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CHAPTER I

INTRODUCTION

Estrogens belong to the family of sex steroid hormones. They play vital roles in

many physiological processes with emphasis on reproductive-related actions, such as cell

division and proliferation, tissue differentiation and organ growth. Those effects are

mediated by specific receptors localized in the cell nucleus (Welshons et aI, 1984), which

cause alteration of specific gene expression. Estrogens are metabolites of cholesterol,

converted from androgens by the aromatase enzyme. Estrone (E I), estradiol (E2) and

estriol (E3) are three major naturally occurring estrogens. Various forms of estrogens

may be present in the fetal-placental compartment, although unconjugated estradiol-171~

has the highest estrogenic potency (Sloss & Duffy, 1980). In this study, we will only

focus on the analysis of unconjugated estradiol-17p.

Estrogens are secreted mainly by the ovaries In nonpregnant females, while

during pregnancy the major site of production is transferred to the placenta. Within the

placentomes are specific populations of steroidogenic cells. In the fetal-placental

compartment, estrogens were measurable as early as day 27 of gestation in cattle (Eley et

ai, 1979). While mRNA of estrogen receptors could be first detected in the blastocysts of

mouse embryos at the preimplantation stage (Hou & Gorski, 1993), it ]s unknown when

estrogen receptors first appear in bovine fetuses, but there was evidence that estrogen



receptors appeared in the bovine fetal uterus near the end of mid-gestation (Malayer &

Woods, 1998). Day 46 of gestation is the time that the bovine embryo completes

organogenesis and begins fetal development (Noakes, 1997, p.30). Though Lubahn et al

(1993) stated that after disrupting the estrogen receptor gene by gene targeting in the fetal

mice could make them survive to adulthood with normal gross external body

characteristic, those mice still demonstrated defects in the reproductive performances. In

conclusion, the appearance of estrogens and the expression of estrogen receptors during

this crucial period suggest potential functions of estrogens in fetal development,

especially in the formation of the reproductive tract.

The average bovine gestation length is 281 days (Bearden & Fuquay, 1997, p.89).

Throughout most time of pregnancy, bovine fetuses are surrounded and protected by

amniotic and allantoic fluids. Those fluids arise from the secretion and excretion of the

fetus. Besides water, these fluids contain metabolic products, proteins, electrolytes,

hormones, and other structures (Baetz et al, 1976). Those constituents circulate through

the fetal-placental compartment so as to participate in the processes of oxygen, nutrient

and waste exchange, as well as endocrine communication with the mother.

Steroid hormones in the extracellular circulation are likely to be bound to

proteins. Due to different protein binding characteristics, this binding may be either high

affinity binding such as a specific steroid-binding globulin, or low affinity but high

capacity binding to an abundant protein such as albumin. For example, alpha-tetoprotein

(AFP) produced by fetal liver and present in fetal blood circulation has been well-studied

and its specific estrogen binding properties were characterized in the rat (Aussel et aI,

1973; Benassayag et aI, 1975; Savu et aI, 1975; Lai et aI, 1976; Payne &
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Katzenellenbogen, 1979; Keel & Abney, 1983). Relative amounts of estrogen available

to influence target tissues might be dependent to some extent on the concentrations of

steroid-binding proteins in the blood or fetal fluids. Estrogen binding proteins in the

circulation serve to transport the hydrophobic steroids in aqueous media and may adjust

the concentration of biologically available estrogens. Only free estrogens that are not

bound to proteins have the ability to enter tissue cells, probably by simple diffusion

(Clark & Peck, 1977). Then they are able to exert their crucial functions in the target cell

nucleus mediated by specific receptors (Welshons et ai, 1984). This estrogen-receptor

complex is able to influence specific gene expression, altering the expression of mRNA

transferred to the cytoplasm and assembled into the proteins at the ribosomes.

The total estrogen concentrations in maternal and fetal circulations throughout

pregnancy in several farm animal species have been reported (Robertson et aI, 1973,

1974, 1978, 1979, 1985; Challis et aI, 1974, 1981; Lyngset & Lunaas, 1972; Carnegie &

Robertson, 1978; Eley et aI, 1979). The concentrations of free unconjugated estradiol

17f3 in the circulation, not bound to proteins, were not determined in any of these studies

however. The frce unconjugated estradiol-17f3 concentrations should more accurately

reflect potential biological activity at the target cells. The objectives were as follows: 1)

to measure the unconjugated total estradiol-17f3 concentrations in bovine fetal-placental

compartment around mid-gestation; 2) to determine the free concentrations of

unconjugated estradiol-17f3 in bovine fetal-placental compartment around mid-gestation;

3) to determine whether specific protein(s) is(are) present for transportation or

sequestration of unconjugated estradiol-17f3 in bovine fetal circulation.
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CHAPTER II

LITERATURE REVIEW

Bovine Fetal-Placental Compartment

Gestation is the course of pregnancy initiated from fertilization and completed

with parturition (Bearden & Fuquay, 1997, p.89). Length of gestation averages 281 days

in cattle. Variation in gestation length may arise due to breed as well as individual

conditions from maternal, fetal and environmental aspects (Jainudeen & Hafez, 1993,

p.214).

A fertilized ovum becomes a blastocyst at day 6 of gestation. The blastocyst has a

single spherical outer layer of cells called the trophoblast and a group of cells at one polar

end called the inner cell mass. The interior of the blastocyst is a fluid-filled chamber,

called the blastocoele. Beginning at day 14, the blastocyst starts to elongate

longitudinally and gradually transforms to threadlike appearance by day 18 of gestation

(Peters & Ball, 1987, p.94). This process is called blastocyst elongation and it is also the

period for maternal recognition of pregnancy.

Ectoderm, mesoderm and endoderm are the three germ layers that develop from

the inner cell mass of blastocyst (Peters & Ball, 1987, p.94). Each germ layer gives rise

to the formation of different organs and tissues of the developing fetus. From these
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layers, extraembryonic membranes, the yolk sac, amnion and allantois, also start to form.

These membranes help the embryo to attach the maternal endometrium so as to exchange

gas, nutrients and hormones with the maternal system, following the process of bovine

fetal implantation around day 30 of gestation (Melton et aI, 1951). Implantation involves

intimate connection of trophectoderm of the embryo and the uterine epithelial cells for

oxygen, nutrient and waste exchange, as well as endocrine communication.

The yolk sac is a transient cavity only present at the early embryo stage before

day 20 of gestation. It is the combination of endoderm and part of the separated

mesoderm. Its blood circulation provides nutrients for the fetus and it also provides

protection for the fetus. This function is soon replaced by the allantois after day 20 of

gestation (Peters & Ball, 1987, p.94).

The amnion is an outgrowth from the mesoderm and ectoderm of the embryo and

forms at days 13 to 16 of gestation (Noakes, 1997, p.29). It wraps over the whole fetus

except a limited area around the umbiJical cord. The amniotic unit is a double-walled sac

with a transparent membrane. This sac is filled with fluid derived from the secretion and

excretion of the fetus. Thus, it bathes the fetus for the major purpose of support and

protection. The umbilical cord is one part of amnion wrapping about the yolk stalk and it

encloses allantoic vessels to exchange nutrients, oxygen and wastes between the mother

and the fetus.

The allantois, which outfolds from the embryonic hindgut around days 14 to 21 of

gestation (Noakes, 1997, p.29), is also a double-walled cavity with watery fluid inside. It

forms completely about days 24 to 28 of gestation and functions as a temporary storage
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site for fetal excretory products and also helps to maintain fetal osmotic pressure of

plasma (Jainudeen & Hafez, 1993, p.228).

Fetal fluids originate mainly from the fetal respiratory, urinary and digestive

systems, and some from the fetal skin. The volume and composition of the fluids are also

influenced by these sources (Jainudeen & Hafez, 1993, p.228). Both the amniotic and

allantoic fluids contain metabolites of the fetus, electrolytes, enzymes, hormones. cells.

and other constituents (Baetz et aI, 1976). The total volume of amniotic and allantoic

fluids increases progressively throughout pregnancy. Particularly there is a sharp volume

rise from 400ml (days 61 to 90) to over l,aOOml (days 91 to 120) in bovine amniotic and

allantoic fluids (Noakes, 1997, p.31). In general, these fluids function to protect the fetus

from mechanical injury and from environmental infection.

