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Chapterl. Introduction

1.1 Overview

This paper studies an image segmentation technique, which considers the

application and classification of satellite-sensed soil moisture images. Image

segmentation is one of the essential and fundamental parts of image processing. The

world of image segmentation is vast and there are various techniques.

As a first step, we start by reviewing the philosophical concept and the

definitions, then clarify them to find a suitable technique for soil moisture image

segmentation. The watershed segmentation is a powerful image segmentation technique.

It is advantageous because it always forms closed and thin boundaries. Therefore, it is the

main focus of this thesis. This image segmentation scheme is widely used by various

types of images, such as medical imaging, texture segmentation, and object extraction. In

this thesis, we apply this segmentation technique in order to classify the satellite-sensed

ground soil moisture images. The original images have complex patterns, therefore our

objective is to simplify the soil moisture image as much as preserving the original (soil

moisture) distribution, i.e., minimizing clustering error. However, in the practical

application, there are two disadvantages associate with this algorithm - over segmentation

and large computational costs. Our first goal in this thesis is to find a possible solution to

these problems.

The region merging is a practical remedy for the over-segmentation, and a major

focus of this thesis. Traditionally, region merging techniques are selected for specific

applications and it was implemented in a heuristic manner. Therefore, we attempted to



establish a well motivated region merging technique for the watershed segmentation ­

this is the second goal in this thesis.

The demand for the application of image processing on satellite sensed imagery is

growing, not only for the scientific research purposes, but also because it is widely

utilized in our daily lives. Our study is initiated from the Earth Observing System, a

project of NASA, which remotely monitors earth and studies its condition form a global

point of view. One of the key topics in this research is the observation of the status and

the transition of ground soil moisture from a global scale. The collected soil moisture

data was processed to study global energy budgets and the water cycles of the globe.

Well organized ground soil moisture estimation techniques have been developed

and applied recently. The soil moisture estimation techniques from the remotely sensed

imagery are essential in mapping the status of the ground soil moisture over the global

area. In this study, we chose an applicable technique and simplified it to draw soil

moisture images from our satellite sensing data. The principle and process are fully

explained in Chapter-3.

Unfortunately, the derived soil moisture images are less contrasted and quite

uniform in grayscale distribution. Image segmentation of these images is not a simple

task. When using conventional image segmentation techniques, it is difficult to yield

meaningful segmentation results, due to the complexity of the image. The selection of a

poor technique could cause an inadequate classification of soil moisture distribution.

Therefore, the soil moisture segmentation technique has to be chosen with considerations.

In order to present a possible solution to these problems, a new and sophisticated

region growing technique - the variational technique is introduced. The proposed
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technique can be a possible solution to the issues of conventional region merging. Using

the variational technique, an equation (energy function) is applied and the region merging

progresses according to the energy function. Additionally, using the energy function, we

have the ability to control the region scalability using a region scaling parameter. Being

able to control the region scalability is essential in the image segmentation of this

research. These details are fully explained in Chapter-4.

Once images are segmented, it is important to evaluate and measure the

segmentation quality. If the segmentation results do not represent the original soil

moisture distribution, the segmentation technique is useless. The formulation of the

energy function contributes to the measurement and evaluation of the segmentation

results. The development of a well motivated image evaluation technique is another

important topic and it is our the third goal in this thesis. The segmentation results from

the new approach are evaluated and compared to the conventional approaches according

to the energy level. All of the results are shown in Chapter-5.

The importance of the image processing is growing with the development of

digital computers and information technologies. Various image processing technologies

are applied and utilized in our daily life, such as medical imaging, mass-production in

industry, and the internet. This study focuses on just one section of the world of the

image processing. But, proposing a possible solution to the existing issues, we would like

to contribute a progress of the image processing. In the following chapter, Chapter-2, we

start to review conventional image segmentation techniques and attempt to clarify the

issues. The chapter also supplies the background of the watershed segmentation

technique and the new image segmentation technique.
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Chapter 2. Review of Literature

2.1 Introduction

This chapter provides the background for reviewing mainly three topics, which

are the watershed segmentation(WS), morphological pyramid and region merging

techniques. The first part of this chapter discusses philosophical definitions of image

segmentation. The definitions will be a foundation for evaluating the image segmentation

results. Choosing an adequate segmentation technique is an important starting point to

yield meaningful results. In section 2.2, various image segmentation techniques are

reviewed and examined for the applicability.

Another goal of this thesis is to establish a reasonable segmentation technique for

the satellite sensed soil moisture (SM) images. The watershed image segmentation

technique is mainly applied in this thesis. Therefore, the basic idea, the strengths, and the

weak points are reviewed. In section 2.4., we will explain the concept of the image

pyramid and the morphological pyramid which contribute the reduction of the

computational costs. Development of a well established region merging technique is

essential for the WS segmentation of the soil moisture images. In section 2.5, various

region merging techniques are reviewed concerning the application of the SM images.

Lastly, section 2.6 reviews the ground soil moisture estimation techniques from

remotely sensed imagery. Several possible soil moisture estimation techniques are

reviewed and the characteristics are clarified. In the following section, we explain the

basic concept of the image segmentation criteria.
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2.2 Review of Image Segmentation Techniques

2.2.1 Image Segmentation Criteria

As the first step in finding a suitable segmentation technique for the soil moisture

images, we summarize and clarify the philosophical definition of image segmentation.

Without understanding the fundamental concept of image segmentation, it would be

difficult to evaluate the segmentation results.

There are several viable definitions of image segmentation. Gonzalez (Gonzalez,

1992) defined image segmentation as "subdividing an image into consistent parts or

objects". Castleman mentioned an alternative definition as "decompose an image into

meaningful parts with respect to a particular application" (Castleman, 1996).

If the target object is clearly known, the objective of segmentation is to segment

the target features from the background. Unfortunately, the target objects are not always

clearly identified (our soil moisture images, for example). In order to illustrate the

characteristic of our SM images, we compared two images. In Fig.2.1 (a), the target object

(a swan) is clearly identified. The objective of segmentation of this image will be

segmenting the swan. In contrast to the swan image, a soil moisture image is shown in

Fig.2.1 (b), neither a clear target nor a crisp boundary are observed. Thus, for the

segmentation of the soil moisture image, we have to prepare an adequate image

segmentation technique. Because of the absence of the target image, the segmented

results have to be measured at an appropriate scale. If the swan is segmented, even

visually it is possible to evaluate the segmentation results. But, how should we evaluate

the segmentation results of the soil moisture image? It is much difficult to define

meaningful or sound segmentation results of the soil moisture image, because of the
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absence of a clear target. This is the reason we want to established a segmentation quality

evaluation technique in this research.

Fig2.1 (a) A Swan Image Fig.2.1 (b) A Soil Moisture Image

Fig.2.t An comparison
of well target identified
image and target
absence image.

Fig 2.1 (a) has a
clear target object a
swan,

Fig 2.1 (b) does not
have a clear object in
the image.

Before exploring the topic, let us I ist the properties of a good segmentation. The

properties below have been used as a guideline to evaluate the segmentation results.

According to Haralick (Haralick, 1992), general segmentation procedures tend to obey

the following properties:

I. Segmented regions of an image should be uniform and homogeneous with

respect to some characteristic, such as gray level or texture condition.

2. Region interiors should be smooth and without holes or spots.

3. Adjacent regions should have significantly different values with respect to the

characteristic on which they are uniform.

4. Boundaries of each segment should be simple, closed, ancl spatially accurate,

Haralick also mentions that it is difficult to achieve all the desired criteria. Therefore,

we need to carefully choose the segmentation technique that is especially suitable for our

soil moisture image segmentation. In the following subsection, we review several

segmentation techniques and evaluate their suitability for the soil moisture image

segmentation.
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2.2.2 Image Segmentation Techniques

In general, image segmentation algorithms can be categorized by two different

approaches: edge-boundary approach and region-based approach. In the edge-boundary

approach, one seeks to identify edge pixels and link them together to form the image

boundaries. The edge-boundary approach seeks discontinuity over the image. It directly

seeks edges or boundaries in the image and eventually divides the image based on the

boundaries.

Fig.2.2 Two Image Segmentation Approaches

Region-Based Approach

SEEK SIMILARITY
• Global thresholding
• Adaptive thresholding
• Split and Merge
• Watershed

Edge & Boundary Approach

SEEK DISCONTINUITY
• Robert edge detector
• Prewilt edge detector
• Sobel edge detector
• Laplacian

The second category, the region-based approach seeks region or pixel similarities.

Using a threshold or other statistical values, it egments an image into homogeneous

regions. There are various image segmentation techniques among this category. In the

following subsection, we will examine the strengths and the weaknesses of each image

segmentation technique to clarify if they are applicable to our particular needs.

2.2.3 The Edge and Boundary Approach

An edge is the boundary between two regions where has significant graylevel

differences occur. This approach seeks the edges by directly examining each image pixel

and its immediate neighbors to determine whether the pixel can be an edge. Pixels

7



exhibiting the required characteristics are labeled edge points and the image that indicates

the presence of edges is called the edge map or the edge image.

The basic idea behind the edge-detection technique is the computations of the

local derivative operation. This concept is shown in Fig.2.3 with a simple example.

Fig.2.3 An illustration of the basic edge detection mechanism
...~,._ ''''~....-;..,. ~~ po ~ • ~- ~.'O'Y ....,
~::,.~...:. ';:";~"i.'i'" ~"),'.'r...i .•~·,.>l<~$." ,'" .' ·t'J.,,",~
if..~'~~@L;=-~~A.~t::~ -~~7'j

I r" ~.. •

!.
1_'; , ,

~~3~i~__ "~'~~'~~A~:i1
(a) Original Images (b)The Magnitude (c) The First derivative

Zero Crossing
Point

'/

(d) The Second derivative

Fig.2.3(a) is a simple gray-level image, where the dark area is gradually changing to the

bright area and the magnitude intensity is shown in Fig.2.3(b). The first derivative of the

magnitude can be drawn as in Fig.2.3(c). The peaks locate the middle of the gray-level

transition, and is the location of the edges. In the first derivative, Fig2.3(c) the peak

locates the middle of the transition, so it is difficult to detect the exact peak locations

when the image has complex features. This can be simplified by taking the econd

derivative of the magnitude, Fig.2.3(d) and locating the zero-crossing points. The first

derivative is obtained by using the magnitude of the image gradient and the second

derivative is similarly obtained using the Laplacian operator as shown in the following

subsection.

Gradient Operators

Given an image I, with I(x, y) is the intensity at (x, y) in the image I. The gradient

magnitude of an image lex, y) can be shown as
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VI = [D D.J T = [aI aT JT •
. X,) ax' ay

The gradient magnitude is given by

From the above equations, the gradient magnitude is obtained from partial

derivatives dl / dx and dl/dy. If we take the derivative of two spatial neighbors we can

make a Robert edge operator, such as

g(x,y)={[~l(x, y)-/(x + I, y + 1)]2 +[~I(x + I,y)-l(x,y + 1)]2 }1/2 I

where I(x, y) is the input image with a location of (x, y). This is simply operating a cross

differentiation on two adjacent points. In the practical application of the image

processing, these equations are translated into the kernels or operators. These operators

are convoluted with the original image to detect image edges. Sobel and Prewitt edge

detection operators are one of the practical examples. Shown below is an example of a

formula to show how the Prewitt operator works with a 3x3 kernel.

=I Dx I + I Dy I I

This operation can be implemented by convoluting the following mask with the original

image.

9



The 3x3 mask is called the Prewitt-operator as shown in Fig.2A.

Fig.2.4 The Prewitt-operator
kernels. (a) is the layout of the
kernel. (b) and (c) indicates
example of the kernel.

2 1 22 2J

Zq Zs 4

27 28 ~

(a)

-1 -I -I

0 0 0

1 I I

(b) : D.

1 0 -1

1 0 -I

1 0 -I

(e) : Dy

The Sobel operator uses the same 3x3 area as Prewitt, but with a slight change in

the coefficients. Each mask is shown in Fig.2.5 with the center pixels of the Sobel

operator assigned more weight. The original formula and the convolution kernel are

shown as follows.

Fig.2.5 The Sobel
operator kernels

-1 -2 -1

0 0 0

1 2 1

1 0 -1

2 0 -2

I 0 -I

D.

The Laplacian Operator

The boundary approach attempts to find the edges directly by seeking high

gradient magnitudes in the image. As in the previous example, the boundaries are

detected by running a boundary detection window (kernel) over the gradient magnitude

image. Laplacian edge detection is one of the example and it is a scalar second-derivative

operator. In two dimensions, it is defined as

2 a2 a2

V I(x,y)=-2 I(x,y)+-2 I(x,y).ax ay

This operation is commonly implemented by a convolution kernel. Since it is a second

derivative operator, the edges are located on the zero-crossing point. The locations of the

zero-crossing points are supposed to correspond to the edge locations in the original

10



Image, 10 Fig.2.3(d). This operation is nOIse sensitive, thus when noise exists III the

image, an additional noise elimination function is usually applied. (Castleman, 1996).

One of the advantages of the edge-boundary approach is the simplicity and the

low computational costs. Yet, this technique has serious disadvantages - these operations

seldom form closed connected boundaries. Eventually, these edge detection approaches

require additional edge-linking steps to form closed contours of the objects. Edge-point

linking is the process of finding missing edges to form close contours. This process is

very tedious and has the potential to create false edges. Thus, these edge and boundary

detection approaches would not be appropriate in our study, especially for the soil

moisture image segmentation.

Fig.2.6 is the image segmentation results on an Aluminum-grain image by the

Sobel edge detector. In this experiment we used two levels of threshold value, T = 0.0 J

and 0.02. The segmentation results are shown in Fig.2.6(b) and 2.6(c) respectively. These

segmentation results (edge map) show unclosed contours. When the threshold value is

increased, trivial edges emerge, in Fig.2.6(c), yet still the contours are not closed. So, jusl

increasing the threshold value can not be the solution of the edge linking problem.

Fig.2.6 Segmentation results by the Sobel edge detection operator

(a) Original Image (b) The edge map at 1'=0.01 (c) The edge map at 1'=0.02
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2.2.4 Region-based Approach

The previous edge-boundary approach sought discontinuity of the image pixels

and detected the edges and/or boundaries to segment the image. In contrast, the region­

based approach seeks similarity of each of the image elements or regions. In thi.s

subsection, three possible applications are introduced and examined - thresholding, spirit

and merge, and watershed segmentation.

