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CHAPTER |

INTRODUCTION

The principal objective of this research has been to investigate the potential of using
reinforcement learning techniques for the speed control of diesel engines. The first learning
technique is called genetic reinforcement learning. We will apply this technique to the
optimization of P1D controller parameters. We will begin the training with base-line
controller parameters for a general engine configuration. However, each specific engine
will have different characteristics. Therefore the controller may not be suitable for ai)
engines. With the genetic reinforcement learning we wiil optimize the controller
parameters based on specific engine behavior. We will work with analog and digital
controliers and different engine configurations.

The second learning algorithm we will investigate is called reinforcement learning.
Reinforcement learning is an approximate form of dynamic programming, in which a
neura) network controller is trained to optimize a specific performance function. At each
iteration the algorithm receives a certain reward or penalty, and attempts to control the
system so as to maximize future rewards or minimize penalties.

Let us now outline the flow of this thesis. Chapter 2 has a description of the basic
diesel engine operation. Classifications are based on the injection type and how the gas

exchange process is performed. Chapter 3 describes the implementation of a diesel engine



model to be used in testing the various reinforcement learning algorithms. We will consider
a pseudo-linear system and a system based on neural networks.

Chapter 4 has a discussion of a linear adaptive control technique for the diese!
engine. We will use the self-tuning regulator technique. The results of this chapter will be
used as base-line to compare the results for the reinforcement learning algorithms.

Chapter 5 has a description of the GENITOR algorithm. This genetic reinforcement
Jearning algorithm will be used to optimize the parameters of PID controllers for different
engine configurations.

Chapter 6 is a discussion of the general reinforcement learning framework.
Reinforcement learning is an approximate form of dynamic programming. The objective is
to determine a control action which optimizes future performance. Reinforcement learning
is an excellent strategy for the intelligent control of systems which are difficult to model
but easy to simulate.

Reinforcement learning involves a two-stage process. First, a model must be
developed to predict future performance. Next, an appropriate action must be determined
1o optimize the performance. In Chapter 6 the basic framework for reinforcement learning
is presented, and several variations of reinforcement learning are described. Simulations
are used to illustrate Ithc operation of the various algorithms.

Chapter 7 has different simulations based on the reinforcement leaming algorithm.
The first cases demonstrate how the algorithm will learn to change the engine speed from
an initial condition to a desired speed. After that we will present cases which illustrate

engine speed tracking. We will consider reward schemes based on penalty per step on the



episode and instant absolute error. Other experiments will be related to the use of multiple
neural networks.

Chapter 8 will contain a summary of the main results and contributions of this
thesis. This will be followed by recommendations for future work.

Appendix A describes different diesel engine mathematical models from different

researchers for use in simulation.



CHAPTER 2

DIESEL ENGINE OPERATION.

2.1. Historical review.

The history of diesel engines started in the last years of the 19th century with the
work of Dr. Rudolf Diesel. Until WWI “the diesel engine was used primarily in stationary
and ship propulsion applications in the form of relatively low speed four-stroke normally
aspirated engines” gy. WWI spurred the use of diesel engines in transportation and WWII
increased the development of highly supercharged diesel engines. From that time, we have
seen a continuous process of improvement in the design of diesel engines and the
application of electronic modules and computer algorithms in their design.

2.2. Classification of the diesel engines

The first classification principle is the compression-ignition principle. In contrast to
spark-ignition (S1) engines, “the compression-ignition (CI) engine operates with a
heterogeneous charge of previously compressed air and a finely divided spray of liquid
fuel” gy. That mix is injected into the cylinder engine, mixed with the air inside the cylinder
and compressed until combustion by the self ignition properties of the fuel. According to
the combustion process we have the following categories:

«a. Direct Injection (DI) systems. When the fuel is injected directly inside the

cylinder.



» b. Indirect Injection (ID]) systems. The fuel is injected in a prechamber and is
transferred at high speed to the cylinder through a narrow passage. With this
arrangement a high degree of air motion is obtained. This implies a faster air fuel
mixing.

A second division is based in the way in which the gas exchange process is
performed. We have two periods called closed and open periods, where the combustion or
power generation occurs and the exhaust gases are expelled from the combustion chamber
respectively. This division is similar to that applied to spark ignition engines. We can divide
the engines as:

*a. Two-stroke engines. The combustion occurs in the region of top dead centre

(TDC) and the gas exchange is made in the region of bottorn dead centre (BDC) of

each revolution. The scavenging or gas exchange process at the BDC takes from
100° to 150° of the crank angle (CA) period of 360°. We can subdivide two-
stroke engines into: loop scavenged engines, uniflow scavenge single piston
engines and uniflow scavenge opposed piston engines.

We can summarize the two-stroke cycle as:

1-2 compression

Closed Period
2-3 heat release associated

with combustion
3-4 expansion
4-5 blowdown Open Period

5-6 scavenging

6-1 supercharge



«b. Four-stroke engines. For this type of engines the combustion and the gas
exchange occur in alternate revolutions. As seen in Figure 2.1 the combustion
oceurs in TDC region with all the valves closed. After that, the exhaust valve
opens (EVO) just before the BCD region, then the inlet valve opens (IVO) just
before the TDC region. Just after the TDC region the exhaust valve closes (EVC)
and the nlet valve closes (IVC) just after the BDC region. Here the engine starts

the closed period where the combustion occurs, continuing with the next cycle. For

this type of engine the crank angle (CA) period is 720°.

S

TOC

Ve EVO

BDC

Figure 2.1: Four-stroke engine (turbocharged) (8)



We can summarize the four-stroke cycle as shown in Figure 2.2.

-2 compression
Closed Period
2-3 heat release associated
with combustion
3-4 expansion
4-5 blowdown

5-6 exhaust Open Period
6-7 overlap
7-8 induction

8-1 precompression

Figure 2.2: Four-stroke cycle for diesel engine (3,

We can study the engine cycle based on air standard cycles, as shown in Figure 2.3.
The first case is the constant pressure or diesel cycle (Figure 2.3-a), where the combustion
process is modeled by a constant pressure heat addition (points 2-3). This was the
description for “classical” diesel engines, with little relevance today. The second case is the
constant volume or Otto cycle (Figure 2.3-b), where the combustion process is modeled by
a constant volume heat addition {points 2-3). This cycle is normally used for spark ignition
engines, but is valid for diese] engines with light load conditions. The third case is the dua)
combustion or composite cycle (Figure 2.3-¢), where the combustion process is a
combination of the previous cases. This cycle is closer to the actual operation of diesel

engines. Other important theoretical cycles are the Atkinson cycle and the Camot cycle.
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() -

Figure 2.3: Air standard cycles. (a) constant pressure cycle; (b) constant volume cycle;
(¢) dual combustion or composite cycle )

The real processes of a diesel engine are different from the ideal cycles from the
previous page. The combustion process occurs in the closed period, that is similar for two-
stroke and four-stroke engines. We can say that the combustion process has three periods,
as shown in Figure 2.4

- (i) The delay period.
- (11) The premixed burning phase (chemically controlled).

- (iii) The diffusion burning phase (controlled by mixing rate).
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Figure 2.4: Phases of combustion process g,
For the open period we have a gas exchange process as shown in Figure 2.5 for the

case of four-stroke engine. The numbers at each step are related with the four-stroke cycle

shown in Figure 2.2 and Figure 2.1.
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Figure 2.5: Gas exchange four-stroke engine g,

To analyze the engine cycles in detail we can use a step by step basis, using smal}
crank angle increments d6 (usually 0.5° <d8 <2° CA). The step could change according
10 the phase in the cycle. Another important term in the calculations is the heat transfer term
dQ, which defines the heat transfer from cylinder gas to wall and vice versa.

In the Appendix A the reader can see several different detailed mathematical

models for the diesel engine. Each model is intended to define mathematically the

combustion process inside the diesel engine. There models could be applied to the design

and control of diesel engines.
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CHAPTER 3

ENGINE MODEL.

Initially we tried to implement the Kao and Moskwa mean torque model (7) @s
shown in Figure A.2. That model requires specific parameters of the engine that were
unavailable at the time of this project. Initial trials were conducted using some typical
parameters found in different papers and books, but the model normally fails in its
operation.

Cumrnins suggested a simplified mode] of the diesel engine that is shown in Figure

3.1. This model has a fueling delay defined by e™** where s is the Laplace transform and

T 1s the time delay.

X . Engine
Engine Engine Speed
Fueling Torque + 60
— e v - | ——

2:m-/-5
+
External
Load

Figure 3.1: Simple Engine model. Block diagram in s-domain.
The model shown in Figure 3.1 has an initial PID controller proposed by Cummins
for the nominal values of fueling delay T = 80 ms and engine inertia / = 2 Ib-f/-sez:2

The basic engine and the controller are shown in Figure 3.2. This model does not include

1!



any limitation in fueling and engine speed. Also, it does not include any friction. If the

engine is working at a given speed without load, and we set the fueling to zero, the engine

will continue at the same speed for unlimited time.

Reference Engine
Speed (Nref) + error P K, . K, s Fueling (f)
‘I P s (s+a) 'I
Engine 14 Controller > |r
Speed (N)
:< Engine >:
| . |
| Engine |
| 60 + Torque (T,) s :
> -
2-m-I-s + ¢ ~
External
Load (Tygad)

Figure 3.2: Simple Engine Control System.

For this basic system. we have the following parameters are:

s = Laplace Transform variable. n =3.14159265358979.

Nref = Reference Engine Speed. £ = fueling mm- /stroke.

N = Actual Engine Speed in rpm. 1 = 80 msec delay.

error = (Nref - N) = Speed error in rpm. K, =2.

T, = Engine Torque in 1b-ft. K, =0.5.
T),sq = External load torque in Ib-ft. K, =0.05.
] = Engine Inertia =2 lb-ft-sec?. a =10 or 20.

12



To obtain a more realistic engine model, we included a simple gain block that

multiplies the engine speed by b, substracting the resulting value to the total load applied
to the engine, as shown in Figure 3.3. This block represents viscous friction. We also
included two saturation blocks to avoid negative or excessive engine speeds or fueling. The
first block limits the fueling applied to the engine. That fueling was limited between 0 and
2240 mm’ /stroke . The second block limits the engine speed. The engine speed was
limited between 0 and a top speed of 2000 rpm . For our experiments we tested with two

friction values intended for low friction (5, = 0.01) and high friction (b, = 0.1229).

Reference Engine
Speed (Nref) + error K+ ]ﬁ N Kd -5 Fueling (f)
( ) P s (s+a)
Engine A
Speed (N)
Friction
Torque
Engine
60 :Torque (Te) s
2-m-1-s L ¢
External
Load (T]oad)

Figure 3.3: Engine Control System with engine friction and limited speed and fueling.

The basic PID controller has the parameter values Kp =2,K,=05,K,;=0.05

and two possible values for 2 = 10 and a = 20. We simulated the diesel engine with the

basic PID controller for different conditions of inertia and fueling delay. The friction and

13



the external load were constant and equal to , = 0.01 and 7,,,, = 150 1b-ft

respectively.

If we unify the controller transfer function we obtain:

Gs) = (Kp+ Kd)s’ + (Kp -a+Ki)s + i a a)

2
s +ta-s

Since we have two values for a, the initial transfer functions for the P1D controller

are:

2
For a = 10 = G(s) = 2038~ *+ 2035+ 3.1)

s2+4 105

2.0552 +40.5s+ 10

For a = 20 = G(s) =
(®) s2+420s

3.1)

For the simulations we have assumed that the external load could change from 0 to

600 ft-1b. The maximurn fueling rate was defined as 150 mm>/stroke. The reference engine
speed will change between 600 rpm and 650 rpm. We found that limitations in fueling were
found for a load of 150 lb-ft. If we increase the load we need more fueling. If we use zero
load, we found that negative speed or negative fueling will be needed, making this model
unrealizable. Also, simulations with zero load and zero fuel will run forever for a fixed

speed. A simulink representation of the model is shown in Figure 3.4.

14
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Figure 3.4: Basic Engine model with limits in fuel and internal losses.

Figure 3.5 shows the speed transition from 600 rpm to 650 rpm for different

values of fueling delay and fixed engine inertia 7 = 2 [b-fr-sec2 . We noticed how the
percent overshoot and the mean square error increases as the fueling delay increases. Larger
fueling delays implies that each action due to the controller takes more time to influence
the engine response. For that reason an oscillatory response 1s observed. Figure 3.6 shows

the same speed transition from 600 »pm to 650 rpm for different values engine inertia and

fixed fueling delay © = 80 ms. We noticed how the oscillatory response increases as the
inentia reduces. The simulation results show how variations in the parameters affected the
final system response. The subsequent chapters will discuss different alternatives to
optimize the controller or to generate a controller to reduce the overshoot or the mean
square error for the engine response.
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In addition 1o the engine model shown in Figure 3.2, we also modeled the engine
with neural networks as shown in Figure 3.7 (subsystems are shown from Figure 3.8 10
Figure 3.10). Due 10 all the interactions of the subsystems, we preferred the simulink
representation of the previously referenced figures. For the training process we used data
obtained from an engine simulation from a2 Cummins diesel engine. With that data we
trained two neural networks: one for combustion and torque subsystem and the other for air
mass generation subsystem. Those neura] networks were based on the engine model shown

in Figure A.2 in the appendix A. The combustion and torque production subsystem has as

inputs the engine speed N, the engine fueling 2, and the fuel-air ratio, which is based on
the mass flow i, and the engine fueling rhf. The same block produces the indicated torque

7; . The air compression subsystem depends of the engine speed N and the engine fueling

. to generate the air mass flow rir, .

e

N

mas

'

At cOmpray LON

[(0 11885 To-100] Ly

»
; 60/ pr' ) o)
Tom Selurmtiony
Ny Wokigacal Vioaa}
mah ] P | clit ¥ > - -
> | -+ | - x » - Lad % N
mah L] \ i S'l'n ;
— : 7 Praduct Inlagrator  Saturalion Yo Workapace?
Combuslion and
Torgue produclor
Ne Tiosd2
T > T To Workapaced
; N
To Wokspace3
focton

Figure 3.7: Neural network based engine model.
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Since the fuel-air ratio and the fuel ratio have a smaller dynamic range than the
engine speed (see Table 3.1), we divided the speed input by 1000 for the combustion and
torque production neura) network. A similar operation was made with the torque output.
Figure 3.8 shows a representation of the combustion and torque production neural network.

Similar considerations were applied to the air compression subsystem shown in Figure 3.9.

Input or Qutput minimum maximem Training range |
fuel-air ratio 0 0.0988 0to 0.1
fuel ratio 0 2.9132 O0to 0.3
engine speed (rpm) 572.40 1972.70 Oto2

Table 3.1: Input-Output range for combustion and torque production subsystem.

Frodoy
To Virkepme

3 l qudem-vrm Ao e
(N) ' {(FAOBND)

sommt i oo lmm wamn | wara —bf)
o L &
WL e oy

Figure 3.8: Combustion and Torque production subsystem.
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T

The engine friction subsystem is based on the Eq. (A.21) from appendix A. For the

model of Figure 3.10, we replaced the mean piston speed S » by the engine speed V.
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Figure 3.10: Engine friction subsystem.
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We wilt see in the following chapters how the models previously described were

applied for adaptive control, genetic reinforcement learning and reinforcement leaming.
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CHAPTER 4

SELF-TUNING REGULATOR APPLIED TO DIESEL ENGINES.

4.1. Introduction.

In order to provide a standard with which to compare the reinforcement leaming
algorithms which will be presented in later chapiers, this chapter will apply the self-tuning
regulator |y to diesel engine control. This is a standard linear adaptive control technique,
with block diagram as shown in Figure 4.1.

The self-tuning regulator is an “indirect” method; a model of the process is
developed (in the estimation block), and this model is used to determine the controller (in

the Controller Design block).
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Self-tuning regulator
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I
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[
[
|
i
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[
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|
|
§
{
)

|

Controller o ___ p
Reference parameters |
> (

b
Controller | 5 Process >
: I Input ll Output

2

Figure 4.1: Block diagram of a self-tuning regulator (),

4.2. Pole Placement Design.

There are several different types of self-tuning regulator. One is adaptive pole
placement. The idea of this method is to design a controller to meet the specified closed-
loop poles specifications. [f we take our diesel engine model from Figure 4.2 we can model

the input-output relation as:

N=—AS Ny AR

T 4.1
B-R+A-S B-R+A-8§ ‘toad @1

The idea is to adjust the controller parameters to obtain the desired pole locations.
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speed ( Nref )
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| I

! : I

Fueling
: delay I
i
I [
e J
Engine = | External load (7},,4 )

Figure 4.2: Engine model.
For the self-tuning regulator we need to define the system structure. The engine
transfer function from fueling f to engine speed N is:

NGis) - 60/Q2n)) s
As)  s+(60-b,)/(2n0)

(4.2)

The simplified system model is shown in Figure 4.3, where the load is before the
engine delay. We will be using a digital controller, therefore we need to obtain the discrete-

time transfer function of the diesel engine with a zero-order hold:

605, 7.
(l/b,)(l—e 2“’] _1
Z 1 _e_TS ; 60/27[1 _e_rs = .z T = N!Z! (4‘3)
s s+60-6,/2n/ 6(2>b.IT S(2)
z—e
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Figure 4.3: Simplified engine model.
For our experiments we want 10 select an appropriate sample time 7. The engine
model will change according to the fueling delay t and the engine inertia /. among other
parameters. 1f we define for our experiments that the fueling delay 1 will change between

30 ms and 130 ms we want a sample time that will cover those variations using a
reasonable system order. We evaluated some transfer functions for different samnple times

T and values of b, as seen in Table 4.1.
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Table 4.1:  Engine transfer functions for different values of sampling time T and engine

_ﬁ‘iC(fOﬂ b)A
T (ms) | b) Transfer function
10 0.01 00477.2-1001
z —0.9995
10 0.1229 0.0476-2400'
z—0.9941
50 0.01 0.2384 . ;207
z-0.9976
50 0.1229 02353 _2—20(
z—-0.9711
100 0.01 0.4763 - 01
z-0.9952
100 0.1229 04637 . 510"
z—0.9430

We want to define a system structure that supports different variations in the engine
delay and inertia. From Eq. (4.3) we can see that system order variations were due to the
engine delay. We can estimate a system structure of the form:

- 2 —m+1 -
N a +a 2z +a, .z *..taz " +agz”
(z) - %m m— m-— (4.4)

A(z) z-b

or

m m-=1 m— |
+
N(z) _ 9m? 8,12 *a, ,z *+..*+a;ztag

NAz) Z"(z-b)

(4.5)
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We now want to define a mechanism to identify the parameters described in Eq.
(4.4) and Eq. (4.5). That mechanism is defined by the parameter estimation process of the
next section. This is the procedure which will be performed by the Estimation block of
Figure 4.1.
4.3. Parameter estimation.

For parameter estimation we have our Jinear model defined as:

Z(ky = H(k)6 + V(k) (4.6)
where for each instant X, Z is a vector with the measurements, H is the data matrix, 6 is
a vector with unknown parameters and V represents noise or variations in the parameters

that we cannot explain. For example, if our system is represented by y; = Sx 1o X2 X3,)

we can say that the linear mode] is:

Y, = G,xlj + 92x2j +8,yxy,+ V() (4.7)
resulting in:
ylh‘ X X210 X3 -V(l)_
Y2 0, X12 X2 X312 V(2)
Z(k) = vyl 6 = 8, Hk) = X|3 X3 X33 Vik) = V(3) (4.8)
R
|k ] X3k X240 X 34] V(R
We want to obtain a function é(k) = H(k)é by minmimizing:
min [Z(k)—Z(k)]T[Z(k) - Z{k)] = Sum Squared Error (4.9)

rexpect ©

where we will obtain the least squared estimate of the parameter vector 8 5. 1f we have our
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system represented by:

() = oy(-)+ .+ d y(r-p)+a(l)

then:

yp+1) 'y
Z(ky = PWP*2) g = o5
Y(N) by

yp) yp-1) ... ¥(1)

H) = |[Y@+h y@) .. y(2)

(N-1) y(N-2) ... y(N-Dp)

where we minimize:

(4.10)

(4.11)

a(p+1)
Viky = |ap+2)

a(p+ M)

Z'7 = [2(k) - HOO8) 1Z(k) - H()8] = 27 Z2-22"He + 6"H Ho = J (4.12)

where Z = Z— Z.To find the minimum we must calculate the gradient using the following

properties:
T
Vixyl =y
T
V.byxl =y

VX[xTAx] = Ax+A'x

The minimum of ZTZ is found by the relation:

Vo = —2H Z+2H HO = 0
which implies the normal equation:
- -1
HHo=HZ=>6,,=[HH HZ

26
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which is the batch form of the least squared estimate.

In general we have that:
Z(k) = H(k)8 + V(k) (4.15)
for ¥ measurements. If we take an additional &+ 1 measurement then Z grows in one

element and H grows in one row:

k
H(k+1) = [Hﬁ )} = Hk+1) = [Hrtk) um;] (4.16)
WY+
where:
T
Wirr = [yV) y(N=1) .. y(N—=p+1)]
then:
H(k
H'(k+ DH(k+1) = [Hr(k) wm] ; )}
Wi+

(BT (VH() + Wis W 4]

-1 -
We want to find [HT(k)H(k) + W, ]\pz,, ] where P,:l = HT(k)H(k) then we
would find P, ., from P,:

A -1 T -1
[HT(’C)H(/‘)‘*W“)W“;] =[Py +Wen Wis]l = Pray (4.17)

then we can use the matrix inversion lemma:

_ — -1 _
(4+BB7) = A —A7'BU+B A7BY B4 (4.18)

T -1 7
2P = PP [+ W1 Pvia ] Wi By (4.19)
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If we define the scalar a, as:

l

a, = - (4.20)
Py Prwis
then:
= p-) 7! T
=P = Py W Wil = Py—olPows (Wis Py (4.21)
We need another relation to find the parameters. From Eq. (4.14) we have for the
time k that:

6(k)

i

(B (yHGO ] H (k) Z(k)

= P(RH (K)Z(K) (4.22)

and for the time k+ 1 that:

BCk+1) = P(k+ 1)H (k+ 1)Z(k+1)

) Z(k)
P(k+ l)[HT(k) Wi J L(k + 1)]

= P(k+ 1)[HT(k)Z(k) gzt 1)}

r
= (P~ o PiWes 1 Wis lPk][HT(k)Z(k) T W, 2(k ])]

= P H (R)Z(k) + Py, . 2(k+ 1)
7 T
—akPkwk,, lwk*‘ ]PkH (k)Z(k)
T
~ LWy W Py s g2(k + 1)

T T
- O(k)-l-Pk\p“Iak[z "a“ NN Y0 P THA R 1)}
k
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= B(K) * Py 20+ 1) + W Poire ety
— Wi 18(k) ~ Ny Pt T

A A T
S 0(k+ 1) =8(k)+ o Py, [ztk+ 1) -y, ,8(k)] (4.23)
where the value \uL 10(k) = é(k + 1) 1s the prediction of the z(k + 1) value. The value
2(k+ 1)~ W;¢T+ 1 B(k) is the prediction error. The gain matrix K (k) is defined as the vajue

a, Py, , - Wecan see in Eq. (4.23) that the new estimate of é(k + 1) is based on the

previous value é(k) and the correction term AB(k) = a, Py, . [z(k+ 1)~ \uL ICIE

To initialize the algorithm, typically Py = B/ and 6 = zero. Eq. (4.21) and Eq.

(4.23) make up the recursive least squares method for parameter estimation.

1f the parameter changes with time, we need a factor to forget older data, especially
. k
for adaptive filtering. We are minimizing 2 Z = z Zz(i) , but we want to weight the last
i=1\

errors more than the older ones, then we can use the weighted least squares as:

k
SR = Py n P DA Pr-2)+ (4.24)

t=1

. 5T
where 0 < A < 1. The general weighted least squares is Z WZ. For the A case W has the

form:
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W(k) =

L. =T =
[f we want to minimize Z WZ then:

~ -1
Ops = [HWHY H Wz

As the least squares we will estimate éWLS(k + 1) from é”,LS(k). We have the

following relations:

H(k+1) = [Hﬁk)] Z(k+1) = [ ZUOJ Wk+1) = P
4

Py =

Yia

AW (k) 0
[HT(k)\u(k+l)][ o

H(k))

[xHT(/oW(k) Wi IH y

k+ 1]

(k+ 1

[H (k+ Wik + 1) H(k+ 1))

OH W HE + vy 1wl ]

w(k)
0

where HT(k) W(kYH(k) = P;' . Using the matrix inversion lemma (see Eq. (4.18)):
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_ ] 1 1 T -lor ]
Pk+| = iPk—)—LP;\-\UkH[l+£Wk+|Pka+l] \Vk-t-ipki

_ 1 T -7
= X[Pk"PkWA-H[}\"FW“;Pkwku] W/(+1Pk] (4.25)
where o, = - l . We can rewrite Eq. (4.25) as:
AW P
Py = PP r P
ket T 5 LT O W Wier ) x] (4.26)

For the parameter estimation we have that:

B(k+ 1) = P, H (k+ DW(k+1)Z(k+ 1)

_p [ awk o[z
k ]|:H (k) wk-#]]\i 0 1 Z(k+l)

= Py [NH (KW Z(K) + o 20k + 1)]

[Py = Py e 10 Whs ,Pulk[m’(k)ww)zw) Py, z(k+ 1))

o -1 T
B(k)+ Py, ,ak[ak 20k + 1)%- WL P HKW(k)Z(K)

r
— Yy Ppzlk+ 1)%]

By substitution of o, we obtain:

Bk+1) = B(K) + Py, aylz(k+ 1) =g, 6(B)] @27

We have a new set of equations defined by Eq. (4.26) and Eq. (4.27) to update

é(k+ 1) and P, ., from z(k+ 1) and y,, ;. To choose X we have two options:
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A toosmall — increases the variance of the estimate (more oscillation).

A too large — increases the bias of the estimate.

-
For initialization we can choose Py = af or Py = [HrH] for the first data set
of points. For our case we must use the ARX model for exogenous inputs:
YO =1~ 1)= . = p(1=p) = bou(t) +byu(r= 1)+ ...+ b u(t-m) +a(1)

where the data matrix and the vector of parameters 1s defined by:

yp-1) ... ¥ u(p) ... ulp-m)
H=| Y®» . y@) ulp+l) .. ulp-m+1)

y(N) . y(N-p+2) u(N+1) ... u(N-m~+1)

4.4. Parameter estimation for the diesel engine.

The objective of this section is to find a generic transfer function modef that could
be used in later sections in the implementation of an adaptive controller. Looking at Eq.
(4.4) and Eq. (4.5) we can note that if we use a very fast sampling time we would obtain a
system with a large order and eventually more difficult to manage. If we use a very slow
sample time we would obtain a reduced system order, but we also reduce the capability of

modeling different time delays with the same transfer function model. We will try to find
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a trade-off between sampling time and system order which allow us the use of a unique
transfer function for different fueling delays and inertia values.

We simulated the engine with the original PID controller for different engine delay
conditions using the model shown in Figure 4.4. We saved different data files of fueling
versus engine speed for diverse values of fueling delay and different engine load. For
identification purposes the speed reference was changed between 600 and 650 rpm. The
engine load was simulated with a normal random number generator with the mean value

equal to the desired load and variance equal to one. The engine has a friction denoted by a

block with the same description. A variable called b, could be adjusted for different

friction values.
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Figure 4.4: Simulink model for self-tuning control.
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For the first case we used a sample time of 7 = 100 ms, with friction

b, = 0.1229 and a engine transfer function model:

2
N(Z) _ 022 +a,z+ao
= 4.28
A2 T s (4:28)

Knowing the average engine load we applied the identification process described
by Eq. (4.26) and Eq. (4.27) for different fueling delay and engine load. Figure 4.5 to Figure
4.8 have the identified parameters for different engine load plotted versus fueling delay.
There are 16 different curves in each figure, one for each engine load (0 to 150 lb-ft). In

most cases the curves directly overlap.

