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CHAPTER I

INTRODUCTION

1.1 Introduction

In modem industry, process capability drives capital investment decisions, as well

as quality improvement programs. Processes are usually comprised ofmany variables, a

few ofwhich are usually either very important to the success of the process or have some

safety implication. Many times these variables are both correlated, Wierda (1993), and

non-normally distributed, Western Electric (1956) and Rivera (1995), and thus produce

inaccurate and deceiving capability metrics when existing univariate methods are

employed. Therefore, a serious need exists to determine a capability index which

accurately describes the ability of a multivariate, correlated, and non-normal process to

produce product within known specification limits.

1.2 Background

1.2.1 Univariate Process Capability Indices

A process capability index is a statistical measure of process performance.

Sullivan (1984 & 1985) and Kane (1986a & 1986b) are two very well known references

on the subject of process capability indices. They introduce and discuss the two most
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industry-recognized indices, Cp and Cpk. The Cp index is defined as the ratio of allowable

process spread to actual process spread, under the nonnal distribution assumption, and is

calculated as follows:

C = allowable process spread

P actual process spread

USL - LSL USL - LSL
=

6cr NT

where USL and LSL represent the upper and lower specification limits, respectively, and

sigma, cr, represents the statistical standard deviation of the process. Natural tolerance

(NT) is defined as six process standard deviations and represents the actual process

spread. Therefore, when the natural tolerance of the process is equal to the specified

tolerance, the value of Cp is one. Figure 1.1 and Figure 1.2 graphically present this

situation.
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Figure 1.1: Centered Normal Process with Cp = 1.0
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Figure 1.1 presents a process which is normally distributed with a mean, 11, of25 and a

standard deviation, cr, of 1.5. A conventional method ofstating this is to say that the

process is ~ N(25, 1.5\ Notice that the USL is equal to 29.5 and the LSL is equal to

20.5. Therefore, the allowable process spread is 9.0 and the actual process spread is 9.0,

which makes the ratio equal to 1.0. Figure 1.2 is presented to show one of the inherent

problems with the Cp index.

Shifted Normal Process Example
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Figure 1.2: Shifted Normal Process with Cp = 1.0

Figure 1.2 presents the same process after the mean has shifted to 27.0, i.e., the process is

~ N(27,1.5\ Since the specification limits have not changed, the allowable process

spread is still equal to 9.0 and because the process variation remained constant, the actual

process spread is still equal to 9.0. Therefore, the value of Cp is still equal to 1.0, yet, it is
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easily seen that the shifted process will produce more product over the upper

specification limit. This problem has been corrected with the additional process

capability index, Cpk. The Cpk index has been defined in two different, but algebraically

equivalent, ways. The first and most widely used definition, utilizes the upper, CPU, and

lower, CPL, capability indices, and is calculated as follows:

Cpk = Min (CPL,CPU)

where

CPU = allowable upper spread = USL -Il
actual upper spread 3cr

and

CPL = allowable lower spread = Il - LSL
actual lower spread 3cr

The second definition utilizes the k-factor, which essentially is a correction factor or

index for non-centered processes, and is defined as follows:

where
IT-Ill

k = USL-LSL

2

The process target (T) is normally assumed to be halfway in between the upper and

lower specification limits, however, this is not always the situation found in industry.

Therefore the k-factor equation is presented in generality and can be used when the target

value is not centered. It is my experience that most processes are targeted in the middle

of the specification limits simply because it minimizes the amount ofproduct which is

produced outside of the specification limits, with the normal distribution assumption.

This seems to be the case even when the target has been specified as some other value.
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Ifwe apply these equations to the process presented on Figure 1.2, we calculate

CPL = 1.44, CPU = 0.56, and k = 0.44. The value of Cpk, using either definition, is

calculated as 0.56. Therefore, the Cpk index can be thought of as assigning a penalty to

the process for being off-center. Note that the value of Cpk is equal to 1.0 when the

equations are applied to the centered process presented in Figure I .1. The Cp and Cpk

indices are usually used together because Cp represents the potential process

performance, if the process were centered, and Cpk represents the process perfonnance

with a correction factor for centering. Another way of stating this is that as the process

moves towards the specification center, the value of Cpk approaches the value of Cpo In

other words, the value of Cp is the best performance which the process could have

without reducing the variation which exists in the process. Note that there is also a

relationship between the upper and lower capability indices and the value of Cp :

c = CPU +CPL
p 2

Under the nonnal distribution assumption, we can also calculate the amount ofproduct

which is being produced outside of the specification limits. This amount is called the

proportion nonconforming, p, and is presented in Littig et al. (1992) as follows:

p = 2 - cD(3 Cp (I-k)) - cD(3 Cp (1 + k))

where cD(z) is the cumulative standardized normal distribution, and can be fOWld

tabulated in most statistical, mathematical, and science texts. Using this equation we can

state that when Cpk = 1.0 then p = 0.27% or 2,700 parts per million (ppm), when Cpk =

1.33 then p = 64 ppm, and when Cpk = 2.0 then p $ 0.1 ppm. The proportion

nonconforming for the process presented in Figure 1.2 is 4.78%. It is this fundamental
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relationship between proportion nonconfonning and these process capability indices

which allows them to be as popular in industry as they currently are.

Many univariate process capability indices can be found in the literature,

however, Chan et a1. (1988a) and Boyles (1991a & 1991b) present a third index, Cpm,

which utilizes a slightly different approach. The basic idea is that as the process average

drifts further away from the target value, the penalty should increase. This approach is

often called the loss function approach, where the loss function describes the rate at

which the penalty or "loss" increases with the distance from target. Chan et a1. (1988a)

present the following de.finition:

60"
C = USL-LSL

pm where

Boyles (1991a) calls this index the Taguchi capability index because the loss function

which was used had been presented in Taguchi (1985). Boyles presents the following

similar definition:

C = USL - LSL where
pm 6"t"

where "t" is the standard deviation from target, and can easily be computed from the

following equation:

The Cpm index is not widely used in industry primarily because, in my opinion, it does not

have the same fundamental relationship with the proportion nonconforming. This

relationship is often referred to as "feel" or physical meaning. For example the C
pm

value

for the process of Figure 1.2 would be 0.6. Note that this value is relatively close to the
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calculated value ofCpk, however, if the process were moved further away from the target,

the differences between the two indices would increase.

1.2.2 Univariate Non-Nonnal Processes

All of the indices presented in the previous section and most of those presented in

the literature are based on the nonnal distribution assumption. Some authors state that

the process capability indices are robust enough to give accurate results for "near

normal" distributions. However, it is my experience in industry that there are many

distributions which cannot be considered either normal or near-normal. Other authors

like Kane (1986a) suggest that the indices are very sensitive to normality and suggest the

use of transformations or fitting the data with other distributions which have known

properties. Clements (1989) presents the use of Pearson curves in conjunction with

tabulated standardized tails ofPearson curves. Chan et a1. (1988b) present a graphical

technique for estimating distribution-free capability indices. The end result is that non

normal distributions are found in industry, and other techniques are required when

assessing the capability of non-normal processes.

Figure 1.3 demonstrates a very simple example ofwhat occurs when the normal

distribution assumption is applied to a non-normal process. If an actual process followed

the lognormal distribution displayed on Figure 1.3, then under the normal distribution

assumption, the calculated mean and standard deviation would lead us to believe that the

process was distributed as the normal distribution, also displayed on Figure 1.3. All

process inferences, therefore, would be based upon this normal distribution. Note that the

Lognormal distribution was not selected based on how common it is found in industry,

but rather on how closely its shape resembled the normal distribution.
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Univariate Lognormal Process Example
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Figure 1.3: Lognormal Process under Normal Assumption

Also note that the example was created so that the resulting nonnal distribution is the

same as the process displayed in Figure 1.1. Therefore, under the nonnal distribution

assumption, the Cp and Cpk indices would both have the calculated value of 1.0. This

would imply that the distribution was centered and therefore, had its proportion

nonconfonning minimized. It can be easily seen that this is definitely not the case, even

for this lognonnal distribution, which can appear approximately normal for small sample

sizes. Figure 1.3 also displays a shifted lognormal which represents the required position

of the process to minimize the proportion nonconfonning. Note that the "calculated"

normal distribution (not displayed) resulting from the shifted lognormal would yield

lower capability indices and a higher proportion nonconforming. This example clearly

demonstrates that non-nonnal distributions need to be handled differently, and that
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Independent Bivariate Normal Process Example
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Figure 1.4: Independent Bivariate Normal Process

Some authors like Wierda (1993) have suggested that the indices for independent

characteristics can be multiplied together to calculate the multivariate index. Although,

at first glance, the idea seems somewhat intuitive, a simple example can dispel the logic.

Consider 10 characteristics each with a Cpk value of 1.01. The resulting multivariate

index would be 1.105. In other words, the capability of the process appears to be better

than any of its individual characteristics. This capability synergism seems to be

improbable, especially when we consider that if anyone ofthe product's characteristics

are outside of its individual specifications, then the entire product is considered to be

nonconforming. This example leads us to the next problem, which is the calculation of

the proportion nonconforming of the process. Upon inspection ofthe centered bivariate

normal process displayed in Figure 1.4, it appears unlikely that a nonconforming point
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would be simultaneously outside of both specifications. It would seem logical, therefore,

to assume that the proportion nonconforming for both characteristics together would

simply be the sum of the proportions nonconfonning for each characteristic. In this

example where both characteristics each have 2,700 ppm nonconforming, the total

nonconfonning would be 5,400 ppm. lfthis were true, then it would also be logical to

assume that the process capability index would decrease.

Unfortunately, processes found in industry are rarely as "perfect" as the example

presented here. Processes can have dependent characteristics which are both non

nonnally distributed and not centered. Some of these situations are briefly discussed in

the following sections.

1.204 Dependent Multivariate Processes

In the previous section, we discussed multiple characteristics which were

considered independent or non-correlated. In other words, the value of any particular

characteristic has absolutely zero effect on any of the other characteristics. While

independent characteristics are certainly possible, many times when the characteristics

come from the same process, the characteristics are dependent or correlated. In other

words, the values of some characteristics either affect or are related to the values of

others. Sometimes it is easy to think of this situation when you consider physical

material properties like hardness and strength, which are obviously related. In order to

demonstrate the effects of correlation, again we will simulate a centered bivariate normal

distribution with each characteristic distributed the same as those in Figure 104. This time

we will simulate dependence between the first characteristic and the second

11



characteristic. The correlation coefficient, p, between them was set at 0.6. The

distribution example is displayed on Figure 1.5.

Dependent Bivariate Normal Process Example
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Figure 1.5: Dependent Bivariate Normal Process

There are a number of observations which can be made when comparing the correlated

process of Figure 1.5 to the non-correlated process ofFigure 1.4. The first observation

which is usually made is that the shape and orientation of the process has changed in

relationship to the specification limits. The most interesting result of this shape change is

that it does not affect the capability index values calculated on either characteristic.

Since the indices are simple functions of the characteristic's mean, standard deviation,

and specifications, which the correlation did not affect, the indices do not change either.

That is to say that Cp and Cpk have calculated values of 1.0 for both characteristics in

Figure 1.5. One of the approaches found in the literature is to compare the area oUhe

12



process ellipse to the area of the specification rectangle, where the process ellipse can be

defined as an ellipse around the process which captures a specified probability contour of

the process. If this approach were used, it would seem that the correlation would cause

changes in the area of the process ellipse. However, as in most cases, the process ellipse

is primarily a function of the multivariate normal assumption.

Another observation which can be made is that while it doesn't appear that the

total proportion nonconforming has changed, it does appear that the probability that a

given nonconforming product will have multiple characteristics nonconforming, has

increased. In other words, while it was stated that the process in Figure 1.4 probably has

about 5,400 ppm nonconforming, the process in Figure 1.5 probably has some proportion

less than 5,400 ppm. This is because some of the 5,400 parts would be counted twice, if

they were outside of the specifications for both characteristics. It would also seem to be a

fair statement that this probability of being nonconforming on multiple specifications,

would increase as the first characteristic's distribution moved away from its specified

target. A final observation would be that if it were desired to change a correlated process

to reduce its variation and one of the characteristics tended to be a controlling

dimenesion, the attention would have to focus on the "controlling" characteristic. It

would be the "controlling" characteristic that governs the apparent variation which is

seen in the other dependent and "non-controlling" characteristic(s). This is an important

observation for process engineers in industry.
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1.2.5 Summary

The previous sections have discussed the effects ofnon-normality, multiple

characteristics, characteristic correlation, and their combined effects upon the estimation

ofprocess capability indices. Attempts have been made to address some of these issues,

however, the issue ofmultivariate non-normality has been virtually ignored in the

literature. This is very unfortunate because the situation can be encountered every day in

industry. A thorough review of the existing literature can be found in the next chapter.

1.3 Statement of the Problem

Although the univariate process capability indices, Cp and Cpk, have been used for

many years to describe the performance of individual characteristics of a process, no

practical approach has been presented for the calculation ofprocess capability indices

when applied to either univariate non-normal processes or multivariate non-normal

processes.

1.4 Research Objective

This research proposes to create a new methodology for assessing the capability

of a non-normal, multivariate, correlated process, and to develop a multivariate process

capability index that will ensure a meaningful physical interpretation of the process

capability. Accomplishing the objective requires several subobjectives. These are:

1. Evaluate the univariate marginal distributions and determine a probability

function which adequately describes each distribution.
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2. Evaluate the correlation between the univariate marginal distributions.

3. Simulate the multivariate distribution based upon the correlation and

parameters of the marginal distributions.

4. Calculate the proportion of nonconfonning product for the multivariate

process, as well as for each of the marginal distributions.

5. Transfonn the multivariate proportion nonconfonning into a capability

index.

The Johnson system of distributions was chosen to describe all univariate

marginal distributions, primarily due to the system's ability to "fit" most realistic

distribution shapes. Another primary reason for choosing the Johnson system is that the

Johnson equations all represent transfonnations to the standard nonnal distribution.

Convenient relationships between the different distributions of the Johnson system can be

derived based on this transfonnation result, which anow the simulation of a multivariate

Johnson distribution to be possible. The Johnson system of distributions will be

discussed at length in Chapter 3.

1.5 Delimitations

There are several important delimitations of this research. These are:

1. The study will address multivariate processes with a maximum of fOUf

marginal distributions.

2. The study will only use the Johnson distribution family of probability

functions to describe the marginal distribution data.

3. The study will not address dependent specifications.

15



4. The study will only address the statistical properties of the proposed

capability index through simulation techniques.

1.6 Assumptions

There are several important assumptions of this research. These are:

1. The need for understanding the capability of multivariate processes will

continue.

2. All marginal distributions encountered in industry can be adequately

described using the Johnson distribution family of probability functions.

3. All parameters of the Johnson probability functions may not require

optimization to ensure an adequate fit to the marginal distributions.

4. When multivariate data is presented, the first marginal distribution will be

treated as independent by the sample generator.

5. When all marginal distributions are adequately described by the normal

distribution, then the process will be considered multivariate normally

distributed.

6. The original multivariate distribution can be recreated with knowledge of

the marginal distributions and their correlation.

7. lfthe situation is encountered where the strategy to minimize

nonconforming product competes with the strategy to minimize the

deviation from target, then the minimization of nonconforming product

will take priority.

8. All processes which are evaluated are assumed to be in statistical control.
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1.7 Contributions

This research becomes the first step to provide a new methodology in assessing

the performance of a multivariate process, independent of the distribution's shape. The

contributions of the research are as follows:

1. Provide an estimate of the proportion of product which is nonconforming

to its specification limits for a multivariate process containing up to four

marginal distributions, independent of their shape.

2. Provide a multivariate process capability index which is related to the

estimate of proportion nonconforming, to ensure a similar physical

interpretation as with the current univariate process capability indices, Cp

and Cpk.

3. Provide as software application which can be easily utilized by practicing

process engmeers.

4. Provide a starting point for further advanced study which can include

dependent specifications, combinations of dependent and independent

specifications, more than four variables, and additional potential

probability distribution systems to more adequately fit all distributions

which can be encountered in industry.
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CHAPTER II

LITERATURE REVIEW

2.1 Process Capability Indices

Since process capability indices were introduced to industry as a measure of

process performance, Sullivan (1984 & 1985) and Kane (1986a & 1986b), there have

been large amounts of literature published which sufficiently cover the subject. The

definitions ofCp and Cpk are common knowledge and widely used in industry today. It

did not take long before limitations were discovered with these indices, especially as they

apply to non-normal processes and correlated multivariate processes. These limitations

are not widely known in industry, and the univariate indices continue to be blindly

misused as an indicator ofprocess capability. As a practicing quality engineer, I have

found it very difficult to adequately convey the capability of a process or the capability of

equipment, when they consist of many variables, and therefore, many capability

estimates. A thorough review of the literature has produced a number of multivariate

process capability measures.

Wang et al. (1996) lists a majority of the current literature on multivariate

capability, and groups the approaches into three categories: 1) Vector, matrix, or loss

function approaches, 2) Tolerance region to process region ratio approaches, and 3)
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Probability ofnonconforming product approaches. I believe that these are very logical

categories, and I will utilize them to review the current literature.

2.2 Vector, Matrix, and Loss Function Approaches

Hubele, Shahriari and Cheng (1991) propose a three component capability vector

(CY) which is based on the bivariate normal distribution with independent (rectangular)

specifications. This component is a bivariate analogue of the univariate Cpo The first

component represents the ratio of the specification rectangle area to the process rectangle

(defined as the smallest rectangle which circumscribes a given probability ellipse of the

process) area. The second component is defined as the significance level of Hotelling's

T2 statistic. This component represents the distance between the specification centers and

the process average. The third component indicates whether the process rectangle is

completely contained within the specification rectangle. Wang et al. (1996) extends this

vector to the general multivariate case based on the multivariate normal distribution, and

also conveniently names the vector and its components: MPCV = [CpM , PV, LI]. The

third component, LT, was changed to a simple binary index, probably due to the lack of

physical interpretation of the exact value as presented in the Hubele et al. (1991) paper.

It should be noted that specification and process areas in the bivariate case are referred to

as specification and process volumes in the general multivariate case.

Kotz and Johnson (1993) propose two indices based on the multivariate nonnal

distribution: E[L(X)] and vCR. E[L(X)] is the expected value of a quadratic loss

function, L(X), expressed in terms of the specified matrix, A. The vCR index consists of
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the loss function value added to the determinant ratio of the variance - covariance matrix

to the A matrix.

2.3 Tolerance Region to Process Region Ratio Approaches

Chan, Cheng and Spiring (1988a & 1991) propose the multivariate process

capability measure, Cpm, and its associated properties, based on the multivariate normal

distribution and ellipsoidal specifications. The proposed index is the square root ratio of

degrees of freedom over the sum ofthe observed Mahalanobis distances. The index is

compared to the W test statistic under a one-sided hypothesis of capability. The expected

value and variance of the index are also derived.

The first component of the capability vector proposed by Hubele et al. (1991),

CpM (discussed earlier), can be considered as a single index falling into this category.

Kocherlakota and Kocherlakota (1991) propose the bivariate joint distribution of

two standard univariate Cp's which are based on the univariate and bivariate nonnal

distributions and utilize rectangular specifications.

Pearn, Kotz and Johnson (1992) propose two indices, vCp and vCpm, which are

extensions of the index proposed by Chan et a1. (1988a & 1991) based on the multivariate

normal distribution and ellipsoidal specifications.

Taam, Subbaiah and Liddy (1993) propose the multivariate capability index,

MCpm, which, in its base form is not necessarily based on the multivariate normal

distribution. It is simply presented as the volume ratio of the modified tolerance region to

the scaled process region. However, calculating these volumes in the non-normal case,

can be its own challenge. A shape correction factor is introduced to handle non-elliptical
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specifications, and the proposed index is manipulated to provide both a process variation

component and a distance from target component. The multivariate normal and elliptical

specification assumptions seem to be the basis of the approach. A bivariate nonnal

example is presented.

2.4 Probability of Nonconforming Product Approaches

Littig, Lam and Pollock (1992) propose two multivariate capability indices, Cp•

and Cpp, and two multivariate process centering indices, kL and kA. The basis of the

proposal is that the actual and potential proportion nonconforming product can be

measured, estimated, or calculated and then transformed into actual and potential

capability indices. To ensure meaningful physical interpretations of the indices, the

transformation was designed to ensure that the proposed index Cp• reduces to the

univariate PCI, Cp, when the underlying process follows a univariate normal distribution.

Even though the proposed indices are stated as being general, they were designed around

very specific process situations with elliptical or circular tolerances for hole location,

coaxial hole pair, locations and angularity, and sets or systems of pairs of coaxial holes.

The calculation of the proportion nonconforming is discussed under the multivariate

normal assumption. It is stated that due to transformations of the variables, both

coordinate system transformations and reference frame transformations, the multivariate

assumption is not unreasonable and the data can be considered approximately normal.

However, Rivera et al. (1995) concludes that estimation ofproportion nonconforming

after a transformation to normality is not a good approach, and leads to overestimates of

the proportion nonconforming. Even though this would create a conservative estimate,
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the logarithmic transfonnation, for example, produced a 16 percent error, on average. The

two multivariate process centering indices, kL and kA, were created to give an indication

of the magnitude of any centering issues which may exist in the data. The subscript "L",

denotes location variable centering, and the subscript "A", denotes angular orientation

variable centering. Confidence statements on the proposed indices were created through

bootstrap simulation.

Wierda (1993 & 1994) proposes the multivariate capability index, MCpk, which is

based on the multivariate normal distribution and rectangular specification limits. This

multivariate extension of Cpk is calculated by an estimation of the percent of

nonconforming product.

Chen (1994) proposes a measure of multivariate process capability, MCp. It is

stated that the index is the numerical ratio of the tolerance zone radius to the radius of the

actual zone needed to achieve the desired expected proportion of nonconforming

products. It is also stated that the proposed index is a natural generalization of the

univariate PCI, Cpo I believe that the index is closer to the univariate PCI, Cpk, because

the radii are truly functions of the target vector and the process data. The examples

given, in fact, demonstrate that the index value decreases as the distance between the

target and process mean increases. The original equations proposed can be applied to

many situations, including both rectangular and elliptical specifications, as well as non

normal data, assuming that the distribution is known and certain properties can be

estimated. Asymptotic confidence intervals are also discussed which are based on

multivariate normal data and resampling estimates of the standard deviation of the

approximated index value. Special cases of the PCI are discussed including one in which
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the index reduces to the multivariate PCI proposed by Pearn et al. (1992). Computation

of the index can be very challenging, with the evaluation of a complex integral.

2.5 Summary

The review of existing literature indicates a need for a method which can evaluate

the capability of a process consisting of variables which do not, necessarily, follow the

nonnal distribution. The proposed indices which indicated non-nonnal applications, also

require knowledge of the distribution and its parameters. Further, the distributions,

although non-normal, would probably aU have to be of the same type. In industry,

processes which follow the normal distribution are not as common as statisticians would

like. And, even though it is usually not very difficult to declare a process to be non

Donnal, it can be very difficult to identifY the distributions which do represent the

process. Similar types of dimensions from a multivariate process may follow similar

distributions, however, many multivariate processes have very different types of

dimensions, which would probably not follow the same distribution. This research

presents a practical method to fill the identified gaps found in the current literature.
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CHAPTER III

METHODOLOGY

3.1 Fitting a Marginal Distribution Sample with a Johnson System

3.1.1 Descriptive Statistics

There are a number of descriptive statistics which are used when fitting a

marginal distribution sample with a Johnson system. The first four moments about the

mean are calculated from the following equations:

_ n Xi
m)=x=2::

i=1 n

where X i represents the i th measurement in a sample of n observations. The equation for

m I ' as it is shown above, is actually the first moment about the origin, and not the first

moment about the mean. The first moment about the mean is always equal to zero and

thus gives no useful infonnation. The fiTst moment about the origin, ill) , is more

commonly known as x, or the sample average. The second moment about the mean,

m 2 , is more commonly known as S2 , or the sample variance, where s is the sample

standard deviation. This equation should not be confused with the estimated population
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standard deviation which contains (n-l) in the denominator. Although it is difficult to

give a physical meaning to the third and fourth moments about the mean, it is important

to understand that they are used as descriptive statistics because they allow insight into

the shape of the distribution.

Another common descriptive characteristic of a distribution is called skewness.

Skewness represents the degree to which a distribution has non-symmetric tails. Positive

skew depicts a distribution which has a "heavy" tail extending to the right. Conversely,

negative skew depicts a distribution with a "heavy" tail extending to the left. There are

two common dimensionless measures of skewness which are both functions of m 3 and

can be calculated from the following equations:

and

Since PI is always positive, it does not reveal the direction of skewness. The direction of

skewness, positive or negative, can be immediately detennined by the sign of m 3 , and

the issue is resolved by giving this sign to the value of YI' Therefore, Pl' or its square

root, can be interpreted as the magnitude of skewness which exists in the distribution, and

the sign of YI represents the direction to which the distribution is skewed.

Kurtosis is yet another common descriptive characteristic of a distribution.

Kurtosis can be described as a measure of the flatness or peakedness of a distribution and

is usually used when comparing symmetric distributions to a normal distribution. When

a distribution is more flat than the normal distribution, it can be called platykurtic.

Conversely, when a distribution is less flat, or more peaked, than the normal, it can be

called leptokurtic. This definition has some problems because the skewness of a
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distribution also plays a large role in the value of kurtosis. Either way, there are two

common dimensionless measures of kurtosis which are both functions of m4 and can be

calculated from the following equations:

and

The value of rl2for a normal distribution is exactly 3, and because it is often used in

comparison, this value is subtracted in the equation for y2' Therefore, if Y2 is negative,

then the distribution is considered platykurtic, and if its value is positive, then the

distribution is considered leptokurtic.

3.1.2 The Johnson System of Distributions

Before I can begin discussing the Johnson system of distributions, I must first cite

two incredible references: Elderton and Johnson (1969) and Miller (1995a & 1995b). It

is from these two references and personal mail with Dr. David Miller, that I am able to

use the Johnson system for my research.

In 1949, Norman L. Johnson presented a set of three transformations used for

fitting and / or explaining frequency curves. These transformations were meant to be

alternatives to the set of 12 Pearson curves, introduced in 1893 by Karl Pearson. The

Pearson curves can be difficult to use simply from their quantity and complexity. The

skewness, rll' and the kurtosis, ~2' are two key descriptive statistics which Johnson used

to create his transformations. This pair of statistics, (rll ,rl 2 ), is used to position any

distribution on a two-dimensional plane. The three transformations were constructed to

cover the entire (PI' P2) plane. This is to say that one of the transformations can assume
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any given pair of these values. Johnson presents his system with the statement that there

is always a transformation function, f(x), which will produce a distribution which is

exactly nonnal. However, due to the probable complexity of such a function, it would

not be helpful. To ensure the usefulness of such a function, it would have to be relatively

simple and consist of only a few parameters.

Johnson introduces two parameters, y and 0, that are used to transform the

nonnally distributed function, f(x), into a standardized normal variate, z.

z=y+of(x) - N(O,l) ,0> 0

This equation defines the values of ~l and ~2 for the distribution. Two final parameters,

~ and A, are introduced by replacing x with a non-constant linear function ofx,

(x - ~)/A. This gives us the general form of the Johnson transformation system:

- N(O,l) ,0>0

where values of the four parameters, y, 0, ~ , and A, determine the distribution ofx.

3.1.2.1 Bounded Johnson System, Ss

The first transfonnation which Johnson presents is a system in which the variation

ofx is bounded. This system is called the SB system, and is created by setting f(x) = In{x

/ (I-x)} where (0 < x < 1). The four parameter system of curves is created by replacing x

with (x - ~)/A :

Ss system: z =y + Oln[ x - ~ ]
~+A-X
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It can be seen from this equation that A represents the range of variation of x, and that ~

and ( ~ + A) represent the lower and upper bounds of the distribution, respecti vely. The

density function for the So system is given here for reference only:

Figure 3.1 shows a sample of the diverse shapes which the SB system can take.

SB System Examples

1.00.90.80.70.60.40.30.2 0.5

X

--y=0.34, 8=0.50 y=0.00,8=0.70 y=0.00,8=0.50

--y=o.O~8~2.00_~_ _ --_ y=-~.OO, 8_=-0.70 -' - ·y=-0.34, 8=0.50

Figure 3.1: Density Plots for the SB System (~=O, A=J)
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3.1.2.2 Unbounded Johnson System, Su

The second transformation which Johnson presents is a system in which the

variation of x is unbounded. This system is called the Su system, and can be created by
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setting f(x) = sinh-1(x) = In(x + .Jx 2 + 1), which is the definition of the inverse hyperbolic

sine. The four parameter system of curves is created by replacing x with (x - t;)/'A. :

Su system: z = y + osinh- J x ~ t;) , (- 00 < x < +00 )

It can be seen from this equation that x is unbounded on both sides. The density function

for the Su system is given here for reference only:

.(-oo<x<+oo)

Figure 3.2 shows a sample of the shapes which the Su system can take.

Su System Examples

1.0 __-------~--~-~--_:_------""":""""---,

0.9

0.8

0.7

0.6

X 0.5-LL
0.4

0.3
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0.0 t::=:-__J...:~f::::~L~~=::::::::~------~
-4 3 2 1 0 1 2 3 4 5 6 7 8 9 10-10 -9 -8 -7 -6 -5 - - -

x
- ---- ~ 1 ~ 2 y=O,8=1y=O,u=2 y= ,u=

--y=I,8=1 --y=-1,8=2 - y=-l, 8=1

Figure 3.2: Density Plots for tbe Su System (t;=0, A=I)
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3.1.2.3 Lognormal Johnson System, SL

Johnson presents a transition system between the Sa and Su systems. It is stated

that if 0 ~ OCJ and y is held constant, the Sa and Su systems both tend to the nonnal as a

limiting curve. However, if 0~ 00 and y/0 is held constant, then the SB and Su systems

both tend to the lognormal as a limiting curve. It is this lognormal system, called the SL

system, which is presented as the transition system between the So and Su systems. This

commonly-known system is created by setting f(x) = l/l{x). The four parameter system of

curves, created by replacing x with (x - EJ/'A. , reduces to a three parameter system of

curves:

SL system: z =y + oln(x -~) ,(~ < x < +00)

To avoid confusion, this system should probably be discussed further. First, note that the

three parameter form of the 10gnoffi1al is always positively skewed and bounded on the

left by the location parameter, ~. This can also reduce to the two parameter form of the

lognormal when ~ is assumed to be zero, and is dropped from the equation. For obvious

reasons, however, the three parameter form is used because of its greater generality. A

simple way of explaining the three parameter form is that it occurs when the natural

logarithm of(x -~) is normally distributed. It was stated above that the four parameter

system of curves reduces to a three parameter system of curves. This reduction can be

seen if first, we were to write the four parameter fOffi1 as follows:

z= y' + oln( x;~)

and then we reduce this to the three parameter form by allowing y = y'-oln('A.'). The

lambda parameter actually becomes part of the gamma parameter. Another way to keep
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the general four parameter fonn would be by holding A = 1. The density function for the

SL system is given here for reference only:

1 8 -~[Y+Sln(x-~W
ys =-- e 2

L J2; (x -~)
.(~< x <+co)

Figure 3.3 shows a sample of the shapes which the SL system can take.

SL System Examples
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3.1.2.4

l- - - y=-2, 8=1.5 y=-2,8=2.0 y=-1,8=3_0 y=O, 8=1.0 I

Figure 3.3: Density Plots for the S.. System (~=O)

Special Cases of the Johnson System, SN and Ss

There are two special cases of the Johnson system which need to be discussed.

The first special case is the nonnal distribution and will be referred to as the S system.

This system occurs when x is nonnally distributed and can be created by setting f(x) = x.

The four parameter system of curves, created by replacing x with (x - ~)jA , reduces to a

two parameter system of curves:
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SN system: z =y + ox .(-oo<x <+(0)

It was stated above that the four parameter system of curves reduces to a two parameter

system of curves. This reduction can be seen if first, we were to write the four parameter

fOITIl as follows:

z =y' +0'( X ~,S')

and then we reduce this to the two parameter form by allowing 0 =o'/A' and

y =y' - OS' . The remaining two parameters, y and 0, are simple functions of the mean

and the standard deviation of the distribution, where the mean equals - y/0 and the

standard deviation equals 1/0. Another way to keep the general four parameter form

would be by holding A = 1 and S = O. Note that it would have been just as easy, and

tempting also, to allow the two parameters, S and A, to correspond to the mean and the

standard deviation of the distribution, while holding y = 0 and 0 = 1. However, it was

presented the other way to keep the same notation throughout the study. The density

function for the SN system is given here for reference only:

, (- 00 < x < +00 )

Figure 3.4 shows a sample of the familiar shapes which the SN system can take.
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SN System Examples

Figure 3.4: Density Plots for the SN System (y=O)
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The other special case stems from a problem which I had with the SL system. As

1.2 r--""'T"""-.....,.--or---""'T"""-.....,.-~_-...,...-.....,.--or---..,...-.....,.----,

/,
1.0 I---t----t---t---t----t--.•-t---ll---t----t---t---t----t---I

0.8 1---t-----t---+---t-----t--I----...ilIK:--l--t-----t---+---+----+----tV,
~ 0.6 I--+---+----+---+------/-.-V-.-..'\~.-+------+--+-------i---+---I

(~ - x) and is represented by the following equation:

was stated previously, the two and three parameter fonus of the lognonnal curve are

represents a negatively skewed lognonnal curve, which I called the Ss system. The

subscript, S, simply stands for "Special." This system is similarly created by setting f(x)

Note that this special three parameter fonn of the lognonual is always negatively skewed

= In(x). The three parameter system of curves is created simply by replacing x with

and bounded on the right by the location parameter, ~. This special fonn of the

lognormal will not reduce to a two parameter fonn, unless the distribution was strictly

strictly skewed to the right. To maintain generality, I created a new system which



negative. As with the SL system, the general four parameter fonn can be kept by holding

A= 1. The density function for the Ss system is given here for reference only:

1 8 -.!-[y+oln(~-xW
ys=-- e 2

s ..& (~-x)
,(-co<x<~)

Figure 3.5 shows a sample of the shapes which the Ss system can take.

Ss System Examples
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Figure 3.5: Density Plots for the Ss System (~=) 0)
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3.1.2.5 The Lognormal Line

It was stated previously that a plane could be defined by the pair of statistics,

(~I' ~2)' and that all distributions could be placed on this plane. The SB and Su systems

were defined such that they would cover the entire (~I , ~2) plane, with the SL system

acting as a transition between them. Johnson introduces a new parameter, ()), and defines

two parametric equations for the lognormal distribution:
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From these equations it can be seen that a (~I , ~2) point is defined for a given value of

(J). As ()) is varied, a nearly straight line is produced across the (~I ' ~ 2) plane, which

separates the plane into two distinct pieces. Johnson refers to this line as the lognoffilal

line, and it separates Ss curves from Su curves. The importance of this line is quite

obvious when we desire to classify a given distribution. It should be noted that as the

value of Q) approaches 1, the normal curve is approached at point (0,3). Figure 3.6

graphically depicts the lognormal line on the (~I , ~ 2) plane.

3.1.3 Distribution Classification

In the previous section, a set of parametric equations was presented which could

be used to calculate values of ~l and ~2' given a value of Q). The distinction between

these two values and the values of the descriptive statistics, ~I and ~2' is very important.

When clarification is necessary, the word "calculated" will be used to identify those

values of ~I and ~2 calculated from the parametric equations of (J), and the word

"observed" will be used to identify the descriptive statistics.

Miller proposes a method which detennines the location of a given distribution,

on the (~I ,~2) plane, in relation to the lognormal line. The first step would be to solve

for Q) in the calculated B1 equation by substituting in the observed BI value. Next, solve

the calculated ~2 equation using this value of CJ). If this calculated value of ~2 is less

than the observed value of ~ 2' then the distribution resides on the Su system side of the

lognormal line. Conversely, if the calculated value of ~ 2 is greater than the observed
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value of P2 ) then the distribution resides on the Sa system side of the lognormal line.

The SL system is used when both the calculated and observed values of P2 are

approximately equal. Miller presents a straightforward procedure for solving the cubic

equation of PI for (():

(() = (C -ly + I
C

where

As an attempt to clear up any confusion which may exist, Figure 3.6 was created, which

shows a portion of the (Pl ,P2) plane with the lognormal line and the Sa and Su system

areas identified.

Graphical Distribution Classification
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Figure 3.6 could be used to approximate the distribution type by locating the point,

(observed 131 ) calculated p2)' in relation to the lognormal line.
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3.1.4 Johnson System Parameter Estimation

3.1.4.1 SN System Parameter Estimatton

The SN System requires two parameter estimates, y and [). The estimates are

simple functions of the descriptive statistics and can be determined from the following

equations:

[)=~=_1_
s ~

and
X m,

y=--=---
s ~

As was stated previously, the general four parameter fonn of the SN system can be used

by setting A = 1 and ~ = O.

3.1.4.2 SL System Parameter Estimation

The SI.. system requires parameter estimates for y, [), and ~. When the value of

the location parameter, ~, i.s unknown, numerous approaches for parameter estimation

are available in current literature. A closed form estimate of the lognoffilallocation

parameter, ~E' is discussed on page 381 of Ebeling (1997). This estimate, using

consistent notation, is as follows:

,
;: = X mii/ X rna.' - X ;ned
SF.

. X +x -2x
min max med {

XII/ill = minimumsamplevalue

where X = maximum sample value",ax

X :J =mediansamplevaluemeG

Miller defines another estimate derived from the equation for ~I given in section 3.1.2.5.

By taking the square root of both sides and utilizing the following substitutions,

t = .J(j/ - 1, (j) ~ = t 2 + 1, and YJ = $:

a cubic equation with only one real root is obtained. This equation is as follows:
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t
3 +3t-YI =0

A geometric solution for the single real root of this equation can be calculated from the

following equation:

The estimate, ~ M l of the lognormal location parameter, taken from Miller, is finally

calculated from the following equation:

)m2S =m ---
MIt

A third estimate of the lognormal location parameter, ~B' can be calculated from the

following straightforward equation:

): = ,_ X max - X min
"?B X min

n

Through trial and error, a method for selecting which ofthe three location parameter

estimates to be used was created. This method first decides whether the Ebeling

estimate, ~ E , and the Miller estimate, ~ M l are realistic for the lognormal distribution. This

"reality" check is done by determining whether the estimate is within an acceptable range

to the left of the minimum sample value. If the check fails and finds that one or both of

the estimates are unrealistic, then their values are set equal to the value of the ~B

estimate. The minimum value of all realistic estimates is used as the initial estimate of

the lognormal location parameter, S. This estimate can then be used in the Maximum

Likelihood Estimation (MLE) equations for the remaining parameters, Y and 8. The
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following equations, using current notation, were found on page 122 of Johnson and Kotz

(1970):

y
()

i=J

n
and

]
=

() n

where the parameter estimates of y and () are found by simple manipulations of these

equations. As was stated previously, the general four parameter form of the SL system

can be used by setting A = 1. The two parameter form of the lognormal can be estimated

by setting S = 0 in these equations. A quick check of whether the minimum sample

value is to the right of zero, determines the feasibili ty of the two parameter form. This

check prevents the two parameter fonn of the lognormal from being optimized if it is not

feasible.

3.1.4.3 Ss System Parameter Estimation

The parameter estimates of y, (), and S for the S5 system can be determined by

the SL system equations with simple modifications. The modified Ebeling location

parameter estimate, ~E' which now represents the right bound for the distribution, is

required for the S5 system and can be calculated as follows:

s = IXminXmaxl+x~,ed

E IXminl+lxmaxl+2IXmctll
where

{

X . = minimumsamplevalue
nil"

X =maximumsamplevaluemax

X
med

= median sample value

As with the SL system, the Miller estimate of the location parameter, SM ' can be

determined with the following equation modifications:

39



~
~M = m, + -I-t-'

A third estimate of the lognormal location parameter, SI) , can be calculated from the

following straight forward equation:

x -x ..:c + max mm
'?B = X mILt

n

Location parameter estimate selection is carried out in the same manner as the SI. system

method, with the exception that the checks are to the right of the maximum sample value

instead of to the left of the minimum sample value. The maximum value of all realistic

estimates is used as the initial estimate of the location parameter estimate, ~. This

estimate is then used in the MLE equations to detennine the parameter estimates of y and

8. These estimates are found by simple manipulations of the following equations:

n

n

Lln(~-xJ
Y i-I=..:.::.:._---

8
and

I
=o 11

3.1.4.4 SB System Parameter Estimation

Miller discusses the parameter estimation of the 58 system 011 pages 487-489. It

is stated that numerical optimization is required to determine adequate estimates of the

four parameters. Numerical optimization procedures usually require "ballpark" initial

parameter estimates, and Miller presents a method for obtaining these estimates. Since ~

and (~ + It) represent the lower and upper bounds of the distribution, respectively, it

would seem logical to estimate the value of ~ as something slightly smaller than the
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minimum sample value and the value of (S+ Ie) as something slightly larger than the

maximum sample value. The following two equations allow for such estimates:

x -x·}:: = x . _ max nUn
~ min

n
and

x -X.Ie = x + max n,," _ ~
meLT ~

n

Once these estimates are known, the S8 distribution can be transformed into a normal

distribution by substituting their values into the SB function:

In = In(_x-----==---S )

S+Ie-X

The remaining two parameters, y and 0, allow a final transformation into a standard

normal distribution, utilizing the SB system equation: z = y + 0/0' If two points are

selected from the data and their corresponding z values are calculated, two equations

would be created that could be solved to determine the estimates of y and 45. One such

approach would be to select the points which represent the first and third quartiles of the

data. The two equations would then be:

Z025 =Y+45ln( X
025 -S J

S+ Ie - X O.25

S::/ ( X U75 - S )
ZO.75 =Y+ u n

S+Ie-X 075

where

where

{

ZO'25 = I SL quartileof the standard nomlal, cD(z)

X
O

.
25

= }Sl quartileofthesample

{

ZO'75 = 3rd quartileof the standard 110nnal,cD(z)

X O.75 =3Td quartiJeof the sample

which can be solved simultaneously to determine the estimates of y and 45. These four

estimates of the parameters are suffi.cient to begin a numerical optimization procedure,

which wil.l be discussed later.