Thresholding

Thresholding is a useful segmentation technique if the image has solid objects and

contrasting background. This approach is simple, requires little computation and

sometimes makes closed regions with connected boundaries. Thresholding works well if

the objects of interest have unifonn gray levels and the rest of the background has a

different but unifonn graylevel. When one threshold value is used to segment an entire

image, it is called a global threshold. Sometimes a single threshold value is not

appropriate to segment a complex image. In the adaptive thresholding, first the entire

image is divided into several sub-regions, and each threshold value is selected depend on

the sub-regions. In both cases, the selection of the threshold values depend on the shape

of the histogram. When the histogram IS

bimodal, usually the threshold value IS

Fig.2.7 The histogram of a SM image
4000,-----,------,.-----..----,------,

3500

chosen at the bottom of the valley 3000

2500

(Castleman, 1996).

Unfortunately, the thresholding

approach has to dependent upon the shape

of the histogram. Fig.2.7 shows the

12



histogram of the soil moisture image in Fig.2.t (b). The shape of the histogram is more

complex than a bimodal distribution. So, the first issue in this approach is the selection of

the threshold value.

Next, if we arbitrarily select multiple thresholds in even intervals, how would the

image be segmented? Let us assume we evenly subdivide (slice) this histogram into 10

sub-parts to segment the image into to gray-scale classes. But how will the segmentation

result look? The worst aspect of this approach is the ignorance of size and spatial

location of the regions. The histogram approach does not consider the spatial location of

the clusters (regions). Consequently, the segmentation scheme forms small scale and/or

large scale regions by chance, and we are not able to control the region scalability (size

of the regions) at all. The major disadvantage of the thresholding approach is the absence

of region scale controllability.

Split and merge

This algorithm creates regions by splitting and/or merging the regions using a

similarity criterion that is sometimes called a predicate. Initially an original image is

subdivided into arbitrary, disjointed sub-regions and then merge and/or split the regions

to satisfy a given predicate, P. The original image is successively subdivided into smaller

and smaller quadrant regions until each region meets the predicate. Using the same

manner, regions can be merged if the merged region can meet the predicate. Therefore,

this scheme continues merging or splitting regions until each region meets a given

similarity criterion. What is the disadvantage in this scheme and how do the segmentation

results look? First of all, the selection of the predicate is done in a heuristic manner, and

practically it is difficult to select a meaningful value. Second, this scheme also does not

13



consider the region scalability (region size). This algorithm isolates extremely high and

low grayscale small regions in the result image. Noise in an image tends to have the same

characteristics (small but ex.tremely high or low intensity). Therefore, this scheme is

insensitive to the noise and does not effect them! The lack of control over the region

scalability is a pitfall of this algorithm as well. Hence, we need to find a more intelligent

image segmentation approach.

In the following part we will explain the watershed segmentation algorithm. Our

soil moisture segmentation technique is based on the application of the WS algorithm.

First, we will summarize the characteristics, the strengths and the weaknesses. Then we

propose possible solutions for the weak points.

Advantages and Pitfalls of the Watershed Segmentation

The Watershed segmentation is one of the region-based image segmentation

algorithms which subdivides an entire image into small homogeneous regions. This

algorithm was originally developed end of the 1980' s, then Meyer(Meyer and Beucher,

1992), Vincent(Vincent and Sollie, 1991) and Gauch(Gauch and Pizer, 1992) has

modified the algorithm to more practical use. The watershed algorithm has two main

advantages compared to other segmentation techniques. First, it automatically produces

thin and closed boundaries. Thus, this algorithm never requires additional time

consuming contour-tracking or edge-closing processing. That is a strong incentive when

choosing an image segmentation algorithm. As a second advantage, the watershed

algorithm automatically subdivides an image into small and highly homogeneous regions,

which is called a watershed mosaic image. Additionally, the boundaries are zero

thickness, because the watershed segmentation defines the boundaries as region

14



differences. This is a large advantage of the region based approach. These two properties

are strong motivators as to why we assign this algorithm for the soil moisture image

segmentation. In order to compare the segmentation results, Fig.2.8 demonstrates a

segmentation for the same Aluminum-grain image as in Fig,2.6.

As the boundary image shows in Fig.2.8(c), the contours are all closed and no

trivial edges exist. Compared to Fig.2.6(c) the difference is significant. Nevertheless, the

watershed algorithm is not impeccable - it has a couple of disadvantages. The watershed

segmentation algorithm is highly sensitive to local graylevel variations. thus usually

resulting in a highly over-segmented image. Fig.2.8(c) was originally over-segmented,

and this result was given after a region merging process, which will be explained in

Chapter-4. Another drawback of direct application of the watershed segmentation is the

large computational cost.

Fig.2.8 Segmentation results from the Watershed segmentation

(a) Original Image (bl The Mosaic Image (c) The Boundary Image

Historically, vaflous techniques have been studied in order to overcome these

drawbacks, but the best solution has not yet been found. We were challenged in this

thesis to find the best solution for the two issues. These techniques are discussed with a

demonstration in Chapler-4. In the following table, the strengths, the weaknesses and our

solutions for the watershed segmentation algorithm are summarized.
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Up to now, we reviewed several image segmentation techniques clarifying the

strengths and weaknesses. The following sub-section briefly reviews the idea of the WS

segmentation algorithm.

Table 2.1 : WS segmentation - the strengths, weaknesses and possible solutions

Strengths

• Closed contours and regions
• Thin boundaries
• Draw mosaic image
• Applicable to complex images

Weaknesses

Over-segmentation
High computational cost

The solutions

Region Merging
Image Pyramid

2.3 The Watershed Segmentation

The concept of watershed is drawn from topographical analogy. Consider the gray

level intensity of an image as a topographic three-dimensional relief. Assuming we drop

rain over the geographical area, water would drain from higher points to lower points as

we see in nature. Then we cluster all points that drained to the same local minima. By the

clustering process, we can draw watershed regions and their boundaries. This process is

called the minimum following algorithm. The brief concept of this algorithm is explained

with an illustration in the following sub-section.

The Minimum Following Algorithm

The minimum following algorithm, introduced by Gauch and Pizer (Gauch and

Pizer, 1993), is one type of a watershed algorithm. Let us assume a gradient magnitude of

an image is a geographical surface. The first process in this algorithm is finding the local

minima. The local minima can be detected at the lowest points among the 3x3 spatial

neighbors, and they are assigned unique identity numbers. Then, we attempt to drop

water over the gradient magnitude image relief to detect where the rain drops are drained.

The rain drop will seek lower altitude and eventually meet a local minimum. Once the
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Fig.2.9 An illustration of WS

A Local minimum

The rain drop will seek lower altitude and eventually meet a local minimum. Once the

rain drains to a local minimum, the unique identity number is returned to the original

starting point. These points are called catchment basins. This process is applied to all of

the points over the image relief. Once all catchment basins have been labeled, watershed

boundaries are drawn by simply detecting the difference of the catchment basins. In other

words, watershed boundaries are borders of the catchment basins. Fig.2.9 illustrates a

local minimum, catchment basin, and the watershed boundaries in a simple image relief.

As we showed segmentation results in Aluminum-grain segmentation in Fig.2.8, the

watershed boundaries can be easily drawn by

detecting the differences of the catchment

basin number.

Historically, there is another variation

of watershed, which is called the immersion

algorithm. According to the immersion

algorithm, the whole gradient magnitude

image relief is immersed into a large water tub

and then the flooding patterns are recorded to draw the pattern of the segmentation. This

algorithm was introduced by Vincent (Vincent and Sollie, 1991) and sometimes applied

by other researches such as Meyer and Beucher (Meyer and Beucher, 1992). But, the

applied images in the research were simple compared to our 8M images. Additionally,

this approach requires complex false edge elimination processing. Dobrin (Dobrin et ai.,

1994) studied the immersion algorithm and reported the possibility of the false boundary

occurring by the algorithm. The minimum following algorithm overcomes the weak point
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(the creation of false boundaries) of the immersion method. Also, the minimum following

algorithm is simpler to implement. Since the creation of false boundaries is a serious

segmentation issue, we have focused on the minimum following algorithm in this study.

In this subsection we reviewed the mechanism and key characteristics of the

watershed segmentation. In the following section, we will review possible remedies for

the two issues that are mentioned earlier - large computational costs and over­

segmentation. The application of the image pyramid is one possible solution for the

reduction of the computational costs. In the following section, the basic concept of the

image pyramid is explained with an illustration.

2.4 The Morphological Pyramid

Image pyramid is a scale space technique. Sometimes original images contain

extra information, such as insignificant edges or noise. This morphological filtering and

sub-sampling process leaves only significant information and eliminates noise and trivial

information of the image.

A morphological pyramid is
Fig.2.10 Morphological Image Pyramid

constructed by successIve filtering of the

operators. By repeating this step, the original

image size will be reduced by sub-sampling

factors. For example, two-to-one pixel

sampling along each dimension makes a

quarter of the original image size.

original image with morphological
128x128
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Recurrence of this process creates a multi-resolution image pyramid, shown in Fig.2.t O.

When a morphological filter is used during the sampling process, the image pyramid is

often called a morphological multi-resolution pyramid (Hejimans and Toet, 1991).

The reduction of the computational cost is the major incentive for the application

of the image pyramid. Processing a small image takes less computational time.

Remember that over segmentation is another pitfall of watershed segmentation. Region

scalability is also observed from the multi-resolution approach, because it creates a scale

space. Thus, using the morphological pyramid, both disadvantages could be minimized.

In the following subsection, further characteristics of morphological pyramid are

reviewed, such as, the filter type, the filter size and the sampling conditions.

Implementation of the Morphological Pyramid

The selection of the morphological filter is important. The size and filter type

directly affect the sampled image. The objective of the morphological filtering is that it

removes trivial edges while eliminating the noise. If the size of filter kernel (structure

element) is too large, it could destroy important contours. Morales and Acharya (Morales

and Acharya, 1995, 1991) intensively studied the relationship of morphological sampling

filter and its effects. According to the study, the sequential open-close filter with the

smaller structure element is the best choice to preserve the edges. From the study, it has

been shown that sequential open-close filtering has less distortion and smoothes the

image better than direct appl.ication of a large structural element. The same sequential

open-close filtering technique has been applied in our multi-resolution morphological

pyramid.
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In the below, the concept of open-close morphological filtering is reviewed. Two

fundamental operators, erosion and dilation make up all morphological filters. When the

original image is given by I and a structural element K, dilating an image 1 with the

structuring element K is defined by

(I ffi KXx) =max{I(y) lye K}.

Dilation performs a moving local-maximum operator, while erosion is a moving local­

minimum operator, thus the erosion is defined by

(I e KXx) =min{l(y) lye K}.

By using these fundamental operators, two higher order operators are established.

The opening of an image 1 by structuring element K is defined as

10K = (I e K) ffi K ,i.e., dilation then erosion by K,

and the closing of image 1 by structuring element K is defined as

1 • K =(I liB K) (3 K ,i.e., erosion then dilation by K.

An open-close filter is made by cascading open and close operators i.e.,

Open-Close Operation == (I. K) 0 K .

When a morphological pyramid is constructed with an open-close filter, we can

denote the image pyramid levellL by

I L=[(lIL.I). K) oK] J,s'

where L is a pyramid level, K is a structuring element. For example, [.],J,2 represents a

sub-sampling by a factor of two. If we apply S = 2 then the size of the upper layer

pyramid image is one-half of the sampled image in each dimension. Furthermore, the
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higher the image layer, the more significant the edges that remain, because of the iterated

open-close filtering (Heijmans et al., 1991).

This subsection has explained the mechanism and objective of the image pyramid.

When the idea of the image pyramid is applied to the watershed segmentation, it is called

the multi-resolution watershed segmentation approach. The multi-resolution approach

contributes to reduce the computational time and to control the region scalability. Our

application and the detail of the multi-resolution watershed pyramid will be explained in

Chapter-4.

In the following section, we reviewed several regions merging techniques. By

reviewing these techniques we clarify the weaknesses and the strengths of each region

merging technique for the applicability to soil moisture segmentation.

2.5 Region Merging Techniques

A region merging process is an essential part in the practical watershed image

segmentation process. There are two goals in the region merging. The first goal is to find

an adequate region merging technique for the soil moisture imagery. The second goal is

to establish a suitable quality measurement scale for the segmented results.

Historically, several region growing and merging techniques have been used to

overcome the over-segmentation and to yield a reasonably segmented image.

Unfortunately, these techniques have been applied in a heuristic manner and for

individual applications. Therefore, we attempt to establish a well motivated region

merging technique. The following subsection reviews several region merging techniques.
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These techniques are the single linkage region growing scheme, edge-strength seeking,

the marker-based segmentation scheme, and the variational method.

The Single Linkage Region Merging Technique

The single-linkage region merging scheme assumes each region or image pixel is

a node of a graph. Given a similarity criterion, regions are formed by clustering as all of

the connected pixel sets meet the criterion. Sometimes, the similarity is measured by

using region graylevel or other statistical numbers, such as standard deviation or

likelihood ratio(Haralick, 1992).

Fig.2.ll An illustration of the Single
Linkage Region Growing Algorithm.
Fig 2.11 (a) illustrates original pattern
with a clustered region. Fig 2.11 (b)
indicates merged region with new
assigned region value.

Fig.2.11 (a)

103

102

223 220 101 100

226 221 103 103

Fig.2.11 (b)

Fig.2.ll (a) demonstrates this idea with a simple illustration. In the figure, the gray value

of each pixel is shown and the six pixels are already grouped, where each node is

connected by a line. In this example, pixels are connected by lines if their values differ by

less than 10.

One advantage of the single-linkage region clustering scheme is the simplicity,

which means the region comparison needs only the neighborhood regions. Historically,

sometimes this concept has been used in the watershed region merging process. Vincent

also expanded the idea and applied this scheme to suppress over-segmentation with

recursive merging. The recursive merging varies the threshold (merging criterion) values,

which start from low, then gradually increased to merge additional regions. The recursive

merging can control the merging order according to the region similarity. Because the
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threshold value is gradually increased, highly similar regions are merged in the early

stage, and dissimilar regions are merged later. The order is sometimes called the merging

hierarchy.

