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CHAPTER I

INTRODUCTION

The Traveling Salesman Problem (TSP) is a classic problem in combinatorial

optimization. The TSP is easy to state; however it is quite challenging to find a good

optimization algorithm or an approximation algorithm that is guaranteed to be effective.

1.1 Definition of Traveling Salesman Problem

The definition of the Traveling Salesman Problem is:

Given: a set of cities C/, C2 ... Cn, and a distance d (C i , Cj ) for each distinct pair of

cities, Cr and Cj .

Find: a pennutation P of the cities that minimizes the tour length of a traveling

salesman who visits the cities in the order specified by the pennutation, and returns to the

initial city at the end.

The tour length is:

N-l

L d(CP(i), CP(i + 1» + d(CP(I1), CP(l).
i=l

A TSP is said to be symmetrical if and only if the distances between each pair of

distinct cities satisfy d (Ci, c) = d (Cj, Ci) for 1 ~ i, j ~ n. Also, a TSP is said to satisfy the

triangle inequality if and only if d (Cj, Cj) + d (Cj, c,J ~ d (Ci, Ck), where 1~ i, j, k ~ n.



1.2 The Application of Traveling Salesman Probl m

The symmetric traveling salesman problem has many applications, in luding computer

wiring [Lenstra and Rinnooy Kan 1975], wallpaper cutting [Garfinkel 1977], hole

punching [Reinelt 1989], job sequencing, Very Large Scale Integration (VLSI) chip

fabrication [Korte 1989], X-ray crystallography [Bland & Shallcro s 1989], and

dartboard design [Eiselt and Laporte 1991}.

In addition, many new algorithmic ideas were developed in the ground of TSP.

Important earl y works on branch and bound algorithms, cutting plane techniques and

local optimization all utilized the TSP as the initial proving ground. Furthermore, the

TSP was one of the first problems that the new theory of NP-completenes was applied to

in the early 1970s, and it has been commonly referred as the classic example of an

NP-hard combinatorial optimization problem [Johnson 1990].

1.3 The Objective of the Thesis

The TSP problem is a good example of algorithm design and problem solving. People

may get dramatic benefits from learning the various TSP algorithms. Since the TSP is an

NP-hard problem, which means that it is not likely to find the optimal tours in

deterministic polynomial-time, much research has been focussed on efficient

approximation algorithms, which are fast algorithms whose attempt is to find a near­

optimal rather than an optimal tour.

The objecti ve of this thesis is to design and implement a software program that uses a

Graphical User Interface (GUI) to animate some of the most popular approximation

algorithms developed so far for the symmetric TSP, and to display a graphical running

result for each algorithm. This software is aimed to help people learn the algorithms
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easily and get a deeper understanding of them. The program is designed to run either a

standalone application or on the World Wide Web (WWW), so that it allow more people

to get access and benefit from it easily. Java is regarded as a very good language for

writing programs on the WWW, and it also has a lot of good features as a programming

language compared to other languages. Therefore, Java was chosen as the programming

language in which to implement this project.

Chapter II is a literature review of the related components used in this project. Chapter

ill gives the details of the design and implementation of this project. Some example

snapshots of the running results are illustrated in Chapter IV. Finally, the summary and

future work recommendations are given in Chapter V. Also, a glossary is appended at

the end.
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CHAPTER II

LITERATURE REVIEW

This project uses Java as the programming language, and the WWW as the medium,

to animate some approximation algorithms for the Traveling Salesman Problem. The

following are reviews of some of the thesis components.

2.1 Approximation Algorithms for Traveling Salesman Problem

Since the TSP is an NP-hard problem, it is natural to try to solve it by means of

heuristic algorithms. The TSP heuristics currently most often covered in the computer

science field are the tour construction heuristics and the local optimization heuristics.

Tour construction heuristics gradually build up a tour out of shorter paths or cycles. Local

optimization heuristics make local improvements to existing tours.

2.1.1 Tour Construction Heuristics

Nearest Neighbor Algorithm [Rosenkrantz et a1. 1977]. The most natural heuristic to

solve the TSP is the Nearest Neighbor (NN) algorithm. In this algorithm, the traveler

starts from an arbitrarily chosen initial city, then repeatedly chooses the next city which is

unvisited and closest to the current one. Once all cities have been visited, the traveler

returns to the initial city to close the tour. The reason that this algorithm draws much

attention is its simplicity.

Step 1. Arbitrarily choose a vertex as the initial city.
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Step 2. Find the closest unvisited verte to the CUfT nt vertex to visit n xt. Repeat

Step 2, until all vertices have been visited.

Step 3. Link the last vertex of the tour to the first one.

The complexity of this procedure is 0(n2
). A possible modification is to apply the

above procedure n times with n different vertices as the starting point, then choose the

shortest tour as the final result. The overall algorithm complexity is then O(n3
), but the

tour generated by this modification NN algorithm is generally better. It can be guaranteed

that NN (l) I OPT (l) ~ 0.5 dJog2 (n)J + 1), where NN (I) is the length of the tour

constructed by the Nearest Neighbor algorithm over instance I, and OPT (1) is the

optimum tour length over instance I [Rosenkrantz et al. 1977].

Greedy Algorithm [Benltly and Saxe 1980]. Some people refer to the Nearest

Neighbor Algorithm as Greedy, but it is more appropriately to call the following

algorithm a Greedy algorithm. This heuristic is to consider the edges of the graph in the

order of non-decreasing length, and add an edge to the tour whenever to do so will create

neither a vertex whose degree exceeds two nor a cycle with fewer than n cities.

Step 1. Start with the shortest edge.

Step 2. Add the shortest remaining edge to the tour, if adding it would not create a

vertex with degree more than two or a cycle of length less than n. Repeat Step

2 until all cities are visited.

