punishment is also refered as the

negative reward. For instance, if the goal of a tic-tac-toe agent is to learn to win, a

positive reward of 1 is assigned for taking the action that leads to the winning state.

7

Similarly the move that loses a game is punished with a negative reward of -1. So

the reward function for a tic-tac-toe agent is

+1 wm

o draw
R(x) =

-1 loss

o otherwise

where win, draw, and loss are terminal states, and otherwise defines the reward for

all other intermediate moves of a game. As you may have noticed, all the other

intermediate actions are neither punished nor rewarded. Let us take the game of

chess as an example using the same reward function. The game of chess is WOIl by

good defenses and traps throughout the game. So what is wrong if a positive reward

is assigned for a good chess move such as a knight fork (knight fork is an attacking

move where the knight is in a position to attack more than one of its enemy)? In

this case, the agent will choose the intermediate move that has the highest immediate

reward. As a result, the agent prefers actions that are advantageous in the short term,

not actions that leads to a win. Unless one of the agent's goal is to learn knight fork

instead of winning the game, it should not be encoded in the reward function for an

agent. It is crucial to indicate again the importance of rewarding and punishing only

actions that meets the goal or goals. This is the reason why all intermediate moves

are not rewarded nor punished.

In contrast to reinforcement learning, all of today's successful chess-playing pro­

grams that search the position-tree for every move, material winning is the most

important component of the objective function. In chess and checkers, the end of

the game is usually not visible for being too far down the tree. Thus intermediate

positions are evaluated in a tree-searching method.

The reward function is myopic; it determines the immediate reward that an agent

8

will receive by taking a certain action. It is only one component of reinforcement

learning that defines the goal or goals of the learning system. The objective of an RL

agent is to maximize the total reward it will receive in the long run, meaning, in this

case, over many games played. So we need something else that tells the agent which

action to choose from the beginning till the end of every trial. To do this, we need a

value function.

1.3.4 Value Function

The value function is the means that specifies what action selection is the best in the

long run. Values indicate the long term desirability of a state taking into consideration

all the states that are likely to follow. The value function is helpful because it can

be used to improve the policy. A reinforcement learning system changes its value

functions to make them close to the optimal solution.

A heuristic evaluation function is a form of value function that we are mostly fa­

miliar with. Heuristic search is an efficient and intelligent search method to generate

good solutions without having to search exhaustively. Heuristic search, however, in­

corporates prior knowledge about state values into the search algorithm, thus making

it inflexible [23]. Q-learning (explained later in Section 1.5.1) does not require prior

knowledge of the domain, but rather, learns a value function through experience.

To have a better understanding about the value function, let us look at how the

heuristic search and the value function are used to find a solution. Let us consider the

branch and bound heuristic search. At each step of the branch and bound process, we

select the most promising of the states we have so far. We expand all the branches

of the most promising state. We stop if one of them is a solution. The left half of

Figure 3 shows an example where state A is the beginning state. First, expand all

of state A's branches, producing two successor states, Band C. In this example, we

9

attempt to minimize the value of the objective function. ext, state C is chosen to

be expanded because it has a lower value, 4, than AB which is 5. ow the paths that

are expanded are AC(4), ACD(6), ACK(ll), and ACL(12). These paths are put into

a list that is sorted by the path's value. Now branch AC is expanded to ABF(6) and

ABI(8). This time, ABF and ACD have the same value of 6. Thus state D and F

are expanded and generate ABFH(lO), ABFG(12), and ACDE(15). This make path

ABI the shortest path with a value of 8. Finally when ABI is expanded to ABIJ(ll),

path ABFH becomes the optimal solution with its path value of 10. This is because

there is no other branch that has a smaller value than ABFH.

A
- activated

transition

tmnsition
not activated

-.-. back up

• terminal

• state
G H J MNO P E

Figure 3. Branch and bound heuristic search (left) and value updates of the second
iteration of path ACDE(right)

Next, let us look at the value function. Reinforcement learning updates each value

of the transition that the agent has chosen. This process of re-estimating values is

called the back up process. As mentioned before, RL learns through experimentation.

A simple value update function can be written a.<;

Vtransition = Ttrunsition + min Vnext transition

where Vtransition is the value of a transition, Ttransition is the reward of a transition, and

min Vnext transition is the minimum value of the next transition. Each transition value

10

is initialized to zero. Suppose that the agent has chosen path ACDE for the first two

trials. Table I shows how the value of each transition of path ACDE is backed up

for two iterations. In the second iteration, min v of C~D is 9 because the value of

branch D~E is updated to 9 in the first iteration. Through trial and error, the agent

keeps backing up transition values of paths that it choose . If the agent continue to

choose different actions, it will eventually learn that the optimal path is ABFH.

Table 1. The process of backing up transition value

Transition A~C C~D D~E

VAC = r AC + min v VCD = rCD + min v VDE = rDE+O

Iteration 1 4+0=4 2+0=2 9+0=9

Iteration 2 4+0=4 2+9=11 9+0=9

But how does the agent decide which transition to choose? This is the topic of

discussion in the next section.

1.4 Exploration vs. Exploitation

A reinforcement learning agent's objective is to maximize the total expected reward

over some time period. If we always choose the action that yields the highest estimated

value, as in greedy search, then we are exploiting the current knowledge of the value

of the actions. Otherwise we are exploring. Exploration enables us to improve the

estimate of the non-greedy action's value that may generate greater total reward in

the long run. Consider the example shown in Figure 4 where the starting state is 1.

If the agent always chooses the path that leads to the highest immediate reward, it

takes path 1 ~ 3. It is obvious that the agent needs to explore to realize a better

path by trying 1 ---t 2 ~ H that yields a total reward of 10, which is higher than path

1 ~ 3 ---t H that has a cumulative reward of 6.

11

Figure 4. The need for exploration

The example given above can be applied to learn the optimal policy of general

decision problems. This example is based on the reinforcement learning method that

is applied in this study that learns the mapping from each state-action pair to a value.

However most games like chess or checkers that uses heuristic search method to find

for moves, the value depends on the position (state).

To ensure that the agent will keep exploring all actions, it is necessary for the

agent to continue to select them. There are two approaches to ensure this, called

the on-policy learning and off-policy learning [30]. On-policy methods attempt to

evaluate and improve the same policy that they use to make decisions. In off-policy

methods, the policy llsed to generate behavior, called the behavior policy, is unrelated

to the policy that is evaluated and improved, the estimation policy. This separation

has the advantage that the estimation policy can keep getting more greedy while the

behavior policy can continue to sample all possible actions. One behavior policy that

is commonly used in RL is the €-greedy policy [30] where 0 ~ f ~ 1 . If E is set to 0.1,

this means that the agent chooses one action randomly in every ten decisions. The

agent behaves greedily for the other nine moves.

€-greedy action-selection is not suitable for problems in which it is unacceptable

for the agent to experiment with a non-greedy action that is very bad. This is because

when the agent explores, it chooses an action with equal likelihood among all actions.

12

A slightly more sophisticated alternative to t-greedy is softmax or Boltzmann explo­

ration [30]. This is used in simu.lated annealing [10]. In this case, an action is chos n

probabilistically according to the distribution

Q (a) is the value of action a, and T is the temperature parameter that can be

reduced over time to reduce xploration. If T is set high, each action is chosen with

equal probability. As T approaches 0, the values of the actions are distanced from

each other.

1.5 Temporal Difference Learning

The key idea to reinforcement learning as agreed by many researchers is temporal dif-

ference learning (TD) [28], which is a technique for recursively learning an evaluation

function.

The power behind TD learning is that it eliminates the "rollout" method [29] us d

in a traditional method such as dynamic programming. The "rollout" method backs

up or refines values of the policy only when it reaches the final state. TD learning

improves its policy by making estimates from another estimates. This mechanism is

actually closer to how humans learn. Suppose you have experience drawing a circle;

you do not need to wait till the circle is completely drawn before knowing what ad-

justments are needed if you want to draw a well-rounded circle.

Temporal-difference learning is separated into two categories: multi-step predic-

tion learning or single-step prediction learning. In single-step prediction problem,

you know the correctness of a prediction after a step of the prediction. Whereas in

multi-step prediction problem, the correctness of a prediction is not determined until

more than one step after the prediction. It is beneficial to update the prediction

13

made several steps in the past using new observations gathered after that. For ex­

ample, a bad move made in a chess game may not be revealed until several sequ nce

of moves later. It has been shown that treating most prediction problems as multi­

step converges faster. However the algorithm of multi-step prediction is slightly more

computationally intensive and harder to implement. The algorithm of multi-step pre­

diction, called TO("\) is discussed after the discussion of artificial neural network.

The algorithm of single-step prediction is a special case of TD(,.\) known as TO (0) .

The single-step algorithm that is very well known is Q-Iearning. A variation of Q­

learning called SARSA is also discussed in detail later.

1.5.1 Q-Learning

Q-Iearning is an example of an off-policy TD control algorithm that was developed

by Watkins in 1989 [39]. The notation Q(8, a) is used to represent the estimated value

taking action a in state 8. The goal is to learn the value function, Q : S x A ~ R

Traditionally this function is implemented as a table, with a value for ea h tate-action

pair. Its simplest form, I-step Q-Iearning is defined by

6Q (8, a) = 0: [r + ,maxa, Q (s', a') - Q (8, CL)] (1.1)

where r is the reward, Q' is the step-size parameter or learning rate, , is the dis­

count rate, 8', a' is the state-action pair in the subsequent point in time t + 1, and

maxa, Q (8' , a') is the maximum Q-value for picking any action a' in state 8'. The

algorithm for Q-Iearning using table lookup is shown in Figure 5. To illustrate how

the learning function is used, consider the following settings for a tic-tac-toe agent

that learns to win where a = 0.5, , = 0.5 and all values of Q(8, a) are set to O. The

opponent selects its moves randomly, and the agent wins the first game. Thus, the

agent receives a reward of 1 for winning the game by taking action aw in state Sw'

14

Initialize Q(s, a) arbitrarily

Repeat (for each trial):

Initialize s to start state

Repeat (for each step of trial):

Choose a from 8 using policy derived from Q(e.g., E-greedy)

Take action a, observe r, s'

Q(s,a) = Q(s,a) + a:[r + 'YmaXa,Q(s', a') - Q(s,a)]
,

s:= S

until s is terminal

Figure 5. Q-Iearning: An off-policy TD control algorithm

According to (1.1),

6Q (sw, aw) = 0.5 [1 + [0.5 (0) - 0]]

= 0.5 (1 + 0)

= 0.5

Since the initial value of Q(sw. aw) is 0, the updated value of Q(sw, aw) i 0.5.

The agent continues to play another game, and the agent r aches state Sw-J.

The opponent responded by taking an action that ended up in state SW' SO the

maxa,Q(s', a') is Q(sw, aw) which is 0.5. Thus Q(Sw-I, aw-d is

Q (Sw-I) aw-d = Q (8w -I' aw-I) + 0: h+l + 'YQ (sw, aw) - Q (Sw-I, aw-I)]

= 0+ 0.5 [0 + 0.5 (0.5) - 0]

= 0.125

A discounted positive Q-value is assigned to Q(Sw-l' aw-I) because the agent may

reach state SW' If each action is executed in each state an infinite number of times

on an infinite run and 0: is decayed appropriately, the Q-values will converge with

15

probability 1 to Q* where Q* is the optimal Q-value [81.

Figure 6. An example MDP with rewards

A discount rate, " is introduced to account for the time value of rewards. It

measures the value at time t of a one-unit reward received at time t + 1. A one-unit

reward received t periods in the future has present value of ,,/. To see the effects of "

let us look at Figure 6. The figure shows that a positive reward of 1 is only assigned

when state H is reached. The effect of, on each Q-value is shown in Table II.

Table II. Effect of discount on Q-value

Path 1-+2 2-+3 3-+H 1-+4 4-+H

Discounted Q-values b = 0.5) 0.25 0.5 1 0.5 1

Undiscounted Q-values (, = 1) . 1 II 1 1 1 1

Taking the discount rate into account affects the agent's preference for policies. If

this example is an undiscounted problem, then both paths to state H have the same

Q-value of 1. In contrast, using the discount rate, the agent prefers path 1-+4-+H

because the goal state H is reached in fewer steps.

The Q-value of the terminal state is always O. A Q-value is assigned to every

state-action pair that involves a state transition. The terminal states are the only

exception since they are the only statt's that have no transition to another state.

16

1.5.2 SARSA

SARSA is a variation of Q-Iearning that was developed by Sutton [30]. Just like

Q-Iearning, the SARSA agent begins by taking an action a in state s. It then waits

for the opponent to respond. After the opponent has moved, state s volves into

state s'. Then the SARSA agent needs to choose an action at based on its behavior

policy. This is the step that distinguishes SARSA from Q-Iearning. SARSA's chosen

action, a', may be an exploratory action. So Q(8', a') of SARSA will not always be

the highest value, while Q-Iearning always backs up each Q(s, a) by discounting the

highest Q-value of the s', a' pair. The SARSA algorithm is shown in Figure 7.

SARSA is an on-policy learning algorithm because it learns by improving the same

Initialize Q(s, a) arbitrarily

Repeat (for each trial):

Initialize s, a

Repeat (for each step of trial):

Take action a, observe r,

Choose a from s' using policy derived from Q (e.g., €-greedy)

Q(8, a) = Q(8, a) + a[r + "(Q(s', a') - Q(s, a)]
,

a := a; 8 := S

until s is terminal

Figure 7. SARSA: An on-policy TD control algorithm

policy that it uses to select all actions. If the behavior policy of SARSA always acts

greedily, then SARSA and Q-learning are the same.

17

1.6 Generalizati.on in Reinforcement Learning

The artificial neural network functions as an approximation mechanism of the Q­

values instead of storing them in a table. Why do we want to approximate the Q­

values when we can have the actual Q-values stored in a table? The table Q-value are

updated each time the corresponding state-action pair is encountered during training.

This means that at the end of the learning process, there are possibly many Q-valu s

that have not been updated because these state-action pairs were not experienced.

The ability of an artificial neural network to generalize experiences allows the agent

to make better decisions even in situations that it has never experienced before. Gen­

eralization allows the network to evaluate a state and generates a response based on

features that are similar to some states that the network has encountered. Therefore,

generalization may speed up learning by discovering commonalities among states.

In addition, because of the large number of states in many environments, using

a lookup table to represent the function is not feasible. This shortcoming is known

as the 'curse of dimensionali ty'. Generalization of these large paces can be achieved

using a function approximator such as artificial neural network (ANN) [1]. This is a

very powerful learning tool. It is essential to understand artificial neural networks if

we want to scale up reinforcement learning to solve larger problems.

1.7 Artificial Neural Networks

Today, there is a large body of literature on the subject of artificial neural n tworks,

ANN for short. An A is a simplified model of the brain cells, or neurons that

are massively interconnected, usually tiimulated in software by using a computer. In

the 1950s and 1960s, when the mass enthusiasm began, this field was known as con­

nectionism. That was when the perceptron was introduced by Frank Rosenblatt [21],

and this is the first network we will discuss.

{input
neuron

o'utput neuron

,..-A-..
o

18

otherwise

if net ~ 0

Figure 8. Two-layer perceptron

Figure 8 illustrates a two-layer perceptron. The connections between neurons

determine the function of the network. Associated with each connection is a weight

Wi. The strength of the weights is represented by real numbers. The neurons sum

up the weights of the activated inputs. If the sum of the inputs is greater than some

threshold value, (), the neuron turns on (outputs a 1), otherwise it is off (outputs a

0). The function that represents the threshold value is called the activation function.

In supervised learning, an artificial neural network including the perceptron learns

a mapping from a set of inputs to the corresponding target outputs. Learning takes

place by updating the weights and thresholds so that the network generates the desired

outputs corresponding to the given inputs. The output of the perceptron is given by

0= hardlim (~(WiXi)+ ()) .

where Xi is the i th input neuron, Wi denotes the weight that connects input neuron i

to the output neuron, and () is the threshold value. Let us denote net as the weighted

sum of inputs. The hardlim activation function is defined as

o = hardlim(~ WiXi + B) = { 1
i 0
~

net

19

The perceptron learning rule indicates how the weights and thresholds are adjusted

if the network is not producing aU the desired outputs. In other words, the perceptron

keeps changing both its adjustable parameters. The error of the network, e, is the

difference between the desired output's value, y, and the estimated output value

produced by the network, o. The perceptron stops adjusting the parameters if it

generates all the desired outputs based upon the examples that the perceptron has

seen. The perceptron learning rule is

w = w+ex,

e = y - o.

Let us now look at a trivial example to see how a perceptron works. Suppose

you would like a vending machine that accepts one and two dollar bills. The way the

machine separates them is by using its somewhat primitive scanning device to read

in three selected features on the face of the bill. The first feature is the seal of the

Department of the Treasury (both bills have this), then the fullness of the pre ident's

hair (Jefferson has more hair than Washington does), and finally whether there exist

the word "THE UNITED STATES OF AMERICA" OIl top of the president's picture

(the one dollar bill has it whereas the two dollar bill does not). The featur s of the

input can be represented as a vector su h that

seal

x = hair

() = () + e, where

USA

If any of the feature exists, a 1 can be used to indicate that; and a -1 to indicate

otherwise. So the respective input vector for the one dollar bili and the two dollar

20

bill are

1

X 1 = -1

1

and X$2 =

1

1

-1

First of all, we need to select a network architecture to represent this task. Since

there are three features that the vending machine scans, so we need three input

neurons. And we want only one answer, whether it is a one dollar or a two dollar

bill. Hence one output node is essential. The output is either a 0 or a 1 because

the hardlim activation function is used. In this example, an output of 1 means a one

dollar bill and vice versa. This artificial neural network architecture is a two-layer 3-1

network. In this example, it is a two-layer network because it consists of one layer of

three input neurons, and another layer that consists of one output neuron.

The weights and thresholds of the perceptron are commonly initialized with small

random numbers. Let us pick 0.2,0.3,0.1, and -0.4 for Wl,W2,W3, and erespectively.

Now we are ready to train the perceptron to recognize both the one and two dollar bill.

Let us see if these initial values of the network parameters actually produce the two

outputs that we desire. This could happen because this is not a complicated example.

We begin the training with a one dollar bill where WI = 0.2, W2 = 0.3, W3 = 0.1,

Xl = 1,x2 = -1,x3 = 1 and e= -0.4.

Iteration 1:

o = hardlim (2tWiXi + B)
= hardlim(0.2(1) + (0.3)(-1) + (0.1)(1) + (-0.4))

= hardlim(-0.5)

= O.