Once regions are merged, the region graylevel and the graphs are updated to the

newly emerged regions, as depicted earlier in Fig.2.11 (b). The termination of merging

occurs when a desired number of regions or objects are obtained. This conventional

merging technique is applied to segment our SM images. The details of the experimental

results are explained in Chapter-5.

Edge Strength Seeking

This approach focuses on adjacent edge magnitudes instead of the region

graylevel value. When an edge magnitude value is less than a given edge threshold

(criterion), the connected regions are merged. These edge strengths are detected by

applying an edge detection operator over the segmented image. Beucher and Meyer

extended this idea with a clustering hierarchy. The clustering starts by merging the lowe l

edges. Once all the weak edges are merged, the threshold is gradually increased and the

recursive merging process continues. Thus, the clustering process produces a hierarchy of

region merging (Meyer and Beucher, 1990).

A drawback of this approach is that it has to depend on the edge detection

process. If the image is noisy, this technique has a chance to produce false edges. As we

reviewed in section 2.3, the edge detection process is very sensitive and rarely forms

closed contours. For these reasons, we will not apply this approach for our regi.on

merging scheme.
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Marker-Based Segmentation

The marker-based segmentation is sometimes used to suppre s watershed over­

segmentation. The marker has two types, an inner marker and an outer marker. The inner

marker is located inside the target object and is used to group the region inside the target

object. The outer marker is located in the background and is used to group the

background regions (Dobrin, Viera et ai., 1994). The marker based clustering is

applicable only if the image is simple in its construction and contains a target object and

background. Unfortunately, our soil moisture images have complicated features. Hence,

the marker-based segmentation does not seem to be suitable for the segmentation of our

soil moisture images.

The Variational Technique

The variational technique 1S quite different from previous region merging

approaches. This method translates an image segmentation into an equation. The method

formulates a mathematical equation and the image segmentation is progressed according

to the equation (Morel and Sohmini, 1994). Generally, the energy equation totally

depends upon the user's interest, so the image energy should measure based on what the

user wants to measure.

Therefore, the first task In this method is to formulate an appropriate energy

equation that represents our region merging process. We focused on two terms, the region

smoothness and the number of regions, because the two tenns represent opposite status.

Using these terms we attempted to formulate our energy equation. The detail is fully

explained in Chapter-4. The formulation of the energy equation has another advantage; it

enables us to measure the quality of the segmentation. The segmented images can be
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evaluated according to the image energy. The new region merging technique is a well

motivated scheme which contrasts most of the historical heuristic region growing

approaches.

This subsection has reviewed and clarified the strengths and weaknesses of the

region merging techniques. Most of the techniques compared the similarity of neighbor

pixels, or regions, using grayleveI similarity or statistical values. Unfortunately, our soil

moisture images are complicated and the graylevel vary graduall y. Thus, we need to

develop a stronger merging algorithm than what exists now. Our new merging scheme,

an application of a variational technique, is fully studied and compared in Chapter-4.

From the conventional merging scheme, we applied the single region linkage with

recursive merging techniques for the soil moisture image segmentation.

Up to now, we have reviewed image segmentation techniques and region merging

schemes to find the best approach for the soil moisture images. Continuing in the next

section, we will review the soil moisture estimation techniques.

2.6 Soil Moisture Estimation Techniques

This subsection reviews general concepts of Soil Moisture (SM) estimation

techniques from remotely sensed imagery. Estimation of SM from satellite imagery has

been an important research topic for related researchers. It has been studied extensively

by agricultural, hydrologic, environmental and soil scientists. The estimation techniques

from these studies tend to formulate complicated models. Various local weather

conditions and hydrological parameters have to be considered, such as wind condition,

soil textures, canopy coverage, humidity, amount of rain, and amount of solar radiation.
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One of the issues of applying these comprehensive models is that it is difficult to obtain

all of the parameters. Thus, we attempted to find relatively simple SM estimation model

without losing significant SM information. Here, we review several SM estimation

techniques and then we introduce the Triangle method.

Estimation 8M using Ts and TM 5/ TM 7

The first approach of SM estimation was simply using the relationship between

satellite measured surface radiant temperature (T.,) and the ground wetness. The Heat

Capacity Mapping Mission (HCMM) satellite was launched in 1978, which was the first

satellite to be devoted to acquiring high-resolution thermal data. From the data received,

the relationship between the ground SM content and observed T., (over the bare-soil) was

studied. Because, the wet regions tend to have the lower temperature, this study measured

the surface temperature from satellite to estimate the ground water content. The actual

content of the ground soil water (ground truth data) was measured by the gravimetric

manner (the ratio of the mass of water per the mass of the sampled dry soil). A handful of

ground soil samples were collected over the satellite sensed region and the water contents

were measured in the laboratory. This study shows the correlation of Tf( (calibrated

ground temperature) and the soil water contents was ,2 = 0.74 with a non-linear

relationship (Heilman and Moore, 1982). The research also concluded that the measuring

of SM was affected by local weather conditions and soil texture. The study has been done

only over the bare soil, therefore the SM estimation over vegetated regions will need a

more practical technique.

In the end of the 1980's, estimation of SM from the band-ratio approach was

examined. The band-ratio analysis uses the combination of spectral bands rather than
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single band data. Several researchers implied that the ground wetness could correlate to

the TMSffM7 ratio (TM stand for Thematic Mapper, spectral sensors on Landsat).

Musick extended this idea and examined the TMSffM7 and ground soil water contents

under various soil types. From his study, the wetness ratio had weak linear relations to

the water contents of sampled soil with correlation of r 2 = 0.48. The research also

suggested that the TMSffM7 ratio was largeI y affected by the soil texture and soil type

(Musick and Pelletier, 1988). This is one of the disadvantages of the estimation scheme,

because it is difficult to convert the soil texture type to parameters. Next, we focused on

another estimation technique that is called the Triangle method, which was originally

developed by Carlson (Carlson, 1991). This model estimates ground SM levels from the

relationship between surface radiant temperatures(Tf) and the normalized difference

vegetation index (NDVI). This model is simple, yet significant amounts of SM can be

estimated.

Estimation of 8M from Ts versus NDVI and The Triangle Method

In the early 1990' s, it was realized that ground surface water content could be

estimated from the relationship of Tf and NDVI. The relationship of NDVI versus Tr has

been studied by several researchers and recently have shown that there is a high

correlation between remotely sensed vegetation levels and surface temperature (Goward

and Hope 1990; Carlson et al., 1990; Price 1989). This approach uses two parameters ­

NDVI and TM band-6, to estimate ground soil moisture level. The NDVI measures the

vegetation level of the ground, and the Landsat TM band-6 measures the surface radiant

temperature Ts.
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The triangle method is a technique that estimates SM levels from the distribution

of the scatter plot. A scatter plot draws the relationship of NDVI versus T.r. Isopleths are

defined as the lines that have the same SM level over the scatterplot. Therefore, if we

draw the isopleths over the scatterplot, we can find SM level. From Carlson's research

(Carlson et al., 1990), the isopleths are drawn by SVAT (soil-vegetation-atmosphere

transfer) model, which considers local weather and hydrologic parameters. But in our

triangle method, we simplified the concept and attempted to draw linear isopleths over

the scatter plot using a relatively small area. The details of the process will be explained

with illustrations in the following chapter.

2.7 Summary

In this chapter, we attempted to seek appropriate image segmentation techniques

for soil moisture images. Reviewing the possible image segmentation techniques, we

found large advantages in the watershed segmentation technique - it forms closed and

thin segmentation boundaries. Unfortunately, there are two weak point in the algorithm

- large computational costs and over segmentation issues. For a possible remedy for the

computational costs, we use the image pyramid approach. By using the scale space (the

pyramid approach), significant computational cost can be reduced.

The region merging technique is a possible solution to the over-segmentation issue.

Because the structure of the soil moisture image is complex, we attempted to develop a

new region merging technique by applying the variational technique. This merging

technique is advantageous compared to the conventional technique, because of the

formulation of the equation. By forming the equation, the ability to control the region
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scalability is obtained. The success of the variational technique largely depends on the

formulation of the energy equation. In this research we focused on the region smoothness

and the cardinality (the number of regions) of the image. The second advantage of the

energy function is the ability to measure the segmentation quality. For SM image

segmentation, the evaluation of the segmentation results are extremely important.

Because poor image segmentation techniques could yield incorrect soil moisture

distributions in the segmentation. The details of the process are funy explained in

Chapter-4.

Various scientists have studied soil moisture estimation technique from satellite

imageries. In this research, we selected Carlson's soil moisture estimation technique - the

triangle method, because it enables the estimation of surface water contents with high

reliability. For the practical application of the estimation model to our research, we

simplified the model by using smaller regions. The details of the process are explained

with illustrations in Chapter-3.
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Chapter 3.

The Soil Moisture Estimation Technique from Satellite Imagery

3.1 Introduction

This chapter introduces and demonstrates the soil moisture estimation technique

from satellite imagery. The nature of the original satellite imageries, the mechanism of

the soil moisture estimation technique, and our simplified method are fully explained

with examples.

The potential for soil moisture measurement via satellite was realized about two

decades ago. Only recently, have the estimation techniques been developed for

standardizing the translation of satellite measurements to surface soil moisture content

(Price, 1980). The study of soil moisture estimation techniques is still progressing and a

reliable technique has not yet been established. From satellite sensing, it is still difficult

to precisely measure ground water contents, because complex environmental factors have

to be considered. Exploring these topics is beyond the scope of this thesis. Therefore, our

primary goal is developing an image segmentation technique for the acquired images.

The basic idea of our soil moisture estimation technique is based on Carlson's

ground soil water content estimation model with the triangle method. When reviewing

the related literature, we concluded that the triangle method is one of the most

appropriate approaches to estimating ground soil moisture from optical satellite sensing.

The triangle method uses the relationship between the surface radiant temperature and the

vegetation index to estimate the surface soil moisture level. Full application of the theory

requires extensive computation of weather and meteorological data. Thus, we attempted

to simplify the triangle method to obtain rough (crude) soil moisture images.
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A visible-red, a near infra-red and a thennal infrared band are essential for the soil

moisture estimation technique. Section 3.2 explains the spectral characteristics and their

properties. Section 3.3, explains the soil moisture estimation technique, the scatter-plot

and the triangle method. Section 3.4 explains the mechanism and limitation of Oklahoma

Mesonet soil moisture sensors.

3.2 Satellite Images and Characteristics of Spectral Bands

There are several sources of remotely sensed imagery that are currently easily

acquired to compute the soil moisture. Table 3.1 summarizes the type of satellite and the

equipped sensors.

Table 3.1: Summary of description of satellite sensors used for SM studies
(Source: LiJlesand and Kiefer, 1996)

Platform: NOAAl1112 Landsat4/5 SPOT ]-3

Sensor: AVHRR MSS TM HRV/MS

Orbit: Near Polar

Resolution(m): I,] 00

Near Polar

80

Near Polar

30,(120)

Near Polar

(10),20

[I ]O.51-0.73( 10)
[2]0.50-0.59
[3]0.61-0.68
[4]0.79-0.89

[I ]0.45-0.52
[2]0.52-0.60
[3]0.63-0.69
[4]0.76-0.90
[5] 1.55-1.75
[7]2.08-2.35
[6]10.4-] 2.5(120)

[J ]0.50-0.60
[2]0.60-0.70
[3]0.70-0.80
[4]0.80-1.10

[1]0.58-0.68
[2]0.73-1.10

[3]3.55-3.93
[4]10.3-11.3Thennal

Spectral Region < ------------------ wave length (micro meters) ---------------------------- >

Visible
Blue
Green
Red

Near Infra-Red
Mid Infra-Red

In order to apply the triangle method, we needed three bands: a visible-red, a near

infra-red and a thennal infrared. The Landsat thematic mapper (TM) is superior to the

AVHRR (Advanced Very High Resolution Radiometer) and the MSS (Multi-Spectacle

Scanner) in terms of the spectral resolution. The TM sensor has all the necessary bands

31



required for the triangle method, so we selected the Landsat TM bands as our source

imagery. Each of the spectral features and the wave lengths are shown in the previous

table.

Fig.3.l(a) Entire TM image Fig.3.1 (b) The image region over Oklahoma

For our experiment, we have selected a 185 x 170 km regIon southwest of

Oklahoma, which includes Little Washita basin. Historically this is one of the most

studied areas for hydrological and meteorological experiments. Therefore, this area

contains various ground truth sensing points, such as ARS Micronet and several

Oklahoma Mesonet sites. Those sites are constantly monitoring local weather and surface

meteorological parameters. The collection of soil moisture data was started in 1996 by the

Mesonet. A total of nine sites are located over our satellite sensed region. We are

expecting to obtain ground truth soil moisture data from the Mesonet sites. Currently the

Mesonet sites are the sole data points for soil moisture ground truth measurement. But,

the selection of this area has the potential to allow access to additional ground truth data

acquired from related studies, such as soil moisture measurement from microwave

sensors.
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The satellite TM imagery for this study was acquired on a nearly cloud free

summer day, July 25th 1997. The entire original image is shown in Fig. 3.I(a) and the

related location is indicated in Fig.3.1(b) overlapping the area over a map of Oklahoma.

Displaying the TM image using RGB bands, it is easily realized that the summer season

of Oklahoma is teeming with healthy vegetation. We obtained summer season images.

because the distribution of soil moisture tends to be more uniform in the winter season.

These three spectral bands, red, near infra-red and thermal infra-red TM bands are

essential for this study. NDVI image is derived from the band-3 and band-4, and the

scatter plot is drawn by the NDVI versus band-6. In Fig.3.2, we depicted the three bands

and NOVI image from a 12 km square sub-region. The characteristics of each band are

explained as follows.

Characteristics of Three Spectral Bands

This subsection explains spectral characteristics of each of the characteristics of

the three bands. Fig.3.3 shows typical reflectance curves for three types of ground

features: healthy green vegetation, brown bare soil, and clear lake water. The lines in the

figure represent average reflectance curves and the pattern of the reflectance is applied to

detect ground soil moisture.

TM band-3, visible red, locates 0.63 - 0.69 J1m, is designed to sense chlorophyll

absorption. Within the band length, chlorophyll strongly absorbs the radiated energy; this

is the reason that our eyes perceive healthy vegetation as green in color. The band locates

the first valley of the vegetation curve and is also useful in detecting artificial features

over the image (Lillesand, 1994).
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Fig.3.2 Three TM band images and NDVI image

Fig.3.2(a) TM Band3 Image

Fig.3.2(c) TM Band6Image

Fig.3.2(b) TM Band4 Image

Fig.3.2(d) NDVI Image

.~

i..
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The man made features, such as roads and buildings give high reflection, which is

shown in Fig.3.2(a). The red-band also tends to be affected by atmosphere, since the band

senses water content in the air. As shown in Fig. 3.3, band-3 is located near the peak of

the water reflection line.