The time complexity for this Greedy algorithm is O(n2 Log (n)) and thus it is slightly

slower than Nearest Neighbor Algorithm. However, its worst-case quality of the tour

may be somewhat better in terms of tour length. It can be shown that
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Greedy (I) I OPT (l) ~ 0.5 crlo~ (n)1+ 1), where Greed (I) is the length of the tour

constructed by the Greedy algorithm over instance I. and OPT (I) is the optimum tour

length over instance I [Gng. and Moore 1984].

Insertion Heuristics [Rosenkrantz, et al. 1977]. There are several similar algorithms

that belong to the Insertion Heuristics. All of them share the same basic structure, but

each has different selection rules.

Step 1. Select two vertices consisted in the starting tour.

Step 2. Select an unvisited vertex; insert it in the proper position of the tour so that the

insertion causes minimum increase of the total tour length. If any vertex has

not been considered, repeat Step 2.

There are 3 kinds of selection rules to select the next vertex to be inserted in the tour.

a) Nearest Insertion --- Start from the two closest vertices, and the next vertex to be

included in the tour is the closest one to the current tour.

b) Farthest Insertion --- Start from the two vertices that are farthe t apart, and the

vertex farthest away from the current tour is the one to be inserted next.

c) Random Insertion --- Randomly select the starting tour and the next vertex to insert.

The complexity of various Insertion Heuristics lies between O(n2
) and O(n log (n»,

depending on which selection rule it is used. It has been shown that the length of any

tour constructed by the Insertion Heuristics is never more than rlog2 (n)1+ 1 times the

length of the optimal tour [Rosenkrantz et al. 1977]. The length of the Nearest Insertion

tour is no more than twice that of the optimal tour [Rosenkrantz et al. 1977] and the
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length of the Farthest Insertion tour is no more than 3/2 rime of the length 0 the primal

tour [Johnson and Papadimitriou, 1985].

Christofides Algorithm [Christofides 1976]. Christofides algorithm makes

sophisticated use of the minimum spanning tree (MST). A minimum spanning tree is an

acyclic subset of the edges from an undirected graph, which connects all of the vertices,

and whose total weight is minimized [Weiss 1997].

Step 1. Construct a minimum spanning tree (MST) on the set of all cities.

Step 2. Construct a minimum cost matching of odd degree vertices in the MST.

Combine the matching edges with the MST edges.

Step 3. Construct a tour from the graph.

In this algorithm, the construction of the MST takes 0(n2
) time, and the computation

of a minimum cost matching can be done in 0(n3
) time [Lawler 1976]. Now an Euler

cycle must exist in this graph. The Euler cycle is a simple cycle that passes through each

edge exactly once. The traveling salesman tour can be constructed in O(n) time, by

adding the cities into the tour, in the order when they are first encountered while

traversing the Euler cycle. The running time for this algorithm is dominated by the time

for finding the minimum cost matching in Step 2, hence is O(n\

The worst-case length of the tour constructed by Christofides algorithm is no more

than 3/2 that of the optimal tour, assuming the triangle inequality is obeyed [Johnson and

McGeoch 1997]. Thus its worst-case tour length is the shortest among all currently

known tour construction heuristics. However, Christofides Algorithm is considerably

slower than other tour construction heuristics. This is mainly because the best available
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matching algorithm takes 0(n3
) time. Due to the substantial programming effort needed,

nobody has ever actually implemented this algorithm [Johnson and McGeo h 1997]. In

this project. the same approximation algorithm used in constru ting MST is employ d to

implement the minimum cost matching step.

Strip Algorithm [Chandler 1998]. The Strip algorithm was invented by P. Yager of

University of California at San Diego in the early 1960's. The Strip algorithm is also

referred as "The Boustrophedonic (As The Ox Plows) Algorithm" by Jon Bentley. For

simplicity, all points are assumed to be confined to the unit square.

Step 1. Di vided the unit square into J;,. equal-width strips.

Step 2. Start from the leftmost strip, proceed through the strips one by one from left to

right, visiting the cities within each strip in the alternatively descending and

ascending directions.

The Strip algorithm is extremely efficient: Step 1 takes 0 (n) time, and the running

time for this algorithm is dominated by Step 2, which takes O(n log (n» time.

2.1.2 Local Optimization Heuristics

The tour constructed by the above tour construction algorithms can be further

improved by the local optimization heuristics. The basic structure of the local

optimization heuristics is:

Step 1. Construct a starting tour, using some tour construction heuristic or simply an

arbitrary tour.

Step 2. Repeatedly attempt to improve the existing tour using local modifications.
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2-0pt and 3-0pt Algorithms. The most frequently used local modifications are

2-swap and 3-swap. The 2-swap modification construct new tours by deleting two of the

edges then reversing one of the two resulting paths and reconnecting the tour. In the

3-swap modification, the new tour is obtained by deleting three of the edges and

reconnecting the three resulting paths in a new way, possibly reversing one or two of

them. The 2-swap and 3-swap local modifications give rise to the most famous 2-0pt

[Crees 1958] and 3-0pt algorithms [Lin 1956].

A straightforward way to implement the 2-0pt algorithm is to repeatedly consider all

(n (n -1) / 2) possible pairs of edges in the tour, until no improvement can be made.

Therefore, each such operation takes 0 (n2
) time in 2-0pt, and similarly, it takes 0 (n3

)

time to check all pairs of edges in the tour in 3-0pt algorithm. Unfortunately one can not

predict the number of times to repeat this operation, thus one can not bound the running

time of the overall algorithm. In practice, there are a lot of variety ways to implement the

2-0pt and 3-0pt algorithm. In this project, the 2-0pt and 3-0pt algorithms are

implemented to run for n2 number of iterations, using random choices of the links.

