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CHAPTERl

INTRODUCTION

The principal objective of this research has been to investigate the potential ofusing

reinforcement learning techniques for the speed control ofdiesel engines. The first learning

technique is called genetic reinforcement learning. We will apply this technique to the

optimization of PID controller parameters. We will begin the training with base-line

controller parameters for a general engine configuration. However, each specific engine

will have different characteristics. Therefore the controller may not be suitable for all

engines. With the genetic reinforcement learning we will optimize the controller

parameters based on specific engine behavior. We will work with analog and digital

controllers and different engine configurations.

The second learning algorithm we will investigate is called reinforcement learning.

Reinforcement learning is an approximate fonn of dynamic programming, in which a

neural network controller is trained to optimize a specific performance function. At each

iteration the algorithm receives a certain reward or penalty, and attempts to control the

system so as to maximize future rewards or minimize penalties.

Let us now outline the flow of this thesis. Chapter 2 has a description of the basic

diesel engine operation. Classifications are based on the injection type and how the gas

exchange process is performed. Chapter 3 describes the implementation ofa diesel engine
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model to be used in testing the various reinforcement learning algorithms. We will consider

a pseudo-linear system and a system based on neural networks.

Chapter 4 has a discussion of a linear adaptive control technique for the diesel

engine. We will use the self-tuning regulator technique. The results of this chapter will be

used as base-line to compare the results for the reinforcement learning algorithms.

Chapter 5 has a description of the GENITOR algorithm. This genetic reinforcement

learning algorithm will be used to optimize the parameters of PIO controllers for different

engine configurations.

Chapter 6 is a discussion of the general reinforcement learning framework.

Reinforcement learning is an approximate form ofdynamic programming. The objective is

to determine a control action which optimizes future perfonnance. Reinforcement learning

is an excellent strategy for the intelligent control of systems which are difficult to model

but easy to simulate.

Reinforcement learning involves a two-stage process. First, a model must be

developed to predict future performance. Next, an appropriate action must be determined

to optimize the performance. In Chapter 6 the basic framework for reinforcement learning

is presented, and several variations of reinforcement learning are described. Simulations

are used to illustrate the operation of the various algorithms.

Chapter 7 has different simulations based on the reinforcement learning algorithm.

The first cases demonstrate how the algorithm will learn to change the engine speed from

an initial condition to a desired speed. After that we will present cases which illustrate

engine speed tracking. We will consider reward schemes based on penalty per step on the

2



episode and instant absolute error. Other experiments will be related to the use of multiple

neural networks.

Chapter 8 will contain a summary of the main results and contri butions of this

thesis. This will be followed by recommendations for future work.

Appendix A describes different diesel engine mathematical models from different

researchers for use in simulation.
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CHAPTER 2

DIESEL ENGINE OPERATION.

2.1. Historical review.

The history of diesel engines started in the last years of the 19th century with the

work of Dr. Rudolf Diesel. Until WWI "the diesel engine was used primarily in stationary

and ship propulsion applications in the form of relatively low speed four-stroke normally

aspirated engines"(8)' WWI spurred the use of diesel engines in transportation and WWII

increased the development ofhighly supercharged diesel engines. From that time, we have

seen a continuous process of improvement in the design of diesel engines and the

application of electronic modules and computer algorithms in their design.

2.2. Classification of the diesel engines

The first classification principle is the compression-ignition principle. In contrast to

spark-ignition (SI) engines, "the compression-ignition (el) engine operates with a

heterogeneous charge of previously compressed air and a finely divided spray of liquid

fuel"(8)' That mix is injected into the cylinder engine, mixed with the air inside the cylinder

and compressed until combustion by the self ignition properties of the fuel. According to

the combustion process we have the following categories:

• a. Direct Injection (DI) systems. When the fuel is injected directly inside the

cylinder.



• b. Indirect Injection (101) systems. The fuel is injected in a prechamber and is

transferred at high speed to the cylinder through a narrow passage. With this

arrangement a high degree of air motion is obtained. This implies a faster air fuel

mixing.

A second division is based in the way in which the gas exchange process is

performed. We have two periods called closed and open periods, where the combustion or

power generation occurs and the exhaust gases are expelled from the combustion chamber

respectively. This division is similar to that applied to spark ignition engines. We can divide

the engines as:

• a. Two-stroke engines. The combustion occurs in the region of top dead centre

(TDC) and the gas exchange is made in the region of bottom dead centre (BOC) of

each revolution. The scavenging or gas exchange process at the BOC takes from

100 0 to 150 0 of the crank angle (CA) period of 360 0
• We can subdivide two-

stroke engines into: loop scavenged engines, uniflow scavenge single piston

engines and uniflow scavenge opposed piston engines.

We can summarize the two-stroke cycle as:

1-2 compression

2-3 heat release associated
with combustion

3-4 expansion

4-5 blowdown

5-6 scavenging

6-1 supercharge

}

5

Closed Period

Open Period



• b. Four-stroke engines. For this type of engines the combustion and the gas

exchange occur in alternate revolutions. As seen in Figure 2.1 the combustion

occurs in TDC region with all the valves closed. After that, the exhaust valve

opens (EYO) just before the BCD region, then the inlet valve opens (IYO) just

before the TDC region. Just after the TDC region the exhaust valve closes (EYC)

and the inlet valve closes (lYC) just after the BDC region. Here the engine starts

the closed period where the combustion occurs, continuing with the next cycle. For

this type of engine the crank angle (CA) period is 720 0
•

TDC

BDC

Figure 2.1: Four-stroke engine (/urbochar~ed)(8)-

6
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We can summarize the four-stroke cycle as shown in Figure 2.2.

1-2 compreSSIOn

}2-3 heat release associated
with combustion

3-4 expansion

4-5 blowdown

5-6 exhaust

6-7 overlap

7-8 induction

8-1 precompressIOn

Closed Period

Open Period

Figure 2.2: Four-stroke cycle for diesel engine (8)-

We can study the engine cycle based on air standard cycles, as shown in Figure 2.3.

The first case is the constant pressure or diesel cycle (Figure 2.3-a), where the combustion

process is modeled by a constant pressure heat addition (points 2-3). This was the

description for "classical" diesel engines, with little relevance today. The second case is the

constant volume or Otto cycle (Figure 2.3-b), where the combustion process is modeled by

a constant volume heat addition (points 2-3). This cycle is normally used for spark ignition

engines, but is valid for diesel engines with light load conditions. The third case is the dual

combustion or composite cycle (Figure 2.3-c), where the combustion process is a

combination of the previous cases. This cycle is closer to the actual operation of diesel

engines. Other important theoretical cycles are the Atkinson cycle and the Carnot cycle.

7
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v

Figure 2.3: Air standard cycles: (a) constant pressure cycle; (b) constant volume cycle;

(c) dual combustion or composite cycle (8)'

The real processes of a diesel engine are different from the ideal cycles from the

previous page. The combustion process occurs in the closed period, that is similar for two-

stroke and four-stroke engines. We can say that the combustion process has three periods,

as shown in Figure 2.4:

- (i) The delay period.

- (ii) The premixed burning phase (chemically controlled).

- (iii) The diffusion burning phase (controlled by mixing rate).
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Figure 2.4: Phases ofcombustion process (8)'

For the open period we have a gas exchange process as shown in Figure 2.5 for the

case of four-stroke engine. The numbers at each step are related with the four-stroke cycle

shown in Figure 2.2 and Figure 2.1.
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Figure 2.5: Gas exchange four-stroke engine (8)-

To analyze the engine cycles in detail we can use a step by step basis, using small

crank angle increments de (usually 0.5 0 < de < 2 0 CA). The step could change according

to the phase in the cycle. Another important term in the calculations is the heat transfer term

dQL which defines the heat transfer from cylinder gas to wall and vice versa.

In the Appendix A the reader can see several different detailed mathematical

models for the diesel engine. Each model is intended to define mathematically the

combustion process inside the diesel engine. There models could be applied to the design

and control of diesel en,gines.
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CHAPTER 3

ENGINE MODEL.

Initially we tried to implement the Kao and Moskwa mean torque model (7) as

shown in Figure A.2. That model requires specific parameters of the engine that were

unavailable at the time of this project. Initial trials were conducted using some typical

parameters found in different papers and books, but the model normally fails in its

operation.

Cummins suggested a simplified model of the diesel engine that is shown in Figure

3.1. This model has a fueling delay defined by e-ts where s is the Laplace transform and

't is the time delay.

Engine ,-- ---, Engine

Fueling . Torque + I 60
~ -tS ~ ..
- e - I---il~ 2.1t%s

L-- -' + j~ _

External
Load

Engine
Speed..

Figure 3.1: Simple Engine model. Block diagram in s-domain.

The model shown in Figure 3.1 has an initial PID controller proposed by Cummins

for the nominal values of fueling delay 't = 80 ms and engine inertia / = 2 Ib-!t-sec
2

.

The basic engine and the controller are shown in Figure 3.2. This model does not include

/l



any limitation in fueling and engine speed. Also, it does not include any friction. If the

engine is working at a given speed without load, and we set the fueling to zero, the engine

will continue at the same speed for unlimited time.

E .renee ngme
d (Nref) + error K i Kd · 5 Fueling (f)

~ K +-+
I ... P 5 (5+a) I

- J~
I I

Engine I.... Controller .1
Speed (N) I I

I.... I
I

Engine .,
I

Engine
I

I + Torque (Te) 1

I 60 - ..... -ts - I

2·1t·/·s - - e -
j +

External
Load (T1oad)

Refe
Spee

Figure 3.2: Simple Engine Control System.

For this basic system. we have the following parameters are:

s = Laplace Transform variable. 1t =3.14159265358979.

Nref = Reference Engine Speed.

N = Actual Engine Speed in rpm.

error = (Nref - N) = Speed error in rpm.

Te = Engine Torque in Ib-ft.

T/ oad = External load torque in Ib-ft.

1 = Engine Inertia = 2 Ib-ft-sec2
.

f = fueling mm3 /stroke.

't = 80 msec delay.

Kd = 0.05.

a=10or20.
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To obtain a more realistic engine model, we included a simple gain block that

multiplies the engine speed by b J substracting the resulting value to the total load applied

to the engine, as shown in Figure 3.3. This block represents viscous friction. We also

included two saturation blocks to avoid negative or excessive engine speeds or fueling. The

first block limits the fueling applied to the engine. That fueling was limited between 0 and

2240 mm
3

/ stroke. The second block limits the engine speed. The engine speed was

limited between 0 and a top speed of 2000 rpm. For our experiments we tested with two

friction values intended for low friction (b) = 0.01 ) and high friction (b I = 0.1229).

1)

E .rence ngme
d (Nref) + error K K i Kd·s / Fueling (.. - +-+ -- - p s (s+a)

-
ngine ~

peed (N)

'0. Friction/ Torque

1/
A Engine_,.

60 + Torque (Te)
-ts- -- - -- e2·n·l·s

A~ +

External. Load (T1oad)

E
S

Refe
Spee

Figure 3.3: Engine Control System with engine friction and limited speed andfueling.

The basic PID controller has the parameter values Kp = 2, K i = 0.5, Kd = 0.05

and two possible values for a = 10 and a = 20. We simulated the diesel engine with the

basic PID controller for different conditions of inertia and fueling delay. The friction and

13



the external load were constant and equal to b I = 0.01 and T/oad = 150 Ib-.ti

respectively.

If we unify the controller transfer function we obtain:

G(s) = (Kp + Kd)i + (Kp . a + Ki)s + Ki· a
2s + a· s

(3.1)

are:

Since we have two values for a, the initial transfer functions for the pro controller

For a = 10~ 0(5) = 2.05s2 + 20.5s + 5
52 + lOs

For a = 20 ~ G(s) = 2.05s2 + 40.5s + 10
52 + 205

(3.1)

(3.1)

For the simulations we have assumed that the extemalload could change from 0 to

600 ft-Ib. The maximum fueling rate was defined as 150 mm3/stroke. The reference engine

speed will change between 600 rpm and 650 rpm. We found that limitations in fueling were

found for a load of 150 Ib-ft. Ifwe increase the load we need more fueling. Ifwe use zero

load, we found that negative speed or negative fueling will be needed, making this model

unrealizable. Also, simulations with zero load and zero fuel will run forever for a fixed

speed. A simulink representation of the model is shown in Figure 3.4.



Transport
Delay

Sum1

Trans'.r Fcn
(w ~h initial outputs)

I I
To Workspace2

[J-. :
DOl Product Inlegralor

'.-04-71-s-::-2.-'-6.-27-8s-.-8-28-56-'

I---l.---..f-----::~---·I---....~-+-r-,~.....I fuel I
.2. '5.8625 To Workapace4

Trans'er Fcn
(w~h inilial outpuls)2

torque

To Workspaca3

Pulse
Generelor

~s:m3

S
C onSlant

Figure 3.4: Basic Engine model with limits in fuel and internal losses.

Figure 3.5 shows the speed transition from 600 rpm to 650 rpm for different

values of fueling delay and fixed engine inertia I = 2Ib-ft-sec2
. We noticed how the

percent overshoot and the mean square error increases as the fueling delay increases. Larger

fueling delays implies that each action due to the controller takes more time to influence

the engine response. For that reason an oscillatory response is observed. Figure 3.6 shows

the same speed transition from 600 rpm to 650 rpm for different values engine inertia and

fixed fueling delay 't = 80 ms. We noticed how the oscillatory response increases as the

inertia reduces. The simulation results show how variations in the parameters affected the

final system response. The subsequent chapters will discuss different altematives to

optimize the controller or to generate a controller to reduce the overshoot or the mean

square error for the engine response.
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Figure 3.5: Engine re ponse for different fueling delay using ba ic PID controller.
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Figure 3.6: Engine response for different engine in rtia using basic PID con/roll r.
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In addition to the engine model shown in Figure 3.2, we also modeled the engine

with neural networks as shown in Figure 3.7 (subsystems are shown from Figure 3.8 to

Figure 3.10). Due to all the interactions of the subsystems, we preferred the simulink

representation of the previously referenced figures. For the training process we used data

obtained from an engine simulation from a Cummins diesel engine, With that data we

trained two neural networks: one for combustion and torque subsystem and the other for air

mass generation subsystem, Those neural networks were based on the engine model shown

in Figure A.2 in the appendix A. The combustion and torque production subsystem has as

inputs the engine speed N, the engine fueling in! and the fuel-air ratio, which is based on

the mass flow in4 and the engine fueling mf' The same block produces the indicated torque

Ti • The air compression subsystem depends of the engine speed N and the engine fueling

inf to generate the air mass flow in4 '

o
To WOrl<,plcI2

mdl~....
NI+--

Air compre'llon

I'" ""''''00'f+~1!OI(2'p"lo)

From S.hJl'lhon'

~ md.d Worhplc.1 TkNld1

I mdfi ~ mIll " ·U:Uf[J-D-~F F + -
F

md'i -,N ---+-1- ;um2 P'oduct Inll;'"lO' Sa~n
CombustIOn and

Sum 1

T"",ue producli<>

"'To [3
N Tt .....~ To WotI<IP"C"

To WorhplclJ
1rictlon

Figure 3.7: Neural network based engine model.
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Since the fuel-air ratio and the fue ratio have a smaller dynamic range than the

engine speed (see Table 3.1), we divided the speed input by 1000 for the combustion and

torque production neural network. A similar operation was made with the torque output.

Figure 3.8 shows a representation of the combustion and torque production neural network.

Similar considerations were applied to the air compression subsystem shown in Figure 3.9.

Input or Output
..

maximum TraininlZ rangemmlmum

fuel-air ratio 0 0.0988 oto 0.1

fuel ratio 0 2.9132 oto 0.3

engine speed (rpm) 572.40 1972.70 oto 2

Table 3.1: Input-Output range for combustion and torque production subsystem.

Figure 3.8: Combustion and Torque production subsystem.

18



0l-----·1

mdl

Mux

J:::B
,~[)-[!}-~ ...."' '"9"

T." slQmod ran sigmoid LOQ 5lQmo-::J
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Figure 3.9: Air compression subsystem.

The engine friction subsystem is based on the Eq. (A.21) from appendix A. For the

model of Figure 3.10, we replaced the mean piston speed Sp by the engine speed N.

Q)l-----------.I
T,

Relational
Operator

1r-------+c:J-.0
Product 1 Tfr

Figure 3.10: Engine friction subsystem.

We will see in the following chapters how the models previously described were

applied for adaptive control, genetic reinforcement learning and reinforcement learning.
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CHAPTER 4

SELF-TUNING REGULATOR APPLIED TO DIESEL ENGINES.

4.1. Introduction.

In order to provide a standard with which to compare the reinforcement learning

algorithms which will be presented in later chapters, this chapter will apply the self-tuning

regulator (I) to diesel engine control. This is a standard linear adaptive control technique,

with block diagram as shown in Figure 4.1.

The self-tuning regulator is an "indirect" method; a model of the process is

developed (in the estimation block), and this model is used to determine the controller (in

the Controller Design block).
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Self-tuning regulator
r-------------------,

Specification I Process parameters
I
I • • l I
I I

I Controller
Estimation

I

I Design
~

I

I I

I Controller
I

r
--- _____ .J

Reference
I , parameters

I
I

I
I'" Controller , Process

Input I Output
I I
L __________ .J

Figure 4.1: Block diagram ofa self-tuning regulator (1)"

4.2. Pole Placement Design.

There are several different types of self-tuning regulator. One is adaptive pole

placement. The idea of this method is to design a controller to meet the specified closed-

loop poles specifications. Ifwe take our diesel engine model from Figure 4.2 we can model

the input-output relation as:

N A·S N r A·R T
= B· R + A . S· re.. - B . R + A . S· load

(4.1)

The idea is to adjust the controller parameters to obtain the desired pole locations.
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Reference
speed ( Nref )

+

Actual
engme
speed (N)

r-

)-- ~ Controller = S
R

------------------1

Fueling (f)

I
I b l

I
I
I - Te

Engine Fueling

: Inertia +r+ delay I

I I
L ~

Engine = ~ External load (T'oad )
B

Figure 4.2: Engine model.

For the self-tuning regulator we need to define the system structure. The engine

transfer function from fueling f to engine speed N is:

N(s)
j{s)

60/(21t1) e-u

s + (60 . b I )/(2nI)
(4.2)

The simplified system model is shown in Figure 4.3, where the load is before the

engine delay. We will be using a digital controller, therefore we need to obtain the discrete-

time transfer function of the diesel engine with a zero-order hold:

2[1 -e-Ts . 60/2nI . e-u] =

s s + 60· b l /21tI

22

z-e

_60b)T
27[/
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r------~ Controller = S
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Fueling (j)
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60/(2nJ)
S + (60· b l )/(211/)

L _

Engine = A
B

Te Fueling
+ delay

-1:S
e

_ _ .J

Figure 4.3: Simplified engine model.

For our experiments we want to select an appropriate sample time T. The engine

model will change according to the fueling delay t and the engine inertia 1, among other

parameters. If we define for our experiments that the fueling delay t will change between

30 ms and 130 ms we want a sample time that will cover those variations using a

reasonable system order. We evaluated some transfer functions for different sample times

T and values of b I' as seen in Table 4.1.
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Table 4.1: Engine transfer functions for different values ofsampling time T and engine

friction b J-

T (ms) b l Transfer function

10 0.01
0.0477· z

-\00'[

Z - 0.9995

10 0.1229
0.0476· z

-100'[

z - 0.9941

50 0.01
0.2384· z

-20,

z-0.9976

50 0.1229
0.2353 . z-20,

z - 0.9711

100 0.01
0.4763 . z

-10'[

z - 0.9952

100 0.1229
0.4637 . z

-10'[

z - 0.9430

We want to define a system structure that supports different variations in the engine

delay and inertia. From Eq. (4.3) we can see that system order variations were due to the

engine delay. We can estimate a system structure of the fonn:

or

N(z)
f(z)

N(z)
f(z)

m m-I m-I
a z + a IZ + a 2z + ... + a IZ + aDm m- m-

(4.4)

(4.5)



We now want to define a mechanism to identify the parameters described in Eq.

(4.4) and Eq. (4.5). That mechanism is defined by the parameter estimation process of the

next section. This is the procedure which will be perfonned by the Estimation block of

Figure 4.1.

4.3. Parameter estimation.

For parameter estimation we have our linear model defined as:

Z(k) = H(k)9 + V(k) (4.6)

where for each instant k, Z is a vector with the measurements, H is the data matrix, e is

a vector with unknown parameters and V represents noise or variations in the parameters

that we cannot explain. For example, if our system is represented by Yj = f(x 1)' X 2j' x3)

we can say that the linear model is:

resulting in:

Yl XI J X21 X 31

Y2

[::]
x 12 X 22 X 32

Z(k) e H(k) =
Y3 X13 X 23 X 33

... ... ...

,Yk Xu Xu X 3k

V(k)

V( 1)

V(2)

V(3)

V(k)

(4.7)

(4.8)

A

We want to obtain a function Z(k) = H(k)9 by minimizing:

AT"
min [Z(k) - Z(k)] [Z(k) - Z(k)]

rnpecI9

Sum Squared Error (4.9)

..
where we will obtain the least squared estimate of the parameter vector eLS' If we have our
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system represented by:

y(t) = <Ply(t - 1) + ... + ~pY(t - p) + aCt)

then:

yeP + 1)

8 ~ [:JZ(k) = yeP + 2)

yeN)

yeP) yeP - 1) ... y(l)

H(k) = yeP + 1) yeP) y(2)

(N-I) y(N-2) ... y(N-p)

where we minimize:

a(p + 1)

V(k) = a(p + 2)

a(p + N)

(4.10)

(4.11)

ZTz = [Z(k) - H(k)e{[Z(k) - H(k)8] => ZTZ - 2Z
T
H8 + e

T
H

T
H8 = J (4.12)

-where Z = Z - Z. To find the minimum we must calculate the gradient using the following

properties:

T T
Vx[x Ax] = Ax+A x

The minimum of ZTZ is found by the relation:

T T
VeJ = - 2H Z + 2H He = 0

which implies the normal equation:

26
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which is the batch form of the least squared estimate.

In general we have that:

Z(k) = H(k)8 + V(k) (4.15)

for k measurements. If we take an additional k + 1 measurement then Z grows in one

element and H grows in one row:

H(k+ 1) = [HT(k)] => HT(k+ I) = [ T lH (k) \jJk+ Ij
\V k+ I

where:

\jJ~+ I !Y(N) y(N-I) ... y(N-p+ I)J

then:

HT(k + I )H(k + 1) = [ T J[H(k)]H(k)'IIk+1 T
\jJk+l

(4.16)

T T -1 -1 T
We want to find [H (k)H(k) + \jJk + 1\V k+ d where Pk = H (k)H(k) then we

would find Pk + 1 from Pk :

T T -I -1 T-I
[H (k)H(k)+'IIk+l'llk+d = [Pk +'IIk+l\¥k+d = Pk+ 1

then we can use the matrix inversion lemma:

27
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If we define the scalar a k as:

then:

(4.20)

(4.21)

We need another relation to find the parameters. From Eq. (4.14) we have for the

time k that:

= P(k)HT(k)Z(k)

and for the time k + 1 that:

() (k + 1) = P(k + 1)H
T
(k + 1)Z(k + 1)

= P(k+ I) [HT(k) J[ Z(k) J
tVk+ I z(k+ I)

(4.22)
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(4.23)

where the value \jJf+ )8(k) = ;(k + 1) is the prediction of the z(k + 1) value. The value

z(k + 1) - \jJf+ 18(k) is the prediction error. The gain matrix K(k) is defined as the value

UkPk\jJk+)' We can see in Eg. (4.23) that the new estimate of e(k + 1) is based on the

To initialize the algorithm, typically Po = ~l and 8 = zero. Eg. (4.21) and Eg.

(4.23) make up the recursive least squares method for parameter estimation.

If the parameter changes with time, we need a factor to forget older data, especially

k

for adaptive filtering. We are minimizing ZTZ = L z\i), but we want to weight the last

;= I

errors more than the older ones, then we can use the weighted least squares as:

k
" k-; -2 -2 -2 2 -2
~ A . z (i) = z (k) + A . Z (k - 1) + A . Z (k - 2) + ...

i = I

(4.24)

-r -
where 0 < A < 1. The general weighted least squares is Z WZ. For the A case W has the

form:
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o

W(k) = A?
A

o

If we want to minimize ZTWZ then:

~ T -I TeWLS = [H WH] H WZ

~ ~

As the least squares we will estimate eWLs(k + 1) from eWLs(k) . We have the

following relations:

H(k + 1) = [H;k)]
\JIk+J

Z(k+ 1) = [ Z(k) l
z(k + 1)J

Pk+l = [H
T
(k+l)W(k+l)H(k+l)f

l

[ [ ]]

-1

_ AW(k) 0 H(k)
- [H

T
(k) 'I' (k + 1)J [0 j '1';+ 1

T T -I
= [AH (k)W(k)H(k)+"'k+l\JIk+d

where HT(k) W(k)H(k) = p;' .Using the matrix inversion lemma (see Eq. (4.18»:
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where uk = T 1 . We can rewrite Eq. (4.25) as:
"- + \jJk+ IPk\jJk+ I

For the parameter estimation we have that:

8(k+ 1) = Pk+IHT(k+ l)W(k+ l)Z(k+ 1)

= P [. T l [,,-W(k) ol [ Z(k) l
k+ I H (k) \jJk+ Jj 0 IJ z(k+ l)J

T= Pk+I[,,-H (k)W(k)Z(k)+\jJk+l z(k+l)]

(4.25)

(4.26)

By substitution of uk we obtain:

(4.27)

We have a new set of equations defined by Eq. (4.26) and Eq. (4.27) to update

8(k + 1) and Pk+ 1 from z(k + 1) and \jJk + ) . To choose "- we have two options:
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A too small ~ increases the variance of the estimate (more oscillation).

"A. too large ~ increases the bias of the estimate.

For initialization we can choose Po = a / or Po = [HTHf' for the first data set

of points. For our case we must use the ARX model for exogenous inputs:

where the data matrix and the vector of parameters is defined by:

y(p - 1) ...

H = yeP)

y(l)

y(2)

u(P)

u(p + 1)

u(p- m)

u(p - m + 1)

yeN) ... y(N-p+2) u(N+ 1) ... u(N-m+ I)

4.4. Parameter estimation for the diesel engine.

The objective of this section is to find a generic transfer function model that could

be used in later sections in the implementation of an adaptive controller. Looking at Eq.

(4.4) and Eg. (4.5) we can note that if we use a very fast sampling time we would obtain a

system with a large order and eventually more difficult to manage. If we use a very slow

sample time we would obtain a reduced system order, but we also reduce the capability of

modeling different time delays with the same transfer function model. We will try to find
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a trade-off between sampling time and system order which allow us the use of a unique

transfer function for different fueling delays and inertia values.

We simulated the engine with the original PID controller for different engine delay

conditions using the model shown in Figure 4.4. We saved different data files of fueling

versus engine speed for diverse values of fueling delay and different engine load. For

identification purposes the speed reference was changed between 600 and 650 rpm. The

engine load was simulated with a normal random number generator with the mean value

equal to the desired load and variance equal to one. The engine has a friction denoted by a

block with the same description. A variable called b I could be adjusted for different

friction values.

12 I
To Wo"'spacee

II all
D,.play

I fual2

To Worl<.pace7

From
Worklpace4

Trln.por1
Delay

L }----J,-.' I
To Wor1\.pace2ClockRandom

Numblr

I uc

Ta Work opace3

r---lr-----1~I-.,/L--I_--lr------.........._+1 fuel

L....;:==--' Salu,"lIon To Worklpacl4

Inar1ia Gain

I ap I
To Worl<.pace6

I

Inlagralor'

N

Salural,on1

To Worl<.pace1

Figure 4.4: Simulink model for self-tuning control.
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For the first case we used a sample time of T = 100 ms, with friction

b I = 0.1229 and a engine transfer function model:

N(z)
I(z)

2
a 2z + a1z + aO

3 2
z - bz

(4.28)

Knowing the average engine load we applied the identification process described

by Eq. (4.26) and Eq. (4.27) for different fueling delay and engine load. Figure 4.5 to Figure

4.8 have the identified parameters for different engine load plotted versus fueling delay.

There are 16 different curves in each figure, one for each engine load (0 to 150 lb-ft). In

most cases the curves directly overlap.