3.1.4.5 Su System Parameter Estimation

Miller discusses the parameter estimation of the Su system on pages 483-485. As

with the SB system parameter estimates, an approach is presented to calculate initial
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estimates of the Su system parameters, which can then be used in a numerical

optimization procedure. The procedure is iterative, and its steps, as presented, are as

follows:

Step J: Set 8 = 4, as an initial guess.

Step 3: For convenience, calculate K = 2(~2 - 3) .
w -1

Step 4: Calculate three quantities which are functions of w:

A0 = W 5 + 3w 4 + 6w 3 + 1Ow 2 + 9w + 3

AI = 8 (co 4 +3w3 +6co 2 +7co+3)

A 2 = 8 (co 3 + 30) 2 + 6co + 6)

Step 5: Calculate:

[4K(0) + 1)- Al]+ ~[4K(w+1)- AI]2 - {- 4(A 1 - 4K)[Ao - K(w + ly D
m=--------'-----------:,-----~-----------

2(A 2 -4K)

Step 6: Using these values of 0) and m, calculate the value of f3 1 that would be

produced by co and m. We will designate this values as ~I' where:

p = m(w-I)[4m(w+2)+3(W+IYL

1 2 (2m + 0) + 1Y

The iterative procedure continues until this calculated value is essentially equal to

the actual value. This iterative decision is accomplished by evaluating the

difference between these two values:

where if {
fl ~ IE - 8

fl > IE - 8

then skip to Step 9

then proceed to Step 7

Step 7: For convenience, calculate:
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Step 8: A new guess for CD is calculated from:

()) =~- 1+ ~(I - c)

With this new value of (j), return to Step 3.

Step 9: The parameter estimates are calculated from the foHowing equations:

where sinh represents the hyperbolic sine function and cosh represents the hyperbolic

cosine function. These four estimates of the parameters are sufficient to begin a

numerical optimization procedure, which will be discussed later.

3.2 Goodness of Fit Test

A critical component of any curve fitting routine is the goodness of fit test. Stated

simply, a goodness of fit test gives a numeric answer to the question of how well is the

data explained by the specified distribution. The test results are not only used to

determine how well the data fit the distribution, but also gives us a method of comparing

the results from different distribution fits. Miller uses the chi-square, X2, test throughout

his text as the goodness of fit test for frequency data. The X2 test can only be used 011

data which has been grouped into cells, while our data is one group of individual
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samples. If the sample size were sufficiently large, one could group the data into cells

and then perform the X2 test. However, many samples taken in industry are small, and

we must find a goodness of fit test that will apply to individual observations.

3.2.1 The Kolmogorov-Smimov One-Sample Test

The Kolmogorov-Smimov (K-S) one-sample test is a test of goodness of fit which

applies to individual sample observations. In short, the K-S test compares the observed

cumulative frequency distribution to the theoretical cumulative frequency distribution.

The maximum deviation between the two distributions is calculated, and called the D

statistic. The sampling distribution of D is known and well documented, and tables of the

critical values from that sampling distribution can be located in many references. The

critical values of the D-statistic are a function of the sample size. This is due to the fact

that sampling error should decrease as the sample size increases, which means that the

maximum allowable deviation between the observed and theoretical distributions

decreases as the sample size increases. A useful reference on the Kolmogorov-Smirnov

one-sample test is Siegel (1956).

Pomeranz (1974) presents a function called PKS2 which calculates the exact

probability of obtaining a deviation less than D. This value is often referred to as the p

value of the D-statistic, and can be used as the numerical goodness of fit value. As the 0

statistic approaches zero, the observed distribution approaches the theoretical distribution

and the p-value approaches zero. I personally like to transform the p-value into an f

value by the transformation: f-value = 1 - p-value. The [-value allows me to use the

"bigger is better" viewpoint. That is to say that the f-value approaches one as the

observed distribution approaches the theoretical distribution. If, for example, we were to
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specify a 90% significance level, then we would reject any fit with a f-value less than

0.90 or a p-value greater than 0.10.

3.2.1.1 K-S Test Application on the Johnson Systems

The Johnson system equations have all been presented in the form of the variable

z, which if the data were adequately fit by the Johnson system, would be distributed as

the standard normal, with a mean of zero and a standard deviation of one. Therefore, we

will specify the theoretical frequency distri.bution as the standard normal distribution, and

the distribution of variable z, as the observed frequency distribution. The observed

cumulative frequency distribution can be determined from the following equation:

where k = the number of observations::;; z

Since the theoretical frequency distribution is the standard normal distribution, the

theoretical cumulative frequency distribution is standard reference in most statistical texts

and can be determined from the following equation:

-00

The D-statistic is calculated from the following equation:

for i = 1, ... ,n

The values of 0 and n can be input into the PKS2 function, previously discussed. The p-

value output can then be used to determine the goodness of fit between the sample data

and the Johnson system.
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3.3 Nwnerical Parameter Optimization

It was stated previously that the parameter estimates for the Ss and Su systems

were initial estimates, and required numerical optimization. Most numerical optimization

procedures attempt to maximize or minimize a given function with any given variables

and constraints. The Jolmson transformation, in its general fonn, contains four variables

and some constraints. The function which is minimize or maximize, however, needs to

be discussed further. Most references which discuss parameter estimation use MLE

equations, which are stated as being the absolute best estimates. MLE parameter

estimates are developed by maximizing the likelihood function, which in simple terms

can be stated as maximizing the probability of observing the data exactly as it was

observed. Miller states that the function which is optimized should maximize the

measure of goodness of fit. Miller uses the X2 test as his measure of goodness of fit, and

presents a second function option. Since a smaller value of X2 represents a "better" fit,

he introduces the Minimum Chi-square Estimation (MCE) as an option to MLE. It

makes sense that when the value of X2 is minimized, then the parameters will be

optimized to give a maximum measure of goodness of fit. It is stated that MLE estimates

are still recognized as being the best, however, a direct relationship exists between MCE

and MLE estimates, which allow either to be used. I believe the reason that MCE was

even considered was due to the complexity of the MLE equations required in the

Johnson system functions. As was discussed previously, Chi-square, and thus MCE, will

not work for data which are not grouped into cells. The K-S test's D-statistic is used in

this research as a measure of goodness of fit because of its ability to handle individual
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measurements. As with the X2 value, a smaller value of the D-statistic represents a

"better" fit, and therefore, using similar logic as Miller, we can present the Minimum D

statistic Estimation (MDE) as an alternative to the complex MLE equations.

Neider and Mead (1965) present a simplex method for function minimization, and

an algorithm based on this method is presented by 0 'Neill (1971). The algorithm allows

a given continuous multivariate function to be minimized over all of the variables. When

all variables are unconstrained, multivariate function minimization works very well.

However, when parameter constraints exist, represented as bounds with the Ss, Su, SL,

and Ss systems, a technique for maintaining the "continuous" requirement of the function

must be developed. Alternatively, the initial estimates of the constrained parameters can

be held constant, while the remaining parameters are allowed to change with the

optimization. This second method does not allow the MDE equations to be completely

optimized, however, Miller presents this as an opbon due to the signi ficant increase in

computation time when all variables are optimized, and because the constrained

parameters of the Johnson systems are less critical to the goodness of fit.

3.3.1 Johnson System Parameter Optimization

3.3.1.1 SN System Parameter Optimization

Both parameter estimates of 8 and y of the SN system are essentially MLE

estimates, and thus do not require optimization.
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3.3.1.2 SL System Parameter Optimization

The parameter estimates of ~, 8, and y for the SL system are optimized using

both MDE and a method of minimizing the negative natural logarithrn of the SL density

function. This second optimization "function" is a variant of maximizing the log

likelihood, and the method will be referred to as MLL. Both MDE and MLL

optimization functions are used independently, primarily due to their differing

perfonnances in certain situations. If the two parameter fonn of the SL system was found

to be feasible in the parameter estimation phase, then it can also be optimized with MDE

and MLL functions by setting ~ = 0 and holding its value constant. After parameter

optimization, we have three sets ofparameters, and if the two parameter fonn was used,

then six sets of parameters exist for the SL system. Selection of the "best" SL system

parameter set is detennined by the set which yields the maximum K-S test f-value.

3.3.1.3 S8 System Parameter Optimization

As was stated previously, the S8 system represents a special case of the SL system,

and thus its parameters are optimized very similarly. The parameter estimates of ~, 8,

and y for the Ss system are optimized using both MDE and MLL methods. Unlike the

SL system, the two parameter fonn ofthe Ss system is not considered. Therefore, three

sets of parameters exist for the S8 system after optimization, and like the SL system,

selection of the "best" parameter set is detennined by the set which yields the maximum

K-S test f-value.
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3.3.1.4 Sa System Parameter Optimization

The parameter estimates of 8 and y of the Sa system are optimized using MDE.

The initial estimate of ~ , which is the lower bound of the system, and the initial estimate

of A, which is the distance between the lower and upper bounds of the system, are both

held constant during the optimization procedure.

3.3.1.5 Su System Parameter Optimization

The parameter estimates of 0, y, ~, and A of the Su system are all optimized

using MDE. This can be done easily because the Sv system is completely unbounded,

and therefore its parameters are unconstrained.

3.4 Johnson System Selection

There are five Johnson systems which have been discussed in this study: SN, S8,

Su, SL, and Ss. However, all five cannot be fitted to a marginal distribution sample,

because some of the systems compete with each other. The SL and Ss systems can be

considered competing with each other because the SL system can only be fit to positively

skewed data and the Ss system can only be fit to negatively skewed data. The Sa and Su

systems can be considered competing with each other because they reside on opposite

sides ofthe lognormal line in the (~I '~2) plane. It would seem possible, due to sampling

error, to select the wrong system when the distribution lies close to the lognormal line.

However, the SL or Ss system fit, being defined as transitional, should allow for this

situation. The SN system doesn't compete with another, and therefore can be used to fit

any sample data.
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Any given marginal distribution sample, therefore, can only be fit with three of

the five Johnson systems, based completely on the sample's descriptive statistics.

Further, due to the system competition, there are only four sets of three systems possible.

These are the (SN, SL, SB) set, the (SN, SL, Su) set, the (SN, Ss, SB) set, and the (SN, Ss, Su)

set. Due to the wide range of shapes which the SB and Su systems can take, they become

very powerful at fitting sample data. Believe it or not, this causes some significant

problems in the system selection process, particularly when the SB system is available.

Whenever a system with bounds "better fits" sample data from a distribution without

bounds, the calculated capability performance of the distribution is greatly inaccurate.

This is primarily seen when the specification limits lie outside of the bounded

distribution's location parameters, and the proportion of nonconfonning product is zero

on that particular side of the distribution. The SL and Ss systems exhibit this same

problem, to some degree, when they "better fit" sample data from a nonnal distribution.

Extensive study was used to develop a decision method which minimizes the risk of

incorrectly identifying sample data from a nonnal distribution.

3.4.1 Test for Normality

Miller presents a very simple test for normality based on the measure of

skewness. Since the nonnal distribution is not skewed, the theoretical value of YI IS

zero. A hypothesis test is set up which tests whether it is possible that the observed value

of YJ could have carne from a nonnal distribution based on sampling error. The standard

error of YI for random samples drawn from a nonnal population is needed, and Miller

presents the following equation for its calculation:
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~cr - -
y, n

A z-value and a two-tailed probability can be calculated which can be used to reject or

fail to reject the null hypothesis, which states that YI = 0, or that the sample came from a

normal process. The z-value, Zy' can be calculated from the following equation:

Z =lrJy cr
y,

where Zcrit = 1.96 (95%)

Therefore, when Zy < 1.96, we cannot reject the null with 95% confidence.

3.4.2 System Selection Decision Method

The decision method starts by calculating the f-value for the SN system fit, FN,

and the f-value for the optimal SL or Ss system's fit, FLS ' These f-values are considered

"low" if they are less than 0.2, and "high" if they are greater than 0.2. A new variable,

,1, , is introduced which minimizes some of the error of selecting the SL or Ss system fit

when the sample comes from a normal population. This variable is defined as follows:

The value of ,1, is considered "high" if it is greater than 0.3, and "low" if it is less than

0.3. The last decision variable which is used is the z-value for YI' Zy. The value of Zy

is considered "low" if it is less than 1.96, and "high" if it i.s greater than 1.96. There are

normally 16 possible combinations of four variables, however, due to the definition of ,1, ,

only 12 combinations are possible. These 12 combinations and their respective system

selection decision are listed in Table 3.1. Please note that when two system selections are

listed, the systems are competing, based on skew or the lognormal line, and the decision
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is based on the sample descriptive statistics. If the decision variables point towards the

Sa or Su system, then the procedure goes on to estimate and optimize the parameters for

that particular system. Note that the "critical" values of the decision variables were based

on trial and error, and their selected values were chosen to ensure a high probability of

selecting the SN system for a sample which came from a normal population. This

selection matrix is somewhat sensitive to the "critical" values ofthe decision variables.

Further study is warranted in this area.

System Selection Decision Table

F F !1 Z ~ SB'SUN LOW LSLOW LOW YLOW

F F !1 Z ~ SB'SUN LOW LSLOW LOW YHIGH

F F !1 Z ~ SB'SUN LOw LSHIGH LOW YLOw

F F !1 Z ~ SL'SSN LOW LS H1GH LOw YKIGH

F F !1 Z ~ SB'SUN LOW LSHJGH HIGH YLOw

F F !1 Z. ~ SL'SN LOW LSH1GH HJGH 1HIGH

F F !1 Z ~ SNN H1GH LSLOW LOW Yl.OW

F F !1 Z. ~ SB'SUN HlGH LSLOW LOW IH.IGI'

F F !1 Z ~ SNN H1GIi LS 1IIGH LOW YLOW

F F !1 Z ~ SL'SSNIiIGII LSH1GH LOW YIIiGH

F F !1 Z ~ Sa'SuN H1GH LSH1GH '/lGH how

F F !1 Z ~ SL'SSNIIIGH LSHIGH HIGH YIIiGH

Table 3.1: Decision Table for Johnson System Selection

This system selection decision method for fitting a marginal distribution sample is

completed independently for each marginal distribution sample contained in the study.

When the selection procedure is complete, each marginal distribution will be identified

by an individual Johnson system and its required estimated parameters.
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3.5 Multivariate Johnson Simulation

With each of the marginal distributions identified by a Johnson system, we have

essentially identified a multivariate Johnson distribution. Further, when the marginal

distributions have been transfonned with their respective Johnson equations, we are left

with a multivariate distribution with all of its variables distributed as the standard nonna!.

Elderton and Johnson suggest, on pages 147 - 148, that it is a reasonable assumption that

the joint distribution of standard normal marginal distributions will be multivariate

standard normal. This is certainly not a guarantee, however, without any contrary

knowledge, it is a reasonable approximation.

At this point, with a multivariate nonnally distributed process, it would appear

that we are in a position to allow existing literature to define the multivariate process

capability index. Unfortunately, there are a number of problems that would be

encountered if that approach were taken. When data are transformed into the nonnal

distribution, many times the shape of the distribution will significantly change. It seems

logical that if the original distribution were either heavy-tailed or bounded, then as the

distribution were transfonned to the normal, the tail probabilities would change. This

would ultimately lead to an inaccurate estimate ofthe proportion nonconfonning. In fact,

Rivera et al. (1995) demonstrate that the lognormal transfonnation yields a fairly

consistent 16% error in the estimate of proportion nonconfonning. They conclude that

calculating a point estimate of the proportion nonconforming from a transformed

distribution is not a good idea. It should be noted at this point, that some of the S8 and Su

distribution shapes are much less normal-like than the SL or Ss distributions. This would
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suggest that larger errors could occur with other Johnson transformations. These errors

of estimation are not acceptable, and therefore, another approach must be considered.

We are left with the requirement of estimating the proportion nonconforming

from the original observed distributions. Unlike the normal distribution however, the

standardized Johnson distribution does not exist, and therefore, the cumulative

probabilities would have to be determined for each and every observed distribution. As a

solution to this problem, we can simulate a multivariate standard normal distribution and

reverse the transformations to allow us to reproduce the original multivariate Johnson

distribution. The simulation method allows the proportion nonconforming to be

calculated, as well as appropriate confidence intervals. The method is very straight

forward and only requires knowledge of the transformed distribution correlation, the

conditional multivariate Johnson equations, and the reverse Johnson transformations.

Multivariate Johnson distribution simulation is discussed in chapter five of Johnson

(1987).

3.5.1 Distribution Correlation

The correlation, Pij' between each pair of marginal distributions is simply a

measure of the dependence between the two distributions. Knowledge of the correlations

is very important, and it is probably the sole reason why multivariate process capability

indices are needed. This is to say that univariate process capability indices can be very

misleading when used on variables which are dependent and correlated.

Simulation of a multivariate Johnson distribution requires knowledge of the

correlation between each transformed marginal distribution. It is important to recognize

that the correlation between the transformed variables, Zj and Zj, will be different from the
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correlation between the observed variables, Xi and Xj. However, the correlations values

are related through the transformation. Before we can calculate the correlation, Pij' we

must first calculate the sample covariance, Sij, and the sample variances, Sii and Sjj. The

sample covariance is calculated from the following equation:

( )
n (Zik - ZiXZjk - zJ

S. = S.. = Cov Z z· =" ----=-----------''-'-
IJ .1' I' J L.J

k=1 n
where i =1= j

and the sample variances are calculated from the following equations:

n ( - )2
2 () Z:. Zik - Z,S. = s = Var z· =II 1 I

k=1 n
and 2 () L:D

(Zjk- ZJ2S .. =s· =Varz. =
.u J ) n

k=1

Note that they are calculated the same way as the second moment about the mean, m 2 .

The only difference, of course, is that m? is the sample variance of the observed variable

X, and not of the transformed variable, z. The variances and covariances are often

described in matrix notation, where the matrix is simply called the variance-covariance

matrix, L. The variance-covariance matrices for two, three, and four variables are as

follows:

lS"
SI2

S" J
I Sll S12 SI3 SI4

[S" S,,] S21 S22 S23 S24
L - L 3 = S21 Sn S23 L -2 -

Sn
4-

S31 S32 S33 S34S21 I

S31 S32 S33
S41 S42 S43 S44

Note that the variance-covariance matrices are diagonal and symmetric. The correlation

can be calculated from the following equation:

( )
Sij S,j

P·· = p .. = Carr Z· Z· = = --
IJ)I I' J rc ~

\lSi, \IS jj Sj s j
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Note that when i = j, then Pi; = Pjj = 1. This makes sense when we consider that any

given variable wouLd be perfectly correlated with itself. The correlations are also often

described in matrix notation, where the matrix is simply called the correlation matrix, R.

The correlation matrices for two, three, and four variables are as follows:

1 PI2 P13 PI4

[ I P;'] R, ~ [p~,
P12 P,,] P21 P23 P24R - 1 P23 R -

2 - P2I 4 -

1
P31 Pn P34

P31 Pn
P41 P42 P43 1

A convenient relationship can be obtained between the correlation matrix, R, and the

variance-covariance matrix, L, ifwe first define the standard deviation matrix, V1/ 2
• The

standard deviation matrices for two, three, and four variables are as follows:

v~/2 = [.JS:: 0]
- 0 jS;; [

.JS::
V 1i2

- 03 -

o

o
jS;;

o

V 1
/

2 =
4

.JS::
o
o
o

o
jS;;

o
o

o
o

.jS;;
o

o
o
o

;s::
The relationships can then be defined as follows:

and

A very interesting simplification occurs when the marginal distributions are standard

normally distributed:

when S =1
11

for i = I" .. ,p

where p is the number of variables.
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3.5.2 Conditional Multivariate Jolmson Distributions

A complete discussion of the bivariate Johnson distribution, including the

conditional equation development, can be found on pages 147 - 150 of Elderton and

Johnson. Since this research is limited to four variables, we concern ourselves with four

marginal distributions which have each been fit by a Johnson system. In order to present

in generality, we represent the first marginal distribution, f( x I ), by St, the second, f( x 2 ),

by Sj, the third, f( x 3 ), by SK, and the fourth, f( x 4 ), by SM. The subscripts I, J, K, and M

can each be N, L, B, or U, representing the assigned Johnson system. Note that Ss is a

special case of SL and therefore, need not be identified separately, at this point. For

convenience we denote (x -S)/A by x'. The four Johnson functions can then be written

as follows:

where

z=y+8fN(X')

z=y+8fl.(x')

z=y+8fB(X')

z= Y+ 8fu (Xl)

Using the well known properties of the standardized multivariate normal distribution, the

expected value of the conditional multivariate normal distribution can be calculated.

Three good references for the multivariate normal distribution are Johnson and Wichern

(1992), Tong (1990), and Johnson and Kotz (1972). Ifwe let:

and
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then the conditional distribution of Zl' given Zz =Zz , is nonnal with mean = LI2 L;~ Zz

and standard deviation = [L ll - LIZ L;~ L Z1 r/ 2
• This is to say that the expected value of

the conditional multivariate standard normal is as follows:

E[Z] I Zz] = LIZ L;~ Zz

Recalling that L =R for the multivariate standard normal distribution, we can write the

expected value in terms of the correlation:

E[Z] IZJ= R IZ R;~ Zz

The variance of the conditional multivariate standard normal is as follows:

Var[Z l I Zz]= L II -L 12 L;~ L Z1

and in terms of the correlation:

Var[ZJ I Zz]= R 11 - R 1Z R;~ R 21

3.5.2.1 Conditional Bivariate Johnson Equations

We define a bivariate Johnson distribution of type Su by requiring the joint

distribution of Zl = YI + 81 J; (x;) and Zz = Y2 + 8 2 j/x~) to be described by a

standardized bivariate normal distribution. There are 16 different S]J distributions based

on the four Johnson systems. They are SNN, SLN. SBN, SUN, SNl, SLL. SSl, SUL, SNB, SLB, SSB,

SUB, SNU, Sw, Ssu, and Suu. Of these, SN represents an observed bivariate normal

distribution. Using the well known properties of the standardized bivariate normal

distribution, the conditional bivariate Jolmson equations can be developed. The

conditional distribution of Z2 =Y2 + 8 2 h (x;), given ZI , is also normally distributed with
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an expected value of PJ2 ZI and a standard deviation of )1- P~2 . lfwe rearrange and

partition the variable array and the correlation matrix as follows:

and

and use the expected value equation, E [ZI I Z2] = R J2 R~~ Z2 ' then the expected value

of Z2 , given zJ ' can be calculated as follows:

where P12 = P21

Ifwe apply the variance equation, Var [Z, I z21= R JI - R I2 R~~ R 21 , then the variance

of Z2 , given zJ ' can be calculated as follows:

Another way of stating this is that the conditional distribution of

[Y2 +82fJ(x~)-P12hl +8 1 fJ(x;)}]
~1- P~2

where PI2 = P21

given x; is standard nonnal. Therefore, the conditional distribution of x~, given x;, is

of the same Johnson system type, SJ, as the marginal distribution of x;, but with 12

replaced by

[Y2 -PI2hJ +8 1 ~(x;)}]

~1- P~2

and 82 replaced by
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The median regressions of X'2 on x~ were studied by Elderton and Johnson

because the means of the Johnson system equations are complex, when compared with

the easy median equations. I spent time developing these conditional median equations

for the trivariate and quadrivariate Johnson distributions and later realized that they

would not be required for this research. To prevent the loss of these equations, I listed

them in Appendix E, in hopes that they could assist with further research.

3.5.2.2 Conditional Trivariate Johnson Equations

We define a trivariate Johnson distribution of type SIJK by requiring the joint

described by a standardized trivariate normal distribution. There are 64 different SIJK

distributions based on the four Johnson systems. Using the properties of the standardized

trivariate normal distribution, the conditional trivariate Johnson equations can be

developed. The conditional distribution of Z3 = y) + 6) I K(x;), given Zl and Z2 , is also

standard normally distributed. If we rearrange and partition the variable array and the

correlation matrix as follows:

l ~!-lz=, Zl

Z2

and

and use the expected value equation, E [Z, I Z2] = R 12 R;~ Z2 , then the expected value

of Z3' given Z1 and Z2' can be calculated as follows:

which solves to:
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E(z Iz Z )=(P13-PI2Pn]z +[P23-PI2PI3]
3 I' 2 1 2 I 1 2 Z2-P12 -P 12

lfwe apply the variance equation, Var [ZJ I Z2] =R 11 - R I2 R;~ R 21 , then the variance

of Z3' given Zl and Z2' can be calculated as follows:

P12]-1 [PI3]1
1 Pn

which solves to:

2 2 2
Var(z31 z z )=1_PJ3+P23- PI2P23P13

I' 2 .,
1- PI2

Another way of stating this is that the conditional distribution of

[Y' + 0, fK (x;)- [P"I~~t']{yo + 0, f,(x; )}-[P"l~Pdi,P" ]{Y, + O,!, (x; )}]

2 2 21_ P13 + P23 - PI2 P23 PI3
1- P~2

given x; and x; is standard normal. Therefore, the conditional distribution of x:,, given

x; and x;, is of the same Johnson system type, SK, as the marginal distribution of x;,

but with Y3 replaced by

2 2 2
1- PI3 + P23 - P12 Pn PI3

1- P~2

and 8 3 replaced by

2 2
1- PI3 + Pn - 2 P12PH PI3

1- P~2
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3.5.2.3 Conditional Quadrivariate Johnson Equations

We define a quadrivariate Johnson distribution of type SUKM by requiring the joint

Z4 = Y4 + 8 4 1M (x~) to be described by a standardized quadrivariate nonnal distribution.

There are 256 different SIJKM distributions based on the four Johnson systems. Using the

properties of the standardized quadrivariate normal distribution, the conditional

quadrivariate Johnson equations can be developed. The conditional distribution of

Z4 =Y4 + 841M (x~), given Zj' Z2' and Z3' is also normally distributed. Ifwe rearrange

and partition the variable array and the correlation matrix as follows:

1 I

Z4 , P4J P42 P43
••••••••• _~'_".__A' ••• _ ••• _ •••• ____••••

ZI PJ4 I 1 PI2 Poz= and R= I

Z2 P24 i P21 1 P23,

Z3 P34 i P31 Pn 1
I

and use the expected value equation, E [Zt I Z2 J= R J2 R;~ Z2 , then the expected value

of Z4 , given zJ , Z2' and Z3' can be calculated as follows:

E(Z4 I Zjl Z 2 JZ J= [P41 P42 P43JfP:'

P31

which solves to:
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Ifwe apply the variance equation, Var [ZI I Z2] =R]l - R I2 R;~ R 21 , then the variance

of Z4 , given 2 1 , Z2' and 2 3 , can be calculated as follows:

P12

which solves to:

Another way of stating this is that the conditional distribution of

Y4 + ()4 1M (x~)- (PJ4 (1- P~J+ P24 (P13 P23 - P~J+ ~34 (PI: P23 - P13 )J {y I + 01 .t; (x;)}
1+2P12 P2J PI3 -PJ2 -P2J -PIJ

- (PJ4 (P13 P23 - PI2)+ P24 (1- pIJ)+ ~34 (PI~ PI3 - P23 )J {y 2 + 02 fJ (x~)}
1+ 2 PI2 P23 PI3 - Pl2 - P23 - PI3

_ (P14 (P12 P23 - PI3)+ P24 (P12 ~13 - ~2))+ ~34 (1- P;2 )J{y) + 03 fK (x;)}
1+ 2P12 P23PI3 - P12 - P23 - PI)

63



given x; , x; and x; is standard nonnal. Therefore, as with the bivariate and trivariate

distributions, the conditional distribution of x~, given x;, x;, and x;, is of the same

Johnson system type, SM, as the marginal distribution of <, but with Y4 replaced by

and 04 replaced by

Although the scope of this research does not include more than four variables, the

equations required for additional variables can be developed in the same method as was

outlined above.
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3.5.3 Reverse Johnson Transformations

The conditional equations which were presented in the previous sections, all

require the value of x; to be given. This requirement is essentially stating a very basic

assumption that the first marginal distribution, Sr, is treated as independent of all others in

order to start the sample generation. Because x; is treated as independent, it can be

generated from univariate simulation techniques. Recall that the general form of the

Johnson transformation system was:

where z is distributed as the standard normal, N(O, 1). Box and Muller (1958) present a

popular normal variate generator:

where R - N(f-l,cr2) and U1 and U2 are independent uniform 0-1, D(O,1), variates. If a

standard normal variate, R(O, 1) is substituted for z, in the Johnson system equations, then

the value of Xl can be solved for. The equations required to solve for Xl depend on the

Johnson system which represents the distribution ofx1. These equations are presented as

follows:

Sg system:

Su system:
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SL system:

Ss system:

SN system:

(
z -y J

Xl = exp 1(5) I + SI

After the value of ZI has been generated, it can be used in the conditional Johnson

equations to calculate the values of Z2' Z3' and Z4 from the following equations:

Z2 = R(E[Z2 I zJ Var[z2 I ZI D

z) =R(E[z) I ZI,z2],Var[z) I z,.z2D

Z4 =R(E[Z4 I Zp Z2,z3],Var[z 4 I ZI,Z2,Z3D

Sa system:

Su system:

SL system:

Ss system:

SN system:

(
Z. -y Jx. = 'J...,. sinh I I + j::.

\ I 0 'J,
\

(
Z. - Y J

Xi = exp I 0 i I + Si

(
Z - y. Jx; =Si - exp I 0 j I

Z -yx. = 1 I

I (5
I

for i = 2,3,4

for i = 2,3,4

for i = 2,3,4

for i = 2,3,4

for i = 2,3,4

The values of xl' x2' x3' and x4 are simulated variates from the original observed

multivariate Johnson distribution, and represent one sample from that distribution. Using

this technique, we can generate as many samples as we would like.
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3.6 Multivariate Process Capability Indices, Cpa and MCpa

3.6.1 Dimension Specifications

It was stated in Chapter 1, that one of the delimitations of this study was that only

independent specifications would be considered. The literature review clearly shows that

dependent and independent specifications are the subject of some controversy, as they

apply to multivariate capability indices. The issue of handling dependent tolerances

needs to be addressed, however, it is beyond the scope of this research.

The upper and lower specification limits, USL and LSL, of each dimension (or

variable or distribution) are used to determine the proportion nonconforming and,

therefore, must be given. Their values will be represented as follows:

where i = 1, ... ,p (1~p~4)

where i is the variable identifier, and p is the number of variables in the study.

3.6.2 Proportion Nonconforming, PL' Pu, p*, and Mp*

The phrase "proportion nonconforming" simply means what proportion ofthe

product does not conform to given specifications. Proportion is usually measured in

either percentage (%) or parts per million (ppm). A multivariate process will have both

proportion nonconforming for each marginal distribution (Pi*) and proportion

nonconforming for the multivariate distribution (Mp*). The proportion nonconforming

of each marginal distribution can be further clarified by identifying both the proportion of

product which is smaller than the LSL (PrJ and the proportion which is larger than the

USL (PuJ The relationship can be stated as follows:

where i = 1, ... ,p
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where the proportion nonconforming will be measured in ppm. When the multivariate

proportion nonconforming, Mp*, is discussed, we must first define a nonconforming

product as a product which has any of its variables considered nonconforming. Since this

can represent only one variable or all four variables nonconforming, there is no direct

relationship between Pi* and Mp*. This lack-of-relationship is a problem which has

plagued most multivariate capability indices. Stated simply, the value ofMp* does not

tell us anything about the performance of the marginal distributions. However, this need

only be considered a problem if changes are required to reduce the value of Mp*. The

problem can be fairly easily dealt with by also providing the values ofPLi' PUi' and pj* for

each marginal distribution. These values should give a mental picture of any problems

that exist with the marginal distributions, as they affect the value ofMp*. The exact

values of the univariate proportions nonconforming for the five Johnson systems can be

calculated from our knowledge of the normal distribution and the Johnson system

transformations. These calculations can be accomplished with the following equations:

SN system:
PLi =<1>{Yi +~\ LSL;}

Pu; =1- <1> hi + 8; USLJ

PL ={l- <1> {Yi + 8; In (~j - LSL j)} for (~j > LSL i )

I 0 all other

SL system:

Ss system:
p u. ~ {<I> ~Y. + 0; In(c,; - USL.)}
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all other

for (~j < USL j )

all other

for (~i > USL i )

all other



Su system:
{

. -t(LSLi-;i]}PLi = <1> Yi + 8i smh A j

1 ""{ s:. h-I(USL; -;i]}PUi = -'I-' Y; +Vj 8m Ai

_{<t>{ Yj + 8j In( LSL; - ;j ]} for (;i < LSL j <;i + A;)
PL'- .t:.+A.-LSL..

I ~I I 1

o all other
Sa system:

_ {l- <1> { Yi + 8; In( USLi - ;i ]} for (;i < USL j <;i +Ai)
PU· - ;: + A - USL

~ ~I I I

o all other

When one multivariate sample is generated, consisting of a single measurement

from each marginal distribution, a check is made to determine whether each measurement

is conforming, and thus deciding the entire sample's conformance. As multiple samples

are generated, the total number of nonconforming samples is tracked as a running sum.

This nonconfonning total can be divided by the total number of generated samples to

give the proportion of samples nonconforming, Mp*. The proportion nonconforming can

be multiplied by 100 to give the percentage nonconfonning, or since parts per million is a

popular metric, the proportion nonconforming can also be transformed into ppm's by

multiplying by 1,000,000 (lx106
). It is very important to recognize the role which

measurement resolution plays during the simulation and the count of nonconforming

samples. For example, if only 100 samples were generated, then the resolution of

proportion nonconfonning will be in multiples of 10,000 ppm's. The significance of this

problem will be explained in the following section.
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3.6.3 Capability Index Transfonnation

When it comes to a physical meaning of the capability index, there is only one

choice for most persons in industry. Practically anyone that deals with capability in

industry understands, to some extent, the physical meaning of the Cp index. It is due to

this well known and understood capability index that any newly presented indices must

have a similar physical meaning. Part of the understood physical meaning of the Cp

index is the direct relationship between the index value and the potential proportion of

nonconfonning product. This relationship is defined by Littig et al. (1992) as: p = 2[1-

<D(3Cp)], where <D(x) is the cumulative standardized nonnal distribution. The proposed

univariate process capability index, Cpa, and multivariate process capability index, MCpa,

are transfonnations on the proportion of nonconfonning product and are defined as

follows:

where i = 1, ... ,p

And

where Pi* > 0 and Mp* > °
where <1>-I(X) is the inverse of the cumulative standardized nonnal distribution. This

definition maintains the well-known Cp-relationship and allows the index value to be

equal to one when the proportion nonconfonning is equal to 2,700 ppm. This is the point

at which the measurement resolution problem, discussed briefly in the previous section,

becomes significant. The resolution ofproportion nonconforming creates the resolution

of the capability index. The previous example generated 100 samples, where the

minimum applicable proportion nonconforming would be 0.01 or 10,000 ppm. The
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calculated (maximum) index of this proportion nonconforming would be 0.859 with only

100 possible incremental values achievable. This situation is most likely unacceptable to

most practitioners, and the issue becomes a trade-off between computation time and

resolution.

The program that is attached, which will be discussed in the last chapter,

generates one million samples, where the minimum applicable proportion nonconforming

would be 0.000001 or 1 ppm. The calculated (maximum) index of this proportion

nonconforming is 1.689. For most practitioners, this is an acceptable maximum value for

the capability index, primarily because the index is used to indicate process performance

problems. This value would indicate that the process is performing very well and

probably doesn't rate any expensive engineering resources, when compared to others.

The value also represents the limits of the inverse cumulative standard normal function

which was utilized in the program. Another important issue occurs when the generated

sample contains no samples outside of specifications, i.e., when the proportion

nonconforming is calculated to be zero. This situation can occur when either the process

performance is extremely good, the specification(s) lie outside of a bounded distribution,

or possibly by the error of estimating tail probability by counting a fixed number of

generated samples, when the process performance is very good. Checks are placed in the

program code preventing the calculation of the capability index, which theoretically

would be equal to infinity. The value of the capability index is set equal to 2.0, which

allows its identification in the program output.
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3.6.4 Confidence Intervals

The topic of confidence intervals on capability indices is interesting to me,

primarily since I have not seen their use in industry. Kotz and Johnson (1993) present a

fairly detailed review of the current literature that exists on this topic. Since the Cp index

is only a function of the standard deviation of a process, the confidence intervals for the

Cp index are based directly upon the confidence intervals for the standard deviation. If the

normal distribution is assumed, the formula for the 100(1 - a)% confidence interval on

the standard deviation is as follows:

s
n-l
2

Xa/2, n-I

< cr < s
n-l

2
XI-aj2, n-I

where XLa.ll represents the cumulative chi-square distribution with l) degrees of freedom.

Construction of confidence intervals on the Cpk index is more difficult due to the index

being a function of both the process standard deviation and the process mean. If the

nonnal distribution is assumed, the formula for the 100(1 - a)% confidence interval on

the mean is as follows:

_ s
x - t a / 2 ,n-l.j; < f..I. <

_ s
x+ t a / 2 ,n-1 .j;

where t I-a,ll represents the cumulative t-distribution with l) degrees of freedom. Kotz

and Johnson caution readers on the approach of calculating confidence intervals on both

process parameters, and then using the results to calculate confidence intervals on the Cpk

index. There are a number of issues with this approach which were presented and need to

be discussed in this research. The confidence interval on Cpk would represent the

minimum and maximum possible values for Cpk corresponding to pairs of values (f..i. , cr)
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within the rectangular region defined by the separate confidence intervals of both

parameters.

The first point which was brought up was that if each of the parameter confidence

intervals were set up with a 1OO( 1 - a)% confidence coefficient, then the resulting

confidence interval on Cpk will not, in general, be a 100(1 - a)% confidence interval. If

we assumed that the parameter confidence intervals were mutually exclusive, then the

resulting simultaneous confidence coefficient would be 100(1 - a)2 %. This is to say that

if 95% confidence intervals were constructed on both parameters, then we would only

have 90.25% confidence that the intervals simultaneously contain both parameters. The

second point which was brought up is that only part of the confidence rectangle

contributes to the confidence interval for Cpk, and that there are other pairs of values

()l , cr) outside the rectangular region which could give Cpk values in the same interval.

This point is said to counterbalance the effect of the first point, however, to an unknown,

likely lesser, degree.

3.6.4.1 Univariate Confidence Intervals

If the four-parameter Johnson system is considered, we can quickly lose ourselves

in complexity thinking of the ramification of simultaneous confidence intervals on four

parameters. However, if we consider that the Johnson systems are transfonnations to the

standard normal distribution, we can use some engineering judgement and quickly see

that y and 6 are simple functions of the mean and standard deviation of the transformed

normal distribution. These two parameters could then probably be considered as the

primary contributors to the confidence interval of the capability index. We can apply the
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same confidence interval equations to these parameters of the Johnson system. The

fonnulas are as follows:

2o XI-a/2.n-1

n -1

and

< 0 < 0
2

Xa /2.n-1

n -1

A to./ 2 n-Iy- .
~

< y where s == cr

Note that the statistically invalid assumption, s == cr, was used to create the confidence

interval on y. However, I think it is obvious that exact confidence intervals on the

Johnson systems are either impossible or beyond the scope ofthis research. It is the

attempt of this research to create "useable" confidence intervals which, as a minimum,

will give the practitioner some useful indication of the accuracy of estimation on the

capability index.