Fig.3.3 Typical spectral reflectance curves for vegetation,
soil, and water ( Source: Lillesand and Kiefer, 1996 )
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Band-4, is also called the near infra-red band and is located over the peak of the

vegetation curve and after the end of water reflection curve. Tn this band, the reflection

from roads and artificial features are not as noticeable as band-3, Fig. 3.2(b). Instead, the

overall reflection from agricultural crops show the highest value. In Fig. 3.3, about

0.7 J.Lm, the reflectance of healthy vegetation increases rapidly. Plant leaves typically

reflect about 40 - 50 % of the energy within the range. Thus, this band is typically used

to analyze type of vegetation and to detect the vegetation level (Lillesand, 1994). The

band is insensitive to water, so it is sometimes used to discriminate bodies of water from

the image. In Fig.3.2(b), the bodies of water are shown at their lowest intensity (black).
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From this TM band-4 image, the river and small lakes are clearly identified, whereas in

the other bands they are not.

TM band-6 measures the amount of infra-red radiant from the surface and may

also be called a thermal infrared band. This band is typically used to measure the

distribution of surface temperatures. As we can expect, in Fig. 3.2(c) the bodjes of water

(the river) shows the lowest temperature (as black). The spectral resolution of band-6 is

120m, whereas the rest of the TM bands are 30m resolution. The coarse resolution makes

the band-6 a blocky image, and therefore it has less distinct appearances than the other

band images.

The normalized difference vegetation index (NDVI) is designed to measure global

vegetation levels. This index is made by a simple combination of TM band-3 and band-4,

the formula is shown as

NDVI = band3-band4.
band3 +band4

Generally, the NDVI ranges between 0.8 for completely vegetated areas, 0.05 for

completely bare soil, and near -0.5 for water bodies (Goward et ai., 1993). The index

shows the amount of vegetation by using the characteristics of the two bands. Remember,

band-3 is sensitive to artificial objects, but bandA is not, and bandA is sensitive to the

vegetation but band-3 is not. Thus, the index can show the vegetation level with more

contrast than the single band (Jensen, 1996). Fig.3.2(d) is an example of the NOVI

image; the brightest regions (white regions) represent highly vegetated area, which are

distributed along the bodies of water and are assumed to be grouped trees with thick

leaves. The light gray area in the image represents cultivated crops. The darkest regions
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are bodies of water, the man-made objects (such as roads) and bare soil fields. They are

also clearly identified in the NDVI image.

3.3 The Soil Moisture Estimation Process

In the previous section we explained the characteristics of each band and the

NDVI image. The second step for the soil moisture estimation in the triangle method is to

draw the scatter plot. The scatter plot is drawn using NDVI versus band-6 and the plot

indicates the relationship between the vegetation level and the radi.ant temperature.

Fig.3.4 shows the typical distribution of a

scatter plot. There are three clusters in the plot,

a cluster of vegetation, a bodies of water and

the bare soil. The vegetation cluster, which is

the largest cluster, tends to distribute diagonally

with a negative slope. This is due to the leaves

having the ability of transpiration. This tends to

preserve their temperature while receiving solar

radiation.

FigJ.4 The Scatter Plot

High

N
D
V
I

Low ....1---------....... High
Band-6

Typically, the distribution of bare soil fOnTIS a horizontal line in the scatter plot

because of a constant NDVI value. During the daytime, the bare soil is heated by solar

radiation and indicates the temperature depending on the amount of moisture content.

Therefore, the radiant temperature of the soil can be a measurement of the surface soil

moisture content. The third cluster in the plot represents bodies of water, which is usually

located at the lowest NDVI with the lowest temperature.
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The Triangle Method

The triangle method is a soil moisture estimation technique using the scatter plot.

The name of the triangle method is derived from the shape of the scatter plot. The method

assumes that soil moisture is mostly dry, on

with lower temperatures. Thus, for a given

highest vegetation indicating a higher NDVI

left edge, as in Fig.3.5. The triangular shape
Most Dry

~
Most WetL-/--

Bare soil lin/
isopleths

Fig.3.5 The Triangle Method

~ ii

+- water body

N
D
V
I

temperatureshighrelatively

the right edge, and mostly saturated, on the

NDVI,

can be interpreted as the areas with the

correspond to low amounts of soil moisture.

Using this relationship, we can map the Radiant Temperature

moisture level.

According to the Carlson's study, the isopLeths are those lines that have the same

soil moisture level and they are derived from the SVAT (Soil-Vegetation-Atmosphere

Transfer) model, which was created by analyzing the extensive relationships of local

weather and meteorological parameters. Once the isopleths are drawn over the scatter

plot, we can interpret the distribution of moisture from the plot. A very similar approach

has been studied by Price (Price, 1990), and both Carlson and Price have shown that the

method has the potential to estimate surface soil moisture level.

If directly applying the triangle method to a large region, we would have to

consider the local weather and meteorological differences. This requires extensive
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collection of various local hydrological parameters with additional computations. In order

to minimize local weather influences and in order to simplify the soil moisture estimation

model, we focused on relatively small regions of about 12km x 12km. In other words, we

assumed these local climate variations could be minimized using relatively small regions.

Hence, using the fundamental relationship between the isopleths and scatter plot, and

Fig. 3.6 A scatter plot and
overlapped isopleths

The vertical axis shows normalized NOVI and
the horizontal axis shows surface radiant
temperature in centigrade. Once scatter plot is
drawn isopJeths are overlapped on the graph. The
isopleths are derived from the SVAT model. In
the plot, the moisture level is shown as Mo, Mo =
o represents most dry line and Mo = 1.0
represents most wet line.

Source: NASA-EOS Report (1995, Carlson2
)

using a relatively small region, we attempted to draw simplified isopleths over our scatter

plot. In theory, the isopleths are drawn with a slight curve as shown in Fig. 3.6. But, we

have assumed the isopleths are linear and equally spaced in slope from the most dry side

to the most wet side as shown in Fig.3.5. Starting from a drawing of a scatter plot, the

major steps of our triangle approach are shown as follow.

Step I: Locate a vertical line, which is the end of the vegetation cluster.

Theoretically, this line can be substituted as an air temperature line. Locate the bare soil

line, which is the horizontal line.

Step 2: Locate the triangle apex, which should be the end of the vegetation cluster

and on the vertical line. In general, the apex of the triangle is chosen at the total

vegetation point and at the temperature that includes the most pixels within the triangle.
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Step 3: Assume that the dry line has minimum moisture and the wet line has been

saturated by moisture. Swing straight isopleths from the dry side to the wet side, then

translate the moisture level onto a soil moisture

image map. We used 255 isopleths to draw the 255

graylevel moisture map. During this step, the

bodies of water are recorded as the most wet

region. A soil moisture image derived from the

triangle method is shown in Fig.3.7. The wettest

regIOns are shown as bright pixels and the dry

regIOns as darker pixels. The river and the

neighbor areas are adequately indicated as the

most moist region.

3.4 Mesonet Soil Moisture Sensors

Fig.3.7 The Soil Moisture Image

J.,
"~
I,
}

In the last part of this chapter, we would like to brietly describe soil moisture sensors

in the Mesonet sites. The Oklahoma Mesonet started recording the soil moisture data in 1996.

There are two types of soil moisture sensors in the Mesonet. One is called heat dissipation

matric potential sensors, and the other is called the Time Domain ReJlectometry (TDR)

sensors. The TDR sensor's design is based on a manual device, so there is not an automated

stream of data. Therefore, the data from the automated heat dissipation sensors are the only

possible way to collect ground truth data for soil moi'ture measurement from the Mesonet.

Up to now, nine heat dissipation sensors are located within our entire 185x 170 km region,

and the data are recorded at 30 minute intervals. The sensors are equipped with heaters and
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they measure two points of temperature, before heating and after heating. Then the potential

wetness of the sensing point can be estimated from the temperature difference 6.T.

According to the Mesonet, the heat dissipation sensor is described as follows.

"The sensors are basically a thermocouple and a heater imbedded in a needle encased

in porous porcelain. The ambient temperature is first measured, then the sensor is heated

twenty seconds, then the temperature is measured again. Depending on how much heat is

absorbed by the soil, which will influence the two difference in two temperatures. Due to the

high capacity of water with respect to soil, it will be difference in the temperature change

depending on how much water is in the soil"(Basara, 1997). Obviously, this sensor does not

directly measure the amount of soil moisture, and the 6.T is influenced by the soil type. The

data require a calibration in order to translate the 6.T to correspond to the gravimetric soil

moisture level. This study is ongoing (Basara and Elliott 1997).

As a test, without using calibration, we simply compared each set of 6.T Mesonet

streamed data to the corresponding soil moisture image. Following the basic relationship, we

could find some correlation between the two data: the larger the 6.T, the drier. When we

compared both data (our estimation and the Mesonet data) only a slight correlation was

observed, ? = 0.43. There are possibly two reasons for this. First, each /1T should be

calibrated by considering the soil type, and second, the Mesonet measure pin-pointed the

local data, but these satellite records region-averaged data (spatial resolution). Without using

any calibration or having a fine ground truth measurement, there will be large differences

between the two data. To obtain ground truth data from another source, a microwave

measurement can be a potential approach. The study on microwave sensing is progressing

over the Little Washita area of Oklahoma.
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3.5 Summary

This chapter described the mechanism and process of a soil moisture estimation

technique following the triangle method. The derived soil moisture image from the triangle

method is shown in Fig.3.7. Visually, the soil moisture image has a reasonable distribution

of soil moisture. The only pitfall in this process is that we do not have reliable ground truth

data to verify the derived soil moisture images. Research on soil moisture over the region is

progressmg.

On the other hand, our main goal for this thesis is to develop an advanced image

segmentation technique. We are going to start the process using the soil moisture images.

The following chapter provides analysis of the image segmentation technique. Starting from

the definition of image segmentation, we will introduce the best segmentation technique for

the soil moisture images.
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Chapter 4. The Watershed Segmentation and Region Merging

4.1 Introduction

This chapter proposes a possible solution to the two major weak points of the

watershed (WS) algorithm. In the actual image segmentation, large computational cost

and over-segmentation are two common disadvantages of the algorithm. In this thesis, we

first want to show reasonable solutions toward these two issues of the WS.

The first section, section 4.2, explains the mechanism of the WS segmentation

algorithm. In order to reduce the computational cost, we applied the concept of the image

pyramid to fonn a multi-resolution watershed pyramid. By applying the multi-resolution

image segmentation approach, we were able to attain faster computation and region

scalability.

Finding a reasonable region growing and clustering technique is a key step to

yield sound segmentation results. Conventionally, region merging is implemented in a

heuristic manner. Here, we propose a well-motivated region clustering technique by

applying a variational technique. The first step of the variational technique is the

formulation of the energy function. Once the equation is formulated, regions are merged

according to their energy levels. This merging scheme is advantageous over the

conventional scheme due to the ability to control region scale. Additionally, the equation

enables us to measure the segmentation results. Measuring segmentation quality is an

essential task, because it is one way to measure the quality of the complex soil moisture

segmentation results. The details of the variational approach and the merging algorithm

are fully explained in section 4.6.
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4.2 The Watershed Segmentation Technique

The WS segmentation technique is a powerful image segmentation tool, which

always yields thin and closed contours. But, large computational cost has been a major

disadvantage of the algorithm. This section explains the mechanism of the algorithm,

then eventually associated costs are analyzed. In Section 4.3, the multi-resolution WS is

introduced as the remedy to the large computational cost. First, we will explain the steps

of the WS segmentation.

Flow of the WS algorithm

The first step of WS is making a gradient magnitude of the original image 1VI II.

Let us consider the I to be a two dimensional grayscale image which has d.igital values

from 0 to 255. Using x and y-coordinates to represent the two dimensional space, we have

I : (x, Y)-7 {O, 1,2, ... , 255},

V XE I, yE I.

The gradient magnitude of the original image I, I VII is given by

(1)

IVI(x,y)l= J{l(x,y+l)-I(x,y)}2+{l(x,y)-I(x+l,y)}2. (2)

Next, the gradient magnitude image is slightly blurred. The blurred image HI is formed

by applying (convoluting) a Gaussian kernel G to the IVI I. This process is necessary,

because the original integer value of I VI I provides poor representation of a smooth

surface, i.e., each point in the image VI ( x, y ) should have a locally unique value. This

process eliminates the plateaus in the image and simplifies the process to identify local

maxima and minima. This second process is shown as

BI =G*IVI I.
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In the third step, all local minima should be identified and all catchment basins

are labeled. Each pixel VI (x, y) is compared with its eight spatial neighbors. If the value

of all of the neighbors are greater than the center pixel, the pixel is identified as a local

minimum. Thus, an element M(x, y) is said to be a local minimum

if M(x, y) < p( xo' Yo)'

where N(x, y) represents spatial neighbors of the pixel at row x and column y in eight

connectivity.

I'll I FigA.1 The location of minima and the
catchment basins in one dimensional example

This one dimensional example shows the
location of minima at the black dots and the
catchment basins as WS 1 - WS4

'----+-----+--+----1~Z

Once all of the local minima In the image are identified, these minima are

assigned a unique identification (ID) number. The ID is used to label the catchment

basins. In our WS, the minimum following a~gorithm is used for the catchment basins

labeling process, which is discussed bellow.

The Minimum Following Algorithm

Remember that watersheds are defined in tenns of the drainage pattern of rainfall.

Regions of terrain that drain to the same local minimum are defilled as the same

watershed (catchment basin). The same analysis can be applied to an image by viewing

the gradient magnitude as height. The gradient magnitude of the image, VI is used to find

the direction of the drainage.
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In the image BI, each point of BI(x, y) is examined by eeking the lowest valued

neighbor until it merges into one of the local minima M; or an already labeled catchment

basin. This scheme is called the minimum-following algorithm, becau e each element

constantly seeks lower altitude in the image terrain. Once the image element drains to the

catchment basin, it is labeled with the same ID number as the local minimum. In Fig.4.I,

there are four local minima, and four catchment basins which have been formed

(grouped) according to the labeling process.