We expect the perceptron to output a 1; instead it outputs a 0 which is an error.

The percept ron learning rule needs to be applied to change the weights and threshold

21

in order to yield the correct answer. First we need to calculate the error.

e=y-o=1-0=1.

Then the weights update are

W =w+ex

Wl = 0.2 + (1)1 = 1.2

W2 = 0.3 + (1) - 1 = -0.7

W3 = 0.1 + (1)1 = 1.1

The threshold update is

e= e+ e = -0.4 + (1) = 0.6

These are the adjustments to the weights and threshold where now WI = 1.2, W2 =

-0.7, W3 = 1.1 and () = 0.6. But does the perceptron recognizes the one dollar bill

right now? Let us find out.

o = hardlim(1.2(1) + (-0.7)(-1) + 1.1(1) + 0.6)

= hardlim(3.6)

=1.

Next we look at whether the perceptron recognizes the features of a two dollar

bill with its current weights and threshold values where Xl = 1, X2 = 1, X3 = -l.

Iteration 2:

o = hardlim(1.2(1) + (-0.7)(1) + 1.1(-1) + 0.6)

= hardlim(O)

=1.

e =y-o=O-l=-1.

WI = 1.2 + (-1)1 = 0.2

W2 = -0.3 + (-1)1 = -1.3

W3 =1.4+(-1)(-1)=2.4.

() =0.6+(-1)=-0.4

22

Let us prove that the network recognizes the two dollar bill:

o = hardlim(O.2(1) + (-1.3)1 + (2.4)(-1) + (-0.4))

= hardlim(-3.9)

= O.

We know that the perceptron recognizes the two dollar bill now, but do it still

recognizes the one dollar bill? Since we have only two training samples, th third

iteration tests the network with the one dollar bill again.

Iteration 3:

o = hardlim(0.2(1) + (-1.3)(-1) + (2.4)1 + (-0.4))

= hardlim(3.5)

=1.

Well since the weights and threshold generate the correct output of 1 indicating

that the input is a one dollar bill, no adjustment to the parameters is needed after

the third iteration. So the network parameters have converged after two iterations

with WI = 0.2, 102 = -1.3, W3 = 2.4, and () = -0.4. The perceptron learning rule is

proved to converge to parameters that accomplish the desired cia sification [7], given

that such parameters exist. Remember that this perceptron is trained to recognize

only the one and two dollar bill. If the perceptron is presented with a tw nty dollar

bill in which all three features are present, the perceptron will output a O. It is not

capable of always classifying correctly any inputs other than one and two dollar bills

because it is not trained to do so. This simple example presented above is a patteTn

recognition problem, for which artificial neural networks are often used.

The neural network parameters draw a hyperplane in the three-dimensional weight

space (since there are three inputs in this example) to linearly separate the one and

two dollar bill into two categories. That is why a twenty dollar bill is classified as

a two tiollar bill, because it falls into the two dollar half of the weight space. The

23

perceptron keeps adjusting the parameters because it has not found the hyperplane

in the weight space that correctly separates the two patterns.

Even though the perceptron is powerful enough to solve many classification prob-

lems, it is limited to problems that are linearly separable. In 1969, Minsky and Papert

documented the shortcomings and capability of the perceptron [15]. One problem that

is not linearly separable by one hyperplane is the classical exclusive-or, as depicted

in Figure 9.

"-
"- Input 1 Input 2 Output"-

"-
"-

"- 0 0 1 1"-
"-

"- 0 0 0"-
"-

"- 1 1 0"-
"- 1 0 1"-

"-
"-

"-

Figure 9. The exclusive-or, a classification problem that is not linearly separable

In order to learn problems that are not linearly separabl , we can build a multi-

layer neural network with one or more "hidden" layers to learn a more sophisticated

function. This is also known as a multilayer perceptron or multilayer feedforward

network. Multilayer neural networks can be trained to solve problems that are not

linearly separable, such as the exclusive-or, by using the backpropagation algorithm.

But before looking at backpropagation, first we have to understand the learning sys-

tern behind it. This learning system is known as the Least-Mean-Square rule.

24

1.7.1 LMS, Delta Rule, ADALI E, or Widrow-Hoff rule

In 1960, Widrow and Hoff introduced an adaptive algorithm known as the Least­

Mean-Square (LMS) rule. It is also known as the delta rule, the Adaptive Linear

Neuron (ADALINE), and the Widrow-Hoff rule. Like the perceptron rule, the LMS

algorithm is also an adaptive or optimization algorithm which means the parameters

(weights and thresholds) can be properly adjusted to achieve the correct values. The

LMS algorithm is applicable to a two-layer network, consisting of a layer of input

neurons and another layer of output neurons. However, the LMS algorithm also

suffers from not being capable of learning nonlinear functions. Yet it is essential to

understand the LMS algorithm because the backpropagation algorithm is a powerful

extension of the LMS rule.

The LMS algorithm observes the performance of the network during training.

The performance of a network is better when the network is closer to classifying all

the patterns correctly. As mentioned before, if not all the patterns are classified

correctly, then the network has erroneous parameters. Consequently, if we have a

way to measure the error of the network paramet rs, we know the performance of the

network.

The performance measure of the LMS rule is the approximate mean square error.

The LMS rule tries to reduce the approximate mean fiquare error in order to obtain

the best performance network. This is where the name Least-Mean Square (LMS)

comes from. The mean square error (MSE) is defined as

where n is the number of input-output pairs, Yi is the i th desired output, 0i is the i th

estimated output, and 6i is the difference between Yi and 0i. At each iteration, the

25

LMS algorithm estimates the mean square error by

where the mean square error is replaced by the square error. The error of the output

is reduced through adjustment of the weights and thresholds. A space has dimen ion

n when points in it can be specified by n coordinates. The two-dimensional plane

requires two coordinates (x, y), three-dimensional space requires three, and so on.

Thus the approximate mean square error at each point in time is a coordinate on the

error surface that is specified by the weights and thresholds. For a two-layer network,

the error surface with respect to the network parameters is a paraboloid as shown in

Figure 10.

Error

W
1

Figure 10. The mean square error surface

The bottom of the paraboloid, the minimum or the optimum point, is where the

error is reduced to zero. To reduce the approximate mean square error is to descend

downhill to the minimum point on the error surface. The steepest slope downhill is

the negative of the gradient, VwMSE because the gradient vector is pointing uphill.

This method of minimizing the error is known as steepest descent or gradient descent.

26

The gradient with respect to the network weights is defined as

- [OMSE oMSE]
'VwMSE = O. 1 O. , ...

W t Wt+l

such that

where 8~E is the first derivative of the MSE along the Wi axis, n is the number of

neurons in the input layer, and Xi is the i th input neuron. The derivative is zero at the

minimum point, therefore the gradient is orthogonal (perpendicular or tangent) to

the previous search direction. Thus, consecutive search directions of gradient desc nt

are always orthogonal to each other as illustrated in Figure 11.

Figure 11. Gradient descent orthogonal search direction

27

Using the approximation of "VwMSE, the LMS algorithm is

() = e+ 2a6

such that

tJ.Wi =a(-"VwMSEi)

= -a(-28iXi)

(negative gradient)

where a is a constant learning rate. The learning rate decides the magnitude of the

gradient. Hence a small learning rate is normally used to keep the gradient from

changing too fast. If the magnitude of the new gradient is greater than the previous,

then the parameters may not converge (illustrated in Figure 12) [7]. The selection of

the best learning rate is obtained through trial alld error.

Figure 12. A small learning rate converges (top) and a slightly larger learning rate
may diverge (bottom)

28

1.7.2 Multilayer Neural etwork

Up to this point, we understand that both the perceptron and the ADALI E network

are incapable of solving problems that are not linearly separable. Researchers believed

that this barrier could be overcome by building a different network architecture and

using a more powerful algorithm to train the network. Studies were conducted in

constructing an algorithm to train a multilayer neural network. An additional layer

of neurons, called the "hidden layer", was added in between the input and the out-

put layer. Finally Rumelhart, Hinton, and Williams introduced the backpropagation

algorithm that is capable of training a multilayer neural network. By applying the

backpropagation algorithm, a multilayer network is capable of classifying nonlinear

problems. Figure 13 illustrates a 2-3-1 multilayer feed-forward neural network archi-

tecture that has 2 input units, 3 hidden units, and 1 output unit.

()
6

Output {
layer

Hidden {
layer

Input {
layer

Figure 13. A multilayer feedforward neural network

The notation Wij denotes the weight connecting neuron unit i in a previous layer

29

with neuron unit j, Xi is the input to unit i, Yj is the desired output of the current

input, and OJ is the output value of neuron .i.

There is no clear understanding a.s to how many hidden layer should bused.

Normally, a network of either one or two hidden layers are used in practice. In

addition it has been shown that a one-hidden-Iayer MLP, if given enough hidden

units, is capable of cla.ssifying any nonlinear function. Thus a three-layer network is

sufficient for handling most cla.ssification problems.

1.7.3 Backpropagation or Generalized Delta Rule

The backpropagation technique of Rumelhart, Hinton, and Williams [22]' has become

the most commonly used neural networking algorithm. The term "backpropagation"

refers to the way the partial derivatives are efficiently computed in a backward prop­

agating sweep through the network [281. It is the choice of optimization algorithm

used for this experiment because it is very well-studied.

Backpropagation is a simple optimization method, but it is ob olete and probably

should never be used for production work. Conjugate gradient methods are always

faster and, if properly coded, just a.s robust.

_____________ ._ _ }...o_ _ _ .:.;.0.0--

·5 a 5

Figure 14. The sigmoid threshold function

30

The backpropagation algorithm will work with many activation functions. The

most commonly used activation function is:

1
0-----

J - 1 + e-netj
Vj E hidden, output

where OJ is the output value of the lh neuron either in the hidden or in the output

layer. The input to neuron i is denoted by Xi. The S-shaped activation function

depicted in Figure 14 is known as a sigmoid. Let Wij denote the weight connecting

neuron i in a previous layer to neuron j in the successive layer. Please note that the

output of neuron i is essentially the input to neuron j such that 0i = Xj. So the

definition of netj, the weighted sum of neuron j is computed by:

Vj E hidden, output

= L WijXj + OJ
i

where neuron j is either a neuron of the output layer or a neuron of a hidden layer,

and OJ represents the bias value corresponding to the yth neuron. Every hidden and

output neuron has its own bias value.

In gradient descent, the current value of the weights is moved in the direction in

which the expected error falls most rapidly, the direction of steepest descent. The

gradient, V'wMBE can be obtained by using the chain rule. This way, the mean

square error can be distribut~d among all the weights of the network. The first part

of the problem is to find how MSE changes as the weight Wjk changes

- 8MSE~ alJetk
- &Ok dnetk Wk

= - (Yk - Ok)Ok (1 - Ok)Oj

=-(Yk - Ok)Ok(l - Ok)Xk

Vj E hidden, 'Vk E output

where Wjk denotes the weight connecting the yth hidden neuron to the k th output

neuron, and Yk denotes the target output for the kth neuron in the output layer.

31

Secondly, we need to relate the change in MSE to the change in Wij, the wight

that connect neurons from the input layer to the hidden layer. Any change to the

weight Wij changes OJ, which becomes the input of unit k. By using th chain rule,

the gradient with respect to Wij is therefore the sum of the changes to the output

value of each hidden and output neuron of the network. Let us denote that i E input,

j E hidden, and k E output, then

= oMSE~ ogetk Y.!!.L ~netj
aOk dnetk Wk dnetj Wij

= 2: - (Yk - Ok)Ok(1 - Ok)WjkOj(1 - OJ)Oi
k

= 2: -5kwjkoj(1 - OJ)Oi'
k

= -oioj(1 - OJ) 2: 5kwjk
k

Therefore, the negative gradient of the sample error, 5j , is computed by a back­

propagation process defined by:

5j = OJ (1 - OJ) 2: WjJ,;5k, Vj E hidden,
kE01ltp-ut

If 5j is computable, the update equation can be written. The weight update rule

is

where a is the learning rate, and 0i is the output value of neuron i which is equivalent

to Xj' Each neuron in the hidden and output layer has a bias value. The bias of unit

j, (}j, is adjusted by

A momentum coefficient, T}, can be used to speed up convergence. This is because

it keeps the process moving in a consistent direction. Using momentum, the weight

32

update formula becomes:

1.7.4 Batch and Online Training

There are two ways to train a neural network; batch and online training. Batch or

offline training means a set of training examples is obtained and used to approximate

the function before it is used in the application. Thus the parameters are updated

only when the entire training set is presented to the network. Then the gradients

of all examples are computed, and the average of all the gradients is used to get a

better estimate of the gradient [7].

Online training involves continuous weight adj ustment of the network by using

the data gathered while the system is]n operation. This way of training is capable of

adapting to a time-varying function. This is essential in temporal difference learning

because the target functions change over time. However, there are mixed successes

in online applications. This problem exists because the network "forgets" previously

learned examples as more new examples are presented for training. In practic , it can

be overcome by storing old examples and retraining on them, or by learning slowly

and training extensively [31].

1.8 TD(A)

TD(A) is a multi-step prediction algorithm. This multi-step algorithm makes greater

alteration to more recent predictions. This algorithm uses an exponential decay, A,

where predictions n steps in the past are weighted according to An for 0 ~ A ~ 1.

The weight update equation of TD(A) is given by

t

tlWt = o:(Pt+l - Pt) I: At-n'VwPn
n=l

33

where Q is a constant learning rate, Pt is the prediction at time t, Pt+1 stands for the

prediction made in time t + 1, and VwPn is the gradient of the nth. prediction error

with respect to the weights.

It is important to note that this TD rule is an offline algorithm. So each 'JwPn

needs to be recorded and the weights are changed at the end of the trial. The case

of TO(O) is very like that of conventional backpropagation. TD(O) is essentially a

single-step prediction algorithm. The TO error (TDE) is backpropagated to each

weight and it is determined only by the most recent observation when A is O. The

weight update rule is

So each individual weight, Wij, is updated using

where Oi is the estimated output of neuron i, and b is computed using the backprop-

agation process discussed in the previous section.

But TD(A) is treated slightly differently. The process of backpropagation pro-

duces an "eligibility" term for each weight. The gradient of each prediction error that

is exponentially decayed is known as the eligibility. As a temporal difference is deter-

mined at each time step, it is broadcast to all weights. Then the temporal difference

is combined with their eligibility to determine the changes to the weights [28]. In

order to reduce the computational resources, the online version of the algorithm is

normally preferred. If we have a way to compute the eligibility incrementally, we can

34

do the computation online. The eligibility, e, in every time step is computed by

t

et+l = L ,\t+l-n\7wPn
n=1

t

= \7w Pt+l + L ,\t+l-n\7wPn
n=1

t

= \7wPt+l + L ,\. :At
-

n
\7wPn

n=1
t

= \7wPt+l +,\ L ,\t-n\7wPn
n=1

If the neural network has k output neurons, then each weight has k eligilibility

traces. Then the k th eligibility of the weight from neuron i to neuron) is defined as

where Oi is the output of neuron unit i, pk+l is the new prediction of the kth output

node, and e~jk is the k th eligibility at time t of the weight connecting unit 1: to unit j.

The bkj = 8:11 is computed using the backpropagation algorithm defined as:
)

oj(l - oj) if k = j

Let us try to understand the equation for updating b. The first and second

conditions indicates how to compute b that corresponds to weights that connect to

the output layer. So if we are trying to determine the kth 6 of a weight that connects

to the kth output neuron, then 6 is computed using the first condition. The rest of

the 6s are set to O. The 6 that corresponds to a weight that connects an input neuron

to a hidden neuron is calculated by following the third condition. It should be noted

35

that the equation of TD(>.) for computing {j is slightly different when>' > O. The

incremental version of TD(>') weight update rule is

w~tl = W~j + a L (Pt~l - p/c) e~jk'
kEoutput

TD(O) is the focus of this study. It has been shown in Tesauro's TD-Gammon and

Thrun's NeuroCbess papers that 0 is the optimal value for >.. The TD(>') algorithm

is provided because most of the literature that discusses TD(>') does not provide the

details of the implementation. The details of the algorithm provided above comes

from an unpublished paper written by Sutton [27]. This paper by Sutton is a follow­

up of his introductory paper to temporal difference learning and TD(>') [28].

1.9 Game Playing

1.9.1 General

Many outstanding names in the history of computer science touched upon the domain

of game playing. These researchers include Claude Shannon, the father of informa-

tion theory; Alan Turing, renowned for his contributions to the theory of computation

and for his work during World War II in deciphering German war codes; and Herbert

Simon, the father of artificial intelligence.

From the very beginning of the development of digital computers, researchers

became interested in studying how computers might solve complex problems by ex-

amining the game of chess. In 1944, John von Neumann presented the minimax

algorithm for selecting the move to make in chess [16]. In 1950 Claude Shannon pub­

lished the paper that detailed the procedures to implement computer chess [26]. Till

today, chess programs that are written are based on Shannon's ideas. Simultaneous

with Shannon's work, Alan Turing published his approach to the automation of chess

strategy [38]. His ideas were very similar to Shannon's. Finally in 1955, Alan Newell,

36

John Shaw, and Herbert Simon wrote the Newell, Shaw, and Simon (SS) program

that attempted to simulate the human mind's approach to selecting moves in chess

[18].

In recent game playing developments, an IBM's supercomputer named Deep Blue

defeated the current World Champion and possibly the best ever human chess player,

Garry Kasparov, 3.5 to 2.5 in a six-game match [17]. Table III shows the facts

about both the contenders. The most shocking news about the match happened in

the sixth game, in which Deep Blue defeated the World Champion in just nineteen

moves. Figure 15 shows the final position of the historical sixth game.

Table III. Facts about the most publicized chess match between a computer and a
human

I Facts I Garry Kasparov I Deep Blue

Height 5'10" 6'5"

Weight 176 lbs. 1.4 tons

Age 34 years 4 years

Birthplace Azerbaijan Yorktown, NY

Number of processors 50 13 Neurons 32 P2SC Proc ssors

Moves per second 2 200 million

Power source electricalfchemical electrical

Next career champion pharmaceutical design

1.9.2 Reinforcement Learning in Game Playing

The one application that is always mentioned for its pioneering success applying rein-

forcement learning (RL) in game playing is Samuel's checkers playing system [24, 25].

The value function is learned and represented by a linear function approximator, and

the training is done similarly to TD updates.

'I I
":1
II~

'"..