Using similar logic as presented previously, the confidence interval on each Cpa

index would represent the minimum and maximum possible values for Cpa corresponding

to pairs of values (y ,0) within the rectangular region defined by the separate confidence

intervals ofboth parameters on each distribution. Although it would seem possible to

maximize and minimize the index calculation through optimization of the y and 0

parameters within their respective confidence intervals, some experimentation has lead to

a much simpler approach. Ifwe consider that the confidence rectangle is made from the

upper and lower confidence interval limits on both parameters, and. the parameter

estimates represent a point in the central region of the rectangle, then we have identified
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nine possible (y , 8) pairs that represent the perimeter and center of the confidence

rectangle. The rectangle and identified points are displayed as Figure 3.7.

Grapbical (y , 8) Point Identification

3 9 7

(8L'YH) (8,YH) (8H'YH

1

4

•(8,Y)

8 5

Figure 3.7: Cpa Confidence Rectangle on tbe (y, 8) Plane

Through simulation studies and evaluation of these nine points, it was detennined that the

minimum value of Cpa was calculated using one of the three points on the left perimeter

of the rectangle, labeled as points 1,2, and 3. The maximum value of Cpa was calculated

using one of the three points on the right perimeter of the rectangle, labeled as points 5, 6,

and 7. Therefore, lower confidence limits for both p* and Cpa can be estimated by

calculating their values at the three specified (y , 8) pairs and selecting the minimum

values. Similarly, the upper confidence limits for p* and Cpa can be estimated by

calculating their values at the other three specified (y , 8) pairs and selecting the

maximum values. These values are used to approximate the 100(1 - a)% confidence

limits on the univariate proportion nonconfonning, p*, and the univariate capability

index, Cpa, for each marginal distribution. For the purpose of consistent output, an a
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value of 0.05 was used for these univariate calculations, attempting to achieve 95%

confidence limits.

3.6.4.2 Multivariate Confidence Intervals

Recalling that the multivariate proportion nonconfonning, Mp*, was estimated

through the use of simulation, we are left with a similar situation when estimating

confidence intervals for Mp* and the multivariate process capability index, MCpn . My

first attempt at calculating a confidence limit on Mp* consisted of using same (y , 8) pairs

that were selected for the univariate confidence limits. However, the resulting confidence

intervals were extremely large and had no practical use. It became apparent that the a

value which was used to calculate the univariate confidence limits would have to be

adjusted to compensate for the complex relationship between the multivariate and

univariate proportions nonconfonning. However, when the a value changes, then so

does the confidence rectangle shown in Figure 3.7. It would seem logical that the

rectangle positions of the (y , 8) pairs, resulting in the minimum and maximum values of

p* and Cpa, would remain constant if everything else were held constant. Therefore, even

though the actual values ofy and 8 for each marginal distribution would change, their

positions on their respective confidence rectangles would remain the same. Since we are

merely attempting to approximate the 95% confidence limits on the multivariate

proportion nonconfonning, Mp*, and the multivariate capability index, MCpa, the

assumption is made that the combination ofthese new (y , 8) pairs for each marginal

distribution will yield the overall minimums and maximums on the theoretical

multivariate confidence region. Although it would seem probable that the a value would

76



need to be adjusted based on the number of marginal distributions, a constant a value of

0.20 was used in all multivariate calculations. This a value was selected based on the

results of simulation studies attempting to achieve 95% confidence intervals, primarily

with the SN system. The end result is that a million samples are generated in the program

code to approximate each of the multivariate confidence limits, as well as the capability

index point estimate, discussed previously. The penalty of estimating these confidence

limits resides in the computational time required to generate an additional two million

multivariate Johnson samples.

3.7 Summary

The methodologies developed in this chapter allow one to calculate a multivariate

process capability index and an approximate confidence interval by fitting the marginal

distributions with the Johnson transfonnation systems, calculating the correlation

between the transfonned marginal distributions, simulating the original multivariate

Johnson distribution, calculating the proportion nonconfonning, and transfonning that

value into an index which has physical meaning.

The results and discussion ofthe proposed process capability indices are

presented in the next chapter.
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CHAPTER IV

RESULTS AND DISCUSSION

4.1 Multivariate Correlated Standard Nonnal Generator Perfonnance

Because the multivariate correlated standard nonnal generator represents the

backbone of this research, a high level of confidence must be achieved concerning its

perfornlance. To test the generator's performance, a quadrivariate standard nOmlal

distribution was generated, with correlation coefficients between each variable specified

to be 0.6. The results of the test are shown below in Table 4.1 :

Table 4.1
Multivariate Correlated Standard Normal Generator Performance

on a SNNNN Johnson System (Sample Size = 10,000)
Marginal Actual Calculated

Distributions Il cr x s

N1(O,1,1,0) 0 1 -0.0095 1.0006

N2(0,1,1,0) 0 1 -0.0073 0.9971

N3(O,1,1,0) 0 1 -0.0136 1.0003

N4(0,1 ,1,0) 0 1 -0.0097 I 1.0026

Correlations Actual Calculated

P12 0.6 0.6010

P13 0.6 0.6023

P23 0.6 0.6018

P14 0.6 0.5971

P24 0.6 0.5996

P34 0.6 0.6005
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Recall that when correlation is discussed in this study, it is always referring to the

correlation between the Z-values of the variables. That is to say that the variables have

been transformed to the standard nonnal before the correlation is calculated. In this test

case, the variables were all standard normal to begin with, thus there would be no

difference in the correlation coefficients after the transformations. Also note the unique

nomenclature of the listed variables, where Ni(~,A,8,y) represents a normal, SN, Johnson

system with the Johnson parameters listed inside the parenthesis. The i represents the

variable number. This parameter order inside the parenthesis will be maintained

throughout this study.

The results shown in Table 4.1 show good performance and demonstrate a high

confidence level with respect to accuracy. The author has no explanation for the

calculated means being all negative. The appearance of bias is most likely the result of

random chance.

4.2 Effects of Correlation, Number of Variables, and Process Mean Shifts on the

Multivariate Process Capability Index, MCpa

A basic assumption of this research is that both correlation and number of

variables affect the value of the multivariate process capability index or the proportion of

nonconforming product. To test the validity of this assumption, a number of strategic test

cases were run to demonstrate the effects of correlation, number of variables, and process

mean shifts on the multivariate process capability index, MCpa , and indirectly on the

multivariate proportion ofnonconforming product The tests are based on the basic

understanding that the univariate distribution, SN(O,l, 1,0) represents a standard normal
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distribution, and when the lower and upper specification limits are set to -3 and 3,

respectively, the resulting proportion nonconfonning will be 2,700 PPM, representing a

univariate process capability index value of 1.0. The SN(O,l,1,-1) is a normal distribution

with a = 1.0 and ~ = 1.0, representing a mean shift of one standard deviation to the right.

The results of these tests are shown below in Table 4.2:

Table 4.2
Effects of Correlation, Number of Variables, and Process Mean Shifts

on the Multivariate Process Capability Index, MCpa

Actual Spec. Average

Johnson Limits Actual MCpa

System (Low, High) Pij =0.0 Plj' = 0.6

SNN(0,1,1,0) (-3. 3) 0.9274 0.9331

SNN(0,1,1 ,-1) (-3 . 3) 0.6681 0.6843

SNNN(0,1,1,O) (-3 , 3) 0.8826 0.8939

SNNN(0,1,1 ,-1) (-3,3) 0.6111 0.6416

SNNNN(0,1,1,O) (-3 , 3) 0.8497 0.8659

SNNNN(0,1 ,1, -1) (-3 , 3) 0.5688 0.6122

Note that this research does not present exact formulas to calculate the multivariate

proportion nonconfonning. It is for this reason that simulation techniques are employed

to estimate their values. The column heading of Average Actual MCpa, in Table 4.2, was

calculated by inputting the exact parameters into the multivariate process capability

program and allowing it to estimate the multivariate proportion nonconfonning through

simulation. The only source of error in this approach is the simulation error caused by

estimating a proportion from a finite number of generated samples. A number of trials

were performed, with the average of the results being considered the "actual" value.

During this process it was discovered that the multivariate proportion nonconfonning of

the centered distributions with this level of univariate proportion nonconfonning

(approximately equal to or less than 2,700 PPM) could be calculated by summing the

80



univariate proportions nonconfonning, which can be calculated using equations presented

in the previous chapter. However, these requirements are placed on all variables, and

thus, are likely valuable only in this presentation example.

The results shown in Table 4.2 should be analyzed between sources ofchange.

The univariate standard normal, SN(O,l,I,O), has a capability of 1.0, as presented earlier.

The bivariate, trivariate, and quadrivariate standard normals have capabilities of 0.927,

0.883, and 0.850, respectively. This demonstrates that as the number of variables

increases, the capability decreases, when everything else is held constant. When

correlation between variables is introduced, the bivariate, trivariate, and quadrivariate

standard nonnals have capabilities of 0.933,0.894, and 0.866, respectively. This

demonstrates that when correlation exists the capabilities increase slightly. This

phenomena can be partially explained by the discussion following Figure 1.5 in Chapter

1. This discussion can be summarized by saying that when correlation exists, the

probability of a sample being nonconfomling on more than one set of specifications,

increases. However, when a sample is nonconfonning on more than one set of

specifications, it is only counted as nonconfonning once for the total multivariate

proportion nonconforming. This yields a smaller multivariate proportion nonconfonning,

resulting in the increases in capability.

The variables with process mean shifts were presented to show the combined

effects of correlation with process mean shifts. To demonstrate this phenomena, we

recognize that the presence of correlation on the bivariate standard normal caused a

capability increase of 0.006. However, correlation on the bivariate shifted standard

nonnal caused a capability increase of 0.016, which represents an approximate tripling of
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the capability increase. The bivariate and quadrivariate distributions show similar

results. The reasons for this phenomena can also be partially explained by similar logic

as before. This can be summarized by saying that the probability of a sample being

nonconforming on more that one set of specifications, further increases when one or more

of the processes is not centered. This increased probability causes further decreases in

the total multivariate proportion nonconforming, resulting in larger increases in the

multivariate capability.

4.3 Johnson System Selection Performance

It is very intuitive that if this research is based upon fitting a Johnson system to an

actual distribution, a high level of confidence that the selected system's properties are

close to the actual system's properties, is very important. When this occurs, the

capability calculations will represent as dose to the truth as possible. This situation does

not exist in this form when using the nonnal assumption. When all variables are assumed

to be normally distributed, the error caused by a non-normal distribution is built into the

original assumption. The problem of calling a normally distributed variable non-normal

does not exist. Unfortunately, this problem does exist in this research, and it is for this

reason that the system selection decision matrix, presented in Chapter 3, is critical to the

success of this study. To demonstrate the ability of the proposed system selection

decision matrix, a number of univariate test cases, with numerous repetitive trials, were

performed with process sample sizes set at both 30 and 100. These sample sizes were

chosen due to their realistic nature when industrial application is considered. The results

of these test are tabulated below in Table 4.3:
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Table 4.3
System Selection Performance Based on Actual Johnson Systems

Actual Process Qty. Selected Johnson System
Johnson Sample of (Percentage of Trials)
System Size Trials SL S5 Sa Su

SN(0,1,1,0) 30 7,388 1.85% 1,65% 0.08%

SN(0,1,1,O) 100 9,720 2.34% 1.69% 0.50%

SL(0,1,1,O) 30 486 3.29% 23.05% 0.00%

SdO,1,1,0) 100 425 0.00% 41.88% 0.00%

S5(0,1,1,0) 30 504 3.57% 0.00% 23.61% 0.00%

S5(0,1,1,0) 100 502 0.00% 0.00% 58.37% 0.00%

Sa(0,1,D.5,D} 30 1,000 93.20% 0.20% 0.10% 0.00%

5 8 (0,1,0.5,0) 100 289 41.56% 0.00% 0.35% 0,00%

5 8 (0,1,0.25,0) 30 532 50.00% 0.38% 0.00% 0.00%

5 8 (0,1,0.25,0) 100 482 7.26% 0.41% 0.00% 0,00%

5 u(0,1 ,1 ,0) 30 532 50.94% 22.74% 16.54%

5 u(0,1,1,0) 100 438 10.96% 14.16% 14.38%

The results, shown in Table 4.3, of particular interest have been highlighted.

These results represent the percentage of trials when the selected system was the same as

the actual system. It can be seen that when the actual variable is standard normally

distributed, then the decision matrix yields an approximate 95% probability of selecting

the nonnal system from the sample's descriptive statistics. The author believes that this

is the most important result, as it minimizes the error discussed previously. The reason

for this result's importance, ifnot readily apparent, will be discussed in the following

paragraph.

Of the five Johnson systems presented, only two do not have boundaries; the

normal and the unbounded systems. The importance of this observation is based on how

the capability indices are statistically calculated. The systems without boundaries have

tails which extend to theoretical infinity. This causes there to always be a certain

proportion nonconforming outside of any specification limits, no matter how far they are

away from the process mean. The systems which have boundaries; lognormal (bounded
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on the left), special (bounded on the right), and bounded (bounded on both the right and

the left), do not have tails beyond their boundaries. Thus, when a given specification

limit resides outside of a variable's boundary, then there will be no proportion

nonconforming on that particular side of the distribution. This situation is certainly

acceptable when it exists in reality, however, if in reality the distribution does have a tail,

then certain obvious problems can occur when calculating or estimating the proportion

nonconforming. The most likely result of a system with boundaries being selected when

the actual process does not have a boundary where the selected system does, is that the

proportion nonconforming will be underestimated, causing a higher capability index

value than actually exists. This is the reason why the primary objective of the decision

matrix is to select a system without boundaries, primarily the normal system, when the

actual process does not have boundaries. Note that when the reverse situation occurs,

when a system without boundaries is selected for a process which actually has

boundaries, then the capability estimate is conservative. This, of course, is not nearly as

bad of a situation.

The actual system's parameters playa key role in the perfomlance of the system

selec60n decision matrix. This is demonstrated with the bounded system trials. It can be

seen that the Ss(O,l ,0.25,0) distribution trials were much more likely to have the SB

system selected than those trials from the Ss(0,1,O.5,O) distribution. This result is due to

the fact that the Ss(O, 1,0.5,0) distribution is much less normally-shaped than the

SB(0,1,0.25,0) distribution. The fact remains that each of the non-normal Johnson

systems have sets of parameters which allow them to be shaped very similarly to the

normal distribution. The end result is that when a sample comes from a non-normal
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distribution, the farther the shape of that distribution is from the nonnal-shape, the

probability increases that a non-nonnal system will be selected to represent it.

4.4 Perfonnance of the Univariate Process Capability Index, Cpo

The perfonnance of the univariate process capability index, Cpa, is demonstrated

by again selecting test cases with known parameters, specification limits, and thus

capabilities. The results are tabulated below in Table 4.4.

Table 4.4
Performance ofthe Univariate Process Capability Index, Cpm and its

Confidence Intervals

Actual Spec. Process
Actual

Qty. Average Percent Average
Johnson Limits Sample

Cpa
of Calculated within C.1.

System (Low, High) Size Trials Cpa C.1. Half-Width

SN(O,1,1,0) (-3 . 3) 30 1.000 7,388 1.0385 96.18% 0.3166

SN(0,1,1,O) (-3 , 3) 100 1.000 9,720 1.0177 94.93% 0.1672

SdO,1,1,0) (0.01 .16.15) 30 1.000 286 0.7076 30.77% 0.1807

SL(O,1,1,O) (0.01 ,16.15) 100 1.000 220 1.1602 53.18% 0.2168

SL(O,1,1,O) (0.3256,16.15) 30 0.500 200 0.4796 61.50% 0.1080

SL(O,1,1,O) (0.3256,16.15) 100 0.500 205 0.6952 58.05% 0.1477

Ss(O,1,1,O) (-16.15, -0.01) 30 1.000 304 0.6964 31.25% 0.1759

Ss(O,1,1,O) (-16.15,-0.01) 100 1.000 302 1.0343 45.03% 0.1821

Ss(0,1,1,O) (-16.15 • -0.3256) 30 0.500 200 0.4844 70.50% 0.1232

Ss(O,1,1,O) (-16.15. -0.3256) 100 0.500 200 0.4912 97.50% 0.1239

SB(0,1,O.5,O) (0.00245 , 0.9975) 30 1.000 1,000 0.5483 1.90% 0.1873

SB(0,1,O.5,0) (0.00245 , 0.9975) 100 1.000 289 0.7662 24.22% 0.1220

SB(O,1,O.25,0) (6.1 E-6 , 0.9999938) 30 1.000 332 0.3678 0.00% 0.1355

SB(0,1,O.25,0) (6.1 E-6 , 0.9999938) 100 1.000 186 0.4545 0.00% 0.0724

SB(0,1,O.25,O) (0.00247 , 0.99753) 30 0.500 200 0.3998 83.50% 0.1369

SB(0,1,O.25,0) (0.00247 , 0.99753) 100 0.500 296 0.4335 82.09% 0.0689

Su(O,1,1,0) (-10.02,10.02) 30 1.000 154 1.6535 42.21% 0.3667

Su(0,1,1,O) (-10.02,10.02) 100 1.000 132 1.4232 52.27% 0.3091

Su(O,1,1,0) (-2.13,2.13) 30 0.500 378 0.5120 84.13% 0.2178

Su(0,1,1,0) (-2.13,2.13) 100 0.500 306 0.5150 74.18% 0.1334
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Note that the system parameters and the specification limits were selected to have actual

univariate capabilities of either 1.0 or 0.5. This was done purposely to show that the

perfonnance differs under different levels of capability. Also note that the last column of

values represents the average half-width of the confidence interval. This value was

determined by subtracting the lower confidence level from the upper confidence level and

dividing by two. It is an attempt to show the plus or minus width of the confidence

interval, even though the confidence intervals are not necessarily symmetrical.

As in the previous section, the results, shown in Table 4.4, ofparticular interest

are the results of the standard nonnal distribution trials. It can be seen that both the

perfonnance of the Cpa index and its confidence interval for the standard nonnal

distributions are very satisfactory. Also recognize that the calculated values of the

capability index are slightly higher than the actual values. This is caused by the small

percentage oftrials which were fitted by systems with boundaries, causing smaller

proportions nonconfonning, and thus slightly elevated capability index values. The

remaining test cases have a variety ofperfonnance levels. This can again be attributed

somewhat to parameter selection. As with the previous system selection section, the

system parameters also playa key role in the performance of both the capability index

and its confidence intervals. Ofparticular interest is the performance between those

systems with an actual capability of 1.0 versus those with an actual capability of 0.5.

With a close look at the results in Table 4.4, one can see the increase in performance as

the capability of the actual distribution decreases. Again, the reason for this phenomena

is that when the capability of the actual distribution decreases, the proportion

nonconforming is based less on the tails of the distribution. This means that even if a
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system with boundaries was selected when the actual system did not have a boundary,

then the chances of the specification limits falling inside the boundary increases. When

this occurs, the errors in calculating the proportion nonconforming decrease, yielding

better performance of the univariate capability index, Cpa.

4.5 Performance of the Multivariate Process Capability Index, MCpa

As in previous sections, test cases with known parameters and specification limits

were used to demonstrate the performance of the Multivariate Capability Index, MCpa.

The results are tabulated in Table 4.5, which can be found on a following page. The

same univariate distributions, tabulated in Table 4.4, were used in the multivariate

distri.butions, tabulated in Table 4.5. One of the reasons for presenting the data in this

manner was so the changes in the capability could be recognized as the number of

variables increased. With the exception of the trivariate and quadrivariate normal test

cases, the test cases are all bivariate distributions with identical marginal distributions.

The author found no reasons to present mixed system multivariate distributions. The

knowledge that they would have been just as easy to select as any other non-mixed

system is what is important.
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Table 4.5
Performance of the Multivariate Process Capability Index, MCpM and its

Confidence Intervals

Actual Spec. Process Average Qty. Average Percent Average
Johnson Limits Sample Actual of Calculated within C.1.
System (Low, High) Size MCpa Trials MCpa C.I. Half·Width

5 NN(0,1 ,1,0) (-3 , 3) 30 0.9274 134 0.9189 94.03% 0.2075

5NN(0,1 ,1,0) (-3 , 3) 100 0.9274 500 0.9193 94.60% 0.1241

5NNN(0,1,1,0) (-3,3) 30 0.8826 200 0.8659 96.50% 0.2155

5NNN(0,1,1,0) (-3,3) 100 0.8826 400 0.8717 95.25% 0.1328

5NNNN(0,1 ,1,0) (-3.3) 30 0.8497 200 0.8177 97.50% 0.2222

5NNNN(0,1 ,1,0) (-3 . 3) 100 0.8497 488 0.8421 97.34% 0.1262

5LL(0,1,1,0) (0.01 ,16.15) 30 0.9274 143 0.5638 6.99% 0.1063

5LL(0,1 ,1,0) (0.01 ,16.15) 100 0.9274 110 0.9367 38.18% 0.1389

5LL(0,1 ,1,0) (0.3256.16.15) 30 0.3839 100 0.3571 65.00% 0.0724

5LL(O,1,1,0) (0.3256.16.15) 100 0.3839 100 0.5056 63.00% 0.0975

555(0,1,1,0) (-16.15. -0.01) 30 0.9274 152 0.5635 7.24% 0.1030

555(0,1,1,0) (-16.15, -0.01) 100 0.9274 151 0.7901 31.79% 0.1151

555(0,1,1,0) (-16.15, -0.3256) 30 0.3839 100 0.3639 68.00% 0.0817

555(0,1,1,0) (-16.15, -0.3256) 100 0.3839 100 0.3732 99.00% 0.0878

566(0,1,0.5,0) (0.00245 , 0.9975) 30 0.9274 500 0.4310 0.00% 0.1272

568(0,1,0.5,0) (0.00245 , 0.9975) 100 0.9274 103 0.5877 6.80% 0.0772

566(0,1,0.25,0) (6.1 E-6 ,0.9999938) 30 0.9274 166 0.3079 0.00% 0.0962

566(0,1,0.25,0) (6.1 E-6 , 0.9999938) 100 0.9274 93 03791 0.00% 0.0537

5aa(0,1,0.25,0) (0.00247,0.99753) 30 0.3839 100 0.3021 46.00% 0.0962

Saa(0,1,0.25,0) (0.00247 , 0.99753) 100 0.3839 148 0.3548 76.35% 0.0511

5uu(0,1,1,0) (-10.02.10.02) 30 0.9274 77 1.4291 59.74% 0.3227

5uu(O,1,1,0) (-10.02.10.02) 100 0.9274 66 1.1628 46.97% 0.2479

5uu(0,1,1,0)
I

(-2.13,2.13) 30 0.3839 189 0.3808 82.54% 0.1566

5uu(0,1,1,0) (-2.13.2.13) 100 0.3839 153 0.3887 64.05% 0.1022

As in the previous sections, the multivariate standard normal results, shown in

Table 4.5, are of particular interest. It can be seen that both the performance ofthe MCpa

index and its confidence interval for the multivariate standard normal distributions are

very satisfactory. Also recognize that the MCpa estimates are almost always conservative

to the actual values. It is of some comfort to know that when error exists in the

approximation that it usually shows up as biased towards the conservative side of the

capability index estimate. As in the univariate test cases, parameter selection is very
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important when reviewing the perfonnance of the multivariate capability index, MCpa .

The perfonnance can also be seen to increase when the actual process capability

decreases. The same explanations presented in the previous section, also pertain to this

section.

4.6 Selected Bivariate Case Study Examples

As a method of verification of the perfonnance of this research, a case study

presented in other literature was utilized. Wang et a1. (1996) utilize data which they label

as "Sultan (1986) bivariate processes data". This data consists of two variables: H (the

Brinell hardness) and S (the tensile strength). The data set consists of 25 samples.

Although the actual data set is not presented by Wang et al. (1996), the data set can be

found in Chan et al. (1991). This data set is shown on the following page as Table 4.6.

Wang et a1. (1996) present two examples utilizing this hardness / strength data set.

The first example set the lower and upper specifications on H as 112.7 and 241.3,

respectively, and the lower and upper specification on S as 32.7 and 73.3, respectively.

The second example set the lower and upper specifications on H as 86.15 and 214.75,

respectively, and the lower and upper specifications on S as 24.75 and 65.35,

respectively. They use three different methods to calculate the bivariate process

capability as discussed in the literature review. The third method is the probability of

nonconfonning product method presented by Chen (1994). This approach to multivariate

capability falls into the same category as the approach presented in this research,

therefore, it will be used to compare results. Wang et a1. (1996) also present their results

under three different confidence levels: 99.73%,99%, and 95%. The 99.73% confidence
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level results are utilized for comparison, due to this percentage represents the six-sigma

natural tolerance utilized by this research.

Table 4.6
Hardness / Strength Case Study Data Set
Brinell Hardness (H) Tensite Strength (S)

143 34.2
200 57.0
160 47.5
181 53.4
148 47.8
178 51.5
162 45.9
215 59.1
161 48.4
141 47.3
175 57.3
187 58.5
187 58.2
186 57.0
172 49.4
182 57.2
177 50.6
204 55.1
178 50.9
196 57.9
160 45.5
183 53.9
179 51.2
194 57.5
181 55.6

They show the results of the first example, using method 3 and 99.73%

confidence level as 1.12, and for the second example as 0.81. The output produced by

the proposed multivariate capability index program for the first example is shown below

in Table 4.7. The output for the second example is shown in Table 4.8.
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Table 4.7
Hardness I Strength Case Study Example # 1 Output

UNIVARIATE STATISTICS VARIABLE # 1 VARIABLE # 2

Selected Johnson Distribution
NS (Number of Samples)
LSL (Lower Spec. Limit)
USL (Upper Spec. Limit)

: E (Xi)
L (Lambda)
D (Delta)
G (Gamma)
F-Value of K-S Test
PL (PPM < LSL)
PU (PPM > USL)
p* (Total PPM Out-of-Spec.)
P* - Lower Confidence Limit
P* - Upper Confidence Limit

Cpa (Capability Index)
Cpa - Lower Confidence Limit
Cpa - Upper Confidence Limit

MULTIVARIATE STATISTICS

Multivariate Johnson System
MP* (Total PPM Out-of-Spec.)
MP* - Lower Confidence Limit
MP* - Upper Confidence Limit

MCpa (Capability Index)
MCpa - Lower Confidence Limit
MCpa - Upper Confidence Limit
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N
25

+112.700000
+241.300000

0.000000
+1.000000
+0.055514
-9.837160

95.99%
171
187
358
12,633
732,626

1.189765
0.113878
2.000000

SYSTEM

NS
5,558
3,008
602,407

0.924265
0.173648
0.988997

S
25

+32.700000
+73.300000
+67.525853
+1.000000
+2.862306
-7.610644

42.79%
5,362
o
5,362
o
763,785

0.928145
0.100171
2.000000

CORRELATION
COEFFICIENT

P12

-0.847283



Table 4.8
Hardness I Strength Case Study Example # 2 Output

UNIVARIATE STATISTICS VARIABLE # 1 VARIABLE # 2

Selected Johnson Distribution
NS (Number of Samples)
LSL (Lower Spec. Limit)
USL (Upper Spec. Limit)
E (Xi)
L (Lambda)
D (Del tal
G (Gamma)
F-Value of K-S Test
PL (PPM < LSL)
PU (PPM> USL)
p* (Total PPM Out-of-Spec.)
p* - Lower Confidence Limit
p* - Upper Confidence Limit

Cpa (Capability Index)
Cpa - Lower Confidence Limit
Cpa - Upper Confidence Limit

MULTIVARIATE STATISTICS

Multivariate Johnson System
MP* (Total PPM Out-of-Spec.)
MP* - Lower Confidence Limit
MP* - Upper Confidence Limit

MCpa (Capability Index)
MCpa - Lower Confidence Limit
MCpa - Upper Confidence Limit

N
25

+86.150000
+214.750000

0.000000
+1.000000
+0.055514
-9.837160

95.99%
o
18,554
18,554
19
953,547

0.784785
0.019418
1.428028

SYSTEM

NS
19,344
46
860,666

0.779613
0.058509
1.358179

S
25

+24.750000
+65.350000
+67.525853
+1.000000
+2.862306
-7.610644

42.79%
845
o
845
o
616,186

1.112542
0.167088
2.000000

CORRELATION
COEFFICIENT

P12

-0.847283

The result for the first example is MCpa = 0.92, and for the second example is

MCpa = 0.78. Although they are slightly conservative when compared with 1.12 and

0.81, they are not too far off. The differences can be attributed to the fact that the

Johnson special system, Ss, was selected to fit the tens~le strength (S) distribution, while

the Chen (1994) approach assumed multivariate nonnality. The reason for the special

system selection ended up being caused by the Z-value of the standard error ofyl, Zy,

which was calculated to be 2.39 for the tensile strength distribution. Since this value was
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greater than 1.96, we rejected the null hypothesis that this level of skew could have been

caused by sampling error, even though the F-value for the normal fit was much better.

To further validate this research, the author forced the Johnson normal system to

be selected on both the Hand S variables, with the output for the fust example shown in

Table 4.9, and the second example in Table 4.10. The result for the first example is MCpn

= 1.14, and for the second example is MCpa = 0.76. The result of the first example is

much closer to the 1.12 value presented by Wang et al. (1996).

UNIVARIATE STATISTICS VARIABLE # 1 VARIABLE # 2

Table 4.9
Hardness / Strength Case Study Example # 1 Output (Forced SN System)

Selected Johnson Distribution
NS (Number of Samples)
LSL (Lower Spec. Limit)
USL (Upper Spec. Limit)
E (Xi)
L (Lambda)
D (Delta)
G (Gamma)
F-Value of K-S Test
PL (PPM < LSL)
PU (PPM > USL)
P* (Total PPM Out-of-Spec.)
P* - Lower Confidence Limit
P* - Upper Confidence Limit

Cpa (Capability Index)
Cpa - Lower Confidence Limit
Cpa - Upper Confidence Limit

MULTIVARIATE STATISTICS

Multivariate Johnson System
MP* (Total PPM Out-of-Spec.)
MP* - Lower Confidence Limit
MP* - Upper Confidence Limit

MCpa (Capability Index)
MCpa - Lower Confidence Limit
MCpa - Upper Confidence Limit
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N
25

+112.700000
+241.300000

0.000000
+1.000000
+0.055514
-9.837160

95.99%
171
187
358
12,633
732,626

1.189765
0.113878
2.000000

SYSTEM

NN
633
5,397
273,207

1.139027
0.365236
1.912818

N
25

+32.700000
+73.300000

0.000000
+1.000000
+0.176009
-9.208089

85.00%
278
111
388
12,229
635,678

1.182780
0.157917
2.000000

CORRELATION
COEFFICIENT

P12

+0.833830
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Table 4.10
Hardness I Strength Case Study Example # 2 Output (Forced SN System)
UNIVARIATE STATISTICS VARIABLE # 1 VARIABLE # 2

Selected Johnson Distribution
NS (Number of Samples)
LSL (Lower Spec. Limit)
USL (Upper Spec. Limit)
E (Xi)
L (Lambda)
D (Delta)
G (Gamma)
F-Value of K-S Test
PL (PPM < LSL)
PU (PPM > USL)
P* (Total PPM Out-of-Spec.)
P* - Lower Confidence Limit
P* - Upper Confidence Limit

Cpa (Capability Index)
Cpa - Lower Confidence Limit
Cpa - Upper Confidence Limit

MULTIVARIATE STATISTICS

Multivariate Johnson System
MP* (Total PPM Out-of-Spec.)
MP* - Lower Confidence Limit
MP* - Upper Confidence Limit

MCpa (Capability Index)
MCpa - Lower Confidence Limit
MCpa - Upper Confidence Limit

N
25

+86.150000
+214.750000

0.000000
+1.000000
+0.055514
-9.837160

95.99%
o
18,554
18,554
19
953,547

0.784785
0.019418
1.428028

SYSTEM

NN
23,394
66
725,817

0.755645
0.116898
1.330239

N
25

+24.750000
+65.350000

0.000000
+1.000000
+0.176009
-9.208089

85.00%
1
10,892
10,893
27
911,935

0.848704
0.036866
1.400088

CORRELATION
COEFFICIENT

P12

+0.833830

j
C

-,
r
~...,....
l
C

As a final check on the program, the variable order was switched on the second

example. When compared to the results in Table 4.8, the univariate statistics were

identical and the multivariate statistics were within an acceptable level of variation.

Again, this variation is due to the proportion nonconforming estimate coming from a

finite number of generated samples.
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CHAPTER V

PROGRAM OPERATION

5.1 Running the Database Application

The program which is attached to this research was written in Microsoft Visual

Basic version 5.0, under Microsoft Access version 97. This was done primarily to utilize

some of the complex mathematical functions contained in Microsoft Excel version 97.

Using these functions within Microsoft Access is much easier than with a stand-alone

copy of Microsoft Visual Basic version 5.0. To run the database application, the user's

computer must have both Microsoft Excel and Access, of version 97 or higher, installed

on the computer. The application is called Thesisl.mdb, and is located on the 3.5" floppy

disk attached to the back cover of this research.

When the application is started, a start-up form is launched. A graphic display of

this form can be seen on Figure 5.1. This form, as first presented, has three command

buttons which can be clicked by the user. These buttons are the Calculate Process

Capability Index on Sample button (Capability button, for short), the Generate Sample

from Johnson System button (Generate button, for short), and the Cancel blltton. If the

Cancel button is clicked on this form now, the database application will close.
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Start-Up Form

Generate Sample from Johnson S1'slemCalculale Process Capability Index on Sample

Multivariate Non-Normal Process Capability Indices:
A Simulation Approach

Allen L lewis - December 1998

Figure 5.1: Start-Up Form

If the Capability button is clicked, more buttons and infonnation appear on the

fonn. Figure 5.2 shows a graphical display of this form after the Capability button has

been clicked. The primary concern to the user at this stage is the accuracy of the input

and output file specifications. The specifications at start-up are either the default settings

of the computer or the settings stored by the previous user. In either case, the settings can

be adjusted by selecting one of the "Change" buttons on the right side of the form. The

Input File button and the Output File button are hyperlinks to the input file and output file

listed on the screen. This is a quick way of viewing those files without leaving the

application. If the Cancel button were clicked on this fonn now, the form would change

back to the start-up form, displayed in Figure 5.1.
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Start-Up Form (after Capability button click)

Multivariate Non-Normal Process Capability Indices:
A Simulation Approach

Allen L. Lewis - December 1998

Generate Sample from Johnson SyslelD

INPUT FILE SPECIFICATIONS

Inpul Filename: Sample.lxt

Inpul 0 rive: C

Inpul File Path: C:\

Outpul Filename: OutpuUxt

Oulpul Drive: C

Outpul File Path: C:\

Change Input Filename

Change Input Drive

Change Input File Path

Change Output Drive

Change Output File Path]

Input File Output File START CANCEL

Figure 5.2: Start-Up Form (after Capability button click)

When the input and output file specifications are correct, and the input file exists

in the correct format, the Start button can be clicked to start the program running. When

the program is finished, a message box is displayed telling the user that the data was

written to the output file. A graphical display of this fonn and message box is shown as

Figure 5.3. When the OK button is clicked on the message box, the start-up fonn is again

displayed, except that the hyperlink Input File and Output File buttons still appear. The

output file can then be viewed from within the application. Of course this file can be

copied and pasted into other documents, such as Microsoft Word documents.
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INPUT FILE SPECIFICATIONS

Generate Sample fro. Johnson S,stemCalculate Process Capability Index on Sample

Start-Up Form (with message box)

Multivariate Non-Normal Process Capability Indices:
A Simulation Approach

Allen L lewis - December 1998

put Filename

Input Drive

put File Path
DATA WRITTEN TO C:\Outpul.bd

Microsoft Access f3

OUTPUT F

Figure 5.3: Start-Up Form (with message box)

Output Filename: OutpuUxt tput Filename

Output Drive: C Change Output Drive ··
Output File Path: C:\ Change Output File Path I ·~

Input ~ile Output File START

Input Filename: Sample.txt

Input Drive: C

Input File Path: C:\

If, instead of clicking the Capability button, the Generate button were clicked,

then a different set of infonnation and buttons appear. Figure 5.4 shows a graphical

display of this fonn after the Generate button has been clicked. The primary concern to

the user at this stage is the accuracy of the output file specifications. Again, these

specifications at start-up are either the default settings of the computer or the settings

stored by the previous user. As before, these settings can be adj usted by clicking the

"Change" buttons on the right side of the fonn. If the Cancel button were clicked on this

form now, the form would change back to the start-up form, displayed in Figure 5.1.
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F

Start-Up Form (after Generate button click)

Multivariate Non-Normal Process Capability Indices:
A Simulation Approach

Allen L lewis - December 1998

Calculate Proce$s Capability Index on Sample

Change Output Filename

Change Output Drive

Change Output File Path

OUTPUT FILE SPECIFICATIONS

C

Output Filename: Sample. txt

Output Drive:

Output File Path: C:\

Figure 5.4: Start-Up Form (after Generate button click)

START CANCEL

When the output file specifications are correct, the Start button can be clicked to

open the Generator Form. A graphical display of this form is shown as Figure 5.5.
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•

CANCEL

Figure 5.5: Generator Form

Generator Form

Enter Number of Variables (1-4):

Enter Number of Samples:

Dist 1: r-J
~1:

AI:

l$1:

')'1:

LSLl :

If the Cancel button were clicked on this fonn, it would close and bring the start-

up Conn back to the screen. The first entry to be made on this form is the number of

variables desired in the sample, which is limited to fOUf in this study. When the entry is

made and the Enter key is depressed, the appropriate number of entry boxes appear on the

form. After the number of samples desired is input into the second entry box, the cursor

jumps to the first distribution selection box. This box has a drop-down box which lists

the valid selections. Figure 5.6 shows a graphical display of the form at this stage.
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Figure 5.6: Generator Form (with 4 variables and drop-down box)

CANCELGENERATE

Generator Form (with 4 variables and drop-down box)

Enter Number of Variables (1-4):

Enter Number of Samples:

Dist 2: 13 Dist4: D
~1: ~2: E3: E4:

A1: ~: )\3: A4:

~1: ~2: ~3: I ~4:

')'2: ')'3: I ')'4:

p12: p13: J p14:

p23: I p24:

p34: J

LSL4: I
USL4: I

LSLl :

USL1:

The valid selections for each distribution are "B" for the Johnson Bounded

System, Sa, "L" for the Johnson Lognonnal System, SL, "N" for the Johnson Normal

System, SN, "s" for the Johnson-Lewis Special System, Ss, and "U" for the Johnson

Unbounded System, Suo The values of the four Johnson system parameters are the next

entries to be made. Note that the SN, SL, and Ss systems do not require all four

parameters. If one of those systems are selected, the unneeded parameter entry boxes

will not be available. The last required entries for each variable are the correlation

coefficients, after transformation, and the specification limits desired on the variable.

These values are required to calculate a capability index. When all entries have been

made, the Generate button can be clicked to create the output file with the newly

generated samples. A message box will appear telling the user that the data was written
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to the output file. A graphical display of this form (with two variables selected) and

message box is shown as Figure 5.7.

.:

.,
~

IC.~·.J~K.....:JI

DATA WRITTEN TO C:\Sample.bd

Microsoll Access f3

3

-3

Dist 2: fi!EJ
~2: 0

~: 1

~2:

LSL2:

USL2: I.3

Figure 5.7: Generator Form (with 2 variables and message box)

Generator Form (with 2 variables and message box)

Enter Number of Variables (1-4): J2 I .. J
~ GENERATE CANCEL

Enter Number of Samples: I 100

LSll :

USLl :

When the OK button is clicked on the message box, the start-up fonn is again

displayed. It is of value to note that if the user's desire is to run the newly generated

sample on the capability program, then the user should set the Generator Form's output

file name to be the same as the Capability Form's input file name. If this is done and the

Capability button is clicked off the start-up foml, then the contents of the generated

sample can be viewed by clicking the hyperlink Input File button. Note that the output of

the Generator Fonn will always be in the reg uired format of the input file for the

capability program.
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5.2 Input File Format

5.2.1 General Input File Format

The input file is a text file which has the following required format, shown in

Table 5.1:

Table 5.1
General Input File Format

Line 1
Line 2
Line 3
Line 4

•
•
•

Last Line:

Number ofVariables (Integer) , Number of Samples (Integer)
Lower Spec Limit, Upper Spec Limit --- [for each variable]
First Sample --- [for each variable]
Second Sample --- [for each variable]

•
•
•

Last Sample --- [for each variable]

I
]

Note that the first variable will be assumed independent by the program, and all values on

a single line are comma delimited.

5.2.2 Univariate Input File Example

A simple example of a univariate input file is shown below in Table 5.2:

Table 5.2
Univariate Input File Exampl.e

1, 10
20,30
22.3
27.6
25.8
21.5
26.6
29.0
23.8
28.2
21.4
25.7
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5.2.3 Bivariate Input File Example

The input file which was used in the first bivariate sample case example presented

in Chapter 4 (Hardness I Strength data set) is shown below as Table 5.3:

Table 5.3
Hardness / Strength Case Study Example # 1 Input

2,25
112.7,241.3,32.7, 73.3
143,34.2
200,57.0
160,47.5
181,53.4
148,47.8
178,51.5
162,45.9
215,59.1
161,48.4
141,47.3
175,57.3
187,58.5
187,58.2
186,57.0
172,49.4
182,57.2
177,50.6
204,55.1
178,50.9
196,57.9
160,45.5
183,53.9
179,51.2
194,57.5
181,55.6
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5.3 Output File Fonnat

5.3.1 Univariate Output File Example

A general univariate output file example is shown below as Table 5.4.

