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Chapter I

Introduction

This thesis is composed of two manuscripts formatted for submission to the

American Society of Agricultural Engineers and a final chapter with recommendations of

additional study in this area. Chapter II "Simulation to determine field-of-view for a

bindweed detection sensor" and Chapter III, "Field-of-view determination for a bindweed

detection sensor", are complete as written and do not require any additional support

material. Both manuscripts are original research by the author under advisement by Dr. J.

B. Solie, PE, Dr. R. W. Whitney, PE, and Dr. M. L. Stone.



Chapter II

Simulation to Determine Field-of-view for a Bindweed

Detection Sensor

Abstract

One alternative to unifonn herbicide application is to selectively spray only the

weeds in a field. The objective ofthis research was to usc a sensor simulation, based on

spectrometer data from bindweed, Convolvulus arvensis and soil to detennine the

maximum required sensor field-of-view by which NDVI can be reliably used to detect a

target bindweed on bare soil. Reflected electromagnetic energy from 2030 rnrn2

bindweed and soil areas was measured with a spectrometer as inputs for a sensor

simulation program. The program used red (670 nrn) and near-infrared (780 run)

irradiance to simulate the use ofmultiple sensors each with a different field-of-view,

collecting random field samples under seven different sets of environmental conditions.

No single field-of-view size was optimum for all sets of test conditions. Results of the

simulations were expressed as error versus the percentage of field-of-view that must be

covered by bindweed to insure detection. The median required weed cover for all data

was 0.79% of the field-of-view with 10% error and 1.48% with 5% error. To detect a

target bindweed of 6090 mm2
, these correspond to fields-of-view of 0.77 m2 and 0.41 m2

,

respectively. The maximum required bindweed cover for any test condition at 10% error

was 7.78%, and the minimum was 0.04%. Variability in sensor measurements was due to
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differences in reflective properties of bindweed and soil and variations in the sunlight

striking these targets.

Keywords: Simulation, sensor, weed, detection

Introduction

Every year farmers throughout the world spend millions of dollars on tillage and

herbicide in an attempt to control undesirable weed species in crop fields. In much of the

United States, one of the most serious and difficult weed problems is field bindweed,

Convolvulus arvensis (Field bindweed, Convolvulus arvensis, 1998). Bindweed is a

member of the Morning-glory family and has multiple lateral runners, a long taproot, and

arrow shaped leaves. Dense infestations of field bindweed may reduce crop yields by 50

to 60% (Zollinger, 1996). Tillage is the most widely accepted method of control, but to

effectively control bindweed requires months of regular tillage operations (Majek, 1993).

Occasional tillage may in fact help spread the weed and make problems worse.

The alternative to tillage weed control is chemical herbicides. Currently chemical

herbicides are applied uniformly across an entire field which may have only a sparse or

patchy population of weeds. To insure weed control, large amounts of chemical are

applied, much of which falls on weed-free areas and will never reach the target plant. A

large percentage of the herbicide and, consequently, the farmer's money is wasted. This

waste ofherbicide has a very real and negative effect on the profitability of crop

production, as well as a potentially adverse environmental impact.
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In an era of increasing operating costs, heightened awareness of environmental

impact, and escalating regulation of agri-chemicals, a more efficient and environmentally

conscious method of herbicide application is needed. One alternative to the usual method

of uniform application is to selectively spray only the weeds in a field. With improving

technology, it may now be possible to detect and spray weeds on the go using remote

sensors and intermittent chemical applicators. A site specific herbicide system would

utilize remote sensed data from either on-board sensors or overhead imagery to develop a

vegetative index (VI) for small areas, or elements, of a field. Based on the index, the

system would then make a decision of the presence or absence of a weed in each field

element. This decision would be translated to a spray command and carried out by

computer controlled applicators.

Bindweed control in winter wheat is a prime application for such technology.

Bindweed can be treated in late summer or early fall, when winter wheat fields are fallow,

and it can be reliably assumed that any growing plants are weeds. The task of the sensor

and controller is then simply sense and distinguish what is plant and should be sprayed

from what is soil and should not.

A number of systems sensing electromagnetic energy have been developed in an

attempt to detect and selectively spray weeds. Stone (1994) used an optical sensor and an

artificial neural network to detect bindweed. This sensor measured reflected energy in

three bands: green, red, and near-infrared (NIR). This unit was able to detect 92% of the

cases where weeds were present and reject 80% ofthe cases where weeds were not

present. Felton et al. (1991) developed a spray system with remote sensors that also used

reflected energy in the red and near-infrared wavebands as a means of distinguishing
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between plants and soil. He estimated the mean reduction in area sprayed was 90%.

Beck (1996) reported on a second selective sprayer that used silicon PIN photodetectors

to detect levels of reflected light in the NIR and red (670 nm) chlorophylJ absorption

band. This system used an artificial light source mounted with the system's sensor.

Merritt et al. (1994) also used red and NIR reflectance to implement a weed spray system.

All of these sensor-applicators relied on differences in reflective properties of

plants and soil in the red and near-infrared portion of the electromagnetic spectrum.

Green chlorophyll producing plants absorb sunlight at red wavelengths, and reflect highly

at near-infrared wavelengths. Soil tends to reflect more equally at both wavelengths.

Vegetation indices that take advantage of this difference in reflective properties

work well in detennining weeds from soil. The most commonly used index is the

Nonnalized Difference Vegetative Index (NDVI) «NIR-RED)/(NIR+RED» introduced

by Rouse et al. (1974) to separate green vegetation from its background soil brightness.

Merritt et a1. (1994) reported that NOVI based on percent reflectance worked well for

consistent classification of plants from soil. Nitsch et al. (1991) compared four indices

and found NDVI to be the best for differentiating living plant matter from soil. A

variation ofNDVI, the soil-adjusted vegetation index (SAVI) also uses red and near­

infrared wavebands, but with added constants to minimize errors caused by soil

brightness (Huete, 1988). Nwnerous other red and NIR VIs include the Transfonned

Vegetative Index (TVI) (Deering et al. 1975), the Ratio Vegetation Index (RVI)

(Richardson and Wiegand, 1977), the Nonnalized Ratio Vegetation Index (NRVI) (Baret

and Guyot, 1991), and the Perpendicular Vegetation Index (PVI) (Richardson and

Wiegand, 1977).
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While research using red and NIR sensing seems promising, attempts to

implement this technology have yielded inconsistent results (Beck, 1996) due in part to

variability in the landscape being sensed. Different soil types exhibit different reflective

characteristics. Also, within a single soil type, soil coLor changes with soil conditions

such as wet or dry, broken or crusted (Nitsch et al., 1991). In addition to changes in soil

reflectance, spectral response from bindweed cover will change from plant to plant and

over time as the plants mature. Changes in atmospheric conditions and solar radiation

from one day to the next also add to the complexity of designing a usable detection

system.

While reflectance of soil and green plants vary, they have characteristic and

recognizable reflectance curves. However, an area that contains a plant surrounded by

soil will produce a reflectance curve that does not appear like either, but rather a

composite response, which is a combination of the two ground cover types. As the field­

of-view is increased, the plant response is averaged out by the increasing soil response. If

the field-of-view is too large, it becomes impossible to distinguish between an image

containing plant and an image that does not. As a practical solution to this problem, a

sensor's field-of-view must be small enough to reliably detect the smallest target weed on

a soil background. At least one author has cited inability to detect small weeds as one of

the problems facing selective spraying (Felton et a1., 1991). On the other hand, small

fields-of-view lead to increased system cost, because more sensors are necessary to cover

the same amount of field area. Thus, the maximum field-of-view size that can reliably

detect the target weed becomes a very important factor in the design of a viable weed

detector.
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Variations in spectral response due to differences in plants, soils light level and

sensed areas containing both soil and green plant material have all caused problems for

developers (Stone, 1994). A usable weed sensor must be able to readily distinguish

viable weeds under all reasonable conditions. Its decision making process and field-of­

view should be well defined in order to assure accuracy in detection. The objective of

this research was to use a sensor simulation, based on spectrometer data from bindweed

and soil to detennine the maximwn required sensor field-of-view by which NDVI can be

reliably used to detect a target bindweed on bare soil.

