EFFICIENT AEROELASTIC CFD PREDICTIONS

USING SYSTEM IDENTIFICATION

By
TIMOTHY JOHN COWAN
Bachelor of Science
Oklahoma State University
Stillwater, Oklahoma

1996

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
May, 1998

EFFICIENT AEROELASTIC CFD PREDICTIONS

USING SYSTEM IDENTIFICATION

Thesis Approved:

tdee BN

//Dean of Graduate College

ACKNOWLEDGEMENTS

This research was conducted under a NASA Graduate Student Research Program
Fellowship sponsored by Dryden Flight Research Center. Specifically, [would like to
thank Dr. Kajal K. Gupta and the rest of the STARS group at Dryden Flight Research
Center for their generous support of this research.

I would like to express my sincere appreciation to my major advisor, Dr. Andrew
S. Arena, for his enthusiastic support and guidance in this research. In addition to being a
source for inspiration in academics and research, he has also been an excellent role model
during my time at OSU. Similarly, I would like to thank the other members of my
committee. Dr. P. M. Moretti and Dr. G. E. Young. for their efforts in furthering my
education.

[would also like to thank my parents. Timothy M. and Marsha L. Cowan. for
their early efforts at molding me into who | am today. Their ongoing support and
encouragement is much appreciated.

Finally, I would especially like to thank my wife, Leslie, for her understanding
and support during the past two years. 1 will be etemnally grateful for her Jove and

devotion.

111

TABLE OF CONTENTS

Section Page
L. INTRODUCTION ... e, 1
Lob Background. ... 1

1.2, Research ObjeCtiVe. .. o e e e 2

2. LITERATURE REVIEW L e 4
2.1. Piston Perturbation Method. ..o 4

2.2. Reduced Order Modeling..............o.ooo 6

2.3. System Modeling Techiniques..............oooi i 8

2.3.1. Linear and Nonlinear Models.. 9

2.3.2. Indicial Approach............coo i 11

2.3.3. System Identification..................coo i 14

3. METHODOLOGY .o e e e e e 20)
3.1, Model Development..........ooooi i 20

3.L1 Input Optimization.o.oeovue oot e 21

3.1.2. Parameter Identification.................c..ooiiii 28

313, Model ACCUTACY ... oi it e e 33

3.4 Model Order... ... 35

3.1.5. Model Implementation...............oooi i 4()

3.2. Two-Dimensional Example.............ooi i 41

3.2.1. Panel Method Implementation....................................l. 44

3.2.2. Preliminary Panel Method Results. ..., 46

3.3. STARS Implementation.ot 52

3.4. STARS Modeling Procedure............coooiiiiiiiiiii e, 56

3.4.]. Gathering Training Data...................cooi 57

342 Training The Model..........o.oiiii 62

3.4.3. Model Implementation......................ciiiiiiiiiiiiii s 64

A RESU L T S e e 67
4. AGARD 4456, o 67

4.1.1. Flutter Analysis.................. e, 69

4.1.2. Model Order AnalySIS.........o.coouemimiit i i 76

4,2.1. Panel Flutter........... e 84

4.2.2. Static Divergence..... ..o 90

4.3. Generic Hypersonic Vehicle............ooooo 92
5. CONCLUSIONS AND RECOMMENDATIONSo, 97
5.1 CONCIUSIONS . o 97
5.2, ReCOMMENAatIONS. . ottt e e e e 08
BIBLIOGRAPH Y oo 100
AP PEN DI E S . i 102
APPENDIX A: DERIVATION OF 2-D EQUATIONS OF MOTION.......... 103
APPENDIX B: NONDIMENSIONAL 2-D EQUATIONS OF MOTION...... 105
APPENDIX C: SAMPLE DATA FILES FOR STARS TESTCASES........... 108
APPENDIX D: SUMMARY OF AGARD RESULTS. ... 115
D.1. AGARD 445.6 DataforMach0.499...... 115

D.2. AGARD 445.6 Data for Mach 0.678......... T 117

D.3. AGARD 445.6 Datafor Mach0.90............c........ 116

D.4. AGARD 4456 Data for Mach 0.96........oooo . 122

D.5. AGARD 445.6 DataforMach 1.072... 128

D.6. AGARD 445.6 DataforMach 1.141.............. v . 127
APPENDIX E: SUMMARY OF PLATE RESULTS ... oo 129
E.l. 2x] Plate Data forMach 0.90.............. . 129

E.2. 2x] Plate Data for Mach 1.5, .. 132

E.3. 2x1 Plate DataforMach 2.0.......coooi e 136

E.4. 2x1 Plate Data for Mach 2.5. oo 140

E.5. 2x1 Plate Datafor Mach 3.0 ... 144
APPENDIX F;: SUMMARY OF GHV RESULTS ..o, 148
F.1. GHV DataforMach 2.20. ... cooeiiriir i 148
APPENDIX G: SOURCE CODE. ..o i i 153
G.1. MULTISTEP Subroutine From STARS CFDASE.................. 153

G.2. AEROMODEL Subroutine From STARS CFDASE................ 155

G.3. CEDMDL Program............cooiiiiiiii e 158

G.4. RMSERR Programt.........c.ooveoiiiiiiii i 182

Figure
2.1.
2.2.
2.3.
3.1

3.2.

3.4.
3.5.
3.6.
3.7.
3.8
3.9.
3.10.

3.11.

3.12.

3.13.

LIST OF FIGURES

Page
Box Diagram for a Basic Dynamic System Model........................ NP 8
Box Diagram for an Unsteady CFD Model...................coooviiiii 8
Superposition of Step Functions to Form an Arbitrary Input......................... 12
3211 Multistep Input Signal..... ..o 23
Considered Displacement (—) and Velocity (—) Input Signals................. 24
Power Spectral Density Plot For Each Input Signa) Considered..................... 25
Possibje Combination of Two Multisteps For a Two-Input System................ 26
Compact Combination of Two Multisteps For a Two-Input System................ 27
Comparison of Original Training Data With De-trended Training Dala........... 31
Format of Singular Value Decomposition Data....................................... 32
Effect of Computational Chattering on Model Qutput.....................coon 37
[mplementation of System Model in Coupled Aeroelastic Solution............ ... 41
Two Degree of Freedom Airfoil System..................... 42
Optimized [pput Signals for Training the Multi-Input Model....................... 40
Comparison Of Model (*~ ") to Panel Code (~) Predictions
of Cyand C,, for the Multistep [nput...............o 48
Companson Of Model Output (._-_.) te Panet Code Output (—)
of Ciand C fora Chirp Input of @i 49

vi

3.14.

3.16.

3.17.

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.
4.7.
4.8.

4.9

4.10.

4.11.

4.12.

4.13.

4.14.

4.15.

Comparison Of Model Output (-...) to Panel Code Output (—)
of C;and C,, for the Exponential Pulse Varationina............................. ... 49

Comparison of Aeroelastic Response Predicted by Unsteady

Panel Method and Discrete Time ARMA Model..................................... 5t
Summary of STARS Aeroelastic Analysis Routine................cooovivieniannn 52
Structure of Multistep as Implemented in STARS CFDASE

Module with isize = 58
AGARD 445.6 Test Wing Geometry and Surface Discretization................... 68
Multistep Input Implemented For The AGARD at Mach 0.96...................... 69
Euler and Model Solutions for Multistep Response of

AGARD atMach 0.96..............cooviiii PR 70
Comparison of Euler and Model Solution For AGARD

Aeroelastic Response at Mach 0.96.............. i 71
Comparison Of Total Computational Time Required to

Predict a Flutter Point for The AGARD at Mach 0.96...............ccoooo il 73
Comparison of Flutter Boundary Predicted by STARS to Experimental........... 76
Chi~-Squared Error vs. Model Order for the AGARD at Mach 0.96................ 78
Scaled RMS Error vs. Model Order for the AGARD at Mach 0.96................ 79
Flutter Speed Index vs. Model Order for the AGARD at Mach 0.96............... 8
Close-up of Flutter Speed Index {or Higher Order Models of the

AGARD at Mach 0.96.ot 82
2x | Plate Geometry and Surface Discretizalion.................c.ooocoininnn. 84

Euler and Model Solutions for Multistep Response of the
2x1 Plate at Mach 2.0 ... e 86

Comparison of Euler, Model, and Piston Solution for the
2x| Plate Aeroelastic Response at Mach2.0............ ... 38

Comparison Of Total Computational Time Required to
Predict a Flutter Point for the 2x1 Plateat Mach 2.0...................oo. 90

Comparison of Euler and Model Solution for the 2x1 Plate
Aeroelastic Response at Mach 0.90 and a dynamic Pressure of 43.3 kPa......... o1

vii

4.16.

4.17.

4.18.

GHV Geometry and Surface Discretization...............ooooiviiviiiieiinane e 93

Euler and Model Solutions for Multistep Response of GHV
Modes 1 through4 at Mach 2.2 ..., 94

Comparison of Euler and Model Solution For GHV Aeroelastic
Response at Mach 2.20. ... o 95

Vil

na

nb

1y

q

u,

V[‘

Yi

=

NOMENCLATURE

constant coefficients for model outputs

constant coefficients for model inputs

sectional }ift coefficient

sectional moment coefficient

plunge

plunge rate

number of past outputs required in ARMA model structurc
number of past inputs required in ARMA model structure
number of roots or modes

dynamic pressure

generalized displacement vector

generalized velocity vector

system input

nondimensional flutter speed index

system output

angle of attack

pitch rate

density

CHAPTER 1

INTRODUCTION

1.1. Background

The study of aeroelastic phenomena is a multidisciplinary problem involving the
interaction between inertial, elastic. and aerodynamic forces. The spectacular Tacoma
Narrows Bridge disaster serves as a reminder to designers of modern structures that the
coupled effects of these three forces can be devastating. Thus. predicting the conditions
for aeroelastic divergence, both static and dynamic, must be an iinportant consideration
before implementing a design.

The cutting edge research in aeroelasticity i1s presently being applied to the
analysis of modern high performance aerospace vehicles. These vehicles operate over a
wide range of spceds and are often designed to be extremely light weight for their size,
making them extremiely susceptible to aeroelastic phenomena such as wing flutter. In
addition, aeroservoelastic instabilities may result from the interaction between the flight
control systems and the aircraft structural modes [Kehoe. 1988]. Hence, the accurate
prediction of these instabilities is necessary before flight testing the vehicle and

establishing its flight envelope.

With recent advances in CPU speeds, current research has turned toward the
application of CFD models to the solution of aeroelastic problems. Using an unsteady
Euler or Navier-Stokes CFD algorithm coupled with a structural dynamics solver, the
complete aeroelastic response of the structure can be predicted. However, the major
limitation to applying such a CFD model is the computational time required to run a fult
aeroelastic simulation due to the high dimensionality of even the simplest geometry.
Compounding the problem, an acroelastic instability cannot be predicted by just one such
simulation. Rather, several simulations are required over the flight regime in order to
predict the crossover from stable to divergent time histories.

When running these coupled simulations. it 1s the unsteady CFD solution at each
time step which requires the greatest amount of CPU time. The faster structural
dynamics solver is essentially left waiting on the unsteady CFD solver at each time step.
Hence, if an accurate and efficient replacement for the CFD solver could be developed.
aeroelastic instability predictions would be much more computationally efficient. In
particular, one might apply a modeling technique which is capable of rapidly estimating
the CFD solution at each time step. Implementing such a technique would yield a
significant improvement in the overall speed of the coupled solution, thus making the usc

of CFD models more practical in aeroelastic analysis.

J.2. Research Objective

The emphasis of the present work is to develop a suitable modeling technique
which is capable of accurately and expediently estimating the unsteady CFD solution

around 2 three-dimensional structure. For such a technique to be of practical use, it must

be accurate over a wide range of flow regimes from subsonic to supersonic as well as
being applicable to any arbitrary three-dimensional structure. Additionally, the technique
should be easy to implement and be compatible with coupled CFD-Structural computer
codes already in use.

The objective of this research will be to integrate the modeling technique into the
aeroclastic analysis module of the STARS codes developed at NASA Dryden Flight
Research Center. STARS is an highly integrated, finite element based code for
multidisciplinary analysis of flight vehicles including static and dynamic structural
analysis, computational fluid dynamics, heat transfer, and aeroservoelastic capabilities
[Gupta, 1997]. The CFD module in STARS is an Euler based flow solver capable of
simulating three-dimensional compressible inviscid flows. Several different modeling
techniques will be reviewed, while the implemented technique will be evaluated on

several practical three-dimensional structures over a wide range of flow regimes.

CHAPTER 2

LITERATURE REVIEW

2.1. Piston Perturbation Method

The piston perturbation method [Hunter, 1997] is one example of a proven
aerodynamic modeling technique which has already been implemented in STARS. Using
piston theory alone, one can predict the surface pressure at any point on a body in a
supersonic flow using the outward surface normal of the body at that point. More
specifically, the pressure at a given point is related to the local normal component of {luid

velocity through the unsteady wave equation, Equation (2.1).

2y

- -1
@ p= p,,,[l ! 7—'1}’
2 a

L3

Due to the simplicity of the unsteady wave equation, piston theory is an altractive
aerodynamjc modeling technique for supersonic flow. However, piston theory alone
tends to over predict the pressure on three-dimensional bodies since it is based on a point
function [Hunter, 1997].

The piston perturbation method utilizes the aforementioned piston method as a

perturbation to an existing mean flow solution. In the STARS implementation of this

method, one first uses the finite-element Euler solver to compute the steady flow solution
about a three-dimensional body. Then, the local pressure generated by the body's motion
in a coupled aeroelastic solution can be predicted using a modified unsteady wave
equation, Equation (2.2), which predicts the local pressure as a perturbation to the mean

flow solution.

2y
f
’

2.2) 2Py Y2y sin(er-6,)|
P, Pa 2

This method is much more accurate for three-dimensional bodies since it is a perturbation
to the mean flow solution which already includes the relaxation effects of the body.

As shown by Hunter and Arena [1997], the piston perturbation method s a fairly
accurate aerodynamic modeling technique for computationally predicting the dynamic
aeroelastic response of a three-dimensional body in a supersonic flow. Based on this
method. an extremely fast algorithm can be developed which directly computes the
unsteady aerodynanic loads acting on the surface of a three-dimensional body without
having to iterate through the entire CFD volume. Estimates of the instability boundaries
using the coupled solution can then be made on the order of minutes rather than days.
However, this modeling technique is limited in that in can only be accurately applied to
supersonic flows. Additionally, it only provides us with an estimate for the instability
boundaries of a complicated three-dimensional body which means we must still rely on
the full unsteady CFD model for refinement of the solution.

The results of this effort are encouraging though. This demonstrates that a

modeling technique can be successfully used to estimate the unsteady CFD sojution for at

least supersonic flows. The expansion of a similar capability over the entire range of

Mach numbers should then be possible by exploring other modeling techniques.