The outennost layer of the conceptus, the trophectodenn, gIves rise to the

chorionic membrane. The allantois fuses completely with the chorion to fonn the

chorioallantois by day 23 of gestation (Peters & Ball, ]997, p.94). The chorioallantois is

a highly vascular structure with the vessels branching away from the umbilical cord. It

eventually surrounds the whole entity of fetal-placental compartment. The

chorioallantois attaches closely with the endometrium and serves in transferring of

nutrients and oxygen from the maternal uterus to the fetus.

Ruminant placentas exhibit epithelial-choria] and endothelial-chorial barriers with

diffuse and cotyledonary chorionic villous patterns (Jainudeen & Hafez, 1993, p.219).

Structures called fetal cotyledons are actually restricted circular areas of chorioallantois.

They are in close contact with specialized areas of maternal uterine endometrium called

the caruncles. The placentome is a specialized structure in the ruminant placenta
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consisting of fetal cotyledon and maternal caruncle. As illustrated in sheep (Makowski et

aI, 1968), 84% of uterine blood flow goes through maternal caruncles, while 94% of

umbilical blood flow goes through fetal cotyledons. This provide maximal

transportation of oxygen and nutrients to fetal circulation. Placental size and blood flow,

genetics, environment and fetal hormones are major factors influencing fetal growth

(Jainudeen & Hafez, 1993, p.225). A greater than 1100% increase in bovine fetal size

appears between days 61 to 120 of gestation (Bearden & Fuquary, 1997, p.98). The

placenta is a transitory endocrine organ during pregnancy like the corpus luteum. During

the second and third trimesters of pregnancy, the cotyledon is a major site of production

for estrogens (Evans & Wagner, 1981; Gross & Williams, 1988; Hoffmann et ai, 1979).

In addition, Shemesh (1980) found that estradiol-17P could be synthesized by fetal ovary

as early as days 42 to 48 of gestation. Those hormones could be absorbed by the fetus or

the mother and transformed to other conjugated forms such as sulfated estrogens, or they

could be accumulated in amniotic and aHantoic fluids throughout pregnancy.

Understanding Estrogens

Estrogens are involved in many critical physiological processes, including growth

and differentiation of mammary and reproductive tissues and also brain development, by

the way of affecting estrogen-responsive gene expression. Estrogens may be produced in

ovary, adrenal cortex, placenta, and the testes in a variety of species including cattle

(Mellin & Erb, 1965). The initial precursor of estrogens is acetate, which is converted to

cholesterol. Then by continuing conversion from cholesterol to progesterone through a
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complex but well organized process of synthesis, estrogens are finally formed by

aromatization of androgens. In general, the sequence of this pathway is acetate ~ ~ ~

cholesterol -4 20 a-hydroxycholesterol ~ pregnenolone -4 progesterone -4 17-

hydroxyprogesterone -4 androstenedione (or testosterone) -4 estrogens (Mellin & Erb.

1965). Estrone (Ed, estradiol (E2) and estriol (E3) are the three major naturally occurring

estrogens. Various estrogens may be present in the fetal-placental compartment,

although unconjugated estradiol-17P has the highest estrogenic potency (Sloss & Dufty,

1980). Clark & Peck (1979) found that estrogens penetrate into target cells by simple
"

diffusion across plasma membranes. Those diffused honnones will bind to their specific

receptors in cell nuclei (Welshons et aI, 1984), which cause alteration of specific gene

expression. The direct effects of estrogens are mediated by specific receptors. These

effects may be to up-regulate or down-regulate target gene expression. On the other

hand, those tissues that have few or no functional receptors wilJ fail to respond to the

normal circulating concentrations of these hormones. In general. four essential steps in

this signal pathway of estrogen action have been demonstrated (Bearden & Fuquay, 1997.

p.50): 1) the diffused estrogen binds to their receptors which are localized in the cell

nucleus; 2) specific mRNA synthesis is modi.fied by the estrogen-receptor complex; 3)

specific protein synthesis is directed in the cytoplasm by the translocated mRNA from the

nucleus; and 4) estrogen action on the target cells is controlled by those new proteins.

This pathway could also be simply described as follows: steroid -4 (steroid-receptor) -4

(steroid-receptor-DNA) -4 mRNA ~ protein -4 functional response.

As a result of metabolism, steroids are cleared from the body by enzymes mostly

located in the liver designed to inactivate them and to reverse their solubility in aqueous
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media, i.e., by sulfation or hydroxylation. Those sulfated and hydroxylated steroids are

called conjugated steroids and they help to keep a dynamic equilibrium with

unconjugated steroids for normal body needs and facilitate excretion. The urinary system

is considered as the major excretory pathway of estrogens (Mellin & Erb, 1965).

Extracellular Interactions of Steroids with Proteins

Some steroid hormones in the extracellular circulation are readily bound with two

high-affinity specific proteins, which are generally called sex hormone-binding globulin

(SHBG) and corticosteroid-binding globulin (CBG) (Hammond, ]993, p.1). Albumin

also plays a role in steroid-protein interaction but with low affinity and limited

specificity. However, though the association constant of steroids is low with albumin, the

large amount of this protein present in circulation still attracts a large portion of

hormones to form complexes (Westphal, 1986). Those extracellular proteins also

function as hormone carriers and transporters in body circulation. In short, they regulate

the concentrations of biologically available hormones in body fluids and influence the

rates of metabolic clearance of those active steroids.

Some steroid-binding proteins have been studied extensively in various species,

such as androgen (or testosterone) binding protein (Corvol & Bardin, 1973; Hagenas et

ai, 1975 and Cheng et aI, 1985). Estrogens have a high affinity binding protein named

alpha-fetoprotein (AFP) detected in pregnant rats and some abnormal adult rats,

according to numerous reports (Aussel, et aI, 1973; Benassayag et ai, 1975; Savu et ai,

1975; Lai et ai, 1976; Payne et ai, ]979; Keel & Abney, 1983). As reported by Keel &

9



-

Abney (1983), the Ka (equilibrium association constant) value determined by Scatchard

analysis for the rat AFP-estradiol complex was (2.83 ± 0.78) x 108 M- l
. It was about 50

200 fold lower than the affinity of estrogen receptor for estradiol-17~.

However, so far, the literature contains contradictory and somewhat perplexing

reports with respect to estrogen-binding proteins in other species. No article has

explicitly declared that there was any specific estradiol binding protein or group of

proteins present in fetal-placental fluids of domestic animals, including cattle. One study

(Nunez et aI, 1974) determined that the amount of a specific estradiol-binding protein in

human fetuses and their umbilical cord blood was extremely low up to the 5th month of

pregnancy, and then increased progressively. Murphy (1967) was able to measure the

specific radiolabeled estradiol binding to proteins in bovine plasma generally termed

plasma globulin, but ignored the effects of background non-specific binding counts,

resulting in an overestimation of the degree of specific binding. Fridlansky & Milgrom

(1982) made a general conclusion that the binding of estradiol with proteins was

nonspecific and implied that the important protein-estrogen interactions occurred as a

result of low-affinity binding. It appeared that natural estrogens bound weakly with

uteroglobin and eH]estradiol binding was comparatively about SaO-fold lower than that

of progesterone.

Protein Patterns in Fetal-Placental Compartment during Pregnancy

There are various reports in relation to protein patterns in fetal blood and fluids

during pregnancy, but all are somewhat incomplete for covering the whole duration of
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pregnancy in cattle. The functions of many proteins produced in the fetal-placental

compartment during pregnancy remain unclear.

Uteroglobulin, also called blastokinin, is a low-molecular-weight protein (MW

15,000). It was usually secreted in the uterus of early pregnant rabbits, composing up to

50% of the total proteins present, although in other species it was present in much lower

amounts than in the rabbits (Arthur & Daniel, 1972).

Uteroferrin, a protein providing a major source of iron in endometrial secretion,

was examined in the fetal pig by Ducsay et al (1986). They found that this protein could

be stored in placental and endometrial tissues as well as fetal fluids. The MW of this

protein was not stated in their report.

Roberts and Parker (1974) reported the similarity of the macromolecules in

bovine uterine fluids to those present in serum, and were able to detect some minor

components defined as uterine-specific proteins. With further investigation published in

1976, they concluded that these minor but specific proteins might have the power of

controlling luteolysis during pregnancy. Those minor proteins varied from MW of

11,000 to 48,000 daltons and were present at different stages of pregnancy. They found

several of these proteins also appeared in amniotic and allantoic fluids, suggesting that

there was a pathway from the uterine lumen to those fluids.

A chorionic gonadotropin-like protein from bovine cotyledons was classified by

Ailenberg & Shemesh (1983) by the assessment of luteotrophic activity in the placenta.