2

1

abc d e f g h

Deep Garry
Blue Kasparov

1. e4 c6
2. d4 d5
3. Nc3 dxe4
4. Nxe4 Nd7
5. Ng5 N

e
l£f6

6. Bd3 6"
7.NIf3 h6
8. Nxe6 Qe7
9.0-0 fxe6
10. Bg6+ Kd8
11. Bf4 b5
12. a4 Bb7
13. ReI NdS
14. Bg3 Ke8
15. axo5 exb5
16. Od3 Bc6
17. Bf5 exf5
18. Rxe7 Bxe7
19. c4 Resigns

37

I,
II

Figure 15. Garry Kasparov versus Deep Blue: Game 6 final position

TD-Gammon is successful in applying TD in learning to play backgammon [32,

33, 34}. Backgammon has approximately 1020 states. Tesauro uses a combination

of TD and a three-layer ANN with 80 hidden units as the function approximator

for generalizing the experience. The successful result was achieved by constant self

play. The program always acts greedily in choosing the move with the best chance to

win. The success of using this strategy is rather surprising considering all the studies

that have been done to discover better exploration methods. The training required

several months of computer time for training on 1,500,000 games. This program has

competed at the very top level of international human play.

Many researchers have attempted to reproduce the success of TD-Gammon by

using the TD learning approach in other games such as chess. Gould [6] implemented

Morph by using Adaptive Predictive Search (APS), a learning framework that, given

little initial domain knowledge, increases its predictive abilities in complex problem

domains such as chess. The result shows that the GnuChess [14] level of play is

higher than Morph. Sebastian Thrun [35} combined TD learning and Explanation

'I
'I:,
'II

Based Neural etwork (EBN) to train euraChe . The EB

38

learning algorithm

[36] enables the computer to learn more accurately from less training data by taking

advantage of other previously acquired knowledge, even if it is inexact, to signifi-

cantly improve accuracy for the new learning task. His research shows that EBNN s

generalize better than AN's using backpropagation. The main drawback of eu-

roChess is that it does not develop good chess openings. Jonathan Baxter [2] created

KnightCap, a chess program that learns by combining TD('x) with minimax search.

This program learns to play only the middle and end games. KnightCap selects chess

openings from a database. These results are not very successful compared to TD-

Gammon. Several very successful chess-playing programs have been developed over

the years [12, 11, 17]. However, none of these programs used reinforcement learning.
'I,..,
I
I..,
"

CHAPTER II

RESEARCH OBJECTIVE AND METHODOLOGY

2.1 Research Objectives

The main objective of this research is to conduct a study in the area of reinforcement

learning. This study attempts to understand the internal workings of an RL agent

learning to act. This is accomplished by implementing the reinforcement learning

framework and experimenting with it in the domain of game playing. The learning

mechanism that is of interest in this study is the temporal difference learning method.

Tic-tac-toe is commonly used to begin the understanding of reinforcement learn­

ing method in the domain of game-playing. Tic-tac-toe is a small-size problem with

39 states in its state space. It is used to answer most of the questions of this study.

The first area of concern is to find out how learning is affected by the learning rate,

the discount rate, the exploration rate, and by the difference in off-policy method

and on-policy learning method. The agent is implemented to play many games of

tic-tac-toe by trial and error. Then its performances are recorded to conduct the

analysis. In this part of the study, the Q-value of each state-action pair is stored in

a lookup table.

This research then switches its attention to examine the effectiveness of approx­

imating the value function using a multilayer feedforward network trained by the

39

40

backpropagation algorithm. It is not the intention of this research to optimize th

learning rate of the backpropagation algorithm. The goal of this part of the re earch

is to know how reinforcement learning and a function approximator are combined to

solve sequential decision problems. This is important because generalization scale

up reinforcement learning to solve practical problems that have a large state pace.

It is the objective in this part of the study to find out whether an RL agent will learn

an optimal policy. Analysis will be carried out to find factors that could lead to the

success of generalized reinforcement learning.

2.2 Details of Implementation

Simulation is the evaluation tool for this research. The simulation is written in C++

to utilize the power of object-oriented programming. It allows convenient interaction

between the various modules of the program, as well as for run-time speed. I am

using Microsoft Visual C++ 4.0 as the tool for coding and debugging.

The class diagram of this experiment is shown in Figure 16:

1. SIMULATOR: The main function of this module is to provide the us r with

a user interface to configure the experiment model.

2. RL FRAMEWORK: A module that models the framework shown in Figure 1.

Learning through trial-and-error is done here. The learning algorithms are Q-

learning and SARSA.

3. POLICY: In this module, the agent decides which action to take, given the

state that it is in at a given time, by following its behavioral policy. The

behavior policy that is implemented is €-greedy.

4. ENVIRONMENT: This is the opponent that the agent is playing against.

After the opponent has chosen its move, it returns two things to the agent:

:/

:1
II

I.

1

the subsequent state that the ystem has evolved into, and the reward of the

agent's move selection. The opponent used in this experimentation for learning

tic-tac-toe is discussed in further detail in Section 2.3.

5. Q-value: The Q-value is either stored in a lookup table or it is approximated

by using an AN . Double hashing [40] was implemented for storing and looking

up the Q-values. The multdayer neural network using the backpropagation

algorithm was implemented using source code from Rogers's book [20]. The

ANN and the lookup table are both subclasses of Q-value. This module returns

and modifies the Q-value of each state-action pair.

I ~I AggregareL:J orel....

D Cl...

SIMULATOR

R1J FRAMEWORK *
--{> Inhentence

Environment *1

Figure 16. Reinforcement learning simulation class model

2.3 Details of the Opponent

The tic-tac-toe opponent is a minimax player that searches two plies for a move. The

minimax algorithm has random noise added to its move selection, thus causing it to

lose games by missing blocks or missing the winning moves. The stochastic property

of this opponent should be ideal for testing reinforcement learning effectiveness in

42

making decisions under uncertainty.

This opponent is put to a test by playing against a random move generator. The

performance of the opponent is averaged over ten thousand games. The equity is the

expected value of the number of losses subtracted from the number of wins. The skill

of this opponent is shown in Table IV.

Table IV. Performance of the tic-tac-toe opponent that is used in the experiments.
Its performance is tested by playing against a random move generator

Opponent Wins Draws Losses Equity

Minimax 2-ply with random exploration 70.51 8.63 20.86 49.65

2.4 Details of Neural Network Training

The update equation for TD learning used in value function approximation is in

accordance with Thrun's [37] training strategy where:

+1 w~n

0 draw
Q (s, a) =

-1 loss

rmaxQ (,<;/, a') otherwise

It is not the primary goal of this project to fine-tune the network parameters

for the fastest learning rate possible. These are the common settings used in the

experiments:

• Network weights are initialized randomly between -0.1 and 0.1.

• Weights of the network are adjusted online.

• The original backpropagation algorithm is used. No momentum coefficient is

used.

43

• Each network has one layer of hidden unit .

• The sigmoid function is used as the activation function for both the hidden and

output layer. The sigmoid function scales its output value in [0,1]. In order to

scale the reward signal which is in the range of [-1, 1]:

- Before training the network, the Q-val ue in {-1, 1] is scaled down to the

range [0,1] before it can be used as the target (denoted by 0) using

Q + 1
0=--2 .

- The output of the network is scaled back into the range of [-1,1] before

it is used for TD learning:

Q = 20 - 1.

A multilayer neural network is used to learn the mapping from each state-action

pair to its Q-value. Two input units are used to represent one tic-tac-toe square; 00,

01 and 10 for' " '0', and 'X' respectively. The Q-value of each action is represented

by nine output neurons, where each neuron represents a tic-tac-toe square. Each

time, only one of the nine neurons is updated according to the square which is played.

Then the training examples are fed to the network to approximate Q*, as shown in

Figure 17.

Studies have shown that feature selection is important in the effectiveness and

success of representing the problem ~35]. There are eight different positions in which

a player can win a game in tic-tac-toe. The player either wins in one of the three

columns, one of the three rows, or one of the two diagonals. Since these are the

key features that we look for in a game, this information is used as the input. This

neural network uses 00, 01, and 10 to represent' " '0', and 'X'. Then, it uses 48

neurons to represent all eight different winning positions whereby six neurons are

used to represent each winning position. These inputs are mapped to nine output

44

1o

Action

o 0ooo

00

~~
=it

o selected
by the
agent

(~I--"--""""""""-'

o

Hidden
layer

State {
1 0

Q-value { 0

Figure 17. Evaluation function neural network for a tic-tac-toc example

nodes. Each output node represents the Q-value of one possible action. The results

of using this representation are reported in Chapter III.

2.5 Method of Analysis

Data were gathered by running the simulation. The data include the wins, losses,

draws, mean square error, and equity. The agent's ability to win is measured by its

equity. The performance is analyzed by generating charts using these data.

The results were gathered when the agent halted learning temporarily and played

one hundred games greedily. It is important to hatt learning temporarily because there

are explorations involved during the learning process. These data were gathered after

everyone thousand games of training. The effectiveness of using generalization in

reinforcement learning is determined by using results from the lookup table as the

benchmark.

CHAPTER III

EMPIRICAL RESULTS

3.1 Bounded Random Walks

To test whether both Q-Iearning and SARSA actually converge to the optimal policy,

a simple test was conducted with a bounded random walk. In this experiment, there

are seven states that the agent can be in. The agent starts at state 4 and takes a

step to a neighbor randomly. A positive reward of +1 is assigned if the agent reaches

state 7, and a negative reward of -1 is assigned for ending the walk at state 1. This

problem is shown in Figure 18.

-1

GS(2
starting state

I
I

+1

Figure 18. Bounded random walks

The Q-values of each state-action pair are shown in Table V and Table VI after

1000 trials.

45

46

Table V. Q-values generated by SARSA

State!Action Left Right

4. -0.0811 0.0559175

3. -0.260868 -0.0120768

2. -0.921006 -0.0876725

5. -0.00294266 0.264135

6. 0.0762577 0.921555

Table VI. Q-values generated by Q-Iearning

State!Action Left Right,

4. 0.466433 0.473384

3. 0.460682 0.463019

2. -0.927747 0.46221

5. 0.462804 0.463898

6. 0.481388 0.928404

Both SARSA and Q-Iearning have learned the optimal policy. However, th Q

values produced by Q-Iearning are somewhat misleading. This is because it only

punishes the action for walking to the left from state 2 to state 1. The rest of the Q­

values are all positive because of its max operator. On the other hand, the Q-values

generated by SARSA are more informative. Starting from state 4, a negative Q(4,3)

of -0.0811 tells us that we will probably ended up getting punished for walking to

the left; and Q(4, 5) of 0.056 tells us that the agent is more likely to be rewarded by

choosing to walk to the right.

47

3.2 Tic-Tac-Toe

The Q-values of experiments 1, 2, 3, and 4 are stor d in a lookup table. U ing the

actual Q-value allows us to observe the effects of changing the parameters of temporal

difference learning. Experiment 5 approximates the Q-value using an AN trained

with backpropagation. It uses the network architecture that is illustrated in Section

2.4.

3.2.1 Experiment 1. Learning Rate

The first experiment tested the learning rate. SARSA was selected to learn the game

of tic-tac-toe. The agent played against a minimax opponent that searched 2-ply

deep for a move. It followed the E-greedy behavior policy to handle exploration. The

exploration rate was set to 0.1 and a total of 50,000 games were played by the agent,

using .two different learning rates of 0.1 and 1.0. Figures 19 and 20 show how the

learning curve was affected by the learning rate, a .

• /IS ------- -"----------------------

,(16

,U2

\

II
.14 r \

\ 1\, \

./2 ... \/\

\ {'
\ I

./0 - . .. i--f.. r' ';"--
\ I , { ,

\ 1 I/,!\ J' ~
.. t r.. \"f" \., 1\ I' . .I r

\ 1 I, I I, J '-\ { , / I I
I \ I I I, I I' ~ \

1 \ v ,I " I II
.I(-f .'1 II .. ,. l-

Ii I: ,....
\1

0./

0.00 /.0

1 < 7 10 JJ I< /9 22 25 28 JI J< 17 40 4J <6 <9

fOOO gamtJ per IIni,

Figure 19. Mean square error: Effects of learning rate on the performance

48

MJ ----------.

II
I \ 1\ 7
I \I ,,, I

I~--' ~ / , \ /
I. _ ...
1

r-

20'

60 "

1\1

1
1

·20 . I.
I
I
I-40 " ••

I

"

.S't 0

·60
O.J

-80 J.(l

/ 4 7 to H IfJ 19 22 2Ji 1" JI 14 J1 40 n lI6 If)

1000 &t1mtS p~r Imrl

Figure 20. Equity: Effects of learning rate on the performance

vVhen the learning rate was set to 1.0, each Q-value added the actual temporal

difference between Q(St, at) and Q(St+l, at+1) instead of a fraction of the temporal

difference. So, Q(St at) was replaced by Q(St+ll at+d every time Q(Stl at) was backed

up. When the agent explored, a positive Q(Stl at) could be r placed by a n gative

Q(St+l' at+l)' This is the reason that caused the fluctuations of th mean square

error.

3.2.2 Experiment 2. Discount Rate

In Section 1.5.1, we say that the usage of a discount rate in the update equation should

only affect the agent's preference for policies. This also says that it should not affect

the agent's performance. An experiment was carried out to verify if this statement

holds. The agent played 50,000 games. The learning algorithm is SARSA. The

objective in this experiment was to compare undiscounted learning with discounted

learning. The learning rate used was 0.1, and the exploration rate was set to 0.1. The

49

discount rates used were 0.8 and 1.0. Figure 21 and Figure 22 show the equity and

the mean square error for both discount rates.

I!KJ ---.---- -------- - ------------.

60

"'.

0
c·
.~

:Z
·20

.4Q

-tiC

UJ

I
I,. .-

I
/

r
I
I
I
I

-110'

./(K} 0.1

J 4 7 }() IJ '" 19 22 2' U JJ J4 J7 <10 4J 46 49

1000 somes per ulli,

Figure 21. Equity: Discounted versus nondiscounted learning

.14 ._--~-------------------_._----------------_._-

.12

.10

~ .08
~
~

"l;
~ .IAS

~

.0<

.112 '

0.00

I 7 J!J /.I 16 19 22 25 l~ .'1)4 Jl 4() ",J ~ 49

/.0

0./

/000 sames p{!r unit

Figure 22. Mean square error: Discounted versus nondiscounted learning

The tic-tac-toe opponent used in this experiment uses a minimax search algorithm

50

to determine its moves. However, the algorithm h inc rporat d random ov . Thi

randomness caused the opponent's move selection to be nondeterministic. Using th

method of temporal difference learning, the Q-value of each action will conv rge to

its asymptotic Q-value if sufficient training time is provided. By not discounting the

Q-value, the agent does not prefer moves that win the game in fewer moves. So when

the agent does not prefer to win the game immediately, it indirectly increase the

chances for its opponent to settle for more ties. That is the reason why the agent

that used a discount rate has better performance. Therefore, the use of a discount

rate in a certain class of problems may greatly improve the solution.

3.2.3 Experiment 3. Exploration Rate

Exploration enables the agent to discover better decisions given that such decisions

exist. When the exploration rate was varied, there was an unexpected result. The

experiment used an €-greedy strategy as the exploration strategy to test the perfor­

mance difference between a greedy agent and an agent that explores. Figur s 24 and

23 show the differences in the learning curve between an agent that explores (€=0.1)

and an agent that does not (€=1.0). The learning rate was 0.1, the discount rate was

0.8, and the learning algorithm was SARSA.

The information shown in the graphs is misleading. If you look at the equity

graph, it seems as though the agent that does not explore performed better than

the agent that does. The mean equities obtained by averaging the equity of the

last 20,000 games are 61.0 and 50.48 for the greedy agent and non-greedy agent

respectively. Without exploration, the equity is higher because the greedy agent has

only experienced a small subset of the state space, whereas, when the agent explores,

it is learning to act in all possible states. Thus, if both agents are allowed to play

against a human player after training, the greedy agent will lose more games because it

has many states that are left unexplored. So exploration i

the overall performance of the agent .

51

ke fa tor ill det rmining

./6 ._---.,---------~-

.Ill

,ru

.14 - - - - - - ••••• ~ - ~ - - - - _ •••• - _ _ .

. /2 - •••••••••••••• - -. -. - - • - _. - - - •••• - - ••••• -- - - ••.• -. - - - - ••
\

./0 - - - .••• - - - - -' .• - - - - . - - -. - -. - .• - - -- - • - • - _ ••••

•011 . - - - - - , - - - - - - - -. •••••••• •• -- -.. - -. - - - ••• - - - - ••

I
I

,IllS ,- • -1/-\- - - .. - --- - .. - •• - . - - -- - - ..•..•. - .. -

I
\
.~ "'\ - _. _. .. -- - . . -

\ II I' . ,
J I / '\"," - ,..\ 1\ " 1\/'

..... -.~. -. ---- ~~ -.~-~ -.. -~. -I/. -:-. -... ~~:...."
E 0.0

0.00 ~. O,!

I f 7 10 J.f J6 19 22 2$ 26 .II J4 J1 «J ilJ 46 49

1000 to",,, p" un;'

Figure 23. Mean square error: Exploration versus exploitation

80 ------.---------.------.----------.

4() •••• - ••• --------.-.---.-- ••• -.- •••• -- •• - ••• - •••••

-f>() - •• - -. - - - - - •• - - •• - ••• - ••••••• - •• -. -. - ••••••••••• - ••

.N) +-......---r----r--..-..----,--.----,.--,r--r-.....--,----.-r--r-.....-J
/

1000 tam" p" uni!

E 0.0

E 0,/

Figure 24. Equity: Exploration versus exploitation

52

3.2.4 Experiment 4. Q-learning ersu S RS

This section reports the results obtained by comparing Q-learning with S RSA. This

was an effort to find out if there is any advantage in Q-learning and its variation,

SARSA. The agent was trained to learn the game of tic-tac-toe. In both cas s, the

learning rate was set to 0.1, exploration rate was 0.1 using the €-greedy exploration

strategy, and discount rate was 0.8. The equity and the mean square error charts are

illustrated in Figure 25 and 26.