Once all pixels in the image have been associated with their respective minima,

the output image has the watershed patterns (grouped regions). We will define a function

WS that represents the minimum following algorithm. Then the watershed image W can

be defined as

W =WSd (G* IVI I),

WSd = { (x, y) ~ WS(x, y) =d },

(4)

where WS(x, y) is the watershed labeled region and d is the region ID number. The WS

segmented image W yielded a new independent image. In (4), WSd represents all of the

elements in region-d that have the same catchment basin number d.

The WS boundary detection is the last step of the fixed resolution watershed. The

watershed boundaries are detected by searching the difference of the WS region number.

The WS edge map image, E, can be drawn by detecting and recording the region

differences over W. If we assign" I" for the location of boundaries and assign "0" for the

rest of the area, this process can be shown as

E(x, y) = {~
VW(x,y) >0

otherwise
(5)
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In Fig.4.1, an original one dimensional signal is divided into four regions, and the dotted

lines represent the edge locations. Unfortunately, the above fixed-resolution WS requires

large computational costs when it is applied to a more practical image size. Hence, we

introduced the concept of multi-resolution WS for the reduction of the computational

costs.

I Original Image

The Multi-resolution Pyramid and the Watershed

If the fixed-resolution watershed algorithm is directly applied to the original

image size, there will be large computational expenses. The concept of the image

pyramid is the key to solving this issue. A flow of

the multi-resolution watershed (MR-WS) is shown

4.3

I Root Level Selection I

I WS Edge Propagation I
FigA.2 Flow of the MR-WS

Construction of Image Pyramid

WS segmentation at the Root level

in Fig.4.2. The concept behind the multi-resolution

pyramid is to create a scale space where only the

most significant features appear at the coarsest

representation. The multi-resolution watershed

pyramid is introduced and demonstrated by Gauch

and Pizer (Gauch and Pizer, 1993). In contrast to

their approach, however, we applied the watershed

at a coarse root level and propagated the edges back to finer pyramid layers without

directly perfonning the WS on each layer.

In order to construct a morphological image pyramid, the original image was

sequentially applied with open-close filtering and sub-sampling. The process can be

denoted as
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(L=O,l, ... , n.). (6)

When L = 0, 10 represents the original image and [·12 represents down sampling

by a factor of two. IL is referred to as the parent layer and IL-I referred to as the child

layer in the pyramid. With one-of-two down-sampling in both dimensions, each

dimension becomes half of the original size.

In (6), (1 0 K) and (I. K) represent a morphological opening and closing operation

by structuring element K, respectively, The open-close operation works as a low pass

filtering, smoothing the image and erasing insignificant features. The open-close filtering

has been assigned because it produces the least graylevel bias compared to the individual

open or close operation. The morphological filters are known to be superior to linear

filters in tenns of edge localization and feature preservation (Morales and Acharya,

1995). The open-close filtering and sub-sampling steps are applied to all the pyramid

layers until a pre-selected root level is forrned.

The Multi-resolution WS and New Edge Linking Process

Once the watershed algorithm is applied at the root level L, each image element of

WL-l has to be linked to an element in W L. All elements on the root level are linked to a

finer image layer. This process is shown as

{
WL(X,y) ijIVWL(X,y)I=O

WL-1(XO'YO) = d.h d if I t7W ( )1 0un eJ<ne 1 v L x,y '#

for all (xo' Yo) E C(x, y, L),

where C(x, y, L) represents the children of element (x, y) at level L-I.

(7)

In (7), if I VWL(X, y)1 =0, implying that no change in the watershed label exists in

that neighborhood, we can say that the label for the children of WtCx, y) is known to be
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equal to the label of Wdx, y). But, if IVW'L(X. y)1 # 0 then the label of the children in

question is undefined. Then, to define the label the watershed is applied only for the

undefined elements. The undefined pixels are usually the WS boundaries of the parent

layer. Therefore, the final step in linking level L-J to level L is to apply the watershed

algorithm on the undefined pixels (propagated boundaries) of Wl.-J(i,j).

where HI is the same as defined previously.

(8)

Edge proli'~

.

WS is performed
only at the
boundaries

fter the WS,
borders become
thin again

Fig.4.3 An illustration of our

proposed boundary propagation

process. Once boundaries are

propagated from layer Wl.-I to WL,

the WS is perfonned only at the

boundaries (gray pixels). Extensive

computational cost can be reduced

through this approach. The darkest

pixels are the new WS boundaries

that emerged by this process.

This linking process continues, level by level, and terminates when the level

corresponding to the original image resolution is accomplished. Since the image pyramid

structure insures the causality of watershed boundaries, no boundaries can appear in level

L-I that do not exist in level L. This process is illustrated in FigA.3 and shows wh your

multi-resolution approach reduces computational cost. In each edge propagation step, the

WS is applied only on the propagated boundaries. This algorithm dramatically improves
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the computational expense. The explanation and computational example are shown as

follows.

Computation Costs in the Multi and Fixed-resolution Watershed

Generally, the multi-resolution algorithm decreases the computational cost of the

watershed segmentation by an order of magnitude (of the root level). Assuming the

computational cost on a comparison between elements is equivalent to an addition

operation, the cost of perfonning the full-resolution watershed on an NxN image is:

3N 2 adds and 2N 2 multiples for the gradient magnitude V operation, 8 (G· N)2 adds and

9 (G· N)2 multiplies for convolution with GxG size of Gaussian kernel, and 1ON 2 adds to

perform the WS operation. This means that the full-resolution watershed algorithm

requITes (l3+9G 2 )N 2 addition operations and (2+9G 2 )N 2 multiplication operations,

without including the computational cost of pre-filtering.

For the multi-resolution algorithm, the watershed is applied at a root level R of

SIze (N/2R) x (N/2 R), then linked to the finer levels of the pyramid. The cost of

constructing the pyramid using an open-close filter with a kernel, size KxK, is

R-l

4K 2 I)N/2 L
)2 adds. Now assuming there areERelements in level R which represent

L=O

watershed boundaries, the watershed has to be performed on 4£R elements to link level R

to level R-l. Approximately, this [ink producesER_J ",,2ER elements in level R-I because

connectivity has been maintained. The resulting computational cost of linking the multi-

R-I

resolution watershed is (13 + 9G 2) . 4L 2 L ER adds. The computational cost comparison
L=O
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for the actual image segmentation between the fixed-resolution WS and the muJti­

resolution WS is shown as follows.

For more intuitive understanding, we compared the computational expense of the

multi and fixed-resolution WS experimentally. In this experiment, a 512x512 original

sized image, a 3x3 Gaussian matrix, and the 3x3 open-close filter were used. Without

using the image pyramid (fixed-resolution watershed), on average it took about 19

minutes (using a Unix Workstation) to process the watershed segmentation on a 512x512

soil moisture image. By applying the multi-resolution watershed, at root level two (image

size =256), it took about 1.6 minutes and at root level three (image size = 128), it took

about 29 second for the watershed segmentation. Further details and comparisons of the

computational cost on the soil moisture images are shown in Chapte-5.

4.4 Region Merging Techniques

Region merging is the key to post-processing the· watershed segmentation,

because the watershed produces an over-segmented image. Usually, it is difficult to

obtain a reasonable segmentation without applying some kind of region merging.

Therefore, the success or failure of the final segmentation depends upon the region

merging technique.

In this section, three region merging techniques are explained, two conventional

and one new merging technique. The first conventional technique is based on a single­

linkage region growing scheme. The second is the single-linkage region growing scheme

with recursive region merging. This algorithm improves upon the first algorithm by

utilizing the concept of clustering hierarchy. For the third approach, a new and more
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sophisticated region merging technique is introduced, - the stepwise merging

optimization approach combined with the variational technique. The following table

summarizes the characteristics among the conventional and new merging techniques. The

mechanisms of each region merging technique are explained in order in the following

section.

Table 4.1 Conventional and New Merging Schemes

Merging Technique Similarity criterion Hierarchy Category

Single Linkage Averaged Region Intensity No Conventional

Single Linkage Recursive Averaged Region Intensity Yes Conventional

Variational Model Weighted Region Variance Yes New

4.4.1 Single Linkage Region Merging Technique: Conventional

In the single-linkage region merging technique, the region similarity is measured

by a fixed threshold value. Using the threshold value (clustering criterion), adjacent

region similarities are measured. In this scheme, the graylevel of the each WS mo aic

region is compared to the region clustering criteria. Once the WS is applied to the

original image, it segments the original image into small (over-segmented) WS regions.

Then, the WS mosaic image is formed averaging the WS regions that correspond to the

original image. Thus, the value of the mosaic region Md for region d is defined as

(9)

where nd is the size (number of pixels) of the region d, and I is the original image.

According to this merging algorithm, regions are merged if the adjacent mosaic

graylevel is less than the criterion. Once regions are merged, the mosaic value of the

merged region is updated according to (9). This process is applied to all regions over the
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image and the region merging is terminated when no more regions can be merged at the

given threshold value.

In this scheme, the segmentation is controlled by the threshold value and the root

level selection. Conventionally, the threshold value and root level are chosen to segment

desired target objects and these parameters are obtained in a heuristic manner. There is no

standard to selecting the threshold value and the root level. Additionally, this scheme is

biased in the merging order, because the merging progresses from one corner of the

image to the other.

The application example of this scheme to a soil moisture image is shown in Fig.

4.4, and the original image is shown in Fig.4.4(a). The region includes a river which is

considered a high moisture content area, and is depicted as white in the image. In this

segmentation experiment, three root levels - root level one, two and three are used. Four

levels of threshold values, zero, five, ten, and fifteen are applied to each root level. By

comparing these three images, Fig.4.4(b), 4.4(f), and 4.4(j), the relationship of the region

scalability and the root level selection is clearly understood.

A selection of a low root level (Root= 1) will make fine scale regions, and the fine

features (ex, the river) are still preserved as seen, in Fig.4.4(b). But, in root level two and

three, Fig.4.4(f) and Fig.4.4(j), the river regions have been merged (destroyed) to other

regions even before the start of the region merging process. From the results, it is

understandable that the selection of root level two and three are inappropriate for the

image segmentation. Now, let us look at the results of three segmentations from root level

one. When threshold T=15 is applied at root one, Fig.4.4(e), the river is merged to other

regions.
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Fig.4.4 SM segmentation results from Single Linkage Region Merging (Fixed Threshold)
Original WS Mosaic Image
(a) Root = 0, Root size = 512

Root =I, Root size =256
(b) T=O, R=2151 (c) T=5, R=475 (d) T= 10 , R=28 I (e)T=15, R=233

Root=2, Root size = 128
(f)T=O, R=329 (g)T=5, R=265 (h) T=IO, R=158 (i) T=15 , R=93

Root=3, Root size = 64
(j)T=O, R=119 (k)T=5, R=73 (I) T= iO, R=39 (m) T=15, R=30

( T denotes the threshold value. and R denotes the number of regions in the image)
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Yet, the merged results show many small regions (shown as specs), which is an example

of a poor segmentation. Because of lack of the region scalability, the image has (mix)

small regions and large regions. Fig.4.4(e) still has more than 200 regions, and even the

river was merged! We can even visually recognize the weakness of this merging

algorithm, because we want to segment (classify) fewer regions and preserve finer

features, such as the river. And in a latter section, we will measure these segmentation

results using an appropriate measuring scale.

Unfortunately, this merging scheme is too awkward to apply to these complex soil

moisture images. In the following section, we will introduce the modified version of the

merging scheme - the single linkage region merging with recursive threshold algorithm.

4.4.2 Single-Linkage Region Merging with Recursive Threshold: Conventional

As we have seen, the first merging technique
Original WS Segmenlation

was inadequate for the SM image segmentation. The

single linkage region merging with recursive

threshold technique, Fig.4.5, has been developed to

improve the weakness of the previous merging

scheme (Meyer, and Beucher, 1992). This merging

method can be applicable to more complicated and

low contrast images. Here the threshold is not fixed;

~--I Threshold I
Region merging Ic:2

~
Merged Segmentation

Fig.4.5 Flow of the Recursive
Thresholding

it is gradually increased. Using the merging mechanism, regions are merged from similar

regions, so distinguished regions are preserved until the last merging stage. The

composite graylevel of each mosaic region is used for the merging criterion just as it was

in the previous merging scheme. But in this algorithm, the most similar pair of regions is
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selected from the entire WS mosaic regions and merged. When no regions can be merged

at a given threshold value, the threshold value is incremented slightly and the merging

continues until a desired number of regions are obtained.

One advantage of this merging scheme is that it has an. ability to yield the desired

number of segments. Also, merging order has no bias because the merging is progressed

from the most similar regions. This merging order makes a hierarchy of region merging

(merging hierarchy), whose mechanism is explained below.

Hierarchy of the Region Merging

Starting from an over-segmented watershed

mosaic image, a hierarchical merging structure

represents the merging order in the segmentation

structure. In this scheme, the regions are merged one

by one according to the merging criterion. The

merging hierarchy can be visualized using a tree

Fig.4.6 An illustration of
Tree Diagram

diagram, which is shown in FigA.6 (Beaulieu, and Goldberg, 1989). In the diagram, each

node represents a regi.on and the links between the nodes indicate the paths of the

merging. These regions, at the lower level, are clustered in the early merging stages and

form a higher level of segments. The hierarchical levels can be related to the resolution.

Thus the merging hierarchy also represents the region scalability.

This algorithm can be considered as a reasonable merging scheme, but one

disadvantage is that it does not consider the region size in the merging process. Small, but

extremely high or low intensity regions do not merge with neighbors and are left until the

last merging stage. This is an issue in the controlling of region scalability. Using Fig.4.7,
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we show the results and illustrate the weakness of the merging algorithm. The top-left

image Fig.4.7(a) is an original over-segmented WS image - the same image as the

previous example. Fig.4.7(b) is the segmentation result at the number of regions = 100.

while Fig.4.7(c) is the segmentation result at the number of regions =30.

Fig.4.7 SM segmentation examples from Single Linkage Recursive Threshold
Root level = I, root size =256
(a)Original SM mosaic image (b) Number of regions = 100 (c) Number of regions = 30

(d)Original SM mosaic image (e) Number of regions =50 (f) Number of regions =30

"
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The second row of Fig.4.7 shows the segmentation results from another SM

image. Starting from an over-segmented WS image, Fig.4.7(d), the segmentation rcsulls

are shown in Fig.4.7(e) and Fig.4.7(f) at the number of regions is 50 and 30 respectively.