Table 5.4
Univariate Output Fite Example

UNIVARIATE STATISTICS VARIABLE # 1

Selected Johnson Distribution
NS (Number of Samples)
LSL (Lower Spec. Limit)
USL (Upper Spec. Limit)
E (Xi)
L (Lambda)
D (Del tal
G (Gamma)
F-Value of K-S Test
PL (PPM < LSL)
PU (PPM > USL)
P* (Total PPM Out-of-Spec.)
P* - Lower Confidence Limit
P* - Upper Confidence Limit

Cpa (Capability Index)
Cpa - Lower Confidence Limit
Cpa - Upper Confidence Limit

105

N
100

-3.000000
+3.000000

0.000000
+1.000000
+1.024142
-0.170114

81.27%
592
1/852
2/445
469
12,706

1.010048
0.830635
1.165899



5.3.2 Bivariate Output File Example

A general bivariate output file example is shown below as Table 5.5.

Table 5.5
Bivariate Output File Example

UNIVARIATE STATISTICS VARIABLE # 1 VARIABLE # 2

Selected Johnson Distribution
NS (Number of Samples)
LSL (Lower Spec. Limit)
USL (Upper Spec. Limit)
E (Xi)
L (Lambda)
D (Delta)
G (Gamma)
F-Value of K-S Test
PL (PPM < LSL)
PU (PPM > USL)
p* (Total PPM Out-of-Spec.)
p* - Lower Confidence Limit
p* - Upper Confidence Limit

Cpa (Capability Index)
Cpa - Lower Confidence Limit
Cpa - Upper Confidence Limit

MULTIVARIATE STATISTICS

Multivariate Johnson System
MP* (Total PPM Out-of-Spec.)
MP* - Lower Confidence Limit
MP* - Upper Confidence Limit

MCpa (Capability Index)
MCpa - Lower Confidence Limit
MCpa - Upper Confidence Limit

5.3.3 Trivariate Output File Example

N
100

-3.000000
+3.000000

0.000000
+1.000000
+1.029122
-0.094743

57.05%
731
1,383
2,114
464
10,611

1.024552
0.851748
1.166870

SYSTEM

NN
5,806
2,367
15,887

0.919511
0.803836
1.013298

N
100

-3.000000
+3.000000

0.000000
+1.000000
+0.970916
-0.076246

80.95%
1,400
2,281
3,680
940
15,485

0.968115
0.806940
1.102647

CORRELATION
COEFFICIENT

P12

+0.127664

A general trivariate output file example is shown as Table 5.6.

5.3.4 Quadrivariate Output File Example

A general quadrivariate output fi Ie example is shown as Table 5.7.
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Table 5.6
Trivariate Output File Example

UNIVARIATE STATISTICS VARIABLE # 1 VARIABLE # 2 VARIABLE # 3

Selected Johnson Distribution
NS (Number of Samples)
LSL (Lower Spec. Limit)
USL (Upper Spec. Limit)
E (Xi)
L (Lambda)
D (Del ta)
G (Gamma)
F-Value of K-S Test
PL (PPM < LSL)
PU (PPM> USL)
p* (Total PPM Out-of-Spec.)
p* - Lower Confidence Limit
p* - Upper Confidence Limit

Cpa (Capability Index)
Cpa - Lower Confidence Limit
Cpa - Upper Confidence Limit

MULTIVARIATE STATISTICS

Multivariate Johnson System
MP* (Total PPM Out-of-Spec.)
MP* - Lower Confidence Limit
MP* - Upper Confidence Limit

MCpa (Capability Index)
MCpa - Lower Confidence Limit
MCpa - Upper Confidence Limit

N
100

-3.000000
+3.000000

0.000000
+1.000000
+0.857599
+0.061805

95.62%
6,020
4,212
10,232
3,448
31,983

0.855968
0.714872
0.974906

SYSTEM

NNN
14,489
6,759
33,732

0.814968
0.707754
0.902825
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N
100

-3.000000
+3.000000

0.000000
+1.000000
+1.044838
-0.070206

99.31%
676
1,091
1,767
369
7,437

1.042305
0.869913
1.187048

CORRELATION

P12
P13
P23

N
100

-3.000000
+3.000000

0.000000
+1.000000
+1.018252
+0.096792

99.13%
1,548
812
2,361
534
11,511

1.013541
0.842265
1.154452

COEFFICIENTS

-0.048276
+0.037212
-0.095239



UNIVARIATE STATISTICS

Table 5.7
Quadrivariate Output File Example

VARIABLE # 1 VARIABLE # 2 VARIABLE # 3 VARIABLE # 4

Selected Johnson Distribution
NS (Number of Samples)
LSL (Lower Spec. Limit)
USL (Upper Spec. Limit)
E (Xi)
L (Lambda)
D (Delta)
G (Gamma)
F-Value of K-S Test
PL (PPM < LSL)
PU (PPM> USL)
p* (Total PPM Out-of-Spec.)
p* - Lower Confidence Limit
p* - Upper Confidence Limit

Cpa (Capability Index)
Cpa - Lower Confidence Limit
Cpa - Upper Confidence Limit

N
100

-3.000000
+3.000000

0.000000
+1.000000
+1.039267
-0.111229

99.19%
621
1,321
1,942
404
10,172

1.032992
0.856647
1.179287

N
100

-3.000000
+3.000000

0.000000
+1.000000
+1.028953
+0.031615

94.34%
1,124
909
2,033
599
8,750

1.028432
0.863899
1.171332

N
100

-3.000000
+3.000000

0.000000
+1.000000
+1.059260
+0.080422

97.82%
976
561
1,537
467
6,591

1.055887
0.879882
1.202570

N
100

-3.000000
+3.000000

0.000000
+1.000000
+0.986340
+0.014291

84.16%
1,616
1,473
3,089
966
12,216

0.986232
0.830914
1.123214

MULTIVARIATE STATISTICS

Multivariate Johnson System
MP* (Total PPM Out-of-Spec.)
MP* - Lower Confidence Limit
MP* - Upper Confidence Limit

MCpa (Capability Index)
MCpa - Lower Confidence Limit
MCpa - Upper Confidence Limit

SYSTEM

NNNN
8,512
3,323
24,005

0.877020
0.752346
0.978713
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P12 -0.010485
PI3 -0.075865
P23 -0.025349
P14 -0.059953
P24 -0.083889
P34 +0.057413



CHAPTER VI

CONCLUSION

6.1 Research Justification

The need to accurately describe a process's ability to create product within known

specification limits is vital in modem industry. Process performance, commonly called

process capability, drives many organizations in their goal to be profitable market

leaders. Unfortunately, most of the tools available to industry today are severely limited

in their abilities to estimate process capability. These limitations can be separated into

two categories: (l) the process capability can only be estimated on one characteristic at a

time, and (2) each process characteristic which is analyzed must be normally distributed.

However, most processes are comprised of many characteristics, and correlation can exist

between these characteristics when they are created by the same process. It is also the

author's experience that there are many processes found in industry that have

characteristics which are heavily skewed and/or have physical boundaries, and thus are

not normally distributed. This research addresses the identified limitations on estimating

process capability. This is done by estimating the capability of a univariate or

multivariate process, without requirements placed on either the distribution's shape or

correlation between variables.
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6.2 Methodology Employed

The methodology employed in this research to obtain an accurate estimate of

multivariate non-normal process capability is developed as follows:

1) Sample process data are analyzed and each marginal distribution is optimally fitted to

one of five presented Johnson transfonnation systems, based on its descriptive

statistics and a system selection decision matrix.

2) Ifthe sample is multivariate, then the correlation between the transfonned Johnson

marginal distributions is calculated.

3) If the sample is univariate, then the proportion ofnonconforming product is

calculated. If the sample is multivariate, then the proportion of nonconforming

product is calculated for each marginal distribution and the total proportion of

nonconforming product for the multivariate process is estimated using multivariate

simulation techniques. This process begins with generating a multivariate standard

normal distribution with correlation as calculated in step 2. Each marginal

distribution is reverse-transformed back into its original distribution using the

calculated parameters from the selected Johnson systems. A count of the number of

simulated samples which are considered nonconforming is transfonned into a

proportion nonconfonning.

4) Confidence intervals on the univariate proportion or marginal and total proportions of

nonconfonning product are estimated.

5) The proportions ofnonconfonning product and their appropriate confidence interval

estimates are transformed into a univari.ate capability index, Cpa, for univariate or
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marginal distributions, and a multivariate capability index, MCpa , for multivariate

distributions.

6.3 Results and Insights

This research shows that a multivariate process will have a total proportion

nonconforming less than or equal to the sum of the proportions nonconfonning for each

marginal distribution. It is also shown that correlation between marginal distributions

actually increases the capability of a multivariate process. This increase was shown to be

more pronounced for less capable processes. Perfonnance of the multivariate correlated

nOffilal sample generator, the system selection decision matrix, and both process

capability indices is demonstrated using selected sample cases with known results to

compare with. The performance is also compared with results found with another

approach from literature.

Changing the order of the input sample variables was shown to have no affect 011

the results. As computer processing speeds increase, the number of generated samples

could also be dramatically increased. This increase in sample quantity would further

reduce any error due to estimating a proportion by counting a finite sample.

6.4 Contributions

This research contributes to the current body of knowledge on process capability

in several ways:
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1) This research provides an estimate of the proportion of product which is being created

as nonconforming to its specifications. This estimate is not limited to univariate

processes nor normally distributed processes, and correlation is considered in the

estimate, if it exists.

2) This research provides a multivariate capability index, MCpa , which is related to the

proportion of nonconforming product. This relationship allows a similar physical

interpretation as with the widely-used univariate process capability indices; Cp and

Cpk.

3) A software application is provided with this research that is both user-friendly and

easy to use. This software application will allow process engineers and potential

researchers to evaluate both the performance of their multivariate non-normal

processes and the approach presented by this research.

4) This research provides a starting point for future advanced study on this important

topic.

6.5 Future Research

Possible future advanced study can include any or all of the following topics:

1) Increase the level of performance of the current methodology through enhancements

of the system selection decision matrix and the critical values of the decision

variables, different goodness-of-fit tests, more powerful tests for normality.

2) Increase confidence interval performance through different alpha levels, system

dependent alpha levels, or a different approach.
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3) Include the ability to have dependent specifications or combinations of independent

and dependent specifications.

4) Allow for more than four variables.

5) Create a different or a larger selection of transformation systems that can more

adequately fit all distributions which are encountered in industry.

6.6 Summary

In conclusion, while it was the attempt of this research to allow industry personnel

to begin understanding the actual performance ofcomplex multivariate processes, it is

probably more realistic that the non-normal applications of this research will find more

use. I believe this probable result is due, in part, to difficulty in understanding

multivariate statistics. I also see some difficulty in convincing top management that a

complex multivariate process which has demonstrated capability on all or most of its

individual key characteristics, can still be determined to not meet statistical capability

requirements, based on its multivariate performance. There is, however, only one way to

begin: Take the first step and try.
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APPENDIX A

Flowcharts for J obnson System Fitting and Selection
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Calculate: M l , M!, M3 ,M..
Calculate: 8 1 , B2 , G1 , G2

Calculate: B2C

~=l'~N=O

Calculate: ~,y N
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~I.S = Max[ ~E, ~M. ~B]

Calculate: Y LS , <\s , F-V LS

MIL Optimization

Input: SLS, 0LS , Y LS

Output: ~I, 01 , Y I, F-V]

No

l'vIDE Optimization

Input: ~lS, 0lS , Y LS

Output: ~, Oz, Y1, F-V2

Yes

~lS = ~I

0lS = 01

Y LS = Y I

F-VLS =F-V,

No
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0LS = O2
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No

SI =0
Calculate: F-V 1

So = SLS = Min[ Sf, SM, S8]
t--------,

Calculate: YLS , <\s , F-VLS

Yes

No MIL Optimization

SLS = SI ~=So

F-VLS =F-V, Input: ~, <\s , YLS

Output: 8:, Y1, F-V2 ;1

1J
MLL Optimization SLS=~

I'Yes S:\ =0 °LS = ~
Input: 0LS, YlS YLS=Y2

Output: 03,Y3,F-V3 F-VLS =F-V,

SLS = ~
No MDE Optimization

bLS = 03 ~=So

YLS =Y3 Input: ~ , 0LS, YLS

F-V LS =F-V3 Output: b4 ,Y4,F-V4

MDE Optimization SLS =~
Yes S5 = 0 <\s = 04

Input: S5 , bLS ,Y LS YLS=Y4
Output: 05, Y5, F-V j F-V LS =F-V4

SLS = 1;.5 No No
0LS = Os

YLS = Yj

F-V LS =F-Vs

121



Yes

Calculate: Zr , Do

No

Y =YN

F-V = F-VN

Dist = SN

~ = ~LS

A=7Iu
8 = 8r.s
Y =Y LS

F-V = F-VLS
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Calculate: A, ~ , y ,8

MDE Optimization

Input: A, ~ , Y ,8

Output: A, S, Y ,8, F-V

Yes
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No

Calculate: A, ~ ,Y , [)

MDE Optimization

Input: Ie, S, Y , 8

Output: Y , [). F-V
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Description of Program Variables
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Variable
A21
A312
A4123
ALPHA
B312
B4123
C4123
CHIH
CHIL
CNT(I,J,K,L)

CPA(I,K)
CPTOT(Kl)
D(I)
DIST(I)
DP(I,Kl)
DS(I,K)
E(l)
EZI
EZ21
EZ312
EZ4123
F4
F6
FV(I)
G(I)
GP(I,Kl)
GS(I,K)
I
lfilepath
J
K
Kl
L(I)
LSL(I)
MAXPOS(I)
MCPA(Kl)
MINPOS(I)
MPS
NS
NV

Description
Calculation variable in Z21, EZ21, and VZ21
Calculation variable in Z312, EZ312, and VZ312
Calculation variable in Z4123, EZ4123, and VZ4123
Type 1 error value
Calculation variable in Z312, EZ312, and VZ312
Calculation variable in Z4123, EZ4123, and VZ4123
Calculation variable in Z4l23, EZ4123, and VZ4l23
Critical upper chi-square statistic
Critical lower chi-square statistic
Counter array for samples with respect to their specification limits:

The first variable is represented as variable L and the last by variable 1.
If the index = 0 then the variable is not considered.
If the index = 1 then the count is for under the lower specification limit.
If the index = 2 then the count is for above the upper specification limit.
If the index = 3 then the count is for within specification limits.

Univariate process capability index of variable I at conf. rectangle point K
Confidence interval for univatiate process capability index
Delta (8) statistic for each variable
Johnson system identifier for variable I
Confidence interval and point estimate on delta statistic of variable I
Delta statistic of variable I at conf. rectangle point K
Xi (s) statistic for each variable
Independent expected value of Z I
Conditional expected value of Z2 given Z I
Conditional expected value of Z3 given Z 1 and Z2
Conditional expected value ofZ4 given Zl, Z2, and Z3
Formatting variable for 4 decimal places
Formatting variable for 6 decimal places
F-Value for each variable's fit
Gamma (y) statistic for each variable
Confidence interval and point estimate on gamma statistic of variable I
Gamma statistic of variable I at conf. rectangle point K
Iteration variable, primarily for variable #
Input file path (user-defined)
Iteration variable, primarily for sample #
Iteration variable, primarily for decision matrix position
Iteration variable, primarily for confidence interval position
Lambda (A.) statistic for each variable
Lower-specification-limit for each variable
Conf. rectangle point representing upper confidence level of variable I
Confidence interval for multivariate process capability index
Conf. rectangle point representing lower confidence level of variable I
Total multivariate proportion nonconforming
Number of samples
Number of variables (1-4)
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Variable
Ofilepath
Openfile1
Openfile5
Pl2
Pl3
P14
P23
P24
P34
PL(I,K)
PS(I,K)
PU(I,K)
SCI)
SIM
TLOW
USL(I)
Y21
Y221
Y2312
V24123
X1(J)
X2(J)
X3(J)
X4(J)
2(I,K)
21
221
2312
24123

Description
Output file pate (user-defined)
Available file number for input file
Available file number for output file
Correlation coefficient between transformed variables I and 2
Correlation coefficient between transformed variables 1 and 3
Correlation coefficient between transformed variables land 4
Correlation coefficient between transformed variables 2 and 3
Correlation coefficient between transformed variables 2 and 4
Correlation coefficient between transformed variables 3 and 4
Lower proportion nonconforming of variable I at conf rectangle point K
Total proportion nonconforming ofvariable I at conf. rectangle point K
Upper proportion nonconforming of variable I at conf rectangle point K
Calculated Johnson variate for each variable
Iteration variable, for simulation iterations
Critical lower t statistic
Upper-specification-limit for each variable
Independent variance of 2 1
Conditional variance of22 given 21
Conditional variance of23 given 21 and 22
Conditional variance of24 given 21,22, and 23
Sample values for variable 1
Sample values for variable 2, ifNY > 1
Sample values for variable 3, ifNY > 2
Sample values for variable 4, if NV = 4
Transformation of variable I at conf. rectangle point K
Independent multivariate standard normal variate 21
Conditional multivariate standard normal variate 22 given 21
Conditional multivariate standard normal variate 23 given 21 and 22
Conditional multivariate standard normal variate 24 given 21,22, and 23
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APPENDIX C

Multivariate Process Capability Program Code
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Sub MAINO
'***********************************************************************
'* This Visual Basic Code Calculates the Univariate and Multivariate Process Capability
'* Indices, Cpa & MCpa, for a sample data set which is read.
'***********************************************************************
Dim NY As Integer, NS As Integer, I As Integer, J As Integer, K As Integer
Dim DO As Double, EO As Double, GO As Double, LO As Double
Dim SO As Double, FYO As Double, LSLO As Double, USLO As Double
Dim Zl As Double, Z21 As Double, Z312 As Double, Z4123 As Double
Dim EZI As Double, EZ21 As Double, EZ312 As Double, EZ4123 As Double
Dim VZl As Double, YZ21 As Double, YZ312 As Double, VZ4123 As Double
Dim A21 As Double, A312 As Double, 8312 As Double, A4123 As Double
Dim 84123 As Double, C4123 As Double, P12 As Double, P24 As Double
Dim P34 As Double, P13 As Double, P23 As Double, P14 As Double
Dim CHIL As Double, CHIH As Double, TLOW As Double, ALPHA As Double
Dim Xl 0 As Double, X20 As Double, X30 As Double, X40 As Double
Dim PLO As Double, PUO As Double, PSO As Double, DISTO As String
Dim GSO As Double, DSO As Double, ZO As Double, CPAO As Double
Dim DPO As Double, GPO As Double, MINPOSO As Integer, MAXPOSO As Integer
Dim MCPA(l To 9) As Double, CPTOT(l To 9) As Double, MPS(1 To 3) As Long
Dim F4 As String, F6 As String, K1 As Integer, SIM As Long
Dim Openfile1 As Integer, Openfile5 As Integer, CNT(3, 3, 3, 3) As Long
Dim MySet As Recordset, MyDB As Database, lfilepath As String, Ofilepath As String
F4 = "0.0000": F6 = "0.000000"
Const PI As Double = 3.14159265358979
DoCmd.Hourglass True
Set MyDB = CurrentDb
Set MySet = MyDB.OpenRecordset("File Specs", dbOpenTable)
Ifilepath = MySet![Input Totalpath]
Ofilepath = MySet![Output Totalpath]
MySet.Close

'************************* FIT SAMPLE POINTS **************************

Openfile5 = FreeFile
Open lfilepath For Input As #Openfile5
Input #Openfile5, NY, NS
'Re-Dimensioning Dynamic Arrays for Memory Management
ReDim LSL(l To NY): ReDim USL(l To NY)
ReDim FY(l To NY): ReDim S(l To NY)
ReDim D(l To NY): ReDim G(l To NY)
ReDim L(l To NY): ReDim E(l To NY)
ReDim PL(l To NY, 1 To 9): ReDim PU(1 To NY, 1 To 9)
ReDim PS(l To NY, 1 To 9): ReDirn DIST(l To NV)
ReDim GS(1 To NY, 1 To 9): ReDim DS(1 To NY, 1 To 9)
ReDim Z(l To NY, 1 To 9): ReDim CPA(l To NY, 1 To 9)

128



ReDim DP(l To NV, 1 To 3): ReDim GPO To NV, 1 To 3)
ReDim MINPOS(1 To NY): ReDim MAXPOS(l To NY)
IfNV = 1 Then

ReDim Xl (1 To NS): ReDim X2(O)
ReDim X3(0): ReDim X4(O)

End If
IfNV = 2 Then

ReDim XI(l To NS): ReDim X2(l To NS)
ReDim X3(0): ReDim X4(O)

End If
IfNV = 3 Then

ReDim XI(1 To NS): ReDim X2(l To NS)
ReDim X3(1 To NS): ReDim X4(0)

End If
If NY = 4 Then

ReDim XI(1 To NS): ReDim X2(l To NS)
ReDim X3(I To NS): ReDim X4(1 To NS)

End If

IfNV = I Then Input #Openfile5, LSL(1), USL(l)
IfNV = 2 Then Input #Openfile5, LSL(1), USL(I), LSL(2), USL(2)
IfNV = 3 Then Input #Openfile5, LSL(l), USL(1), LSL(2), USL(2),_

LSL(3), USL(3)
IfNV = 4 Then Input #Openfile5, LSL(I), USL(1), LSL(2), USL(2),_

LSL(3), USL(3), LSL(4), USL(4)

15ForI=lToNS
IfNV = I Then Input #Openfile5, XI(I)
IfNV = 2 Then Input #Openfile5, XI(I), X2(I)
IfNV = 3 Then Input #Openfile5, X1(I), X2(I), X3(I)
IfNV = 4 Then Input #Openfile5, Xl(I), X2(I), X3(I), X4(I)

Next I
Close #Openfile5

Call DistFitter(XIO, NS, E(1), L(1), D(1), G(1), FV(l), DIST(l»
IfNV = 1 Then GoTo 100
Call DistFitter(X20, NS, E(2), L(2), 0(2), G(2), FV(2), DIST(2»
P12 = CORRELXY(NS, DIST(I), XIO, G(1), 0(1), E(1), L(1),_

DIST(2), X20, G(2), 0(2), E(2), L(2»
IfNV = 2 Then GoTo 100
Call DistFitter(X30, NS, E(3), L(3), 0(3), G(3), FV(3), DIST(3»
P13 = CORRELXY(NS, DIST(1), X10, G(1), D(1), E(1), L(l),_

DIST(3), X30, G(3), D(3), E(3), L(3»
P23 = CORRELXY(NS, DIST(2), X20, G(2), 0(2), E(2), L(2),_

DIST(3), X30, G(3), D(3), E(3), L(3»
IfNV = 3 Then GoTo 100
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Call DistFitter(X40, NS, E(4), L(4), D(4), G(4), FV(4), DIST(4»
PI4 = CORRELXY(NS, DIST(l), XIO, G(I), D(I), E(l), L(1),_

DIST(4), X40, G(4), D(4), E(4), L(4»
P24 = CORRELXY(NS, DIST(2), X20, G(2), D(2), E(2), L(2), _

DIST(4), X4(), G(4), D(4), E(4), L(4»
P34 = CORRELXY(NS, DIST(3), X30, G(3), D(3), E(3), L(3),

DIST(4), X40, G(4), D(4), E(4), L(4»

100 '*************UNIVARIATE CONFIDENCE INTERVALS******************
ALPHA =0.05
CHIL = Exce1.Application.WorksheetFunction.ChiInv((ALPHA /2), NS - 1)
CHIH = Excel.Application.WorksheetFunction.Chilnv«(1 - ALPHA / 2), NS - 1)
TLOW = ExceLApplication.WorksheetFunction.Tlnv(ALPHA, NS - 1)
For 1= 1 To NY
DS(I, 4) = D(I)
DS(I, 1) = DS(I, 4) * Sqr(CHIH / (NS - 1»
DS(I, 7) = DS(I, 4) * Sqr(CHIL / (NS - 1»
DS(I, 2) = DS(I, 1): DS(I, 3) = DS(I, 1)
DS(I, 5) = DS(I, 7): DS(I, 6) = DS(I, 7)
GS(I, 4) = G(I)
GS(I, 1) = GS(I, 4) - (TLOW / Sqr(NS»
GS(I, 7) = GS(I, 4) + (TLOW / Sqr(NS»
GS(I, 2) = GS(I, 4): GS(I, 3) = GS(I, 7)
GS(I, 5) = GS(I, 1): GS(I, 6) = GS(I, 4)
ForK = 1 To 7
Select Case DIST(I)

Case "N" 'Normal
Z(I, K) = GS(I, K) + DS(I, K) * LSL(I)
PL(I, K) = Excel.Apphcation.WorksheetFunction.NonnSDist(Z(I, K»
Z(I, K) = GS(I, K) + DS(I, K) * USL(I)
PU(I, K) = 1 - Excel.Application.WorksheetFunction.NonnSDist(Z(I, K»
PS(I, K) = PL(I, K) + PU(I, K)
CPA(I, K) = ExceLApplication.WorksheetFunction.NormSlnv(l - PS(I, K) /2) / 3

Case "L" 'LogNormal
If E(I) < LSL(I) Then

Z(I, K) = GS(I, K) + DS(I, K) * Log(LSL(I) - E(I»
PL(I, K) = Exce1.Application.WorksheetFunction.NormSDist(Z(I, K»

Else
PL(I, K) = 0

End If
If E(I) < USL(I) Then

Z(I, K) = GS(I, K) + DS(I, K) * Log(USL(l) - E(I»
PU(I, K) = 1 - Excel.Application.WorksheetFunction.NormSDist(Z(I, K»

Else
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PU(I, K) = 0
End If

PS(I, K) = PLO, K) + PU(I, K)
If PS(I, K) > 0 Then

CPA(I, K) = ExceI.Application.WorksheetFunction.Norn1STnv(1 - PS(l, K) /2) / 3
Else

CPA(l, K) = 2
End If

Case "S" 'Special
If E(l) > LSL(I) Then

Zer, K) = GS(I, K) + DS(I, K) * Log(E(l) - LSL(I)
PLO, K) = 1 - Excel.Application.WorksheetFunction.NonnSDist(Z(I, K»

Else
PL(I, K) = 0

End If
If E(l) > USL(I) Then

Z(I, K) = GS(I, K) + DS(I, K) * Log(E(I) - USL(l»
PU(I, K) = Excel.Application.WorksheetFunction.NormSDist(Z(I, K»

Else
PU(I, K) = 0

End If
PS(I, K) = PL(I, K) + PU(I, K)

TfPS(I, K) > 0 Then
CPA(I, K) = Exce1.Application.WorksheetFunction.NonnSlnv(l - PS(I, K) / 2) / 3

Else
CPA(I, K) =2

End If

Case "B" 'Bounded
IfE(I) < LSL(I) And LSL(I) < E(I) + L(I) Then

Z(I, K) = GS(I, K) + DS(I, K) * Log«LSL(I) - E(I» / (E(I) + L(I) - LSL(I»)
PL(I, K) = Excel.Application. WorksheetFunction.NonnSDist(Z(I, K»

Else
PL(I, K) = 0

End If
If E(I) < USL(I) And USL(I) < E(I) + L(I) Then

Z(I, K) = GS(I, K) + DS(I, K) * Log«USL(I) - E(l» / (E(I) + L(I) - USL(I»)
PU(I, K) = 1 - Excel.Application.WorksheetFunction.NormSDist(Z(I, K»

Else
PU(l, K) = 0

End If
PS(I, K) = PL(I, K) + PU(I, K)

If PS(I, K) > 0 Then
CPA(I, K) = Excel.Application.WorksheetFunction.NormSlnv(l - PS(I, K) / 2) / 3

Else
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CPA(I, K) = 2
End If

Case "U" 'UnBounded
Z(I, K) = GS(I, K) + DS(I, K) * ArcSinh«LSL(I) - E(l» / L(I»
PL(I, K) = Excel. Application. WorksheetFunction.NonnSDist(Z(I, K»
Z(I, K) = GS(I, K) + DS(I, K) * ArcSinh«USL(I) - E(I» / L(I»
PU(I, K) = 1 - ExceLApplication.WorksheetFunction.NonnSDist(Z(I, K»
PS(I, K) = PL(I, K) + PU(I, K)
CPA(I, K) = Excel.Application.WorksheetFunction.NormSlnv(l - PS(I, K) / 2) /3

End Select
NextK
MINPOS(I) = MIN3POS(CPA(I, 1), CPA(I, 2), CPA(I, 3»
MAXPOS(I) = MAX3POS(CPA(I, 5), CPA(I, 6), CPA(I, 7»
Next I

IfNV = 1 Then GoTo 125 'IF ONIVARIATE, SKIP SIMULATION

'ADJUSTED FOR MULTIVARIATE SIMULTANEOUS CONFIDENCE INTERVALS
ALPHA =0.2
CHIL = Exce1.Application.WorksheetFunction.Chilnv«ALPHA / 2), NS - 1)
CHili = Exce1.Application.WorksheetFunction.ChiInv«(l - ALPHA / 2), NS - 1)
TLOW = Exce1.Application.WorksheetFunction.Tlnv(ALPHA, NS - 1)
For 1= 1 To NV
DS(I, 1) = DS(I, 4) * Sqr(CHIH / (NS - 1»
DS(I, 7) = DS(I, 4) * Sqr(CHIL / (NS - 1»
DS(I, 2) = DS(I, 1): DS(I, 3) = DS(I, 1)
DS(I, 5) = DS(I, 7): DS(I, 6) = DS(I, 7)
GS(I, 1) = GS(I, 4) - (TLOW / Sqr(NS»
GS(I, 7) = GS(I, 4) + (TLOW / Sqr(NS»
GS(I, 2) = GS(I, 4): OS(I, 3) = GS(I, 7)
GS(I, 5) = GS(I, 1): GS(I, 6) = GS(I, 4)
DP(I, 1) = DS(I, MINPOS(I»
DP(I, 2) = DS(I, 4)
DP(I, 3) = DS(I, MAXPOS(I»
GP(I, 1) = GS(I, MINPOS(I»
GP(I, 2) = OS(I, 4)
GP(I, 3) = GS(I, MAXPOS(I»
Next I

For Kl = 1 To 3

Erase CNT 'REINITIALIZES THE COUNTER ARRAY

For SIM = 1 To 1000000
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EZI = °
YZI = 1
Zl = EZI + Sqr(VZl) * Sqr(-2 * Log(RndO)) * Cos(2 * PI * RndO)
Select Case DIST(l)

Case "N" 'Nonnal - (N***)
S(1) = (Zl - GP(l, Kl» / DP(I, Kl)
Case "L" 'LogNormal - (L***)
S(1) = Exp«ZI - GP(l, Kl» / DP(l, KI» + E(l)
Case "S" 'Special (S***)
S(l) = E(l) - Exp«Zl - GP(l, Kl» / DP(1, KI»
Case "8" 'Bounded - (B***)
S(I) = L(l) * (1 + Exp«GP(l, KI) - Zl) / DP(l, KI») /\ (-1) + E(l)
Case "U" 'UnBounded - (U***)
S(l) = L(l) * Sinh«ZI - GP(l, KI» / DP(l, K1) + E(l)

End Select
If S(I) < LSL(l) Then CNT(O, 0, 0, 1) = CNT(O, 0,0, 1) + 1
If S(1) > USL(l) Then CNT(O, 0, 0, 2) = CNT(O, 0, 0, 2) + 1

IfNV = 1 Then GoTo 105

A21 = PI2 / YZ1
EZ21 = (All * Zl)
YZ2l = 1 - (A21 * PI2)
Z21 = EZ21 + Sqr(VZ2I) * Sqr(-2 * Log(RndO» * Cos(2 * PI * RndO)
Select Case DIST(2)

Case "N" 'Normal - (*N**)
S(2) = (Z21 - GP(2, KI» / DP(2, Kl)
Case "L" 'LogNormal - (*L**)
S(2) = Exp«Z21 - GP(2, KI» / DP(2, KI» + E(2)
Case "S" 'Special - (*S**)
S(2) = E(2) - Exp«Z21 - GP(2, Kl» / DP(2, K1»
Case "B" 'Bounded - (*B**)
S(2) = L(2) * (1 + Exp«GP(2, KI) - Z2l) / DP(2, KI») /\ (-1) + E(2)
Case "U" 'UnBounded - (*U**)
S(2) = L(2) * Sinh«Z21 - GP(2, KI» / DP(2, Kl» + E(2)

End Select
If S(2) < LSL(2) Then

CNT(O, 0, 1, 0) = CNT(O, 0, 1, 0) + 1
IfS(l) < LSL(l) Then CNT(O, 0,1, 1) = CNT(O, 0, 1, 1) + 1
IfS(l) > USL(I) Then CNT(O, 0,1,2) = CNT(O, 0,1,2) + 1

ElseIf S(2) > USL(2) Then
CNT(O, 0, 2, 0) = CNT(O, 0, 2, 0) + 1
IfS(l) < LSL(l) Then CNT(O, 0,2,1) = CNT(O, 0, 2,1) + 1
If S(1) > USL(1) Then CNT(O, 0, 2, 2) = CNT(O, 0, 2, 2) + 1

Else
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CNT(O, 0, 3,0) = CNT(O, 0, 3,0) + 1
IfS(l) < LSL(l) Then CNT(O, 0, 3, 1) = CNT(O, 0, 3, 1) + 1
IfS(l) > USL(l) Then CNT(O, 0, 3, 2) = CNT(O, 0, 3, 2) + 1

End If

If NY = 2 Then OoTo 105

A312 = (P13 - P12 * P23) I (VZ21 * VZl)
B312 = (P23 - P12 * P13) I (VZ21 * VZl)
EZ312 = (A312 * ZI) + (B312 * Z21)
VZ312 = 1 - «A312 * P13) + (B312 * P23»
Z312 = EZ312 + Sqr(VZ312) * Sqr(-2 * Log(RndO» * Cos(2 * PI * Rnd()
Select Case DIST(3)

Case "N" 'Normal - (**N*)
S(3) = (Z312 - GP(3, Kl» I DP(3, Kl)
Case "L" 'LogNormal - (**L*)
S(3) = Exp«Z312 - OP(3, Kl» I DP(3, Kl» + E(3)
Case "S" 'Special - (**S*)
S(3) = E(3) - Exp«Z312 - GP(3, Kl» I DP(3, Kl»
Case "B" 'Bounded - (**B*)
S(3) = L(3) * (l + Exp«GP(3, Kl) - Z312) I DP(3, K1») 1"\ (-1) + E(3)
Case "U" 'UnBounded - (**U*)
S(3) = L(3) * Sinh«Z312 - GP(3, Kl» I DP(3, Kl» + E(3)

End Select
If S(3) < LSL(3) Then

CNT(O, 1, 0, 0) = CNT(O, 1, 0, 0) + 1
If S(2) < LSL(2) Then

CNT(O, 1,1,0) = CNT(O, 1, 1,0) + 1
IfS(l) < LSL(I) Then CNT(O, 1, 1,1) = CNT(O, 1, 1, 1) + 1
IfS(l) > USL(l) Then CNT(O, 1, 1,2) = CNT(O, 1, 1,2) + 1

ElseIf S(2) > USL(2) Then
CNT(O, 1, 2, 0) = CNT(O, 1, 2, 0) + 1
IfS(1) < LSL(I) Then CNT(O, 1,2, 1)=CNT(O, 1,2, 1)+ 1
IfS(1) > USL(1) Then CNT(O, 1,2,2) = CNT(O, 1,2,2) + 1

Else
CNT(O, 1,3,0) = CNT(O, 1,3,0) + 1
IfS(I) < LSL(1) Then CNT(O, 1,3, I) = CNT(O, 1,3,1) + 1
IfS(l) > USL(I) Then CNT(O, 1,3,2) = CNT(O, 1,3,2) + 1

End If
ElseIf S(3) > USL(3) Then

CNT(O, 2, 0, 0) = CNT(O, 2, 0, 0) + 1
IfS(2) < LSL(2) Then

CNT(O, 2, 1, 0) = CNT(O, 2, 1, 0) + 1
If S(1) < LSL(1) Then CNT(O, 2, 1, 1) = CNT(O, 2, 1, 1) + 1
US(1) > USL(l) Then CNT(O, 2, 1,2) = CNT(O, 2, 1,2) + 1

ElseIf S(2) > USL(2) Then
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CNT(O, 2, 2, 0) = CNT(O, 2, 2, 0) + 1
IfS(l) < LSL(l) Then CNT(O, 2,2, 1) = CNT(O, 2, 2, 1) + 1
IfS(l) > USL(l) Then CNT(O, 2, 2, 2) = CNT(O, 2, 2, 2) + 1

Else
CNT(O, 2, 3, 0) = CNT(O, 2, 3, 0) + 1
IfS(I) < LSL(I) Then CNT(O, 2, 3,1) = CNT(O, 2,3,1) + 1
IfS(1) > USL(l) Then CNT(O, 2,3,2) = CNT(O, 2, 3, 2) + 1

End If
Else

CNT(O, 3,0, 0) = CNT(O, 3, 0, 0) + 1
If S(2) < LSL(2) Then

CNT(O, 3, 1,0) = CNT(O, 3, 1,0) + 1
IfS(l) < LSL(l) Then CNT(O, 3, 1, 1) = CNT(O, 3, 1, 1) + 1
IfS(1) > USL(1) Then CNT(O, 3,1,2) = CNT(O, 3,1,2) + 1

ElseIf S(2) > USL(2) Then
CNT(O, 3, 2, 0) = CNT(O, 3, 2, 0) + 1
IfS(I) < LSL(1) Then CNT(O, 3, 2, 1) = CNT(O, 3, 2, 1) + 1
IfS(I) > USL(1) Then CNT(O, 3, 2, 2) = CNT(O, 3,2,2) + 1

Else
CNT(O, 3, 3, 0) = CNT(O, 3,3,0) + I
If S(1) < LSL(I) Then CNT(O, 3,3, 1) = CNT(O, 3, 3, 1) + 1
IfS(l) > USL(1) Then CNT(O, 3, 3, 2) = CNT(O, 3, 3, 2) + 1

End If
End If

If NY = 3 Then GoTo 105

A4123 = (P14 * (l - P23 A 2) + P24 * (P13 * P23 - P12) + P34 * (P12 * P23 - PI3» / _
(VZ312 * VZ2I * VZI)

B4123 = (P14 * (PI3 * P23 - PI2) + P24 * (1 - P13 A 2) + P34 * (P12 * P13 - P23» 1_
(VZ312 * VZ21 * VZl)

C4123 = (PI4 * (P12 * P23 - PI3) + P24 * (PI2 * P13 - P23) + P34 * (I - PI2 A 2» I _
(VZ312 * VZ2I * VZI)

EZ4123 = (A4123 * ZI) + (B4123 * Z21) + (C4123 * Z3I2)
VZ4123 = 1 - «A4123 * PI4) + (B4123 * P24) + (C4123 * P34»
Z4123 = EZ4123 + Sqr(VZ4123) * Sqr(-2 * Log(RndO» * Cos(2 * PI * RndO)
Select Case DIST(4)

Case "N" 'Normal- (***N)
S(4) = (Z4123 - GP(4, KI» / DP(4, Kl)
Case "L" 'LogNormal - (***L)
S(4) = Exp«Z4I23 - GP(4, Kl» I DP(4, Kl» + E(4)
Case "S" 'Special - (***S)
S(4) = E(4) - Exp«Z4123 - GP(4, KI» I DP(4, KI»
Case liB" 'Bounded - (***B)
S(4) = L(4) * (I + Exp«GP(4, Kl) - Z4123) I DP(4, Kl») A (-1) + E(4)
Case "U" 'UnBounded - (***U)
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S(4) = L(4) * Sinh«Z4123 - GP(4, Kl)) / DP(4, Kl)) + E(4)
End Select

IfS(4) < LSL(4) Then
CNT(I, 0, 0,0) = CNT(1, 0, 0, 0) + 1
If S(3) < LSL(3) Then

CNT(1, 1,0,0) = CNT(1, 1,0,0) + 1
If S(2) < LSL(2) Then

CNT(l, 1, 1,0) = CNT(1, 1, 1,0) + 1
IfS(1)<LSL(1)ThenCNT(1, 1,1, 1)=CNT(1, 1,1,1)+ 1
IfS(1) > USL(1) Then CNT(l, 1, 1,2) = CNT(l, 1, 1,2) + 1

ElseIf S(2) > USL(2) Then
CNT(l, 1,2,0) = CNT(1, 1,2,0) + 1
If S(1) < LSL(I) Then CNT(1, 1,2, 1) = CNT(1, 1, 2, 1) + 1
IfS(1) > USL(1) Then CNT(I, 1,2,2) = CNT(1, 1,2,2) + 1

