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CHAPTER I

INTRODUCfION

1.1 Research Objective and Background

A flutter boundary can be defined as the point at which an area of interest in the

model or aircraft begins to inherently have an instability. More specifically, the damping

becomes neutral or even worse, unstable. Flutter boundaries can primarily be estimated

either from numerical simulations of an aircraft model or analytical examinations of

aircraft flutter test data. The goal is to determine the flutter onset speed, being the flutter

boundary, by examining areas in the aircraft that have been predicted to have marginal

stability at sub-critcal speeds. In aircraft flutter testing, the obtained data must be reduced

in a nearly real-time sense to determine the modal parameters (damping frequency, COd,

and damping factor, ~) in question. These modal parameters are then used to analyze the

closeness to the flutter boundary. This method involves several hours of engineering and

flight time, costly instrumentation, noisy data, risky decisions, and most importantly

safety issues. Today, anything from classical methods such as fast-fourier transform

coupled with power spectral density analysis to more modern methods such as system

model identification have been applied to flutter test results at sub-critical speeds to

determine such modal parameters.
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On the other hand, numerical simulation of an aircraft model can be used to

predict the flutter boundary. This method uses an effective and efficient computational

simulation for determining the aeroelastic response resulting from an excitation.

However, these results are usually backed up by flutter testing, but the flight time, safety,

and engineering hours are significantly reduced.

A useable aeroelastic response, being the mode shapes of the model or aircraft,

should be determined using an aerodynamic code coupled with a structural dynamics

code (Dowell, 1995). The Structural Analysis RoutineS or STARS program and its

derivatives, currently implemented at NASA Dryden Flight Research Facility, is a

computational method of this kind. STARS is a multidisciplinary program integrating

modules from structural, to computational fluid dynamics, to aeroservoelasticity which is

capable of performing linear and non-linear modeling and simulation of advanced

aerospace vehicles (Gupta & Peterson, 1992). Its non-linear Aeroservoelastic Stability

Analysis (ASE) module (ASENL_UNSTEADY code) provides

1) an initial finite element structural modeling and free vibration analysis

yielding natural frequencies of all modes and

2) the solution to the generalized equation of motion in the state-space equation

form thus yielding "noise-free" response data in the shape of generalized

displacements and velocities for each individual mode for the model in

question.

The positive aspect of this method is that the ASE Module provides multiple independent

mode shapes. Specifically, a single time history of ALL the modes in question is not

2



resulted in as in flight test obtained data, but a single time history for EACH mode is

resulted in without any noise.
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Theoretically, each mode shape may contain any or all of the other modes inherent

within the system. These mode shapes include an excitation, but once the excitation is

complete, the response is basically free from any other structural excitation. However,

aerodynamics forces are applied during the response. Figure 1 shows an example of each

independent mode shape from the ASENL_Unsteady Program in STARS. These mode

shapes were determined using the Generic Hyperspace Vehicle (GHV) model resulting in

nine modes. Future references to this type of data will be called ASENL data.

The negative aspect of the time marching approach used in the ASENL_Unsteady

Program is that it only provides time history data of each individual mode in terms of

generalized displacements and velocities. It does not provide modal parameters or other

types of stability parameters. Currently with this ASENL data, the method to identify the

flutter onset boundary is to run the program for a model at several specific speeds, pre

and post flutter boundary, for several seconds or cycles of response which could take days

or even weeks of computational time. The generalized displacements are then graphically

plotted, and the responses are visually examined to determine whether the response is

converging, diverging, or neutral. Therefore, this method can only result in a flutter

boundary prediction with an error of determination due to human judgment.

The objective of this research is to replace this graphical method. A method must

be determined which will autonomously assist in predicting the system's flutter boundary

from multiple mode time history data, specifically the results from the ASENL_Unsteady

Program in STARS. The boundary shall be determined without knowing any information

about the magnitudes of the aerodynamic forces or excitation during the responses in the

4



least amount of cycles (data samples) and computational time. Whether using the most

common method of plotting the damping factor against the dynamic pressure for each test

case or some other method of detennining the flutter boundary, this research shall

investigate several methods. Once a complete method is detennined, it will be developed

into a stand-alone, autonomous program which will be used in conjunction with the

ASENL_Unsteady Program in STARS to detennine the flutter boundaries of any multiple

mode system.

1.2 Literature Review

1.2.1 Modal Parameter Identification

In the past, several methods have been employed to determine the damping

frequency and the damping factor. When these two parameters are determined,

specifically the damping coefficient, the idea is to plot the damping coefficient against a

speed or dynamic pressure, and determine the flutter boundary when the damping factor

is zero, being neutral damping. In flutter flight testing, subcritical speeds are analyzed

and a flutter boundary is determined. It is detennined through some sort of extrapolation

of the damping factor because the actual flutter point cannot be detennined in flight due

to safety. Unlike in flutter flight testing, numerical simulation can be accomplished at the

flutter boundary and beyond if need to be. Therefore, no extrapolation, a cause for error,

needs to occur.

The next sections discuss methods to identify modal parameters which have been

used extensively with aircraft flutter test data and numerical simulations.

5



--

1.2.1.1 Curve-Fitting

The curve-fitting method extracts frequency, damping, amplitude, and phase

information from unforced transient response data (Bennett & Desmarais, 1975). This

method is designed to curve fit digitized time history data in a least squares sense using

the non-linear exponential function:

M

Y(t)-ao+ ~ e-~k·t.[ ~.cos[ (Wd)k·t] + bk'Sii (Wd)k. t]

k=l

This equation minimizes the squared error difference between the output fit and the

input time history for which this error is given by

N

E- ~ (Y(ti) - Yi)2

i= 1

This method does require the number of exact modes in the input data to be

known and a very good starting guess for all five parameters (30, 3«, bk, <;Ie, and (O>d)k ).

From the initial guess and an inputted step size, the data is sequenced through until the

error is minimized. This method is sound, however, Bennett and Desmarais only

provide a method up to two modes. Recall, more than two modes are feasible to be

embedded in each individual mode shape output from the ASENL Program of STARS.

A similar method was applied as a class assignment. This method involved using

a least squares non-linear curve fit using the non-linear equations above coupled with

Newton's Method (Gerald and Weatley, 1994) to detennine the five parameters of

interest. The results were obtained for only one mode, but, the initial guess had to be

6



almost equal to the fmal results for the method to work. A,lso, several points were

needed from the input time history.

The problem with curve-fitting is that it usually is feasible for one mode. With

two or more modes, the difficulty of applying the above equation becomes greater and

accuracy is degraded due to more calculations (Bennett and Desmarais, 1975). The

results of this method have been said to depend strongly on the initial parameters and

requires several data points (Pak and Friedman, 1992), which will be shown later in this

paper. This method has never been shown for three or more modes, and this method

requires the number of modes to be known. In the ASENL data for each mode shape,

the number of modes embedded within is not known and may very well be more than

three. Even if all the mode shapes were normalized and summed together, the number

of modes are known, but, in some cases there are nine modes, thus requiring a very

complex curve equation and a very good initial guess. Due to these negative aspects,

the curve-fitting routine is not feasible for a solution to this research.

1.2.1.2 Fast Fourier Transform Coupled With Power Spectral Density (FFTIPSD)

FFT has been a very popular method. When used along with Power Spectral

Density (PSD) data plots, the damping frequency and damping factor can be estimated.

The damping frequency can directly be detennined from the PSD plot of local

maximas, and the damping coefficient can be determined using the half-power law or

some sort of curve fit (Lenz & McKeever, 1975; Dobbs & Hobson, 1979; Kehoe,

1988).
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Another similar method is the Moving-Block Analysis (MBA) developed in 1975

(Bousman & Winkler, 1981). The MBA fIrst uses the entire data set to detennine one

frequency of interest using an FFf and PSD analysis. A block length of time is then

selected, usually a 14 to ~ of the signal length, and the natural log of the so-called

moving block function, which is developed from the fInite fourier transfonn of the

damped sinusoidal response equation, is obtained. This procedure is repeated for the

next block and so on until all the data set has been reduced. These results are plotted

against the period of the sample set which results are linear. The slope of this curve

results in the damping factor. This method usually involves the fIltering of data and

hands-on decisions of block sizes and the critical frequencies of interest. This method

has only been proven with two modes or less and has diffIculty with closely spaced

modes.

Some other difficulties with FFf with PSD analysis in is filtering. Detennining

which type of filter and cutoff frequencies to use to either to reduce the noise in the data

(flight test data) or to obtain only the frequencies of interest. This can be complex and

is usually a hands-on decision by the engineer. Along with filtering, auto-correlation,

zeroing, and data smoothing are also used to assist in determining each mode. With all

these factors involved, each one plays an important role in obtaining good accuracy, and

it usually detennines only one mode of interest (Kehoe, 1988). The ASENL data is

"noise-free" so these routines to cancel noise will not be a problem. However, due to

the multiple modes contained within each mode shape, it may be difficult to detennine

all modal frequencies.
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Another difficulty with FFfIPSD is closely spaced modes and/or very dominant

modes, whether it be two or nine. Figure 2 shows an example of a simple FFrIPSD

using MATLAB 4.0 for each mode shape plot from the time history data in Figure 1.

From Figure 2, it is obvious that a very dominant mode exists in each mode shape, the

other modes are not seen very clearly. Even for a normalized summation of all nine

modes presented in Figure 3, it provides difficulties in detennining all nine modes

without using extensive filtering and knowledge of good cutoff frequencies which must

be a hands-on decision.
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Figure 2. PSD Plots of Each Mode Shape in Figure 1
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Figure 3. FFf of Nonnalized Summation of All Mode
Shapes in Figure 1

1.2.1.3 Single Input - Single Output (SISO) Auto-Regressive (AR) and Auto
Regressive Moving Average (ARMA) Models

Unlike AR or ARMA models, FFf/PSD methods usually do not detennine all

modes, and curve-fitting becomes mathematically very complex and require very good

initial guesses.

Both AR and ARMA models are system identification methods based upon time

difference equations. An AR model models any type of free response, and an ARMA

model models any type of forced response. Both models are strictly time domain based
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unlike FFrIPSD being frequency domain based. These methods have improved

capabilities over the frequency based methods because they offer potential advantages

when attempting to identify a system with closely spaced modes and multiple modes

from multiple outputs (Pinkleman, Batill, and Kehoe, 1995).

ARMA models have been used more extensively to model measured flutter test

data or simulated data (Ljung, 1987), while AR models have not. Both the AR and

ARMA models (time difference equations) can be coupled with a method to determine

the AR and MA coefficients which are usually not known. The AR coefficients are

only required to identify the system's modal parameters. The AR coefficients can be

detennined either by using a transfer function method (Walker & Gupta, 1984; Roy &

Walker, 1985), a Recursive Maximum Likelihood (RML) Method (Torii and Matsuzak,

1997; Cooper, 1990), some type of Least Squares Method (Pak and Friedman, 1992;

Cooper, 1990; Pinkleman and Batm, 1995), or even a General Instrumental Variables

(IV) Method (Cooper, 1990). All of these methods have been proven to be very

effective and feasible.

The RML method statistically produces the best estimates for sub-critical flutter

points, but this method takes five times the number of calculations as the Least Square

methods (Cooper, 1990). Also, the RML method has convergence problems with

lightly damped systems. This has only been recommended for sub-critical flutter

points. The General IV method perfonns well in the off-line estimation fonn.

However, it requires twice as many calculations as the Least Squares. The Least

Squares methods have been proven to require smaller data samples and are simpler to
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apply when compared to all others (Cooper, 1990; Pinkleman and Batill, 1995). Due to

the negative aspects of the RML and N methods such as the number of calculations and

the convergence problems, these two methods will not be considered for this research.

1.2.2 Flutter Margin and Stability Parameter

Two other methods used to predict flutter boundaries, but not based upon plotting

the damping coefficient against a dynamic pressure, are the Flutter Margin and Stability

Parameter Estimation Methods. These two methods are based upon plotting the "flutter

margin" parameter or the "stability" parameter against the dynamic pressure.

The first method is the Flutter Margin Method (Zimmermann and Wiessenburger,

1964; Applicaation: Hammond & Doggett, 1975). The Flutter Margin is a stability

criterion which is based strictly on Routh's Stability criteria applied to the equations of

motion from a simple bending/torsion model (two degrees of freedom) with no structural

damping. This results in an equation for the flutter margin which is a function of

frequency and decay rates (or damping coefficient). Once the flutter margin has been

determined from the flutter test results at several dynamic pressures, it can be plotted

against the dynamic pressure and is said to be quadratic due to the nature of the

characteristic equation from the equation of motion. A quadratic curve can be applied to

predict the flutter boundary using the results at very low sub-critical speeds as much as

50% lower than the flutter onset speed.

The problem with this method is that it only involves two degrees of freedom

because it is based upon a simple two degree of freedom equation of motion. Therefore,
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more than three modes cannot be accurately determined. The author even states that for

one mode, the method has inaccuracies due to the quadratic curve fitting. This method

was further improved to three modes (Price and Lee, 1993), however, the same problems

in inaccuracies occurred especially when structural damping was inherent within the data.

Because of these negative aspects, this method is not feasible for this research.

Another method, similar to the Flutter Margin, except that it was based upon

Jury's Stability Criteria (Jury, 1982), is called the Stability Parameter Method (Torii and

Matsuzaki, 1992). This method uses an ARMA model and applies Jury's Stability

Criteria to the characteristic polynomial of the difference equation from the ARMA

model. The stability parameter becomes a function of the AR coefficients. The AR

coefficients are determined by solving the difference equation using the Maximum

Likelihood technique. Once the stability parameter has been determined for several

dynamic pressures, the stability parameter is plotted against the dynamic pressure and

then quadratic curve fitted. The curve is then extrapolated to the flutter boundary (when

the stability parameter is zero). Because of the ARMA model, multiple modes with

characteristics of closeness and dominating modes can be analyzed (Toni and Matsuzaki,

1992). Therefore, this method is very feasible for the ASENL data and prides itself in

situations of explosive flutter because of the use of the time marching ARMA Model.

However, this method requires the knowledge of the modal order in the data set which is

not the case in the ASENL data as previously explained. And, since STARS is a program

providing simulated results, the program can be ran all the way to the flutter boundary.

Therefore, no curve fitting, a cause for more inaccuracies, has to be accomplished. This
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method could be applied to a nonnalized summation of the data resulting in a known

model order (Figure 4), however, it is believed that a much simpler method can be

applied. More will be discussed later on the difference between the normalized

summation of each mode shape, where the model order is known, and using each

independent mode. Therefore, this method will not be further discussed.

8

6

4

2

o

-2

-4

-6

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-

Figure 4. A Typical Normalized Summation of a Nine Mode System

1.2.3 Focus of Research Based Upon Modal Parameter Identification

In summary, the Least Squares Curve Fitting and the Moving Block analysis have

been proven to be successful but are very limited to the number of modes (two or

lower). They also require substantial amount of data points when compared to AR or
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ARMA models, and are strongly dependent upon initial decisions (Pale and Friedman,

1992). Some comparisons will be made to the curve fitting method in this report.

Fast Fourier Transforms requires good knowledge of the modal frequencies and

an extensive amount of work in filtering, zeroing, auto-correlation, and data smoothing

using hands-on decisions. All of this requires several hours of engineering time. Also,

for closely space modes, dominant and multiple modes, FFTIPSD can be very difficult

to apply and possibly obtain very inaccurate results. Because of this and because of the

example in Figures 2 and 3, FFTIPSD will not be further considered in this research.

AR or ARMA models coupled with a good method, primarily Least Squares, to

detennine the AR coefficients have been very popular and have been proven to provide

accurate results using shorter data samples from single to multiple mode systems even

for closely spaced modes. Through this literature review no attempt by any others has

used ARMA models for system of five modes or higher.

Due to the more positive aspects of AR and ARMA models, this research will

provide further insight upon the application of these models to higher mode systems for

one specific pre or post flutter boundary point. Types of Least Squares methods will be

the primary focus to identify the AR coefficients from the AR or ARMA models because

of the their advantages of using smaller data samples and are simpler algorithms. Once

the AR coefficients are identified for one specific flutter point, the modal parameters

from these coefficients will be detennined. After the damping factor for several pre and

post flutter boundary points have been determined, it can plotted against the dynamic

pressure for each point thus resulting in flutter boundary prediction.
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CHAPTER 2

DEVELOPlvlENT OF THE MODAL PARAMETER
IDENIlFlCAnON lvlETHODS

2.1 Basis of AR and ARMA Models

A Single Input-Single Output ARMA model can be simplistically represented by an

simple time difference equation for a finite number of modes with 2M Auto-Regressive

(AR) coefficients, 3;, and W Moving Average (MA) Coefficients, bi, shown below (Pak

and Friedman, 1992).

2M W

Yk + L a{Yk_ i = L b,·~ .
1 - 1

i = 1 i = 1

This equation is shown in block fonn in Figure 5.

(1)

Excitation or

other forces, u
Dynamic System of

AR and MA Coefficients

Response, Y
-.

Figure 5. Block Diagram of SISO ARMA Model of Dynamic System
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Ibis difference equation can also be written as

2M W

Yk=- L a"Yk . + L b.·~ .
1 - 1 1 - I

i= 1 i = 1 (la)

which expresses the response of a dynamic system at any time, y", as a function of previous

response (regressive) values in the data output, Yk.il and the past data input, Ut-b while

knowing a finite set of system AR and MA coefficients, 3j and bb respectively. However,

in the case of this research these coefficients are not known. Therefore, the measured

response and input forces are used to determine these coefficients. As for the AR Mode~

it is simply Equation 1 except the right hand side is zero.

The order of the model is the number of AR coefficients. The number of AR

coefficients should be at least twice the number of modes in the system or 2"'M. The

number ofMA coefficients is usually set to one less than 2"'M Auto Regressive coefficients

if no prior information is known about the input. If the input is known then Akaike's

Information Theoretic Criterion (AlC) can be used to determine the correct number of MA

coefficients to include. Since one of the goals of this research was to identify the system

modal parameters without knowing the dynamics of the input excitation or forces, this

criteria is not useable. However, ASENL data does include an inherent bias or static offset

due to the excitation. To account for this bias, instead of using W Moving Average

coefficients, as defined earlier, one MA coefficient, b.. can be used with a fictitious system

input, Ul, equal to 1 (Pak and Friedman, 1992). With this, the ARMA model or difference

equation reduces to

(2)

-
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The bias in the system response is accounted for, but will never be determined due to its

value being unimportant in predicting modal parameters. The only thing that is important

about Equation 2 is the AR coefficients (aj). These coefficients are used to determine

directly the system modal parameters for a finite number of modes. How these AR

coefficients are detennined depends upon a type of parameter estimation technique.

Section 2.2 discusses three methods that will be compared with each other to detennined

which method is best to use for this research.

2.2 Techniques To Detennine Auto-Regressive (AR) Coefficients

Section 1.2.1.3 stated that Least Squares techniques for determining the AR

coefficients required less data samples than all other methods discussed and were easier

to implement. The next few sections will focus on the algorithms of the following three

types of Least Squares techniques which will be used to detennine the AR coefficients.

1. Method of Overdetennined Set of Simultaneous Equations (MOSE)

2. On-Line Least Squares (ON-LS)

3. On-Line Double Least Squares (ON-DLS)

These three methods of Least Square are methods that are very popular and are most

suitable for the ASENL data. These three methods will be compared between each other

that best detennines the AR coefficients from either the AR or ARMA Model (the time

difference equations).
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2.2.1 Method of Overdetennined Set of Simultaneous Equations (MOSE)

Batill, Pinkleman, and Kehoe proposed to detennine the AR coefficients by

writing a system of overdetennined set of simultaneous linear algebraic difference

equations for the entire data set of N points.

YJc = - alYk-I - aZYk-z - - aZMYk-2M + bl
Yk+1 = - alYk - aZYk-1 - - aZMYk-ZM+1 + bI

YN =-aIYN-I - a2YN-2 - .... - a2MYN-2M + bI (3)

Usually for a linear solvable set of equations the number of equations should equal the

number of unknowns. Here, the unknowns are 2*M AR coefficients and one MA

coefficient, therefore making 2*M+1 equations. However, Pinkleman, Balill, and

Kehoe suggested to overdetennine the number equations, as shown above, to obtain

accurate results in determining the AR coefficients.

The above overdetermined set of simultaneous equations can be written in a linear

matrix fonn being

{'V} = [<1>]{8}

where

{8}T= [-a, -az -a3 ... -aZM bI]
and

{'V}T = [Yk Yk+1 Yk+Z ... YN]

Yk - 1 Yk - 2 Yk- 3 • • Yk - 2·M 1

Yk Yk- 1 Yk- 2 • I Yk- 2M+ 1 1

[<1>] = • • • • •
• • • •

YN - 1 YN - 2 YN - 3 • • YN - 2M 1

(4)

(5)

(6)

(7)
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Again, if [4>] was a square matrix, then {e} could simple be determined from

{e} = [4>r l {'V}.

However, when there are more equations than unknowns, then the system is said to be

overdetermined. H closeness between the right and left hand sides of Equation 4 is

defined in the least squares sense, then the overdetermined linear problem reduces to a

solvable linear system called the linear least squares problem. Therefore, {e} can be

solved from (Press, 1992; Pinkleman and Batill, 1995)

(8)

This method becomes the Method of Overdetermined Set of Equations (MOSE) or an

Off-Line Least Squares problem of determining the unknown coefficients. This is

considered an off-line method because the entire data set from k to N points, resulting

in N-k equations is used to determine the AR coefficients. Its solution is the vector,

{e }, of 2*M AR coefficients and one MA coefficients.

As for the initial starting k point for this method, from looking at the matrix [c:J)] at

time k = 1, the first row of the matrix becomes

[Yo y-] Y-2 .•. YI-2M 1]

where the data does not exist for these points. Therefore, the initial starting point for

this method must be at k =2M+1 points. When using ASENL data, the initial starting

point cannot start until the transient excitation is complete. k must be equal to 2M+l+z

where z is the last point of the excitation which is a known parameter.

Instead of using the entire data set, this method can be used to sequence through
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the data by determining a vector of AR coefficients first using k and k+1 set of

equations to determine {e}, then incrementing by one and detennine a new vector of

AR coefficients. This is accomplished until N points has been reached or regressive

convergence of the AR coefficients can be observed. Once regressive convergence has

occurred there is no reason to continue sequencing through the data set, and at this point

the AR coefficients are said to be correct if the model order is correct (Pinldeman,

Batill, & Kehoe, 1995). However, since the model order is not really defined for each

mode shape, improvement to this method must be made. This is further discussed in

Section 2.4.

2.2.2 On-Line Least Squares (ON-LS)

On-Line methods are methods primarily used with non-stationary data, when the

damping and frequency of a mode changes with time. On-Line methods march through

the data thus determining a new vector of AR coefficients at each data point using a

"corrector" type of equation instead of an overdetermined set of equations. On-Line

methods also allow forgetting of the data, where Off-Line methods or MOSE does not.