2.2. Reduced Order Modeling

Reduced order modeling is a computational modeling technique already in
common use by finite element structural solvers where we refer to it as modal
superposition. From a structural standpoint, this technique involves first computing the
eigenmodes of the structure and then use the dominant modes to construct a reduced
order model for the dynamic system. In this case, the technique is physically intuitive
since the eigenmodes represent the shape of a natural vibration mode for the structure.
and by modal superposition any arbitrary deformation of the structure can be described
by a linear combination of these mode shapes.

Reduced order modeling was recently applied (o unsteady aerodynamic systems
by Dowell, Hall, and Romanowski {1997]. They write that 1t is not a great lcap to think
of eigenvalues and eigenvectors of an unsteady CFD model since the CFD model is
typically a set of ordinary differential equations derived from a finite difference or finite
element solution scheme. As with a structural model, the reduced order aecrodynamic
model 1s constructed from the dominant eigenmodes of the unsteady flow. This then
allows us to construct a computationally efficient aeroelastic model based entirely on
eigenmode models, both structural and aerodynamic. The resulting coupled eigenmode
model can be run at aimost no computational cost compared to a typical aeroelastic CFID

solution.

This methodology has an obvious advantage over the piston perturbation method
in that a reduced order aerodynamic model can be constructed for the full range of flows
from subsonic to supersonic as long as the unsteady CFD model is valid in that regime.
Of course, the eigenmodes would be different for different flow conditions, such as
different Mach numbers, and the reduced order model would need to be recomputed. As
with the piston perturbation method, these eigenmodes are for a perturbation with respect
to the steady flow solution. Results using this methodology show that it is extremely
accurate for a variety of different geometries and flowfields [Dowell, 1997].

However, there are several issues to consider before attempting to implement this
method with an unsteady CFD model. First, implementation of this method requires a
major re-engineering of the existing CFD code such that it witl solve for and output the
eigenmodes of the unsteady flowfield. Although thts is no trivial task, a more serious
issue arises in the solution methodology for determining these eigenmodes. While
solving for the eigenmodes of a typical structural mode! is fairly straight forward, a
typical CFD model is often one or two orders of magnitude more complicated. This is
particularly true of even the simplest STARS CFD models used by NASA. The high
dimensionality of such models would result in an eigenvalue matrix in the range of 10° to
10° squared. Matrices of this size pose serious problems for both eigenvalue extraction
algorithms and computer hardware.

Finally, this methodology 1s not very intuitive from a physical standpoint,
Although it makes sense to mathematically compute the eigenmodes for an unsteady
flowfield, it is not clear what they physically represent. Unlike structural problems where

the eigenmodes represent the deformation of a natural vibration mode, the eigenmodes of

an unsteady flow are somewhat abstract leaving us with no obvious way of picking which

or how many modes are dominant in the solution.

2.3. System Modeling Techniques

Ljung [1987] defines a system as: an object in which variables of different kinds
interact and produce observable signals. This basic system relationship is shown

graphically in Figure 2.1, which depicts a dynamic system with a vector of inputs, #, and

a vector of outputs, y.

it —— Dynamic System ——p
Input Output

Figure 2.1: Box Diagram for a Basic Dynamic System Model

This same sort of input-output relationship describes the basic {function ol a typical
unsteady CFD model where one is computing the aecrodynamic forces acting on a three-
dimensional body based on the structural deformation or motion of that body. Hence. the

box diagram for an unsteady CFD model would be similar to that shown in Figure 2.2

where ¢ is a vector of generalized structural displacements and [is a vector of

generalized aerodynamic forces.

_ Unsteady CFD _
g) Model /

Input Output

Figure 2.2: Box Diagram for an Unsteady CFD Model

By thinking of an unsteady CFD model as a simple dynamic system, one could
then use system theory to develop a mathematical model describing the input-output
relationship for the unsteady CFD model. A variety of extremely efficient system
modeling techniques have been developed for linear systems. However, it is not obvious
at this point whether we are dealing with a linear system. In fact, the transonic flow
regime is highly nonlinear due to the presence of complex shock interactions on the body.
This presents a potential problem for system modeling techniques since the transonic
flow regime is extremely important in the aeroelastic analysis of flight vehicles.
Although nonlinear system modeling techniques do exist, they are much too complicated
for multi-input, multi-output (MIMO) systems, and it is unlikely that a single

methodology could be developed that would work for any arbitrary aeroelastic problem.

2.3.1. Linear and Nonlinear Models

Dowell [1995] says that there are three basic classes of models that one must

consider when studying aeroelastic systems. These three classes may be defined as

follows:
1) Fully Linear Models, when both the static and dynamic behavior of the
physical system are linear.
2) Dynamically Linear Models, when the static behavior of the physical
system is nonlinear but the dynamic behavior is treated as linear.
3) Fully Nonlinear Models, when both the static and dynamic behavior of the

physical system are nonlinear.

For subsonic and supersonic flows, a fully linear model is generally a good
approximation to the actual behavior of the flowfield for small disturbances (away from
flow separation). This sort of classical linear aerodynamic theory has been used
successfully for years to analyze the flight characteristics of aircraft. However, most
researchers believed for many years that fully nonlinear models were needed for
transonic flow due to the well known breakdown of linear aerodynamic theory for two-
dimensional, steady flow as the Mach number approaches unity {Dowell, 1995].

The breakdown of linear aerodynamic theory for the transonic flow regime is
caused by the development of shocks on the body in the flowfield. These shocks
represent a discontinuity in pressure and result in a highly nonlinear flowfield. However,
recent research using transonic CFD models has shown that only the static shock
nonlinearity is important as long as the flow does not separate [Dowell, 1995]. Hence,
one could model an unsteady transonic flow as a linear dynamic system perturbed about a
nonlinear steady flowfield. Dowell [1995] writes that the key 1§ to accurately compute
the nonlinear steady flowfield including the static shock strength and location, and then
model the dynamic perturbations about the steady flow using jinear models.

In the case of the STARS CFD module, the nonlinear acrodynamics arc computed
using a time-marched, finite element approach to solving the unsteady LEuler equations.
For such a solution scheme, the steady flow solution becomes important for two reasons.
First, an unsteady aeroelastic analysis must be started from the steady flow solution in
order to achieve time accuracy. This is true not just for the transonic flow regime. but for

subsonic and supersonic flow as well. If the steady flowfield is not allowed to develop

10

first, the unsteady response of the structure will not be time accurate and predictions of
aeroelastic divergence will be incorrect.

Second, linear modeling techniques can only be used to model the small (linear)
perturbations about a nonlinear mean flow. That these perturbations are linear is an
important assumption to remember. For most problems this should be a good assumption
unless one is researching aerodynamic stall or searching for limit cycles. The following
sections discuss techniques for developing a linear dynamic model for an unsteady CFD

solution.

2.3.2. Indicial Approach

The mdicial response is the response of a system to a step change in input. Given
this indicial response for a linear system, the indicial approach provides a methodology
for computing the response of the system to any arbitrary input using the principle of
superposition for linear systems. This methodology is based on the fact that any arbitrary
input can be approximately reconstructed by superimposing a series of step functions as
shown in Figure 2.3. The response of the system to this arbitrary input is then
approximated by linearly superimposing the system response to each step function

making up the reconstructed input.

I

x(¢)

x (0)

Figure 2.3: Superposition of Step Functions to Form an Arbitrary Input

Obviously, the step functions shown in Figure 2.3 are not a very accurate
approximation for the actual input to the system, so one might be led to think that the
indicial method would yield an inaccurate measure of the system response. This problem
can be corrected by decreasing the time interval, Af, between step functions untl the
Juput 1s more accurately modeied. In fact. by letting A7 - 0 the exact response of the

system could be computed using Duhamel’s integral, Equation (2.3) [Bisplinghoff, 1996].

(2.3) Y(t) = A(1)x(0) + j‘[;% Al - 1)t

0

Equation (2.3) is applicable to any linear system with an indicial admittance function.
A(1), relating x(1) to y(1).

The indjcial approach has successfully been applied to simple unsteady transonic
flows by Ballhaus and Goorjian [1978]. For such a system, the indicial response is the

flowfield response to a step change in a given mode of motion for the body in the flow

12

computed using a time-accurate CFD scheme [Ballhaus 1978]. As discussed previously.
all outputs must be treated as small perturbations about a nonlinear steady state solution
so that the system can be considered linear and superposition will apply.

For single mode system, this methodology is fairly straightforward. First. the
aerodynamic response of the unsteady CFD solution to a step change in input is
computed and recorded. This indicial response, A(f), can then be used in Equation (2.3)
which gives us an indicial model that is capable of predicting the aerodynamic response
to any arbitrary motion of the single structural mode. The obvious advantage here is that
the unsteady CFD solution must only be used once to compute the indicial response of
the system, and this will generally be a fairly short computational run compared to the
length a typical aeroelastic time history. Once done, the unsteady CFD solution can be
bypassed and the indicial model can be used in the couple aeroelastic solution at a
fraction of the computational cost.

As with reduced order modeling, an indicial model can be constructed for the full
range of flow regimes as long as the original unsteady CFD model 1s valid for that
regime. The major drawback of this modeling technique becomes apparent when one
tries to apply it to a multiple mode system. For a system with » structural modes. »
separate indicial response must be computed for the unsteady CFD solution. Although
this is not a real problem for one or two modes, as the number of modes increases it
becomes rather tedjous to compute several indicial responses and keep track of each
separately. The actual implementation of the indicial model still relies on the application
of Duhamel’s integral, but it must riow be applied several times to account for the affect

of each mode on each aerodynamic force.

13

Unfortunately, this makes the indicial approach a rather cumbersome method for
today’s complicated three-dimensional structures which often have six or more structural
modes. With some patience, one could still apply this methodology to such a structure
aod construct an accurate model which would yield a significant savings in computational
time for the aeroelastic solution. However, a more efficient technique could perhaps be
found which would not require multiple runs of the unsteady CFD model to obtain the

indicial response for each mode.

2.3.3. System [dentification

As 1t 1s defined. system identification is a process for obtaining a mathematical
mode! of a dynamic system based on a set of measured dala from the system [Ljung,
1987]. It involves taking a time history of input(s) and measured output(s) and fitting the
parameters of a model structure such that its output error is minimized. The success of
this technique is dependent on the initial choice of the mode] structure and the amount
and quality of data used to “train’ the model.

One of the most commonly used model structures is the auloregressive moving
average (ARMA) model, which describes the response of a system as a sum of scaled
previous outputs and scaled values of inputs to the system. The response, y(f), for such a
model can be written explicitly for a single-input, single-output (SISO) system with no

delay as shown in Equation (2.4).

(2.4) wWO)=-a,y(t~1)—..~a,, y(t —nu)+hu(t)+bu{t=1)+...+ b, u(l —nb)

14

Notice the simplicity of this model. The system response at any given time is an
algebraic seres of multiplications and additions. This makes the model very easy to
implement mathematically and makes it extremely efficient computationally. Equation
(2.4) can also be adapted to a multi-input, mutti-output (MIMO) system. In this case, the
model’s parameters. a; and b;, become matrices that are then multiplied by vectors of
previous outputs and inputs to the system. Equation (2.5) presents the ARMA structure
for a MIMO system where y and u are column vectors of length nr, while [A,] and [B,,]

are nrxnr matrices of model coefficients.

Nt nh-|

2.5) y()=Y[A,)y -n)+ Y [B,] u(t—m)

=t

Although there are many different model structures that can be uvsed in system
identification, the ARMA model is one of few that can be neatly expanded {o
accommodate MIMO systems.

The ARMA model has recently been implemented in modcling of flight test data.
However, the success of these experiments was limited by the presence of measurcment
noise [Hollecamp, 1991] and accurate control of the input signal [Hamel, 1996]. For the
system we are modeling however, neither of these will be a problem. The unsteady CI'D
mode! will compute the outputs (aerodynamic forces) based on any inputs (structural
displacements) that can be mathematically represented within the program code. With
only the specified inputs affecting the model, the resulting response will be calculated
and output by the unsteady CFD model without noise.

The task at hand is then to identify the actual values for the parameters In

Equation (2.4) for an arbitrary unsteady CFD model. The system identification procedure

15

to do so has three basic steps. First, a known input is sent through the system. and the
response of the system is observed and recorded. Next, the size of the model (or its
number of parameters) is assumed, and the model’s parameters are fit to the data in the
least squares sense. Finally, the model is run for the same known input signal and the
model’s response is compared to the actual response of the system in order to determine
if the mode! structure has fit the data accurately. If not, a different model size is chosen
and the parameters are refit to the response data.

Notice that this procedure is similar to the indicial approach in that the system
model is derived from a set of time history data obtained from the unsteady CFD mode).
However, system identification has the advantage that a model can be derived based on
just one set of response data rather than requiring a separate indicial response for each
individual structural mode of motion. Of course, system identification could also be used
to develop a model where the time history data was just a series of indicial responses.
although this would probably not be the most efficient application of system
identification. Rather, a compact input should be chosen that excites all modes of motion
over a wide range of frequencies in order to really capture the full dynamic response of
the system.

Notice also. that the model structure obtained using system identification is much
simpler than that obtained using the indicial approach. Using the ARMA model
structure, the aerodynamic response can be computed at each time step using a simple
linear equation rather having to evaluate an integral at each time step as is done in the
indicial approach. It is also interesting to notice that the structure of the ARMA model,

Equation (2.4). could be thought of as representing the output, y(f), in terms of numerical

16

time derivatives of the input and output. This is rather physically representative of what
we know about the flow physics from linear aerodynamic theory.

For a simple two-dimensional problem. linear aerodynamic theory predicts that
the nondimensional lift acting on an airfoil is a function of @ and ¢ as shown in

Equation (2.6).
(2.6) C()=C alt)+C, al)

Using a finite difference approximation for the time derivative, a(¢), Equation (2.6) can
be rewritten as follows:

oa{t)-a(l-1)

2.7) C,(1=C, atn)+C,
“ v At

Further manipulation of Equation (2.7) vields the following:
2.8) C(y=|C G, (1 Cogq-
. = -+ = —_— L) _—
(! i, AL a(l) A/ a()

Notice that Equation (2.8) now looks exactly like the ARMA model structure ot Eguation
(2.4) where the output, C{/), is based on a scaled current input, o(¢), and a scaled
previous input, ot — 1), to the system. The full ARMA model structure can carry this
analogy one step further by accounting for unsteady wake effects if the flow is subsonic.

Such a model would also be based on scaled previous outputs from the system similar to

Equation (2.9).

{2.9) C,(y=-a,C,(t =)+ ha()+ba(r-))

17

We can also extend this analogy to a MIMO system where the two degrees of
freedom for the system are pitch. . and plunge, 4. Again using linear aerodynamic
theory, we could write equations for the two generalized forces of the system.

nondimensional lift and moment, as given by Equations (2.10) and (2.11).