We can see in Figure 4.5 how the parameter a, decreases from a value close to

0.4637 for T = 0 to a value near to zero for t = 100 ms. Similar results were obtained

for the parameter a,, that reaches its maximum value at © = 100 ms as shown in Figure
4.6. The parameter a, increases after 1 = 100 ms as shown in Figure 4.7. The parameter

b oscillates between 0.9418 and 0.9430 adjusting its value for the different values in the
engine delay as shown in Figure 4.8. From the figures we can see where each parameter of

the numerator (a, to a,) has its maximum value with respect to the fueling delay. For
example, a, reaches its maximum value for zero fueling delay and a, has its maximum

value for 1 = 100 ms.
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For the next case we changed the sample time to 7 = 50 ms maintaining the same
transfer function structure shown in Eq. (4.28). From Figure 4.9 we can see for the new
sample time that the parameter a, has an initial lower value changing to a value close to
zero for t = 50 ms. However we note negatives values after 1 = 100 ms.The parameter

a, has its maximum value at 1 = 50 ms as seen in Figure 4.10. The parameter «,

increases after T = 50 ms but continues increasing after t = 100 ms as shown in Figure
4.11. From Figure 4.12 we can see that the parameter b is close to the estimated value of

0.9711 but blows up after t = 100 ms .The values after fueling delays of 100 ms for a5,

a, and b are due to the lack of an additional term that represents fueling delays greater than

100 ms.
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For our last case we decided to increment the system order for the engine model:

3 2
N(z) _ 9% ta,z +taz+a,

f(2) 2 - bz’

(4.29)

using the same sample time 7 = 50 ms. From Figure 4.13 to Figure 4.16 we can see that

the parameters a5, a,, a, and a; reach their maximum value for different engine fueling

delays 1 that were proportional to the sample time 7. The parameter 4 changes between
values 0.9704 and 0.9712 that were close to the calculated estimate of 0.9711. In Figure

4.17 we can see that b has variations for different loads after 7 = 100 ms.
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4.5. Controller design.

This section presents an off-line design of a controller that could be used to control

the speed engine. The objective is develop some constraints that could be used in the self-

tuning controlier in the next section.

For the controller design we select the following transfer function:

S _ S|22+822+S3
R

(4.30)
22 + R-_jz + R,

If we combine the controller transfer function of Eq. (4.30) with the system transfer

function of Eq. (4.29) to obtain the input-output relation of the closed loop system

described in Eq. (4.1) we obtain:
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B-R+A.-S=(z'-b') 2"+ Ryz+ Ry) +

k! 2 2
(a32” +ayz" t ajz+ ap)(S)z2" + 85,2+ S;)

B-R+A4-S =22+ (Ry-b+a;8)) + 2 (Ry— bR, + 2,8, + 0,§) +  (4.31)
23(—bR3+a3S3+0282+a|S,)+
2@,y + 4,8, + ayS)) + 2(a,Sy + agSy) + (a,S,5)

If we select our closed loop characteristic equation as:
_ 6,5 4 3 2
dAc =z +zZas+vza,v2a,3+za,%za, +a, (4.32)

then we could define the following relation:

1 0.a 0 0 o 0 + ]
-b 1 ay,a; 0 2 a.,
0 -b %3
=0 a| a; a Sl = ac3 (433)
0 0 aya, a, a,.,
S,
0 0 0 a;a < a,
000 0 ayt ™ a.

-1
Initially we could solve this relation by applying the relation RS = (ATA) ATaC.

However we must include some constraints to obtain the desired system response. We can
find constraints if we apply the final value theorem to Eq. (4.1). We want the final value of
the engine speed with respect to the reference speed to be close to one. We also want the

final value of the engine speed with respect to the engine load to be close to zero. From both

conditions we can define:

A4-S

li (— =1 = errorgain 4.34
:ONB-R+A4- & (434)
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and

lim (—AR—SJ ~0 = errorload (4.35)
B-R+A4-

== 1
For practical purposes we could define a lower and upper bound for errorgain as
Leg <errorgain < Ueg,where Leg could be 0.9999999 and Ueg could be 1.00000001.

A similar relation could be applied to errorload as Lel < errorload < Uel, where Lel

could be -0.00000001 and Ue! could be 0.00000001. Solving for Eq. (4.34):

[ [(1-b)Leg] |'[R)
[(1-b)Leg] | g,
[(2_a)(Leg-1)] S,| <-Leg(1- ) (4.36)
[(Day(Leg-1)| |s,

[(Qa)(Leg-D]| [$,

where Za,. = a,+a,+a,+a,. For the upper limit of errorgain we obtained:

[ - -byUeg) |'[z)

[(1 -b)Ueg] R,
(~(a)Ueg-D]| |5 | < Ueg(1-b)
[ a)(Ueg-1)| |5,

_[—(Zai)(Ueg -1 )l A

4.37)
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Solving for Eq. (4.35):

- a)+(-b)yUen| [
[-(Qa)+ (1 -o)Uell| |g,
[ a)(Uel)) S, S—Uel(l—b)+(2ai) (4.38)
(2 a)(UeD)] F
[(Capen) | 15

[(Xa)-(1=5)Lell| 5]
[(Xa) - (1 -b)Lel)| |g,
- ayLen) | |s,|sLel(l-b)-(D.a) (4.39)
- a)(Leh)) | |52
(> a)Len] | 153

We must consider a case where:
lim(R) =0 (4.40)
2o |

resulting in an equality for Eq. (4.34) and Eq. (4.35). If Eq. (4.40) is satisfied, this does not

mean a final gain equal to one with respect the reference speed or a minimization in the

influence of the external load. To avoid Eq. (4.40) we included the following condition:

[11o000][s]*-! (4.41)

To solve the relations given by Eq. (4.33), Eq. (4.36), Eq. (4.37), Eq. (4.38), Eq.
(4.39) and Eq. (4.41) we can use the Matlab function conls in the form:
result = conls(A, b, C, d) (4.42)
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where 4 and b correspond with the matrix and vector given in Eq. (4.33). C and d
correspond with the matrices and vectors given from Eq. (4.36) to Eq. (4.39) and Eq. (4.41).

This function solves the constrained linear least-squares problem:

min(% l4x - b)) subject to Cx<d (4.43)
X

From Eq. (4.43) we notice that the condition described by Eq. (4.42) could not be

reached. Therefore we replaced Eq. (4.42) by the following expression:

[11000||s,|<-1:00000000] (4.44)

that allow us to find an expression close to -1. Another possibility could be:

[£1-1000]|8,| = 0999999999 (4.45)

We must define the desired transfer function (desired closed loop poles) to be used
in Eq. (4.42). For different experiments we found that fixing a transfer function generally
originates an approximation that generally has one or more of the poles outside of the unit
circle. This condition produces an undesired response for the system. To reduce this
problem we first identified the closed loop transfer function for the original controller.

From that transfer function we determined if the complex poles were predominant with
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respect the real poles. If that condition occurs then we defined the least dominant real pole
with the same size of the real part of the dominant complex pole. After that the complex
poles were reduced in size.

For example in the case of a diesel engine with delay 1 = 110 ms we identified the

system transfer function as:

N(z) _ 0.0005z° —0.0012z> +0.1930z + 0.0428
J(2) 2 -097112°

(4.46)
where the sample time was 7 = 50 ms and the average load 150 1b-ft. For the original PID
controller:

S _ 2.052°-2.575z + 0.5437
2°-1.252+0.25

(4.47)

~

we obtained the closed loop poles:
0.9879
0.7940 + 0.4972i
0.7940 - 0.4972i
-0.3130 + 0.0378i
-0.3130 - 0.0378i

0.2701

We applied different combinations in the reduction of real poles and complex poles.
The combination which reduced the mean square error was by reducing the real poles size

by 0.8 and the complex poles by 0.98. For that reduction the desired new poles must be:
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0.2701
-0.3067 - 0.03711i
-0.3067 + 0.0371i
0.7782 - 0.4873;
0.7782 + 0.4873;
0.7903
By using the function conls we obtained final poles at:
0.9890
0.6838 + 0.3588i
0.6838 - 0.3588i
-0.3087 + 0.02011

-0.3087 - 0.0201i

0.3318
with errorgain = 1.00000001 and  ,,,,r/0ad = -8.1349¢10% . The
controller obtained was:

S _ 1.48932°-1.9144z + 0.4374 (4.48)

R 22-1.1005z + 0.1005

If we use the condition given by Eq. (4.45) we obtained the controller transfer

function:
S _ 1.4884z°-1.9150z + 0.4366 (4.49)
R 22=1.10052 + 0.1005
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We simulated the system wath the onginal PID conwroller (Eq. (4.47)) and both
controllers (Eq. (4.48) and Eq. (4 49)) for the nominal 10ad of 150 Ib-ft and a second load
of 100 Ib-fi From Thgure 4.18 we can sce that the system response for the new controllers
has lower overshoot and i1s immune to load variations. With the original P1D controller we
have a higher overshoot and more vanation in the response due to the engine load. i“or this
system we tested various combinations of pole locations We found that the lower mean
squared error was obtained for a reduction of 80 % in the dominant real pole and 98 % in

the complex poles. The movement in the pole location 1s shown in Figure 4.19.
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Figure 4.18: [ngine response for different contollers and lovds.
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Figure 4.19: Final pole location for different values in the magnitude reduction of original

real and complex poles.

4.6. Adaptive control.

In this section we will try to use the results of the previous section in the design of
an adaptive controller for the engine. As shown in Figure 4.1, the adaptive controller has
two blocks. A first block is dedicated to estimate the parameters of the engine as described
by Eq. (4.29). Using those parameters, the controller is defined 1n a second block. The
controller design block will adjust the controller parameters to achieve a desired set of pole
locations. We will use the pole locations that were developed in the previous section.

The identification block was performed by using Eq. (4.26) and Eq. (4.27):
_ 1 T
Pray = X[Pk—akpkwk+]qfk+lpk]

O(k+1) = 0(k) + Py, . o, [z(k+ 1) - wp, B(k)]
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For the identification block we used A = 0.99. We tried with lower values, but the

. I TR TI -1
estimated parameters had too much variation. For initialization, we choose P, = [HTH]

and 8 = zero for the first data set of points. The system started with the original PID
controller, and after 1 second the adaptive process was started.

The first approach was defining a desired response that the closed loop system must
follow. Using that definition, we found that the engine response was normaily saturated at
maximum or minimum speeds. The second approach consisted in reducing the size of the
dominant real pole by a given percentage from the original controller. Results from last
section suggested that we use a reduction in the complex poles of 98 % and a reduction in
the real pole dominant of 80 %. The controller was obtained by solving the relations given
by Eq. (4.33), Eq. (4.36), Eq. (4.37), Eq. (4.38), Eq. (4.39) and Eq. (4.41), using the Matlab
function conls.

In Figure 4.20 and Table 4.2 we can see the different responses for variations in the
size of the dominant real pole for an engine with fueling delay of 110 ms and two friction
values. We note that the best response was obtained with a reduction of 80 %. Similar
results are observed for an engine with fueling delay of 130 ms in Figure 4.21 and Table
4.3, except for the percent overshoot that was better with a reduction of 70 %. A special
case was for a fueling delay of 80 ms. As seen in Figure 4.22, the maximum reduction was
for 85 % of the dominant real pole. When we tried a larger reduction, the response of the
resulting engine was saturated at zero. However, we noted better responses for 85 % and
90 % reduction for the percent overshoot. The mean square error has an small increment.

In Figure 4.23 we can see the case for a fueling delay of 50 ms. Here we obtained a percent
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overshoot improvement for the dominant real pole reduced to 90 % If we continue with the

reduction we don’t see further improvement and the mean square error increases.
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The objective of this chapter was to introduce a standard adaptive controller with
which to compare the reinforcement learning algorithms to be presented in later chapters.
The self-tuning regulator was chosen as the base-Jine controller.

There are many variations of the self-tuning regulator. We used the pole-
positioning STR. The first stage in the development of this STR is to choose a set of desired
pole locations. If these are not chosen carefully, the resulting system may not be stable.
Through experimentation, we found that the best approach was to start with the closed-ioop
locations of the base-line PID controller. We then identified the dominant poles and
reduced them in magnitude by a specified percentage (a reduction of 80% provided the best

performance for the engine speed control).
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CHAPTER §

GENETIC REINFORCEMENT LEARNING FOR DIESEL ENGINES CONTROL.

5.1. Introduction.

In this chapter we will describe the GENITOR algorithm for the optimization of the
parameters of a diesel engine controller. We will explain the basics of that algorithm and
how it can be used to adjust the controller parameters.

5.2. GENITOR Algorithm.

The GENITOR Algorithm was developed by Dr. Whitley and his students at
Colorado State University and publications are available starting in 1988 (g 23 32).
[nitially, GENITOR was an algorithm to solve binary genetic applicationsy,,. After some
updates, Whitley et. al proposed the GENITOR algorithm as an application using real
numbers for training neural networks for reinforcement learning and “neurocontrol™
applications in a term they called Genetic Reinforcement Learning (os).

Traditional Genetic Algorithms apply biologic ideas to the solution of a problem.
We can encode a solution in a string, where each parameter solution is consider as a bit of
that string. If we manipulate that string we can obtain new solutions based on the survival
of the fittest. Researchers used manipulation methods related to chromosomal

recombination, such as crossover, mutation, etc.
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Normally the initial population is generated randomly. By random selection two
members of that population are selected and we apply “crossover” to obtain a new member
of the population or offspring. We will consider the parents 0101010001010101 and
YXYyXYYyXyxyxyxyx, where the bit representation (0, 1, x, y) was choosen to recognize each
parent. If we apply a crossover at the 4th bit of the parents, it means the recombination:

0101\/010001010101=0101xyyxyxyxyxyx
yXyY\ /xyyxyxyxyxyx=yxyy010001010101

After the Crossover operation, we can perfortn the mutation operation, where some
bits of the offspring are randomly selected and the values complemented. For example, if

we select the bit 2, 7 and 10 of the first offspring we will obtain:

0101 xyyxyxXyxyxyx = 0001 xyxxyxxxyxyx

Tt ot

An important feature from GENITOR to obtain an improvement in the quality of
the population is the tendency to select the best parents more frequently. The difference
with gradient search methods is that genetic algorithms will search randomly in all of the
hyperplanes.

We can define a hyperplane that represents the binary encoding as seen in Figure
5.1. If we have a 3-bit string the search is performed in the upper hypercube of Figure 5.1.
If we have a 4-bit string the search is made in the hypercube of four dimensions shown in
the lower part of the same figure. The difference between the subspaces is the first bit,

where 1 represents the inner cube and 0 the outer cube. The concept of implicit parallelism
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means an efficient search in those numerous hyperplanes. This feature permits the search

of nonlinear functions without gradient calculation.
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Figure 5.1: A 3-dimensional and a 4-dimensional hypercube (),

The GENITOR algorithm, developed by Whitley and his students, generates an
initial population of random strings. Each member of the population is evaluated and the
population is sorted according to their fitness. Two parents are selected at random from the

population. That selection process uses a biasranking selection algorithm allowing a higher
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probability of selection to the best parents. The bias ranking selection is implemented with

the relation:

fix(Populationsize(bias - ,/biasz - 4(bias — 1)rand)) .

arent =
P 2(bias - 1)

that represents the probability density function:
f(p) = bias—2(bias-1)p
where p is the parent ranking. We can see a plot of this function for Bias = 1.9 in Figure

5.2. We notice that parents with higher fitness (lower position in sorted population) have

higher probability to be selected.
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Figure 5.2: Probability density function for bias = 1.9.
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A crossover process permits the recombination of the parents. From both offspring.
we select one and discard the other. We evaluate the new offspring and it is placed
according to its fitness, replacing the lowest ranked parent.

The improvements that Whitley and his students defined for the application of
GENITOR in the training of Neura! Networks are:

+ .- The Neural Network problem is encoded as real-valued strings instead of binary
strings.

o 2.- A different procedure for mutation is used. “Traditional genetic algorithms are
largely driven by recombination, not mutation”(s.

¢ 3.- The algorithm uses an small population (e.g. 50 individuals) to reduce the explora-
tion of dissimilar representations for the same neural network.

We can see the GENITOR implementation in Figure 5.3.
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1. Initializanion Phase.
- Set al] the weights in the network to a random value between + 2.5

- Set one allele representing the probability of crossover to a random value between
0 and 1.

- Evaluate each indjvidual and sort the population according to the fitness.

D. Tteration phase.

- Select two individuals according to relative fitness using linear-bias selection.

- Crossover with probability determined by the crossover probability allele of the
string selected as parent 1; otherwise perform mutation on parent 1.

- The offspring always inherits the crossover probability of parent 1. If parent has
higher fitness than the offspring, increment the offspring crossover probability by a
factor of 0.10 (to maximum 0.95); otherwise decrease the crossover probability by a
factor of 0.10 (to minimum 0.05).

- Evaluate new offspring and insert in the population according to fitness.
- Continue “iteration” until error is acceptable or MAX-ITERATIONS = True.

Operator.
utation: Mutate all weights on the first selected individual by adding a random
alue with range = 10.0.
rossover: Perform no crossover if the parents differ by two or fewer alleles. Other-

1se, recombine the strings one-point crossover between the first and the last posi-
ions at which the parents have different weight values.

Figure 5.3: Original GENITOR algorithm (D. Whilley, et. al.) ;5.

From Figure 5.3 we can see that one allele is the probability of crossover. As the
algonthm converges, the probability of crossover decreases. We can only perform
crossover or mutation for a new offspring. Also, the mutation operator creates a new

random offspring near the selected parent.
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5.3. Model Description.

In this section we will briefly review the basic diesel engine model and baseline PID
controller which were discussed in Chapter 3. The simplified engine diese] control model
is described from Figure 3.1 to Figure 3.4.

With the model of the Figure 3.4 we made a simulation with constant Joad of
150 fi-1b. The speed engine was changed between 600 rpm and 650 rpm every 5 seconds
for a total time of 20 seconds. We can see in Figure 5.4 and Figure 5.5 how the PID

controller changes the engine speed between 600 rpm and 650 rpm, and the fueling is

maintained between 0 and 300 mmj/srroke . We will make the future simulations based

on this model for the engine.
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Figure 5.4: Original engine response for Kp=2, Ki=0.5, Kd=0.05, a=15.

63



300

250

200 -

jpecd
g?-

"?
7“_

—

100

50 . :
0 5 10 time 15 20

Figure 5.5: Original fueling response for Kp=2, Ki=0.5, Kd=0.05. a=15.

5.4. Genetic Reinforcement Learning applied to PID controller.

We applied Genetic Reinforcement Learning to the system shown in Figure 3.4.
The simulation will run with constant load of 150 ft-Ib changing speed between 600 rpm
and 650 rpm every 5 seconds, for a total simulation time of 20 seconds. We defined as
fitness function the mean square error of the desired speed response. This parameter is
related to the rise time for the engine speed. For the original PID controller we have the
responses of Figure 5.4 and Figure 5.5. Fora = 10 and @ = 20 we have a mean square
error of 1000.34 and 999.34, respectively. We want to minimize the mean square error and
indirectly the rise time and the tracking error. The initial population used for training was
set around the basic PID parameters and @ = 15.
5.5. Initial resuits.

We can see the training results in Table S5.1. For each experiment we started the

training with random values around the basic PID controller parameters. We can see an
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improvement in the responses due to the PID controller based on the mean square error. The

mean square error was calculated by direct integration of the square error in the simulink

model. We obtained approximate improvements for the mean square error from 3.63 % to

10.00 %. From the two initial rows of Tabie 5.1, we notice that the best results, for the same

number of epochs, were obtained for the smaller population. After increasing the number

of epochs to 30000, we obtained best results for the population of 50, as shown in the last

row of Table 5.1, Figure 5.9 and Figure 5.10. We can see an improvement with longer

training, but good results can be obtained after a few epochs.

Table 5.1: Controller’s results for mean square error based fiiness.

Best Fitness % Pop. Resulting Notes i
(error)z. improvement Size Parameters

920.64 7.87 5 Kp=1.7718 Random initial conditions
Ki=0.0788 around basic PID controller.
Kd=0.6835 3000 epochs.
a=20.8593

963.01 3.63 50 Kp=1.8662 Random initial conditions
Ki=0.0117 around basic PID controlfer.
Kd=0.1455 3000 epochs.
a=179139

899 38 10.00 50 Kp=1.7975 Random initial conditions
Ki=0.1417 around basic PID controller.
Kd=1.0868 30000 epochs.
a=25.9656
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5.6. GENITOR applied to analog PID controller.

5.6.1. Results for different engine inertia.

For the next case we repeated the training for different values of enpine imertia /
For each case the iitial response changes according to the engine imerha value
Optimization is needed to adjust the PID controller valucs 10 match the engine incriia We
use the mean square error as our fitness value. To reduce the training 1ime, we changed the
training scheme to two specd transitions. The first transition is {rom 600 to 650 rpm af |
second. The second transition is from 6350 to 600 at 3.5 seconds. The engine and the PID
controller are initialized with the enginc conditions {or 600 rpm. The simulation runs from
0 to 1 second without error measurements, then the training is started. After the first set of
simulations we obtained negative values of integral gain. Those values were duc to the

limited simulation time for each speed, during which the tendency of an increased
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accumulation of integral error could not be noticed. To overcome this, we increased the
simulation time to 8 seconds with the second transition from 650 to 600 rpm at 4.5 seconds.
To ensure the correct values of the parameters for future training, we changed the mutation
process in the GENITOR algorithm by accepting only positive values of the PID
pararmeters.

For the mean square error as fitness we obtained the results shown in Table 5.2 for
six different inertia values and two different population sizes. For very oscillatory engine

responses we could reduce the mean square error to 20 % of its original value for inertia

equal to | Ib-ft-sec?, as seen in first row of Table 5.2 and Figure 5.11. As inertia increases,

the mean square error was reduced to 77 % of its original value for inertia equal to 1.4 |b-

fi-sec? (see the second row of Table 5.2 and Figure 5.13). In the last four rows of Table 5.2

we can see mean square error reduction ranging from 91 % to 95 % of their original values

for inertia between 1.8 Ib-ft-sec? and 3 lb-ft-sec? (see also Figure 5.15, Figure 5.17, Figure
5.19 and Figure 5.21). If we compare the results related to the population size we noticed
small differences in the results for 1500 epochs. For lower inentia values (see Figure 5.12
and Figure 5.14) the learning process is faster with smaller population. For the remaining

cases the learning rate is similar for both of the populations used. A special case is for

inertia 2.2 Ib-ft-sec? (see Figure 5.18) where a good initial value in the population generated
a better response for the case of higher population. We must remember that the population
initialization and the recombination process are random in nature, therefore, for a specific

experiment we could obtain results that are not consistent with overall trends.
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Table 5.2: Engine with different inertia. Controller s results for mean square error based

Sfitness.
Inertia Initial | Best Fitness | Regulting | Best Fitness | Regulting
Ib-ft-sec?. | Fitness | (error)’.. | Parameters | (error)>.. | Parameters
(error)2. Pop.=35 Pop. =5 Pop. =50 Pop. =50
1 2939.12 600.18 Kp=0.9651 592,71 Kp=0.9964
(20.42 %) Ki=0.5399 (20.16 %) Ki=0.3470
Kd=0.0481 Kd=0.0422
a=13.0029 a=16.5038
1.4 761.07 591.34 Kp=1.3283 597.15 Kp=1.4847
(77.69 %) Ki=0.4298 (78.46 %) Ki=0.4459
Kd=0.0549 Kd=0.0510
a=15.6957 a=13.4670
1.8 626.52 599.19 Kp=1.9398 597.16 Kp=1.9493
(95.63 %) Ki=0.5016 (95.31 %) Ki=0.4472
Kd=0.0543 Kd=0.0505
a=14.2661 a=14.8449
2.2 625.57 594.90 Kp=2.0588 592.23 Kp=2.0697
(95.09 %) Ki=0.4409 (94.67 %) Ki=0.4436
Kd=0.0583 Kd=0.0496
a=13.2913 a=154919
2.6 648.53 596.43 Kp=2.2861 606.42 Kp=2.1127
(91.96 %) Ki=0.4830 (93.50 %) Ki=0.4758
Kd=0.0494 Kd=0.0476
a=16.7868 a=14.6991
3 665.24 621.36 Kp=2.0800 618.70 Kp=2.0795
(93.40 %) Ki=0.480] (93.00 %) Ki=0.4097
Kd=0.0473 Kd=0.0546
a= 149868 a=14.9168
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For the next case we repeated the training for different engine inertias. but we
changed the fitness function from mean square error to percent overshoot. For that fitness
function we obtained the results shown in Table 5.3. From that table we can see that the
percentage response improvement depends on the initial overshoot. More impressive
results were obtained with more initial overshoot and oscillatory responses. Due to the
selected fitness function, we can see in the odd figures from Figure 5.23 to Figure 5.35 that
the resulting responses tend to.be more flat. If we compare the training processes, we
obtained a better response for small populations, as seen in the even figures from Figure
S5.24 to Figure 5.36. This must be due to the less restrictive fitness function (overshoot)

allowing faster mutation for lower populations.
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Table 5.3: Engine with different inertia. Controller’s results for percent overshoot bused

fitness.
| Inertia Initial Best Fitness | Resulting | Best Fitness | Regulting
Ib-fr-sec’.| Fitness | (overshoot). | Parameters ' (overshoot). | Parameters
' (overshoot) | Pop.=§ Pop.=5 Pop. =50 Pop. =50
1 103.1990 0.4311 Kp=0.5323 0.9894 Kp=0.5595 |
(0.41 %) Ki=0.0670 (0.95 %) Ki=0.1045
Kd=0.0767 Kd=0.047S
a=14.8190 a=163213
1.4 57.6517 0.3047 Kp=0.6509 1.2924 Kp=0.7971
0.52%) | Ki=0.0628 | (224%) | Ki=0.1319
Kd=0.0307 Kd=0.0514
a=11.9443 a=13.6600 |
1.8 36.6645 0.3939 Kp=0.7736 0.4040 Kp=0.9222
(041 %) Ki=0.0625 Ki=0.0796
Kd=0.0507 Kd=0.0691
a=13.9364 a= 1438195
2.2 22.2402 0.3906 Kp=0.9513 0.4233 Kp=1.1102
(1.07 %) Ki=0.0675 (1.15 %) Ki=0.0830
Kd=0.0494 Kd=0.0479
a=13.9331 a=14.8503
2.6 12.9828 0.3604 Kp=1.3477 0.3329 Kp=1.2580
277%) | Ki=0.1014 | (2.56%) | Ki=0.0872 |
Kd=0.0698 Kd=0.0561 |
a=17.8313 a=13.0939
3 7.1080 0.4237 Kp=1.5058 0.3842 Kp=1.4804
(5.96 %) Ki=0.0971 (5.40 %) Ki=0.095S
Kd=0.0440 Kd=0.0449
2=15.1023 a=13.6163
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5.6.2. Results for different fueling dclays.
For the next case we repeated the training for different engine fueling delays 1. For

each case the initial response changed according to the fueling delay value with a fixed

engine inertia of 2 Ib-fi-sec”. An optimization is needed to adjust the PID controller values
to match the engine fueling delay. We use the mean square error as our fitness value. Like
the previous case, we changed the training scheme to two speed transitions to reduce the
training time process. The first transition 1s from 600 rpm to 650 rpm at | second. The
second transition is from 650 rpm to 600 rpm at 4.5 seconds. The engine and the PID
controller are initialized with the engine conditions for 600 rpm. The simulation runs from
0 10 1 second without error measurements, then the training is started.

Using the percent overshoot as fitness, we obtained the results shown in Table 5.4
for six different fueling delay values and two different population sizes. If we look at Table
5.4 and the odd figures from Figure 5.35 to Figure 5.45, we notice how the response
improves from the closest values to the delay of 80 msec to the extreme delay values. This
must be due to the fact that the original PID parameters were optimized for the delay of 80
msec. As we move far from that delay, the original PID response needs more improvement.
If we look at the training process (even figures from Figure 5.36 to Figure 5.46), we notice
a faster response for the smaller population. However, in the majority of the responses the
final values obtained for the large population were better. Figure 5.40 show a special case,
where the training for smaller population apparently arrived at a local minima) and then

future training does not improve the engine response.
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Table 5.4: Engines with different fueling delay. Controller s results for mean square error

based fitness.