The Off-Line methods use every past data point in a single matrix while On-Line

method updates a new vector of data points at each time marching step. Since the

ASENL data is considered stationary, the forgetting factor does not have to be used,

therefore, the forgetting factor can be set to one (Cooper, 1990).

The development of the On-Line Least Squares problem for this research begins

with Equation 2 of the ARMA model.

(2)
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or in matrix form

(9)

where {ell h is the data vector at time k (i.e. {ell h. = {Yk-I Yk-2 ... ... Yk-2M n. As

mentioned, On-Line methods are "corrector" type methods so the AR coefficient vector

is detennined as follows which is written for stationary data thus no forgetting (Cooper,

1990)

where:

[Plk =[Plk-I - [Plk-1{'I'h [{'I'hT[P]k_1 {'I'h + 1]"1 {'I'}kT[Plk_1 (1 I)

and

{'I'h
T

= [Yk-l Yk-2 .... Yk-2M+I 1] (12)

The data sequencing must begin at k=2M+1+z for the reasons provided earlier, and

everything is known at this point except the initial conditions for [P]k-I and {E> }k-I. The

initial condition for [PhM+z (k = 2*M+1+z), is a*[I], where [I] is the identity matrix and

a is a large number. The larger a is the quicker the convergence while marching

through the data. Here, a will be set to 1030 (Cooper, 1990; Pak and Friedman, 1992).

The initial condition for {E> hM+z can be anything from zeros to the full solution from

all data points (Cooper, 1990; Pak and Friedman, 1992). For this research {E>hM+z

will be a vector of zero's, because this initial condition had very little effect upon the

final results.
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2.2.3 On-Line Double Least Squares (ON-DLS)

On-Line Double Least Squares was developed to reduce the bias from noise

corruption in flight test data since damping coefficients are very sensitive to noise

(Cooper, 1990). This method averages two solutions in which the damping estimated

has a positive and negative bias and the bias is hoped to cancel out. This method really

should only be applied to noisy flight test data. Even though the ASENL data is "noise

free", this method will be applied in this research to show some comparisons with the

previous two methods.

Mathematically, the only difference between On-Line Least Squares and On-Line

Double Least Squares is the vector {'V h which is represented by two vectors, {<X h. and

{~h being

and

{<XhT =[Yk+ Yk-l Yk.l+ Yk-2 ..•• Yk-2M + Yk-2M+l 2]

{~hT =[Yk-I Yk-2 .... Yk-2M+l 1]

(13)

(14)

where the equation for {E>h and [P]k are now

{E>h= {elk·1 + [P]k.d<x}d{~}kT[p]k-d<X}k + UI[{~}kT{E>h_1 - Yk]

[Pk= [P]k-I - [P]k-d<xh[{~hT[p]k-d<X}k + l]·]{~h?[P]k.1

This method is said to provide more accurate results than the On-Line Least

Squares method, but does take more calculations (Cooper, 1990).

2.3 Extraction of Modal Parameters from AR Coefficients

With {e} T= [-a] -a2 -a3 ... -a2M btl now detennined from any of the three
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methods discussed, the modal parameters can be determined using one of two following

methods.

The first method involves finding the roots from the following characteristic 2*M

order polynomial which represents the AR part of the ARMA model.

... 2M ... 2M-I ... 2M-2
I\, + all\, + a21\, + ....... + a2M (15)

-

Only the complex roots, which determine modal parameters, to this equation becomes the

modal parameters of the system. All other type of roots, called calculated roots, are

discarded.

Many simple root finding methods exist for polynomials such as Bisection, False

Position, Newton's, and Bairstow's Method which are only a few. The common factor

between all of these methods is an initial guess is required. The initial guess usually

strongly affects the results as in Bisection and False Position (Gerald and Wheatly, 1994).

Many of these methods can be excluded due to the fact that they due not work well with

complex numbers. Newton's method can be used, but it does require a complex initial

guess and special complex arithmetic. Only Bairstow's Method for Quadratic Factoring

is best when working with complex numbers because special complex arithmetic is not

required. The negative aspect to all of these methods is that all of them have difficulty

with repeated roots being identical modes (Press, 1992).

The second method for determining the modal parameters from the AR

coefficients involves finding eigenvalues from the following matrix (Pak. and Friedman,

1992).
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1 0 ... 0

o 1 ... 0

-~M- I 0 0 0 I

000 0
(16)

This general real matrix is detennined from the state-space fonn of the difference

equation (Eq. 2) (Pale and Freidman, 1962). When finding the eigenvalues of this matrix,

it usually requires one more step than finding the roots of a polynomial when the

following equation is applied.

det(Matrix - AI) (17)

The results of this equation is a polynomial similar to Equation 15. Therefore, why

introduce more calculations which could cause more round off error thus affecting the

final results. Both the Bairstow's method and Pack & ,Friedman method will be

examined for final application.

Once the roots of the polynomial or eigenvalues, usually several pairs of complex

conjugates (u±iv)j, have been determined from either method, the modal parameters can

be determined using the equations below.

1 -u'
ffioj = h atan(~).

J

~. _ crj
~ - -Vron j 2 + cr/

1 22
where crj = -2h In(uj +Vj )
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2.4 Noise in mput Data and Detennination of Model Order

Usually in most cases of flutter data, two factors are inherent, noise in the data and

the modal order is not known. With the ASENL data being "noise-free", this reduces the

complexity of the method, and the method also require more data points. Therefore, this

will not be a problem and not addressed any further.

Theoretically, each individual mode may contain any or all other modes. Because

of this, the finite modal order is not known, therefore, two methods were approached.

The first was to normalize all modes then sum them together (i.e. Figure 4), then apply

each method discussed with the finite known model order. Several days of analysis were

accomplished, and the final conclusion was that several points were required to obtain all

system modes. Therefore, the more modes that exist or trying to identify using a single

data stream the more points required for regressive convergence, especially for large

mode systems such as the GHV model. Chapter 3 will provide more reasons with

normalizing and summing each mode shape is not feasible.

The second method uses model overspecification to obtain the modal parameters

desired (Pinkleman and Batill, 1995). Model overspecification is not required if the

model order is known (Cooper, 1990; Torii & Matsuzaki, 1997). For example, if one

known mode exists in Mode 1 then the model order may be overspecified with an order

of two or higher. The problem with this is that both additional unwanted parameters,

called calculated parameters, and the actual system modal parameters are obtained. One

method of avoiding the calculated modes is to input the response data in reverse order

called the Reduced Backward Method (RBM) (Pinkleman and Batill, 1995). When using
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the RBM, the stable system parameters are driven unstable and the stable calculated

parameters are forced stable. Therefore, the resulting unstable parameters are considered

the system parameters then the sign is changed on the damping coefficient making it

stable and the calculated parameters are discarded. This method only works with stable

systems because unstable systems are stable in the backwards sense in which both the

calculated and system modal parameters are driven stable when RBM is applied.

Therefore, the unstable system parameters will never be identified among the clutter of

the calculated parameters. Recall, one of the desires of this research is to identify

unstable modes, therefore RBM cannot be applied for this research.

Another method of only finding system modal parameters when using model

order overspecification is to compare the results of two or even three overspecified

models of different model order. This idea came from Pinkleman and Batill, when they

were showing that accuracy of the damping coefficients was increased for higher

overspecified model orders. Similar modes existing between the two results are usually

the system modes after eliminating unreasonable calculated modes usually having

negative or zero frequencies. This method will be used in this research to make the

complete algorithm of a very direct method of determining modal parameters.

Model order overspecification is usually not applied to On-Line methods due to

convergence problems (Cooper, 1990). This may only be true if noise is inherent in the

data. Model overspecification will be adapted with the on-line methods to see if

convergence is achieved.
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2.5 Re-Sampling of Input Data

Most response data, if obtained or developed correctly, usually has a sample

frequency much greater than the Nyquist frequency by orders of magnitude from 5 to 500.

In most of the literature, when these system identification methods were applied,

especially to complex high mode systems and highly sample systems, the input data or

data trying to be modeled was re-sampled closer to the Nyquist frequency (Cooper, 1992;

Pak & Friedman, 1995; and Pinkleman and Batill, 1995). More often, the data was

usually re-sampled 2.5 times the Nyquist frequency, which itself is defined as two times

the frequency of interest. Thus, the re-samp1e frequency should be at least five times the

frequency of interest. No explanation was every seen on why the original or high sample

frequencies from the input were never used. Different re-sampling frequencies will be

examined in Chapter 3.

2.6 Complete Algorithms of The Three Modal
Parameter Identification Methods

2.6.1 Method of Overdetermined Set of Simultaneous Equations (MOSE)

The complete algorithm of the Method of Overdetermined Set of Simultaneous

Equations (MOSE) for any model order is shown in Figure 6. Model overspecification

is not included in this algorithm because a study will be done using different model

order for each system analyzed.
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Read in response data:
Last Point of Excitation, Z

Step Size, h
Number of Points to Use, N

Determine if need to re-sample input data

,.
Choose Modal Order, M and

Determine Initial Point, k=2M+z+1

Start Marching Through Data,
for m =k, N-l -

Fill Regression Data Matrix, [cI>], and
Data Vector, {\jI}, with m and m+l points.

Determine AR Coefficients,
{e} =([<I>]T[<I>]r1[cI>]T {\jI}

Determine roots of the polynomial
or eigenvalues using the AR coefficients

Detennine good roots:
if Real < 0 then r=0

if Imaginary = 0 then r=0 else r= 1.
(r is just a flag for non-system modes)

From roots with r=1 detennine (00 and 0'

Does m =N-l or No)------------"Convergence Achieved

Yes

IHave results I
Figure 6. Algorithm for Method of Overdetermined Set of Equations For

Any Modal Order (NOT including Model Overspecification).
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2.6.2 On-Line Least and Double Least Squares

The complete algorithm, again not including model overspecification, of both On

Line and Double Least Squares is shown in Figure 7. The only difference between

double and basic least squares is the determination of {(l h and {~h instead of {'II h,

which was discussed earlier.
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Read in response data:
Last Point of Excitation, z

Step Size, h
Number of Points to Use, N

Determine if need to re-sample data

t
Choose Modal Order, M and

Determine Initial Point, m=2M+z+1

t
Initialize:

{8}Tk_1 = [-at -a2 -a3 ... -a2M btl where at,a2, ..b l == 0

{ahand{~h

[Plk-I = a*[I] where a==103o

•Start Correcting Loop, -
fork=m,N

t
Update AR Coefficient Vector

{eh= {8h-1 + [Plk-dah [{~h?[P]k-dahc+ lrl[{~}kT{eh_l - YIt]

t
Determine roots of the polynomial I

I

or eigenvalues using the AR coefficients

t
Determine good roots: Update

if Real < 0 then r=O [P]k,
if hnaginary == 0 then r=O else r= 1. {a}k, {~}k

t or {\jIh

From roots with r=1 determine <00 and 0'

+
Check for convergence of good modal parameters. No

t Yes
I U",n.. , I

Figure 7. Algorithm of On-Line Least Squares and Double Least Squares For
Any Modal Order. (NOT including Model Overspecification)
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2.7 How These Three Modal Parameter Identification

Methods Will Be Compared

To detennine the best of these three complete system identification methods. each

method will be compared by using both simulated and actual data sets (ASENL data) at

one specific pre or post flutter point as input. For comparison only, MATHCAD v6.0

will be used as a tool to apply each method. A MATHCAD example of each method,

which basically follows the algorithms in past two sections, is provided in Appendix A.

When applying all three methods, the entire data set will be used to analyze the

characteristics of the regressive convergence and the final results. Once each method

begins marching though each data point, starting from k, the modal parameters are stored

in a matrix in the order as they are detennined. For example, if a model of order three is

used with a data stream of 500 points, then the final matrix size for each modal parameter

will be a 500-k by M matrix (M is the number of modes in the system). Once the entire

data set is used, each column will be plotted for each modal parameter. From this plot the

regressive convergence of the model parameters can be analyzed.

The criteria for selecting the best of the three methods will be based upon the

following two criteria.

1. Examining the convergence of each modal parameter when marching though

the data stream, which will be called regressive convergence. This

examination will mainly detennine which method requires the least number of

points to provide good results. Obviously, the best accuracy for regressive

convergence is 0.0% error, and in most references the best accuracies obtained
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have been as low as 5.0% (Cooper, 1990 and Pinkleman and Batill, 1992). An

accuracy limit for this research will be at least 5% error, however, the best

accuracy will try to be achieved. This is only a goal for this research. If this

goal is obtained, the results are no worse than past research accomplished by

others.

2. Examining the convergence when applying model overspecification will be

called mode convergence. This will further justify the number of points

required and the accuracy of the modal parameter. In most of these systems

being analyzed in the next few sections, the exact number of modes to

determine the model order are not known. Therefore, model overspecification

has to be applied.

In some of the simpler systems being analyzed, these identified modal parameters

will be used with a sinusoidal damped equation and plotted against the inputted ASENL

data to determine if they are indeed accurate.

Recall the ASENL data includes both the generalized displacements, q, and

velocities, qdot, for each independent mode which mayor may not include some or all of

the other modes. This is very different than in flight test data where a single data stream

includes all modes of interest. The best of the three modal parameter identification

methods will be based upon the earlier criteria, and they will detennine

1. which ASENL data set to use, the generalize displacements or velocities;

2. whether a normalized summation of all the independent mode shapes will be

used since the modal order will be known is better, or to apply the methods to
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each individual mode shape, and

3. if fe-sampling needs to occur.
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CHAPTER 3

RESULTS FROM COMPARING ALL THREE MODAL
PARAMETER IDENTIFICATION METHODS

USING DIFFERENT SYSTEMS

3.1 Using Simulated Single Mode System.

A very common, method proving system is a simple single mode sinusoidal

damped system. This system, being of the fonn

yet) = C + e-atcos(COot)

where: cr =5, COo =30, C =I,

was first used in the basic curve-fitting application (Bennett and Desmarais, 1975). A

plot of this system's time history is shown in Figure 8. The frequency ratio, F, in this

figure, is defined as the sample frequency over the system frequency. This data set will

be used by applying all three methods with and without the static offset tenn (one MA

tenn) in the ARMA model. This will show why an ARMA over an AR model must be

used and prove why only one MA coefficient is required.

The input data contains 64 data points with a step size of 0.0098663 seconds, or a

sample frequency of 101.36 Hz (636.83 rad/s) giving a frequency ratio, F, of 21.2. The

starting data point is k =2M+z+I or 3 since only one mode (M = 1) and no excitation (z

= 0) exists. The results of all three methods using these ARMA models are shown
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Figure 8. Time History of Simulated Single Mode System

~ '" ~1:lI

(J COo Points needed
.':1, '" Method i (radls) (radls) for convergence

'j LSCFM** 5.0 30.0 64
!II ..

Method of Overdetermined 5.0 30.0 4
EQuations

On-Line Least Squares 5.0 30.0 8
On-Line Double Least 5.0 30.0 10

Squares
Method of 3.095 6.873 After 63 Points

Overspecification*
On-Line Least Squares* - - Method Failed

because r = 0
On-Line Double Least - - Method Failed

SQuares* .. because r= 0
* AR model (no account for the static offset, C)
** Least Squares Curve Fitting Method (LSCFM) (Bennett and Desmarais, 1975)

Table 1. Modal Parameter Results From Application of Several Methods Using
A Simulated Single Mode System
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directly from MATReAD 6.0 in Appendix A and are summarized in Table 1. Table 1

also provides comparisons with the Least Squares Curve Fitting Method (Bennett and

Desmarais, 1975).

It is apparent from Table 1, the ARMA model with the static offset tenn (one MA

coefficient) for any of the three system identification methods must be used. The AR

model, no MA coefficients, provided inaccurate results or regressive convergence never

occurred. The LSCFM results identified the modal parameters, but it required several

data points compared to the other methods. The ARMA model with MOSE determined a

solution after only 4 points while the other two ARMA madelON-LINE methods

required slightly more points.

Re-sampling at a lower frequency ratio had no affect on the accuracy or regressive

convergence of this data, however, this is a very simple system. Also, no model

overspecification was used because the model order was known.

3.2 Using ASENL Data

3.2.1 Two Mode System (AGARD)

3.2.1.1 Description of Data

This two mode system using the AGARD Wing configuration, which is a standard

aeroelastic test case experimentally investigated in the Langley Transonic Dynamics

Tunnel, is a result from the ASENL Program in STARS. This geometry is shown in

Figure 9. This module applies a transient structural excitation resulting in a response

where one of the two modes is unstable. Table 2 provides the properties of the input
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data for the AGARD data set. This data set contains two independent modes of

generalized displacements, q, and velocities, qdot, which is plotted in Figures 10 and 11

for both modes.

Figure 9. Planfonn of AGARD Wing Configuration

Item Value
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Table 2. Properties of Input Response Data From AGARD
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Figure 10. Time Histories of Generalized Displacements For Each
Independent Mode Shape From AGARD
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Figure 11. Time Histories of Generalized Velocities For Each Independent
Mode Shape From AGARD
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3.2.1.2 Results of Re-Sampling the Data and Model Overspecification

When all three methods were applied to both the displacement and the velocity

data using higher model orders at the original frequency ratios, F, regressive

convergence of the modal parameters was never obtained. This was due to noisy

outputs of the modal parameters while regressing through the data stream. This

occurred primarily with MOSE. An example of this is shown in Figure 12 being the

results from applying MOSE to the generalized displacements of Mode 2 with a model

order of six (M=6). The dashed lines represent the 5% error band for regressive

convergence.

0.080

0.075

Sample Rate. 768.4 Hz
500 Points

0.070
.:
o
t)
•
~ 0.065
c:
ii
E
r!

0.060

0.055

0.050

50 150 250

Number of Points

350 450

Figure 12. Example of Applying MOSE Using the Original Frequency Ratio
(Frequency Ratio, F =20.1)
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This problem can be solved by reducing the sample frequency of the input data as

explained in Section 2.5. Recall, the data was recommended to be re-sampled for input

five times the frequency of interest or in other words, at a re-sample frequency ratio, F,

equal to at least five.

Before a specific re-sample frequency of 5 is chosen as fact, several re-sample

frequencies were applied using overspecified models for each of the three modal

parameter identification methods. Before these results are shown, the term re-sample

factor, n, must be defined. The re-sample factor is a number which divides the original

sample frequency which in turns defines the re-sample frequency. For example, if n =

I, the re-sample frequency is equal the original sample frequency given. If n =4, then

the re-sample frequency is four times lower than the original re-sample frequency.

Mode 1, again, of AGARD was used to analyze the effect of re-sampling at lower

sample frequencies, or higher re-sample factors. This effect using all three methods for

several model orders are shown in Figures 13 through 15. The damped frequency of

this mode is not plotted because it was determined with any modal order at almost all

re-sample factors. It is only the damping product that had difficulty in regressively

converging upon a good result. This is seen in the results provided in Appendix B.

The first observation from Figures 13 through 15 is as the re-sample factor and the

model order is increased the convergence of the damping product improves for any

method. The best results for all methods were obtained when the re-sample factor was

greater than two (F < 33.6) for model orders greater than two. A model order of eight

provided the best results for any method. Noisy results were apparent at lower re-
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sample factors especially for n = 1 for the MOSE method.
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Figure 13. Damping Product, 0', Versus Re-Sample Factor, n, Using
MOSE at Various Model Orders Applied to Mode 1 of AGARD
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Figure 14. Damping Product, cr, Versus Re-Sarnple Factor, n, Using On-Line
Least Squares at Various Model Orders Applied to Mode 1 of AGARD
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Figure 15. Damping Product, 0', Versus Re-Sample Factor, n, Using On-Line
Double Least Squares at Various Model Orders Applied to Mode 1 of AGARD

It has been shown the convergence or say the accuracy of the damping product

was improved with a greater re-sample factor and higher model orders. What about the

advantage between each method? Figure 16 provides the damping product plotted

against the model order at a specific re-sample factor of n = 8 (F = 8.4) as a direct

comparison between all three methods. This figure shows very good results for model

orders two or greater for all methods, but here no advantage between any method is

really apparent.
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Figure 16. Damping Product, 0", Versus Model Order, M, Comparing
All Three Methods at a Re-Sample Factor of 8 Using Mode 1 of AGARD

Now that the accuracy of the damping product has been shown to increase with

increasing re-sample factor and model order, how many points does it take for the

regressive convergence of the results shown in Figures 13 though 16? Figures 17

through 19 provides the number of points to converge upon 5% of the damping product

provided in Figures 13 through 15. Results for a re-sample factor of n = 1 are not

shown because of the inaccurate results of the damping product shown in Figures 13

through 15. Also, for these figures when points are shown plotted at 1,000, this means

that the damping product after 1,000 points did not regressively converge upon 5% of

the damping product primarily due to noisy results.

In tenns of number of points for regressive convergence, re-sampling the data for

input had the greatest effect on the MOSE method. With n = 2, regressive convergence
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Figure 19. Number of Points to be Within 5% of the Damping Product Versus
The Model Orders Using ON-DLS for Various Re-Sample Factors

Applied to Mode 1 of AGARD

was never obtained, however, with an increase in n from 2 to 4, the number of points

for regressive convergence were much lower.

Re-sampling the data at a lower frequency, higher re-sample factor (n > 6 or

F < 12.6), only causes more total points to be used from the input response data due to

larger step size. This is why re-sampling the data at a frequency ratio of five did not

provide the best results in tenus of number of points for regressive convergence.

Therefore, a limit on the re-sample factor must be specified.

During this research, while analyzing several highly sampled systems at given

frequency ratios, F, from 5 to 500, typical results as shown in Figure 20 occurred. This

figure provides what occurs to the damping factor and the number of points for

-
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regressive convergence while increasing the re-sample factor, 0, or decreasing the new

frequency ratio, F. Above a certain new frequency ratio, usually F > 25, the accuracy of

the damping factor decreased due to noisy results (the step size was too small for the

time difference equation), and thus no regressive convergence. Below a certain new

frequency ratio, almost always (F < 5), the accuracy of the damping factor decreased

due to the method is aliasing the input data. Therefore, this analysis concluded that for

given frequency ratios below 225, good results were obtained when the re-sample

factor, n, was eight or less (giving new frequency ratios of 28 and less, but never less

than 5), and for given frequency ratios greater than 225, the new frequency ratio was set

at 12 instead of 5. These set limits are provided to obtain the data in less amount of

points and still maintain good accuracy.