80 .---------------.---

-10 • _•••• _•••••• - •••••••••••• - ••••• - •.•••••••••••••• -

-40 -- ••••• - •• ---- ••••••. - •• ----- ------ •• - ••••• - ••••• ---

-60 -.-- ••• --- ••••••• - •• --- ••••••••••••••••••••• --.--- ••.•

~ ~w

} • U nUll ~ D R ~ ~ ~

!OOO games fHr U/IJI

Figure 25. Equity: Q-learning versus SARSA

Q-Iearning and SARSA were expected to learn the optimal policy. Indeed, the

results show that there are virtually no differences in their performances after they

stabilize. To prove this, the equity of both Q-Iearning methods were averaged before

and after 25,000 games of training. The average equity of the first 25,000 games

shows us the agent's speed of learning to win of both algorithms. The remaining

25,000 games were used to determine the mean equity of both Q-Iearning methods

after the equity stabilized. The results are shown in Table VII. In both cases, the

equity increases at almost the same rate. The mean equity of both Q-Iearning for the

53

.1'

.16 ••

.,•...

\
\

~ .oil ••• ~ •• --- ••

I
.06 •• -. - ',•••••••••••••••••••

0.00 $AIlS,<.

/ 9 /J 17 1I zj 19 JJ J7 ./ 4J 49

!(}()() gam" ptr lUI;'

Figure 26. Mean square error: Q-learning versus SARSA

remaining 25,000 games differs only by 0.47. The mean square error of Q-learning

and SARSA were properly reduced at a similar rate too. Thus, there is no visible

advantage of using either one of them over another.

Table VII. Q-learning versus SARSA: Mean Equity of the first and next 25,000
games

Games 1 - 25,000 26,000 - 50,000

Q-Iearning 31.37 49.88

SARSA 30.96 50.35

3.3 Function Approximator

This section discusses the results obtained by applying a multilayer feedforward neural

network using the backpropagation algorithm to approximate the value function. By

doing this, we hope to obtain a near-optimal value function. The results obtained by

generalizing the value function with different network architectures are provided and

5

discussed.

3.3.1 Experiment 1. Raw Board Representation

The first experiment dealt with using a 3-layer 18-15-9 network archit cture to learn

the mapping from states to Q-values of actions. The input to the neur 1 network

was the raw board representation of the game in progress (explained in S ction 2.4).

The learning rate was set to 0.1, discount rate was 0.8, the exploration rate was

0.1, and the agent played 500,000 games. The learning algorithm was SARSA. The

objective of this experiment was to find out the efficiency of using this method and

the performance of the agent.

As shown in Figure 28, the average mean square error over the last 100,000 games

was 0.059. It stabilized after approximately 250,000 games of training.

60 --.----------------

·40 .

-60 .. .

-lIO...----..--.----...-----r--.....------..---.--r---r---r---.'
I 46 91 /J6 /3/ m 27/ J/6 16/ 4O<l ." "Otl

1000 gamu per uflit

Figure 27. Equity: An 18-15-9 network trained with backpropagation is used to ap­
proximate the value function

Comparing the equity obtained by using a lookup table, the equity obtained in

this experiment is very much lower than with the lookup table. The equity of this

55

experiment is shown in Figure 27. Averaging ov r th 1 t 50,000 gam f thi

experiment, the mean equity was 26.98. This w significan ly low r c mp t th

mean equity of using a lookup table which was pproximately 50.

./8

.16 •••• _ •••• _ _ - - _ .. _ - ..

J4 -------.-.------ ••• -- --- ------ ••• ---.-.-.----- ••• - ••• - •••••

.ol4----w---.---r----,---.---r----,----.---r----,--..,J
I ~ W m m m m m _ ~ ill ~

J()OO gamu per /lnil

Figure 28. Mean square error: An 18-15-9 network trained with backpropagation is
used to approximate the value function

Secondly, the gradient descent method for approximating the value function is

slow. It takes close to 350,000 games to reach its maximum equity around 25, whereas

when a lookup table was used to store Q-values, the agent reached the equity of 25

in less than 10,000 games of training. In this case, generalization did not speed up

learning and it took a significantly higher number of games to learn a sub-optimal

solution using this representation.

3.3.2 Experiment 2. Feature Selection

This section reports the findings about using all eight winning positions in tic-tac-toe

to represent the input. Let us call this network NETFS and the network that uses

raw board representation NETBP. In each case, the agent was trained for 150,000

56

games. The learning rate was 0.1, the exploration rate was 0.1, and th di count

rate was 0.8. The learning algorithm was SARS . The r suIt of the lookup tablet

ETFS, and ETBP are compared in this ection.

The mean square error of NETFS is much lower than for the lookup table which

is shown in Figure 29. However, lower mean square error do not mean that a better

policy was learned. The convergence of the mean square error does not nece sarily

imply that an optimal policy is learned [5] .

.2 ---------,

..
"t:
"!!..
~ .1

j

".... bp

/1 JJ 49 dJ 41 91 IIJ /29 /4J

Figure 29. Mean square error of a network in which the input representation incor­
porated hand-selected features and was trained with backpropagation

Figure 30 compares the equity of the lookup table, NETBP, and NETFS. Aver­

aging the equity of the last 25,000 games, the averaged equity of the lookup table is

17.03 units higher than NETFS. On the other hand, NETFS reached higher equity

than NETBP using this representation.

However when we look at the number of losses of the lookup table and NETFS,

the numbers are pretty close. This is shown in Figure 31. NETFS resulted in more

draws than the lookup table. NETFS has learned a near-optimal policy compared to

/7 jJ <9 6.l 8/ 97 IIJ /29 /4$

-20 ,- - - - - - - - - - - - - - ••• - - - - -. -. - -. - - ••••• - •• - •••••• -

-4() - - •• - - •• - -" • - -. - -. - ••••• - - •••• - - - - ••••• - - - •• - •••• - - - - ••

.(,() .---_ ... -.. - -_ .. _ .. _----------_ .. --

·80 -I------.--.,...---r--...---...-----.----.--.....--.......
I

1000 80mt1 per unit

re,. ""

Figure 30. Equity: A network in which the input representation incorporated hand
selected features (feature) and was trained with backpropagation com­
pared to ANN using raw board representation (regbp) and lookup table
(table)

the policy obtained by the lookup table. In another comparison, NETFS learns sig-

nificantly faster and it has better performance than NETBP. This experim nt show

that the selection of input features to represent problems plays a major role in deter-

mining the success of approximating the value function.

58

100 --'-----------------'------------,

IJO - ••• - - - • - • -. - • •••• • _.

60 -_ •••••••• __ •.•• -_ ••••.• _ ••••.••••• - ••••.••• _.

111

17 JJ •• 6$ 61 .7 III 12. '.$

1000 games fHT '''''''

Figure 31. Number of losses: Comparing the results obtained by the lookup table to
a network in which the input representation used hand-selected features

CHAPTER IV

SUMMARY, CONCLUSIO S, AND RECOMMENDATIONS

4.1 Summary

This research studies the internal workings of reinforcement learning. Reinforcement

learning solves sequential decision problems through trial and error. This gives it the

upper hand for its ability to learn in real time. The learning algorithms of this exper­

imentation were Q-Iearning and a variation of it called SARSA. Both these learning

mechanisms are one-step learning prediction algorithms that learn a value function, a

mapping from a state-action pair to a real number. They update a prediction at time

t to be a fraction closer to the prediction at time t + 1. These algorithms are con­

sidered special cases of a multi-step prediction algorithm known as TD(..\). At every

time step, TD(..\) updates a prediction by exponentially decaying previous predictions

based on recency, where A is the decay factor. Q-Iearning and SARSA are essentially

TD(O), a one-step prediction algorithm in which A is O. TD is the abbreviation for

temporal difference learning.

In this study, temporal difference learning was used to learn the game of tic­

tac-toe. The Q-values were either stored in a lookup table, or approximated by a

multilayer neural network using backpropagation algorithm. The effects of the learn­

ing rate, the discount rate, the exploration rate, and both forms of Q-Iearning were

59

60

experimented with. In these experiments, the Q-valu w r tor d in I okup· bl.

If a function approximator was used, then the obj cti~, wit h d to an I zm

the effectiveness and efficiency of generalization in reinforcement I arning.

When using a lookup table to store tne Q-value , the re ult of learning tic-ta ­

were successful. The constant learning rate did not affect the olu ion ex ept wh n

the learning rate was set close to 1. This was less effective because we w nt ch

prediction to be a fraction closer to the next prediction, not taking on th value of

the next prediction. Otherwise, a good action could be updated to become a b d

action when the next prediction is an exploratory move. The second test de It with

examining discounted versus nondiscounted learning. The effect of a discount rate

should affect only the selection of the optimal policies. By using a discount rate, the

tic-tac-toe agent prefers actions that leads to a win in the least number of moves.

However, this experiment showed that using a discount rate generates a better policy.

By not having a preference on the winning strategy when no discount is used, increas­

ing the length of the game inadvertently increases the probability of not winning th

game. This is why a discount rate should be used in learning to win in tic-tac-toe.

The third experiment dealt with the exploration rate. A test was conduct d to

experiment with the outcome of using the greedy policy versus a ten percent explo­

ration rate in its decision makings. When no exploration was used, the result shows

a very misleading statistical report. The mean square error was reduced significantly

faster compared to the latter. Secondly the results show that the greedy agent actu­

ally learned to win at tic-tac-toe better than the agent that explores. However, this

does not mean that no exploration is a better strategy. If the agent does not explore,

it leaves a lot of the state space unexplored. So when the greedy agent is put into

a test after training by playing against a better player, say a human player who will

not lose, it will be clear that the agent that explores is a better overall player. Thus

......---

61

exploration is an important factor in d.etermining th ov rall p rform

The second half of the experiment dealt with using multi} er £ dforward n t­

work that was trained by the backpropagation algorithm to approxim te th valu

function. A function approximator is commonly used to g n ralize th v lu function

because it may speed up learning. In addition, the ability to generaliz also provid s

the ability to scale up reinforcement learning for solving problems th t hav large

state spaces. In the first experiment, the input was encoded using the raw board rep­

resentation. The network then mapped the state of the game to the action's Q-value.

The empirical results showed that it was learning much slower when it is compared

to storing the Q-values in a lookup table. It took literally 3000 p rcent additional

games to reach the performance attained by table Q-Iearning. In the second experi­

ment with a generalized value function, the tic-tac-toe board was represented by eight

winning positions of tic-tac-toe as the input. By mapping the winning positions of

tic-tac-toe to each action's Q-value, the agent was capable of learning a comparable

policy to the results of table Q-Iearning. Although this representation of tic-tac-to

reduced the mean square error faster than the table Q-Iearning, table Q-l arning had

a slightly higher equity. This finding suggests that selection of features for input rep­

resentation of the problem is critical towards the success of generaliz d reinforcem nt

learning.

4.2 Conclusions

The experiments conducted in this study show that applying Q-learning in learning

the game of tic-tac-toe is indeed successful. The optimal policies of the agent beat

the opponent close to seventy percent of the time in just 50,000 games of training.

The selection of the discount rate, learning rate, and the exploration rate affects the

policy that is learned by the agent.

62

Experimental findings about combining a multila r £ dforw rd n twork u ing

backpropagation and Q-Iearning show that it is not ver r liabl . Diffi r n r ults

can be obtained if different representation of the same problem is used. It n ds lot

of experience and understandings of the tricks and tips in this field of study in order to

make them to work together more successfully. In my experiments, when a function

approximator is used, the tic-tac-toe agent learned to win at a pace similar to table

Q-Iearning. After 10,000 games of training, it reached a point as if it had stopped

learning. At this point, the agent lost half of its games. It was discovered later that

the agent was actually reducing the mean square error at a very slow pace. Without

the analysis of the mean square error, I would not have realized that the agent was

improving its value function slowly. After an additional 300,000 games of training, the

agent improved its equity from approximately 0 to approximately 25. However it was

learning very slowly. It will be beneficial to look at some of the algorithms that are

designed to speed up backpropagation. My final conclusion concerning generalized

reinforcement learning is that it needs a lot of experimentation to test with different

network architectures to represent the same problem, and analyzing the mean square

error during the learning process are keys to a better success in the generation of a

better policy.

4.3 Recommendations

Here are some suggestions for potential future research:

1. Find algorithms that can speed up the backpropagation algorithm and imple­

ment it to generalize the value function. Use them to train an RL agent that

learns to win tic-tac-toe and several other sequential decision problems. Com­

pare the results to see if every approach produces the optimal solution.

2. First find optimization algorithms for backpropagation. Use them to train an

6

RL agent to play tic-tac-toe. If the ar uce ful th n ppl hi, m tho in

the domain of backgammon, chess, or go. Find out how other researchers I ct

features that they think are important in one of those games. Then use those

hand-selected features to represent the input and use it to learn that game.

4.4 Concluding Comment

This study provides a close-up understanding of the internal workings of reinforcement

learning methods. The empirical results obtained in the experiments are successful

when a lookup table is used to store the Q-value. This method of learning through

trial-and-error proved to be very robust only when a lookup-table was used, and using

a lookup table is prohibitively costly for games with a large state space such as chess.

In my opinion, even though reinforcement learning and supervised learning are

considered as two separate fields of study, it ~eems like the understanding of both

fields is compulsory when studying reinforcement learning. I am saying this because

most published literature that I have read was concerned with the scalability of r in­

forcement learning. Researchers hope that the reinforcement learning mechanism can

be integrated with different function approximators more successfully in solving large

real world problems. Many papers were published that proved the convergence of

temporal difference learning algorithms used with different function approximators.

But convergence does not mean that an optimal policy is learned. Local function

approximators such as CMAC, and radial basis networks are recommended to be ap­

plied together with TD learning. However CMAC is not fully scalable even though

hashing provides better and more efficient memory usage. Alternative scalable global

function approximators such as an artificial neural network trained by the backprop­

agation algorithm showed that this method of generalizing the value functions may

produce only sub-optimal solutions, or in the worst case, may diverge. It is still an on-

6

going research area to discover better approache to scaling up reinforcem nt learning.

REFERENCES

[1] D. H. Ackley and M. L. Littman. Generalization and scaling in reinforc ment
learning. Advances in Neural Information Processing Systems, 2:550-557, 1990.

[2] J. Baxter, A. Tridgell, and L. Weaver. Knightcap: A chess program that learns
by combining TD(..\) with minimax search. Technical report, Australian ational
University, Department of Systems Engineering, November 1997.

[3] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, Belmont, MA, 1996.

[4] R. H. Crites and A. G. Barto. Improving elevator performance using reinforce~

ment learning. Advances in Neural Information Processing Systems, 8:1017-1023,
1996.

[5] G. J. Gordon. Stable function approximation in dynamic programming. In
Proceedings of the Twelfth International Conference on Machine Learning, pp.
261-268. Morgan Kaufmann, San Francisco, CA, 1995.

[6] J. Gould and R. Levinson. Machine learning: A multistrat gy approach:
Experience-based adaptive search. Advances in Neural Information Processing
Systems, 4: 579--{)03, 1994.

[7] M. T. Hagan, H. B. Demuth, and M. Beale. Neural Network Design. PWS,
Boston, MA, 1996.

[8] T. Jaakkola, M. I. Jordan, and S. P. Singh. On the convergence of tochastic
iterative dynamic programming algorithms. Neural Computation, 6(6):1185­
1201, November 1994.

[9] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4:237-285, 1996.

[10J S. Kirkpatrick, C. D. Gelatt, and Vecchi M. P. Optimization by simulated an­
nealing. Science, 220(4598):671-680, 1983.

(11] D. N. L. Levy and M. M. Newborn. All About Chess and Computers: Containing
the Complete Works, Chess and Computers. Computer Science Press, Potomac,
MD,1983.

65

.H.' m

66

(12] D. . L. Levy and M. M. Newborn. How Computers Play Oh
and Company, New York, Y, 1991.

[13] S. Mahadevan and L. P. Kaelbling. The ational Science Foundation work hop
on reinforcement learning. AI Magazine, 17(4):89-97, 1996.

[14] T. Mann. Gnu chess and XBoard: Frequently asked question. URL:
http://www.research.digital.com/SRC/personal/Tim...Mann/gnuches /FAQ.html.

ewsgroup: gnu. chess. (Date accessed: Nov. 1998)

[15] M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, MA, 1969.

[16] J. Von Neumann and O. Morgenstern. Theory of Games and Economic Behavior.
Princeton Univ. Press, Princeton, NJ, 1944.

[17] M. M. ewborn. Kasparov Versus Deep Blue: Computer Chess Comes of Age.
Springer-Verlag, New York, NY t 1996.

[18] A. Newell, J. Shaw, and H. Simon. Chess-playing programs and the problem of
complexity. In E. Feigenbaum and J. Feldman, editors, Computers and Thought,
pp. 39-70. McGraw-Hill, New York, NY, 1963.

[19] M. L. Puterman. Markov Decision Processes. John Wiley and Sons, New York,
NY, 1994.

[20] J. Rogers. Object-Oriented Neural Networks in C++. Academic Press,
Huntsville, AL, 1997.

[21] F. Rosenblatt. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6):386-408, 1958.

[22] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning repre entation
by back-propagating errors. Nature, 323(6038):533-536, 1986.

[23] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, Upper Saddle River, NJ, 1995.

[24] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, 3(3):211-229, 1959.

[25] A. L. Samuel. Some studies in machine learning using the game of checkers II.
IBM Journal of Research and Development, 11(6):601-617, 1967.

[26] C. E. Shannon. Programming a computer for playing chess. In N. J. A. Sloane
and A. D. Wyner, editors, Claude Elwood Shannon Collected Papers, pp. 637-656.
IEEE Press, New York, NY, 1993.

[27] R. S. Sutton. Implementation details of the TD(.\) procedure for the case of
vector predictions and backpropagation. Technical Report TN87-509.1, GTE
Laboratories Incorporated, May 1987.

67

[28] R. S. Sutton. Learning to predict by the method of temp ral dift r Ma-
chine Learning, 3(1):9-44, 1988.

[29] R. S. Sutton. Generalization in reinforcement learning: Su ful exampl s
using sparse coarse coding. Advances in Neuml Information Proce sing Systems,
8:1038-1044,1996.

[30] R. S. Sutton and A. G. Barto. An Introduction to Reinforcement Learning. MIT
Press, Cambridge, MA, 1998.

[31] R. S. Sutton and S. D. Whitehead. Online learning with random representation.
In Proceedings of the Tenth International Conference on Machine Learning, pp.
314-321. Morgan Kaufmann, San Mateo, CA, 1993.

[32] G. Tesauro. Practical issues in temporal difference learning. Advances in Neural
Information Processing Systems, 4:259-266, 1992.

[33] G. Tesauro. TD-gammon, a self-teaching backgammon program, achieves master­
level play. Neural Computation, 6(2):215-219, 1994.