Methods

Field-of-view size was calculated by a sensor simulation using bindweed and soil

spectrometer data as input. The input data was collected on the Oklahoma State

University Agricultural Experiment Station in Stillwater, Oklahoma on Sept. 11 and 23,

and Oct. 2, 25, and 31, 1996. The field was a Bethany silt loam soil that had been tilled in

mid-summer and the weeds allowed to grow back. The bulk of the vegetation present

was field bindweed, along with smaller amounts of other weed species. Reflected solar

energy between 500 and 1000 nm was measured over areas that were completely covered

with bindweed and over bare soil. All experiments were conducted between 10:00 A.M.

and 3:00 P.M. to minimize possible distortions associated with low solar zenith angles. In

every case, the sensor was placed at a vertical position over the area being sensed, with

no shadows in the field-of-view. Four sets of data, 9/11/96, 9/23/96, 10/2/96 Clear, and

10/25/96 Clear were collected in mostly sunny conditions. Data set 10/31/96 was taken
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on an overcast day directly before a stonn, and data sets 10/2/96 Shadow and 10/25/96

Shadow were taken on sunny days with artificially created shadows. The artificial

shadow was created with a plywood sheet covered in course finished black rubber. These

artificial shadows were meant to simulate conditions when a sensor s target area was in a

direct shadow, such as from an implement, trees, or nearby buildings.

Data were collected with an Ocean Optics model PC IODDS spectrometer and a

personal computer. A lawn tractor was used as the collection platform (fig. 1). Fiber

optic cable connected the spectrometer mounted in the computer case to a sensor head at

the front of the tractor. The sensor head was a sealed black box with a single hole drilled

in the bottom. The edges of the hole created a sharp edge for the sensor's view of the

ground. The spectrometer's field-of-view was controlled by the height of the sensor head

from the ground. The sensor head was located 540 mm above the target. The area sensed

was a 51 nun diameter circle with an area of 2030 mrn2
•

Fiber Optic Cable

Sensor 'I
Ii
J \
! I

i
J

I
I
I,

Lawn Tractor

+

Spectrometer

Figure I-Lawn tractor field collection apparatus
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Before a sensor field-of-view could be determined it was necessary to define a

target weed. The target weed was the smallest bindweed the sensor must consistently

detect. It was defined as a single bindweed, having at least one runner approximately 150

mm long. This was the smallest bindweed recommended for chemical treatment

(Landmaster BW label, 1997; Zollinger, 1996; Field bindweed official control program,

1988). The target weed was estimated to cover an area of 6090 rrun2
; three times the size

of a spectrometer image. If a weed ofthis size could be consistently detected, then larger

weeds would also be detected, since they occupied more field-of-view area and were

responsible for more of the sensor response.

Detection decisions were based on NDVI calculated from the spectrometer

measurements. Red light in the wave band of 660 to 680 nm and near-infrared between

770 and 790 nrn were extracted from the spectrometer data and averaged. Each of the

seven field data sets was further divided into four sub-sets: red soil (RED.), near-infrared

soil (NI~), red bindweed (REDb), and near-infrared bindweed (NIRb). Chi squared

goodness of fit tests indicated that the subset were not significantly different (0.05 level)

from nonnal populations. Means, standard deviations, standard errors, and sums of the

squares of deviation describing the samples of REDs, REDb, NIR., and NIRb for each test

condition were used as inputs for the sensor simulation.

Information about the correlation of red and NIR was also needed as simulation

input. A linear regression model ofNI~ to REDs and NI~ to REDb for each of the

seven test conditions was also established.
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Simulation

Assuming that the populations of bindweed and soil measurements were nonnal

and were represented by the collected field samples, a simulation program was

developed. For each of the seven data sets, the program simulated field measurements of

reflected energy from bindweed and soil by multiple sensors, each with a different field-

of-view. Sensor responses were simulated by summing RED and NIR measurements

from a number of 51 mm diameter pixels, so that the total area of the summed pixels was

equal to the desired area of the sensor field-of-view

To generate the values ofeach pixel (fig. 2), e.g. a soil pixel, a red value was

randomly selected from the appropriate RED population. REDs in the case of the soil

pixel. Using the linear regression model, a corresponding prediction ofNIRs was found.

Least squares method required that prediction error be nonnally distributed about the

predicted NIR value. This error was calculated by Steel and Torrie (1980) as:

x

Xo

Where: Sy/ = error mean square
n = sample size

mean of x population
= specific value of x.

(1)

All possible values ofNI~ for the randomly selected REDs were described by a nonnal

distribution with the regression predicted NI~ as the mean and the error mean square as a

measure of variance. Although RED and NIR correlated as a whole, no two bindweed or

soils share exactly the same RED and NIR relationship. The specific relationship lay
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above or below the regression line somewhere inside the prediction error population.

Therefore, for the simulation to be realistic, NI~ values were selected randomly from the

error population. REDb and NI~ were used if a bindweed pixel was required. This

process was repeated to generate red and NIR values for each pixel in a field-of-view.

f

NIR

RED

RED

Selected/RED

/1------

~ Selected
NIR

Figure 2--8imulation process to select RED and NIR values of a single pixel

The generated red and NIR pixel values were added to calculate composite values

for an entire field-of-view. NDVI was calculated from these composites. NDVI for

fields of-view containing the target bindweed on a soil background were calculated by:
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8S DS BS DS

I NIRb +L N/R, - I REDb - I REDs

NDV/= ~ ~s ~ ~

I NJRb +I NJRs+I REDb +L REDs
1 I I I

where: BS = number of bindweed pixels in field-of-view = user input
DS = number of soil pixels in field-of-view = FOV - BS
FOV = sensor field-of-view area expressed in number of pixels
NIR b = near-infrared irradiance from bindweed population

REDb = red irradiance from bindweed population
NIRs = near-infrared irradiance from soil population

REDs = red irradiance from soil population.

(2)

The target weed in all simulations was represented by three bindweed pixels (BS

= 3). The remaining field-of-view was filled with soil pixels. In order to assess the level

of detection for each field-of-view, it was necessary to also create equivalent sensor

images with soil-only responses. Since BS = 0, and DS = FOV in an all soil image,

equation 2 was simplified to:

DS DS

L NIR,f - I REDs
N Il

DVI = DS DS

I N/Rs + I RED,
1 1

(3)

The process described above was used to create 100 random measures ofNDYI

containing bindweed and IOO random measures ofNOVI containing only soil for each

simulated sensor field-of-view. The mean and standard deviation from each of these data

sets of 100 were used to describe the two nonnal populations of possible sensor responses

for a field-of-view: a bindweed inclusive NDVI population and a soil-only NOV!
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population (fig. 3). The decision of detection was made by whether a simulated sensor

response was greater or less than a specific NDVI threshold. In theory, if a weed was

present, NDVI was greater than the threshold. If there was no weed, NDVI was less than

the threshold. Error was assessed when NDVI calculations fell incorrectly on the wrong

side of the threshold. Two types of errors resulted: error in failing to detect bindweed

when it was present, and falsely detecting soil when there was no bindweed present. For

purposes of analysis, the fonner was held constant at levels of five and 10%, and the

latter was calculated. NDVI threshold was calculated so that the appropriate percent (5 or

10%) of the bindweed inclusive population was less than threshold value. The error in

falsely detecting soils was the percentage of the soil-only population that was greater than

the threshold value. This error was calculated by (Steel and Torrie, 1980):

where: y = NDVI threshold
1.1. = mean of 100 soil-only simulated samples
cr = standard deviation of 100 soil-only simulation samples.

Errors from each field of view under each of the seven field conditions was assessed in

this way.

13
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Mean of 100 bindweed­
inclusive simulated
samples

error in false
~-+--detection of soil

NDVI Threshold

~
mean of 100 soil-only
simulated samples

error in failing to
detect bindweed --/--.......

NDVI ---..

Figure 3--Threshold selection and error determination from simulation for a sensor
field-of-view

The error versus field-of-view data from the simulation were compiled, and

simple curves fit for error as a function of .field-of-view for each of the seven ambient

conditions. By knowing the size of the target weed, this analysis was converted to error

as a function of the percentage of the field-of-view covered with bindweed.

To asses the contributions of variability in soil reflectance and solar intensity to

changes in NOVI, incident solar illumination, rainfall, soil color, and clouds were

measured or observed. Solar illumination during the sample times was collected from an

Oklahoma Mesonet weather station on the same farm as the bindweed field. Rainfall

events for the five days previous to each sample date were also measured at the Mesonet

site. Observations of soil color and cloud cover were recorded during field collection.
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Results and Discussion

Bindweed-only and soil-only spectrometer responses were easily distinguished for

aU conditions, both with NDVI and by visual inspection of reflectance curves over the

entire band of the spectrometer. A typical reflectance curve for bindweed had a

characteristic sigmoidal shape, showing high absorption in the 670 run wavelength and

reflectance in the 780 run wavelength. A typical reflectance curve for soil was nearly a

straight line, demonstrating more equal reflectance at both wavelengths (fig. 4). Error

began to occur when images containing pixels of both ground cover types were

examined.