Delay | Initial | BestFitness|  Resulting | Best Fitness | Resulting
(msec) Fitness (error)z. Parameters (error)z. Parameters
(error)z_ Pop.=5 Pop.=5 Pop.=50 POP. =§
30 355.32 257.26 Kp=3.0428 268.68 Kp=2.7465
(72.36 %) Ki=0.2787 (75.57 %) Ki= 0.4947
Kd=0.0527 Kd=0.0425
a=15.0048 a=15.7296
50 432.08 385.81 Kp=2.2091 380.24 Kp=2.5555
(89.29 %) Ki=0.4515 (88.00 %) Ki=0.4656
Kd=0.0568 Kd=0.0496
a=14.5073 a=14.118]
70 544 42 521.53 Kp=1.9492 517.01 Kp=1.9840
(95.79 %) Ki=0.4857 (94.96 %) Ki=0.4314
Kd=0.0533 Kd=0.0485
a=163126 a=13.3124
90 729.64 660.49 Kp=1.7835 669.07 Kp=1.7831
(90.52 %) Ki=0.2725 (91.69 %) Ki1=0.4787
Kd=0.0609 Kd=0.0496
a=13.6584 a=13.6043
110 1007.13 818.17 Kp=1.5797 8§18.07 Kp=1.4269
(81.23 %) Ki=0.3228 (81.22 %) Ki=0.2924
Kd=0.0523 Kd=0.0519
a=17.3795 a=14.7027
130 1579.99 1006.44 Kp=1.3023 972.48 Kp=1.2753
(63.69 %) Ki=0.5150 (61.54 %) Ki=0.2998
Kd=0.0347 Kd=0.0482
a=13.9807 a=142724

86




speed

Figure 5.35: Detad trunsiion from 600 to 650 rpm. Blue — Original PID parameters,
Cireen  Gertor optimized paramelters (Population 3), Red  Genitar optimized

parameters (Poprlanon 30} Fpochs 1500, Delay 30 myec

Mean square ¢rrof
[#)
[=1
=
—

o 500 cpochs ‘000 1600

Figure 5.36: Lecurmng rate for engine delay 30 msec. Bfue: Population 3,

Green: Population 3100,

"7



660 : T T T T T

650 | f\.— .
640 L | ]
g,“ 830 ¢ 1
820 } .
810 |- J
800 L .

- 1 i i A
= - [;

} 1 5 2 2.5 ime 3 [ 4 4 5

Figure 5.37: Derl transition from 600 o 6350 rpm. Blue  Original P11 paramerers,
Cireenn Gerntor opintzed porameters (Population ), Red  Gremitor optimized

puramefers 'Popufation  30). Lpochs 1500, Delay S0 msec,

470 ————— ' ]
|
]
415 4
d10 ~
=] o y
£ 34068 [
£ L
g a0o0l i
:1 by
=g
1727
5 g5 |
LY
E — - — -
306G | |
385 | :
280 . .
0 500 epoche 1nao 1500

Figure 5.38: [curmmng rate for ernzine delfay 30 msec, f$lue: Population 3,

Gireen: Population 3,

55



680 ——— - U T T —

‘\.
650 | N o
ff
GAD |
- !
¥
Ly |
& eaof | |
|
|
@20 - |
610k |
|
|
600 |
1 i i 1 i L
1 Vo5 2 25 25 4 425

Figure 8.39: Dewil iransition from 600 10 630 rpm. Blue  Original P11 parameters,
Cireen  Genuar optimized parameters (Population 5), Red  Genntor optomzed

parameters (Population 505 Epochs 1300, Delay 70 msec

mean square crmor
[4,]
[
e
T

520 |

o S00D cpachs 1000 16500

Figure 3.40: /curnmg rate for engine delav 7msec, Blue: Vopulation 3,

Cireen: Population 31,

&9



speed

Figure S.41: Dot transicion from 600 to 630 rpwn. Blue

{rreen

MEAN S4guare Crrod

Cenitor optimuzed purameters (P'opulation

purameters (Populaiion

30). Lpachs

S, Red

]300, 1eluy

Origmal PHD parameters,

Crenitor optimized

U yrisec

GRO
685 l
aan

G775 | L

665

866490 .

iy T

s ]

cpochs

Figure 5.42: Leurnming rate for ensine deluy

(rreen: Popudation

¥4

1000

3

Yirmseco [teer Poprdation 3,



680 v —y T T T

670 |\

BEL |

<
|
|
|

speed

1 I 5 z 25 Lme i

Figure 5.43: Dewnd transiron front 6000 1 6.50 rpm. Blue
Crreert Genuor optinnzed parameters (Popuflation

parameters (Populanon  30). Fpochs

9-10%
ura |

29400

mean square crrar

BEO
840 | ey

B2o Mo eegen L ue e
|

), Red
1300, Delay

Origmal PITY parcemeters,
Genuor optimized

11 msec,

800 1 e B
0 soo epochs

Figure 5.44: Learning rate for engine delay

(ireen: Poputation 50,

v

HG misec.

Blue: 'opulonon 3,



680 -

670 b
A
G60 | | §

[\

= '
Y N 11
g_ 650 |- N \ Ve | T e o
1
540 '; 4
I.II
630 / i
E?OF | 4
510 , 4
600 ..j 4
L T o TR I L |
1 - 2 25 |me 2 3.5 4 4.5

Figure 5.45:

Deten! transition from 600 o 630 rpm. Blne

Ornginal PO parameters,

Gienitor aptimnzed

1500

Circen Crentor optinuzed purameters (Population S), Red
parameters (Population  50). Fpochs 1500, Delay 130 msec.
18600 T T
1500 - i
100 l '
5
5 <300 !
o |
2 ool
2
F 1200 L y
: |
£
100 L
N
\1'_ = . . WS i —
1000 L ' — z
900 b— . :
0 500 epochs 1600

Figure 5.46: Lcarning rate for eagine delay

(Jreen: Population

30 e

30

Flne:

Popidution 3,



For the next case we repeated the training for different fueling delays 1. changing
the fitness function to the percent overshoot. For that fitness function we obtained the
results shown in Table S.5. As we can see from Figure 5.47 to Figure 5.58. the resulting
responses tend to be flatter.

Table 5.5: Engines with different fueling delay. Controller’s results for percent overshoot

based finess.

Delay Initial Best Fitness Resulting Best Fitness Resulting
(msec) Fitness (overshoot). | Parameters | (overshoot). | Parameters
‘ (overshoot). | Pop.=8§ Pop. =5 Pop. =50 Pop.=5
30 1.3080 0.3443 Kp=1.9959 0.3612 Kp=2.2170
(26.32 %) Ki=0.2174 (27.61 %) Ki= 0.2454
Kd=0.0431 Kd=0.0450
a=16.0838 a=14.8958
50 4.5210 0.4311 Kp=1.6536 0.3864 Kp=1.6156
(9.53 %) Ki=0.1636 (8.54 %) Ki=0.1564
Kd=0.0546 Kd=0.0481
a=18.3008 a=15.1590
70 18.7506 0.4243 Kp=1.1677 0.3374 Kp=1.2237
(2.26 %) Ki=0.0990 (1.79 %) Ki=0.1097
Kd=0.0591] Kd=0.0577
a=15.1457 a=15.0712
90 37.9684 0.3627 Kp=0.8812 0.4373 Kp=0.9625
(0.95 %) Ki=0.0698 (1.15 %) Ki=0.0770
Kd=0.0526 Kd=0.0601
a=17.7431 a=13.8594
110 56.3349 0.3243 Kp=0.7657 0.3109 Kp=0.7764
(0.57 %) Ki=0.0548 (0.55 %) Ki=0.0587
Kd=0.0520 Kd=0.0601
a=13.4557 a=13.3248
130 76.8723 0.263] Kp=0.5320 1.0819 Kp=0.6909
(0.34 %) Ki=0.0335 (1.40 %) Ki=0.0609
Kd=0.0322 Kd=0.0473
a=14.8544 a=15.2094
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S.7. Genetic Algorithms applied to digital controllers.

In the next sections we will apply the GENITOR algorithm to the Digital version of
a PID controller. We first converted the original analog PID controller to its digital version,
To realize that conversion we took the PID original relation given by Eq. (3.1) then

executed the conversion:

S z=1 5.1
$ == (5.1)

where 7 is the sampling time. The transformation of Eg. (3.1) by using Eq. (5.1) is:

(Kp+ Kd)z' + (—2(Kp+ Kd)y+ T(Kp - a+ K1)z
+(Kp+Kd=T(Kp - a+Kiy+ THKi - a))

G(z) = :
22+ (T -a-2)z+(1-T-a)

(5.2)

For Kp = 2, Ki = 0.5, Kd = 0.05 and a = 15 (middle point beiween 10 and

20). and 7 = 50 ms we obtained the transfer function:

_ 2,052 = 2,575z +0.5437

22 - 1252+ 0.25

G(z2)

(5.3)

Our first approach was to emulate the GENITOR training of the analog controller
and execute the conversion from Eq. (5.1). This approach resulted in a slow training and
generally the results were far from desired responses. Next, we parametnized the digital

controller as:

_ K(z=-zp)z-2z))

G
= G-

(5.4)
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With the implementation of Eq. (5.4) we can define the locations of the zeros and

the poles without the restrictions of the P1D controller. We defined the use of the controller
from Eq. (5.4) where we have five parameters p,. p,, z,. =, and K. The initial values of
the previous parameters will be obtained from Eq. (5.3). resulling in pg = 1, p, = 0.25,
zy = 0.9875,z, = 0.2686 and K = 2.05. Starting with those values we will execure the

GENITOR algorithm defined in section 5.2 to optimize the controller paramcuers for

different values of fueling delay and engine inerta.

5.8. GENITOR algorithm applicd to digital controller and engine with friction
b,=0.12295.

5.8.1. Results for different engine inertia.

For the first digital controller case we executed the training for different engine
inertia values. For each case the initial response changes according to the enginc incrtia
value. Optimization is nceded to adjust the controller values to match the engine inertia. We
use the mean square error as our fitness value. As in the anafog case. we changed the

training scheme to two speed transitions to reduce the training time. The first transition is

from 600 to 650 pm at ¢, seconds. The second transition is from 650 to 600 at £, seconds.

The engine and the controller were initialized with the engine conditions for 600 rpm under

the basic controller. The simulation runs from 0 to ¢ seconds without error measurements,

then the training is started. To ensure the correct values of the parameters for future
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training, we changed the mutation process in the GENITOR algorithm by accepting only
poles and zeros inside the unit circle.

We executed three different training processes under different conditions:

1.- ¢, = | seconds, 7, = 4.5 seconds. Searching step = 1/100.
2.- {, = 1 seconds, /5, = 4.5 seconds. Searching step = 1/10.

3.- t; =5 seconds, /, = 8.5 seconds. Searching step = 1/10.

Using the mean square error as fitness for each of the previous conditions we
obtained the results shown in Table 5.6, Table 5.7 and Table 5.8. The training was made
for six different inertia values and two different population sizes. If the search range is

small the results are not oo impressive, as we can see from Table 5.6 with Table 5.7 and
Table 5.8. The variation in the ¢, value did not significantly affect the results, as we can
see by comparing Table 5.7 and Table 5.8.

For very oscillatory engine responses we could reduce the mean square error to 6.72

% of its original value for inertia equal to 1 Ib-ft-sec?, as seen in first row of Table 5.8 and

Figure 5.59. As inertia increases, the mean square error decreases to 42 % of its original

value for inertia equal to 1.4 Ib-ft-sec? (see second row of Table 5.7 and Figure 5.60). In

the last four rows of Table 5.7 and Table 5.8 we can see reductions from 73 % to 94 % of

the original mean square error for inertia between 1.8 b-ft-sec? and 3 1b-fi-sec? (see also
Figure 5.61, Figure 5.62, Figure 5.63 and Figure 5.64). If we compare the results related to

the population size we noticed small differences in the results for 1500 epochs.
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Table 5.6: Engine with different inertia. Controller s results for mean square error based

fitness. Searching step 1/100. Error calculation after ty = I second.

Inertia Initial | BestFitness | Resulting | Best Fitness | Resulting
Ib-ft-sec?. | Fitness (error)z_ Parameters (error)z. Parameters
(error)z_ Pop. =5 Pop.=5 Pop. =50 Pop. =50

l 8169.89 5206.43 | poles=1.0000 4453.27 | poles=1.0000
(63.73 %) and 0.2506 (54.51 %) and 0.2472

zeros=0.9980 zeros=0.9889
and 0.2802 and 0.2837

gain = 2.0352 gain = 2.0224

1.4 1276.85 722.48 poles=1.0000 823.0] poles=1.0000
(56.58 %) and 0.4441 (64.46 %) and 0.2690

zeros=0.9904 zeros=1.0000
and 0.5377 and 0.3892

gain = 1.7641 gain = 1.9919

1.8 783.71 701.90 | poles=1.0000 706.30 poles=1.0000
(89.56 %) and 0.2497 (90.12 %) and 0.2477

zer0s=0.9912 zeros=0.9896
and 0.2994 and 0.3193

gain = 1.8973 gawn = 2.0198

2.2 692.70 659.35 poles=0.9999 669.43 poles=1.0000
(95.19 %) and 0.2419 (96.64 %) and 0.2458

zeros=0.9838 zeros=0.9869
and 0.3091 and 0.3038

gain =1.9324 gain = 2.024|

2.6 691.63 678.61 poles=0.9999 685.00 poles=1.0000
(98.12 %) and 0.2490 (99.04 %) and 0.2435

zeros=0.9858 zeros=0.9881
and 0.3202 and 0.2863

gain = 2.0622 gain = 2.0373

3 719.20 713.04 poles=0.9999 715.38 poles=1.0000
(99.14 %) and 0.2511 (99.47 %) and 0.2467

zeros=0.9861 zeros=0.989S
and 0.2980 and 0.2892

gain = 2.1140 gain = 2.0684
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Table 5.7: Engine with different inertia. Controller s results for mean square error based

fitness. Searching step 1/10. Error calculation after t; = 1 second.

Inertia Initial | Best Fitness | Resulting | Best Fitness | Resulting
Ib-ft-sec2. | Fitness (error)?. Parameters (error)?. Parameters
(error)?, Pop.=5§ Pop.=5 Pop. =50 Pop. =50
l 8169.89 655.75 poles=1.0000 719.90 poles =1.0000
(8.03 %) and 0.2892 (8.81 %) and 0.3234
zeros =0.9885 zeros =0.9972
and 0.5837 and 0.5660
gain = 1.5860 gain = 1.5558
1.4 1276.85 549.78 poles = 0.9998 543.32 poles =0.9998
(43.06 %) and 0.3947 (42.55 %) and 0.2111]
zeros=0.9516 zeros = 0.9598
and 0.6942 and 0.5755
gain = 1.5405 gain = 1.7666
1.8 783.71 581.42 poles =0.9999 577.63 poles=0.9999
(74.19 %) and 0.4201 (73.70 %) and 0.1792
zeros=0.9611 zeros =0.9593
and 0.6877 and 0.5028
gain = 1.9741 gain = 2.0947
2.2 692.70 619.30 poles =0.9999 619.86 poles =0.9999
(89.40 %) and 0.4000 (89.48 %) and 0.2066
zeros =0.9744 zeros =0.9787
and 0.6337 and 0.4449
gain = 2.1967 gain = 2.2542
2.6 691.63 652.52 poles =0.9998 660.04 poles=0.9999
(94.35 %) and 0.4871 (95.43 %) and 0.2017
zeros =0.9772 zeros = 0.9827
and 0.6694 and 0.3854
gain = 2.5705 gain = 2,2788
3 71920 685.23 poles=1.0000 700.56 poles =0.9999
(95.28 %) and 0.2698 (97.41 %) and 0.2023
zeros =0.9908 zeros =0.9844
and 0.4782 and 0.3182
gain = 2.8373 gain = 2.3547
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Table 5.8: Engine with different inertia. Controller’s results for mean square error based

fitness. Searching step 1/10. Error calculation after t; = 5 seconds.

Inertia Initial | Best Fitness Resulting Best Fitness Resulting
Ib-ft-sec2. | Fitness (error)?. Parameters (error)2. Parameters
(error)z. Pop. =5 Pop.=5 Pop. =50 Pop. =350

1 9850.95 549.08 poles =1.0000 593.91 poles=1.0000
(6.72 %) and 0.2170 (7.27 %) and 0.2087

zeros=0.9113 zeros = (0.9699
and 0.6804 and 0.533)

gain = 1.4068 gain=1.5162

1.4 1201.40 569.97 poles =1.0000 563.31 poles=1.0000
(44.64 %) and 0.3122 (44.12 %) and 0.1938

zeros =0.9574 zeros =0.9654 |

and 0.605] and 0.5511

gain = 1.6372 gain = 1.8521

1.8 745.81 586.78 poles=1.0000 588.38 poles=1.0000
(74.87 %) and 0.2605 (75.08 %) and 0.2073

zeros =0.9703 zeros=0.9780
and 0.5720 and 0.4921

gain = 2.1365 gain = 2.0978

2.2 683.19 615.93 poles=1.0000 630.09 poles=1.0000
(88.92 %) and 0.2972 (50.96 %) and 0.2058

zeros = 0.9853 zeros =0.9881
and 0.5661 and 0.3851

gain = 2.4501 gain=2.0117

2.6 686.58 647.27 poles=1.0000 656.20 poles = 1.0000
(93.59 %) and 0.2515 (94.88 %) and 0.2309

zeros=0.9868 zeros=0.9911
and 0.4625 and 0.4162

gain = 2.5099 gain = 2.2792

3 712.57 682.19 poles=1.0000 691.15 poles=1.0000
(94.85 %) and 0.2865 (96.10 %) and 0.2161

zeros=0.9922 zeros=0.9923
and 0.4758 and 0.3453

gain = 2.6324 gain = 2.4166
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For the next case we repeated the training for different engine inertia /; changing
the fitness function to percent overshoot. We used the same three training conditions
described on page 102. For that fitness function we obtained the results shown in Table 5.9,
Table 5.10 and Table 5.11. From those tables we can see that the percentage improvement
depends on the initial overshoot. More impressive results were obtained with more initial

overshoot and oscillatory responses. However, curious results were found for an inertia of

1 1b-ft-sec?. For that inertia value we obtained very good results for two of the six possible
training conditions, as seen in the first row of Table 5.9 and Table 5.10. Due to the selected
fitness function, we can see from the Figure 5.65 to Figure 5.71 that the resulting responses
tend 1o be flatter. If we compare the training processes, we obtained a better response for
large populations versus small populations when the search range was 1/100 as seen in
Table 5.9. As the search range increased, we cannot see a clear advantage for either
population size. For this fitness function we can see that with smaller searching range we
can obtain better results with larger populations because the recombination could be greater
and the genetic algorithm could find controlier combinations that stabilize the original
system. As the searching range increases, the population size became a less important

factor.
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Table 5.9: Engine with different inertia. Controller's resulls for percent overshoot based

filness. Searching step 1/100. Error calculation after t, = | second.

Inertia Initial Best Fitness | Resulting | Best Fitness |  Resulting

Ib-fsec®. | Fitness | (overshoot). | Parameters | (overshoot). | Parameters
(overshoot) | Pop.=35 Pop.=5 Pop. =50 Pop. =50

1 162.3742 108.6194 | poles=0.9983 0.9894 poles=1.0000
(66.89 %) and 0.2522 (0.61 %) and 0.2557

zeros=0.9840 zeros=0.9967
and 0.2678 and 0.2820

gain = 2.0321 gain = 2.0442

1.4 68.6588 53.3478 |poles=1.0000 1.2924 poles=1.0000
(77.70 %) and 0.2555 (1.88 %) and 0.2466

zeros=0.9949 zeros=0.9895
and 0.3385 ! and 0.3154

gain = 1.9083 gain = 1.9951

1.8 43.3333 31.2830 |poles=1.0000 0.4040 poles=1.0000
(72.19 %) and 0.2554 (0.92 %) and 0.2464

zeros=0.9943 poles=0.9886
and 0.3396 and 0.3079

gain = 1.8816 gain = 2.0192

2.2 29.7008 21.4776 | poles=1.0000 0.4233 poles=1.0000
(72.29 %) and 0.2528 (1.41 %) and 0.2460

zeros=0.9942 zeros=0.9943
and 0.3262 and 0.3009

gain = 1.9461 gain = 1.9984

2.6 18.9070 5.8514 poles=1.0000 0.3329 poles=1.0000
(52.12%) | and0.2521 (1.75%) | and0.2471

zeros=0.9945 zeros=0.9924
and 0.3334 and 0.3009

gain = 1.8775 gain = 1.9936

3 12.4636 6.1016 poles=1.0000 0.3842 poles=1.0000
(48.96 %) and 0.2493 (3.05 %) and 0.2452

zeros =0.9909 zeros=0.9912
and 0.3080 and 0.3016

gain = 1.9183 gain = 2.0062
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Table 5.10: Engine with different inertia. Controller’s results for percent overshoot based

fitness. Searching step 1/10. Error calculation after t, = 1 second

Inertia Initial Best Fitness | Resulting | Best Fitness ’ Resulting
Ib-ft-sec’. Fitness (overshoot). | Parameters | (overshoot). | Parameters
(overshoot) Pop.=5 Pop.=5 Pop. =50 Pop. =50

1 162.3742 0.5374 poles=1.0000 12.341S | poles=1.0000
(0.33 %) and 0.6679 (7.60 %) and 0.2246

zeros = 0.9505 zeros =0.9747
and 0.8812 and 0.8016

gain = 0.9073 gain=1.7781

1.4 68.6588 0.4853 poles = 1.0000 18.7830 | poles=1.0000
(0.70 %) and 0.3170 (27.36 %) and 0.2938

zeros =0.9683 zeros = 1.0000
and 0.7010 and 0.5915

gain = 1.6805 gain = 1.6021

1.8 43.3333 0.4084 poles=1.0000 1.3871 poles = 1.0000
(0.92 %) and 0.3756 (3.18 %) and 0.2092

zeros =0.9728 zeros =0.9793
and 0.6239 and 0.5856

gain = 1.6596 gain = 2.0012

2.2 29.7008 0.1698 poles = 1.0000 0.7574 poles=1.0000
(0.57 %) and 0.2003 (2.53 %) and 0.2285

zeros = 0.9752 zeros =0.9798
and 0.4250 and 0.4822

gain = 1.6103 gain = 1.9294

2.6 18.9070 0.3284 poles=1.0000 1.9389 poles =1.0000
(1.69 %) and 0.3027 (10.21 %) and 0.2216

zeros = 0.9800 zeros =0.9859
and 0.4822 and 0.4140

gain = 1.9477 gain = 1.9364

3 12.4636 1.2683 poles = 1.0000 0.0570 poles =1.0000
(10.11 %) and 0.2542 (0.46 %) and 0.2510

zeros =0.9856 zeros=0.9811
and 0.4033 and 0.4175

gain = 1.9950 gain = 2.0620
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Table 5.11: Engine with different inertia. Controller’s results for percent overshoot based

Jitness. Searching step 1/10. Error calculation after t; = 5 seconds.

Inertia Initial Best Fitness | Resulting | Best Fitness | Resulting
1b-ft-sec?. Fitness (overshoot). | Parameters | (overshoot). | Parameters
(overshoot) | Pop.=5 Pop. =5 Pop.=50 | Pop.=50

1 135.49 65.9343 poles=1.0000 26.8802 poles =1.0000
(40.60 %) and 0.3604 (16.55 %) and 0.3191

zeros = 1.0000 zeros = 1.0000
and 0.4277 and 0.8079

gain = .8893 gain = 1.4954

1.4 67.21 1.8923 poles=1.0000 2.1943 poles=1.0000
(2.75 %) and 0.5036 (3.19 %) and 0.2372

zeros=0.9764 zeros = 0.9801
and 0.6747 and 0.5811

gain = 1.2098 gain = 1.5248

1.8 43.11 5.7385 poles =1.0000 0.1427 poles=1.0000
(13.22 %) and 0.5608 (0.33 %) and 0.215]

zeros =0.9899 zeros =0.9698
and 0.7116 and 0.5899

gain = 1.5506 gain = 1.7173

2.2 29.78 1.5278 poles=1.0000 0.1213 poles = {.0000
(5.12 %) and 0.4926 (0.41 %) and 0.2394

zeros=0.9819 zeros =0.9758
and 0.6117 and 0.4909

gain = 1.5990 gain = 1.9150

2.6 19.03 0.6882 poles=1.0000 1.7825 poles=1.0000
(3.60 %) and 0.2410 (9.42 %) and 0.2115

zeros=0.9813 zeros = 0.9855
| and 0.4053 and 0.3710

| gain = 1.8359 gain = 1.8451

3 [2.75 0.4607 poles = 1.0000 0.1711 poles = 1.0000
(3.69 %) and 0.2346 (1.36 %) and 0.2122

zeros=(0.9828 zeros =0.9819
and 0.3142 and 0.3780

gain = 1.6024 gain = 1.9775
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5.8.2. Results for different delays.
For the next case we repeated the training for different engine fueling delays. For

each case the initial response changed according to the fueling delay value with a fixed

engine inertia of 2 Ib-ft-sec’. An optimization is needed to adjust the controller values to
match the engine fueling delay. We use the mean square error as our fitness value. Like the

previous case, we changed the training scheme to two speed transitions to reduce the

training time. The first transition is from 600 rpm to 650 rpm at ¢, seconds. The second
transition is from 650 rpm to 600 rpm at ¢, seconds. The engine and the controller are

initialized with the engine conditions for 600 rpm. The simulation runs from 0 to ¢, seconds

without error measurements, then the training is started. We used the same training
conditions described on page 102.

Using percent overshoot as fitness, we obtained the results shown in Table 5.12,
Table 5.13 and Table 5.14 for six different fueling delay values and two different
population sizes. If we look at the previous tables and Figure 5.71 to Figure 5.76, we notice
how the response improves as the fueling delay increases. These results differ from the
analog case where the improvement was related to how close we are to the designed engine

delay. For the digital case the improvement depends on how far the sampling time is from

the engine delay.
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Table 5.12: Engines with different fueling delay. Controller’s resuits for mean square

error based fitness. Searching step 1/100. Error calculation after t; = | second.

Delay Initial Best Fitness Resulting | Best Fitness | Regulting
(msec) Fitness (error)*. Parameters (error)2. Parameters
(error)2. Pop.=5 Pop.=5 Pop. =50 Pop.=5

30 366.47 356.75 poles=0.9999 358.72 poles=0.9999
(97.35 %) and 0.2541 (97.89 %) and 0.2437

zeros =0.9766 zeros=0.9787
and 0.2671 and 0.2646

gain = 2.1214 gain =2.0911

50 469.38 461.02 poles=0.9999 464 .40 poles=1.0000
(98.22 %) and 0.2435 (98.94 %) and 0.2464

zeros=0.9760 zeros =0.9824
and 0.2913 and 0.2792

gain = 2.0700 gain = 2.063 |

70 620.16 582.52 poles=1.0000 595.76 poles=1.0000
(93.93 %) and 0.2417 (96.07 %) and 0.2452

zeros=0.9862 zeros =0.9866
and 0.3319 and 0.3072

gain = 1.9743 gain = 2.0248

50 852.29 753.27 poles=1.0000 788.65 poles=1.0000
(88.38 %) and 0.2487 (92.53 %) and 0.2448

zeros=0.9914 zeros = 0.9906
and 0.3190 and 0.2971

gain=1.9314 gain = 2.0059

110 1174.68 917.32 poles=1.0000 1012.52 poles=1.0000
(78.09 %) and 0.2434 (86.20 %) and 0.2473

zeros =0.9920 zeros = (0.9948
and 0.3193 and 0.3061

gain = | .8869 gain = 2.0059

130 1826.88 906.89 poles=0.9999 1145.11 poles =1.0000
(49.64 %) and 0.5409 (62.68 %) and 0.2601

zeros=0.9867 zeros =1.0000
and 0.6698 and 0.3690

gain = 1.6632 gain = 2.0070 |
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Table 5.13: Engines with different fueling delay. Coniroller's results for mean square

error based fitness. Searching step 1/10. Error calculation after t, = ] second.

| Delay

Initial Best Fitness Resulting Best Fitness Resulting
(msec) Fitness (error)z. Parameters (error)z. Parameters
(error)®. Pop.=5 Pop.=5 Pop. = 50 Pop.=5

30 366.47 330.92 poles = 0.9999 346.39 poles =0.9999
(50.30 %) and 0.2928 (94.52 %) and 0.2632

zeros = 0.9744 zeros = 0.9695
and 0.4223 and 0.3413

gain=3.1151 gain = 2.3733

SO 469.38 440.23 poles = 0.9999 446.18 poles = 0.5999
(93.79 %) and 0.2248 (95.06 %) and 0.2111

zeros = 0.9667 zeros = 0.9703
and 0.4543 and 0.4060

gain = 2,5945 gain = 2.3017

70 620.16 549.66 poles = 0.9999 546.97 poles = 0.9998
(88.63 %) and 0.2903 (88.20 %) and 0.2038

zeros = 0.9763 zeros = 0.9725
and 0.5293 and 0.4642

gain=2.1874 gain = 2.2211

90 852.29 649.03 poles = 0.9999 654.83 poles = 1.0000
(76.15 %) and 0.3609 (76.83 %) and 0.2067

zeros = 0.9604 zeros = (0.9700
and 0.6315 and 0.5089

gain = 1.9741 gain = 1.9925

110 1174.68 773.43 poles = 0.9998 753.77 poles = 0.9999
(65.84 %) and 0.6344 (64.17 %) and 0.2068

zeros = 0.9701 zeros = 0.9771
and 0.7757 and 0.5476

gain = 1.5593 gain = 1.9324

130 1826.88 848.56 poles = 0.9998 904.30 poles = 1.0000
(46.45 %) and 0.6606 (49.50 %) and 0.2939

zeros = 0.9510 zeros = 0.9966
and 0.8409 and 0.5812

gain = 1.5581 gain = 1.8480

118




Table 5.14: Engines with different fueling delay. Controller s results for mean square

error based fitness. Searching step 1/10. Error calculation after t; = 5 seconds.