[34] G. Tesauro. Temporal difference learning and TD-gammon. Communications of
the A CM, 38(3) :58-67, March 1995.

[35] S. Thrun. Learning to play the game of chess. Advances in Neural Information
Processing System, 7:1069-1076, 1995.

[36] S. Thrun. Lifelong learning: A case study. Technical report CMU-CS-95-208,
Carnegie Mellon University, Pittsburgh, PA, 1995.

[37] S. Thrun. Explanation-Based Neural Network Learning: A Lifelong Learning
Approach. Kluwer Academic Publishers, Norwell, MA, 1996.

[38] A. Turing. Faster than Thought: A Symposium on Digital Computing Machines.
B. V. Bowden, Pittman, London, UK, 1953.

[39] C. J. Watkins. Learning from delayed rewards. Ph.D. thesis, King's College,
Cambridge, England, 1989.

[40] M. A. Weiss. Data Structures and Algorithm Analysis. Benjamin/Cummings,
Redwood City, CA, 1992.

Appendix A

GLOSSARY

€-greedy: A policy whereby € denotes the exploration rate.

Agent: The decision maker or the learner.

Artificial Neural Network: A simplified model of the brain cells, or neurons that are
massively interconnected, usually simulated in software using a computer.

Autonomous Learning: Learning by experiencing the task through trial and error
interactions with the environment.

Backpropagation: An optimization algorithm that is capable of training a multilayer
neural network by computing the partial derivatives in a backward
propagating sweep through the network.

Environment: A simulation model with which the agent interacts with to increase
its experience.

Exploitation: Choose actions greedily that yields the highest value.

Exploration: Choose actions that does not necessarily yield the highest value.

Least Mean Square: An algorithm that is applicable to a two-layer network that
optimizes the performance of the network by reducing the approximate
mean square error.

Markov Decision Process: One particular sequential decision model whereby the
current state summarizes everything important about the actions that
produced it.

Off-Policy: The policy used to generate behavior is unrelated to the policy that is
evaluated and improved.

68

69

On-Policy: This method evaluates and improves the am polic th tit u t
decisions.

Policy: The decision-making function of the agent, telling it what action to
choose in each state.

Q-Learning: An off-policy temporal difference learning algorithm develop d by
Watkins.

Reinforcement Learning: A learning mechanism that rewards good decisions and
punishes bad choices made by the agent; and the learning is autonomous.

Reward Function: The definition of the agent's goal that maps the state of the
environment to a single number.

SARSA: An on-policy temporal difference learning algorithm.

TD(>'): A multi-step temporal difference learning algorithm whereby at each time
step, TD(>.) updates a prediction by exponentially decaying previous
predictions based on recency, where). is the decay factor.

Temporal Difference Learning: A reinforcement learning method that updates a
prediction at time t to be a fraction closer to the prediction after t.

Value Function: The function that specifies what action election i the best in the
long run.

/

...

Appendix B

SAMPLE PROGRAM CODE

11
II main.cpp
11111111111111111/111//1//1/1//111//111/1/11/1///1/111//1/1/111/11/111/11//1/11111
#include <iostream.h>
#include <fstream.h>
#include "str.h"
#include "clock.h"
#include "simulator.h"

/111//1/1//1111/1/11///1111//111////1/1//111/111/11///1//1/1/11///1/1/1111111/111/
/1 Main program of reinforcement learning system
11/1/11///11//1///1/111/1/11//1111/11/1//1/1/1/111//1/11///1/1//11//1/1//111111111
int mainO
{

ofstream foutj
RL_Simulator_Class simulator;
if Csimulator. setupCcout , cin) == 1)
{

II if simulator setup is completed

cout « endl « "Constructing RL system ... " « endl;
simulator.construct();
cout « "Done." « endl;
clockClass clock;
cout « endl « "Agent is learning ... " « endl;
clock. start 0 ;
simulator.learnCcout, fout); /1 RL agent is learning
clock. stop 0 j
cout « "Learning is done in II « clock « endl;

}

II allow user to train more games if data gathered is inadequate
cout « endl « "Do you want to train more games (y, n)7" « endl « "> "j
char response;
long numOfGames;
double explorationRate;
cin » responsej
while (response == 'y')
{ /1 network weight, move selection, score stat files

cout « "Please save weights, play, and score file" « endl « endl;

70

}

cout « "How many additional games do you vant to train?" « endl « "> ";
cin » numOfGames;
simulator.setNumOfGames(numOfGames);

II experiment the effects of changing exploration rate if wanted
cout « "What exploration rate do you want to use?" « endl;
cin » explorationRate;
simulator.setExplorationRate(explorationRate);
clockClass clock;
cout « endl « "Agent is learning "« endl;
clock. start 0 ;
simulator.learn(cout, fout);
clock.stopO;
cout « "Learning is done in " « clock « endl;
cout « endl « "Do you want to train more games (y, n)?" « endl « "> ";
cin » response;

}

return 0;

71

72

///11////1/11//////1//////1///1///1/
// simulator.h - interface file
//1//1///11///1/
#ifndef SIMULATOR
#define SIMULATOR

#include <iostream.h>
#include <fstream.h>
#include "str.h"
#include "rl.h"
/////////////////////1//////////////////1///
// Provides a user interface to setup and construct the simulat:i.on framework
//
class RL_Simulator_Class
{

private:
RL_Framework_Class *agent;
int tableOrNN; // hash table of neural network
int learning; // RL learning algorithm selection
int restore; // restoring network weight or not
double stepSize; // step size of Q-Iearning
double discount; // discount rate of Q-Iearning
double learningRate; // learning rate of neural network
double momentum; // neural net's momentum
double exploration; // agent's exploration rate
int policy; // types of behavior policy
int difficulty; // opponent's playing level
int numOfHidden; // number of neural net hidden nodes
double rewardWin; // reward for a win
double rewardTie; // reward for a tie
double rewardLoss; // reward for a loss
double rewardNonej // reward for intermediate moves
long numOfGames; // number of games for training
stringClass scoreFile;
int display; // whether to display

public:
RL_Simulator_Class()j
-RL_Simulator_Class();
void construct();
void displaySetup(ostream&); // display system information
void systemMenu(ostreamk);
void editMenu(ostream&);
void editSystem(ostreamk, istream&);
int setup (ostream& , istream&); // setup system
void learn (ostream&, ofstream&);
void printSetupToFile(ofstream&) j
void genScoreFileName();
void setNumOfGames(long);
void setExplorationRate(double);

} ;

#endif SIMULATOR

73

11///111/11/1/1/
I I simulator. cpp - implementation file
11//11/1/1/111/111/111/1//1/1/1///1///111/111//1//111/111////11111//111111/111//11
#include <iomanip.h> // for setw()
#include <strstrea.h>
#include <time.h>
#include "r l s td.h"
#include "s imulator.h"

////11111/1/11111//1//111///11/1111/1111/1/11/111/1/11/11/1///1//111/11/1111/////1
1/ Constructor
1//111//11//1/1/1//1//11/111111111111/11111/11/111///11//1/1///1/11/////111//1////
RL_Simulator_Class::RL_Simulator_Class()
{

display = 0;
rewardWin = 1.0;
rewardLoss = -1.0;
rewardTie = 0.0;
rewardNone = 0.0;
restore = 0;
tableDrNN = NEURAL_NET;
learning = Q_LEARNING;
stepSize = 0.2;
discount = 0.8;
learningRate = 0.1;
momentum = 0.9;
exploration = 0.1;
policy = EPSILON_GREEDY;
difficulty = MEDIUM;
numOfHidden = 20;
numOfGames = 40000;

1/ create new network, default
1/ Hash table or neural network approximation

// Sarsa or Q-learning
/1 default step-size for update equation (alpha)
// discount rate for update equation (gamma)
II neural network learning rate

// neural network momentum
/1 exploration rate
// behavior policy of agent

/1 opponent's difficulty level, or intelligence
II number of hidden nodes for neural network

/1 number of trials or games for learning
}

//1///1//1//1///////////////1//11///11////1////////////////1//1//////1///////////1
/1 destructor
/1////1/1////11/1//1/11/1/1/11//1/111/1/1/1111//11//1/1111///1111/1/1//1/1111/11/1
RL_Simulator_Class::-RL_Simulator_Class()
{

delete agent;
}

1///1////11/11//1111/1/1/1/1/1///111/////1//1/1/1///111/1///1///11/1//1/1//1/1/1//
/1 generate a file that store the score based on the setup
/11//1/11111/1/1/1//1//1/1/1///1/1/1//111111/1////1//1/1//11/11/1//11/111/11///1//
void RL_Simulator_Class::genScoreFileName()
{

char qDrSarsa, epsilonOrSoftmax, diff;
switch (learning)
{

case Q_LEARNING : qOrSarsa = 'q'; break;
case SARSA : qOrSarsa = 's'; break;
}

switch (policy)
{

case EPSILON_GREEDY: epsilonOrSoftmax = 'e'; break;
case SOFTMAX : epsilonOrSoftmax = 's'; break;

7

}

switch (difficulty)
{

case EASY: diff = 'e'; break;
case MEDIUM: diff = 'm'; break;
case DIFFICULT: diff = 'd'; break;
}

char tmptime[20] , tmpdate[20];

/* Set time zone from T2 environment variable. If T2 is not set.
* operating system default is used, otherwise PST8PDT is used
* (Pacific standard time, daylight savings).
*/

_tzset 0;

/* Display operating system-style date and time. */
_strtime(tmptime);
_strdate(tmpdate);

for (int i=O; i<20; i++)
{

if (tmptime[i] == ':')
tmptime[i] = '.';

if (tmpdate[i] == 'I')
tmpdate[i] = '.';

}

ostrstream *ostr = new ostrstream;
if (tableOrNN == NEURAL_NET)

*ostr « qOrSarsa « "n" « numOfHidden « epsilonOrSoftmax « exploration
« "a" « stepSize « "g" « discount « "_1" « learningRate « "m"
« momentum « diff « numOfGames « rewardWin « rewardTie « rewardLoss
« "_" « tmpdate « tmptime « ".txt" « ends;

else *ostr « qOrSarsa « "til « epsilonOrSoftmax « exploration « "_a "
« stepSize « "gil « discount « diff « numOfGames « rewardWin
« rewardTie « rewardLoss « "_" « tmpdate « tmptime « ".txt" « ends;

char *name = ostr->str();
scoreFile = name;
delete ostr;
delete name;

// generate data file name based on the setup

}
//
// construct the simulator
//
void RL_Simulator_Class: :construct()
{

if (tableOrNN == NEURAL_NET)
agent = new RL_Framework_Class(restore, BtepSize, discount,

learningRate, momentum, exploration, policy, difficulty,
numOfHidden, rewardWin, rewardTie. rewardLoss. rewardNone,
display, tableDrNN);

else if (tableDrNN == HASH_TABLE)

75

agent = new RL_Framework_Class(stepSize, discount, exploration, policy,
difficulty, relilardWin, rewardTie, rewardLoss,
rewardNone, display);

}

1111//////////////1/1////11//1////1//111/1/11111111/11111111/1/111/////1/11111/1//
/1 display the setup to screen
//11//111111//11/11////1111111/11/111/1/1111//11111/11111111111111111111111111/1/1
void RL_Simulator_Clas s : :. di splaySetup (ostream8t; out)
{

out « "Learning algorithm ";
if (learning == Q_LEARNING)

out « "Q-Iearning" « endl;
else if (learning -- SARSA)

out « "Sarsa" « endl;

out « "Behavior Policy";
if (policy == EPSILON_GREEDY)

out « "epsilon-greedy" « endl;
else out « "softmax" « endl;

if (tableOrNN == NEURAL_NET)
{

out « "Neural Network
« "Restore weight
« "Learning rate
« "Momentum

" « numOfHidden « " hidden nodes" « endl
" « restore « endl

" « learningRate « end1
" « momentum « endl;

}

else out « "Hash Table " « endl;

numOfGames « endl;

stepSize « endl
discount « endl
exploration « endl
rewardWin « endl
rewardTie « endl
rewardLoss « endl
rewardNone « endl

" «
" «
" «
" «
" «
" «
" «

out « "Step size
« "Discount rate
« "Exploration rate
« "Reward for win
« "Reward for tie
« "Reward for loss
« "No reward
« "Opponent Difficulty";

if (difficulty == EASY)
out « "easy" « endl;

else if (difficulty == MEDIUM)
out « "medium" « endl;

else out « "difficult" « endl;
out « "Number of Games " «

}

111/11111/111////111/1/11111111111111111/111111//1//111///1//1//1/1111/111/1111///
II print system setup information into a file
11/11/1///1111/111/11/1/////1/11///11111111///11/111/111/11////1/1/1///11/1/1//111
void RL_Simulator_Class: :printSetupToFile(ofstream& fout)
{

II­,fout « "Learning algo
if (learning == Q_LEARNING)

fout « "Q-learning" « endl;
else if (learning == SARSA)

If •,fout « "Behavior Policy
if (policy == EPSILON_GREEDY)

fout « "epsilon-greedy" « endl;
else fout « "softmax" « endl;

if (tableOrNN == NEURAL_NET)
{

76

fout « "Neural Network
« "Restore weight
« "Learning rate
« "Momentum

}

else fout « "Hash Table

" « numOfHidden « " hidden nod.es" « endl
" « restore « endl

" « learningRate « endl
" « momentum « endl;

" « endl;

" « stepSize « endl
« discount « endl
« exploration « endl
« rewardWin « endl
« rewardTie « endl
« rewardLoss « endl
« rewardNone « endl

fout « "Step size
« "Discount rate
« "Exploration rate
« "Reward for win
« "Reward for tie
« "Reward for loss
« "No reward
« "Opponent Difficulty

if (difficulty == EASY)
fout « "easy" « endl;

else if (difficulty == MEDIUM)
fout « "medium" « endl;

else tout « "difficult" « endl;
fout « "Number of Games " « numDfGames « endl « endl;

}

//
// print the choice of menus
// - type "q A" to use SARSA as the learning algo
////////////////////////1//////////////1//11//////////////////////////////////////
void RL_Simulator_Class::systemMenu(ostream& out)
{

out « "c setup complete" « endl
« ltd display system setup" « endl
« "e edit system" « endl
« "1 load system from file" « endl
« "x exit or abort" « endl « endl;

}

//////////1/1///1/////
// print the setup options
/////////////1//
void RL_Simulator_Class: :editMenu(ostream& out)
{

out « endl
« "q Learning algorithm (0 Sarsa, 1 Q-Iearning" « endl
« "b Behavior policy (0 Softrnax, 1 Epsilon-greedy)"
« endl
« "t Method to set value (0 Hash Table, 1 Neural Network"
« endl
« Old Update equation discount (0 =< d <= 1) " « endl
« "s Update equation step-size (0 =< s <= 1) " « endl

77

(0 =< 1 <= 1) " « endl
(0 =< m <= 1)" « end1
(0 =< e <= 1)" « end1
(l true o false)" « endl

«"1 Neural network learning rate
«"m Neural network momentum
«"e Exploration rate
«"r Restore
«"0 Opponent Difficulty" « endl
«"+ Reward for a win" « endl
«"= Reward for a tie" « endl
«"- Reward for a loss" « endl
«"0 No reward" « endl
«"g Number of games (g > 0)" « endl
«"n Score file name" « endl;

if (tableOrNN == NEURAL_NET)
{

out « "h Number of hidden nodes" « endl;

II continue until exit option is chosen

}

out «"x exit edit menu" « endl « endl
« "Choose the option follow by the value (eg. > d 0.25)"
« endl « endl « endl;

}

///11//1111/1//1/111/1
// modify the setups provided by the user
/1/1/11//1///1///11/1/1/11/11111111//11//11/1///1/////1///1/1//1///1/1//1//1/1/1//
void RL_Simulator_Class::editSystem(ostreaml out, istream& in)
{

out « "Type? for edit help" « endl « endl
« If> If;

char choice;
in » choice;
while (choice != 'x')
{

switch (choice)
{

case '?' editMenu(out); break;
case 'q' in » learning; break;
case 'b' in » policyj break;
case 't' in » tableOrNN; break;
case 'r' in » restore; break;
case 'd' in » discountj break;
case 's' in » stepSize; break;
case I l' in » learningRatej break;
case 'm' in » momentumj break;
case 'e' in » explorationj break;
case '0 I in » difficulty j break;
case ,+, in » rewardWinj breakj
case '0' in » rewardNone; break;
case ,_ I in » rewardLoss; break;
case '=' in » rewardTiej break;
case ' g ' in » numOfGames; break;
case 'n' in » scoreFilej break;
case 'h' if (tableOrNN==NEURAL_NET)

in » numOfHidden; break;
default : out « "Invalid edit option" « endlj
}

out « "> II.
I

78

in » choice;
}

}

11/111111/11/1111/1/1111/111111/111111/11111
II setup the simulation
11111111111/1/111/11/111111111/1/11111111111111111111111/111111111111111111/1111/1
int RL_Simulator_Class: : setup (ostream& out, istreamk in)
{

out « "Reinforcement learning system" « endl « endl;
systemMenu(out);

out « "Type ? for help" « endI « endl
« "> ";

char choice;
in » choice;
while Cchoice != 'x' && choice != 'c ')
{

switch (choice)
{

II display system menu
II display current system setup

case' c'
case '?'
case 'd'
case 'e'
default:
}

break;
systemMenu(out); break;
displaySetupCout); break;
editSystem(out, in); break;

out « "Invalid option" « endl;

out « "> H;
in » choice;

}

if (choice == 'x')
return 0;

else return 1;
}

1111111111111111/11111/111111111111111111111111111111/1111111111/11111/1/111/11111
II The selected RL learning algo is called
1111111/111111/1/111/111/111/11/111111111111/111111/11/1/111/1//1111/1/1111//11//1
void RL_Simulator_Class: : learn (ostream& out, ofstream& fout)
{

genScoreFileNameC);
fout.open(scoreFile, ios: :out);
fout.flags(ios: :left ios: :fixed ios::floatfield I ios::showpoint);

II output system setup into a file
RL_Simulator_Class: :printSetupToFile(fout);

fout « setw(lO) « "Win" « setw(lO) « "Tie" « setw(lO) « "Loss" « endl;

if (tableOrNN == NEURAL_NET)
{

if (learning == Q_LEARNING)
agent->Approx_Q_Learning(numOfGames, fout, out);

else if (learning == SARSA)
agent->Approx_Sarsa_Learning(numOfGames, fout, out);