For re-sample factors of 4 and 8 the different methods are compared in Figures 21

and 22 to determine which of the three methods are better. From these two plots and

plots of the damping product previously, the ON-LINE methods produced the best

results in the least amount of points for all model order. The MOSE method for a

model order of 2 was poor, however, for model orders near 4 the results between all

methods were similar. When the model order was increased beyond 6, the MOSE

method required the most points while the ON-LINE methods required almost the exact

number of points between model orders. All methods provided very similar results in

terms of the damping product for these high model orders. This is why the damping

product is not plotted.
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Figure 22. Number of Points to be Within 5% of the Damping Product Versus
Model Order Using All Three Methods at a Re-Sample Factor of n = 8

Applied to Mode 1 of AGARD

3.2.1.3 Methods Applied to A Normalized Summation of All Modes or To Each
Independent Mode Shapes?

The normalized summation of aU modes is accomplished by normalizing each

independent mode shape and summing these results together. The advantage of this is

the model order is known, thus model overspecification is really not required (Cooper,

1990~ Torii & Matsuzaki, 1997). However, for this unique set of independent mode

shapes and for high mode systems such as the system presented in Figure 1 (GHV),

normalized summation of the data can cause inaccurate results and several data points

required for convergence. This was discussed briefly in Chapter 2.4. Another reason

why not to use a normalized summation of all independent modes is based upon the
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results of the last section. A good re-sample factor cannot be chosen to be appropriate

for every mode. If the lowest re-sample factor was chosen based upon the highest

modal frequency, then the lowest modal frequency will be difficult to obtain and will

take several points for regressive convergence. The lowest mode will have a very high

frequency ratio compared to the highest mode. Section 3.4 provides two other reasons

why a normalized summation of all modes shapes is not feasible. Because of these

reasons all analysis will be applying each method to each independent mode using

model overspecification to determine accurate modal parameters.

3.2.1.4 On Using Generalized Displacements or Velocities

Appendix B provides tables of all results from applying each method to both the

generalized displacements and velocities at the properly determined re-sample factors

of n = 8 (F = 8.4) for Mode 1 and n = 4 (F = 5.6) for Mode 2 of the AGARD system.

Recall, one of the objectives for this system was to determine which set of data to use.

All past data for this system has been using the generalized velocities. As shown below

in Figure 23 and in Appendix B, the Generalized Displacement data for both Mode 1

and 2 produce poor results for convergence due to regression and model

overspecification. This primarily occurs for the MOSE method, and was more

prominent in Mode 1 than in Mode 2.

For the ON-LINE methods, the difference between using the generalized

displacements or velocities based upon the number of points for regressive convergence

and the accuracy of the damping factor was very small compared with the MOSE

method. To determine the best method using further analysis and for the best
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comparisons between each of the three methods, the generalized velocities will be used

as the input response based upon the results in Figure 23.
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Figure 23. Number of Points to be Within 5% of the Damping Product
Versus the Model Order Using MOSE with Proper Re-Sampling Factor

Comparing The Number of Points for Regressive Convergence
Between the Generalized Displacements and Velocities

3.2.1.5 Results For Both Modes

Using the previous findings In the past few sections both modes can be

specifically analyzed using all three methods. To obtain the model parameters for each

mode, these results in Appendix B for generalized velocities are compared between

each model order. Modes that compare very well between different model orders are

usually the system modal parameters. The damping products for the most common

damping frequencies for Mode 1 and 2 from applying all three methods are provided in

Table 3 for more fmite model orders from M =2 to 6. The damping frequencies are
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provided in Appendix B.

Mode Model Order MOSE ON-LS ON-DLS
1

2 -0.024 -0.028 -0.028
3 -0.028 -0.028 -0.028
4 -0.027 -0.028 -0.028
5 -0.028 -0.028 -0.028
6 -0.027 -0.028 -0.028

2 15.111 15.205 15.205
3 15.207 15.206 15.206
4 15.204 15.206 15.205
5 15.202 15.206 15.205
6 15.206 15.205 15.206

Table 3. Most Common Damping Products From Each Independent
Mode from AGARD

The damping products for all methods were very similar, but based upon accuracy, the

ON-LINE Methods provided the best results for all model orders.

Figures 24 and 25 provide plots examining the number of points for regressive

convergence for each mode to obtain the results in Table 3. Figure 24 for Mode 1 just

re-iterates some ofthe findings already, however, it does provide more details of a more

feasible model order range. In both Figures 24 and 25, generally, the MOSE method

converged in less amount of points than the other two methods for model orders of

three or less, but more points were required for model orders greater than 4. Overall,

the difference in the amount of points was very small, and the number of points for the

ON-LINE methods were almost identical. The number of points were less for Mode 2,

compared to Mode 1, because the frequency ratio was closer to five and not exceeding
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the re-sample factor limit of 8 (for a given F < 250) like Mode 1.

~ o MOSE

+O~LS

AO~DLS

0 j~
a •

j~ +

500

450

.9 400
III ()

~ If 350
- Q

E-[ 300
'0 e
~ l! 250
o-
j ; 200
eon
:::J.s 150
z-5

"i 100

50

o
2 3 4

Model Order, M

5 6
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3.2.2 Six Mode System (Flat Plate)

3.2.2.1 Description of Data

This set of response data is the results from a exciting six modes of a simple flat

plate model, which the an isometric view is shown in Figure 26.

Figure 26. Isometric View of the Flat Plate

This particular data set includes six independent modes at a sub-critical flutter condition

thus resulting in six very stable modes. The aspects that were learned when analyzing

the two-mode system in Section 3.2.1 will be applied here, however, some these aspects

will be briefly presented to re-iterate why they are used.

Figure 27 provides the time history of each independent mode and Table 4

provides the properties required to set up each method including the required re-sample

factor resulting in new re-sample frequency ratios.
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Item Value

Number of Modes
Sample Frequency, COs, (RadIs)
Number of Points, N

6
3.717.86

500

~t Point of Excitation, Z 8

18.591
76.179

137.802
183.732
277.414
371.785

Mode 1 200.0

IEMode 2 48.8 I

Mode 3 27.0 f~Mode 4 20.2
ModeS 13.4 f~

t~
Mode 6 10.0 ~;:)

F
I~

n .,

8 25 !~
8 6.1 .,
5 5.0 C,
4 5.0

~~3 5.0
2 5.0

Mode 1
Mode 2
Mode 3
Mode 4
ModeS
Mode 6

Natural Frequencies @ Q=0, (RadIs)

Table 4. Properties of Input Response Data From Flat Plate Model
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3.2.2.2 Re-Sampling of Data and Model Overspecification

For these modes, the results of re-sampling the data at a lower sample frequency

(lower frequency ratio) were very comparable to the results for the two mode system in

Section 3.2.2. As the re-sampling factor increased (re-sample frequency decreased), the

damping product's accuracy improved. Also, model overspecification increased the

accuracy of the damping product. Figures 28 and 29 provides an example of these

results of the damping product and the number of points for convergence from using

both the MOSE and ON-LS methods on Mode 4 for this system.

4.5

Model Order, M

4.5

b
-6 4.4e
lL
Cl
C
a.
E 4.4
CDc

4.3

4.3
o

o

o

2

o

o

4

--

6

<> MOSE

D ON-LS

--Damp. Product: 4.356

8 10

•

Figure 28. Damping Product, cr, Versus Model Order, M, Using Both MOSE
and ON-LS Methods on Mode 4 of the Flat Plate System at a

Re-Sample Factor of n = 4 (F = 5.1)
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Factor n =4 (F =5.1)

From these two figures for model orders from 4 and below, the number of points

for regressive convergence were lower using MOSE and the accuracy of the damping

product was generally better. For model orders greater than four, the accuracy for both

methods were very similar, but, the number of points for regressive convergence

increased more rapidly for MOSE method than with the ON-LS method. The exact

same results was seen the two mode AGARD system.

3.2.2.3 Results For All Modes

Similar to the AGARD system, the modal parameters are identified by finding the

most common modal parameters between models of different order. Other modes may
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be present and the modal parameter for that independent mode response may not be the

most common. However, if starting from Mode 1 and finding the most common, Mode

1 is identified. Then when moving on the Mode 2, if Mode 1 is present and it being the

most common then Mode 1 can be ignored and then the next most common may be

identified being most likely Mode 2. This criteria is used with all subsequent modes.

Figures 30 and 31 provide the results of only the identified damping products and the

number of points for convergence for these damping products comparing all three

methods for each mode.

The accuracy of the damping products for this system was generally good for all

model orders greater than three. For model orders of one and two the results were

varying. For model orders greater than three the MOSE method did provide the best

results in the accuracy because the two ON-LINE methods sometimes would produce

an inaccurate result (Mode 3 through 6). As for the number of points for regressive

convergence in Figure 31, all results were basically similar in the amount of points

except the MOSE method generally converged in a less amount of points for all model

orders and still providing good accuracy of the damping factor. Based upon these

results, these findings proved that MOSE did provide overall better results for all mode

orders below six which was enough model oversPeCification to obtain accurate damping

products. This conclusion is similar to the findings of the last two systems in terms of

low model orders.

To verify the correct modal parameters were obtained and being that these modes

were obtained at a sub-critical flutter state, most likely each mode shape can be
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represented using a single mode sinusoidal damped equation. However, this

assumption will not be entirely accurate because other modes were found to exist.

Table 5 provides the modal parameters for each mode using the MOSE method of

model order of six.

Mode

1
2
3
4
5
6

roo
(radls)
22.90
74.98
138.33
182.65
277.10
371.79

Table 5. Modal Parameters For Flat Plate System

Figure 32 provides the normalized input response for each mode shape from the

ASENL data plotted with the single mode sinusoidal damped representation using the

appropriate modal parameters from Table 5. The single mode model almost modeled

every mode exactly except maybe Mode 1. The point of regressive convergence is

based upon a model order of 6 using the MOSE method.
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3.2.3 Nine Mode System (GHV)

3.2.3.1 Description of Data

This data set is the result of exciting a nine mode system of a model of the

Generic Hyperspace Vehicle (GHV), shown in Figure 33.

Figure 33. Geometry of GHV Model

This system is at a condition just beyond the flutter boundary resulting in three of the

nine modes being usually unstable as shown in the Figure 1. This set of data provided

the greatest difficulty in identifying the system modal parameters. This system not only

contains nine modes, which is the largest system analyzed, but, it also contains three

sets of two modes that are very closely spaced. This can be seen from the' natural
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frequencies in Table 6. Table 6 also provides the necessary properties of the system and

the pre-detennined new frequency ratios for re-sampling the input data for each method.

Not only does this system have closely spaced modes, but the damping products are

also very close as will be shown later. Therefore, this system is very complicated.

Each of the three methods were applied to each independent mode using model

overspecification and the appropriate re-sample factor shown in Table 6. Several

higher model orders were used on several of the modes. This was accomplished

primarily with the closely space modes because convergence, due to model

overspecification, of the damping product was sporadic as the model order increased.

This issue will be discussed in the next few sections.
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Item Value

Number ofModes
Sample Frequenty, 0\, (RadIs)
Number of Points, N

9
943.42

500

Last Point ofExcitation, z 7

19.993
25.312
2S.462
34.918
43.435
43.801
45.657
59.069 :..
59.286 ...

~~
47.2 E

37.3 f-
C~

37.1 .. ::>

27.0
~<21.7

21.5 ~fJ
20.7 •
16.0

'~~15.9
F

5.9 ~:J
5.3
5.3
5.4
5.4
5.4
5.2
5.3
5.3

Mode 1
Mode 2
Mode 3
Mode 4
ModeS
Mode 6
Mode 7
Mode 8
Mode 9

Re-sample Factor with New Frequency Ratio : ~---=.n:""'-__--=-_--1
Mode 1 8
Mode 2 7
Mode 3 7
Mode 4 5
ModeS 4
Mode 6 4
Mode 7 4
Mode 8 3
Mode 9 3

Frequency Ratio, F =mJO>n:

Natural Frequencies, COn@ Q=0, (RadIs)
Mode 1
Mode 2
Mode 3
Mode 4
ModeS
Mode 6
Mode 7
Mode 8
Mode 9

Table 6. Properties of Input Response Data From GHV
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3.2.3.2 Re-Sampling of Data and Model Overspecification

Re-sampling this data at a lower frequency ratio and using model

overspecification had very similar results to the previous two systems. Above a model

order of four, accuracy of the damping product improved for both methods as shown in

Figure 34 using Mode 4. The number of points for regressive convergence for modes

that were not so closely spaced to other modes was nearly the same for both the MOSE

and ON-LS method for all modes. An example of this is shown in Figure 35 for Mode

4. For closely space modes the performance of each method varied. This will be

discussed in more detail in the next section.

7.0 !'"...
0

0 MOSE c~6.0
0 ON-LS

,.
5.0 - Darrp. Prodt.et: 2.525 E~-u cZ::::J-g .,:J

B: 4.0
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~<C)

c
~ 3.0

0 ~ - - ~;jCll
~ - -0 02.0 ..

1.0
C;:,

;~0.0
0 2 4 6 8 10

Model Order, M

Figure 34. Damping Product, cr, Versus Model Order, M, Comparing Both
MOSE and ON-LS Methods Using Mode 4 of the GHV System At A

Re-sample Factor n = 4 (F = 5.2)
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Mode 4 of the GHV System At a Re-sample Factor of n =4 (F =5.2)

3.2.3.3 Results For All Modes

To identify the modal parameters between different model orders, the same

criteria as in the six mode system was used. For this complex nine mode system, the

system modal parameters were more difficult to identify due to the closeness of several

modes and the number of modes existing. The damping product generally varied

sporadically with increasing model order for closely spaced modes. Sometimes the

other closely spaced mode was approached as in Mode 2 for a model order above five.

Being that the damping product and frequency are similar between the closely spaced

modes, this criteria was even more difficult. However, if enough higher model orders

were used and each mode is carefully examined then each mode can be identified.

Usually in most cases, the modal parameters for the mode of interest in that mode shape
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between the closely spaced modes had better characteristics of regressive convergence

with higher model orders.

Figures 36 and 37 graphically provide the results of the identified modes from

each independent mode shape in terms of the damping product and the number of

points required to regressively converge upon an accurate damping product. If no

values are seen for a particular model order then regressive convergence failed.

The main observations for all three methods is that with increasing model order,

the accuracy of damping factor did improve. The most significant improvement was

made for model orders greater than three to five depending upon the mode. Sometimes

the MOSE method was not as good as compared to the other methods as shown for

Mode 2, however, the MOSE method was better than the other methods as in Mode 6.

For Mode 6 at a model order of 8 the common damping product was never obtained for

the ON-LINE methods. As for the number of points for convergence, the MOSE

method was generally better than the other two methods for model orders below six,

and for higher model orders the ON-LINE methods were not much improvement.

After examining all methods applied to the complex nine mode system, the

MOSE method provided results that were not as accurate as the ON-LINE methods,

however, did produce the results in less amount of points at lower model orders. The

results of the ON-LINE methods in obtaining the damping factor were not much

improvement over the results from the MOSE method until higher modes were reached.

Usually with these higher model orders, more calculated and system modes are

obtained, therefore, the difficulty of identifying common modal parameters becomes

71



greater especially for closely space modes. For example, when examining a mode

shape for a mode that is closely
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spaced with another mode, the other mode usually does not get identified until model

orders greater than six. Therefore, for low model orders, if results are soundly obtained,

then the less amount of the unwanted calculated modes and other system modes would

make it easier in identifying the mode of interest for that particular mode shape. The

MOSE method does this for model orders near four and five. Again, this method may

not provide the most accurate results for this particular system, but it results are still

within 5% of the actual result. This statement can only be made with this nine mode

system of closely space modes, because for the other three systems analyzed the MOSE

method did provide very good accuracy for lower model orders.

The final modal parameters for this system using the results of the MOSE method

are shown in Table 7.

Mode

1
2
3
4
5
6
7
8
9

.~

It:
l~..,

cr OlD :~

(rad/s) radls
.....
:2:

2.005 22.986 :=>
-.190 31.078 :;..,.
0.793 30.740 ;Cs:

1.069 34.818 j IJ

3.016 38.188 ,
2.813 38.413 :~

2.521 46.226 :~1.361 65.206
1.337 64.217

~

Table 7. Final Modal Parameters of GHV Model Taken From
the MOSE Method

3.3 Stability of Regressive Convergence Upon Modal Parameters

Before a method is actually decided upon, one more aspect about these three

methods, that has not been discussed, is the instability of the regressive convergence. For
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all methods, the instability of regressive convergence increases with higher model orders.

The instability for the ON-LINE methods usually lasts longer than the MOSE method.

Figure 38 provides an example of the characteristics of this phenomenon comparing the

regressive convergence between all three methods. This data was obtained from the GHV

system for Mode 8 and a model order of six. In this figure, the instability is stated as

"switching". After examining the instability closer, the eigenvalues or roots obtained

from the AR coefficients, are not necessarily obtained in the same order while marching

through the data. Thus, the modal parameters are ordered differently during the march.

Pinkleman and Batill realized for higher model orders that sorting of the eigenvalues

must be done for each point so that actual regressive convergence can be seen. Sorting

the eigenvalues this way can be difficult for closed space modes.

In Appendix B, showing the results of the all methods applied to the AGARD

wing previously discussed, the last two columns provide when the modal parameters were

first encountered to be within 5% of the actual damping product and the point at which

the instability quit and regressive convergence of the modal parameters was obtained. It

is shown here that the ON-LINE methods provide poor results, in tenns of instability of

regressive convergence compared to the MOSE method. In these tables if a dash is seen

in the last column this means the instability never quit up until the last point of the data

was used. This usually occurred more frequently for the ON-LINE methods. Therefore,

the MOSE method provides better results in tenns of the instability of regressive

convergence.
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3.4 Normalizing of ASENL Data

As previously mentioned, re-sampling a nonnalized summation of all mode

shapes at a lower frequency ratio based upon the highest mode may cause accuracy and

convergence problems of the lower modes. It was also discussed, the number of modes

trying to identify in the single data stream requires more points for regressive

convergence which is also true for higher mode systems. This was why only individual

modes were analyzed.

Two other reasons can be used to support why nonnalizing each mode and

summing them all together is not feasible as input data for these methods. The primary

reason was developed from the results of the nine mode GHV system. By looking at the

results from Table 7. The damping frequency from Mode 4 was less than the damping

frequency from Mode 3. The same can be said about Mode 8 and 9. From looking at the

natural frequencies given in Table 6 for these modes, Modes 4 and 9 have decreased so

much as to be less than Mode 3 and 8, respectively. When using a normalized summation

of the input response data, this phenomenon could not be recognized. When all model

parameters were identified using a high model order, at least 9, with any method the

modes would then be sorted based upon frequency. Thus Mode 3 and 8 would be less

than Mode 4 and Mode 9, respectively, which is not actually the case. Therefore, this

closely space nine mode model would not be analyzed correctly using a normalized

summation as the input data.

The second reason for not using a nonnalized summation is based upon the

occurrence of "switching" occurring for higher model orders. For these models it would
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be more difficult to identify all modes correctly and efficiently due to regressive

convergence.

3.5 Method of Choice

Primarily based upon the results of analyzing the nine mode system, the ARMA

model using the MOSE method will be developed into a stand-alone, autonomous,

FORTRAN 77 program to assist in estimating flutter boundaries. For the MOSE method,

the modal parameters were determined in less points and for lower model orders for any

mode system. With lower model orders, the model parameters can be identified more

easily because less system and calculated parameters exist, and the chance of another

closely space mode to be inherent is lower. Also, both criteria of convergence based

upon regression and model overspecification can be used more easily to assist in

identifying all model parameters.
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CHAPTER 4

A PROGRAM CALLED MOSE

4.1 FORTRAN 77 Source Code

The source code for this program, called MOSE, is presented in Appendix D and

three necessary input files for this program are shown in Appendix C. These three input

files (* .arrays, *.scalars, and xn.dat) must be used and in the same directory path as the

MOSE program. The 'x' is the project name the user inputs. The circled areas in

Appendix C for each file is the only information required by MOSE. The user also is

given the chance to pipe the data to the screen or to a file called *.txt. If the user inputs in

the project name followed by , .' (i.e. 'ghv .') then the program pipes all results to the file,

else everything is outputted to the screen.

The flow chart for MOSE is shown in Figure 39. When developing this program

two aspects of the application of the ARMA model with the MOSE method were

changed. The flIst aspect is how many model orders to use to detennine common modal

parameters for each mode shape. From the results of aU analyzed systems, model orders

from two through four for two or less mode systems, and model orders from three and six

for higher mode systems provides the best results using the MOSE method. This range of

model orders was high enough to obtain an accurate damping product and good
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regressive convergence. This range was also low enough so that the number of points for

regressive convergence was low, and instabilities during this convergence does not occur.

Therefore, this range of model orders was used in the program.

The second aspect is how regressive convergence was handled for each mode
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Read Input Data From Input Stop to N Points
<Call INPUT>

Start Loop To Evaluate Each ModeI

Calculate Re-Sample Factor For This Mode

Start Loop To Evaluate Each Mode For
Overspecified Model Orders (See Figure 39)

<Call MODAL_PARAMETERS>
Start Loop For N-2 and N Points

Develop ARMA Model and Overdetermined
Set of Equations [<1>] and {w}

Determine AR coefficients
Ie} = ([<I>]T[<I>])-I [<I>]T {'V}

,_

From {e}, Determine Quadratic Factors From
A,2M A,2M-l A,2M-2+ al + a2 + ....... + a2M
<Call QUADFACT OF THETA>

Determine Modal Parameters From Quadratic Factors
<Call MODAL_VALVES>

+
Check For Regressive Convergence By Comparing No MPCONV=O

Results From N-2 and N Points
-..

• Yes MPCONV = 1

•
Figure 39. MOSE Flow Chart
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r

Determine Common Modal Parameters Between
Each Model For This Mode

<Call MP COMMON>
,

I Found Common Mode Between Models? 1 - No - Stop*

Yes
Found Common Mode Between Model, But

It Did Not Regressively Converge At Least With -. No - Stop*
Two Models?

Yes
i Have Common Modal Parameters (Store Away)

Determine Each Independent Modal Parameters, and I

Keep Other Modes Found.
<Call MP SORT>

Were All Independent Modal Parameters Found r No - Stop*

Yes
Print Out Final Results (End of Program)

* When the program stops more points are asked for.