We can see in Figure 4.5 how the parameter 02 decreases from a value close to

0.4637 for L = 0 to a value near to zero for L = 100 ms. Similar results were obtained

for the parameter a l ' that reaches its maximum value at 't = 100 ms as shown in Figure

4.6. The parameter ao increases after L = 100 ms as shown in Figure 4.7. The parameter

b oscillates between 0.9418 and 0.9430 adjusting its value for the different values in the

engine delay as shown in Figure 4.8. From the figures we can see where each parameter of

the numerator (a 2 to ao) has its maximum value with respect to the fueling delay. For

example, 02 reaches its maximum value for zero fueling delay and a I has its maximum

value for 1: = 100 ms.
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For the next case we changed the sample time to T = SO ms maintaining the same

transfer function structure shown in Eg. (4.28). From Figure 4.9 we can see for the new

sample time that the parameter a2 has an initial lower value changing to a value close to

zero for 't = 50 ms. However we note negatives values after 't = 100 ms .The parameter

a 1 has its maximum value at 't = SO ms as seen in Figure 4.10. The parameter ao

increases after 't = 50 ms but continues increasing after 't = 100 ms as shown in Figure

4.11. From Figure 4.12 we can see that the parameter b is close to the estimated value of

0.9711 but blows up after 't = 100 ms .The values after fueling delays of 100 ms for a2 ,

aD and b are due to the lack ofan additional tenn that represents fueling delays greater than

100 ms.
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3 2z - bz

For our last case we decided to increment the system order for the engine model:

N(z)
fez)

3 2
= a3z +a2z +a1z+ao

4 3
z -bz

(4.29)

using the same sample time T = 50 ms. From Figure 4.13 to Figure 4.16 we can see that

the parameters a3 ' a2' a I and ao reach their maximum value for different engine fueling

delays 't that were proportional to the sample time T. The parameter b changes between

values 0.9704 and 0.9712 that were close to the calculated estimate of 0.9711. In Figure

4.17 we can see that b has variations for different loads after T = 100 ms .
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4.5. Controller design.

This section presents an off-line design ofa controller that could be used to control

the speed engine. The objective is develop some constraints that could be used in the self-

tuning controller in the next section.

For the controller design we select the following transfer function:

S
R

(4.30)

Ifwe combine the controller transfer function ofEq. (4.30) with the system transfer

function ofEq. (4.29) to obtain the input-output relation of the closed loop system

described in Eq. (4.1) we obtain:



(4.31)

If we select our closed loop characteristic equation as:

A 65 4 3 +2 + +C = Z + Z Q c5 + Z Q c4 + Z Q c3 Z Q c2 zac! a co (4.32)

then we could define the following relation:

(4.33)
-b a, Q 2 Q 3

o ao Q 1 a2

o
o

I 0

-b 1

o
o
o
o

Initially we could solve this relation by applying the relation RS = (ATA)-I ATQc'

However we must include some constraints to obtain the desired system response. We can

find constraints if we apply the final value theorem to Eq. (4.1). We want the final value of

the engine speed with respect to the reference speed to be close to one. We also want the

final value ofthe engine speed with respect to the engine load to be close to zero. From both

conditions we can define:

I· ( A . S ~ 11m ~

Z~! B·R+A·
= errorgain (4.34)



and

lim ( A· R _1 ~ 0 = error/oad
1"---+1 B·R+A·SJ

(4.35)

For practical purposes we could define a lower and upper bound for errorgain as

Leg < errorgain < Ueg, where Leg could be 0.9999999 and Ueg could be 1.00000001.

A similar relation could be applied to error/oad as LeI < error/oad < Uel, where Lei

could be -0.00000001 and Uel could be 0.00000001. Solving for Eq. (4.34):

[(l-b)Leg]

[( 1 - b)Leg]

[(2:a,.)(Leg-l)]

[(2:a)(Leg- 1)]

[(La)(Leg-l)]

~-Leg(l-b) (4.36)

where La j = a3 + a2 + a l + aD. For the upper limit of errorgain we obtained:

[-(1 - b)Ueg]

[-(1 - b)Ueg]

[-(La;)(Ueg-l)]

[-(La)(Ueg-l)]

[-(La j )( Ueg - 1)]

~ Ueg(l - b) (4.37)



Solving for Eq. (4.35):

T
[- (La;) + (1 - b)Uel] R

2

[-(LaJ+(l-b)Uel] R
3

[(La)(Uel)] 8, ~-Uel(l-b)+(La)

[(La)(Uel)] 82

[(L a;)( UeI) ] S3

T
[(LaJ-(l-b)Lel] R

2

[(La,.)-(l-b)Lel] R
3

[-(Laj)(Lel)] SI ~ Lel( 1 - b) - (La,.)

[-(La)(Lel)] 82

[-(Lai)(Lel)] 83

We must consider a case where:

lim (R) = 0
z-tl

(4.38)

(4.39)

(4.40)

resulting in an equality for Eq. (4.34) and Eq. (4.35). IfEq. (4.40) is satisfied, this does not

mean a final gain equal to one with respect the reference speed or a minimization in the

influence of the external load. To avoid Eq. (4.40) we included the following condition:

R2

. R 3

[1 1 0 0 OJ S I *-1

82

83

(4.41)

To solve the relations given by Eq. (4.33), Eq. (4.36), Eq. (4.37), Eq. (4.38), Eq.

(4.39) and Eq. (4.41) we can use the Matlab function conls in the form:

result = conls(A, b, C, d)
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where A and b correspond with the matrix and vector given in Eq. (4.33), C and d

correspond with the matrices and vectors given from Eq. (4.36) to Eq. (4.39) and Eq. (4.41).

This function solves the constrained linear least-squares problem:

1 2
min(-IIAx- bll )

x 2
subject to ex::; d (4.43)

From Eq. (4.43) we notice that the condition described by Eq. (4.42) could not be

reached. Therefore we replaced Eq. (4.42) by the following expression:

R2

R3

[1 1 0 0 OJ S I ::; -1.000000001

S2

S3

that allow us to find an expression close to -1. Another possibility could be:

R2

R3

[ :l S ::; 0.999999999-1 -1 0 0 OJ I

S2

S3

(4.44)

(4.45)

We must define the desired transfer function (desired closed loop poles) to be used

in Eq. (4.42). For different experiments we found that fixing a transfer function generally

originates an approximation that generally has one or more of the poles outside of the unit

circle. This condition produces an undesired response for the system. To reduce this

problem we first identified the closed loop transfer function for the original controller.

From that transfer function we determined if the complex poles were predominant with
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respect the real poles. If that condition occurs then we defined the least dominant real pole

with the same size of the real part of the dominant complex pole. After that the complex

poles were reduced in size.

For example in the case ofa diesel engine with delay 't = 110 ms we identified the

system transfer function as:

N(z)
f(z)

0.0005z
3

- o.oOl2i + 0.1930z + 0.0428=
z4 _ 0.971lz3

(4.46)

where the sample time was T = 50 ms and the average load 150 Ib-ft. For the original PID

controller:

S
R

22.05z -2.575z + 0.5437
2

z -1.25z + 0.25
(4.47)

we obtained the closed loop poles:

0.9879

0.7940 + 0.4972i

0.7940 - 0.4972i

-0.3130 + 0.0378i

-0.3130 - 0.0378i

0.2701

We applied different combinations in the reduction ofreal poles and complex poles.

The combination which reduced the mean square error was by reducing the real poles size

by 0.8 and the complex poles by 0.98. For that reduction the desired new poles must be:



0.2701

-0.3067 - 0.037Ii

-0.3067 + 0.0371i

0.7782 - 0.4873i

0.7782 + 0.4873i

0.7903

By using the function conls we obtained final poles at:

0.9890

0.6838 + 0.3588i

0.6838 - 0.3588i

-0.3087 + 0.0201i

-0.3087 - 0.0201 i

0.3318

with errorgain = 1.00000001 and

controller obtained was:

§. = 1.4893i-1.9144z + 0.4374

R i-1.1005z+0.I005

-8error/oad = -8.1349xI0 . The

(4.48)

Ifwe use the condition given by Eq. (4.45) we obtained the controller transfer

function:

§. = 1.4884i-1.9150z + 0.4366

R i -1.1005z + 0.1005
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We imulat d th stem 'th th original PID controll r ( q. (4.47 and both

controllers q. (4.48) and Eq. (4.49)) for th nominal load of 150 lb- and a cond 10 d

of 100 lb-ft. From Figure 4.18 we can s that th syst m respon for the n w ontroll r

has lower 0 er hoot and is immune to load variation. ith th original PID controller

have a higher 0 ershoot and more variation in the r spons due to th engin load. or thi

system we tested various combinations of pole location. We found that the low r m an

squared error was obtained for a reducti.on of80 % in th dominant real pol and 98 % in

the complex poles. The movement in the pole location is hoWD in Figure 4.19.

alculated c nLrolled bolh I ads.
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660

650

] 640

0.en
630
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610
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57 57.5 58 58.5

time
59 59.5 60 60.5

Figure 4.18: Engine r sponsefor different controller' and load.
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Figure 4.19: Finalpole locationfor different values in the magnitude reduction oforiginal
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4.6. Adaptive control.

In this section we will try to use the results of the previous section in the design of

an adaptive controller for the engine. As shown in Figure 4.1, the adaptive controller has

two blocks. A first block is dedicated to estimate the parameters of the engine as described

by Eq. (4.29). Using those parameters, the controller is defined in a second block. The

controller design block will adjust the controller parameters to achieve a desired set of pole

locations. We will use the pole locations that were developed in the previous section.

The identification block was perfonned by using Eq. (4.26) and Eq. (4.27):
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For the identification block we used A = 0.99. We tried with lower values, but the

estimated parameters had too much variation. For initialization, we choose Po = [HT
H]-1

and e = zero for the first data set of points. The system started with the original PID

controller, and after 1 second the adaptive process was started.

The first approach was defining a desired response that the closed loop system must

follow. Using that definition, we found that the engine response was normally saturated at

maximum or minimum speeds. The second approach consisted in reducing the size of the

dominant real pole by a given percentage from the original controller. Results from last

section suggested that we use a reduction in the complex poles of 98 % and a reduction in

the real pole dominant of 80 %. The controller was obtained by solving the relations given

by Eq. (4.33), Eq. (4.36), Eq. (4.37), Eq. (4.38), Eq. (4.39) and Eq. (4.41), using the Matlab

function conls.

In Figure 4.20 and Table 4.2 we can see the different responses for variations in the

size of the dominant real pole for an engine with fueling delay of 110 ms and two friction

values. We note that the best response was obtained with a reduction of 80 %. Similar

results are observed for· an engine with fueling delay of 130 ms in Figure 4.21 and Table

4.3, except for the percent overshoot that was better with a reduction of 70 %. A special

case was for a fueling delay of80 ms. As seen in Figure 4.22, the maximum reduction was

for 85 % of the dominant real pole. When we tried a larger reduction, the response of the

resulting engine was saturated at zero. However, we noted better responses for 85 % and

90 % reduction for the percent overshoot. The mean square error has an small increment.

In Figure 4.23 we can see the case for a fueling delay of 50 ms. Here we obtained a percent

5/



overshoot improvem nt for the dominant r al pole reduced to 0 %. Ifwe continu 'th the

reduction we don't ee further improv m nt and th m n squar TTor in r as .

700

690

680

670

660

650
~

~ 640c.
'"

630

620

610

600
36 36.5 37 37.5 38

time
39 39.5

Figure 4.20: Engine re~pom'efor different size,., duel ion ofthe r al polesfor fueling delay

of110 ms. engine inertia of2 Ib1i-. ec2, friction b1 = 0.1229. Blu = Original stem.

Green = 90 %. Red = 80 %. Cyan = 70 %. Magenta = 60 %.

Size Mean square error Percent overshoot
reduction
of the real hI = 0.1229 hI =0.01 hi = 0.1229 hi =0.01 I

poles
Original

]529.52 1873.36 81.87 94.31response
90% 934.70 (61 %) 1072.66 (57 %) 45.49 (56 %) 57.85 (61 %)
80% 920.91 (60 %) 1059.53 (56 %) 24.35 (30 %) 36.91 (39 %)

70% 1088.70 (71 %) 1301.91 (69 %) 28.17 (34 %) 41.41 (44 %)

60% 1438.96 (94 %) 1881.43 (101 %) 38.75 (47 %) 55.02 (58 %)

Table 4.2: Engine re ponse mean square error and percent over hoot for different size

reduction ofthe real poles for fueling delay of'10 ms and engine inertia of 2Ib-ft- eel.
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Figure 4.21: Engine re ponsefor differ nt size redu tion ofth r Ipolesforfueling d ta

of130 ms, engin inertia of2 Ib-fi-s c?-, fri tion bI = 0.1229. Btu ri inal 'tern.

Green = 90 %. Red = 80 %. yan = 0 %. Mag nta 60 %.

ize Mean square error Percent overshoot
reduction
of the r I hI = .1229 hI = 0.01 hi = 0.1229 hI = O. 1

poles
Original

4965.88 6818.79 117.06 119. 9
response

90% 1292.81 (26 %) 1555.00 (23 %) 63.54 (54 %) 77.19 (64 %)

80% 1084.30 (22 %) 1272.48 (19 %) 37.08 (32 %) 51.67 (43 %)

70% 1118.29 (23 %) 1420.07 (21 %) 31.48 (27 %) 46.48 (39 %)

60 °/0 1394.30 (28 %) 1750.87 (26 %) 37.57 (32 Yo) 53.81 (45 %)

Table 4.3: Engine re pon e mean 'quare rr rand percent 0 ershoot for different ize

reduction ofthe real pole for fueling delay of130 m and engin mertia of2 lb-fl- c?-.
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Figure 4.22: Engine responsefor diffi rent size reduction ofth r al pol forfuelin"7 delay

of80 ms, engine inertia of 2 lb-fl-sec?-, friction bJ = 0.1229. Blue = Original ~ tent.

Green = 90 %. Red = 5 %.

Size Mean square error Percent overshoot
reduction

of real hI = 0.1229 hI = 0.01 hI = 0.1229 hI = 0.01
poles

Original
660.74 72 .81 34.7 4 .59

response

90% 661.98 (100 %) 728.07 (100 %) 17.44 (50 %) 26.32 (60 %)

85% 689.61 (104 %) 765.93 (106 %) 16.00 (46 %) 25.40 (58 %)

Table 4.4: Engine response mean square error andpercent over. hout for different size

reduction ofthe real pole. for fueling delay of80 ms and en ine inert ia uf2 Ib:ft-sec?-.
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Figure 4.23: Engine re.~ponsefor different si::e reduction ofthe realpolesforfUeling delay

of 50 ms, engine inertia of 2 lb-ji-sec?-. friction bJ 0.1229. Blue - Original stem.

Green = 90 %. Red = 85 %. Cyan 80 %.

ize Mean square error Percent overshoot
reduction
of the real hJ =0.1229 hJ = 0.01 b l =0.1229 hi = 0.01

poles
Original

445.5] 479.11 13.38 19.78
response

90% 493.81 (lIl %) 537.07 (1 12 %) 9.08 (68 %) 16.25 (82 %)
85% 515.23 (116 %) 563.17(118%) 10.2] (76 %) 17.65 (89 %)

80% 539.92 (121 %) 593.43 (124 %) 11.48 (86 %) 19.25 (93 %)

Table 4.5: Engine response mean square error and percent overshoot for different size

reduction ofthe real pole for fueling delay of50 ms and engine inertia of2 /b-ji-sec?-.
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The objective of this chapter was to introduce a standard adaptive controller with

which to compare the reinforcement learning algorithms to be presented in later chapters.

The self-tuning regulator was chosen as the base-line controller.

There are many variations of the self-tuning regulator. We used the pole­

positioning STR. The first stage in the development of this STR is to choose a set ofdesired

pole locations. If these are not chosen carefully, the resulting system may not be stable.

Through experimentation, we found that the best approach was to start with the closed-loop

locations of the base-line PID controller. We then identified the dominant poles and

reduced them in magnitude by a specified percentage (a reduction of80% provided the best

performance for the engine speed control).
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CHAPTERS

GENETIC REINFORCEMENT LEARNING FOR DIESEL ENGINES CONTROL.

5.1. Introduction.

In this chapter we will describe the GENITOR algorithm for the optimization of the

parameters of a diesel engine controller. We will explain the basics ofthat algorithm and

how it can be used to adjust the controller parameters.

5.2. GENITOR Algorithm.

The GENITOR Algorithm was developed by Dr. Whitley and his students at

Colorado State University and publications are available starting in 1988 (9,23 to 32)'

Initially, GENITOR was an algorithm to solve binary genetic applications(32)' After some

updates, Whitley et. al proposed the GENITOR algorithm as an application using real

numbers for training neural networks for reinforcement learning and "neurocontrol"

applications in a term they called Genetic Reinforcement Learning (25)'

Traditional Genetic Algorithms apply biologic ideas to the solution of a problem.

We can encode a solution in a string, where each parameter solution is consider as a bit of

that string. Ifwe manipulate that string we can obtain new solutions based on the survival

of the fittest. Researchers used manipulation methods related to chromosomal

recombination, such as crossover, mutation, etc.
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Nonnally the initial population is generated randomly. By random selection two

members of that population are selected and we apply "crossover" to obtain a new member

of the population or offspring. We will consider the parents 0101010001010101 and

yxyyxyyxyxyxyxyx, where the bit representation (0, 1, x, y) was choosen to recognize each

parent. Ifwe apply a crossover at the 4th bit of the parents, it means the recombination:

0101\/010001010101~0101xyyxyxyxyxyx

yxyy\/xyyxyxyxyxyx~yxyyOl0001010101

After the Crossover operation, we can perform the mutation operation, where some

bits ofthe offspring are randomly selected and the values complemented. For example, if

we select the bit 2, 7 and lO of the first offspring we will obtain:

0101xyyxyxyxyxyx

i i i
OOOlxyxxyxxxyxyx

i i t

An important feature from GENITOR to obtain an improvement in the quality of

the population is the tendency to select the best parents more frequently. The difference

with gradient search methods is that genetic algorithms will search randomly in all of the

hyperplanes.

We can define a hyperplane that represents the binary encoding as seen in Figure

5.1. If we have a 3-bit string the search is performed in the upper hypercube of Figure 5.1.

Ifwe have a 4-bit string the search is made in the hypercube of four dimensions shown in

the lower part of the same figure. The difference between the subspaces is the first bit,

where 1 represents the inner cube and 0 the outer cube. The concept of implicit parallelism
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means an efficient search in those numerous hyperplanes. This feature permits the search

of nonlinear functions without gradient calculation.
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Figure 5.1: A 3-dimensional and a 4-dimensional hypercube (24)"

The GENITOR algorithm, developed by Whitley and his students, generates an

initial population of random strings. Each member of the population is evaluated and the

population is sorted according to their fitness. Two parents are selected at random from the

population. That selection process uses a bias ranking selection algorithm allowing a higher
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probability of selection to the best parents. The bias ranking selection is implemented with

the relation:

tix(Populationsize(bias - ,fbias2 - 4(bias - 1)rand)) + 1
parent =

2(bias - 1)

that represents the probability density function:

f(P) = bias - 2(bias - l)p

where p is the parent ranking. We can see a plot of this function for Bias = 1.9 in Figure

5.2. We notice that parents with higher fitness (lower position in sorted population) have

higher probability to be selected.

0.02

0.0 18

0.016

0.014

0.012
0
0

-- 0.01..e-

0.008

0.006

0.004

0.002

0
0 20 40

p*IOO
60 80 100

Figure 5.2: Probability density function for bias = 1.9.
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A crossover process permits the recombination of the parents. From both offspring

we select one and discard the other. We evaluate the new offspring and it is placed

according to its fitness, replacing the lowest ranked parent.

The improvements that Whitley and his students defined for the application of

GENITOR in the training of Neural Networks are:

• 1.- The Neural Network problem is encoded as real-valued strings instead of binary

strings.

• 2.- A different procedure for mutation is used. "Traditional genetic algorithms are

largely driven by recombination, not mutation"(25)'

• 3.- The algorithm uses an small population (e.g. 50 individuals) to reduce the explora­

tion of dissimilar representations for the same neural network.

We can see the GENITOR implementation in Figure 5.3.
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11. InltlalIzatlOn Phase.

- Set all the weights in the network to a random value between ± 2.5

- Set one allele representing the probability ofcrossover to a random value between
aand 1.

- Evaluate each individual and sort the population according to the fitness.

2. Iteration phase.

- Select two individuals according to relative fitness using linear-bias selection.

- Crossover with probability detennined by the crossover probability allele of the
string selected as parent 1; otherwise perform mutation on parent 1.

- The offspring always inherits the crossover probability of parent 1. If parent has
higher fitness than the offspring, increment the offspring crossover probability by a
"actor of 0.10 (to maximum 0.95); otherwise decrease the crossover probability by a
lractor of 0.10 (to minimum 0.05).

- Evaluate new offspring and insert in the population according to fitness.

- Continue "iteration" until error is acceptable or MAX-ITERATraNS = True.

uperator.

!Mutation: Mutate all weights on the first selected individual by adding a random
tvalue with range ± 10.0.

Crossover: Perform no crossover if the parents differ by two or fewer alleles. Other­
wise, recombine the strings one-point crossover between the first and the last posi­
ions at which the parents have different weight values.

Figure 5.3: Original GENITOR algorithm (D. Whitley, et. al.) (25)"

From Figure 5.3 we can see that one allele is the probability of crossover. As the

algorithm converges, the probability of crossover decreases. We can only perform

crossover or mutation for a new offspring. Also, the mutation operator creates a new

random offspring near the selected parent.
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5.3. Model Description.

In this section we will briefly review the basic diesel engine model and baseline PID

controller which were discussed in Chapter 3. The simplified engine diesel control model

is described from Figure 3.1 to Figure 3.4.

With the model of the Figure 3.4 we made a simulation with constant load of

150 ft-lb. The speed engine was changed between 600 rpm and 650 rpm every 5 seconds

for a total time of20 seconds. We can see in Figure 5.4 and Figure 5.5 how the PID

controller changes the engine speed between 600 rpm and 650 rpm, and the fueling is

maintained between 0 and 300 mm
J

/ stroke. We will make the future simulations based

on this model for the engine.

v V

:

1\ f\
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660
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640
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&.
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590

580
o 5 10 time 15 20

Figure 5.4: Original engine responsefor Kp=2, Ki=O.5, Kd=O.05, a=15.
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Figure 5.5: Originalfueling responsefor Kp=2. Ki=O.5, Kd=O.05, a=15.

5.4. Genetic Reinforcement Learning applied to PID controller.

We applied Genetic Reinforcement Learning to the system shown in Figure 3.4.

The simulation will run with constant load of 150 ft-Ib changing speed between 600 rpm

and 650 rpm every 5 seconds, for a total simulation time of20 seconds. We defined as

fitness function the mean square error of the desired speed response. This parameter is

related to the rise time for the engine speed. For the original PID controller we have the

responses of Figure 5.4 and Figure 5.5. For a = 10 and a = 20 we have a mean square

error of 1000.34 and'999.34, respectively. We want to minimize the mean square error and

indirectly the rise time and the tracking error. The initial population used for training was

set around the basic PID parameters and a = 15.

5.5. Initial results.

We can see the training results in Table 5.1. For each experiment we started the

training with random values around the basic PID controller parameters. We can see an



improvement in the responses due to the PIO controller based on the mean square error. The

mean square error was calculated by direct integration of the square error in the simulink

model. We obtained approximate improvements for the mean square error from 3.63 % to

10.00 %. From the two initial rows ofTable 5.1, we notice that the best results, for the same

number of epochs, were obtained for the smaller population. After increasing the number

of epochs to 30000, we obtained best results for the population of 50, as shown in the last

row of Table 5.1, Figure 5.9 and Figure 5.10. We can see an improvement with longer

training, but good results can be obtained after a few epochs.

Table 5.1: Controller's results for mean square error basedfitness.

Best Fitness 0/0 Pop. Resulting Notes
(error)2. improvement Size Parameters

920.64 7.87 5 Kp= 1.7718 Random initial conditions
Ki= 0.0788 around basic PIO controller.
Kd=0.6835 3000 epochs.
a = 20.8593

963.01 3.63 50 Kp= 1.8662 Random initial conditions
Ki= 0.0117 around basic PIO controller.
Kd=0.1455 3000 epochs.
a = t7.9139

899.38 10.00 50 Kp= 1.7975 Random initial conditions
Ki=0.1417 around basic PIO controller.
Kd= 1.0868 30000 epochs.
a = 25.9656
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5.6. GENITOR applied to analog PID controller.

5.6.1. Results for different engine inertia.

For the next case we repeated the traini ng for differ nt val u of ngm me ia I .

For ach case th initial r pon changes according to th engine in rtia value.

Optimization i ne ded to adjust th prD controller values to match th engin inertia. W

use the mean square error a our fitne s alu . To reduce the training time, we changed the

training schem to two spe d transitions. The first transition is om 600 to 650 rpm at I

second. The second transition is from 650 to 600 at 3.5 seconds. The engine and the PID

controller are initialized with the engine conditions for 600 rpm. The imulation runs from

oto 1 second without error measurements, then the training is start d. After the fir t t of

simulations we obtained negative values 0 integral gain. Those value were due to the

limited simulation time for each speed, during which the tendency of an increased
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accumulation of integral error could not be noticed. To overcome this, we increased the

simulation time to 8 seconds with the second transition from 650 to 600 rpm at 4.5 seconds.

To ensure the correct values of the parameters for future training, we changed the mutation

process in the GENITOR algorithm by accepting only positive values of the PID

parameters.

For the mean square error as fitness we obtained the results shown in Table 5.2 for

six different inertia values and two different population sizes. For very oscillatory engine

responses we could reduce the mean square error to 20 % of its original value for inertia

equal to 1 Ib-ft-sec2, as seen in first row ofTable 5.2 and Figure 5.11. As inertia increases,

the mean square error was reduced to 77 % of its original value for inertia equal to 1.4 lb-

ft-sec2 (see the second row ofTable 5.2 and Figure 5.13). In the last four rows of Table 5.2

we can see mean square error reduction ranging from 91 % to 95 % of their original values

for inertia between 1.8 Ib-ft-sec2 and 3 Ib-ft-sec2 (see also Figure 5.15, Figure 5.17, Figure

5.19 and Figure 5.21). If we compare the results related to the population size we noticed

small differences in the results for 1500 epochs. For lower inertia values (see Figure 5.12

and Figure 5.14) the learning process is faster with smaller population. For the remaining

cases the learning rate is similar for both of the populations used. A special case is for

inertia 2.2 Ib-ft-sec2 (see Figure 5.18) where a good initial value in the population generated

a better response for the case of higher population. We must remember that the population

initialization and the recombination process are random in nature, therefore, for a specific

experiment we could obtain results that are not consistent with overall trends.
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Table 5.2: Engine with different inertia. Controller's resultsfor mean square error based

fitness.

Inertia Initial Best Fitness Resulting Best Fitness Resulting
Ib-ft-sec2. Fitness (error)2. Parameters (error)2. Parameters

(error)2. Pop. = 5 Pop. = 5 Pop. = 50 Pop. = 50

1 2939.12 600.18 Kp=0.9651 592.71 Kp=0.9964
(20.42 %) Ki=0.5399 (20.16 %) Ki=0.3470

Kd=0.0481 Kd=0.0422
a = 13.0029 a = 16.5038

1.4 761.07 591.34 Kp=I.3283 597.15 Kp= 1.4847
(77.69 %) Ki=0.4298 (78.46 %) Ki=0.4459

Kd=0.0549 Kd=0.0510
a = 15.6957 a = 13.4670

1.8 626.52 599.19 Kp= 1.9398 597.16 Kp= 1.9493
(95.63 %) Ki= 0.5016 (95.31 %) Ki= 0.4472

Kd=0.0543 Kd=0.0505
a= 14.2661 a = 14.8449

2.2 625.57 594.90 Kp=2.0588 592.23 Kp=2.0697
(95.09 %) Ki=0.4409 (94.67 %) Ki=0.4436

Kd=0.0583 Kd=0.0496
a = 13.2913 a= 15.4919

2.6 648.53 596.43 Kp=2.2861 606.42 Kp=2.1127
(91.96 %) Ki= 0.4830 (93.50 %) Ki=O.4758

Kd=O.0494 Kd=0.0476
a= 16.7868 a = 14.6991

3 665.24 621.36 Kp=2.0800 618.70 Kp = 2.0795
(93.40 %) Ki=O.4801 (93.00 %) Ki=0.4097

Kd=0.0473 Kd=O.0546
a = 14.9868 a = 14.9168
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For the next case we repeated the training for different engine inertias, but we

changed the fitness function from mean square error to percent overshoot. For that fitness

function we obtained the results shown in Table 5.3. From that table we can see that the

percentage response improvement depends on the initial overshoot. More impressive

results were obtained with more initial overshoot and oscilJatory responses. Due to the

selected fitness function, we can see in the odd figures from Figure 5.23 to Figure 5.35 that

the resulting responses tend to be more flat. If we compare the training processes, we

obtained a better response for small populations, as seen in the even figures from Figure

5.24 to Figure 5.36. This must be due to the less restrictive fitness function (overshoot)

allowing faster mutation for lower populations.
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Table 5.3: Engine with different inertia. Controller's results/or percent overshoot based

fitness.