This may serve to maintain the corpus luteum of pregnancy. Another protein with a MW

estimated at 68,000 daltons was identified in bovine allantoic fluid around days 24 to 37

of gestation. It was shown to have a vitro luteotrophic activity (Hickey et aI, 1989).
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Since the period of maternal recognition of pregnancy occurs before day 20 of gestation,

these luteotrophic proteins may be the conceptus-derived stimuli to help maintain

progesterone production by the corpus luteum of cows throughout pregnancy.

Progesterone-induced proteins called uterine milk proteins (MW = 55,000 and

57,000 da1tons), were found and purified in the uterine secretion of sheep (Moffatt et al,

1987) and were present only during pregnancy. Extending this result, Newton (1989)

demonstrated that these proteins also existed in fetal fluids and may be functional in those

fluids after crossing the placenta from endometrium.

Rat AFP was first confirmed by Aussel and his associates (1973) as the fetus

specific serum protein with MW around 72,000 daltons. Smith et al (1979) then

demonstrated its distribution in fetal plasma, allantoic and amniotic fluids, and maternal

plasma of cows, with maximal concentration of AFP obtained by RIA between the 3rd

and 4th month of gestation. This protein was further analyzed in pre- and post

implantation periods of bovine embryo by Janzen et al (1982). Here they found the

concentration was much higher in embryonic tissues (first detected in day 14 of

trophoblasts) and fluids (detected early as day 16 of gestation in the allantoic fluid) than

in the maternal serum. The high level in the uterine fluid led to the conclusion that there

was significant transfer of this protein from conceptus to uterine lumen by transudation

across embryonic membranes. He & Keel (1994) detected differences in both the charge

and lectin microheterogeneity of bovine and human AFP, suggesting the possibility of

different binding properties. Baker (1988) analyzed the sequences of AFP and albumin

and found the two proteins were related. Hsia et al (1986) suggested that AFP might

increase the fetal uptake of diethylstibestrol (DES) in human and bovine species. But in
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rat DES interacted weakly with AFP (Sheehan & Young, 1979). This suggested that

bovine might be a better model to study honnone metabolism concerning human diseases

than rodents. Nevertheless, no data in their study addressed binding property of bovine

AFP with natural estrogens. Carlsson et al (1980) suggested that AFP might participate

in the fetal metabolism of the long-chain polyunsaturated fatty acids by its property of

high affinity binding to these fatty acids. This data suggested that AFP might exhibit

specific binding with the steroid hormones in some species since steroids were lipid

molecules.

Fetuin is another fetal protein discovered by Lai et al (1981). Later Suzuki et al

(1994) found fetuin in bovine fetal serum could bind to calcium. This protein also

participated in lipid transport during fetal development (Kumbla et aI, 1991). Thus,

fetuin seems to play roles in lipid metabolism during fetal development.

Albumin, fetuin, transferrin, AFP, alpha I-acid glycoprotein, alpha I-antitrypsin

and alpha 2-macroglobulin were all identified in the porcine fetal fluids (McKenna,

1984). However, the functions of those proteins in the fetus need to be further explored.

Estrogen Concentrations throughout Pregnancy

Although considerable attention has been devoted to the study of estrogens in

farm animals during pregnancy, most reports concentrated on maternal level (Robertson

& Smeaton, 1973; Dobson & Dean, 1974; Robertson, 1974; Robertson & King, 1974;

Robertson, et ai, 1978). As indicated in the report of Dobson & Dean (1974), the

unconjugated estradiol-17P concentration in non-pregnant cows is from 5 pg/ml to 14

13



pg/ml at estrus from early to late cycle. In the last stage of pregnancy, estradiol-17P

concentrations range from 400 pglml 14 days before parturition to 1000 pg/rnl one day

before parturition, and 300 pg/ml on the day of parturition.

Most of the published data did not clarify whether the estrogen concentrations

were present in a free or protein-bound state, a result of the limitation of the assays they

chose. Challis et al (1974) reported the concentrations of total unconjugated estradiol

from early to late gestation in the serum of fetal calves taken from mixed umbilical cord

blood ranged from 184 pg/ml (month 8 of fetal age) to 1022 pg/ml (month 6 of fetal age).

Robertson & King (1979) measured the unconjugated estradiol level in bovine amniotic

and allantoic fluids. Due to the sensitivity limit of 40 pg/ml in their radioligand assay,

they failed to obtain any significant changes in estradiol concentration since most values

were less than the limit of sensitivity with just one or two individual exceptions as high to

400 pg/ml (around days 170 to 200 of gestation). Maternal plasma estradiol

concentration was almost steady throughout pregnancy. Tsumagari et al (1993) found

that estrone concentrations in bovine cotyledons and caruncles during gestation and

parturition exhibited a biphasic pattern, which is, the maximum synthesis occurred at

month 5 of gestation and immediately after parturition.

Carnegie & Robertson (1978) concluded that sulfoconjugated estradiols levels in

fetal-placental fluids of the pregnant ewe ranged from 20 pg/ml (day 130 of gestation) to

1.6 ng/ml (day 60 of gestation). The highest concentration appeared early around day 60

of gestation in both fluids, declined gradually as fetal age advanced.

In swine, the estrogen level was characterized in both maternal uterine blood and

amniotic and allantoic fluids (Knight et aI, 1977). From the available samples (day 20 to
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day 100 of gestation), the range of estradiol was from 1.4 pg/ml (day 40 of gestaion) to

34.8 pg/ml (day 100 of gestation) in venous blood, the range of estrone was from 0.5

ng/ml (day 40) to 537.7 ng/ml (day 100) in the allantoic fluid, and the range of estrone in

amniotic fluid was from 73.8 pg/ml (day 40) to 31029.7 pg/ml (day 100).

Robertson et al (1985) found that the concentration of estrogens in fetal allantoic

fluid reflected the concentration in maternal plasma in pig. This contrasted the result

found in the ewe (Carnegie & Robertson, 1978) and in the cow (Robertson & King,

1979), in which the concentrations in fetal compartments of these two species were not

related to maternal plasma levels.

Montano et al (1995) were able to measure the free fraction of fetal serum
I

estradiol-17~ using a method called centrifugal ultrafiltration. This method separated the

protein bound and free fraction across a dialysis membrane. The range of this free

estradiol portion was around 0.54 (day 19) - 2.17 (4 hours after birth) pg/ml during the

fetal and early neonatal period of sexual differentiation in female rats. They also found

the eH]estradiol injected into blood could be detected in fetal rat brain later. This finding

demonstrated the potential biologically active role of circulating estradiol-17p in sexual

differentiation of the brain, which was contrary to common hypotheses that "alpha

fetoprotein effectively sequesters the circulating estrogen in a biologically inactive form"

(MacLusky, 1988, p.249).
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CHAPTER III

EXPERIMENTAL OBJECTIVES

The main hypothesis of this project was to determine whether the free fraction of

unconjugated estradiol-17j3 circulating in fetal blood during bovine mid-gestation is

sufficient to activate estrogen-responsive gene expression.

To test this hypothesis, we divided the project into three portions:

(l) To verify previous results, we measured total concentrations of unconjugated

estradiol-17j3 by radioimmunoassay in bovine fetal blood, amniotic and allantoic fluids

collected around mid-gestation.

(2) To test the hypothesis that significant fractions of non-protein-bound

unconjugated estradiol-17j3 differ in those fetal fluids, we determined by centrifugal

ultrafiltration the portion of unconjugated estradiol-17j3 free to transverse a dialysis

membrane with a molecular weight cut-off of 30,000 daltons.

(3) To test the hypothesis that difference in the ratio of unconjugated free

estradiol-17P among those fetal fluids may be caused by shifts in the expression of

binding protein(s) present in those fluids, we examined the array of proteins in these

fluids by one dimensional polyacrylamide gel electrophoresis under both SOS and native
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conditions. Ligand blotting was then used to test [J2SI]estradiol binding to specific

proteins. Dot blotting was used to determine whether total proteins isolated from those

fetal fluids would bind [3H]estradiol specifically.
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CHAPTER IV

MATERlALS AND METHODS

Sample Sources

The fetal fluids were collected from 39 crossbred beef cows ranging from day 31

to day 190 of gestation at slaughter. The uterus was removed and aseptic collection of

allantoic fluid was accomplished via needle puncture through the wall of contralateral

uterine hom. The chorioallantois was then opened to drain off excess allantoic fluid and

to expose the amniotic sac. The amniotic fluid was aspirated through the amniotic

membrane carefully with minimum contamination. Following the aspiration of the

amniotic fluids, heparinized fetal blood samples were obtained by heart puncture rather

than from the umbilical cord. All the sample tubes were put on ice and transferred to the

lab within the same collection day. Then the samples were centrifuged at IO,OOO-g force

and the supernatants were stored at -20°C until analysis.