(2.10) C,(1)=C, alt) + C, a(t) + C, h(t) + C, (1)

(2.11) C,(1)=C, a(ty+C, &(1)+C,, h(t)+C, h(r)

Equations (2.10) and (2.11) could then be rewritten in matrix form as Equation (2.12).

o) (¢ G e ¢, G (a@
(2.12) =i . . +| " P
C.0) |Cn G lrO) |G, C A
If we again use a finite difference approximation for the time derivatives, Equation (2.12)

can be rearranged into the form shown in Equation (2.13).
[N . .
6+l [+ G, G
C,(z)}_ " Al " AL {a(r)} N A {a(z—l)}
B Tl

C‘m (t) (- (.m (lm h([) ‘m R ('I"*A h([— l)
("m + - (‘m +- : - .
Y Y Al A

(2.13) {

Notice that Equation (2.13) now looks very much like the ARMA model structure for a
MIMO system presented previously as Equation (2.5).

These sorts of analogies give us a great deal of insight into what the ARMA
model physically represents for the unsteady CFD solution, and provides us with some

physical intuition about how many parameters might be necessary to accurately model

18

the dynamics of a particular flow. As with the previous two methods, this technique can
also be applied to the entite flow regime as long as the original CFD solution being
modeled is applicable in that range. Of the methods reviewed so far. this seems to be the
easiest to implement and the most efficient, along with being a good physical

representation of an unsteady flow field with respect to linear aerodynamic theory.

19

CHAPTER 3

METHODOLOGY

In this research effort, system identification was selected as a method for
accurately and expediently modeling the unsteady CFD solution around an arbitrary
structure. In the following sections, the procedure for developing such a model using the
ARMA model structure for MIMO systems will be examined. Preliminary tests of the
modeling procedure were performed using an unsteady panel code to predict the
aeroelastic response for a simple two-dimensional airfoil. The procedure was then
adapted for use in the STARS aeroelastic module and tested on more complicated three-
dimensional structures. A variety of computer codes were developed in conjunction with

the modeling procedure so that it is a self-contained module for the STARS codes.

3.1. Model Development

As mentioned previously, there are three basic steps involved in system
identification, all of which are equally important. They can be summarized as follows:

1) Observe and record the response of the system 1o a predetermined input.

2) Assume a model order (or size), and fit the model’s parameters to the

“training” data gathered in step 1) such that its output error is minimized.

20

3) Evaluate the accuracy of the model by companing the model’s response to
the actual response of the system.
If the final step in the procedure shows that the model does not do an accurate job of
predicting the system’s response, a different model order can be tried and the model’s
parameters recalculated. However, it may be that the initial data set used to estimate the
model’s parameters did not sufficiently excite the response of the system and a different
set of “training” data should be tried.

Notice that step one of the system identification procedure requires that a
predetermined input be used to obtain a set of time history data from the unsteady CFD
model. The important point here is that the unsteady CFD model will not be used in the
typical fashion of an aeroelastic analysis where the structure is free to move under the
action of the aerodynarnic forces acting on it. Rather, the unsteady CFD model will be
run and the motion of the structure will be forced to follow a predetermined input. The
hope then is that an ARMA model can then be fit to match this training data allowing us
to use the ARMA model in place of the unsteady CFD solution in the coupled aeroelastic

analysis.

3.1.1. Input Optimization

The accuracy of the system model is very dependent on the input used to obtain
the training data. There must be as much information about the system’s dynamics as
possible packed into the training set of data in order for the identification procedure to
succeed. To get an accurate model for a system, an the optimuru input signal must be

chosen such that it will best excite the frequency range of interest. Hence, the harmonic

2]

content of the input should be examined before the test to ensure it is suitable [Hamel.
1996). For a system such as an unsteady CFD solver, we have very careful control over
the tnputs, so an almost unlimited amount of signals are available for testing. The only
limitation is that the input must be mathematically describable in terms of the boundary
conditions for the flow solver so that the flow physics are accurately represented.

Recall that the inputs to an unsteady CFD solver are the generalized
displacements of the structure in the flowfield. In addition. the CFD code also requires
the calculation of velocities consistent with the structural displacements to satisfy
boundary conditions. This means that any input signal chosen for the displacement of the
structure must be differentiable in order to compute a physically consistent velocity for
the structure. In fact, the velocity boundary condition is fairly important in a dynamic
analysis as it results in an effective angle of attack for the structure. Hence, it may be
equally important that the derivative of the displacement input has equally good harmonic
content even though only the displacement input will be used in the model structure.

In flight test applications of system identification, a great deal of research has
already been devoted to finding the “perfect” input signal that will guarantee accurate
parameter identification for aircraft every time. Generally, the multistep is the most
commonly used input since it is easy to implement in experiments and it elicits the best
frequency response [Hamel, 1996]. The standard 3211 multistep input is shown below in

Figure 3.1.

22

Figure 3.1: 3211 Multistep Input Signal

Notice that this type of signal actually presents a problem computationally. In order to
achieve a true multistep for the displacement input signal, the velocity would have to be
infinite at the edge of each step. Even if we approximated the velocity in discrete time
using the finite time between computational time steps, the velocity would be a series of
five spikes which is not a very interesting signal.

However, one could use the multistep as the desired velocity, and then intcgrate
the multistep to get a varying ramp function for the displacement input signal. Although
this type of input would be quite difficult for a pilot to implement in flight testing, it is
not a problem to implement a multistep on velocity in a computer algorithm. However, it
should not be assumed that the best input in flight testing applications of system
identification will also be the best input to use here. There may be a variety of input
signals that would perform better than the multistep, but were never considered 1n flight
testing due to the logistics of implementing such a signal. Hence, a variety of different

input signals should be tested in order to find the best input for this particular application.

23

Figure 3.2 presents a graphical summary of six different inputs (with displacements and

velocities) that were considered in this research effort.

Sinusoid

002

Chirp

002 ' 002 | .no2 ' 02
3211 Muitistep Impulse
a0l 15 na3 a0y
0025 | |
002 0s 0.02 0902
r 0018 2 {0 v |x ¥
ool | 0s 00l a0l
9.008 . =)
b - -8 0 1 [
[v] 2 b) 0 § 2 1 4 4
/ /
Exponential Pulse Random
0032 0.02 0008 002
1}
|
1 | | , '
SR o0 | aoozs | L aol
: |
r 0 - 0 v |x [} a1
0 2 3
001 001 -00028 | S0t
002 i -002 -0 003 7 002

Figure 3.2: Considered Displacement (—) and Velocity (—) Input Signals

24

To get a better feel for what inputs wil) excite the system the most, the harmonic
content of the signals needs to be evaluated by converting them to the frequency domain
for comparison. The power spectral density (PSD) plot is the most commonly used
method for comparison in the frequency domain. A PSD plot shows what type of
frequency content is contained in the input signal so you can visually see what
frequencies will be excited in the system. Figure 3.3 shows the frequency spectrum for

each different input signal.

s . chirp
— — impulse multisten
————— Expon, rondom

Power Spectral Density

0 10 10
Frequency

Figure 3.3: Power Spectral Density Plot For Each Input Signal Considered

From the plot in Figure 3.3, it would appear that the multistep has the best harmonic
content since it has the widest bandwidth at the low end of the frequency spectrum.
However, subsequent testing of each input will be necessary to validate this observation.
There is one final consideration remaining on the topic of input design. The
discussion so far has only been about single input signals. In most cases, acroelastic

problems involve multiple structural modes which means there will need to be multiple

25

input signals in order to identify the system’s parameters. Recall that in the indicial
method one had to compute separate step input responses for each individual mode shape.
When comparing the two methods, system identification held the advantage that just one
input response for the system was needed regardless of the number of mode shapes being
considered. [t should be quite obvious intuitively that one cannot simply input a
multistep for each mode shape simultaneous and expect to be able to distinguish between
the effects of each individual mode shape on the response of the system. Hence, the
naive way to construct an input signal for a MIMO system might be to input a sequence

of multisteps for each mode shape one after another as shown in Figure 3.4.

X ' - .- . e e e X >

Figure 3.4: Possible Combination of Two Multisteps For a Two-Input System

The obvious disadvantage of assembling the input signal in this fashion is that, for

systems with a large number of mode shapes, the input time history becomes fairly long

26

and the computational time required to compute the response becomes expensive. The
goal of using this system identification methodology is to decrease the amount of time
spent running the complex unsteady CFD model. Hence, it will be advantageous if the
input signal 1s as short and compact as possible. With this in mind, one could try
constructing a multiple input signal by combining multisteps for each mode shape that

are shghtly out of phase with each other simijlar to that shown in Figure 3.5.

Figure 3.5: Compact Combination of Two Multisteps For a Two-Input System

Obviously this signal will be much more compact than that shown in Figure 3.4.
Subsequent testing will show that this type of signal is sufficient in the identification

procedure for a MIMO system.

27

3.1.2. Parameter ldentiftcation

Once the system response to the predetermined input has been computed, this set
of “training” data is then used to numerically determine the constant coefficients for the
ARMA model structure, Equation (2.4). The easiest way to do so is to import the
training data into MATLAB and compute the model using the System Identification
Toolbox. Within MATLAB’s System [dentification Toolbox, the ARX function can be
used to fit the parameters of an ARMA model to the training data such that the model’s
output error is minimized. One must simply tell the ARX function what data to use and
specify a model order, and the model’s parameters are computed using a least squares fit
to the data.

Although this will work well for preliminary testing of different inputs and mode
orders, the objective of this research effort is to develop a self-contained system
identification module that will complement the STARS aeroelastic analysis routine.
Hence, an algorithm must be developed for computing the ARMA model parameters that
does not rely on access to the MATLAB System Identification Toolbox. Fortunately, this
problem is simply a matter of adapting a linear least-squares algorithm to compute the
parameters for the model structure.

Notice that the SISO ARMA model structure of Equation (2.4) could be written

using series notation in a very generalized form similar to Equation (3.1).

(3.1) w0 = a,X,(1)

n=}t

[n Equation (3.1), the X,(¢) are commonly referred to as basis functions, and are simply

28

the past values of the inputs and outputs of the system. Using this notation, a least-

square, or chi-square, merit function can be defined as follows:

N

M 2
(3.2) X' = Z%[y, -2a,X,3,)]

1=l 4 n=i

Naotice that Equation (3.2) can be written in matrix notation as follows:

(3.3) X2 =ty -4y o ¥

The problem then becomes finding the constant coefficients, ¢, that minimize the matrix
Equation (3.3).

This is the basic structure for all linear least-squares problems, and the method of
choice for solving such problems is generally singular value decomposition (SVD). This
1s because for many linear least-squares problems, a very small or even a zero pivot
element may occur during the solution of the linear equations resulting in an unstable
solution [Press, 1996]. It turns out that a small or zero pivot element is the computational
manifestation of the physical data not distinguishing between two or more of the basis
functions. Press [1996] writes that “there 1s a certain mathematical irony in the fact that
least-squares problems are both overdetermined (number of data points greater than
number of parameters) and underdetermined (ambiguous combinations of parameters
exist).”

SVD provides a solution for an overdetermined system of equations that 1s the
best approximation in the least-squares sense. However, it will also drive the parameters
of computationally ambiguous basis functions to zero rather than allowing them to

destabilize the system. The actual development of the SVD algorithm is beyond the
29

scope of this research. Rather, our focus is simply how to implement an existing SVD
algorithm such that we can obtain the parameters for the ARMA model structure. The
problem then ts to organize the training time history data into a suitable matrix format
that 1s useable by an SVD algorithm.

First, recal} that the ARMA model structure, Equation (2.4), has no constant terms
capable of accounting for a steady-state offset. This is because the structure is only a
model of the dynamics for a system oscillating about some steady-state solution. Hence,
the first step in developing the model will be to de-trend the response data so that its
mean condition (for zero structural displacement) is zero. It would then be convenient if
the input training signal were led into by several steps of zero displacement so that the
mean conditions could be easily identified. The de-trending procedure is then to simply
subtract off the mean value from every data point in the output time history. The basic

de-trending procedure is shown graphically in Figure 3.6 for a single input and output.

30

0.2 Training Data Input Time History 0.8 Traing Data Qutput Time History
015 l) 0.6 . -
‘ // I
7
x 01 '
003 © :)) 02
) |
0 - - R . 0 . - - -
0 00s 0.1 018 0 00s 01 01s
1 1
03 De-trended fnput Time History 08 De-trended Quiput Time History
01s i vé
01 h /% 04 .
] S
/ ' _— - '
005 . ' 02 .
0 .\ 4 0. . . .
0 0.03 l 0.4 015 0 00s 0l 4135
l

Figure 3.6: Comparison of Original Training Data With De-trended Training Data

Notice in Figure 3.6 that the input time history is not altercd in any way during
the de-trending process. The only effect of de-trending the data is to shift the output time
history to the origin. Note that for a MIMO system, each unique output is de-trended
separately since the offsets may be different in each case. Following the de-trending
procedure, the offset for each output must then be saved so that it can be added back on
to the response when implementing the model in place of the CFD solution in an
aeroelastic analysis.

Once the training data has been de-trended, it must then be organized into the
appropriate matrix form suitable for analysis using SVD. Assume for a moment that we

are constructing a model for a SISO system using two past outputs and three past inputs

31

from a set of training data with twenty data points. This means that there are five
unknown coefficients in the ARMA model, a,, a;, by, by, and b3. Figure 3.7 then shows
the format for the matrices that are constructed from the training data for analysis using
SVD. Notice that each row in the matnix of Figure 3.7 contains three input values
(current, 1* past, and 2" past) and two output values ([* past and 2™ past) with respect to

the vector of current outputs.

N oY oy oy A v
L x@Q) X)X p0) p@)) [y@)]
x(3) x(2) x() »2) ¥ ¥(3)
x(4) x(3) x(2) »¥B) »() ¥(4)
x(5) x(4) x(3) »@4) »0) ¥(5)
| 6 x(5) <))y 5| 76
=(7) x(6) x(5) y(6) »(5) ¥(7)
x@) x(7) x(6) »(7) ¥(6) »(8)
x9) x@) x(7) »8) »() »(9)
| x(19) x(18) x(17) »(18) y(17)] | y(19)]

Figure 3.7: Format of Singular Value Decomposition Data

Once the data is organized in this fashion, it is passed to an SVD algorithm and
the coefficients of the ARMA mode] are computed and returned. Continuing with the
simple example used in Figure 3.7, five coefficients would be computed which would
then be used in the model structure of Equation (3.4) to compute the dynamic output, y(/).

for any time, ¢.

34) y(W)=ax(Y+ax(t-1)+ax(t =2)+by((=)+ hby(t-2)

32

Remember though that the actual output will be the sum of this dynamic output and the
steady-state offset that was subtracted off in the de-trending process.

At this point, we have not addressed parameter identification for MIMO systems
at all. Fortunately, all of the equations presented so far can be vectonized to account for a
MIMO system. The parameter identification scheme for a MIMO system is then
identical to that presented for the SISO system with one added loop. Rather than
executing the least-squares algorithm for just one input. we must be execute it once for
each output of the system. Imagine the coefficients from Equation (3.4) to be one row in
a large matnx of coefficients for the first output. We can then run through the same
parameter identification scheme to compute the second row of coefficients for the next
output and further more for other outputs. By doing this, we can then construct the
complete matrix of coefficients for the MIMO system model with only some extra

bookkeeping required beyond that of the SISO system.