‘ Best Fitness

Delay Initial Resulting Best Fitness Resulting
(msec) Fitness (error)>. Parameters (error)l. Parameters
(error)z. Pop.=5 Pop.=35 Pop. =50 Pop. =S5

30 356.55 326.98 poles = 1.0000 342.03 poles = 1.0000
(89.22 %) and 0.3025 (93.33 %) and 0.2122

zeros = 0.9784 zeros = 0.9753
and 0.4026 and 0.2732

gain = 2.9638 gain = 2.3387

50 460.79 439.38 poles = 1.0000 441.08 poles = 1.0000
(93.61 %) and 0.3026 (93.97 %) and 0.2045

zeros = 0.9746 zeros = 0.9786
and 0.4981 and 0.3824

gain = 2.6599 gain = 2.4052

70 605.47 564.85 poles = 1.0000 558.03 poles = 1.0000
(91.08 %) and 0.6058 (89.98 %) and 0.2080

zeros = 0.9722 zeros = (.9814
and 0.734) and 0.3780

gain = 2.0435 gain = 2.0742

90 825.48 653.89 poles = 1.0000 658.07 poles = 1.0000
(76.72%) | and 0.2347 (77.21 %) and 0.2119

zeros = 0.9794 zeros = 0.9823
and 0.5629 and 0.4970

gain = 2.2681 gain = 2.0754

110 1255.27 784.63 poles = 1.0000 767.37 poles = 1.0000
(66.80 %) and 0.4066 (65.33 %) and 0.2652

zeros = 0.9891 zeros = 0.9743
and 0.634] and 0.6085

gain = 1.7960 gain = 2.1472

130 2569.77 897.51 poles = 1.0000 966.48 poles = 1.0000
(45.13 %) and 0.4511 (52.90 %) and 0.2764

zeros = 0.9874 zeros = 1.0000
and 0.6877 and 0.5938

gain = 1.6634 gain = 1.9129
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For the next case we repeated the training for different fueling delays, changing the
fitness function to percent overshoot. For that fitness and the same training conditions on
page 102 we obtained the results shown in Table 5.15, Table 5.16 and Table 5.17. We

obtained better results for large searching steps. As we can see from Figure 5.77 to Figure

5.82 the resulting responses tend to be flatter.
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Table 5.15: Engines with different fueling delay. Controller s results Jor percent

overshoot based fitness. Searching step 1/100. Error calculation after t, = 1 second.

Delay

Initial

Best Fitness Resulting Best Fitness Resulting

(msec) Fitness (overshoot). | Parameters | (overshoot).| Parameters

(overshoot). | Pop.=5 Pop. =5 Pop. =50 Pop.=5

30 4.3475 2.3789 poles = 1.0000 2.7069 poles=1.0000
(54.61 %) and 0.2509 (62.21 %) and 0.2507

zeros =0,9806 zeros=0.9822
and 0.2724 and 0.2703

gain =2.0402 gain = 2.0444

50 149131 6.4058 poles = 1.0000 10.0248 poles = 1.0000
(42.92 %) and 0.2510 | (67.20%) | and 0.2468

zeros =0.9899 zeros = 0.9875
and 0.3256 and 0.3005

gain = 1.9209 gain = 2.0035

70 29.6319 21.3643 poles=1.0000 22.1842 poles=1.0000
(72.09 %) and 0.2482 (74.86 %) and 0.2512

zeros =0.9934 zeros =0.9901
and 0.3104 and 0.3236

gain = 1.9229 gain = 1.9987

90 44.8800 35.5064 poles=1.0000 37.0737 poles=1.0000
(79.10 %) and 0.2583 (82.60 %) and 0.2474

zeros = 0.9930 zeros=0.9914
and 0.3283 and 0.3141

gain = [.9630 gain = 2.0020

110 61.4867 51.0985 poles =1.0000 54.1569 poles = 1.0000
(83.10 %) and 0.2502 (88.08 %) and 0.2459

zeros =0.9953 zeros = 0.9948
and 0.3135 and 0.3043

gain = 1.9507 gain = 2.0215

130 76.6177 61.2543 poles = 1.0000 63.2429 poles=1.0000
(79.95 %) and 0.2565 (82.55 %) and 0.2479

zeros = 0.9941 zeros = 0.9947
and 0.3062 and 0.2959

gain = 1.9624 gain = 2.0157
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Table 5.16: Engines with different fueling delay. Controller’s results Jor percent

overshoo! based fitness. Searching step 1/10. Error calculation after t; = | second.

Delay

Initial

Best Fitness Resulting Best Fitness Resulting
(msec) Fitness (overshoot). | Parameters | (overshoot). | Parameters
(overshoot). Pop.=5 Pop.=S§ Pop. =50 Pop.=5§

30 4.3475 0.2178 poles = 1.0000 0.0143 poles = 1.0000
(4.84 %) and 0.3183 (0.33 %) and 0.2447

zeros = 0.9727 zeros = 0.9710
and 0.3663 and 0.3459

gain = 1.8949 gain = 2.1505

50 149131 0.3430 poles = 1.0000 0.0445 poles = 1.0000
(2.28 %) and 0.2397 (0.30 %) and 0.2039

zeros = 0.9746 zeros =0.9720
and 0.4069 and 0.3828

gain = 1.9280 gain = 1.8947

70 29.6319 1.2199 poles = 1.0000 0.6890 poles = 1.0000
(4.08 %) and 0.2344 (2.33 %) and 0.2333

zeros = 0.9801 zeros = 0.9766
and 0.5061 and 0.4753

gain = 1.9830 gain = 1.8643

90 44.8800 0.2175 poles = 1.0000 2.3105 poles = 1.0000
(0.47 %) and (.3508 (5.15 %) and 0.2218

zeros = 0.9754 zeros = 0.9809
and 0.6217 and 0.5246

gain = 1,7957 gain = 1.8775

110 61.4867 5.4758 poles = 1.0000 5.4389 poles = 1.0000
(8.90 %) and 0.6538 (8.83 %) and 0.2414

zeyos = 0.9883 zeros = 0.9893
and 0.8104 and 0.6358

gain = 1.4423 gain = 1.8963

130 76.6177 1.2039 poles = 1.0000 18.6688 poles = 1.0000
(1.57 %) and 0.5512 (24.36 %) and 0.3802

zeros = 0.9776 zeros = 1.0000
and 0.7903 and 0.6496

gain = 1.4636 gain = 1.6727
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Table 5.17: Engines with different fueling delay. Controller’s results Sor percent

overshoot based fitness. Searching step 1/10. Error calculation after t; = 5 seconds.

Delay |

Initial Best Fitness Resulting Best Fitness Resulting o
(msec) Fitness (overshoot). | Parameters | (overshoot). | Parameters
(overshoot). | Pop.=5 Pop.=5§ Pop. =50 Pop. =5

30 2.57 0.3038 poles = 1.0000 0.1207 poles = 1.0000
(6.91 %) and 0.2458 (2.76 %) and 0.2387

zeros = 0.9769 zeros = 0.9733
and 0.3113 and 0.3391

gain = 2.0756 gain = 2.0389

50 14.94 0.0955 poles = 1.0000 0.3556 poles = 1.0000
(0.67 %) and 0.3265 (2.41 %) and 0.2205

zeros = 0.9740 zeros = 0.9764
and 0.4675 and 0.3774

gain = 1.9196 gain = [.9353

70 29.01 . 0.3626 poles = 1.0000 1.3787 poles = 1.0000
(1.21 %) and 0.4230 (4.66 %) and 0.1995

zeros = 0.9744 zeros = 0.9816
and 0.5672 and 0.4363

gain = 1.6055 gain = 1.8658

90 44.50 0.8586 poles = 1.0000 2.2145 poles = 1.0000
(1.92 %) and 0.3579 (4.92 %) and 0.2282

zeros = 0.9772 zeros = 0.9835
and 0.6048 and 0.5459

gain = 1.7043 gain = 1.8711

110 60.50 12.3427 poles = 1.0000 171137 poles = 1.0000
(20.07 %) and 0.7187 (27.83 %) and 0.2670

zeros = 0.9954 zeros = 1.0000
and 0.8768 and 0.5511

gain = 1,5469 gain=1.7916

130 86.72 2.9630 poles = 1.0000 1.5727 poles = 1.0000
(3.86 %) and 0.7746 (2.05 %) and 0.2156

zeros = 0.9792 zeros = 0.9799
and 0.9091] and 0.6306

gain = 1.2471 gain = 1.7764
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3.9. GENITOR algorithm applied to digital controller and engine with friction

bl=0‘01'

5.9.1. Results for different engine inertia.
For the next case we used the same b, = 0.01 used in the analog training from

section 5.6.1 and section 5.6.2. As in section 5.6.1, we executed the training for different
engine inertias. For each case the initial response changed according to the engine inertia
value. An optimization is needed to adjust the controller values to match the engine inertia.
We use the mean square error as our fitness value. To reduce the training time we changed
the training scheme to two speed transitions. The first transition is from 600 to 650 rpm at
5 seconds. The second transition is from 650 to 600 at 8.5 seconds. The engine and the
controller are initialized with the engine conditions for 600 rpm. The simulation runs from
0 to 5 seconds without error measurements, then the training is started. To ensure the
correct values of the parameters for future training, we changed the mutation process in the
digital GENITOR algorithm by taking only poles or zeros with magnitudes inside the unit
circle.

For the mean square error as fitness we obtained the results shown in Table 5.18 for
six different engine inertia values and two different population sizes. For very oscillatory

engine responses we could reduce the mean square error to 1.4 % of its original value for

inertia equal to | Ib-ft-sec?, as seen in first row of Table 5.18 and Figure 5.83. As inertia

increases, the mean square error decreases to 31 % of its initial value for inertia equal to 1.4

Ib-ft-sec? (see second row of Table 5.18 and Figure 5.84). In the last four rows of
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Table 5.18 we can see that the mean square error have values ranging from 70 % to 87 %
of their original values for inertia between 1.8 lb-ft-sec® and 3 [b-ft-sec? (see also Figure
5.85, Figure 5.86, Figure 5.87 and Figure 5.88). As the analog case for b; = 0.01, if we

compare the results related to the population size we note small differences in the results

for 1500 epochs.
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Table 5.18: Engine with different inertia. Controller s results Jor mean square error

based fitness. Searching step 1/10. Error calculation after t; = 5 seconds.

Inertia

Initial

Best Fitness | Resulting | Best Fitness Resulting
lb-ft-sec?. | Fitness (error)2. Parameters (error)?, Parameters
(error)?. Pop.=5§ Pop.=5§ Pop. =50 Pop. =50
1 41362.21 595.87 poles=1.0000 583.25 poles=1.0000
(1.44 %) and 0.5765 (1.41 %) and 0.2718
zeros = 1.0000 zeros = 1.0000
and 0.7562 and 0.7326
_ gain = 1.0489 gain = 1.4687
1.4 1770.17 566.82 poles=1.0000 550.06 poles =1.0000
(32.02 %) and 0.3529 (31.07 %) and 0.2102
zeros = [.0000 zeros = }.0000
and 0.6580 and 0.6024
| gain = 1.6688 gain = 1.8424
1.8 854.25 600.88 poles=1.0000 550.49 poles =1.0000
(70.34 %) and 0.6008 (64.44 %) and 0.2079
zeros = 1.0000 zeros = 1.0000
and 0.7601 and 0.5991
gain = 1.7895 gain = 2.3580
2.2 714.42 587.43 poles=1.0000 567.40 poles =1.0000
(82.22 %) and 0.5017 (79.42 %) and 0.3332
zeros = 1.0000 zeros=1.0000
and 0.7209 and 0.6384
gain = 2.3727 gain =2.514]
2.6 687.65 594.85 poles = 1.0000 581.59 poles =1.0000
(86.50 %) and 0.5523 (84.58 %) and 0.3887
zeros = 1.0000 zeros = 1.0000
and 0.7423 and 0.6211
gain = 2.6958 gain = 2,6407
3 697.86 608.82 poles=1.0000 606.42 poles=1.0000
(87.24 %) and 0.6515 (86.90 %) and 0.5717
zeros =1.0000 zeros = 1.0000
and 0.7936 and 0.7093
gain = 2.8784 | gain = 2.6972
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For the next case we repeated the training for different engine inertias, changing the
fitness function to percent overshoot. For that fitness we obtained the results shown in
Table 5.19 and Figure 5.89 to Figure 5.94. Due to the selected fitness function, we can see
that the resulting responses tend to be flatter. Also, the final response barely passes the

required speed of 650 rpm. However an “undershoot” is generated below the required

engine speed. In Figure 5.89 we can see an special case for inertia = | 1b-fi-sec?, where the
training for a population of 5 was unable to obtain a stable response for the engine. For that
case, the genetic algorithm was trapped in a local minimal. In Figure 5.92 and Figure 5.94
we can see a case where an overtraining problem occurred. Here the genetic algorithm

reduced dramatically the overshoot, however the final response was too slow.
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Table 5.19: Engine with different inertia. Controller s results for percent overshoot based

Jitness. Searching step 1/10. Error calculation after t; = 5 seconds.

Inertia Irnitial Best Fitness | Resulting | Best Fitness Resulting
Ib-ft-sec’. Fitness (overshoot). | Parameters | (overshoot). | Parameters
(overshoot) Pap.=5 Pop.=5 Pop. =50 Pop. =50
1 387.7173 203.4080 |poles=0.9956 3.1312 poles =] .0000_‘

(52.46 %) and 0.2663 (0.55 %) and 0.3968

zeros = 0.9806 zeros = 1.0000
and 0.3060 and 0.8487

gain = .8989 gain = {.3042

1.4 87.7286 2.6900 poles=1.0000 2.03%96 poles=1.0000
(3.07 %) and 0.5893 (2.32 %) and 0.3644

zeros = 1.0000 zeros = 1.0000
and 0.8868 and 0.8134

gain=1.5138 gain = 1,7986

1.8 57.7658 23195 poles =1.0000 1.8719 poles = 1.0000
(4.02 %) and 0.7159 (3.24 %) and 0.3654

zeros = 1.0000 zeros = 1.0000 |

and 0.8798 and 0.7327

gain = 1.5622 gain = 2.0497

2.2 41.5310 0.2195 poles=1.0000 1.8974 poles=1.0000
(0.53 %) and 0.6332 (4.57 %) and 0.4606

zeros=0.9971 zeros = 1.0000
and 0.8766 and 0.7373

gain = 1.5167 gain = 2.1905

2.6 28.2821 1.6820 poles=1.0000 0.6776 poles =1.0000
(5.95 %) and 0.8519 (2.40 %) and 0.5199

zeros =0.9995 zeros =0.9973
and 0.9287 and 0.7455

gain=1.7639 gain = 2.3595

3 19.9864 0.1737 poles =1.0000 04181 poles=1.0000
(0.87 %) and 0.7620 (2.09 %) and 0.2019

zeros =0.9973 zeros =0.9973
and 0.9063 and 0.8231

gain = 2.2832 gain = 2.3118
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5.9.2, Results for different fueling delays.

For the next case we repeated the training for different fueling delays. For each case
the 1nitial response changed according to the fueling delay value with a fixed engine inertia
of 2 Ib-ft-sec?. An optimization is needed to adjust the controller values to match the engine
fueling delay. We use the mean square error as our fitness value. Like the previous case, we
changed the training scheme to two speed transitions to reduce the training time. The first

transition is from 600 rpm to 650 rpmaat ¢, = 5 seconds. The second transition is from 650
rpm to 600 rpm at 4.5 seconds at 1, = 8.5 seconds. The engine and the controller are

initialized with the engine conditions for 600 rpm. The simulation runs from 0 to 1, seconds

without error measurements then the training is started.

Using percent overshoot as fitness, we obtained the results shown in Table 5.20 for
six different fueling delay values and two different population sizes. Contrary to the analog
case, Table 5.20 and Figure 5.95 10 Figure 5.100, show that the percentage of improvement
depends on how far the sampling rate is from the fueling delay. As the fueling delay
increases we obtain a greater improvement. This is a logical response, because if the
sampling time is close to the fueling delay, this implies less time for the controller to adjust

to any change in the engine response.
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Table 5.20: Engines with different fueling delay. Controller s results Jor mean square

error based fitness. Searching step 1/10. Error calculation aftert; = 5 seconds.

Delay Initial Best Fitness Resulting Best Fitness Resulting
(msec) Fitness (error)?. Parameters (error)2. Parameters
(error)Z, Pop.=5 Pop.=5 Pop. = 50 Pop. =5
30 329.53 280.17 poles = 1.0000 276.04 poles = 1.0000
(85.02 %) and 0.7650 (83.77 %) and 0.5088
zeros = 1.0000 zeros = 1.0000
and 0.8284 and 0.6201 |
gain = 2.8845 gain = 2.8112
S0 446.33 403.65 poles = 1.0000 389.01 poles = 1.0000
(90.45 %) and 0.5122 (87.16 %) and 0.2809
zeros = 1.0000 zeros = 1.0000
and 0.6749 and 0.5397
gain = 2.5230 gain = 2.6709
70 603.08 536.37 poles = 1.0000 502.76 poles = 1.0000
(88.94 %) and 0.6025 (83.37 %) and 0.3015
zeros = 1.0000 zeros = 1.0000
and 0.7669 and 0.6163
gain = 2.1766 gain = 2.4664
90 943.02 656.13 poles = 1.0000 617.26 poles = 1.0000
(69.58 %) and 0.5346 (65.46 %) and 0.2556
zeros = 1.0000 zeros = 1.0000
and 0.7359 and 0.6301
gain=1.9619 gain = 2.4043
110 1633.32 790.26 poles = 1.0000 735.06 poles = 1.0000
{ (48.38 %) and 0.5758 (45.00 %) and 0.2631
zeros = 1.0000 zeros = 1.0000
and 0.7820 and 0.6583
gain=1,7128 gain = 2.1568
130 5615.07 905.05 poles = 1.0000 841.78 poles = 1.0000
(16.12 %) and 0.5579 (14.99 %) and 0.2481
zeros = 1.0000 zeros = 1.0000
and 0.7636 and 0.6866
gain = 1.5999 gain = 2.1734
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For the next case we repeated the training for different fueling delays, changing the
fitness function to percent overshoot. For that fitness we obtained the results shown in
Table 5.21 and Figure 5.101 to Figure 5.106. We can see that the resulting responses tend
to be flatter, with an “undershoot” response similar to that observed in last part of
section 5.9.1. As in previous cases, impressive improvement is noticeable for large initial

overshoots.
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Table 5.21: Engines with different Sueling delay. Controller's results for percent

overshoot based fitness. Searching step 1/10. Error calculation after t; = 5 seconds.

Delay Initial Best Fitness Resulting Best Fitness Resulting
(msec) Fitness (overshoot). | Parameters | (overshoot). | Parameters
(overshoot). | Pop.=85 Pop.=5 Pop. =50 Pop. =5

30 7.1765 0.4733 poles = 1.0000 0.5744 poles = 1.0000

(6.60%) | and 0.2363 (8.00 %) and 0.2408
zeros = 0.9956 zeros = 0.9961 |

and 0.4176 and 0.3271

gain = 1.9410 gain = 2.0563

50 22.8192 1.2809 poles = 1.0000 0.6272 poles = 1.0000
(5.61 %) and 0.4893 (2.75 %) and 0.3041

zeros = 0.9982 zeros = (0.9951
and 0.7874 and 0.5068

gain =2.1714 gain = 2,0534

70 38.7529 0.5972 poles = 1.0000 1.6407 poles = 1.0000
(1.54 %) and 0.5614 (4.23 %) and 0.4146

zeros = 0.9968 zeros = 1.0000
and 0.7693 and 0.6403

gain = ]1.7090 gain = [.9027

90 60.2765 2.5053 poles = 1.0000 2.4304 poles = 1.0000
(4.16 %) and 0.5819 (4.03 %) and 0.3472

zeros = 1.0000 zeros = 1.0000
and 0.7722 and 0.6324

gain = 1.6324 gain = 1,7909

110 80.8133 1.7895 poles = 1.0000 1.7445 poles = 1.0000
(2.21 %) and 0.8452 (2.16 %) and 0.3725

zeros = 0.9929 zeros = 1,0000
and 0.9575 and 0.7873

gain = 1.2781 gain = 2.0911

130 123.5986 0.3775 poles = 1.0000 2.8131 poles = 1.0000
(0.31 %) and 0.6679 (2.28 %) and 0.2496

zeros = 0.9960 zeros = 1.0000
and 0.9069 and 0.7104

gain = 1.541] gain = 1.9180
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5.9. Summary.

In this chapter we have seen the application of genetic reinforcement learning
(GENITOR) for the parameter optimization of a diesel engine controller. [t was first tested
on an analog PID controlier. The algorithm produced improvements in the engine response
over the nominal PID controller provided by Cummins. We tested the algorithm with
different diesel engines conditions by varying the inertia and the fueling delay. In each case
the genetic algorithm provided improved performance over the base-line PID controller.
The percentage improvement was greater when the engine response for the original PID
controller was very oscillatory.

The fitness function (mean square error or percent overshoot) used has a large
influence on the engine response. For the mean square error fitness. we normally obtained
an overshoot, with the system following the reference speed very close. For the percent
overshoot fitness we obtained a first-order like response.

The same experiments were repeated for a digital controller, to compare the results
obtained in the analog implementation. The initial parameters were obtained by
transforming the basic PID controller from the s-domain to the z-domain. The experiments

were conducted for two values of engine friction b, =0.1229 and b, = 0.01 and the same

combinations of engine inertia / and fueling delay t. The results obtained for the digital
controller were similar to those obtained for the analog controller. Training performance
was improved by varying the step size used in the mutation process of the Genitor

algorithm. A large step resulted in better controllers.
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CHAPTER 6

REINFORCEMENT LEARNING.

6.1. Introduction.

This chapter 1s based on the books Introduction to Reinforcement Leamning (RL) by
Sutton and Barto(;,y and Neuro-Dynamic Programming by Bertsekas and Tsitsikliss).
Related work by Jaakkola er al. (), Singh and Sutton ¢y, Sutton (3, 1), Watkins and
Dayan (50, were considered to support the concepts and ideas of the previous books. We
will discuss the different elements of Reinforcement Learning (RL) theory and we will
show simulations for some techniques. We will describe the reinforcement leamning
framework, based on the relation between the environment and the agent, in section 6.2. In
section 6.3 we wil] discuss the elements of Reinforcement Learning: discrete time dynamic
system, cost or reward function, policy function, cost or reward accumulation function, and
model of the environment. In section 6.4 we will define the types of possible actions that
can be performed by the agent in a RL process. In the following section we will review the
concept of rewards and the inclusion of a discount factor in case of cumulative rewards. In
section 6.6 we will describe the Markov Property and its relation with RL. In the following
section we will describe the relationship between RL and the Markov Decision Process

(MDP).
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In section 6.8 we will explain the types of expected cost functions and the difference
between continual and episodic tasks. We will discuss the optimality of cost-to-go
functions in the following section. The section 6.10 will discuss some elementary solution
methods: Dynamic Programming, Monte Carlo and Temporal Difference Learning. We
will present some variations of each method. We will also present some simulations. We
will unify all the previous techniques in section 6.11. We will also include the concept of
eligibility traces with its discount properties. We will discuss the gradient descent methods
in section 6.12. In this section we will show the relationship between RL and neural
networks. Finally, we will show two complete examples of simulations with RL: a

mountain car task and the swing up of an Acrobot.

6.2. Reinforcement learning framework

The reinforcement learning problem framework is shown in Figure 6.1. We have a
system (or environment) which changes in stages according to discrete decisions. We
cannot predict exactly each stage, but we know the statistics of the next outcome. After
each action is executed we obtain an immediate cost or reward. Each decision affects the
context where future actions will be made and the future costs or rewards we will receive.
We want to minimize the total cost or maximzize the total reward for all the stages. We want

to combine immediate and future rewards or costs.

For a given time /, we have a state s, € S, where S is the set of the possible states.
Based on that state we apply an action a, € A(s)) to the system or environment, where A(s,)
is the set of possible actions in state s,. That action generates a new state s, , | with a
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probability P ‘(a,) and areward r, |, € RN due 1o that action, where R is the set of al)
possible costs or rewards. We can say that the cost or reward r, | is a function which

depends on the states involved in the transition (5,,5,+)) and the action (a,) executed:

Yivq = &S, a,8,,,)- If we continue that sequence for each stage, at time ¢ we have
that (12, 3):
= (S rie ) =>4, 6.1)
AGENT or
Feedback Control Policy p
State §, Reward or cost 1, Action a,
:‘ !
A ENVIRONMENT or

‘ Stochastic System

Figure 6.1: The reinforcement learning framework

For each time ¢ the Agent has a mapping that represents the probabilities of

selecting the action q, if the state is 5,. This mapping is called the agent’s policy: 7 (s, a)
is equal to the probability of executing the action a, = a given that we are in state s, = s.
We want to balance not only the cost or reward r, ., but also the desirability of the next

state s, , ;. We can do that by ranking the optimal cost over the remaining states starting
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from the state s, , | . This function is called the optimal cost-to-go of state s, , | and is

denoted by J*(s, ., ). This relation must satisfy some form of Bellman's equation:

J*(s,) = II}f""E[g(sl, a, S, ) I, ,)|s,,a,] forall s e S 6.2)

!

where £{.|s, a,] denotes the expected value of the cost-to-go function with respect to
s,+y Biven s, and a,. From the relation expressed above we want to execute control
actions that maximize (minimize) the expected reward (cost) of the current stage and the

optimal expected cost of the future stages. One way to obtain an optimal solution J* could

be using dynamic programming (DP). This calculation is done off-line. We can obtain an

optimal policy m*(s, a) from the off-line calculation of J* , or we can obtain it on-line by
maximizing the right-hand side of Eq. (6.2). The computational cost involved with the
optimal solution is overwhelming, due to the large number of states and controls.
Therefore, we need a suboptimal solution. An alternative is reinforcement learning, in

which the agent’s policy is modified during the execution of the process.

We can approximate the optimal cost-to-go function J*(s,, |) with an

approximation :l(s, +1:P), where p is a vector of parameters. We will use at the state s, the

suboptimal control a,(s,) which maximizes the approximate right-hand side of Eq. (6.2):

at(s{) = argamaxE[g(sp ap S/+ ]) + J(St + I»p)|5pa[] (6'3)

{
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In practice, the calculationof Efg(s, a,s,, () +:](5H 1,p)|s,,a,] for each possible

action a, may be to0o complicated or too time-consuming. Then we can use an approximate

expression of Bellman’s equation:
Q*(s,a) = E[g(s,a,s,.y) +JI*s,, I)|s‘.a[] (6.4)
where this function is called the Q-factor corresponding to (s,, a,). We can replace

Q*(s,, a,) with an approximation Q(s,, a, p):

Q(Sp ap p) = E[g(.S‘,, ap sl+ l) + J(Sl + |>p)‘sna;] (65)
where p is a vector of parameters.We will use at the state s, the suboptimal control a,(s,)

which maximizes the approximate right-hand side of Eq. (6.4):

afs) = M0, a, p) (6.6)

14
6.3. Elements of Reinforcement Learning.

The elements which make up a typical Reinforcement Learning algorithm are:

- A discrete time dynamic system. The state transition depends on a control input 4, .

We have n states denoted by 1,2, ..., n, with one additional termination state. For

each state s, we must choose the control action @, from a finite set A(s). The control

action a, specifies the transition probability p; ;= (a,) from the state s, to the state

S+

- Cost or Reward function. This function implies a cost or reward r,, , given for the
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state transition from s, to 5, | with the action a,. We can express the function cost

asir,,, = g(s,a,8,,,).