. •........- -.-~~ , , - _..
~ -..",--." -..•.", -

...•............ -'~

................_ -_ .................-- _.

. ..... soil I

I
1--bindweed I

580 600 620 640 660 680 700 720 740 760 780 800 820 840 860

Wavelengtb (nm)

Figure 4-Typical reflectance curves for bindweed and soil from study field
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Results of the simulations were expressed graphically hy error as a function of the

percentage of the sensor field-of-view covered by bindweed (fig. 5-11). Each point on

these graphs simulated the result of a sensor field trial with a specific field-of-view,

sampling 100 bindweed and }00 soil locations. A sample population NOVI threshold

technique rather than an absolute NOV} threshold was used, so each point also has a

unique threshold calculated for that set of simulated data. Each graph represents two

levels of error in failing to correctly detect bindweed. The five percent error curve lay to

the right of the 10% error curve as expected. The level of error in falsely detecting soil

was read from the y-axis. If the x-axis were extended, both curves became asymptotic at

zero error as the percent weed cover increased.

9/11196
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] 201
'0 I
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.!: Iti
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~ I
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0

0 0.05 0.1 0.15
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Figure 5--9111/96-Error verses percent of field-of-view covered by bindweed
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Figure 6--9/23/96--Error verses percent of field-of-view covered by bindweed
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Figure 7-10/2/96 Clear-Error verses percent of field-of-view covered by bindweed
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10/2/96 Shadow
70,-- _ - - --------------------------

i...
i.~ ••...... ~\.,

0'·,.

°i ..... o 10% Error Missing Bindweed

• 5% Error Missing Bindweed

32.521.5

Percent Bindweed Cover

0.5

o-1------;~-----:~~~~~~~=&==o-o-~~..:.:...::~..."-'-".-~...
o

Figure 8-10/2/96 Shadow-Error verses percent of field-of-view covered by
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The error versus percent cover relationships were described b. :

y = 100e(a+bx)

where: y = percent error in falsely detecting bare soil
x weed cover (percentage of field-of-view)

a and b = coefficients unique for each set of conditions (table 1).

Table 1. Error equation coefficients

5% error* 10% error*
Sample Set a b a b

9/11/96 0.2538 -50.8126 -0.4045 -46.2635
9/23/96 -0.2616 -3.6356 -0.3742 -5.0322
10/2/96 Clear -0.1445 -1.9251 -0.2317 -2.6361
10/2/96 Shadow -0.0898 -1.8163 -0.1372 -2.5370
10/25/96 Clear -0.1251 -0.2060 -0.1868 -0.2721
10/25/96 Shadow 0.0175 -1.1800 -0.2887 -1.3536
10/31/96 -0.1133 -24.9945 -0.5607 -29.0590

*allowed error ill tallmg to correctly detect bmdweed

An economic study would be required to determine the optimum allowable

amount of each type of error. This would ultimately determine the maximum field-of-

(5)

view. Such a study was beyond the scope of this paper. For the remainder of this study,

the optimum threshold was assumed to occur when both errors were equal and at a

predetermined leveL

Using the standard of equal errors, weed cover requirements varied greatly

between the seven data sets (table 2). No single field-of-view was optimum for all

conditions. The 10/25/96 Clear set was the worst case and required the smallest field-of-

20



•

VIew. A field-of-view of 0.08 m2 was required to detect th minimum target bindweed

while maintaining errors of 10%. On average, nearly 8% of the field-of-view would have

had to be bindweed before the sensor could correctly detect it. At the opposite extreme, a

sensor on 9/11/96 would have required only 0.04% weed cover to maintain 10% error.

The median required weed cover for all seven sets was 0.79% of the field-of-view with

10% error and 1.48% with 5% error. To detect a 6090 mm2 bindweed, these correspond

to fields-of-view of 0.77 m2 and 0.41 m2
, respectively. The differences in percent cover

requirements between days could be attributed to variabiLity of the bindweed, soils, and

light conditions both within and between data sets.

Table 2. Bindweed Simulation Results

5% error* 10% error·
Weed cover Max. field Weed cover Max. fieW

Sample Set required ofviewt required ofviewt

(% ofFOV) (m2
) (% ofFOV) (m2

)

9711796 0.06 9.51 0.04 14.82
9/23/96 0.75 0.81 0.38 1.59
10/2/96 Clear 1.48 0.41 0.79 0.77
10/2/96 Shadow 1.60 0.38 0.85 0.71
10/25/96 Clear 13.94 0.04 7.78 0.08
10/25/96 Shadow 2.55 0.24 1.49 0.41
10/31/96 0.12 5.27 0.06 10.14

* Assumes equal error m taI1mg to correctly detect bmdweed and talsely detectmg SOIl

t Based on target bindweed of simulation (6090 mm 2)

Although NDVI did correct for some sunlight variability, it did not correct

entirely (Lillesand and Kiefer, 1994). At least some of the variability in field-of-view

determination could be attributed to changes in sunlight conditions during sampling.
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Oklahoma Mesonet irradiance data, averaged over 15 minute intervals. indicated that

there was some variability in total brightness levels between days, and considerable

variability in sunlight conditions during the Sept. 23, and Oct. 31, data collection.

However, there was no correlation between this data and calculated field-of-view size.

Variable and fast moving cloud cover was observed during collection of the 10/25/96

data and could have contributed to the large field-of-view calculated for that day.

Variability in weed samples measured also played a part in the field-of-view

differences between sets. While bindweed has a distinctive spectral pattern, it is not

absolute for every plant of the species (Lillesand and Kiefer, 1994). No two bindweed

plants reflect exactly the same, due to factors such as health, leaf structure, morphology,

moisture, and the level of photosynthesis.

Physical differences in the color, surface roughness, and moisture content of the

soil also existed and contributed to the variability in field-of-view. There was

considerable surface roughness from tillage. Since the areas being sensed were small,

clods, rills, and washouts could have contributed to variability of the data.

Variability of color between the soil samples was also observed. Color and

moisture content were very much interrelated. Soil moisture content can cause large

changes in soil color and therefore, reflectance in the visible portion of the spectrum.

Also water in soil absorbs energy in the near-infrared wavelengths (Lillesand and Kiefer,

1994). Wetting or drying of the background soil, could dramatically change the amount

of NIR and RED reflectance thereby changing NDVI values. After a rainfall event, it is

natural to see areas of the field where drying is occurring faster that others. Under these

conditions, since there is more than usual variability in soil surface moisture, it is
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expected that NDVI should be more variable. Rainfall ev nts of varying degrees

occurred within the five days prior to each collection date with the exception of 9/1 1/96,

but there was no correlation between the amount of rainfall and field-of-view size. A

rainfall of36.6 mm occurred three days previous to the Oct. 25 data collection. This was

more than twice the amount received in the five days previous to any other sample date.

In addition to the variability of physical differences among targets areas and

environments, some error from instrumentation and experimental procedure may have

also occurred. A small amount of error was apparent in the spectrometer images,

indicated by the rough appearance of the response curves (fig. 4). This error is

insignificant when compared to the amplitude ofthe over all response. The sample data,

used as inputs for the simulation, were collected under actual field conditions and were

chosen as representative of the field. Neither the soil or the bindweed was prepared or

altered for the study, and all data was collected during a time of year when bindweed

would normally be detected and sprayed in Oklahoma.

Conclusions

It was possible to distinguish between images containing a single target bindweed

on a soil background from images of bare soil without bindweed. However, as image

size increased beyond the size of the target plant, distinguishing the two became more

difficult. With increasing image size, bindweed response was averaged out by the

increasing soil response.
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The median required bindweed cover for all test conditions was 0.79% of the

field-of-view to maintain 10% average error in both failing to detect bindweed and falsely

detecting soil. To maintain no greater than five percent error, bindweed must fiU 1.48%

of the field-of-view. The maximum required bindweed cover for any test condition with

10% error was 7.78%, and the minimum was 0.04%. A field-of-view of 0.08 m1 will

reliably detect the target bindweed (6090 mm2
) under all conditions tested with average

errors no greater than 10%.

Variability in sensor measurements was due to differences in bindweed plants,

soil locations, and the sunlight striking these targets. The influence of each of these

factors was not quantified. No cause and effect relationship could be established between

rainfall events or sunlight variability and percent cover requirements. It was likely that

variation in soil reflectance was a greater factor than variation in bindweed, because soil

accounted for a larger percentage of the field-of-view and had more influence on the

NDVI.