Figure 39 Continued. MOSE Flow Chart

shape. Instead of determining when regressive convergence occurs (i.e. the number of

points for convergence), the program will read in ALL points for each mode shape

included in the xn.dat file. The model order to use for each mode shape will depend

upon the system being analyzed (Figure 40). The decision for this algorithm was based

upon analyzing all systems.
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Yes

I If System Modes < 2 1 - Use a M =2, 3,4 ModelI

Else
Yes

I System Modes> 3 1 - Use a M =3,4, 5, 6 ModelI

Figure 40. Algorithm for Model Order Determination

For each mode shape, the program will determine if regressive convergence has

occurred by comparing the modal parameter results between N and N-2 points for each

model order for all mode shapes. If regressive convergence has not occurred for that

model order, a flag called MPCONV is set to O. After the results from al.l three model

orders have been calculated, common model parameters are determined between these

models. Several sets of common modal parameters may be determined which may

include system and calculated modal parameters for each independent mode shape. If

common modal parameters are determined and if MPCONV is 0 at least for two different

model orders, the program stops and asks for more points. If MPCONV is 1, a good

result has been obtained for this mode shape and uses the results from the highest model

order. All subsequent modes are handle the same way. If the program pauses and tells

the user that more points may be required, therefore, the ASENL_Unsteady Code of

STARS must be ran again for more data points. To avoid repeated runs for more points,

it is recommended to run the ASENL_Unsteady code to develop a minimum of 4 data

cycles for systems of six modes and less and a minimum of 10 data cycles for systems of
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more than six modes. The is based upon the lowest frequency being Mode 1.

After all common modal parameters have been detennined for each mode shape,

each independent mode is identified by starting from Mode 1 and determining its lowest

damping frequency from all resulting frequencies. This frequency along with its damping

factor becomes the modal parameter set for Mode 1. All other modes become other

existing modes for that mode shape. Mode 2 is then analyzed keeping in mind the results

from Mode 1. The lowest frequency of the results for Mode 2 are fust detennined. If this

damping frequency and factor are the same as Mode 1, then it is discarded, then the next

lowest frequency is determined. If this set of modal parameters does not compare to the

previous mode then this set becomes the modal parameters for Mode 2 or so on until this

mode has been correctly identified. Once Mode 2 has been identified, then all subsequent

modes are identified in a similar matter. This method can handle cases such as the GHV

system previously analyzed. For example, the frequency for Mode 9 was less than Mode

8. It can handle this because this comparison method compares both damping frequency

and factor. However, two problems do occur and are discussed in Section 4.2.

After all independent modes are identified, the damping frequency in Hz and the

damping factor are placed in an output file called *.txt in a section at the end of this file.

An example is shown in Appendix E. This section also includes other modes that exist,

but not limited to, in this mode shape.

Three other main areas of this file exists. The fust main areas provides all modal

parameter (system and some "calculated") identified from each model order for each

mode shape using the ARMA model and MOSE method. These results are provided if
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the fmal modal parameters at the end of this file seem unreasonable for any doubt because

of the two problems discussed in Section 4.3. Therefore, the system modes can be

identified hands-on from this section. The second main area provides the common modal

system parameters between each model found in each mode shape. This section can also

be used for hands-on purposes if necessary. The final area just before the final results

provides the number of modes, the number of points read in from xn.dat and used for

analysis, and the dynamic pressure of the ASENL test case. Recall, the program will not

determine or stop at the point of regressive convergence of the modal parameter values.

4.2 Validation of The MOSE Program

The validation of MOSE will be accomplished by comparing the results of the

MOSE program with the results presented earlier for each ASENL system. Only the

damped frequency and damping factor will be compared, but not the number of points for

regressive convergence due to how the program was set up.

4.2.1 Two Mode System (AGARD Wing)

Table 8 shows good comparisons, the last two columns, between the results from

Section 3.2.1 and the results from the MOSE program. Figure 41 provides the time

history from the complete data file for each mode shape showing the actual points of

regressive convergence. This point was determined using the MATHCAD templates.
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Results From Section 3.2.1 MOSE ProlUam Results Comparisons
Mode Damping Damping Damping Damping %

Ir-,'"" frequency Factor frequency Factor Difference Deltaof~
fd (Hz) ~ fd (Hz) C offd

~

1 11.428 -0.00041 11.451 -0.00041 0.20 ooסס0.0

2 37.403 0.06455 37.475 0.06452 0.19 OO3סס.0

Table 8. Comparison Between Section 3.2.1 Results and
the MOSE Program Using The AGARD System

Mode 1
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lI)
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Time, 6

I
--Actual' - Point of Regressive Corn.

Figure 41. Generalized Velocities Vs. Time for AGARD Wing System Showing
Points of Regressive Convergence with Model Order = 4
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4.2.2 Six Mode System (Flat Plate)

Table 9 shows good comparisons, the last two columns, between the results from

Section 3.2.2 and the results from the MOSE program. Figure 42 provides the time

history from the complete data file for each mode shape showing the actual points of

regressive convergence. Again, this point was determined using the MATHCAD

templates.

'.'If:!! " Results From Section 3.2.2 MOSE Pro uam Results Comparisons
Mode Damping Damping Damping Damping

frequency Factor frequency Factor % Difference Delta of

~,
.~ fd (Hz) ~ fd (Hz) ~ offd ~

'p)

1 3.645 0.03295 3.645 0.03295 0.00 ooסס0.0

2 11.935 0.02809 11.934 0.02809 0.01 ooסס0.0

3 22.017 0.02234 22.015 0.02234 0.00 ooסס0.0

1'4 29.070 0.02385 29.066 0.02388 0.01 OO3סס.0

5 44.098 0.02217 44.089 0.02216 0.00 OO1סס.0

6 59.172 0.02117 59.154 0.02113 0.03 0.00004

Table 9. Comparison Between Section 3.2.2 Results and
the MOSE Program Using The Flat Plate System
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Figure 42. Generalized Velocities Vs. Time for Flat Plate System Showing Points
of Regressive Convergence with Model Order =6
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4.2.3 Nine Mode System (GHV)

Finally, Table 10 shows good comparisons, the last two columns, between the

results from Section 3.2.3 and the results from the MOSE program. Figure 43 provides

the time history from the complete data file for each mode shape showing the actual

points of regressive convergence. This point was detennined using the MATHCAD

templates.

Results From Section 3.2.3 MOSE Pro 7ram Results Comparisons
Mode Damping Damping Damping Damping %

frequency Factor frequency Factor Difference Delta of
f:j'f: fd(Hz) ~ ftt (Hz) ~ ~ offd ~

'"1 '~ 3.659 0.08691 3.660 0.08691 0.03 OO1סס.0

"2 4.957 -0.00596 4.958 -0.00597 0.00 OO1סס.0-

3 4.892 0.02579 4.894 0.02581 0.00 OO2סס.0

",4 5.544 0.03105 5.546 0.03097 0.00 OO8סס.0

5 un 6.078 0.07846 6.080 0.07812 0.00 0.00034
6 6.092 0.07475 6.097 0.07515 0.01 -0.00040
7 7.357 0.05455 7.360 0.05447 0.00 OO8סס.0-

8 10.383 0.02088 10.383 0.02089 0.00 OO1סס.0-

9 10.218 0.01883 10.215 0.01906 0.00 -0.00023

Table 10. Comparison Between Section 3.2.3 Results and the
MOSE Program Using The GHV System
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4.3 Problems with the MOSE Program

The program has been shown validated, and its results have been very useful.

However, some remarks must be made about its usefulness. From analyzing several test

cases from different types of system, two problems occur with MOSE.

The fITSt problem is when two modes are identical. When two modal parameter

sets are identical, the ARMA model results with model overspecification, outputted at the

top of the output file, provide good results. However, the program has a difficulty in

sorting these identical modes from each other to produce the final results section of the

output file. The final results may be in error, and therefore, a hands-on decision using the

output file more thoroughly is recommended.

The second problem occurs in the post-flutter region and only occurs for very

complex systems such as the GHV model (nine modes with six modes closely spaced).

In the post-flutter region of a complex system, the unstable mode becomes very dominant

in each mode shape, therefore, the ARMA model fails to identify every single mode

accurately. However, the final results will show that the system is unstable because the

unstable mode will show up for several of the final results. Therefore, these results will

have some usefulness in identifying the flutter boundary.
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CHAPTERS

AN EXAMPLE OF FLUlTER BOUNDARY PREDICTION
USING THE MOSE PROGRAM

5.1 Method

This program can only be applied to one test case from the ASENL_Unsteady

Code of STARS for any model. Now if one test case was accomplished and the MOSE

program identified a set of system modal parameters for this case, the user would have a

better understanding of how close this case was to the flutter boundary. Recall, the

previous method for determining the closeness to the flutter boundary was a visual

examination of the time history data. Now, a better judgment for the conditions for the

next test case can made. Once several test cases have been ran, the identified modal

parameters for each test case, specifically the damping factor, can be plotted against the

dynamic pressure for each test case. When the damping factor is equal to zero, the flutter

boundary is estimated. This method was applied to two different systems, the AGARD

Wing and the GHV Systems.

5.2 AGARD Wing - Six Test Cases

5.2.1 Given Test Cases

Six general and different test cases using the AGARD system were provided. The
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flutter boundary was not identified until all cases were obtained. Figure 44 provides the

time history data for all six test cases for Mode 1 and Mode 2. Again, the point of

regressive convergence using M :::: 4 was determined using the MATCAD template.
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5.2.2 Flutter Boundary Prediction for AGARD Test Cases

Table 11 provides the modal parameter results using the six different test cases.

These resulting modal parameters are shown plotted against the dynamic pressure for

each tests case in Figures 45 and 46 for the damping frequency and damping factor,

respectively.

Mode 1 Mode 2

1't<Test Rho-Inf Q Damped Damping Damped Damping
Case (slug/in3

) (lbltr) frequency Factor frequency Factor
fd (Hz) ~ td(Hz) C

",,0 OOסס.0 9.599 38.165
I~': 1 ~ 1.04E-09 0.0283 10.313 0.01270 37.928 0.03628

2 2.ooE-09 0.0543 W.967 0.00545 37.669 0.05223
I r" 3 2.70E-09 0i0733 11.451 -0.00041 37.475 0.06453
~u4 3.ooE-09 0.0814 11.660 -0.00309 37.390 0.06998

Iii' 5 4.ooE-09 0.1086 12.363 -0.01299 37.107 0.08903
I~~~ 6 5.ooE-09 0.1357 13.078 -0.02468 36.824 0.10947

•t
i
i

Table 11. Modal Parameter Results For Six AGARD Test Cases
(Including Natural Frequencies)
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Figure 46. Resulting Damping Factors Vs. Dynamic Pressure For Both
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From Figure 46 the flutter boundary can be estimated using a linear interpolation between

test cases two and three. Or to be more accurate, another test case can be ran for a slightly

lower dynamic pressure than Test Case 3 to avoid a linear interpolation. This was not

accomplished for this research. However, these results do show how a more accurate

determination of the flutter boundary can be obtained using the damping factor versus the

dynamic pressure, instead of using the graphical representation for visual examination,

Figure 44, to determine the flutter boundary.

5.3 GHV - Eight Test Cases

5.3.1 Given Test Cases

Again, to show how a flutter boundary can be predicted using the MOSE program,
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a more complex system eight different test cases for the GHV system were provided. The

flutter boundary was not identified until all cases were obtained. Figure 47 through 54

provides the time history data for all eight test cases for Modes 1 through Mode 9. The

regressive convergence points was determined using the MATCAD template
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Figure 47. GHV System - Test Case 1, Dynamic Pressure is 16.31b/ft2

Showing Points of Regressive Convergence From M = 6 Model

99



""'""

15 ,----IMode1------,

3.02.0

Conv. 0 231 pts

1.0

40

30

20

10

o
-10

-20

-30

-40

0.02.0 3.01.0

15 ..----IMode 2--..-----,

5

10

o

-5

-10

-15 Cony. @ 336 pts

-20 L...>....-'--'---'---'-'---'----'--'--'--1Iw---L.....1-J

0.02.0 3.01.0

5

-5

o

10

-10
Conv. @ 192 pts

-15 L...>....-'--'---'---'_.I'1---'----'-'---L...L---'--~

0.0

3 r-----.----MCXJe 4-----,

Cony. @ 212 pts

3.02.0

Cony. @ 164 pts

1.0

r:---Mode 6------,20

15

10

5

o
-5

-10

-15

-20
0.03.02.01.0

50 c:----IMode 5------,

40
30

20

10

o III II' IA IIi fiJI \l"'f'I.r~"vI\"""'ifu".l
-10

-20

-3D
Conv. @ 125 pts -40

-50 "--'----'--L~L...>...._'__'_-'-L...>....-'--'---'---J

1.0 2.0 3.0 0.0

2

o

-1

-3

0.0

-2

3 .---~Mode7------,

3.02.01.0

.-----Mode9---~20

15

10

5

o
-5

-10

·15

-20
3.0 0.02.01.0

40

30

20

10

o
-10

-20

Conv. @ 116 pts -30

-40 '--'-_'__'_............~-'--'--'-L...>....-'--'---'---J

1.0 2.0 3.0 0.0

2

o

1

-2

-3

0.0

-1

1-Actual - Point of Regressive Cony.I
Figure 48. GHV System - Test Case 2, Dynamic Pressure is 27.7 Ib/ft2

Showing Points of Regressive Convergence From M = 6 Model

100



-15

-20

0.0

Cony. @ 192 pts

3.02.0

Cony. 0 252 pta

1.0

50 c----IMode 3-------,

40
30
20

10

o
-10

-20

-30
-40
-50 '---'--'--'-'-.L.....J................~'--'--.L-L-'---'

0.03.02.0

Cony. 0 266 pts
I

1.0

.-----Mode "'21-------,20

15

10

5

o
-5

-10

-15

-20

0.03.02.01.0

r-r---Mode 1------,

5

o

-5

15

10

-10

3.02.0

Cony. @ 200 pts

1.0

c-;---IMode t)-------,25

20

15

10

5

o
-5

-10

-15

-20

-25
0.03.02.0

Cony. @ 112 pts

1.0

40

-60

0.0

o

-20

20

60 .------,..-Mode ~------,

-40

3.0

Cony. @ 130 pts

1.0 2.0

5 .----r-Mode 4-------,

4

3

2

1

o
-1

-2

-3

-4
-5 '---'---,--,---a.-,---,--,-,--,--,---,--,-,--,--,

0.0

3

3.02.01.0

.-----Mode 9-----..-,25

20

15

10

5

o
-5

-10

-15

-20

-25
0.03.02.01.0

r--.....IMode 8-------,50

40

30

20

10

o
-10

-20

-30
-40

-50

0.03.0

Cony. @ 120 pts

1.0 2.0

o

2

4 .---~IMode7------,

-1

-3 '---'--"---'-~'--'--'---'---'--''--'--'---'----"''---..J

0.0

-2

-Actual -Poirt 01 RegreasNe CorH. I

Figure 49. GHV System - Test Case 3, Dynamic Pressure is 32.61b/ft2

Showing Points of Regressive Convergence From M =6 Model
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Showing Points of Regressive Convergence From M = 6 Model
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5.3.2 Flutter Boundary Prediction for GHV Test Cases

Table 12 provides the modal parameter results using the eight different test cases.

These resulting modal parameters are shown plotted against the dynamic pressure for

each tests case in Figures 55 and 56 for the damping frequency and damping factor,

respectively.

T~~ Q Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9
Cas (Ib/tr)

Damped Frequency, fd (Hz)

0 0.0 3.182(J 4.0290 4.052Cl 5.557C 6.913<l 6.971C 7.2670 9.4010 9.436Cl.

1 16.3 3.2547 4.3397 4.2262 5.5407 6.832E 6.8913 7.387(] 9.7628 9.7~

2 27.7 3.295S 4.6229 4.4386 5.5239 6.6943 6.818C 7.4358 10.0133 9.8837

3 32.6 3.301S 4.7661 4.559El 5.5159 6.6069 6.769~ 7.4538 10.1168 9.~

4 39.1 3.3091 4.9918 4.7576 5.5117 6.4376 6.6801 7.4454 10.2599 10.068(]

5 40.7 3.3074 5.048€ 4.81<le 5.5155 6.3904 6.6699 7.4152 10.2873 1~~

6 42.3 3.304CJ 5.1011 4.86«1 5.523~ ."6~ 6.649C 7.3841 10.3214 10.1201

7 44.0 3.2974 5.1483 4.91~ 5.5355 6.304CJ 6.6321: 7.3616 10.3573 10:f~

8 48.9 3.27~ 5.2688 5.047fJ 5.577E 8.4m 6.4147 7.3522/ 10.4589 10.225!i

Damping Factor, ~

1 16.3 0.08057 0.02459 0.0359:3 0.01352 O.0356(l 0.0258.t1 0.0453S 0.00130 0.0087C

2 27.7 0.156n 0.02983 O. 0.02427 0.07112 0.05127 0.0770S 0.00234 0.01207

3 32.6 0.1941~ 0.02547 0.04126 0.0298.t1 0.09111 0.06591 0.09501 0.00271 0.0141~

4 39.1 0.24912 0.01121 O.~ 0.03968 0.12802 0.09349 0.11105 0.00261 0.018&1

5 40.7 0 0.00483 0.023Q(l 0.04262 .C?J3858 0.10056 0.10805 0.00328 0.0169S

8 42.3 0.27856 -0.00246 0.01674 0.04546 0.14913 0.10953 0.10331 0.00356 0.01764

7 44.0 0.29528 -0.01014 O. 0.04771 016133 0.12072 0.10138 0.00343 0.01812

8 48.9 0.34418 -0.03323 .0.01697 0.04905 0.22894 0.11715 0.10953 0.00375 0.0197S

Table 12. Modal Parameter Results For Eight GHV Test Cases
(Including Natural Frequencies)
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Figure 55. Resulting Damped Frequencies Vs. Dynamic Pressure For
All GHV Test Cases

From Figure 56 the flutter boundary can be estimated using a linear interpolation between

test cases five and six to obtain the first flutter boundary. Notice another mode goes

unstable. Again, these results do show how a more accurate determination of the flutter

boundary can be obtained using the damping factor versus the dynamic pressure, instead
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of using the graphical representation for visual examination, Figure 52, to detennine the

flutter boundary. In Figure 52, the flutter boundary is not really obvious either.
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Figure 56. Resulting Damping Factor Vs. Dynamic Pressure For All GHV .
Test Cases Showing Flutter Boundary

Similar to Figure 32 which provides a matching of the input data with a

sinusoidal representation with corresponding modal parameters, Figure 57 is provided

below. Again, this was to ensure identification was achieved using the MOSE program.

Figure 57 only provides results for Mode 2 through 4 from Test Case 6, and it provides
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once again a good identification was accomplished.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDAnONS

6.1 Conclusions

Recall, the objective of this research was to replace the current method of

determining the flutter boundary for any model. Specifically, a method was determined

that autonomously assisted in predicting the system's flutter boundary from multiple

mode time history data, specifically the results from the ASENL Module of STARS

(ASENL_Unsteady Code). The following conclusions are made using the findings during

this research.

1. Based upon a literature review and a simple analysis using a simulated single

mode system, a simplified Single Input - Single Output Auto-Regressive Moving

Average Model ( 2*M Auto-Regressive Coefficients and 1 MA coefficient to

account for the bias due to the initial excitation) was determined to be the best

method to identify system model parameters for each independent mode shape.

Based upon further analysis with more higWy complex, "noise-free" data systems

with several closely spaced modes, the SISO ARMA model foundation was further

proved to be an adequate method, and the method does not have to account for

noise.

2. With the ARMA model as the foundation, three methods for determining the AR
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coefficients which in turn are used to detennine the finite modal parameters for each

mode were investigated. These three methods being

• Method of Overdetermined Set of Simultaneous Equations (MOSE)

• On-Line Least Squares (ON-LS)

• On-Line Double Least Squares (ON-DLS)

were extensively analyzed to determine which method identified the modal

parameters more efficiently, accurately, and without any convergence problems.

When compared to previous methods obtained from literature, these three methods

identified modes using significantly less data samples. Even though when

compared between each other, all three methods provided very good results,

generally, the MOSE method with an ARMA model foundation provided the best

results. This was more significant in the analysis of the nine-mode GHV system

with closely space modes.

3. When analyzing these three modal parameter identification methods, model

overspecification was used to avoid from knowing the model order of the each

mode. At first a nonnalized summation of all modes was considered since the

model order is known in this case. However, analyzing each mode shape was more

efficient based upon the difficulty with analyzing the nonnalized summation of all

modes. Also, the accuracy of the modal identification was further improved using

model overspecification with these methods. Specifically, model orders from M = 2

through 6, depending upon the system, with the MOSE method provided the best

results between all methods in tenns of using low data samples, the stability of
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regressive convergence, and accuracy of the identification.

4. Four reasons were provided in this paper on why analyzing a normalized

summation of all independent modes, especially for large mode system, was

difficult. The first reason was that to identify more modes in a single data stream,

more points are required for regressive convergence. The second reason was for

high mode system, thus higher model orders, more data points were required to

identify all modes. This also caused "switching". The third reason was choosing a

good re-sample factor. No single re-sample factor can be used to efficiently identify

all modes. The last reason was if all modes were identified, how can one determine

which modal parameter set was belong to which mode when modal values tend to

cross each other as the dynamic pressure increases.

5. When used as input, the generalized velocity data streams resulted in a better

modal parameter identification. Also, re-sampling this data closer to five times the

modal frequency of interest instead of using the always greater sample frequency of

the data provided more accurate results with lower data samples.

6. Finally, an efficient and autonomous stand-alone program called MOSE was

developed and validated against the resulting modal identifications previously made

for all systems. The program showed how autonomously it could identify all modal

parameters from a simple, two mode system to a highly complex system with

closely space modes. Being that the program can only be applied to a single test

case at a time, the flutter boundary can be applied to several different tests cases to

identify the flutter boundary. This was shown, by example, from plotting the
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resulting identified modes, specifically the damping factor, for each test case.

Two problems with MOSE were discussed. The program does not provide good

sorted results for identical modes, and the program will not identify modes in the

post-flutter region for complex system very accurately. The first problem was

obvious, but the second problem was due to the fact that the unstable mode was

very dominant. Overall, if the second problem is seen to occur, the general flutter

boundary can still be determined because the dominant unstable mode will be

shown for all modes. Therefore, these results are still useful.

6.2 Recommendations

The MOSE program could be made completely autonomous m terms of

identifying the flutter boundary. This can be accomplished by further developing the

program to read in multiple and different test cases then provide recommendations on the

conditions to achieve the flutter test case or to exactly determine the flutter boundary.