3.1.3. Model Accuracy

Once the model parameters are computed, one must then determine the accuracy
of the model with respect to the actual system. One convenient measure of the accuracy
of the model comes from the definition of the leasi-squares merit function, FEquation

(3.2). When computing the parameters for the mode] structure, the SVD algorithm is
attempting to minimize the value of this merit function, X*. Hence. computing X for
each output would give us a measure of how successful the SVD algorithm was with this
minimization. Theoretically, X* equal to zero would mean that the computed coefficients

are an exact match for the physical system. However, it is unlikely that such a perfect

33

minimization could be attained in actual practice so one is just looking for a sufficiently

small value for X2

This discussion then brings up the question of how small must X? be in order to
guarantee that a good fit to the data has been found. Unfortunately, there is no straight
forward answer to this question since X’ is a dimensional error value that could vary
wildly from system to system depending on the relative magnitude associated with the
outputs for each system. This problem could possibly be handled by scaling X* using
some appropriate measure of the relative magnitude of the system’s outputs. However,
there is a more subtle problem associated with using X* as a measure of the model's
error.

As it is defined, X is the sum of the squared difference between the actual system
output and the model output computed from the training data. However, the model
output at any given point can be a function of the output from any number of previous
points. If one then strictly uses the training data to compute the model output it will not
be an actual measure of the error ore would obtain if the model were actually
implemented. For an actual implementation of the model, the output at a point would
have to be based on previous mode] outputs since the actual output history of the system
that was in the training data would no longer be available. Hence, a more accurate
measure of the model’s error would be to implement the model using the same training
input and then compute an error between the model output and the system output

recorded in the training data.

A convenient way of measure for such an error is the root mean square (RMS)

34

error. The RMS error for any given output is defined in Equation (3.5). where y; is the

actual system output and y; is the model output.

(3.5)

With the RMS error, we still have a problem determining whether the models
error is sma}l enough since it is still a dimensional error term. To alleviate this problem,
the RMS error for each output can be divided by the maximum value for that output so

that we are left with a sort of scaled RMS error that is then nondimensional.

3.1.4. Model Order

The scaled RMS error together with the X2 error should now be able to give us a

good feel for the accuracy of the computed model. However, one must then decide what
to do if the computed model does not seem to be accurate. One option, and the easiest, 18
to change the model order and recompute the model parameters and associated errors.
During the parameter identification procedure, an assumption is made about the
number of parameters that make up the model that is being computed. In general, a
model can be made up of any arbitrary number of past outputs and inputs which means
there will be a similar number of @,’s and 4;’s that must be computed. For such a model,
it is convenient to define the model order by specifying the number of each parameter
making up the model. Hence, a 2-3 mode! would be one composed of 2 ¢;’s and 3 b,’s.

For convenience, we could define an arbitrary model made up of na past outputs and »nb

35

past inputs as having order na-nb (this sort of naming convention will be used through
out when referring to the model order).

Following parameter identification and model error calculation, one then has the
option of keeping the computed parameters, or choosing a new model order and re-
computing the parameters in order to obtain a better fit of the data. In general, increasing
the overall model order will result in a better fit of the data. However, there is a
realizable limit to this trend at which a further increase in the mode! order will yield a
less accurate fit. This less accurate fit is typically due to the model becoming unstable.

As the limit on the model order for the system approaches, one should watch for
three possible indicators of model instability. First, the computed X? error for one or
more of the outputs may begin to increase. If this occurs, one should decrease the model
order and search for the optimum model order that minimizes the X* error for all outputs.

Second, a computational roadblock may be encountered for extremely high model orders

in that the SVD algorithm will not be able to converge on a solution for the parameters.

Again. decreasing the model order and re-computing will typically correct this problem.
The other phenomenon that one might observe when the model becomes unstable

is computational “chattering™. This is a more subtle effect that does not manifest in the
X2 error terms. As mentioned before, the X error does not take into account the fact that

the mode] output at a given point should be a function of past model outputs rather than
past training data outputs. This means that if the fitted parameters result in an unstable
model output, the reported X2 error might not change significantly since it is a function of
the training data output which is not unstable. However, the instability of the model wiil
be quite obvious once the model itself is run in a dynamic solution. Figure 3.8 show

36

graphically how computational chattering affects the output of the model.

‘¢ " b
7 ! [;’l _‘
[Cy
'\4 ¢ o
G g
Y \': f v \ | -
% : Y
7 ,? \‘
'. 2 ».I' L9
) Y o v
X b - - = o v
! A ¥ .
Y B .
: X
" oY \ 7
A - Y
Y 14 \‘
KN '-v'
\I' W !
Pl 8 v
‘l‘ /I Ip. I"
. v W e Actual Response
. - b

Py Unstable Model

Figure 3.8: Effect of Computational Chattering on Model Output

Notice that the general trend of the output predicted by the model is correct, but
the signal is oscillating back and forth randomly about the correct solution. This is
because na s too large in the model order, and the model output is essentially
overcorrecting itself. [f such a phenomenon is observed in the output of the model,
reducing the model order (by decreasing na) should correct the problem.

At this point, it probably is not clear what sort of model order will be required to
actually model an unsteady CFD solution. Howeveyr, we can make some physical
analogies about model orders by recalling the discussion presented in Section 2.3.3 where
we derived ARMA model structures using linear aerodynamic theory. In that section, it
was demonstrated that the ARMA model structure represents time derivatives through
finite difference approximations. Let’s consider the simple two-dimensional problem
again where we want to model the nondimensional lift acting on an airfoil that is free to

pitch in a flowfield. For a 0-1 model order, the nondimensional lift would be a function

37

of only one past input as shown in Equation (3.6).

(3.6) C,(1) = aya(r)

Hence we see that a 0-1 model order is equivalent to a steady aerodynamic model for the
system.
Next, consider a 0-2 model order similar to that shown in Equation (3.7) where

the nondimensional lift is now a function of two past inputs.

3.7 C,(1) = aya(t)+ a,a(t - 1)

This type of model could be considered a first-order quasi-steady model since it is
capable of numerically capturing the first time derjvative of the input, a(¢). Similarly, a
0-3 model order with three past inputs adds the second time derivative of the input(s) to
the model and might be thought of as a second-order quasi-steady model. Continuing
this analogy further, one can develop higher order quasi-steady models with more and
better approximations for the time derivatives of the input(s) to the system. Hence we
can see that a 0-x order model represents different levels of quasi-steady aerodynamic
models.

For many aerodynamics problems, a steady or quasi-steady model may not be
sufficient to model the aeroelastic response of the system. An unsteady model can then
be formed by increasing na in the mode) order. For example, a 1-1 model order applied
to the simple two-dimensional problem we were discussing earlier would look like

Equation (3.8).

(3.8) C,(ty=b,C,(1 = 1)+ a,a(t)

38

[n this case, the nondimensional lift is a function of the current angle of attack and the
previous lift output by the system. The b, term in Equation (3.8) could then be thought as
a wake influence coefficient. Further increasing »a in the model order would then serve
to add wake time denvative coefficients to the system model.

Based on this discussion, one should have a reasonable understanding of what na
and nb physically represent in a system model. Obviously, the actual model order will be
highly dependent on the physics of the actual system being modeled, but there are some
general trends that one would expect. Since nb represents the steady or quasi-steady
dependence of the aerodynamic forces on the motion of the structure and na represents
their unsteady dependence on previous forces or the aerodynamic wake, one would
intuitively expect that na would always be less than »b. This argument is made because
the wake really only has secondary effects on the flow while the motion of the structure
strongly influences the aerodynamic forces. Also, the wake has no effect on the
aerodynamic forces in a supersonic flow since the body ts outrunning the downstream
pressure waves. Hence, the required na for a given geometry should be expected to
decrease as the Mach number increases.

Although these guidelines provide a way of picking the relative magnitude for nu
and nb with respect to each other, they do not provide us with a way of estimating the
expected model order for an arbitrary configuration. Picking the actual values for na and
nb will require some experimenting for each model. Any initial guess for the model
order will suffice for the first attempt at parameter identification. Then one must adjust

the model order and re-compute its parameters repeatedly until the model’s output error

has been minimized with respect to both the X* and the scaled RMS error discussed

39

previously. Once this optimum model has been found. it is then ready to be implemented
into the coupled aeroelastic solution in place of the unsteady CFD solution.

It should also be noted that the optimum model order may be higher than what
one might expect from a physical standpoint. Since we are identifying a system model of
a CFD mode) for the actual flow physics, additional model coefficients may be necessary
to capture the numerical dynamics of the CED model. Basically, any numerical errors in
the CFD model will be carried over to the system model so that system model will not
only be modeling the flow physics, but also the numencal dynamics of the CFD model.
Hence, higher order models may be necessary to get a “perfect” fit to the CFD training
data by introducing higher order derivatives to model the numerical dynamics of the CFD

solution.

3.1.5. Model [mplementation

The implementation of the system model simply becomes a matter of replacing
the unsteady CFD solver in the coupled solution with a new module which implements
the ARMA model structure with the parameters computed for the unsteady flowfield.
One could imagine a sort of software switch that can be thrown to use the discrete time
system model instead of the unsteady CFD solver. The unsteady CFD solution is used to
first compute the model training data needed to construct the system model, but then one
switches over to the model for computing the aeroelastic response of the structure. This

concept is illustrated in Figure 3.9.

40

Pynamics u

Solver
Software
Swilch
[
Unsteady CFD Discrete Time
Solution Model

Figure 3.9: Implementation of System Model in Coupled Aeroelastic Solution

The actual system model module itself will simply rely on matrix algebra to
implement the ARMA model structure for any arbitrary number of model parameters.
This module would then be capable of predicting aerodynamic forces based on any

arbitrary motion of a structure given the appropriate model parameters.

3.2. Two-Dimensional Example

Before attempting to implement the system identification procedure on a complex
three dimensional structure with the STARS codes, there are a few questions rematning
to be answered. Most importantly, we must decide what the optimum input is for the
training data, and whether or not a linear model will work effectively in the coupled
solution. In an attempt to answer these questions, the system tdentification procedure

was first tested on the simple two degree of freedom system outlined in Figure 3.10.

41

Figure 3.10: Two Degree of Freedom Airfoil System

The structure shown in Figure 3.10 is a simple two dimensional airfoil which is
free to pitch and plunge in an ideal flow. This sort of geometry is often used to study the
influence of various parameters on the coupling between the bending and torsional
motions of a relatively large aspect ratio wing {Bisplinghoff, 1996].

To analyze this system, one must develop a methodology for computing both the
unsteady aerodynamic forces acting on the airfoil and the dynamic motion of the airfoil
as a result of the applied aerodynamic load. The aerodynamic forces acting on the airfoil
were approximated using an existing 2-D, unsteady flow soiver which employs the
Smith-Hess panel method. The panel method code computes the nondimensional
aerodynamic lift and moment acting on the airfoil for any arbitrary pitching and plunging
motion. The predicted nondimensional coefficients can then be multiplied by the free
stream dynamic pressure to compute the actual load acting on the airfoil for use in a

structural dynamics solution.

42

A simple dynamics solver can then be constructed by first deriving the equations
of motion for the system using Lagrange’s equations as outlined in Appendix A.
Equations (3.9) and (3.10) present the resulting coupled dynamic equations of motion tor

this two degree of freedom system.

(3.9) mh+mbx, G +kh=-L

(3.10) 1,6 +mbx h+ka=M

With some further effort as outlined in Appendix B, Equations (3.9) and (3.10)
can be nondimensionalized and rewritten in a form which can then be approximately
solved using a Runge-Kutta numerical integration. An aeroelastic solution s then
achieved by coupling the Runge-Kutta dynamics solution with the unsteady, 2-D panel
code. In doing so, we have constructed a simplified version of the time-marched solution
scheme employed in the STARS aeroelastic analysis module. The solution algorithm
will involve first computing the nondimensional aerodynamic load at a given instant in
time, and then integrating the nondimensional equations of motion to predict the new
orientation of the airfoil for the next time step.

Of course, there are some numerical problems with this type of solution. Most
significant is the fact that the aerodynamic load at each time step will have to be assumed
constant in order to integrate the equation of motion and get to the next time step.
However, for a small enough time step this may prove to be an insignificant issue.
Regardless, the main focus here is to determine if a linear systern model can be created
that is capable of replacing the flow solver in the coupled solution. Whether the coupled

CFD solution actually models the real world 1s not as important as whether the model can

43

be made to match the CFD solution.

It is also interesting to notice the significance of the unsteady panel code
computing nondimensional aerodynamic coefficients. These nondimensional coefficients
can be multiplied by the free stream dynamic pressure to compute the actual aerodynamic
lift and moment, but the panel method solution itself is not a function of the free stream
dynamic pressure. Hence, any model created for the unsteady panel code would also be
independent of the free stream dynamic pressure. The advantage of this becomes quite
obvious since one is most often interested in analyzing the effect of the dynamic pressure
on the aeroelastic response for a given geometry. Once a model is constructed, the model
can be used in a coupled solution with the dynamics solver for a variety of different
dynamic pressures as long as the physical dimensions of the geometry are not changed.
The output from the model will simply have to be scaled by whatever dynamic pressure
1s being tested in order to compute the aerodynamic Joad needed by the dynamics solver.
This will save a significant amount of time as the model requires very little computational

effort compared to the unsteady panel method solution.

3.2.1. Panel Method Implementation

For the first phase in this implementation, the unsteady panel code will be used to
compute a single output, sectional lift coefficient, when given a single input, angle of
attack. Using this simple SISO system, the six different inputs presented earlier in Figure
3.2 will be tested as possible training signals for the system identification procedure.
After time history data for each of the six inputs has been gathered, the MATLAB

System Identification Toolbox can then be used to construct an ARMA model using the

44

different sets of training data.

Once a model is constructed in MATLAB, it can then be implemented using each
of the different inputs and the model time history can be compared with the time history
from the unsteady panel code. By evaluating each model’s ability to predict the actual
unsteady solution for a variety of different inputs. one should be able to determine which
input signal will give the system identification procedure the best chance of capturing the
full spectrum of the system’s response. For example, one could use the training data
from a sinusoidal input to construct a system model for the unsteady panel code. Then,
the model could be used to predict the response of the panel code to the multistep input.
A comparison of the model response for the multistep and the actual panel code response
would then provide some insight into whether the sinusoidal input excited the system's
dynamics enough to yield an accurate model which can predict the systemn response for
any arbitrary input.

Each of the six inputs was analyzed using the unsteady panel code for a NACA
0012 airfoil which was restricted to pitch motions only in the flow (ield. The unsteady
panel code computed and output complete response time histories for the lift coefficient
of the airfoil as its pitch motion obeyed each input signal. For each of the six response
time histories, the MATLAB system identification toolbox was then employed to find the
optimum ARMA model that best matched the computed response data. This then lefi of
with six different models, each based on a different set of training data from the same
system.