Other Variants of the 2-0pt and 3-0pt Algorithms. Some new algorithmic ideas have

been developed for TSP. One that has drawn a lot of attention is Simulated Annealing

[Kirkpatrick, 1983]. This algorithm can be viewed as a randomized variant on a 2-0pt or

3-0pt algorithm. The key difference of Simulated Annealing from the classic local

optimization algorithm lies in two points:
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I) Instead of examining all possible pairs of edges in the tour one by one, it choo s

random pairs of edges.

2) This procedure sometimes allows modifications that make the tour worse, not

necessarily improving the tour at each step.

The acceptability of modifications is controlled by a parameter called the temperature.

The temperature t for the nth iteration is defined as C/log n, where C is a fixed constant.

Whether a new tour S' can be accepted is detennined by the following principle. If the

length of S' (L(S'» is less than the length of the original tour S (L(S», then S' can be

accepted; otherwise, let 8= L(S') - L(S), and r is a randomly chosen number from [0,1]; if

r ~ e -8/1, then S' is accepted. The basic structure of the Simulated Annealing algorithm

1S:

Step 1. Construct the initial tour S =So, and t =to.

Step 2. Choose a random pair of edges and reconstruct a new tour S'. If S' can be

accepted, let S =S'. Then calculate the new t for the next iteration. Repeat

Step 2 till it is time to quit.

Step 3. Return the best tour.

Another more recently developed algorithmic idea applied to TSP is the Genetic

Algorithm. Brady was the first to propose the genetic idea for TSP [Brady 1985]. The

basic idea for the genetic algorithm is:

Step 1. Start from k independent runs, each perfonning local optimization procedures.

At the end of step 1, we have k locally optimized solutions.
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Step 2. Derive knew staning solutions by tran fer infonnation among th k solutions

found. This process is called mating. Repeat Step 1 and 2, until no progress

can be made.

The mating strategy proposed by Brady [Brady 1985] is to mate two tours by finding a

sub-path from each tour, so that the pair of sub-paths consist of exactly the same s t of

cities; then replace the longer one of the two paths by the shorter one. The advantage of a

genetic algorithm is that it makes uses of the previous running results. while in the

traditional local optimization algorithm. earlier results have no impact on later runs.

However this genetic algorithm for TSP is quite time consuming, and the experimental

result for a 64-city geometric instance is not better than running the 2-0pt many times

independently within the same amount of time [Johnson 1990].

The Simulated Annealing and Genetic Algorithms are more valuable for theoretical

research than application in solving TSP. The experimental data showed that they are

significantly slower than the classic local optimization algorithm [Johnson and McGeoch

1997].

There are a lot active research going on to study Traveling Salesman Problem. S me

interesting links are listed below for farther reference:

http://weber.u.washington.eduJ-cvj/tsp/tspnew.html- Sensitivity Analysis for the

Euclidean Traveling salesman Problem

http://mat.gsia.cmu.eduJGROUP94/0703.html- Algorihtms for Solving Traveling

Salesman Problem.

http//www.astro.virginia.eduJ-eww ... thffravelingsalesmanConstants.html-- Traveling

Salesman Constants

11



2.2 World Wide Web and Java Language

The World Wide Web (WWW) is a relatively new technology, which is designed to

enable global, interactive and distributed information systems to be constructed. The

main interest of the WWW lies in its ease of access and its simplicity of setting up a web

server. Java is a programming language specifically designed for writing programs on

the Internet and/or Intranets. Java programs that are design d to run within a Web

browser are called applets, while a stand-alone Java program is called a Java application.

Some special features make Java suitable to be used in writing web programs. Java

contains built-in support for the common web problems. The executables for Java

programs are extremely small, so that they can be loaded fast over relatively slow

communication lines. Java constraints encourage security. A Java program cannot

access anything on the client computer unless it is permitted specifically. Moreover, Java

is platform-independent. The same program can be executed on a PC, a Mac, or even a

UNIX machine, as long as there is a Java Virtual Machine (JVM) on that machine.

As a program. language, Java is simple and powerful. Java is object-oriented, which

enables a programmer to write modular programs that can be easily maintained. Its

syntax is similar to C/C++, so that many C/C++ programmers are able to learn Java

easily. Moreover, some features of CIC++ are removed on purpose, in order to keep the

Java language simple and secure. One of the biggest changes is that Java eliminated the

pointers in C/C++, which often cause memory leakage and are error-prone; instead Java

employed a model of references and garbage collection.
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CHAPTER ill

DESIGN AND IMPLEMENTATION ISSUES

This project animates some approximation algorithms for Traveling Salesman

Problem, using Java as the programming language and WWW as the medium. The

design and implementation issues of this project are described in this chapter. In the

design part, the system requirements, system functionality, user interface and main

classes hierarchy are covered. The details of the strategies used in development are

covered in the implementation part.

3.1 Design

3.1.1 System Requirements

Table 1 summarizes system requirements for the user side and the server side.

Server Side • Unix system
• NCSA KITP Server

User Side • Any platfonn with Java Virtual Machine
(JVM) 1.0 or above

• Or any platfonn with Internet Connection
and with JVM 1.0 and HTML-compatible
browser

Table 1. System Requirements

13



3.1.2 System Functionality

Limitations. The limitations of the Traveling Salesman Problem that can be solved by

this program are:

1) Complete, symmetric TSP

2) Obey triangle equality

3) Up to 100 points, confined in a square plain.

4) The distance between two points is defined as the length of the straight line

connecting the two points.

Algorithms Covered. Seven approximation algorithms for solving TSP are covered in

this project. including five Tour Construction Heuristics (Table 2) and two Local

Optimization Heuristics (Table 3).