No single field-of-view area was optimum for all sets of test conditions. A means

of accounting for soil and sunlight variability should produce more uniform results.
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Chapter III

Field-of-view Determination for a Bindweed Detection

Sensor

Abstract

One alternative to the present method of uniform herbicide application is to

selectively spray only the weeds in a field. Control of field bindweed, Convolvulus

arvensis, in fallow winter wheat is a prime application for such technology. This research

was conducted, using a photoelectric diode sensor, to determine the maximwn required

sensor field-of-view by which the Normalized Difference Vegetative Index (NDVI) can

be reliably used to detect a target size bindweed on bare soil.

Eleven fields-of-view between 0.065 and 0.710 m2 were compared to determine

what image size containing a single target bindweed on bare soil could be distinguished

from images that contained only soil. Irradiance was measured in the 670 nm and 780

nm nominal wavelengths. A reflectance based NDVI was calculated and used to

distinguish soil and plant.

Image size and the sensor's ability to adjust for background variability were

related. When soil and bindweed images were paired, it was possible to distinguish

between images containing a single six inch bindweed from images of its surrounding

soil for all fields-of-view. Detection was 100% for nine of the 11 fields-of-view and 98%

for the other two. When soil and bindweed images were unpaired, a single NDVI

27



threshold was used to distinguish between the two with orne error. Error in not detecting

bindweed increased as the decision threshold increased. Error in falsely spraying soil

decreased as the decision threshold increased. The optimum threshold was defined as the

intersection of the two error curves. Threshold error increased from 16.0 to 45.0% with

. .. .
Increasmg Image SIze.

Soil moisture was a significant factor in NDVI variability. Threshold error was

decreased slightly over the unpaired analysis when samples were classified by visually

distinguishing between wet and dry soils.

Keywords: weed, detection, sensor, irradiance, reflective light

Introduction

Every year farmers throughout the world spend millions of dollars on tillage and

herbicide in an attempt to control undesirable weed species in crop fields. In much of the

United States, one of the most serious and difficult weed problems is field bindweed,

Convolvulus arvensis (Field bindweed, Convolvulus arvensis. 1998). Bindweed is a

member of the Morning-glory family and has multiple lateral numers, a long taproot, and

arrow shaped leaves. Dense infestations offield bindweed may reduce crop yields by 50

to 60% (Zollinger, 1996). Tillage is the most widely accepted method of control, but to

effectively control bindweed requires months of regular tillage operations (Majek, 1993).

Occasional tillage may in fact help spread the weed and make problems worse.
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The alternative to tillage weed control is chemical herbicides. Currently chemical

herbicides are applied unifornlly across an entire field which may have only a sparse or

patchy population of weeds. To insure weed control large amounts of chemical are

applied, much of which falls on weed-free areas and will never reach the target plant. A

large percentage of the herbicide, and consequently tl1e farmer's money, is wasted. This

waste of herbicide has a very real and negative effect on tl1e profitability of crop

production, as well as a potentially adverse environmental impact.

In an era of increasing operating costs, heightened awareness of environmental

impact, and escalating regulation of agri-chemicals, a more efficient and environmentally

conscious method of herbicide application is needed. One alternative to the usual method

ofuniform application is to selectively spray only the weeds in a field. With improving

technology, it may now be possible to detect and spray weeds on the go using remote

sensors and intermittent chemical applicators. A site specific herbicide system would

utilize remote sensed data from either on-board sensors or overhead imagery to develop a

vegetative index (VI) for small areas, or elements, of a field. Based on the index, the

system would then make a decision of the presence or absence of a weed in each field

element. This decision would be translated to a spray command and carned out by

computer controlled applicators.

Bindweed control in winter wheat is a prime application for such technology.

Bindweed can be treated in late summer or early fall, when winter wheat fields are fallow,

and it can be reliably assumed that any growing plants are weeds. The task of the sensor

and controller is then simply sense and determine what is plant and should be sprayed

from what is soil and should not.
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A number of systems sensing electromagnetic energy ha e been developed in an

attempt to detect and selectively spray weeds. Stone (1994) used an optical sensor and an

artificial neural network to detect bindweed. This sensor measured reflected energy in

three bands: green, red, and near-infrared (NIR). This unit was able to detect 92% of the

cases where weeds were present and reject 80% of the cases where weeds were not

present. Felton et al. (1991) developed a spray system with remote sensors that also used

reflected energy in the red and near-infrared wavebands as a means of distinguishing

between plants and soil. He estimated the mean reduction in area sprayed was 90%.

Beck (1996) reported on a second selective sprayer that used silicon PIN photodetectors

to detect levels of reflected light in the NIR and red (670 om) chlorophyll absorption

band. This system used an artificial light source mounted with the system's sensor.

Merritt et al. (1994) also used red and NIR reflectance to implement a weed spray system.

All of these sensor-applicators relied on differences in reflective properties of

plants and soil in the red and near-infrared portion of the electromagnetic spectrum.

Green chlorophyll producing plants absorb sunlight at red wavelengths, and reflect highly

at near-infrared wavelengths. Soil tends to reflect more equally at both wavelengths.

Vegetation indices that take advantage of this difference in reflective properties

work well in determining weeds from soil. The most commonly used index is the

Normalized Difference Vegetative Index (NDVI) ((NIR-RED)/(NIR+RED)) introduced

by Rouse et al. (1974) to separate green vegetation from its background soil brightness.

Merritt et al. (1994) reported NDVI based on percent reflectance worked well for

consistent classification of plants from soil. Nitsch et al. (1991) compared four indices

and found NDVI to be the best for differentiating living plant matter from soil. A
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variation ofNDVI, the soil-adjusted vegetation index (8 VI) also uses red and near­

infrared wavebands, but with added constants to minimize errors caused by soil

brightness (Huete, 1988). Numerous other red and NIR Vis include the Transformed

Vegetative Index (TVI) (Deering et ai. 1975), the Ratio Vegetation Index (RVI)

(Richardson and Wiegand, 1977), the Normalized Ratio Vegetation Index (NRVI) (Baret

and Guyot, 1991), and the Perpendicular Vegetation Index (PVI) (Richardson and

Wiegand, 1977).

While research using red and NIR sensing seems promising, attempts to

implement this technology have yielded inconsistent results (Beck, 1996) due in part to

variability in the landscape being sensed. Different soil types exhibit different reflective

characteristics. Also, within a single soil type, soil color changes with soil conditions

such as wet or dry, broken or crusted (Nitsch et aI., 1991). In addition to changes in soil

reflectance, spectral response from bindweed cover will also change from plant to plant

and over time as the plants mature. Changes in atmospheric conditions and solar

radiation from one day to the next also add to the complexity ofdesigning a usable

detection system.

While reflectance of soil and green plants vary, they have characteristic and

recognizable reflectance curves. However, an area that contains a plant surrounded by

soil will produce a reflectance curve that does not appear like either, but rather a

composite response, which is a combination of the two ground cover types. As the field­

of-view is increased, the plant response is averaged out by the increasing soil response. If

the field-of-view is too large, it becomes impossible to distinguish between an image

containing plant and an image that does not. As a practical solution to this problem, a
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sensor's field-of-view must be small enough to reliably detect the smallest target weed on

a soil background. At least one author has cited inability to detect small weeds as one of

the problems facing selective spraying (Felton et aI., 1991). On the other hand, small

fields-of-view lead to increased system cost, because more sensors are necessary to cover

the same amount of field area. Thus, the maximum field-of-view size that can reliably

detect the target weed becomes a very important factor in the design of a viable weed

detector.

Variations in spectral response due to differences in plants, soils, light level, and

sensed areas containing both soil and green plant material have aU caused problems for

developers (Stone, 1994). A usable weed sensor must be able to readily distinguish

viable weeds under all reasonable conditions. Its decision making process and field-of­

view should be well defined in order to assure accuracy in detection. The objective of

this research was to determine the maximwn required sensor field-of-view by which

NDVI can be reliably used to detect a target size bindweed on bare soil.

Methods

Sensor data from 11 sizes of field-of-view were compared to determine the

maximum field-of-view where an image containing a single target bindweed on a soil

background could be distinguished from images that contained only soil. The data were

separated into pairs of one bindweed image and one soil image for each field-of-view.

Both images came from the same area in the field at approximately the same time.
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The target weed, the smallest bindweed the sensor must consistently detect, was

defined as a single bindweed having at least one roIUler approximately six inches long.