}

else

79

{

if (learning == Q_LEARNING)
agent->Table_Q_Learning(numOfGames, fout, out);

else if (learning == SARSA)
agent->Table_Sarsa_Learning(numOfGames, fout, out)i

}

fout. close () ;
}

//
void RL_Simulator_Class: : setNumOfGames (long games)
{

numOfGames = games;
}

//
// set exploration rate, only called when we vant to train additional games
//1/////
void RL_Simulator_Class: :setExplorationRate(double exploration)
{

agent->setExploration(exploration);
}

80

11111111111111111111/1111/1/1/11/1///1//////1111/11///11//1/11//11/11/1/11/1/1/11/
1/ rl.h - RLClass interface file
1/1/1/111//111/1//1/11///1111111/////11/1/11///////111//1/1/1/1//11111111///11111/
#ifndef RL
#define RL

#include <fstream.h>
#include <iostream.h>
#include "str.h lt

#include "environment.h lt

#include "experience.h"
#include "policy.h"
1/1111111//111/1/1/1/1/11/111/11/11///111/11/111/1/1/11//11//11//1111/1//1/11//1//
1/ Reinforcement Learning Framework Class
II
// The reinforcement learning framework is coded here whereby the agent
II interacts with its environment and learn by receiving feedbacks from
1/ the environment whether its decision is good or bad.
1/111/1111/111//111/11/1111111111111111/111111111111111111111111111111/111111/1111
class RL_Framework_Class
{

private:

RL_Policy_Class
RL_Environment_Class
RL_Qvalue_Class

stringClass
stringClass

.policy;

.envir;

.Q;

curState;
nextState;

gameFile; II file output learning statisfic
playFile; /1 play selection file output

double
double
BOOL
void initialize();
of stream
of stream

public:

alpha;
gamma;
net;

II learning rate
/1 discount rate
II flag - neural net or hash table

RL_Framework_Class(int, double, double, double, double,
double, int, int, int, double, double, double, double, int, int);

RL_Framework_Class(double, double, double, int, int, double,
double, double, double, int);

-RL_Framework_Class()
{

delete policy;
delete Q;
gameFile.close();
playFile.close();

}

void Approx_Sarsa_Learning(long int, ofstreamk, ostream&);

void Approx_Q_Learning(long int, ofstream&, ostream&);
void Table_Q_Learning(long int, ofstream&, ostream&)j
void Table_Sarsa_Learning(long int, ofstream&, ostream&);

void printState();
void approx_GreedyPlay(ostream&);
void table_GreedyPlay(ostream&)j
void setExploration(double);
double get_alpha() { return alpha; }
double get_gamma() { return gamma; }

};

#endif RL

81

82

///////////////////////////////11/11/1/111/111/1/11111111111//1111111//1//1//1//1/
/1 rl.cpp - Implementation file for class reinforcementLearningClass
//1//11/1///111//////11/11////11/11//11/1/1//1////1////111/1////1/1/1/1111/1//11/1
#include <iostream.h>
#include <fstream.h>
#include <string.h>
#include <iomanip.h>
#include <math.h> // for exponential function
#include "random.h" II random number generator to choose who to start the game
#include "rl.h tl

#include "rlstd.h"

////111/1/1/1////111//1/1////1/1/1/1//11////////1/1/1/1///1///1/1/1111/11////11//1
/1 allow change of the exploration rate when user wants to train more games
///11///////11//1//1////11//111111/1//11/////11///11////1/////////1////////11/////
void RL_Framework_Class::setExploration(double rate)
{

policy->setExploration(rate);
}

////1/////11//1/11////////////11////////////////////////////////1////////////1////
// qLearning constructor, construct learning system
///////1/////11/////1//////1///1//1////11////1/////////1////1////1/////1//1///////
RL_Framework_Class::RL_Framework_Class(double stepSize, double discount,

double exploration, int bPolicy, int difficulty, double
rewardWin, double rewardTie, double rewardLoss,
double rewardNone, int display)

{

gameFile . open (" state. txt", ios:: out) ;
gameFile.flags(ios: :left I ios: :fixed ios: :floatfield ios: :showpoint) j
playFile.open("play.txt", ios: :out)j
playFile.flags(ios: :left I ios: :fixed I ios::floatfield I ios: :showpoint);
playFile « setw(10) « "Win" « setw(lO) « "Draw" « setw(10)

« "Loss" « setw(10) « t1MSE" « endl;

alpha = stepSizej
gamma = discount;
net = FALSEj // means it is using Q-table

if (bPolicy == EPSILON_GREEDY)
policy = new RL_EpsiloD_Greedy_ClassCexploration);

else policy = new RL_Softmax_ClassCexploration)j

// reward for tie is used to initialize Q-table
Q = new RL_Hashing_Class(rewardTie, display)j
envir = new RL_Connect3_Class(difficulty, rewardWin, rewardTie,

rewardLoss, rewardNone)j
}

///////1///////1////1//1//1/////////////////////////1///////////1///////1/////////
1/ qLearning constructor, construct learning system
////1//1/////////////////////////1///////1////////////1//1/////////1/1/1/1//1////1
RL_Framework_Class: :RL_Framework_Class(int restore, double stepSize,

double discount, double learningRate, double momentum,
double exploration, int bPolicy, int difficulty,

83

int numOfHidden, double rewardWin, double rewardTie,
double rewardLoss, double rewardNone,int display, int net)

{

gameFile. open("statel. txt ", ios:: out) ;
gameFile.flags(ios: :left I ios: :fixed ios: :floatfield ios: :showpoint);
playFile.open("play.txt", ios: :out);
playFile.flags(ios: :left t ios: :fixed I ios::floatfield ios::showpoint);
playFile « setw(10) « "Win" « setw(10) « "Draw" « setw(10)

« "Loss" « setw(10) « "MSE" « endl;

alpha = stepSize;
gamma = discount;
net = TRUE; // is using Neural network

if (bPolicy == EPSILON_GREEDY)
policy = new RL_Epsilon_Greedy_Class(exploration);

else policy = new RL_Softmax_Class(exploration);

if (net == NEURAL_NET)
Q = new RL_Neural_Network_Class(restore, learningRate, momentum,

numOfHidden, curState, 0.5, rewardNone, display);

envir = new RL_Connect3_Class(difficulty, rewardWin,
rewardTie, rewardLoss, rewardNone);

}

///1///1//////////////////1/////
// initialize state to the start of a game, empty board
///////////////////////////////////1//////////////////1//1////////////////////////
void RL_Framework_Class::initialize()
{

"
curState = II

nextState

It.,
II.,

}

e-greedy)

Initialize Q(s, a) arbitrarily
Repeat (for each trial):
Initialize s,a

Repeat (for each step of trial):
Choose a from s using policy derived from Q(e.g,
Take action a, observe r, s'
Q(s,a):= gamma * maxQ(s',a')
s := 5';

until s is terminal

///////////////////////////////////1//////////1///////////1///////////////////////
// DESCRITION: Off-Policy Q-learning where the Q-value is approximated using
// a neural network. Value function approximation is in
// accordance of Sebastian Thrun's method.
//
// PSEUDOCODE:
//
//
//
//
//
1/
//
//
//
///////////1////1//////////////////1//////////////////////1///////////////////////
void RL_Framework_Class: : Approx_Q_Learning (long int numOfTrial, ofstream& fout,

ostream& out)
{

stringClass action;

validActionClass move;
double reward, Qvalue;
double x_percent = 0.01, process;
randomNumClass random;

BOOL print = FALSE;

for (int i=O; i<numOfTrial; i++)
{

initialize 0 ;
action = "";

II reset state, or empty board
II reset action to blank

if (random.randomlnteger(l,2) == 1) /1 opponent to start
curState = envir->chooseAction(curState, action);

if (i %1000 == 0)

{ II print every state transitions once every 1000 games
print = TRUE;
gameFile « "******* Game" « i+l « " *******" « endl;

}

/1 Sebastian's method
II end of Sebastian's method

do
{

1/ **** Approx method *****

move.generate(curState);
action = policy->choose(*Q, move, curState);
if (print)

printState 0 ;
nextState = envir->chooseAction(curState, action);
reward = envir->feedback(nextState);
if (envir->gameOver(nextState)==FALSE)

Qvalue = gamma * Q->max(nextState);
else Qvalue = reward;
Q->setValue(curState, action, Qvalue);
if (print)

printState 0 ;
curState = nextState;

}

while (envir->gameOver(curState)
if (print)

printStateO;
print = FALSE;

FALSE);

}

envir->keepScore(curState, fout);
process = (double)i / (double)numOfTrial;
if (process >= x_percent) 1/ indication of % learning completed
{

out « int(process * 100) « "%" « endl;
x_percent += 0.01;

}

if (i %1000 0) II test agent's knowledge every 1000 games
approx_GreedyPlay(out);

}

out « "100%" « endl;

s := s'
until s is terminal

Initialize Q(s, a) arbitrarily
Repeat (for each trial):
Initialize s to start state

Repeat (for each step of trial):
Choose a from s using policy derived from Q(e.g, e-greedy)
Take action a, observe r, s'
Q(s,a):= Q(s,a) + alpha[r + gamma.Q(s' ,a')-Q(s,a)]

85

//
// DESCRITION: Off-Policy Q-learning. The Q-value is stored in hash table
//
// PSEUDOCODE:
//
//
//
//
//
//
//
//
//
//
void RL_Framework_Class: :Table_Q_Learning(long int numOfTrial,

ofstream& fout, ostream& out)
{

stringClass action;
validActionClass move;
double reward, error, Qvalue;
double x_percent = 0.01, process;
randomNumClass random;
double maxQ;

BOOL print = FALSE;
error = O.Oj // new trial from Sebastian's book
for (int i=O; i<numOfTrial; i++)
{

initialize(); // reset state, or empty board
action = ""; // reset action to blank
if (random.randomlnteger(l,2) == 1) // opponent to start

curState = envir->chooseAction(curState, action);

if «i I. 1000)==0)
{

// for debug purposes

print = TRUEj
garneFile « "******* Game" « i+l « to *******" « endl;

}

do
{

/ / ****** TABLE Q-learning *******

move.generate(curState);
action = policy->choose(*Q. move, curState);
if (print)

printState () ;
nextState = envir->chooseAction(curState, action);
reward = envir->feedback(nextState)j
if (envir->gameOver(nextState)==FALSE)

maxQ = Q->max(nextState)j
else maxQ = 0.0;
Qvalue = Q->getValue(curState, action);
Qvalue += alpha * (reward + (gamma * maxQ) - Qvalue);

86

Q->setValue(curState, action, Qvalue);
curState = nextState;

}

while (envir->gameOver(curState) -- FALSE);

if (print)
printStateO;

print = FALSE;

envir->keepScore(curState, fout);
process = (double)i / (double)numOfTrial;
if (process >= x_percent)
{

out « int(process * 100) « "%" « endl;
x_percent += 0.01;

}

if (i I. 1000 0) // test agent's knowledge every 1000 games
table_GreedyPlay(out);

}

out « "1001." « endl;

derived from Q(e.g, e-greedy)

Initialize Q(s, a) arbitrarily
Repeat (for each trial) :
Initialize s,a

Repeat (for each step of trial):
Take action a, observe r
Choose a' from s using policy
Q(s,a):= gamma * maxQ(s',a')
s := s'; a := a';

until s is terminal

}

//1//////1//////
// DESCRITION: On-Policy Q-learning where the Q-value is approximated using
// a neural network. Value function approximation is in
// accordance of Sebastian Thrun's method.
//
// PSEUDOCODE:
//
//
//
//
//
//
//
1/
//
1///1///////1//////////////1///1/1111/1/
void RL_Framework_Class::Approx_Sarsa_Learning(long int numOfTrial,

ofstream& fout, ostream& out)
{

stringClass action, nextAction;
validActionClass move;
double reward;
double x_percent = 0.01, process, nextQ;
randomNumClass random;

BOOL print = FALSE;

for (int i=O; i<numOfTrial; i++)
{

1/ for each game

initializeO;
action = "";

if (random.randomlnteger(1,2) == 1) II opponent to start
curState = euvir->chooseAction(curState, action);

move.generate(curState);
action = policy->choose(*Q, move, curState); II take action a

if (i % 1000 == 0)
{ II print every state transitions once every 1000 games

print = TRUE;
gameFile « "******* Game" « i+l « " ****.*." « endl;

}

II ****.***** Approx Sarsa *******.
do II for each move of a game
{

if (print)
printState();

nextState = envir->chooseAction(curState, action);
reward = envir->feedback(nextState);

if (envir->gameOver (nextState) ==FALSE)
{

move.generate(nextState);
nextAction = policy->choose(*Q, move, nextState); II choose a'
II Sebastian's method
nextQ = gamma * Q->getValue(nextState, nextAction);

}

else nextQ = reward;

87

Q->setValue(curState,
if (print)

printState 0 ;
curState = nextState;
action = nextAction;

action, nextQ);

II s := 5'

II a := a'
}

while (envir->gameDver(curState) == FALSE);

if (print)
{

printState 0 ;
print = FALSE;

}

envir->keepScore(curState, fout);
process = (double)i I (double)numOfTrial;
if (process >= x_percent)
{

out « int(process*100) « "I." « endl;
x_percent += 0.01;

}

if (i i. 1000 -- 0)
approx_GreedyPlay(out);

}

out « "100%" « endl;

II until s is terminal

a := a'; 5 := s';
until s is terminal

Initialize Q(s, a) arbitrarily
Repeat (for each trial):
Initialize s,a

Repeat (for each step of trial):
Take action a, observe r
Choose a from s' using policy derived from Q(eg. e-greedy)
Q(s,a):=Q(s,a) + alpha[r + gamma.Q(s',a')-Q(s,a)]

88

}

//
// DESCRITION: On-Policy Q-learning. The Q-value is stored in hash table
//
// PSEUDOCODE:
//
//
//
//
//
//
//
//
//
//1///////////////////////1/////////
void RL_Framework_Class: :Table_Sarsa_Learning (long int numOfTrial,

ofstream& fout, ostream& out)
{

stringClass action, nextAction;
validActionClass move;
double reward, Qvalue;
double x_percent = 0.01, process, nextQ;
randomNumClass random;
BOOL print = FALSE;

for (int i=O; i<numOfTrial; i++)
{

// for each game

initializeO;
action = "";
if (random.randomInteger(1,2) == 1) // opponent to start

curState = envir->chooseAction(curState, action);
move.generate(curState);
action = policy->choose(*Q, move, curState); // take action a

if (i% 1000 == 0)
{ // print every state transitions once every 1000 games

print =TRUE;
gameFile « "******* Game II « i+l « " *******" « endl;

}

// ******** Table Sarsa Learning **********
do /1 for each move of a game
{

if (print)
printState 0 ;

nextState = envir->chooseAction(curState, action);
reward envir->feedback(nextState);

Qvalue = Q->getValue(curState, action);
if (envir->gameOver(nextState)==FALSE)
{

move.generate(nextState);

nextAction = policy->choose(*Q, move, nextState);
nextQ = Q->getValue(nextState, nextAction);

}

else nextQ = 0.0;

Qvalue += alpha * (reward + (gamma * nextQ) - Qvalue);
Q->setValue(curState, action, Qvalue);

if (print)
printState() ;

// choose a'

89

curState = nextState;
action = nextAction;

// 5 := s'
// a := a'

}

while (envir->gameOver(curState) == FALSE);

if (print)
{

printState () ;
print = FALSE;

}

envir->keepScore(curState, fout);
process = (double)i / (double)numOfTrial;
if (process >= x_percent)
{

out « int(process*100) « "%" « endl;
x_percent += 0.01;

// until s is terminal

}

}

if (i r. 1000 0) // test agent's knowledge every 1000 games
table_GreedyPlay(out);

}

out « "100%" « endl;

//
// Print out state to analyse the decision selected by the agent ...
//
void RL_Framework_Class::printState()
{

int ij
gameFile

« curState [0] « "I" « curState [1)
« "I" « curState[2] « endl
« "_+_+_" « " ";

for (i=O; i<3; i++)
if (curState[i] == , ')

gameFile « setw(15) « Q->getValue(curState, i);
else gameFile « setw(15) « " ";

gameFile
« endl « curState[3] « "I" « curState[4]
« II I" « curState [5J « " " ;

90

for (i=3; i<6; i++)
if (curState[i] == , ,)

gameFile « setll(15) « Q->getValue(curState, i);
else gameFile « setll(15) « " ";

II.,

}

gameFile « endl « "_+_+_" « II

for (i=6; i<9; i++)
if (curState[i] == , ')

gameFile « setll(15) « Q->getValue(curState,
else gameFile « setw(15) « II ";

gameFile
« endl « curState [6] « II I" « curState [7]
« "I" « curState[8] « endl « endl:

i) ;

///11/1/1/111//1/1/1/1/11////1/1/1//
/1 Agent play greedily for 100 games. Only greedy play allows unbiased
/1 assessment of the agent's ability to learn the task.
II
// This function is called if Q-value is stored in hash table
///////////////////1//////////////////11/1/11/1/1/11/1///////////1//1//////1//////
void RL_Framework_Class: : table_GreedyPlay(ostream& out)
{

stringClass action, nextAction;
validActionClass move;
randomNumClass random;
double reward, nextQ;
int win=O, draw=O, 10ss=0;
double meanSquaredError, sumMSE=O.O, error=O.O, target, output;
int numOfDecision=O;

for (int i=O; i<100; i++)
{

// for each game

initialize 0 ;
action = "";
if (random.randomlnteger(1,2) == 1) // opponent to start

curState = envir->chooseAction(curState, action);
move.generate(curState);
action = policy->exploit(.Q, move, curState); // take action a

// ••*••••• Table Sarsa Learning ••••••••••
do // for each move of a game
{

nextState = envir->chooseAction(curState, action);
reward = envir->feedback(nextState);
if (envir->gameOver(nextState)==FALSE)
{

move.generate(nextState);
nextAction = policy->choose(.Q, move, nextState);
nextQ = Q->getValue(nextState, nextAction);

}

else nextQ = 0.0;
output = Q->getValue(curState, action);

// choose a'

91

target = reward + (gamm.a * nextQ);
meanSquaredError = 0.5 * pow((target - output), 2);
sumMSE += meanSquaredError;

curState = nextState;
action = nextAction;
numOfDecision++;

// s := s'
1/ a := a'

}

while (envir->gameOver(curState) == FALSE);

if (envir->feedback(nextState) == 1)
win++;

else if (envir->feedback(nextState) -1)
loss++;

else draw++;