Tour Construction Algorithms Specification
Nearest Neighbor The initial city is the first input point
Greedy
Furthest Insertion
Christofides Using approximation algorithm

calculate the minimum cost matching
Strip

Table 2. Tour Construction Algorithms Covered in the project
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Local Optimization Algorithms Specification
2-0pt • Pseudorandom choices of edges to delete

• Fixed number of iterations
3-0pt

Table 3. Local Optimization Algorithms Covered in the Project

3.1.3 Input and Output

The program enables users to input data (points) by double mouse clicks on the

confined screen area. The user can select different algorithms, and the running results on

the same set of data can be compared among different algorithms. This program

graphically shows the path searching process of each algorithm. Users can select to show

the search process step-by-step or run continuously until completed. The user interface is

shown in Figure 1.

Double clicking in the central display area enable users to input data; a red point is

displayed in the corresponding spot. The label Cities displays the number of points

inputted by the user. There are seven radio boxes labeled with different algorithm names.

Clicking one of them allows users to select different algorithms to solve the TSP.

Repeatedly clicking the Step button, the tour searching process is shown step-by-step. [n

the meantime, the label Tour Length displays the current length of the tour. When

completed, the Step button and the Run button are both disabled, and the Complete button

turns to red. While clicking the Run button once, the final resulting tour is displayed,

followed by the disabling of the Step and Run buttons, and changing color of the

Complete button. If the user wants to try another algorithm to solve the same TSP, he

can click the Refresh button, then the tour disappears, but the input data is still left on the
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screen. If the user wants to try a new et of data, he can click the Clear butt n: a blank

center area is displayed.

Figure 1. User Interface

If the 2-0pt or 3-0pt algorithm is selected, and when the user first clicks the Step

button, another window is popped up. While the path searching process continues, a

graph, which shows the relation of tour length and the number of iterations, is displayed

in this new window (Figure 2). In this graph, the x-axis is the number of iterations and

the y-axis is the tour length at each stage.

16



Figure 2. The Window Shows Tour Length YS. Iteration Number
For Local Optimization Algorithms

3.1.4 Hierarchy of main Classes

The main classes and a bnef description of each class are summarized in Table 4. The

detailed implementation is described in the next section.

TSP class is the main class for applct TSP. Instances of Display] and Di.\play2 are

included in TSP class as data members. Display] includes an instance of Algorithm as

data member, where Algorithm is a super class for all other algorithmic classes, i.e. Nil,

Greedy, Fi, Cj, Strip, Opt2 and Opt3 are all inherited from Algorithm class. The

hierarchy of the main classes is summarized in Figure 3.

17



Main Classes Description
TSP Implement the user interface, handle events
Displayl Implement the center display area
Display2 Implement the window that shows tour length vs. iteration

number for local optimization algorithms
lAlgorithm An interface, provide a common interface for all

algorithms
Algorithm Implement the IAlgorithm interface, providing some

common methods shared among algorithms
Nn Implement the Nearest Neighbor Algorithm
Greedy Implement the Greedy Algorithm
Fi Implement the Furthest Insertion Algorithm
Cf Implement the Christofides Algorithm
Strip Implement the Strip Algorithm
Opt2 Implement the 2-0pt Algorithm
Opt3 Implement the 3-0pt Algorithm

Table 4. Description of main Classes

18



! Display1 I C'=~> I TSP I<:CZ==:Ji I Display2 I'