This is the smallest bindweed recommended for chemical treatment (Landmaster BW

label, 1997) (Zollinger, 1996) (Field bindweed official control program, 1988). Target

weeds sampled during this study, when viewed from above, ranged in area from 1300

rnm2 and 10700 mm1
, with a mean of3900 mm2

. Ifa weed of this size could be

consistently detected, then larger weeds would also be detected, since they occupied more

field-of-view area and were responsible for more of the sensor response.

The normalized difference vegetative index (NOVI) was selected as the vegetative

index for this application. The use of NOVI was advantageous because it helped

compensate for changes in target illumination (Lillesand and Kiefer, 1994). The nominal

wavelengths of 670 run (red) and 780 run (NIR) were used to calculate NOVI. These

frequencies were consistent with past research and corresponded with the wavelengths

used in a nitrogen detection sensor also in development at Oklahoma State University

(Stone et aI., 1996). Visual inspection of bindweed and soil reflectance curves taken with

a spectrometer verified the appropriateness of these wavelengths and the use ofNDVI

(Criner, 1998). However, NDVI did not completely eliminate the effects of variable

illumination (Lillesand and Kiefer, 1994). To compensate for this variability, NOVI was

calculated based on percent reflectance. lrradiance of the field element and a spectrally

white reference plate were taken simultaneously. Reflectance NOVI was calculated as:
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(1)

(
NIRlargt/ _ REDlargt/)
NIRr•f REDrtf

NDVI ref/.nan Ce = (NIR RED)largel + large!

NIRnf REDrtf

Previous simulation work with spectrometer data (Criner, 1998) suggested a

sensor should reliably detect a target bindweed in a 0.08 m2 field-of-view under most

field conditions. A slightly smaller square image size of 0.065 m2 was chosen as the

minimum field-of-view. A 0.710 m2 image, 11 times the minimum, was selected as the

. .
maximum Size.

A photoelectric diode sensor developed at Oklahoma State University was used to

measure reflected energy from the sample areas in the 664 to 676 nrn and 774 to 786 nrn

wavebands (fig. 1). The sensor measured two red and two NIR channels. One pair of red

and NIR channels measured reflected energy from the soiUplant target. The second pair

measured energy reflected from a spectrally white reference plate mounted above the

sensor.

34



White plate
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Sensor

Figure I--Photoelectric diode sensor

A sensor height of 0.99 m from the bottom of the sensor to the ground was

chosen for these experiments. This provided a square field-of-view on the ground of 0.25

m by 0.25 m. The field-of-view was determined by reflecting a narrow strip of light from

a light bar onto a white paper positioned under the sensor. Sensor response was recorded

as the light strip was slowly passed from side to side and front to back under the sensor.

The image size was defined as the area which contained 95% of the sensor response (fig.

2).
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Figure 2--Sensor Response Curves for Sensor Image Size Determination

The sensor was mounted on a 3.7 m long angle iron frame (fig. 3). The sensor

could be traversed the length of the frame to collect II contiguous 0.065 m2 images with

a single positioning of the frame.

Figure 3--Sensor mounted on angle frame
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During the fall on 1997,49 data sets were collected to define field-of-view size of

the bindweed detection sensor. Sensor fields-of-view of 0.065, 0.129, 0.194. 0.258.

0.323.0.387,0.452,0.516,0.581,0.645, and 0.710 m2 were examined. The data was

collected in a field infested with bindweed on the Oklahoma State University Agricultural

Experiment Station in Stillwater, Oklahoma on Oct. 2, 3, 6, 15, 17, and 22, 1997. Data

were collected during the hours of 10:00 A.M. and 3:30 P.M. to minimize lighting

problems that might originate from extremely low solar angles. The field was a Bethany

silt loam soil that was fallow through the swnmer. It had been last tilled in mid-summer

and the weeds allowed to grow back. The bulk of the vegetation present was field

bindweed along with smaller amounts of other weed species.

Each sample set was a 0.25 m by 2.79 m transect (fig. 4) consisting of 11

individual 0.065 m2 sensor images. The center image contained the target bindweed, and

5 images containing only bare soil were located on either side.

West === > East

BIND
SOIL 10 SOIL 9 SOIL 8 SOIL 7 SOIL 6 SOIL 5 SOIL 4 SOIL 3 SOIL 2 SOIL 1

WEED

Figure 4--Layout of field transect

Transects were oriented East to West with the sensor facing south. This

orientation eliminated any interference that might occur due to shadows from the sensor

or frame during testing. Sensor measurements were begun at the east end of the transect

(SOIL 1), and the sensor was incremented 0.25 m west with each additional
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measurement. Twenty irradiance measurements were collected and averaged for each

square. Locations ofthe transects in the field were arbitrary and were selected only by

the presence of a target bindweed. In all cases, the area along the transect was cleared of

all extraneous vegetation other than the target. The target and surrounding soil surface

were disturbed as little as possible to maintain the sample in a natural state.

After the field data were collected, the raw data for each square in a transect was

averaged and converted to a common lli1it by multiplying by the individual channel gains.

A visual basic program was written to collect the data by field-of-view size and calculate

reflectance NOVI.

NDVls for fields-of-view of 0.065, 0.129, 0.194, 0.258, 0.323, 0.387, 0.452,

0.516,0.581,0.645, and 0.710 m2 were calculated for each transect. Fields-of-viewof

0.065 m2 were taken directly from the transects as the image containing the target

bindweed (BINDWEED in fig. 4). Fields-of-view larger than 0.065 m2 were created by

adding the red and NIR measurements of the target image and one or more contiguous

soil images (fig. 5) to calculate a single NDVI for the entire area.
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Figure 5--Creation of fields-of-view by adding contiguous 0.065 m2sensor readings

Equivalent size fields-of-view containing only soil were also created from each

transect in order to compare bindweed and soil-only images. These images were created

by randomly sampling each transect for the appropriate number of soil-only images and

then adding together the sensor readings as described above. The result was 49 pairs of

sensor images for each of the 1I fields-of-view. Each pair consisted of a bindweed pi us

background soil image and a background soil-only image.

A paired t-test was conducted for each image size to detennine if images

containing bindweed could be distinguished from associated soil-only images. This test,

by design, eliminated the variability between transects by calculating the variance of the

differences of the pairs rather than of the individual images, The t-test was conducted

following the procedure given in Steel and Torrie (1980) with the null hypothesis of the

difference between the pairs was zero.
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An unpaired comparison of the data was also done to detennine at what image

size a single NOVI plant-soil threshold could be reliably used for detection.

Theoretically, if a plant was within the sensor's view, the NDVI value would be above

the threshold. If an image's NDVI was below the threshold value, no plant is present.

Errors result when a NDVI reading falls incorrectly on the wrong side of the threshold.

Any error was a result ofvariability in the soils and plants being sensed, since changes in

light intensity were already accounted for in the calculation ofNDVI. There were two

types of expected error: error in falsely detecting bare soil and error in failing to correctly

detect bindweed.

Errors for each field-of-view were calculated over a NOVI threshold range of a to

0.5. It was assumed that the 49 sets of sensor data were representative of the population

of images possible for the field. For each image size, error in failing to detect bindweed

or falsely detecting soil was determined based only on the sample information. Both

types of error were calculated by:

Error = 100 '" (~) (2)

Where Error = error in failing to detect bindweed
i = number of images containing bindweed with NDVI < threshold
n = number of samples

Where Error = error if falsely detecting soil
= number of images with out bindweed with NDVI > threshold

n = number of samples

An approach where threshold was adj usted based on gross changes in background

response was also considered. Since it has been shown that soil reflectance values change
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due to surface moisture (Nitsch et aI., 1991), the soil data were classified as moist or dry

based on visual appearance. Twenty-nine transects were classified as dry, and 20 were

classified as moist. An ANOVA test (GLM, SAS) verified that there was a significant

difference between the two classes. A second unpaired analysis was conducted on each

class to establish if adjusting the threshold NOVI value by class would reduce error.