Fluids from both male and female fetuses were collected. Fetal estrogen

concentrations were previously detennined by Robertson et al (1979) and Tsumagari et al

(1993) that no differences present between males and females during mid-gestation of

pregnancy. Gestation age was estimated by measuring fetal crown-rump length (CRL)

according to a standard fonnula (Rexroad et ai, 1973), which is: "day of gestation = 8.4
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+ 0.087 CROWN-RUMP + 5.46-VCROWN-RUMP". The crown-rump length (CRL) is

the fetal measurement from the vertex of the skull to the root of the tail.

Unconjugated Estradiol-17P Radioimmunoassay

Unconjugated estradiol-17P radioimmunoassay was performed by a modified

procedure according to the manufacturer's recommended protocol (Ope, Los Angeles.

CA). Sample volumes were arranged 200 ul per test tube and quantification was done

with a sensitive double antibody [125I]estradiol-17p RIA kit. All samples were measured

in duplicates. Sensitivity of this assay was 3.125 pg/ml, and the linear range extended to

200 pg/ml. Intraassay coefficient of variation (CV) was 2.7%; interassay CV was 6.8%.

The standard curve (Figure I) was prepared in charcoal-extracted adult cow plasma (Bo

plasma). Samples were diluted from 5- to 40- fold with Bo plasma, as needed, to obtain

measurements of unconjugated estradiol-17P concentration within the linear portion of

the standard curves below 200 pg/ml. If applied, concentrations were determined by

multiplying the appropriate dilution factors.

For the validation of this radioimmunoassay in the fetal blood, amniotic and

allantoic fluids, serial dilution was performed by preparing serial dilutions in 80 plasma

(Figures 2, 3 & 4) and arranging to determine the appearance of parallel displacement

curves. Pure unlabeled unconjugated estradiol-17P was added to the fetal blood,

amniotic and allantoic fluids to determine percent recovery rate (Figures 4, 5 & 6) of the

unconjugated estradiol-17P in these fluids.
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Centrifugal Ultrafiltration

Centrifugal ultrafiltration was performed for the purpose of measuring the free

fraction of unconjugated estradiol-17~ more accurately from undiluted samples. First,

those fluid samples were assayed by RIA to detennine unconjugated estradiol-17P

concentrations as described above. Then, a modified procedure was adapted by using the

MPS micropartition system (Amicon, Beverly, MA), to separate free from protein-bound

microsolutes. Briefly, aliquots of samples (500 ul) were incubated with 2 ul highly

purified radiolabeled eH]estradiol (440,000 dpm; specific activity is lmCi/ml), at 37°C

for 30 minutes and then at room temperature for another 30 minutes to equilibrate the

radiolabeled estradiol with the total sample pools. Aliquots of 20 ul each were then

transferred to scintillation vials to determine the representative total eH]estradiol values

in those biological fluids by scintillation spectroscopy (Beckman, Fullerton, CA).

Aliquots of 200 ul were then loaded onto the YMT membranes having a molecular

weight cutoff of 30,000 daltons. They were then centrifuged in a fixed-angle rotor at

2000 x g for 10 min. The centrifuge (Eppendorf, Westbury, NY) was prewarmed to

mimic in vivo temperature. Aliquots of 20 ul ultrafiltrate each were then transferred to

scintillation vials, and eH]estradiol was measured the same as described above. The

ratio of free versus total unconjugated estradiol-17P concentration was calculated from

the relative counts of eH]estradiol in the ultrafiltrates and the original samples, after

adjusting the background counts.

% free eH]estradiol = cpm from ultrafiltrates / cpm from the original samples
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The actual concentrations of free unconjugated estradiol-17P were then

determined from the % free eH]estradiol using the above fonnula. All the samples were

run in duplicates.

Whether the membranes would be blocked by any sample impurities or particles

during the process of centrifugation is a detennining factor for validation of this method.

This was tested by serial dilution of a pool of fetal blood (neat, I :2, 1:4, I :8) with PBS

buffer and measuring the percentage of free unconjugated estradiol-17P (Figure 10). It

was expected that a linear increase in the free unconjugated estradiol-17P percentage

from PBS diluted samples would indicate the lack of interference from components of

undiluted samples. Similarly, with the addition of increasing amounts of bovine serum

albumin (BSA) to distilled water, it was expected that corresponding decreased amounts

of free unconjugated estradiol-17/3 percentage would indicate a linear relationship

between protein and free unconjugated estradiol-17P concentration (Figure 11).

Conversely, in order to address the possibility of any saturation effect of eH]

estradiol to the accurate detennination of dramatically different unconjugated estradiol

17P concentrations from various samples, pooled fluids were incubated with increasing

concentrations of unlabeled estradiol-17P and a fixed mass of eH]estradiol. Addition of

nonradioactive unconjugated estradiol-l 71) was expected to result in a similar percentage

transfer of the free unconjugated estradiol-I 71) present under nonsaturating conditions.
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Protein Determination

The frozen samples were thawed at room temperature and concentrated by using

microconcentrators (Microcon 10) with MW cut-off of 10,000 daltons (Amicon, Beverly,

MA). All the small molecules including free unconjugated estradiol-17~ were regarded

as having been centrifuged out of the samples. The protein concentrations of these

samples were then determined by the method of Lowry (1951) with bovine serum

albumin as a standard.

One Dimensional Gel Electrophoresis

One dimensional polyacrylamide gel electrophoresis was performed In the

presence of sodium dodecyl sulfate (SOS-PAGE) or in the absence of SOS (native

PAGE) by using a Mini-Protean®II Electrophoresis Cell (Bio-Rad, Hercules, CA). The

procedures were described by LaemmJi (1970). One microgram of each protein sample

was loaded in each lane of gels. Following the PAGE, some SOS-gels were stained by

silver staining. Briefly, the steps were: I) gels were submerged in 10% glacial acetic acid

for 20 minutes; 2) gels were rinsed three times with distilled water, each wash for two

minutes; 3) gels were soaked for 30 minutes in staining solution (silver nitrate, 10 mg/l 0

ml dH20 and 37% formaldehyde 15 uilIO ml dH20); 4) gels were rinsed with distilled

water for 20 seconds; 5) gels were developed in developer solution (sodium carbonate,

0.3 mglIO ml dH20; 37% formaldehyde 15 uillO ml dH20 and sodium thiosulfate, 20

ug/10 rol dH20) which has been chilled to lO-12°C in an ice bath, until the bands became

visible; 6) developing reaction was terminated by adding an equal volume of 10% glacial
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acetic acid and incubating for 2 to 3 minutes; 7) gels were rinsed for 5 minutes in distilled

water; 8) gels were dried under vacuum. For further study, other SDS and native gels

were directly transferred on acid-etched glass filter fibers (GFF) after PAGE as described

follows.

[125I]Estradiol Ligand Blotting

Following SDS and native PAGE, the gels, the acid-etched GFF, and filter paper

were equilibrated in 1.0% acetic acid for 30 minutes at room temperature. They were

then assembled into a blotting sandwich apparatus as described by Aebersold (1985).

The blotting solution was 1.0% acetic acid equilibrated to 0-4°C. E1ectroblotting was

performed at 80 V and 300 rnA for approximately 12 hours. The OFF membranes were

then equilibrated with 1.0% acetic acid again for 30 min and incubated overnight at 4°C

with 2.25 x 106 dpm [125 I]estradiol (specific activity: 2,200 Ci/mmol) in 30 1111 TN buffer

solution (50 mM Tris, pH 7.3 and 200 mM NaCI). No blocking procedure wa necessary

for this specific activated GFF membrane.