/1 until s is terminal

}

/1 mean square error analysis
meanSquaredError = sumMSE / double (numOfDecision);

out « "Win(" « win « "), Draw(" « draw « "), Loss(" « loss « "), II

« meanSquaredError « endl;
playFile « setw(10) « win « setw(10) « draw « setw(10)

« loss « setw(10) « meanSquaredError « endl;
}

1/11///1/////1/1///////1/1///////11///1111/111/1//1//11/1111/11/11/11111/1111/1/11
II Agent play greedily for 100 games. Only greedy play allows unbiased
II assessment of the agent's ability to learn the task.
II
/1 This function is called if Q-value is approximated using neural network
//111/1111111/1/1/1111111/11111111111/11111111/111/111111111111/1///111/111111//11
void RL_Framework_Class::approx_GreedyPlay(ostream& out)
{

stringClass action, nextAction;
validActionClass move;
randomNumClass random;

int win=O, draw=O, 10ss=0;
double meanSquaredError, sumMSE=O.O, error=O.O, target. output;
int numOfDecision=O;

for (int i=O; i<100; i++)
{

II for each game

ini tialize 0 ;
action = "";
if (random.randomlnteger(1.2) == 1) /1 opponent to start

curState = envir->chooseAction(curState. action);
move.generate(curState);
action = policy->exploit(*Q. move. curState); II take action a

1/ ******** Table Sarsa Learning **********
do II for each move of a game
{

nextState = envir->chooseAction(curState. action);
if (envir->gameDver(nextState)==FALSE)

{

move.generate(nextState);
nextAction = policy->choose(*Q, move, nextState); // choose a'
// Sebastian's method
target = gamma * Q->getValue(nextState, nextAction);

}

else target = envir->feedback(nextState);
output = Q->getValue(curState, action);
meanSquaredError = 0.5 * pow«target - output), 2);
sumMSE += meanSquaredError;

92

curState = nextState;
action = nextAction;
numOfDecision++;

//s:=s'
// a := a'

}

while (envir->gameOver(curState) == FALSE);

if (envir->feedback(nextState) == 1)
win++;

else if (envir->feedback(nextState) -1)
loss++;

else draw++;

// until s is terminal

}

}

// mean square error analysis
meanSquaredError = sumMSE / double (numOf Decision);
out « "Win(" « win« "). Draw(" « draw « "), Loss(" « loss « "), II

« meanSquaredError « endl;
playFile « setw(10) « win « setw(10) « draw « setw(10)

« loss « setw(10) « meanSquaredError « endl; // print to file

93

////////////////////////11/11////////11/1/1/1///1///////1/1////////1///1//1////1/1
// policy.h - interface file
//////////1///1//1//1///////1//////////1/////////////1/1///1//1////////1/////////1
#include "str.h"
#include "random.h tl

#include "experience.h tl

#ifndef POLICY
#define POLICY

1/1///1/////
// Generate valid play or decision based on the state
//1/////1/////
class validActionClass
{

private:
int count; 1/ number of valid action selection
stringClass action[9];
stringClass convToStr(int)j

public:
validActionClass() { count=O; }
int getCount() const { return count; }
stringClass get(int i) const { return action[i]; }
void generate(const stringClass&);

} ;

//////////1///1///////////////////1/////////////////////////////////1/////////////
// Policy Class - agent's policy or strategy in decision making
//
// Default policy is noy epsilon greedy
/////////1/1///////1////////11/////////////1//////1///1////1//1///1////1//11/1111/
class RL_Policy_Class
{

protected:
randomNumClass rng;
int nwnOfGreedyAction;
double explorationRate;

public:
RL_Policy_Class(double expRate) { explorationRate = expRate;

nwnDfGreedyAction=O; }
stringClass exploit (RL_Qvalue_Class& , const validActionClass&,

const stringClass&);
virtual stringClass explore(RL_Qvalue_Classk, const validActionClass&,

const stringClass&) { return "NULL"; }
virtual stringClass choose(RL_Qvalue_Class&, const validActionClass&,

const stringClass&);
virtual double getExploration() { return explorationRate; }
virtual void setExploration(double e) { explorationRate=e;}

};

///////////////////////1///1////
// Epsilon Greedy ... inherit most functions from Policy_Class
////1///1////////////////////1
class RL_Epsilon_Greedy_Class : public RL_Policy_Class
{

94

public:
RL_Epsilon_Greedy_Class(double epsilon) : RL_Policy_Class(epsilon) {}
virtual stringClass explore(RL_Qvalue_Classt, const validActionClass&.,

const stringClassk);
} ;

1111111111/1111111/111/111111111111111111/111/111111/1/1111/1111111111///11/11///1
II Softmax_Class or simulated annealing or boltzmann distribution
11/111/11111111/1/1/1//1///111111/1111/111111/1//1111/11111/11/1111111111111/1/111
class RL_Softmax_Class : public RL_Policy_Class
{

public:
RL_Softmax_Class(double tau) : RL_Policy_Class(tau) {}
virtual stringClass choose(RL_Qvalue_Classk,

const validActionClass&, const stringClassk);
virtual stringClass explore(RL_Qvalue_Class&,

const validActionClass&, const stringClass&);
};

#endif POLICY

95

1111111111111111111111111111111/11//111111/1111///111/1111111/11111//1///1/111//11
II policy.cpp - implementation file
111/1111111/11//1111/111/11111111///1111111111/11111111//11/11111111/11/1111111111
#include <stdlib.h>
#include <string.h>
#include <math.h> 1/ for exponential function in softmax
#include "policy.h"
1111111111111111/1/11111/111111111111111/111111/111/11111111111/111//11/11111///11
II convert the valid action from character to stringClass
111/11//11/11//1///1///1//11//111/11/111111/111/111///1111/11//11111/1/11/111/11//
stringClass validActionClass: :convToStr(int i)
{

stringClass tempj
char num[3], *s;
s = num;
num[O] = '0' + i;
num[1] = '\0';
temp = s;
return temp;

}

///1/11/111111//1///1////11//////111/////1111111///1111///111/11/1//1/1//1/1/1//1/
/1 Generate the legal decisions based on the tic tac toe state
11111//1/1/11111//11/1//1///11111//1/11/1///1/1111111//1/111/1111111//1/1/1/11/111
void validActionClass: :generate (const stringClass& state)
{

count == OJ
for (int i=O; i<9; i++)

if (state [i) == , ')
actionEcount++J = convToStr(i)j

}

11/1/////11/111/111///1/1/111111//1111111/111/1/111111111111111/1/1111111/11111//1
1/ Greedy policy. Choose the best action available
1111111/11//111//11/1//1///1/1//11111//1111/1/111/11111/1/11/1/111111//11111111111
stringClass RL_Policy_Class: :exploit(RL_Qvalue_Class& value,

const validActionClass&: action, const stringClass& state)
{

stringClass tempAction;
stringClass *tie = new stringClass[action.getCount()];
int numOfTie = 0;
if (action.getCount() > 0)
{

tempAction = action.get(O);
tie[O] = action.get(O);

}

else
{

cerr « "No available action" « endlj
exit(O);

}

double greatest, tempVal;
greatest = value.getValue(state, tempAction);

for (int i=l; i<action.getCount(); i++)
{

96

tempAction = action.get(i);
tempVal = value.getValue(state. tempAction);
if (tempVal > greatest)
{

greatest tempVal;
numOfTie = 0;
tie [numOfTie] = action.get(i);

}

else if (tempVal == greatest)
tie [++numOfTie] = action.get(i);

}

if (numOfTie == 0)
return tie [numOfTie] ;

else
{

int tieBreak = rng.randomIntegerCO, numOfTie);
return tie[tieBreak);

}

}

1111111111/1111/1111//11/111/1111/1//1111/1111111/1/1////11/111//11111111//1111111
II Default policy is epsilon greedy. If epsilon is 0.1 that means the agent is
II exploring 10 percent of the time. The rest are all greedy moves.
111/11111/111/1111111//1/1111/111/1111/1111111111111111111/1/111111/11/111//1////1
stringClass RL_Policy_Class::chooseCRL_Qvalue_Class& value, const

validActionClass& action, const stringClass& state)
{

numOfGreedyAction++;
double greedyness = (double) (1.0/numOfGreedyAction);
stringClass chosen;
if (greedyness <= explorationRate)
{

chosen = explore (value , action, state);
numOfGreedyAction = 0;

}

else chosen = exploit(value, action, state);
return chosen;

}

111111111///1/1/1//111/1111/111111/11//111/1/111/1111/11/1/1/111//1/1111//11111/11
II make random decisions
11111/11111/111/111111/111//1111/1/111//1//1/11111/11111//111//11/11//11/1111/111/
stringClass RL_Epsilon_Greedy_Class: :explore(RL_Qvalue_Classt value,

const validActionClassl action,
const stringClass& state)

{

int random = rng.randomInteger(O, action.getCount()-l);
return action.get(random);

}

111/1/111/1/111//1//1111/1//1/111///11//1////1/111//11////1/1//1//////1/1/11//1111
II explorationRate is a positive parameter called the temperature. High
II temperatures causes the actions to be all (nearly) equi-
II probable. Low temperatures cause a greater difference in
/1 selection probability for actions that differ in their
/1 value estimates.
/1

The most common soft-max method uses a Gibbs or Boltzmann
distribution. It chooses action a on the (t+l)st play with
probability

policy t+l(a) = (e-(Qt(a)/tao»)/(summ (e-Qt(b)/tao)

97

//
//
//
//
//
//
stringClass RL_Softmax_Class::explore(RL_Qvalue_Class& value, const

validActionClass& action, const stringClassl state)
{

double preference, HIGHEST;
stringClass ternpAction;
stringClass *tie = new stringClass[action.getCount(»);
stringClass ties;

int numOfTie = 0;
if (action.getCount() < 0)
{

cerr « "No available action" « endl;
exit(O);

}

double summ 0.0;
for (int i=O; i<action.getCount(); i++)
{

tempAction = action.get(i);
summ += exp(value.getValue(state, tempAction) / explorationRate);

}

tempAction = action.get(O);
HIGHEST = exp(value.getValue(state, tempAction) / explorationRate) / summ;

for (i=l; i<action.getCount(); i++)
{

tempAction = action.get(i);
preference = exp(value.getValue(state, tempAction)/explorationRate) I summ;

if (preference > HIGHEST)
{

HIGHEST = preference;
numOfTie = OJ
tie [numOfTie) = action.get(i);

}

else if (preference == HIGHEST)
tie [++numOfTie) = action.get(i)j

}

// handle tie if there exist any
if (numOfTie == 0)

return tie [numOfTie] ;
else
{

/1 reset tie action

1/ add tie action to list

int tieBreak = rng.randomInteger(O, numOfTie);
return tie [tieBreak] ;

}

}

98

//
// environment.h - interface file
//
#ifndef ENVIRONMENT
#define ENVIRONMENT

#include <fstream.h>
#include "rlstd.h"
#include "str.h"
#include "random.h"

//
// RL_Environment_Class definition
//
class RL_Environment_Class
{

protected:
int gameCount;
int numOfWin;
int numOfLoss;
int numOfTie;
double rewardWin;
double rewardTie;
double rewardLoss;
double rewardNone;

public:
RL_Environment_Class(double w, double t, double 1, double n)

{ gameCount=O; numOfWin=O; numOfLoss=O; numOfTie=O;
rewardWin = w; rewardTie = t; rewardLoss = 1; rewardNone = n; }

virtual -RL_Environment_Class();

virtual stringClass chooseAction(const stringClass&, const stringClass&)=O;
virtual double feedback(const stringClass&) =0;
virtual BOOL gameOver(const stringClass&)=O;
virtual void keepScore(const stringClass&, ofstream&)=O;
virtual stringClass chooseRandomly(const stringClass&, const stringClaB8&)=O;

};

//
// Connect3 == Tic Tac Toe: Class definition
//
class RL_Connect3_Class : public RL_Environment_Clas8
{

private:
enum { Xwins=l, Owins=-l, Tie=2, None=O };
enum { X=l, 0=-1 };
int vals[19683]; // 3-9 -- not all positions are accesible, however
int difficulty;
int player;
int type;
randomNumClass random;

public:
RL_Connect3_ClassOnt, double, double, double, double);

virtual -RL_Connect3_Class();
int boardToInt(const stringClass&);
int testWon(const stringClassk);
int minimax(const stringClass&, int, int)j
stringClass chooseAction(const stringClass&, const stringClass&);
BOOL gameOver(const stringClass&);
double feedback(const stringClass&);
void keepScore(const stringClass&, ofstream&);
stringClass chooseRandomly(const stringClass&, const stringClass&);

}j

#endif ENVIRONMENT

99

100

///////////////1/////////////1//1//1/////////////////////1////////1/11////1///1/1/
/ / environment. cpp - implementation file
/////////1////11/111/11///1///11/11/1///1/1////////1//11////1111////111///11//////
#include <iostream.h>
#include <iomanip.h>
#include <stdlib.h>
#include <time.h>
#include "environment.h"
//11/////1/////1/////1////1/////1/11///1/1111111/11/1/1/11/111/1111/1/11///1//11/1
// default destructor
1/1/////11/1//1111/111//1/11/1/1/11/11/111/111/1/1///11/11/111/1//111/1/11/1///1//
RL_Environment_Class::-RL_Environment_Class()
{}

1/1/1/11/1////1/1/1111/1/1//11/1/111/1//1/111//11/1/111111/111//1//1///1//1/1/11/1
// default destructor
1//1///1///11/11///1/11/////1///////1////1//1//////1//////1/////1/1111111111///111
RL_Connect3_Class::-RL_Connect3_Class()
{
}

11111//11/1/11/111/111111/11///1//1/1/111/11/11111111111111111/1/11/11/11/111/11/1
/1 Print score every 100 games into a file
1/1/1/1//1///11/1/1////1//11111111///////////1//111//1/111/11///////////1///1//11/
void RL_Connect3_Class::keepScore(const stringClassl state, ofstreaml fout)
{

gameCount++;
syitch(testWon(state))
{

case Xyins: numOfWin++; break;
case Dyins: numOfLoss++; break;
case Tie: numOfTie++; break;
default: fout « "The game is not ended, big error <keepScoreO>!" « endl;
}

if (gameCount == 100)
{

fout « setw(10) « numOfWin « setw(10) « numOfTie
« sety(10) « numOfLoss « endl;

gameCount = 0;
numDfWin=O;
numOfLoss=Oj
numDfTie=O;

}

}

1/1///1///111//////11//111/1///1/1/1111/11///1//11//1/11//111///111111/11/1/////1/
// constructor - the agent is playing X and the opponent is using D
////////1/////1//////1/1//////1/1111//11/11/11/111//1/1/111///111111/1/1/1//111///
RL_Connect3_Class: :RL_Connect3_Class(int diff, double y, double t,

double 1, double n) : RL_.Environment_Class (Y, t, 1, n)
{

srand(time(NULL))j
player = X;
difficulty = diff;

}

111111/111/11//11///1//1/111/11//1/1/1111/11///1/1////1//1/1//1//11////1111/1/1///
// return true if game is over or vice versa

101

//
BOOL RL_Connect3_Class::gameOver(const stringClass& state)
{

int over;
over = RL_Connect3_Class: :testWon(state);
switch(over)
{

case None: return FALSE;
default: return TRUE;
}

}

///1//1//////1/1/////////1/1//
// feedback that the agent receives concerning the agent's decision
1//11/111///1/1/11/1//////1/1////11///////1/1/////1////////////////////////////111
double RL_Connect3_Class: :feedback (const stringClass& state)
{

int status;
status = RL_Connect3_Class: :testWon(state);
switch(status)
{

case Owins:
case Xwins:
case Tie
default
}

return rewardLoss;
return rewardWin;
return rewardTie;
return rewardNone;

}

/1/////1///1///////////////////////////////////////1// ////////////////////////////
// maps the board to a number that used as an index entry in an array
///////////////1////////1//1///1/1/////////1//11///////////1///////////////////1//
int RL_Connect3_Class: :boardTolnt(const stringClass& board)
{

int i, out = O. exp = 1;
for (i=O; i<9; i++, exp *= 3)
{

switch(board [iJ)
{

case' ': // zero
break;

case 'X': // one
out += exp * 1;
break;

case '0': // two
out += exp * 2;

}

}

return out;
}

////////1/1///////////////1///1////////1//11/11/11/111//1//////111//////11/11//11/
// test whether board configuration is a winning one ..
1/11//1111////1/1/11/1///11/11//11///1//1/////1//1///11/1//1/////1/////11//1//////
int RL_Connect3_Class: :testWon(const stringClass& board)
{

int i, flag=O;
stringClass b(board);

102

if «b[O] == 'x' && bel] -- 'x' && b[2] == 'X') II
(b[3] -- 'x' && b[4] 'x' .tk b [5] -- 'X') II
(b[6] 'X' && b[7] -- 'X' && b[8] 'X·) II
(b [0] 'X' && b [3] 'X' 8c& b [6] 'X') II
(b [l] 'X' && b[4] 'X' &:& b(7] -- 'X') II
(b [2] 'X' &Be b[5] -- 'X' U b[B] 'X') II
(b [0] 'X' && b[4] -- 'X' && b[8] -- 'X') II
(b [2] -- 'X' &:&: b (4] -- 'X' &Be b(6] -- 'X'))

return Xwins;

if «b (0] == '0' &:&: bel] == '0' &&: b[2] -- '0') II
(b [3] '0' &:& b[4] '0' .!e& b[5] '0') II
(b [6] -- '0' &:& b [7] '0' && b(B] '0') II
(b [0] '0' && b[3J '0' &8t; b [6] '0') II
(b[l] -- '0' && b [4J '0' && b[7] -- '0') II
(b[2] -- '0' && b [5] -- '0' &&: b [8] -- '0') II
(b [0] '0' &&: b[4] -- '0' &&: b [8] -- '0') II
(b [2] '0' &&: b[4] '0' &:& b [6] -- '0'))

return Owins;

// test for tie
for (i=O; i<9; i++)
{

if (b[i) ==' ')
flag=l;

}

if (! flag)
return Tie;

return None; // game's not over
}

//1///////
// Minimax algorithm
/////////////////////////////////1///1
int RL_Connect3_Class::minimax(const stringClass& state, int pI, int depth)
{

stringClass board(state);
int best, val;
int i, index;
index = boardTolnt(board)j
if «vals[index] % 10) >= depth)

return vals[index] - (vals[index] %10); // since 0 is a valid value

// we don't want use the memorized value if it is shallower than
// we're allowed to go--in fact, this doesn't matter since the memoizatioD
// goes away with each move, but otherwise it would.