Results and Discussion

Typical response curves generated in this study (fig. 6) demonstrated changes in

NOVI as field-of-view changed. At the smallest field-of-view, the NDVI of images

containing bindweed and those without were easily distinguished, because the bindweed

occupied a significant portion of the image. As the field-of-view increased, the difference

between the responses diminished. The soil-only NDVI remained essentially constant as

the bindweed image NDVI decreased. It was possible to distinguish between responses at

large image sizes, but to implement these sizes on a functioning sensor/applicator system

will require a sensor with a high degree of precision. Also, since the differences between

bindweed and soil images were small, any change in conditions that was not readily

accounted for, e.g. a machine shadow crossing the sensor area may cause an error in

detection. The range ofNDVI readings for the two transects in figure 6 were entirely

different. The bindweed image responses in figure 6a were for the most part lower than

the soil responses in figure 6b. This demonstrated that while it was possible to

distinguish between bindweed and soil responses under the same conditions, it was

necessary to adjust the decision criteria in accordance with changes in conditions.
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Figure 6--Typical sensor response; with and without bindweed for 11 fields-or·view.
Transects from 10/2/97 and 10/15/97

Results from the paired t-test demonstrated the detection ability of the sensor was

adequate for all fields-of-view tested. The null hypothesis of the mean of the sample

differences was zero, was rejected for all 11 fields-of-view (table 1). For every image

size tested, it was possible to distinguish between images containing a single six-inch

bindweed on a soil background from images of the same soil without the bindweed. The

sensor could differentiate between soil and bindweed images for all 49 samples in nine

out of the 11 fields-of-view. The sensor failed to correctly distinguish between bindweed
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and soil once at 0.129 m2 and once at 0.194 m2
. Thus, detection error was zero for nine

fields-of-view, and two percent for the remaining two.

Table 1. Results of paired t-test and sample set detection error

Image Area Weed Cover· Student's t Pro bability H** Detection Error
0

(m2) (% field-of-view) (T<=t) two-tail (%)

0.065 6.0 12.287 1.97E-16 reject 0
0.129 3.0 11.613 1.52E-15 reject 0
0.194 2.0 11.121 6.98E-15 reject 2
0.258 1.5 10.821 1.79E-14 reject 2
0.323 1.2 11.235 4.89E-15 reject 0
0.387 1.0 11.238 4.84E-15 reject 0
0.452 0.9 11.990 4.82E-16 reject 0
0.516 0.8 10.246 1.14E-13 reject 0
0.581 0.7 11.842 7.53E-16 reject 0
0.645 0.6 11.129 6.81E-15 reject 0
0.710 0.5 11.514 2.06E-15 reject 0

* Calculated from average bindweed size of3900 IllJl12
** Ho: Mean of sample differences is 0 for a given image size

a = 0.01

Results ofthe unpaired analysis of the entire data set yielded two intersecting

error curves (fig. 7). Error in not detecting bindweed increased as the decision threshold

increased. Error in falsely detecting soil decreased as the decision threshold increased.

Both types of error were approximated by sigmoidal curves described by:

A+B

y = 1+ e-(x-c){y

where: y = error
x = NDVI
A, B, C, and D are unique coefficients (table 2).
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An economic study would be required to detennine the optimum decision

threshold for each image size and the allowable amount of each type of error. Such a

study was beyond the scope of this paper. For the remainder of this study the optimum

threshold was defined as the intersection ofthe two error curves. This value was used to

describe the relationship of field-of-view size to error.

For unpaired data, as image size increased, it became increasingly difficult to

distinguish between bindweed and soil images. Threshold error increased from 16.0% for

an image size of 0.065 m2 to 45.0% for an image size of 0.710 m2
, NOVI threshold

decreased with increasing image size.
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When the data set was separated by soil surface moisture the threshold error was

decreased for both the dry and moist subsets (fig. 8). The most noticeable decrease was

in the moist soil subset. The trend of increasing error and decreasing threshold as image

size increased was apparent in both subsets, as in the whole set analysis (table 3).

Additionally, all of the threshold NDVI values for dry soils were lower than any of the

moist soil NDVI thresholds.
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Table 3. NDVI threshold and threshold error fur all unpaired analysis

Image Area Weed Cover* Threshold Error (%) NDVl Threshold

(m2
) (% field-of-view) all dry moist all dry moist

0.065 6.0 16.0 13.2 9.1 0.231 0.210 0.258
0.129 3.0 29.8 26.7 15.4 0.226 0.205 0.247
0.194 2.0 35.3 32.4 20.2 0.219 0.198 0.241
0.258 1.5 37.7 35.4 27.3 0.216 0.196 0.240
0.323 1.2 40.0 38.3 27.4 0.214 0.194 0.238
0.387 1.0 41.2 40.3 28.9 0.214 0.193 0.238
0.452 0.9 42.6 41.3 33.0 0.212 0.191 0.237
0.516 0.8 43.6 42.9 33.9 0.212 0.191 0.236
0.581 0.7 43.5 42.4 33.8 0.211 0.190 0.236
0.645 0.6 44.6 43.8 36.3 0.211 0.190 0.235
0.710 0.5 45.0 44.6 36.2 0.210 0.190 0.235

* Calculated from average bindweed size of3900 mm2

The paired t-test defined image size using adaptive thresholding. Soil variability

between transects was accounted for by pairing and the detection threshold was

appropriately adjusted. The unpaired analysis represented a sensing approach in which

neither variability between plants or variability in background were accounted for, rather

a spray or don't spray decision was based on a predetennined threshold. The fanner

strategy allowed greater image sizes, but would be more difficult to implement. The

latter would be easier to implement, but required a smallerfield-of-vicw. The binary

classification by moisture appearance was a compromise between the two strategies, and

yielded results between the two Classification into more and better defined classes can be

expected to produce results more comparable with the paired analysis.
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Conclusions

It was possible to distinguish between images containing a single target bindweed

on a soil background from images of the same soil without the bindweed for all field-of­

view sizes tested. When soil and bindweed images were paired, detection success was

100% for nine out of the 11 fields-of-view tested and 98% for the other two.

At small fields-of-view, the bindweed-inclusive image response and the soil

image response were easily distinguished, because the bindweed occupied a significant

portion of the image. As the field-of-view increased, the difference between the

responses diminished.

It was possible to detect bindweed with a s~ngle thresholding with considerable

error at small image sizes. As image size increased, error also increased. In an unpaired

analysis, error increased most dramatically, from 16.0 to 29.8%, between fields-of-view

ofO.065m2 and 0.129 m2
.

Soil moisture was a significant factor in NOVI variability. Error was decreased

by a binary classification based on the apparent presence of soil surface moisture. This

indicated that visual classification of field conditions and appropriate threshold correction

could reduce detection error and allow a larger field-of-view than no classification.

Field-of-view size and the detection system's ability to adjust for background

variability are very much related. If the detection system can track and correct for

changes in soil response, as demonstrated in the paired analysis, then field-of-view can be

large and the possible error in detection will be small. However, if the detection strategy
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does not account for variation in soils, the possible error V'. ill he larger and the field-of­

view size must be reduced.
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Table 2. Error equation coefficients

Equation Coefficients
dry moist

ABC 0 - ABC 0 ABC 0
0.065a* -2.8322 1019434 0.2829 0,0349 -32441 101.1265 0.2578 0,0289 -1,3398 97,9618 0.3150 0,0268
0.065bt 00606 101.3648 0.2015 -0.0176 -0.2085 100.9721
0.129a -1,6681 101.4932 0.2464 00256 -2.3566 101.8706
0.129b -0.8347 1020350 0,2087 -0,0204 0,1647 102.4354
0.194a -2.3813 102.9261 0.2323 0.0250 -2,7207 101.9346
0,194b -0.7404 102.3839 02058 -0,0209 0.2511 103.1781
0,258a -2.0980 102.6831 0,2266 0.0233 -2.4730 1018978
0.258b -0.4879 102,2562 02055 -0.0203 0.2976 102.2023
0,323a -1,8481 102.6352 0.2224 0.0227 -2,0423 101,6020
0.323b -0.7876 102,2035 0.2058 -0,0197 0,0942 102.5857
0.387a -1.7599 102,7475 02211 0.0227 -2.6199 102.3222
0,387b -0.6786 102.0513 02066 -0.0196 0.1466 1020152
0.452a -1.8865 102.7122 0.2179 0.0221 -2.4900 102,2439
0.452b -0,7158 102.4838 0.2056 -0.0200 0.2682 102,0909
0,516a -1.7708 102,7046 0,2168 0.0218 -2.8913 1026561
0.516b -0,7391 102,2682 0.2063 -0.0200 0.2214 102.3642
0,581a -1,9448 102.9057 02161 0,0221 -2.9012 102.7172
0.581b -0.7187 102.7029 0.2052 -0,0205 0,3312 102.2323
0,645a -0.6483 101,2281 0.2152 0.0213 -2.8602 102.6192
0,645b -0.7670 102.5779 0.2059 -0.0205 0,2585 102.4351
0,710a -2.0361 103,0137 02140 0,0220 -2.7461 102.3497
0,710b -0.7084 102.4449 0.2058 -0.0201 0.2216 102,0936