- Policy function. The policy consists of the rules which define how we want to
operate 1n a given state. We can define a policy n as a mapping from states s into
control actions a, or we can define a policy 7 as the probability that an specific action
may be executed in a given state n (s, a).

- Cost or reward accumulation function. The cost is accumulated over time and

depends on the states visited and the actions executed. The cost function may be

affected by a discount factor ¥y, that will be discussed in section 6.5.

- Model of the environment (optional). Generally we will use the models for

planning. We can simulate and train the system off-line to obtain an initial coherent

policy. Afterwards, we can improve our policy with on-line training on the real

system.

We can explain the state sequence of a Reinforcement Learning problem using the

game sequence shown in Figure 6.2. From the starting position, the opponent executes a
move that changes the game state from a to b. In the state b we have different options. Our
policy implies a movle that changes our state from b to ¢. For example, we can define our
policy as fixed rules or as random actions. The game continues with the opponent’s move
from ¢ to d. In the state d if we execute the action e the opponent replies with f and

consequently for future movements. We can see that both the action f from the opponent
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and the future decision g depend on the decision made in the state e. IT we selected the state

e’; we probably would finish with a different sequence £ and g’.

Starting Position.
a

Opponenl’s Move

Qur Move

Opponent's Move

Our Move

Opponent's Move

Our Move

e Wt W Ve e S o

Figure 6.2: Elements of Reinforcement Learning. Game sequence ().

6.4. Actions.

Sutton and Barto defined two types of actions ,):

6.4.1. Greedy Actions. For a given state, we execute the action whose estimated
cumulative reward is greatest.

6.4.2. Exploring Actions. We do not necessarily follow the action whose
estimated cumulative reward is greatest. For example, we can execute random actions. This
type of action moves us to find new solutions.

We can define a procedure for action selection where we can normally execute

greedy actions with a small percentage of random actions. We can define a probability &
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which is the probability of selecting an action at random. This number is generally small,

for example 0.1 or 10 %.

6.5. Rewards and discount factor.
We can define the immediate rewards r, , | as a numerical feedback generated by

the environment and measured by the agent. The Agent’s goal 1s to maximize (minimize)
the total amount of future reward (cost), or the cumulative future reward (cost). If we

execute our process one time we will obtain a total reward:

;
et a3t D i (6.7)
k=0

T
Z g(SHk’ aH-k(SH k)> Stk l)
k=0

where T is the final time step.
The variable r represents the reward for each step and R, represents the
undiscounted accumulated reward received after the time 1. We can discount the present

value of the future rewards:

T
R, = + +y oy = D yk 6.8
p T e Y 2 Y ey T Y I T Y e k+) (6.8)
k=0

r
k
= Z Y 8 w0 Qe tSse i Sra 1)
k=0

where y is a discount rate or discount factor used to reinforce the importance of present
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rewards over future rewards. Generally y is an scalar and is limited to: 0 <y <1, so that
J, is bounded. If y =0, then we maximize the immediate rewards. If y= 1, then we

maximize the future rewards.

6.6. Markov property.
Define a system where the new states and rewards depend on all previous states and

rewards. Then the probability distribution of that system is:
Pri(s,« ), =3p)(r,» | = r,_-)|5,, Ap TS A Fy_ v $1,8), 7, 50, @y} (6.9)
We can say that a system has the Markov property if its response at time 7 + |
depends only on the conditions at time /. Then its probability distribution is:
Pri(s,, | =sp)(r, ¢ = r,_-)ls,, a,) (6.10)
We can conclude that systems with the Markov property have dynamics based on
one step. “Markov states provide the best possible basis for choosing actions.” |,y

6.7. Markov decision process (MDP).
MDP refers to any reinforcement learning process that satisfies the Markov
property described previously. When the state and action spaces are finite, the process is

called a Finite Markov Decision Process. A finite MDP is defined by its state and action

sets and by the one-step dynamics of the next state s, given the state 5 and the action a:

Pl = Pris,.,=sg|(s,=5),(a,= )} (6.11)

S8y
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and the expected next reward is:

RS, = Elr,y|(s,=5), (@, = a), (5,4, = 5p)] (6.12)

6.8. Types of expected cost functions,
6.8.1. Cost-to-go functions. We can define the finite horizon problem. where we

have a process with final state 5 and we accumulate the cost over that finite period of time

T . For this type of problem, the expected cost-to-go following a policy n and starting from

an inittial state s 1s:

71
T &
J’;.(s) = Eﬂl}' G(SF)+ ZY g(s[+k$ a/+k(5r+k)>se+k+l)
k=0

§, = s] (6.13)

T . : .
where y" G(s) is the terminal cost or reward related for arriving to the final state 5.

The optimal cost-to-go function for finite horizon problems s denoted by the

relation:

J*(s) = maxji(s) (6.14)
n

We call an episode the transition from an initial state to the final state, at time 7. of
a finite horizon problem. We call episodic tasks the process with repeated episodes. We can

also start the new episode in a fixed or 2 random initial state.
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We also have infinite horizon problems, where we accumulate the cost indefinitely.

We have that the expected cost following a policy 7 starting from an initial state s is:

-
. k
S(s) = Y!E;ﬂmEﬂ Z DA { SN H C ) R R | E T -{| (6.15)
k=0
The optimal cost-to-go function is:
JH(s) = maxJ'(s) (6.16)
n

6.8.2. Gridworld example. This is one example to estimate the cost-10-go
functions in a given state. The Gridworld is a 5 x 5 two dimensional cell space where the
initial policy m specifies that we can move in four directions with the same probability, as
shown in Figure 6.3. We have a penalty of -1 each time we move outside the board. If we
are in the state A the only possible movement is to A’ and we receive a reward of 10 units.

Sumilarly, at position B we can only move to B™ and the reward is 5 units.

AN 5 1 I
\ ]5 < >
] B JV l
/ ' 15 -1
A 4 Actions

Figure 6.3: Gridworld example. Original movement rules 15,

We initilialized the cost-to-go values to zero. Then we execute this process under

the policy n as an infinite horizon problem, we will find a cost-to-go function J" for each

state based in Eq. (6.15), as shown in Figure 6.4. We note that the cost-to-go value at
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position A is Jower than 10, because we obtain an immediate reward of 10 from A to A®,
but after that we would move outside the board obtaining an immedjate negative reward.
We also note that the cost-to-go value at position B is greater than 5, because after the

immediate reward of 5 we would move to the A position for an immediate reward of 10.

3.3090 8.7893 4.4276 3.3224 1.4922
1.5216 2.9923 2.2501 [.5076 0.5474
0.0508 0.7382 0.6731 0.3582 -0.4031
-0.9736 | -0.4355 | -0.3549 | -0.5856 | -1.1831
-1.8577 | -1.3452 | -1.2203 | -1.4220 | -1.9752

Figure 6.4: Gridworld example. Cost-to-go values from original policy.

6.8.3. Q-factor functions. Generally the reinforcement leaming algorithms are
based on the estimation of “how good™ a given state or a given state-action pair is. The
estimated cost-i0-go function i1s defined by Eq. (6.13) and Eq. (6.15). The previous relations
only provide us information about the state. If we want information about the combination
of the state and the action we will use a relation based on the Q-factor function defined by

Eq. (6.4). The Q-factor value of a finite horizon problem is the expected return starting from

5, taking action a, and thereafier following the policy m (|5 3y

T-1
A k
Qn(sa ay = Eﬂ|:Y G(SF)"' Z Y 88,4 o at+k(5r+k)’51+k+ 1)
k=0

(s,=5)(a,~= a)} (6.17)

where yTG(s £) is the terminal cost or reward related for arriving to the final state 5.
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For infinite horizon problems. the Q-factor starting from an initial state s, taking

action a,, and following a policy n is:

T
. k
Qﬂ(ss a) = Th_erEn Z Y g(sl+ ks a(+k(sl+k)| $1+k+ 1) (51 = 5).(0, = a) (6‘18)
k=10

6.9. Optimal cost-to-go functions.
If we want to solve a problem of reinforcement learning, we want to obtain the
maximum reward (or the minimum cost) for each state or state-action. If we talk about the

optimal cost-to-go function starting from one state we must select the policy 7 that

guarantees an optimal cost-to-go function:
J7*(s) = maxJis) Vse S (6.19)
n

1f we talk about the state-action relation or Q-factor function, we must find an

optimal Q-factor function:

O7r*(s, a) maxQ’T‘(S’ a) Vs e S, Va e A(s)
n

E[g(sp ap S/+ [) + YJ*(S/-F |)|S',a’] (6‘20)

If we want to relate the cost-to-go function of an state s under an optimal policy =

with the expected return for the best action of that state, we can use the Bellman Optimality

equation for J*:

J'(s) = max Q™(s, a)
a
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= MaxX £ R|(s, = 5) (a, = a)}

a
max -
. E . k +k+ (=S5ha =
i "{E‘)Y Fivker|(s,=9)(a a)}
= a :'ZX(S)ER'{"H 1 ng’(rH“ 2l == a)}
= a IEI]ZX(S)E{?‘HI +YJ.(5r+ |)|(Sl =s)(a,=a)}
= max ZP:SF[R::; + v (s )] (6.21)
a e A(s) s,

If we want to relate the action-value (or Q-factor function) of an state under an

optimal policy with the expected return for the best action of that state, we can use the
Bellman Optimality equation for O*:

Q°(s,a) = E{r;, )+ ymaxQ'(s,, . ap)/(s, = $), (a, = a)}

ZPst[Rfsﬁ y max O°(s, aF)] (6.22)

St a[:

We can solve the Gridworld example of Figure 6.3 by solving the Beliman
Optimality equation for /* (Eq. (6.21)). That method is viable if we have a low number of
states. As that state number increases we can implement exhaustive search, looking for
solutions by implementing different policies. We solved the Gridworld by both ways
looking for the optimal cost-to-go value for each state. The results shown in Figure 6.5.
Also we can see the policy n* that maximizes our cost-to-go function J*.
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A B { — [+ [~ [ets [« |

3 Ll [ [ |

R P AR

- ! L, [t |[Sled S

A Lt |[& ]S
Optimal policy

TS7IS | 244194 215775 19379471 173715
1977877 219775 | T19.7797 | 1738018 | 18.0216
T7.80787 157797 T7BOIE| 160216 | FA.3104
16.0216| Y7BOI8 | 16.0216 [ T43T10d | 123775
441947 T16.02T6 | 144194 | 1239775 T1.8797

Optimasl cost-to-go function.

Figure 6.5: Solving the Gridworld (15,

6.10. Elementary Solution Methods.

6.10.1. Dynamic Programming. We want to use dynamic programming to obtain

good policies. We must follow the following steps in the dypamic programming evaluation:

6.10.1.1. Policy evaluation: We want to compute the cost-to-go function /" foran

arbitrary policy nt, based on the relation:

S8y = Exfroo tyJds,. |)|5, = s}

= (s, a)) Pl [Re, +y S (sp) (6.23)

a3

We can make that evaluation iteratively, knowing that {J,} generally converges to

J" as k = co. The iterative policy evaluation algorithm is shown in Figure 6.6.
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Iterative policy evaluafion.
[nput:

7, the policy to be evaluated

P]_, the probability of finish on state s, if we start on state s
D

and execute the action a

a
S5, *

R the reward received after finish on state sp \f we start on

state s and execute the action a

Initialize J(s) = 0, forall s € S’
Repeat
A« 0

Foreach s € S for all possible s € S and a € A(s):
v« J(s)
Hs) < D n(s, @)D PL [Re, +1J*(sp)]
a 5
A < max (A, lv—=J(s)|)
until A <8 (a small positive number)

Output J = J"

Figure 6.6: lrerative Policy Evaluation ;).

6.10.1.2. Policy improvement. We want to know if an actton a different from that
suggested by the current policy could produce a better Q-factor function. Therefore, we
must maintain a structure with all of the expected returns starting from the state s and

following the action a:

Q™(s,a) = E{ro. +yJ%(s,. )|(s, = 5). (a, = a)}

> PL RS, + 7P (6.24)

S,,
We want to see if after selecting the action a in the state s and following m we can

find a new and better policy n,. We can define the Policy improvement theorem as:
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olicy m » must be as good as,
If Q%(s, n {5)) = J(s) VseS:{p YF 8 )}

or better than nt (J**(s) 2 J*(s)

6.10.1.3. Policy iteration. When a policy n has been improved using J" resulting

In a better policy mp we can compute T 1f we improve the new policy, we could have
nor and so on. [deally, we can see a sequence of policy evaluation and policy

improvement as the sequence:
i E E

E I E [
g —> S >w, >IN D> my, —> T >t > T

The algorithm for policy iteration is shown in Figure 6.7.
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Policy Iferation.

Ininialization.
J(s) € R and n(s) € A(s) arbitrarily forall s € §

Pfsf , the probability of finish on state s if we start on state s and

execute the action a

a . - .
R, , the reward received after finish on state s if we start on state

s and execute the action a
Policy evaluation.
Repeat
A0
Foreachs e S

v« J(5)
Js) 2 n(s, @) D Py, [R, +1J*(sp)]

a 5y
A« max (A, |v—J(s))

until A <8 (a small positive number)
Output J= J"
Policy improvement.
policy stable «- true
Foreachs e §:

b« m(s)

n(s) argénaxzp:s(;)[R:g(:) +yJ(sp)]
Sy
If b=mn(s) then olicy stable « false
If policy stable, then stop; else go to 2.

Figure 6.7: Policy iteration )5,

6.10.1.4. Value iteration. This is the name given to the DP iteration that executes

Eq. (6.21) starting from some J. With that iteration we could find the optimal cost-to-go

function J* . Also, we can see that value iteration is a combination of policy improvement

and truncated policy-evaluation steps, as seen in Figure 6.8.
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Value Iteration.

Initialize J arbitrarily, e.g., J(s) = 0, forall s € S
Repeat
A0
Foreachs e S
v« J(5)

J(S) € max ZP::,.[R?:,A + YJ(SF)]
a
St
A « max (A, |v = J(s)|)
until A <6 (a small positive number)
Output a deterministic policy, 7, such that:

n(s) = arg max 2P RS, +1J(s )

Sk

Figure 6.8: Value lteration (),

6.10.1.5. Generalized policy iteration. GP] occurs when we have an interaction
between the policy evaluation process and the policy improvement process, as seen in
Figure 6.9. In policy evaluation we execute the actual policy to obtain the current cost-to-
go function. With policy improvement we define the policy according to the current
cost-to-go function. After many iterations we will find the optimal policy and cost-to-go

function.
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evaluation

m

i J

T — greedy(J)

tmprovement

T* J!l

Figure 6.9: Generalized Policy lteration ;.

6.10.2. Monte Carlo methods. Monte Carlo methods only require information
about states, actions and rewards that originate from a real or simulated system. These are
algorithms that learn from experience. Generally we don’t need detailed information from
the process. We can differentiate between every-visit and first-visit MC methods for
estimating J" . The every-visit MC method executes the average of all the returns after all
the visits to the state 5. The first-visit MC method executes the average of all the returns
after the first visit to the state s. We can see the algorithm for the first-visit MC method in

Figure 6.10.
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First visit Monte Carlo for estimating J" .
initialize:

7 « policy to be evaluated
J « an arbitrary cost-to-go function

Returns(s) « an empty list, forall s e S
Repeat forever:

(a) Generate an episode using 7.

(b) For each s appearing in the episode:
R « retumn following the first occurrence of s .
Append R to Returns(s).

[ J(s) «— average(Rerurns(s))

Figure 6.10: Algorithm for first-visit Monte Carlo method for estimating J" (12)-

We not only need the estimation of the cost-to-go values for a given state. With

Monte Carlo Methods we could obtain an estimate of the Q-factors Q" of each action to
obtain an optimal policy.

As we described in section 6.10.1.5 about generalized policy iteration, we evaluate
a policy and a cost-to-go function until we obtain the optimal configuration of both
functions. If we apply Monte Carlo methods, we can start with an initial policy n, ending
with an optimal policy and optimal Q-factor. The policy improvement is made by taking

the action that maximizes the Q-factor function:
n(s) « arg max (Q(s, a)) (6.25)
a

In policy evaluation for Monte Carlo methods, we evaluate the Q-factor function of
the states during the episodes and improve the policy at the end of each episode. An
example of this method, called Monte Carlo with Exploring Starts (or Monte Carlo ES), is

shown tn Figure 6.11.
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iNMonte Carlo wilh Exploring Starls.

nitialize, for all s € S, a € A(s):
(s, a) « arbitrary.
7(s) <« arbitrary.
Returns(s, a) « an empty list.
Repeat forever:
(a) Generate an episode using 7.

(b) For each pair s, a appearing in the episode:
R « return following the first occurrence of s, a.
Append R to Returns(s, a).
Q(s, a) « average (Returns(s, a))

(c) For each pair s in the episode:

n(s) « arg max (Q(s, a))
a

Figure 6.11: Algorithm for Monte Carlo with exploring starts (5,

6.10.3. Temporal difference learning. Temporal difference (TD) methods are a

combination of Monte Carlo and Dynamic Programming methods. TD combines learning

from experience and updating the estimates without waiting for the end of the episode. For

example, we can define a simple every-visit Monte Carlo method as:

J(s) < J(s)y+afR,-J(s,))

That is called constant-a MC, where a is a constant step-size training parameter

and R, is the actual return after the time / when the episode finished, as shown in Eq. (6.8).
We can update the cost-to-go function J(s,) only at the end of the episode, because we need

R,. Temporal difference leaming methods can update J(s,) as they know the observed

reward r,. If we update each time step, we obtain the TD(0) method:

J(s)<J(s)yralr,tyJ(s,, D) =J(s)]
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where r, | +vJ(s,, ) —J(s,) = 9, is defined as the TD error for one backup step. This

method is called TD(0) because the eligibility trace parameter A is equal to zero as shown
in section 6.11.
If we compare targets, we note that Monte Carlo uses the total reward of one

episode R, and Temporal Difference uses r,, | +vJ(s,, ). [f we rewrite Eq. (6.15) as:

J(s)

EN[R{|S, = 5} (6.28)

s‘=s}

T
k
= En "14- | +Y Z Y g(51+k+ |'a,+k+1(5'1+k+1)»st+k+2)
- k=0

- T

k
= En Z'Y g(sl+k’at+l((sl+k)’st+k+l)
“k=190

Sr:S}

En[r(+l+7f(5:+l)|51=s] (6.29)

where we can see that Monte Carlo methods use Eq. (6.28) for their estimates and temporal

difference methods use Eq. (6.29) for their estimates.

Figure 6.12 shows an algonithm for estimating J" using TD(0).
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TD(0) algorithm for estimating J* .
Initialyze:
n « policy to be evaluated
J < an arbitrary state-cost-to-go function.
Repeat (for each episode):
Initialize s.
Repeat (for each step of episode):
a <« action given by m for s.
Take action a; observe reward r, and next state 5.

J(s) « J(s) talr+yJ(sg) = J(s)]
5« Sp.

| until s is terminal.

Figure 6.12: TD(0) algorithm for estimating J" (12

6.10.3.1. Random walk example. We want to compare Monte Carlo and Temporal
Difference methods. For our example we implemented a random walk as seen tn Figure

6.13.

0 0 0 0 0 I
B0 0—N
Figure 6.13: Random Walk ;)

All episodes start in the center (C) and move left or right with equal probability. We
finish each episode at the left or right box. The reward is always 0 in all positions except

when we finish at right with reward 1. For this example, the true cost-to-go function for

each state from AtoEis {1/6,1/3,1/2,2/3,5/6}.
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After runming the random walk for both methods. we compare TD(0) and MC m
Figere 6.14 and Figure 6,15 with respect the real cost-to-go function. We noted a better
approximation if we use the TD(0) method compared wath the Monte Carlo Method. 1f we
sec the learmng curve for 110} (Figure 6 16) we can see that TID(() has a more stable
leaming curve for &~ 0.05 . IFwe increase o we abtainan imital faster learmng. but after
some steps the TI(0) algorithm oscillates. Tn the learning curves for MC (Fipure 6 17) we
noted that the siep training constant musi be around @ = 0 01 | which is lower than TD(O)

I} we increase the constant o, the MC algonthm osciltales at different traming times

0 9 f T T T -1 T T

08 |

07 |

06

05 after 10 tnals.

l

cost

after 100 tnals.

a3
02t -
01
8] i L F L L s 1 1
A B C D )
posiuen

Figure 6.13: osr-io-go values learned by D0,
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6.10.4. n-step TD prediction.
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Figure 6.18: n-step I'D prediction (5,
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Figure 6.18 shows different processes where the white circles represent the states

s, and the black circles represent the rewards r,. For different For Monte Carlo methods

the estimate J,(s,) of the cost-to-go function of the current policy J (5,) 1s updated in the
direction of the complete return:
Tt~

2
Ry =rytyr ¥y ray*t oty Tt

From 1 to n steps backup the reward is:

2s)

= -
—_
S
|

AT +7J1(51+ I)

2 2
RE ) = rl+i+7r{+2+7 Jr(SH-z)

2 n-1
Rl :rx-rl-i-‘yrrﬂi-Y rt+3+"'+7 r1+n+‘yn‘]l(sl+n) (6'30)
The estimated value of Jﬂ(s,) at the time 7 is J(s,) due to an n-step backup of s, is:

AJ(s) = a[R~J(s)) (6.31)
If we use On-line updating, we update each step with the relation:
J 1+ (8) = JLs)+ AJ(s) (6.32)

If we use Off-line updating, we update at the end of the episode with the relation:

T-1
Js) = Js)+ D, AXs) (6.33)
=0
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6.10.5. Sarsa: On policy TD Control. If we want to execute the training of a
learning process based on generalized policy iteration (GPI), we must combine exploration
and exploitation. Sutton and Barto)y define two classes of methods: On-policy and Off-
policy.

The On-policy TD method tries to estimate the function Q" (s, a) for all the states

s and the actions a. Then we can apply the same relation used for the cost-to-go function

to the Q-factor function as:
Q(Sp a/) « Q(S{' a[) + U.[I‘t + i +YQ(SI+ 1 a[+ ]) - Q(Sp a()] (6‘34)
If s,., is terminal, then we define the last Q-factor function Q(s, , . a,, ) to be

zero. The name for the Sarsa algorithm comes from the use of the five parameters
Spapr sS4 q4,). An implementation of the Sarsa algorithm is given in Figure

6.19.

arsa algorithm: On policy 1D Conlrol.
Initialize Q(s, a) arbitrarily.
Repeat (for each episode):
Initialize .
Choose a from s using policy derived from Q (e -greedy).
Repeat (for each step of episode):
Take action a; observe reward r, and next state sp.

Choose ap from s, using policy derived from Q (¢ -greedy),

Q(s,a) « Q(s, a) +a[r +yQ(sp ap) - (5, a)]

S Sg,a<ag

until s 1s terminal.

Figure 6.19: Sarsa Algorithm ),
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6.10.5.1. Windy Gridworld example. We can apply the Sarsa algorithm to the
Windy Gridworld example seen in Figure 6.20. For this example we have one start and one
goal point, called S and G respectively. Each episode starts at the point S and finishes at the
point G. We have four possible movements shown in Figure 6.20. If we try to move outside
the Gridworld we remain in the same position. For each movement there is a penalty of —1
until we arrive at the goal G. Our movements are complicated by a wind that moves from
the bottom of the grid with a force described in Figure 6.20. The optimal path is described

by the 15 steps at the lower part of the same figure.

T

Acuons

SCmalitns
o ol |

Figure 6.20: Gridworld. Basic operation and real optimal path ().

We executed the Sarsa algorithm for the Gridworld with a learning rate o = 0.] .

The movements in the Gridworld were greedy (taking the action with the maximum

action-value). If two or more actions have the same action-value we select one at random.

To search new solutions, we also included a probability ¢ = 0.1 of random actions. We

found the solution shown in Figure 6.21, where we drew the optimal movement for each
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position. {f we follow the suggested movements from the start S we will follow the optimal
path shown in Figure 6.20. We note that some positions do not have suggestions because

they were not visited, due to the wind effect.

Optimal path:

L]l 4
s> ([l sl ol ] 4
llsjd o]l S04
Sl oaloalasloala]sl 6T o4
$ 1 P o= | > I |« | e
S|l |- - | 1
> |11 T | «
0 [—0 ] 0] { I T JTTIT7ZT T rﬂ

Figure 6.21: Gridworld. Calculated optimal path.
In Figure 6.22 we plotted the number of episodes completed versus the total number
of steps. We can see at the beginning it took many steps to complete each episode. As the

training process continues, the episodes concluded in fewer steps.
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Figure 6.22: Number of completed episodes versus number of steps.

6.10.6. Q-learning: Off policy TD control. This TD method is Off policy because

is independent of the current policy. The method takes the current Q-factor function QO as

the approximate real function O* . For exarnple, for 1-step Q-learning we have:
Q(Sp a,) « Q(Sp a;) + Cl.|:l‘l +1 + Y max Q(Sl + Y a) - Q(S/» a;)] (6'35)
. a

An implementation of the Q-learning algorithm is shown in Figure 6.23.

183



-learning algoritlim: Off policy ontrol.

[nitialize Q(s, a) arbitrarily.

Repeat (for each episode):

Initialize s.

Repeat (for each step of episode):
Choose a from s using policy derived from Q (¢ -greedy).
Take action a; observe reward r, and next state Sg.

O(s, @) « Q(s, @) + | r+y max O(s, a) - O, a)]

S Sp

until s is terminal.

Figure 6.23: QO-learning: Off policy TD control ;).

6.10.6.1. Cliff Walking. We execute the Cliff Walking example of Figure 6.24 to
compare Q-learning and Sarsa algorithms. We want to move from the Start to the Goal
position with the movements shown in the same figure. An episode concludes when we
arrive at the Goal position. For each movement we have a penalty of -1, except at the Cliff
zone where we receive a punishment of -100 and return to the Staﬁ position. We can
consider two possible trajectories: an optimal path running very close to the Cliff zone and
a safe path running along the safe path far from the Cliff zone. If we compare both
algorithms, we can see that the Q-learning policy tends to move closer to the Cliff zone than

the Sarsa method. Those results are due to the implementation of the Q-Jearning method

that is based on the current optimal Q-factor function (action where Q(s, ., , @) is

maximum). The Sarsa method is based on the next action executed and, due to the penalty

at the CIiff zone, the algorithm tends to move toward the safest zone.
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Optimal path for Off-policy Q-Icaming:
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1 T > | |25 i ¢
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Figure 6.24: Cliff walking (1,

6.10.7. Actor-Critic Methods. This method separates in two independent variables
the policy (known as the actor) and the cost-to-go function (known as the critic) (see
Figure 6.25). The critic learns about the process and critiques the current pohcy. The
learning is always On-policy. The critic is generally a cost-to-go function, because after
each state transition the critic must compare the results from all possible actions looking for
any improvement. The critique takes the form of a TD error (see Eq. (6.27)) :

8, = r o) +YJ(s,4 ) - J(s) (6.36)
where J is the cost-to-go function evaluated by the critic.

With this relation we evaluate the selected action a, at the state s,. A Positive TD

error means that the critic will support that action at the future. A negative TD error reduces

the support to execute that action.
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For example, we can define an actor’s policy m,(s, a) with modifiable policy

parameters p(s, a), then we can update those parameters with the relation:
p(s, a,) < p(s,a,)+ P, (6.37)

where [ is a positive step-size parameter. Another update relation could be:

p(s,a) < p(s,a)+B8[1-n(s,a)] (6.38)
\
Policy
Actor
Critic TD
error
Cost-to-go
state " Function action

/ reward

—[ Environment }—

Figure 6.25: Actor-critic method (5,

6.11. Unified algorithms.

In this sectior; we want to combine concepts from dynamic programming, Monte
Carlo and temporal difference methods.

6.11.1. Eligibility traces. The idea of eligibility traces is related to the update of
the cost-to-go function, defining how each visited state influences that update process. For

example, we want states which have not been visited to have little or no influence on the
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calculation of the cost-to-go function. On the other hand, frequently visited states must
have an tmportant role in that calculation.

We can use the idea of eligibility traces to define the transition from the TD method
to the Monte Carlo method. If we use the TD method, as defined in section 6.10.4, we could
increase the number of steps » in the time horizon as we move in the future to explore a
solution, arriving at the final time to the Monte Cario method. This view is called the
forward view, as seen in Figure 6.18, because we are going in the same direction as the
process. We known which states are visited and therefore are used at the cost-to-go function
update.