From the segmentation examples, improvements can be recognized and compared to the

previous merging scheme. But, this segmentation scheme still merges homogeneous

regions too rapidly. Large regions of similar graylevel are merged into one region. while

small scale regions remain unchanged as shown in Fig.4.7(e) and Fig.4.7(f). Therefore,
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this algorithm also lacks region scale controllability. Our goal is to segment regions by

fonning unifonn scale regions yet minimizing the loss of original SM distribution.

In order to solve this dilemma, a new merging method is introduced - the stepwise

optimized clustering algorithm using the variational technique. This new merging

algorithm resolves the weak points of the conventional (previous) merging algorithms.

One of the major improvements of this algorithm is the weighted- regions variance is

used for the similarity measurement. This technique is quite appropriate for the

segmentation of soil moisture images, because the images tend to show lower contrast

and the graylevel varies gradually. Also, this algorithm considers the region size during

the merging process. Additionally, using the concept of image energy, we can evaluate

the segmentation quality. Being able to measure and evaluate the segmentation result is

important. In the following section, a new concept, the variational technique with an

energy equation is introduced.

4.5 The Variational Technique

The variational technique is a new approach compared to the conventional region

merging schemes. Using the variational technique, we formulate an energy equation, then

by solving the equation, we segment images. So, fonnulating the equation is the key step

in the variational model. First, we have to translate the properties of the image

segmentation to form an appropriate function.

In our image segmentation (region merging), we focused on two terms - the

number of segmented regions and region smoothness to form our energy equation. The

smoothness and the number of regions represent opposite segmentation statuses. If a
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segmented image has fine scale(large number of regions), each region will have uniform

(smooth) elements in the region. On the other hand, in a coarse segmentation (a few

number of regions), inhomogeneous (unsmooth) elements are in each region. Therefore,

the region smoothness and the region scale (the number of the regions) are considered in

forming our image segmentation function.

Another advantage of the function is that the segmentation quality can be

measured according to the energy level. Having an appropriate measurement to evaluate

the merging quality is important. In particular, SM images are complex and the regions

tend to have uniform graylevel, which makes it very difficult to compare the

segmentation results visually. Without depending on the image type (simple to complex),

we can measure the quality of segmentation from various region merging schemes. The

process of our energy equation formulation is explained in the following section.

4.5.1 The Energy Function Formulation

As we mentioned previously, we are focusing on the region smoothness and the

number of regions. Our energy function, or cost function, describes the relationship

between the two terms. The first term of the energy function is region variance. We

measure region smoothness using the variance of the region and it is weighted according

to the size of the region. The weighted variance (or sum of variance) of a region i is

defined as,

Weighted Variance (SOV) =S;' Yare OJ)' (II)

Sj represents the size of the region Oi, and Var(·) denotes variance of the region OJ. This

term measures smoothness of the region while also considering the region size, and is

often called the data term in the energy function. The next term is the cardinality of the
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segmentation. Card(O/) denotes the number of segments in the entire image, I. This tenn

is called the scalability term or cardinality term and represents the energy of the region

scale.

Total energy is gIven by combining the two terms - the variance and the

cardinality tenn. The total energy of an image is given by the summation of the weighted

variance and the cardinality of the image.

E image = LiSj' Var(O) + A(Card(O,)). (12)

Thus, the total energy measures the regions' smoothness and the number of regions at the

given il. In (12), the A is called a scalability parameter, which controls the scale of the

regions. The physical meaning of A is the cost for merging. The equation (12) can be

seen in Morel (Morel and Solimini, 1994). But in our merging scheme, Astarts from a

low number, then regions are merged from the most similar regions, and then A is

gradually and monotonically increased until desired number of region is obtained.

The following example explains how the energy function works by providing a

simple illustration, assuming there are only two regions, region i and j. This example is

convenient, because we always merge a pair of regions at once in our merging scheme.

According to the above equation, we compute two energy functions before merging and

after merging according to the equation (12).

E befOl'emerge =Sj' Var(Oj) + Sj' Var(Oj) + 2A.

E aflermerge = S;Uj' Var(Oj uOj ) + il.

The data-energy increases when the regions merge, Le., data-energy in two regions before

merging are lower than after the merge. This can be shown by a example via a simple one

dimensional matrix as shown below,
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MA =[9 8 6 5 4 3 2 2 3 4; 4 3 2 2 1 I I 2 3 4] = [M1 ,M2 ].

Assuming M1 and M2 are independent WS mosaic regions.

Fi.g.4.8(a) Fig.4.8(b)

e _ ltl 12 If ,. l' to

Fig.4.8(c)

[3.;]
Fig. 4.8(a) is a graph that indicates the elements

of M 1 and M 2 • Fig 4.8(b) shows region M 1 and

M 2 before merge. Fig 4.8(c) shows the merged

pattern after the two regions are merged.

Fig. 4.8 An illustration of a merging process

In this example, Yare M1 ) =5.82 and Yare M2 ) = 1.34. The weight is 10 pixels,

thus the weighted variance (SOV) is given as SOY J = 58.2, and SOY 2 = 13.4. Using

equation (12), the region energy, before and after merging, is given by

Ebeforemerge =SOV 1 +SOV2 +2A = 71.6+2A,

E after merge = SOVlv2 + A = 95.7 + A.

(13)

(14)

By solving the two equations, the scalability parameter A is found. The energy gap .1 E,

before and after the merge is defined by

.1 E =E afler merge - E before merge .

Without considering A, .1 E has a positive number, i.e.,

(15)

E after merge > E before merge or E after merge - E before merge = .1. E > O. ( 16)

Now, if we consider the scalability parameter A, we accept the merge only if .1. E is

negative, i.e., a pair of regions can be merged only if .1.E < O. This means the total image

energy must decrease during the merging process. According to this concept, Ais given

by solving the equations (13) and (14). For .1 E < 0,
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95.7 + A <71.6+2A,

:.24.1 < A.

Thus, the regions are merged by decreasing the total image energy only if A> 24.1 in this

example. When A= 24.1, it is called the critical merging point and if Ais beyond the

critical merging point, the merging decreases the total image energy. In order to clarify

the energy level, several Avalue are assigned to compute the region energy.

a .e e re a lOns lp 0 an

A E before merge E afler merge liE

10 91.6 105.7 up

20 111.8 115.8 up

24.1 119.8 119.8 0

30 130.7 125.7 down

T bl 42Th 1 ( h' fAd Li E

From this simple example, it is known that the scatability parameter ( A) works as

a cost for merging. Additionally, Acontrols the region scales, because in the equation,

region size is considered. Therefore, A can be also considered as a region scale

parameter. When a small A is applied, fine segmentations (large number of regions) are

yielded. When a large Ais applied, coarse segmentations (few regions) are yielded. When

the A=0, no regions can be merged, because without considering the A, it always holds

that

Li E = E after merge - E before merge> 0,

which does not meet the merging criterion liE < O.

This section studied the mechanism of the region merging process uSing our

energy function. In the following subsection, we would like to show the advantage of the

weighted-variance for the similarity criterion.
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4.5.2 Similarity Measurement by the Variance versus Average of Region Graylevel

In the conventional region merging scheme, the average of the region graylevel

was used for the similarity measurements. But, in the new merging scheme the region

variance is used for the similarity criterion. There is a significant difference between the

new and conventional schemes, because the region variance is more sensitive than the

graylevel in comparison. This can be shown using an example. Shown below are the one

dimensional regions (MA ) and (MB). The MB has modified the first and last terms of the

sample region, M A•

MA =[9 8 6 5 4 3 2 2 3 4; 4 3 2 2 2 3 4] = [M) ,M2 ).

MB =@ 8 6 5 4 3 2 2 300 32 2 2 30 = [M3 , M4 ].

If we compare the average of the two regions, Ave(M)) = Ave(M3) and Ave(M2) =

Ave(M4 ), but in the variance, Var(MI) t:: Var(M3) and Var(M2) t:: Var(M4 ). When we want

to detect the difference between M1 and M3, or M2 and M4, how should we measure the

differences? If we use the region average to measure the similarity, this criterion

(region's average) can not detect the differences. Instead, if the region variance is used to

measure region similarity, it can detect the transition of the region elements. During the

merging process, it is possible that two regions' average are same, even if the large

difference of the components (pixel values). Therefore, this causes merging error in the

conventional merging scheme.

This subsection explained our new merging scheme and the similarity criterion

using a simple example. In the following section, we expand this concept to the entire

image. A hierarchical region clustering and hierarchical stepwise optimization clustering
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algorithm are introduced. This algorithm merges the regions step by step according to the

merging criterion, therefore this process forms a hierarchical merging structure. The

following subsection shows how the hierarchical structure is effectively applied for t.he

region merging scheme.

4.6 The Hierarchical Stepwise Merging Algorithm with the Variational Technique

In this algorithm, the hierarchical clustering starts from an over-segmented

original watershed segmentation, assuming it has N regions. These regions are considered

as nodes, and the number of the regions is sequentially reduced by merging. At each

iteration, the cost for merging C(Ri . Rj ) is calculated for every pair of regions (Ri , Rj ).

Then the one pair of regions having the minimum merging cost is selected from entire

regions and merged. This merging process is repeated sequentially until the desired

number of regions are obtained.

One of the limitations of the hierarchical merging approach is the large

computational cost for a large data set (large image size), because the merging cost for all

of the possible pairs of regions have to be computed. If there are N regions, this

computation can be N x (N-I). In our region merging case, however, only adjacent

regions can be merged. This reduces the number of potential merging combinations per

iteration to N x M, where N is the number of regions, and M is the average number of

neighbors. M is usually a small number, on average around 3~M~8, and is quite

independent of N (Beaulieu and Goldberg, 1989). Additionally, a merge affects only the

surrounding regions, therefore only the adjacent regions need to be updated for the next

evaluation. As a consequence, only a limited number of new segment pairs need to be
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considered at each merging iteration. This is a major computational advantage obtained

from the concept of the adjacent region clustering.

The algorithm of hierarchical merging with a sequential optimization process is

now explained. The process starts with an initial watershed segmentation, Po ={R I , R2,

R3, .•.. Rn}, and at each iteration, it merges pair of regions that have minimal merging

cost. C,) denotes the cost of the merging a pair of regions. i (R;) and region j (Rj ). The

flow of the merging algorithm is as follow:

I - Initialization process:

1) Po ={R j , R2• RJ , ... ,Rn } (initial segmentation derived from the watershed).

2) A=0, scalability parameter starts at 0, merging can start somewhere A. >0.

3) Calculate SOV k and NBk (neighbors of region k) 'if Rk E po.

where k is the image cardinality.

4) Calculate the merging cost CS ={C;,j I R) E NB; }.

II - Merge most similar a pair of regions (the lowest cost region):

I) Find a pair of region that meet

CII " = M' . (C;j) flOm the entire region.. mlmum'
C·.lees

2) Region Rm is merged; Rm = (Ru u Rv), which means replacement of the pair

ofregions to a newly merged region - m,

3) Calculate SOV m of the merged region.

4) Update neighborhood information, NBm = (NBu u NB.. ) n {Ru • Rv } I,

which revises the information of the neighborhood

5) If no region can be merged at the given A.. increment it A= A+I.

I Taking the intersection with the complement corresponds to removing those elements from the set.
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ill - Stopping condition: Stop the merging algorithm if desired number of regions is

obtained.

The initialization process, finding NBk and computing SOV k , are performed only

once for a selected root level WS segmentation image. Thus, this algorithm is also

designed to reduce the computational cost. In the initialization process, the computational

cost is a function of the number of regions, the image size, and the number of neighbors

per region. Instead, if the iteration steps are short, the computational cost is mainly a

function of the number of regions R". The number of iterations depends on the number of

initial regions, because each iteration reduces the number of segments by one.

Measurements of the Segmented Images

Once images have been segmented, the segmentation has to be evaluated to

measure the quality. The quality can be measured by the total image energy according to

(12). Now, assuming we want to compare two segmentation results from different

techniques. If both images have the same cardinality (number of regions), we can

simplify the equation (12) by only considering the variance-term. Then the segmentation

quality can be evaluate by

IQ image = LiS;' Var(O) =Image variance. ( 17)

The IQ represents image segmentation quality. This equation simply measures the

smoothness at a given cardinality. Just like the image energy. at the given number of

segments, the lower the IQ represents the better segmentation. When we compute image

energy from different segmentation techniques, it is difficult to select a suitable A.

Therefore, if images have the same cardinality, we can compare the segmentation quality

among different segmentation techniques by computing the image variances. This
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segmentation evaluation technique is used when we compare the conventional and the

new image segmentation results in Chapter-5.

Mean squared error (MS£) is often used to measure the differences of the

processed image and the original image. The mean squared error is defined as

( 18)

where I org is the original image and Iseg is the segmented image. If the segmented image is

an adequate representation of the original image, the MSE should yield a lower value.

In this thesis, we evaluated the segmentation results by measuring both image

energy (or image variance) and the MSE. The lower these numbers, the better the

segmentation results. All of the application results are shown in Chapter-5.

4.7 Application of the Variational Method on Synthetic Images

The previous section explained the segmentation evaluation techniques and the

process of our image segmentation technique. This subsection explain the relationship

between the segmentation result and the image energy using simple synthetic images.

A synthetic test image-A, which is 8x8 square, is shown in FigA.9. There are five

regions, R I - Rs. and each region has a different graylevel. The initial weighted variance

of each region and the region number is shown in the following table.

Table 4.3 Initial variance of
the test image

Fig.4.9 An original synthetic test image and the
initial partitions

~
....

1',', .
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Fig.4.9(a)

R1

Rz
R5

R4
R3

Fig.4.9(b)

Region Initial SOV

R1 296.1

R2 206.7

R3 139.0

R4 4119.6

Rs 57.3
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In this experiment, we merged the original image until two regions were formed

from the original five. There are a total of thirteen possible patterns that can be formed

for the two region segmentations.

These patterns are shown in the Fig.4. 10 P2( I )-P2( 13). The segmentation result

from the variational technique is shown in Fig.4.l0 P2(l3)vt. The number of possible

pattern is much less than 5 C2 (combination of five from two), because regions will merge

with only those connected regions.