The best model could then be chosen by testing to see whether each model could

accurately predict the response time history for each of the other six inputs. This proved

45

1o be a serious problem for most of the models. Although a model could be accurately fit
to each set of data, that model could not in turn be used to predict the response for any
arbitrary input unless the original training data had captured that part of the system’s
response. Results from this preliminary comparison showed that the multistep and
random signals excited the complete spectrum of the system’s response the best as the
models trained on these two signals did accurately predict the response of the pulse,

sinusoidal, exponential pulse, and chirp inputs as well as each other’s response.

3.2.2. Preliminary Panel Method Results

Based on the success of the multistep and random input signals as training signals
for a SISO system, the more complicated MIMO system was studied. To do so, a
staggered input signal was used for each input as discussed in Section 3.1.1. Figure 3.11
shows how the staggered input signal for the multistep input would be implemented 1n

order to correctly specify the pitch and plunge motion of the atrfoil.

an|s aDbis5 unps

= . -
‘g a g E E 1l
> = =
PILTITY {018 FIDTRS 4015
41 L% nig 40
Time (3) Yime {3)

Figure 3.11: Multistep Input Signals for Training the Multi-Input Model

After implementing both the multistep and the random inputs, the response data

46

was again analyzed using the system identification toolbox in MATLAB. From both sets
of training data, an optimum system mode! was constructed and each model was then
evaluated by again implementing them to predict the response to the other inputs. As
with the SISO models, models trained using both the multistep and random inputs were
able to predict the aerodynamic response of the airfoif to a variety of inputs. However,
the random input had the drawback of needing a significantly longer time history for
training the model. While the multistep was a much more compact signal which required
about half the computational time to complete, This prompted the selection of the
multistep as the optimum input for training an ARMA model to match the unsteady panel
method solution. Figure 3.12 presents an example of the aerodynamic response for the
airfoil as predicted by the unsteady panel method and the system model trained using the

multistep time history.

47

Cl

Cm

Figure 3.12: Comparison Of Model () to Panel Code (7) Predictions of C, and
Cp for the Multistep Input

One rather interesting feature to notice in the aerodynamic response of the airfoil
are the spikes in the C; and C,, plots of Figure 3.12. Each of these spikes corresponds to
the beginning or end of a step in the velocity input signal. These spikes seems to indicate
the significance of the velocity boundary condition in the panel method solution. In tact,
the velocity signal seems to really dominate the overall response of the system. Hence,
we can see the justification for implementing the multistep input on the velocity
boundary condition rather than on displacement as is done in flight testing. /f the
multistep had been implemented on displacement, we would not have captured some of
the more interesting features of the aerodynamic response.

Now, let’s compare the multistep model’s response with the actual panel method

response for several of the other input signals. Figure 3.13 presents a comparison

48

between the computed model response and the panel method response to a chirp input for
pitch, and Figure 3.14 presents a comparison between the computed model response and

the panel method response to a exponential impulse for pitch.

Figure 3.13: Comparison Of Model Output {) to Panel Code Output () of (}
and C,, for a Chirp Input of &

T ! - ! f 08sT T " ! !

Cm

.01 I 1 1 | I .0.05 ' 1 I b ;

Figure 3.14: Comparison Of Model Output (~~ ") to Panel Code Output (~) of ¢}
and C,, for the Exponential Pulse Variation in o

49

Thus far, the panel method has been utilized to perform a qualitative analysis on
which input signal is the best for use in the model training data. The final question that
remains to be answered is whether or not the model can be utilized in place of the panel
method code in a coupled solution where the aerodynamics influence the structural
dynamics of the system. The procedure then is to take the model that has been
constructed in MATLAB based on the multistep training data and implement it in a
coupled aeroelastic simulation with the Runge-Kutta dynamics solver. We will then
compare the aeroelastic response computed with the model to the actual aeroelastic
response predicted with the panel method code. Figure 3.15 presents such a comparison
between the aeroelastic responses predicted by the panel method code and the model.
Note that for an aeroelastic response, we are most interested in whether the forces
predicted by the model couple well with the dynamics solver to predict an accurate time
history response for pitch and plunge. Figure 3.15 shows a time history which is fairly

close to the flutter point for the air foil.

50

0001 - 0.002 | - - Panel

e dbmodel:

-0.002 t 0.002 | (

0.01
Ponel

0.008 o d.Lmodel

h B
0.003 1‘| I . --. Panel | q
. | e d... model; -0.002 1
-0.004 . ' 0004 - T

Figure 3.15: Comparison of Aeroelastic Response Predicted by Unsteady Panel Method
and Discrete Time ARMA Model

Notice that the model does a fairly good job predicting the aeroelastic response of
the airfoil. The model was tested for a variety of different structural configurations by
varying the frequency ratios for the pitching and plunging oscillations. In each case, the
model proved capable of capturing the dynamics of the system. Based on these results,
we should be able to take the system identification procedure to the next level and model
a fully three-dimensional CFD solution. It will be necessary however to develop a
parameter identification code so that the procedure will not have to rely on MATLAB to

compute the model parameters.

Sl

3.3. STARS Implementation

Based on the preliminary results from the unsteady panel method implementation,
the 3211 multistep for the velocity boundary condition was chosen as the optimum
training input for use in modeling the STARS unsteady CFD module. Before
implementing the modeling procedure, it is important to examine the STARS aeroelastic
analysis roodule in detail. Figure 3.16 presents a flow chant outlining the basic time-

marching solution scheme used by STARS for aeroelastic problems.

FEM Solids Steady State
Analysis CED Solution

Modal l ll.c.-s
Parameters

Dynamics
Solver

Aero P
Forces

CFDB.Cs

Unsteady CFD
Solution

Globa! Time Step
Figure 3.16: Summary of STARS Aeroelastic Analysis Routine

The two boxes at the top of Figure 3.16 represent the preprocessing that must be
done prior to running an aeroelastic simulation. First, a free vibration analysis must be
completed using the STARS Solids module to compute the dominant eigenvectors or
modes of the structure. Next, the steady flow solution must be computed using the
STARS Steady CFD module so that any static nonlinearities in the flowfield are captured.

52

As discussed previously, this ensures that the unsteady solution will be both time accurate
and Jinear about the mean flowfield. Both the modal parameters and the steady CFD
solution are then used as inputs in the coupled aeroelastic solution.

The coupled solution is a time marched methodology for solving Equation (3.11),

the matrix equation of motion for an arbitrary structure using generalized coordinates.

(3.11) Mg+ Cq+Kq="f,(¢)

where...

M = generalized mass matnix

C = generalized damping matrix

K = generalized stiffness matrix

q = generalized displacement vector

f,(¢) = generalized aerodynamic force vector

This equation is solved by the dynamics solver at each time step in order to
compute the generalized motion of the structure. Following the flowchart in Figure 3.16.
the generalized displacement vectors, q andq, are then passed to the unsteady CFD
solver as boundary conditions. The unsteady CFD solution ithen predicts the generalized
force vector which is in tumn passed back to the dynamics solver for use at the next time
step. The system model fits nicely into this time marched solution scheme as a
replacement for the unsteady CFD solution. In the coupled solution, the system model
then acts as a mathematical map between the generalized displacements and generalized
forces.

[t is now important to examine how the generalized forces are computed In the

unsteady CFD solution. The relationship used to compute the generalized force vector is

53

given in Equation (3.12).

(3.12) f(:)=0"PA

where. ..

® = modal matrix
P = Euler pressure vector

A = surface area vector

We can see from Equation (3.12) that the generalized forces needed for the
dynamics solver are directly proportional to the Euler pressures computed by the
unsteady CFD solution at each time step. Upon further investigation, one finds that the

Euler pressure for each node is computed using a relationship similar to Equation (3.13).

J
3.13 P =2 -
(3.13) , q(y_Mz p.]

Equation (3.13) shows that the dimensional Euler pressure at a node is directly
proportional to the difference between the nondimensional free stream pressure (1y-M?)
and the pressure coefficient acting on the node, p;, as computed by the Euler solver. The
important thing to notice is that the dynamic pressure, g, is simply a scaling factor for a
nondimensional pressure difference computed by the unsteady Euler solution. In fact,
one could redefine the generalized forces by dividing the dynamic pressure out of the
eguations, leaving us with a sort of nondimensional generalized force coefficient.
Although we can divide out the dynamic pressure from the generalized force, it is
important to note that the generalized force coefficient is stll a function of the Mach

number. This is due to the fact that the Euler pressure, p,, 1s dependent on the Mach

54

number at which the Euler solution is run.

This leaves us with a situation similar to that in the 2-D panel example where the
system model could be used to predict the force coefficient based on the generalized
displacements. Since the force coefficient is not a function of the dynamic pressure, the
model is valid for all dynamic pressures at a given Mach number. To implement the
model in the coupled solution, the force coefficient predicted by the model must simply
be multiplied by the dynamic pressure before being sent to the dynamics solver since it
needs the actual generalized force.

This i1s where the real benefit of the model can be seen. Once a model is
constructed for a given structure and Mach number, it can be executed repeatedly at
different dynamic pressures to search for the dynamic divergence pressure. Also notice
that since we are modeling only the aerodynamic response, the system model will not be
dependent on the structural parameters such as the mass, stiffness, and damping. The
mode] is only dependent on the physical dimensions of the geometry presented to the
flowfield. Hence, one could change to any or all of the structural parameters to study
their effects on the divergence point and retain the same model. As long as one does not
change the physical dimensions of the problem or the free stream Mach number. the
model can be used 10 compute an accurate aeroelastic response for the system at almost
no computational cost compared to the unsteady Euler solution.

Since one is often most interested in determining the divergence g for a given
structure, it is important to now examine exactly how one would vary the dynamic
pressure in a STARS aeroelastic solution. Equation (3.14) gives the expression for

calculating the dynamic pressure, g.

55

(3.14) g =14 p(Ma)y

Notice that the dynamic pressure is a function of the Mach number (M), free
stream density (o), and the free stream speed of sound (a). Since the model is only valid
at the specific Mach number for which it was originally trained, the dynamic pressure
must be varied only by changing either the free stream density or speed of sound for
some constant Mach number. Now, let us look at exactly how the system identification

procedure can be used to construct a model of the unsteady Euler solution used by

STARS.

3.4. STARS Modeling Procedure

It wil) be assumed that one has some expenence using the various STARS
modules and can successfully complete the preprocessing necessary before starting a
coupled acroelastic analysts for a structure. As discussed previously, this preprocessing
includes a free vibration analysis of the structure using STARS Solids and the completion
of a static flow solution using the STARS steady CFD module. In addition, it will also be
necessary to convert the STARS Solids data into a format useable by the STARS
aeroelastic module including an interpolation of the modal vectors to the CFD mesh.
This procedure is outlined in the STARS user’s and verification manual [Gupta. 1997).

The system identification procedure as implemented in STARS can be
summarized by the following steps:

1) Run the muitistep solution using the CFDASE module and rename the

output xn.dat time history file to mulii.dat.

56

2) Use the training data in multi.dat to compute the optimum ARMA model
using the CFDMDL module to compute the mode! parameters.

3) Implement the model in the coupled aeroelastic solution in place of the
finite element, unsteady Euler flow solver.

Each of these steps will now be explored in greater detail.

3.4.1. Gather Training Data

The first step is to gather the time history data that will be used to train the system
model. Since the model will be a sort of map between the generalized displacements
computed by the dynamics solver and the generalized forces computed by the unsteady
Euler solution, one must be able to extract this time history data for both the generalized
displacements and forces from the STARS aeroelastic module. Fortunately, STARS by
default already outputs a time history file containing the generalized displacements and
velocities for each mode. This information is stored in the xn.dat file output during the
time-marched solution. It was a simple matter to then modify this output to include the
generalized forces in this file. This allows one to gather the necessary time history data
needed to train the model.

As discussed previously, the training data for the model is based on a multistep
input for the velocity boundary condition of the unsteady flow solver. Hence, one will
need to run the CFDASE module for the given geometry and Mach number, but specify
that the structural motion should follow the multistep rather than obeying the structural
equation of motion. This will be accomplished by setting the ibex parameter in the

scalars input file to 4 (see Appendix C for sample scalars files). With ibcx equal to 4, the

57

dynamics solver in CFDASE will be bypassed and the motion of the structure will be
based on the multistep shown in Figure 3.17. It is important to note that the multistep is
for the velocity boundary condition, so the actual motion of the structure will be
computed internally by nrumerically integrating the velocity to get the appropriate

displacement for each mode shape.

rbex
o o o L
v/ \
1
:: [S a—d waaemat . L o 6 & 6-0—-6 & © -2 ¢ & 2-0 B 5 6 0o o 2 o
>0 5 T 15 20 25 30
. a 'l
-rbex
rbex
> L] L] L]
i E ’
—_ | I | |I|
::;. 4 a6 6-0 4 6-9-6 - - -- vl in B @ G- 8-6 - & 6 4 0--0--8. 06 0-0
> 0 5 o s 20 28 W
[
* o]
-rbcx
rbcx
e o a []

\
:_:ouon..no-.oo(»--- i1 @ & @ @ 6 o » ® 0 06 O
- 9 s 10 15 . 25 30

T)
~rbex
L}
rbex

S+4usize (nr-1) r e ® 4
:g‘—o-b ¢ 4—-0—0-0—6 -5 B 6-0-0 6 & 6- 6 H 6= —n s Lio-i_B @& &
>
s 4 .

+ jsize (4'nr +

rbex 5+ isize (4nr +3)

nr = number of roots {mode shapcs)
isize = unil size of muhistep

Figure 3.17: Structure of Multistep as Implemented in STARS CFDASE Module with
isize = |

58

Notice 1n Figure 3.17 that there are two other parameters that are used to describe
the structure of the multistep. The magnitude of each multistep is set using the rbcx
parameter in the scalars file, and the scaling factor for the multistep is set using the new
parameter isize which has been added to the scalars file just to the right of the rbex
parameter. In the current research effort, isize equal to 5 has been used exclusively and
will be shown to work for each geometry tested to date. However, the isize parameter
does effect how long it takes to run the multistep solution for a geometry with a given
number of modes.

Notice in Figure 3.17 that the end of the multistep for the last mode occurs at time
step S + isize'(4-nr + 3). This means that if the structure has three modes. it will take 80
tume steps to complete the last multistep sequence for isize equal to 5. Deccereasing isize
would significantly decrease the number of time steps needed to complete the multistep
run especially for structures with a large number of modes. However, the isize parameter
has a significant effect on the frequency content of the multistep input due to aliasing
effects in discrete time, and thus should be adjusted with caution. Since isize 5 will be
shown to work, it is recommended that this value or greater be used. Recent work has
indicates that larger values of isize may be required for problems where the time step is
very small relative to the unsteady response of the flowfield.

Choosing the magnitude of the multistep, rbex, is not quite as straight forward and
will require some physical insight into the system being modeled. The magnitude of the
multistep must be selected such that the resulting generalized aerodynamic forces are
substantjal, and yet also small enough that they can still be assumed to be linear

fluctuations about the nonlinear, static solution. Although this is important for subsonic

59

e~ @ N ST R FEEEL Y

-~

and supersonic, this assumption is critical for transonic flows. Since the modal
parameters for each geometry represent very different motions and can be scaled
differently, there 1s no general rule of thumb for calculating the ideal rbcx value. Recall
also that the multistep is implemented on the velocity boundary condition not
displacement. Hence, one would have to integrate the velocity multistep to determine the
maximum structural displacements that resuits from the specified rbcx.