Inertia Initial Best Fitness Resulting Best Fitness Resulting
/b-ft-sec2

• Fitness (overshoot). Parameters (overshoot). Parameters
(overshoot) Pop. = 5 Pop. = 5 Pop. = 50 Pop. = 50

1 103.1990 0.4311 Kp=0.5323 0.9894 Kp=0.5595
(0041 %) Ki= 0.0670 (0.95 %) Ki= 0.1045

Kd=0.0767 Kd=0.0475
a= 14.8190 a = 16.3213

1.4 57.6517 0.3047 Kp=0.6509 1.2924 Kp=0.7971
(0.52 %) Ki= 0.0628 (2.24 %) Ki=0.1319

Kd=0.0307 Kd=0.0514
a = 11.9443 a = 13.6600

1.8 36.6645 0.3939 Kp=0.7736 0.4040 Kp=0.9222
(OAt %) Ki= 0.0625 Ki= 0.0796

Kd=0.0507 Kd=0.0691
a = 13.9364 a=14.8195

2.2 22.2402 0.3906 Kp=0.9513 0.4233 Kp= 1.1102
(1.07 %) Ki=0.0675 (1.15%) Ki= 0.0830

Kd=O.0494 Kd=0.0479
a = 13.9331 a = 14.8503

2.6 12.9828 0.3604 Kp= 1.3477 0.3329 Kp= 1.2580
(2.77 %) Ki= 0.1014 (2.56 %) Ki=0.0872

Kd=0.0698 Kd=0.0561
a= 17.8313 a = 13.0939

3 7.1080 0.4237 Kp= 1.5058 0.3842 Kp= 104804
(5.96 %) Ki=O.0971 (5.40 %) Ki=0.0955

Kd=O.0440 Kd=0.0449
a = 15.1023 a = 13.6163
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5.6.2. Results for different fueling delays.

For the next case we repeated the training for different engine fueling delays 't . For

each case the initial response changed according to the fueling delay value with a fixed

engine inertia of2 Ib-ft-sec2. An optimization is needed to adjust the PID controller values

to match the engine fueling delay.We use the mean square error as our fitness value. Like

the previous case, we changed the training scheme to two speed transitions to reduce the

training time process. The first transition is from 600 rpm to 650 rpm at 1 second. The

second transition is from 650 rpm to 600 rpm at 4.5 seconds. The engine and the PID

controller are initialized with the engine conditions for 600 rpm. The simulation runs from

oto 1 second without error measurements, then the training is started.

Using the percent overshoot as fitness, we obtained the results shown in Table 5.4

for six different fueling delay values and two different population sizes. Ifwe look at Table

5.4 and the odd figures from Figure 5.35 to Figure 5.45, we notice how the response

improves from the closest values to the delay of 80 msec to the extreme delay values. This

must be due to the fact that the original PID parameters were optimized for the delay of 80

msec. As we move far from that delay, the original PIO response needs more improvement.

Ifwe look at the training process (even figures from Figure 5.36 to Figure 5.46). we notice

a faster response for the smaller population. However, in the majority of the responses the

final values obtained for the large population were better. Figure 5.40 show a special case,

where the training for smaller population apparently arrived at a local minimal and then

future training does not improve the engine response.
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Table 5.4: Engines with differentfueling delay. Controller's results for mean square error

based.fitness.

Delay Initial Best Fitness Resulting Best Fitness Resulting
(msec) Fitness (error)2. Parameters (error)2. Parameters

(error)2. Pop. = 5 Pop. = 5 Pop. = 50 Pop. = 5

30 355.32 257.26 Kp=3.0428 268.68 Kp=2.7465
(72.36 %) Ki= 0.2787 (75.57 %) Ki= 0.4947

Kd=0.0527 Kd=0.0425
a = 15.0048 a = 15.7296

50 432.08 385.81 Kp=2.2091 380.24 Kp=2.5555
(89.29 %) Ki=0.4515 (88.00 %) Ki= 0.4656

Kd=0.0568 Kd=0.0496
a = 14.5073 a= 14.1181

70 544.42 521.53 Kp=I.9492 517.01 Kp= 1.9840
(95.79 %) Ki=0.4857 (94.96 %) Ki=0.4314

Kd=0.0533 Kd=0.0485
a= 16.3126 a = 13.3124

90 729.64 660.49 Kp=1.7835 669.07 Kp= I .7831
(90.52 %) Ki=0.2725 (91.69 %) Ki=0.4787

Kd=0.0609 Kd=0.0496
a = 13.6584 a = 13.6043

110 1007.13 818.17 Kp= 1.5797 818.07 Kp= 1.4269
(81.23 %) Ki=0.3228 (81.22 %) Ki=0.2924

Kd=0.0523 Kd=0.0519
a = 17.3795 a = 14.7027

130 1579.99 1006.44 Kp= 1.3023 972.48 Kp= 1.2753
(63.69 %) Ki =0.5150 (61.54 %) Ki=0.2998

Kd=0.0347 Kd=0.0482
a = 13.9807 a = 14.2724
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For the next case we repeated the training for different fueling delays 't, changing

the fitness function to the percent overshoot. For that fitness function we obtained the

results shown in Table 5.5. As we can see from Figure 5.47 to Figure 5.58, the resulting

responses tend to be flatter.

Table 5.5: Engines with different fueling delay. Controller's results/or percent overshoot

basedfitness.

Delay Initial Best Fitness Resulting Best Fitness Resulting
(msec) Fitness (overshoot). Parameters (overshoot). Parameters

(overshoot). Pop. = 5 Pop. = 5 Pop. = 50 Pop. = 5

30 1.3080 0.3443 Kp= 1.9959 0.3612 Kp=2.2170
(26.32 %) Ki=0.2174 (27.61 %) Ki = 0.2454

Kd=0.0431 Kd=0.0490
a= 16.0838 a = 14.8958

50 4.5210 0.4311 Kp=I.6536 0.3864 Kp= 1.61 56
(9.53 %) Ki= 0.1636 (8.54 %) Ki=0.1564

Kd=0.0546 Kd=0.0481
a = 18.3008 a = 15.1590

70 18.7506 0.4243 Kp=I.1677 0.3374 Kp=1.2237
(2.26 %) Ki=0.0990 (1.79 %) Ki=0.1097

Kd=0.0591 Kd=O.0577
a=15.1457 a=15.0712

90 37.9684 0.3627 Kp=0.8812 0.4373 Kp=0.9625
(0.95 %) Ki=0.0698 (1.15%) Ki=0.0770

Kd=0.0526 Kd=0.0601
a= 17.7431 a = 13.8594

110 56.3349 0.3243 Kp= 0.7657 0.3109 Kp= 0.7764
(0.57 %) Ki=0.0548 (0.55 %) Ki=0.0587

Kd=0.0520 Kd=O.0601
a = 13.4557 a = 13.3248

130 76.8723 0.2631 Kp= 0.5320 1.0819 Kp= 0.6909
(0.34 %) Ki=0.0335 (1.40 %) Ki=0.0609

Kd=0.0322 Kd=0.0473
a = 14.8544 a = 15.2094
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5.7. Genetic Algorithms applied to digital controllers.

In the next sections we will apply the GENITOR algorithm to the Digital version of

a PID controller. We first converted the original analog PID controller to its digital version.

To realize that conversion we took the PID original relation given by Eq. (3.1) then

executed the conversion:

where T is the sampling time. The transformation of Eq. (3.1) by using Eq. (5.1) is:

(Kp + Kd)i + (- 2(Kp + Kd) + T(Kp· a + Ki»z

+ (Kp + Kd- T(Kp· a + Ki) + T(Ki' a))
G(z) = ------'--2----'-----'----'----'---

Z + (T· a - 2)z + (1- T· a)

(5.1)

(5.2)

For Kp = 2, Ki = 0.5, Kd = 0.05 and a = 15 (middle point between 10 and

20), and T = 50 ms we obtained the transfer function:

2
G(z) = 2.05z - 2.575z + 0.5437

2
z - 1.25z + 0.25

(5.3)

Our first approach was to emulate the GENITOR training of the analog controller

and execute the conversion from Eq. (5.1). This approach resulted in a slow training and

generally the results were far from desired responses. Next, we parametrized the digital

controller as:

G
K (z - zo) (z - Z I)

(z) = --~_--:-

(z-PO)(z-PI)
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With the implementation ofEq. (5.4) w can define the location ofth z rand

the poles without the restrictions of the PID controller. We defin d the use of the controller

from Eq. (5.4) where we have five parameters Po' PI' zo, zl and K. The initial alu s of

the previous parameters will be obtained from Eq. (5.3), resulting in Po = l, PI = 0.25.

Zo = 0.9875, zi = 0.2686 and K = 2.05. Starting with those values we will execute the

GENITOR algorithm defined in section 5.2 to optimize the controller parameters for

different values of fueling delay and engine inertia.

5.8. GENITOR algorithm applied to digital controller and engine with friction

bJ=O.1229.

5.8.1. Results for different engine inertia.

For the first digital controller case we executed the training for different engine

inertia values. For each case the initial response changes according to the engine inertia

value. Optimization is needed to adjust the controller values to match the engine inertia. We

use the mean square error as our fitness value. As in the analog case, we changed the

training scheme to two speed transitions to reduce the training time. The first transition is

from 600 to 650 rpm at t I seconds. The second transition is from 650 to 600 at 12 seconds.

The engine and the controller were initialized with the engine conditions for 600 rpm under

the basic controller. The simulation runs from 0 to t I seconds without error measurements,

then the training is started. To ensure the correct values of the parameters for future
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training, we changed the mutation process in the GENITOR algorithm by accepting only

poles and zeros inside the unit circle.

We executed three different training processes under different conditions:

1.- t I = 1 seconds, t 2 = 4.5 seconds. Searching step = 111 00.

2.- (, = 1 seconds, 12 = 4.5 seconds. Searching step = 1/10.

3.- (, = 5 seconds, 12 = 8.5 seconds. Searching step = 1/10.

Using the mean square error as fitness for each of the previous conditions we

obtained the results shown in Table 5.6, Table 5.7 and Table 5.8. The training was made

for six different inertia values and two different population sizes. If the search range is

small the results are not too impressive, as we can see from Table 5.6 with Table 5.7 and

Table 5.8. The variation in the 1I value did not significantly affect the results, as we can

see by comparing Table 5.7 and Table 5.8.

For very oscillatory engine responses we could reduce the mean square error to 6.72

% of its original value for inertia equal to Ilb-ft-sec2, as seen in first row of Table 5.8 and

Figure 5.59. As inertia increases, the mean square error decreases to 42 % of its original

value for inertia equal to 1.4 Ib-ft-sec2 (see second row of Table 5.7 and Figure 5.60). In

the last four rows of Table 5.7 and Table 5.8 we can see reductions from 73 % to 94 % of

the original mean square error for inertia between 1.8 Ib-ft-sec2 and 3 Ib-ft-sec2 (see also

Figure 5.61, Figure 5.62, Figure 5.63 and Figure 5.64). Ifwe compare the results related to

the population size we noticed small differences in the results for 1500 epochs.
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Table 5.6: Engine with different inertia. Controller's results for mean square error based

fitness. Searching step 1/100. Error calculation after t1 = 1 second.

Inertia Initial Best Fitness Resulting Best Fitness Resulting

Ib-ft-sec2. Fitness (error)2. Parameters (error)2. Parameters
(error)2. Pop. = 5 Pop. = 5 Pop. = 50 Pop. = 50

1 8169.89 5206.43 poles= 1.0000 4453.27 poles= 1.0000
(63.73 %) and 0.2506 (54.51 %) and 0.2472

zeros=0.9980 zeros=0.9889
and 0.2802 and 0.2837

gain = 2.0352 gain = 2.0224

1.4 1276.85 722.48 poles= 1.0000 823.01 poles= 1.0000
(56.58 %) and 0.4441 (64.46 %) and 0.2690

zeros=0.9904 zeros= 1.0000
and 0.5377 and 0.3892

gain = 1.7641 gain = 1.9919

1.8 783.71 701.90 poles= 1.0000 706.30 poles= 1.0000
(89.56 %) and 0.2497 (90.12 %) and 0.2477

zeros=0.9912 zeros=0.9896
and 0.2994 and 0.3193

gain = 1.8973 gain = 2.0198

2.2 692.70 659.35 poles=0.9999 669.43 poles= 1.0000
(95.19 %) and 0.2419 (96.64 %) and 0.2458

zeros=0.9838 zeros=0.9869
and 0.3091 and 0.3038

gain = 1.9324 gain = 2.0241

2.6 691.63 678.61 poles=0.9999 685.00 poles= 1.0000
(98.12 %) and 0.2490 (99.04 %) and 0.2435

zeros=0.9858 zeros=0.9881
and 0.3202 and 0.2863

gain = 2.0622 gain = 2.0373

3 719.20 713.04 poles=0.9999 715.38 poles = 1.0000
(99.14 %) and 0.2511 (99.47 %) and 0.2467

zeros=0.986l zeros=0.9895
and 0.2980 and 0.2892

gain = 2.1140 gain = 2.0684
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Table 5.7: Engine with different inertia. Controller's results/or mean square error based

fitness. Searching step 1/10. Error calculation after t I = 1 second.

Inertia Initial Best Fitness Resulting , Best Fitness Resulting
Ib-ft-sec2. Fitness (error)2. Parameters (error)2. Parameters

(error)2. Pop. = 5 Pop. = 5 Pop. = 50 Pop. = 50

1 8169.89 655.75 poles = 1.0000 719.90 potes = 1.0000
(8.03 %) and 0.2892 (8.81 %) and 0.3234

zeros =0.9885 zeros =0.9972
and 0.5837 and 0.5660

gain = 1.5860 gain = 1.5558

1.4 1276.85 549.78 poles =0.9998 543.32 poles =0.9998
(43.06 %) and 0.3947 (42.55 %) and 0.2111

zeros =0.9516 . zeros =0.9598
and 0.6942 and 0.5755

gain = 1.5405 gain = 1.7666

1.8 783.71 581.42 poles =0.9999 577.63 poles =0.9999
(74.19%) and 0.4201 (73.70 %) and 0.1792

zeros =0.9611 .zeros =0.9593
and 0.6877 and 0.5028

gain = 1.9741 gain = 2.0947

2.2 692.70 619.30 poles =0.9999 619.86 poles =0.9999
(89.40 %) and 0.4000 (89.48 %) and 0.2066

zeros =0.9744 zeros = 0.9787
and 0.6337 and 0.4449

gain = 2.1967 . gain = 2.2542
I

2.6 691.63 652.52 poles =0.9998 . 660.04 poles =0.9999
(94.35 %) and 0.4871 (95.43 %) and 0.2017

zeros =0.9772 zeros =0.9827 '
and 0.6694 and 0.3854

gain = 2.5705 gain = 2.2788

3 719.20 685.23 poles = 1.0000 700.56 poles =0.9999
(95.28 %) and 0.2698 (97.41 %) and 0.2023

zeros =0.9908 zeros =0.9844
and 0.4782 and 0.3182

gain = 2.8373 gain = 2.3547

/04



Table 5.8: Engine with different inertia. Controller's results for mean square error based

fitness. Searching step 1/10. Error calculation after tl = 5 seconds.

Inertia Initial Best Fitness Resulting Best Fitness Resulting
Ib-ft-sec2. Fitness (error)2. Parameters (error)2. Parameters

(error)2. Pop. = 5 Pop. = 5 Pop. =50 Pop. = 50

1 9850.95 549.08 poles = 1.0000 593.91 poles =1.0000
(6.72 %) and 0.2170 (7.27 %) and 0.2087

zeros = 0.9113 zeros = 0.9699
and 0.6804 and 0.5331

gain = 1.4068 gain = 1.51.62

1.4 1201.40 569.97 poles =1.0000 563.31 poles = 1.0000
(44.64 %) and 0.3122 (44.12 %) and 0.1938

zeros = 0.9574 zeros =0.9654
and 0.6051 and 0.5511

gain = 1.6372 gain = 1.8521

1.8 745.81 586.78 poles = 1.0000 588.38 poles = 1.0000
(74.87 %) and 0.2605 (75.08 %) and 0.2073

zeros = 0.9703 zeros = 0.9780
and 0.5720 and 0.4921

gain = 2.1365 gain = 2.0978

2.2 683.19 615.93 poles = 1.0000 630.09 poles = 1.0000
(88.92 %) and 0.2972 (90.96 %)

I

and 0.2058
zeros = 0.9853 ' zeros =0.9881

and 0.5661 and 0.3851
gain = 2.4501 gain =2.0117

2.6 686.58 647.27 poles = 1.0000 656.20 poles = 1.0000
(93.59 %) and 0.2515 (94.88 %) and 0.2309

zeros = 0.9868 zeros =0.991 1
and 0.4625 and 0.4162

gain = 2.5099 gain = 2.2792

3 712.57 682.19 poles = 1.0000 691.15 poles = 1.0000
(94.85 %) and 0.2865 (96.10 %) andO.2161

zeros = 0.9922 zeros = 0.9923
and 0.4758 and 0.3453

gain = 2.6324 gain = 2.4166
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Figure 5.60: Detail Iran ilion from 600 to 650 rpm. In rtia 1.4lb-fl-sec?2

1. Color codes from Figure 5.5 to Figure 5.64: Blue =Original P parameters, Green =GENl OR
optimized parameters (searching step = 1/100, error calculation after I second), Red =

optimized parameter (searching step = 1110, err r calculation after I second), Black =

optimized parameters (searching step = 1/10, error calculatio after 5 second)
2. See Note I.
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Figure 5. 2: Detail transition from 600 to 650 rpm. Inertia - 2.2 Ib-It-s d. 2

I. See note 1 on page 106.
2. ee ote I on page 106.

107



6 0

650

640

i
0- 630en

620

610

600
5 5.5 6 6.5 time 7 7.5 8 8.5

Figure 5.63: Detail transition from 600 to 650 rpm. Inertia = 2.61b-/t-sec!. J

660

50

640

1- 630en

620

610

600
5 5.5 6 6.5 time 7 7.5 8 8.5

Figure 5.64: Detail transition/rom 600 to 650 rpm. Inertia - 3Ib-fi- ec!.2

I. See Note 1 on page 106.
2. See Note 1 on page 106.
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For the next case we repeated the training for different engine inertia 1; changing

the fitness function to percent overshoot. We used the same three training conditions

described on page 102. For that fitness function we obtained the results shown in Table 5.9,

Table 5.10 and Table 5.11. From those tables we can see that the percentage improvement

depends on the initial overshoot. More impressive results were obtained with more initial

overshoot and oscillatory responses. However, curious results were found for an inertia of

1 Ib-ft-sec2. For that inertia value we obtained very good results for two of the six possible

training conditions, as seen in the first row ofTable 5.9 and Table 5.10. Due to the selected

fitness function, we can see from the Figure 5.65 to Figure 5.71 that the resulting responses

tend to be flatter. If we compare the training processes, we obtained a better response for

large populations versus small populations when the search range was 1/1 00 as seen in

Table 5.9. As the search range increased, we cannot see a clear advantage for either

population size. For this fitness function we can see that with smaller searching range we

can obtain better results with larger populations because the recombination could be greater

and the genetic algorithm could find controller combinations that stabilize the original

system. As the searching range increases, the population size became a less important

factor.
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Table 5.9: Engine with different inertia. Controller's results for percent overshoot based

fitness. Searching step 11100. Error calculation after t, = 1 second

Inertia Initial Best Fitness Resulting Best Fitness Resulting

lb-/t-sec? Fitness (overshoot). Parameters (overshoot). Parameters
(overshoot) Pop. = 5 Pop. =5 Pop. = 50 Pop. = 50

1 162.3742 108.6194 poles=0.9983 0.9894 poles= 1.0000
(66.89 %) and 0.2522 (0.61 %) and 0.2557

zeros =0.9840 zeros =0.9967
and 0.2678 and 0.2820

gain = 2.0321 gain = 2.0442

1.4 68.6588 53.3478 poles= 1.0000 1.2924 poles= 1.0000
(77.70 %) and 0.2555 (1.88 %) and 0.2466

zeros= 0.9949 zeros=0.9895
and 0.3385 and 0.3154

gain = 1.9083 gain = 1.9951

1.8 43.3333 31.2830 poles = 1.0000 0.4040 poles =1.0000
(72.19 %) and 0.2554 (0.92 %) and 0.2464

zeros =0.9943 poles =0.9886
and 0.3396 and 0.3079

gain = 1.8816 gain = 2.0192

2.2 29.7008 21.4776 poles= 1.0000 0.4233 poles = 1.0000
(72.29 %) and 0.2528 (1.41 %) and 0.2460

zeros =0.9942 zeros = 0.9943
and 0.3262 and 0.3009

gain = 1.9461 gain = 1.9984

2.6 18.9070 9.8514 poles = 1.0000 0.3329 poles= 1.0000
(52.12 %) and 0.2521 (1.75 %) and 0.2471

zeros = 0.9945 zeros =0.9924
and 0.3334 and 0.3009

gain = 1.8775 gain = 1.9936

3 12.4636 6.1016 poles= 1.0000 0.3842 poles= 1.0000
(48.96 %) and 0.2493 (3.05 %) and 0.2452

zeros = 0.9909 zeros=0.9912
and 0.3080 and 0.3016

gain = 1.9183 gain = 2.0062
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Table 5.10: Engine with different inertia. Controller's results/or percent overshoot based

fitness. Searching step 1/10. Error calculation after ti = 1 second

Inertia Initial Best Fitness Resulting Best Fitness Resulting
lb-ft-sec2• Fitness (overshoot). Parameters (overshoot). Parameters

(overshoot) Pop. = 5 Pop. = 5 Pop. = 50 Pop. = 50

1 162.3742 0.5374 poles = 1.0000 12.3415 poles = 1.0000
(0.33 %) and 0.6679 (7.60 %) and 0.2246

zeros = 0.9505 zeros =0.9747
and 0.8812 and 0.8016

gain = 0.9073 gain = 1.7781

1.4 68.6588 0.4853 poles = 1.0000 18.7830 poles = 1.0000
(0.70 %) and 0.3170 (27.36 %) and 0.2938

zeros =0.9683 zeros = 1.0000
and 0.7010 and 0.5915

gain = 1.6805 gain = 1.6021

1.8 43.3333 0.4084 poles = 1.0000 1.3871 poles = 1.0000
(0.92 %) and 0.3756 (3.18%) and 0.2092

zeros =0.9728 zeros =0.9793
and 0.6239 and 0.5856

gain = 1.6596 gain = 2.0012

2.2 29.7008 0.1698 poles = 1.0000 0.7574 poles = 1.0000
(0.57 %) and 0.2003 (2.53 %) and 0.2285

zeros =0.9752 zeros =0.9798
and 0.4250 I and 0.4822

gain = 1.6103 ' gain = 1.9294

2.6 18.9070 0.3284 poles = 1.0000 1.9389 poles = 1.0000
(1.69 %) and 0.3027 (10.21 %) and 0.2216

zeros =0.9800 zeros =0.9859
and 0.4822 and 0.4140

gain = 1.9477 gain = 1.9364

3 12.4636 1.2683 poles = 1.0000 0.0570 poles = 1.0000
(10.11%) and 0.2542 (0.46 %) and 0.2510

zeros =0.9856 zeros =0.9811
and 0.4033 and 0.4175

gain = 1.9950 gain = 2.0620
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Table 5.11: Engine with different inertia. Controller's results for percent overshoot based

fitness. Searching step 1/10. Error calculation after IJ = 5 seconds.

Inertia Initial Best Fitness Resulting Best Fitness Resulting

Ib-f/-set? Fitness (overshoot). Parameters (overshoot). Parameters
(overshoot) Pop. = 5 Pop. = 5 Pop. =50 Pop. = 50

1 139.49 65.9343 poles = 1.0000 26.8802 poles = 1.0000
(40.60 %) and 0.3604 (16.55 %) and 0.3191

zeros = 1.0000 zeros = 1.0000
and 0.4277 and 0.8079

gain = 1.8893 gain = 1.4954

1.4 67.21 1.8923 poles = 1.0000 2.1943 poles = 1.0000
(2.75 %) and 0.5036 (3.19 %) and 0.2372

zeros =0.9764 zeros =0.9801
and 0.6747 and 0.5811

gain = 1.2098 gain = 1.5248

1.8 43.11 5.7385 poles = 1.0000 0.1427 poles = 1.0000
(13.22 %) and 0.5605 (0.33 %) and 0.2151

zeros =0.9899 zeros =0.9698
and 0.7116 and 0.5899

gain = 1.5506 gain = 1.7173

2.2 29.78 1.5278 poles = 1.0000 0.1213 poles = 1.0000
(5.12 %) and 0.4926 (0.41 %) and 0.2394

zeros = 0.9819 zeros =0.9758
and 0.6117 and 0.4909

gain = 1.5990 gain = 1.9150

2.6 19.03 0.6882 poles = 1.0000 1.7825 poles = 1.0000
(3.60 %) and 0.2410 (9.42 %) and 0.2115

zeros = 0.9813 zeros =0.9855
and 0.4053 and 0.3710

gain = 1.8359 gain = 1.8451

3 12.75 0.4607 poles = 1.0000 0.1711 poles = 1.0000
(3.69 %) and 0.2346 (1.36 %) and 0.2122

zeros =0.9828 zeros =0.9819
and 0.3142 and 0.3780

gain = 1.6024 gain = 1.9775
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I. Color es from Figure 5.65 to Figure 5.7 •Blu = Original PID parameters, Gr n = GE
ptimized parameters (searching step = /100, error calculati n after I second, Red = G·NI OR
ptimized parameters (searching step = 1/\ 0, error calculation after I second), lack = GENI R

optimized parameters (searching step = 1/10, err r calculation after 5 conds).
2. See Note \.
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1. See ot 1 on page 113.
2. ee Not I on page J13.
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5.8.2. Results for different delays.

For the next case we repeated the training for different engine fueling delays. For

each case the initial response changed according to the fueling delay value with a fixed

engine inertia of 2 Ib-ft-sec2
. An optimization is needed to adjust the controller values to

match the engine fueling delay. We use the mean square error as our fitness value. Like the

previous case, we changed the training scheme to two speed transitions to reduce the

training time. The first transition is from 600 rpm to 650 rpm at t I seconds. The second

transition is from 650 rpm to 600 rpm at t2 seconds. The engine and the controller are

initialized with the engine conditions for 600 rpm. The simulation runs from 0 to t 1 seconds

without error measurements, then the training is started. We used the same training

conditions described on page 102.

Using percent overshoot as fitness, we obtained the results shown in Table 5.12,

Table 5.13 and Table 5.14 for six different fueling delay values and two different

population sizes. Ifwe look at the previous tables and Figure 5.71 to Figure 5.76, we notice

how the response improves as the fueling delay increases. These results differ from the

analog case where the improvement was related to how close we are to the designed engine

delay. For the digital case the improvement depends on how far the sampling time is from

the engine delay.
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Table 5.12: Engines with different fueling delay. Controller's results for mean square

error basedfitness. Searching step 1/100. Error calculation after t I = I second.