The size of the data streams was recommended to be at least 4 data cycles for six

mode systems and less and 10 or more data cycles for greater than six modes. The

number of cycles is based upon the lowest frequency, and this was to only avoid repeated

runs of the same test case. Still, compared to data streams used in obtained literature,

these data streams at similar sample rates are significantly less.
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APPENDIX A: EXAMPLE OF THREE METHODS
DEVELOPED IN MATHCAD v6.0

Method of Overspecification of Equations:

Obtaining time history data from single mode system discussed in Section 3.2:

Read in data file and obtain time and y data vectors:

data '::, READPRN: data)

Determine length of data and vectorize data:

<1> <2>tdata := data ydata -::: data

N := length( tdata)

Resample data if necessary:

N=63 i :=I..N y, :=ydata, 1. ,=tdata,
I I I I

n := 1
N ::. length(y) - 0

n
N=63 j:= I... N YI' '= ydata '" 0 1.: = tdata,

I "0

Set last point of excitation and determine step size:

z:=O h =(~-tN_l) h=O.00986630

Plotting vectorized data:

N, here, is the number of points
instead of n.

t.
I

Input Modal Order and determine starting point and set some initial conditions:

0.7

M :=1 k=3 o:=1..2·M Matrix ,=0
0,0 '
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Method of Overspecification of Equations Continued:

Set <I' and 'II at m+1

Algorithm for eigenvalue Determination:

eigen(8):= for q E 1.. 2·M _ I

Matrix 1<-- <- e)q, q

Matrix )<-- I
q.q+

Ma~·M.I<--(. e)2'M

eig<-- eigenvals (Matrix)

Algorithm to determine modal parameters at each
data point.

modes := for mE k.. N _ I

for q E 1.. 2·M Set cj) and", at m

$ I <-- (- Y)t..,q .. -q

4» .2,M+ 1<-- I

'l'1+-Yk

for nE 1.. 2·M

~ m- k+2,n+- (. Y)(m+ 1)_ (n)

~ ..... 1m-k+2,2'M+1

'I'(m_ k) +2<-- ym+ 1

Determine AR Coefficients

Determine eigenvalues

Determine modal parameters

Condition of modal
parameters

Vector of modal parameters

Sf- (4l T.ljl t'lI> T.'I'

eig<-- eigen(8)

for u E LM

0'm, u..... - (2~h 'In(Re(eig2.U)

2
+ 1m(eig2.U) 2) )

0> f-~.atan(_Irn(eig2'U)\
m.u h Re(eig2.

U
) )

,rm,u"'" 0 if Re(eig2.
U
)<O

if Re(eig2.
U

) >0

o if Im(eigz.u)_O

cr

r

Organizing results to obtain modal parameters at N-1

b ,=N_ 1 b'n =62 e := 1 (N_e)·n=62

0' := for i E 1.. M 0> : = for iELM

<'>
Pf- [( modes)2] I

O>j<--Pb

0>

120

r := for i E 1.. M

<'>
P<-- [(modes)3] I

r



Method of Overspecification of Equations Continued:

Modal Parameters and conditions of each mode at N-1

T
ro =30

? =1

M =l N=63

Plot of damping and frequency for each data point and each mode u.

u := 1
<u>

(J : = [ ( modes) I ]

n =1 i :=k .. N _ e

2.5% error band

k=3 e = 1 N =63

q..=oN - aN ..025
I _e _e

!/--.----_._------

j'n

I-r-- ------t------
I
I

I

2.5% error band

End of Method of Overspecification.
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On-Line Least Squares Method:

Obtaining time history data from single mode system discussed in Section 3.2:

Read in data file and obtain time and y data vectors:

data :=READPRN: data) <I> <2>tdata :=data ydata :=data

Determine length of data and vectorize data:

N = length ( tdata ) N =63

Resample data if necessary:

j:= l..N y. :=ydata . t· - tdata
J I i .- i

n =1 N := length(y) - 0
n

N=63 i:= 1.. N y. :=ydata. t· - tdata
I I'n i'- j'n

Set last point of excitation and determine step size:

z :=0 h := (tN - t
N

_ 1) h = 0.00986630

Plotting vectorized data:

N. here, is the number of points
instead of n.

2...-----r------r------r------,----r----,-----,

0.7

l.
I

Input Modal Order and determine starting point and set some initial conditions:

m=3
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On-Line Least Squares Method Continued:

Set Initial
Conditions

for rE 1..2·M+ I

9 ...... 1
r

P...... a·I

for iE Ie. N Start loop

9...... 9_ p'\jf'('I'T.p.\jf + 11(' ('l'T'L Yl)

eig...... eigen(9)

for uE l..M

Algorithm to determine modal parameters at each
data point.

mcxles:= for q ELm

Determine eigenvalues

Update AR Coefficients

eigen(9):= a...... 9

for q E 1.. 2·M _ 1

Matrix ...... (a)
q.1 q

Matrix ...... 1
q.q+1

Matri~_M,l"""(a)2'M

eig...... eigenvals(Matrix)

Algorithm for eigenvalue determination:

Determine modal parameters

Condition of modal
parameters

Updata P and\jl
for next data point

(Ji.u...... - (2~h .In(Re(eig2.uf + I1ej~-uf))

w l.atan(- 11eig2'U))
i.uf-1} Re(eig

2
.
U

)

r. f- 0 if Re(eig ) <0
I,U 2·u

if Re(eig2.
U
»0

o jf I1eig2'u)-O

P p''I''('I'T.p''I'+Ilr''('I'T.p)p...... --:~__---'_~_..o...

11 11

for qE 1.. m_ I

Vector of modal parameters co

r

Organizing results to obtain modal parameters at N-1

b-=N_I b'n=62 e := 1 (N_ e)'n =62

(J:= for iE l..M

P [( mcxles) It>
(Ji Pb

w = for iE 1..M r:= for iE l..M

p...... [(modes)3t>
rif- Pb

w r
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On-Line Least Squares Method Continued:

Modal Parameters and conditions of each mode at N-1

To =5

T
CJ) = 30

M =1 N=63

Plot of damping and frequency for each data point and each mode u.

u := I

(J :=[(modes)1 tv>
n = 1 i:= k .. N _ e

2.5% error band

k=3 e = 1 N =63

q--=(JN _oN -.025
I- _C _e

cr
•

200

160

120

80

40

, __J____ Ii
I

f--- -- - -_.+-------.

I I

: I

I
I

\l I
I,
f

; --
;

I I
10 20 30

j-n

40 50 60 70

[ ]
<u>

CJ) -= (modes)2 2_5% error band

End of On-Line Least Squares Method

I

i
~

i
.. -- -- - -'-= ---._- - ;;;.
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On-Line Double Least Squares Method:

Obtaining time history data from single mode system discussed in Section 3.2:

Read in data file and obtain time and y data vectors:

data:=READPR1'(data) <I> <2>tdata '= data ydata :=data

N = 63.000 i= 1.. N

Determine length of data and vectorize data:

N::length(tdata) N=63.ooo i:=l..N Yi:=ydata
j

tj:=tdata j

Resample data if necessary:

n '= 1 N: length(y) - 0
n

Set last point of excitation and determine step size:

z:=O h:=(tN-tN_ J) h=0.00986630

Plotting vectorized data:

N, here, is the number of points
instead of n.

1,,--~~-~h--~h---&---tr---tr-~O,1

t.
I

Input Modal Order and determine starting point and set some initial conditions:

M:= I m:=2·M+ 1 m=3.ooo k ,=m+ z a:= lao I :=identity(m)
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On-Line Double Least Squares Method Continued:

Algorithm for eigenvalue determination: Algorithm to determine modal parameters at each
data point.

eigen(9) = a+-9

for q E 1.. 2· M _ I

Matrix +- ( a)
q,! q

Matrix +-1
q,q+1

Matrix2.M ,\+- (a)2'M

eig+- eigenvals (Matrix)

modes:= for q ELm

~q+-Yk_q+1

(Xq+-Yk _ q+] + Yk- q+ 2

~ +-1
m

(X +-2
m.

for re 1.. 2· M + I

9+-1
r

P+-a·1

for ie k.. N _ 1

Set Up Initial Conditions

Start Loop

Update AR Coefficients

Determine eigenvalues

Determine modal parameters

Condition of modal
parameters

Updata P, a. and 13
for next data point

Vector of Modal
Parameters

9+-9_ P'(X'(I3T'P.(X+~(.(~T'9_Y
i
)

eig+- eigen( 9)

for U E I .. M

°i. u+-' (2~h'In(Re(eigz.u/ + Im(eig2.U) 2))

(j) I. atan (,lm(ei
g

2.u))

i.u+-ll Re(eig
2

.
U

)

rio u+- 0 if Re(eig2.
U

) <0

if Re(eigz.u) >0

o if lm(eig )_0
2·u

P p.(X. (~T.p.(X + ~r 1·(I3T.p)
p..... - - ----"---~--'---'----'-

~ ~

for q E I.. m_ I

13q+- Yi _ q+ I

(Xq+- Yi _ q+ 1 + Yi _ q+2

~ +- 1
m

(X ..... 2
m
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On-Line Double Least Squares Method Continued:,

Organizing results to obtain modal parameters at N-1

b :=N_ 1 b·o =62.000 e:= I (N_ e)-n =62.000
cr = for iE l.. M 0) := for iE I..M r:= for iE l..M

<i>
P..- [(modes)2t> <i>P..- [( modes)1 ] p<- [(modes)3]

crj (- Pb O)j(- Pb rj <- Pb

0) r

Modal Parameters and conditions of each mode at N·1

crT = 5.000

M = 1.000 N =63.000

0)T =30.000

? =1.000

Plot of damping and frequency for each data point and each mode u.

u := 1
<u>

cr =[ ( modes) I] 2.5% error band

k =3.000 e = 1.000 N =63.000

o605040302010o

200
II

I140 Jt- ·_·f- - -- - ~ ..-
I

80 ,
,

I20 i I - . I- V.{_
I

~ -- - I-- ._--

I\nr I
7

cr·,

q.
I

j-n

2.5% error band

8

\6

4O..-----""""7",----.---'1---------,
wi 32 ---=-=s:§~~~~~~1 ~~~~~I

24 -.--t-----~,---1 1------------- -- .-1----
Pi

..~-~ ~~:: =--=-~~-=l~-:
i I Io1".0---L;1';;"0----+.20~--~3~0;------;4O~---~500---(;(60)--~70

j-n

End of On-Line Double Least Squares Method
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APPENDIX B: RESULTS OF TWO MODE SYSTEM (AGARD WlNG)

Method Modal Damping Damping Frequency, Points needed No Switching
Order Product C1>o (radJs) @ N=500 farconv. wfm 5'IJ After This Pt

a • N::;SOO ofaetuala

I· MOSB 1 .078 71.977 - -
2 -.038 71.858 - -
3 -.029 71.854 129 225
4 -.029 71.857 200 200

18.527 145.429 - -
5 -.024 71.858 - -

39.072 133.926 - -
6 -.028 71.856 - -

17.610 I 124.203 - -
ON-LS 1 .069 1 72.037 - -

2 -.028 71.856 128 128
3 -.028 71.856 128 255
4 -.028 71.856 136 -
5 -.028 71.856 152 -
6 -.028 71.856 168 -

13.649 107.298 -- .. - -
ON-DLS 1 ,~, -.018 71.942 - -

2 -.028 71.856 120 136
3 -.028 71.856 120 230
4 -.028 71.856 136 -
5 -.028 71.856 152 -

-14.690 105.335 - -
6 -.028 71.856 168 -

51.649 95.437 - -
30.305 139.342 - -

Table 13. Results From Applying of Each Method Using Generalized
Displacements, q, From Mode 1 of AGARD with F =8.4 (or n =8)
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Modal I>ampina Damping Frequency, S
Order Product 0.>0 (radls) @ N=500 After This Pt

a@N=600

MOSS 1 1.349 73.040
2 -.024 71.871 360
3 -.028 71.856 125
4 -.an 71.858 140

91.524 138.769
5 -.028 71.855 260
6 -.fYZ1 71.856 400

102.S87 122.822
ON-LS 1 1.246 72.540 SOO 500

2 -.028 71.856 120 120
3 -.028 71.856 120 275
4 -.028 71.856 36 300
5 -.028 71.856 IS2

7.793 139.381
6 -.028 71.856 168

ON-DLS 1 .546 72.094
2 -.028 71.856 2S 125
3 -.028 71.856 128

-24.025 99.976
4 -.028 71.856 136
5 -.028 71.856 IS2
6 -.028 71.856 168

-8.747 85.357

Table 14. Results From Applying of Each Method Using Mode I
Generalized Velocities, qdot, On Mode I From AGARD

with F = 8.4 (or n =8)
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Me&hod Modal Damping Frequency, Points needed No Switching
Order roo (rad/s) @ N=500 for cony. wfm 51' MterThis Pt

ofaetual (J

MOSE 1 232.447 330 330
2 70.828

234.981 60 60
3 71.852

235.145 60 60
4 71.916

235.143 88 88
5 71.843

235.145 136
6 71.847

235.134 190 190
1 228.863
2 71.851 190 190

235.145 52 52
3 71.849 116 160

235.145 56 160
4 71.849 156 160

235.145 72 160
5 71.849 104 304

234.145 76 400
6 71.849 108

149.814
235.145 96

ON-DLS 1 233.336
2 71.851 2SO 250

235.145 64 64
3 71.849 116

235.145 56
4 71.849 124

235.145 68
5 71.849 96

178.337
235.145 76

6 71.849 108
131.007
235.145 84

Table 15. Results From Applying of Each Method Using Mode 2
Generalized Displacements, q, of (AGARD)

with F == 5.6 (or n == 4)
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Method Modal Damping Damping Frequency, Poin needed No Switching
Order Product 0>0 (rad/s) @ N=500 forcoov. w/iaS.. After This Pt

o.N--500 ofactual (J

I~ MOSE 1 15.221 234.899 SO 50
2 -.17S 72.101 - -

I~ 15.111 235.165 36 361'-'
3 -.028 71.842 - -

I~~ 15.207 235.142 52 52,
4 -.034 71.849I-' - -

Li:~ IS.204 235,143 84 84
5 -.030 71.856 - -

I~ 15.202 235.143 88 88
I"~, 6 -.028 71.855 - -

15.206 235.]45 108 -
1,.1, ON-LS 1 16..008 234.596 - -
ia 2 -.em 71.849 330 330

15.205 235.145 64 64
r~. 3 -.028 71.849 164 164

15.206 235.145 64 164
13 4 -.028 71.849 136 260

15.206 235.]45 68 200
5 -.028 71.849 92 470

15.206 235.145 72 375
6 -.028 71.849 128 -

15.205 234.]45 80 -
ON-DLS 1

'.,

15.614 234.312 80 80
2 -.027 71.849 300 300

IJ.!! 15.205 234.145 64 64

I'J 3 -.028 71.849 128 250
15.206 235.145 64 250

I'~ 4 -.028 71.849 136 300
15.205 235.145 68 260
36.174 298.562 - -

5 -.028 71.849 124 -
-42.739 206.906 - -
15.205 235.145 72 425

6 -.028 71.849 124 -
5.821 110.704 - -

15.206 235.145 84 -
-26.034 283.] 15 - -

Table 16. Results From Applying of Each Method Using Mode 2
Generalized Velocities, qdot, From AGARD

with F = 5.6 (or n = 4)
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Last Point of Input becomes
INPUT_STOP which is then
multiplied times 3

APPENDIX C: INPUT FTI...ES FOR MOSE.F

INPUT FILE: *.scalars

$ aeroelastic scalars data file ( factor=O.50 at mach=2.0 )
$~, ibc (O=full modes, l=q(I) = 0.01, 2=q(nr+l)=O.Ol )

2 ~50
.' I,~, 3: 4, 5,7, 9 lNumber of Modes I

$ tread, Ipnnt
2, I

$ dimensionalPC~;-inf . in**~sec), gamma, pinf
0.9 1.04185957e-~8 1.4 0.0

$ shift factor and gravity const
0.0. 1.0

$ flag, ffi, ns,
2, 10.0,2,

$ cfa, cfi
1, 1

$ nterrns, nsteps
20, 2

$ na, nb
2, 3

.1 .450ge-9

.2 1.80381ge-9

.3 4.05859375e-9

.35 5.52419705e-9

.4 7.21527777e-9

•
•
•
•
•
•
•

<End of Data File>
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INPUT FILE: *.arrays (output fIle consisting of natural frequencies)

ncies ( in hz )
3.182
4.029
4.052
5.557 Natural Frequencies of
6.913 Each Independent Mode
6.97]
7.267
9.401
9.436

$ DESCRIPTION OF MODEL
$ nna, nela

10013 20022
$ Freque

$ Restart Option
o

$ COMPLETE GENERALIZED STIFFNESS MATRIX
4.38649 • 0.0
0.0 , 20.7834

$ COMPLETE GENERALIZED MASS MATRIX
1.20500-3, 0.0
0.0 , 3.6143e-4

$ COMPLETE GENERALIZED Damping MATRIX
0.002908949 • 0.0
0.0 ,0.003467299

•
•
•
•
•
•

<End of Data File>
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INPUT FILE: xn.dat

TITLE
NCHANS 27
NAMES
Xl
X2
X3
X4
X5
X6
X7
X8
X9
XIO
Xll
XI2
XI3
XI4
XI5
XI6
XI7
XI8
FI
F2
F3
F4
F5
F6
F7
F8
F9
DATAOOI

.OOOOOOE+OO .OOOOOOE+OO

.133240E-0I -.l88670E-02

.19986IE-Ol -.747877E-02

.26648 IE-Ol -.166700E-OI

.3331OIE-01 -.29499IE-01

.39972IE-OI -.461688E-Ol

•
•
•
•
•
•

.332437E+Ol -.215349E+OO

.333103E+Ol -.220359E+OO

<End of Data File>

Start of qdot
being y(N,I)

.............. .OOOOOOE+OO .OOOOOOE+O
.............. .232247E+OO .43378IE+0
............... .442354E+OO .777978E+0
............... .610002E+OO .963052E+O
............... .719607E+OO .969542E+O
.............. .760892E+OO .803093E+0

.652379E-02 -.338264E+O

.531898E-02 -.40915lE+O
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APPENDIX D: SOURCE CODE FOR MOSE.F

C==--=---====--=================~=========
C THIS PROGRAM, MOSE.F, DETERMINES MODAL PARAMETERS FROM ASENL'S OUTPUT
C TIME HISTORY DATA FROM ASENL_CODE. IT USES AN ARMA MODEL TO MODEL THE
C DATA. THE AR COEFFICIENTS OF THE ARMA MODEL ARE DETERMINED USING
C SIMULTANEOUS OVERDETERMINED SET OF EQUATIONS COUPLED WITH MODEL
C OVERSPECIFICATION. THE MODAL PARAMETERS ARE DETERMINED FROM A
C CHARACTERISTIC EQUATION OF AR COEFFICIENTS. THE ROOTS OF THIS
C CHARACTERISTIC EQUATION ARE DETERMINED USING BAIRSTOW'S METHOD OF
C QUADRATIC FACTORING. THE MODAL PARAMETERS ARE THEN FOUND FROM EACH
C QUADRATIC FACTORIAL.
C
C EACH INDEPENDENT MODE SHAPE OF STARS IS ANALYZED USING THE ABOVE
C DESCRIPTION. FROM THESE RESULTS, COMMON MODAL PARAMETERS ARE
C DETERMINED. AFTER ALL MODE SHAPES ARE ANALYlED, ALL COMMON MODAL
C PARAMETERS ARE SORTED AND THE SPECIFIC MODE FOR THAT MODE SHAPE IS
C DETERMINED.
C
C THIS PROGRAM CAN HANDLE UP TO 10,000 DATA POINTS OF TIME HISTORY DATA
C AND UP TO 20 INDEPENDENT MODES.
C
C PROGRAMMER: COREY L. ECKHART SPRING 1998
C
C ============================================================
C
C MAIN PROGRAM
C
C =============================================--========--======
C
C GLOBAL VARIABLES:
C
C NMAX MAXIMUM NUMBER OF POINTS PROGRAM CAN HANDLE (= 10000)
C MODEMAX MAXIMUM NUMBER OF INDEPENDENT MODE SHAPES PROGRAM
C CAN HANDLE (= 20)
C J THE COUNT OF X VALUES IN MOSE.DAT (TWICE THE NUMBER
C OF MODES)
C N NUMBER OF DATA POINTS WORKING WITH
C FLAG1 FLAG TO DETEMINE IF COMMON PARAMETERS BETWEEN EACH
C MODEL FOR EACH MODE WERE FOUND. IF NONE WERE FOUND
C PROGRAM STOPS AND MORE POINTS ARE NEEDED.
C FLAG2 ANOTHER FLAG TO DETERMINE IF ENOUGH POINTS WERE USED
C IN SORT SUBROUTINE FOR REGRESSIVE CONVERGENCE
C FLAG3 ANOTHER FLAG TO DETERMINE IF ENOUGH POINTS WERE USED
C IN SORT SUBROUTINE FOR MODE CONVERGENCE
C FLAG4 ANOTHER FLAG USED TO REQUIRE MORE POINTS IF PH1M
C CANNOT BE INVERTED DUE TO IT BEING SMALL AND SINGULAR
C TIME(NMAX) ARRAY (MAX=2000) FOR THE TIME COLUMN
C Y(NMAX,MODEMAX) MAXIMUM 2000X20 ARRAY FOR ALL QDOT DISPLACEMENT DATA
C QINF FREE-STREAM DYNAMIC PRESSURE (0.5*RHO*(MACH*AY'2)
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ARRAY (MAX=20) OF UNDAMPED NATURAL FREQUENCIES AT
QINF=O
LAST POINT OF STRUCTURAL EXCITATION INPUT IN MOSER
FILE
NUMBER OF MODES IN SYSTEM
ACTUAL INPUT DATA SAMPLE PERIOD (DELTA TIME),SECONDS
MODE WHICH TO USE MODEL ON
COUNT HOW MANY TIMES SUBROUTINE MODAL_PARAMETERS C
IS USED
DATA RE-SAMPLE FACTOR TO RE-SAMPLE INPUT DATA WITH
TO WORK WITH HOWEVER NO LESS THAN 25/200 PTS OR
RE_SAMP_FACTOR=8
MODEL OF MOSE TO USE
ARRAY OF AR COEFFICIENTS
MATRIX OF R VALUES (CONDITION OF OMEGA) FOR EACH MODE
AND EVERY MODEL
MATRIX OF DAMPING FACTORS FOR EACH MODE AND EVERY
MODEL
MATRIX OF DAMPING FREQUENCIES FOR EACH MODE AND
EVERY MODEL
IF = 1 THEN HAVE REGRESSIVE CONVERGENCE FOR THAT
MODAL VALUE
MATRIX OF COMMON MODAL PARAMETERS DETERMINED FROM
MPR, MPSIGMA, AND MPOMEGA
NTH COMMON MODE
MATRIX OF FINAL MODAL PARAMETERS FOR ENTIRE SYSTEM
MATRIX OF OTHER EXISTING MODES IN EACH MODE SHAPE
USED FOR MODAL PARAMETER CONVERSION

SET N TO NOLO TO BE USED LATER FOR OTHER MODES
ORIGINAL SAMPLE FREQUENCY OF MOSER DATA
USED FOR CHECKING FOR MAXIMUM RE-SAMPlE FACTOR
PI= 4.00 *DATAN(1.DO)
USED FOR MISCELLANEOUS DO LOOPS