First, let’s consider how to compute the maximum displacement for a given value
of rbex. The time step used by the STARS CFDASE module can be computed using

Equation (3.15) where the parameters freq and nstpe are defined in the conu file.

_ 27
freq - nstpe - (M .a)

(3.15) dr

Based on the structure of the multistep given in Figure 3.17, the maximum displacement
for each mode will occur at n steps after the multistep starts, where n is given by

Equation (3.16).

(3.16) n=23-isize

We can then compute the maximum displacement for each mode shape by integrating the
first step of the velocity multistep. Since an integral is simply the area under a curve,
Equation (3.]7) is used to compute the maximum displacement for each mode shape for a
given multistep size, rbcx. Notice that the maximum displacement is the same for each

mode since the same multistep is implemented for each mode.

(3.17) q,., =h-dt-rbcx

60

Although Equation (3.17) can be used to compute the maximum displacement for
a mode, the question still remains as to whether that maximum displacement is too large
or too small. As previously discussed, the maximum displacement must be small enough
that the system can be assumed to be linear, but also large enough that it induces a
response that is larger than the numerical dynamics of the CFD model. However, one
must be able to determine how each generalized displacement physically relates to the
actual motion of the structure if any qualitative decision is to be made about the
magnitude of the multistep. Unfortunately this is not always easy to do.

Consider an example of a simple wing geometry with two mode shapes
representing wing bending and torsion. To mamtain the assumption about the linearity of
disturbances, such a structure should be limited to angles of attack no greater than about
one or two degrees in a transonic flow. Hence the problem then becomes determining
how the angle of attack for the wing is related to a generalized displacement of the wing
torsion mode. To determine this, one must examine the modal parameters in the arrays
file and convert the displacements of nodes into an angle of attack for the wing.
However, the structures are often more complicated than this simple system and are
modeled with a larger number of arbitrary mode shapes. For a complicated system, it
may not be plausible to try and convert from generalized coordinates into physical
deflections.

For these complicated systems, a practical method that has proved useful is to run
a “fast” multistep solution using the piston solver for some arbitrary rbhcx value.
Although the generalized forces will not be correct, the generalized displacements will be

accurate and one can then observe the magnitude of the displacements for the structure.

61

Since the generalized displacements are scaled arbitrarily with the modal parameters, one
should then use a postprocessor to animate the actual motion of the structure and
qualitatively decide whether the motion is too large or too small.

After setting ibcx, rbex, and isize in the scalars file, it is time to then run CFDASE
to compute the time history file, xn.dat. As discussed previously, 5 + isize:(4:nr + 3) time
steps will be required to complete the multistep sequence for the last structural mode.
Hence, CFDASE should be run for that many time steps plus 20 extra time steps to
resolve any transient effects for the last mode. Once the multistep solution is complete,
the xn.dat time history file should be renamed to multi.dat and saved for use as the model

training data.

3.4.2. Training The Mode!

At this point in the modeling procedure, one should have a complete multistep
time history computed by the unsteady CFD solution in the file multi.dat. This file is
used by the CFDMDL module to compute the coefficients of an ARMA model structure
that best fits the training data. Before running CFDMDL, two parameters must be added
to the bottom of the scalars file that specify the model order. The following two lines
should appear at the bottom of the scalars file:

S na, nb
3, 7

These two new parameters, na and rb, describe the model order as presented in
Section 3.1.5. As a starting point, an initial guess should be made for the model order
based on what is known about the physics of the system. As discussed in Section 3.1.5, a

model order with na set to zero will be a form of quasi-steady mode! with higher order

62

time derivatives of the input as nb is increased. This sort of model should be fairly
accurate for supersonic flow and in some cases even subsonic flow. For cases where the
guasi-steady model will not be accurate, increasing na then introduces an unsteady
approximation for the flow field. Note that for most aerodynamic problems analyzed
using STARS, na should always be less than nb. For these types of problems, our work
has shown that the model error 1s always higher for models where na is greater than or
equal to nb.

Once the initial model order is selected, CFDMDL can then be executed and the
coefficients of the model will be automatically computed using the computational
algorithm discussed in Section 3.1.2. It i1s important to note that CFDMDL uses
information contained in the scalars and conu files in addition to the time history data in
multi.dat. Hence, the settings in each of these files should be the same as when the
multistep was originally run. Specifically, CFDMDL is interested in the number of time
steps specified in the conu file and the Mach number and free stream density in Lhe
scalars file. After CFDMDL computes the coefficients for the ARMA model, it will then
create a mdl file which contains information about the testcase in addition to the actual
model parameters (see Appendix C for sample mdl files).

[n addition to creating the mdl file, CFDMDL wil] also report the Xz, chi-squared,
error for each mode as discussed in Section 3.1.4. These errors will give the user a
general idea of how well the assumed model order was abie to fit the training data.
Typically the first guess for the model order will not be the optimum model order. so
CFDMDL must be run multiple times while changing the assumed model order in the

scalars file. During each successive cycle, one should be observing the output errors and

63

looking for the optimum mode] order that will minimize the X* error as discussed in
Section 3.}.4.

Once the optimum model has been chosen, it is then ready to be implemented in
an unsteady solution. However, recall that the X? error is not a measure of the expected

error for the mode] in an actual implementation. Hence it is recommended that before
implementing the model in a coupled aeroelastic solution, the modet first be implemented
in the same multistep solution used to obtain the training data. One could then compare
the model time history for the multistep with the training data in multi.dat and compute a
scaled RMS error as discussed in Section 3.1.4. The actual details involved in
accomplishing this will be discussed in the next section. Note that if the scaled RMS
error of the model solution is large or if computational chatter is observed in the model
time history, the model order will need to be tweaked again and the coefficients

recomputed.

3.4.3. Model Implementation

To actually implement the model in place of the unsteady CFD solution in
CFDASE, an extra parameter has been added to the namelist group in the conu file. The
model sol parameter should be added to the conu file and set to true if one wants (o run
the model solution using the coefficients stored in the mdl file. When running the model
solution, CFDASE reads the information stored in the md] file and uses the model to
compute the generalized forces at each time step rather than the unsteady CFD solution.
CFDASE will also compare the Mach number and model order stored in the md] file with
the similar values from the scalars file before starting the solution. [f the Mach number

64

or model order do not agree, then the model is not applicable and the solution will
terminate.

‘The actual model calculations required to compute generalized forces are
completed using simple matrix algebra to multiply the model coefficients extracted from
the mdl file by the generalized displacements and forces for each mode. Then, the most
challenging aspect of the model implementation was the internal book keeping required
to keep track of the appropriate time history data. It is more interesting to note how the
generalized forces output by the model are actually interpreted and used in the coupled
solution.

Since STARS bhas been modified to output generalized forces, the system model
will be trained to predict the same generalized forces for an arbitrary input. However, the
generalized forces output by the model will then be correct only for the dynamic pressure
used in the training data. This is not consistent with our previous discussion about the
model being independent of the dynamic pressure, or free stream density. Fortunately.
we can correct this problem by storing the training density for the model in the mdl file
and then scaling the forces appropriately if the model is run at a different density. All of
this 1s handled internally by the STARS modules, but it is important to understand how
the mode] s implemented so one can diagnose modeling problems. For example, one
must be sure not to change the density in the scalars file until after the model hay been
trained using CFDMDL. The CFDMDL module reads the density in the scalars file and
stores 1t as the training density in the mdl file. If the density in the scalars file had been
changed prior to training the model, the generalized forces output by the mode} would be

off by a scaling factor.

65

Once a model has actually been implemented, one might want to compare the
model time history data with the Euler time history data for the same problem to evaluate
the accuracy of the model. In particular, the model should always be use to predict the
same multistep response as it was trained on to make sure the model predicts the
generalized forces correctly. The RMSERR module can then be used to compute a
scaled RMS error as discussed in Section 3.1.4. RMSERR will need to know the names
of the Euler time history file and the model time history file that are being compared, the
number of time steps to compare, and the number of modes in the time history files.
RMSERR then reads in the specified time history data and outputs a scaled RMS error
for each mode’s generalized displacement, velocity, and force. Recall from Section 3.1.4
that the RMS errors will be scaled by the maximum value for each particular signal.
Hence, one might think of it as a kind of percent error, and in most cases we should
expect to see errors less than one percent or even a tenth of a percent if the model has
been fit well.

The final phase of the model implementation is to then use the model to predict
the aeroelastic response of the system for various free stream densities. One can use the
model repeatedly at very little computational expense to search for a dynamic instability.
if one exists. [t is of course recommended that after identifying an instability, the Euler
solution be run at the instability condition to validate the model’s prediction. The same

RMSERR module can then be used to compare the model and the Euler solution.

66

CHAPTER 4

RESULTS

Using the methodology outlined in Chapter 3 for applying system identification in
the STARS codes, the aeroelastic characteristics of several interesting three dimensional
structures were Investigated. The results of these investigations are presented here both
to validate the modeling procedure and to show how to actually implement the modeling
procedure on a real problem. Each of the structures analyzed here are fairly well known
in the aeroelastic literature and have already been analyzed extensively using the STARS

codes.

The modeling procedure will be shown to save a significant amount of

computational time over the classical method when searching for an acroelastic
instability. All computational work was performed on an IBM 3BT/RS6000 Workstation

with the various STARS modules already described.

4.1. AGARD 445.6

The AGARD 445.6 wing configuration is a standard aeroelastic test case that has
been investigated experimentally in the Langley Transonic Dynamics tunnel. A planform
view of the AGARD configuration showing the CFD surface mesh is presented in Figure

4.1.

67

swwoaaE A ST 8 VYN ¥ TRATTE PV TROYEAT

- —

Ri Py Py =—mw §

Figure 4.1: AGARD 445.6 Test Wing Geometry and Surface Discretization

This wing geometry is often used in the literature as a validation case for
computational aeroelastic codes in the transonic flow regime. Both experimental and
computational results for the AGARD have been presented by Batina, et. al. [1988. 1991,
1992, and 1995]. Gupta [1996] went on to show that the STARS aeroelastic analysis
module is also capable of predicting the experimental data for this wing geometry
including the transonic dip in the flutter boundary around Mach 1.0.

The AGARD 445.6 will be modeled structurally using the two dominant
eigenvectors representing the first two natural vibration modes of the structure. These
mode shapes physically represent wing first bending and torsion as computed by the
STARS Solids module. The corresponding frequencies for the first two modes were 9.60
and 38.20 Hz respectively. The CFD mesh for the AGARD consists of 70,036 nodes and
376,125 tetrahedral elements, which is a fairly typical CFD model for most structures
when analyzed using STARS.

68

4.1.1. Flutter Analysis

The first step in the system identification procedure is to run CFDASE with the
ibcx parameter set to 4 which implements the multistep solution. As suggested, the isize
parameter was set to five, and an amplitude of 5.0 was chosen for the multistep and
specified using the rbcx parameter. Since a two mode solution is required, 60 time steps
will be required to complete the multistep. Hence, a total of 100 time steps were run in
order to ensure that any transients in the flow field following the completion of the
multistep could be sufficiently resolved. Figure 4.2 shows the actual structure for this

muitistep with parameters as specified above.

0l i S oTx| 6 0.1 . X2 6
X ' -V ' 5
008 | . | 4 008 . v2 3
S | 2 ! .
00s - : ' 006 | i
Xy : ! 0 0 v %, . L L0 v
0.04 , 004
' 2 | .2
1
002 L4 0.02 .
g .. . - e e a6 0 I ! , 6
0 0.05 0l 015 0 ovs 0l 01§

Figure 4.2: Multistep Input Implemented For The AGARD at Mach 0.96

CFDASE was run using the prescribed input signal show in Figure 4.2 at Mach
0.96 and a free stream density of 6.04x10™ slinch/in®, which corresponds to a dynamic
pressure of 0.440 psi. The output time history file from CFDASE, xn.dat, was then saved
as multi.dat for use in parameter identification. Using CFDMDL, a variety of model
orders were tried until the best fit for the training data was found. A model order of 4-10

was ultimately chosen as the best fit for the data saved to multi.dat. When employing this

69

I T
ROLALDL UNIVERDILY

yry

ar 2 Raas i ln |

CI S o O B Sy

Uni.Aarg’

—

fish

model order, CFDMDL reported a chi-squared error of 8.53x1077 and 3.85x107 for
modes one and two respectively. The new system model was then implemented in
CFDASE to test if it could accurately predict the muitistep response. Figure 4.3
compares the multistep time history data obtained using an Euler solution to same

solution using the discrete-time model constructed using CFDMDL.

3 ® Euler 0
g’.% o d.it model’ 0.05 0l 014
25 . g e . Eulet
° Hf’ ~02
¢ 3¢ o ¢ dL model
1 . h . FY - -
f, 2 1 bb
' f - b ~
I 104 A
1S) "0. V
06 | J/
I .- - = |
0 Ons Q.1 0l1s
L -0.8 L

Figure 4.3: Euler and Model Solutions for Multistep Response of AGARD at Mach 0.96

Simply based on a visual inspection of Figure 4.3 one can qualitatively see that
the system model fits the training data extremely well. For a more quantitative analysis.
we use the RMSERR module to compare the time history data in multi.dat to the new
time history data predicted by the model in xn.dat. The results from RMSERR show that
the scaled RMS errors are 0.00029 and 0.00072 for generalized force one and two
respectively. This is equivalent to saying the RMS errors were 0.03% and 0.07% of the
maximum generalized force for each mode. Notice that, as expected, these errors are
significantly larger than the chi-squared errors reported by CFDMDL.

After validating that the model accurately matches the Euler solution, the newly
constructed discrete-time model is then used to search for instabilities at this Mach

number by repeatedly varying the free stream density and computing the aeroelastic

70

response of the system with ibcx now equal to 0. Once the point of aeroelastic instability
is found, the coupled Euler solution can then be run once to verify the accuracy of the
coupled model solution. For Mach 0.96, the instability boundary was found to be at a
density near 3.2x10° slinch/in’, or a dynamic pressure of 0.233 psi. Running the coupled
Euler solution served to verify the response data obtained using the model at the

instability boundary as shown in Figure 4.4.

03 . Eder 04 Fuler
02 1 o d.t.model O Y o d.l. modet
: , o %
oL ! f 02 o o
. o 01 | 44 ° &
0 = . - . . P ?# 6? 0°
g 4 -% ° '8 ° 0 SO o
& 5 VL & 2028 T 08 ¢ Da L XARAS LS ¢ v
\y -01 S : ° g ° 2 % ° © 3 X3 g &? | - 03 4
e 5 5 3 e & o ¢ 01 Q; o 02) 0
02% ¢ 3 s 3 % % Pos ¢ o ir g
° b 2 ° R ¢ 02 o, j0
| ° 3 3 } 4 3 Yo &
03 . 4 V V 03 N
i v 1%
b
04 04 3
-0 t 0.8 1

Figure 4.4: Comparison of Euler and Mode} Solution For AGARD Aeroelastic
Response at Mach 0.96

Notice in Figure 4.4 that the aeroelastic response predicted by the model
qualitatively matches the response predicted by the coupled Euler solution. Notice also
that we are now more interested in how well the generalized displacements match in the
coupled solution rather than how well the model predicts the generalized forces for a
prescribed time history of generalized displacements. Again using RMSERR, we find
that the scaled RMS errors are 0.017 and 0.0012 for the generalized displacements of
modes one and two respectively. Although these errors are much larger than those
observed for the multistep, it is still quite obvious that the model has accurately predicted

the coupled response.