Fig.4.10 Thirteen possible segmentation patterns

All of the thirteen patterns are computed using the image energies and the MSE. The

results are summarized in the following Table 4.4. The pattern numbers are shown from

P2(l) through P2(13)vt, and the P2(l3)vt is the segmentation result from our variational

technique. The energy is calculated according to the equation (l2), and the mean squared

error is computed from equation (18).
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~ th h"T bl 4 4 ell d MSE d ha e . a eu ate an t e energy ,or e t Irteen patterns
Pattern P2(1) P2(2) P2(3) P2(4) P2(5) P2(6) P2(7)

MSE 109 89.4 80.5 83.7 74.4 109 79.6

E (KIO
j

) 322 206 89 304 282 317 189

Pattern P2(8) I P2(9) P2(W) P2(1l) P2(12) P2(13)vt

MSE 114 91.2 116 102 101 53.8

E (KI0
3

) 233 178 322 287 284 82

As shown in above table, both the segmentation energy and the MSE, which from

the variational technique indicated lowest value. In other words, our variational algorithm

found the best segmentation in the two region segments. Next we want to show the

segmentation results that form four regions and then three regions and consider the path

of the region merging.

Merging Path and Local Minimum Image Energy

In the previous section, we studied the segmentation energy of only two regions.

Here, we want to examine the image energy for three and four region segmentations to

show the merging path and the energy level. We want to show that the merging technique

consistently produces the lowest image segmentation for each number of segments.

Energy Computation for Four Regions

There are a total of eight segmentation patterns that can be formed from the given

image pattern. We have computed the energy of all the possible segmentation patterns,

and the results are shown in Table 4.5. In the table, P4(8)vt is the segmentation pattern

from our variational algorithm. The error and energy are the lowest among all of the

possible segmentations. Next, we repeated the same computations for three regions.
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'blf hT bl 4 5 C I I d MSE d ha e a cu ate an t e energy or t· e POSSI e patterns or our se ,-nentatlon

Pattern P4(1) P4(2) P4(3) P4(4) P4(5) P4(6) P4(7) P4(8)vt

MSE 49.8 41.5 32.1 26.5 35.1 32.9 88.3 15.0

E (llIOJ) 170.1 114.7 61.2 17.9 25.4 44.0 213.2 16.3

Energy Computation for Three Regions

In order to examine the energy level and the errors for three regions, we computed

all possible segmentation patterns which form three regions. There are a total of 20

possible patterns. The segmentation energy and error (MS£) are summarized in the

follow.ng table. Again in this experiment, our variational merging algorithm found the

lowest energy segmentation, which is indicated as P3(20)vt in Table 4.6.

ntsf ht'bIf thT bl 4 6 Cal I d MSE d tha e cu ate an e energy or ·e pOSSI e pat ems or tree segme
Pattern P3(1) P3(2) P3(3) P3(4) P3(5) P3(6) P3(7)

MSE 51.6 50.] 44.4 74.8 48.6 65.2 88.3

E ()(JO"\ I] 6.4 113.6 76.3 284.3 70.9 121.3 211.9

Pattern P3(8) P3(9) P3( 10) P3(ll) P3(12) P3{ 13) P3(l4)

MSE 50.4 99.1 79.9 43.5 72.6 77.7 ]07.1

E (xIO:!) 57.2 233.7 153.9 36.8 269.5 209.4 323.0

Pattern P3( 15) P3(16) P3( J7) P3( 18) P3( 19) P3(20)vt

MSE 76.0 48.6 65.1 66.6 114.9 34.5
,

E (XIO
J

) 190.7 74.3 184.3 173.6 227.8 29.4

Through these experiments, we computed all possible segmentations for two,

three, and four regions. The segmentation results from our algorithm using variational

technique yielded the lowest energy and the lowest error of any segmentation pattern for

each number of segments. Another interesting point is that this algorithm found the path

of the lowest energy in each segmentation. This is a meaningful result.
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FigA.ll The region merging results from variational technique on a synthetic image-A
(a) 5 regions (b) 4 regions (c) 3 regions (d) 2 regions

The segmented image, FigA.ll (d), is the result of our two region segmentation

from our region merging technique. As we explained earlier, the segmentation pattern has

the lowest energy and MSE of any segmentation pattern(with two regions). Just as for the

two region segmentation, all of the paths (four and three regions) also had the lowest

energy for each number of segments. The merging path is shown in Fig4. 1I.

FigA.12 The region merging results from variational technique on a synthetic image-B
(a)11 regions (b) 9 regions (c) 7 regions (d) 5 regions

We also examined the same experiment on the second synthetic image, Fig.4.12.

The results showed the merging path from the original partition, FigA.12(a) to five

regions (three graylevel classification), FigA.12(d). From the variational technique, the

lowest energy segmentation patterns were found for each number of regions.

In this section, we examined our new region merging technique showing the

merging results on simple synthetic images. The results from the synthetic images show

adequate segmentation results. The results from the variational technique yielded the

lowest MSE and the lowest image energy tn each segmentation. These are encouraging

results and it increase our confidence in applying this merging technique to more

complex images. In the following chapter, we will apply this merging technique to more
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realistic images - soil moisture images. The segmentation results from the conventional

segmentation technique and our new merging technique are fully compared.

4.8 Summary

This chapter explained our solution to two issues of watershed segmentation ­

large computational cost and over-segmentation. To reduce the computational cost, we

applied the concept of the image pyramid. Gauch and Pizer introduced the multi­

resolution watershed technique(Gauch and Pizer, 1993), but in our multi-resolution

watershed pyramid WS is applied at a root level and the WS boundaries are propagated to

the original image size. This approach can reduce the computational cost significantly,

because the WS is applied to each intermediate layer only on the boundaries.

For the application of the WS algorithm to the soil moisture imagery, we

introduced the new merging algorithm by applying the concept of a variational model.

We formulated an energy function, then progressed the merging according to the energy

level. The original energy function can be seen in the Morel's study. But in our merging

scheme, the region scale parameter, Ais increased gradually until desired number of

regions is yielded. We applied this process, because it is a possible way to find a local

minimum energy in the cardinality. From our synthetic image examples, this merging

technique adequately found local minimum energy in each segment. The segmentation

results also showed the lowest energy and the lowest MSE in each segmentation result.

Using the concept of image energy with the energy equation, we obtained a new

image segmentation evaluation criterion. In the following chapter, we wiIJ apply the new

merging algorithm to the actual soil moisture images. The segmentation results are
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measured by both MSE and image energy (image variance), and these results are

evaluated by comparing the conventional segmentation with the new segmentation

method.
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Chapter 5. Results and Conclusions

5.1 Introduction

In the previous chapter, we introduced a new region merging technique and a

segmentation evaluation criteria using a variational technique. This chapter demonstrates

the region merging techniques and summarizes the segmentation results. Image

segmentations are implemented by two types of region merging techniques and the

segmentation results are compared. The segmented images are measured by two metrics,

the image energy and mean squared error (MSE) as explained in Chapter-4. The smaller

values represent the better segmentation results in both measurements.

Another improvement on the conventional watershed segmentation is the

application of the multi-resolution watershed pyramid. Using the multi-resolution

watershed (WS), the computational time is significantly reduced. The multi-resolution

pyramid creates a scale-space and the WS is applied at a selected root level, which is a

coarse representation of the original image. Once the WS is applied at a root level, the

WS boundaries are propagated to the original image size. During lhe propagation process,

the WS is applied only on the boundaries in each layer. Therefore a significant reduction

in computational cost is expected. We compared the computational cost with and without

applying the multi-resolution pyramid on the soil moisture images, and the results are

shown in this chapter. Section 5.3 concludes and discusses all of the research findings

and contributions in this thesis. Finally, section 5.4 mentions some proposals for future

work.
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5.2 Image Segmentation Results

The objective in this section is to compare and contrast segmentation results from

the new and conventional region merging approaches. In this experiment, a total of five

images are used. For the first two, we selected relatively simple images, which have a

clear target object and are well contrasted. These types of images are often used for the

evaluation of image segmentation techniques.

For the soif moisture image segmentation, we chose three sub-regions from the

original satellite imagery. Segmentation conditions are summarized in Table 5.1 and the

segmentation results are examined in the following section.

Table 5.1 Application of Image Segmentation

Category Image name: Image size: Root level: Merging method Figure number

Test Image Swan 256 1(128) Recursive Threshold Fig 5.1(a)

Swan 256 1(128) Variational Technique Fig5.I(b)

Leaf 256 2( 64) Recursive Threshold Fig 5.2(b)

Leaf 256 2( 64) Variational Technique Fig 5.2(c)

Soil Moisture SMr13e07(River) 512 1(256) Recursive Threshold Fig 5.3(a)

SMr13e07(River) 512 1(256) Variational Technique Fig 5.3(b)

SMr04e04(Field) 512 1(256) Recursive Threshold Fig 5.4(a)

SMri)4e04(Field) 512 1(256) Variational Technique Fig 5.4(b)

SMrlIe lO(Lake) 512 2(128) Recursive Threshold Fig 5.5(a)

SMrllelO(Lake) 512 2(128) Variational Technique Fig 5.5(b)

5.2.1 Application of Region Merging to Test Images

The purpose of the test images is to show the efficiency of the region merging

methods before applying them to complex soil moisture images. If the segmentation
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technique shows valid segmentation results from relatively simple images, the

segmentation results from the soil moisture images will be more reliable. A swan image

and a leaf image are chosen for the test images. Each of these images is well contrasted

and has a clearly identified target object. In order to compare the region merging

schemes, the segmentation results are measured by both mean-squared-error and the

image variance. The segmentation results are explained below.

Segmentation Results from the Swan Image

The segmentation results from the swan image are shown in FigS I(a) and

Fig.5.I(b). Fig.5.l(a) shows the segmentation results from the conventional merging

scheme using recursive thresholding. Fig. 5. i(b) shows the segmentation results from the

new merging scheme using the variational technique. The top-left image in the figure is

over-segmented at the root level WS mosaic image (region merging starts from this

image) and the rest of the images show the region merged results. In the figures, R stands

for the number of regions in the image, image variance is denoted as V and mean­

squared-error of the image is denoted as MSE. Starting from the over-segmented original

WS mosaic image, we attempt to merge them to a desired number of regions. In this

experiment, the number of regions is selected from 300 to three regions. Comparing

FigS I(a) and 5.l(b), visually there are few differences. But each image from the new

merging scheme, in Fig.5.1 (b), has superior variance and MSE to those of the

corresponding conventional segmentations, in Fig.5.) (a). In the next test image, we

corrupt an original image by salt-and-pepper noise, then examine the same sequence for

the Leaf image.
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Segmentation Results from the Leaf Image

In this experiment, we wanted to demonstrate how noise affects the WS

segmentation and the region merging process. A corrupted image is made by adding 30

percent salt-and-pepper noise to the original image. During the multi-resolution WS

segmentation, each layer of the image is sequentially open-close filtered, then sub­

sampled. The original image, noisy image, and filtered images are shown in the

Fig.5.2(a). From the images, the filtering effects are easily observed. In root level three,

the noise is eliminated by the sequential filtering, yet the original leaf still can be

recognized. This root level is selected for further watershed segmenta!tion, and the region

merging results are shown in Fig.5.2(b) and 5.2(c).

Starting from the over-segmented watershed mosaic image (root image size =64),

reg~on merging progresses until the leaf is segmented from the background. In this

experiment, the number of regions is selected from 150 to two regions. In our region

merging algorithm, the regions are merged one by one in each merging iteration. The

region merging results from the conventional scheme are shown in Fig.5.2(b), and the

results from our variational technique are shown in Fig.5.2(c). Both schemes clearly

segment the leaf image from the original over-segmented mosaic image. Visually, a small

merging mistake can be identified from the result of the conventional merging scheme. In

order to clarify the difference, measuring the image variance and MSE are helpful.

Comparing both the image variance and MSE, we can recognize that the segmentation

results from the new merging scheme are a better representation of original image.
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5.2.2 Soil Moisture Image Segmentation

For the soil moisture segmentation, we selected three regions from the original

satellite sensed region. The first image was chosen from the south of Oklahoma, on the

border of Oklahoma and Texas, which includes the Red River. This image includes

bodies of water, and would show strong soil moisture contrast when they are segmented.

The second image was selected from the region that does not contain large bodies

of water, and is acquired from near the northwest corner of the whole image. This region

was selected because it had relatively strong contrast of soil moisture distribution than

other 8M images. The third region was selected from the region that included the

Waurika Lake and includes large bodies of water.

The selected soil moisture image is about 12km x 12 km in area, which makes a

512x512 pixel image. The root level two (root image size =256) was used for both Red

River and Field image and root level three (root image size = 128) was used for the

Waurika Lake image. These root levels are selected because significant features are lost

above the root level by the open-close filtering and sub-sampling.

Soil Moisture Segmentation on SMr13c07 Image: Red River region

The segmentation results from both the conventional region merging and the new

merging techniques are shown in Fig.5.3(a) and 5.3(b) respectively. The original over­

segmented WS mosaic image is displayed in the top-left corner of the figure. Starting

from the over-segmented image, the merging results from 200 regions to 15 regions are

displayed. The image variance and MSE are measured for every image and they are

indicated as individual image subtitles.
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By comparing both segmentation results, it is easy to recognize the qualitative

differences. The segmentation results from the conventional merging scheme merged the

regions too rapidly. The river and slight soil moisture distribution on the fields were also

merged in the early merging stages. Nevertheless, the conventional merging scheme

leaves small regions as spots until the end of the merging.

In the segmentation results from the variational technique, regi,ons are merged

gradually and small regions are merged in the early merging stages. This demonstrates

the advantage of being able to control the region scalability in the variational merging

technique. The segmentation quality is easily known by comparing the image variance

and MSE. Both the image variance and the MSE from the new region merging results

show superior numbers compared to those of the conventional scheme.

The edge maps (the boundaries of the WS segmentation) are shown in Fig.5.6(a).

The original SM image, the SM image at the root level, the over-segmented WS mosaic

image, the merged image (at the number of regions is 30), and the edge map are

provided. From the figure, it may be observed that the WS mosaic image is a rea~onable

representation of the original SM image at the selected root level. The edge map shows

closed and thin WS boundaries of the merged image. The number of regions is selected

arbitrarily by the author. This selection is used to exhibit the WS boundaries; the edge

map can be for any number of regions.

Soil Moisture Segmentation on SMr04c04 Image: Field region

Image segmentation results from the SMr04c04, Field regions are shown in Fig.