-- --I IAlgorithm I
~~~

Cf

c:::::::o- : denotes a relation of is a member of,
~ : denotes a relation of implement,
===+- : denotes a relation of inheritant

Opt3

A~ B means A is a member of B.
A~ B means A implement B.
A===+- B means B is inheritant from A.

Figure 3. Hierarchy of Main Classes

3.2 Implementation

This project implements seven approximation algorithms for the Traveling Salesman

Problem with a user-friendly interrace and using the World Wide Web as medium. Some

implementation details of this project are discussed in this section.

3.2.1 Implementation of the User Interface

TSP Class. The TSP class is the Main class for applet TSP. It implements the user

interface, and also contains the methods that control the life cycle of applet TSP. The

19



TSP class is inhereted from the java.appletAppler class, which provides a standard

interface between applets and their environment, such as a Web page or the Java Applet

Viewer. The data members in TSP class are summaried in Table 5, and its methods are

summaried in Table 6.

Data Member Description
private boolean m_fStandAlone = rn_fStandAlone is set to true if the applet is run
false; as a standalone application
pri vate Point[] cities~ An array of Point, store the values of x

cardinate and y cordinale of each city point.
Each Point is identified by the index in the
array, which is also in the order of user input,
ie. cities[O} is the first input point, cities!1] is
the second, .. .cities[n] is the n+1th.

private int nurn cities~ The number of cities
private boolean bStart =true; It is set to false after execution of the first step

of each algorithm
private Panel top, bottom, left~ • Panel top: contains the TourLength and

lcityNum Labels, and btCornplete Button.
• Panel bottom: conatins the btStep, btRun,
btRefresh, btClear Buttons
• Panel left: contains the CheckboxGroup
chGroup

private Button btStep, btRun, Declarations of Buttons
btRefresh, btClear, btComplete;
private Label TourLength, lcityNum; Declarations of Labels
private CheckboxGroup chGroup; Contains the following Checkboxes
pri vate Checkbox chNN, Declarations of Checkboxes
chGreedy,chlnsertion,chCA, chStrip,
chOpt2,chOpt3 ;
private Display1 displ; An instance of class Display], which

implements the displaying of each algorithm
in the central dispay area

private Display2 disp2; An instance of class Display2, which
implements the window showing the relation
of tour length vs. iteration number for local
optirnizati on algorithms

Table 5. Data Member in TSP class
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Methods Description
public static void main(String args[]) Acts as the applet entry point wh n it is

run as a standalone application. It is
ignored if the applet is run from within an
lITMLpage.

public TSPO TSP Class Constructor
public String getAppletlnfoO Returns a string describing the applets

author, copyright date, or miscellaneous
information

public void initO Called by the AWT when an applet is first
loaded or reloaded, to define the user
interface.

public boolean action(Event evt, Object Called when Buttons is clicked, and handle
arg) the events
public void actStartO Called by action(), when Step button is

clicked for the first time in each algorithm,
to create the Algorithm instance for
Displayl.

private void IS_compl(boolean f) Called by the action(), to change the color
of Complete button to red or gray.

public boolean handleEvent(Event evt) Called when the close window event
. occurrs for the standalone application

Table 6. Methods in TSP class

The main() method is a standalone application support. The function includes: creates

Top-level Window to contain applet TSP and shows the Window Frame; starts the applet

running within the frame window and sets mJStandAlone to true to prevent init() from

trying to get them from the lITML page.

The action() method is called automatically, when a button is clicked. Different

actions are taken when different buttons are clicked. The action() method is described in

pseudo-code as follows:
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public boolean action(Event evt, Object arg)

if Step button is clicked. then

if it is the first step then

call actStart() to cr ate the Algorithm instance in Diasplay 1;

call stepO method in Display I, to display the new tour;

display current tour length;

change the color of Complete button if necessary;

if 2-0pt or 30pt is chosen. then

call setPointO in Dispaly_ to add a new point to the graph;

call drawPointO in Display2 to draw the graph;

if last step completed. then

disable Step and Run button;

else if Run button is clicked, then

call actStartO to create the Algorithm instance in Diasplay I;

call runO method in Di play 1. to display final tour;

display final tour length;

change the Complete button to red

disable Step and Run button;

else if Refresh button is clicked, then

caIl refreshO method in Display I. to clear the tour;

change the color of Complete button to gray;

enable Step and Run button;

Dispose the instance of Display2 if there is one

else if Clear button is clicked, then

call the c1earO method in Di$paly I, to display a blank screen;

change the color of Complete button to gray;

enable Step and Run button;

Dispose the instance of Display2 if there is one
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The Display] Class. The class Display] is responsible for getting th input cities from

the user, constructing the tour using the user-selected algorithm and drawing the tour at

each stage in the center display area. Display] extends the java.aWl. Canvas class. A

Canvas component represents a blank rectangular area of the screen, where the

application can draw objects or trap input events from the user. The data members and

methods of the Display] class are summarized in Table 7 and Table 8.

Data Member Description
private Point cities[]; An array of Points stores the user-input

data.
private int cityNum; Number of Point inputted
private Graphics G; Thegraphtopmnton
public Algorithm alg; The instance of Algorithm class, initiated in

the actStart() method in TSP class
private int stepNum; Define the number of Step() to be called in

Run() method.
private LabelICN; A reference to the lcityNunz of TSP class

Table 7. Data Members in Display] class

The Display2 class. The class Display2 is responsible for displaying the window

which shows the relation of tour length and the number of iterations for the 2-0pt and

3-0pt algorithms. It extends the java.awt.Frame class, which is a top-level window with

a title and a border. The instance of Display2 in TSP class is constructed in actStart()

method when 2-0pt or 3-0pt is chosen to solve the TSP. The data members and the

methods in the Display2 class are summarized in Table 9 and Table 10.
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Method Description
Display1(Labell) The constructor of Display] class~ the

parameter is the lcityNwn of TSP class.
Call.ed by the init() method of TSP class.
It initiates the Point array cities. sets
cityNum to zero, lCN reference to the 1,

public void setStepNum(int n) Called by the actStart() method in TSP
class to set the stepNum.

public void paint(Graphics g) Called whenever the repaint() is called or
when Window is moved or resized in the
standalone application. Responsible for
drawing the input points, calls the