71

At this point it might not be clear exactly how much time has been saved by
developing the discrete-time model for the CFD solution before running the aeroelastic
analysis. First consider the current method for applying CFD to aeroelastic analysis in
STARS. For a given Mach number, the full unsteady CFD solution is run at teast four
times at different densities in a search for the crossover point between stable to divergent
time histories. The results from these time histories are then interpolated to determine the
approximate point at which the system is unstable. The total computational time to run
just one unsteady CFD solution of sufficient length to be qualitatively useful is 120 CPU
hours on an IBM 3BT/RS600 workstation for the AGARD 445.6 geometry as presented.
Multiply that time by four and it requires 20 days to determine the approximate stability
boundary for the AGARD 445.6 at one Mach number.

The new system identification technique requires only one run of the unsteady
CFD solution for a prescribed motion of the structure. The length of the prescribed time
history is about one fourth of the length required for a full aeroclastic run, so it runs in
just under 30 CPU hours. The entire procedure for computing the best parameters for the
discrete-time model takes less than 30 minutes, and then the discrete-time model can be
run repeatedly at different densities to predict complete acroelastic time histories in Jess
than 60 CPU seconds. The total savings in computational time realized is then over 400
CPU hours to predict the divergence crossover point using the system model. A
comparison of the total time required to compute the neutral point of the AGARD 445.6

at Mach 0.96 is shown graphically in Figure 4.5.

72

500 4744

—~ 400 .

4

3

2 300 |

B i

o 200

=

O 100 300
0. - . U I

Euler d.t. model

Figure 4.5: Comparison Of Total Computational Time Required to Predict a Flutter
Point for The AGARD at Mach 0.96

[t should be noted that it is still recommended that an Euler solution be run to
validate the instability point predicted by the model. However, the validation run would
only need to be Jong enough to show that the model solution follows the correct trend in
the response and would not have to run Jong enough to actually validate the complete
time hijstory.

Another distinct advantage of developing a system model for the AGARD is that
the model 1s not dependent on structural parameters such as generalized mass, stiffness,
and damping. Hence, these parameters could also be varied along with the free stream
density to observe their effect on the flutter point of the system. This sort of problem
would be difficult to study using the complete Eufer solution. Consider that it takes
approximately 475 CPU hours to predict the flutter point for the AGARD at one Mach
number and one set of structural parameters using the Euler solution. [f one then changed
a structural parameter, it would take an additional 475 CPU hours to predict the flutter
point for the AGARD. Since our model was developed for the aerodynamics of the

system independently of the structural parameters, there is no need to re-compute the

73

multistep and re-train the model. The same system model will be valid for all
combinations of structural parameters for the Mach number at which it was trained.
Hence, one can change any structural parameter and then predict the flutter point in the
time it takes to compute four time histories using the model (about 10 CPU minutes).
This means that the time presented for the model in Figure 4.5 is approximately the same
time it would take to predict the flutter point for the AGARD at one Mach number for all
combinations of structural parameters. Typically one would not even consider doing
such a problem with the Euler solution, but it is now possible with the system model.

Based on the success at Mach 0.96, the systein identification procedure was then
put to the test on the AGARD for several other Mach numbers. Models were also
constructed for Mach 0.499, 0.678, 0.90, 1.072, and 1.14] using the same procedure
outlined above. The models were then employed in a search for the flutter boundary at
each Mach number. Appendix D contains comparisons between the modei solution and
the Euler solution for the multistep input and the coupled response at the neutral point for
each Mach number. 1t is shocking to note that by using the system identification
procedure to construct a model at each Mach number, the neutral point over the enlire
Mach range could be determined in less than a week, compared to several months using
the brute force method.

Using the data gathered from the system model at each Mach number, we can
then plot the instability point at each Mach number to construct a composite flufter
boundary for the AGARD test wing. This is most often done by plotting the flutter speed
index, V. versus Mach number. The relationship defining flutter speed index is given in

Equation (4.1).

74

(4.1) y, =L

!/ b,ﬂ)aﬁ

where. ..

Vo = free stream velocity

b, = root semichord

@, = first torsional frequency

I = mass ratio

By computing the flutter speed index predicted by STARS for each Mach

number, we can then compare our results with the experimental results presented in the
literature. Figure 4.6 presents a comparison of the flutter speed index at each Mach
number predicted by STARS to that determined experimentally. Notice that although
STARS did not predict the exact flutter boundary, the gualitative trend of the two plots
are consistent, including the often difficult to predict transonic dip. Also note that the
most important comparison of results for this research effort is betwecen the model
solution and the Euler solution, not a comparison with experimental data. The
experimental data 1s only presented to show that the STARS codes are capable of

accurately modeling real aeroelastic behavior for practical structures.

75

Sl bl)

i 1

0.5

A
s 04 . = 4 A
= ‘
2 03 . a 4 w
® . I~
w
C o STARS Mode!
5 45 « STARS Euler = =
= Ve
i a Experimental
01 | o o . o
0.4 0.6 0.8 i 12
Mach Number, M

Figure 4.6: Comparison of Flutter Boundary Predicted by STARS to Experimental

4.1.2. Model Order Analysis

Each of the optimum models for the AGARD in the previous section were chosen
by varying the model order until the model’s error was minimized. However, it is not
very clear al this point what sort of trends one should expect when searching for the
optimum model order. Using a higher order model generally decreases the output error,
but one must be able to decide at what point the model order should not be increased any
further. Also, one must consider what sort of effect changing the model order has on the
flutter point predicted in the coupled solution.

Using the AGARD geometry at Mach 0.96, every possible combination of nu
from 0 to 5 and »b from | to 13 was used as a model order for the system yielding a total
of 78 different models. For each model order, the Chi-Squared error was recorded in

addition to the scaled RMS error when the model was implemented on a multistep

76

solution. During this process, model orders with nb less than na were thrown out since
their output errors proved to be much higher than the other models which is in agreement
with the earlier recommendation that rna always be less than nb. For the remaining 63
models, both the Chi-Squared and scaled RMS error for generalized force one and two
was plotted to explore the effect of model order on output error. Figure 4.7 and Figure
4.8 present plots of Chi-Squared error and scaled RMS error respectively for different
model orders. Note that mode] orders with nb equal to 13 are not shown in the plots as
their was no significant change in the errors. Also note that nb equal to 3 1s the upper
limit on the model order for this system. When »b is greater than 13, the SVD algorithm
in CFDMDL does not always converge on a solution for the model parameters. In this
case, CFDMDL reports that the solution did not converge to warn the user that the

specified model order is unreasonably high for the given set of training data.

77

04

ofl qF_.‘Z-.
03
02
0.}
0 . LUJ -m.m_m,m-ﬂ.cﬂ.cﬂ_m -~ -
1 02 03 04 G5 06 072 08 09 0-[0 018 D12
Mode} Ordet
0003 - aF T oR
|‘
0002 |
i
i
i
]
000t
| I:h
0 .U O L0000 0,0 o0 —
23 24 25 26 27 28 29 210 2.1 212
Model Order
_ afl gF2
0,00001
0000008 | B
0000006 _
0 000004
0 000002
0 -~ :I][D J]:I . D

45 46 47 48 49 410 411 412
Mode! Order

oFl

] 1.5

Mode! Order

_ Fl
0,0001 | | c

0.00008 |

0.00006 |

0.00004 |

|
|
|
omooz}
|

34 35 36 37T 38 39 310 3
Moadel Order
oFl
0 0000!
0.000008
0 00X X06
[6100.0.) 2208

S =S

6 1 5-8 59 510 St
Modc) Order

o2

05 lll&&&&&&

219 10 -1Y 1412

o

o,_i_ || |:|1_D=LEI===_=__

3-12

gl

[)

$2

Figure 4.7: Chi-Squared Error vs. Model Order for the AGARD at Mach 0.96

78

0l — 002 — -

Liddddddinas, Wlddddddada

01 02 03 04 05 06 07 08 09 G-10 011 612 12 13 14 1S 1o 19 1-10 1) 112
Mode(Ordcr
Model Order

0007 CoF gr2 006 " afl af
0.006 . 0005 M
0005 .

, o 0004 .
0004 | - B

| 0.003 ,
0003 |

000:) [U al.alaldlal 'o.m;;[_j_,J:J cﬂj :HJ

23 24 25 26 237 28 29 210 21 2-12 43S 36 110 311 143
Model Onder

Model Oeder
¢ -
O 003 afl nn 0.003 D] | 0 2
_) _
0.002 I 0.002 —
|
Looot || 000l
o '
i)
—
Lo dl ol alal o)) dl ol dl d
4- 4-6 4-1 4-3 4.9 410 411 412 5-6 57 58 59 51a 511 12
Madel Order Madcl (xder

Figure 4.8: Scaled RMS Error vs. Model Order for the AGARD at Mach 0.96

Based on the plots presented in Figure 4.7 and Figure 4.8, we can see what

happens to the output error as the model order is increased for this system. Notice that

79

tor the model orders used here, the Chi-Squared tends to decreases as the model order is
increased. However, this does not always prove true for the scaled RMS error which is a
much better indicator of the actual error for the model. Based on the Chi-Squared error
plots in Figure 4.7 alone, one might be led to believe that the highest possible model
order should be used. However, the scaled RMS error for the 5-12 model is actually
larger than that of the 4-12.

To actually pick the optimum model order, one must consider the results from
both sets of error plots. Looking at the Chi-Squared error plots, one notices that the
output error begins to be minimized for the models with na = 4. Increasing na to 5 does
continue to decrease the error, but the return on this increase in model order is not as
significant as the increase from 2 to 3 or 3 to 4. This trend is also supported by looking at
the scaled RMS error plots where we see that the models with na = 4 do have the smallest
errors. Consider that the model initially chosen as the optimum model order for this
system was a 4-10. At the time that model order was chosen, these plots had not been
constructed. The 4-10 model was chosen by varying nu and »nh unti] the output error was
small and further increases in model order did not yield significant decreases in the error
values. Based on the plots of scaled RMS errors presented here, it would seem that this
initial choice for the model order probably was the best.

Now, let’s consider what effect the model order has on the flutter point for the
coupled aeroelastic problem. Each of the remaining 63 models was implemented in the
coupled solution, and the flutter speed index was computed by searching for the density

al which the damping ratio for mode one was approximately zero. Figure 4.9 presents a

80

plot of the computed flutter speed index, Vi, versus model order for the AGARD at Mach

0.96.

0.28 e na=0
% ° o na=1
1] a na=2
026 | ° v ma=
6] ° ° ° na =
024 . ° o x na=3 !
° o -
% o a .o :
Vi 033 | R R ek ot i SRy
.A.
q ’
| . / o
02 | . .
| Lo
? o
0.18 |
0.16 . _— b —— e -
| 3 5 7 9 11 13
nb

Figure 4.9: Flutter Speed Index vs. Model Order for the AGARD at Mach 0.96

Notice in Figure 4.9 that the flutter speed index seems to converge to a constant
value as the model order is increased. Although there is some initial discrepancics for the
Jlower order models with na = 0 or 1, the flutter speed index converges to approximately
0.22 or 0.23 as nb is increased. [n fact, the time histories predicted by all of the models
with nb = 13 look identical when plotted together. The slight variations in damping ratio
for mode one are not visually perceptible and can only be computed using a newly
developed algorithm which identifies modal damping values for MIMO systems.

Based an the plot shown in Figure 4.9, the models with »a = 0 and 1 are probably
not the most desirable models to use due to the large fluctuations in the flutter index

speed for different values of nb. [f we eliminate these two classes of models from the

81

plot and zoom in on the converged plot of flutter index speed, we can try and decide
which model would really be optimum for this system. Figure 4.10 presents a plot of

flutter index speed for models with »na = 2 through 5.

0.24 a ma 2
) x fna 3
; o na=4
023 » =S

Vi 922

0.21

02 4 I .

nb

Figure 4.10: Close-up of Flutter Speed Index for Higher Order Models of the AGARD
at Mach 0.96

Notice in this plot that all four of these model classes converge reasonably well
with each other for nb greater than 5. In fact, any discrepancies between the four plots
above nb greater than 5 only equates to about a 0.0001 change in the damping ratio for
mode one. This sort of change 1s only be noticeable when using an algorithm that can
compute the exact damping ratio. Using visual inspection alone, one would be lucky to
notice a 0.005 change in the damping ratio of mode one. This result shows that one can
be confident that the model is accurately predicting the aeroelastic response of the system

as long as the output error of the model with respect to the training data is smal].

82

There is one other important trend that we can begin to see develop in Figure
4.10. Notice that for the largest model orders, the flutter index speed is beginning to
oscillate slightly. Although it does not really effect the solution for the AGARD, other
test cases have shown a tendency 1o become unstable for extremely high model orders.
Presumably if we increased the model order even higher for the AGARD and could
converge on a reasonable solution, we wold see this oscillation build as the model
developed some intemal dynamics of its own. Hence, it is recommended that the lowest
possible model order that still minimizes the output error be used. As we can see [tom
Figure 4.10, even a 3-6 or a 2-6 model would have predicted the flutter index speed
reasonably well.

Although we did not have this data at the time we chose the 4-10 as the optimum
model order, we could go back and look at the scaled RMS errors for the na = 3 models
and see that these models do have a reasonably low output error. Increasing to the na = 4
models. only earmned us a couple hundredths of a percent in the error. Hence, one should
be aware that it is not necessary to use an extremely high model order and be careful

when using too large a model as it may become unstable.

4.2. 2x] Plate

Another structural configuration often studied in aeroelastic literature is the thin,
flexible plate exposed to fluid flow on one side. This sort of structure is representative of
the individual panels which make up the external surface skin of a flight vehicle. In this
research effort, a flat plate two units long and one unit wide was studied. Figure 4.11

shows the CFD surface mesh used to model] this structure. Note that the flexible plate is

83

centered on a ngid surface four units long by three units wide and is simply supported

along each edge.

Figure 4.11: 2x] Plate Geometry and Surface Discretization

The plate will be modeled structurally using the six dominant eigenvectors
representing various bending modes for the plate as computed by the STARS Solids
module. The CFD mesh for the plate consists of 24,498 nodes and 123,969 letrahedral
elements, which is significantly smaller than the AGARD mesh so it should execute

faster.