Else
CNT(1, 1,3,0) = CNT(I, 1,3,0) + 1
IfS(I) < LSL(l) Then CNT(l, 1,3,1) = CNT(1, 1,3,1) + 1
IfS(1) > USL(1) Then CNT(l, 1,3,2) = CNT(I, 1,3,2) + 1

End If
ElseIf S(3) > USL(3) Then

CNT(1, 2, 0, 0) = CNT(1, 2, 0, 0) + 1
If S(2) < LSL(2) Then

CNT(l, 2, 1,0) = CNT(l, 2, 1,0) + 1
IfS(1) < LSL(1) Then CNT(l, 2,1,1) = CNT(I, 2,1,1) + 1
IfS(I) > USL(I) Then CNT(l, 2,1,2) = CNT(l, 2,1,2) + 1

ElseIf S(2) > USL(2) Then
CNT(1, 2, 2, 0) = CNT(l, 2, 2, 0) + 1
IfS(l) < LSL(1) Then CNT(l, 2, 2,1) = CNT(1, 2, 2,1) + 1
If S(I) > USL(1) Then CNT(I, 2, 2, 2) = CNT(1, 2, 2, 2) + 1

Else
CNT(I, 2, 3, 0) = CNT(1, 2, 3, 0) + 1
IfS(1) < LSL(1) Then CNT(1, 2, 3, 1) = CNT(1, 2, 3, I) + 1
IfS(1) > USL(l) Then CNT(I, 2,3,2) = CNT(1, 2, 3, 2) + 1

End If
Else

CNT(l, 3, 0, 0) = CNT(1, 3, 0,0) + 1
If S(2) < LSL(2) Then

CNT{1, 3,1,0) = CNT(l, 3,1,0) + 1
IfS(1) < LSL(I) Then CNT(l, 3,1,1) = CNT(1, 3,1,1) + 1
IfS(l) > USL(I) Then CNT(1, 3,1,2) = CNT(l, 3,1,2) + 1

ElseIf S(2) > USL(2) Then
CNT(l, 3, 2, 0) = CNT(1, 3,2,0) + 1
IfS(1) < LSL(I) Then CNT(l, 3, 2, 1) = CNT(1, 3,2, 1) + 1
IfS(l) > USL(1) Then CNT(I, 3,2,2) = CNT(l, 3, 2, 2) + 1

Else
CNT(l, 3,3,0) = CNT(1, 3, 3, 0) + 1
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IfS(l) < LSL(l) Then CNT(l, 3, 3,1) = CNT(l, 3, 3,1) + 1
IfS(I) > USL(l) Then CNT(1, 3, 3, 2) = CNT(1, 3, 3,2) + 1

End If
End If

ElselfS(4) > USL(4) Then
CNT(2, 0, 0, 0) = CNT(2, 0, 0, 0) + 1
IfS(3) < LSL(3) Then

CNT(2, 1, 0, 0) = CNT(2, 1, 0, 0) + 1
If S(2) < LSL(2) Then

CNT(2, 1, 1,0) = CNT(2, 1, 1,0) + 1
IfS(1) < LSL(1) Then CNT(2, 1, 1, 1)=CNT(2, 1,1,1)+ 1
IfS(1) > USL(1) Then CNT(2, 1, 1,2)=CNT(2, 1, 1,2)+ 1

Elself S(2) > USL(2) Then
CNT(2, 1, 2, 0) = CNT(2, 1, 2, 0) + 1
IfS(1) < LSL(l) Then CNT(2, 1,2,1) = CNT(2, 1,2, 1) + 1
IfS(I) > USL(l) Then CNT(2, 1,2,2) = CNT(2, 1,2,2) + 1

Else
CNT(2, 1,3,0) = CNT(2, 1,3,0) + 1
IfS(l) < LSL(l) ThenCNT(2, 1,3, 1)=CNT(2, 1,3, 1)+ 1
IfS(1) > USL(l) Then CNT(2, 1,3,2) = CNT(2, 1,3,2) + 1

End If
Elself S(3) > USL(3) Then

CNT(2, 2, 0, 0) = CNT(2, 2, 0, 0) + 1
IfS(2) < LSL(2) Then

CNT(2, 2,1,0) = CNT(2, 2,1,0) + 1
IfS(1) < LSL(I) Then CNT(2, 2,1, 1) = CNT(2, 2,1,1) + 1
IfS(I) > USL(l) Then CNT(2, 2,1,2) = CNT(2, 2, 1,2) + 1

Elself S(2) > USL(2) Then
CNT(2, 2, 2, 0) = CNT(2, 2, 2, 0) + 1
If S(1) < LSL( 1) Then CNT(2, 2, 2, 1) = CNT(2, 2, 2, 1) + 1
IfS(1) > USL(l) Then CNT(2, 2, 2, 2) = CNT(2, 2,2,2) + 1

Else
CNT(2, 2, 3, 0) = CNT(2, 2, 3, 0) + 1
IfS(I) < LSL(1) Then CNT(2, 2, 3,1) = CNT(2, 2, 3,1) + 1
IfS(1) > USL(1) Then CNT(2, 2,3,2) = CNT(2, 2, 3,2) + 1

End If
Else

CNT(2, 3, 0, 0) = CNT(2, 3, 0, 0) + 1
If S(2) < LSL(2) Then

CNT(2, 3, 1,0) = CNT(2, 3, 1,0) + 1
IfS(1)<LSL(1)ThenCNT(2,3, 1, 1)=CNT(2,3, 1, 1)+ 1
IfS(1»USL(1)ThenCNT(2,3, 1,2)=CNT(2,3, 1,2)+ 1

Elself S(2) > USL(2) Then
CNT(2, 3, 2, 0) = CNT(2, 3, 2, 0) + 1
If S(1) < LSL( 1) Then CNT(2, 3, 2, 1) = CNT(2, 3, 2, 1) + 1
IfS(I) > USL(I) Then CNT(2, 3, 2, 2) = CNT(2, 3, 2, 2) + 1
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Else
CNT(2, 3, 3, 0) = CNT(2, 3, 3, 0) + 1
IfS(l) < LSL(l) Then CNT(2, 3, 3, 1) = CNT(2, 3, 3,1) + 1
If8(1) > USL(I) Then CNT(2, 3, 3, 2) = CNT(2, 3,3,2) + 1

End If
End If

Else
CNT(3, 0, 0, 0) = CNT(3, 0, 0, 0) + 1
IfS(3) < LSL(3) Then

CNT(3, 1,0,0) = CNT(3, 1,0,0) + 1
If S(2) < LSL(2) Then

CNT(3, 1, 1,0) = CNT(3, 1, 1,0) + 1
IfS(l) <LSL(1)ThenCNT(3, 1, 1, 1)=CNT(3, 1, 1, 1)+ 1
IfS(I) > USL(I) Then CNT(3, 1, 1,2) = CNT(3, 1,1,2) + 1

Eiself S(2) > USL(2) Then
CNT(3, 1,2,0) = CNT(3, 1,2,0) + 1
IfS(I) < LSL(1) Then CNT(3, 1,2,1) = CNT(3, 1,2,1) + 1
IfS(1) > USL(l) Then CNT(3, 1,2,2) = CNT(3, 1,2,2) + 1

Else
CNT(3, 1, 3,0) = CNT(3, 1,3,0) + 1
IfS(1) < LSL(1) Then CNT(3, 1,3,1) = CNT(3, 1,3,1) + 1
IfS(1) > USL(I) Then CNT(3, 1,3,2) = C T(3, 1,3,2) + 1

End If
ElselfS(3) > USL(3) Then

CNT(3, 2, 0, 0) = CNT(3, 2, 0, 0) + 1
IfS(2) < LSL(2) Then

CNT(3, 2, 1,0) = CNT(3, 2,1,0) + 1
IfS(1)<LSL(1)ThenCNT(3,2, 1, 1)=CNT(3,2, 1, 1)+ 1
IfS(I) > USL(1) Then CNT(3, 2, 1,2) = CNT(3, 2, 1,2) + 1

EiseIf S(2) > USL(2) Then
CNT(3, 2, 2, 0) = CNT(3, 2, 2, 0) + 1
IfS(l) < LSL(1) Then CNT(3, 2, 2,1) = CNT(3, 2, 2,1) + 1
If S(1) > USL(I) Then CNT(3, 2, 2, 2) = CNT(3, 2, 2,2) + 1

Else
CNT(3, 2, 3, 0) = CNT(3, 2, 3,0) + 1
IfS(1) < LSL(1) Then CNT(3, 2, 3,1) = CNT(3, 2, 3,1) + 1
IfS(I) > USL(I) Then CNT(3, 2, 3, 2) = CNT(3, 2, 3, 2) + 1

End If
Else

CNT(3, 3, 0, 0) = CNT(3, 3, 0,0) + 1
If S(2) < LSL(2) Then

CNT(3, 3, 1, 0) = CNT(3, 3, 1,0) + 1
IfS(1) < LSL(1) Then CNT(3, 3,1, 1) = CNT(3, 3,1,1) + 1
IfS(I) > USL(I) Then CNT(3, 3,1,2) = CNT(3, 3, 1,2) + 1

Eiself S(2) > USL(2) Then
CNT(3, 3, 2, 0) = CNT(3, 3, 2, 0) + 1
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IfS(l) < LSL(1) Then CNT(3, 3, 2, 1) = CNT(3, 3,2, 1) + 1
IfS(l) > USL(1) Then CNT(3, 3, 2,2) = CNT(3, 3,2,2) + 1

Else
CNT(3, 3, 3, 0) = CNT(3, 3, 3, 0) + 1
IfS(1) < LSL(l) Then CNT(3, 3,3,1) = CNT(3, 3, 3, 1) + 1
IfS(1) > USL(1) Then CNT(3, 3, 3, 2) = CNT(3, 3, 3,2) + 1

End If
End If

End If

105 Next SIM
MPS(KI) = CNT(O, 0, 0,1) + CNT(O, 0, 0,2)

IfNV = 1 Then GoTo 110

MPS(Kl) = CNT(O, 0, 1,0) + CNT(O, 0, 2, 0) + _
CNT(O, 0, 3, 1) + CNT(O, 0, 3, 2)

IfNV = 2 Then GoTo 110

MPS(KI) = CNT(O, 1, 0, 0) + CNT(O, 2, 0, 0) +
CNT(O, 3, 1, 0) + CNT(O, 3, 2, 0) + _
CNT(O, 3, 3, 1) + CNT(O, 3, 3, 2)

IfNV = 3 Then GoTo 110

MPS(KI) = CNT(I, 0, 0, 0) + CNT(2, 0, 0,0) + _
CNT(3, 1,0,0) + CNT(3, 2, 0, 0) + _
CNT(3, 3, 1,0) + CNT(3, 3, 2,0) + _
CNT(3, 3, 3, 1) + CNT(3, 3, 3, 2)

110 IfMPS(Kl) > 0 Then
CPTOT(KI) = (Excel. Application. WorksheetFunction.NonnSlnv(l - (MPS(KI) / _

2000000»)) / 3
Else: CPTOT(K1) = 2: End If

Next Kl'KI GOES FROM 1 TO 3 (LCL, MPS, UCL)

125 'SKIPPING THE SIMULATION LINE NUMBER

,************** PROCESS CAPABILITY INDEX CALCULATION **************

CPA(1, 8) = MIN3VAL(CPA(l, 1), CPA(1, 2), CPA(1, 3»
IfCPA(1, 8) < °Then CPA(I, 8) = 0
CPA(I, 4) = CPA(I, 4)
IfCPA(1, 4) > 2 Then CPA(1, 4) = 2
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CPA(l, 9) = MAX3VAL(CPA(l, 5), CPA(l, 6), CPA(l, 7»
IfCPA(1, 9) < CPA(l, 4) Then CPA(l, 9) = CPA(l, 4) + Abs(CPA(l, 4) - CPA(l, 8»
IfCPA(1, 9) > 2 Then CPA(l, 9) = 2
MCPA( 1) = CPA(1, 8)
MCPA(2) = CPA(l, 4)
MCPA(3) = CPA(I, 9)

If NY = 1 Then GoTo 130

CPA(2, 8) = MIN3 VAL(CPA(2, 1), CPA(2, 2), CPA(2, 3»
IfCPA(2, 8) < 0 Then CPA(2, 8) = 0
CPA(2, 4) = CPA(2, 4)
IfCPA(2, 4) > 2 Then CPA(2, 4) = 2
CPA(2, 9) = MAX3VAL(CPA(2, 5), CPA(2, 6), CPA(2, 7»
IfCPA(2, 9) < CPA(2, 4) Then CPA(2, 9) = CPA(2, 4) + Abs(CPA(2, 4) - CPA(2, 8»
If CPA(2, 9) > 2 Then CPA(2, 9) = 2
MCPA(l) = CPTOT(I)
IfMCPA(l) < 0 Then MCPA(l) = 0
MCPA(2) = CPTOT(2)
If MCPA(2) > 2 Then MCPA(2) = 2
MCPA(3) = CPTOT(3)
If MCPA(3) < MCPA(2) Then MCPA(3) = MCPA(2) + Abs(MCPA(2) - MCPA(l»
IfMCPA(3) > 2 Then MCPA(3) = 2

IfNV = 2 Then GoTo 130

CPA(3, 8) = MIN3VAL(CPA(3, 1), CPA(3, 2), CPA(3, 3»
If CPA(3, 8) < 0 Then CPA(3, 8) = 0
CPA(3, 4) = CPA(3, 4)
IfCPA(3, 4) > 2 Then CPA(3, 4) = 2
CPA(3, 9) = MAX3VAL(CPA(3, 5), CPA(3, 6), CPA(3, 7»
IfCPA(3, 9) < CPA(3, 4) Then CPA(3, 9) = CPA(3, 4) + Abs(CPA(3, 4) - CPA(3, 8»
If CPA(3, 9) > 2 Then CPA(3, 9) = 2

IfNV = 3 Then GoTo 130

CPA(4, 8) = MIN3VAL(CPA(4, 1), CPA(4, 2), CPA(4, 3»
IfCPA(4, 8) < 0 Then CPA(4, 8) = 0
CPA(4, 4) = CPA(4, 4)
IfCPA(4, 4) > 2 Then CPA(4, 4) = 2
CPA(4, 9) = MAX3VAL(CPA(4, 5), CPA(4, 6), CPA(4, 7»
IfCPA(4, 9) < CPA(4, 4) Then CPA(4, 9) = CPA(4, 4) + Abs(CPA(4, 4) - CPA(4, 8»
IfCPA(4, 9) > 2 Then CPA(4, 9) = 2

130 Openfile 1 =FreeFile
Open Ofilepath For Output As #Openfile1
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'************************ FORMATTING OUTPUT *************************

IfNV = I Then
Print#Openfilel, Spc(4); "UNIVARIATE STATISTICS"; Tab(34); "VARlABLE# I"
Print #Openfile I, "------------------------------"; Tab(34); "------------,,
Print #Openfilel, "Selected Johnson Distribution"; Tab(39); DIST(l)
Print #Openfilel, "NS (Number of Samples)"; Tab(35); NS
Print #OpenfiIel, "LSL (Lower Spec. Limit)"; Tab(35); SIGN(LSL(l»;_

Fonnat(Abs(LSL(l», F6)
Print #Openfilel, "USL (Upper Spec. Limit)"; Tab(35); SIGN(USL(l»;_

Forrnat(Abs(USL(l», F6)
Print #Openfilel, "E (Xi)"; Tab(35); SIGN(E(l»; Format(Abs(E(1», F6)
Print #Openfilel, "L (Lambda)"; Tab(35); SIGN(L(I»; Format(Abs(L(I», F6)
Print #Openfilel, "D (Delta)"; Tab(35); SIGN(D(1»; Format(Abs(D(1», F6)
Print #OpenfiJel, "G (Gamma)"; Tab(35); SIGN(G(l»; Format(Abs(G(I», F6)
Print #Openfilel, "F-Value ofK-S Test"; Tab(36); Format(FV(l), "0.00%")
Print #Openfilel, "PL (PPM < LSL)"; Tab(36); Format(PL(l, 4) * 1000000, "#,0")
Print #Openfilel, "PU (PPM> USL)"; Tab(36); Format(PU(l, 4) * 1000000, "#,0")
Print #Openfilel, "p* (Total PPM Out-of-Spec.)"; _

Tab(36); Format(PS(l, 4) * 1000000, "#,0")
Print #Openfile 1, "p* - Lower Confidence Limit"; _

Tab(36); Format(PS(l, MAXPOS(l» * 1000000, "#,0")
Print #Openfilel, "p* - Upper Confidence Limit";_

Tab(36); Format(PS(I, MINPOS(1» * 1000000, "#,0")
Print #Openfi Ie1, "------------------------------"; Tab(34); "------------,,
Print #Openfilel, "Cpa (Capability Index)"; Tab(36); Format(MCPA(2), F6)
Print #Openfilel, "Cpa - Lower Confidence Limit"; Tab(36); Format(MCPA(l), F6)
Print #Openfilel, "Cpa - Upper Confidence Limit"; Tab(36); Format(MCPA(3), F6)
Print #Openfile 1, "------------------------------"; Tab(34); ,, II

ElselfNV = 2 Then
Print #OpenfileI, Spc(4); "UNIVARlATE STATISTICS"; Tab(34); "VARIABLE # 1";_

Tab(48); "VARlABLE # 2"
Print #Openfile I, "------------------------------"; Tab(34); "------------"; _

Tab(48); ,, II

Print #Openfilel, "Selected Johnson Distribution"; Tab(39); DIST(l);_
Tab(53); DIST(2)

Print #Openfilel, "NS (Number of Samples)"; Tab(35); NS;_
Tab(49); NS

Print #Openfilel, "LSL (Lower Spec. Limit)"; Tab(35); SIGN(LSL(1»;_
Format(Abs(LSL(l», F6); Tab(49); SIGN(LSL(2»;_
Forrnat(Abs(LSL(2», F6)

Print #Openfilel, "USL (Upper Spec. Limit)"; Tab(35); SIGN(USL(I»;_
Format(Abs(USL(l», F6); Tab(49); SIGN(USL(2»;_
Format(Abs(USL(2», F6)
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Print #Openfile1, "E (Xi)"; Tab(35); SIGN(E(l»; Fonnat(Abs(E(l», F6);_
Tab(49); SIGN(E(2»; Fonnat(Abs(E(2», F6)

Print #Openfile1, "L (Lambda)"; Tab(35); SIGN(L(1»; Fonnat(Abs(L(1», F6);_
Tab(49); SIGN(L(2»; Forrnat(Abs(L(2», F6)

Print #Openfile1, "D (Delta)"; Tab(35); SIGN(D(l»; Forrnat(Abs(D(l», F6);_
Tab(49); SIGN(D(2»; Forrnat(Abs(D(2», F6)

Print #Openfile1, "G (Gamma)"; Tab(35); SIGN(G(1 »; Forrnat(Abs(G(1», F6); _
Tab(49); SIGN(G(2»; Fonnat(Abs(G(2», F6)

Print #Openfilel, "F-Value ofK-S Test"; Tab(36); Fonnat(FV(l), "0.00%");_
Tab(50); Fonnat(FV(2), "0.00%")

Print #Openfile1, "PL (PPM < LSL)"; Tab(36); Fonnat(PL(1, 4) * 1000000, "#,0");_
Tab(50); Fonnat(PL(2, 4) * 1000000, "#,0")

Print#Openfilel, "PU (PPM> USL)"; Tab(36); Forrnat(PU(1, 4) * 1000000, "#,0");_
Tab(50); Fonnat(PU(2, 4) * 1000000, "#,0")

Print #Openfile1, "p* (Total PPM Out-of-Spec.)"; _
Tab(36); Fonnat(PS(1, 4) * 1000000, "#,0");_
Tab(50); Forrnat(PS(2, 4) * 1000000, "#,0")

Print #Openfile1, "P* - Lower Confidence Limit";_
Tab(36); Forrnat(PS(l, MAXPOS(1» * 1000000, "#,0"); _
Tab(50); Fonnat(PS(2, MAXPOS(1» * 1000000, "#,0")

Print #Openfile 1, "p* - Upper Confidence Limi t"; _
Tab(36); Fonnat(PS(1, MINPOS(l» * 1000000, "#,0");_
Tab(50); Forrnat(PS(2, MINPOS(1» * 1000000, "#,0")

Print #Openfile1 ,,------------------------------". Tab(3 4)· "------------,,., "'-
Tab(48); "------------,,

Print #Openfi1el, "Cpa (Capability Index)"; Tab(36); Format(CPA(l, 4), F6);_
Tab(50); Format(CPA(2, 4), F6)

Print #Openfile1, "Cpa - Lower Confidence Limit"; Tab(36); Fonnat(CPA(], 8), F6); _
Tab(50); Fonnat(CPA(2, 8), F6)

Print #Openfile1, "Cpa - Upper Confidence Limit"; Tab(36); Format(CPA(l, 9), F6); _
Tab(50); Fonnat(CPA(2, 9), F6)

Print #Openfile1, "------------------------------"; Tab(34); "------------"; _
Tab(48); "------------,,

Print #Openfi1e1,
Print #Openfilel, Spc(3); "MULTIVARlATE STATISTICS"; Tab(37); "SYSTEM";_

Tab(49); "CORRELATION"
Print #Openfile1, "------------------------------"; Tab(34); "------------"; _

Tab(49); "COEFFICIENT"
Print #Openfile1, "Multivariate Johnson System"; Tab(39); DIST(l); DIST(2); _

Tab(53); "P12"
Print #Openfilel, "MP* (Total PPM Out-of-Spec.)"; _

Tab(36); Format(MPS(2), "#,0"); _
Tab(49); ,,-----------"

Print #Openfi.lel, "MP* - Lower Confidence Limit"; _
Tab(36); Fonnat(MPS(3), "#,0"); _
Tab(50); SIGN(P 12); Format(Abs(P 12), F6)

142



Print #Openfilel, "MP* - Upper Confidence Limit";
Tab(36); Forrnat(MPS(1), "#,0")

Print #Openfi Ie1, "------------------------------"; Tab(34); "--- ,,
Print #Openfilel, "MCpa (Capability Index)"; Tab(36); Format(MCPA(2), F6)
Print #Openfilel, "MCpa - Lower Confidence Limit"; Tab(36); Format(MCPA(l), F6)
Print #Openfilel, "MCpa - Upper Confidence Limit"; Tab(36); Fonnat(MCPA(3), F6)
Print #Openfile1, "------------------------------"; Tab(34); "------------,,

Eiself NY = 3 Then
Print #Openfilel, Spc(4); "UNlYARlATE STATISTICS"; Tab(34); "VARIABLE # 1";

Tab(48); "VARIABLE # 2"; _
Tab(62); "VARIABLE # 3"

Print #Openfile 1 "------------------------------". Tab(34)' "------------"., "'-
Tab(48); "------------";_
Tab(62); "------------"

Print #Openfilel, "Selected Johnson Distribution"; Tab(39); DIST(1);
Tab(53); DIST(2); _
Tab(67); DIST(3)

Print #Openfilel, "NS (Number of Samples)"; Tab(35); NS;_
Tab(49); NS; _
Tab(63); NS

Print #Openfilel, "LSL (Lower Spec. Limit)"; Tab(35); SIGN(LSL(l »; _
Forrnat(Abs(LSL(1», F6); Tab(49); SIGN(LSL(2»; _
Format(Abs(LSL(2», F6); Tab(63); SIGN(LSL(3»;_
Fonnat(Abs(LSL(3», F6)

Print #Openfilel, "USL (Upper Spec. Limit)"; Tab(35); SIGN(USL(1»;_
Format(Abs(USL(l», F6); Tab(49); SIGN(USL(2»;_
Format(Abs(USL(2», F6); Tab(63); SIGN(USL(3»; _
Fonnat(Abs(USL(3», F6)

Print #Openfilel, "E (Xi)"; Tab(35); SIGN(E(1 »; Format(Abs(E( In, F6); "._
Tab(49); SIGN(E(2»; Forrnat(Abs(E(2», F6);_
Tab(63); SIGN(E(3»; Fonnat(Abs(E(3», F6)

Print #Openfilel, tiL (Lambda)"; Tab(35); SIGN(L(1»; Fonnat(Abs(L(1», F6);_
Tab(49); SIGN(L(2»; Fonnat(Abs(L(2», F6);_
Tab(63); SIGN(L(3»; Format(Abs(L(3», F6)

Print #Openfilel, "D (Delta)"; Tab(35); SIGN(D(1»; Format(Abs(D(l», F6);_
Tab(49); SIGN(D(2»; FOffi1at(Abs(D(2», F6);_
Tab(63); SIGN(D(3»; F0ffi1at(Abs(D(3», F6)

Print #Openfilel, "G (Gamma)"; Tab(35); SIGN(G(l»; Forrnat(Abs(G(l», F6); _
Tab(49); SIGN(G(2»; Fonnat(Abs(G(2», F6);_
Tab(63); SIGN(G(3»; Forrnat(Abs(G(3», F6)

Print #Openfilel, "F-Value ofK-S Test"; Tab(36); Fonnat(FV(l), "0.00%");_
Tab(50); Format(FV(2), "0.00%"); _
Tab(64); Format(FV(3), "0.00%")

Print #Openfilel, tlpL (PPM < LSL)"; Tab(36); Format(PL(1, 4) * 1000000, "#,0");_
Tab(50); Format(pL(2, 4) * 1000000, "#,0");_
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Tab(64); Format(PL(3, 4) * 1000000, "#,0")
Print #Openfilel, "PU (PPM> USL)"; Tab(36); Format(PU(1, 4) * 1000000, "#,0");

Tab(50); Format(PU(2, 4) * 1000000, "#,0"); _ -
Tab(64); Format(PU(3, 4) * 1000000, "#,0")

Print #Openfilel, "p* (Total PPM Out-of-Spec.)"; _
Tab(36); Format(PS(1, 4) * 1000000, "#,0"); _
Tab(50); Format(PS(2, 4) * 1000000, "#,0");_
Tab(64); Format(PS(3, 4) * 1000000, "#,0")

Print #Openfile 1, "p* - Lower Confidence Limit"; _
Tab(36); Fonnat(PS(1, MAXPOS(1» * 1000000, "#,0");_
Tab(50); Fonnat(PS(2, MAXPOS(1» * 1000000, "#,0");_
Tab(64); Format(PS(3, MAXPOS(l» * 1000000, "#,0")

Print #Openfilel, "p* - Upper Confidence Limit";_
Tab(36); Format(PS(l, MINPOS(l» * 1000000, "#,0");_
Tab(50); Fonnat(PS(2, MINPOS(l» * 1000000, "#,0"); _
Tab(64); Format(PS(3, MINPOS(l» * 1000000, "#,0")

Print #Openfile1, "------------------------------"; Tab(34); "------------"; _
Tab(48); "------------";_
Tab(62); "------------,,

Print #Openfile1, "Cpa (Capability Index)"; Tab(36); Format(CPA(1, 4), F6);_
Tab(50); Format(CPA(2, 4), F6);_
Tab(64); Fonnat(CPA(3, 4), F6)

Print #Openfilel, "Cpa - Lower Confidence Limit"; Tab(36); Format(CPA(I, 8), F6); _
Tab(50); Format(CPA(2, 8), F6);_
Tab(64); Format(CPA(3, 8), F6)

Print #Openfile1, "Cpa - Upper Confidence Limit"; Tab(36); Format(CPA( 1, 9), F6); _
Tab(50); Format(CPA(2, 9), F6);_
Tab(64); Format(CPA(3, 9), F6)

Print #Openfi Ie 1 "------------------------------,,. Tab(34)' "------------,,., "'-
Tab(48)' "------------,,., '-
Tab(62); II "

Print #Openfilel,
Print #Openfilel, Spc(3); "MULTIVARIATE STATISTICS"; Tab(37); "SYSTEM";_

Tab(49); "CORRELATION"; Tab(62); "COEFFICIENTS"
Print #Openfile 1 ,, ". Tab(34)' II ------------".

, "'-
Tab(49); "-----------"; Tab(62); "------------,,

Print #Openfilel, "Multivariate Johnson System"; Tab(38); DIST(l); DIST(2);_
DIST(3); _
Tab(53); "P12"; Tab(63); SIGN(P12); Format(Abs(P12), F6)

Print #Openfilel, "MP* (Total PPM Out-of-Spec.)";_
Tab(36); Format(MPS(2), "#,0"); _
Tab(53); "Pl3"; Tab(63); SIGN(P13); Format(Abs(P13), F6)

Print #Openfilel, "MP* - Lower Confidence Limit";_
Tab(36); Format(MPS(3), "#,0");_
Tab(53); "p23"; Tab(63); SIGN(P23); Fonnat(Abs(P23), F6)

Print #Openfilel, "MP* - Upper Confidence Limit"; _
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Tab(36); Format(MPS(1), "#,0")
Print #Openfile1, "------------------------------"; Tab(34); "------------,,
Print #Openfilel, "MCpa (Capability Index)"; Tab(36); Format(MCPA(2), F6)
Print #Openfilel, "MCpa - Lower Confidence Limit"; Tab(36); Fonnat(MCPA(1), F6)
Print #Openfilel, "MCpa - Upper Confidence Limit"; Tab(36); Fonnat(MCPA(3), F6)
Print #Openfile1, "------------------------------"; Tab(34); "------------"

Else
Print #Openfilel, Spc(4); "UNIVARIATE STATISTICS"; Tab(34); "VARIABLE # 1";_

Tab(48); "VARIABLE # 2";_
Tab(62); "VARIABLE # 3";_
Tab(76); "VARIABLE # 4"

Print #Openfilel, "------------------------------"; Tab(34); "------------"; _
Tab(48); "------------";
Tab(62); "------------";
Tab(76); "------------,,

Print #Openfilel, "Selected Johnson Distribution"; Tab(39); DIST(l);_
Tab(53); DIST(2); _
Tab(67); DIST(3); _
Tab(81); DIST(4)

Print #Openfile1, "NS (Number of Samples)"; Tab(35); NS;_
Tab(49); NS; _
Tab(63); NS;_
Tab(77); NS

Print #Openfilel, "LSL (Lower Spec. Limit)"; Tab(35); SIGN(LSL(1»;_
Format(Abs(LSL(1», F6); Tab(49); SIGN(LSL(2»;_
Format(Abs(LSL(2», F6); Tab(63); SIGN(LSL(3»; _
Format(Abs(LSL(3», F6); Tab(77); SIGN(LSL(4»; _
Format(Abs(LSL(4», F6)

Print #Openfile1, "USL (Upper Spec. Limit)"; Tab(35); SIGN(USL(1»;_
Format(Abs(USL(1 », F6); Tab(49); SIGN(USL(2»; _
Format(Abs(USL(2», F6); Tab(63); SIGN(USL(3»;_
Format(Abs(USL(3», F6); Tab(77); SIGN(USL(4»;_
Format(Abs(USL(4», F6)

Print #Openfilel, "E (Xi)"; Tab(35); SIGN(E(l); Format(Abs(E(l», FG);_
Tab(49); SIGN(E(2»; Format(Abs(E(2», F6);_
Tab(63); SIGN(E(3»; Format(Abs(E(3», F6); _
Tab(77); SIGN(E(4»; Format(Abs(E(4», F6)

Print #Openfilel, "L (Lambda)"; Tab(35); SIGN(L(1»; Format(Abs(L(l», F6);_
Tab(49); SIGN(L(2»; Format(Abs(L(2», F6);_
Tab(63); SIGN(L(3»; Format(Abs(L(3», F6); _
Tab(77); SIGN(L(4»; Format(Abs(L(4», F6)

Print #Openfile1, "D (Delta)"; Tab(35); SIGN(D(1 »; Format(Abs(D(I», F6); _
Tab(49); SIGN(D(2»; Format(Abs(D(2», F6); _
Tab(63); SIGN(D(3»; Fonnat(Abs(D(3», F6);_
Tab(77); SIGN(D(4»; Fonnat(Abs(D(4», F6)
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Print #Openfile1, "G (Gamma)"; Tab(35); SIGN(G(l»; Fonnat(Abs(G(1», F6); _
Tab(49); SIGN(G(2»; Fonnat(Abs(G(2», F6); _
Tab(63); SIGN(G(3»; Format(Abs(G(3», F6); _
Tab(77); SIGN(G(4»; Fonnat(Abs(G(4», F6)

Print #Openfilel, "F-Value ofK-S Test"; Tab(36); Format(FV(l), "0.00%");_
Tab(50); Format(FV(2), "0.00%");_
Tab(64); Fonnat(FV(3), "0.00%"); _
Tab(78); Fonnat(FV(4), "0.00%")

Print #Openfile1, "PL (PPM < LSL)"; Tab(36); Fonnat(pL(l, 4) * 1000000, "#,0");
Tab(50); Format(PL(2, 4) * 1000000, "#,0"); _
Tab(64); Format(PL(3, 4) * 1000000, "#,0"); _
Tab(78); Format(PL(4, 4) * 1000000, "#,0")

Print #Openfile1, "PU (PPM> USL)"; Tab(36); Fonnat(PU(l, 4) * 1000000, "#,0");_
Tab(50); Fonnat(PU(2, 4) * 1000000, "#,0");_
Tab(64); Format(PU(3, 4) * 1000000, "#,0");_
Tab(78); Format(PU(4, 4) * 1000000, "#,0")

Print #Openfile1, "p* (Total PPM Out-of-Spec.)";_
Tab(36); Format(pS( 1, 4) * 1000000, "#,0"); _
Tab(50); Fonnat(PS(2, 4) * 1000000, "#,0"); _
Tab(64); Fonnat(PS(3, 4) * 1000000, "#,0");_
Tab(78); Fonnat(PS(4, 4) * 1000000, "#,0")

Print #Openfile 1, "p* - Lower Confidence Limit"; _
Tab(36); Format(PS(l, MAXPOS(I» * 1000000, "#,0");_
Tab(50); Fonnat(PS(2, MAXPOS(l» * 1000000, "#,0"); _
Tab(64); Fonnat(PS(3, MAXPOS(l)) * 1000000, "#,0"); _
Tab(78); Fonnat(PS(4, MAXPOS(l» * 1000000, "#,0")

Print #Openfile 1, "p* - Upper Confidence Limit"; _
Tab(36); Format{PS(l, MINPOS(l» * 1000000, "#,0"); _
Tab(50); Fonnat(PS(2, MINPOS(l» * 1000000, "#,0");_
Tab(64); Format(PS(3, MINPOS(l» * 1000000, "#,0");_
Tab(78); Format(PS(4, MINPOS(l» * 1000000, "#,0")

Print #Openfile I, "------------------------------"; Tab(34); "------------"; _
Tab(48)' II II.

, '-
Tab(62); "------------";_
Tab(76); "------------"

Print #Openfilel, "Cpa (Capability Index)"; Tab(36); Fonnat(CPA(l, 4), F6); _
Tab(50); Format(CPA(2, 4), F6);_
Tab(64); Format(CPA(3, 4), F6);_
Tab(78); Fonnat(CPA(4, 4), F6)

Print #Openfile1, "Cpa - Lower Confidence Limit"; Tab(36); Fonnat(CPA(l, 8), F6);_
Tab(50); Fonnat(CPA(2, 8), F6);_
Tab(64); Fonnat(CPA(3, 8), F6);_
Tab(78); Fonnat(CPA(4, 8), F6)

Print #Openfile1, "Cpa - Upper Confidence Limit"; Tab(36); Fonnat(CPA(1, 9), F6);_
Tab(50); Format(CPA(2, 9), F6); _
Tab(64); Format(CPA(3, 9), F6);_
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Tab(78); Fonnat(CPA(4, 9), F6)
Print #OpenfiJe1, "------------------------------"; Tab(34); "------------";

Tab(48); "------------";
Tab(62); "------------"; _
Tab(76); "------------,,

Print #Openfile1,
Print #Openfilel, Spc(3); "MULTIVARIATE STATISTICS"; Tab(37); "SYSTEM";

Tab(49); "CORRELATION"; Tab(62); "COEFFICIENTS"
Print #Openfile1 "------------------------------". Tab(34)' "------------,,., "'-

Tab(49); "-----------"; Tab(62); "------------,,
Print #Openfilel, "Multivariate Jolmson System"; Tab(38); DIST(l); DIST(2);_

DIST(3); DIST(4);_
Tab(53); "PI2"; Tab(63); SIGN(PI2); Fonnat(Abs(P12), F6)

Print #Openfilel, "MP* (Total PPM Out-of-Spec.)";_
Tab(36); Fonnat(MPS(2), "#,0"); _
Tab(S3); "P13"; Tab(63); SIGN(P13); Fonnat(Abs(P13), F6)

Print #Openfile1, "MP* - Lower Confidence Limit";
Tab(36); Forrnat(MPS(3), "#,0"); _
Tab(53); "P23"; Tab(63); SIGN(P23); Fonnat(Abs(P23), F6)

Print #Openfilel, "MP* - Upper Confidence Limit";_
Tab(36); Fonnat(MPS(l), "#,0");_
Tab(S3); "P14"; Tab(63); SIGN(P14); Fonnat(Abs(PI4), F6)

Print #Openfile1 "------------------------------,,. Tab(34)' ,, ".
, "'-
Tab(53); "P24"; Tab(63); SIGN(P24); Fonnat(Abs(P24), F6)

Print #Openfilel, "MCpa (Capability Index)"; Tab(36); Fonnat(MCPA(2), F6);_
Tab(53); "P34"; Tab(63); SIGN(P34); Fonnat(Abs(P34), F6)

Print #Openfilel, "MCpa - Lower Confidence Limit"; Tab(36); Fonnat(MCPA(l), F6)
Print #Openfilel, "MCpa - Upper Confidence Limit"; Tab(36); Fonnat(MCPA(3), F6)
Print #Openfile 1, "------------------------------"; Tab(34); "------------,,

End If
Close #Openfilel
DoCmd.Hourglass False
DoCmd.Beep
MsgBox "DATA WRITTEN TO" & Ofilepath
End Sub
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Sub DistFitter(XO As Double, NS As Integer, E As Double, L As Double,
D As Double, G As Double, FV As Double, DIST As String)

'***********************************************************************
'* This Visual Basic Code Fits Univariate Sample Data to Johnson Systems and Selects
'* the Best Fit as Detennined by a Selection Decision Matrix.
'***********************************************************************
Dim EO As Double, E I As Double, E2 As Double, E3 As Double
Dim E4 As Double, E5 As Double, NE As Double, LSE As Double
Dim NL As Double, LSL As Double, L2P As Integer
Dim DI As Double, D2 As Double, D3 As Double
Dim D4 As Double, D5 As Double, ND As Double, LSD As Double
Dim G I As Double, G2 As Double, G3 As Double
Dim G4 As Double, G5 As Double, NG As Double, LSG As Double
Dim DISTI As String, D1ST2 As String, DIST3 As String
Dim D1ST4 As String, DIST5 As String, NDIST As String, LSDIST As String
Dim FVI As Double, FV2 As Double, FV3 As Double
Dim FV4 As Double, FV5 As Double, NFV As Double, LSFV As Double
Dim PV As Double, DM As Double, DELTA As Double, ZG As Double
Dim PMI As Double, PM2 As Double, PM3 As Double, PM4 As Double
Dim PBI As Double, PGl As Double, PB2 As Double, PG2 As Double, B2C As Double
Dim START(1 To 4) As Double, MIN(1 To 4) As Double, N As Integer
Dim YNEWLO As Double, REQMIN As Double, STEP(l To 4) As Double
Dim KONVGE As Integer, ICOUNT As Long, RESTART As Integer, ITER As Long
Dim ZO As Double, OCO As Double, TCO As Double
ReDim Z(1 To NS): ReDim OC(1 To NS): ReDim TC(1 To NS)

Call Stat1(XO, NS, PMI, PM2, PM3, PM4, PBI, PGI, PB2, PG2)
B2C = CB2(PB I)
NDIST = "N" I NORMAL

NL= I
NE=O
NO = 1 I Sqr(PM2)
NG = -PMll Sqr(PM2)

Call STDZ(NDIST, NS, XO, NG, NO, NE, NL, Z()
Call TCFD(NS, ZO, TCO)
Call OCFD(NS, ZO, OCO)
DM = DMAX(NS, OCO, Teo)
PV = PKS2(NS, DM)

NFV = I - PV

LSL= 1
If PM3 < 0 Then

LSDIST = "S" 'SPECIAL - MLE ESTIMATION
Call SJohnson(NS, XO, PG 1, PM I, PM2, LSD, LSE, LSG)
Call STDZ(LSDIST, NS, XO, LSG, LSD, LSE, LSL, ZO)
Call TCFD(NS, ZO, TCO)
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Else

Call OCFD(NS, ZO, OCc)
DM = DMAX(NS, OCc), TCO)
PV = PKS2(NS, DM)

LSFV = 1 - PV

DISTI = "SI" 'SPECIAL - MLL OPTIMIZATION
N = 2: START(l) = LSD: START(2) = LSG: START(3) = LSE
Call NELMIN(DISTI, NS, XO, N, STARTO, MINO, YNEWLO, REQMIN,