Another form of describing Eligibility Traces is called the backward view. Here we
can see the Eligibility Traces as “a temporary record of the occurrence of an event.”(}4,
When an event or state occurs, that event is marked with one flag, which is Jater discounted
in time. When a TD occurs, the error is charged to the visited events according to their
discount value.

“The more theoretical view of eligibility traces is called the forward view, and the
more mechanistic view is called the backward view. fhe forward view is most useful for
understanding what is computed by methods using eligibility traces, whereas the backward

view is more appropriate for developing intuition about the algorithms themselves.”,,

A ternporal difference algorithm that uses eligibility traces is called TD(A).
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6.11.2. The forward view of TD(). This a theoretical point of view of TD(). We
do not have to update our cost-to-go functions with the n-step return. We can update with

an average of n-step returns with the relation:

Ri=(-n)Y 2 g™ (6.39)

n=1
For a finite process of length T:

T-t-1
RE=(-2) 3 AR AT g (6.40)

n=1

where the increment of the cost-to-go function is:

A
AJ(s) = alR - J (5] (6.41)
Since we need future results of the cost-to-go function, we can see that this implementation
1s not causal.

Weight given 10 the Total srea = §.
3 step retum

o—Decay by A

— Tl

A =

1 T
time — Weight given to the
actual final return

Figure 6.26: Weighting given in the A-return to each of the n-step return ;).

6.11.3. The backward view of TD( ). This a mechanistic point of view of the
eligibility traces. This implementation depends on past values, therefore it is causal. We

have a value associated with each state, called the eligibility trace. “On each step, the
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eligibility traces for all states decay by vy, and the eligibility trace for the one state visited

on the step is incremented by 1”5y, as shown in Figure 6.27.

Yy Ae, _($) If s#s
e(t) = { - ! (6.42)
YyAe _(s)+1 If s=3,
where: ¥y —> Discount rate.

X — Parameter used by the forward view (previous section).

M Accumulating eligibility trace

P | |

Times of visits to a state

Figure 6.27: Graphical representation of backward view of eligibility traces 5,

“The traces are said to indicate the degree to which each state is eligible for

undergotng learning changes should a reinforcement event occur.” | 1)

AJ(s) = a b, els) foralls e § (6.43)
where:

S = 1,4, +‘7J,(s,+ D=Js) (6.44)

For example in the case of 1-step TD error we have:
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If: 2 =90 = TD(0)

A= = The credit error falls by y per step.
A=1,y =1 = TD(1). The eligibility traces do not decay at all with
time. Work as Monte Carlo undiscounted episodic task.

A large, butstill L <1 = More of the preceding states are changed, but the more

precedent is changed less.

An example of the application of this concept is shown in Figure 6.28, where we

use eligibility traces to estimate J" for a given policy .

On line Tabular TD(2) for estimating J".
nitialize:

J(s) <« arbitrarily.

e(s) =0 forallseS.

Repeat (for each episode):

Initialize s.

Repeat (for each step of episode):
a <« action given by n for 5.
Take action a; observe reward r, and next state 5.
e r+yJisp)—Js)

e(s) < e(s)+1

Forall s:
J(s) « J(s) + ade(s)
e(s) « yre(s)

S € Sp.

until s 1s terminal.

Figure 6.28: On-line Tabular TD()\) for estimating J" (12)
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6.12. Gradient-Descent Methods.

This section describes how we can construct approximate representations of the
cost-to-go function using neural networks or similar structures. The same results will apply
to the Q-factor functions. Bertsekas and Tsitsiklis 3y stated that we must define an
approximation architecture powerful enough to approximate the desired function, and we
must establish effective algorithms to execute the training process. Generally, these

objectives are conflicting, because powerful architectures generally tmply large numbers of

parameters and nonlinear internal relations.
A general approximation process with neural networks is based on data pairs
(x,,¥;), where we want {o find the function y = f{(x) thatis the best approximation to that

data set, as shown in Figure 6.29.

flx)

Neural
Network

Figure 6.29: General neural neiwork training.

In the reinforcement learning context, we want to obtain the optimal cost-to-go
function J* , based in the data pairs (s,, J*(s,) ), where s, is contained in a subset of the state
space. However, since the function J* is unknown or not measurable, the training pairs are
unavailable. In that case, we need a training algorithm which also tries to compute J* . One
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idea is to obtain the approximate cost-to-go function J (s) during one episode, starting
from the state s and following the policy m. For example, this approximate cost-to-go

function can be obtained using Monte Carlo simulation (as in Eq. (6.26)) or by temporal

difference method (as in Eq. (6.27)). As a result of this process we will obtain training pairs

for the neural network (s,, J"(s,) ) as shown in Figure 6.30.

Environment or
Stochastic System

p lJNN(Sl)

Neural ! N
Network

Figure 6.30: Neural network training for a Reinforcement Learning problem.
For the neural network training the inputs are the states visited during the episode.
The target will be the approximate cost-to-go function JS(s ,) - The network will be trained

to minimize the mean square error:

MSE®) = P(s) S (J5(s,) = Iwls)? (6.45)

ses

where P(s,) is the state probability mass function. If the states appear with the same

distribution P, we can minimize the error on the observed examples by the following

steepest descent algorithm:

192



8, =8d,- % aVg (T (5) = Junds )’

= 8= (I ) = Jun5)) Vo (Ipads ) (6.46)

where a 1s a positive step-size parameter and 8 is the vector of neural network weights and

biases.

After the neural network has been trained it provides a new updated policy because
we can then determine the action that minimizes the cost-to-go function. We must then

continue to update the cost-to-go function.

If TD methods are used to estimate the cost-to-go values, we have J (s,) = R? for

the forward view update (Eq. (6.39) and Eq. (6.40)) and we can update the weights and

biases with the relation:

8,01 = 8,— a(R) = Jyuls ))VE(Jyas)) (6.47)
but, for A <1, R?‘ is a non causal approximation to J"(s,) , and this is not a practical
implementation. For the backward view TD update we have:

8,.,=8,- ad?, (6.48)
where 8, is the TD error:

8, = 1,1 P ¥Iun(S, 4 1) —Iun(s) (6.49)
and &, is a vector of eligibility traces defined by:

&, =y 8, _( + Vi (Iuds)) (6.50)
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>

with &, = 0.

6.12.1. Linear Methods. This is the case when the cost-to-go function J FULE:

linear function of the parameter vector §,:

Is) =88, = T80 &GO D VU =, (6.51)

i=1

where 35(0 = (o,(1),$,2), ..., ¢:(n))T is a vector of features which correspond to each
state 5. Sutton and Barto(|,) defined $S(i) as a vector of features and Bertsekas and

Tsitsiklis ;) defined (i) as basis functions. We can rewrite the mean square error equation
as:
n 2
MSE®,) = P(s) 2 [J(s,) - 28/@ &(f)} (6.52)
ses P= 1

We can use different types of basis functions to obtain the cost-10-go function. For
example, Sutton and Barto mention coarse coding, tile coding, radial basis functions and
Kanerva coding ;). We will explain the tile coding that will be used in the final
simulations. |

6.12.2. Tile Coding (CMAC NN).

For tile coding (or CMAC neural networks), we divide the state space into m
subspaces as shown in Figure 6.31 for a two dimensional space. The division could be with

the same spacing or with arbitrary spacing. Arbitrary shapes are also allowed.
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Figure 6.31: lwo-chmensional (ile Coding ;) s,
IFor each statc-value only onc of the tiles will be active at 4 time Thercfore, the
output of the network will be the weight associated with that tle corresponding to the

current state-valuc. Therefore, the gradient V‘;(.IA_',\,{.\-[)) will usualty be equal 10 1 for the

active tile and equal to O tor all the others.

To obtain a betier resolution in the implementation of the tdes, we can include an
additional tilc for cach dimensjon. and the tilings can be shifted bv a randem number, as
shown for the two dimensional case in Figure 6.32 1n that figure we have the original space

in black with rwo displaced ulings in bluc and preen.

Figure 6.32: Vvwo-dimensinual 1ife ( o with owo tles (green and blue) (s,
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6.12.3. Control with function approximation. We can extend the previous
concept of cost-to-go function prediction to Q-factor function prediction. With the Q-factor

function we can obtain the cost-to-go derived from each possible action for each state. We
can define Q" as a function of 6,. We can say that the Q-factor function will generate an

output of the form 5,, a, — é“ , Where éﬂ could be any approximation of Q"(s,, a,).as the
Monte Carlo return R, or the 1-step Sarsa-style return r, | + YQua(S, + |, 4, ). Then we
can write the gradient-descent update for the Q-factor function as:

8,01 = B+ (050 2) ~ Onads, 3 V3 (Oadsi @) (6.53)

For the backward view of TD(X), using the CMAC NN, we have that:

B, = B,+ade (6.54)
where:

8, = ria 1 *YONMS 4 18,5 1) — Oy @) (6.55)
and:

B, = yA3,_\(s)+ V3(Qunls, a)) (6.56)

We can apply the update algorithm for a reinforcement [earning problem following

the process described in Figure 6.33.
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Initialize 8, and 2, l

v

For each episode, initialize 5

v

1 Evaluate $,Q for each a

#

Execute action with maximum O
or random action.

!

Observe reward » and next state s

v

Is s terminal ?

yes

Figure 6.33: General linear update algorithm
An example of On-policy approximation is the linear, gradient-descent Sarsa(\)
algorithm shown in Figure 6.34. An Off-policy implementation is the linear, gradient-

descent version of Watkins’s Q()) as shown in Figure 6.35.
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Linear, gradient-descent Sarsa (1).

ﬁnitialize W arbitrarily (preferable zero). Initialize 2 = 6
Repeat (for each episode):

I[nitialize s (random or fixed initial condition).
Forall a € A(s):
F, < set of features present in s, a.

0, 2. W)
iefF,

a < arg max Q,
a

With probability e : a « a ramdom action € A(s).
Repeat (for each step of episode):

B yrd
Foralla=za: (optional block for replacing traces)
Forall i e F:
e(iy« o0
Forall i € F:
e()e—e(i)+1 (accumulating traces)
or e(i) « 1 (replacing traces)
Take action a ; observe reward r, and next state s F-
Se—r-90,

If 5 is not terminal:

Forall a € A(s):
F, « set of features presentin s, a.

0, 2. W)
ieF,
ap<’— arg g)ax 0,
With probability €: @ «— a ramdom action € 4(s).
If s is terminal then: Q, =0
de3d+yQ,,
We W+ ade

S(—SF,a(—aF

Recalculate: O, « Z (i)
ieF,
until s is terminal.

Figure 6.34: Linear. gradient-descent Sarsa (2) (;3).
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Linear, gradient-descent Q(2).
Initialize W arbitrarily (preferable zero).

Initialize 2 = 0.

Repeat (for each episode):
Initialize 5 (random or fixed initial condition).
For all a € A(s):

F, « set of features present in s, a.

Q. ¢ 2. W)

ieF,
Repeat (for each step of episode):
With probability ] - ¢

a <« argmax Q.
a

e « yhe
else
a < a random action € A(s).
e 0
Forall ie F,: e(i)«e(i)+ 1
Take action a; observe reward r, and next state 5.
Sder-9Q,
Forall a € A(s5):
F, € set of features present in s, a.

0,« X W(i)
ief,

ap < argmax Q,.
a

dd+vQ,,

We W+ oade
ungl s is terminal.

Figure 6.35: Linear, gradient-descent Q(4) ()3).

6.12.4. Mountain-Car example. As an example, we can consider the task of
driving a Mountain-Car task as suggested in Figure 6.36. Since the car does not have

enough power to climb the hill directly, the intuitive solution implies that we must first go
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backwards and then accelerate forward. We want to minimize the time to climb that hill

starting from a random initial position.
The simplifted equations of the car are:
x,,y = bound[x,+x, ] (6.57)

X,, = bound[x,+ 0.001a,-0.0025co0s(3x,)] (6.58)

where the bound function enforces a limit in the state variables: ~1.2 <x,, ;< 0.5 and

~0.07<x,,,<0.07 .

Goal

Figure 6.36: Mountain Car task ;)

The control input to the system has three options: full throttle forward (a, = 1)

b

full throttle reverse (a, = —1), and zero throttle (a, = 0). The reward function is -1 untii
the car passes Goal position when the episode ends. We use the Sarsa learning method with
parameters A = 0.9,¢& = 0, a = 0.05(0.1/m).

With all the initial actions set to zero we will select randomly between equal
cost-to-go functions. Thus we have an extensive exploration, even though € = 0. We used
the same tiling scheme proposed by Sutton and Barto,). We divided the state variables

into 10 tilings divided into 9 x 9 equally spaced segments.
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We trained the system for 9000 cpisodes. Approximate solutions afier 104 episodes
and after 9000 episodes are shown in Figure 6.37 and Figure 6.38 respectively We can see
thar afier 104 episodes we have an approximate representation of the optimal cost-to-go

funciion shown in Figure 6.39.

Mountatn Car. Aclions per stale 104 inal(s)
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- - e R - ¥ W r + + 4 o4+ 4
s & » 0 w 5 B W S ® S+~ T + + + + -+
a5 5 5 -0 F * % ot oe e r
$ii180818328088188807 5 7
o E:._81.5.89:§ § S - e 1 o
Oprid TET 2T R 2183% I 33
. -38ghsr88etiiyiEl PiER i$:
9 - - - tt#—:‘:-n:o 1
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Figure 6.37: Approxanate Action per state after 104 cpasodes ¢ (fifi. * (/100 00210,
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MO Car 12 u(3)

Cost-lo~go

velociy oM agp o3

1] -
posiion

velocity 604 500" DS velocity 004 5p 03

bourvan Car 9000 biany)

veloaity 004 4p¢ 03

Figure 6.39: Cost-to-go function (- max, Q,(s,a) ) learned during one run.

In Figure 6.39 we can see the cost-to-go function (- m:x Q,(s,, a,)) leamned during

one run. We can see that after one episode we have a circular cost representation of the back
and forth movement of the car. As the number of training episodes increases, the cost
function takes shape. For 1000 episodes the cost function shape is so similar to the cost
function for 9000 episodes that we can consider is to be a close approximation to the real

cost function.
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6.12.5. Acrobot example. As a second example, we can consider a reinforcement
learning problem applied to an Acrobot. “The Acrobot is an underactuated two-link planar
robot that mimics the human acrobat who hangs from a bar and tries 10 swing up o a
perfectly balanced upside-down position with his/her hands still on the bar” 4 as seen in

Figure 6.40.

Motor fixed Link 2
to hink 1, used
to drive link 2 \

\ Sensors for
Link 1 / Angular position

Figure 6.40: Diagram of an Acrobot (4

The dynamic equations for the Acrobot are (4 17y’
dy 1, vdpdythy+éy =0 (6.59)

diyG, tdypdathyt oy = 1 (6.60)
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Where the coefficients of the relations (6.59) and (6.60) are:

S
|

= m )+ my [+ Py + 211 ycos(g )] + 1, + 1,
3 2
dy, = myl,+1,
2
di, = myll,+11,,c08(9,)]1+ 1,
: 2 ) .
h, = —m21|1c25m(q2)q2—2m21|1c25m(q2)q,q2
) .2
hy = mzl‘lczsm(qz)q,
¢, = (m,!“+mzll)gcos(q,)+m21c2gcos(q| +45)

b, = myl ,gcos(q, +qg;)

Figure 6.41: Simple Acrobot notation (4 ;).
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Figure 6.42: Swing-up the Acrobot 4y

The goal is to swing up in minimum time the lower end of the Acrobot at least one
length over the vertical position as shown in Figure 6.42. We always will start in the stable
hanging position.

The control input to the system has three options: full positive torque (7, = 1), full
negative torque (t, = —1), and zero torque (t, = 0). The reward function is -1 for each
step until the Acrobot reaches one length above the inverted position. We use the Sarsa
learning method with the parameters A = 09,e = 0, @ = 0.2/48. The angular
velocities were limited to 4, € [-4n, 4n] and ¢, € [-9m, 9] with no limits in the
angular values g, and q,. We allowed multiple rotations of the Acrobot links. From the

figures that Sutton and Barto presented in their book 5y we noted that those movements
were not allowed. For our example we used real parameters taken from the Acrobot of

Brown and Passino (4):

l

1.5008 ;

nty

my, = 0.7175;
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ly = 0.2,

1, = 0.2;

[, = 0.18522;
., = 0.062052;
[, = 0.0043399;
I, = 0.0052285;
g = 9.8;

We used the same tiling scheme proposed by Sutton and Barto (12)- We divided the
angle state variables g, and g, into six equally spaced intervals and the velocity state
variables ¢, and g, into seven equally spaced intervals. We created 12 tilings with four

dimensions as discussed before. We created a second group of 12 tilings by taking three of
the dimensions for each tiling. We created a third group of 12 tilings with a combination of
two dimensions and a final group of 12 tilings with one dimension each one. We offset each
tiling by a random fraction of a tile.
We made some simulations with the Acrobot. Initially, we set the initial action

values to low random numbers. We set the algorithm for no exploring actions (¢ = 0).
With those parameters we obtained a system training curve shown in Figure 6.43. From an
initial episode of 2206 steps, the system optimizes with a faster execution of 172 steps. We
note that the system stops the training after the episode 77, when the algorithm establishes

200 steps as its optimal path. That condition was due to the greedy actions we were taking,
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and no futures exploration actions were generated. To avoid that problem, we made a

change in the algorithm to include exploring actions (¢ = 0.1 ) after two consecutive

episodes with the same step number. As shown in Figure 6.44, we avoid the straight line of

the previous figure, obtaining a minimal response of 148 steps for one episode.

2500 AY L] A} m Al
‘g 2000 |
a
L
g 1500 i
g
v
1000 -
500 -
0 1 1 L 1 ] 1 L
g 50 100 150 200 250 300 350 400

episodes
Figure 6.43: Acrobot. Steps per Trial. Initial random weights. No exploring actions.

Minimum steps 172 (one time).
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Figure 6.44: Acrobot. Steps per Trial. Initial random weights. Exploring actions after 2

consecutive episodes with the same steps. Minimum 148 steps (1 time).

We found a new minimum. However, the system oscillates and the error is not
decreasing. For a third experiment (Figure 6.45) we included a decreasing factor in the
exploring actions €. That decreasing factor was taken as the same A = 0.9, After two
consecutive episodes with the same step number we set € = 0.1, and that number was
decreased by A . For this change we noted that the peaks after 100 episodes decreased, but
our new minimum was 155 steps for one episode.

For a fourth experiment we repeated the first case with the initial action-value set at

zero, where we will select randomly between equal Q-factor function values. Theoretically
we will have an extensive exploration, even though € = 0. We note that the exploration
was faster than the first case, but in the first case after the episode 53 the training stopped

with an optimal path of 177 steps per trial. We see the benefits of the training with initial
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zero Q-factor function values, but we want to include more exploration as the training

continues.
In our final experiment we trained with the initial Q-factor function set at zero, with

exploring actions (¢ = 0.1 ) after two consecutive episodes with the same step number.

Here we obtained the lower number of 147 steps per episode.

3000 . . r v
2500 i 4
[%]
o
2
‘& 2000 4
o
o
(=%
a
5 1500 i
)
1000 4
500 | 4
0 50 100 150 200 250 300 350 400

episodes
Figure 6.45: Acrobot. Steps per Trial. Initial random weights. Exploring actions afier two

consecutive episodes with same steps. decreased by A. Minimum steps 155 (one time).
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Figure 6.46: Acrobot. Steps per Trial. Initial zero weights. No exploring actions.

Minimum steps 175 (one time).
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Figure 6.47: Acrobot. Steps per Trial. Initial zero weights. Exploring actions after two

consecutive episodes with same steps, decreased by A. Minimum steps 147 (37 times).
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We can sce in Figure 6.48 and Figure 6.49 the movement of the Acrobot for 172 and
147 step episodes We can see how the movement of the second link penerates an

oscillation of the first link until the goal is reached.

(6= 1)=(t=725) ( 26y (1= 5 (r=5lhy= (=75

(1= 70) -» (¢ ‘v (1= 101) = (r = 125) (1~ 126) = 12 = 1301

(= 131y —= 1t = 172

Figurce 6.48: Acrohor movement for 172 steps (green first hink, red  sccound hink,

blue  trajectory of the Acrobot end).



(U= —==2% (r=26)—> (1 =30) (=51)Y=(r=173

(t =~ 76y > (1 ~ 10D) (r=10)) = (1 = 125) (= 1My = (r=147)
Figure 6.49: Acrohot movement jor 147 steps (green  first ik, red  second (k.

blue  1trapectory of the Acrahot end).



6.13. Conclusions.

This chapter has described the general reinforcement learning framework.
Reinforcement learning is an approximate form of dynamic programming, in which an
appropriate control policy is chosen to optimize future performance. There are two steps
involved in reinforcement learning. The first step is the development of a model for
predicting future performance, and the second step is determining the appropriate control
action to optimize that performance.

With the reinforcement leamning framework there are many different learning
strategies for model development which have been propased. In this chapter we have
discussed Monte Carlo and Temporal Difference Leaming procedures for model
development. For Monte Carlo methods, a number of trials are made and averaging
techniques are used to estimate performance functions. In temporal difference learning,
estimates are updated at each step of the process. This chapter has described the
relationship between Monte Carlo methods and the various forms of temporal difference
learning. and has illustrated the convergence characteristics of each method. We also saw
the importance of balancing exploitation (maximum reward) and exploration (looking for
new solutions). This was important in the Acrobot example. Contrary to other training
methods for neural networks, we noted the importance of zero initial weights (or Q-factor
functions) for the reinforcement leaming problems. Zero tnitial Q-factor values causes an
initial exploration for new solutions. However, afier some training we witl feel the

necessity of increase the exploring actions to maintain the leamming process. We can do that
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by changing the exploration factor € from zero to some small value when we see a repeated
solution. We illustrated this process for the Acrobot example.

We can implement the concepts of Reinforcement Learning using different tools,
such as decision trees and neural networks. For neural networks we demonstrated the
implementation of CMAC Neural Networks, called tilings by Sutton and Barto (3. Of
interest was the tiling implementation with an extra tile and random displacement, allowing
a better interaction throughout the state space.

This chapter has shown the feasibility of using reinforcement leaming to train
controllers for dynamic systems. This technique may be suitable for developing controllers

for diese! engines. This will be proposed in the following chapter.
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CHAPTER 7

APPLYING REINFORCEMENT LEARNING TO THE DIESEL ENGINE.

We will apply the reinforcement learning techniques discussed in Chapter 6 for the
diesel engine control. The five initial experiments will use the engine speed and fueling as
the state variables. The first expenment will is intended to obtain a control scheme that
learn how to change the engine speed from a fixed initial condition to an specified speed.
The second case includes a lower border penalty. The idea is to teach the algorithm how to
avoid low speeds. The third experiment includes a higher speed border penalty. The fourth
experiment was designed to execute the training from random initial speeds. The final
episode is executed with the same initial conditions of the three previous cases. The fifth
experiment was executed with random initial speeds and random initial fueling. As we
move in our experiments we will explore more conditions of the state space.

After the previous experiments we will execute reinforcement learning experiments
for tracking a reference engine speed. We will include the engine acceleration as a third
state variable. For the sixth experiment, we will try to contro] the engine speed using the
absolute value error as our fitness with higher penalties for the lower and higher engine
speed bounds. For the seventh experiment we will use a time scheme reward equivalent to

the used on the five initial experiments. The last experiment is intended to test
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configurations with two and three CMAC neural networks, and compare the results with

one CMAC neural network.

For the experiments we will use two types of tile coding. We called the first as
equidistant tile coding. For this coding all the state space for the variable is divided in tiles
of the same size. We called the second as log sigmoid tile coding. This coding is described
1n section 7.6.

7.1. Learning a speed transition.

In this section, we will execute different experiments applying reinforcement
learning tdeas from Chapter 6 to the two engine models detailed in Chapter 3. For both
models the algorithm must learn how to change the engine speed from given initial
conditions for speed and fueling to a new speed setpoint.

The reader will notice how the objectives increase in complexity as new
experiments are introduced.

7.1.1. Basic engine model.

For the basic model of Figure 3.4 we selected a fueling delay of 80 ms and a fixed

load of 150 Ib-ft. The reinforcement leaming updates were made every 80 ms.

We execute the reinforcement learning algorithm until the engine speed reached

650 10 rpm starting from 576 rpm and a very low fueling of 0.0558 mm’ /stroke .
The algorithm receives a penalty of # = -1 for each step that the specified speed is not
reached. When the engine speed arrives at 650 =10 rpm or the episode lasts 100 seconds
without artiving at the desired speed, the episode is concluded. Then we start a new episode
in the same conditions described previously. The reinforcement learning algorithm has

217



three possible actions: increase the fueling by 10 mm® /stroke , decrease the fueling by the
same guantity or maintain the same fueling.

After 100 episodes we obtained the learning curve shown in Figure 7.1. The longest
episode was 1251 steps long corresponding to the conditions when the engine runs for 100
seconds without reaching the desired speed. The shortest episode was 43 steps and was
obtained at the 82th episode where the leaming stopped.

Figure 7.2 shows the speed transition for the optimal episode. Due to the low initial

fueling and the conditions for increasing and decreasing fueling, the speed reduces to about

190 rpm and after that is increased until 650.65 rpm . The simplest solution for this

problem is to increase the fueling by the specified step of 10 mm’/ stroke at each update.
That solution produces the green line in Figure 7.2 with 40 steps and a final speed of
648.08 rpm .We notice how the reinforcement algorithm found a suboptimal solution with
little knowledge of the physical system. Figure 7.3 shows the fueling for both solutions. We
notice how the reinforcement learning solution increases the fueling, and near the required
speed it adjusts the fueling to obtain the desired speed.

Figure 7.4 shows the cost-to-go function from this experiment. We notice how the
combination of low speed and low fueling has the highest cost. For that combination we

need a higher effort to move the engine speed to our desired goal. We also note a high cost

for high speed and fueling over 250 mm’ /stroke . Due 1o the problem conditions, if we
armive at the full speed we will decrease the fueling in the given increments to arrive to the

solution.
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7.1.2. Neural Network model.
For the Neural Network model shown in Figure 3.7 we used the same fueling delay

of 80 ms and the reinforcement learning update were made every 80 ms.We applied a

variable load shown in Figure 7.5.
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time

Figure 7.5: External load applied to the Neural Network model engine.

We execute the reinforcement learning algorithm until the engine speed reaches
1500 £10 rpm starting from 800 rpm and a very low fueling of 0.0558 /b/min. The
algonithm receives a penalty of » = —1 for each step that the specified speed is not reached.
When the engine speed arrives at 1500 10 rpm or the episode lasts 1200 seconds without

arriving at the desired speed, the episode is concluded. Then we start a new episode with

the same conditions described previously. The reinforcement learning algorithm has three
possible actions: increase the fueling by 0.01 /b/min, decrease the fueling by the same

quantity or maintain the same fueling.
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Afrer 100 episodes we obtained the learning curve shown in Figure 7.6. The longest
episode was 388 steps long. For this model the engine always reached the goal speed. The
shortest episode has 34 steps at the 9th episode. However, the algorithm learned after the
70th episode a suboptimal path with 42 steps.

Figure 7.7 shows the speed transition for the suboptimal episode. For the conditions
of this experiment the algorithm learned to increase the engine speed until the desired goal.
Figure 7.8 shows the fuel mass and the air mass for the suboptimal solution. We notice how
the reinforcement learning solution increases the fueling, and the air mass is increased by
the effect of the fueling and the engine speed.

Figure 7.9 shows the cost-to-go function for this experiment. Due to the
characteristics of this experiment, where we are moving from low to high speed with low

fueling, we notice that the highest cost is near low speed and low fueling. For this

experiment the engine never arrived at the maximum speed of 2000 rpm.
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Figure 7.6: Learning algorithm for speed transition neural network model.
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7.2, Learning a speed transition with lower border penalty.
For this experiment we applied some of the previous conditions, but we added more

restrictions. First, the episode will conclude if the engine speed reaches a lower limit. In
that case the penalty is more severe with » = ~100. Second, the speed band error was
reduced to *1 rpm.

7.2.1. Basic engine model.

We used the same conditions of delay equal to 80 m.s and a fixed load of 150 /b-/7.

The reinforcement learning updates were also made every 80 ms.