In the next morning the incubated membrane was washed with TN buffer six

times with 5 minutes each time, as recommended by Jefferies (1989), and dried under

37°C. Membranes were then assembled in an cassette with an intensifying screen in it

and exposed to Kodak XAR film at -70°C for at least 3 days to 15 days for detection.
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eH]Estradiol Dot Blotting

A dot blotting procedure for protein binding was adapted by the manufacturer's

recommendation (Bio-Dot Microfiltration Apparatus, Bio-Rad, Hercules, CA). OFF

membrane was dehydrated in distilled H20 for 5 min and dried under open air before

assembly. Each lOO-ul of triplicate samples (approximately 10-20 ug proteins) was dot

blotted and dried on the membrane before incubating with various concentrations ranging

from 0.2 nM to 30 nM of eH]estradiol (specific activity: ImCi/ml) for 30 minutes at

37°C and another 30 minutes at room temperature consecutively. Only single animals

from each interval were tested due to the limited sample sources. Specific binding of

estradiol-17~ to proteins was measured by subtracting the counts of estradioJ-17~ bound

after incubation in eH]estradiol solution plus 200-fold excess unlabeled estradiol-17~

(cold) from the values of samples incubated in eH]estradiol (hot) alone.

This method was validated by applying serial concentrations or fetal blood

proteins (Figure 17) or bovine serum albumin (data not shown) on a OFF. It was

expected that more specific estradiol-17~ binding counts would be observed as protein

concentrations were increased.

Statistical Analysis

The data obtained from radioimmunoassay and centrifugal ultrafiltration were

analyzed with the general linear model procedure (GLM) of the Statistical Analysis

System (SAS, 1985), after the natural logarithmic (LN) transfonnation of the original
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data in order to get the equal variances among different groups. Starting from day 31 of

gestation, twenty-day periods were grouped together as the independent intervals.

Samples within the same period were collected together to calculate the mean value and

standard error of this group. Analysis of variance (ANOVA) procedure and least

significant difference (LSD) tests were chosen to compare whether the statistically

significant difference existed at the a level of 0.05 among the mean values of different

intervals within each fluid respectively.
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CHAPTER V

RESULTS

Comparison of Total Unconjugated Estradiol-17P Concentrations

The mean concentrations of total unconjugated estradiol-17P in fetal blood,

amniotic and allantoic fluids were determined by radioimmunoassay. The standard curve

(Figure 1) of this assay was prepared in adult charcoal-extracted cow plasma (Boplasma).

Sensitivity range of this assay was 3.125 pglrnl, and the linear range extended to 200

pg/rnl. The intraassay coefficient of variation (CY) was 2.7%. and the interassay CY was

6.8%. As shown in Figures 2 to 7, the radioimmunoassay was validated in each of the

different fluids through demonstration of the parallel displacement curves in each Iluid,

and through the high recovery rate (98% in the fetal blood, 98% in the amniotic fluid, and

99% in the allantoic fluid) of actually measured total unconj ugated estradiol-17P

concentrations. The correlation coefficient (R2
) of those linear trendlines were all within

the acceptable 0.90 range. Therefore, there were no significant matrix effects in fetal

blood, amniotic and allantoic fluids.

As shown in Table I, unconjugated total estradiol-17P was detectable in our

earliest samples from all of these three fluids, around days 51 to 70 in the fetal blood,

days 31 to 50 in the amniotic and the allantoic fluids. There was considerable variation
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among individual animals throughout this duration in total unconjugated estradiol-17P

concentrations. In the fetal blood, the highest concentration appeared during the period

from day 111 to day 130 of gestation, when the mean value was 130.17 pg/ml. The

lowest concentration was 49.59 pg/ml measured during the period between days 151 to

170. In the anmiotic fluid, the highest concentration was also observed between days III

to 130 when the mean concentration was 584.14 pg/ml, followed by a decline in the next

twenty days. A second sharp rise was observed about day 151 to day 170 as shown by

the mean value of 535 .21 pg/ml corresponding to the low concentration in the fetal blood.

The lowest mean total unconjugated estradiol-17P concentration in the amniotic fluid was

9.47 pg/ml during the early gestation period around days 31 to 50. The allantoic fluid

contained the greatest concentration of total unconjugated estradiol-17P at the same time

as in the fetal blood and amniotic fluid (days 111 to 130) when the mean value was

1916.17 pg/ml. A second period of elevated total unconjugated estradiol-17P

concentration in the allantoic fluid appeared earlier, from day 71 to day 90 when the

mean value was 1317.13 pg/ml. The lowest mean value in the allantoic fluid was also

present at the earliest measured time, around days 31 to 50, when the mean value was

11.67 pg/ml. All of the above results from bovine fetal fluids were in the range reported

by the others (Challis et aI, 1974; Eley et ai, 1979; Robertson & King, 1979). Fetal blood

from the interval of day 31 to day 50 of gestation was unavailable.

Figures 8 & 9 showed the mean concentrations of total unconjugated estradiol

17P in the fetal blood, amniotic and allantoic fluids after natural logarithmic (LN)

transformation of those values. The In mean concentrations in the amniotic and allantoic

fluids demonstrated significant differences among different periods (P<0.05) within each
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fluid respectively. In the amniotic fluid, the In mean concentrations of total unconjugated

estradiol-17P from days 71 to 190 were significantly greater (P<0.05) than the previous

period. The In mean value of total unconjugated estradiol-17P from days 51 to 70 was

also significantly higher (P<0.05) than the In mean concentration from days 31 to 50. In

the allantoic fluid, the In mean concentrations of total unconjugated estradiol-17P during

the periods from day 71 to day 90 and day 111 to day 170 were significantly greater

(P<O.05) than the other periods. The In mean values of total unconjugated estradiol-17P

from days 91 to 110 and from days 171 to 190 were also significantly higher (P<0.05)

than the In mean concentration from days 31 to 70. There was no significant difference

for the In mean concentrations of total unconjugated estradiol-1713 present in the fetal

blood.

Comparison of Free Unconjugated Estradiol-17P Concentrations

The centrifugal ultrafiltration method for separating free unconjugated estradiol

1713 from protein bound concentration was validated by testing the fractionation of

unconjugated estradiol-17P in the presence of decreasing concentration of fetal blood

proteins and BSA. As shown in Figures 10 and 11, there was a linear relati.onship

between protein concentration (after LN transformation) and estradiol binding, through

the range of 1.82 mg/ml to 14.56 mg/ml (fetal blood samples), and 0 mg/ml to Img/ml

(BSA) respectively. R-squares were above 0.97. This type of validation was similar to

the procedure done by Montano, et al (1995).
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To detennine whether unconjugated estradiol-17p concentration resulted in the

saturation of estradioI-17P binding sites, non-radioactive estradioI-I7P was added to

detennine whether the dynamics of labeled estradiol movement across the dialysis

membrane would be altered. Since addition of nonradioactive estradiol-17p resulted in

similar percentage recovery rate of labeled estradiol (Table II), it suggested that no

saturation effect occurred.

Free unconjugated estradiol-17P concentration in the amniotic and allantoic fluids

averaged 70% of the total. In the fetal blood, it was from 6% to 37%. Free unconjugated

estradiol-17P concentration followed a similar change pattern as total unconjugated

estradiol-17P concentration, shown in Table I and Figures 12 & 13. During mid

gestation, the mean concentrations ranged from 7.46 (days 31 to 50) to 447.44 (days 111

to 130) pg/ml in the amniotic fluid and from 10.19 (days 31 to 50) to 1280.73 (days 111

to 130) pg/ml in the allantoic fluid. While in the fetal blood, the highest mean

concentration (23.9] pg/ml) appeared during the period from days 9] to 110. The lowest

mean concentration was 4.08 pg/ml in the interval of days 131 to 150. The overall

variation in the fetal blood was not as dramatic as in the amniotic and allantoic fluids,

suggesting tighter regulation of free unconjugated estradiol-17p in blood circulation.

After LN transfonnation of those data, the mean values of free unconjugated estradiol

17P in the amniotic and allantoic fluids also demonstrated significant differences among

different periods (P<0.05) within each fluid respectively. In the amniotic fluid, the In

mean concentrations of free unconjugated estradiol-17P from days 71 to 170 were

significantly greater (P<0.05) than other periods. The In mean values of free

unconjugated estradiol-17P from days 51 to 70 and from days 171 to 190 were also

29



significantly higher (P<0.05) than the In mean concentration from days 31 to 50. In the

allantoic fluid, the In mean concentrations of free unconjugated estradiol-17P during the

periods from day 71 to day 90 and day 111 to day 170 were significantly greater (P<0.05)

than other periods. The In mean values of free estradiol-17p from days 91 to 110 and

from days 171 to 190 were also significantly higher (P<0.05) than the mean concentration

from days 31 to 70. There was no significant difference for the In mean concentrations of

free unconjugated estradiol-17P present in the fetal blood.