Delay Initial Best Fitness Resulting Best Fitness Resulting
(msec) Fitness (error)2. Parameters (error)2. Parameters

(error)2. Pop. = 5 Pop. = 5 Pop. = 50 Pop. =5

30 366.47 3S6.75 poles = 0.9999 358.72 poles = 0.9999
(97.35 %) and 0.2541 (97.89 %) and 0.2437

zeros = 0.9766 zeros = 0.9787
and 0.2671 and 0.2646

gain = 2.1214 gain = 2.0911

50 469.38 461.02 poles = 0.9999 464.40 poles = 1.0000
(98.22 %) and 0.2435 (98.94 %) and 0.2464

zeros = 0.9760 zeros = 0.9824
and 0.2913 and 0.2792

gain = 2.0700 gain = 2.0631

70 620.16 582.52 poles = 1.0000 595.76 poles = i .0000
(93.93 %) and 0.2417 (96.07 %) and 0.2452

zeros = 0.9862 zeros = 0.9866
and 0.3319 and 0.3072

gain = 1.9743 gain = 2.0248

90 852.29 753.27 poles = 1.0000 788.65 poles = 1.0000
(88.38 %) and 0.2487 (92.53 %) and 0.2448

zeros = 0.9914 zeros = 0.9906
and 0.3190 , and 0.2971

gain = 1.9314 gain = 2.0059

110 1174.68 917.32 poles = 1.0000 1012.52 poles = 1.0000
(78.09 %) and 0.2434 (86.20 %) and 0.2473

zeros = 0.9920 zeros = 0.9948
and 0.3193 and 0.3061

gain = 1.8869 gain = 2.0059

130 1826.88 906.89 poles = 0.9999 1145.11 poles = 1.0000
(49.64 %) and 0.5409 (62.68 %) and 0.2601

zeros = 0.9867 zeros = 1.0000
and 0.6698 and 0.3690

gain = 1.6632 gain = 2.0070
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Table 5.13: Engines with different fueling delay. Controller's results/or mean square

error basedfitness. Searching slep 1/10. Error calculation after t 1 = 1 second.

Delay Initial Best Fitness Resulting Best Fitness Resulting
(msec) Fitness (error)2. Parameters (error)2. Parameters

(error)2. Pop. =5 Pop. = 5 Pop. =50 P'op. =5

30 366.47 330.92 poles = 0.9999 346.39 poles = 0.9999
(90.30 %) and 0.2928 (94.52 %) and 0.2632

zeros = 0.9744 zeros = 0.9695
and 0.4223 and 0.3413

gain = 3.1151 gain = 2.3733

50 469.38 440.23 poles = 0.9999 446.18 poles = 0.9999
(93.79 %) and 0.2248 (95.06 %) and 0.2111

zeros = 0.9667 zeros = 0.9703
and 0.4543 and 0.4060

gain = 2.5945 gain = 2.3017

70 620.16 549.66 poles = 0.9999 546.97 poles = 0.9998
(88.63 %) and 0.2903 (88.20 %) and 0.2038

zeros = 0.9763 zeros = 0.9725
and 0.5293 and 0.4642

gain = 2.1874 gain = 2.2211

90 852.29 649.03 poles = 0.9999 654.83 poles = 1.0000
(76.15%) and 0.3609 (76.83 %)

I

and 0.2067
:

zeros = 0.9604 zeros = 0.9700
and 0.6315 and 0.5089

gain = 1.9741 gain = 1.9925

110 1174.68 773.43 poles = 0.9998 753.77 poles = 0.9999
(65.84 %) and 0.6344 (64.17 %) and 0.2068

zeros = 0.9701 zeros = 0.9771
and 0.7757 and 0.5476

gain = 1.5593 gain = 1.9324

130 1826.88 848.56 poles = 0.9998 904.30 poles = 1.0000
(46.45 %) and 0.6606 (49.50 %) and 0.2939

zeros = 0.9510 zeros = 0.9966
and 0.8409 and 0.5812

gain = 1.5581 gain = 1.8480
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Table 5.14: Engines with different fueling delay. Controller's results for mean square

error basedfitness. Searching step 1/10. Error calculation after t I = 5 seconds.

Delay Initial Best Fitness Resulting Best Fitness Resulting
(msec) Fitness (error)2. Parameters (error)2. Parameters

(error)2. Pop. = 5 Pop. = 5 Pop. = 50 Pop. = 5

30 356.55 326.98 poles = 1.0000 342.03 poles = 1.0000
(89.22 %) and 0.3025 (93.33 %) and 0.2122

zeros = 0.9784 zeros = 0.9753
and 0.4026 and 0.2732

gain = 2.9638 gain = 2.3387

50 460.79 439.38 poles = 1.0000 441.08 poles = 1.0000
(93.61 %) and 0.3026 (93.97 %) and 0.2045

zeros = 0.9746 zeros = 0.9786
and 0.4981 and 0.3824

gain = 2.6599 gain = 2.4052

70 605.47 564.85 poles = 1.0000 558.03 poles = 1.0000
(91.08 %) and 0.6058 (89.98 %) and 0.2080

zeros = 0.9722 zeros = 0.9814
and 0.7341 and 0.3780

gain = 2.0435 gain = 2.0742

90 825.48 653.89 poles = 1.0000 658.07 poles = 1.0000
(76.72 %) and 0.2347 (77.21 %) and 0.2119

zeros = 0.9794 zeros = 0.9823
and 0.5629 and 0.4970

gain = 2.2681 gain = 2.0754

110 1255.27 784.63 poles = 1.0000 767.37 poles = 1.0000
(66.80 %) and 0.4066 (65.33 %) and 0.2652

zeros = 0.9891 zeros = 0.9743
and 0.6341 and 0.6085

gain = 1.7960 gain = 2.1472

130 2569.77 897.51 poles = 1.0000 966.48 poles = 1.0000
(49.13 %) and 0.4511 (52.90 %) and 0.2764

zeros = 0.9874 zeros = 1.0000
and 0.6877 and 0.5938

gain = 1.6634 gain = 1.9129
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Figure 5.72: Detailtransiti nfrom 600 to 650 rpm Fueling d lay = 0 msec. 2

1. Color c es from Figure 5.71 to figure 5.76: Blue = riginaJ P parameters, Green = EN OR
optimized parameters (searching tep = 1/1 0, error ca1cula 'on a er 1 se ond), Red = ENl R
optimized parameters (searching step = 1110, error calculation after I second), Black = GENIT R
optimize arameters (searching step = 1/ I0, error calc latio after 5 seconds).
2. See Note 1.
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Figure 5.74: Detail transition from 600 to 6 0 rpm. "ue/in delay - 90 msec.

1. ee Note 1 n page 12 .
2. See Note 1 n page 12 .
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1. See No 1 on page 120.
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For the next case we repeated the training for different fueling delays, changing the

fitness function to percent overshoot. For that fitness and the same training conditions on

page 102 we obtained the results shown in Table 5.15, Table 5.16 and Table 5.17. We

obtained better results for large searching steps. As we can see from Figure 5.77 to Figure

5.82 the resulting responses tend to be flatter.
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Table 5.15: Engines with different fueling delay. Controller's results for percent

overshoot basedfitness. Searching step JIJ00. Error calculation after t I = 1 second.

Delay Initial Best Fitness Resulting Best Fitness Resulting
(msec) Fitness (overshoot). Parameters (overshoot). Parameters

(overshoot). Pop. =5 Pop. =5 Pop. =50 Pop. =5

30 4.3475 2.3789 poles = 1.0000 2.7069 poles = 1.0000
(54.61 %) and 0.2509 (62.21 %) and 0.2507

zeros =0.9806 zeros =0.9822
and 0.2724 and 0.2703

gain = 2.0402 gain = 2.0444

50 14.9131 6.4058 poles = 1.0000 10.0248 poles = 1.0000
(42.92 %) and 0.2510 (67.20 %) and 0.2468

zeros =0.9899 zeros =0.9875
and 0.3256 and 0.3005

gain = 1.9209 gain = 2.0035

70 29.6319 21.3643 poles = 1.0000 22.1842 poles = 1.0000
(72.09 %) and 0.2482 (74.86 %) and 0.2512

zeros = 0.9934 zeros =0.9901
and 0.3104 and 0.3236

gain = 1.9229 gain = 1.9987

90 44.8800 35.5064 poles = 1.0000 37.0737 poles = 1.0000
(79.10 %) and 0.2583 (82.60 %) and 0.2474

zeros = 0.9930 zeros =0.9914
and 0.3283 andO.3141

gain = 1.9630 gain = 2.0020

110 61.4867 51.0985 poles = 1.0000 54.1569 poles = 1.0000
(83.10 %) and 0.2502 , (88.08 %) and 0.2459

zeros = 0.9953 zeros =0.9948
and 0.3135 and 0.3043

gain = 1.9507 gain = 2.0215

130 76.6177 61.2543 poles = 1.0000 63.2429 poles = 1.0000
(79.95 %) and 0.2565 (82.55 %) and 0.2479

zeros =0.9941 zeros =0.9947
and 0.3062 and 0.2959

gain = 1.9624 gain = 2.0157
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Table 5.16: Engines with different fueling delay. Controller's results for percent

overshoot basedfitness. Searching step 1/10. Error calculation after t I = 1 second.

Delay Initial Best Fitness Resulting Best Fitness Resulting
(msec) Fitness (overshoot). Parameters (overshoot). Parameters

(overshoot). Pop. =5 Pop. = 5 Pop. =50 Pop. = 5

30 4.3475 0.2178 poles = 1.0000 0.0143 poles = 1.0000
(4.84 %) and 0.3183 (0.33 %) and 0.2447

zeros = 0.9727 zeros = 0.9710
and 0.3663 and 0.3459

gain = 1.8949 gain = 2.1505

50 14.9131 0.3430 poles = 1.0000 0.0445 poles = 1.0000
(2.28 %) and 0.2397 (0.30 %) and 0.2039

zeros = 0.9746 zeros = 0.9720
and 0.4069 and 0.3828

gain = 1.9280 gain = 1.8947

70 29.6319 1.2199 poles = 1.0000 0.6890 poles = 1.0000 I

(4.08 %) and 0.2344 (2.33 %) and 0.2333
zeros = 0.9801 zeros = 0.9766

and 0.5061 and 0.4753
gain = 1.9830 gain = 1.8643

90 44.8800 0.2175 poles = 1.0000 2.3105 poles = 1.0000
(0.47 %) and 0.3508 (5.15 %) and 0.2218

zeros = 0.9754 zeros = 0.9809
and 0.6217

I

and 0.5246
gain = 1.7957 gain = 1.8775

110 61.4867 5.4758 poles = 1.0000 5.4389 poles = 1.0000
(8.90 %) and 0.6538 (8.83 %) and 0.2414

zeros = 0.9883 zeros = 0.9893
and 0.8104 and 0.6358

. gain = 1.4423 gain = L8963

130 76.6177 1.2039 poles = 1.0000 18.6688 poles = 1.0000
(1.57 %) and 0.5512 (24.36 %) and 0.3802

zeros = 0.9776 zeros = 1.0000
and 0.7903 and 0.6496

gain = 1.4636 gain = 1.6727
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Table 5.17: Engines with different fueling delay. Controller's results for percent

overshoot basedfitness. Searching step 1/10. Error calculation after tJ = 5 seconds.

Delay Initial Best Fitness Resulting Best Fitness Resulting
(msec) Fitness (overshoot). Parameters (overshoot). Parameters

(overshoot). Pop. = 5 Pop. = 5 Pop. = 50 Pop. = 5

30 2.57 0.3038 " poles = 1.0000 0.1207 poles = 1.0000
(6.91 %) and 0.2458 (2.76 %) and 0.2387

zeros = 0.9769 zeros = 0.9733
and 0.31 13 and 0.3391

gain = 2.0756 gain = 2.0389

50 14.94 0.0955 poles = 1.0000 0.3556 poles = 1.0000
(0.67 %) and 0.3265 (2.41 %) and 0.2205

zeros = 0.9740 zeros = 0.9764
and 0.4675 and 0.3774

gain = 1.9196 gain = 1.9353

70 29.01 _ 0.3626 poles = 1.0000 1.3787 poles = 1.0000
(1.21 %) and 0.4230 (4.66 %) and 0.1995

zeros = 0.9744 zeros = 0.9816
, and 0.5672 and 0.4363

gain = 1.6055 gain = 1.8658

90 44.50 0.8586 poles = 1.0000 2.2145 poles = 1.0000
(1.92 %) and 0.3579 (4.92 %) and 0.2282

zeros = 0.9772 zeros = 0.9835
and 0.6048 and 0.5459

gain = 1.7043 gain = 1.8711

110 60.90 12.3427 poles = 1.0000 17.1137 poles =1.0000
(20.07 %) and 0.7187 (27.83 %) and 0.2670

zeros = 0.9954 zeros = 1.0000
and 0.8768 and 0.5511

gain = 1.5469 gain = 1.7916

130 86.72 2.9630 poles = 1.0000 1.5727 poles = 1.0000
(3.86 %) and 0.7746 (2.05 %) and 0.2156

zeros = 0.9792 zeros = 0.9799
and 0.9091 and 0.6306

gain = 1.2471 gain = 1.7764
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Figure 5.77: D tail transItion from 600 to 650 rpm. Fuelin delay 30 m J
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igure 5.78: D tail tran itionfrom 600 to 650 rpm. Fueling dela 5 m 'ec, 2

1. Color codes from Figure 5.77 to Figure 5.82 Blue = Original P paramete s,
optimized para et rs ( ear hing tep = 1/1 • error c culation after I second), = ENI
optimized par meters (searching step = 1/1 ,error cal ulati after 1 cond), Black = G
optimized parameters (searching step = 1/1 , error calculation after 5 seconds).
2. ee te 1.
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1. Se Note 1 0 page 127.
2. See Note I on page 127.
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5.9. GENITOR algorithm applied to digital controller and engine with friction

b}=0.01.

5.9.1. Results for different engine inertia.

For the next case we used the same b I = 0.01 used in the analog training from

section 5.6.1 and section 5.6.2. As in section 5.6.1, we executed the training for different

engine inertias. For each case the initial response changed according to the engine inertia

value. An optimization is needed to adjust the controller values to match the engine inertia.

We use the mean square error as our fitness value. To reduce the training time we changed

the training scheme to two speed transitions. The first transition is from 600 to 650 rpm at

5 seconds. The second transition is from 650 to 600 at 8.5 seconds. The engine and the

controller are initialized with the engine conditions for 600 rpm. The simulation runs from

o to 5 seconds without error measurements, then the training is started. To ensure the

correct values of the parameters for future training, we changed the mutation process in the

digital GENITOR algorithm by taking only poles or zeros with magnitudes inside the unit

circle.

For the mean square error as fitness we obtained the results shown in Table 5.18 for

six different engine inertia values and two different population sizes. For very oscillatory

engine responses we could reduce the mean square error to 1.4 % of its original value for

inertia equal to Ilb-ft-sec2, as seen in first row of Table 5.18 and Figure 5.83. As inertia

increases, the mean square error decreases to 31 % of its initial value for inertia equal to 1.4

Ib-ft-sec2 (see second row of Table 5.18 and Figure 5.84). In the last four rows of
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Table 5.18 we can see that the mean square error have values ranging from 70 % to 87 %

of their original values for inertia between 1.8 Ib-ft-sec2 and 3 Ib-ft-sec2 (see also Figure

5.85, Figure 5.86, Figure 5.87 and Figure 5.88). As the analog case for b l = 0.01 , if we

compare the results related to the population size we note small differences in the results

for 1500 epochs.
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Table 5.18: Engine with different inertia. Controller's results for mean square error

basedfitness. Searching step 1/10. Error calculation after tJ = 5 seconds.

Inertia Initial Best Fitness Resulting Best Fitness Resulting
Ib-ft-sec2. Fitness (error)2. Parameters (error)2. Parameters

(error)2. Pop. = 5 Pop. = 5 Pop. = 50 Pop. = 50

1 41362.21 595.87 poles = 1.0000 583.25 poles = 1.0000
(1.44 %) and 0.5765 (1.41%) and 0.2718

zeros = 1.0000 zeros = 1.0000
and 0.7562 and 0.7326

gain = 1.0489 gain = 1.4687

1.4 1770.17 566.82 poles = 1.0000 550.06 poles = 1.0000
(32.02 %) and 0.3529 (31.07 %) and 0.2102

zeros = 1.0000 zeros = 1.0000
and 0.6580 and 0.6024

gain = 1.6688 gain = 1.8424

1.8 854.25 600.88 poles = 1.0000 550.49 poles = 1.0000
(70.34 %) and 0.6008 (64.44 %) and 0.2079

zeros = 1.0000 zeros = 1.0000
and 0.7601 and 0.5991

gain = 1.7895 gain = 2.3580

2.2 714.42 587.43 poles = 1.0000 567.40 poles = 1.0000
(82.22 %) and 0.5017 (79.42 %) and 0.3332

zeros = 1.0000 zeros = l.OOOO
and 0.7209 and 0.6384

gain = 2.3727 gain = 2.5141

2.6 687.65 594.85 poles = 1.0000 581.59 poles = 1.0000
(86.50 %) and 0.5523 (84.58 %) and 0.3887

zeros = 1.0000 zeros = 1.0000
and 0.7423 and 0.6211

gain = 2.6958 gain = 2.6407

3 697.86 608.82 poles = 1.0000 606.42 poles = 1.0000
(87.24 %) and 0.6515 (86.90 %) and 0.5717

zeros = 1.0000 zeros = 1.0000
and 0.7936 and 0.7093

gain = 2.8784 gain = 2.6972
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For the next case we repeated the training for different engine inertias, changing the

fitness function to percent overshoot. For that fitness we obtained the results shown in

Table 5.19 and Figure 5.89 to Figure 5.94. Due to the selected fitness function, we can see

that the resulting responses tend to be flatter. Also, the final response barely passes the

required speed of 650 rpm. However an "undershoot" is generated below the required

engine speed. In Figure 5.89 we can see an special case for inertia = I Ib-fi-sec2, where the

training for a population of 5 was unable to obtain a stable response for the engine. For that

case, the genetic algorithm was trapped in a local minimal. In Figure 5.92 and Figure 5.94

we can see a case where an overtraining problem occurred. Here the genetic algorithm

reduced dramatically the overshoot, however the final response was too slow.

136



Table 5.19: Engine with different inertia. Controller's results/or percem overshoot based

fitness. Searching step 1/10. Error calculation afier t I = 5 seconds.

Inertia Initial Best Fitness Resulting Best Fitness Resulting
Ib-/t-sec2• Fitness (overshoot). Parameters (overshoot). Parameters

(overshoot) Pop. = 5 , Pop. =5 Pop. = 50 Pop. = 50

1 387.7173 203.4080 poles = 0.9956 3.1312 poles = 1.0000
(52.46 %) and 0.2663 (0.55 %) and 0.3968

zeros =0.9806 zeros = 1. 0000
and 0.3060 and 0.8487

gain = 1.8989 gain = 1.3042

1.4 87.7286 2.6900 poles = 1.0000 2.0396 poles = 1.0000
(3.07 %) and 0.5893 (2.32 %) and 0.3644

zeros = 1.0000 zeros = 1.0000
and 0.8868 and 0.8134

gain = 1.5138 gain = 1.7986

1.8 57.7658 2.3195 poles = 1.0000 1.8719 poles = 1.0000
(4.02 %) and 0.7159 (3.24 %) and 0.3654

zeros = 1.0000 zeros = 1.0000
and 0.8798 and 0.7327

gain = 1.5622 gain = 2.0497

2.2 41.5310 0.2195 poles = 1.0000 1.8974 poles = 1.0000
(0.53 %) and 0.6332 (4.57 %) and 0.4606

zeros = 0.9971 zeros = 1.0000
and 0.8766 and 0.7373

gain = 1.5167 gain = 2.1905

2.6 28.2821 1.6820 poles = 1.0000 0.6776 poles = 1.0000
(5.95 %) and 0.8519 (2.40 %) and 0.5199

zeros = 0.9995 zeros = 0.9973
and 0.9287 and 0.7455

gain = 1.7639 gain = 2.3595

3 19.9864 0.1737 poles = 1.0000 0.4181 poles = 1.0000
(0.87 %) and 0.7620 (2.09 %) and 0.2019

zeros = 0.9973 zeros = 0.9973
and 0.9063 and 0.8231

gain = 2.2832 gain =2.3118
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5.9.2. Results for different fueling delays.

For the next case we repeated the training for different fueling delays. For each case

the initial response changed according to the fueling delay value with a fixed engine inertia

of2Ib-ft-sec2
. An optimization is needed to adjust the controller values to match the engine

fueling delay. We use the mean square error as our fitness value. Like the previous case, we

changed the training scheme to two speed transitions to reduce the training time. The first

transition is from 600 rpm to 650 rpm at t I = 5 seconds. The second transition is from 650

rpm to 600 rpm at 4.5 seconds at t 2 = 8.5 seconds. The engine and the controller are

initialized with the engine conditions for 600 rpm. The simulation runs from 0 to t I seconds

without error measurements then the training is started.

Using percent overshoot as fitness, we obtained the results shown in Table 5.20 for

six different fueling delay values and two different population sizes. Contrary to the analog

case, Table 5.20 and Figure 5.95 to Figure 5.100, show that the percentage of improvement

depends on how far the sampling rate is from the fueling delay. As the fueling delay

increases we obtain a greater improvement. This is a logical response, because if the

sampling time is close to the fueling delay, this implies less time for the controller to adjust

to any change in the engine response.
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Table 5.20: Engines with different fueling delay. Controller's results for mean square

error basedfitness. Searching step 1/10. Error calculation after t1 = 5 seconds.

Delay Initial Best Fitness Resulting Best Fitness Resulting
(msec) Fitness (error)2. Parameters (error)2. Parameters

(error)2. Pop. = 5 Pop. = 5 Pop. = 50 Pop. = 5

30 329.53 280.17 poles = 1.0000 276.04 poles = 1.0000
(85.02 %) and 0.7650 (83.77 %) and 0.5088

zeros = 1.0000 zeros = 1.0000
and 0.8284 and 0.6201

gain = 2.8845 gain = 2.8112

50 446.33 403.69 poles = 1.0000 389.01 poles = 1.0000
(90.45 %) and 0.5122 (87.16%) and 0.2809

zeros = 1.0000 zeros = 1.0000
and 0.6749

,

and 0.5397
gain = 2.5230 gain = 2.6709

70 603.08 536.37 poles = 1.0000 502.76 poles = 1.0000
(88.94 %) and 0.6025 (83.37 %) and 0.3015

zeros = 1.0000 zeros = 1.0000
and 0.7669 and 0.6163

gain = 2.1766 gain = 2.4664

90 943.02 656.13 poles = 1.0000 617.26 poles = 1.0000
(69.58 %) and 0.5346 (65.46 %) and 0.2556

zeros = 1.0000 zeros = 1.0000
and 0.7359 and 0.6301

gain = 1.9619 gain = 2.4043

110 1633.32 790.26 poles = 1.0000 735.06 poles = 1.0000
(48.38 %) and 0.5758 (45.00 %) and 0.2631

zeros = 1.0000 zeros = 1.0000
and 0.7820 and 0.6583

gain = 1.7128 gain = 2.1568

130 5615.07 905.05 poles = 1.0000 841.78 poles = 1.0000
(16.12%) and 0.5579 (14.99 %) and 0.2481

zeros = 1.0000 zeros = 1.0000
and 0.7636 and 0.6866

gain = 1.5999 gain = 2.1734
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For the next case we repeated the training for different fueling delays, changing the

fitness function to percent overshoot. For that fitness we obtained the results shown in

Table 5.21 and Figure 5.101 to Figure 5.106. We can see that the resulting responses tend

to be flatter, with an "undershoot" response similar to that observed in last part of

section 5.9.1. As in previous cases, impressive improvement is noticeable for large initial

overshoots.
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Table 5.21: Engines with different fueling delay. Controller's results for percent

overshoot basedfitness. Searching step 1/10. Error calculation after tI = 5 seconds.

Delay Initial Best Fitness Resulting Best Fitness Resulting
(msec) Fitness (overshoot). Parameters (overshoot). Parameters

(overshoot). Pop. = 5 Pop. = 5 Pop. = 50 Pop. = 5
30 7.1765 0.4733 poles = 1.0000 0.5744 poles = 1.0000

(6.60 %) and 0.2363 (8.00 %) and 0.2408
zeros = 0.9956 zeros = 0.9961

and 0.4176 and 0.3271
gain = 1.9410 gain = 2.0563

50 22.8192 1.2809 poles = 1.0000 0.6272 poles = 1.0000
(5.61 %) and 0.4893 (2.75 %) and 0.3041

zeros = 0.9982 zeros = 0.9951
and 0.7874 and 0.5068

gain = 2.1714 gain = 2.0534

70 38.7529 0.5972 poles = 1.0000 1.6407 poles = 1.0000
(1.54 %) and 0.5614 (4.23 %) and 0.4146

zeros = 0.9968 zeros = 1.0000
and 0.7693 and 0.6403

gain = 1.7090 gain = 1.9027

90 60.2765 2.5053 poles = 1.0000 2.4304 poles = 1.0000
(4.16%) and 0.5819 (4.03 %) and 0.3472

zeros = 1.0000 zeros = 1.0000
and 0.7722 and 0.6324

gain = 1.6324 gain = 1.7909

110 80.8133 1.7895 poles = 1.0000 1.7445 poles = 1.0000
(2.21 %) and 0.8452 (2.16 %) and 0.3725

zeros = 0.9929 zeros = 1.0000
and 0.9575 and 0.7873

gain = 1.2781 gain = 2.0911

130 123.5986 0.3775 poles = 1.0000 2.8131 poles = 1.0000
(0.31 %) and 0.6679 (2.28 %) and 0.2496

zeros = 0.9960 zeros = 1.0000
and 0.9069 and 0.7104

gain = 1.5411 gain = 1.9180
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5.9. Summary.

In this chapter we have seen the application of genetic reinforcement learning

(GENITOR) for the parameter optimization ofa diesel engine controller. It was first tested

on an analog PID controller. The algorithm produced improvements in the engine response

over the nominal PID controller provided by Cummins. We tested the algorithm with

different diesel engines conditions by varying the inertia and the fueling delay. In each case

the genetic algorithm provided improved performance over the base-line PID controller.

The percentage improvement was greater when the engine response for the original PID

controller was very oscillatory.

The fitness function (mean square error or percent overshoot) used has a large

influence on the engine response. For the mean square error fitness, we normally obtained

an overshoot, with the system following the reference speed very close. For the percent

overshoot fitness we obtained a first-order like response.

The same experiments were repeated for a digital controller, to compare the results

obtained in the analog implementation. The initial parameters were obtained by

transforming the basic PID controller from the s-domain to the z-domain. The experiments

were conducted for two values of engine friction b1 = 0.1229 and b I = 0.01 and the same

combinations of engine inertia / and fueling delay t. The results obtained for the digital

controller were similar to those obtained for the analog controller. Training performance

was improved by varying the step size used in the mutation process of the Genitor

algorithm. A large step resulted in better controllers.
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CHAPTER 6

REINFORCEMENT LEARNING.

6.1. Introduction.

This chapter is based on the books Introduction to Reinforcement Learning (RL) by

Sutton and Bart0(2) and Neuro-Dynamic Programming by Bertsekas and Tsitsiklis{3).

Related work by Jaakkola et al. (6)' Singh and Sutton (to), Sutton (13 to 17)' Watkins and

Dayan (20)' were considered to support the concepts and ideas of the previous books. We

will discuss the different elements of Reinforcement Learning (RL) theory and we will

show simulations for some techniques. We will describe the reinforcement learning

framework, based on the relation between the environment and the agent. in section 6.2. In

section 6.3 we will discuss the elements ofReinforcement Learning: discrete time dynamic

system, cost or reward function, policy function, cost or reward accumulation function, and

model of the environment. In section 6.4 we will define the types of possible actions that

can be perfonned by the agent in a RL process. In the following section we will review the

concept of rewards and the inclusion ofa discount factor in case of cumulative rewards. In

section 6.6 we will describe the Markov Property and its relation with RL. In the following

section we will describe the relationship between RL and the Markov Decision Process

(MDP).
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In section 6.8 we will explain the types ofexpected cost functions and the difference

between continual and episodic tasks. We will discuss the optimality of cost-to-go

functions in the following section. The section 6.10 will discuss some elementary solution

methods: Dynamic Programming, Monte Carlo and Temporal Difference Learning. We

will present some variations of each method. We will also present some simulations. We

will unify all the previous techniques in section 6.11. We will also include the concept of

eligibility traces with its discount properties. We will discuss the gradient descent methods

in section 6.12. In this section we will show the relationship between RL and neural

networks. Finally, we will show two complete examples of simulations with RL: a

mountain car task and the swing up of an Acrobot.

6.2. Reinforcement learning framework.

The reinforcement learning problem framework is shown in Figure 6.1. We have a

system (or environment) which changes in stages according to discrete decisions. We

cannot predict exactly each stage, but we know the statistics of the next outcome. After

each action is executed we obtain an immediate cost or reward. Each decision affects the

context where future actions will be made and the future costs or rewards we will receive.

We want to minimize the total cost or maximize the total reward for all the stages. We want

to combine immediate and future rewards or costs.