C FREQ(MODEMAX)
C
C INPUT_STOP
C
C MODES
C DTORIG
CMODE
CCOUNT

C RE_SAMP_FACTOR
C
C
CMODEL
C THETA(MODEMAX)
CMPR
C
CMPSIGMA
C
CMPOMEGA

C MPCONV
C
C MP(MODEMAX,4)
C
C NMODE
C FINAL_MODES
C OTHER_MODES
CDUMMY
C
C LOCAL VARIABLES TO MAIN PROGRAM:
C
CNOLD
C SAMPLE_FREQ
C CAllAS
CPI
CK,T
C
C
C

PARAMETER (MODEMAX=20)
PARAMETER (NMAX=10000)

INTEGER J,N,FLAG1,FLAG2,FLAG3,INPUT_STOP.MODES,MODE,
+ COUNT,RE_SAMP_FACTOR.MODEL.FILEN,SCREEN,
+ MPCONV(MODEMAX,MODEMAX),NMODE,FLAG4.
+ OTHER_MODES(MODEMAX,MODEMAX).NOLD,CALlAS.K,T,
+ HIGHMODE,LOWMODE
DOUBLE PRECISION T1ME(NMAX),Y(NMAX,MODEMAX),QINF,FREQ(MODEMAX),

+ DTORIG,THETA(2*MODEMAX+1),MPR(MODEMAX,MODEMAX).
+ MPSIGMA(MODEMAX,MODEMAX),
+ MPOMEGA(MODEMAX,MODEMAX),MP(MODEMAX*MODEMAX,4),
+ FINAL_MODES(MODEMAX,MODEMAX),DUMMY,SAMPLE_FREQ,
+ PI
CHARACTER PROBNAME*20
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C PRINTING OUT START OF PROGRAM AND ASKING FOR FILE NAME

WRITE(*,")' ...... Program MOSE ....*,
WRITE(*:) , ASENL Modal Parameter Identification Program v1.1'

WRITE(*,'(/,a,$)') , Enter problem name: '
READ(", '(A)',ERR = 1001) PROBNAME

J=O
N=1
FLAG1 = 0
FLAG2=O
FLAG3 = 0
FLAG4=O
SCREEN = 0

C CALLING SUBROUTINE TO READ INPUT DATA (TO GET ALL TIME AND Y DATA)

CALL INPUT(TIME,Y,J,N,OINF,FREO,INPUT_STOP,PROBNAME,FILEN,
+ FLAGS)

C CHECK TO SEE IF RESULTS ARE PIPED TO A FILE
C SYNTAX TO PIPE TO A FILE IS TO ADD A SPACE THEN A PERIOD

IF (PROBNAME(FILEN+2:FILEN+2) .EO. '.') THEN
WRITE (*, ..) 'PIPING TO ',probname(1:FILEN)/f.txt'
WRITE (", ..)
SCREEN = 2
OPEN(SCREEN,FILE = PROBNAME(1 :FILEN)/f.txI',STATUS='UNKNOWN')

ENDIF

NOLD =N

C DETERMINING NUMBER OF MODES, MODEL ORDERS TO USE, AND SAMPLE
FREOUENCY

MODES=J
SAMPLE_FREO = 1/(TIME(N)-TIME(N-1»
DTORIG = 1/SAMPLE_FREO

IF (MODES .LE. 2 ) THEN
LOWMODE = 1
HIGHMODE = MODES+2

ELSE
LOWMODE = 1
HIGHMODE=6

ENDIF

C PRINTOUT HEADER INFORMATION

IF (SCREEN .EO. 2) THEN
WRITE(2,") 'ARMA MODEL WITH MODEL OVERSPECIFICATION RESULTS',

+ ' SHOWING MODAL PARAMETERS'
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WRITE(2,") 'CONVERGED UPON IN EACH MODE:
ELSE
WRITE(":) 'ARMA MODEL WITH MODELOVERSPECIFICATION RESULTS',

+ ' SHOWING MODAL PARAMETERS'
WRITE(",*) 'CONVERGED UPON IN EACH MODE.'
ENDIF

C LOOP TO MOVE THROUGH EACH MODE

DO 10 MODE=1,MODES
COUNT = 0
N=NOLD

WRITE (*:) 'ANALYZING MODE ',MODE

C DETERMINE RE_SAMP_FACTOR FACTOR AND CHECK IF PROPER AND NEW N

RE_SAMP_FACTOR = SAMPLE_FREQ/(S*'FREO(MODE»

IF «SAMPLE_FREQ/FREO(MODE» .LE. 40) THEN
CALlAS= 200/RE_SAMP_FACTOR
IF (CAllAS .LT. 25) THEN
RE_SAMP_FACTOR = 8
ENDIF

ELSE
RE_SAMP_FACTOR = SAMPLE_FREQ/(5*FREO(MODE»

ENDIF

C LOOP TO DETERMINE MODAL PARAMETERS FOR EACH MODEL ON EACH MODE

DO 20 MODEL=LOWMODE,HI,GHMODE,1
N=NOLD

C DETERMINE AR COEFFICIENTS

CALL MODAL_PARAMETERS(THETA,Y,MODEL,MODE,N,RE_SAMP_FACTOR,
+ DTORIG,MPR,MPSIGMA,MPOMEGA,MPCONV,COUNT,
+ FLAG4)

IF (FLAG4 .EO. 1) THEN
WRITE (*:)
PAUSE 'NEED MORE POINTS. A MATRIX CANNOT BE INVERTED, SMALL'
STOP
ENDIF

C END OF MODEL LOOP

20 CONTINUE

C WRITE OUT HEADER INFO FOR EACH INDEPENDENT MODE

IF (SCREEN .EO. 2) THEN
WRITE(2,*)
WRITE(2,500) MODE,FREO(MODE),RE_SAMP_FACTOR,SAMPLE_FREO

ELSE
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WRITE(",")
WRITE(".500) MODE,FREQ(MODE).RE_SAMP_FACTOR,SAMPLE_FREQ

ENDIF

C CALL TO DETERMINE COMMON PARAMETER FOR EACH MODE BETWEEN EACH
C MODEL ORDER USED

CALL MP_COMMON(MP,MPR,MPSIGMA,MPOMEGA,MPCONV,COUNT,MODEL.
+ MODE,NMODE,FLAG1.FLAG2.SCREEN.LOWMODE.
+ HIGHMODE)

C STOP IF REGRESSIVE CONVERGENCE BETWEEN N-2 AND N POINTS IS NOT FOUND

IF (FLAG2 .EQ. 1) THEN
WRITE(",700) MODE
WRITE(",")
PAUSE 'HIT ENTER TO CONTINUE'
ENDIF

C STOP IF MODE CONVERGENCE IS NOT FOUND

IF (FLAG1 .EO. 1) THEN
WRITE ( )
WRITE( ) 'WARNING! MAY NEED MORE POINTS. MODE "

+ 'CONVERGENCE FAILED FOR MODE'. MODE
WRITE(",")
PAUSE 'HIT ENTER TO CONTINUE'

ENDIF

C END OF MODE LOOP

10 CONTINUE

C CALL SORT TO DETERMINE FINAL MODAL RESULTS AFTER COMMON PARAMETERS
CWERE FOUND

MODE =MODE-1

CALL MP_SORT(MP,NMODE,MODE.FLAG3,FINAL_MODES,OTHER_MODES,SCREEN.
+ FREQ)

IF (FLAG3 .EO. 1) THEN
WRITE ( )
WRITE( ) 'WARNING: MAY NOT BE ENOUGH POINTS. OR MODES ARE'.

+ ' VERY CLOSE TO CORRECTLY'
WRITE(",") 'DEFINE PARAMETERS. USE ABOVE LISTS TO DETERMINE',

+ ' MODAL PARAMETERS'
PAUSE 'HIT ENTER TO CONTINUE'

ENDIF

C CONVERSION OF MODAL PARAMETERS TO DAMP. FREQ IN HZ AND ZETA FOR
C DAMPING FACTOR

PI =4.00 "DATAN(1.DO)
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DO 30, K =1,MODE
IF (FINAL_MODES(K,1) .NE. 000 .OR. FINAL_MODES(K,2) .NE. 000) THEN
DUMMY =FINAL_MODES(K,2)/(SQRT{FINAL_MODES(K,2)**2 +

+ FINAL_MODES(K,1 )**2))
FINAL_MODES(K,2) =DUMMY
FINAL_MODES(K,1) = FINAL_MODES(K,1)/(2~PI)

ENDIF
30 CONTINUE

C WRITE OUT FINAL MODAL RESULTS FOR SYSTEM TO ~.TXT OR TO SCREEN

IF (SCREEN .EQ. 2) THEN
WRITE(2,*)
WRITE(2,100) MODES
WRJTE(2,300) INPUT_STOP
WRITE(2,400) NOLO
WRITE(2,200) QINF
WRITE(2,*)
WRITE(2,*) 'FINAL ESTIMATED MODAL PARAMETERS'
WRITE(2,*)
WRITE(2,*)' NATURAL DAMPING DAMPING'
WRITE(2,*) , FREQUENCY FREQUENCY FACTOR'
WRITE(2,*) 'MODE (HZ) (HZ)

+ 'OTHER MODES*'
DO 40, T=1,MODE

WRITE(2,600) T,FREQ(T),
+ (FINAL_MODES(T,K),K=1,2),
+ (OTHER_MODES(T,K) ,K=1,MODE-1)

40 CONTINUE
IF (FLAG5 .EQ. 1) THEN
WRITE(2,*) 'LAST MODE WAS A CONTROL MODE'

ENDIF

WRITE(2,602)
WRITE(2,*)
WRITE(2,*) 'WARNING: IF ABOVE RESULTS LOOK UNREASONABLE DUE',
+ ' TO IDENTICAL MODES'
WRITE(2,*} 'USE RESULTS FROM THE ARMA MODELS FOR EACH MODE',
+ ' SHAPE. IF IN THE POST-FLUITER '
WRITE(2,*) 'REGION AND AN USTABLE MODE IS SEEN FOR SEVERAL MODES',
+ . THEN THE SYSTEM IS'
WRITE(2,*) 'UNSTABLE AND MODES COULD NOT BE CLEARLY IDENTIFIED.'

ELSE
WRITE(*,*)
WRITE(~,100) MODES
WRITE(*,300) INPUT_STOP
WRITE(*,400) NOLO
WRITE(* ,200) QINF
WRITE(*,~)

WRITE(*,*) 'FINAL ESTIMATED MODAL PARAMETERS'
WRITE(*,*)
WRITE{*,*)' NATURAL DAMPING DAMPING'
WRITE(*,*)' FREQUENCY FREQUENCY FACTOR'
WRITE(*,*) 'MODE (HZ) (HZ) "

+ 'OTHER MODES*'
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DO 50, T=l,MODE
WRITE(*,600) T,FREO(T),

+ (FINAL_MODES(T,K),K=l,2),
+ (OTHER_MODES(T,K) ,K=l,MODE·l)

50 CONTINUE

IF (FLAGS .EO. 1) THEN
WRITE(*,*") 'LAST MODE WAS A CONTROL MODE'

ENDIF
WRITE(*,602)
WRITE(*,*)
WRITE(*,*) 'WARNING: IF ABOVE RESULTS LOOK UNREASONABLE DUE',
+ ' TO IDENTICAL MODES'
WRITE(*,*) 'USE RESULTS FROM THE ARMA MODELS FOR EACH MODE',
+ ' SHAPE. IF IN THE POST-FLUTTER •
WRITE(*,*) 'REGION AND AN USTABLE MODE IS SEEN FOR SEVERAL MODES',

+ ' THEN THE SYSTEM IS'
WRITE(*,*) 'UNSTABLE AND MODES COULD NOT BE CLEARLY IDENTIFIED.'

ENDIF

WRITE (*,*)
PAUSE 'Program MOSE Complete. Check Data!'

IF (SCREEN .EO. 2) CLOSE(SCREEN)

100 FORMAT(' NUMBER OF MODES: ',12)
200 FORMAT(' FREE-STREAM DYANAMIC PRESSURE (0.5*RHO*(MACH*AY'2):',

+ F9.5)
300 FORMAT(' LAST POINT OF INPUT: ',IS)
400 FORMAT(' NUMBER OF POINTS READ IN AFTER INPUT AND USED FOR',

+ 'ANALYSIS: ',IS)
500 FORMAT(' MODE=',12,' NAT. FREO=',Fl0.5,' RE·SAMPLE FACTOR=',

+ 13,' ORIG. SAMPLE FREO. =',F6.1)
600 FORMAT(13,' ',Fl0.5,' ',Fl0.S,' ',Fl0.6,' ',1013)
602 FORMAT(' * OTHER MODES FOUND BUT NOT LIMITED TOO.')
700 FORMAT(' WARNINGI MAY NEED MORE POINTS. REGRESSIVE CONV.',

+ 'FAILED FOR MODE',12,'. CHECK ABOVE LISTS.')
800 FORMAT(' PIPING TO',A20,'.TXT')

STOP
1001 WRITE(*,*)' ERROR READING PROBLEM NAME FROM SCREEN'

END

C END OF MAIN PROGRAM
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CHARACTER OF LENGTH 6 USED FOR DETERMINATION OF NUMBER
OF MODES
FREE-STREAM MACH NUMBER FROM ·.SCALARS
FREE-STREAM DENSITY FROM *.SCALARS (SLUGS/IN"3)
FREE-STREAM VELOCITY OF SOUND (IN/SEC)
COUNT HOW MANY NATURAL FREOUECIES FROM ·.ARRAYS
FOR READING IN EACH LINE OF TIME HISTORY DATA
USED FOR DO LOOPS
NOT USED

C
C
C START OF ALL SUBROUTINES
C
C

C =====================---====--===--====================
C
C SUBROUTINE INPUT: READS IN INPUT DATA FROM XN.DAT,·.ARRAYS, ·,SCALARS
C
C
C LOCAL VARI,ABLES:
C
C XVALUE:
C
C MACHINF:
C RHOINF:
CAINF:
CR
C DATA(25)
CI,K
CP
C
C ======================================--========

SUBROUTINE INPUT(TIME,Y,J,N,OINF,FREO,INPUT_STOP,PROBNAME,FILEN)

PARAMETER (NMAX=10000)
PARAMETER (MODEMAX=20)

CHARACTER XVALUE*6,PROBNAME·20
INTEGER P,N,INPUT_STOP,K,G,FILEN
DOUBLE PRECISION DATA(25),TIME(NMAX),Y(NMAX,MODEMAX),FLAG(4),

+ QINF,MACHINF,RHOINF,AINF,FREO(MODEMAX),DUMMY(MODEMAX)

K=1
R=1

C DETERMINING PROGRAM NAME LENGTH CALLING NAMLEN FUNCTION

FILEN = NAMLEN(PROBNAME)

C OPENING NECESSARY INPUT FILES FOR READING DATA

OPEN(UNIT=1,FILE='xn.dat',STATUS='OLD',ERR=2001)
OPEN(UNIT=3,FILE = PROBNAME(1 :FILEN)/I.scalars',STATUS='OLD',
+ ERR=2003)
OPEN(UNIT=4,FILE = PROBNAME(1 :FILEN)/I.arrays',STATUS='OLD',
+ ERR=2004)

C DETERMINING NUMBER OF MODES FROM *,SCALARS

1 READ(3,'(A)',ERR=2010)
READ(3,'(A)',ERR=201 0)
READ(3,*,ERR=2010) J
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C READING IN THE LAST POINT OF THE EXCITATION AND CALCULATING Q
C FROM *.SCALARS

DO 10, P = 1,4
READ(3,'(A)',ERR=2011 )

10 CONTINUE

READ(3,*,ERR=2011) MACHINF,RHOINF,AINF

QINF = O.S*RHOINF*MACHINF*MACHINF*AINF*AINF

DO 11, P = 1,3
READ(3,'(A)',ERR=2012)

11 CONTINUE

READ(3,*,ERR=2012) (FLAG(K),K=1,4)
INPUT_STOP = FLAG(4)

C READING IN THE NATURAL UNDAMPED FREQUENCY AT QINF=O FROM *.ARRAYS

DO 13, P = 1,4
READ(4,'(A)',ERR=2013)

13 CONTINUE

DO 14, R = l,J
READ(4,*,ERR=2013) FREQ(R)

14 CONTINUE

C READING IN ACTUAL QDOT TIME HISTORY DATA FROM XN.DAT FROM ASENL_CODE

4 READ(l ,'(A)',ERR=2014) XVALUE(:4)
IF (XVALUE(:4) .EO. I DAT) GOTO 2
GOT04

2 DO lS,I=1,INPUT_STOP*3
READ(l,*) DUMMY(I)

lS CONTINUE

S READ(l,*,END=97,ERR=2014) (DATA(G),G=l ,J*2+1)
TIME(N) = DATA(l)
DO 6, G=l,J
Y(N,G) = DATA(J+G+l)

6 CONTINUE
N=N+l

GOTOS

C DETERMINE IF LAST MODE IS A CONTROL MODE

CMSUM =O.DO

97 DO 98, ZZ = 1.S0
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CMSUM =DABS(Y(ZZ,J»)+CMSUM
9BCONTINUE

IF (CMSUM .LT..01) THEN
J =J-1
FLAGS =1
ENDIF

C COUNTING BACK ON N

99 N=N-1

CLOSE(UNIT=1)
CLOSE(UNIT=3)
CLOSE(UNIT=4)

8 RETURN

2001 WRITE(*,*) 'ERROR WHEN OPENING XN.DAT FILE'
STOP

2003 WRITE(*,*) 'ERROR WHEN OPENING SCALARS FILE'
STOP

2004 WRITE(*,*) 'ERROR WHEN OPENING ARRAYS FILE'
STOP

2010 WRITE(*,*) 'ERROR WHEN READING SCALARS FILE - NROOTS'
STOP

2011 WRITE(*,*) 'ERROR WHEN READING SCALARS FILE - MACH, RHO, OR AINF'
STOP

2012 WRITE(*,*) 'ERROR WHEN READING SCALARS FILE - NEND'
STOP

2013 WRITE(*,*) 'ERROR WHEN READING ARRAYS FILE - FREQUENCIES'
STOP

2014 WRITE(*,*) 'ERROR WHEN READING ARRAYS FILE - GENERALIZED',
+ 'VELOCITY DATA'
STOP

END

C END OF INPUT SUBROUTINE
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C
C
C SUBROUTINE MODAL_PARAMETERS:
C THIS SUBROUTINE FIRST DETERMINES THE AR COEFFICIENTS
C USING THE ARMA MODEL AND OVERDETERMINED SET OF EQS. FROM
C A THEN DETEMINED RE-SAMPLED INPUT FOR N-5 AND N
C NUMBER OF POINTS. FROM THE AR COEFFICIENTS BAIRSTOWS
C METHOD OF QUADRATIC FACTORIALS IS USED ON THE
C CHARACTERISTIC EQUATION OF AR COEFFICIENTS. (CALL
C QUADFACT_OF_THETA). FROM THESE FACTORIAL THE MODAL
C VALUES OF EACH IF USEABLE ARE DETERMINED (CALL
C MODAL_VALUES). FROM THESE MODAL VALUES FOR BOTH N-5
C AND N SETS OF POINTS, REGRESSIVE CONVERGENCE IS DETERMINED
C BY COMPARING THE MODAL VALUES FROM EACH SET. THE RESULTS
C FOR N POINTS ARE RETURNED.
C
C LOCAL VARIABLES:
C
C FLAG IF PHIM IS SINGULAR, FLAG =1 ,INCREMENT K BY 1
C FACT NUMBER OF BAIRSTOW FACTORIALS (EQUAL TO MODEL)
C MPCOUNT USED TO COUNT FOR STORAGE OF TEMPORARY ARRAYS
C BETWEEN N-5 AND N POINTS
C NOLDAR OLD NUMBER OF POINTS AFTER RE-SAMPLING
C RCOUNT COUNT NUMBER OF DATA POINTS RETRIEVED
C Z FIRST DATA POINT OF Y DATA
C NEWYO RE-SAMPLED INPUT DATA FOR THAT MODE SHAPE
C K FOR STARTING POINT (2M+1) OF MOSE METHOD
C PHI(,) REGRESSION DATA MATRIX
C PSI() DATA VECTOR
C PHIT(,) TRANSPOSE FO PHI
C PHIM(,) MULlTPLICATION OF PHIT AND PHI AND THEN ITS
C INVERTED
C NEW(,) MULTIPLICATION OF INVERTED PH1M AND PHIT
C TEMP USED FOR MATRIX MULTIPLICATIONS
C QUADFACT(,3) MATRIX OF QUADRATIC FACTORIALS RETURNED
C DT NEW SAMPLE PERIOD BASED FROM RE-SAMPLE FACTOR
C MPR_OLD(,) MATRIX OF R VALUES (CONDITION OF OMEGA) FOR
C EACH MODE RETURNED FROM MODAL_VALUES
C SUBROUTINE
C MPSIGMA_OLD(,) MATRIX OF DAMPING FACTORS FOR EACH MODE
C RETURNED FROM MODAL_VALUES SUBROUTINE
C MPOMEGA_OLD(,) MATRIX OF DAMPING FREQUENCIES FOR EACH MODE
C RETURNED FROM MODAL_VALUES SUBROUTINE
C MPR_TEMP(,) TEMPORARY MATRIX OF R VALUES (CONDmON OF
C OMEGA) FOR EACH MODE AT N-5 POINTS TO COMPARE
C WITH MPR_OLD RETURNED FROM MODAL_VALUES SUB-
C ROUTINE
C MPSIGMA_TEMP(,) TEMPORARY MATRIX OF DAMPING FACTORS FOR EACH
C MODE AT N-1 POINTS TO COMPARE WITH MPSIGMA_OLD
C MPOMEGA_TEMP(,) TEMPORARY MATRIX OF DAMPING FREQUENCIES FOR
C EACH MODE AT N-1 POINTS TO COMPARE WITH
C MPOMEGA_OLD
C OMEGA_TEMP_DIFF % DIFFERENCE BT OMEGAS FROM N-1 AND N POINTS
C SIGMA_TEMP_DIFF DIFFERENCE BT SIGMAS FROM N-2 AND N POINTS
C TOLS TOLERANCE USED WITH SIGMA_TEMP_DIFF
C V,L,M,a,W,I,J USED FOR DO LOOPS
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C
C------

SUBROUTINE MODAL_PARAMETERS(THETA,Y,MODEL,MODE,N,RE_SAMP_FACTOR,
+ DTORIG,MPR,MPSIGMA,MPOMEGA,MPCONV,
+ COUNT,FLAG4)

PARAMETER (NMAX=10000)
PARAMETER (MODEMAX=20)

INTEGER K,Q,M,W,RCOUNT,H,RE_SAMP_FACTOR,Z,FLAG,MODEL,
+ FACT,COUNT,NOLDAR,MPCONV(MODEMAX,MODEMAX),
+ MPCONV_OLD(MODEMAX),FLAG4
DOUBLE PRECISION PHI(NMAX,2*MODEMAX+1),PHIT(2*MODEMAX+l' ,NMAX),

+ THETA(2*MODEMAX+1),TEMP,PSI(NMAX),
+ PHIM(2*MODEMAX+1,2*MODEMAX+1),Y(NMAX,MODEMAX),
+ NEW(2*MODEMAX+1,NMAX),NEWY(NMAX),
+ QUADFACT(MODEMAX,3),DT,DTORIG,
+ MPR(MODEMAX,MODEMAX),MPOMEGA(MODEMAX,MODEMAX),
+ MPSIGMA(MODEMAX,MODEMAX),
+ MPR_OLD(MODEMAX),MPOMEGA_OLD(MODEMAX),
+ MPSIGMA_OLD(MODEMAX),MPR_TEMP(MODEMAX),
+ MPOMEGA_TEMP(MODEMAX),MPSIGMA_TEMP(MODEMAX),
+ OMEGA_TEMP_DIFF,SIGMA_TEMP_DIFF,TOLS

FLAG = 0
FLAG4 = 0
FACT = 0
MPCOUNT=O

C DETERMINE NEW NUMBER OF POINTS

N=(N/RE_SAMP_FACTOR)
NOLDAR = N

C START LOOP TO DETERMINE MODAL PARAMETERS IF REGRESSIVE CONVERGENCE
C IS SEEN

DO 40 V=2,O,-2
RCOUNT=O
N = NOLDAR-V
Z=1

100 IF (FLAG .EQ. 1) THEN
IF(N .LT. 20) THEN
FLAG4 = 1

RETURN
ENDIF

Z=Z+1
ENDIF

C DETERMINE NEW Y VECTOR USING RE-SAMPLE FACTOR

DO 20 L=Z,N
NEWY(L)=Y«L-1 )*RE_SAMP_FACTOR+1,MODE)

20 CONTINUE
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C DETERMINING PHI MATRIX AND PSI VECTOR WHICH
C DEVELOPS ARMA MODEL AND OVERDETERMINED SPECIFIED EQUATIONS.