drawTour() routine of the Algorithm to
draw the tour.

public boolean stepO Called by action() method in TSP class,
when the Step Button is clicked. Calls the
step() method in the corresponding
algorithm, and repaint(). Returns true if
last step is completed, otherwise returns
false.

public void runO Called by action() method in TSP class,
when the Run Button is clicked. Calls the
run() method in the corresponding
algorithm, and relJaint().

public void refreshO Called by action() method in TSP class,
when the Refresh Button is clicked to erase
the tour.

public void clearO Called by action() method in TSP class,
when the Clear Button is clicked to clear
the screen.

public boolean mouseDown(Event evt, int CaUed whenever the mouse is clicked
x, int y) down. Records the current mouse position

by creating a new Point, and stores it in the
Point array cities.

public Point[] getCitiesO Called by the actStart() method in TSP
class. Return the cities to the calling
routine

public int getNumO Called by the actStart() method in TSP
class. Return the cityNum to the calling
routine

Table 8. Methods in Display] class
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Data Member Description
private int cityNum; Number of cities
private Point[] p; A Point array; in each Point, x coordinate

represents the iteration number, y
coordinate represents the tour length

private DrawCanvas c; An instance of DrawCallvas class, which
takes care of the drawing of graph

private int ind; The number of Points in the graph

Table 9. Data Members of Display2 class

Display2() is the constructor for Display2 class. It takes the title of the window and

the number of cities as parameters, initializes ind to zero, and creates the instance of

Drawcanvas class. DrawPoint() method gets the dimension of the current window, and

calls the draw() method in DrawCanvas class, passing the Point array p, dimension

infonnation and ind as parameters.

Method Description
Display2 (String title, int n) Constructor, called in actStart() method in

TSP class when 2-0pt or 3-0pt is chosen to
solve the TSP

public void setPoint(int I) Called after step() is called in the action()
method in the TSP class to record the tour
length and the iteration number, if 2-0pt or
3-0pt is chosen to solve the TSP

public void drawPointO Called after every time setpoint() is called
public boolean handleEvent(Event evt) Called whenever a close window event

occurred

Table 10. Methods in Display2 Class
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The DrawCanvas class handles the actual drawing of graph. Its draw() routine first

transfonns each Point in the Point array p to a corresponding Point, whose x and y

coordinates represent the actual position in the window frame, then calls repaint(). which

in tum calls the paint() method to paint the graph.

3.2.2 Implementation of Approximation Algorithms

The [Algorithm Interface. IAlgorithm is an interface for all classes that implement

algorithms. An interface contains members that are con tants and abstract methods. It

has no implementation, but other classes can implement it by providing implementations

for its abstract methods. The abstract methods in IAlgorithm are summarized in Table 11.

Abstract Method Description
public boolean stepO; Implements the steps to search the path~

returns true when complete, otherwise
returns false

public int getLength(); Returns the current tour length to the caller
routine

Table 11. The Abstract Methods in {Algorithm Interface

The Algorithm class. The Algorithm class implements the IAlgorithm interface and it

is a super class for all classes implementing the individual algorithm. The data members

and methods in the Algorithm class are summarized in Table 12 and Table 13.

You may have noticed that all data members in the Algorithm class are protected instead of private. The

protected keyword specifies that those members can be accessed by its derived classes. in addition to its

member functions.
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Data Member Description
protected int visit; The number of cities visited
protected int tour[] =new int[lOl]; Specifies the order of the tour
protected int vb[] =new int[lOO]; If a city is visited, set the corresponding

element in vb array to 1, otherwise set to 0
protected int cityNum; Number of cities
protected Point cities[]; An array of Point to store the position of

each city
protected int matrix[][] = new The distance matrix between each pair of
int[ 100][100]; cities

Table 12. The Data Members in Algorithm class

Method Description
Algorithm(Point[] A, int n) Constructor, called by every constructor of

the derived class
public void consMatrixO Called by Algorithm() to construct the

distance matrix.
public void initO Called by step() method, to construct the

initial tour.
public void drawTour(Graphics g) Called by the paint() method in Display],

to draw the tour according to the order
specified by the integer array tour.

public boolean stepO Called by the step() method in Display], to
, actuaJly carry out the construction of the
tour I

public int next(int i) Called by the step() method to determine
the next city to visit

public void add2tour(int i) Call by step() method to add the next city
to visit to the exiting tour

public int getLengthO Called by step{) method in Display] to get
the current tour length

Table 13. The Methods in Algorithm Class
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The step(), DrawTour() and getLength() methods are shared among orne of the

derived classes of Algorithm. While init(), next() and add2tour() need to be over-written

by the derived classes. The step() method is described in pseudo-code as follows:

public boolean stepO

if it is the first step. then

call initO to construct the initial tour;

return flase;

else if not all the cities have been visited, then

call nextO to detennine the next city to visit, or derive a new tour for Opt2 and Opt3;

call add2tourO to add the new city to the tour;

return false;

else close tour by returning to the initial city; return true;

The main purpose of the Algorithm class is to provide a common implementation for

all the derived classes. All the classes that implement TSP algorithms in this project have

the same basic structure as the Algorithm class. Therefore, in the following section where

the classes derived from the Algorithm class are discussed, the main focus is on how the

next() , init() and add2Tour() methods are implemented differently.

The Nn Class. The Nfl class is the class that implements the Nearest Neighbor

algorithm. The ind() method simply constructs the initial tour as the first city that the user

inputted. The code for init() is as follows:

public void initO

tour[O] =0: II choose the first input city as the initial city

vb[O] = 1; II set the vb of this city to 1;

visit ++; /1 increment the number of cities visited
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The next() method takes the current city as the parameter, and returns the clo est city

to the current one as the next city to visit. The pseudo-code for next() is as follows:

public int next(int n)

set d to a number thaI is longer than any edge

loop for j =0 to cityNllr1l. j++

if city j is unvisited, and distance between n andj is less than d. then

update d as this distance;

set the next city as j;

end loop

return next city;