For a given time t, we have a state St E S, where S is the set of the possible states.

Based on that state we apply an action Q, E A(s,) to the system or environment, where A(St)

is the set of possible actions in state St. That action generates a new state St + I with a
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probability PS,S, + I(a t) and a reward r t + 1 E ~ due to that action, where ~ is the set of all

possible costs or rewards. We can say that the cost or reward r, + I is a function which

depends on the states involved in the transition (St' St + I) and the action (at) executed:

rl + 1 = g(sl' aI' St + 1) . If we continue that sequence for each stage, at time t we have

that (12, 3):

(6.1)

AGENT or
Feedback Control Policy f.l

Reward or cost T1 Action a,

·• T1+[

· ENVIRONMENT or
I

Stochastic System
I

SI+I

Figure 6.1: The reinforcement learning framework (12)'

For each time t the Agent has a mapping that represents the probabilities of

selecting the action at ifthe state is Sf' This mapping is called the agent's policy: 7t t(s, a)

is equal to the probability of executing the action at = a given that we are in state S t = s.

We want to balance not only the cost or reward r I + I but also the desirability of the next

state SI + I . We can do that by ranking the optimal cost over the remaining states starting

IS<I



from the state s/+ 1 • This function is called the optimal cost-fa-go of state s/ + 1 and is

denoted by J*(St + 1)' This relation must satisfy some form of Bellman's equation:

~aXE[g(sI' at' Sl + I) + J*(s/ + I) Is"a,]
/

for all 5 E S (6.2)

where E[.151, all denotes the expected value of the cost-to-go function with respect to

s/+ 1 given s/ and ai' From the relation expressed above we want to execute control

actions that maximize (minimize) the expected reward (cost) of the current stage and the

optimal expected cost of the future stages. One way to obtain an optimal solution J* could

be using dynamic programming (DP), This calculation is done off-line. We can obtain an

optimal policy 7t*(s, a) from the off-line calculation of J* , or we can obtain it on-line by

maximizing the right-hand side of Eq. (6.2). The computational cost involved with the

optimal solution is overwhelming, due to the large number of states and controls.

Therefore, we need a suboptimal solution. An alternative is reinforcement learning, in

which the agent's policy is modified during the execution of the process.

We can approximate the optimal cost-to-go function J*(SI + I) with an

approximation j(sr+ I'P), where P is a vector ofparameters. We will use at the state SI the

suboptimal control a/CSt) which maximizes the approximate right-hand side ofEq. (6.2):

arCSt) = argamaxE[g(sl' at' s/ + I) + j(sl + I' p) Ispa t ]

I
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In practice, the calculation of E[g(s t' a" S 1+ 1) + j(s t + l' p) Ispa/] for each possible

action at may be too complicated or too time-consuming. Then we can use an approximate

expression of Bellman's equation:

(6.4)

where this function is called the Q-factor corresponding to (St' at). We can replace

Q"'(St' at) with an approximation Q(s" at, p):

(6.5)

where p is a vector of parameters.We will use at the state SI the suboptimal control at(S ()

which maximizes the approximate right-hand side of Eq. (6.4):

a(s) = arg max Q-(s a p)
It a 1'1'

I

6.3. Elements of Reinforcement Learning.

(6.6)

The elements which make up a typical Reinforcement Learning atgorithm are:

- A discrete time dynamic system. The state transition depends on a control input at.

We have n states denoted by 1, 2, ... , n, with one additional termination state. For

each state SI we must choose the control action at from a finite set A(s). The control

action a, specifies the transition probability Ps s (at) from the state St to the state
It ..... I

- Cost or Reward function. This function implies a cost or reward r t + 1 given for the
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state transition from Sf to Sf + I with the action a r . We can express the function cost

as: "+1 = g(sf,af'Sr+I)'

- Policy function. The policy consists of the rules which define how we want to

operate in a given state. We can define a policy 7t as a mapping from states S into

control actions a, or we can define a policy 1t as the probability that an specific action

may be executed in a given state 1tr(s, a) .

- Cost or reward accumulation function. The cost is accumu1ated over time and

depends on the states visited and the actions executed. The cost function may be

affected by a discount factor y, that will be discussed in section 6.5.

- Model of the environment (optional). Generally we will use the models for

planning. We can simulate and train the system off-line to obtain an initial coherent

policy. Afterwards, we can improve our policy with on-line training on the real

system.

We can explain the state sequence ofa Reinforcement Learning problem using the

game sequence shown in Figure 6.2. From the starting position, the opponent executes a

move that changes the game state from a to b. In the state b we have different options. Our

policy implies a move that changes our state from b to c. For example, we can define our

policy as fixed rules or as random actions. The game continues with the opponent's move

from c to d. In the state d if we execute the action e the opponent replies with f and

consequently for future movements. We can see that both the action f from the opponent
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and the future decision g depend on the decision made in the state e. Ifwe selected the state

e'; we probably would finish with a different sequence f' and g'.

Starting Position.
a

Opponent's Move {

Our Move {

Opponent's Move {

Our Move {

Opponent's Move {

Our Move {

Figure 6.2: Elements a/Reinforcement Learning. Game sequence (l2j-

6.4. Actions.

Sutton and Barto defined two types of actions( 12):

6.4.1. Greedy Actions. For a given state, we execute the action whose estimated

cumulative reward is greatest.

6.4.2. Exploring Actions. We do not necessarily follow the action whose

estimated cumulative reward is greatest. For example, we can execute random actions. This

type of action moves us to find new solutions.

We can define a procedure for action selection where we can normally execute

greedy actions with a small percentage of random actions. We can define a probability £
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which is the probability of selecting an action at random. This number is generally small,

for example 0.1 or 10 %.

6.5. Rewards and discount factor.

We can define the immediate rewards " +' as a numerical feedback generated by

the environment and measured by the agent. The Agent's goal is to maximize (minimize)

the total amount of future reward (cost), or the cumulative future reward (cost). If we

execute our process one time we will obtain a total reward:

T

Rt = 't+l+ r'+2+ rt+3+· .. + rr= L't+k+l

k=O

T

L g(St+k' Gt+k(s,+k), s/+k+ I)

k=O

where T is the final time step.

The variable r represents the reward for each step and R/ represents the

(6.7)

undiscounted accumulated reward received after the time t. We can discount the present

value of the future rewards:

T

R/ = '/+1+Y'/+2+/'t+3+·.·+yr'r= Lyk"+k+1

k=O

(6.8)

T

L /g(s/+ k' G,+ k(s, + k)' St+ k+ \)

k=O

where y is a discount rate or discount factor used to reinforce the importance of present
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rewards over future rewards. Generally y is an scalar and is limited to: 0 $ y $ 1 , so that

J t is bounded. If y ~ 0, then we maximize the immediate rewards. If y ~ 1, then we

maximize the future rewards.

6.6. Markov property.

Defme a system where the new states and rewards depend on all previous states and

rewards. Then the probability distribution of that system is:

We can say that a system has the Markov property if its response at time / + 1

depends only on the conditions at time t. Then its probability distribution is:

(6.10)

We can conclude that systems with the Markov property have dynamics based on

one step. "Markov states provide the best possible basis for choosing actions.'\ 12)

6.7. Markov decision process (MDP).

MDP refers to any reinforcement learning process that satisfies the Markov

property described previously. When the state and action spaces are finite, the process is

called a Finite Markov Decision Process. A finite MDP is defined by its state and action

sets and by the one-step dynamics of the next state sF' given the state s and the action a :

(6.11)
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and the expected next reward is:

(6.12)

6.8. Types of expected cost functions.

6.8.1. Cost-to-go functions. We can define the finite horizon problem, where we

have a process with final state sF and we accumulate the cost over that finite period of time

T. For this type ofproblem, the expected cost-to-go following a policy 1t and starting from

an initial state sis:

(6.13)

where yTG(sF) is the terminal cost or reward related for arriving to the final state sF.

The optimal cost-to-go function for finite horizon problems is denoted by the

relation:

maxJ;<s)
1t

(6.14)

We call an episode the transition from an initial state to the final state, at time T, of

a finite horizon problem. We call episodic tasks the process with repeated episodes. We can

also start the new episode in a fixed or a random initial state.
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We also have infinite horizon problems, where we accumulate the cost indefinitely.

We have that the expected cost following a policy 1t starting from an initial state sis:

The optimal cost-to-go function is:

1t
J*(s) = maxJ (s)

7t

6.8.2. Gridworld example. This is one example to estimate the cost-to-go

(6.15)

(6.16)

functions in a given state. The Gridworld is a 5 x 5 two dimensional cell space where the

initial policy 7t specifies that we can move in four directions with the same probability, as

shown in Figure 6.3. We have a penalty of -1 each time we move outside the board. Ifwe

are in the state A the only possible movement is to A' and we receive a reward of 10 units.

Similarly, at position B we can only move to B" and the reward is 5 units.

A- I'--.. B 1--
\ JS

10) B •../

J - -+
A ...v

-1
Actions

Figure 6.3: Gridworld example. Original movement rules (12)"

We initilialized the cost-to-go values to zero. Then we execute this process under

the policy 7t as an infinite horizon problem, we will find a cost-to-go function J1t for each

state based in Eq. (6.15), as shown in Figure 6.4. We note that the cost-to-go value at

/61



position A is lower than 10, because we obtain an immediate reward of 10 from A to A',

but after that we would move outside the board obtaining an immediate negative reward.

We also note that the cost-to-go value at position B is greater than 5, because after the

immediate reward of 5 we would move to the A position for an immediate reward of 10.

Figure 6.4: Gridworld example. Cost-lo-go values from original policy.

6.8.3. Q-factor functions. Generally the reinforcement learning algorithms are

based on the estimation of "how good" a given state or a given state-action pair is. The

estimated cost-to-go function is defined by Eq. (6.13) and Eq. (6.15). The previous relations

only provide us information about the state. If we want information about the combination

of the state and the action we will use a relation based on the Q-factor function defined by

Eq. (6.4). The Q-factor value ofa finite horizon problem is the expected return starting from

s, taking action a, and thereafter following the policy 7t (12,3):

Q7\S, a) = E7t[lG(sF) + 3='r'g(s, +k' a, + ,(s, + k)' s, + k+ ,) (s, ~ s ),(a, ~ a)]

k=O

(6.17)

where ../ G(sF) is the terminal cost or reward related for arriving to the final state sF'
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For infinite horizon problems. the Q-factoT starting from an initial state s" taking

action a p and following a policy 7t is:

6.9. Optimal cost-to-go functions.

(6.18)

If we want to solve a problem of reinforcement learning, we want to obtain the

maximum reward (or the minimum cost) for each state or state-action. Ifwe talk about the

optimal cost-to-go function starting from one state we must select the policy 7t that

guarantees an optimal cost-to-go function:

Jr*(s) = maxJ;'<s)
7t

"Is E S (6.19)

If we talk about the state-action relation or Q-factoT function, we must find an

optimal Q-factor function:

Qr*(s, a) = maxQ;<s, a)
7t

Vs E S, Va E A(s)

(6.20)

If we want to relate the cost-to-go function ofan state s under an optimal policy 7t

with the expected return for the best action ofthat state, we can use the Bellman Optimality

equation for J* :

J·(s) = max Q1t·(s, a)
a
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= max En.{Rtl(s, = s), (at = a)}
a

{
ex:>}max k __

En'. LY f t + k + des, - s), (a, - a)
a E A(s)

k=O

{
ex:>}max k _ _

En' r,+,+YLY r1+ k + 21(s,-s),(a1 -a)
a E A(s)

k=O

= max • IE{f,+ I +yJ (s/+ 1) (s, = S), (a, = a)}
a E A(s)

= max LP:s)R:
Sf

+ yJ·(sF)]
a E A(s) s,.

(6.21)

Ifwe want to relate the action-value (or Q-factor function) of an state under an

optimal policy with the expected return for the best action ofthat state, we can use the

Bellman Optimality equation for Q* :

LP:s,.[R:SF + y max Q·(sF' aF)]

SF aF

We can solve the Gridworld example of Figure 6.3 by solving the Bellman

(6.22)

Optimality equation for J. (Eq. (6.21». That method is viable if we have a low number of

states. As that state number increases we can implement exhaustive search, looking for

solutions by implementing different policies. We solved the Gridworld by both ways

looking for the optimal cost-to-go value for each state. The results shown in Figure 6.5.

Also we can see the policy n* that maximizes our cost-to-go function J•.
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A_
r-.... ti

\ ) 5

TO/ If 4-

/ ---+

A' ..

-I

- 4+ +- + +-

t.... t ~ +- +-

t.... t ~ .J ~

t.... t ~ .J ~
L. t ....J ....J .J

Optimal policy

Optimal cost-t<rgo function.

Figure 6.5: Solving the Gridworld (12)'

6.10. Elementary Solution Methods.

6.10.1. Dynamic Programming. We want to use dynamic programming to obtain

good policies. We must follow the following steps in the dynamic programming evaluation:

6.10.1.1. Policy evaluation: We want to compute the cost-to-go function fl for an

arbitrary policy 1t, based on the relation:

(6.23)

We can make that evaluation iteratively, knowing that {Jk } generally converges to

f as k ~ 00. The iterative policy evaluation algorithm is shown in Figure 6.6.
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1l1eratlve pOlley eVatUalion.
nput:

1t , the policy to be evaluated

P~sr' the probability of finish on state sF if we start on state s

and execute the action a

R~sl" the reward received after finish on state sF if we start on

state s and execute the action a

nitialize J(s) = 0, for all S E S+
Repeat

fl.~O

For each S E S for all possible sF E S and a E A(s):

v ~J(s)

J(s) ~ L1t(s, a)LP;s,JR~s,+ yJ*(sF)]
a SF

fl. ~ max (fl., Iv -J(s)l)
luntil fl. < 8 (a small positive number)

Output J:::::::jTl

Figure 6.6: Iterative Policy Evaluation (/2)<

6.10.1.2. Policy improvement. We want to know if an action a different from that

suggested by the current policy could produce a better Q-factor function. Therefore, we

must maintain a structure with all of the expected returns starting from the state sand

following the action a :

(6.24)

We want to see if after selecting the action a in the state s and following 1t we can

find a new and better policy 1tF' We can define the Policy improvement theorem as:
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{
policy 1t F must be as good as,J

"Is E s~

or better than 7t (?F(S) ~ pes)

6.10.1.3. Policy iteration. When a policy 1t has been improved using f resulting

in a better policy 1tF we can compute ./F. If we improve the new policy, we could have

1tFF and so on. Ideally, we can see a sequence of policy evaluation and policy

improvement as the sequence:

The algorithm for policy iteration is shown in Figure 6.7.
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r olley lleratlOn.
1. ImtIalizatlon.

J(s) E Rand 1t(s) E A(s) arbitrarily for all s E S

P~sJ" the probability of finish on state sF if we start on state sand

execute the action a

R~sF' the reward received after finish on state sF if we start on state

s and execute the action a
2. Policy evaluation.

Repeat
.1.~O

For each S E S
V ~ J(s)

J(s) ~ 2,1t(s, a)2,P~S)R:SF+ yJ*(sF)]
a SF

.1. ~ max (.1., Iv - J(s)1)
until .1. < e (a small positive number)

Output J~f
3. Policy improvement.

policy_stable ~ true
For each S E S:

b ~ 1t(s)

" 1[(S) 1[(S)
1t(s) ~ arg maxLJPss/" [R

SSF
+ yJ(sF)]

a
SF

If b -:f:. 1t (s) then olicy_stable ~ false
If policy stable, then stoo; else go to 2.

Figure 6.7: Policy iteration (/2)-

6.10.1.4. Value iteration. This is the name given to the OP iteration that executes

Eq. (6.21) starting from some J. With that iteration we could find the optimal cost-to-go

function J* . Also, we can see that value iteration is a combination of policy improvement

and truncated policy-evaluation steps, as seen in Figure 6.8.
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value llerallon.
+nitialize J arbitrarily, e.g., J(s) = 0, for aU s E S

Repeat
~~O

For each s E S
V ~ J(s)

J(s) ~ max LP;s)R;s", + yJ(sF)]
a

S,,'

~ ~ max (Li, Iv-J(s)1)
until ~ < e (a small positive number)
Output a deterministic policy, n , such that:

n(s) = arg max LP;SF[R:
SF

+ yJ(s F)]
a

Sf:

Figure 6.8: Value Iteration (12)'

6.10.1.5. Generalized policy iteration. GPI occurs when we have an interaction

between the policy evaluation process and the policy improvement process, as seen in

Figure 6.9. In policy evaluation we execute the actual policy to obtain the current cost-to-

go function. With policy improvement we define the policy according to the current

cost-to-go function. After many iterations we will find the optimal policy and cost-to-go

function.
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evaluation

~
n J

~
improvement

••••
n'" --------_1 J'"

Figure 6.9: Generalized Policy Iteration (12)-

6.10.2. Monte Carlo methods. Monte Carlo methods only require information

about states, actions and rewards that originate from a real or simulated system. These are

algorithms that learn from experience. Generally we don't need detailed information from

the process. We can differentiate between every-visit and first-visit MC methods for

estimating jlt . The every-visit MC method executes the average of all the returns after all

the visits to the state s. The first-visit MC method executes the average of all the returns

after the first visit to the state s. We can see the algorithm for the first-visit MC method in

Figure 6.10.
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Wirst visit Monte Carlo for estimating J1t •
mtlalIze:

1t ~ policy to be evaluated
J ~ an arbitrary cost-to-go function
Returns(s) ~ an empty list, for all s E S

!Repeat forever:
(a) Generate an episode using 1t .

(b) For each s appearing in the episode:
R ~ return following the first occurrence of s .
Append R to Returns(s).
J(s) ~ average(Returns(s»

Figure 6.10: Algorithmfor first-visit Monte Carlo method/or estimating J1t (12)-

We not only need the estimation of the cost-to-go values for a given state. With

Monte Carlo Methods we could obtain an estimate of the Q-factors Q1t of each action to

obtain an optimal policy.

As we described in section 6.10.1.5 about generalized policy iteration, we evaluate

a policy and a cost-to-go function until we obtain the optimal configuration of both

functions. Ifwe apply Monte Carlo methods, we can start with an initial policy 1t o ending

with an optimal policy and optimal Q-factor. The policy improvement is made by taking

the action that maximizes the Q-factor function:

1t(s) ~ arg max (Q(s, a»
a

(6.25)

In policy evaluation for Monte Carlo methods, we evaluate the Q-factor function of

the states during the episodes and improve the policy at the end of each episode. An

example of this method, called Monte Carlo with Exploring Starts (or Monte Carlo ES), is

shown in Figure 6.11.
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!Monte CarlO WlCn ~xplOnng ;')larts.
nitialize, for all S E S, a E A(s):

Q(s, a) +-- arbitrary.
7t(s) +-- arbitrary.
Returns(s, a) +-- an empty list.

;Repeat forever:
(a) Generate an episode using 7t.

(b) For each pair s, a appearing in the episode:
R +-- return following the first occurrence of s, a.
Append R to Returns(s, a).
Q(s, a) +-- average (Returns(s, a»

(c) For each pair s in the episode:

1t(s) +-- arg max (Q(s, a»
a

Figure 6.11: Algorithm/or Monte Carlo with exploring starts (12)"

6.10.3. Temporal difference learning. Temporal difference (TD) methods are a

combination of Monte Carlo and Dynamic Programming methods. TO combines learning

from experience and updating the estimates without waiting for the end ofthe episode. For

example, we can define a simple every-visit Monte Carlo method as:

J(St) +-- J(St) + a[R( - J(St)] (6.26)

That is called constant-a MC, where a is a constant step-size training parameter

and R( is the actual return after the time t when the episode finished, as shown in Eg. (6.8).

We can update the cost-to-go function J(s) only at the end ofthe episode, because we need

R(. Temporal difference learning methods can update J(St) as they know the observed

reward r t . Ifwe update each time step, we obtain the TD(O) method:
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where r t + I + yJ(St + 1) - J(St) = 8, is defined as the TD error for one backup step. This

method is called TD(O) because the eligibility trace parameter A is equal to zero as shown

in section 6.11.

If we compare targets, we note that Monte Carlo uses the total reward of one

episode Rt and Temporal Difference uses r/+ I + yJ(S, + 1)' Ifwe rewrite Eq. (6.15) as:

= £1[[r t +1 +y ±19(5t+k+ 1,a'+k+ l(SI+k+ 1)'SI+k+2) St = s]
k=O

(6.28)

(6.29)

where we can see that Monte Carlo methods use Eq. (6.28) for their estimates and temporal

difference methods use Eq. (6.29) for their estimates.

Figure 6.12 shows an algorithm for estimating J1[ using TD(O).
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TD(O) algorithm/or estimating fl.
mtIallze:

1t ~ policy to be evaluated
J ~ an arbitrary state-cost-to-go function.

lRepeat (for each episode):
Initialize s.
Repeat (for each step of episode):

a ~ action given by 1t for s .
Take action a; observe reward r, and next state sF'

J(s) ~ J(s} + a[r + yJ(SF) -J(s)]

S~SF'

until S is tenninal.

Figure 6.12: TD(O) algorithm for estimating JTt (12)-

6.10.3.1. Random walk example. We want to compare Monte Carlo and Temporal

Difference methods. For our example we implemented a random walk as seen in Figure

6.13.

oo 0

11-4-~-0~~
o

4·®f-"·1I

Figure 6.13: Random Walk (12)'

All episodes start in the center (C) and move left or right with equal probability. We

finish each episode at the left or right box. The reward is always 0 in all positions except

when we finish at right with reward 1. For this example, the true cost-to-go function for

each state from A to E is {1/6, 1/3, 1/2,2/3,5/6} .
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After running the ra dom walk for both ethods, w comp d In

Figure 6.14 and Fig e 6.15 with respect the real c st-t -go functi n. e 0 ed a b er

appr imation if we u e the TD(O) method compared 'th the onte arlo. eth d.lfwe

ee the learning curv fi r ID(O) (Figure 6.16 we an s that 0) has a or Ie

learning curve for a = 0.05. If e increase a we obtain an i itial fast r I , but after

om step th TD( ) algorithm oscillat . In th learning u es for Me ( e 6. 17) we

noted that the step training consta t must b around a = O. 1, whi his 10 r than ID(O .

If "Ie increa e the con tant a, the Me algorithm sciJ1ates at different training times.
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0
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D

igur 6.14: Cost-to-go values learned by TD(O).
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Figure 6.15: OSI-io-go values learned by Me.
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Fig re 6.16: Learning curve. for TD(O).
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Figure 6.17: Learning curves for MC

6.10.4. n-step TD prediction.

TDO-step) ~ ~ ~

•
•
•

• • •

•
•
•

Figure 6. 8: n-step TD prediction (12)·
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Figure 6.18 shows different processes where the white circles represent the states

St and the black circles represent the rewards r t . For different For Monte Carlo methods

the estimate Jt(s,) of the cost-to-go function of the current policy J1t(St) is updated in the

direction of the complete return:

From 1 to n steps backup the reward is:

(6.30)

The estimated value of J1t(St) at the time t is J,(s) due to an n-step backup of S, is:

M,(s,) = a[R7 -Jt(St)]

Ifwe use On-line updating, we update each step with the relation:

(6.31)

(6.32)

Ifwe use Off-line updating, we update at the end of the episode with the relation:

T-I

J(s) = J(s) + L M(s)

,= 0
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6.10.5. Sarsa: On policy TD Control. If we want to execute the training ofa

Learning process based on generalized policy iteration (OPI). we must combine exploration

and exploitation. Sutton and Bart0(12) define two classes of methods: On-policy and Off-

policy.

The On-policy TD method tries to estimate the function Q7t(s. a) for all the states

s and the actions a . Then we can apply the same relation used for the cost-to-go function

to the Q-factor function as:

(6.34)

If S t+ I is terminal, then we define the last Q-factor function Q(St + I' at + I) to be

zero. The name for the Sarsa algorithm comes from the use of the five parameters

(St' at' r t + I' St + I' at + I)' An implementation ofthe Sarsa algorithm is given in Figure

6.19.

;:}arsa atgoTllllm: un pOlicy 1 v L-oncrOi.
nitialize Q(s. a) arbitrarily.

lRepeat (for each episode):
Initialize s.
Choose a. from S using policy derived from Q (E -greedy).
Repeat (for each step of episode):

Take action a ; observe reward r, and next state sF'

Choose aF from SF using policy derived from Q (E-greedy):

Q(s, a) ~ Q(s. a) + a[r + yQ(sF' aF) - Q(s. a)]

s ~ SF' a ~ aF
until S is terminal.

Figure 6.19: Sarsa Algorithm (12)'
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6.10.5.1. Windy Gridworld example. We can apply the Sarsa algorithm to the

Windy Gridworld example seen in Figure 6.20. For this example we have one start and one

goal point, called Sand G respectively. Each episode starts at the point S and finishes at the

point G. We have four possible movements shown in Figure 6.20. Ifwe try to move outside

the Gridworld we remain in the same position. For each movement there is a penalty of -1

until we arrive at the goal G. Our movements are complicated by a wind that moves from

the bottom ofthe grid with a force described in Figure 6.20. The optimal path is described

by the 15 steps at the lower part of the same figure.

.. ... .. .. ...
I I I • I
I I I • I

s J

.t. .t
I I T T
I I I

u u u 2 2 U

v
"".

(;~
~

+Actions

Figure 6.20: Gridworld. Basic operation and real optimal path (J 2)-

We executed the Sarsa algoritlun for the Gridworld with a learning rate a == 0.1 .

The movements in the Gridworld were greedy (taking the action with the maximum

action-value). If two or more actions have the same action-value we select one at random.

To search new solutions, we also included a probability t = 0.1 of random actions. We

found the solution shown in Figure 6.21, where we drew the optimal movement for each
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position. Ifwe follow the suggested movements from the start S we will follow the optimal

path shown in Figure 6.20. We note that some positions do not have suggestions because

they were not visited, due to the wind effect.

Optimal path:

.L. ~ ~ ~ ~ ~ ~ ~ ~ .L.

~ .L. ~ .... ~ ~ ~ ~ t .j.

.L. ~ .L. .... ~ ~ .... .L. ~ .j.

s~ ~ ~ .... ~ ~ ~
G

~ .j.

.L. .L. .L. .... ~ ~ J. +- +-
~ .... ~ I .... ~ .... t
~ ~ t t t +-

u u U I I I Z Z I U

Figure 6.21: Gridworld. Calculated optimal path.

In Figure 6.22 we plotted the number ofepisodes completed versus the total number

of steps. We can see at the beginning it took many steps to complete each episode. As the

training process continues, the episodes concluded in fewer steps.
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Figure 6.22: Number ofcompleted episodes versus number ofsteps.

6.10.6. Q-Iearning: Of/policy TD control. This TD method is Offpolicy because

is independent of the current policy. The method takes the current Q-factor function Q as

the approximate real function Q* . For example, for I-step Q-Ieaming we have:

An implementation of the Q-Iearning algorithm is shown in Figure 6.23.
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~-learnmg algorllllm: V]] pOlicy 1 U LonrrOi.
nitialize Q(s, a) arbitrarily.

lRepeat (for each episode):
Initialize s.
Repeat (for each step of episode):

Choose a from s using policy derived from Q (£ -greedy).
Take action a; observe reward r, and next state sF'

Q(s, a) +- Q(s, a) + a[r + y m:x Q(sF' a) - Q(s, a)]

S +-SF

until S is tenninal.

Figure 6.23: Q-learning: Offpolicy TD control (12)'

6.10.6.1. Cliff Walking. We execute the Cliff Walking example of Figure 6.24 to

compare Q-Ieaming and Sarsa algorithms. We want to move from the Start to the Goal

position with the movements shown in the same figure. An episode concludes when we

arrive at the Goal position. For each movement we have a penalty of -1, except at the Cliff

zone where we receive a punishment of -100 and return to the Start position. We can

consider two possible trajectories: an optimal path running very close to the Cliff zone and

a safe path running along the safe path far from the Cliff zone. If we compare both

algorithms, we can see that the Q-Iearning policy tends to move closer to the Cliffzone than

the Sarsa method. Those results are due to the implementation of the Q-Iearning method

that is based on the current optimal Q-factor function (action where Q(s, + ), a) is

maximum). The Sarsa method is based on the next action executed and, due to the penalty

at the Cliff zone, the algorithm tends to move toward the safest zone.
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r= -I
Sllf palh

I
I opllmal path
S .1lII I n c c II I I I lj

~~ ~ ~
r = -100

Optimal path for On-policy Sarsa:

-+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ J.
-+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ J.
t t t -+ .- -+ -+ +- t t -+ J..
t ' l.