if (depth> difficulty)
return 0;

if «val = testWon(board» != None)
{

switch(val)
{

103

case Xwins:
case Owins:

return 1000 * val;
case Tie:

return 0;
}

}

best = -pI * 1000000;
for (i=O; i<9; i++)
{

if (board[i] == , ,)
{

board[i] = (pI -- X) ? 'X' ; '0';
val = minimax(board, -pI, depth+l);
if (val * pl > best * pI)

best = val;
board[i] = , J;

}

}

vals[index] best + depth;
return best;

}

111111111111111111111111111111/111111/111111/11/111111111111/1/1111/111/11//111//1
II find move based on the state of the game using the minimax algo
1111/11111/1111111111/////1/1///1/1////11/11111//1//11////1/11//1111/11/11/1111/11
stringClass RL_Connect3_Class::chooseAction(const stringClass& state,

const stringClass& action)
{

stringClass board(state);
stringClass tempAction(action);
int act;
if (tempAction != 1111) 1/ if action is "" it means it is the start of game
{

act = (int)tempAction;
if (player == X)

board[act) = 'X';
else board[act] = '0';

}

stringClass nextState(board);

if (!gameOver(nextState))
{

int best, val, besti[9], i, bestcount = 0;

// find the computer's move, not the player's
int pI = -player;
best = -pI * 1000000;
for (i=O; i<9; i++)
{

if (board[i] == , ,)
{

board[i] = (pI X)? 'X' : '0';
val = minimax (board , -pI, 1);
if (val == best)

i·,

104

{

best = val;
besti[bestcount++] i;

}

else if (val * pI > best * pI) {
best = val;
bestcount = 0;
besti[bestcount++]

}

board[i]
}

, ,.,

}

if (best count > 0)
{

i = rand()l.bestcount;
nextState[besti[i]] = '0';

}

}

return nextState;
}

/////////////////1///////////////////////////////////////1////////////////////////
// like the name suggest, make a random move
////////1///////////1///1////1////////1///
stringClass RL_Connect3_Class::chooseRandomly(const stringClass& state,

const stringClass& action)
{

stringClass board(state)j
stringClass tempAction(action);
int act;
if (tempAction != II/I) // if action is "" it means it is the start of game
{

act = (int) tempAction;
if (player == X)

board[act] = 'X';
else board[act] = '0';

}

stringClass nextState(board)j
int valid [9] , vcounter=O;

if (!gameOver(nextState))
{

for (int i=O; i<9; i++) 1/ looking for winning moves
if (nextState[i] == ' ,)

valid[vcounter++] = i; /1 store valid move
if (vcounter > 0)

i = valid[random.randomlnteger(O, vcounter-l)]; // random moves
nextState[i] = '0';

}

return nextState;
}

10

111/111111/1111//1/1//1//111/111/1
II experience.h - interface file
/1//111/111//11//1111//1/1111/1/111/1/1//11/11/11111/1111/11/1111/1//111/1/11/111/
#ifndef EXPERIENCE
#define EXPERIENCE
#include <fstream.h>
#include "rlstd.h"
#include "backprop1.h"
#include "str.h"
/11///1///1/////11111//1/1//11//111/111/1/1/11/1/1/1/11/1///1///11/////1/11111/11/
// The parent class that implement the Q-values
// - Q value is either stored in a hash table (RL_Hashing_Class) or
// - approximated using a neural network trained by backpropagation algorithm
// (RL_Neural_Network_Class).
II
///111111/11//1////1//1/11//////1/////1//////11111///11/11//11//1/11/1/11/1/1/1//1
canst long TTT_STATE = 25001; II hash table number of rows, must be prime
const long TTT-ACTION = 9; 1/ hash table number of columns
const long R = 24991; // a variable of the hash function given below

class RL_Qvalue_Class
{

protected:
fstream net;
double value;
double initValue;
int displayStatelnfo;

public:
RL_Qvalue_Class (double , int);

virtual -RL_Qvalue_Class() {};
virtual double getValue(const stringClass&, const stringClass&) = 0;
virtual void setValue(const stringClass&, const stringClass&, double)=O;
double getValue(const stringClass&, int);
void setValue(const stringClass&, int, double);
virtual double max(const stringClass&) = 0;

};

///1/////1/1/1/1////1///1////////////1///1///1///////1///////1//1///1//111//1/////
/1 Hash Table Class definition
// - implement double hashing from Mark Allen Weiss's book
/1 - hash table is written to an output file to reduce memory requirement
// - hash table is State (X) x Action (Y), a two dimensional array file
// - hex) = R - (x mod R) is the first hash
// - if collision happens, then probe hex), 2h(x), .. so on. (double hash)
//
////1//1////1///////1//1///1/1////1///////1///////////////1/////////1/1////1/11///
class RL_Hashing_Class : public RL_Qvalue_Class
{

private: /1 Attributes
stringClass state[TTT_STATE];
stringClass fileName;
fstream stateAction; 1/ state action pair Q-value hash table file
int key;

106

int distance; // distance for rehashing if collision occurs
int hashValue; // the value mapped from input
long int collision; // number of collisions
int actionLength; // length of a stored Q-value in the file
int stateLength; // length of one row
long int cellPosInFile; // cell position in the hash table

private: // Operations
int hash(const stringClass&);
int doubleHash(int);
void insert(const stringClass&);
BOOL find(const stringClass&);
void initStateAction();

public: // Operations
RL_Hashing_Class(double, int);
virtual -RL_Hashing_Class 0 ;
int getKeyO;
virtual double getValue(const stringClass&, const stringClass&);
virtual void setValue(const stringClass&, const stringClass&, double);
virtual double max(const stringClass&);

};

//////////////1///
// Neural network abstraction
// - the key operations are stored in backpropl.h
// - the source code of the backpropagation algo in backpropl.h is from
// Roger's book Object Oriented Neural Networks in C++
//
//
class RL_Neural_Network_Class : public RL_Qvalue_Class
{

1/ 2 binary numbers to represent a tic-tac-toe square.
// The network is a 3 layer 18:H:9 architecture.
enum { inSize = 18, outSize = 9, layer = 3 };

private:
double input [inSize] ;
double output [outSize] ;
Backprop_Network *SPnet;
Pattern *data(4] ;

// the neural network trained using backprop

void binaryInput(const stringClass&, int);

public:
RL_NeuraLNetwork_Class(int, double, double, int, const stringClass8G,

double, double, int);

virtual -RL_Neural_Network_Class();
virtual double getValue(const stringClass&, const stringClass&);
virtual void setValue(const stringClass&, const stringClass&, double);
virtual double max(const stringClass&);
void initialize(const stringClass&, double);

} ;

#endif EXPERIENCE

107

//
// experience.cpp - implementation file
//
#include "experience.h"
#include "random.h"
#include <iomanip.h>
#include <memory.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
//
// constructor
///1//////////////////////1/////////
RL_Qvalu8_Class::RL_Qvalue_Class(double n, int d)
{

initValue = n;
value = (double)O.O;
displayStatelnfo = d;

}

//1/////1/////1///1////1//1///1/
// return state-action Q-value.
///////1///////////////////////1//////////////////1//////////1///11/1///////111///
double RL_Qvalue_Class::getValue(const stringClass& s, int a)
{

char act[3];
act[D] = a + '0';
act[l] = '\0';
stringClass strAct = act;
return getValue(s, strAct); // virtual function

}

1///11//1///1/1111111//1//11///1///1//1///11//1///1///1//1///1/11//////////1/1///1
// set state-action Q-value
///1///11//1/1//111/1///1//////1/1///11/1/1//1/1////1/1///1////1/1/1/11//////1////
void RL_Qvalue_Class::setValue(const stringClass& s, int a, double Q)
{

char act [2] ;
act[O] = a + '0';
act [l] = l \0' ;
stringClass strAct = act;
setValue(s, strAct, Q); // virtual function

}

1///1///1///1/1/11/11//11//1////////////1//1///1///1///////1/////1/1//1/1/////////
1/ Hash table constructor. q.txt is the file Q-table. used to reduce memory req.
/11//1///1///1//1///1///////1//1///////11//1///1//////////1////////////1//////////
RL_Hashing_Class: :RL_Hashing_Class(double n, int d) : RL_Qvalue_Class(n, d)
{

collision = 0;
key = 0;
hashValue = 0;

fileName = "q.txt";
RL_Hashing_Class::initStateAction();
collision = 0;

}

108

//1/1////1///1///////1/111//1/
// destructor
///////////11//////////////////1//////////////////////1//////////////////1////////
RL_Hashing_Class: :-RL_Hashing_Class()
{

stateAction.close();
}

/1/////////////////////////////////////1//
// map the input (state) into a number, the hashing function
// hex) = R - (x mod R)
//
int RL_Hashing_Class::hash(const stringClass~ s)
{

hashValue = 0;
int po~erOf = 0;
for (int i=TTT_ACTION-l; i>=O; i--)

hashValue += sCi] * (int)po~(2, powerOf++);

key = hashValue %TTT_STATE;
distance = R - (hashValue %R);
return key;

}

//
// double hashing. Probe it i * distance if there is a collision
/////////////////////////1///////////1//
int RL_Hashing_Class::doubleHash(int i)
{

key += i * distance; // probe at i*distance
while (key >= TTT_STATE)

key -= TTT_STATE;
collision++;
return key;

}

/////////////////////////////////1////1//////////1//////1//////////////////1//////
// find the entry (Q-value) of state s
//////////////////////////1//////////////1///////////1//////1//////////////////1//
BOOL RL_Hashing_Class: :find(const stringClass& s)
{

stringClass tempState(s);
int index = hash(tempState);
BOOL found = FALSE;
int i=l;

// if entry in state table is not NULL, continue
if (state [index] ! = "\0")
{

do
{

if (state[indexJ != tempState)
index = doubleHash(i++);

else found = TRUE;
}

while «state[index] != "\Olf) kat !found);
}

else found = FALSE;

return found;

// NULL, no matching data in state table

109

}

//
// insert an action-value pair (Q-value)
//////////////////////1/////1///////////////////////////1///////1/////////1/1//1//
void RL_Hashing_Class: : insert (const stringClass& s)
{

int index;
stringClass tempState(s);
index = hash(tempState);
int i=l;
while (state[index] != "\0") // not NULL

index = doubleHash(i++);
state[index] = tempState;

}

//
// return hash key
////1//1///1/////////////////////////////////////1/////////////////////////1/1////
int RL_Hashing_Class::getKey()
{

return key;
}

////////////////1///////////1//////////////1//////////////////////////////////////
// initialize the hash table file
////////////////////////////1///////////////////////////////////1/////////////////
void RL_Hashing_Class::initStateAction()
{

stateAction.open(fileName, ios: :outlios: :in);
stateAction.flags(ios: :left);
stateAction.setf(ios: :fixed, ios: :floatfield);
// use stateAction because not enough memory

for (int j=O; j<TTT_STATE; j++)
{

for (int i=O; i<TTT_ACTION; i++)
{

stateAction « setfill('O') « setw(12) « 0.001;
if (i != TTT_ACTION)

stateAction « ' ';
}

stateAction « endl;
}

stateAction.seekg(O, ios::beg);
actionLength = 0;
char chi
do // length of an action in the file

actionLength++;
while «ch=stateAction. get 0) ! =' ');

// find out the length of STATE * ACTION space
stateAction.seekg(O, ios: :beg);
char q[200];

110

stateAction.getline(q, 200, '\n');
stateLength = strlen(q)+2; // plus 2 because of \0 and \n

}

///1//////////////////////////////////
// return a hash table Q-value
///1//
double RL_Hashing_Class::getValue(const stringClass& s, const stringClass& a)
{

int stateKey;
stringClass tempState(s);
if (find(tempState)==FALSE)

insert(tempState);

stateKey = getKey();

stringClass temp(a) ;
int action = (int)temp;

cellPoslnFile = stateKey * stateLength + action * actionLength;
stateAction.seekg(celIPoslnFile, ios: :beg);
stateAction » value;
return value;

}

//
// change a Q-value in the hash table
//
void RL_Hashing_Class::setValue(const stringClass& s,

const stringClass& a, double Q)
{

stringClass tempState(s)j

int stateKey;
if (find(tempState)==TRUE)

stateKey = getKey();
else {

insert(tempState)j
stateKey = getKey();

}

stringClass temp(a)j
int action = (int)temp;

cellPoslnFile = stateKey * stateLength + action * actionLength;
stateAction.seekg(ceIIPoslnFile, ios: :beg);
stateAction « setfill('O') « setw(12) « 0;

}

//
// the maximum Q-value, Q-value is state-action pair value,
/ / parameter provided the state, so .. check all actions for the maximum
//
double RL_Hashing_Class::maxCconst stringClass& s)
{

stringClass tempState(s);
char chAction[2];
stringClass strAction;

111

double temp, max=(double)-1.0;
BOOL exist = FALSE;
for (int action=O; action<9; action++)
{

if (tempState(action] == , ')
{

exist = TRUEj
chAction(O] = '0' + actionj
chAction(l] = '\0';
strAction = chAction;
temp = getValue(tempState, strAction) j
if (temp > max)

max = temp;
}

}

if (exist)
return max;

else return O.Oj
}

//
// neural network constructor
//
RL_Neural_Network_Class: :RL_Neural_Network_Class(int restore, double a, double

g, int hiddenSize, const stringClass& state, double value,
double n, int d) : RL_Qvalue_Class(n,d)

{

srand(l23) ;
double learning_rate = (double)a;
double momentum = (double)g;
memset(input, 0, inSize*sizeof(double));
memset(output, 0, outSize*sizeof(double));
if (restore) // restore weights from weight.txt

BPnet = new Backprop_Network("we ight.txt")j
else // create a new network

BPnet = new Backprop_Network(learning_rate, momentum, layer,
inSize, hiddenSize, outSize);}

//
// save the neural network weight before it quits ...
//
RL_Neural_Network_Class: :-RL_Neural_Network_Class()
{

// save network weight
ofstream outfile("we ight.txt");
BPnet->Save(outfile)j
outfile. close 0 ;
delete BPnetj

}

//
// setup input for state based on the tictactoe board ..
// " II -> 00 "X" -) 10 "0"->01
//
void RL_Neural_Network_Class::binarylnput(const stringClass& s, int action)
{

stringClass State(s);

112

int j=O;
memset(input. O. inSize*sizeof(double));
memset(output, 0, outSize*sizeof(double));

for (int i=O; i<9; i++)
{

switch (State [iJ)
{

case' ':
input[j++] = 0.0;
input [j++] 0.0;
break;

case 'X':
input [j++J 1.0;
input [j++J 0.0;
break;

case '0':
input [j++] 0.0;
input [j++] 1.0;
break;

}
}

}

/111111///1/111//1//1//1///1//////1/1/1//111/11//111/1/1/1//11111///1///////1//1//
// return the value of an approximated value that is scaled back to range [-l,lJ
// to be used in the value function
1////1/////1///11/11//1///11//1///////1//////1///1///////////1//////1/////1/1/1///
double RL_Neural_Network_Class: :getValue(const stringClass& s, const stringClass& a)
{

stringClass tempState(s);
stringClass tempAction(a) ;
int action = (int)tempAction;
binaryInput(tempState, action);

data[O] = new Pattern(inSize. outSize, 0, input, output);

BPnet->Set_Value(data[O]); // Set Input Node Values
BPnet->Run(); // Forward Pass

double value;
value = BPnet->Get_Value(action);
delete data [OJ ;
return 2.0*value - 1.0;

1/ 0.0 <= value <=1.0;

}

////////1///1///11/1///1///1///1///11////1//1/////////////////////1/111//1//1/11/1
1/ Q-value [-1, 1] is scaled down to range [0,1] because of the sigmoid function
111///1/////1//111/1/1/////1///11/////111//1//111/11///1///1///1//1///1//11///1//1
void RL_Neural_Network_Class: :setValue(const stringClass& s •

const stringClass& a. double Q)

{

stringClass original(s);
stringClass tempAction(a);
int action = (int)tempAction;

113

binaryInput (original, action);
da'ta [0] = new Pattern CinSize. outSize, 0, input, output);

BPnet->Set_Value(data[O]); // Set Input Node Values
BPnet->Run(); // Forward Pass
for (int i=O; i<outSize; i++)

output[i] = BPnet->Get_Value(i); // 0.0 <= value <=1.0;

output[action] = (Q+1.0)*0.5;
data[l] = new Pattern(inSize. outSize, 1, input, output);

}

BPnet->Set_Value(data[l]);
BPnet->RunO;
BPnet->Set_Error(data[l]);
BPnet->LearnO;
delete data[O] ;
delete data[l];

// Set Input Node Values
// Forward Pass
// Set Desired Output in output layer
/ / Backward Pass

///1/11///
// return maximum Q-value of state s
//////////////////////////1///////////////////1//1///1//////////////////1/////////
double RL_Neural_Network_Class: :max(const stringClass& s)
{

double tempVal, max = (double)-1.0;
stringClass strAction;
char cAct[3] , *pAct;
pAct = cActi
BOOL availAction = FALSE;
for (int action=O; action<9; action++)
{

if (s [action] == , ,)
{

availAction = TRUE;
cAct[O] = '0' + action;
cAct [1] = '\0';
strAction = pAct;
tempVal = RL_Neural_Network_Class: :getValue(s, strAction);
if (tempVal > max)

max = tempVal;
}

}

}

if (availAction
return max;

else return 0.0;

TRUE)

// terminal

)

VITA

Kean Giap Lim

Candidate for the Degree of

Master of Science

Thesis: REINFORCEMENT LEARNING IN GAME PLAYING

Major Field: Computer Science

Biographical:

Personal Data: Born in Kuala Lumpur, Malaysia, on September 5, 1973, son
of Meow Hwa and Yew Peng Lim.

Education: Graduated from Sekolah Menengah Dato' Lokman, Kampung Pan­
dan, Kuala Lumpur in December 1990; received Bachelor of Science degree
in Computer Science from Oklahoma State Univer ity, Stillwater, Okla­
homa in December 1995. Completed the requir ments for the Master of
Science degree with a major in Computer Science at Oklahoma State Uni­
versity in December, 1998.

Experience: Employed by Oklahoma State University, the Computer Center for
Integrated Manufacturing as a research assistant, 1996 to 1998; Oklahoma
State University, Department of Biosystem Engineering as a graduate as­
sistant, 1997 to 1998.

Professional Membership: Association for Computing Machinery.