5.4(a) and 5.4(b). The region merging results from the conventional technique are shown

in Fig.5.4(a) and the results from the new merging technique are shown in Fig.5.4(b).
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Compared to the Red River image, this field image tends to be more uniform in soil

moisture distribution, because of the absence of bodies of water. Using the conventional

region merging scheme, the region merging results yielded a poor representation of the

original soil moisture image. Similar regions are rapidly merged in the early stages, and

the segmented patterns are far from the original SM distribution. Instead, each merging

result from the variational technique showed a more reliable soil moisture pattern than

those of the conventional scheme, as measured by the image variance and MSE. Both

numbers for each segmentation using the new merging scheme were better than those of

the corresponding conventional segmentation.

The corresponding edge maps are shown in Fig.5.6(b). The original SM image,

the SM Image at the root level, the over-segmented WS mosaic image, the merged image

(at number of regions is 30), and the edge map are exhibited. From the figure, it is seen

that the WS mosaic image nicely represents the original SM image. The edge map also

shows closed and thin WS boundaries of the merged image.

Soil Moisture Segmentation on SMrllc10 Image: Lake region

The third soil moisture region includes large bodies of water, the Waurika Lake

image. In the previous two regions, the root level two was used. Here we selected root

level three. The merging results from the conventional merging scheme are shown in the

Fig.5.5(a), and those results from the new merging scheme are shown in the Fig.5.5(b).

As with the previous segmentation results, the new merging scheme creates a more

reliable soil moisture distribution than the conventional merging scheme in each

segmentation, because of the smaller MSE and variance. The results show that the

conventional scheme merges similar graylevel regions too rapidly and small details
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remain until a later merging stage. This tendency is quite common in all of the results of

the conventional merging scheme. Both image variance and MSE from the new technique

reveal much improved results over those of the conventional scheme. The new merging

technique also showed the excellent controllability of region scalability in this

experiment.

The edge maps are displayed in Fig.5.6(c). Comparing the previous two root

levels, this root level image is a more coarse representation of the original 8M image,

because of the higher root level selection. Nevertheless, the region merging results are a

good representation of the original W8 mosaic image. The edge map displays the closed

and thin boundaries of the segmentation.

5.3 Conclusion and Discussion

The Computational Cost of the Watershed Segmentation

Through this thesis, we have sought possible solutions to the two weaknesses of

the watershed segmentation, which are the large computational cost and over­

segmentation. Applying the concept of the image pyramid, substantial computational

costs have been reduced. Without using the image pyramid (fixed-resolution watershed),

on the average it takes about 19 minutes to process a watershed segmentation on a

512x512 image in the C program by a Unix Workstation. Instead, by applying multi­

resolution watershed at root level two (image size =256), on the average it required about

1.6 minutes, and at root level three (image size = j 28) only about 29 seconds were

required. The results of the computational cost from three 8M images are summarized in

the Table 5.2. This algorithm was also translated to Matlab codes, and examined for
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performance. The Matlab programs run slower than C program, but the computational

costs were reduced by similar proportions in the multi-resolution watershed.

Table 5.2 The computation costs of the fixed WS and the multi-resolution WS

Image Fixed-Resolution Multi-Resolution Multi-Resolution
(size) (512x512) Root = I (256x256) Root =2( 128x 128)

SMr13c07 21.95 min 1.93 min 31 sec

SMr04c04 18.53 min 1.52 min 27 sec

SMrllclO 16.72 min 1.30 min 28 sec

Average 19.07 min 1.60 min 29 sec

The reduction of computational costs directly relates to the selection of the root levet

The higher root level selection, the less computation cost. But selection of a high root

level sacrifices the resolution of the image. In the experiments of soil moisture image

segmentation, we used root level one for the Red River and the field image, and root level

two was used for the Waurika Lake image. Comparing the original SM image and the

root level image, in Fig.5.6, the difference is recognized. As a consequence, the selection

of the root level will depend on how much detail is demanded.

Region Merging by Variational Model and the Evaluation Criteria

For a possible better solution to the over-segmentation issue, we introduced the

new region merging technique - an application of the variational model. The major

difference in the proposed method from the conventional approach is that the region

similarity is measured by the weighted-variance, instead of the region graylevel. An

energy equation is formed as (12), and in our merging technique the A is monotonically

increased till desired number of segmentation is yielded. We applied this scheme

because, it is a possible way to find a local minimum image energy in the cardinarity.
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Experimental results by the new and the conventional region merging were fully

demonstrated in section 5.2. The segmentation results are measured and also visually

evaluated. Both image variance and MSE from the new merging method were superior to

those from the conventional merging technique. From the visual comparison, the

advantage of the new merging scheme is easily observed. Significant differences were

observed from the segmentation results between the new and the conventional method on

soil moisture images. These results tell us that the conventional merging scheme could be

applicable only to those simple images, but not for more complex images, such as soil

moisture images. Because the soil moisture images have more uniform distribution in the

image intensity, the image segmentation requires a more critical criterion. Additionally,

the new region merging technique showed superior region scale controllability in the

merging results (unifonn region size), because our energy equation considers the region

size during the merging process. This is another significant difference from the

conventional merging technique. Consequently, the proposed new region merging

scheme showed excellent segmentation results in this experiment.

Discussion

Using the variational technique and an image energy function, we attempted to

minimize the image energy, and eventually segment the image. If we look at the merging

scheme from the concept of image energy, this process is identical to finding a local

minimum of the image energy. Because the energy equation is designed to find a path

toward lower energy. It is like dropping a ball from the top of a hill in a given relief

(solution space), as the ball would reach a lower point (local minimum), but we do not
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have any guarantee that it is the lowest point (global minimum) of the entire surface. In

order to find the global minimum, the ball would have to be able to climb up slopes or

hills. In our algorithm, the ball is allowed to go only downward; climbing is not allowed.

A hill-climbing algorithm is possible, but practically it requires extensive computational

costs, because it has to search every possible direction. Also it does not know where

(what energy value) is the global minima. Therefore, it does not find a stopping point

until every possible trial has been examined. Our algorithm is constantly searching to

reduce the energy and eventually reach a local minimum.

There is one more constraint in our region merging algorithm, the regions are

constantly merged but not allowed to split up. This constraint could interfere with finding

the global minimum. But, again if we implement the algorithm in a practical image size,

the split and merge operation requires an extremely large computational cost.

5.4 Future Work

In this section, we would like to propose several research topics for the further

study. First, we did not consider the concept of image energy during the process of the

WS segmentation. The image energy is considered and minimized from a given WS

segmentation result. So, we have a missing link between original images and WS

segmented images. We think that the concept of image energy can be applicable during

the WS segmentation process. One idea is to form the WS segmentation using a

variational technique to minimize image energy.

Finding the global minimum of image energy is an additional area of future work.

One solution to finding the global minimum is the application of an annealing technique.

84



This technique could find the lowest energy from the all possible segmentations.

Therefore, it requires a very large computational cost (nearly infinity) to compute the best

answer for the practical image size. Without using computer simulation, mathematically

it may be possible to create an algorithm to reach the global minimum.

Through this thesis, we have applied the variational technique for region merging

process. Compared to the conventional merging technique, this technique is well

motivated and significantly improved the segmentation results. But it is just one

application of the technique, and we hope our results encourage for the further

application of this technique. Fortunately, the variational technique is flexible and it is

widely applicable. As the technique yielded excellent results in our application, we

believe this technique offers a better solution to various field of image processing.
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Fig.5.1(a) Segmentation results from recursive thresholding on Swan image

Swan Image Root Size = 128
Original Image

R=80, V=l 10.1, MSE=27.3

R=lO, V=229.6, MSE=58.1

R=300, V=I03.7, MSE=23.5

R=40, V= 121.6, MSE=30.8

R=5. V=303.4, MSE=74.8

R=IOO. V=107.9.MSE=26.5

R=20. V=153.2. MSE=40.3

U=3. V=319.1,MSE=76.1

(R =the number of regions, V= the image variance. MSE =the mean squared error)
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Fig.5.1 (b) Segmentation results from variational technique on Swan image

Original Image R=300, V=91.5. MSE=22.0 R=lOO, V=93.9, MSE=23.8

R=80, V=98.3, MSE=24.5

R=IO, V=151.5. MSE=40.5

R=40, V=102.9, MSE=27.2

R=5, V= 184.3, MSE=4'd.7

R=20, V=118.7,MSE=31.8

R=3. V=304.4. MSE=66.1

(R = the number of regions. V= the Image variance. MSE = the mean squared error )
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Fig.5.2(a) Noisy Leaf image and open-close filtered images

;.....~;_.._- .:-

Original Image
Size=256

Filtered Image
Size= 128. Root Level= 1

Noisy Original Image
Size=256

Filtered Image
Size=64, Root Level=2
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Fig.5.2(b) Segmentation results from recursive thre,holding on Leaf image

Root Size =64
Original WS Mosaic Image

R=80, V=289.6, MSE=3S.0

R=10, V=36S.S, MSE=46.2

R=150, V=290.6, MSE=34.8

R=40, V=290.8, MSE=35.5

R=5, V=429.6, MSE=57.1

R=lOO, V=289.6, MSE=34.9

R=20, V=308.4, MSE=38.0

R=2, V=459.5, MSE=58.1

(R = the number of regions. V= the image variance, MSE = the mean squared error)
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Fig.5.2(c) Segmentation results from variational technique on Leaf image

Original WS Mosaic Image R=150, V=91.5. MSE=33.2 R=lOO. V=93.9. MSE=33.4

R=80, V=98.3, MSE=33.5

R=IO, V=151.5, MSE=40.3

R=40, V=I02.9. MSE=33.9

R=5, V=184.3, MSE=48.2

R=20, V=118.7, MSE=35.5

R=2. V=304.4, MSE=57.9

(R = the number of regions, V= the image variance, MSE = the mean squared error)
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Fig.5.3(a) SM segmentation results from recursive threshold on SMrl3c07 image
(Red River Image)

Root Size = 256: R=2151
Onginal WS MosaIc Image

R=80, V=396.1, MSE = 92.3

R=40, V=622.3, MSE =132.3

R=25, V=684.7, MSE=137.7

R=200, V=287.2. MSE=64.7

R=60, V=550.2, MSE = 118.8

R=35, V=644.2, MSE=135.6

R=20, V=994.4, MSE =169.3

R=IOO, V=375.I, MSE=89.3

R=50, V=557.8, MSE=119.7

R=30, V=660.9, MSE=137.0

R=15, V=I037, MSE=170.6

(R =the number of regions, V= the image variance, MSE = the mean squared error)
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Fig.5.3(b) SM segmentation results from variational technique on SMrl3c07 image

Root Size = 256 : R=2151
Original WS Mosaic Image

R=80. V= 291.1, MSE=58.1

R=40, V=378.I, MSE=75.3

R=25, V=459. J, MSE=88.5

R=200, V=264.5, MSE=51.6

R=60, V=321.8. MSE=64.0

R=35, V=400.8, MSE=79.7

R=20, V=515.7, MSE=97.7

R= I00. V=264.5, MSE=51.6

R=50. V=347.4, MSE=69.1

R=30, V=428.5, MSE=84.1

R=15, V=608.3, MSE=I lO.8

(R =the number of regions, V= the image variance, MSE =the mean squared error)
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Fig.5.4(a) SM segmentation results from recursive threshold on SMr04c04 image
(Field Region)

Root Size = 256 : R=2077
Original WS Mosaic Image

R=80, V=782.9, MSE=142.3

R=40, V=2350, MSE=332.7

R=25, V=26 17, MSE=339.9
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(R = the number of regions, V= the Image variance, MSE = the mean squared error)
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Fig.5.4(b) SM segmentation results from variational technique on SMr04c04 image

Root Size =256 : R=2077
Original WS Mosaic Image

R=80, V=526.5, MSE= I 01.1

R=40, V=729.2, MSE=128.3

R=25, V=903.0, MSE=149.7

R=200, V=350.6, MSE=74.3

R=60, V=6OO.4, MSE= 1J J .5

R=35, V=774.4, MSE=134.7

R=20, V=985.2, MSE=IS7.6

R=100, \1=474.7, MSE=93.48

R=50, V=653.1, MSE=119.5

R=30, V=836.7, MSE= 141.7

R=15. \1=1108, MSE=174.7

(R =the number of regions, V= the Image variance, MSE = the mean squared error )
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Fig.5.5(a) SM segmentation results from recursive threshold on SMrllclO image
(Waurika Lake)

R=70, V=445.9, MSE=7 J3

Root Size = 12lS : R=553
Original WS Mosaic Image

R=90. V= 397.3, MSE=65.3

R=60, V= 511.8, MSE=79.1

R=30. V= 756.J, MSE=103.J

R=200, V=287.3, MSE=50.5

R=50, V=587.2. MSE=88.1

R=20, V=1065. MSE=134.3

R=l00. V=383.8. MSE=63.6

R=40. V=605.0, MSE=89.1

R= I 0, V= 148B, MSE= 166.5

(R = the number of regions, V= the image variance. MSE =the mean squared error)
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Fig.5.5(b) SM segmentation results from variational technique on SMrllclO image

Root Size = 128 : R=553
Original WS Mosaic Image

R=90, V= 348.4, MSE=51.6

R=60, V= 400. J , MSE=64.6

R=30, V= 513.3, MSE=77.6

R=200, V=269.2, MSE=49.1

R=80, V=361.1, MSE=54.!

R=50, V=429.7, MSE=67.9

R=20, V=588.3, MSE=85.2

R=lOO, V=337.2. MSE=56.!

R=70, V=376.4, MSE=6 I.3

R=40, V=464.9, MSE=72.2

R=lO, V=735.9, MSE=104.9

(R = the number of regions, V= the image variance, MSE =the mean squared error)
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Fig.5.6 The Edge Maps
(a) The edge map of SMr 13c07
Original SM Image SM Image at the root level
Size = 512 Size = 256

The over-segmented WS
Mosaic Image. Size = 256

The Merged Image: Region = 30

(b) The edge map of SMr04c04
Original SM Image SM Image at the root level
Size = 512 Size = 256

The Merged Image: Region =30
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The over-segmented WS
Mosaic Image. Size = 256



Fig.5.6 The Edge Maps

(c) The edge map of SMrllclO
Original SM Image SM Image at the root level
Size = 512 Size = 128

The over-segrnt:nlcd WS
Mosaic Image. Size = 128
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