Optimal path for Off-policy Q-Ieaming:

J.. -+ -+ -+ -+ -+ -+ .j. -+ -+ -+ J.
t t -+ -+ -+ -+ -+ -+ -+ -+ J. J.
-+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ J.
t I l.

Figure 6.24: Cliffwalking (/2)'

+Actions

6.10.7. Actor-Critic Methods. This method separates in two independent variables

the policy (known as the actor) and the cost-to-go function (known as the critic) (see

Figure 6.25). The critic learns about the process and critiques the current policy. The

learning is always On-policy. The critic is generally a cost-to-go function, because after

each state transition the critic must compare the results from all possible actions looking for

any improvement. The critique takes the fonn of a TD error (see Eq. (6.27)) :

where J is the cost-to-go function evaluated by the critic.

(6.36)

With this relation we evaluate the selected action a/ at the state 5/. A Positive TD

error means that the critic will support that action at the future. A negative TD error reduces

the support to execute that action.
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For example, we can define an actor's policy 1t /(s, a) with modifiable policy

parameters p(s, a), then we can update those parameters with the relation:

(6.37)

where ~ is a positive step-size parameter. Another update relation could be:

(6.38)

state

'"
Policy

Actor
~

Critic / TD
error

r-
Cost-to-go
Function

I reward

Environment i

action

Figure 6.25: Actor-critic method (12)'

6.11. Unified algorithms.

In this section we want to combine concepts from dynamic programming, Monte

Carlo and temporal difference methods.

6.11.1. Eligibility traces. The idea of eligibility traces is related to the update of

the cost-to-go function, defining how each visited state influences that update process. For

example, we want states which have not been visited to have little or no influence on the
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calculation of the cost-to-go function. On the other hand, frequently visited states must

have an important role in that calculation.

We can use the idea of eligibility traces to define the transition from the TD method

to the Monte Carlo method. Ifwe use the TD method, as defined in section 6.10.4, we could

increase the number of steps n in the time horizon as we move in the future to explore a

solution, arriving at the final time to the Monte Carlo method. This view is called the

forward view, as seen in Figure 6.18, because we are going in the same direction as the

process. We known which states are visited and therefore are used at the cost-to-go function

update.

Another form ofdescribing Eligibility Traces is called the backward view. Here we

can see the Eligibility Traces as "a temporary record of the occurrence of an event."(l2)

When an event or state occurs, that event is marked with one flag, which is later discounted

in time. When a TD occurs, the error is charged to the visited events according to their

discount value.

"The more theoretical view of eligibility traces is called the forward view, and the

more mechanistic view is called the backward view. The forward view is most useful for

understanding what is computed by methods using eligibility traces, whereas the backward

view is more appropriate for developing intuition about the algorithms themselves."( 12)

A temporal difference algorithm that uses eligibility traces is called TD(A).
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6.11.2. Tlleforward view of TD(). This a theoretical point ofview of ID(). We

do not have to update our cost-to-go functions with the n-step return. We can update with

an average of n-step returns with the relation:

00

R;' = (1 - A) LAn - I R~ n)

n=1

For a finite process of length T:

T-I-I

R;' = (I-A) L An-IR~n)+AT-t-IRI

n=\

where the increment of the cost-to-go function is:

(6.39)

(6.40)

(6.41)

Since we need future results of the cost-to-go function, we can see that this implementation

is not causal.

Weight given to the Total area = I.
3 step return

,!(~ ---o;'Y~'
1LLIllrrn I I,. -

Ii T ~
time --. Weighl given 10 the

aelua.! final return.

Figure 6.26: Weighting given in the A-return to each ofthe n-slep return (12)"

6.11.3. The backward view ofTD(). This a mechanistic point of view of the

eligibility traces. This implementation depends on past values, therefore it is causal. We

have a value associated with each state, called the eligibility trace. "On each step, the
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eligibility traces for an states decay by y'A, and the eligibility trace for the one state visited

on the step is incremented by 1"(12)' as shown in Figure 6.27.

e(t)
If s,*s/

If 5 = 51
(6.42)

where: y~ Discount rate.

'A ~ Parameter used by the forward view (previous section).

Accumulating eligibility trace

I I I I I I I Times of visits to a state

Figure 6.27: Graphical representation ofbackward view ofeligibility traces (12)"

"The traces are said to indicate the degree to which each state is eligible for

undergoing learning changes should a reinforcement event occur."(12)

where:

Mis) = a. 8/ etCs) for all s E S (6.43)

For example in the case of I-step TD error we have:
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If: A = a

A = I

1..=1,y=1

~ TD(a)

~ The credit error falls by y per step.

~ TD(1). The eligibility traces do not decay at all with

time. Work as Monte Carlo undiscounted episodic task.

A large, but still A< I ~ More of the preceding states are changed, but the more

precedent is changed less.

An example of the application of this concept is shown in Figure 6.28, where we

use eligibility traces to estimate fC for a given policy 1t .

On line Tabular TD(:i) for estimating J1f.
mtlahze:

J(s) ~ arbitrarily.
e(s) = a for all s E S.

lRepeat (for each episode):
Initialize s .
Repeat (for each step of episode):

a +- action given by 1t for s .
Take action a ; observe reward r. and next state sF'

8 +- r + yJ(sF) -J(s)

e(s) ~ e(s) + I
For all s:

J(s) +- J(s) + u6e(s)
e(s)~ yl..e(s)

s +- SF'

until s is tenninal.

Figure 6.28: On-line Tabular TD(I..) for estimating jTt (/2)"
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6.12. Gradient-Descent Methods.

This section describes how we can construct approximate representations of the

cost-to-go function using neural networks or similar structures. The same results will apply

to the Q-factor functions. Bertsekas and Tsitsiklis(3) stated that we must define an

approximation architecture powerful enough to approximate the desired function, and we

must establish effective algorithms to execute the training process. Generally, these

objectives are conflicting, because powerful architectures generally imply large numbers of

parameters and nonlinear internal relations.

A general approximation process with neural networks is based on data pairs

(X j , Yi)' where we want to find the function Y = f(x) that is the best approximation to that

data set, as shown in Figure 6.29.

f(x).
Yj

Xi a j u+

Neural --
Network

Figure 6.29: General neural network training.

In the reinforcement learning context, we want to obtain the optimal cost-lo-go

function J* , based in the data pairs (s I' J*(s ,) ), where S I is contained in a subset ofthe state

space. However, since the function J* is unknown or not measurable, the training pairs are

unavailable. In that case, we need a training algorithm which also tries 10 compute J* . One
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idea is to obtain the approximate cost-to-go function .t(s) during one episode, starting

from the state So and following the policy 1t. For example, this approximate cost-to-go

function can be obtained using Monte Carlo simulation (as in Eq. (6.26)) or by temporal

difference method (as in Eq. (6.27». As a result ofthis process we will obtain training pairs

for the neural network (St,.t (St») as shown in Figure 6.30.

Environment or
Stochastic System

Neural
Network

Figure 6.30: Neural network training for a Reinforcement Learning problem.

For the neural network training the inputs are the states visited during the episode.

The target will be the approximate cost-to-go function .teSt). The network will be trained

to minimize the mean square error:

seS

(6.45)

where peSt) is the state probability mass function. If the states appear with the same

distribution P , we can minimize the error on the observed examples by the following

steepest descent algorithm:
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(6.46)

where a is a positive step-size parameter and 0is the vector ofneural network weights and

biases.

After the neural network has been trained it provides a new updated policy because

we can then determine the action that minimizes the cost-to-go function. We must then

continue to update the cost-to-go function.

If TD methods are used to estimate the cost-to-go values, we have :teSt) = R~ for

the forward view update (Eq. (6.39) and Eq. (6.40)) and we can update the weights and

biases with the relation:

(6.47)

but, for A. < 1 , R~ is a non causal approximation to .I'(St) , and this is not a practical

implementation. For the backward view TD update we have:

(6.48)

where () t is the TD error:

(6.49)

and et is a vector of eligibility traces defined by:

(6.50)
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~

with eo = o.

6.12.1. Linear Met/rods. This is the case when the cost-to-go function JN IS a

linear function of the parameter vector 8t :

n

IN,is,) = e;t = L 8;U) t(O
i = I

(6.51)

where tCi) = Cq.i l ), q.sC2), ... , 4> sCn){ is a vector of features which correspond to each

state s. Sutton and Bart0(l2) defined tco as a vector of features and Bertsekas and

Tsitsiklis(3) defined tcn as basis functions. We can rewrite the mean square error equation

as:

MSE(9,) = P(s,) 2: [J(S,) - ±9;(i) $,(i»)'
SES i= I

(6.52)

We can use different types ofbasis functions to obtain the cost-to-go function. For

example, Sutton and Barto mention coarse coding, tile coding, radial basis functions and

Kanerva coding( 12)' We will explain the tile coding that wi 11 be used in the final

simulations.

6.12.2. Tile Coding (CMAC NN).

For tile coding Cor CMAC neural networks), we divide the state space into m

subspaces as shown in Figure 6.31 for a two dimensional space. The division could be with

the same spacing or with arbitrary spacing. Arbitrary shapes are also allowed.
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I
x

Figure 6.31: Two-dimen tonal Tile oding (/2)'

For ach stat -valu only one of the tiles will b acti e at a time. Therefore, the

output of the network will be the wight a sociated wi h that til corr ponding to th

current state-valu . Therefor, the gradient V~ (J N(s() ill u ually be equ It 1 for th
8,

active tile and equal to 0 for all th oth r .

To obtain a better resolution in the implementation of th tiles, e can include an

additional tile for each dimen ion, and the tiling can be hift db a random n rob r, as

shown for the two dimensional case in Figure 6.32. In that fi ure w have the ri 1inal s ace

in black with two displaced tilings in blue an green.

Figure 6.32: wo-dimensional Tile Coding with two til (green and blu V(12)-
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6.12.3. Control with/unction approximation. We can extend the previous

concept ofcost-to-go function prediction to Q-factor function prediction. With the Q-factor

function we can obtain the cost-to-go derived from each possible action for each state. We

can define Q1t as a function of 8t. We can say that the Q-factor function will generate an

output of the fonn St' at ~ it, where i/ could be any approximation of Q7[(St, at)' as the

Monte Carlo return Rt or the I-step Sarsa-style return rt + 1 + YQmASt+ l' at + I)' Then we

can write the gradient-descent update for the Q-factor function as:

where:

and:

a t + I = at + a.ci/(st, at) - QNtl.St' at))'Ve,(Qm/St' at))

For the backward view ofTD(A), using the CMAC NN, we have that:

(6.53)

(6.54)

(6.55)

(6.56)

We can apply the update algorithm for a reinforcement learning problem following

the process described in Figure 6.33.
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1,

Initialize eI and ~I

•For each episode, initialize s,
- Evaluate ~, Q-- for each a

+
Execute action with maximum Q
or random action.

+
Observe reward r and next state s

~
No

Is s terminal?

~Yes
end

Figure 6.33: General linear update algorithm

An example of On-policy approximation is the linear, gradient-descent Sarsa(A)

algorithm shown in Figure 6.34. An Off-policy implementation is the linear, gradient-

descent version of Watkins's Q(A} as shown in Figure 6.35.
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"'linear, gradient-descent Sarsa (1).
+

~nitialize W arbitrarily (preferable zero). Initialize.~ = o.
lRepeat (for each episode):

Initialize s (random or fixed initial condition).
For all a E A(s):

F a ~ set of features present in s I a .

Qa~ L Wei)
i E Fa

a ~ arg max Qa
a

With probability E : a ~ a ramdom action E A (s) .
Repeat (for each step of episode):
~~YA~

For all II ;#. a: (optional block for replacing traces)
For all i E F 11 :

e(i)~ 0
For all i E Fa:

e(i) ~ e(i) + 1 (accumulating traces)
or e(i) ~ 1 (replacing traces)

Take action a; observe reward r, and next state 5 F·

o~r-Qa

If sF is not terminal:

For all a E A (s) :
Fa ~ set of features present in s, a .

Qa~ L Wei)
i E Fa

aF~ arg max Qa­
a

With probability E: aF ~ a ramdom action E A (5) .

If sf is terminal then: Q
aF

= 0

o~o+YQaf"

w~ W+aoe

s~sF,a~aF

Recalculate: Qa ~ L W(i)

until s is terminal.

Figure 6.34: Linear, gradient-descent Sarsa (A.) (12)"
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!Linear, gradient-descent Q(A..).
~nitialize W arbitrarily (preferable zero).

~

nitialize e= O.
~epeat (for each episode):

Initialize s (random or fixed initial condition).
For all a E A(s):

Fa -E- set of features present in s, a .

Qa -E- l: W(i)

i E F"
!R.epeat (for each step of episode):

With probability I - E:

a -E- arg max Qa'
a

e -E- yAe
else

a -E- a random action E A (s) .
e-E-O

For all i E Fa: e(i) -E- e(i) + I

Take action a; observe reward r, and next state sF'

8 -E- r - Qa

For all a E A(s):
Fa -E- set of features present in sF' a .

Qa -E- l: W(i)

aF -E- arg max Qa'
a

.5 -E-.5 + yQaF

W -E- W+ a8e
until s is terminal.

Figure 6.35: Linear, gradient-descent Q(A..) (l2)-

6.12.4. Mountain-Car example. As an example, we can consider the task of

driving a Mountain-Car task as suggested in Figure 6.36. Since the car does not have

enough power to climb the hill directly, the intuitive solution implies that we must first go
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backwards and then accelerate forward. We want to minimize the time to climb that hill

starting from a random initial position.

The simplified equations of the car are:

X t + 1 = bound [x t + Xt + I ]

Xt + I = bound[xt + 0.OOla(-O.0025cos(3x,)]

(6.57)

(6.58)

where the bound function enforces a limit in the state variables: -1.2 :$ x / + I :$ 0.5 and

-0.07 :$x t + 1:$ 0.07 .

Goal

Figure 6.36: Mountain Car task (lJ)"

The control input to the system has three options: full throttle forward (a I = 1),

fun throttle reverse (a I = -1 ), and zero throttle (a I = 0). The reward function is -1 until

the car passes Goal position when the episode ends. We use the Sarsa learning method with

parameters A. = 0.9, E = 0, a = 0.05(0.I/m).

With all the initial actions set to zero we will select randomly between equal

cost-to-go functions. Thus we have an extensive exploration, even though E = O. We used

the same tiling scheme proposed by Sutton and Barto(12)' We divided the state variables

into 10 tilings divided into 9 x 9 equally spaced segments.
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e tr .ned th y tern tI r 9000 epi ode. proximate lu' a er 104 pt s

and after 9 00 pi 6.37 nd Figur .38 resp4ecti've

that aft r 104 epi an r xuna re re en n the rna -to-g

fun tion s

o

-0.5

-1

in F' re .39.

-0.06 -0.04

Vel city

Figure 6.37: Approximate Action per slale after /0-1 pisode (+ (fif), ·(fir), 0 zl) .
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~
-0.5
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o 0.02 0.04 0.06

Veloci

Figure 6.38: Approximat Action per state aft r 9000 pi de· (
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Mouot:aln Car , 04 trl.a( s) "'o..rotaon Cor '000 b'lal(>l

Mountain Cor 9000 1l'Ial(')

Figure 6.39: Cost-to-go function (- maxa Q,(s,a)) learned during one run.

In Figure 6.39 we can see the cost-to-go function (- max Q/(s/, a/» learned during
a

.
one run. We can see that after one episode we have a circular cost representation ofthe back

and forth movement of the car. As the number of training episodes increases, the cost

fimction takes shape. For 1000 episodes the cost function shape is so similar to the cost

function for 9000 episodes that we can consider is to be a close approximation to the real

cost function.
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6.12.5. Acrobot example. As a second example, we can consider a reinforcement

learning problem applied to an Acrobot. "The Acrobot is an underactuated two-link planar

robot that mimics the human acrobat who hangs from a bar and tries to swing up to a

perfectly balanced upside-down position with hislher hands still on the bar'\4) as seen in

Figure 6.40.

Motor fixed
to link 1, used

to drive link 2 "'-

Link 1

Link 2

~ Sensors for
/ Angular position

Figure 6.40: Diagram ofan Acrobot (4)·

The dynamic equations for the Acrobot are (4, 1\):
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Where the coefficients of the relations (6.59) and (6.60) are:

Figure 6.41: Simple Acrobot notation (4. I I)-
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Hanging
position
(stable)

Movement
to help
swing-up

..............\­

........~
Moving
at least
one lenghl
of inverted
position

Figure 6.42: Swing-up the Acrobat (4)-

The goal is to swing up in minimum time the lower end of the Acrobot at least one

length over the vertical position as shown in Figure 6.42. We always will start in the stable

hanging position.

The control input to the system has three options: full positive torque (t t = 1), full

negative torque ("t t = -1), and zero torque (t I = 0). The reward function is -1 for each

step until the Acrobot reaches one length above the inverted position. We use the Sarsa

learning method with the parameters A = 0.9, E = 0, a = 0.2/48. The angular

velocities were limited to qI E [-41t, 41t] and q2 E [-91t, 91t] with no limits in the

angular values q I and q2' We allowed multiple rotations of the Acrobot links. From the

figures that Sutton and Barto presented in their book (12) we noted that those movements

were not allowed. For our example we used real parameters taken from the Acrobot of

Brown and Passino (4):

m) = 1.9008;

m2 = 0.7175;
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II 0.2;

12 = 0.2;

leI = 0.18522;

I c2 = 0.062052;

II = 0.0043399;

12 = 0.0052285;

g = 9.8;

We used the same tiling scheme proposed by Sutton and Barto (12)' We divided the

angle state variables q I and q2 into six equally spaced intervals and the velocity state

variables qI and il2 into seven equally spaced intervals. We created 12 tilings with four

dimensions as discussed before. We created a second group of 12 tilings by taking three of

the dimensions for each tiling. We created a third group of 12 tilings with a combination of

two dimensions and a final group of 12 tilings with one dimension each one. We offset each

tiling by a random fraction of a tile.

We made some simulations with the Acrobat. Initially, we set the initial action

values to low random numbers. We set the algorithm for no exploring actions (E = 0).

With those parameters we obtained a system training curve shown in Figure 6.43. From an

initial episode of2206 steps, the system optimizes with a faster execution of 172 steps. We

note that the system stops the training after the episode 77, when the algorithm establishes

200 steps as its optimal path. That condition was due to the greedy actions we were taking,
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and no futures exploration actions were generated. To avoid that problem, we made a

change in the algorithm to include exploring actions (£ = 0.1) after two consecutive

episodes with the same step number. As shown in Figure 6.44, we avoid the straight line of

the previous figure, obtaining a minimal response of 148 steps for one episode.

2Soo .--------..----,.----.-----r----.---~--_r_-____,

... 2000
~
0
VI

's.......
1SOD~

VI
C-...
'Vi

1000

SOO

~.~
I'

0
0 so 100 1S0 200 250 300 3S0 400

episodes

Figure 6.43: Acrobot. Steps per Trial. Initial random weights. No exploring actions.

Minimum steps 172 (one time).
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~
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500

400350300250200
episodes

15010050
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o

Figure 6.44: Acrobot. Steps per Trial. Initial random weights. Exploring actions after 2

consecutive episodes with the same steps. Minimum 148 steps (l time).

We found a new minimum. However, the system oscillates and the error is not

decreasing. For a third experiment (Figure 6.45) we included a decreasing factor in the

exploring actions E. That decreasing factor was taken as the same A = 0.9. After two

consecutive episodes with the same step number we set E = 0.1, and that number was

decreased by A. For this change we noted that the peaks after 100 episodes decreased, but

our new minimum was 155 steps for one episode.

For a fourth experiment we repeated the first case with the initial action-value set at

zero, where we will select randomly between equal Q-factor function values. Theoretically

we will have an extensive exploration, even though E = O. We note that the exploration

was faster than the first case, but in the first case after the episode 53 the training stopped

with an optimal path of 177 steps per trial. We see the benefits of the training with initial
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zero Q-factor function values, but we want to include more exploration as the training

continues.

In our final experiment we trained with the initial Q-factor function set at zero, with

exploring actions (E = 0.1) after two consecutive episodes with the same step number.

Here we obtained the lower number of 147 steps per episode.

3000

2500

.,
"C
0
lI)

2000'5.
u...
u
Q.

lI)
Q. 1500...
en

1000

500

0
0 50 100 150 200

episodes

250 300 350 400

Figure 6.45: Acrobat. Steps per Trial. Initial random weights. Exploring actions after two

consecutive episodes with same steps, decreased by A. Minimum steps J55 (one time).
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Figure 6.46: Acrobot, Steps per Trial. Initial zero weights. No exploring actions.

Minimum steps 175 (one time).
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Figure 6.47: Acrobot. Steps per Trial. Initial zero weights. Exploring actions after two

consecutive episodes with same steps, decreased by A.. Minimum steps 147 (37 times).
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We can ee in Figure 6.48 and igur .49 th rno m nt of e Acrobot or 17 an

147 step epi od s. W can se how t e mov m nt of h econd lin generate an

o illation of th first link un '1 the goal i r ached.

..,--------.,

.,..
f )4> ( 4>

O.

os
<II

(t = 1)~ (t = 25) (t = 2 ) ~ (t = 50)

..

O'

GO

(t=51)~(/=75)

..

.....
(I = 76)~ (t = JOO)

....

(t = 10 I. )~ (t = 125)

.,

(t= 15l)~(t~ 172)

......
(1= 126)~(t= 150)

Figure 6.48: Acrobot movementfor 172 steps (green = first link, red ' ond link,

blue = traje tory ofthe Acrobot end).
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Figure 6.49: Acrobot movement for 147 'tep (green = first link, red = cond link,

blue = trajectory ofthe Acrobot end).
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6.13. Conclusions.

This chapter has described the general reinforcement learning framework.

Reinforcement learning is an approximate form of dynamic programming, in which an

appropriate control policy is chosen to optimize future performance. There are two steps

involved in reinforcement learning. The first step is the development of a model for

predicting future performance, and the second step is determining the appropriate control

action to optimize that performance.

With the reinforcement learning framework there are many different learning

strategies for model development which have been proposed. In this chapter we have

discussed Monte Carlo and Temporal Difference Learning procedures for model

development. For Monte Carlo methods, a number of trials are made and averaging

techniques are used to estimate performance functions. In temporal difference learning,

estimates are updated at each step of the process. This chapter has described the

relationship between Monte Carlo methods and the various forms of temporal difference

learning. and has illustrated the convergence characteristics of each method. We also saw

the importance of balancing exploitation (maximum reward) and exploration (looking for

new solutions). This was important in the Acrobot example. Contrary to other training

methods for neural networks, we noted the importance of zero initial weights (or Q-factor

functions) for the reinforcement learning problems. Zero initial Q-factor values causes an

initial exploration for new solutions. However, after some training we will feel the

necessity of increase the exploring actions to maintain the learning process. We can do that
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by changing the exploration factor E from zero to some small value when we see a repeated

solution. We illustrated this process for the Acrobot example.

We can implement the concepts of Reinforcement Learning using different tools,

such as decision trees and neural networks. For neural networks we demonstrated the

implementation ofCMAC Neural Networks, caned tilings by Sutton and Barto (12)' Of

interest was the tiling implementation with an extra tile and random displacement, allowing

a better interaction throughout the state space.

This chapter has shown the feasibility of using reinforcement learning to train

controllers for dynamic systems. This technique may be suitable for developing controllers

for diesel engines. This will be proposed in the following chapter.
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CHAPTER 7

APPLYING REINFORCEMENT LEARNING TO THE DIESEL ENGINE.

We will apply the reinforcement learning techniques discussed in Chapter 6 for the

diesel engine control. The five initial experiments will use the engine speed and fueling as

the state variables. The first experiment will is intended to obtain a control scheme that

learn how to change the engine speed from a fixed initial condition to an specified speed.

The second case includes a lower border penalty. The idea is to teach the algorithm how to

avoid low speeds. The third experiment includes a higher speed border penalty. The fourth

experiment was designed to execute the training from random initial speeds. The final

episode is executed with the same initial conditions of the three previous cases. The fifth

experiment was executed with random initial speeds and random initial fueling. As we

move in our experiments we will explore more conditions of the state space.

After the previous experiments we will execute reinforcement learning experiments

for tracking a reference engine speed. We will include the engine acceleration as a third

state variable. For the sixth experiment, we will try to control the engine speed using the

absolute value error as our fitness with higher penalties for the lower and higher engine

speed bounds. For the seventh experiment we will use a time scheme reward equivalent to

the used on the five initial experiments. The last experiment is intended to test
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configurations with two and three CMAC neural networks, and compare the results with

one CMAC neural network.

For the experiments we will use two types of tile coding. We called the first as

equidistant tile coding. For this coding all the state space for the variable is divided in tiles

of the same size. We called the second as log sigmoid tile coding. This coding is described

in section 7.6.

7.1. Learning a speed transition.

In this section, we will execute different experiments applying reinforcement

learning ideas from Chapter 6 to the two engine models detailed in Chapter 3. For both

models the algorithm must learn how to change the engine speed from given initial

conditions for speed and fueling to a new speed setpoint.

The reader will notice how the objectives increase in complexity as new

experiments are introduced.

7.1.1. Basic engine model.

For the basic model ofFigure 3.4 we selected a fueling delay of 80 ms and a fixed

load of 150 lb-ft. The reinforcement learning updates were made every 80 ms.

We execute the reinforcement learning algorithm until the engine speed reached

650 ±10 rpm starting from 576 rpm and a very low fueling of 0.0558 mm
3

/ stroke.

The algoritlun receives a penalty of r = -I for each step that the specified speed is not

reached. When the engine speed arrives at 650 ± 10 rpm or the episode lasts 100 seconds

without arriving at the desired speed, the episode is concluded. Then we start a new episode

in the same conditions described previously. The reinforcement learning algorithm has
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three possible actions: increase the fueling by 10 mm J
/ stroke, decrease the fueling by the

same quantity or maintain the same fueling.

After 100 episodes we obtained the learning curve shown in Figure 7.1. The longest

episode was 1251 steps long corresponding to the conditions when the engine runs for 100

seconds without reaching the desired speed. The shortest episode was 43 steps and was

obtained at the 82th episode where the learning stopped.

Figure 7.2 shows the speed transition for the optimal episode. Due to the low initial

fueling and the conditions for increasing and decreasing fueling, the speed reduces to about

190 rpm and after that is increased until 650.65 rpm. The simplest solution for this

problem is to increase the fueling by the specified step of 10 mm
3

/ stroke at each update.

That solution produces the green line in Figure 7.2 with 40 steps and a final speed of

648.08 rpm .We notice how the reinforcement algoritlun found a suboptimal solution with

little knowledge of the physical system. Figure 7.3 shows the fueling for both solutions. We

notice how the reinforcement learning solution increases the fueling, and near the required

speed it adjusts the fueling to obtain the desired speed.

Figure 7.4 shows the cost-to-go function from this experiment. We notice how the

combination of low speed and low fueling has the highest cost. For that combination we

need a higher effort to move the engine speed to our desired goal. We also note a high cost

for high speed and fueling over 250 mm
3

/ stroke. Due to the problem conditions, if we

arrive at the full speed we will decrease the fueling in the given increments to arrive to the

solution.
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7.1.2. Neural Network model.

For the Neural Network model shown in Figure 3.7 we used the same fueling delay

of 80 ms and the reinforcement learning update were made every 80 ms .We applied a

variable load shown in Figure 7.5.
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Figure 7.5: External load applied to the Neural Network model engine.

We execute the reinforcement learning algoritlun until the engine speed reaches

1500 ±1O rpm starting from 800 rpm and a very low fueling of 0.0558 Ib/min. The

algorithm receives a penalty of r = -1 for each step that the specified speed is not reached.

When the engine speed arrives at 1500 ±10 rpm or the episode lasts 1200 seconds without

arriving at the desired speed, the episode is concluded. Then we start a new episode with

the same conditions described previously. The reinforcement learning algoritlun has three

possible actions: increase the fueling by 0.01 lb/min, decrease the fueling by the same

quantity or maintain the same fueling.
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After 100 episodes we obtained the learning curve shown in Figure 7.6. The longest

episode was 388 steps long. For this model the engine always reached the goal speed. The

shortest episode has 34 steps at the 9th episode. However, the algorithm learned after the

70th episode a suboptimal path with 42 steps.