K=2*MODEL+1

DO 1, M=K,N-1
DO 2, Q=1,2*MODEL
PHI(1,Q)=-NEWY(K-Q}

2 CONTINUE
PHI(1I ,K)=1
PSI(1 )=NEWY(K)
DO 3, W=1 ,2*MODEL
PHI(M-K+2,W)=-NEWY(M+1-W)

3 CONTINUE
PHI(M-K+2,K)=1
PSI(M-K+2)=NEWY(M+1)
RCOUNT=RCOUNT+1

1 CONTINUE

C TRANSPOSE OF PHI

DO 4 H=1,K
DO 5, Q=1,RCOUNT
PHIT(H,Q)=PHI(Q,H)

5 CONTINUE
4 CONTINUE

C MULTIPLICATION OF PHIT*PHI MAKING PHIM

DO 61=1,K
DO 7 J=1,K
TEMP=O.O
DO 8 Q=1 ,RCOUNT
PHIM(I,J) = PHIT(I,Q)*PHI(Q,J)+TEMP
TEMP=PHIM(I,J)

8 CONTINUE
7 CONTINUE
6 CONTINUE

C MATRIX INVERSE OF PHIM IN ITS PLACE

CALL MATRIX_INVERSE(PHIM,K,FLAG)

IF (FLAG .EQ. 1) GOTO 100

C MULTIPLICATION OF PHIM*PHIT

DO 91=1,K
DO 10 J=1,RCOUNT
TEMP= 0.0
DO 11 Q=1,K
NEW(I,J) = PHIM(I,Q)*PHIT(Q,J)+TEMP
TEMP=NEW(I,J)

11 CONTINUE
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10 CONTINUE
9 CONTINUE

C MULTIPLICATION OF NEW*PSI MAKING THETA BEING THE ARRAY OF AR
C COEFFICIENTS

DO 121=1,K
TEMP = 0.0
DO 13 Q=1,RCOUNT
THETA(I) = NEW(I,Q)*PSI(Q)+TEMP
TEMP=THETA(I)

13 CONTINUE
12 CONTINUE

C CALL TO DETERMINE QUADRATIC FACTORIALS FOR CHARACTERISTIC EQUATION
C OF AR COEFFICIENTS

CALL QUADFACT_OF_THETA(THETA,QUADFACT,MODEL,FACT)

C RESETDT

DT = DTORIG*RE_SAMP_FACTOR

C CALL TO DETERMINE ROOTS OF FACTORIALS AND FREQUENCIES AND DAMPING
C FACTOR

CALL MODAL_VALUES(MPR_OLD,MPOMEGA_OLD,MPSIGMA_OLD,
+ QUADFACT,FACT,DT)

C PUTTING RESULTS FOR N-2 POINTS IN TEMPORARY ARRAYS FOR COMPARING
C LATER

IF (MPCOUNT .NE. 1) THEN

DO 30 W=1 ,MODEL
MPOMEGA_TEMP(W}=MPOMEGA_OLD(W}
MPSIGMA_TEMP(W}=MPSIGMA_OLD(W)
MPR_TEMP(W}=MPR_OLD(W)

30 CONTINUE
ENDIF

C SETTING MPCOUNT FOR IF STATEMENT ABOVE

MPCOUNT = MPCOUNT + 1

C END OF REGRESSIVE CONVERGENCE OF N-2 AND N PQ,INTS

40 CONTINUE

C LOOKING FOR REGRESSIVE CONVERGENCE

DO 50 W=1 ,MODEL
MPCONV_OLD(W} = 0
IF (MPOMEGA_OLD(W) .NE. 0.0 .AND. MPR_OLD(W} .NE. O.DO} THEN
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OMEGA_TEMP_DIFF = 1OO"{MPOMEGA_TEMP(W)-MPOMEG~OLO(W»I
+ MPOMEGA_OLD(~

IF (ABS(MPSIGMA_OLD(W» .GT. 1.00) THEN
SIGMA_TEMP_DIFF = 1OO"(MPSIGMA_TEMP(W)-MPSIGMA_OLO{W)/

+ MPSIGMA_OLD(W)
TOLS = 5.00

ELSE
SIGMA_TEMP_DIFF = (MPSIGMA_TEMP(W)-MPSIGMA_OlD(W»
TOLS = .500

ENDIF

IF(ABS(SIGMA_TEMP_DIFF) .LE. TOLS .AND. ABS(OMEG~TEMP_DIFF)
+ .LE. 10.00 .AND. MPR_OLD(W) .NE. 0.00) THEN

MPCONV_OLD(W) = 1
ELSE

MPCONV_OLD(W) = 0
ENDIF
ENDIF

50 CONTINUE

C COUNTING HOW MANY TIME BEEN THROUGH THIS SUBROUTINE

COUNT = COUNT+1

C SETTING WORKING ARRAYS INTO FINAL ARRAYS TO RETURN

DO 60 J=1,MODEL
MPOMEGA(COUNT,J) = MPOMEGA_OLD(J)
MPSIGMA(COUNT,J) =MPSIGMA_OLD(J)
MPR(COUNT,J) = MPR_OLD(J)
MPCONV(COUNT,J) = MPCONV_OLD(J)

60 CONTINUE

RETURN
END

C END OF MODAL_PARAMETERS SUBROUTINE
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INTEGER ARRAY USED FOR BOOKKEEPING OF PIVOTING
USED FOR PIVOTING COLUMNS
DUMMY VARIABLE FOR PHIM (MATRIX TO INVERT)
ITH ROW VALUE FOR SORTING
ITH COLUMN VALUE FOR SORTING
USED FOR INTERCHANGING ROWS,COLUMNS, AND ETC.
NUMBER ROW OR COL
INTEGER ARRAY USED FOR BOOKKEEPING OF ROW
PIVOTING
INTEGER ARRAY USED FOR BOOKKEEPING OF COLUMN
PIVOTING
USED FOR DIVIDING PIVOT ROW BY PIVOT ELEMENT
USED FOR DO LOOPS

-

C
C
C SUBROUTINE MATR'X_'NVERSE: INVERT PHIM
C
C THIS ROUTINE WAS TAKEN FROM NUMERICAL RECIPES IN FORTRAN 77: THE ART
C OF SCIENTIFIC COMPUTING, CHAPTER 2.1. THIS ROUTINE INVERTS A GENERAL
C MATRIX OF (NXN) USING GAUSS-JORDAN ELIMINATION WITH FULL PIVOTING IN
C PLACE. THE ORIGINAL MATRIX A IS DETROYED AND REPLACED BY THE INVERSE
C OF THE ORIGINAL MATRIX A.
C
C LOCAL VARIABLES:
C
C IPIV(MODEMAX)
C BIG
C A(MODEMAX,MODEMAX)
CIROW
CICOL
CDUM
CN
C INDXR(MODEMAX)
C
C INDXC{MODEMAX)
C
C PIVINV
C J,I,L,Q,LL,K
C
C======================================================================

SUBROUTINE MATRIX_INVERSE(A,N,FLAG)

PARAMETER (MODEMAX=20)

INTEGER N,I,ICOL,IROW,J,Q,L,LL,INDXC(2*MODEMAX+1),
+ INDXR(2*MODEMAX+1),IPIV(2*MODEMAX+1),FLAG
DOUBLE PRECISION A(2*MODEMAX+1,2*MODEMAX+1),BIG,DUM,PIVINV

DO 11 J=1,N
IPIV(J)=O

11 CONTINUE

C MAIN LOOP OVER THE COLUMNS TO BE REDUCED

D022 1=1,N
BIG=O.

C SEARCH FOR PIVOT ELEMENT OF EACH COLUMN

DO 13 J=1,N
IF(IPIV(J).NE.1) THEN
DO 12 K=1,N

IF(IPIV(K).EQ.O) THEN
IF(DABS(A(J,K)).GE.BIG) THEN
BIG=DABS(A(J,K))
IROW=J
ICOL=K

ENDIF
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ELSE IF(IPIV(K).GT.1) THEN
PAUSE 'PHIM IS A SINGULAR MATRIX. CANNOT INVERT'
FLAG = 1
RETURN

ENDIF
12 CONTINUE

ENDIF
13 CONTINUE

C HAVING THE PIVOT ELEMENT, ROWS ARE NOW INTERCHANGED TO PUT THE PIVOT
C ON THE DIAGONAl. THE COLUMNS ARE NOT PHYSICALLY INTERCHANGED, JUST
C RELABED.

IPIV(ICOL)=IPIV(ICOL)+1
IF(IROW.NEJCOL) THEN
DO 14L=1,N

DUM=A(IROW,L)
A(IROW,L)=A(lCOL,L)
A(ICOL,L)=DUM

14 CONTINUE
ENDIF

C NOW READY TO DIVIDE THE PIVOT ROW BY THE PIVOT ELEMENT, LOCATED AT
C IROW AND ICOL

INDXR(I)=IROW
INDXC(I)=ICOL
IF (A(ICOL,ICOL).EQ.O.) THEN'

PAUSE 'PH1M IS A SINGULAR MATRIX. CANNOT INVERT
FLAG = 1
RETURN

ENDIF
PIVINV=1.1A(ICOL,ICOL)
A(ICOL,ICOL)=1.DO
DO 16L=1,N
A(ICOL,L)=A(ICOL,L)*PIVINV

16 CONTINUE

C NOW REDUCE THE ROWS EXCEPT FOR THE PIVOT ONE.
DO 21LL=1,N
IF(LL.NE.ICOL) THEN

DUM=A(LL,ICOL)
A(LL,ICOL)=O.DO
DO 18L=1,N
A(LL,L)=A(LL,L)-A(ICOL,L)*DUM

18 CONTINUE
ENDIF

21 CONTINUE
22 CONTINUE

C END OF MAIN LOOP OVER COLUMNS OF REDUCTION. HAVE INVERSE EXCEPT
C COLUMNS ARE OUT OF PLACE SO MUCH PUT THEM IN THE RIGHT ORDER BY
C THE NEXT LOOP.

DO 24L=N,1,-1
IF(INDXR(L).NE.INDXC(L» THEN

151



...

DO 23 Q=1,N
DUM=A(Q,INDXR(L»
A(Q,INDXR(L»=A(Q,INDXC(L»)
A(Q,INDXC(L»)=DUM

23 CONTINUE
ENDIF

24 CONTINUE

C HAVE INVERSE IN MATRIX A SO NOW RETURN

RETURN
END

C END OF MATRIX_INVERSE SUBROUTINE
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ORDER OF CHARACTERISTIC POLYNOMIAL OF AR COEFFICIENTS
TOLERANCE VALUE FOR CONVERGENCE ON RAND S
PARAMETERS IN TRIAL FACTOR X"2 - RX • S
NUMBER OF ITERATIONS FOR BAIRSTOWS METHOD, NO SET LIMIT
NUMBER OF QUADRATIC FACTORS
DUMMY VECTOR OF AR COEFFICIENTS
ARRAY HOLDING THE COEFFICIENTS WHEN THE INTIAL
CHARACTERISTIC POLYNOMIAL IS DIVIDED BY TRIAL QUADRATIC
FACTOR
ARRAY HOLDING THE PARTIAL DERIVATIVES
DENOMINATOR FOR DElR AND DELS
RATIO OF DETERMINANTS FOR ADJUSTMENTS TO IMPROVE RAND S

C
C
C SUBROUTINE QUADFACT_OF_THETA:
C DETERMINE ROOTS OF CHARACTERISTIC EQUATION OF AR
C COEFFICIENTS USING BAIRSTOWS METHOD FOR QUADRATIC
C FACTORING.
C LOCAL VARIABLES:
C
CM
CTOL
C R,S
CITER
CK
C COEFFO
C BO
C
C
CCO
C DENOM
C DELR,DELS
C
C =================================--===---=======--===========--====

SUBROUTINE QUADFACT_OF_THETA(THETA,QUADFACT,MODEL,FACT)

PARAMETER (MODEMAX=20)

INTEGER I,ITER,K,J,FACT
DOUBLE PRECISION COEFF(2*MODEMAX),B(2*MODEMAX),C(2*MODEMAX),

+ THETA(2*MODEMAX+1),R,S,TOL,
+ QUADFACT(MODEMAX,3) ,DENOM,DELR,DELS

C INITIAL NECESSARY PARAMETERS

M = 2*MODEL
TOL = 1.D-8
R = 1.DO
S = 1.DO
ITER = 1
K=O

C FILL IN STARTING COEFFICIENTS WITH AR COEFFICIENTS

COEFF(1) = 1.DO
DO 1, 1=1,M
COEFF(I+1) = THETA(I)
B(I) = O.DO
C(I) =O.DO

1 CONTINUE

C CALCULATE BAND C VECTORS

3 B(1) = 1.00
C(1) = 1.DO

4 B(2) = COEFF(2) + R*B(1)
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C(2) = B(2) + R*C(1)

DO 2, J=3,M+1
B(J) = COEFFP) + R*B(J-1 ) + S*B(J-2)
C(J) = B(J) + R*C(J-1) + S*C(J-2)

2 CONTINUE

DENOM = C(M-1)*C(M-1) - C(M)"C(M-2)

C CHECK TO SEE RAND S GUESS PROVIDE BAD RESULTS

IF (DENOM .EO. 0.00) THEN
R =R + 1.00
S =R + 1.DO
ITER=1
GOT03

ENDIF

C COMPUTE NEW RAND S

DELR = (-B(M)*C(M-1) + B(M+1)*C(M-2))/DENOM
R = R + DELR
DELS = (-C(M-1)*B(M+1) + C(M)*B(M))/DENOM
S = S + DELS

C CHECK IF CONVERGENCE UPON RAND S IS FOUND. IF IT HAS SET
C FIRST QUADRATIC FACTOR.

IF ((DABS(DELR) + DABS{DELS)) .GT. TOL) THEN
ITER = ITER+1
GOT03

ELSE
K=K+1
QUADFACT(K,1) = 1.00
QUADFACT(K,2) =-R
QUADFACT(K,3) =-S

ENDIF

C IF CONVERGENCE FOUND FIND NEW REDUCED POLYNOMIAL FROM ONE OF THE
CCASES
C CASE 1: IF LINEAR EQUATION RESULT SET THEN STOP (NEVER OCCURS)
C CASE 2: IF QUADRATIC EQUATION RESULTS SET THEN STOP
C CASE 3: IF HIGHER ORDER POLYNOMIAL SET AND DIVIDE OUT NEW FACTORIALS
C BY RETURNING TO 4

M=M-2

SELECT CASE (M)
CASE (1)

K=K+1
DO 5 J=1,2
QUADFACT(K,J) = B(J)

5 CONTINUE
CASE (2)
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K= K+1
DO 6, J =1,3
QUADFACT(K,J) = B(J)

6 CONTINUE
CASE (3:MODEMAX)

DO 7, J=1,M+1
COEFF(J) = B(J)
ITER=O
R =1.00
S = 1.00

7 CONTINUE
GOT04

END SELECT

FACT=K

RETURN
END

C END OF QUADFACT_OF_THETA SUBROUTINE
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c
c
C SUBROUTINE MODAL_VALUES:
C DETERMINE ROOTS FROM QUADRATIC FACTORIALS
C USING BASIC QUADRATIC EQUATIONS THEN TAKING ROOTS
C AND DETERMINE MODAL PARAMETERS (SIGMA AND OMEGA)
C
C LOCAL VARIABLES:
C
C B B VALUE OF QUADRATIC EQUATION
C A A VALUE OF QUADRATIC EQUATION
C C C VALUE OF QUADRATIC EQUATION
C REALROOT REAL VALUE OF COMPLEX ROOT
C IMAGROOT IMAGINARY VALUE OF COMPLEX ROOT
C SIGMA DAMPING PRODUCT (RAD/S)
C OMEGA DAMPING FREQUENCY (RAD/S)
C J USED FOR DO LOOPS
C ===========================================================

SUBROUTINE MODAL_VALUES(MPR_OLD,MPOMEGA_OLD,MPSIGMA_OLD,
+ QUADFACT,FACT,DT)

PARAMETER (MODEMAX=20)

INTEGER J,FACT,R
DOUBLE PRECISION MPR_OLD(MODEMAX),QUADFACT(MODEMAX,3),

+ SIGMA,REALROOT,IMAGROOT,A,B,C,DT,OMEGA,
+ MPOMEGA_OLD(MODEMAX),
+ MPSIGMA_OLD(MODEMAX)

C DO LOOP TO DETERMINE MODAL PARAMETERS FROM EACH QUADRATIC
FACTORIALS

DO 1, J=1,FACT

C SET QUADRATIC EQUATION COEFFICIENTS

A = QUADFACT(J,1)
B = QUADFACT(J,2)
C = QUADFACT(J,3)

C CHECK IF COMPLEX OR NOT AND THEN DETERMINE REAL ANDIOR IMAG VALUES
COFROOT

IF «B*B - 4*A*C) .LT. 0.0) THEN
REALROOT = -B/2*A
IMAGROOT = SQRT(DABS(B*B-4*A*C))/2*A

ELSE
REALROOT = (-B+(SQRT(B*B-4*A*C)))/2*A
IMAGROOT = O.DO

ENOIF

C CALCULATE SIGMA AND OMEGA FROM ALL ROOTS

SIGMA = -DLOG(REALROOT*REALROOT+IMAGROOT*IMAGROOT)/(2.DO*DT)
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OMEGA = DATAN(IMAGROOTIREAlROOT)/DT

C CONDITION CHECK OF ROOTS TO SEE IF ROOTS ARE GOOD ESTIMATES

IF (IMAGROOT .EO. 0.00) THEN
R=O
SIGMA = 0.00
OMEGA=O.DO

ENDIF

IF (REAlROOT .GT. 0.00) THEN
R =1

ELSE
R=O
SIGMA = 0.00
OMEGA =0.00

ENDIF

C CONDITION TO CHECK IF OVERDAMPED MODAL PARAMETERS

IF(SIGMA .GE. OMEGA) THEN
R=O
SIGMA = 0.00
OMEGA=O.DO

ENDIF

MPOMEGA_OLD(J)=OMEGA
MPSIGMA_OLD(J)=SIGMA
MPR_OLD(J)=R

1 CONTINUE

RETURN
END

C END OF MODAL_VALUES SUBROUTINE
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PI= 4.00 *DATAN(1.DO)
USED FOR PRINTING DAMPING FACTOR VALUES FOR EACH MODEL
AND MODE IN TERMS OF DIMENSIONLESS ZETA
USED FOR PRINTING OMEGA VALUES FOR EACH MODEL AND MODE
IN TERMS OF HERTZ
COUNTER USED TO DETERMINE IF NO MODAL PARMATERS ARE
MATCHED BETWEEN MODEL FOR THAT MODE
COUNTER USED TO DETERMINE HOW MANY MATCHED MODAL
PARAMETER SETS OCCURED BETWEEN EACH MODEL FOR THAT C
MODE

C CONVCOUNT COUNTER USED TO DETERMINE IF REGRESSIVE CONVERGENCE
C OCCURRED BETWEEN ALL MODELS FOR THAT MODE
C SIGMATEMP TEMPORARY STORAGE OF SIGMAS FOR LATER COMPARISON
C OMEGATEMP TEMPORARY STORAGE OF OMEGAS FOR LATER COMPARISON
C SIGMADIFF USED FOR DETERMINING COMMON SIGMAS BETWEEN EACH MODEL
C OMEGADIFF USED FOR DETERMINING COMMON OMEGAS BETWEEN EACH MODEL
C TOLS TOLERANCE WHEN COMPARING SIGMAS
C NMODE PLACEMENT OF NTH MATCHED MODAL PARAMETER SET
C G,J,K,U USED FOR DO LOOPS
C===============================----===============================--===

C
C
C SUBROUTINE MP_COMMON:
C DETERMINES COMMON MODAL PARAMETERS FROM EACH MODEL FOR
C EACH MODE.
C
C LOCAL VARIABLES:
C
CPI
C PRINT_SIGMA
C
C PRINT_OMEGA
C
CTEMP
C
C MATCHMODE
C

SUBROUTINE MP_COMMON(MP,MPR,MPSIGMA,MPOMEGA,MPCONV,COUNT,MODEL,
+ MODE,NMODE,FLAG1,FLAG2,SCREEN,LOWMODE,
+ HIGHMODE)

PARAMETER (MODEMAX=20)
PARAMETER (NMAX=10000)

INTEGER MODE,COUNT,MODEL,K,NMODE,MATCHMODE,TEMP,G,U,
+ FLAG1,CONVCOUNT,MPCONV(MODEMAX,MODEMAX),FIAG2,
+ SCREEN,LOWMODE,HIGHMODE
DOUBLE PRECISION MPR(MODEMAX,MODEMAX),MPOMEGA(MODEMAX,MODEMAX),

+ MPSIGMA(MODEMAX,MODEMAX),SIGMADIFF,OMEGADIFF,
+ MP(MODEMAX*MODEMAX,4),TOLS,DUMMY,
+ PRINT_OMEGA,PI,OMEGATEMP,SIGMATEMP,CONVTEMP