The add2tour() for the Nearest Neighbor algorithm is very simple; just add the next

city to visit at the end of the tour. The code for add2tour() is given below.

public void add2tour(int n)

tour[visit) = n;

The Greedv Class. Greedy is the class to implement the Greedy algorithm. The tour

in Greedy class is represented by an array of Edge, where the Edge is a class whose data

members and methods are summarized in Table 14 and 15. In the constructor of the

Greedy class, a priority queue of all the Edges is built based on the length of the Edges.

Data Member Description
private int start; The start vertex of the edge
private int end; The end vertex of the edge
pri vate int distance; The length of the edge

Table 14. The Data Member of Edge class
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Method Description
Edge(int S, int e, int dis) The constructor
public int getStartO Returns the start vertex to the calling routine
public int getEndO Returns the end vertex to the calling routine
public int getDistanceO Returns the length of the edge to the calling routine

Table 15. The Methods in the Edge Class

The init() method generates the initial tour from the minimum length edge. The

pseudo-code of init() is shown below.

public void initO

call the delMin() of the priority queue to get the min_Edge

add this min_Edge to the tour

The next() method is to find the shortest feasible Edge, which LS described m

pseudo-code as follows:

public Edge nextO

loop until next Edge is found

Call delMin() to get the minimum remaining Edge

If it is feasible then

Return the Edge

end loop

The feasibility of an Edge is checked by the feasible() routine; the pseudo-code of it

is shown as follows:
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private boolean feasible(Edge eg)

if the two ends of eg belong to the same set, then

return false;

else if the degree of the start edge >= 2 or the degree of the end edge >= 2. then

return false;

else

Union the two vertex of eg to one set;

Return true;

The Union/Find Algorithm [Weiss 1997] is used to determine if the two vertices

belong to the same set. Two vertices belong to the same set if and only if they are

connected in the current tour. Adding an edge with two ends in the same set will create a

cycle in the tour.

The Fi Class. The Fi class implements the Farthest Insertion algorithm. The key

point in implementation of this algorithm is to keep an array IlinEdge to record the

distance of each city to its nearest neighbor that is in the current tour. For example, if

city i itself is in the tour, then minEdge[i] = 0; else if the current tour consist a, b, C, d ,

and the distance between i and the four cities in tour is:

then minEdge[i] = 10.

The init() method is to find the two cities with the longest distance, and include the

two cities in the tour. The pseudocode for init() is listed below:
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public inilO

find the 2 cities i andj. which have the lange t intercity distance;

add i andj to the tour;

construct the minEdge array;

The next city to be included in the tour is simply the city that has the maximum value

in the minEdge array. The pseudo-code for the next() method is shown as follows:

public int nextO

find the index of t.he max value in the lIlinEdge array

return the index as next city to visit;

The add2tour() routine is to add the next city to the tour so that the increase of the

total tour length is minimized. The pseudo-code for add2tourO is shown below:

public add2tour(ll)

int min = ;ooסס1

loop for i= 0 to visit. i++

increase = distancc(tour[i], n) + distance(n. tour[ i+ J]) - distance (tour[iJ.lour[i+ I]);

if increase < min. then

insert_position =i+ 1;

end loop

loop for j = visit to insert_position; j-­

tourUl =tourU-l J;

end loop

tour(insert_position] =n;

The Cf Class. The Cf class implements the Christofides Algorithm. It extends the

Greedy class. because Kruskal's algorithm to construct the minimum spanning tree is
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quite similar to the Greedy algorithm to construct the TSP tour. The only difference lies

in the checking of the feasibility of the edge; in the K.ru kal's algorithm, an edge is

feasible as long as the two ends of the edge do not belong to the same set, no matter if the

degree of any vertex. exceeds two.

The step() method in Cf class is different from that of the Algorithm class. The

pseudocode is given below:

Public boolean step()

if it is the first step, then

caJl init() to construct the minimum spanning tree;

else if it is the second step, then

call the minMatcll() to computer the minimum cost matching of the odd degree vertex in the

tree;

else

call traverseO, to construct the tour by traversing the graph

if tour is completed, then

return true;

else return false;

The init() method is to construct the minimum spanning tree, which is quite similar to

constructing the greedy tour. minMatch() computes the minimum cost matching of the

odd degree vertex in the MST. The Greedy heuristic for the matching is used in this

project. The heuristic repeatedly fi.nds the two closest points in the set, if the two points

are both unmarked, then it adds the edge defined by the two points to the matching edges

and marks the two points; it quit when all the points are marked. The pseudo-code for

minMatch() is shown as follows:
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private void minMatchO

Edge matchHeap[];

int matchList[];

loop for j =0 to cityNum, j++

If city j has odd degree in MST, then

Add j to matchList;

end loop

construct the priority queue matchHeap from the matchList. according to the length of the

edge;

loop while ind < matchList.sizel2

call delMin(maIchHeap), to get the shortest edge;

if both ends of the edge are not included in the matching edges. then

add the edge to the matching edges;

ind++;

end loop

The traverse() routine constructs the tour by traversing the graph containing the MST

and the matching edges. The pseudo-code is shown as below:

private void traverseO

int current =0;

iot next;

tour[O] =0;

loop while not all the cities are in the tour

next =neighbor(curent);

current =next;

jf next is unvisited, then

include next to tour;

end loop
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The neighbor of the current city is a city that is connected to the current one in the

graph. The neighbor() method returns the nearest unvisited neighbor of the current city,

or if all the neighbors to the current city are visited, returns one of the neighbors to the

current city, which has unvisited neighbors.

The Strip Class. The Strip class is to implement the Strip algorithm. The Step()

methods is also different from that of the Algorithm class.

Public boolean stepO

if it is the first step. then

call sliceO, to slice the unit square into ..r;; vertical equal-width strips;

call partitionO, to partition the cities to different strips accor ing to the )( coordinates;

call sortYO, to sort the cities in each strip according to the y coordinates;

else

call traverseO to construct the tour by traverse the cities in the strips;

if tour is completed, then

return true;

else return false;

The implementations of slice(), partition() and sortY() are straight forward. The

tour is constructed in the traverse() routine, whose pseudo-code is given below:

private void traverseO