STEP, KONVGE, ICOUNT)
RESTART = Fix(ICOUNT / I0000): ITER = ICOUNT - RESTART * 10000

Dl = MIN(l)
GI = MIN(2)

Call STDZ(LSDIST, NS, XO, Gl, Dl, LSE, LSL, ZO)
Call TCFD(NS, ZO, TCO)
Call OCFD(NS, ZO, OCO)
DM = DMAX(NS, OCO, TCO)
PV = PKS2(NS, DM)

FVI = I - PV

IfFV I > LSFV Then
LSD=Dl
LSG=Gl
LSFV = FVI

End If

DIST2 = "S2" 'SPECIAL - MDE OPTIMIZATION
N = 2: START(I) = LSD: START(2) = LSG: START(3) = LSE
Call NELMIN(DIST2, NS, XO, N, STARTO, MINO, YNEWLO, REQMIN, _

STEP, KONVGE, ICOUNT)
RESTART = Fix(ICOUNT /10000): ITER = lCOUNT - RESTART * 10000

D2 = MIN(l)
G2 =MIN(2)

Call STDZ(LSDIST, NS, XO, G2, D2, LSE, LSL, ZO)
Call TCFD(NS, ZO, TCO)
Call OCFD(NS, ZO, OCO)
DM = DMAX(NS, OCO, TCO)
PV = PKS2(NS, DM)

FV2 = 1 - PV

IfFV2 > LSFV Then
LSD=D2
LSG=G2
LSFV=FV2

End If
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LSDIST = ilL" 'LOGNORMAL - 3 PARAMETER MLE
Call LJohnson(NS, XO, PGl, PMl, PM2, LSD, LSE, LSG, L2P)
Call STDZ(LSDIST, NS, XO, LSG, LSD, LSE, LSL, ZO)
Call TCFD(NS, ZO, TCO)
Call OCFD(NS, ZO, OCO)
OM = DMAX(NS, OCO, TCO)
PV = PKS2(NS, DM)

LSFV = 1 - PV
EO=LSE

If L2P = 0 Then GoTo 20 ' Skip the 2-parameter trial

DISTI = "L" 'LOGNORMAL - 2 PARAMETERMLE
EI =0

Call STDZ(DISTI, NS, XO, LSG, LSD, EI, LSL, ZO)
Call TCFD(NS, ZO, TCO)
Call OCFD(NS, ZO, aCO)
DM = DMAX(NS, OCO, TCO)
PV = PKS2(NS, DM)

FVI = I - PV

If FV1 > LSFV Then
LSE = EI
LSFV = FVI

End If

20 DIST2 = "LI" 'LOGNORMAL - 3 PARAMETER MLL OPTIMIZATION
E2=EO

N = 2: START(I) = LSD: START(2) = LSG: START(3) = E2
Call NELMIN(DISTI, NS, XO, N, STARTO, MINO, YNEWLO, REQMIN,_

STEP, KONVGE, ICOUNT)
RESTART = Fix(ICOUNT /10000): ITER = ICOUNT - RESTART * 10000

D2 = MIN(1)
G2 = MIN(2)

Call STDZ(LSDIST, NS, XO, G2, 02, E2, LSL, ZO)
Call TCFO(NS, ZO, TCO)
Call OCFO(NS, ZO, OCO)
OM = DMAX(NS, OCO, TCO)
PV = PKS2(NS, OM)

FV2 = 1- PV

IfFV2 > LSFV Then
LSE=E2
LSD = 02
LSG= G2
LSFV =FV2
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End If

IfL2P = 0 Then GaTo 30 I Skip the 2-parameter trial

DIST3 = "Ll" 'LOGNORMAL - 2 PARAMETER MLL OPTIMIZATION
E3 =0

N = 2: START(1) = LSD: START(2) = LSG: START(3) = E3
Call NELMrN(DIST3, NS, XO, N, STARTO, MINO, YNEWLO, REQMIN, _

STEP, KONVGE, ICOUNT)
RESTART = Fix(ICOUNT /10000): ITER = ICOUNT - RESTART * 10000

D3 = MIN(1)
G3 = MIN(2)

Call STDZ(LSDIST, NS, XO, G3, D3, E3, LSL, ZO)
Call TCFD(NS, ZO, TCO)
Call OCFD(NS, ZO, OCO)
DM = DMAX(NS, DCO, TCO)
PY = PKS2(NS, DM)

FY3 = 1 - PY

IfFY3 > LSFV Then
LSE = E3
LSD = D3
LSG= G3
LSFV =FV3

End If

30 DIST4 = "L2" 'LOGNORMAL - 3 PARAMETER MDE OPTIMIZATION
E4=EO

N = 2: START(1) = LSD: START(2) = LSG: START(3) = E4
Call NELMIN(DIST4, NS, XO, N, STARTO, MINO, YNEWLO, REQMIN, _

STEP, KONVGE, ICOUNT)
RESTART = Fix(ICOUNT /10000): ITER = ICOUNT - RESTART * 10000

D4 = MIN(1)
G4 = MIN(2)

Call STDZ(LSDIST, NS, XO, G4, D4, E4, LSL, ZO)
Call TCFD(NS, ZO, TCO)
Call OCFD(NS, Z, OC)
DM = DMAX(NS, OCO, Teo)
PV = PKS2(NS, DM)

FV4 = 1 - PV

If FV4 > LSFV Then
LSE= E4
LSD = D4
LSG = G4
LSFV = FV4
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End If

IfL2P = 0 Then GoTo 40 ' Skip the 2-pararneter trial

DIST5 = "L2" 'LOGNORMAL - 2 PARAMETER MDE OPTIMIZATION
E5 =0

N = 2: START(1) = LSD: START(2) = LSG: START(3) = E5
Call NELMIN(DIST5, NS, XO, N, STARTO, MINO, YNEWLO, REQMIN, _

STEP, KONVGE, ICOUNT)
RESTART = Fix(ICOUNT /10000): ITER = ICOUNT - RESTART * 10000

D5 = MIN(l)
G5 = MIN(2)

Call STDZ(LSDIST, NS, XO, G5, D5, E5, LSL, ZO)
Call TCFD(NS, ZO, TCO)
Call OCFD(NS, ZO, OCO)
DM = DMAX(NS, OCO, TCO)
PY = PKS2(NS, DM)

FV5 = 1 - PV

IfFV5 > LSFV Then
LSE = E5
LSD=D5
LSG=G5
LSFV =FV5

End If

40 End If

DELTA = LSFV - NFV
ZG = Abs(PGl) / Sqr(6 / NS)

IfNFV > 0.2 And DELTA < 0.3 And ZG < 1.96 Then 'CALL IT NORMAL
E=NE
L=NL
D=ND
G=NG
FV =NFV
DIST=NDIST
GoTo 50

Elself LSFV > 0.2 And ZG > 1.96 Then 'CALL IT SPECIAL OR LOGNORMAL
E=LSE
L=LSL
D=LSD
G=LSG
FV = LSFV
DIST = LSDIST
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GoTo 50
End If

REQMIN = 1E-16: KONVGE = 5: ICOUNT = 1000
STEP(l) = 1: STEP(2) = 1: STEP(3) = 1: STEP(4) = 1

If B2C < PB2 Then
DIST = "U" 'UNBOUNDED - MDE OPTIMIZATION
Call UJohnson(PB1, PB2, PM1, PM2, PM3, E, L, G, D)
N = 4: START(I) = D: START(2) = E: START(3) = G: START(4) = L
Call NELMIN(DIST, NS, XO, N, STARTO, MINO, YNEWLO, REQMIN,_

STEP, KONVGE, ICOUNT)
RESTART = Fix(ICOUNT /10000): ITER = ICOUNT - RESTART * 10000

D = MIN(1)
E=MIN(2)
G = MIN(3)
L = MIN(4)

Call STDZ(DIST, NS, XO, G, D, E, L, ZO)
Call TCFD(NS, ZO, TCO)
Call OCFD(NS, ZO, OCO)
DM = DMAX(NS, OCO, TCO)
PV =PKS2(NS, DM)

FV = 1 - PV
Else

DIST = "B" 'BOUNDED - MDE OPTIMIZATION
Call BJohnson(NS, XO, PM3, D, E, G, L)
N = 2: START(l) = D: START(2) = G: START(3) = E: START(4) = L
Call NELMIN(DIST, NS, XO, N, STARTO, MINO, YNEWLO, REQMfN,_

STEP, KONVGE, ICOUNT)
RESTART = Fix(ICOUNT /10000): ITER = ICOUNT - RESTART * 10000

D = MIN(1)
G = MIN(2)

Call STDZ(DIST, NS, XO, G, D, E, L, ZO)
Call TCFD(NS, ZO, TCO)
Call OCFD(NS, ZO, OCO)
DM = DMAX(NS, OCO, TCO)
PV = PKS2(NS, DM)

FV = 1 - PV
End If

50 End Sub
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Sub Statl (XO As Double, N As Integer, Ml As Double, M2 As Double, _
M3 As Double, M4 As Double, B I As Double, G1 As Double, _
B2 As Double, G2 As Double)

,***********************************************************************
,* This Visual Basic Code Calculates the Descriptive Statistics for the Sample Data.
'***********************************************************************
Dim Suml As Double, Sum2 As Double, Sum3 As Double, Sum4 As Double
Dim I As Integer

Suml = 0: Sum2 = 0: Sum3 = 0: Sum4 = 0
For I = 1 To N

Sum 1 = Sum 1 + XCI)
Next I
M 1 = Sum 1 / N 'I st Moment about Origin (Sample Average)
For I = 1 To N

Sum2 = Sum2 + (X(l) - Ml) /\ 2
Sum3 = Sum3 + (X(l) - MI) /\ 3
Sum4 = Sum4 + (X(l) - Ml) /\ 4

Next I
M2 = Sum2 / N '2nd Moment about Mean (Sample Variance)
M3 = Sum3 / N '3rd Moment about Mean
M4 = Sum4 / N '4th Moment about Mean
B1 = M3 /\ 2/ M2 /\ 3 'Skewness Measure
Gl = Sgn(M3) * Sqr(Bl) 'Skewness Measure
82 = M4 / M2 /\ 2 'Kurtosis Measure
G2 = B2 - 3 'Kurtosis Measure
End Sub
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Sub UJohnson(BI As Double, B2 As Double, Ml As Double, M2 As Double,
M3 As Double, E As Double, L As Double, G As Double, D As Double)

'***********************************************************************
'* This Visual Basic Code Calculates Initial Parameter Estimates for the Johnson
'* Unbounded System on Sample Data.
'***********************************************************************
Dim W As Double, M As Double, AO As Double, Al As Double, A2 As Double
Dim A3 As Double, K As Double, XB As Double, I As Long, C As Double
Dim B As Double, BIH As Double, BID As Double, S As Double

1=0
BID = 10
D = I 'changed from D = 4, due to problems with M calculation
W = Exp( I / D A 2)
Do Until BID <= 0.00000001
K = 2 * (B2 - 3) / (W - 1)
AO = W A 5 + 3 * W A 4 + 6 * W A 3 + 10 * W /\ 2 + 9 * W + 3
Al = 8 * (W /\ 4 + 3 * W A 3 + 6 * W A 2 + 7 * W + 3)
A2 = 8 * (W /\ 3 + 3 * W A 2 + 6 * W + 6)
A3 = 4 * (W + 1) * K - Al
M = (A3 + Sqr(A3 A 2 - 4 * (A2 - 4 * K) * (AO - (W + 1) /\ 2 * K») / _

(2 * (A2 - 4 * K»
B1H = (M * (W - 1) * (4 * (W + 2) * M + 3 * (W + 1) /\ 2) /\ 2) / _

(2 * (2 * M + W + 1) A 3)
BID = Abs(Bl - BIH)
B=BI/BIH
C = 3 - 2 * B2 * (1 - B) - B * (W /\ 4 + 2 * W A 2 + 3)
W = Sqr(-l + Sqr(l - C»
1=1+1
Loop
D = Sqr(l / Log(W»
G = -Sgn(M3) * Abs(D * ArcSinh(Sqr(M»)
S = Sqr(M2)
L = S / Sqr(0.5 * (W - 1) * (W * Cosh(2 * G / D) + 1»
XB=Ml
E = XB + L * Sqr(W) * Sinh(G / D)
End Sub
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Sub LJohnson(M As Integer, XO As Double, G 1 As Double, MI As Double, _
M2 As Double, D As Double, E As Double, G As Double,
L2P As Integer)

'***********************************************************************
'* This Visual Basic Code Calculates Initial Parameter Estimates for the Johnson
'* Lognonna1 System on Sample Data.
'***********************************************************************
Dim T As Double, T1 As Double, T2 As Double, S As Double, W As Double
Dim MINX As Double, MAXX As Double, MEDX As Double
Dim Suml As Double, Sum2 As Double, I As Integer
Dim EM As Double, EE As Double, EB As Double

T 1 = «(G I / 2) + Sqr((G I /\ 2 / 4) + 1) /\ (1 / 3»
T2 = -«Abs«GI / 2) - Sqr«GI/\ 2 / 4) + 1))) /\ (1 /3»
T = T1 + T2
S = Sqr(M2)
EM = Ml - (S / T)
MINX = ExceI.Application.WorksheetFunction.MIN(X)
MAXX = Excel.Application.WorksheetFunction.MAX(X)
MEDX = Excel.Application.WorksheetFunction.Median(X)
I Check for 2-parameter trial necessary
If MINX> 0 Then L2P = 1 Else: L2P = 0
EE = (MINX * MAXX - MEDX /\ 2) / (MINX + MAXX - 2 * MEDX)
EB = MINX - (MAXX - MINX) / M
, JOHNSON MLE WITH LOCATION KNOWN
If EM >= MINX Or EM < (EB - 3 * (MAXX - MINX» Then EM = EB
If EE >= MINX Or EE < EB - (MAXX - MINX) Then EE = EB
If EM < EE Then

E=EM
Else

E=EE
End If
Sum} = 0: Sum2 = 0
For I = } To M

Suml = Suml + Log(X(I) - E)
Next I
T1=Suml/M
For I = 1 To M

Surn2 = Sum2 + (Log(X(I) - E) - TI) /\ 2
Next I
T2 = Sqr(Sum2 / M)
D = } / T2
G = -D * TI
End Sub
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Sub SJohnson(M As Integer, XO As Double, GI As Double, MI As Double,
M2 As Double, D As Double, E As Double, G As Double)

'***********************************************************************
'* This Visual Basic Code Calculates Initial Parameter Estimates for the Johnson
,* - Lewis Special System on Sample Data.
'***********************************************************************
Dim T As Double, TI As Double, T2 As Double, S As Double, W As Double
Dim MINX As Double, MAXX As Double, MEDX As Double
Dim Suml As Double, Sum2 As Double, I As Integer
Dim EM As Double, EE As Double, EB As Double

Tl = (((GI/2) + Sqr((Gl /\ 2/4) + 1) /\ (1/3»
T2 = -((Abs((G1 12) - Sqr((G1 /\ 2/4) + 1)) /\ (1/3»
T = TI + T2
S = Sqr(M2)
EM=MI-(S/T)
MINX = Excel.Application.WorksheetFunction.MIN(X)
MAXX = Excel.Application.WorksheetFunction.MAX(X)
MEDX = Excel.Application.WorksheetFunction.Median(X)
EE = (Abs(MINX) * Abs(MAXX) + Abs(MEDX) /\ 2) I (MINX + MAXX + 2 * MEOX)
EB = MAXX + (MAXX - MINX) I M
I JOHNSON MLE WITH LOCAnON KNOWN
IfEM <= MAXX Or EM > (EB + 3 * (MAXX - MINX» Then EM = EB
If EE <= MAXX Or EM > (EB + 3 * (MAXX - MINX» Then EE = EB
If EM > EE Then

E=EM
Else

E=EE
End If

Suml = 0: Sum2 = 0
For I = 1 To M

Sum 1 = Sum 1 + Log(E - XCI»~

Next I
Tl=SumI/M
For I = 1 To M

Sum2 = Sum2 + (Log(E - X(I» - TI) /\ 2
Next I
T2 = Sqr(Sum2 I M)
D = 11 T2
G = -0 * TI
End Sub
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Sub BJohnson(M As Integer, XO As Double, M3 As Double, D As Double,_
E As Double, G As Double, L As Double)

'***********************************************************************
'* This Visual Basic Code Calculates Initial Parameter Estimates for the Johnson
'* Bounded System on Sample Data.
'***********************************************************************
Dim MINX As Double, MAXX As Double, X I As Double, X3 As Double
Dim QI As Double, Q3 As Double, Kl As Double, K3 As Double

MINX = Excel.Application.WorksheetFunction.MIN(X)
MAXX = Excel.Application.WorksheetFunction.MAX(X)
QI = Excel.Application.WorksheetFunction.Quartile(X, I)
Q3 = Excel.Application.WorksheetFunction.Quartile(X, 3)
XI = Excel.Application.WorksheetFunction.NonnSInv(O.25)
X3 = Excel.Application.WorksheetFunction.NormSlnv(O.75)
E = MINX - (1 / M) * (MAXX - MINX)
L = MAXX + (I / M) * (MAXX - MINX) - E
KI = Log((QI - E) / (E + L - QI»)
K3 = Log((Q3 - E) / (E + L - Q3»
D = (Xl - X3) / (KI - K3)
G = Sgn(M3) * Abs(XI - D * Kl)
End Sub
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Function PKS2(N As Integer, D As Double) As Double
'***********************************************************************
'* This Visual Basic Code Represents Algoritlun 487 (CACM) by 10hn Pomeranz.
'* The algorithm calculates the exact cumulative distribution of the two-sided
'* Kolmogorov-Smimov statistics for samples with few observations.
'***********************************************************************
Dim Q(l To 141) As Double, FACT(1 To 141) As Double, SUM As Double
Dim FT As Double, FU As Double, FV As Double, FN As Double, FND As Double
Dim NDT As Integer, ND As Integer, NDD As Integer, NDP As Integer
Dim CI As Double, NDDP As Integer, SIGN As Integer
Dim I As Integer, IMAX As Integer, K As Integer, J As Integer
'***********************************************************************
'* N IS THE SAMPLE SIZE USED.
'* 0 IS THE MAXIMUM MAGNITUDE (OF THE DISCREPANCY
,* BETWEEN THE EMPIRICAL AND PROPOSED DISTRIBUTIONS)
,* IN EITHER THE POSITIVE OR NEGATIVE DIRECTION.
'* PKS2 IS THE EXACT PROBABILITY OF OBTAINING A
'* DEVIATION NO LARGER THAN D.
'* THESE FORMULAS APPEAR AS (23) AND (24) IN
'* J. DURBIN. THE PROBABILITY THAT THE SAMPLE
'* DISTRIBUTION FUNCTION LIES BETWEEN TWO PARALLEL
'* STRAIGHT LINES. ANNALS OF MATHEMATICAL STATISTICS
'* 39, 2(APRIL 1968),398-411.
'***********************************************************************

IfN = 1 Then GoTo 90
FN= CDbl(N)
FND=FN * D
NDT = CInt(Fix(2 * FND»
IfNDT < 1 Then GoTo 100
ND = CInt(Fix(FND»
NDD = ExceI.Application.WorksheetFunction.MIN(2 * NO, N)
NDP=ND+ 1
NDDP=NDD+ 1
FACT(1) = 1
CI = 1
ForI = 1 To N

FACT(I + 1) = FACT(I) * CI
CI = CI + 1

Next I
Q(1) = 1
IfNDD = 0 Then GoTo 50
CI = 1
For 1= 1 To NDD

Q(I + 1) = CI 1\ II FACT(I + 1)
CI = CI + 1
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Next I
IfNDP > N Then GoTo 80
FV = CDbl(NDP) - FND
JMAX = CInt(Int(FV)) + 1
For I = NDP To NDD

SUM=O
FT=FND
K=I
FU=FV
For J = 1 To JMAX

SUM = SUM + FT t\ (J - 2) / FACT(J) * FU t\ K / FACT(K + 1)
FT=FT+ 1
FU =FU - 1
K=K-l

NextJ
Q(I + 1) = Q(I + 1) - 2 * FND * SUM
JMAX = JMAX + 1
FV = FV + 1

Next I
IfNDD = N Then GoTo 80
50 For 1= NDDP To N

SUM=O
SIGN = 1
FT=2 * FND
For J = 1 To NDT

FT = FT - 1
K=I-J+l
SUM = SUM + SIGN * FT t\ J / FACT(J + I) * Q(K)
SIGN = -SIGN

Next J
Q(I + 1) = SUM

Next I
80 PKS2 = Q(N + 1) * FACT(N + 1) / FN t\ N

GoTo 110
90 PKS2 = 2 * D - 1

GoTo 110
100 PKS2 = 0
110 If PKS2 < 0.000001 Then PKS2 = 0

IfPKS2 > 0.999999 Then PKS2 = 1
End Function
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Function DMAX(NV As Integer, OCO As Double, TCO As Double) As Double
'***********************************************************************
'* This Visual Basic Code Calculates the Kolmogorov-Smimov D-Statistic,
'* Which Represents the Largest Deviation Between the Observed Cumulative
'* Frequency Distribution and the Expected Cumulative Frequency Distribution.
'***********************************************************************
Dim I As Integer, D As Double

DMAX=O
For I = 1 To NY

D = Abs(TC(I) - OC(I))
IfD > DMAX Then DMAX = D

Next I
End Function

Sub OCFD(NV As Integer, XO As Double, OCO As Double)
'***********************************************************************
'* This Visual Basic Code Calculates the Observed Cumulative Frequency Distribution.
'***********************************************************************
Dim COUNT As Integer, XP As Double, I As Integer, J As Integer

For I = I To NY
XP = XCI)
COUNT =0
For] = 1 To NY

IfXP >= X(J) Then COUNT = COUNT + 1
Next]
OC(I) = CDbl(COUNT) / CDbl(NV)

Next I
End Sub

Sub TCFD(NY As Integer, ZO As Double, TCO As Double)
'***********************************************************************
'* This Visual Basic Code Calculates the Expected Cumulative Frequency Distribution.
'* The Expected of "Theoretical" Distribution is always the Standard Normal.
'***********************************************************************
Dim I As Integer

For I = 1 To NY
TC(I) = Excel.Application.WorksheetFunction.NormSDist(Z(I))

Next I
End Sub
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Sub STDZ(DIST As String, NV As Integer, HO As Double, G As Double, _
D As Double, E As Double, L As Double, ZO As Double)

'***********************************************************************
'* This Visual Basic Code Calculates the Z Value of the Given Johnson System.
'* The Z-Value is the Standard Nonnal Transfonnation.
'***********************************************************************
Dim I As Integer

Select Case DIST
Case "L" 'LOGNORMAL

For 1= 1 To NV
Z(I) = G + D * Log(H(I) - E)

Next I
Case "S" 'SPECIAL

For 1= 1 To NY
Z(I) = G + D * Log(E - H(I))

Next I
Case "u" 'UNBOUNDED

For I = 1 To NV
Z(I) = G + D * ArcSinh«H(I) - E) / L)

Next I
Case "B" 'BOUNDED

ForI = 1 To NV
Z(I) = G + 0 * Log«H(I) - E) / (E + L - H(I)))

Next I
Case "N" 'NORMAL

For I = 1 To NY
Z(I) = G + D * H(I)

Next I
End Select
End Sub
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Sub NELMIN(DIST As String, M As Integer, XO As Double, N As Integer, _
STARTO As Double, MJNO As Double, YNEWLO As Double,_
REQMIN As Double, STEPO As Double, KONVGE As Integer, _
ICOUNT As Long)

'***********************************************************************
'* This Visual Basic Code Represents Algorithm AS 47 by R. O'Neill.
,* ALGORlTHM AS 47 APPLIED STATISTICS (J.R.STATIST.SOC C),
'* (1971) VOL.20, NO.3
'*
'* THE NELDER-MEAD SIMPLEX MINIMIZATION PROCEDURE
'*
'* PURPOSE:: TO FIND THE MINIMUM VALUE OF A USER-SPECIFIED
'* FUNCTION.
'*
'* REFERENCE:: NELDER,J.A. AND MEAD,R. (1965). A SIMPLEX METHOD
'* FOR FUNCTION MINIMIZATION. COMPUTER J.,VOL. 7,308-313
'***********************************************************************
Dim KCOUNT As Long, JCOUNT As Long, DN As Double, NN As Integer
Dim DEL As Double, I As Integer, P(20, 21) As Double, Z As Double
Dim SUM As Double, SUMM As Double, J As Integer, YLO As Double
Dim IHI As Integer, PBAR(20) As Double, PSTAR(20) As Double
Dim RCOEFF As Double, ECOEFF As Double, CCOEFF As Double
Dim Y2STAR As Double, L As Integer, CURMIN As Double, DNN As Double
Dim Y(20) As Double, ILO As Integer, P2STAR(20) As Double, YSTAR As Double
'***********************************************************************
'* FORMAL PARAMETERS::
'*

'* KONVGE INPUT

,* YNEWLO : OUTPUT:
'* REQMIN INPUT

'* N
'*
'* START
'*
'* MIN
'*

'*
,* STEP
,*

'*
'*

'*
'* ICOUNT
'*
'*
'*

INPUT

INPUT

OUTPUT:

INPUT

INPUT

OUTPUT:

THE NUMBER OF VARlABLES OVER WHICH WE
ARE MINIMIZING.
ARRAY; CONTAINS THE COORDINATES OF THE
STARTING POINT.
ARRAY; CONTAINS THE COORDINATES OF THE
MINIMUM.
THE MINIMUM VALUE OF THE FUNCTION.
THE TERMINATING LIMIT FOR THE VARIANCE
OF FUNCTION VALUES.
ARRAY; DETERMINES THE SIZE AND SHAPE OF

THE INITIAL SIMPLEX. THE RELATIVE
MAGNITUDES OF ITS N ELEMENTS SHOULD
REFLECT THE UNITS OF THE N VARlABLES.
THE CONVERGENCE CHECK IS CARRIED OUT
EVERY KONVGE ITERATIONS.
MAXIMUM NUMBER OF FUNCTION
EVALUATIONS.
FUNCTION EVALUATIONS PERFORMED + 10,000
TIMES NUMBER OF RESTARTS. NEGATIVE
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'*
'*
'*

ICOUNT VALUE IDENTIFIES INPUT PARAMETER
FAULT(S).

'* ALL VARIABLES AND ARRAYS ARE TO BE DECLARED IN THE CALLING
'* PROGRAM AS DOUBLE PRECISION.
'*
'* AUXILIARY ALGORITHM:: THE DOUBLE PRECISION FUNCTION
'* SUBPROGRAM FN(A) CALCULATES THE FUNCTION VALUE AT POINT A.
'* A IS DOUBLE PRECISION WITH N ELEMENTS.
'***********************************************************************

RCOEFF = 1
ECOEFF=2
CCOEFF = 0.5

KCOUNT = ICOUNT
ICOUNT= 0
IfREQMIN <= 0 Then ICOUNT = ICOUNT - 1
IfN> 20 Then ICOUNT = ICOUNT - 10
If KONVGE <= 0 Then ICOUNT = ICOUNT - 100
IfICOUNT < 0 Then GoTo 2000

JCOUNT = KONVGE
DN = CDbl{N)
NN=N+l
DNN = CDbl(NN)
DEL = 1

1001 For I = 1 To N
P(I, NN) = START(I)
Next I
Z = FN(DIST, M, XO, START)
Y(NN)=Z
SUM=Z
SUMM=Z * Z
For J = 1 To N
START(J) = START(J) + STEP(J) * DEL
For I = 1 To N
P(I, J) = START(I)
Next I
Z = FN(DIST, M, XO, START)
Y(J) = Z
SUM=SUM+Z
SUMM = SUMM + Z * Z
START(J) = START(J) - STEP(J) * DEL
Next J
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1000 YLO = yO)
YNEWLO=YLO
ILO = 1
IHI = 1
For I = 2 To NN
IfY(I) >= YLO Then GoTo 4
YLO = Y(I)
ILO=I
4 IfY(I) <= YNEWLO Then GoTo 5
YNEWLO = Y(I)
IBI = I
5 Next I
SUM = SUM - YNEWLO
SUMM = SUMM - YNEWLO * YNEWLO

For 1= 1 To N
Z=O
For J = 1 To NN
Z = Z + P(I, J)
Next J
Z = Z - P(I, IHI)
PBAR(I) = Z / DN
Next I

For I = 1 To N
PSTAR(I) = (1 + RCOEFF) * PBAR(I) - RCOEFF * PO, IHI)
Next I
YSTAR = FN(DIST, M, XO, PSTAR)
ICOUNT = ICOUNT + 1
IfYSTAR >= YLO Then GoTo 12

For I = 1 To N
P2STAR(I) = ECOEFF * PSTAR(I) + (1 - ECOEFF) * PBAR(I)
Next I
Y2STAR = FN(DIST, M, XO, P2STAR)
ICOUNT = ICOUNT + 1

IfY2STAR >= YLO Then GoTo 19
10 For I = 1 To N
P(I, IHI) = P2STAR(I)
Next I
Y(lliI) = Y2STAR
GoTo 900

]2 L =0
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For I = 1 To NN
IfY(I) > YSTAR Then L = L + 1
Next I
IfL> 1 Then GoTo 19
IfL = 0 Then GoTo 15

For 1=1 To N
P(I, IHI) = PSTAR(I)
Next I
Y(IHI) = YSTAR

15 For 1= 1 To N
P2STAR(I) = CCOEFF * P(I, IHI) + (1 - CCOEFF) * PBAR(I)
Next I
Y2STAR = FN(DIST, M, xo, P2STAR)
ICOUNT = ICOUNT + 1
IfY2STAR <= Y(IHI) Then GoTo 10

SUM=O
SUM1v1 = 0
For J = 1 To NN
For I = 1 To N
P(I, J) = (P(I, J) + P(I, ILO» * 0.5
MIN(I) = P(I, J)
Next I
Y(J) = FN(DIST, M, XO, MIN)
SUM = SUM + Y(J)
SUMM = SUMM + Y(J) * YU)
Next J
ICOUNT = ICOUNT + NN
GoTo 901

19 For I = 1 To N
P(I, IHI) = PSTAR(l)
Next I
Y(IHI) = YSTAR
900 SUM = SUM + Y(IHI)
SUMM = SUMM + Y(IHI) * Y(IHI)
901 JCOUNT = JCOUNT - 1
If JCOUNT <> 0 Then GoTo 1000

IflCOUNT > KCOUNT Then GoTo 22
JCOUNT = KONVGE
CURMIN = (SUMM - (SUM * SUM) / DNN) I ON

[fCURMIN >= REQMIN Then GoTo 1000
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22 ForI = 1 To N
MIN(I) = P(I, IHI)
Next I
YNEWLO = Y(IHI)
IflCOUNT> KCOUNT Then GoTo 2000
For I = 1 To N
DEL = STEP(I) * 0.001
MIN(I) = MIN(I) + DEL
Z = FN(DIST, M, XO, MIN)
HZ < YNEWLO Then GoTo 25
MIN(I) = MIN(I) - DEL - DEL
Z = FN(DIST, M, XO, MIN)
IfZ < YNEWLO Then GoTo 25
MIN(I) = MIN(I) + DEL
Next I
GoTo 2000

25 ForI = 1 To N
START(I) = MIN(I)
Next I
DEL = 0.001
ICOUNT = ICOUNT + 10000
GoTo 1001
2000 End Sub
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Function FN(DIST As String, M As Integer, XO As Double, AO As Double) As Double
'* THIS IS THE FUNCTION FOR NELMIN

Dim I As Integer, Y As Double, Yl As Double, Y2 As Double, YTOT As Double
Dim XMIN As Double, XMAX As Double, E As Double, L As Double
Dim ZO As Double, DM As Double, TCO As Double

Static OCO As Double: Static El As Double: Static Ll As Double
ReDim OC(l To M): ReDim TC(l To M): ReDim Z(l To M)
Const PI As Double = 3.14159265358979

Select Case DIST
Case "Ll" 'LOGNORMAL MLL OPTIMIZED

YTOT= 1
If A(3) = 0 Then A(3) = El Else El = A(3)
For 1= 1 To M

Yl = A(l) / (Sqr(2 * PI) * XCI»~

Y2 = (A(2) + A(l) * Log(X(I) - A(3») /\ 2
Y = Yl * Exp(-O.5 * Y2)
YTOT = YTOT * Y

Next I
If YTOT > 0 Then FN = -Log(YTOT) Else FN = 1000000#

Case "L2" 'LOGNORMAL MDE OPTIMIZED
If A(3) = 0 Then A(3) = El Else El = A(3)
For I = 1 To M

Z(I) = A(2) + A(l) * Log(X(I) - A(3»
Next I
Call TCFD(M, ZO, TCO)
IfOC(l) = 0 Then

Call OCFD(M, ZO, OCO)
End If

FN = DMAX(M, OCO, TCO)

Case "S 1" 'SPECIAL MLL OPTIMIZED
YTOT= 1
If A(3) < El Then

A(3) = El
Else

El = A(3)
End If
For 1= 1 To M

Yl = A(l) / (Sqr(2 * PI) * XCI»~

Y2 = (A(2) + A(1) * Log(A(3) - X(I») /\ 2
Y = Yl * Exp(-0.5 * Y2)
YTOT = YTOT * Y
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Next I
IfYTOT> 0 Then FN = -Log(YTOT) Else FN = 1000000#

Case "S2" 'SPECIAL MDE OPTIMIZED
If A(3) < E1 Then A(3) = E1 Else E1 = A(3)
For 1= 1 To M

Z(I) = A(2) + A(l) * Log(A(3) - X(In
Next I
Call TCFD(M, ZO, TCO)
IfOC(1) = 0 Then

Call OCFD(M, ZO, OCO)
End If

FN = DMAX(M, OCO, TCO)

Case "B" 'BOUNDED MDE OPTIMIZED
IfA(3) = 0 Or A(4) = 0 Then

A(3) = E1: A(4) = L1
Else

E1 = A(3): L1 = A(4)
End If
A(1) = Abs(A(1» 'Prevents Delta < 0
For I = I To M

Z(I) = A(2) + A(1) * Log(X(I) - A(3» I (A(3) + A(4) - XCI»~)

Next I
Call TCFD(M, ZO, TCO)
If OC(1) = 0 Then

Call OCFD(M, ZO, OCO)
End If

FN = DMAX(M, OCO, TCO)

Case "U" 'UNBOUNDED MOE OPTIMIZED
For I = I To M

Z(I) = A(3) + A(1) * ArcSinh«(X(I) - A(2» I A(4»
Next I
Call TCFD(M, ZO, TCO)
If OC(1) = 0 Then

Call OCFD(M, Z(), OCO)
End If

FN = DMAX(M, OCO, TCO)

End Select
100 End Function
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Function MIN3VAL(X} As Double, X2 As Double, X3 As Double) As Double
'* THIS FUNCTION CALCULATES THE MINIMUM OF 3 VALUES.
If X} <= X2 And Xl <= X3 Then

MIN3VAL=XI
ElseIf X2 <= Xl And X2 <= X3 Then

MIN3VAL = X2
Else

MIN3VAL=X3
End If
End Function

Function MAX3VAL(X5 As Double, X6 As Double, X7 As Double) As Double
'* THIS FUNCTION CALCULATES THE MAXIMUM OF 3 VALUES.
If X5 >= X6 And X5 >= X7 Then

MAX3VAL=X5
Elself X6 >= X5 And X6 >= X7 Then

MAX3VAL=X6
Else

MAX3VAL= X7
End If
End Function

Function MIN3POS(X} As Double, X2 As Double, X3 As Double) As Integer
'* THIS FUNCTION DETERMINES THE POSITION OF THE MINIMUM VALUE.
If X} <= X2 And Xl <= X3 Then

MIN3POS = I
Eiself X2 <= X I And X2 <= X3 Then

MIN3POS = 2
Else

MIN3POS = 3
End If
End Function
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Function MAX3POS(X5 As Double, X6 As Double, X7 As Double) As Integer
'* THIS FUNCTION DETERMINES THE POSITION OF THE MAXIMUM VALUE.
If X5 >= X6 And X5 >= X7 Then

MAX3POS = 5
ElseIf X6 >= X5 And X6 >= X7 Then

MAX3POS =6
Else

MAX3POS = 7
End If
End Function

Function SIGN(NUM As Variant) As String
'* THIS FUNCTION DETERMINES THE TEXTUAL SIGN OF A VALUE.
IfSgn(NUM) < 0 Then

SIGN = "_II
Elself Sgn(NUM) = 0 Then

SIGN = II "

Else
SIGN = "+"

End If
End Function

Function ArcSinh(X As Double) As Double
'* THIS FUNCTION CALCULATES THE INVERSE HYPERBOLIC SINE.
ArcSinh = Log(X + Sqr(X * X + 1»
End Function

Function Cosh(X As Double) As Double
'* THIS FUNCTION CALCULATES THE HYPERBOLIC COSINE.
Cosh = (Exp(X) + Exp(-X» /2
End Function

Function Sinh(X As Double) As Double
'* THIS FUNCTION CALCULATES THE HYPERBOLIC SINE.
Sinh = (Exp(X) - Exp(-X» /2
End Function
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Function CB2(B 1 As Double) As Double
'* THIS FUNCTION DETERMINES THE CALCULATED VALUE OF
'* B2, WHICH IS USED AGAINST THE OBSERVED VALUE OF B2
'* FROM THE DESCRIPTIVE STATISTICS.

Dim C As Double, W As Double

C = (2 / (2 + B 1 + Sqr(B I * (4 + B1)))) 1\ (1 /3)
W=(C-1)1\2/C+l
CB2 = W 1\ 4 + 2 * W 1\ 3 + 3 * W 1\ 2 - 3
End Function

Function CORRELXY(NV As Integer, DISTl As String, X10 As Double,_
Gl As Double, D1 As Double, E1 As Double, Ll As Double,
DIST2 As String, X20 As Double, G2 As Double, _
D2 As Double, E2 As Double, L2 As Double) As Double

'* THIS FUNCTION CALCULATES THE CORRELATION COEFFICIENT
'* BETWEEN THE Z-VALUES (STANDARD NORMAL TRANSFORMED)
'* OF TWO JOHNSON SYSTEM DISTRIBUTIONS.