Protein Profiles in the Fetal Blood, Amniotic and Allantoic Fluids

Figures 14, 15 & 16 represented the typical protein profile at each period in fetal

blood, amniotic and allantoic fluids respectively. These profiles were limited to proteins

from MW 10,000 to 200,000 daltons. Major protein bands of approximately 70,000,

66 200 (BSA), and 50,000 daltons appeared in the fetal blood and amniotic fluid (Figures

14 and 15). The band at 70,000 daltons corresponded to the reported size of AFP (Aussel

et ai, 1973). The amounts of protein bands of MW 70,000 and 50,000 daltons appeared

to be decreased as the gestation time prolonged. The albumin band seemed to keep

constant. The concentrations of protein bands in the amniotic fluid were much less than

those in the corresponding fetal blood.

In the allantoic fluid, several proteins could be seen below MW 45,000 daltons

and were present with low amounts (Figure 16). And at the early two periods (day 51 to

day 70 and day 71 to day 90), major products around 200,000 daltons were clearly

present. Interestingly, this high MW band disappeared as the gestation age advanced
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beyond 80 days of gestation. Similar protein profiles in the fetal blood and fluids were

also demonstrated by Newton et al (1989) in sheep.

eH]Estradiol Dot Blotting

Binding of eH]estradiol to proteins from bovine fetal serum on the membrane

Glass Filter Fiber (GFF), using the dot blot procedure was shown in Figure 17 as the

validation procedure. Increasing concentrations of serum proteins resulted in a linear

increase in eH]estradiol binding. Likewise, linear increments in binding were observed

with increasing concentrations of BSA placed in dot blots (data not shown). Non-specific

binding counts remained almost constant with increasing concentration of protein.

Therefore, the OFF was efficient for binding proteins to do the dot blotting procedure.

eH]estradiol binding assay was perfonned in equal volumes (100 ul) and

approximately equal concentraions (10-20 ug) of proteins from the fetal blood and fluids

by dot blotting (Figures 6, 7 & 8) under the same conditions. No significant variations

with fetal age were observed in any of the fluids. Total binding was low, around 70-cpm

in the fetal blood (except for one point at day III of gestation), around 60-cpm in the

amniotic fluid and around IOG-cpm in the allantoic fluid (except one point at day 60 of

gestation). Comparatively high non-specific counts were measured in all these fluids.

The high non-specific binding counts suggested that in these three fluids, there

existed a high amount of unconjugated estradiol-17~ binding protein(s) with low affinity

but high capacity binding characteristics. This data could be compared to the results of

Rebuffe-Scrive et al (1990) and Mizutani et al (1994), in which the adipose tissue
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samples they used exhibited a high nonspecific binding of estradiol-17~ in the lipid

environment. The slight higher binding counts present in the allantoic fluid suggested

that there might exist an estradiol binding protein with higher specific binding

characteristics in this fluid.

[
125I]Estradiol Ligand Blotting

Using a modification of the method of Jefferies (1989), binding protein(s) were

tested by blotting with radiolabeled honnone. Proteins were resolved on 12% SOS or

native polyacrylamide gels and electrophoretically transferred to OFF. The problem of

high background binding of estradiol was avoided by using the OFF. The transferred

protein bands could be seen on the OFF membrane by coomassie blue staining.

Radiolabeled [125I]estradiol (specific activity: 2200Ci/ml) was used as the probe for

specific estradiol-17~ binding. Using [125I]estradiol concentrations of 20nM and

prolonged incubation times, no specific bands were evident on autoradiographs after 15

days exposure to X-ray films.

Taken together, these results suggest that a low affinity, high capacity binding to

one or more proteins which may include AFP or albumin was present in the fetal blood,

amniotic and allantoic fluids.
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CHAPTER VI

DISCUSSION

Cattle are important animals all around the world for providing many products

including milk, meat, clothing, fertilizer and fuel. The economic importance of cattle

underscores the value of detailed investigations to maximize the potential production of

these animals. Among these is the improved understanding of the hormonal impact upon

bovine fetal growth and development.

Our results showed that between 31 and 190 days of gestation, the mean values of

total unconjugated estradiol-1713 concentrations ranged from 49.59 (around days lSI to

170) to 130.17 pg/ml (around days III to 130) in bovine fetal blood, from 9.47 (around

days 31 to 50) to 584.14 (around days III to 130) pg/ml in the amniotic fluid, and from

11.67 (around days 31 to 50) to 1906.17 (around days 111 to 130) pg/ml in the allantoic

fluid .. These mean values were within the ranges reported by others (Challis et aI, 1973;

Eley et aI, 1979; Robertson & King, 1979), and exhibited patterns of increased and

decreased concentrations similar to those reports. The total unconjugated estradiol-l 713

concentrations obtained from fetal blood circulation were lower than the mean values

reported by Challis et al (1973). One explanation for this was that our samples were

taken from direct fetal heart puncture, whiIe Challis et al collected a mixture of umbilical

blood. Samples from heart puncture should represent more precisely the hormone
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concentration in the fetal post-hepatic circulation. The total volumes of bovine amniotic

and allantoic fluids increase sharply from 400 ml (aroWld days 61 to 90) to over 1 000 ml

(around days 91 to 120) (Noakes, 1997, p.31). A greater than 1100% increase in bovine

fetal size also occurs during this period (Bearden & Fuquay, 1997, p.98). The

significantly higher (P<0.05) In mean concentrations of unconjugated estradiol-17p

starting from day 71 of gestation in the amniotic and allantoic fluids suggested that the

unconjugated estradiol-l7P might be a key factor accounting for this dramatic volume

change and related rapid fetal growth at the beginning of bovine mid-gestation. Rice et al

(1993) also concluded from their data that estrogens in the amniotic fluid was the major

endocrine factor to influence the electrolyte permeability of the porcine placenta and fetal

membranes to sodium and choloride. Decreased electrolyte permeability caused by

estrogens would accumulate more fluids in the fetal-placental compartment. Our data

also showed that the concentrations of unconjugated total estradiol-17P were in excess of

those found during much of adult life. This results from the significant production by the

placenta during pregnancy (Evans & Wagner, 1981). In early gestation, the fetal ova.ry

might be a site for production of unconjugated estradiol-17p. As gestation advanced, this

site is transferred to the placentome resulting in an even higher amount of unconjugated

estradiol-17P being present in the fetal-placental compartment.

The range of mean unconjugated free estradiol-17p concentration in bovine fetal

blood was 4.08 (around days 131 to 150) to 23.91 (around days 91 to JI0) pg/rnl. This

concentration was within the range of unconjugated estradiol-17P concentration, which is

0.0 I to 0.1 nM or about 2.5 to 25 pg/ml, required to activate intranuclear estrogen

receptors. Thus, circulating unconjugated free estradiol-17P concentrations are sufficient
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to elicit honnone responses in target cells. Even greater mean unconjugated free

estradiol-17J3 mean concentrations were present in the amniotic (7.46 to 447.44 pg/ml)

and allantoic (10.19 to 1280.73 pg/ml) fluids. It is unclear whether the fetus would be

exposed to the highly elevated unconjugated free estradiol-17J3 concentration in the

amniotic and allantoic fluids. Unconjugated free estradiol-17J3 in the amniotic fluid

might be swallowed by the fetus and recirculated. Unconjugated free estradiol-17J3 in the

allantoic fluid is more likely to be transported to the maternal circulation for excretion or

maternal usage. For instance, those high concentrations of unconjugated free estradiol

17J3 might be transfonned to sulfated estradiol-17J3 by sulfatase enzyme in bovine

placenta to facilitate transportation to the maternal circulation for excretion. A

dermatological condition in human neonates known as X-linked ichthyosis is associated

with insufficient exposure to estrogens during pregnancy (Zalel et aI, 1996). It is

unknown whether a similar condition occurs in domestic animals.

Our protein profile gels (limited to 1 ug per lane) indicated that bovine fetal blood

and amniotic fluid contained similar abundant protein bands. This suggested that they

were in an exchangeable circulation loop to maintain normal fetal environment. The

protein bands of MW 70,000 and 50,000 daltons were similar to two reported bovine

pregnancy-specific protein bands, which were bovine uj-fetoprotein (AFP) and protein

S, detected in the extracts of endometrium and extraembryonic fluids by Butler et al

(1982). The amounts of these two bands appeared to decrease as the gestation prolonged,

suggesting the different protein needs for different time. Specifically, the band at MW

approximately 70,000 daltons corresponded to the reported size range of rat AFP of MW

72,000 daltons (Aussel et ai, 1973) and to a protein of MW 68,000 daltons identified
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around days 24 to 37 of bovine gestation which was shown to have in vitro luteotrophic

activity (Hickey et aI, 1989). If it were the luteotrophic protein it would be interesting to

observe its presence after the time of maternal recognition of pregnancy that is before day

20 of gestation. Further confirmation of this protein band could be done by western

blotting using specific antibodies. The major protein bands shown up in the allantoic

fluid were different from the amniotic fluid and fetal blood, and varied by stage of

pregnancy. This was similar to the finding of Newton et al (1989) in sheep. Those

protein bands may have been either secreted directly by bovine placentomes or

transudated from bovine uterine fluids as uterine-milk proteins (UTM-proteins). Clearly,

they should have some specific functions for maintenance of pregnancy since they only

appeared during pregnancy (Newton et aI, 1989).