Figure 7.7 shows the speed transition for the suboptimal episode. For the conditions

of this experiment the algorithm learned to increase the engine speed until the desired goal.

Figure 7.8 shows the fuel mass and the air mass for the suboptimal solution. We notice how

the reinforcement learning solution increases the fueling, and the air mass is increased by

the effect of the fueling and the engine speed.

Figure 7.9 shows the cost-to-go function for this experiment. Due to the

characteristics of this experiment, where we are moving from low to high speed with low

fueling, we notice that the highest cost is near low speed and low fueling. For this

experiment the engine never arrived at the maximum speed of 2000 rpm.
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7.2. Learning a speed transition with lower border penalty.

For this experiment we applied some ofthe previous conditions, hut we added more

restrictions. First, the episode will conclude if the engine speed reaches a lower limit. In

that case the penalty is more severe with r = -100. Second, the speed band error was

reduced to ±1 rpm.

7.2.1. Basic engine model.

We used the same conditions ofdelay equal to 80 ms and a fixed load of 150 Ib-It.

The reinforcement learning updates were also made every 80 ms.

We executed the reinforcement learning algorithm until the engine speed reached

650 ±1 rpm starting from 576 rpm and a very low fueling of 0.0558 mm3
/ stroke. The

algorithm receives a penalty of r = -1 for each step that the specified speed is not reached.

The episode is concluded by three conditions: the engine speed arrives at 650 ±1 rpm, the

episode lasts 100 seconds without arriving at the desired speed or the engine speed is under

100 rpm. In the last case the penalty is r = -100. Each new episode is started at the same

conditions described previously. The reinforcement learning algorithm has the same three

possible actions: increase the fueling by 10 mm
3

/ stroke, decrease the fueling by the same

quantity or maintain the same fueling.

After 200 episodes we obtained the learning curve shown in Figure 7.10. The

longest episode was 1251 steps long corresponding to the conditions where the engine runs

for 100 seconds without reaching the desired speed. The shortest episode with final speed
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650 ±1 rpm was 46 steps, that was obtained at the 123th episode where the learning

stopped.

Figure 7.11 shows the speed transition for the optimal episode. Due to the low initial

fueling and the conditions for increasing and decreasing fueling, the speed reduces to about

192 rpm and after that is increased until 649.65 rpm. The simple solution applied in the

previous section was not possible for this problem. lfwe continuously increase the fueling,

the engine speed will pass over the range of ±1 rpm. Figure 7.12 shows the fueling for this

solution. We notice how the reinforcement learning solution increases the fueling as the

solution shown in Figure 7.3, with extra steps to obtain the desired speed.

Figure 7.13 shows the cost-to-go function from this experiment. We notice how the

combination of low speed and low fueling has the highest cost. This cost is higher in

comparison with the cost shown in Figure 7.4. Also a break is shown near 100 rpm. For

that combination we still need a higher effort to move the engine speed to our desired goal,

but we receive a higher penalty for crossing the 100 rpm border. As the cost shown in

Figure 7.4, we also note a higher cost for maximum speed and fueling over

250 mm3
/ stroke. Due to the problem conditions, if we arrive at full speed we will

decrease the fueling i'n the given increments to arrive at the solution.
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7.2.2. Neural Network model.

We execute the reinforcement learning algorithm until the engine speed reaches

1500 ±1 rpm starting from 800 rpm and a very low fueling of 0.0558 lb/min. The

algorithm receives a penalty of r = -1 for each step that the specified speed is not reached.

When the engine speed arrives at 1500 ±1 rpm or the episode lasts 1200 seconds without

arriving at the desired speed, the episode is concluded. Then we start a new episode with

the same initial conditions described previously. The episode also concludes if the engine

speed falls to 570 rpm with a penalty r = -100. The reinforcement learning algorithm has

three possible actions: increase the fueling by 0.01 lb/min, decrease the fueling by the

same quantity or maintain the same fueling.

After 100 episodes we obtained the learning curve shown in Figure 7.14. The

Longest episode was 4267 steps long and the desired speed was not reached. The shortest

episode has 43 steps at the 77th episode. However, the algorithm learned after that episode

a suboptimal path with 48 steps.

Figure 7.15 shows the speed transition for the suboptimal episode. For the

conditions of this experiment the algorithm Learned to increase the engine speed until the

desired goal. Figure 7.16 shows the fuel mass and the air mass for the suboptimal solution.

We notice how the reinforcement learning solution increases and reduces the fueling to

obtain a smooth speed transition.

Figure 7.17 shows the cost-to-go function from this experiment. Due to the

characteristics of this experiment, where we are moving from low to high speed with low
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7.3. Learning a speed transition with lower and higher border penalty.

For this experiment we included a restriction for higher speed. Therefore, the

episode will conclude if the engine speed reaches a upper limit. We used the same severe

penalty, = -100 as in the case oflower speed violations. We maintained the same speed

band error of ±1 rpm.

7.3.1. Basic engine model.

We used the same conditions ofdelay equal to 80 ms and a fixed load of 150 lb-ft.

The reinforcement learning updates were also made every 80 ms.

We executed the reinforcement learning algorithm until the engine speed reached

650 ±1 rpm starting from 576 rpm and a very low fueling of 0.0558 mm3/stroke. The

algorithm receives a penalty of r = -1 for each step that the specified speed is not reached.

The episode is concluded by four conditions: the engine speed arrives at 650 ±1 rpm, the

episode lasts 100 seconds without arriving at the desired speed, the engine speed is under

100 rpm or over 2000 rpm. In the last two cases the penalty is r = -100. Each new

episode is started with the same initial conditions described previously. The reinforcement

learning algorithm has the same three possible actions: increase the fueling by

10 mm3I stroke, decrease the fueling by the same quantity or maintain the same fueling.

After 200 episodes we obtained the learning curve shown in Figure 7.18. The

longest episode was 1038. That episode corresponds to one where the engine avoids the

limit speeds and arrives at the desired speed. The shortest episode, with final speed
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650 ±1 rpm, has 44 steps. That episode was obtained at the 13 8th episode where the

learning stopped.

Figure 7.19 shows the speed transition for the optimal episode. Due to the low initial

fueling and the conditions for increasing and decreasing fueling, the speed reduces to about

167 rpm and after that is increased until 650.09 rpm. Figure 7.20 shows the fueling for

this solution. We notice how the reinforcement learning solution increases the fueling with

some variations in the middle of the trajectory.

Figure 7.21 shows the cost-to-go function from this experiment. We still notice how

the combination of low speed and low fueling has the highest cost. This cost is higher in

comparison with the cost shown in Figure 7.4 but similar to the cost plotted showed in

Figure 7.13. The break near 100 rpm is also in Figure 7.21. However the cost near

2000 rpm differs with the two previous experiments. Due to the end ofthe episode and the

penalty at the top speed, we only see a high cost near 2000 rpm from

250 to SOD mm3
/ stroke. For other fueling values the cost is zero because those regions

were not explored for the conditions of this experiment where we only move from one

speed to another.

133



1200

1000

I-
BOO

..8
~
~ 600
~
Il)

l;i

400

200 ~ l~ ~~ ~11

o
a 50 100 pisodes 150 200

Figure 7.18: Learning algorithm/or. peed transition with lower and upper borderp natty

experiment using basic engine model. (*) ,- episodes where 650 ±1 rpm wa not r ached.

700

600

500

-g 400

8-
1Il

300

200

100
0 0.5 1 .5 2 2.5 3 3.5

tinae

Figure 7.19: F;ngine sp ed r: ponse/or the basic model.

234



400

50

3 0

260

C>O 200.5
]

150

100

50

0.5 1 .5
time

2 2.5 3 3.5

Figure 7.20: En inelue/ingfor the ba ic en ine model. Blue = ub 'Fllma/ lutionfrom

th reinforcement 1 arning al oriLhm. reen = 'P im [s luti n.

....

100

50

o
o

. . ~ .

1000
______ 1500

fueling ~

• 0_ •

o

. ...
;-" .

~ ...

2 00

Figure 7.21: 0 (-to-go function for peed transition with low r and upper borderpenal

periment u in') ba ic ngin m d I.

235



7.3.2. Neural Network model.

We execute the reinforcement learning algoritlun until the engine speed reached

1500 ±1 rpm starting from 800 rpm and a very low fueling of 0.0558 lb/min. The

algoritlun receives a penalty of r = -1 for each step that the specified speed is not reached.

When the engine speed arrives at 1500 ± 1 rpm or the episode lasts 1200 seconds without

arriving to the desired speed, the episode is concluded. Then we start a new episode with

the same initial conditions described previously. The episode also concludes if the engine

speed reduces to 570 rpm or increases to 2000 rpm with a penalty r = -100 for each

case. The reinforcement learning algoritlun has three possible actions: increase the fueling

by 0.01 lb/min, decrease the fueling by the same quantity or maintain the same fueling.

After 100 episodes we obtained the learning curve shown in Figure 7.22. The

longest episode was 946 steps long and the desired speed was not reached. The shortest

episode has 46 steps at the 38th episode. However, after the 85th episode the algorithm

learned a suboptimal path with 51 steps.

Figure 7.23 shows the speed transition for the suboptimal episode. For the

conditions ofthis experiment the algoritlun learned to increase the engine speed with a very

small overshoot until the desired goal. Figure 7.24 shows the fuel mass and the air mass for

the suboptimal solution. As in the previous experiment, we notice how the reinforcement

learning solution increases and reduces the fueling to obtain the smooth speed transition.

Figure 7.25 shows the cost-to-go function for this experiment. Due to the

characteristics of this experiment, where we are moving from low to high speed with low

fueling, we notice that the highest cost is near low speed and low fueling. We also note a
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7.4. Learning a speed transition with random initial speed.

For this experiment we maintained the restrictions for lower and higher speed. The

training was made with random initial speed between 300 rpm and 1700 rpm . Each

episode will conclude if the engine speed reaches the required speed ±1 rpm ,or the

lower or upper speed limit. We used the same severe penalty r = -100 as in the case of

lower or upper speed violations.

7.4.1. Basic engine model.

We used the same conditions ofdelay equal to 80 ms and a fixed load of 150 Ib-It.

The reinforcement learning update were also made every 80 ms.

We executed the reinforcement learning algorithm until the engine speed reached

650 ±1 rpm, starting from random speed between 300 rpm and 1700 rpm with a very low

fueling of 0.0558 mm3
/ stroke. The algorithm receives a penalty of r = -1 for each step

that the specified speed is not reached. The episode is concluded by four conditions: the

engine speed arrives at 650 ±1 rpm, the episode lasts 100 seconds without arriving at the

desired speed, the engine speed is under 100 rpm or over 2000 rpm . In the last two cases

the penalty is r = -100. Each new episode is started with the same initial conditions or

random speed and low fueling described previously. The reinforcement learning algorithm

has the same three possible actions: increase the fueling by 10 mm
3

/ stroke, decrease the

fueling by the same quantity or maintain the same fueling.
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After 501 episodes we obtained the learning curve shown in Figure 7.26. The

longest episode was 1251 steps long corresponding to the conditions where the engine runs

for 100 seconds without reaching the desired speed. The final episode, starting with speed

576 rpm and fueling of 0.0558 mm
3

/ stroke and reaching a final speed of 650 ± I rpm,

has 46 steps. Other episodes for different initial speeds also reached the specified speed.

Figure 7.27 shows the speed transition for the last episode. As in the previous

experiments, due to the low initial fueling and the conditions for increasing and decreasing

fueling, the speed reduces to about 233 rpm and after that is increased until 650.69 rpm.

Figure 7.28 shows the fueling for this solution. We notice how the reinforcement learning

solution increases the fueling until one point where the fueling is decreased to obtain the

required speed.

Figure 7.29 shows the cost-to-go function from this experiment. This cost is similar

to the cost function shown in Figure 7.21 where the combination of low speed and Low

fueling has the highest cost and a higher cost near 2000 rpm from 250 to

3500 mm / stroke.
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7.4.2. Neural Network model.

We execute the reinforcement learning algoritlun until the engine speed reaches

1500 ±1 rpm starting from a random speed. between 800 and 1700 rpm and a very low

fueling of 0.0558 lb/min. The algorithm receives a penalty of r = -1 for each step that

the specified speed is not reached. When the engine speed arrives at 1500 ±1 rpm or the

episode lasted 1200 seconds without arriving at the desired speed, the episode is concluded.

Then we start a new episode in the same conditions described previously. The episode also

concludes if the engine speed reduces to 570 rpm or increases to 2000 rpm with a penalty

r = -100 for each case. The reinforcement learning algorithm has three possible actions:

increase the fueling by 0.01 lb/min, decrease the fueling by the same quantity or maintain

the same fueling.

After 100 episodes we obtained the learning curve shown in Figure 7.30. The

longest episode was 1188 steps long and the desired speed was not reached. The shortest

episode has 9 steps at the 57th episode. However, this episode started with 1689.91 rpm,

and that, combined with the lower fueling, permitted a short and successful episode. We

note that after 40 episodes the learning curve is improved and the frequency of episodes

that reach the goal is increased, as shown in Figure 7.30.

After training we executed an episode starting at 800 rpm and the same fueling used

for the training. Figure 7.31 shows the speed transition for that episode in 67 steps. For the

conditions of this experiment the algorithm increased the engine speed slowly in

comparison with the previous experiments. Figure 7.32 shows the fuel mass and the air
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7.5. Learning a speed transition with random initial speed and fueling.

For this experiment we maintained the restrictions for lower and higher speed. The

training was made with random initial speed between 300 rpm and 1700 rpm and with

random initial fueling between 0.0558 mm3 I stroke and 560 mm3
I stroke. Each episode

will conclude ifthe engine speed reaches the required speed ±1 rpm, or the lower or upper

speed limit. We used the same severe penalty r = -100 as in the case of lower or upper

speed violations.

7.5.1. Basic engine model.

We used the same conditions ofdelay equalto 80 ms and a fixed load of 150 lb-ft.

The reinforcement learning update were also made every 80 ms.

We executed the reinforcement learning algorithm until the engine speed reached

650 ±1 rpm, starting from a random speed between 300 rpm and 1700 rpm with random

initial fueling between 0.0558 mm
3
1stroke and 560 mm3lstroke. The algorithm

receives a penalty of r = -1 for each step where the specified speed is not reached. The

episode is concluded by four conditions: the engine speed arrives at 650 ±1 rpm, the

episode lasted 100 seconds without arriving at the desired speed, the engine speed is under

100 rpm or over 2000 rpm . In the last two cases the penalty is r = -100. Each new

episode is started with the same initial conditions or random speed and low fueling

described previously. The reinforcement learning algorithm has the same three possible
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actions: increase the fueling by 10 mm
3

/ stroke, decrease the fueling by the same quantity

or maintain the same fueling.

After 501 episodes we obtained the learning curve shown in Figure 7.34. The

longest episode was 1251 steps long corresponding to the conditions where the engine runs

for 100 seconds without reaching the desired speed. We notice that the initial episodes took

more steps to reach the final objective and failed more frequently than the later episodes

that required fewer steps to reach the objective. Ifwe start the last episode with a speed of

576 rpm and fueling of 0.0558 mm
3

/ stroke the specified speed was not reached. That

result was due to the characteristics of the training. The algoritlun learned how to reach the

objective speed from different initial random fueling levels. The low initial fueling may not

have been tested in the training. If we change the initial fueling to 20 mm3
/ stroke, we

will obtain the final speed of 650 ±1 rpm in 50 steps.

Figure 7.35 shows the speed transition for the last episode under two different initial

fueling levels. For an initial fueling of 0.0558 mm
3

/ stroke we can see how the engine

speed falls to less than 100 rpm. For an initial fueling of 20 mm
3

/ stroke we can see that

the speed reduces to about 278 rpm and after that is increased with an smaLL overshoot

until reaching 649.13 rpm. Figure 7.36 shows the fueling for both initial fueling levels.

We notice how the reinforcement learning solution for 20 mm3
/ stroke increases the

fueling until one point where the fueling is decreased to obtain the required speed. For an
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fueling 0 0.0558 mm
3

/ troke he r inforcement learning algorithm maintained the

fue ing near zero because the algorithm i till learning about the proces .

Figure 7.37 shows the co t-to-go function for tbi xperiment. Th.i cost i similar

to the cost function shown in Figure 7.21 and Figur 7.29. The major diffi rence i that the

region close to high speed and low fueling wer e. pored and therefore the cost in that zone

is d' fferent from zero.
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Figure 7.34: Learning algorithmfor speed transition with random initial peed and

random initialfueling using the basic engine model. () = epi odes where 650 ± I rpm was

not reached.
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7.5.2. Neural etwork model.

We execute the reinforcement learning algorithm until the engine speed reaches

1500 ±1 rpm starting from a random speed between 800 and 1700 rpm and a random

fueli g between 0.0558 and 0.7433 fbi min. The aJgorithm receives a penalty f

r = -1 for each step that the specified speed i not reached. When the engine peed arri e

at 1500 ±1 rpm or the episode lasts 1200 seconds without arriving at the d sired speed,

the episode is concluded. Then we start a new episode with the same initial conditions

described previously. The episode also concludes if the engine speed reduces to 570 rpm

or increases to 2000 rpm with a penalty r = -100 fOf each case. The reinfofc ment

learning algorithm has three possible actions: increase the fueling by 0.01 lblmin,

decrease the fueling by the same quantity or maintain the arne fueling.
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After 500 episodes we obtained the learning curve shown in Figure 7.38. The

longest episode was 1900 steps long. However, the desired speed was reached for that

episode. We noted that after 250 episodes the learning curve is improved and the frequency

of episodes that reach the goal is increased as shown in Figure 7.38.

After training we executed an episode starting at 800 rpm and a low fueling of

0.0558 /b/min. Figure 7.39 shows the speed transition for that episode in 78 steps. For the

conditions of this experiment the algorithm increased the engine speed slower than the

previous experiments. The solution is less optimal as we search with more initial

conditions. However, the goal is reached for the final experiment. Figure 7.40 shows the

fuel mass and the air mass for the last episode. Here the algorithm increased and decreased

the fueling with some intennediate stages where the fueling remain constant.

Figure 7.41 shows a detail ofthe cost-to-go function from this experiment. We

notice how the cost has a flatter surface due to the extended initial conditions and increased

number of episodes used for the training.

251



2000

1800

1600

1400
...
.8 1200
§
c 1000
""Co

~ 800

600

400

200

Figure 7.38: Learning curve for speed transition with random initial sp d and random

initialfueling using the n ural network model. () - episodes where) 500 ±1 rpm wa not

reached.

1BOO

500

1400

1300

1200

1. 1100

""
1000

900

BOO

700
a 2 3 4 5 6 7

tim

Figure 7.39: Engine speedfor the 78 steps episode starling with 800 rpm.



30

25

20

In
15

~
E

10

5

0
0 2 3 4 5 6 7

time

Figure7.40: Airmass (green) andfuel rna s (x 100) (blue) for the 78 steps epi 'ode tarting

at 800 rpm.

100
50

o
o 18

1600
1400

~
200

1000
sp ed

Figure 7.41: Cost-to-gofunctionfor speed tran ilion with random initial speed and

random initial fueling using the neural network model.

254



We repeated the experiment with the same initial speed of 800 rpm and fueling of

0.0558 lb/min, but we will continue with the engine operation until we arrive at 570 rpm

or 2000 rpm. We note that the engine speed oscillates around 1500 rpm after 4 seconds of

operation and maintains that oscillation until 23 seconds, as shown in Figure 7.42. The

engine speed decays after that time due to the load torque which changes to a positive value

as shown in Figure 7.43, where we see an initial portion of the torque used for the

simulations that is shown in Figure 7.5.
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Figure 7.42: Engine speed/or continual operation.
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Figure 7.43: Load torque for continual operation.

For the next case, we set the load torque to zero and execute the continual operation

for 20 minutes. Here the engine operated around the 1500 rpm as shown in Figure 7.44.

Figure 7.45 details the engine speed from 400 to 460 rpm. We note an abrupt change in the

frequency of oscillation, then an small oscillation is generated, given a new oscillatory

scheme with lower amplitude. A similar behavior is observed in Figure 7.46 from 940 to

1100 rpm.
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Figure 7.44: Engine speed/or continual operation and zero load torque.
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7.6. Tracking a reference engine speed.

After testing how the reinforcement learning algorithm could learn how to change

the engine speed from one level to another, we now will test how the controller tracks a

desired engine speed. A change was to include the engine acceleration as a third variable

to analyze the engine behavior and update the reinforcement learning algorithm. That state

variable will be used in all the subsequent experiments.

The previous experiments worked with a equally divided tiling for fueling and

engine speed. We noted that the tile coding resolution near the desired speed (650 or 1500

rpm) and near zero acceleration generated oscillations in the control response. We changed

the tilings resolution by applying a log sigmoid function to both state variables centered at

the desired speed or zero acceleration, as shown in Figure 7.47 and Figure 7.48. With this

new tiling, we obtained a better resolution near the important points. We will use the initial

equidistant tile coding and the log sigmoid tile coding in the experiments of the subsequent

sections.
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7.6.1. Basic engine model.

We executed the reinforcement learning SARSA algorithm to maintain the engine

speed near 650 rpm starting from a random initial speed between 300 and 1700 rpm and

random initial fueling between 0.0558 mm3
/ stroke and 560 mm3

/ stroke. We applied

the following: a reward equal to the absolute value of the error between the desired speed

and the actual speed and a large final reward if the engine arrives at 2000 rpm or 100 rpm.

For these experiments we used -13938840 as the final reward. For this experiment, we use

the log sigmoid tile coding.

After training, if we start the engine with an initial speed of 576 rpm and fueling

of 60 mm3
/ stroke, we obtain the response shown in Figure 7.49. We observe that after

an initial overshoot the engine response is maintained close to the desired speed. However,

before the episode concludes, an additional overshoot is generated and the engine does not

reach the required speed. That behavior could be due to a saturation effect. The neural

network, after working near a given speed, increases the cost function for the actions near

that condition. The engine then jumps to a non explored zone.
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Figure 7.49: Engine speed/or the 2500 steps episode starting with 576 rpm.

7.6.2. Neural Network model.

We execute the reinforcement learning SARSA algorithm to maintain the engine

speed near 1500 rpm starting from a random initial speed between 800 and 1700 rpm

and random initial fueling between 0.0558 and 0.7433 lb/min. We applied the same

reward of the absolute value ofthe error between the desired speed and the actual speed and

a large reward of -13938840 if the engine arrives at 2000 rpm or 570 rpm.

Ifwe execute this experiment we obtain the learning curve shown in Figure 7.50.

After training, if we start the engine with an initial speed of 800 rpm and fueling of

0.0558 lb/min, we obtain the response shown in Figure 7.51. We observe a noisy

response in the engine speed, but the engine speed is maintained inside the range from 570

to 2000 rpm.

262



200150100
episodes

50

I

"'"jJ ~ J\

~ I

!o
o

5000

15000

... 10000
o
.0
E
::Ic::

'"0-
u
<;;

Figure 7.50: Learning curve for tracking a reference speed with error based reward.

Number ofsteps per episode.

2000

1800

1600

1400

~.,
~ 1200
'"

1000

800

600
0 200 400 600 800 1000 1200

time

Figure 7.51: Engine speedfor the 14976 steps episode starting with 800 rpm.
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7.7. Tracking a reference engine speed time reward scbeme including positive re­

wards.

In this section we will test the tracking ability of the reinforcement learning

algorithm if positive rewards are added. In the previous cases only negative rewards were

used.

7.7.1. Basic engine model.

We executed the reinforcement learning SARSA algorithm to maintain the engine

speed at 650 ±20 rpm starting from a random initial speed between 300 and 1700 rpm

and random initial fueling between 0.0558 and 560 mm
3

/ stroke. We included the

following rewards:

- 15000 if we arrive at 2000 rpm or 100 rpm. The episode also finishes.

+1 if we arrive at 650 ±20 rpm. The episode continues.

-1 if we arrive at any different state. The episode continues.

The acceleration was calculated as the difference between the actual and previous

engine speed divided by the algorithm update time of0.08 seconds. For this experiment we

used the equidistant tile coding defined at the beginning of this chapter.

If we execute this experiment we obtain the learning curve shown in Figure 7.52.

That curve shows the combination of the total nwnber of steps in the episode plus the total

number of steps where the engine is inside the region from 630 to 670 rpm. After 200

training episodes, if we start the engine with an initial speed of 800 rpm and fueling of

0.0558 lb/min, we obtained the response shown in Figure 7.53. Here the engine speed is
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maintained inside the 100 to 2000 rpm range for 2500 steps or 200 seconds, but the engine

stayed inside the 650 ±20 rpm interval for only 103 steps or 8.24 seconds, which

represents a 4 % of the total time, as seen in Figure 7.53.

~ ~ ~

I

~ AJ ~

I

i

5500
"0
§ 5000
.0...
0 4500
t:...
OJ 4000

"0.iii
.E 3500
Vl
Co
E 3000
Vl

+ 2500...
~
E 2000
::I
C
Vl 1500Co

~ 1000-;;
B 500

o
a 50 100 episodes 150 200 250

Figure 7.52: Learning curve for tracking a reference speed. Number ofsteps per episode

plus steps where the engine is inside 650 ±20 rpm .
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Figure 7.53: Engine speed/or the 2500 steps episode starting with 576 rpm.

We tried to improve the response ofFigure 7.53 by using the log sigmoid tile coding

shown in Figure 7.47 and Figure 7.48. With that tile coding we obtained the learning curve

shown in Figure 7.54 where we have the combination of the total number of steps in the

episode plus the total number of steps where the engine is inside the region from

630 to 670 rpm. That curve shows an improvement with respect to the previous learning

curve of Figure 7.52, with more episodes where the combination of the total number of

steps in each episode plus the desired range is higher. Also, improvement in the engine

response is shown in Figure 7.55. We notice that the engine speed is maintained inside the

range 630 to 670 rpm.
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Figure 7.55: Engine speedfor the 2501 steps episode starting with 560 rpm.
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7.7.2. Neural Network model.

We execute the reinforcement learning SARSA algorithm to maintain the engine

speed at 1500 ±20 rpm starting from a random initial speed between 800 and 1700 rpm

and random initial fueling between 0.0558 and 0.7433 lb/min. We included the

following rewards:

- 15000 if we arrive at 2000 rpm or 570 rpm. The episode fmishes.

+1 if we arrive at 1500 ±20 rpm. The episode continues.

-1 if we arrive at any different state. The episode continues.

We used the equidistant tile coding described at the beginning of the chapter.

If we execute this experiment we obtain the learning curve shown in Figure 7.56.

We note that we can maintain the engine speed inside the region from 570 to 2000 rpm in

28 of the simulations. After 200 training episodes, if we start the engine with an initial

speed of 800 rpm and fueling of 0.0558 lb/min, we obtain the response shown in Figure

7.57. Here the engine speed is maintained inside the 570 to 2000 rpm range for 6223 steps

or 497.84 seconds, but the engine stayed inside the 1500 ±20 rpm for only 505 steps or

40.40 seconds, which represents a 8 % of the total time as seen in Figure 7.57.
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We tried to improve the response ofFigure 7.57by u ingthe log igmoid til coding

hown in Figure 7.47 and Figure 7.48. With that change we obtained the learning curve
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7.8. Tracking a reference engine speed with multiple neural networks.

Another reinforcement learning approach that we will try consists in factoring the

state space into different regions as suggested by Dean and Lin (5)' We divided the state

space into three regions. We define a region where the engine speed will converge. That

first region, which we called the middle region, is defined as the zone

desiredspeed ± errorband. The second region, which we called the lower region, is

below the middle region (desiredspeed - errorband). The third region, or the upper

region, will be above desiredspeed + errorband. The last two regions will have extreme

limits where the episode will conclude with failure.

For each region we have a CMAC neural network. Only one of the networks will

be active at a given time. When the engine speed crosses from region A to region B, this

will imply the pseudo-end ofan episode for the neural network ofthe region A. For region

B it will be like a new episode, starting at the conditions given at the transition moment.

Another important factor is the way in which the rewards are given. For the region inside

the desired speed, the rewards are always positive to maintain the engine speed close to our

objective. Otherwise, the rewards at the outside regions are negative, with high negative

reward at maximum and minimum speed. With that scheme we will try to force the engine

speed to move toward our objective region.

We used the equidistant tile coding defined at the beginning of the chapter for all

the experiments.
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7.8.1. Basic engine model.