We executed the reinforcement learning algorithm until the engine speed reached

650 +1 rpm starting from 576 rpm and a very low fueling of 0.0558 mm’/stroke . The
algonthmreceives a penalty of » = —1 foreach step that the specified speed is not reached.
The episode is concluded by three conditions: the engine speed arrives at 650 1 pm, the
episode lasts 100 seconds without arriving at the desired speed or the engine speed is under
100 rpm . In the last case the penalty is r = —100. Each new episode is started at the same

conditions described previously. The reinforcement learning algorithm has the same three

possible actions: increase the fueling by 10 mm’ /stroke , decrease the fueling by the same
quantity or maintain the same fueling.

After 200 episodes we obtained the learning curve shown in Figure 7.10. The
longest episode was 1251 steps long corresponding to the conditions where the engine runs

for 100 seconds without reaching the desired speed. The shortest episode with final speed
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650 =] rpm was 46 steps, that was obtained at the 123th episode where the leaming

stopped.

Figure 7.11 shows the speed transition for the optimal episode. Due to the low tnitial
fueling and the conditions for increasing and decreasing fueling, the speed reduces to about
192 rpm and after that is increased until 645.65 rpm . The simple solution applied in the
previous section was not possible for this problem. If we continuously increase the fueling,
the engine speed will pass over the range of +1 rpm. Figure 7.12 shows the fueling for this
solution. We notice how the reinforcement learning solution increases the fueling as the
solution shown in Figure 7.3, with extra steps to obtain the desired speed.

Figure 7.13 shows the cost-to-go function from this experiment. We notice how the

combination of low speed and low fueling has the highest cost. This cost is higher in
comparisont with the cost shown in Figure 7.4. Also a break is shown near 100 rpm . For
that combination we still need a higher effort to move the engine speed to our desired goal,
but we receive a higher penalty for crossing the 100 rpm border. As the cost shown in

Figure 7.4, we also note a higher cost for maximum speed and fueling over

250 mm’/stroke . Due to the problem conditions, if we artive at full speed we will

decrease the fueling in the given increments to arrive at the solution.
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7.2.2. Neural Network model

We execute the reinforcement learning algorithm until the engine speed reaches
1500 +1 rpm starting from 800 rpm and a very low fueling of 0.0558 /b/min. The
algorithm receives a penalty of r = —1 for each step that the specified speed is not reached.

When the engine speed amrives at 1500 1 rpm or the episode lasts 1200 seconds without
arriving at the desired speed, the episode is concluded. Then we start 2 new episode with
the same initial conditions described previously. The episode also concludes if the engine

speed falls to 570 rpm with a penalty r = —100. The reinforcement learning algorithm has

three possible actions: increase the fueling by 0.01 /b/min, decrease the fueling by the
same quantity or matntain the same fueling.

After 100 episodes we obtained the learning curve shown in Figure 7.14. The
longest episode was 4267 steps long and the desired speed was not reached. The shortest
episode has 43 steps at the 77th episode. However, the algorithm learned after that episode
a suboptimal path with 48 steps.

Figure 7.15 shows the speed transition for the suboptimal episode. For the
conditions of this experiment the algorithm learned to increase the engine speed until the
desired goal. Figure 7.16 shows the fuel mass and the air mass for the suboptimal solution.
We notice how the reinforcement learning solution increases and reduces the fueling to
obtain a smooth speed transition.

Figure 7.17 shows the cost-to-go function from this experiment. Due to the

characteristics of this experiment, where we are moving from low to high speed with low
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fuefing, we notice that the highest cost 1s near low speed and low fueling. We also note a

higher cost for the maximum speed of 2000 rpm .
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7.3. Learning a speed transition with lower and higher border penalty.
For this experiment we included a restriction for higher speed. Therefore, the

episode will conclude if the engine speed reaches a upper limit. We used the same severe
penalty r = —100 as in the case of Jower speed violations. We maintained the same speed
band error of +1 rpm.

7.3.1. Basic engine model.

We used the same conditions of delay equal to 80 ms and a fixed load of 150 /b-/7.
The reinforcement learning updates were also made every 80 ms.

We executed the reinforcement leamning algorithm until the engine speed reached

650 +1 rpm starting from 576 rpm and a very low fueling of 0.0558 mm’/stroke . The
algorithm receives a penalty of r = ~1 for each step that the specified speed is not reached.
The episode is concluded by four conditions: the engine speed arrives at 650 ! rpm, the
episode lasts 100 seconds without arriving at the desired speed, the engine speed is under
100 rpm or over 2000 rpm . In the last two cases the penalty is r = —100. Each new

episode is started with the same initial conditions described previously. The reinforcement

learning algorithm has the same three possible actions: increase the fueling by

10 mm’ /stroke , decrease the fueling by the same quantity or maintain the same fueling.
After 200 episodes we obtained the learning curve shown in Figure 7.18. The
Jongest episode was 1038. That episode corresponds to one where the engine avoids the

limit speeds and arrives at the desired speed. The shortest episode, with final speed
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650 £1 rpm, has 44 steps. That episode was obtained at the 138th episode where the
learning stopped.

Figure 7.19 shows the speed transition for the optimal episode. Due to the low initial
fueling and the conditions for increasing and decreasing fueling, the speed reduces to about
167 rpm and after that is increased until 650.09 rpm. Figure 7.20 shows the fueling for
this solution. We notice how the reinforcement learning solution increases the fueling with
some variations in the middle of the trajectory.

Figure 7.21 shows the cost-to-go function from this experiment. We still notice how
the combination of fow speed and low fueling has the highest cost. This cost is higher in
comparison with the cost shown in Figure 7.4 but similar to the cost plotted showed in

Figure 7.13. The break near 100 rpm is also in Figure 7.21. However the cost near
2000 rpm differs with the two previous experiments. Due to the end of the episode and the

penalty at the top speed, we only see a high cost near 2000 rpm from

250 to 500 mm’ /stroke . For other fueling values the cost 1s zero because those regions
were not explored for the conditions of this experiment where we only move from one

speed to another.
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7.3.2. Neural Network model.
We execute the reinforcement leamning algorithm until the engine speed reached

1500 +1 rpm starting from 800 rpm and a very low fueling of 0.0558 !b/min. The
algorithm receives apenalty of r = —1 for each step that the specified speed is not reached.

When the engine speed arrives at 1500 1 rpm  or the episode lasts 1200 seconds without
arriving to the desired speed, the episode is concluded. Then we start a new episode with
the same initial conditions described previously. The episode also concludes if the engine
speed reduces to 570 rpm or increases to 2000 rpm with a penalty » = -100 for each
case. The reinforcement learning algorithm has three possible actions: increase the fueling
by 0.01 1/ min, decrease the fueling by the same quantity or maintain the same fueling.

After 100 episodes we obtained the learning curve shown in Figure 7.22. The
longest episode was 946 steps long and the desired speed was not reached. The shortest
episode has 46 steps at the 38th episode. However, after the 85th episode the algorithm
learned a suboptimal path with 51 steps.

Figure 7.23 shows the speed transition for the suboptimal episode. For the
condifions of this experiment the algorithm learned 1o increase the engine speed with a very
small overshoot until the desired goal. Figure 7.24 shows the fue] mass and the air mass for
the suboptimal solution. As in the previous experiment, we notice how the reinforcement
learning solution increases and reduces the fueling to obtain the smooth speed transition.

Figure 7.25 shows the cost-to-go function for this experiment. Due to the
characteristics of this experiment, where we are moving from low to high speed with low

fueling, we notice that the highest cost is near low speed and low fueling. We also note a
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higher cost for the maximum speed of 2000 rprr only for the fueling explored by the

algonthm.
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7.4. Learning a speed transition with random initial speed.

For this experiment we maintained the restrictions for lower and higher speed. The
training was made with random initial speed between 300 rpm and 1700 rpm. Each
episode will conclude if the engine speed reaches the required speed +1 rpm , or the

lower or upper speed limit. We used the same severe penalty r = —100 as in the case of
lower or upper speed violations.

7.4.1. Basic engine model.
We used the same conditions of delay equal to 80 ms and a fixed load of 150 /b-/1.

The reinforcement learning update were also made every 80 ms.
We executed the reinforcement learning algorithm unti! the engine speed reached

650 *1 rpm, starting from random speed between 300 rpm and 1700 rpm with a very low

fueling of 0.0558 mm’>/stroke . The algonthm receives a penalty of » = —1 for each step
that the specified speed is not reached. The episode is concluded by four conditions: the

engine speed arrives at 650 +1 rpm, the episode lasts 100 seconds without arriving at the
desired speed, the enginc.t speed is under 100 rpm or over 2000 rpm . In the last two cases
the penalty is r = —100. Each new episode is started with the same initial conditions or

random speed and low fueling described previously. The reinforcement leaming algorithm
has the same three possible actions: increase the fueling by 10 mm’ /stroke , decrease the

fueling by the same quantity or maintain the same fueling.
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After 501 episodes we obtained the learning curve shown in Figure 7.26. The
longest episode was 1251 steps long corresponding to the conditions where the engine runs

for 100 seconds without reaching the desired speed. The final episode, starting with speed

576 rpm and fueling of 0.0558 mm" /stroke and reaching a final speed of 650 £1 rpm,
has 46 steps. Other episodes for different initial speeds also reached the specified speed.
Figure 7.27 shows the speed transition for the last episode. As in the previous
experiments, due to the low initial fueling and the conditions for increasing and decreasing
fueling, the speed reduces to about 233 rpm and after that is increased until 650.69 rpm .
Figure 7.28 shows the fueling for this solution. We notice how the reinforcement leaming

solution increases the fueling until one point where the fueling is decreased to obtain the

required speed.
Figure 7.29 shows the cost-to-go function from this experiment. This cost is similar

to the cost function shown in Figure 7.21 where the combination of low speed and low

fueling bas the highest cost and a higher cost near 2000 rpm from 250 to

500 mm°/stroke .

240



(400 T T T

1200 + -

1000 4

8400

600

steps number

400

200

150 200 250 300 350 400 450 500
cpisodes

Figure 7.26: learming algorithm for speed transuion with rundom minal speed and low

Sucling usmg the busic engine model ()  episodes where 650 1 rpm  was not reached

700 T T T T Y T T

650 4

600 - 1

500 J

450 -

speed

400 \ 4

[ThiTS

Figure 7.27: lngine speed response for the basic model.

247



300 o

250 | 4

200 -

lucting

100 b |

Figure 7.28: Fngme fuehng for the basic engine maodel. Blue  Subopiimal solution from

the remforcement learning algorithm. (reen  Optimal solution.

s 2000

50 -

(0]

Figure 7.29: ( ost-ro-go function for speed tramsinion with random wial speed and low

Suelmg using the bosie engine model.

242



7.4.2. Neural Network model.

We execute the reinforcement learning algorithm until the engine speed reaches
1500 1 rpm starting from a random speed between 800 and 1700 rpm and a very low
fueling of 0.0558 /b6/min. The algorithm receives a penalty of » = ~1 for each step that

the specified speed is not reached. When the engine speed arrives at 1500 1 rpm or the
episode lasted 200 seconds without arriving at the desired speed, the episode is concluded.
Then we start a new episode in the same conditions described previously. The episode also
concludes if the engine speed reduces to 570 rpm or increases to 2000 rpm with a penalty

r = -~100 for each case. The reinforcement learning algorithm has three possible actions:

increase the fueling by 0.01 /5/min, decrease the fueling by the same quantity or maintain
the same fueling.

After 100 episodes we obtained the learning curve shown in Figure 7.30. The
longest episode was 1188 steps long and the desired speed was not reached. The shortest
episode has 9 steps at the 57th episode. However, this episode started with 1689.91 rpm,
and that, combined with the lower fueling, permitted a short and successful episode. We
note that after 40 episodes the learning curve is improved and the frequency of episodes
that reach the goal is increased, as shown in Figure 7.30.

After training we executed an episode starting at 800 rpm and the same fueling used
for the training. Figure 7.31 shows the speed transition for that episode in 67 steps. For the
conditions of this experiment the algorithm increased the engine speed slowly in

comparison with the previous experiments. Figure 7.32 shows the fuel mass and the air
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mass {or the last episode. Here the algorithm increased the fueling with intermediate stages
where the fueling remain constant,

Figure 7.33 shows the cost-to-go function from this cxperiment. We observe similar
charactenistics to the cost function plotted in Figure 7.25. We notice that the highest cost is
near low speed and low fueling. We also note a higher cost for the maximum speed of

2000 rpm only for the fueling explored by the algorithm.
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7.5. Learning a speed transition with random initial speed and fueling.
For this experiment we maintained the restrictions for lower and higher speed. The

training was made with random initial speed between 300 rpm and 1700 rpm and with

random initial fueling between 0.0558 mnt" /stroke and 560 mm® /stroke . Each episode
will conclude if the engine speed reaches the required speed 1 rpm, or the lower or upper
speed limit. We used the same severe penalty r = —100 as in the case of lower or upper
speed violations.

7.5.1. Basic engine model.

We used the same conditions of delay equal to 80 ms and a fixed load of 150 /b-/7.
The reinforcement leaming update were also made every 80 ms.

We executed the reinforcement leaming algorithm until the engine speed reached

650 x1 rpm, starting from a random speed between 300 rpm and 1700 rpm with random

initial fueling between 0.0558 mm’ /stroke and 560 mm’ /stroke . The algorithm
receives a penalty of r = —1 for each step where the specified speed is not reached. The
episode is concluded by four conditions: the engine speed arrives at 650 +1 rpm, the
episode lasted 100 seconds without arriving at the desired speed, the engine speed is under
100 rpm or over 2000 rpm . In the last two cases the penalty is r = —100. Each new

episode is started with the same injtial conditions or random speed and low fueling

described previously. The reinforcement learning algorithm has the same three possible
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actions: increase the fueling by 10 mm’ /stroke , decrease the fueling by the same quantity
or maintain the same fueling.

After 501 episodes we obtained the learning curve shown in Figure 7.34. The
longest episode was 1251 steps long corresponding to the conditions where the engine runs
for 100 seconds without reaching the desired speed. We notice that the initial episodes took
more steps to reach the final objective and failed more frequently than the later episodes

that required fewer steps to reach the objective. If we start the last episode with a speed of

576 rpm and fueling of 0.0558 mm’ /stroke the specified speed was not reached. That
result was due to the characteristics of the training. The algorithm leamed how to reach the
objective speed from different initial random fueling levels. The low initial fueling may not
have been tested in the training. If we change the initial fueling to 20 mm’ /stroke , we
wij] obtain the final speed of 650 £1 rpm in 50 steps.

Figure 7.35 shows the speed transition for the last eptsode uﬁder two different initial

fueling levels. For an nitial fueling of 0.0558 mm’ /stroke we can see how the engine

speed falls to less than 100 rpm . For an initial fueling of 20 mm’ /stroke we can see that
the speed reduces to about 278 rpm and after that is increased with an small overshoot

until reaching 649.13 rpm . Figure 7.36 shows the fueling for both initial fueling levels.

i . : . 3 .
We notice how the reinforcement leaming solution for 20 mm™/stroke increases the

fueling unti] one point where the fueling is decreased to obtain the required speed. For an
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fueling of 0.0558 mm’ /stroke the reinforcement learming algorithm mantained the
fueling near zero because the algonthm 1s still learning about the process.

Figure 7.37 shows the cost-to-go function for this experiment This cost is similar
to the cost function shown in Figure 7.21 and Figure 7.29 The major difference is that the
region close 1o high speed and low fucling were explored and theretore the cost in that zone

is different from zero.
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7.5.2. Neural Network model.

We execute the reinforcement learming algonthm until the engine speed reaches
1500 £1 rpm starting from a random speed between 800 and 1700 rpm and a random
fueling between 0.0558 and 0.7433 1A/ miin. The algorithm receives a penalty of
r = - | foreach step that the specified speed 1s not reached. When the enpine speed arrives
at 1500 11 rpm or the episode lasts 1200 scconds without armiving at the desired speed,
the episode is concluded. Then we start a new episode with the same inftial conditions
described previously. The episode also concludes if the engine speed reduces to 570 rpm
or increases to 2000 rpm with a penalty r = - 100 for cach case. The reinforccment
learning algorithm has three possible actions: increase the fueling by 0.01 /h/min,
decrease the fueling by the same quantity or maintain the same fueling.
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After 500 episodes we obtained the learming curve shown in Figure 7.38. The
longest episode was 1900 steps long. However, the desired speed was reached for that
episode. We noted that after 250 episodes the learning curve is improved and the frequency
of episodes that reach the goal is increased as shown in Figure 7.38.

After training we executed an episode starting at 800 rpm and a low fueling of
0.0558 1b/min . Figure 7.39 shows the speed transition for that episode in 78 steps. For the
conditions of this experiment the algorithm increased the engine speed slower than the
previous experiments. The solution is less optimal as we search with more initial
conditions. However, the goal is reached for the final experiment. Figure 7.40 shows the
fuel mass and the air mass for the last episode. Here the algorithm increased and decreased
the fueling with some intermediate stages where the fueling remain constant.

Figure 7.41 shows a detail of the cost-to-go function from this experiment. We
notice how the cost has a flatter surface due to the extended initial conditions and increased

number of episodes used for the training.
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We repeated the expennment with the same initial speed of 800 rpm and fueling of
0.0558 Ib/min, but we will continue with the engine operation until we arrive at 570 rpm
or 2000 rpm . We note that the engine speed oscillates around 1500 rpm after 4 seconds of
operation and maintains that oscillation until 23 seconds, as shown in Figure 7.42. The
engine speed decays after that time due to the load torque which changes to a positive value

as shown in Figure 7.43, where we see an initial portion of the torque used for the

simulations that ts shown 1n Figure 7.5.
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Figure 7.42: Engine speed for continual operation.
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Figure 7.43: Load torque for continual operation.

For the next case, we set the load torque to zero and execute the continual operation
for 20 minutes. Here the engine operated around the 1500 rpm as shown in Figure 7.44.
Figure 7.45 details the engine speed from 400 to 460 rpm. We note an abrupt change in the
frequency of oscillation, then an small oscillation is generated, givén a new oscillatory

scheme with lower amplitude. A similar behavior is observed in Figure 7.46 from 940 to

1100 rpm.
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7.6. Tracking a reference engine speed.

After testing how the reinforcement learning algorithm could leam how to change
the engine speed from one level to another, we now will test how the controller tracks a
desired engine speed. A change was to include the engine acceleration as a third variable
to analyze the engine behavior and update the reinforcement learning algorithm. That state
variable will be used in all the subsequent experiments.

The previous experiments worked with a equally divided tiling for fueling and
engine speed. We noted that the tile coding resolution near the desired speed (650 or 1500
rpm) and near zero acceleration generated oscillations in the control response. We changed
the tilings resolution by applying a log sigmoid function to both state variables centered at
the desired speed or zero acceleration, as shown in Figure 7.47 and Figure 7.48. With this
new tiling, we obtained a better resolution near the important points. We will use the initial

equidistant tile coding and the log sigmoid tile coding in the experiments of the subsequent

sections.
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7.6.1. Basic engine model.
We executed the reinforcement learning SARSA algorithm to maintain the engine

speed near 650 rpm starting from a random initial speed between 300 and 1700 rpm and

random initial fueling between 0.0558 mm’/stroke and S60 mm>/stroke . We applied
the following: a reward equal to the absolute value of the error between the desired speed
and the actval speed and a large final reward if the engine arrives at 2000 rpm or 100 rpm.
For these experiments we used -13938840 as the final reward. For this experiment, we use

the log sigmoid tile coding.

After training, if we start the engine with an initial speed of 576 rpm and fueling

of 60 mm>/stroke , we obtain the response shown in Figure 7.49. We observe that after
an initial overshoot the engine response is maintained close to the desired speed. However,
before the episode concludes, an additional overshoot is generated and the engine does not
reach the required speed. That behavior could be due to a saturation effect. The neural

network, after working near a given speed, increases the cost function for the actions near

that condition. The engine then jumps to a non explored zone.
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Figure 7.49: Engine speed for the 2500 steps episode starting with 576 rpm.

7.6.2. Neural Network model.

We execute the reinforcement learning SARSA algorithm to maintain the engine
speed near 1500 rpm starting from a random initial speed between 800 and 1700 rpm
and random initial fueling between 0.0558 and 0.7433 16/min. We applied the same
reward of the absolute value of the error between the desired speed and the actual speed and
a large reward of -13938840 if the engine arrives at 2000 rpm or 570 rpm.

If we execute this experiment we obtain the learning curve shown in Figure 7.50.
After training, if we start the engine with an initial speed of 800 rpm and fueling of
0.0558 1b/min, we obtain the response shown in Figure 7.51. We observe a noisy
response in the engine speed, but the engine speed is maintained inside the range from 570

to 2000 rpm.
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Figure 7.51: Engine speed for the 14976 steps episode starting with 800 rpm.
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7.7. Tracking a reference engine speed time reward scheme including positive re-

wards.

In this section we will test the tracking ability of the reinforcement learning
algorithm if positive rewards are added. In the previous cases only negative rewards were

used.
7.7.1. Basic engine model.
We executed the reinforcement learning SARSA algorithm to maintain the engine

speed at 650 £20 rpm starting from a random initial speed between 300 and 1700 rpm

and random initial fueling between 0.0558 and 560 mm’/stroke . We included the
following rewards:

- 15000 if we amve at 2000 rpm or 100 rpm. The episode also finishes.

+1 if we arrive at 650 20 rpm . The episode continues.

-1 if we arrive at any different state. The episode continues.

The acceleration was calculated as the difference between the actual and previous
engine speed divided by the algorithm update time of 0.08 seconds. For this experiment we
used the equidistant tile coding defined at the beginning of this chapter.

If we execute this experiment we obtain the learning curve shown in Figure 7.52.

That curve shows the combination of the tota] number of steps in the episode plus the total
number of steps where the engine is inside the region from 630 to 670 rpm . After 200
training episodes, if we start the engine with an initial speed of 800 rpm and fueling of

0.0558 1b/min, we obtained the response shown in Figure 7.53. Here the engine speed is

264



maintained inside the 100 to 2000 rpm range for 2500 steps or 200 seconds, but the engine

stayed inside the 650 +20 rpm interval for only 103 steps or 8.24 seconds, which

represents a 4 % of the total time, as seen in Figure 7.53.
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Figure 7.52: Learning curve for tracking a reference speed. Number of steps per episode

plus steps where the engine is inside 650 £20 rpm .
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Figure 7.83: Engine speed for the 2500 steps episode starting with 576 rpm.

We tried to improve the response of Figure 7.53 by using the log sigmoid tile coding
shown in Figure 7.47 and Figure 7.48. With that tile coding we obtained the learning curve
shown in Figure 7.54 where we have the combination of the total number of steps in the
episode plus the total number of steps where the engine is inside the region from
630 to 670 rpm . That curve shows an improvement with respect to the previous leaming
curve of Figure 7.52, with more episodes where the combination of the total number of
steps in each episode plus the desired range is higher. Also, improvement in the engine

response is shown in Figure 7.55. We notice that the engine speed is maintained inside the

range 630 to 670 rpm.
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Figure 7.55: Engine speed for the 2501 steps episode starting with 560 rpm.
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7.7.2. Neural Network model.

We execute the reinforcement learning SARSA algorithm to maintain the engine
speed at 1500 20 rpm starting from a random initial speed between 800 and 1700 rpm
and random initial fueling between 0.0558 and 0.7433 /6/min. We included the
following rewards:

- 15000 if we arrive at 2000 rpm or 570 rpm. The episode fimishes.

+1 if we arrive at 1500 £20 rpm . The episode continues.

-1 if we artive at any different state. The episode continues.

We used the equidistant tile coding described at the beginning of the chapter.

If we execute this experiment we obtain the learning curve shown in Figure 7.56.
We note that we can matintain the engine speed inside the region from 570 to 2000 rpm in

28 of the simulations. After 200 training episodes, if we start the engine with an initial
speed of 800 rpm and fueling of 0.0558 Ib/min, we obtain the response shown in Figure
7.57. Here the engine speed is maintained inside the 570 to 2000 rpm range for 6223 steps

or 497.84 seconds, but the engine stayed inside the 1500 20 rpm for only 505 steps or

40.40 seconds, which represents a 8 % of the total time as seen in Figure 7.57.
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Figure 7.57: [ngine speed for the 1715 steps episode starting with 800 rpm

We tried to improve the response of Figure 7.57 by using the log sigmoid tile coding

shown in Figure 7 47 and Figure 7.48. With that change wc obtained the learning curve
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shown 1n Figure 7.58 That curve shows an improvement with respect to the previous
leaming curve of Figure 7.56. Also, improvement in the engine response is shown in Figure

7.59.
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Figure 7.59: Engine speed for the 14976 steps episode starting with 800 rpm.
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7.8. Tracking a reference engine speed with multiple neural networks.

Another reinforcement learning approach that we will try consists in factoring the
state space into different regions as suggested by Dean and Lin (5). We divided the state
space into three regions. We define a region where the engine speed will converge. That
first region, which we called the middle region, is defined as the zone

desiredspeed t errorband . The second region, which we called the lower region, is
below the middle region (desiredspeed — errorband). The third region, or the upper

region, will be above desiredspeed + errorband . The last two regions will have extreme
Jimits where the episode will conclude with failure.

For each region we have a CMAC neural network. Only one of the networks will
be active at a given time. When the engine speed crosses from region A to region B, this
will imply the pseudo-end of an episode for the neural network of the region A. For region
B it will be like a new episode, starting at the conditions given at the transition moment.
Another important factor is the way in which the rewa;ds are given. For the region inside
the desired speed, the rewards are always positive to maintain the engine speed close to our
objective. Otherwise, the rewards at the outside regions are negative, with high negative
reward at maximum and minimum speed. With that scheme we will try to force the engine
speed to move toward our objective region.

We used the equidistant tile coding defined at the beginning of the chapter for all

the experiments.
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7.8.1. Basic engine model.
The middle region was defined between 640 and 660 rpm. The lower and upper

region are from 100 to 640 rpm, and from 660 to 2000 rpm respectively. We defined the

contro] actions in the middle region to be: increment fueling by 1 mm’ /stroke , decrement

fueling by the same amount or maintain fueling constant. In the other two regions the

actions were: increment fueling by 1 mm’ /stroke , decrement fueling by the same amount
or maintain fueling constant. The rewards were also different. Inside the middie region the
reward is +1 each time we stay inside that region. We use that scheme of rewards to
reinforce the algorithm to stay inside 640 to 660 rpm. The other two regions have a reward
of -1 each time we are inside the region. With that penalty we want to reinforce the
algorithm to move out those regions. We also include a penalty of —15000 each time we

arrive at 100 rpm or 2000 rpm to avoid those borders. We started each training with a

random initial speed between 300 and 1700 rpm and random initial fueling between

0.0558 and 560 mm’/stroke .

After training, we started the engine with an initial speed of 567 rpm and fueling

of 100 mm’ /stroke , we obtained the response shown in Figure 7.60. We observe a noisy
response in the engine speed, with the speed changing between the zones after an initial

overshoot.
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Figure 7.60: Engine speed for the 2500 steps episode starting with 576 rpm and three

CMAC neural networks.

A varation for this technique could be to eliminate the middle zone. In this case we
will obtain two neural networks operating in opposite directions. The lower region will try
to move the engine speed toward the desired speed and avoid low speeds. The upper region
will avoid faster speeds and will move the engine speed toward our goal. With the crossing

zone defined at 600 rpm, we trained the controller. Afier training, we started the engine

with an initial speed of 567 rpm and fueling of 60 mm’ /stroke , we obtained the

response shown in Figure 7.61. If we compare this with the previous case, we notice a

reduced transition period, and the oscillation amplitude is also reduced.
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Figure 7.61: Engine speed for the 2500 steps episode starting with 576 rpm and two

CMAC neural networks.

7.8.2. Neural Network model.
We defined the middle region to be between 1480 and 1520 rpm. The other two

regions were from 570 to 1480 rpm, and from 1520 to 2000 rpm. We defined the control
actions inside the middle region to be: increment fueling by 0.001 /b/min, decrement
fueling by 0.001 /b/min or maintain fueling constant. In the other two regions the actions
were: increment fueling by 0.01 /6/min, decrement fueling by 0.01 /b/min or maintain
fueling constant. The rewards were also different. Inside the desired region the reward is
+1 each time we stay inside that region, to reinforce the algorithm to stay inside the 1480
to 1520 rpm region. The other two regions have a reward of -1 each time we were inside

the region. With that penalty we want to reinforce the algorithm to move out from those

regions. We also include a penalty of —15000 each time the engine arrived at 570 rpm or
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2000 rpm, avoiding those borders. We started each experiment with a random initial speed
between 800 and 1700 rpm and random initial fueling between 0.0558 and
0.7433 !b/min For this case we change the probability for random actions to 0.1 after the
110th step.