In addition, previous work demonstrated that AFP was a specific estradiol binding

protein in rats (Benassayag et aI, 1975; Savu et aI, 1975; Lai et at., 1976; Payne et al,

1979; Keel & Abney, 1983). This protein was also shown to exist in the bovine embryo

and its fluids by Janzen et al (1982). Our results from [12s]estradiol ligand blotting did

not reveal a high-affinity estradiol binding activity to thi.s protein, however.

Rice et al (1993) emphasized that in pig there was a significant effect of estrogens

in the amniotic fluid on the permeability of its membranes, but no significant correlation

of estrogens in the alllantoic fluid with the permeability of its adjacent membranes. Our

results showing different protein profiles in the amniotic and allantoic fluids, tend to

explain their results by saying differential sequestering of proteins might cause

differential permeability on fetal membranes.
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The low ratio of free unconjugated estradiol-17P in fetal blood suggested that one

function of plasma estradiol binding protein in fetuses was to regulate the extremely high

concentrations of total unconjugated estradiol-17p. The free unconjugated estradiol-17p

concentration was within the range of physiological requirements to saturate 5% to 50%

of estrogen receptors in target cells. Probably this binding protein was albumin in

pregnant cows since albumin occupied a high amount of total protein concentration. On

the other hand, our data also agreed with the conclusion made by Montano et al (1995),

who stated that free unconjugated estradiol-17P concentration was not negligible during

fetal development in the rat. The above data contradicted a generally accepted hypothesis

that no biologically available estrogens were present in the fetal circulation (MacLusky,

1988).

Our results in the dot-blotting assay showed a low total eH]estradiol binding

counts, with a comparatively high non-specific binding. Our efforts in [125I]estradiol

ligand blotting study also indicated that there were few specific estradiol binding

proteins. The difficulty in detecting any specific bovine estradiol binding protein might

be caused by the low amounts of high-affinity estradiol binding proteins compared with

the high amounts of low-affinity binding protein(s) present in those biological fluids, or

by the poor stability of the specific binding proteins with estradiol in bovine fetal

circulation, or by the low availability of binding sites of those specific binding proteins

under physiological conditions of pregnancy. All these indicated that a number of

proteins involved in bovine fetal circulation, including AFP and albumin, might act in

transportation and binding of estradiol with a low affinity, high capacity model. But
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those above results were limited by the fact that only single animals from each interval

were tested in our experiment due to limited sample sources.

What remains obscure is the role of the surprisingly high proportion of free

unconjugated estradiol-17P concentration present in bovine amniotic and allantoic fluids.

A variety of studies could be done in light of this discovery, relating to membrane

permeability, piacentome function, and estrogen transportation as well as metabolism,

such as the transformation of unconjugated estradiol-17P to its sulfated form in bovine

placentomes.
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TABLEl

Circulating unconjugated total and free E2 concentrations
in bovine fetal blood, amniotic and allantoic fluids

Fetal age Unconjugated total ~ concentrations (pglml) Unconjugated free ~ concentrations (pglml)
( days) No. of animal. Mean ± S.E.M. Range No. of animal. Mean ± S.E.M. Range

( a) in Fetal Blood
31 - 50 NA NA NA NA NA NA

51 - 70 2 63.28 ± 61.05 20.11 - 106.45 NA NA NA

71 - 90 2 60.47 ± 18.24 47.57 - 73.37 2 9.45 ± 6.2L 5.06· 13.84

91 -110 8 94.25 ± 84.53 12.33 - 160.57 3 23.91 ± 30.89 3.13-59.41

III - 130 6 130.17 ± 97.02 47.59 - 311.14 5 J8.67 ± 23.81 5.02-61.09

131 - 150 2 50.25± 19.18 36.69 - 63.81 I 4.08 NA

151 - 170 5 49.59 ± 28.38 19.20 - 90.76 4 5.77 ± 2.36 3.65·8.22

171 -190 3 77.66± 42.15 40.04 - 123.21 2 18.54 ± 20.07 4.34 ·32.73

( b ) in Amniotic Fluid
31 - 50 3 • 9.47 ± 13.88 0.22 - 25.43 3 • 7.46 ± 10.98 0.19 - 20.09

51 -70 10 b 40.63 ± 26.19 4.03 - 88.75 10 b 31.06 ± 19.00 326-5973

71 - 90 2 c 235.84±201.48 93.37 - 378.30 2 c 181.68 ± 165.72 64.50 - 298.86

91 -110 8 c 237.39 ± 119.22 109.62 - 499.51 5 c 211.92 ± 105.34 125.26 - 389.62

111-130 4 c 584.14 ± 599.90 162.74 - 1458.20 4 c 447.44 ± 476.26 122.20·1148.47

131-150 2 c 183.78 ± 161.11 69.85 - 297.70 2 c 130.16 ± 116.07 48.08·21223

151 - 170 4 c 535.21 ± 680.32 6908-15l7.96 4 c 390.24 ± 484.00 53.12 - 108625

171 - 190 3 c 100.44 ± 44.42 5041 - 135.24 2 • 94.57 ± 9.81 87.63 - 101.51

( C ) in Allantoic Fluid

31 - 50 3 • 11.67 ± 7.61 530-2010 3 • 10.19 ± 7.32 4.03 - 18.29

51 -70 9 • 24.97 ± L5.74 624 - 53.16 9 • 18.95 ± 11.54 5.18-37.34

71 - 90 2 b 1371.13 ± 8ll.53 797.29-1944.96 2 b 878.97±318.47 653.78 - 1104.16

91 -110 7 c 257.10±306.12 34.77 - 865.95 6 b 255.81 ± 244.16 47.08 - 701.42

III - 130 5 b 1906.17 ± 2729.92 334.63 - 6743.23 5 ~ 1280.73 ± 1807.23 214.36 - 446065

131 - L50 2 b 41960 ± 38.44 392.42 - 446.78 2 b 260.55 ± 20.95 245.73 - 275.36

151 - 170 5 b 1220.86 ± 1391.02 98.21 - 3585.83 5 b 898.15 ± J084.85 90.35 - 918.19

171 -190 2 c 180.45 ± 41.45 151.14 - 209.76 1 c 123.76 NA

"a, b, cIt: Mean values for each fluid with the same superscript were not significantly
different (P<O.05) between intervals, after natural logarithmic (LN) transformation of
the above data.
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TABLE II

Saturation effect test of eH]E2 .in centrifugal ultrafiltration

Spiked unconjugated E2 in 200 ul FB (ratio of AM ( ratio AL (ratio of
pooled samples Uavgffavg) ofUavgffavg) Uavgffavg)

+ 0 pg in 2ul 29% 72% 76%
+ 50 pg in 2 ul 30% 73% 76%

I

+ 100 pg in 2 ul 32% 72% 73%
+ 200 pg in 2 ul 32% 70% 74%

FB: fetal blood
AM: amniotic fluid
AL: allantoic fluid

Uavg: average of eH]E2 counts from the ultrafiltrates of samples run in duplicates