PI = 4.DO *DATAN(1.DO)

C PRINT OUT ALL MODAL PARAMETERS FOR EACH MODEL AND MODE
C THIS IS THE DATA USED FOR BACKUP JUST IN CASE SOMETHING GOES
C WRONG WITH FINDING COMMON PARAMETERS AND SORTING

DO 1, G = 1,HIGHMODE-LOWMODE+1

IF(SCREEN.EQ.2)THEN
WRITE (2,100) G+LOWMODE-1

ELSE
WRITE (*,100) G+LOWMODE-1
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ENDIF

DO 2, J = 1,MODEL-1
IF(MPR(G,J) .NE. 0.00 .AND. MPOMEGA(G,J) .NE. 0.00) THEN
DUMMY=MPSIGMA(G,J)/(SORT(MPSIGMA(G,J)·*2 +

+ MPOMEGA(G,J)**2»
PRINT_OMEGA = MPOMEGA(G,J)/(2*PI)

IF(SCREEN .EO. 2) THEN
WRITE(2,200) PRINT_OMEGA,DUMMY,MPCONV(G,J)

ELSE
WRITE(*,200) PRINT_OMEGA,DUMMY,MPCONV(G,J)

ENDIF

ENDIF
2 CONTINUE
1 CONTINUE

TEMP =0

C START OF COMPARISON LOOP

DO 3, J = 1,MODEL-1
MATCHMODE = 0
CONVCOUNT = 0

C IF USEABLE MODE AND MODAL PARAMETERS ARE NOT ZERO THEN CONTINUE
C START COMPARING FROM LAST MODEL

IF(MPR(COUNT,J) .NE. 0.00 .AND. MPOMEGA(COUNT,J) .NE. 0.00) THEN
OMEGATEMP = MPOMEGA(COUNT,J)
SIGMATEMP = MPSIGMA(COUNT,J)
CONVTEMP = MPCONV(COUNT,J)

C IF(MPCONV(COUNT,J) .EO. 0 ) THEN
C CONVCOUNT=CONVCOUNT+1
C WRITE(2, *) 'HERE1',MATCHMODE,CONVCOUNT
C ENDIF

C COMPARE EACH MODAL PARAMETER TO PREVIOUS TO MODELS

DO 4, K=COUNT-1,1,-1

C START COMPARING EACH MODAL PARAMETER BT. MODELS

DO 5, U=1,MODEL-1
OMEGADIFF =100.DO*(OMEGATEMP-MPOMEGA(K,U))/OMEGATEMP
IF (ABS(SIGMATEMP) .LT. 2.00) THEN
SIGMADIFF = SIGMATEMP-MPSIGMA(K,U)
TOLS = .500

ELSE
SIGMADIFF = 100.DO*(SIGMATEMP-MPSIGMA(K,U»/SIGMATEMP
TOLS = 20.00

ENDIF

C IF MATCHED A MODE BETWEEN THE MODELS
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IF(DABS(OMEGADIFF) .LT. 10.DO .AND.
+ DABS(SIGMADI.FF) .LT. TOLS) THEN

C CHECK TO SEE IF MATCHED MODE REGRESSIVELY CONVERGED

IF(MPCONV(K,U) .EO. 0 .AND. K .GT. 2) THEN
CONVCOUNT =CONVCOUNT + 1
ENDIF

C COUNT IF A MODE IS MATCHED

MATCHMODE =MATCHMODE + 1
IF (MATCHMODE .EO. 1) THEN
NMODE =NMODE+1

ENDIF
MP(NMODE,1) =OMEGATEMP
MP(NMODE,2) =SIGMATEMP
MP(NMODE,3) =MODE
MP(NMODE,4) =MATCHMODE
TEMP =TEMP+1
ENDIF

5 CONTINUE
4 CONTINUE

ENDIF
3 CONTINUE

C IF NO MATCHES OF MODES BETWEEN EACH MODEL DUE TO REGRESSIVE
CONVERNCE
C PROGRAM STOPS AND ASKS USER TO SUPPLY MORE POINTS

FLAG2=0
IF (CONVCOUNT .GE. 2) THEN
FLAG2 =1
RETURN

ENDIF

C IF NO MATCHES OF MODES BETWEEN EACH MODEL FOR THAT MODE SHAPE
C PROGRAM STOPS AND ASKS USER TO SUPPLY MORE POINTS

FLAG1 =0
IF (TEMP .EO. 0) THEN
FLAG1 =1
RETURN

ENDIF

100 FORMAT(' MODEL ',12)
200 FORMAT(F1 0.4,F1 0.6,12)

RETURN
END

C END OF MP_COMMON SUBROUTINE
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COUNTER OF HOW MANY COMMON MODAL PARAMETERS
TEMPORARY ARRAY OF TEMPERARY COMMON OMEGAS FOR
THAT MODE FOR SORTING AND FINDING FINAL MODES
SIMILAR TO TEMPO, BUT FOR SIGMAS
SIMILAR TO TEMPS, BUT FOR NUMBER OF MATCHED
MODES WITHIN EACH MODE SHAPE
PLACEMENT OF MINIMUM OMEGA
NEEDED FOR SORTING COMMON MODES WITHIN EACH
MODE SHAPE COUNTING NUMBER OF COMMON MODES
WITHIN ECH MODE SHAPE
= 1 IF OMEGA IS GREATER THAN LAST MODE OMEGA
= 1 IF MODE IS COMPARABLE TO A PREVIOUS MODE
DIFFERENCES NEEDED FOR COMPARING PRESENT MODES
WITH PAST MODES
TOLERANCE FOR COMPARING SIGMAS
FOR DO LOOPS ONLY

C====
C
C SUBROUTINE MP_SORT:
C FROM COMMON MODAL PARAMETERS FOR EACH MODE AND ALL MODES THIS
C SUBROUTINE SORTS THE MODE WITHIN EACH MODE BY THE FREQUENCY
C THEN DETERMINES FROM ALL MODES THE EXACT MODAL PARAMETERS FOR
C EACH MODE
C
C
C LOCAL VARIABLES:
C
CP
CTEMPOO
C
C TEMPSO
CTEMPMO
C
CJMIN
C TEMP1,2,4
C
C
CANS1
CANS2
C DIFFO,DIFFS
C
CTOLS
C U,K,J,I,Y,E
C
C =====--====================================================

SUBROUTINE MP_SORT(MP,NMODE,MODE,FLAG3,FINAL_MODES,OTHER_MODES
+ ,SCREEN)

PARAMETER (MODEMAX=20)
PARAMETER (NMAX=10000)

INTEGER NMODE,MODE,P,U,K,J,I,T,FLAG3,
+ OTHER_MODES(MODEMAX,MODEMAX),E,Y,SCREEN
DOUBLE PRECISION MP(MODEMAX"'MODEMAX,4),TEMPO(MODEMAX),

+ TEMPS(MODEMAX),TEMPM(MODEMAX),
+ TEMP1,TEMP2,TEMP4,DIFFO,DIFFS,TOLS,
+ FINAL_MODES(MODEMAX,MODEMAX),DUMMY
PI = 4.00 *DATAN(1.DO)

C SORTING ALL MATCHED (CALCULATED AND SYSTEM) MODES WITHIN EACH MODE BY
CFREQUENCY

DO 4, U=1,NMODE
P=O
DO 1, K=1,NMODE

IF (MP(K,3) .EQ. U) THEN
P= P+ 1
TEMPO(P) = MP(K,1)
TEMPS(P) = MP(K,2)
TEMPM(P) = MP(K,4)
ENDIF
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1 CONTINUE
DO 2, 1=1,P-1
JMIN=I
DO 3, J =1+1,P
IF (TEMPO(J) .lT. TEMPO(JMIN» JMIN = J

3 CONTINUE
TEMP1 = TEMPO(I)
TEMP2 = TEMPS(I)
TEMP4 = TEMPM(I)
TEMPO(I) = TEMPO(JMIN)
TEMPS(I) = TEMPS(JMIN)
TEMPM(I) = TEMPM(JMIN)
TEMPO(JMIN) = TEMP1
TEMPS(JMIN) = TEMP2
TEMPM(JMIN) = TEMP4

2 CONTINUE

DO 5, Y=1,P
R =R+1
MP(R,1)= TEMPO(y)
MP(R,2)= TEMPS(y)
MP(R,4)= TEMPM(y)

5 CONTINUE

4 CONTINUE

C PRINT OUT SORTED MATCH MODES

IF (SCREEN .EQ. 2) THEN
WRITE(2,*)
WRITE(2,*)
WRITE(2,*) 'All MATCHED MODAL PARAMETERS FROM ABOVE RESULTS'
WRITE(2,*)
WRITE(2,*)' DAMPING DAMPING'
WRITE(2, *) , FREQUENCY FACTOR # OF'
WRITE(2,*) 'MODE (HZ) MATCHES'
DO 40, KK=1,NMODE

DUMMY = MP(KK,2)/(SQRT(MP(KK,2)**2 +MP(KK,1 )**2»
WRITE(2,500) MP(KK,3),MP(KK,1 )/(2.DO*PI},DUMMY,MP(KK,4)

40 CONTINUE
ELSE
WRITE(*,*)
WRITE(*,*)
WRITE(*,*) 'ALL MATCHED MODAL PARAMETERS FROM ABOVE RESULTS'
WRITE(*,*)
WRITE(*,*) , DAMPING DAMPING'
WRITE(*,*) , FREQUENCY FACTOR # OF'
WRITE(*,*) 'MODE (HZ) MATCHES'
DO 41, KK=1,NMODE

DUMMY = MP(KK,2)/{SQRT(MP(KK,2)**2 +MP{KK,1 )**2»
WRITE(*,500) MP(KK,3),MP(KK,1)/(2.DO*PI),DUMMY,MP(KK,4)

41 CONTINUE
ENDIF

500 FORMAT(' ',F3.1,' ',F7.4,F10.6,' ',F3.1)
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C DETERMINE FINAL MODE RESULTS FOR SORTED RESULTS

DO 6, U=1,MODE
ANS1 =0
ANS2 =0
P=O

C FILL UP WORKING ARRAY OF OMEGA AND SIGMA

DO 7, K=1.NMODE
IF (MP(K,3) .EO. U) THEN
P= P+1
TEMPO(P) = MP(K,1)
TEMPS(P) = MP(K,2)
TEMPM(P) = MP(K,4)
ENDIF

7 CONTINUE

C CHECK TO SEE IF FIRST MODE

IF (U .EO. 1) THEN
FINAL_MODES(U,1) = TEMPO(1)
FINAL_MODES(U.2) = TEMPS(1)
GOT06

ENDIF

C CHECK TO SEE IF ONLY ONE COMMON MODE RESULT FOR THIS
C MODE SHAPE

IF (P .EO. 1) THEN
FINAL_MODES(U,1) = TEMPO(P)
FINAL_MODES(U.2) = TEMPS(P)
GOT06

C IF MORE THAN ONE COMMON MODE COMPARE TO PREVIOUS EXACT MODES
GATHERED

ELSE
NOM=O
ANS1 = 1
DO 9, E=1,P
ANS2 =0
FREQDUM = TEMPO(E)
IF (DABS(FREODUM - FREO(U)*2*PI) .LE. 10.00) THEN
DO 11, Y = 1,U-1

DIFFO = 100*(FINAL_MODES(Y,1)-TEMPO(E»fTEMPO(E)
IF (DABS(TEMPS(E» .LT. 1.00 .AND. FINAL_MODES(Y,2) .LT. 1.00

+ ) THEN
DIFFS = FINAL_MODES(Y,2)-TEMPS(E)
TOLS = .2500
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ELSE
DIFFS = 100.DO*(FINAL_MODES(Y,2)-TEMPS(E»rrEMPS{E)
TOLS = 7.0DO
ENDIF

IF (DABS(DIFFO) .LT. 5.DO .AND. DABS(DIFFS) .LT. TOLS) THEN
ANS2 = 1
ENDIF

11 CONTINUE

C IF NO MODES MATCH PREVIOUS MODES USE IT AND FIND DOMINANT MATCH

IF{ANS2 .EO. 1) THEN
NOM=O
GOT09
ANS1=O

ENDIF

IF(TEMPM(E) .GE. NOM) THEN
FINAL_MODES(U,1) = TEMPO(E)
FINAL_MODES(U,2) = TEMPS(E)
NOM = TEMPM(E)
ANS1=O
ENDIF

ENDIF
9 CONTINUE

ENDIF

IF (ANS1 .EO. 1) THEN
FINAL_MODES(U,1) = TEMPO(E-1)
FINAL_MODES(U,2) = TEMPS(E-1)
ENDIF

6 CONTINUE

C CHECK TO DETERMINE IF ENOUGH POINTS WERE USED AND ALL MODES WERE
C IDENTIFIED

DO 15, T=1 ,MODE
IF (FINAL_MODES(T,1) .EO. 0.00 .OR.

+ FINAL_MODES(T,2) .EO. 0.00) THEN
FLAG3=1

ENDIF
15 CONTINUE

C DETERMINE IF OTHER MODES THAT MAY EXIST BUT NOT LIMITED TO

DO 12, U=1,MODE
y=o
DO 13, K=1,NMODE
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IF (MP(K,3) .EO. U) THEN
DO 14 T=1,MODE
IF (FINAL_MODES(T,1) .NE. O.DO) THEN
DIFFO = 1OO.DO*(MP(K,1)-FINAL_MODES(T,1))/FINAL_MODES(T,1)

IF (DABS(FINAL_MODES(T,2)) .LT. 1.00 .AND. MP(K,2) .LT.
+ 1.DO)THEN

DIFFS = FINAL_MODES(T,2)-MP(K,2)
TOLS = .3DO
ELSE
DIFFS = 100.DO*(MP(K,2)-FINAL_MODES(T,2)}/FINAL_MODES(T,2)
TOLS = 5.DO
ENDIF
ENDIF

IF (DABS(DIFFO) .LT. 2.DO .AND. U .NE. T .AND. DABS(DIFFS)
+ .LT. TOLS) THEN

Y=Y+1
OTHER_MODES(U,Y) = T

ENDIF
14 CONTINUE

ENDIF
13 CONTINUE
12 CONTINUE

RETURN
END

C END OF MP_SORT SUBROUTINE
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C------
C
C FUNCTION NAMLEN:
C THIS FUNCTION DETERMINES THE CHARACTER LENGTH OF THE PROBLEM
C NAME ENTERED BY THE USER
C
C
C

INTEGER FUNCTION NAMLEN( FILEN )

CHARACTER*20 FILEN

NAMLEN=O
DO I =1,30

IF ( FILEN(I:I) .NE. I • ) THEN
NAMLEN = NAMLEN+1

ELSE
GOTO 101

ENDIF
ENDDO

101 RETURN
END

C END OF FUNCTION NAMLEN AND SOURCE CODE
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APPENDIX E: OUTPUT FILE *.TXT FROM MOSE.F AND TO SCREEN

OUTPUT FILE:

ARMA MODEL WITH MODEL OVERSPECIFICATION RESULTS SHOWING MODAL
PARAMETERS CONVERGED UPON IN EACH MODE.

MODE=1 NAT.FREQ=
MODEL 3
MODEL 4

3.3786 .479601 1
MODEL 5

3.4779 .338666 1
MODEL 6

3.2668 .349334 0

3.18204 RE-SAMPlE FACTOR= 8 ORIG. SAMPLE FREQ. = 150.2

4.02851 RE-SAMPLE FACTOR= 7 ORIG. SAMPLE FREQ. = 150.2

Damped Frequency for this mode
and model order.

MODE= 2 NAT. FREQ=
M 3

5.0525 . 16670 1
5.2696 -. 33264 1

MODELe5.044 -.018206 ...- ..... Damping factors for this I

5.2683 . 1 mode and model order.
MODEL 5

5.0478 -.01689411\ ...... ~If= I, then these parameters
5.2691 -.033249W have regressively converged.

MODEL 6
5.0474 -.0171891
5.2688 -.0332341

MODE= 3 NAT. FREQ=
MODEL 3

5.0452 -.016799 1
5.2694 -.033213 1

MODEL 4
5.0470 -.015857 1
5.2685 -.0333291

MODEL 5
5.0489 -.0170990
3.3195 .3915501
5.2688 -.033208 1

MODEL 6
5.0478 -.0169741
3.2547 .3267071
5.2688 -.033233 1

4.05237 RE-SAMPLE FACTOR= 7 ORIG. SAMPLE FREQ. = 150.2

MODE= 4 NAT. FREQ= 5.55739 RE-SAMPLE FACTOR= 5 ORIG. SAMPLE FREQ. = 150.2
MODEL 3

5.3849 .0147031
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5.2637 -.0311921
MODEL 4

5.2710 -.031966 1
5.9743 .0443500
5.1296 .0055101

MODEL 5
5.2714 -.032784 1
5.7542 .038391 1
5.0796 -.008818 1

MODEL 6
6.3306 .175831 1
5.5776 .049054 1
5.0472 -.016760 1
5.2691 -.033224 1

MODE; 5 NAT. FREQ= 6.91297 RE-SAMPLE FACTOR= 4 ORIG. SAMPLE FREQ. = 150.2
MODEL 3

5.2402 ,038059 0
5.2631 -.0363141

MODEL 4
5.2683 -.0330671
6.7402 .2083621
5.0578 -.017902 1

MODEL 5
6.5493 .2074361
5.0513 -.017882 1
5.2689 -.0331241

MODEL 6
6.4773 .228936 1
9.3721 .381071 1
5.0511 -.017611 1
5.2697 -.033102 1

MODE= 6 NAT. FREQ= 6.97122 RE-SAMPLE FACTOR= 4 ORIG. SAMPLE FREQ. = 150.2
MODEL 3

5.2246 .0319050
5.2680 -.029445 1

MODEL 4
5.2683 -.033376 1
6.5850 .1331751
5.0450 -.0182161

MODEL 5
6.4912 .1187021
5.0463 -.018723 1
5.2682 -.033422 1

MODEL 6
7.2741 .3843620
6.4147 .1171471
5.0469 -.018792 1
5.2687 -.033175 1

MODE= 7 NAT. FREQ= 7.26663 RE-SAMPLE FACTOR= 4 ORIG. SAMPLE FREQ. = 150.2
MODEL 3

6.2727 .110399 1
5.2896 -.039026 1

MODEL 4
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5.1122 -.015335 1
7.5330 .106581 1
5.2540 -.032529 1

MODEL 5
7.2423 .1060860
5.0595 -.019073 1
5.2669 -.032638 0

MODEL 6
4.4404 .355047 1
5.2643 -.032839 1
7.3522 .109533 1
5.0699 -.017089 1

MODE= 8 NAT. FREQ= 9.40107 RE-SAMPLE FACTOR= 3 ORIG. SAMPLE FREQ. =150.2
MODEL 3

6.3573 .1219160
5.2755 -.037683 1
10.4524 .0032131

MODEL 4
5.0757 -.014608 1
5.2665 -.0329631
10.2978 .022802 1
10.4585 .003877 1

MODEL 5
8.5513 .607777 1
5.0682 -.017288 1
5.2682 -.032729 1
10.2217 .016902 1
10.4587 .0036981

MODEL 6
6.2986 .192675 1
5.0523 -.017312 1
10.2221 .019284 1
5.2640 -.033534 1
10.4589 .003746 1

MODE= 9 NAT. FREQ= 9.43561 RE-SAMPLE FACTOR= 3 ORIG. SAMPLE FREQ. =150.2
MODEL 3

6.6417 .1312550
5.2531 -.030888 1
10.2630 .017290 1

MODEL 4
5.1100 -.007635 1
5.2756 -.032086 1
10.1917 .020735 1
10.4104 .0085221

MODEL 5
5.1053 -.0081461
5.2740 -.032206 1
10.2092 .021731 1
10.4464 .008656 1

MODEL 6
5.2699 -.033664 1
6.7337 .1340471
5.0460 -.0183320
10.2255 .019782 0
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Header information for final
results determined from above
data.

All parameters that
regressively converged and
converged with increasing
model order.

10.4580 .0037470

ALL MATCHED MODAL PARAMETE S FROM ABOVE RESULTS
DAMPING DAMPING

FREQUENCY FACTOR # OF
MODE (H~ MATCHES
1.0 3.2668 .349334 1.0
2.0 5.0474 -.017189 3.0
2.0 5.2688 -.033234 3.0
3.0 5.0478 -.016974 3.0
3.0 5.2688 -.033233 3.0
4.0 5.0472 -.016760 1.0
4.0 5.2691 -.033224 3.0
4.0 5.5776 .049054 2.0
5.0 5.0511 -.017611 2.0
5.0 5.2697 -.033102 3.0
5.0 6.4773 .228936 2.0
6.0 5.0469 -.018792 3.0
6.0 5.2687 -.033175 3.0
6.0 6.4147 .117147 2.0
7.0 5.0699 -.017089 2.0
7.0 5.2643 -.032839 4.0
7.0 7.3522 .109533 2.0
8.0 5.0523 -.017312 2.0
8.0 5.2640 -.033534 3.0
8.0 10.2221 .019284 2.0
8.0 10.4589 .003746 3.0
9.0 5.0460 -.018332 5.0
9.0 5.2699 -.033664 3.0
9.0 6.7337 .134047 1.0
9.0 10.2255 .019782 3.0
9.0 10.4580 .003747 2.0•.- .....,

NUMBER OF MODES: 9
LAST POINT OF INPUT: 7
NUMBER OF POINTS READ IN AFTER INPUT: 159
FREE-STREAM DYANAMIC PRESSURE (0.5*RHO*(MACH"'A)1\2): 129.44746

FINAL ESTIMATED MODAL PARAMETERS

NATURAL
FREQUENCY

MODE (HZ)

DAMPING DAMPING
FREQUENCY FACTOR

(HZ)

Final estimated results based
upon above data.

~

OTHER MODES*

3
2
2 3
2 3
2 3
2 3
239
238

1 3.18204 3.2668 .349334
2 4.02851 5.0474 -.017189
3 4.05237 5.2688 -.033233
4 5.55739 5.5776 .049054
5 6.91297 6.4773 .228936
6 6.97122 6.4147 .117147
7 7.26663 7.3522 .109533
8 9.40107 10.2221 .019284
9 9.43561 10.4580 .003747
* OTHER MODES FOUND BUT NOT LIMITED TOO

WARNING: IF ABOVE RESULTS LOOK UNREASONABLE DUE TO IDENTICAL MODES
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USE RESULTS FROM THE ARMA MODELS FOR EACH MODE SHAPE. IF IN THE POST
FLUnER REGION AND AN USTABLE MODE IS SEEN FOR SEVERAL MODES THEN THE
SYSTEM IS UNSTABLE AND MODES COULD NOT BE CLEARLY IDENTIFIED.
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