If we execute this experiment we obtain the learning curve shown in Figure 7.62.
We notice how the number of episodes that are completed increases with the training. After
training, if we start the engine with an initial speed of 800 rpm and fueling of
0.0558 !b/min, we obtain the response shown in Figure-7.63. We observe a noisy
response in the engine speed, but the reinforcement algorithm maintained the speed inside
the range from 1480 to 1520 rpm the majority of the time. Some of the peaks outside the

middle region could be explained as exploratory actions from the reinforcement learning

algorithm.
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Figure 7.62: Learning algorithm for tracking a reference engine speed with multiple

neural networks.
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Figure 7.63: Engine speed for the 14976 steps episode starting with 800 rpm.

From the experiments made in this sections, we can see that the reinforcement
learning algorithm is capable to leam how to change the engine speed from an initial
conditions to a given set-point. For the conditions of the experiment we notice that the
combination of positive and negative rewards resulted in a better engine response. The
experience with two and three neural networks did not result in better responses. We
estimated that better results will be obtained with the inclusion of more networks. An
additional improvement was notice when we used the log sigmoid tile coding. This tile

coding implies a better exploration of the state space and therefore better responses will be

allowed.
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CHAPTER 8

CONCLUSIONS

In this chapter we present a brief summary of results. This is followed by
recommendations for future \;\/ork.
Summary of Results

We have discussed several procedures which might be useful in the speed control
of diese] engines. In Chapter 2 we presented a discussion of the diesel engine operation. We
reviewed the direct injection (DI) and indirect injection (ID]) engines. A second division is
based on how the gas exchange process 1s performed. Here we could divide the engines
between two-stroke and four-stroke models.

In Chapter 3 we presented two engine models that were later used for the
simulations of the reinforcement leamning algorithms. The first model was based on a
proposed pseudo-linear model, which considered fueling delay and engine inertia and
friction. The second model was based on data collected from a real engine. With that data
we developed a neural network model of the engine.

In Chapter 4 we applied the self-tuning regulator, with adaptive pole placement, to
the diesel engine control. We found that the best approach is to start with the closed-loop
locations of the base-line PID controller. When the system is identified, we can optimize

the final pole locations by reducing their magnitude.
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In Chapter 5 we applied genetic reinforcement learning to the optimization of PID
controller parameters. The genetic algorithm provided improved performance over the
base-line PID controller. The engine response changed with the selected fitness function
(mean square error or percent overshoot). The results were valid for the anajog PID
controllers as well as digital versions of the controller.

In Chapter 6 we presented a general framework for general reinforcement learning.
Reinforcement learning is an approximate dynamic programming framework. This
framework is most appropriate when developing controllers for complex nonlinear systems
that are difficult to model in closed form, but that can be simulated.

There are two stages in the reinforcement learning process. The first step is to
develop a prediction of future system performance. The second step is to determine the
appropriate controller to optimize future performance. There are many different
implementations of reinforcement learning. Chapter 6 discussed Monte Carlo methods and
temporal difference methods.

Several different simulation studies were discussed in Chapter 6. These simulations
demonstrate the feasibility of using reinforcement learning for training neural network
controllers for nonlinear systems.

Chapter 7 showed some implementations of reinforcement learning for the speed
control of diesel engines. We demonstrated that the algonthm will easily learn how to move
the engine speed from an initial condition to a desired speed. For speed tracking we
included the speed, acceleration and fueling as our state variables. Reward schemes based

on absolute error and time inside the error zone were tested. Absolute error rewards
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produced a less oscillatory response and good tracking. However, in some cases they
generated peaks outside our desired engine speed. Rewards based on penalty per time
outside the desired speed region generated oscillatory responses near the reference speed.
Additional improvement was obtained by concentrating the tiling distribution of the
CMAC neural networks around the reference speed or zero acceleration. Also, state space
partition, with the implementation of multiple neural networks, was tested, showing
improvements in the controller response and training time. We tested configurations with
two and three CMAC neural networks, and good results were also obtained.

If we compare the genetic reinforcement leaming approach implemented in this
thesis with the adaptive control experiments we made, we find that GENITOR allowed us
to obtain controllers that improve the engine response. The training process of the
GENITOR algorithm reguires more time than the adaptive contro! algorithm. However the
responses were better as seen in Table 8.1. The mean square error of the engine responses
were better in 4 of the 6 configurations tested. The percent overshoot were reduced in all

the GENITOR cases to less than 10 percent of the onginal engine response.
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18T

Fueling delay S0 ms

Fueling delay 110 ms

Fueling delay 130 ms

b;,=0.1229 b,;=0.01 b,=0.1229 b,=0.01 b;=0.1229 b;=0.01
Mean Self-tuning 111 112 60 56 22 19
square
error Genitor 93 87 64 45 46 15
Self-tuning 68 82 30 39 27 39
Percent
overshoot
Genitor l 3 9 2 2 |

Table 8.1: Percentage of the original engine response according to the confrol technique and fitness function.




The reinforcement learning algorithm is intended for systems with large
nonlinearities. Due to the characteristics of the algorithm, the engine response contains an
oscillatory component that is missing from the adaptive controller and the genetic adaptive
controller. However, its importance is based on its ability to learn with little or no
information of the system. Reinforcement learning algorithms are the most time consuming
training algorithms of all we tested.

Recommendations for Future Work

Additional work could be made by using genetic reinforcement learning applied to
a neural network controller. We made some initial experiments with no promising results.
However additional research could be done with different neural networks configurations
and possible improvements could be obtained.

Additional research in the application of reinforcement learning algorithms could
be done using additional neural network architectures, such as radial basis function or
backpropagation neural networks. Also, the relation of reinforcement leaming with other
algorithms, like fuzzy logic could be explored. Experiments with other non-linear systems
could be of interest to compare results and experience.

Additional research could be made with reinforcement learning algorithms that start
with some information about the system. We could train a neural network with some input-
output data from different operational conditions and with those initial values we could

reduce the training time.

282



With respect to the implementation process, we found that porting the Matlab code
10 C language improved our training time. Future developments with large training time
will be first written in C language.

The reinforcement leaming algorithms will benefit from faster computers. The
training process is highly time consuming. Therefore, reliable applications could be seen as

the processing power Increases.
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APPENDIX A

MATHEMATICAL MODELS FOR COMPUTER SIMULATION.

Researchers have proposed many models for diesel engines, ranging from steady
state performance look-up maps to very complicated multidimensional models. Kao and
Moskwa (7y identified three types of diesel engine models: the Quasi-Steady Method,
Filling and Emptying Method and Method of Charactenstics. However, few of those
models were developed for diesel engtne control.

Kao and Moskwa (7 “summarized and synthesized™ two models from all the
previous papers available in diesel engine simulation. They called those models: mean
torque production model and cylinder-by-cylinder model. They compared the proposed
models with Watson’s model 53y, identifying their abilities for.real time sim ulation.

A.l. Mean Torque Model.

The mean torque model is a combination of the “Quasi-Steady” and “Filling and
Emptying” models. This model assumes average values of pressure, temperature and mass
flow. This model is based on the components shown in Figure A.1 (7). The compressor IS
used to increase the air density consequently increasing the mass of air trapped in the
cylinders of the engine. A higher mass of air implies that more fuel could be burn in less

time. With that combination we increase the engine output power. From the basic laws of
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thermodynamics, the compression process raises the air temperature. The intercooler was
introduced to increment the mass of air with a minimum temperature rise. Another
advantage of the intercooler is reduce the initial temperature of the air at the cylinders and
consequently reduce the temperature inside the engine process (“reduced thermal
loading™). The air mass is distributed to the cylinder by the intake manifold. Afier the air is
in the cylinders the combustion process occurs as described in Chapter 2. The exhaust gases
are collected in the Exhaust Manifold. Those gases move the turbine that is connected to
the compressor. This is the turbocharger effect where the exhaust gases allow the
compression and the increment in the engine power without an increment in the engine
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Figure A.1: Schematic diagram of a turbocharged diesel engine 3.
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Figure A.2 shows the different sub-models which make up the Mean Torque Model.

Each sub-model can be modeled as:

A.1.1. Compressor model. Here we will create a table or map with compressor

data from the manufacturer:

, p
mCO”' = 'f‘l(NCOI'r’ Fg) (A'l)
1
P
Ne = H(Neorn ;2) (A.2)
1

where P, is the pressure before the compressor, P, is the pressure after the compressor,

M., is the corrected mass flow rate, N, is the corrected turbocharger speed and n_ is

the compressor efficiency.

We can use the corrected mass flow rate s, . and corrected turbocharger speed

N,,,» in the performance map from the relations:
T N
= d
Neorr = Nie ;-: or T'Ic (A.3)
: T,
Tel T i, T
n =\ std or c | A4
corr Pl Pl ( )
P:rd

“By looking in the performance map, given the rotor speed of the turbocharger and
the pressure ratio across the compressor, the mass flow rate and the efficiency are
specified” (7). We can obtain the temperature at the outlet of the compressor and the torque

at the compressor from the relations:
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PN v
T, =T d1+L [—2) -1 (A.5)

T = _c-pa’l

mC_ T . |/PN Y
i a” | 172) -1 (A.6)
ncwlc 1

where T, is the temperature before the compressor, T, is the temperature after the
compressor, m, is the mass of air after the compressor, C a 1S the specific heat for air, y

is the specific heat ratio and ®,,, is the turbocharger speed.

A.1.2. Intercooler model. Here Kao and Moskwa 4y used a simple steady-state

model. The pressure drop in across the intercooler is computed according to:

i
AP = K= (A.7)
P3

where K is a pipe friction constant, p, is the air density afier the intercooler and 7, is the

air mass after the intercooler. We have the same mass flow at the inlet and outlet of the
intercooler, resulting in a heat exchange stage. That drop in pressure is with respect the

intake pressure, therefore we need an estimation of P, to obtain:
Py, =P, +AP (A.8)
The effectiveness (¢ ) of the intercooler is a nonlinear function of the mass flow:

& = f(y) (A.9)
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We can estimate the temperature at the outlet of the intercooler from the definition

of effectiveness by:
T, = To(1-¢)+eT,, (A.10)
where T, is the coolant temperature.

A.1.3. Intake Manifold Model. We can calculate the average air mass flow into

the cylinder with the “speed-density™ relation:

0. V.- N
m, = e P4 Td 7 (A.11)
120
where the air density p, and the volumetric efficiency n, are calculated from:
Py
Py = BT and n, = fIV, P)) (A.12)
4

where V, is the displacement volume, N is the engine speed, R is a gas constant, P, and
T, are the pressure and temperature after the Intake manifold.

We can assume that the temperature variations at the intake manifold are small. The

pressure at the intake manifold could be estimated from:

P, = -YV—-{mCTc—ZmimTim} (A.13)
im eyl
where:
m, = J(m3—m4)dz+initial conditions (A.14)
P,-V.
T, = 2= (A.15)
R-m,,

292



We can rewrite Eq. (A.13) by using Eq. (A.11) and Eq. (A.12) as:

. RyT, YT, VN
im = e T oV, T, ™
m im*4

P (A.16)

If we assume that the heat transfer and temperature changes are negligible, we can

use another model based on the relation:

P = 10 'RTfm andN
m ‘v o120y, "

(A.17)

A.1.4. Combustion and torque production. This submode) is part of the Diesel
Engine and Crankshaft Assembly described in Figure A.1 and detailed in Figure A.2. Here

Kao and Moskwa (7) used an “statistical regression to curve-fit empirical indicated

efficiency data”. The indicated efficiency n;,, could be found from the relation:

Moy = (@) +a,N+aN)(1 -k @) (A.18)
where:
F/4 '
o = ' acue and (F/A)ypsa = L (A.19)
I @

where (F/A), .01 15 the actual fuel air ratio and £, is the stoichiometric' fuel air ratio.
The mean indicated torque T; is:
T; = mpe Q1 yy Nipa (A.20)

where m, is the amount of fuel injected and Q, ,, is the lower heating value of the fue].

1. Stoichiometric: “pertaining to or involving substances that are in the exact proportions required
for a given reaction” (19).
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A.LS5. Engine Friction Model. This submodel is also part of the Diesel Engine

and Crankshaft Assembly described in Figure A.1. To determine the friction mean effective

pressure fmep , Kao and Moskwa (7, use the following relationship:

48N
= ¢, + B8N, 045 A2l
fmep c 1000 5 ( )

where the parameter ¢, could be determined by experimentation and S, is the mean piston

speed. We can obtain the torque due to friction by:

_ fmep -V, 1000
/ 6.28N,

(A.22)

A.1.6. Crankshaft Rotation Model. This submodel explains the relation of the
engine load, frictional load and external load on the engine speed. From Newton’s second

law:

T(t=1)-Tj~Tippy = 1-© (A.23)
where a constant engine rotational inertia / is used and 1, is a delay in the application of
the indicated torque 7.

A.1.7. Valve Flows and Scavenge Flow. This submodel is also part of the Diesel
Engine and Crankshaft Assembly described in Figure A.1. For the valve flows, Kao and
Moskwa 7y used volumetric efficiency and mean exhaust flow. The authors neglected
scavenge flows for the case of medium diesel engine speed due to the fact that the valve
overlap is small.

A.1.8. Exhaust Manifold. The exhaust mass flow rate is assumed to be:

mex(() = ﬁ?/(f - T]) + ’hairlrapped(’ - 12) + mairscavenged (A.24)
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where 1, and 1, are delays. The exhaust temperature 7 is given by:

Ts = Ty(1=713) + DT ggyn, (A.25)
where 1, is a delay and:

ATpgme = ATp+ ATy (A.26)
where AT, is the engine temperature rise, AT, is a transient magnitude offset and is a
function of the air fuel ratio f, and 1 is the exhaust manifold time constant. The engine

temperature rise A7 is given by ,y:

K K
AT _ —4
E oM (my/mpy  1+f

(A.27)

where K is generally plotted versus the air fuel ratio f = m,/m, as shown in Figure A.3

for a typical engine.
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Figure A.3: Engine temperature rise factor K ).

The exhaust manifold pressure is estimated by:
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: Y -Q ., . _
¢ Vem Cpe >3 °¢ ( )

where the “gas properties (C,,, R,, ¥, ) ... can be found from curve-fitted equations for

hydrocarbon combustion products as a function of A/F ratio and temperature” (4, and:

Q= ht-A-(Tg—T,0) and T, = _ 0 (A.29)

wall
m v.al[cpwall

where A is the convective heat transfer coefficient and can determined by experimentation

or can be calculated from:

k-Nu
ht = d A30
D (A.30)
where:
0.783 4-m
Nu, = 0.0483 - Re and Re, = A.31
d d 4 15D (A.31)
We can estimate the exhaust manifold temperature T, from:
P,V
T, = 2 —<&m (A.32)
My Re
where:
m,, = J(ms-ms)dr (A.33)

A.1.9. Turbine Model. The model! is for a constant pressure turbine and is similar
to the compressor model, where steady state information could be supplied by the

manufacturer. With that information we can construct the tables:
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: P
mCOY’ = j&(NCDFY’ ;é) (A‘34)

P
n, = JQ(NM,,, ;ﬁ (A.35)

As in the compressor’s case, we can use the corrected mass flow rate rz,, . and

corrected turbocharged speed N

-orr 10 the performance map from the relations:

N
Ncorr = Ntc- TTSZJ or ?: (Aa36)
i |26
< T, i T
mcorr = 1 sd or Ze J_ﬁ (A.37)
Py Pg
P.Nd
The torque supplied by the turbine is:
re—!
F T P Y
7, 2ol () (A38)
o, P

A.1.10. Turbocharger Rotor Model. This mode] (without friction) is calculated
from the Newton's second law:

T-T,= 1,0, (A.39)
A.2. Cylinder-by-Cylinder Model.

This model is based in the filling and emptying model, where the cylinder pressure
with a crankangle-based model. This model is generally used for “cylinder-by-cylinder

control, nonlinear state estimation, and dynamic model-based diagnostics”7y. This model
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is intended for the detailed study of the engine behavior at the cylinder level. This model
uses the same turbocharger, intercooler, intake manifold, and exhaust manifold submodels
from the previous section. The different submodels are concentrated in the Diesel Engine
and Crankshaft Assembly shown in Figure A.1:

A.2.1. Equations from Thermodynamics. The equivalence ratio differential

equation from the engine is (7, 22y:

%p= |:1+’fF][(1‘Z;F)‘S_’:‘/b_F%n} (A.40)
The temperature at the cylinder could be found by the relation:
. RT, ;. .
Teyr = |~ =520+ D+ by Mpy+ 2o, (A4D)
=k L - 24 /(2]
where the terms of Eq. (A.41) will be explained in later sections. The mass flow
conservation is now:
DY DY Sy (A.42)

With Eq. (A.42) we can find the mass accumulated in the cylinder (m ) with:
m=m,+tmg = J‘rhdt (A.43)

The cylinder pressure could be obtained from:

- MRTL.!/

» . (A.44)

where the volume at the cylinder ¥ will be found later. If we want to use heat related

analysis we can apply the relation for the closed period:
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2 - P_Y.
Peyr = 17/_(”7/71"777 Orvm* Onod - _C;;L V (A.45)

A.2.2. Indicated torque. The instantaneous indicated torque is found from the

relation;
_ dv
T, = 1000P,, = (A.46)
and the average indicated torque is:
§>( 1000P,,,)dV
Tl, average = 41.[ (A‘47)

A.2.3. Crankshaft Dynamics. The nonlinear dynamic crankshaft rotational

equation 1s found from Lagrangian or Newtonian equations:
- ] )
J(8) - e+§(3Jaee).e ] = T T T (A.48)

This equation 1s important for state estimation, diagnostics, and control in the case
of the cylinder-by-cylinder model. The inertia J(0) changes according to the crankshaft
position.

A.2.4. Intake and Exhaust Mass Flows. The mass flow depends of the engine
operation cycle described in section 2.2. The average intake flow, assuming that the volume
1 injected during the IVO to IVC penod is:

_nv-Vd-p-6N

h (A.49)

in

O1vc— 0o
We can apply a similar procedure for the average exhaust flow, assuming that the

volume is displaced during the EVO to 1VO period:
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CR-1 ¢

Mevo — 75—
CR

i = (A.50)

ol 8v0—0evo
For mass calculation, we need to define the flow in two classes:

Y
. Pd '2 Y- ! R .
- Subsonic flow, when —£ > (—) , resulting in a flow rate:
P, ‘w+l1
2 =1
PNY (P ¥
m = CAP, | —2L . (—") -(%9) (A51)
N R-T,(y-1) |\P, P,
P y-t
- Sonic flow, when =2 < (—_%—1) , resulting in a flow rate:
Y
u
y+l

2= CydP, [| -1 [ 2 ]”" (A.52)

m - . — .
“IIR-T, Ly+1

We can define the mass flow for the overlap period as:

m = Cy A [2py(Py— Pg) 1000 (A.53)

A.2.5. Combustion and Fuel Burning Rate. For this submodel, Kao and Moskwa

(7) used the single zone model proposed by Watson (55):

P oo 2R
ID = 3.45(1—022’3] PRI f% =1 (A.54)
{inj

where the overall equivalence ratio is defined by the relation:
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5
The nomalized premixed burning rate is given by:

1 k’” kpz_ 1

, Koy —
Mpre = Kot Kpa2 Lgem (1= 1050) (A.56)
and the normalized diffusion rate is giveo by:

)

kpi -1 ‘ku: “iorm

mde// = kd‘ . kd2 : ("Drm N4 (A.57)
where the constants &, , k5, k4, and k ;; were defined by Watson 55y We also have the

B value which defines the portion of total fuel that is premixed burned:

B = 1-0.926- OG- 1D (A.58)

The combustion time (in seconds) and the normalized time are given by:

125

dtcomb = N (A.59)
0-0,
Lnorm = '—1'2—53- (A-60)

where 125 is the crankangle used for combustion. Finally, we obtain the fuel bumning rate

from:
mfnorm = Bmpre + (1 - B)mfdlj_f/ (A.61)
mgqm
) = _LM A.62
" fourn dicomb ( )

where this burning rate is needed in Eq. (A.41) and Eq. (A.45).

A.2.6. Gas and Fuel Properties. The internal energy correlation (1) and the gas
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constant (R) are given by (7 71y

=AM -B8(D) - F
T,F) = A.63
u(7,F) = 42 (A.63)
2 = 0287+0.02F (AS64)
1+f,-F
where A(T) and B(T) are given by:
A(T) = 0.692T +39.17x10°T% + 52.9x107° (A.65)
—228.62x10" 7" + 277.58x107" T
B(T) = 304939 -5.7x1072T = 9.5x107°7° (A.66)

+21.53x107° 7 —200.26x107"47*
A.2.7. Cylinder Heat Transfer. For this submodel, Kao and Moskwa (7 used the

Eichelberg’s heat transfer coefficient:

S(ILNNV3(P . T N2
hi = 7.67x10 3 2LN) (Lt eyt A6
* (60 ( 1000 ) (A-67)

where the heat transfer rate is given by:

On = ht- ATy =Tcy) (A.68)
where T, is given for the heat transfer relation from the cylinder wall to the coolant.

A.2.8. Cylinder Volume and Area. Kao and Moskwa (7 based this submodel in

the cylinder geometry:
y- Yd_y “—32[1 +r(1 - cos8)— NI - rz(sine)z:l (A.69)
CR-1 4

where the cylinder heat transfer area is:
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;5 [2 2, . 3
A= (XT+7TB [+ r(l —cosB)—+I"—r"(sin0d) (A.70)

where @ > 2 for a general non flat piston and cylinder heat and @ = 2 for a flat piston and

cylinder head. The variation in the cylinder volume is represented by:

2
ﬁ’=(ﬂ).,.sing.i@.{1+ r - cos8 (A.71)
ar 4 dt 2 2, . .2
I = r°(sinB)

A.3. Watson’s Model.

Watson 5,y did an extensive review of the mathematical models for diesel engines

available for that time. Watson described the requirements for the simulation as:
« 1 “sufficient detail to reflect design changes, key fuel property changes, and
environment changes.
« 2 “ability to accurately predict performance, under steady and transient
conditions, and key parameters that limit performance (such as high maximum
cylinder pressure).
» 3 “ability to predict parameters that are known to strongly influence exhaust
emisston, particularly smoke and NO, and notse ...
*4 *“low consumption time and cost so that the model can be used routinely for
short-term transients (up to 1 min) and less frequency for complete federal tests
cycles, but at reasonable cost.

« 5 “the minimum empirical data requirement.”(zz)

Linear models only meet requirement 1. Watson described two principal models:

“filling and emptying” and “method of charactenistics”. For the “filling and emptying”
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models the inlet and exhaust manifolds and all cylinders are considered independent
thermodynamic models. The equations are solved based on an engine crank-angle, not time
base (generally | degree steps). We have submodels for model combustion, mass transfer
through valves, heat transfer, etc. The “method of characteristics” is a mathematical
technique based on hyperbolic partial differential equations. The cylinders are treated in the
same way as the previous method, but exhaust (and sometimes inlet) manifolds are treated
by solving dynamic gas equations.

The method suggested by Watson is based on “filling and emptying” assuming that
all the cylinders behave in an identical manner. Then he reduced the computational time
involved in the simulations. The model 1s based on a turbocharged engine as shown in

Figure A.4, where we have the variables:

- W, Compressor work.

. Turbine work.

- Qq00r  Heatrejected to charge air cooler.
- Ous Heat rejected to cylinder walls.

- Q.om Heatreleased by combustion.

- Wi Piston work.
-0, Heat rejected from exhaust manifold.
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Air inlet * T Exhaust

Compressor W: = —1 W, Turbine
lnlet' - Fuel Exhaust
manifold and injector ™ manifold
charge air =~ .
cooler - \\ d Qe
Qcoo[ B
QCO”I
th =T Qh!

Piston motion

Figure A.4: Schematic of turbocharged engine (3, 3).

If we apply the first law of thermodynamics we have:

Ay = m@ sy dm = 5 sr_ PdV Zh

(A.72)
o dt

Jdi d:

where m is the mass in combustion, u is the specific internal energy, s/ denotes the
surfaces with different rates of heat transfer, dQ 1is the heat released by combustion, P is
the pressure of the gas, V' is the volume of the gas, 4 oj 1s the specific stagnation enthalpy

of mass entering or leaving the system.
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If we say that the specific internal energy u is only a function of the temperature 7

and the equivalence ratio F', then:

u=u(T, F)y=>m=

du [3:1 dT  oud (A.73)

d( dTdr dFdr
By substitution of Eq. (A.73) into Eq. (A.72) and assuming that the gases behave as

perfect gases (P¥ = mRT), we obtain:

dt V dt Jdr dit Jm OFdt BT

dr _ [_R;zd_V+[Z 4 ): am; _ dM}l_MJ/(a_u) (A74)
sf

We can apply Eq. (A.74) to the manifolds and the cylinders.

By mass conservation we have that:

7 - 25,2l a7

dt

The fuel-air equivalence ratio is defined by:
F = f/. (A.76)
where [ is the fuel air ratio and suffix s denotes stoichiometric!. The mass of bumned fue}

(mp) in a total mass (m) of air and burned is defined by:

mo = S (A.77)
P +fF) ‘

From Eq. (A.75), Eq. (A.76) and Eq. (A.77), we obtain the term dF/d! from Eq.

(A.74):

1. Stoichiometric: “pertaining to or involving substances that are in the exact proportions required
for a given reaction” (19).
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aF _ F +ffF]{(l AR -fi"/b-pﬁ”] (A.78)

dt m f. dl dt

knowing T, m and ¥V we can find the end of step pressure,

piston,

where:

The change in volume, in the case of cylinders, is obtained from the geometry of the

crank and connecting rod:

av _ Z‘-é[rsineie’r r*sin6 cos® _d_e]

(A.79)
dt 4 (12—r25in26) dt

The engine losses and friction are modeled with the relation:

FMEP = 13.79+0.005P,,, + 1.086N - CR (A.80)

FMEP is the mean effective pressure equivalent of engine losses (kN/ m’ )s P s

1S U1€ maximum cylinder pressure m ), 1S t € €ngine speeda an 1S the Cra
is th i lind (kN/m>), N is the engi dand CR is the crank

radivs.

A diagram of the turbocharged diesel engine is shown in Figure A.5. This diagram

includes the interaction of the turbocharger and the engine (5.
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Figure A.S: Block diagram for a turbocharged diesel engine system ;3.

A.4. Tuken’s model.

Tuken et. al. 15y proposed a different model for the experiment shown in Figure

A.6 with the block representation in Figure A.7. The electromechanical actuator is

described by a third non-linear dynamic mode} that Tuken et. al. approximated by a linear

third order dynamic model plus a time delay. The governor has a mechanical part and a

hydraulic part. Then we have mathematical models for each part:
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where:

(2) Mechanical part:

2
dx
dr*

mw2r=me +Bj_f+Kx+FL+PA

FL = Kan

P = K;Q

(b) Hydraulic part:

g = K, x
m = Mass of flyweights
o = Engine speed

r = Radious of flyweight from the axis of rotation

m, = Total effective mass referred to axis

B = Viscous friction coefficient of moving parts
K = Spring stiffness
F, = Load force due to thorttle rack

G

e

Engine torque.

|

P = Output pressure of the transfer pump

A

Metering-valve piston area
x, = Throttle position

x = Metered valve position
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g = fuel rate

K,,Kp K, = Constants

The engine combustion model is based on the sequential firing of the cylinders,
operating in a discontinuous manner. This introduces a delay that is equal to the “actual

time between consecutive pistons arriving at the injection point plus a quarter of revolution

of the crankshaft 14y

T
F 2w 4o

(A.85)

where:
h = 4 (Number of strokes per cycle)
® = Speed in rev/min
e = Number of cylinders
T, = Firing delay (seconds)
The transfer function for the engine combustion is:

“TI.S

G, (5)
g(s)

= Ke

e

(A.86)
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Figure A.6: Experimental apparatus for Tuken et. al. 8) experiment.
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Figure A.7: Block diagram representation of throttle-torque system s,
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A.5. Models evaluation.

The models shown jn the previous sections have detailed information about the
thermodynamics of the process. The experiments that could be done in the main sections
will be related with speed control. An important equation for our simulations is Eq. (A.86)
where Tuken et. al. (3y defined a relation between the fueling injected to the engine and the

torque produced. From the Kao and Moskwa 7y model we will extract the block structure

information to construct a neural network model based on the air flow, the fueling and the
engine speed. We will consider the friction as a factor in the engine operations with a

modification of Eq. (A.21).
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