* Curve numbers ending in a are error in failing to detect bindweed
t Curve numbers ending in b are error in falsely detecting soil
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01857
0,1987
0.1867
0.1960
0,1856
0.1949
0,1862
0,1940
0,1849
0.1929
0,1853
01920
01857

-0.0129
0.0214
-0.0165
0.0187
-0,0168
00176
-0.0155
0.0166
-0.0154
0.0172
-0.0148
0.0161
-0.0144
0,0166
-0,0152
0.0164
-0.0148
0,0164
-0.0152
0.0158
-0.0146

0,3837
-0.4910
01901
-0.8006
0.7930
-11117
0.4157
-0.8603
0.1559
-0,7378
0.4128
-1,0100
0,1127
-0.7111
03245
-0,6998
0.3245
-0.5797
0.3798
-0,5249
0.4012

1013332
98.3686
100,4273
100,0178
1003046
100,8021
100,8635
100.7367
100,6690
100,7002
100.4903
100.6549
100,8593
100.5899
100.4569
100,7800
100.4569
100.6133
100,3151
100.4834
100,2924

0.2244
0,2738
0.2322
0,2602
0,2282
0.2531
0,2288
0,2494
0.2290
0.2478
0,2299
0.2442
0.2299
0,2427
02297
0,2431
0.2297
0.2412
0.2302
0.2406
0,2302

-0.0142
0.0159
-0.0088
0.0143
-0,0091
0.0139
-0.0111
0.0121
-0.0091
0.0111
-0,0088
0.0109
-0.0095
0,0102
-0.0092
0.0107
-0,0092
0.0108
-0.0088
0.0095
-0.0088

0­
~



References

Baret, F. and G. Guyot. 1991. Potentials and limits of vegetation indices for LA! and

APAR assessment. Remote Sensing the Environment 35: 161-173.

Beck, J. 1996. Reduced herbicide usage in perennial crops, row crops, fallow land and

non-agricultural applications using optoelectronic detection. SAE Paper No. 96­

1758. Warremdale, PA.: SAE.

Criner, B. R. 1998. Unpublished data.

Deering, D. W., J. W. Rouse, R. H. Haas, and J. A. Schell. 1975. Measuring :forage

production" of grazing units from Landsat MSS data. In Proceedings ofthe lOth

International Symposium on Remote Sensing ofEnvironment, IJ. 1169-1178.

Felton, W. L., A. F. Doss, P. G. Nash and K. R. McCloy. 1991. A microprocessor

controlled technology to selectively spot spray weeds. In Proc. Automated

Agriculturalfor the 21st Century Symposium, 427-432. Chicago,IL.

"Field bindweed, Convolvulus arvensis". Utah State University Extension noxious weeds

list. <//ext.usu.edulag/weeds/fbind.htm> (Jan. 1998).

Field bindweed official control program. 1988. K.A.R.4-8-29. Topeka, KS: Kansas

Department of Agriculture.

Huete, A.R. 1988. A soil-adjusted vegetation index(SAVI). Remote Sensing of

Environment 25:295-309.

LandMaster BW label, Monsanto 1997 Crop Chemical and MSDS Book, 1997. Pages

163-167.

Lillesand, T. M. and R. W. Kiefer. 1994. Remote Sensing and Image Interpretation.

50



New York: John Wiley & Sons, Inc.:.

Majek, B. A. 1993 Bindweed identification and control. FS676. New Brunswick, NJ.:

Rutgers Cooperative Extension.

Merritt, S. J., G. E. Meyer, K. Von Bargen, and D. A. Mortensen. 1994. Reflectance

sensor and control system for spot spraying. ASAE paper no. 94-1057. St.

Joseph, MI.: ASAE.

Nitsch, B. 8., K. Von Bargen, G. E. Meyer, and D. A. Mortensen. 1991. Visible and

near-infrared plant, soil and crop residue reflectivity for weed sensor design.

ASAE Paper No. 91-3006. St. Joseph, MI.: ASAE.

Richardson, A. J., C. L. Wiegand. 197. Distinguishing vegetation from soil background

information. Photogramnetric Engineering and Remote Sensing 43( 12): 1541­

1552.

Rouse, 1. W. Jr., R. H. Haas, D. W. Deering, J. A. Schell, and J. C. Harlan. 1974.

Monitoring the venal advancement and retrogradation (green wave effect) of

natural vegetation. In NASAIGSFC Type III Final Report, 371. Greenbelt, MD.

Steel, R. G. D. and 1. H. Torrie. 1980. Principles and Procedures (~rStalistics: A

Boimetrical Approach. New York: McGraw-Hill Inc.

Stone, M. L. 1994. Embedded neural networks in real time controls. SAE Paper No. 94­

1067. Warrendale, PA.: SAE.

Stone, M. L., 1. B. Solie, R. W. Whitney, W. R. Raun and H. L. Lees. 1996. Sensors for

detection of nitrogen in winter wheat. SAE Paper No. 96-1757. Warrendale, PA.:

SAE.

51



-

Zollinger, R. K. and R. G. Lym. 1996. Identification and control of field bindweed.

W802. Fargo, ND: North Dakota State University Extension Service.

52



Chapter IV

Recommendations for Further Study

There is much work yet to be done to create a functional and efficient

sensor/applicator for detection and control of bindweed. This study provided useful

information and conclusions for the eventual development of a bindweed sensor. as well

as developing methods for future work. This study established field-of-view size

requirements for a sensor to detect bindweed under various environmental conditions, and

developed relationships of field-of-view size to detection strategy, by examining variable,

fixed, and classification thresholding.

Measurements during this study were collected in one field of one soil type. It

should be determined if the results of this study are directly applicable to other soils and

environmental conditions. Recommendations for further work include studies to

determine how reflective properties and detection ability change with background soil

type, with changing conditions in each soil type, and with the presence of crop residues in

the background soils. Field-of-view requirements and detection ability in early morning

and late evening when low light levels and low solar zenith angles are known difficulties

should also be examined. Also, an economic study will be needed to determine the

magnitude of errors that are acceptable in a control program.

It was a conclusion of this study that field-of-view size and the ability to adjust for

background variability are very much related. When variations in background conditions

was accounted for, detection ability improved and field-of-view requirements increased.
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Also no single field-of-view or NDVI threshold could be uccessfully used for all

conditions. Both of the these statements lead to the conclusion that to implement a

reliable on-the-go bindweed detection sensor. some type of adjustable or adaptive

threshold strategy is needed. Studies to determine spatial information about the

magnitude and frequency of background variability, and the patterns and frequencies of

bindweed infestations are also recommended.
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Appendix

Visual Basic Programs Used in Chapters II and III
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Spread Sheet format for Bindweed/Soillmage Size Simulation
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Simulation Program Described in Chapter II

Sub bindsimO
'Bindweed/Soil Field of View Simulation
'Chapter II in Thesis
'Byron R. Criner 3/1/97
r updated 7/24/97 with if statments to check rnd function return for O<f< I
, also added randomize function at the beginning of each image size loop
, to seed random generator by computer clock,

'Program to random Iy sample a nonna] population of composite bindweed and soil NDVls
'and compare to all soil NDVI for same sample size. This comparison can be done for
'any minimum size of bindweed and any image size from one pixie up.

'User must input: Minimum Target Bindweed Size (in no. of pixies)
, Image Sizes to Sample (in no. ofpixles)

Acceptable error of not spraying bindweed (Error I as a decimal)
Mean and Stdev. for soil and bindweed RED and NIR samples

'Output will be: ImageSize(in no. of pixies)
11lreshold NDVI
% error of spraying bare soil