The middle region was defined between 640 and 660 rpm. The lower and upper

region are from 100 to 640 rpm, and from 660 to 2000 rpm respectively. We defined the

control actions in the middle region to be: increment fueling by I mm3
/ stroke, decrement

fueling by the same amount or maintain fueling constant. In the other two regions the

actions were: increment fueling by 1 mm
3

/ stroke, decrement fueling by the same amount

or maintain fueling constant. The rewards were also different. Inside the middle region the

reward is +1 each time we stay inside that region. We use that scheme of rewards to

reinforce the algorithm to stay inside 640 to 660 rpm. The other two regions have a reward

of -1 each time we are inside the region. With that penalty we want to reinforce the

algorithm to move out those regions. We also include a penalty of -15000 each time we

arrive at 100 rpm or 2000 rpm to avoid those borders. We started each training with a

random initial speed between 300 and 1700 rpm and random initial fueling between

3
0.0558 and 560 mm / stroke.

After training, we started the engine with an initial speed of 567 rpm and fueling

of 100 mm3
/ stroke, we obtained the response shown in Figure 7.60. We observe a noisy

response in the engine speed, with the speed changing between the zones after an initial

overshoot.
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Figure 7.60: Engine speed/or the 2500 steps episode starting with 576 rpm and three

CMAC neural networks.

A variation for this technique could be to eliminate the middle zone. In this case we

will obtain two neural networks operating in opposite directions. The lower region will try

to move the engine speed toward the desired speed and avoid low speeds. The upper region

will avoid faster speeds and will move the engine speed toward our goal. With the crossing

zone defined at 600 rpm, we trained the controller. After training, we started the engine

with an initial speed of 567 rpm and fueling of 60 mm
3

/ stroke, we obtained the

response shown in Figure 7.61. If we compare this with the previous case, we notice a

reduced transition period, and the oscillation amplitude is also reduced.
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7.8.2. Neural Network model.

We defined the middle region to be between 1480 and 1520 rpm. The other two

regions were from 570 to 1480 rpm, and from 1520 to 2000 rpm. We defined the control

actions inside the middle region to be: increment fueling by 0.001 /b/min, decrement

fueling by 0.001 lb/min or maintain fueling constant. In the other two regions the actions

were: increment fueling by 0.01 lb/min, decrement fueling by 0.01 lb/min or maintain

fueling constant. The rewards were also different. Inside the desired region the reward is

+1 each time we stay inside that region, to reinforce the algorithm to stay inside the 1480

to 1520 rpm region. The other two regions have a reward of -1 each time we were inside

the region. With that penalty we want to reinforce the algorithm to move out from those

regions. We also include a penalty of -15000 each time the engine arrived at 570 rpm or
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2000 rpm, avoiding those borders. We started each experiment with a random initial speed

between 800 and 1700 rpm and random initial fueling between 0.0558 and

0.7433 lb/min .For this case we change the probability for random actions to 0.1 after the

110th step.

If we execute this experiment we obtain the learning curve shown in Figure 7.62.

We notice how the number ofepisodes that are completed increases with the training. After

training, if we start the engine with an initial speed of 800 rpm and fueling of

0.0558 lb/min, we obtain the response shown in Figure 7.63. We observe a noisy

response in the engine speed, but the reinforcement algorithm maintained the speed inside

the range from 1480 to 1520 rpm the majority of the time. Some of the peaks outside the

middle region could be explained as exploratory actions from the reinforcement learning

algorithm.
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Figure 7.62: Learning algorithm for tracking a reference engine speed with multiple

neural networks.
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Figure 7.63: Engine speed/or the 14976 steps episode starting with 800 rpm.

From the experiments made in this sections, we can see that the reinforcement

learning algorithm is capable to learn how to change the engine speed from an initial

conditions to a given set-point. For the conditions of the experiment we notice that the

combination of positive and negative rewards resulted in a better engine response. The

experience with two and three neural networks did not result in better responses. We

estimated that better results will be obtained with the inclusion of more networks. An

additional improvement was notice when we used the log sigmoid tile coding. This tile

coding implies a better exploration of the state space and therefore better responses will be

allowed.
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CHAPTER 8

CONCLUSIONS

In this chapter we present a brief summary of results. This is followed by

recommendations for future work.

Summary of Results

We have discussed several procedures which might be useful in the speed control

ofdiesel engines. In Chapter 2 we presented a discussion ofthe diesel engine operation. We

reviewed the direct injection (DI) and indirect injection (IDI) engines. A second division is

based on how the gas exchange process is perfonned. Here we could divide the engines

between two-stroke and four-stroke models.

In Chapter 3 we presented two engine models that were later used for the

simulations of the reinforcement learning algorithms. The first model was based on a

proposed pseudo-linear model, which considered fueling delay and engine inertia and

friction. The second model was based on data collected from a real engine. With that data

we developed a neural network model of the engine.

In Chapter 4 we applied the self-tuning regulator, with adaptive pole placement, to

the diesel engine control. We found that the best approach is to start with the closed-loop

locations of the base-line PID controller. When the system is identified, we can optimize

the final pole locations by reducing their magnitude.
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In Chapter 5 we applied genetic reinforcement learning to the optimization of PID

controller parameters. The genetic algorithm provided improved perfonnance over the

base-line PID controller. The engine response changed with the selected fitness function

(mean square error or percent overshoot). The results were valid for the analog PID

controllers as well as digital versions of the controller.

In Chapter 6 we presented a general framework for general reinforcement learning.

Reinforcement learning is an approximate dynamic programming framework. This

framework is most appropriate when developing controllers for complex nonlinear systems

that are difficult to model in closed fonn, but that can be simulated.

There are two stages in the reinforcement learning process. The first step is to

develop a prediction of future system performance. The second step is to determine the

appropriate controller to optimize future performance. There are many different

implementations ofreinforcement learning. Chapter 6 discussed Monte Carlo methods and

temporal difference methods.

Several different simulation studies were discussed in Chapter 6. These simulations

demonstrate the feasibility of using reinforcement leaming for training neural network

controllers for nonlinear systems.

Chapter 7 showed some implementations of reinforcement learning for the speed

control ofdiesel engines. We demonstrated that the algorithm will easily learn how to move

the engine speed from an initial condition to a desired speed. For speed tracking we

included the speed, acceleration and fueling as our state variables. Reward schemes based

on absolute error and time inside the error zone were tested. Absolute error rewards
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produced a less oscillatory response and good tracking. However, in some cases they

generated peaks outside our desired engine speed. Rewards based on penalty per time

outside the desired speed region generated oscilJatory responses near the reference speed.

Additional improvement was obtained by concentrating the tiling distribution of the

CMAC neural networks around the reference speed or zero acceleration. Also, state space

partition, with the implementation of multiple neural networks, was tested, showing

improvements in the controller response and training time. We tested configurations with

two and three CMAC neural networks, and good results were also obtained.

If we compare the genetic reinforcement learning approach implemented in this

thesis with the adaptive control experiments we made, we find that GENlTOR allowed us

to obtain controllers that improve the engine response. The training process of the

GENITOR algorithm requires more time than the adaptive control algorithm. However the

responses were better as seen in Table 8.1. The mean square error of the engine responses

were better in 4 of the 6 configurations tested. The percent overshoot were reduced in all

the GENITOR cases to less than 10 percent of the original engine response.
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ClO....

Fueling delay 50 IDS Fueling delay 110 IDS Fueling delay 130 IDS

hI =0.1229 hJ=0.01 hI =0.1229 hI =0.01 hI =0.1229 hJ =0.01

Mean Self-tuning 111 112 60 56 22 ]9

square
error Genitor 93 87 64 45 46 15

Self-tuning 68 82 30 39 27 39
Percent

overshoot
2 1Genitor 1 3 9 2

Table 8.1: Percentage ofthe original engine response according to the control technique andfitness function.



The reinforcement learning algorithm is intended for systems with large

nonlinearities. Due to the characteristics of the algorithm, the engine response contains an

oscillatory component that is missing from the adaptive controller and the genetic adaptive

controller. However, its importance is based on its ability to learn with little or no

information of the system. Reinforcement learning algorithms are the most time consuming

training algorithms of all we tested.

Recommendations for Future Work

Additional work could be made by using genetic reinforcement learning applied to

a neural network controller. We made some initial experiments with no promising results.

However additional research could be done with different neural networks configurations

and possible improvements could be obtained.

Additional research in the application of reinforcement learning algorithms could

be done using additional neural network architectures, such as radial basis function or

backpropagation neural networks. Also, the relation of reinforcement learning with other

algorithms, like fuzzy logic could be explored. Experiments with other non-linear systems

could be of interest to compare results and experience.

Additional research could be made with reinforcement learning algorithms that start

with some information about the system. We could train a neural network with some input­

output data from different operational conditions and with those initial values we could

reduce the training time.
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With respect to the implementation process, we found that porting the Matlab code

to C language improved our training time. Future developments with large training time

will be first written in C language.

The reinforcement learning algorithms will benefit from faster computers. The

training process is highly time consuming. Therefore, reliable applications could be seen as

the processing power increases.
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APPENDIX A

MATHEMATICAL MODELS FOR COMPUTER SIMULATION.

Researchers have proposed many models for diesel engines, ranging from steady

state perfonnance look-up maps to very complicated mult.idimensional models. Kao and

Moskwa (7) identified three types of diesel engine models: the Quasi-Steady Method,

Filling and Emptying Method and Method of Characteristics. However, few of those

models were developed for diesel engine control.

Kao and Moskwa (7) "summarized and synthesized" two models from all the

previous papers available in diesel engine simulation. They called those models: mean

torque production model and cylinder-by-cylinder model. They compared the proposed

models with Watson's model (22)' .identifying their abilities fOT.real time simulation.

A.t. Mean Torque Model.

The mean torque model is a combination of the "Quasi-Steady" and "Filling and

Emptying" models. This model assumes average values ofpressure, temperature and mass

flow. This model is based on the components shown in Figure A.I (7)' The compressor is

used to increase the air density consequently increasing the mass of air trapped in the

cylinders of the engine. A higher mass of air implies that more fuel could be bum in less

time. With that combination we increase the engine output power. From the basic laws of
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thennodynamics, the compression process raises the air temperature. The intercooler was

introduced to increment the mass of air with a minimum temperature rise. Another

advantage of the intercooler is reduce the initial temperature of the air at the cylinders and

consequently reduce the temperature inside the engine process ("reduced thermal

loading"). The air mass is distributed to the cylinder by the intake manifold. After the air is

in the cylinders the combustion process occurs as described in Chapter 2. The exhaust gases

are collected in the Exhaust Manifold. Those gases move the turbine that is connected to

the compressor. This is the turbocharger effect where the exhaust gases allow the

compression and the increment in the engine power without an increment in the engine

Compressor

Intercooler

Intake
Manifold

1

V "--
7

N/c

/'
l Rotor
X

I

2
.......... Vi

6

f-3-

"'1

4 5

Diesel Engine and
Crankshaft Assembly

~ N

Turbine

Exhaust
Manifold

Figure A.I: Schematic diagram ofa turbocharged diesel engine (7)'
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Figure A.2 shows the different sub-models which make up the Mean Torque Model.

Each sub-model can be modeled as:

A.i.I. Compressor model. Here we will create a table or map with compressor

data from the manufacturer:

(A.I)

(A.2)

where PI is the pressure before the compressor, P2 is the pressure after the compressor,

meorr is the corrected mass flow rate, Neorr is the corrected turbocharger speed and lle is

the compressor efficiency.

We can use the corrected mass flow rate meorr and corrected turbocharger speed

Neorr in the perfonnance map from the relations:

~ N . JT"dNeorr Ie T
I

or

or

(A.3)

(A.4)

"By looking in the performance map, given the rotor speed ofthe turbocharger and

the pressure ratio across the compressor, the mass flow rate and the efficiency are

specified" (7)' We can obtain the temperature at the outlet of the compressor and the torque

at the compressor from the relations:
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(A.S)

(A.6)

where T) is the temperature before the compressor, T2 is the temperature after the

compressor, me is the mass of air after the compressor, Cpa is the specific heat for air, Y

is the specific heat ratio and 0) te is the turbocharger speed.

A.1.2. Intercooler model. Here Kao and Moskwa (7) used a simple steady-state

model. The pressure drop in across the intercooler is computed according to:

(A.7)

where K is a pipe friction constant, P3 is the air density after the intercooler and m3 is the

air mass after the intercooler. We have the same mass flow at the inlet and outlet of the

intercooler, resulting in a heat exchange stage. That drop in pressure is with respect the

intake pressure, therefore we need an estimation of P4 to obtain:

(A.8)

The effectiveness (E ) of the intercooler is a nonlinear function of the mass flow:

(A.9)
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We can estimate the temperature at the outlet of the intercooler from the definition

of effectiveness by:

where Tw is the coolant temperature.

(A.tO)

A.l.3. Intake Manifold Model. We can calculate the average air mass flow into

the cylinder with the "speed-density" relation:

= 11,,· P4 . Vd · N
120

where the air density P4 and the volumetric efficiency 11" are calculated from:

(A.ll)

and (A.12)

where Vd is the displacement volume, N is the engine speed, R is a gas constant, P4 and

T4 are the pressure and temperature after the Intake manifold.

We can assume that the temperature variations at the intake manifold are small. The

pressure at the intake manifold could be estimated from:

P·· = 1ll{' T - ~. T }1m V. me e L.Jmim im

1m eyl

where:

= J(m3 - m4)dt + initial conditions
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We can rewrite Eq. (A.l3) by using Eq. (A.II) and Eq. (AI2) as:

(A.16)

If we assume that the heat transfer and temperature changes are negligible, we can

use another model based on the relation:

(A.17)

A.J.4. Combustion and torque production. This submodel is part of the Diesel

Engine and Crankshaft Assembly described in Figure Al and detailed in Figure A2. Here

Kao and Moskwa (7) used an "statistical regression to curve-fit empirical indicated

efficiency data". The indicated efficiency ll;nd could be found from the relation:

where:

(A.I8)

<1> = (F/ A)actual

Is
and ~(F/A\ctual = rna

(A.19)

where (F/ A)actuaf is the actual fuel air ratio and Is is the stoichiometric I fuel air ratio.

The mean indicated torque T; is:

(A.20)

where mf is the amount of fuel injected and QLVH is the lower heating value of the fuel.

1. Stoichiometric: "pertaining to or involving substances that are in the exact proportions required
for a given reaction" (19).
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A.1.5. Engine Friction Model. This submodel is also part of the Diesel Engine

and Crankshaft Assembly described in Figure A.I. To detennine the friction mean effective

pressure fmep, Kao and Moskwa (7) use the following relationship:

fmep = c
l
+ 48N + OAS:

p1000
(A.21)

where the parameter c 1 could be determined by experimentation and Sp is the mean piston

speed. We can obtain the torque due to friction by:

(A.22)

A.I.6. Crankshaft Rotation ModeJ. This submodel explains the relation of the

engine load, frictional load and external load on the engine speed. From Newton's second

law:

(A.23)

where a constant engine rotational inertia 1 is used and 't i is a delay in the application of

the indicated torque Tj •

A.I.7. Valve Flows and Scavenge Flow. This submodel is also part of the Diesel

Engine and Crankshaft Assembly described in Figure A.I. For the valve flows, Kao and

Moskwa (7) used volwnetric efficiency and mean exhaust flow. The authors neglected

scavenge flows for the case of medium diesel engine speed due to the fact that the valve

overlap is small.

A.J.B. Exhaust Manifold. The exhaust mass flow rate is assumed to be:

(A.24)
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where 't I and 't 2 are delays. The exhaust temperature Ts is given by:

where 't) is a delay and:

(A.25)

(A.26)

where tJ.TE is the engine temperature rise, tJ.TM is a transient magnitude offset and is a

function of the air fuel ratio f, and 't is the exhaust manifold time constant. The engine

temperature rise tJ.TE is given bY(2):

= K
1+/

(A.27)

/

where K is generally plotted versus the air fuel ratio / = m0/mf as shown in Figure A.3

for a typical engine.

K(OC)

14000 ~
12000 r
10000 r
8000 r
6000 r
4000 t
2000 11-_--'- --'1__"-- ,'---'-_

-j 6:\ 12:118:1 24:1 30:136:1 42:148:1

Figure A.3: Engine temperature rise faclor K (2)'

The exhaust manifold pressure is estimated by:
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(A.28)

where the "gas properties (Cpe' Re , Ye ) .,. can be found from curve-fitted equations for

hydrocarbon combustion products as a function of A/F ratio and temperature" (7) and:

and
Q

Twall = C
mwall pwall

(A.29)

where ht is the convective heat transfer coefficient and can detennined by experimentation

or can be calculated from:

where:

= k·Nudht
D

0.783
NUd = 0.0483 . Red and

(A.30)

(A.31)

where:

We can estimate the exhaust manifold temperature T6 from:

(A.32)

(A.33)

A.1.9. Turbine Model. The model is for a constant pressure turbine and is similar

to the compressor model, where steady state infonnation could be supplied by the

manufacturer. With that information we can construct the tables:
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· - ( P§l
meorr - 13 Neon' pi (A.34)

(A.35)

As in the compressor's case, we can use the corrected mass flow rate rheorr and

corrected turbocharged speed N eorr in the performance map from the relations:

or (A.36)

meorr = or (A.37)

The torque supplied by the turbine is:

(A.38)

A.l.10. Turbocharger Rotor Model. This model (without friction) is calculated

from the Newton's second law:

(A.39)

A.2. Cylinder-by-Cylinder Model.

This model is based in the filling and emptying model, where the cylinder pressure

with a crankangle-based model. This model is generally used for "cylinder-by-cylinder

control, nonlinear state estimation, and dynamic model-based diagnostics"(7)" This model
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is intended for the detailed study of the engine behavior at the cylinder level. This model

uses the same turbocharger, intercooler, intake manifold, and exhaust manifold submodels

from the previous section. The different submodels are concentrated in the Diesel Engine

and Crankshaft Assembly shown in Figure A.I:

A.2.1. Equations/rom Thermodynamics. The equivalence ratio differential

equation from the engine is (7, 22):

The temperature at the cylinder could be found by the relation:

[
RT I' . "Tcyl = -""-TV+(Qht+h/or·m/burn+ ~(h·m)in

- "(h. m) - urn).!. - au pJ/(au1
~ out m aF of)

where the terms ofEq, (AAl) will be explained in later sections. The mass flow

conservation is now:

(A.40)

(A.41)

(A.42)

With Eq. (AA2) we can find the mass accumulated in the cylinder (m) with:

The cylinder pressure could be obtained from:

_ mRTCyl
Pcyl - V

(A.43)

(A.44)

where the volume at the cylinder V will be found later. Ifwe want to use heat related

analysis we can apply the rdation for the closed period:
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(A.45)

A.2.2. Indicated torque. The instantaneous indicated torque is found from the

relation:

T = lOOO? dV
I cy1d8

and the average indicated torque is:

T = fCIOOOPCYl)dV
I, average 41t

(A.46)

(A.47)

A.2.3. Crankshaft Dynamics. The nonlinear dynamic crankshaft rotational

equation is found from Lagrangian or Newtonian equations:

(A.48)

This equation is important for state estimation, diagnostics, and control in the case

of the cylinder-by-cylinder model. The inertia J(8) changes according to the crankshaft

position.

A.2.4. Intake and Exhaust Mass Flows. The mass flow depends of the engine

operation cycle described in section 2.2. The average intake flow, assuming that the vol ume

is injected during the IVa to Ive period is:

(A.49)

We can apply a similar procedure for the average exhaust flow, assuming that the

volume is displaced during the EVa to Iva period:
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For mass calculation, we need to define the flow in two classes:

....L

- Subsonic flow, when Pd > (_2_) Y- I , resulting in a flow rate:
Pu y+ 1

(A.50)

(A.51)

....L
P (2 )Y-l- Sonic flow, when -!l ~ -- , resulting in a flow rate:
Pu y + 1

{
r..:!:...!}. 2 y-I

m = C~Pu -1-.[-J .
R· Tu y+ 1 '

We can define the mass flow for the overlap period as:

(A.52)

(A.53)

A.2.S. Combustion and Fuel Burning Rate. For this submodel, Kao and Moskwa

(7) used the single zone model proposed by Watson (22):

2100 tiTP -102 -
ID = 3.45(~) . .e Tcyl

• dt
101.3 ID

tin}

1 (A.54)

where the overall equivalence ratio is defined by the relation:
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(A.55)

The normalized premixed burning rate is given by:

and the nonnalized diffusion rate is given by:

k<12

k k
kpi - 1 -kd2 · I"or",

rhfdiff = dl' d2' t norm . e

(A.56)

(A.57)

where the constants kp1 ' kp2 ' kdl ,and kd2 were defined by Watson (22)' We also have the

p value which defines the portion of total fuel that is premixed burned:

p = 1 - 0.926 . <I>~~E ·lD-{)·26

The combustion time (in seconds) and the normalized time are given by:

dtcomb = 125
6N

e- Sign
t norm = 125

(A.58)

(A.59)

(A.60)

where 125 is the crankangle used for combustion. Finally, we obtain the fuel burning rate

from:

me mrnorm
m/burn = dtcomb

where this burning rate is needed in Eq. (A.41) and Eq. (A.45).

(A.61)

(A.62)

A.2.6. Gas and Fuel Properties. The internal energy correlation (u ) and the gas
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constant (R ) are given by (7, 21) :

u( T, F) = A (D - BeD . F
l+fs·F

R = 0.287 + 0.02F
l+fs·F

where A(D and B(T) are given by:

A(T) = 0.692T+ 39.17xlO-6 y2 + 52.9xlO-9 y3
- 228.62x 10- 13 t + 277.58x 10- 17r

-2 -5..:2
B(T) = 3049.39-5.7xlO T-9.5xl0 1

+ 21.53xlO-9 y3 - 200.26xl 0-14t

(A.63)

(A.64)

(A.65)

(A.66)

A.2.7. Cylinder Heat Transfer. For this submodel, Kao and Moskwa (7) used the

Eichelberg's heat transfer coefficient:

(2L~ 1/3(P . T ) 1/2hI = 7.67xlO-3 __ cyl cyt
60 1000

where the heat transfer rate is given by:

(A.67)

(A.68)

where Twali is given for the heat transfer relation from the cylinder wall to the coolant.

A.2.B. Cylinder Volume and Area. Kao and Moskwa (7) based this submodel in

the cylinder geometry:

v = Vd + 1CB

2 [1 + r( I - cose) - Jp -/(Sine)2J
CR-l 4

where the cylinder heat transfer area is:
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(A.70)

where a> 2 for a general non flat piston and cylinder heat and a ::: 2 for a flat piston and

cylinder head. The variation in the cylinder volume is represented by:

dV = (1tB
2
) . r . sinS. dS . (1 + r· cosS )

dt 4 dt JI2-/(sinS)2

A.3. Watson's Model.

(A.71)

Watson (22) did an extensive review of the mathematical models for diesel engines

available for that time. Watson described the requirements for the simulation as:

• 1 "sufficient detail to reflect design changes, key fuel property changes, and

environment changes.

• 2 "ability to accurately predict performance, under steady and transient

conditions, and key parameters that limit perfonnance (such as high maximum

cylinder pressure).

• 3 "ability to predict parameters that are known to strongly influence exhaust

emission, particularly smoke and NO, and noise ...

• 4 "low consumption time and cost so that the model can be used routinely for

short-term transients (up to 1 min) and less frequency for complete federal tests

cycles, but at reasonable cost.

• 5 "the minimum empirical data requirement."(22)

Linear models only meet requirement 1. Watson described two principal models:

"filling and emptying" and "method of characteristics". For the "filling and emptying"
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models the inlet and exhaust manifolds and all cylinders are considered independent

thennodynamic models. The equations are solved based on an engine crank-angle, not time

base (generally 1 degree steps). We have submodels for model combustion, mass transfer

through valves, heat transfer, etc. The "method of characteristics" is a mathematical

technique based on hyperbolic partial differential equations. The cylinders are treated in the

same way as the previous method, but exhaust (and sometimes inlet) manifolds are treated

by solving dynamic gas equations.

The method suggested by Watson is based on "filling and emptying" assuming that

all the cylinders behave in an identical manner. Then he reduced the computational time

involved in the simulations. The model is based on a turbocharged engine as shown in

Figure A.4, where we have the variables:

-wc

- Wt

- Qht

Compressor work.

Turbine work.

Heat rejected to charge air cooler.

Heat rejected to cylinder walls.

Heat released by combustion.

Piston work.

Heat rejected from exhaust manifold.
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Figure A.4: Schematic afturbocharged engine (21, 22)'

If we apply the first law of thennodynamics we have:

:!.-(mu)
dt

= mdu + udm
dt dt

(A.72)

where m is the mass in combustion, u is the specific internal energy, sf denotes the

surfaces with different rates of heat transfer, dQ is the heat released by combustion, P is

the pressure of the gas, V is the volume of the gas, hoj is the specific stagnation enthalpy

of mass entering or leaving the system.
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Ifwe say that the specific internal energy u is only a function ofthe temperature T

and the equivalence ratio F, then:

u = u(T, F) => mdu = m[audT + audFl
dt aTdt aFdt J (A.73)

By substitution ofEq. (A.73) into Eq. (A.72) and assuming that the gases behave as

perfect gases (PV = mRT), we obtain:

(A.74)

We can apply Eq. (A.74) to the manifolds and the cylinders.

By mass conservation we have that:

dm = L[dmJ - L[dmJ
dt df in df out

The fuel-air equivalence ratio is defined by:

F = flfs

(A.75)

(A.76)

where f is the fuel air ratio and suffix s denotes stoichiometric I. The mass of burned fuel

(mjb) in a total mass (m) of air and burned is defined by:

(A.77)

From Eq. (A.75), Eq. (A.76) and Eq. CA.77), we obtain the term dFI df from Eq.

(A.74):

I. Stoichiometric: "pertaining to or involving substances that are in the exact proportions required
for a given reaction" (19).
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dF = [1 +fsFJ[(l +fsF). dmfb_F!..m]
dt m fs dl dl

knowing T, m and V we can find the end of step pressure.

(A.78)

The change in volume, in the case ofcylinders, is obtained from the geometry ofthe

piston, crank and connecting rod:

The engine losses and friction are modeled with the relation:

FMEP = 13.79 + O.OOSPmax + l.086N· CR

(A.79)

(A.80)

where: FMEP is the mean effective pressure equivalent of engine losses (kN/ m
2

), Pma.l:

is the maximum cylinder pressure (kN/m
2

), N is the engine speed and CR is the crank

radius.

A diagram ofthe turbocharged diesel engine is shown in Figure A.S. This diagram

includes the interaction of the turbocharger and the engine (21)'
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Figure A.S: Block diagram for a turbocharged diesel engine system (21)-

A.4. Tuken's model.

Tuken et. al. (18) proposed a different model for the experiment shown in Figure

A.6 with the block representation in Figure A.7. The electromechanical actuator is

described by a third non-linear dynamic model that Tuken et. al. approximated by a linear

third order dynamic model plus a time delay. The governor has a mechanical part and a

hydraulic part. Then we have mathematical models for each part:
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where:

(a) Mechanical part:

2

mo/r = m d x + Pdx + Kx + FL + PA
edt2 dt

(b) Hydraulic part:

m = Mass of flyweights

0) = Engine speed

r = Radious offlyweight from the axis of rotation

me = Total effective mass referred to axis

P = Viscous friction coefficient of moving parts

K = Spring stiffness

FL = Load force due to thorttle rack

Ge = Engine torque.

P = Output pressure of the transfer pump

A = Metering-valve piston area

X a = Throttle position

x = Metered valve position
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q = fuel rate

The engine combustion model is based on the sequential firing of the cylinders,

operating in a discontinuous manner. This introduces a delay that is equal to the "actual

time between consecutive pistons arriving at the injection point plus a quarter of revolution

of the crankshaft (18):

T = 60h + 60
F 2eco 4co

where:

h = 4 (Number of strokes per cycle)

co = Speed in rev/min

e = Number of cylinders

TF = Firing delay (seconds)

The transfer function for the engine combustion is:

Ge(s) -Tfs= K e
q(s) e

3/0

(A.85)

(A.86)
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A.5. Models evaluation.

The models shown in the previous sections have detailed information about the

thermodynamics of the process. The experiments that could be done in the main sections

will be related with speed control. An important equation for our simulations is Eq. (A.86)

where Tuken et. al. (18) defined a relation between the fueling inj ected to the engine and the

torque produced. From the Kao and Moskwa (7) model we will extract the block structure

information to construct a neural network model based on the air flow, the fueling and the

engine speed. We will consider the friction as a factor in the engine operations with a

modification ofEq. (A.21).
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