loop for j =0 to No_of-stript ,j++

ifj is even. then

call up() to go through the cities in the strip from bottom to top, and add each city

encountered to the end of the tour;

else

call down() to go through the cities in the strip from top to bottom. and add each

city encountered to the end of the tour;
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end loop

The Opt2 Class. The Opt2 class implements the 2-0pt algorithm. The init() method

generates an initial tour, which is in the same order as user input. The next() method

generates a new tour by cityNum invocations of the 2-swap operation, whose pseudo-

code is given below:

private void nextO

loop for i = 0 to cityNllm, i++

Randomly choose 2 edges;

Get 4 vertices from the 2 edges, ... v1~ v2~ .. abc.. ~v3~v4 ... ;

diff = distance(v I,v3) +distance(v2,v4) -distance(v I,v2) - distance(v3,v4);

if (diff <0)

reverse the path between v2 and v3 to get the new tour

(...vl~ v3~ .. cba.. ~v2~v4 ... )

end loop

The Opt] Class. The Opt3 class implements the 3-0pt algorithm. It is obtained by

extending the Opt2 class with revised lIext() method. The pseudo-code of llext() method

in Opt3 class is shown in below:

private void nextO

loop for i = 0 to cityNllm, i++

Randomly choose 3 edges;

Get 6 vertices from the 3 edges, ...vl~ v2~ .. abc.. ~v3~v4~ ..def..~v5~v6 ... ;

diff= matrix[vl][v4] + matrix[v2]'[v5} +matrix[v3][v6]-

matrix[vl]fv2]- matrix[v3}(v4]-matrix[v5][v6];

if (diff <0), then
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reverse the path between 2 and v ;

reverse the path between v4 and 5;

reverse the path between v I and v6;

else

diff = matrix[v I ][v4] + matrix[v2][v6] + matrix[v3][v5] ­

matrix[v I ][v2] - matrix[ v3][v4]-matrix[vS][v6J;

if (diff < 0)

reverse the path between v4 and v5;

reverse the path between v I and v6;

end loop
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CHAPTER IV

RESULTS

The program can be executed successfully with the most popular Internet browsers:

Netscape Navigator and Internet Explorer. The examples of the user interface in

Netscape and Internet Explorer are shown in Figure 4 and 5. The program also can be

run as a standalone application. A sample snapshot of a standalone application is shown

in Figure 6.

Figure 4. A Sample Screen in Netscape
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Figure 5. A Sample Screen in Internet Explorer

Tour length 0

r. NN

r Greedy

r Insertion

r ChriS10fides

r strip

r 2.0pt

r 3-0pt3

CIties 0 -

Figure 6. A Sample Snapshot of a Standalone Application
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The initial screen is shown in Figure 7. The default algorithm is the earest eighbor

algorithm. The user can input data by double clicking in the central area, and chao e the

algorithm by clicking on the name of the algorithm. The sample screen is shown in

Figure 8. The sample snapshots during the execution of each algorithm are shown in

Figure 9 to Figure 15.

Figure 7. The Initial Screen

Figure 8. A Snapshot of Getting User Input
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(a)

(b)

Figure 9. Sample Snapshots of Running the Nearest Neighbor Algorithm
(a) after first step, (b) afterlO steps, (c) completed
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(a)

Figure 10. Sample Snapshots of Running the Greedy Algorithm.
(a) after first step, (b) after 10 steps, (c) completed
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Figure 11. Sample Snapshots of Running the Farthest Insertion Algorithm
(a) after first step, (b) after 10 steps, (c) completed
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(b)

(c)

(d)

Figure 12. Sample Snapshots of Running the Christofides Algorithm
(a) Minimum Spanning Tree (MST), (b) MST pius minimum cost matching edges

(b) traversing the graph, (d) completed
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Figure 13. Sample Snapshots of Running the Strip Algorithm
(a) divide the unit into strips, (b) traversing the cities in strips, (c) completed
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(c)

Figure 14. Sample Snapshots of Running the 2-0pt Algorithm
(a) initial tour, (b) after seven steps of improvement, (c) completed,

(d) the window showing the relation of tour length and iteration number
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(a)

(b)

(c)

Figure 15. Sample Snapshots of Running the 3-0pt Algorithm
(a) initial tour, (b) after nine steps of improvement, (c) completed,

(c) the window showmg the relation of tour length and iteration number



CHAPTER V

SUMMARY AND FUTURE WORK

5.1 Summary

This project animates seven approximation algorithms for the Travelling Salesman

Problem, including five Tour Construction Heuristics - Nearest Neighbor algorithm,

Greedy algorithm, Farthest Insertion algorithm, the Christofides algorithm and the Strip

algorithm; and two Local Optimization Heuristics - 2-0pt algorithm and 3-0pt

algorithms. This project enables the user to learn these algorithms easily and to get a

deeper understanding of them. Learning these algorithms may help the user to improve

basic problem-solving skills and to apply them to other similar problems. This project

also takes advantage of the World Wide Web, so that it can be accessed conveniently

through the Internet. The URL illniform and or Universal Resource Locator) of the

home page that contains this project is http://a.cs.okstate.eduJ-gyanffSP.html.

To implement this project, knowledge of approximation algorithms for TSP, Java

programming, HTML, as well as object-oriented design and programming was needed.

Totally, there are 17 Java source code files and an HTML file in this project. Some

statistical information of these files is shown in the following table.
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File Lines
Algorithm.java 191
Cf.java 572
Cfvertex.java 84
Displayl.java 206
Display2.java 98
DrawCanvas. java 178
Edge.java 55
Fi.java 238
Greedy.iava 366
IAlgorithm. java .

21
Nn.java 81
Opt2.java 162
Opt3.java 119
Strip. java 358
TSP.html 114
TSP.java 470
TSPFrame. iava 49
Vertex.java 57
Total 3419

Table 16. Statistics of the Program Files

5.2 Future Work

This project animated some traditional and popular approximation algorithms for

Traveling Salesman problems. Some new algorithms, such as Genetic algorithms and

Simulated Annealing have been developed in recent years; though they might not be

standard ways to solve a TSP, they are quite valuable as new problem-solving techniques.

In the future, these algorithms can be animated. Also, there are some very good exact

algorithms to solve the Traveling Salesman Problem, and they can be animated in the

future.
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Better

Euler tour

Feasible tour

NP

NP-hard

Pennutation

APPENDIX A

GLOSSARY

Tour A is better than tour B means tour a has a shorter

tour length than that of tour B.

A simple cycle that passes through each edge exactly once

A simple path in the graph, which goes through all

vertices and each vertex in the path is distinct, except the

first one and the last one are the same.

All decision problems solvable by a non-deterministic

algorithm in polynomial time

A problem is NP-hard if and only if the Satisfiability

problem reduces to it.

An ordered arrangement of the elements in a set.
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