'One pixie size is a 2" diameter circle. Area = 3.1415 in"2
'fonnat for activeSheet.Cells(row, colum).Value

meanA = ActiveSheet.CeUs(l2, 2).Value 'Get mean of REDsoil pop. from a cell
meanB = ActiveSheet.Cells(14, 2).Value 'Get mean ofNIRsoil pop. from a cell
stdA = ActiveSheet.Cells(I3, 2).Value 'Get stdev. of REDsoil pop. from a celt
stdB = ActiveSheet.Cells(l5, 2).Value 'Get stdev. ofNIRsoil pop. from a cell
meanC = ActiveSheet.Cells(8, 2).Value 'Get mean of REDbindweed pop. from a cell
meanD = ActiveSheet.Cells(l 0, 2).Value 'Get mean ofNIRbindweed pop. from a cell
stdC = ActiveSheet.Cells(9, 2).Value 'Get stdev. of REDbindweed pop. from a cell
stdD = ActiveSheet.Cells(1l, 2).Value 'Get stdev. ofNIRbindweed pop. from a cell
soilstderror = ActiveSheet.Cells( 17, 2).Value 'Get soil std. error from a cell
bindstderror = ActiveSheet.Cells( 18, 2).Value 'get bindweed std. error from a cell
soilSSred = ActiveSheet.Cells(J 9, 2).Value 'get dey. SSred for soil from cell
bindSSred = ActiveSheet.Cells(20, 2).VaJue 'get dey. SSred for bindweed from cell
soilcount = ActiveSheet.Cells(21, 2).Value 'gets number oftme soils imaged from a cell
bindcount = ActiveSheet.Cells(22, 2).Value 'gets number of true bindweed images from a cell
soilslope = ActiveSheet.Cells(23, 2).Value 'gets soil slope for nir/r regression equation
soilintercept = ActiveSheet.Cells(24, 2).Value 'gets intercept for nirlr regression equation
bindslope = ActiveSheet.Cells(25, 2).Value
bindintercept = ActiveSheet.Cells(26, 2).Value

cntimage = 5 'counts images
cnt2 = 5 'counts images in output

Do While ActiveSheet.Cells(3, cntimage).Value <> ° 'end loop with a zero
'loop will generate ndvi readings and output for each image size in spreadsheet

imagesize = ActiveSheet.Cells(3, cntimage).Value 'get imagesize from sheet
bindsize = ActiveSheet.Cells(3, 2).Value 'Get BindSize from a stationary cell
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, check to see if imagesize is as large as target bindweed
If imagesize <= bindsize Then

bindsize = imagesize
End If

dirtsize = imagesize - bindsize 'defLne dirtsize
ActiveSheet.Cells(4, cntimage).Value ="compNDVI"
ActiveSheet.Cells(4, cntimage + J).Value = "soiINDVl"

Fori = 6 To 105

Randomize

'calculate 100 reps ofNDVI for each image size

, ........ COMPUTE COMPOSITE NDVI ......

A = 0 'Pop RED Soil
B = 0 'Pop NIR Soil
C = 0 'Pop RED Bindweed
o = 0 'Pop NIR Bindweed
For i = I To dirtsize ' DirtSize is # of dirt pixies in an image

f = RndO ' generate a random frequency between aand I
Iff= 0 Then f= 0.00001
Iff= 1 Then f= 0.99999
red = Application.NormInv(f, meanA, stdA) 'fmds a red based on f
A = red + A 'adds all soil reds in image
stdNIR = (soilstderror /\ 2 '" «(I / soileount) + «red - meanA) /\ 2 / soilSSred») /\ 0.5
nir = (soils lope '" red) + soilintercept 'regression equation
f2 = RndO
Iff2 = aThen f= 0.0001
If f2 = I Then f = 0.9999
nir2 = Application.Normlnv(f2, nir, stdNIR)
B = nir2 + B

Next i

For j = I To bindsize ' BindSize is # of bindweed pixies in an image
f = RndO ' generate a random frequency between 0 and I
lff= 0 Then f= 0.0001
Iff= I Then f= 0.9999
red =Application.Normlnv(f, meanC, stde)
C=red+C
stdNIR = (bindstderror /\ 2 • « I / bindcount) + «red - meanC) /\ 2 / bindSSred»)) /\ 0.5
nir = (bindslope '" red) + bindintercept

f2 = RndO
Iff2 = 0 Then f2 = 0.0001
Iff2 = 1 Then f2 =0.9999
nir2 = Application.Normlnv(f2, nir, stdNIR)
0= nir2 + D

Nextj

compNDVI = «D + B) - (A + C» / (A + B + C + D) 'composite NDVI
ActiveSheet.Cells(l, cntimage).value = compNDVI

, COMPUTE SOIL NDVI .

A = a 'reset Pop RED Soil
B = a 'reset Pop NIR Soil
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For k = 0 To imagesize . DirtSize is # of dirt pixies in an image
f = RndO ' generate a random frequency between 0 and I
Iff= 0 Then f= 0.0001
Iff= 1 Then f= 0.9999
red = Application.Normlnv(f, meanA, stdA) 'fmds a red based on f
A = red + A 'adds all soil reds in image
stdNIR = (soilstderror f\ 2 * «(1 / soilcount) + «red - meanA) f\ 2 / soilSSred))) f\ 0.5
nir = (soilslope * red) + soilintercept 'regression equation
f2 = RndO
If f2 = 0 Then f2 = 0.000 I
If f2 = 1 Then f2 = 0.9999
nir2 = Application.Normlnv(f2, nir, stdNIR)
8 = nir2 + 8

Nextk

soilNDVI = (8 - A) I (B + A) 'soil NDVI
ActiveSheet.Cells(l, cntimage + 1).Value = soilNDVI

Next 1 'End 50 replications loop

, *************** mean and stdev ******************

, ********* generate output portion of spreadsheet at row 75 ...... **

ActiveSheet.Cells(110, cnt2).Value = ActiveSheet.Cells(3, cntimage) 'imagesize output

q = ActiveSheet.Cells(5, 2).Value 'q from a cell
'q is the percent (0-1) of allowable error in missing bindweed
'If 90% of the bindweed was the target, then the allowable error would be q = .1

mean = Application.Average(Range(Cells(6, cntimage), Cells( lOS, cntimage»)
std = Application.StDev(Range(Cells(6, cntimage), Cells( lOS, cntimage)))
x = Application.NormInv(q, mean, std)

'returns a NDVJ value corresponding to q
ActiveSheet.Cells(lII, cnt2).VaJue = x 'Ill should be 76 'Threshold output

ActiveSheet.Cells(107, cntimage).Value = mean
ActiveSheet.Cells(I08, cntimage).Value = std

mean = Application.Average(Range(Cells(6, cntimage + 1), Cells(105, cntimage + I»)
std = Application.StDev(Range(Cells(6, cntirnage + I), CelJs( 105, cntirnage + 1)))
ActiveSheet.Cells(107, cntimage + I).Value = mean
ActiveSheet.Cells(108, cntimage + I ).Value = std

f= Application.NonnDist(x, mean, std, True)
If Not IsNumeric(f) Then 'check for valid number

f= I
End If
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y = I - f
'percentile of soilNOVl population @ x NDVI value
'y is the percent error of sensing bare dirt as bindweed

ActiveSheer.Cells(l12, cnt2).Value = y '112 should be 77

cnt2 = cnt2 + I 'counts colums for output of spreadsheet
cntimage = cntirnage + 2

Loop 'ends {do while there is an image size} loop
'image size loop ends when image size value in row 2 = 0

'Label output
ActiveSheet.Cells(I 10, 3).Value = "Image Size"
ActiveSheet.Cells(lll, 3). Value = "NOVI at Error I"
ActiveSheet.Cells(112, 3).Value = "% Error spray soil"

End Sub
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Program for Creating Fields-of-view and calculating NDVI from
Chapter III

, threshold_test Macro
•Macro recorded 11/12/97 by criner

Sub threshold_testO
, prepared for 49 samples and II different image sizes
, calculates % error in missing bindweed and falsly spraying soil for thresholds between -.5 and I
, YI = bindweed
'Y2 = soil
ActiveSheet.Cells(l, 32).Value = "Threshold Error Test"
z= 32
q = 34
For k = J To II ' image size loop

yl = 0
y2 = 0
threshold = 0
x=7
Do While threshold < 0.5

i=k+6
soil error count = 0
bind error count = 0
For j = J To 29 'number of samples loop

yI = ActiveSheet.CelIs(i, 21).Value
'ActiveSheet.Cells(j, q).Value = yl
y2 = ActiveSheet.Cells(i, 22).Value
'ActiveSheet.Cells(j, (q + I )).Value = y2
Ify2 > threshold Then

soil error count = soil error count + I- - --
End If
Ifyl <threshold Then

bind_error_count = bind_error_count + I
End If
i = i + 13

Nextj
q=q+2
soil_error = 100 • (soil_error_count/ 29)
bind_error = 100 • (bind_error_count / 29)
ActiveSheet.Cells(x, z).Value = bind_error
ActiveSheet.Cells(x, (z + 1)).Value = soil_error
ActiveSheet.CeUs(x, 31).Value = threshold
threshold = threshold + 0.0 I
x = x + I •x is dictated by the number of thresholds tried

Loop 'ends while threshold < 1 loop
ActiveSheet.Cells(6, z).Value = "bind error"
ActiveSheet.Cells(6, (z + I )).Value = "soil error"

area = k • 100
ActiveSheet.Cells(4, z).Value = "area ="

ActiveSheet.Cells(4, (z + 1)).Value = area
z = z + 2 ' move over two to start a new error set for increased image size
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Next k
End Sub
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