Tavg: average of eH]E2 counts from the original samples run in duplicates
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Figure 2. Inhibition curve of unconjugated total Ez in the fetal blood. The
displacement line drawn from the data of four fetal blood samples was parallel to the
standard line drawn from the data of 80 plasma, after logarithmic transformation of those
values. The R-squares of both lines were above 0.98. Therefore, there was no significant
matrix effect in the fetal blood.
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Figure 3. Inhibition curve of unconjugated total E2 in the amniotic fluid. The
displacement line drawn from the data of six amniotic fluid samples was parallel to the
standard line drawn from the data of Bo plasma, after logarithmic transformation of those
values. The R-squares of both lines were above 0.98. Therefore, there was no significant
matrix effect in the amniotic fluid.
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Figure 4. Inhibition curve of unconjugated total E2 in the allantoic fluid. The
displacement line drawn from the data of six allantoic fluid samples was parallel to the
standard line drawn from the data of Bo plasma, after logarithmic transformation of those
values. The R-squares of both lines were above 0.96. Therefore, there was no significant
matrix effect in the allantoic fluid.
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predicted E2 concentrations. The R-square was above 0.96, suggesting a good recovery
rate of pure unconjugated E2 in the fetal blood.
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There was a linear relationship between the measured actual E2 concentrations and the
added predicted E2 concentrations. The R-square was above 0.99, suggesting a good
recovery rate of pure unconjugated E2 in the amniotic fluid.
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interval. The mean values for the allantoic fluid indicated by "#" were significantly
higher (P<O.05) than the previous interval; while those indicated by "##" were
significantly lower (P<O.05) than the previous interval. Data were subjected to the
analysis of variance (ANOVA). (AM: amniotic fluid; AL: allantoic fluid)
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Figure 9. Comparison of unconjugated total E2 concentrations in bovine fetal
blood. The results were presented as mean ± SEM. No statistically significant
differences (P<O.05) among those mean values, even after natural logarithmic (LN)
transfonnation of the values of the unconjugated total E2 concentrations. Data were
subjected to the analysis of variance (ANOVA). (FB: fctal blood)
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Figure 10. Effects of fetal blood protein concentrations on unconjugated E2

transfer across a dialysis (YMT) membrane. There was a linear recovery rate of
unconjugated free E2 concentrations in the presence of reduced fetal blood protein
concentrations (after natural logarithmic (LN) transformation) across the dialysis (YMT)
membrane, through the range of 1.82 mg/ml to 14.56mg/ml. R2=O.9993.
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Figure 11. Effects of pure BSA concentrations on unconjugated E2 transfer
across a dialysis (YMT) membrane. There was a linear relationship of the reducing
unconjugated free E2 ratio in the presence of increased BSA protein concentrations (after
natural logarithmic (LN) transformation) across the dialysis (YMT) membrane, through
the range of 0 mg/ml to 1 mg/ml. R2=O.9768.
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Figure 12. Comparison of unconjugated free E2 concentrations in bovine fetal
fluids. The results were presented as mean ± SEM. After natural logarithmic (LN)
transfonnation of those unconjugated free E2 concentrations, the mean values for the
amniotic fluid indicated by "*,, were significantly higher (P<O.05) than the previous
interval; while those indicated by "u" were signifi.cantly lower (P<O.05) than the
previous interval. The mean values for the allantoic fluid indicated by "#" were
significantly higher (P<O,05) than the previous interval; while those indicated by "##"
were significantly lower (P<O.05) than the previous interval. Data were subjected to the
analysis of variance (ANOYA). (AM: amniotic fluid; AL: allantoic fluid)
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Figure 13. Comparison of unconj ugated free E2 concentrations in bovine fetal
blood. The results were presented as mean ± SEM. No statistically significant
differences (P<O.05) among those mean values, even after natural logarithmic (LN)
transfonnation of the values of the unconjugated free E2 concentrations. Data were
subjected to the analysis of variance (ANOVA). (FB: fetal blood)
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Figure 14. Protein profile (limited to proteins from MW of 10,000 to 200,000
daItons) in bovine fetal blood. A representative result of each period was shown from
the individual samples by the 12% SDS-PAGE gel following the silver staining. Each
lane was loaded with 1ug protein. Lane 1, SDS MW standards; lane 2, a sample from
day 71-90 of gestation; lane 3, a sample from day 91-110; lane 4, a sample from day 111
130; lane 5, a sample from day] 31-150; lane 6, a sample from day 151-170; lane 7, a
sample from day 171-190; lane 8, a control sample from the commercial B A. Major
protein bands of approximately MW of 50,000, 66,200 (BSA) and 70,000 daltons
appeared in all of the represented samples. The band of MW 70,000 daltons wa within
the reported MW range of alpha-fetoprotein (AFP). The band of MW 50,000 daltons was
not identified. The amounts of two bands (MW of 50,000 and 70,000 daltons) decreased
as the gestation advanced.
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Figure 15. Protein profile (limited to proteins from MW of 10,000 to 200,000
daltons) in bovine amniotic fluid. A representative result of each period was shown
from the individual samples by the 12% SDS-PAGE gel following the silver staining.
Each lane was loaded with Iug protein. Lane I, SDS MW standards; lane 2, a sample
from day 111-130 of gestation; lane 3, a sample from day 131-150; lane 4, a ample from
day 151-170; lane 5, a sample from day 171-190; lane 6, a control sample from the
commercial BSA. The bands of MW 50,000 and 66,200 daltons were the same a
described in Figure 14, though the amounts were much less than those in bovine fetal
blood samples. The amount of the albumin band (MW 66,200 daltons) kept constant
throughout the whole tested periods; while the band of MW 50,000 daltons decreased as
the gestation advanced. The protein band with MW 70,000 daltons corresponding to the
reported size for alpha-fetoprotein (AFP). It appeared at the time of day 111-130, but
disappeared after that period.
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Figure 16. Protein profile (limited to proteins from MW of 10,000 to 200,000
daltons) in bovine allantoic fluid. A representative result of each period was shown
from individual samples by the 12% SDS-PAGE gel following the silver staining. Each
lane was loaded with 1ug protein. Lane I, SOS MW standards; lane 2, a ample from
day 51-70 of gestation; lane 3, a sample from day 71-90; lane 4, a sample from day 91
110; lane 5, a sample from day 111-130; lane 6, a sample from day 131-150; lane 7, a
sample from day 151-170; lane 8, a sample from day 171-190. Besides the two major
bands of MW 66,200 (BSA) and 50,000 daltons, major products around 200,000 daltOllS
were clearly present at the two early periods (day 51 to day 70 and day 71 to day 90).
Several protein bands could be seen below MW 45,000 daltons, and were present only in
low amounts.
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Figure 17. Validation of glass fiber filter (GFF) for protein binding of r3HJE2.

The increasing concentrations of serum proteins resulted in a linear increase in eH]E2
binding, through the range of IOug to 80ug protein. Non-speci:f\.c binding counts
remained almost constant with the increasing concentrations of proteirs. Therefore, the
OFF membrane was efficient for binding proteins to do the dot blotting trocedure.
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Figure 18. Dot blot analysis of (3H]E2 bindilg in bovine fetal blood. No
dramatic variations of eH]E2 binding present with the bovine fetal proteins (under fixed
sample volumes) as fetal age changed. Total binding WlS low, around 70-cpm (except
for one point at day 111 of gestation). Comparatively iligh non-specific counts were
measured in the fetal blood.
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Figure 19. Dot blot analysis of eHJE2 binding in bovine amniotic fluid. No
dramatic variations of eH]E2 binding present with the amniotic fluid proteins (under
fixed sample volumes) as the fetal age changed. Total binding was low, around 60-cpm.
Comparatively high non-specific counts were measured in the amniotic fluid.
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Figure 20. Dot blot analysis of eHJE2 binding il bovine allantoic fluid. No
dramatic variations of eH]E2 binding present with the alhntoic fluid proteins (under the
fixed sample volumes) as the fetal age changed. Total binding was low, around 100-cpm
(except one point at day 60 of gestation). Comparative]} high non-specific counts were
measured in the allantoic fluid.

70



VITA

Haihui Huang

Candidate for the Degree of

Master of Sciences

Thesis: CIRCULAnON OF UNCONJUGATED ESTRADIOL-17P DURlNG
MID-GESTATION IN BOVINE FETAL BLOOD, AMNIOTIC AND
ALLANTOIC FLUIDS

Major Field: Physiological Sciences

Biographical:

Personal Data: Born in Hunan, P. R. China, on April 09, 1970, the daughter of
Dongling Yin and Weixian Huang; married to Haobo Liu in 1995.

Education: Graduated from NO.5 Middle School, Changsha, Hunan, P. R. China
in June, 1987. Received Bachelor of Medical Science degree from Hunan
Medical University, Changsha, Hunan, and P. R. China in July, 1993.
Completed the requirements for the Master of Science degree with a major
in Physiological Sciences at Oklahoma State University in July, 1998.

Experience: Employed by the Baoan People's Hospital as a Doctor of Gynecology
and Obstetrics, Shenzhen, Guangdong, P. R. China, 1993 - 1995.
Employed by the Department of Physiological Sciences at Oklahoma State
University in Stillwater, Oklahoma as a Teaching Assistant, ]996 - 1998.

71