Dim PM 1 As Double, PM2 As Double, PM3 As Double, PM4 As Double
Dim PB1 As Double, PGI As Double, PB2 As Double, PG2 As Double, B2C As Double
Dim Z10 As Double, Z20 As Double, I As Integer
ReDim Zl(1 To NV): ReDim Z2(l To NY)

Call Stat1(X10, NY, PMl, PM2, PM3, PM4, PBI, PG1, PB2, PG2)
Call STDZ(DIST1, NV, X10, G1, D1, E1, L1, Z10)
Call Stat1(X20, NY, PM1, PM2, PM3, PM4, PB1, PGl, PB2, PG2)
Call STDZ(DIST2, NY, X20, G2, D2, E2, L2, Z20)
CORRELXY = Excel.Application.WorksheetFunction.Correl(Zl (), Z20)
End Function
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,* THE VISUAL BASIC CODE LISTED AFTER THIS POINT REPRESENTS THE
'* CODE BEHIND FORM (CBF) OF THE SOFTWARE STARTING FORM IN
'* MICROSOFT ACCESS. IT IS LISTED HERE FOR REFERENCE ONLY.
Dim MySet As Recordset, MyDB As Database

Private Sub cmb_calculate_ClickO
Dim lfilepath As String, Ofilepath As String

Me!lbl_ispec.Visible = True
Mellbl ifile.Visible = True: Me!tbc ifile.Visible = True: Me!cmb ifile.Visible = True

- - -
Mellbl idrive.Visible = True: Me!tbc idrive.Visible = True: Me!cmb idrive.Visible =

- - -
True
Me!lbl_ipath.Visible = True: Meltbc_ipath.Visible = True: Me!cmb_ipath.Visible = True
Me!lbl_ospec.Visible = True
Me!lbl ofile.Visible = True: Me!tbc ofile.Visible = True: Me!cmb ofile.Visible = True- - -
Me!1bl odrive.Visible = True: Me!tbc odrive.Yisible = True: Me!cmb odrive.Visible =- - -
True
Me!lbl_opath.Visible = True: Me!tbc_opath.Visible = True: Me!cmb_opath.Visible =
True
Me!cmb start.Visible = True
Set MyDB = CurrentDb
Set MySet = MyDB.OpenRecordset("File Specs", dbOpenTable)
Me!tbc_ifile.Value = MySet![Input Filename]
Me!tbc_idrive.Value = MySet! [Input Drive]
IfMySet!flnput Filepath] = "New" Then

Me!tbc_ipath.Value = CurDir("C")
MySet.Edit: MySet![Input Filepath] = CurDir("C"): MySet.Update

Else
Me!tbc_ipath.Value = MySet![Input Filepath]

End If
Me!tbc_ofile.Value = MySet![Output Filename]
Me!tbc_odrive.Value = MySet![Output Drive]
IfMySet! [Output Filepath] = "New" Then

Me!tbc_opath.Va1ue = CurDir("C")
MySet.Edit: MySet![Output Filepath] = CurDir("C"): MySet.Update

Else
Me!tbc_opath.Value = MySet! [Output Filepath]

End If

If Right(Meltbcjpath.Value, 1) = "\" Then
lfilepath = Meltbc_ipath.Value & Me!tbc_ifile.Value

Else
lfilepath = Mertbc_ipath.Value & "\" & Me!tbc_ifile.Yalue

End If
IfRight(Me!tbc_opath.Value, 1) = "\" Then

Ofilepath = Me!tbc_opath.Value & Me!tbc_ofile.Value
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Else
Ofilepath = Me!tbc_opath.Value & "\" & Me!tbc_ofile.Value

End If
MySet.Edit: MySet![Input Totalpath] = lfilepath: MySet.Update
MySet.Edit MySet![Output Totalpath] = Ofilepath: MySeLUpdate
Me!cmb ILink.Visible = True
Me!cmb_ILink.HyperlinkAddress = lfilepath
Me!cmb OLink.Visible = True
Me!cmb_OLink.HyperlinkAddress = Ofilepath
End Sub

Private Sub cmb_cancel_ClickO
If Me!lbl_ospec.Visible = True Then

Me!lbl_ispec.Visible = False
Me!lbl ifile.Visible = False: Me!tbc ifile. Visible = False: Melcmb ifile.Visihle =- -

False
Me!lbl idrive.Visible = False: Me!tbc idrive.Visible = False: Me!cmb idrive.Visible- - -

= False
Me!lbI_ipath.Visible = False: Me!tbcjpath.Visible = False: Me!cmb_ipath.Visible =

False
Me!lbl_ospec.Visible = False
Me!lbl ofile.Visible = False: Me!tbc ofile.Visible = False: Me!cmb ofile.Visible =- -

False
Me!lbl odrive.Visible = False: Me!tbc odrive.Visible = False: Me!cmb odrive.Visible- - -

= False
Me!lbl_opath.Visible = False: Me!tbc_opath.Visible = False: Me!cmb_opath.Visible =

False
Me!cmb start.Visible = False

Else
DoCmd.Close: DoCmd.Close
End If
End Sub

Private Sub cmb_generate_ClickO
Me!lbl_ospec.Visible = True
Me!lbl ofile.Visible = True: Me!tbc ofile.Visible = True: Me!cmb ofile.Visible = True

- - -
Me!lbl odrive.Visible = True: Me!tbc odrive.Visible = True: Me1cmb odrive.Visible =

- - -
True
Me!lbl_opath.Visible = True: Me!tbc_opath.Visible = True: Me!cmb_opath.Visible =
True
Me!cmb start.Visible = True
Me!cmb ILink.Visible = False
Me!cmb OLink.Visible = False
Set MyDB = CurrentDb
Set MySet = MyDB.OpenRecordset("File Specs", dbOpenTable)
Me!tbc_ofile.Value = MySet![Output GFilename]
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Me!tbc_odrive.Value = MySet![Output GDrive]
If MySet![Output GFilepath] = "New" Then

Me!tbc_opath.Value = CurDir("C")
MySet.Edit: MySet![Output GFilepath] = CurDir("C"): MySet.Update

Else
Me!tbc_opath.Value = MySet![Output GFilepath]

End If

End Sub

Private Sub cmb_idrive_ChckO
Dim mess As String, title As String
Dim lfilepath As String, Ofilepath As String
mess = "Enter the input file drive letter"
title = "CHANGE REQUEST"
10 Me!tbc_idrive.Value = InputBox(mess, title, MySet![Input Drive])
If Len(Me!tbcjdrive.Value) > I Or IsNumeric(Me!tbc_idrive.Value) = True Then

mess = "Re-enter the input file drive letter (only)"
title = "ERROR: !NVALID DRIVE LETTER"
Me!tbc idrive.Value = "INVALID DRIVE LETTER!"
GoTolO

Else
MySet.Edit: MySet![Input Drive] = Me!tbc_idrive.Value: MySet.Update
Me!tbc_ipath.Value = CurDir(Me!tbc_idrive.Value)
MySet.Edit: MySet![Input Filepath] = Me!tbcjpath.Value: MySet.Update

End If
IfRight(Me!tbcjpath.Value, 1) = "\" Then

Ifilepath = Me!tbcjpath.Value & Me!tbc_ifile.Value
Else

lfilepath = Me!tbc_ipath.Value & "\" & Me!tbc_ifile.Value
End If
IfRight(Me!tbc_opath.Value, 1) = "\" Then

Ofilepath = Me!tbc_opath.Value & Me!tbc_ofile.Value
Else

Ofilepath = Me!tbc_opath.Value & "\" & Me!tbc_ofile.Value
End If
MySet.Edit: MySet![Input Totalpath] = Ifilepath: MySet.Update
MySet.Edit: MySet![Output Totalpath] = Ofilepath: MySet.Update
Me!cmb_ILink.HyperlinkAddress = lfilepath
Me!cmb_OLink.HyperlinkAddress = Ofilepath
End Sub

Private Sub cmb ifile ClickO- -
Dim mess As String, title As String
Dim Ifilepath As String, Ofilepath As String
mess = "Enter your input filename (with extension)"
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title = "CHANGE REQUEST"
10 Me!tbc_ifile.Value = InputBox(mess, title, MySet![Input Filename])
If InStr(1, Meltbc_ifile.Value, ".") < 1 Then

mess = "Re-enter your input filename (with extension)"
title = "ERROR: INVALID FILENAME"
Meltbc_ifile.Value = "INVALID FILENAMEl"
GoTolO

Else
MySet.Edit: MySet![Input Filename] = Me!tbc_ifile.Value: MySet.Update

End If
IfRight(Me!tbc_ipath.Value, I) = "\" Then

Ifilepath = Me!tbc ipath.Value & Me!tbc ifile.Value- -
Else

lfilepath = Me!tbc_ipath.Value & "\" & Me!tbc_ifile.Value
End If
IfRight(Me!tbc_opath.Value, 1) = "\" Then

Ofilepath = Me!tbc opath.Value & Me!tbc ofile.Value- -
Else

Ofilepath = Me !tbc_opath.Value & "\" & Me!tbc_ofile.Value
End If
MySet.Edit: MySet![Input Totalpath] = lfilepath: MySet.Update
MySet.Edit: MySet![Output Totalpath] = Ofilepath: MySet.Update
Me!cmb_ILink.HyperlinkAddress = lfilepath
Me!cmb_OLink.HyperlinkAddress = Ofilepath
End Sub

Private Sub cmb_ipath_ClickO
Dim mess As String, title As String
Dim Ifilepath As String, Ofilepath As String
mess = "Enter the full input filepath (without filename)"
title = "CHANGE REQUEST"
10 Meltbc_ipath.Value = InputBox(mess, title, MySet![Input Filepath])
IfInStr(l, Me!tbc_ipath.Value, Me!tbcjdrive.Value & ":\", vbTextCompare) < I Or_

InStr(1, Me!tbc_ipath.Value, Me!tbc_ifile.Value, vbTextCompare) > 0 Or _
InStr(l, Me!tbc_ipath.Value, Left(Me!tbc_ifiJe.Value, Len(Meltbc_ifile.Value) - 4),

vbTextCompare) > 0 Then
mess = "Re-enter the full input filepath (without filename)"
title = "ERROR: INVALID FILEPATH"
Me!tbcjpath.Value = "INVALID FILEPATH!"
GoTo 10

Else
MySeLEdit: MySet![Input Filepath] = Me!tbcjpath.Value: MySeLUpdate

End If
If Right(Me!tbcjpath.Value, 1) = "\" Then

lfilepath = Me!tbcjpath.VaJue & Me!tbc_ifile.VaJue
Else
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lfilepath = Me!tbcjpath.Value & "\" & Me!tbcjfile.Value
End If
IfRight(Me!tbc_opath.Value, I) = "\" Then

Ofilepath = Me!tbc_opath.Value & Me!tbc_ofile.Value
Else

Ofilepath = Me!tbc_opath.Value & "\" & Me!tbc_ofile.Value
End If
MySet.Edit: MySet![Input Totalpath] = Ifilepath: MySet.Update
MySet.Edit: MySet![Output Totalpath] = Ofilepath: MySet.Update
Me!cmb_ILink.HyperlinkAddress = Ifilepath
Me!cmb_OLink.HyperlinkAddress = Ofilepath
End Sub

Private Sub cmb_odrive_ClickO
Dim mess As String, title As String
Dim Ifilepath As String, Ofilepath As String
mess = "Enter the output file drive letter"
title = "CHANGE REQUEST"
IfMe!lbl_ispec.Visible = True Then
10 Me!tbc_odrive.Value = InputBox(mess, title, MySet![Output Drive])

IfLen(Me!tbc_odrive.Value) > 1 Or IsNumeric(Me!tbc_odrive.Value) = True Then
mess = "Re-enter the output file drive letter (only)"
title = "ERROR: INVALID DRIVE LETTER"
Me!tbc odrive.Value = "INVALID DRIVE LETTER!"
GoTo 10

Else
MySet.Edit: MySetl[Output Drive] = Me!tbc_odrive.Value: MySet.Update
Me! tbc_opath.Val ue = CurDir(Me! tbc_odrive.Value)
MySet.Edit: MySet![Output Filepath] = Me!tbc_opath.Va.lue: MySet.Update

End If
IfRight(Me!tbcjpath.Value, 1) = "\" Then

lfilepath = Me!tbcjpath.Value & Me!tbc_ifile.Value
Else

lfilepath = Me!tbc_ipath.Value & "\" & Me!tbcjfile.Value
End If
IfRight(Me!tbc_opath.Value, 1) = "\" Then

Ofilepath = Me!tbc_opath.Value & Me!tbc_ofile.Value
Else

Ofilepath = Meltbc_opath.Value & "\" & Me!tbc_ofile.Value
End If
MySet.Edit: MySet![Input Totalpath] = Ifilepath: MySet.Update
MySet.Edit: MySet![Output Totalpath] = Ofilepath: MySet.Update
Me!cmb_ILink.HyperlinkAddress = Ifilepath
Me!cmb_OLink.HyperlinkAddress = Ofilepath

Else
20 Me!tbc_odrive.Value = InputBox(mess, title, MySet![Output GDrive])
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lfLen(Me!tbc_odrive.Value) > 1 Or IsNumeric(Me!tbc_odrive.Value) = True Then
mess = "Re-enter the output file drive letter (only)"
title = "ERROR: !NYALID DRIVE LETTER"
Me!tbc odrive.Value = "INVALID DRIVE LETTER!"
GoTo 20

Else
MySet.Edit: MySet![Output GDrive] = Me!tbc_odrive.Value: MySet.Update
Me!tbc_opath.Value = CurDir(Me!tbc_odrive.Value)
MySet.Edit: MySet![Output GFilepath] = Me!tbc_opath.Value: MySeLUpdate

End If
End If
End Sub

Private Sub cmb ofile ClickO- -
Dim mess As String, title As String
Dim Ifilepath As String, Ofilepath As String
mess = "Enter your output filename (with extension)"
title = "CHANGE REQUEST"
If Me!lbl_ispec.Visible = True Then
10 Me!tbc_ofile.Value = InputBox(mess, title, MySet![Output Filename])

IfInStr(l, Me!tbc_ofile.Value, ".") < 1 Then
mess = "Re-enter your output filename (with extension)"
title = "ERROR: INVALID FILENAME"
Me!tbc ofile.Value = "INVALID FILENAME!"
GoTolO

Else
MySet.Edit: MySet![Output Filename] = Me!tbc_ofile.Value: MySet.Update

End If
IfRight(Me!tbcjpath.Value, 1) = "\" Then

Ifilepath = Mettbc_ipath.Value & Me!tbc_ifile.Value
Else

Ifilepath = Me!tbcjpath.Value & "\" & Me!tbcjfile.Value
End If
If Right(Me! tbc_opath. Value, 1) = "\" Then

Ofilepath = Me!tbc_opath.VaIue & Me!tbc_ofile.Value
Else

Ofilepath = Me!tbc_opath.Value & "\" & Me!tbc_ofi.le.Value
End If
MySet.Edit: MySet![Input Totalpath] = Ifilepath: MySet.Update
MySet.Edit: MySet![Output Totalpath] = Ofilepath: MySet.Update
Me! cmb_ILink.HyperlinkAddress = lfilepath
Me!cmb_OLink.HyperlinkAddress = Ofilepath

Else
20 Me!tbc_ofile.Value = InputBox(mess, title, MySet![Output GFilename])

IfInStr(l, Me!tbc_ofile.Value, ".") < 1 Then
mess = liRe-enter your output filename (with extension)"
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title = "ERROR: INYALID FILENAME"
Me!tbc_ofile.Value = "INVALID FILENAME!"
GoTo20

Else
MySet.Edit: MySet![Output GFilename] = Me!tbc_ofile.Value: MySet.Update

End If
End If
End Sub

Private Sub cmb_opath_ClickO
Dim mess As String, title As String
Dim Ifilepath As String, Ofilepath As String
mess = "Enter the full output filepath (without filename)"
title = "CHANGE REQUEST"
If Me! Ibl_ispec.Visible = True Then
10 Me!tbc_opath.Value = InputBox(mess, title, MySet![Output Filepath])

IfInStr(1, Me!tbc_opath.Value, Me!tbc_odrive.Value & ":\", vbTextCompare) < 1 Or

InStr(l,Me!tbc_opath.Value, Me!tbc_ofile.Value, vbTextCompare) > 0 Or_
InStr(l, Me!tbc_opath.Value, Left(Me!tbc_ofile.Value, Len(Meltbc_ofile.Value)

- 4), vbTextCompare) > 0 Then
mess = "Re-enter the full output filepath (without filename)"
title = "ERROR: INVALID FILEPATH"
Me!tbc_opath.Value = "INVALID FILEPATH!"
GoTo10

Else
MySet.Edit: MySet![Output Filepath] = Me!tbc_opath.Value: MySet.Update

End If
IfRight(Me!tbc_ipath.Value, 1) = "\" Then

Ifilepath = Me!tbc_ipath.Value & Meltbcjfile.Value
Else

Ifilepath = Me!tbcjpath.Value & "\" & Me!tbc_ifile.Value
End If
If Right(Me! tbc_opath. Value, 1) = "\" Then

Ofilepath = Me!tbc_opath. Value & Me!tbc_ofile.Value
Else

Ofilepath = Me!tbc_opath.Value & "\" & Me!tbc_ofile.Value
End If
MySet.Edit: MySet![Input Totalpath] = Ifilepath: MySet.Update
MySet.Edit: MySet![Output Totaipath] = Ofilepath: MySet.Update
Me!cmb_ILink.HyperlinkAddress = lfilepath
Me!cmb_OLink.HyperlinkAddress = Ofilepath

Else
20 Me!tbc_opath.Value = InputBox(mess, title, MySet![Output GFilepath])

IfInStr(l, Me!tbc_opath.Value, Me!tbc_odrive.Value & ":\", vbTextCompare) < 1 Or
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InStr(l, Me!tbc_opath.Value, Me!tbc_ofile.Value, vbTextCompare) > 0 Or _
InStr(l, Me!tbc_opath.Value, Left(Me!tbc_ofile.Value, Len(Me!tbc_ofile.Value)

- 4), vbTextCompare) > 0 Then
mess = "Re-enter the full output filepath (without fi lenarne)"
title = "ERROR: INVALID FILEPATH"
Me!tbc_opath.Value = "INVALID FILEPATH!"
GoTo20

Else
MySet.Edit: MySet![Output GFilepath] = Me!tbc_opath.Value: MySet.Update

End If
End If
End Sub

Private Sub cmb_start_ClickO
Dim Ifilepath As String, Ofilepath As String
If Me!lbljspec.Visible = True Then

IfRight(Me!tbcjpath.Value, 1) = "\" Then
Ifilepath = Me!tbc_ipath.Value & Me !tbcjfi.le. Value

Else
Ifilepath = Me!tbcjpath.Value & "\" & Me!tbcjfile.Value

End If
IfRight(Me!tbc_opath.Value, 1) = "\" Then

Ofilepath = Me!tbc_opath.Value & Me!tbc_ofile.Value
Else

Ofilepath = Me!tbc_opath.Value & "\" & Me!tbc_ofile.Value
End If
MySet.Edit: MySet![Input Totalpath] = Ifilepath: MySet.Update
MySet.Edit: MySet![Output Totalpath] = Ofilepath: MySet.Update
Call MAIN

Else
If Right(Me!tbc_opath.Value, 1) = "\" Then

Ofilepath = Me!tbc_opath.Value & Me!tbc_ofiJe.Value
Else

Ofilepath = Me!tbc_opath.Value & "\" & Me!tbc_ofile.Value
End If
MySet.Edit: MySet![Output GTotalpath] = Ofilepath: MySet.Update
DoCmd.OpenFonn "Generate Form", acNomlal

End If
MySet.Close
Me!lbl_ispec.Visible = False
Me!lbl_ifile.Visible = False: Me!tbc_ifile.Visible = False: Me!cmb_ifile.Visible = False
Me!lbl idrive.Visible = False: Me!tbc idrive.Visible = False: Me!cmb idrive.Visible =- - -

False
Me!lbljpath.Visible = False: Me!tbcjpath.Visible = False: Me!cmb_ipath.Visible =
False
Me!lbJ_ospec.Visible = False
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Me!lbl ofile.Visible = False: Me!tbc ofile.Visible = False: Me!cmb ofile.Visible = False- - -

Me!lbl odrive.Visible = False: Me!tbc odrive.Visible = False: Me!cmb odrive.Visible =- - -
False
Me!lbl_opath.Visible = False: Me!tbc_opath.Visible = False: Me!cmb_opath.Visible =
False
Me!cmb cancel.SetFocus
Me!cmb start.Visible = False
End Sub

Private Sub Fonn_Open(Cancel As Integer)
DoCmd.Maximize
Me!lbl_ispec.Visible = False
Me!lbl ifile.Visible = False: Me!tbc ifile.Visible = False: Me!cmb ifile.Visible = False- - -
Me!lbl idrive.Visible = False: Me!tbc idrive.Visible = False: Me!cmb idrive.Visible =- - -
False
Me!lbl_ipath.Visible = False: Me!tbcjpath.Visible = False: Me!cmb_ipath.Visible =
False
Me!lbl_ospec.Visible = False
Me!1bl ofile.Visible = False: Me!tbc ofile.Visible = False: Me!cmb ofi]e.Visible = False

- - -
Me!1bl odrive.Visible = False: Me!tbc odrive.Visible = False: Me!cmb odrive. Visible =- - -
False
Me!lbl_opath.Visible = False: Me!tbc_opath.Visible = False: Me!cmb_opath.Visible =
False
Me!cmb start.Visible = False
Me!cmb ILink.Visible = False: Me!cmb OLink.Visible = False

End Sub
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APPENDIXD

Multivariate Johnson Distribution Generator Program Code
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Sub GeneratorO
'***********************************************************************
'* This Visual Basic Code Generates a Multivariate Sample of Specified Size from a
'* Specified Number of Johnson Systems of Specified Types.
'* Note that the Specified Correlation Coefficients Represent Correlation after
'* the Johnson System Transformations, and not of the Raw Samples.
'***********************************************************************
Dim NY As Integer, NS As Integer, I As Integer, J As Integer
Dim XC) As Double, DISTO As String
Dim DO As Double, EO As Double, GO As Double, LO As Double
Dim P12 As Double, P24 As Double, P34 As Double
Dim P13 As Double, P23 As Double, P14 As Double
Dim LSLO As Double, USLO As Double
Dim Z1 As Double, Z21 As Double, Z312 As Double, Z4123 As Doubie
Dim EZI As Double, EZ21 As Double, EZ312 As Double, EZ4123 As Double
Dim VZl As Double, VZ21 As Double, VZ312 As Double, VZ4123 As Double
Dim A21 As Double, A312 As Double, B312 As Double, A4123 As Double
Dim B4123 As Double, C4123 As Double, Ofilepath As String
Dim MySet As Recordset, MyDB As Database

Const PI As Double = 3.14159265358979
Set MyDB = CurrentDb
Set MySet = MyDB.OpenRecordset("File Specs", dbOpenTable)
Ofilepath = MySet![Output GTotalpath]
MySet.Close

Open Ofilepath For Output As #1

NV = Forrns![Generate Foml]!tbc_NY.Value
NS = Forrns![Generate Forrn]!tbc_NS.Value
Write #1, NV, NS

ReDim X(l To NV)
ReDim DIST(l To NY)
ReDim D(l To NY)
ReDim E(l To NY)
ReDim G(l To NV)
ReDim L( I To NY)
ReDim LSL(l To NV)
ReDim USL(l To NV)

DIST(I) = Forrns![Generate Forrn]!cbx_Distl.Value
E(l) = Forms! [Generate Form]!tbc_El.Value
L(I) = Forms! [Generate Forrn]!tbc_LI.Value
D(l) = Fomls![Generate Foml]!tbc_D1.Value
G(l) = Formsl[Generate Form]!tbc_Gl.Value
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LSL(l) = Fonns![Generate Fonn]!tbc_LSL1.Value
USL(l) = Forms! [Generate Fonn]!tbc_USL1.Value

If NY = 1 Then GoTo 5

DIST(2) = Fonns![Generate Fonn]!cbx_Dist2.Value
E(2) = Forms! [Generate Fonn]!tbc_E2.Value
L(2) = Forms! [Generate Fonn]!tbc L2.Value
D(2) = Fonns![Generate Fonn]!tbc_D2.Value
G(2) = Fonns![Generate Fonn]!tbc_G2.Value
P12 = Fonns![Generate Fonn]!tbc_PI2.Value
LSL(2) = Fonns![Generate Form]!tbc_LSL2.Value
USL(2) = Fonns![Generate Fonn]!tbc_USL2.Value

If NY = 2 Then GoTo 5

DIST(3) = Fonns![Generate Form]!cbx_Dist3. Value
E(3) = Fonns![Generate Fonn]!tbc_E3.Value
L(3) = Fonns![Generate Form]!tbc_L3.Value
D(3) = Fonns![Generate Form]!tbc_D3.Value
G(3) = Fonns![Generate Form]!tbc_G3.Value
PI3 = Fonns![Generate Fonn]!tbc_P13.Value
P23 = Forms ![Generate Form]!tbc_P23.Value
LSL(3) = Fonns![Generate Fonn]!tbc_LSL3.Value
USL(3) = Fonns![Generate Fonn]!tbc_USL3.Value

If NY = 3 Then GoTo 5

DIST(4) = FOffils![Generate Fonn]!cbx_Dist4.Value
E(4) = Fonns![Generate Form]!tbc_E4.Value
L(4) = Fonns![Generate Form]!tbc_L4.Value
D(4) = FOffils![Generate Form]!tbc_D4.Value
G(4) = Fonns![Generate Fonn]!tbc_G4.Value
P14 = Fonns![Generate Fonn]ltbc_P14.Value
P24 = Fonns![Generate Form]ltbc_P24.Value
P34 = Fonns![Generate Fonn]!tbc_P34.Value
LSL(4) = Fonns![Generate Fonn]!tbc_LSL4.Va.1ue
USL(4) = Fonns![Generate Fonn]!tbc_USL4.Value

5 IfNV = 1 Then Write #1, LSL(l), USL(l)
IfNV = 2 Then Write #1, LSL(l), USL(I), LSL(2), USL(2)
IfNV = 3 Then Write #1, LSL(l), USL(1), LSL(2), USL(2), LSL(3), USL(3)
IfNV = 4 Then Write #1, LSL(I), USL(I), LSL(2), USL(2), LSL(3), USL(3), LSL(4),
USL(4)

For I = 1 To NS
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EZI =0
VZl = 1
ZI = EZI + VZl * Sqr(-2 * Log(RndO» * Cos(2 * PI * RndO)
Select Case DIST(l)

Case "N" 'Normal - (N*)
X(l) = (ZI - G(l» / D(l)
Case "L" 'LogNormal- (L*)
X(l) = Exp«Zl - G(l» / 0(1» + E(l)
Case "S" 'Special (S*)
X(l) = E(l) - Exp«ZI - G(l» / D(l»
Case "B" 'Bounded - (B*)
X(I) = L(l) * (l + Exp«G(l) - Zl) I D(l») 1\ (-1) + E(1)
Case "U" 'UnBounded - (U*)
X(1) = L(l) * Sinh«Zl - G(1» / D(l» + E(l)

End Select

If NY = 1 Then GoTo 40
A21 =P12/VZl
EZ2l = (A21 * Zl)
VZ21 = 1 - (A21 * P12)
Z21 = EZ21 + Sqr(VZ21) * Sqr(-2 * Log(RndO» * Cos(2 * PI * RndO)
Select Case DIST(2)

Case "N" 'Normal - (NN*)
X(2) = (Z21 - G(2» / D(2)
Case "L" 'LogNormal - (NL*)
X(2) = Exp«Z2l - G(2» I D(2» + E(2)
Case "S" 'Special - (NS*)
X(2) = E(2) - Exp«Z21 - G(2» / D(2»
Case "B" 'Bounded - (NB*)
X(2) = L(2) * (l + Exp«G(2) - Z21) / D(2») 1\ (-1) + E(2)
Case "U" 'UnBounded - (NU*)
X(2) = L(2) * Sinh«Z21 - G(2» / D(2» + E(2)

End Select

If NY = 2 Then GoTo 40
A312 = (P13 - P12 * P23) / (VZ21 * VZ1)
B312 = (P23 - P12 * P13) / (VZ21 * VZ1)
EZ312 = (A312 * Zl) + (B312 * Z21)
VZ312 = 1 - «A312 * P13) + (8312 * P23»
Z312 = EZ3l2 + Sqr(VZ312) * Sqr(-2 * Log(RndO» * Cos(2 * PI * RndO)
Select Case DIST(3)

Case "N" 'Normal - (NN*)
X(3) = (Z3l2 - G(3» / D(3)
Case "L" 'LogNormal - (NL*)
X(3) = Exp«Z3l2 - G(3» I 0(3» + E(3)
Case "S" 'Special - (NS*)
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X(3) = E(3) - Exp«Z312 - G(3» / D(3»
Case "B" 'Bounded - (NB*)
X(3) = L(3) * (1 + Exp«G(3) - Z312) / D(3») 1\ (-1) + E(3)
Case "D" 'UnBounded - (NU*)
X(3) = L(3) * Sinh«Z312 - G(3» / D(3» + E(3)

End Select

IfNV = 3 Then GoTo 40
A4123 = (P14 * (l - P23 1\ 2) + P24 * (Pl3 * P23 - P12) + P34 * (P12 * P23 - P13» / _

(VZ312 * VZ21 * VZ1)
B4123 = (P14 * (Pl3 * P23 - P12) + P24 * (l - P13 1\ 2) + P34 * (P12 * P13 - P23» / _

(VZ312 * VZ21 * VZ1)
C4123 = (P14 * (P12 * P23 - P13) + P24 * (P12 * P13 - P23) + P34 * (l - P12 1\ 2» I _

(VZ312 * VZ21 * VZ1)
EZ4123 = (A4123 * ZI) + (B4123 * Z21) + (C4123 * Z312)
VZ4123 = 1 - «A4123 * P14) + (B4123 * P24) + (C4123 * P34»
Z4123 = EZ4123 + Sqr(VZ4123) * Sqr(-2 * Log(RndO» * Cos(2 * PI * RndO)
Select Case DIST(4)

Case "N" 'Normal - (NN*)
X(4) = (Z4123 - G(4» / D(4)
Case "L" 'LogNonnal - (NL*)
X(4) = Exp«Z4123 - G(4» / D(4» + E(4)
Case "S" 'Special - (NS*)
X(4) = E(4) - Exp«Z4123 - G(4» / D(4»
Case "B" 'Bounded - (NB*)
X(4) = L(4) * (1 + Exp«G(4) - Z4123) / D(4») 1\ (-1) + E(4)
Case "U" 'UnBounded - (NU*)
X(4) = L(4) * Sinh«Z4123 - G(4» / D(4» + E(4)

End Select

40 'BEGINNING OF THE END
IfNV = I Then Write #1, X(l)
IfNV = 2 Then Write #1, X(l), X(2)
IfNV = 3 Then Write #1, XCI), X(2), X(3)
IfNV = 4 Then Write #1, X(l), X(2), X(3), X(4)
NextI
Close #1
MsgBox "DATA WRITTEN TO " & Ofilepath
End Sub
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--
'* THE VISUAL BASIC CODE LISTED AFTER THIS POINT REPRESENTS THE
'* CODE BEHIND FORM (CBF) OF THE SOFTWARE'S JOHNSON SAMPLE
'* GENERATING FORM IN MICROSOFT ACCESS. IT IS LISTED HERE FOR
,* REFERENCE ONLY.

Private Sub ebx_Distl_AfterUpdateO
If cbx Distl.Value = "L" Then

tbe Ll.Value = 1: tbc Ll.Visible = False: lbl Ll.Visible = False- - -
tbe El.Value = Null: tbe E1.Visible = True: lbl El.Visible = True- - -

ElseIf ebx Distl.Value = "S" Then
tbe Ll.Value = 1: tbe Ll.Visible = False: lbl Ll.Visible = False- - -
tbe El.Value = 0: tbe E1.Visible = False: Ibl E1.Visible = False- - -

ElseIf ebx Dist 1.Value = "N" Then
tbe L1.Value = 1: tbe L1.Visible = False: lbl L1.Visible = False- - -
tbc E1.Value = 0: tbc E1.Visible = False: Ibl El.Visible = False

- - -
Else

tbc L1.Value = Null: tbe L1.Visible = True: lbl L1.Visible = True- - -
tbc E1.Value = Null: tbe El.Visible = True: Ibl E1.Visible = True- - -
lfebx Distl.Value <> "B" And ebx Distl.Value <> "U" Then

- -
SendKeys "+{Tab} "

End If
End If
End Sub

Private Sub cbx Dist2 AfterUpdateO- -
If ebx Dist2.Value = "L" Then

tbc_L2.Value = 2: tbc_L2.Visible = False: Ibl_L2.Visible = False
tbe_E2.Value = Null: tbc_E2.Visible = True: Ibl_E2.Visible = True

Elself ebx Dist2.Value = "S" Then
tbe_L2.Value = 2: tbe_L2.Visible = False: Ibl_L2.Visible = False
tbe_E2.Value = 0: tbe_E2.Visible = False: Ibl_E2.Visible = False

EIsel f cbx Oist2 .Value = "N" Then
tbe_L2.Value = 2: tbe_L2.Visible = False: Ibl_L2.Visible = False
tbc_E2.Value = 0: tbc_E2.Visible = False: Ibl_E2.Visible = False

Else
tbc L2.Value = Null: tbe L2.Visible = True: lbl L2.Visible = True
tbc- E2.Value = Null: tbc- E2.Visible = True: lbl-E2.Visible = True
If cbx_Dist2.Value <> "~I And cbx_Dist2.Valu~<> "U" Then

SendKeys "+ {Tab} "
End If

End If
End Sub

Private Sub cbx_Dist3_AfterUpdateO
Tfebx Dist3.Value = "L" Then

tbe'=-L3.Value = 3: tbe_L3.Visible = False: lbl L3.Visible = False
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tbc_E3.Value = Null: tbc_E3.Visible = True: Ibl_E3.Visible = True
EIselfcbx_Dist3.Value = "S" Then

tbc_L3.Value = 3: tbc_L3.Visible = False: IbLL3.Visible = False
tbc_E3.Value = 0: tbc_E3.Visible = False: Ibl_E3.Visible = False

ElseIf cbx Dist3. Value = "N" Then
tbc_L3.Value = 3: tbc_L3.Visible = False: lbl_L3.Visible = False
tbc_E3.Value = 0: tbc_E3.Visible = False: lbl_E3.Visible = False

Else
tbc_L3.Value = Null: tbc_L3.Visible = True: Ibl_L3.Visible = True
tbc_E3.Value = Null: tbc_E3.Visible = True: lbl_E3.Visible = True
Ifcbx_Dist3.Value <> "B" And cbx_Dist3.Value <> "U" Then

SendKeys "+ {Tab} "
End If

End If
End Sub

Private Sub cbx_Dist4_AfterUpdateO
If cbx Dist4.Value = "L" Then

tbc L4.Value = 4: tbc L4.Visible = False: lbl L4.Visible = False- - -

tbc E4.Value = Null: tbc E4.Visible = True: lbl E4.Visible = True- - -
E1self cbx Dist4.Value = "S" Then

tbc L4.Value = 4: tbc L4.Visible = False: lbi L4.Visible = False
- - -

tbc E4.Value = 0: tbc E4.Visible = False: lbl E4.Visible = False
- - -

Elself cbx Dist4.Value = "N" Then
tbc L4.Value = 4: tbc L4. Visible = False: Ibl L4.Visible = False- - -
tbc E4.Value = 0: tbc E4.Visible = False: lbl E4.Visible = False- - -

Else
tbc L4.Value = Null: tbc L4.Visible = True: Ibl L4.Visible = True- - -
tbc_E4.Value = Null: tbc_E4.Visible = True: Ibl_E4.Visible = True
If cbx Dist4.Value <> "B" And cbx Dist4.Value <> "U" Then- -

SendKeys "+ {Tab}"
End If

End If
End Sub

Private Sub cmb cancel ClickO- -

DoCmd.Close
End Sub

Private Sub cmb_Generation_ClickO
IfIsNull(tbc_NV.Value) Then GoTo 10
IfIsNull(tbc_NS.Value) Then GaTo 10
IfIsNull(tbc_El.Value) Then GaTa 10
IfIsNull(tbc_L1.Value) Then GoTo 10
lfIsNull(tbc_D1.Value) Then GoTo 10
IfIsNull(tbc_G1.Value) Then GoTo 10
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If IsNull(tbc_LSLl.Value) Then GoTo 10
IfIsNull(tbc_USLl.Value) Then GoTo 10
IfIsNull(cbx_Distl.Value) Then GoTo 10
Iftbc NY.Value = 1 Then GoTo 5
IfIsNull(tbc_E2.Value) Then GoTo 10
If IsNull(tbc_L2.Value) Then GoTo 10
IfIsNull(tbc_D2.Value) Then GoTo 10
IfIsNull(tbc_G2.Value) Then GoTo 10
IfIsNull(tbc_PI2.Value) Then GoTo 10
IfIsNull(tbc_LSL2.Value) Then GoTo 10
IfIsNull(tbc_USL2.Value) Then GoTo 10
IfIsNull(cbx_Dist2.Value) Then GoTo 10
Iftbc NV.Value = 2 Then GoTo 5
If IsNull(tbc_E3.Value) Then GoTo 10
IfIsNull(tbc_L3.Value) Then GoTo IO
IfIsNull(tbc_D3.Value) Then GoTo 10
IfIsNull(tbc_G3.Value) Then GoTo 10
IfIsNull(tbc_P13.Value) Then GoTo 10
IfIsNull(tbc_P23.Value) Then GoTo 10
If IsNull(tbc_LSL3.Value) Then GoTo 10
IfIsNull(tbc_USL3.Value) Then GoTo 10
IfIsNull(cbx_Dist3.Value) Then GoTo 10
Iftbc NV.Value = 3 Then GoTo 5
IfIsNull(tbc_E4.Value) Then GoTo 10
If IsNull(tbc_L4.Value) Then GoTo 10
If IsNul1(tbc_D4.Value) Then GoTo 10
IfIsNull(tbc_G4.Value) Then GoTo 10
IfIsNull(tbc_P14.Value) Then GoTo 10
IfIsNull(tbc_P24.Value) Then GoTo 10
IfIsNull(tbc_P34.Value) Then GoTo 10
IfIsNull(tbc_LSL4.Value) Then GoTo 10
IfIsNull(tbc_USL4.Value) Then GoTo 10
IfIsNull(cbx_Dist4.Value) Then GoTo 10

5 Call Generator
DoCmd.Close
Exit Sub

10 MsgBox "Atleast one required field was found to be empty"
End Sub

Private Sub Forrn_Open(Cancel As Integer)
Me!lbl E2.Visible = False: Me!lbl L2.Visible = False: Me!lbl D2.Visible = False
Me!lbl-G2.Visible = False: Me!lbl-dist2.Visible = False: Me!Thl_P12.Visible = False
Me!lb(LSL2.Visible = False: Me!lbl_USL2.Visible = False
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Me!tbc E2.Visible = False: Me!tbc L2.Visible = False: Me!tbc D2.Visible = False- - -
Me!tbc G2.Visible = False: Me!cbx Dist2.Visible = False- -
Me!tbc Pl2.Visible = False
Me!tbc LSL2.Visible = False: Me!tbc USL2.Visible = False

- -
Me!lbl E3.Visible = False: Me!lbl L3.Yisible = False: Me!lbl D3.Visible = False- - -
Me!lbl G3.Visible = False: Me!1bl Dist3.Visible = False: Me!1bl P 13.Visible = False- - -
Me!lbl P23.Visible = False: Me!lbl LSL3.Visible = False

- -
Me!lbl USL3.Visible = False
Me!tbc E3.Visible = False: Me!tbc L3.Visible = False: Me!tbc D3.Visible = False- - -
Me!tbc G3.Visible = False: Me!cbx Dist3.Visible = False- -
Me!tbc Pl3.Visible = False
Me!tbc P23.Visible = False: Meltbc LSL3.Visible = False- -
Me!tbc USL3.Visible = False
Me!lbl E4.Visible = False: Me!lbl L4.Visible = False: Me!lbl D4.Visible = False- - -
Me!lbl G4.Visible = False: Me!1bl Dist4.Visible = False: Me!lbl Pl4.Visible = False- - -
Me!lbl P24.Visible = False: Me!lbl P34.Visible = False- -
Me!lbl LSL4.Visible = False: Me!lbl USL4.Visible = False- -

Me!tbc E4.Visible = False: Me!tbe L4.Visible = False: Me!tbc D4.Visible = False- - -
Me!tbc G4.Visible = False: Me!cbx Dist4.Visible = False- -
Me!tbc P14.Visible = False
Me!tbe P24.Visible = False: Me!tbc P34.Visible = False

- -
Me!tbe LSL4.Visible = False: Me!tbc USL4.Visible = False- -

End Sub

Private Sub tbe_NV_AfterUpdateO
Dim NV As Integer
On Error GoTo Error Handler
IfIsNul1(tbc_NV.Value) Then

Me!lbl E2.Visible = False: Me!lbl L2.Visible = False: Me!lbl D2.Visible = False- - -
Me!lbl G2.Visible = False: Me!lbl dist2.Visible = False: Me!lbl Pl2.Visible = False- - -
Me!lbl LSL2.Visible = False: Me!lbl USL2.Visible = False- -
Me!tbc E2.Visible = False: Me!tbc L2.Visible = False: Meltbc D2. Visible = False

- - -
Me!tbc G2.Visible = False: Me!cbx Dist2.Visible = False- -
Me!tbc P12.Visible = False
Me!tbe LSL2.Visible = False: Me!tbc USL2.Visible = False- -

Me!lbl E3.Visible = False: Me!lbl L3.Visible = False: Me!lbl D3.Visible = False- - -
Me!1bl G3.Visible = False: Me!lbl Dist3.Visible = False: Me!lbl P13.Visible = False- - -
Me!lbl P23.Visible = False: Me!1bl LSL3.Visible = False

- -
Me!lbl USL3.Visible = False
Me!tbe E3.Visible = False: Me!tbc L3.Visible = False: Me!tbc D3.Visible = False- - -
Me!tbe G3.Visible = False: Me!cbx Dist3.Visible = False

- -
Me!tbc P13.Visible = False
Me!tbe P23.Visible = False: Me!tbc LSL3.Visible = False

- -
Me!tbc USL3.Visible = False
Me!lbt E4.Visible = False: Me!lbl L4.Visible = False: Me!lbl D4.Visible = False- - -
Me!lbl G4.Visible = False: Me!1bl Dist4.Visible = False: Me!lbl P14.Visible = False- - -
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Me!lbl P24.Visible = False: Me!lbl P34.Visible = False- -
Me!lbl LSL4.Visible = False: Me!lbl USL4.Visible = False- -
Me!tbc E4.Visible = False: Me!tbc L4.Visible = False: Me!tbc D4.Visible = False

- - -
Me!tbc G4.Visible = False: Me!cbx Dist4.Visible = False- -
Me!tbc P14.Visible = False
Me!tbc P24.Visible = False: Me!tbc P34.Visible = False- -
Me!tbc LSL4.Visible = False
Me!tbc USL4.Visible = False
SendKeys "+{Tab}"
GaTa The End

End If
NV = Me!tbc NY.Value
IfNV = I Then

Me!lbl E2.Visible = False: Me!lbl L2.Visible = False: Me!lbl D2.Visible = False- - -
Me!lbl G2.Visible = False: Me!lbl dist2.Visible = False: Me!lbl P12.Visible = False

- - -
Me!lbl LSL2.Visible = False: Me!1bl USL2.Visible = False- -
Me!tbc E2.Visible = False: Me!tbc L2.Visible = False: Meltbc D2.Visible = False

- - -
Me!tbc G2.Visible = False: Me!cbx Dist2.Visible = False- -
Me!tbc P12.Visible = False
Me!tbc LSL2.Visible = False: Me!tbc USL2.Visible = False- -
Me!lbl E3.Visible = False: Me!lbl L3.Visible = False: Me!lbl D3.Visible = False- - -

Me!lbl G3.Visible = False: Me!1bl Dist3.Visible = False: Me!lbl P13.Visible = False- - -

Me!lbl P23.Visible = False: Me!1bl LSL3.Visible = False
- -

Me!lbl USL3.Visible = False
Me!tbc E3.Visible = False: Me!tbc L3.Visible = False: Me!tbc D3.Visible = False- - -
Me!tbc G3.Visible = False: Me!cbx Dist3.Visible = False- -
Me!tbc P13.Visible = False
Me!tbc P23.Visible = False: Me!tbc LSL3.Visible = False- -
Me!tbc USL3.Visible = False
Me!lbl E4.Visible = False: Me!lbl L4.Visible = False: Me!lbl D4.Visible = False

- - -
Me!lbl G4.Visible = False: Me!lbl Dist4.Visible = False: Me!1bl P14.Visible = False

- - -
Me!lbl P24.Visible = False: Me!lbl P34.Visible = False

- -
Me!lbl LSL4.Visible = False: Me!lbl USL4.Visible = False- -

Me!tbc E4.Visible = False: Me!tbc L4.Visible = False: Me!tbc D4.Visible = False- - -
Me!tbc G4.Visible = False: Me!cbx Dist4.Visible = False

- -
Me!tbc P14.Visible = False
Me!tbc P24.Visible = False: Me!tbc P34.Visible = False- -
Me!tbc LSL4.Visible = False: Me!tbc USL4.Visible = False- -

ElseIf NY = 2 Then
Me!lbl E2.Visible = True: Me!lbl L2.Visible = True: Me!lbl D2.Visible = True

- - -
Me!lbl G2.Visible = True: Me!lbl dist2.Visible = True: Me!lbl P12.Visible = True- - -
Me!lbl LSL2.Visible = True: Me!lbl USL2.Visible = True- -
Me!tbc E2.Visible = True: Me!tbc L2.Visible = True: Me!tbc D2.Visible = True- - -
Me!tbc G2.Visible = True: Me!cbx Dist2.Visible = True: Me!tbc P12.Visible = True- - -

Me!tbc LSL2.Visible = True: Me!tbc USL2.Visible = True
- -

Me!lbl E3.Visible = False: Me!lbl L3.Visible = False: Me!lbl D3.Visible = False- - -
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Me!lbl G3.Visible = False: Me!lbl Dist3.Visible = False: Me!lbl Pl3.Visibte = False- - -
Me!lbl P23.Visible = False: Me!lbl LSL3.Visible = False- -
Me!1bl USL3.Visible = False
Me!tbc E3.Visible = False: Me!tbc L3.Visible = False: Me!tbc D3.Visible = False- - -
Me!tbc G3.Visible = False: Me!cbx Dist3.Visible = False- -
Me1tbc P13.Visible = False
Me!tbc P23.Visible = False: Me!tbc LSL3.Visible = False- -
Me!tbc USL3.Visible = False
Me!lbl E4.Visible = False: Me!lbl L4.Visible = False: Me!lbl D4.Visible = False- - -
Me!lbl G4.Visible = False: Me!lbl Dist4.Visible = False: Me!lbl Pl4.Visible = False- - -
Me!lbl P24.Visible = False: Me!lbl P34.Visible = False- -
Me!lbl LSL4.Visible = False: Me!lbl USL4.Visible = False- -

Me!tbc E4.Visible = False: Me!tbc L4.Visible = False: Me!tbc D4.Visible = False- -
Me!tbc G4.Visible = False: Me!cbx Dist4.Visible = False- -
Me!tbc P14.Visible = False
Me!tbc P24.Visible = False: Me!tbc P34.Visible = False- -
Me!tbc LSL4.Visible = False: Me!tbc USL4.Visible = False

- -
EIseIf NY = 3 Then

Me!lbl E2.Visible = True: Mellbl L2.Visible = True: Me!lbl D2.Visible = True- - -
Me!lbl G2.Visible = True: Me!lbl dist2.Visible = True: Me!lbl P12.Visible = True- - -
Me!lbl LSL2.Visible = True: Me!lbl USL2.Visible = True

- -
Me!tbc E2.Visible = True: Me!tbc L2. Visible = True: Me!tbc D2.Visible = True

- - -

Me!tbc G2.Visible = True: Me!cbx Dist2.Visible = True: Me!tbc Pl2.Visible = True
- - -

Me!tbc LSL2.Visible = True: Me!tbc USL2.Visible = True- -
Me!lbl E3.Visible = True: Me!1bl L3.Visible = True: Me!lbl D3.visible = True- - -
Me!lbl G3.Visible = True: Me!lbl Dist3.Visible = True: Me!lbl P13.Visible = True

- - -
Me!lbl P23.Visible = True: Me!lbl LSL3.Visible = True

- -
Me!lbl USL3.Visible = True
Me!tbc E3.Visible = True: Me!tbc L3.Visible = True: Me!tbc D3.Visible = True- - -
Meltbc G3.Visible = True: Me!cbx Dist3.Visible = True: Me!tbc Pl3.Visible = True- - -
Me!tbc P23.Visible = True: Me!tbc LSL3.Visible = True- -

Me!tbc USL3.Visible = True
Me!1bl E4.Visible = False: Me!1bl L4.Visible = False: Me!lbl D4.Visible = False- - -
Me!lbl G4.Visible = False: Me!lbl Dist4.Visible = False: Me!lbl Pl4.Visible = False- - -

Me!lbl P24.Visible = False: Me!lbl P34.Visible = False- -
Me!lbl LSL4.Visible = False: Me!lbl USL4.Visible = False- -
Me!tbc E4.Visible = False: Me!tbc L4.Visible = False: Me!tbc D4.Visible = False

- -
Me!tbc G4.Visible = False: Me!cbx Dist4.Visible = False- -
Me!tbc P14.Visible = False
Me!tbc P24.Visible = False: Meltbc P34.Visible = False- -
Me!tbc LSL4.Visible = False: Me!tbc USL4.Visible = False- -

ElseIf NV = 4 Then
Me!lbl E2.Visible = True: Me!lbl L2.Visible = True: Me!lbl D2. Visible = True- - -
Me!lbl G2.Visible = True: Mellbl dist2.Visible = True: Me!lbl P12.Visible = True- - -
Me!lbl LSL2.Visible = True: Me!lbl USL2.Visible = True- -
Me!tbc E2.Visible = True: Me!tbc L2.Visible = True: Me!tbc D2.Visible = True- - -
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Me!tbc G2.Visible = True: Melcbx Dist2.Visible = True: Me!tbc P12.Visible = True- - -
Me!tbc LSL2.Visible = True: Me!tbc USL2.Visible = True- -
Me!lbl E3.Visible = True: Menbl L3.Visible = True: Me!lbl D3.Visible = True- - -
Me!lbl G3.Visible = True: Me!lbl Dist3.Visible = True: Me!lbl P13.Visible = True- - -
Menbl P23.Visible = True: Me!lbl LSL3.Visible = True

- -
Me!lbl USL3.Visible = True
Me!tbc E3.Visible = True: Me!tbc L3.Visible = True: Me!tbc D3.Visible = True- - -
Me!tbc G3.Visible = True: Melcbx Dist3.Visible = True: Me!tbc P13.Visible = True- - -
Me!tbc P23.Visible = True: Me!tbc LSL3.Visible = True- -
Me!tbc USL3.Visible = True
Me!Ibl E4.Visible = True: Mel1bl L4.Visible = True: Me!lbl D4.Visible = True- - -
Me!Ibl G4.Visible = True: Me!lbl Dist4.Visible = True: Me!lbl P14.Visible = True- - -
Me!lbl P24.Visible = True: Me!Ibl P34.Visible = True: Me!lbl LSL4.Visible = True- - -
Me!lbl USL4.Visible = True
Me!tbc E4.Visible = True: Me!tbc L4.Visible = True: Me!tbc D4.Visible = True- - -
Me!tbc G4.Visible = True: Me!cbx Dist4.Yisible = True: Me!tbc P14.Visible = True

- - -
Me!tbc P24.Visible = True: Meltbc P34.Visible = True: Me!tbc LSL4.Visible = True- - -
Me!tbc USL4.Visible = True

Else
Me!lbl E2.Visible = False: Me!lbl L2.Visible = False: Me!lbl D2.Visible = False- - -
Me!lbl G2.Visible = False: Me!lbl dist2.Visible = False: Me!lbl P12.Visible = False- - -
Me!lbl LSL2.Visible = False: Me!lbl USL2.Yisible = False- -
Me!tbc E2.Visible = False: Me!tbc L2.Visible = False: Me!tbc D2.Visible = False

- - -
Me!tbc G2.Visible = False: Me!cbx Dist2.Visible = False- -
Me!tbc Pl2.Visible = False
Me!tbc LSL2.Visible = False: Me!tbc USL2. Visible = False

- -
Me!Ibl E3.Visible = False: Me!lbl L3.Visible = False: Me!Ibl D3.Visible = False- - -
Menbl G3.Visible = False: Me!Ibl Dist3.Visible = False: Me!lbl P13.Visible = False

- - -
Me!lbl P23.Visible = False: Mellbl LSL3.Visible = False- -
Me!lbl USL3. Visible = False
Me!tbc E3.Visible = False: Me!tbc L3.Visible = False: Me!tbc D3.Visible = False

- -
Me!tbc G3.Visible = False: Me!cbx Dist3.Visible = False

- -
Me!tbc P13.Visible = False
Me!tbc P23.Visible = False: Me!tbc LSL3.Visible = Fa.Ise

- -
Me!tbc USL3.Visible = False
Me!lbl E4.Visible = False: Me!lbl L4.Visible = False: Me!lbl D4.Visible = False- - -
Me!lb.I G4.Visible = False: Me!lbl Dist4.Visible = False: Me!lbl Pl4.Visible = False- - -
Mellbl P24.Visible = False: Me!lbl P34.Visible = False- -
Mellbl LSL4.Visible = False: Me!lbl USL4.Visible = False- -
Me!tbc E4.Visible = False: Me!tbc L4.Visible = False: Me!tbc D4.Visible = False- - -
Me!tbc G4.Visible = False: Me!cbx Dist4.Visible = False- -

Me!tbc P14.Visible = False
Me!tbc P24.Visible = False: Me!tbc P34.Visible = False- -
Me!tbc LSL4.Visible = False: Me!tbc USL4.Visible = False- -
MsgBox "Invalid Variable Number - Enter (1-4)"
SendKeys "+ {Tab} "
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End If

The End:
Exit Sub

Error Handler:
MsgBox "Error" & Err.Number & ": "& Err.Description
Err.Clear
SendKeys "+{Tab}"
Resume The End
End Sub
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APPENDIX E

Multivariate Conditional Johnson Median Equations
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The median regression of x; on x~ is studied because the means of the Johnson

system equations are complex, when compared with the easy median equations. Since

the median of a standard nonnal variable is zero, then the median of x~, given x; ,

satisfies the following equation:

This equation can be rearranged as follows:

Ifwe define e and ~ as follows:

and

then the equation can be rewritten as follows:

IJ (x ~ )= In (8) + $;; (x ~ )

This fOlTIl of the equation allows the derivation of the conditional bivariate Johnson

equations. When the equations of the 16 different SIJ distributions are considered, their

derivations fall into four categories which are represented by the four Johnson system

types which the Sj distribution can be. These categories would be SIN, SIL, SIB, and S,u.

The logic behind the category selection will become clear as the derivations are

presented.

The four distribution members of the SIN category are SNN, SLN, SBN, and SUN.

The derivation of the four median regression equations begins with the general equation,

category regression equations would be:

196



jiiiiIP

Ifwe first consider the SNN distribution where II (x; ) = IN (x; ) = x; , the regression

equation can be derived with a simple substitution:

•AT

II
I

SNN distribution: x~ =In(8)+~x;

The remaining three distributions in the SIN category follow with their respective

substitutions. For the SLN distribution, the substitution is I[ (x; ) = IL (x; ) = In (x; ).

SLN distribution: x~ = in (8)+ ~ in (x; )

Forthe SBN distribulion, the substitUlion is f,(x: ) ~ f B (x; ) ~ InC~~ :J.

SBN distribution: x~ =in(e)+~in(~J
I-x'

I

For the SUN distribution, the substitution is

SUN distribution:

The four distribution members ofthe Sit category are SNL, Su_, SSL, and SUL. The

derivation of the four median regression equations begins with the general equation,

~(x~)=in(e)+~J;(x;),where IJ(x~ )=/L(X~ )=In(x~). The general form fortheSIL

category regression equations would be, in (x ~ ) = In (e)+ ~ I, (x; ), which, by taking the

exponent of each side, reduces to the following:

lfwe first consider the SNL distribution where I, (x; ) = iN (x; ) = x; , the regression

equation can be derived with a simple substitution:

197



SNL distribution: x~ =eexp[~x;]

The remaining three distributions in the SIL category follow with their respective

substitutions with simplification. For the SLL distribution, the substitution is

Su_ distribution:

For the SSL distribution, the substitution is II (x; ) = la (x; ) = In(~J .
I-xI

SBL distribution: x' =e(~J$
2 1 I

- XI

For the SUL distribution, the substitution is

SUL distribution:

The four distribution members of the SIB category are SNB, SLB, SBB, and SUB-

The derivation of the four median regression equations begins with the general equation,

J; (x;) = In (e)+ H, (x;), where IJ (x; ) = Is (x; ) = InC~~J. The substituted foml

for the SIB category regression equations would be, In(~J = In (e)+ ~ II (x;), which,
1- x 2

I

by taking the exponent of each side, reduces to, x 2 I =Gexp [~/f (x;)]. Some creative
1- x 2

simplification will give us the general fonn of the equation as follows:
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Ifwe first consider the SNB distribution where J; (x; ) = IN (x; ) = x; , the regression

equation can be derived with a simple substitution:

•
~i
(

SNB distribution:

The remaining three distributions in the SIB category follow with their respective

substitutions with simplification. For the SLB distribution, the substitution is

SLS distribution:

For the Sss distribution, the substitution is J; (x; ) = fB (x; ) =lnl[~).
1- Xl

Ssa distribution:

For the SUB distribution, the substitution is

SUB distribution:

The four distribution members of the S\u category are SNU, SLU, Sau, and Suu.

The derivation of the four median regression equations begins with the general equation,

the S IU category regression equations would be, sinh -I (x ~ ) = In (8) + ~ II (x; ), which, by

taking the hyperbolic sine of each side, reduces to, x; = sinh [In (8) + ~ J; (x;)]. From the
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definition ofhyperbolic sine, sinh (u)= .!.-(e u _e-u
), we can use substitution and

2

simplification to give us the general form of the equation as follows:

lfwe first consider the SNU distribution where .fr(x; )= fN(X; )= x;, the regression

equation can be derived with a simple substitution:

•\'n
III
(

SNU distribution:

The remaining three distributions in the SlU category follow with their respective

substitutions with simplification. For the SLU distribution, the substitution is

SLU distribution:

For the Ssu distribution, the substitution is .fr (x; ) = fB (x; ) =In(~J.
I-x I

SBU distribution: x~ =.!.-[8(~J4> _0-
1 (~J-4>]

2 I-x I-xI I

For the Suu distribution, the substitution is

Suu distribution:

The median regression of x; on x; and x~ is studied because the means of the

Johnson system equations are complex, when compared with the easy median equations.
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Since the median of a standard normal variable is zero, then the median of x;, given x;

and x;, satisfies the following equation:

This equation can be rearranged as follows:

•AT

1111

I

.h(x;)

lfwe define 8, ~, and a as follows:

8=exp , ~=

and a=

then the equation can be rewritten as follows:

This form of the equation allows the derivation of the conditional trivariate Johnson

equations. The equation derivations of the 64 different SIJK distributions fall into four

categories which are represented by the four Johnson system types which the SK
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distribution can be. These categories would be SUN, SlJL, SUB, and Suu. The logic behind

the category selection is the same as with the bivariate equations. The equations are

derived in the same manner as the bivariate equations, presented earlier, and are listed

below, following the quadrivariate discussion.

Ifwe define e, ¢, a, and ~ using the same method as used with the bivariate

and trivariate median regression equations, then the quadrivariate equation can be

rewritten as follows:

1M (x~)= In (e) + ¢ fI(X; )+afJ(x~)+ ~ IK (x;)

This fonn ofthe equation allows the derivation of the conditional quadrivariate Johnson

equations. The equation derivations of the 256 different SfJKM distributions fall into four

categories which are represented by the four Johnson system types which the SM

distribution can be. These categories would be SIJKN, SUKL, SIJK.B, and SUKU. The logic

behind the category selection is the same as with the bivariate and trivariate equations.

The equations are derived in the same manner as the bivariate and trivariate equations,

presented earlier, and are listed below, following the trivariate equations.
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SUNN:

SNLN:

SLLN:

SUL :

SLBN:

SUB:

SNNL:

SLNL:

Trivariate Eq uations

x; = In (8) + ~ 1; (x; )+ a/;(X'2 )

x; = in (8)+ ~ x; +ax~

x; =In(8)+~in(x;)+ax'2

x; =In(8)+~ln(~J+ax~
1- XI

x; = In(8)+ ~ln (x; +~X;2 +1)+ax'2
x; = In (8)+ ~ x; +abl(x~)

x; =In(8)+~ln(x;)+aln(x~)

x; ~ In (8)+ ~/nC :~; J+cdn (x;)

x; = in (8)+<l>in (x; +~X;2 +l)+aln(x~)

x; = In(e)+¢x; +aln[~J
I-x'2

x; =In(e)+¢ln(x;)+aln[~J
1- x2

x; =In(e)+¢ln[~J+aln[~J
I-XI I-x 2

x; = In (8)+ ¢In(x; +~X;2 +l)+aln[~J
1- x 2

x; =In(e)+¢x; +aln(x~ +~X~2 +1)

x; =In(e)+~ln(x;)+aln(x~ +~X~2 +1)

x; = In(e)+ ¢In[~J + aln (x~ + ~X~2 + 1)
1- XI

x; =In(8)+¢ln(x; +~r-x-;2-+-1)+aln(x~ +~r-x-~2-+-1)

x; =8exp[¢x;]exp[ax~]

x; = e(x; )$ exp [a x~ ]
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SUNL:

S LL:

SLLL:

x; =e(~J+ exp[ax~]
1- x'I

x; =eexP[~X;](X'2 +~X~2 +It
x; =e(x;)+ (X~ +~x~2+1t

x; =8C~~:r~; +)x;' +1)"

x; = 8 (x; + ~X;2 + 1t (X~ +~X;2 +1t

x; ={l+e- I exp[-~x;]exp[-ax~]}-l

x; ={1+e-1 (x;t+ exp[-ax~]t

X>{1+8-' c~~r exp[-UX;f

x; ={I +8-' (x: +)x:' +1t exp[-Ux',f

x; = ~+e-J exp[-~x;](x;)-lX t
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SLSS:

suss:

SSUB:

suus:

SlJU:

x~ = ~+e-J (X;t~ (X~)-at
X;={l+W' c~~r (X;)-"f'

x~ ={1+e-1(X; +~X~2 +lt~ (x;ta }-I

X; ~ {l+e-' eXP[-$xt~'~JT

X; ={l+e-' (x;t' C~~JT

X; ~{l+e-' c~~r C~~JT

X; ={l+e-' (X; +~X;'+l)+ (~rr

x~ ={I+e- I exp[-~x;](X; +~X;2 +lt
a
fJ

x~ ={I+e-' (x~t~ (X; +~X;2 +Itaf'

X;={l+e' (l~~J k, +~x;' +ltT

x~ ={l+e- I (X; +~X;2 +It' (X; +~X;2 +ltafl

x~ =~ {e exp [~J; (X; )]exp[ex/J (X; )]- 8-1exp [- ~ J; (x; )]exp [- ex IJ (x;)])
2

x~ = ~ {eexp[~x~]exp[exx;]-e-J exp[-~x;]exp[-exx;]}

x; = ~ {e (x; )~ exp [ex x; ]- e-I (x;) -~ exp [- ex x; ]}

x~ =~{8(~)~ exp[exx;]-e- I (~)-<P exp[-exx;l}
2 I-x I-xI J

x:, =~ {e~; +~X~2 +It exp[exx;]-e- I (X; +JX;2 +It' exp[-exx;]}
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S LU:

SSLU:

SULU:

SUB:

SLUU:

SBUU:

SUUU:
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Quadrivariate Equations

SNNNN: x~ =In(8)+~x; +ax~ +px;

SLNNN: x ~ = In (8) + ~ In (x; )+ a x; + p x;

SeN N: x~ ~/n(e)+~ln(l~~J+o.x" +px;

SUNNN: x~ =In(8)+~ln(x; +~X;l +1)+ax; +px;

SNLNN: x~ = In(8)+~x~ +aln(x~)+px;

SLLNN: x~ =In(8)+~ln(x;)+aln(x;)+px;

SeLNN: x~ ~ In(e)+ ~lnC :~J +o./ll(x;)+ px;

S LNN: x~ =In(8)+~ln(x; +~X;2 +1)+aln(x;)+Px;

SNBNN: x~ =In(8)+~x; +aln(~)+px;
1- x'2

SLBNN: x~ =In(8)+~ln(x;)+aln(~)+px;
I-Xl

SSBNN: x~ =In(8)+~ln(~J+aln(~J+px;
I-x, l-x z

SUBNN: x~ =In(8)+~ln(x; +~X;2 +1)+aln(~)+px;
1- x 2

SNUNN: x~ =In(8)+~x; +a!n(x~ +)X;2 +1)+PX;

SUJNN: x~ =In(e)+~ln(x;)+aln(x; +~X;2 +l)+PX;

SeuNN: x~ ~ III (e)+ ~/1l( 1~~J+a IIIk +Jx;' +1)+ Px;

SUUNN: x~ =In(e)+~ln(x; +~X;2 +l)+aln(x; +)x;z +1)+PX;

S NLN: x~ =In(8)+~x; +ax; +pln(x;)
SLNLN: x~ =In(8)+~ln(x;)+ax'2 + pIn (x:,)

SeNLN: x~ ~ III (e)+~lnC :'~; J+0: x; +pill (x;)
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SUNLN: X~ =In(e)+~ln(X;+)X;2 +1)+ax~+pln(x;)
SNLLN: X~ =In(e)+~x;+aln(x;)+pln(x;)
SLLLN: X~ =In(e)+~ln(x;)+aln(x;)+pln(x;)

SBLLN: X~ =In(8)+~ln(~J+aln(X;)+Pln(X;)
I-x.

SULLN: x~ =In(8)+~ln(X;+~X;2 +1)+aln(X~)+Pln(x;)

SNBLN: x~ =In(8)+~x;+aln(~J+Pln(X;)
1- x 2

SLBLN: x~ =In(8)+~ln(X;)+aI11(~J+Pln(X;)
1- x2

SBBLN: x~ =In(8)+~ln(~J+aln(~J+Pln(X;)
I-xI I-x 2

SUBLN: x~ =In(8)+~ln(x;+~X;2 +1)+aln(~I+P1n(x;)
I-x2 )

S ULN: x~ =In(8)+~x; +aln(x~ +~X;2 +I)+Pln(X;)

SLULN: x~ =In(8)+~ln(x;)+aln(x;+~X~2 +I)+Pln(X;)

SBUlN: <=In (e)+ ~In( 1~U+alnk+~x;' +Il+ pin (x;)

SUULN: x~ =In(8)+~ln(x;+~X;2 +1)+aln(x; +~X;2 +I)+Pln(x;)

SNNBN: x; ~In(e)+~x; +ax; +PlnC~:J

SLNBN: x~ =In(e)+~ln(x;)+ax;+Pln(~J
1- x 3

SI3NBN: x~ =In(8)+~ln(~J+ax; +Pln(~J
I-x I-xI J

SUNBN: x~ =In(8)+~ln(x;+~X;2 +I)+ax~+Pln(~J
1- x)

SNlBN: x~ ~ In(e)+ ~x: +aln(x;)+ PlnC ~:J
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SLLBN: <=In (e)+ ~In(x:)+ aln(x;)+ Pln(1~~J

SBLBN: x~ = In (e)+ $11l( ~; ,)+alll(x;)+Pln(~)
1 Xl I-x}

SULBN: x; = In (e)+ ~In (x; +~x;' +1)+aln (x;)+ PlnC ~~J

SNBBN: x~ =In(e)+¢x; +aln(~)+Pln(~)
I-x] I-x}

SLBBN: x~ =In(e)+¢ln(x;)+aln(~)+Pln(~)
I-x z I-x}

SBBBN: x~ =In(e)+¢ln(~)+aln(~)+PLn(~)
I-xl I-x z I-x}

SUBBN: x~ =In(e)+~Ln(x; +~X;2 +I)+aln(~)+Pln(~)
I-x] I-x)

SNUBN: x~ =lll(e)+~x; +aln(x'z +~x;- +1)+Pln(~)
I- x3

SLUBN: x; ~ In (e)+ ~ In (x;)+ aln (x; +~x;' +1)+ Pln(1~~J

SauBN: x~ =In(e)+~ln(~)+aln(x; +~X~2 +l)+Pln(~)
I-x} I-x}

SUUBN: x; = In(e)+~ln(x; +~x;' +1)+alnk, +~x;' +1)+ PlnC ~~;:

SNNUN: x~ =In(e)+$x; +ax; +Pln(x; +~x~z +I)
SLNUN: x~ =In(e)+$ln(x;)+ax; +~/IlG; +~x;z +1)

SBNUN: x; =In (e)+ ~In(1~~:J+ax; +Pink +~x;' +1)

SUNUN: x~ = In (e)+ ~/n~; + ~X;2 + I )+ a x; + ~bl (x; + ~~x-;2-+-I)

SNLUN: x~ =11l(8)+~x; +aln(x;)+~/n(x; +~X;l +1)
SLLUN: x~ = In(8)+ ~ln (x;)+ aln(x'J+ ~lll (x; + ~x;] + I)
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SOLUN: X; ~ In (e)+ ~In(1:~J +cLl" (x;)+ pin (x;+ ~x;' +I )

SULU : x~ =bl(8)+~ln(x; +~X;2 +1)+aln(X~)+Pbl(x~ +~r-x-~2-+-1)

SNOUN: x; =In(e)+ ~x; +alnC ::J+ Pln~;+~x;' +tl
SLBUN: x~ =In(8)+~ln(x;)+aln(~)+Pln(x~+~X~2 +1)

1- x 2

SBBUN: x~ =In(8)+~ln(~)+aln(~J+Pln(x~+~X~2 +1)
I-x) l-x 2

SUBUN: x~ = 11'1(8)+ ~ln (x~ + ~X;2 + t)+aln(~) + P[n(x~ + ~X;2 + 1)
I-x 2

SNUUN: x~ =[n(8)+~x~ +al1'1(x~ +~X~2 +1)+Pln(x~+~X;2 +1)

SLUUN: x~ =In(8)+~I1'1(x;)+aln(x~+~X~2 +1)+Pln(x~+~X;2 +1)

SBUUN: x~ =I1'1(8)+~ln(~)+aln(x~+~X~2 +1)+Pln(x~ +~X;2 +1)
I-x)

SUUUN: x~ =In(8)+~ln(x; +~X;2 +1)+aln(x~ +~X~2 +1)+pln(x; +~r-~-~2-+-1)

SNNNL: x~ =8 exp [~x;] exp [a x~ ]exp [}3 x~]
SLNNL: x~ = 8 (x;)~ exp[ax~]exp[}3x;]

SONNL: <=eC:U' exp[ax;]exp[px;]

SUNNL: x~ = 8 (x~ + ~X;2 + 1t exp[ax~]exp[px~]
SNLNL: x~ = 8 exp [~x; ](x;)Q exp [J3 x~]

SLLNL: x~ =8(x;)~ (x~)Qexp[J3x~]

SBL L: x~ =8(~)~ (x~Ylexp[J3x;]
1- XI

SULNL: x~ =8(x; +~x;2+1t (x~texp[J3x;]

SNI3NL: x~ =8 exp[~x~ ](~)a exp[px;]
1- x 2
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SLBNL: X~ =8 (x;)~ (~) a exp[px;]
1- X 2

SSB L: X: =8(~)~ (~)a exp[px;]
I-xI l-x 2

SUBNL x; ~ e~; +~x;' +I)' (~rexp ill x; ]

S UNL: X~ =8exp[~x;](x~+~X~2+It exp[px;]

SLUNL: <= 8 (x;)~ (x~ + ~X~2 +1t exp [Px;]

SBUNL: X: =8(~)~ (x; +~X~2 +It exp[px;]
1- XI

SUUNL: x: =8(x; +~X;2 +1)' ~~ +~X~2+It exp[px;]

•TATE

11111
i a

SUNLL:

SNLLL:

SLLLL:

SLBLL:

x: =8 exp[~x;]exp[a:x;](x;)~

x: =8 (x; )~ exp [a: X ~ ] (x; )13

X; ~ eC~~J exp[o.x',](x;l'

X: =8(x; +~x;2+1t exp[a:x~](x;)~
x: =8 exp [~ x; ](x '2 ) « (x;) ~

X: =8(x;)~ (x;)a(x;)~

X; ~ eC~~J (x',)" (x;l'

x~ =8(x; + ~X;2 +1t (x'Ja (x;)13

X: =8exp[~x;](~]a (x;)~
1- x2

x~ =8(x;)~ (~)a (x;)13
1- X;

X; ~eC~~J (l~~J (x;l'

x; ~e~: +~x:' +I)' C~~J (x;l'
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x~ = 8 exp [~ X;] (x ~ +)X~2+ 1)0 (X;) f)SNULL:

SLULL: x~ = 8 (X;)9 (X~ + )X~2 + It (x;)f)

x; ~ 8(I~~J (x; +)x;' +d" (x;)'SBULL:

SUULL: x~ =8(x; +)X;2 +It (x~ +)X~2 +It(X;y

SJJBL: x; =8exp[UJx: )]exp[a f, (x; )]C~~J

SNNI3L: x; =8exp[~X;]exp[ax;](~r
I-x 3

SLNBL: x; =8(X:)' exp [a x; J(---.:Lr
I-x'

3

SBNBL: x; ~8(~rexp[ax;J(~rI-x I-xJ 3

x; =8(x: +)x:' +1)' exp[ax;]C~~JSUNBL:

SNLBL: x; ~ 8exp [~x; ](x;)" (---.:Lr
I-x'

3

SLLBL: x; ~8 (x:)1 (x;)"(~r
I-x 3

SBLBL: X;~8(1~~J(x;)"C~~J

x; ~8 (x: +)x:' +1)' (x;)"(~rSULBL:
I-x3

SNBBL: x; ~8exp[~x;](~n~rI-x I-x2 3

SLBBl: x; =8 (X;)I C~~J C~~J

('n 'n 'rSBBHL: x' =8 _x_l_ ~ ~
4 I-x; I-x~ I-x;
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x~ =8exp[~x;]exp[ax~](x; +~X;2 +ly
x~ =8 (x;)~ exp[ax~](x; +~X;2 +ly

x~ =8(~J~ exp[ax'2J(x; +~X;1 +lyI-x 1

x~ =8(x ~ +~x; 2+ 1t exp [a x~ ](x; + ~x;2 +1Y
x~ =8exp[~x;](x;)a(x; +~X;2 +ly
x~ =8(x;)~ (x;)a(x;+~X;2+IY

x~ =8(~J~ (x;t(x;+)x;2+IY
1- x

J
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SNUUL: X~ =eexp[~x;](X;+~X;2 +It(x; +~X;2 +ly
SLUUL: X~ = e(X;)41 (X~ + ~X~2 + 1t (X; + ~X;2 + 1Y

SBUUL x; ~9C ~~J ~; +k +I)" (X; +~x;' +1)'

SUUUL: x~ = 8 (x; +~X;2 +1t ~~ +~X~2 +It (X; +~X;2 +ly

SNNNB: x~ = {1+8- t exp[-~x;]exp[-ax;]exp[-px;]}-l

SLNNB: x~ = ~+e-l (x;t41 exp[-ax;]exp[-px;]t

SBNNB x~ ={I+W' (I~~r exp[-ax;lexp[~px;f

SUNNB: X~={l+e-1 (X;+~x;2+1t41 exp[-ax~]exp[-PX;]rJ

SNL B: x~ =~+8-1 exp[-~x;](x;tn exp[-px;lt
SLLNS: x~ ={1+8-1 (x;t41 (x~tn exp[-px;]}-l

SBLNB x~ ={I +9' (1~~J (x;)-a exp[- px;f
SULNU: x~ ={l+e- J (x; +~X;2 +lt41

(x;)-n exp[-px;Jr
1

S BNB x~ ={1+9-' expHx;JC ~~Ja exp[-PX;f

SLBNB x;= {1+W' (x:t' (I ~~Ja exp[-PX;f

SBBNB X; ~{1+9' (l~~J C~~Ja exp[-px;f

SUBNB x> {I +W' ~; + ~x:' + It' (Rrexp[-PX;f

SNUNB: x~ ~ {I +W' exp[-~x; J(x; +~x',' +1t exp[-px;Jf'
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SWNS: x~ ={1+8-' (x;t~ (x; +~X;2 +lt
a

exp[-px;Jf
1

SSUNS x; ={I+S-' (l~~:rk +)x;' +It exp[-~x;r

SUUNB: x~ ={1+8-1 (x; +~x;2+1t~ (x; +~X;2 +lt
a

exp[-px;]f'

SNNLB: x~ = {I + 8-1 exp [- ¢ x;] exp [- a x; ](x; t~t
S ' ~ 8-1 (,)-~ [ ']( ')-Il}-rLNLB : x 4 = II + XI exp - a x 2 x)

SBNLB x; ={l+S' C~~J' exp[-ax;](x;)-f

SUNLl3: x~ ={1+8-' (x; +~X;2 +lt~ exp[-ax;](x;tll f'
S LLB: x~ =~+8-' exp[-¢x;](x;ta (x;t~t

SULS: x~ =~+8-J (x;t~ (x;ta (x;tll}-I

SSLLS x; ={l+S-' c~~r (x;t" (x;t'f

SULLO: x~ = {I + 8-1 (x; + ~X;2 + 1t~ (x; t a
(x; tIl f'

SNSLB x; ={l+e-' eXP[-$xt~U" (x;)-f

SLSLS x; = {J + S-' (x; t' (1~U" (x;t'r
SSSLB x; ={l+S-' C~~J C~~J" (x;)-f

SUBLS X>{I+S-' (x:+)x:'+lt'(2Zf (x;tf

SNULB: x~ = {l + 8-1 exp [- ¢ x;]~; + ~X;2 + 1to. (x; t~f'
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SLULB: x~ = {I + 8-1(X;) -~ (x; + ~X;2 +1tex (x; til fl

SauLs x; ~ {I +9-' (1:~r (x; +~x',' +1t (x;tf
SUULB: x~ ={1+8-1(x; +~X;2 +lt~ (x; +~X;2 +ltL

(x;)-p fl

SNNSB x; ~{1+9-' expHx;Jexp[-ax;l(l:~JT

SlNS. x~ ~{1+9-' (x;tl exp[-ax;lC:~JT

SBNBB x; ~ {1+9' C:~r exp[-ax;l(1:~Jr
SUNBB x~ ~ {1+9-' (x; +~x;' +1t expl-ax;lC:UT
SNlBB' x; ~ {I +9-' exp [-~x; J(x; t a(1:~JT

SlLBB x; ~ {l +9-' (x; )-1 (x;)-a C:uT
SOLBIl x; ~{1+e-' c:~r (x;t" c:~Jr

SUlSS x; ~ {I +9' (x; +~x:' +1t (x;t a C:~JT

SNBBO x; ~{1+9' exp[-~xt:~Ja C:~JT
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SLBBB <~{l+e-' (x;)' [l~U~ c~:JT

SBBB. <~{l+e-' [l~~J [l~U~ [l~:JT

SUBB" X~ ~ {I +e-' (x; +~X:' +1)-' [~) -u [1 ~:;) -'}-'

SNUBB x~ ~{l+e-' exp[-$x:l(x; +~x;' +It C::JT
SLUBB: < ~{l+e-' (x;)-' (X; +~X;' +It c::JT
SBUB. x~ ~{l+e-' C:~Jk +~x',' +It c::JT
SUUBB x~ ~ {l +e-' (X: +~X;' +1)' k +~X;' +1t C::JT

SNNUB: x~ ={l+S-1 exp[-~x;]exp[-ux;](X; +~X;2 +ltllfl

SLNUO: x~ ={I+e-1 (x;t~ exp[-ux'z] (X; +~X;2 +ltPfl

SBNUB x~ ~{l+e-' [l:~r exp[-ax;l(x; +~x;' +It'r
SUNUB: x~ ={l+S-1 (X; +~x;z +It' exp[-ax;](x; +~X;2 +t)-Pfl

SNLUB: x~ ={l+S-1 exp[-~x;](xJ-a (X;+~X;Z+ltPfl

SLLUB: x~ ~{l+e-' (x;t' (x;)-u (x; +~x;' +It'f
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SBWB x; ~{l+e' [l~~J (x;)~ k +~x;' +1t'r
SULUB: x~ ={l+S-1 (X; +~X;2 +lt~ (x~)-a. (X~ +~X;2 +ltPfl

SNBUB X>{l+e-' eXP[-$x;lC~~J· (X;+~X;' +It"r
SLBUB x; ={I +e-' (x; )-. C~U ~ (X; +~x;' +1t'r
SBBUB: x; ~{l+e-' [l~~r C~~J" k +~x;' +ltf

SUBUB x; ~{l+e-' (x; +~x;' +It[~rk+~x;' +1 t'r
SNUUB: x~ ={l+e- I exp[-~x;](X; +~X;2 +lta. (x; +~X;2 +ltPf'

SLUUS: x~ ={l+e- I (x~tQ (x; +~X;2 +lt
u

(x; +~X;2 +ltflf'

SeuuD x; ={I +e-' C~~r (x; +~x;' +It (x; +~x;' +Itf

SUUUB: x~ ={l+e- I (x; +~X;2 +lt
l

(X; +~X;2 +lt
u

(x; +~X~2 +It\fJ

1{e exp [~/I (x;)] exp [a /; (x;)] exp [p x;]- }
SfJNU: x~ =2" e- I exp[-~~(x;)]exp[-a/J(x;)]exp[-~x;]
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eexp [<j> II (x; )] exp [a J; (x ~ )](~J ~ -
1 I - x,

I J

X =-
4 2 ~

e-I exp [- <j> J; (x;)] exp[-aJ; (x~ )](~J-
1- x 3

SNNBU: x~ = ~{8 exp [<j>x; ]exp[axI2](~JP _e- I exp[-<j>x; ]exp[-ax~](~J-P}
2 I-x I-x3 3

SLNBU: x~ =~{e (x;)~ exp[a x~ ](~JJl -e-I (x; )-~ exp[-ax~ ](~J -Jl}
2 I-x I-x3 3

SBNBU: x~ =~{e (~J41 exp[ax~](~Jf) _e- I (~J-~ exp[-axI2](~:-f)}
2 I-x I-x I-x I-xI 3 I 3

e(x; + ~X;2 +It exp[a x;](~J fl -
I I-x

S I 3

UNI3U: x4 = "2 ( J-(I

Wi (x; +~X;2 +It~ exp[-ax;] I~~;

SNLBU: x~ =~{eexp[<j>x;](x;)a (~JP -8-1 exp[-<j>x;](x;ta(~J.fl}
2 I-x I-x3 3

SLLBU x~ = ~ {6 (x;)' (x;)" C:~J -6-' (x; )-. (x; t" C:~'lr}
{ ( , J~ (' JII (' J-~ (/ J-fl}SBLBU: x~ =~ 8 ~ (x'zt ~ -8-1 ~ (x~)-a ~

2 I-x I-x I-x I-xI 3 I 3
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S
I 1

NUBU: x4 =-
2

S
I 1

LlJBU: x 4 =-. 2

S
I 1

BUBU: x4 =-
2

S
I 1

UUBU: x4 =-
2

8 (x; +~X;2 +It (x; +~X;2 +It (~JI3 -
1- x3

e' (X; +~x:' +1t' (x; +~x;' +1t L~~J
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SIJUU: x~ =~{8 exp[$J,(x: l]exp[af, (x; l](x; + ~x;' + 1l'~ -o}
2 e-I exp [- ~ J; (x; )] exp [- (X !J (x ~ )] (X; +)x;2 + 1)
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