42.1. Panel Flutter

The main reason this sort of plate geometry is interesting to study is because it is

susceptible to panel flutter. Panel flutter js an aeroelastic phenomenon which has

84

recently become of interest as flight vehicles achieve increasing speeds. In fact, panel
flutter typically occurs at supersonic speeds, so this geometry will first be tested at Mach
2.0. For this first Mach number, the training data will be gathered at a free stream density
of 0.403 kg/m?, which corresponds to a dynamic pressure of 93.3 kPa.

Before running the training data, the characteristics of the multistep must first be
selected. For this testcase, the isize parameter was again set to five, but an amplitude of
0.01 was chosen for the multistep. Since a six mode solution is being used this time, [40
time steps will be required to complete the multistep. Hence, a total of 160 time steps
were run in order to ensure that any transients in the flow field following the completion
of the last multistep could be sufficiently resolved.

After executing CFDASE with the multistep input as described above, the
response time history was saved as multi.dat and CFDMDL was used to develop the
optimum model. A model order of 1-5 was chosen as the optimum model order for this
geometry at Mach 2.0. When applying this model order, CFDMDL reporied chi-squared
errors of 8.02x 10, 1.51x107, 9.00x 10, 2.95x10™*, 3.97x10"*, and 9.23x10”* for modes
one through six respectively. The system model was then implemented to predict the
multistep response, and Figure 4.12 presents a comparison between the Euler and model
solution for the multistep response of the plate at Mach 2.0. The RMSERR module was
also run to compare the model solution to the Euler solution. RMSERR reported scaled
RMS errors of 0.0026, 0.0026, 0.0013, 0.0017, 0.0011, and 0.0030 for modes one

through six respectively.

85

" Euler I's © Ealer
Fy o dl model é o dit modet
(3 - - °%
14 z - ¢ °
| P L
s £ s SR
| ¢ g 3 ofo
f| ' ° [0 - . b A g —
0 why — ¢ ~ Vo - 0} 0054 0.1 0.13% 0.2
0 4 005 0.l 0.15 02 0.5 % ¢
s Y VAL
-0, L] Q
. -1 2 & w
| o
k¥
-1 (15 . 1
01 Euler
0 A . — .. . o d.l model
0 1005 0.1 0.5 02
04 . 5 o . 9 " .
: Sy o Euler 0 00s jou 015 02
| Q (34 s | o dt model b
08 | booehs o s 3
f !) S 9 % y -0 %gi}
° A ® Y Sgmam
a2 v I¢ s &L % £y 3¢
L 0‘?: ;‘ $ 4°
L PR" 'E 1 1Y
-16 | < Y A
i o) 53 3!
by e ¥
-2 ¢ 012 1
16 . Euler 0.3 Euler
|4 ' ') . o dl model’ o d.t. model
| © Z — 02 .
12| % \&
1. : : 0.1 e
-3 o ®
108 - FE 4 0 1&
06 ! "y O 00$ 0l Yis i o
13 | ¢ 049
04 . ¢ h ° s s
P 03 @ o ¥
b2 /W o St
0 03! °'3I
0 00S 0.1 015 |
(04 !

Figure 4.12: Euler and Model Solutions for Multistep Response of the 2x 1 Plate at
Mach 2.0

After validating that the model accurately matches the Euler solution. the system
model was used to search for instabilities at this Mach number by repeatedly varying the
free stream density and computing the aeroelastic response of the plate. For Mach 2.0,

the neutral point of the plate was found to be at a density near 0.313 kg/m3, or a dynamic

86

pressure of 72.5 kPa. The coupled Euler solution was then run to verify the response data
predicted by the mode] at this density. Since this test is being done for a supersonic
Mach number, it is also interesting to use the piston solver in CFDASE to predict the
response time history and compare both the piston and model solution to the Euler
solution at this density. Figure 4.13 presents a comparison between these three different

solutions for the aeroelastic response of the plate at Mach 2.0.

87

00008 - ’ Euer 0.0006 .

: ° dt. model
0.0006 ¢ 2 _ pon oo00s | 8
o - | :
00004 ﬁ; 9?; ﬁ g § fg { (¢ a; 4
o Z 1% o0 Z 4 b 0.0002 | * S s
° o e % bo s | ° 6.
0.0002 i s o : P ﬁ ° 1 > bb o | & IS
% A O I S S S 0 : .
0 ¢ o ¢ L o € .o _.:_ Q_.o .0 .° N 6 A 004
' borod B3 e obd b osoe 00002 Yo
-0.0002 - 1Y o g? ;'g °I2 2. : ’ ’ g
. z El,o 02 o0 & b4 ° ¢
-0.0004 ° SERY; R IR gj 00004 Fuler
' v % g v d.\. model
-0 D0U6 (-0 0006 t paston
00006 0 0006 Euker
?ﬁ % [e 2. o d_n.modcl
00004 Lo % g : 0.0004 | °é if} prston
i ! ?i x Tﬂ © & . 1 $ ML SN
(i e ® ? K XY & | 6”. & , <«
0 0002 T‘HL."‘, 394 e Eo is 5}, 0.0002 . ‘-’;ﬂ e?i:%-&{ﬁslsbg&' .
i RIS s el i ! o,,’ . ﬁ | Q+; e Te Y ¥ (369183 .‘g"'
IR A XA AR TYOA ® ! K IRAEARLTAFPA A SLITINEL R 128 2 ,
% 0 3—%3— 5"'{;;'» rl-‘;jgi %b ,?“',3{2: 3 ,Eifz:o 0 EZT |’ 4. ln—-‘y?'?_?;-f 3J¢..7$Atz.¢.~.gg3§ ;
@ 1, M STy , ¢ : 8,04 R Rt & g . 4
voooz 11}0 MU 4k, ;“pi o2 s IR -0.0002 !J-T'.‘.i%%ffﬁ‘«'{%i 3y
OREE DA v SORHIRE S PR
00008 g F o 6 8 ke oot gy Lagt
; 5 ° & b3 o d.I model $ x LG
0 0006 o 5 1 piston -00006 t
0 0006 Euks 0 0004 : Lake
) e o dt inodl 6?' , o di. modeh
0 0004 }.% Iy piston i‘lfl%; piston
R o $1 0 0002 l!lo.@ﬁi" .
00002 LT be &g : RAUEEEY
adhey fet k2l e INCEEXEY
0 ¢ ,-Q&o P Ced 0 | II"".’?'}& %
Xs ® R e et i F 3V O ~ Qéi“l”-'-."’%: 9
_;?Hfﬁ"? P9 ,:?vﬂ).zs,q %93 4 '5br i%ﬁ (py?' ‘#%? 03 04
-00002 ‘-}!’M" bap g2 I ¢
.80 e¢ 00002 %% L 3%
IR AR
00004 | %, EIR
' 31
ooo0s | ¥ t 00004 ' |

Figure 4.13: Comparison of Euler, Model, and Piston Solution for the 2x1 Plate
Aeroelastic Response at Mach 2.0

Notice in Figure 4.13 that the aeroelastic response predicted by the mode!
matches the response predicted by the coupled Euler solution extremely well, where as
the piston solution does not. Again using RMSERR, we find that the scaled RMS erors
for the model solution compared to the Euler solution are 0.04. 0.03, 0.02, 0.006, 0.01.

and 0.007 for the generalized displacements of modes one through six respectively.

88

Although these errors are more significant than those seen when comparing the
aeroelastic responses for the AGARD, it is still quite obvious based on Figure 4.13 that
the mode] has done a good job capturing the Euler solution.

Again, we can determine how much time can be saved using the system
identification procedure to predict the aeroelastic response of the plate. The total
computational time to run just one unsteady CFD solution of sufficient length to be
qualitatively useful is 45 CPU hours on an [BM 3BT/RS6000 workstation for the plate.
Multiply that by the four ttme histories required to predict the divergence crossover point
and it requires 7.5 days to detenmine the approximate stability boundary for the plate at
one Mach number. Comparing this to the model solution, it only takes 17.2 CPU hours
to run the multistep training signal, and an extra 30 minutes to construct the system
model. The resulting discrete-time model can be executed repeatedly at less than 60 CPU
seconds per run to predict the flutter density for the plate. The total savings in
computational time realized is then 160 CPU hours or over 6 days for each Mach number.
A comparison of the total time required to compute the neutral point of the plate at Mach

2.0 is shown graphically in Figure 4.14.

89

g

CPU Time (hours)
v

50
25 17.7
0 []
Euler d.t. model

Figure 4.14: Comparison Of Total Computational Time Required to Predict a Flutter
Point for the 2x1 Plate at Mach 2.0

As with the AGARD, the plate case was also analyzed at several other Mach
numbers to test if the system identification procedure would be effective across different
flow regimes. Models were also constructed for Mach 0.9, 1.5, 2.5, and 3.0, giving us
another test for the system identification procedure in the transonic regime. Appendix E
contains comparisons between the mode! solution and the Euler solution for the multistep
input and the coupled response near the neutral point for each Mach number. However, it

1s worthwhile to take a look at the results from Mach 0.90 here also.

4.2.2. Static Divergence

As discussed previously, panel flutter most typically occurs at supersonic speeds.
For this plate in particular, we find that static divergence occurs before flutter in the
transonic regime as evidenced by the results from our Mach 0.90 test. After creating a

model for the unsteady Euler solution around the plate at Mach 0.90, the model was then

90

run at various densities in search of the flutter point for the plate. However, at a density
corresponding to a dynamic pressure of 43.3 kPa the model predicted that the plate would
statically diverge before fluttering. Figure 4.15 presents a comparison between the model
solution and the Euler solution for the plate's aeroelastic response at Mach 0.90 and a

dynamic pressure of 43.3 kPa.

9]

0 0006

0.2 04 06 08 1

po 3

00004 . 23 Euker
°5 o dtnoadkl
¢ o
o &
0.0002 . o ®
T e
R T4
é ¢
X) 0 ¢- —@
s 02 04 06 08 j
bd
-0 0002 _'@ 1 -0.00) -
@ - - 0.0001)
X3 o o Euler
& 02 04 06 08 | T
o & o) o ¢t mode
ggo
"sa? 0 0.001105 .
00001 -»0
<@
prs N 0 .--;»q.-ﬁ e
00002 .
e Euler | -0.00008 .
I o o1 mode) !
00003 | t 00001 ¢ t
000005 . TRder 000004 , Yadks
. 0 1
° o U model ‘ A 7y o di mode
AN
0 e 3 - B N) {,‘*
X¢ i& v o,
‘ & ¢ o%o.z 04 06 08 | I 04 06 T E—
jo °9 N
@4) 990 fé
IS \ A.;;
-0 00005 . ° - 00004 |
°1 -
¢ g
lo
00001 t -0.00008 ' !

Figure 4.15: Comparison of Euler and Model Solution For the 2x 1 Plate Aeroelastic
Response at Mach 0.90 and a Dynamic Pressure of 43.3 kPa

Notice in Figure 4.15, that the model solution no longer matches with the Euler
solution perfectly. Qualitatively, both the mode! and the Euler solution predict the same

aeroelastic response, static divergence. However, the model solution begins to deviate

92

(L I
o B Salome Sa

from the exact path taken by the Euler solution after the solution starts to statically
diverge. This is because our assumption about the model being a linear perturbation
about the mean flow does not hold up for static divergence. In the Euler solution, a static
divergence results in new static nonlinearities in the form of shocks developing on the
plate. The mean flow solution is essentially diverging and so the model is no longer
accurate since 1t was trained on a different nonlinear mean flow. However, one can see
that the model is still capable of predicting this effect qualitatively even if the exact path

it foliows once it diverges is not accurate.

4.3. Generic Hypersonic Vehicle

Another interesting geometry to study is that of the Generic Hypersonic Vebhicle
(GHV). The GHV is a testcase developed by NASA to test the acroelastic effects that
might be seen on a hypersonic vehicle. Figure 4.16 shows the CFD surface mesh used (o
model the GHV. The CFD mesh for the GHV consists of 58,786 nodes and 323.417

tetrahedral elements.

93

I

Figure 4.16: GHV Geometry and Surface Discretization

Structurally, the GHV is the most complicated system analyzed so far. It is
modeled using nine eigenvectors which represent various bending and torsional modes
for the wings and the body itself. This geometry will first be tested at Mach 2.2 and a
free stream density of 2.8658x 107 slinch/in’, which corresponds to a dynamic pressure of
114.5 psi. The multistep will be run with isize = 5, rhex = 1.0, and a total of 220 time
steps. Figure 4.17 presents a comparison between the Euler and model solution for the
multistep response of the GHV at Mach 2.0. A model order of 3-7 was chosen as the
optimum fit for this training data. To save space, only modes | through 4 are shown in

Figure 4.17 with the complete solution presented in Appendix F.

94

52000 i 15500

1 - Euler Euler

: ' o 4.t model- o di model
'. vy T
i R 15000 .
. !
i 48000 | ' ‘M_ fs j é
e S M .
- 14500 . ’
a0 . ¥ - \'
]
44000 — i} 14000 _ . }
0 05 i 0 05 !
l 1§
56000 - Enler -8750 . : _
d.t. model 0 05 |
55500 R 9000 o {
AN "\/, }
IRF <9250 | ' o
[[§
fy s § fa 9500 | ,
54500 . $iy T
:I <9750 | I
54000 - .3 10000 | Y |l
- L]
' 1: 1 o dt.modet]
33500 . - - 10250 |
0 0.5 1

Figure 4.17: Euler and Model Solutions for Multistep Response of GHV Modes |
through 4 at Mach 2.2

After validating that the model accurately matches the Euler solution, the system
model was used to search for instabilities at this Mach number by repeatedly varying the
free stream density and computing the aeroelastic response of the GHV. For Mach 2.2,
the neutral point of the GHV was found to be at a density near 2.6365x107 slinch/in’,
which is approximately 2.3 times sea level density. The coupled Euler solution was then
run to verify the response data predicted by the model at this density. Figure 4.18

presents a comparison between the Euler and model solutions for the aeroelastic response

of the GHV at Mach 2.2.

0.5

0.5
X g N S e
0\. 02'3 AR 0.8 [0 : 4
¢ L@ P . . . S o |
O T A Y 0 Pat eat Bet fsl)
° o 2 s » 4 i ¢ 6% T ye e °
05 « » o & s @ $ 3 0.5 & S Vv 4, s 8 o ¢ .
P ¢« 4 8 ' “ L O T A
o Vo d LA A N A S
MR I ¥ SEAVIREE N VA A
g 2 ¢ ’ YV V v 2 4
VooV i 8 N
“0IT
o dt. model
1.5 t t. mode 2 | o d.L model
\ Euler 03 Euler .
o d.t.madel. o dt model
0 ¢ N SEIEES S 0.2 \ /
o 0 .
g}‘. (g‘» o 06 08 I , A :Q ?‘4
' e o ¢ B : S 4 @ [s
BN o s 6.l - L R S
e é 1 $oe $ X . : . ¢ o » e :
S SRS SR S ' S AR .
2 ' M AP S Y S S S N 0o . CENNE SURY SN AU NESOPGIIN
. é * . L ‘¢ s o . :
s ¢ 2L 0 2 %04 I).c b8 L N
. . * A $
S IS R : V 0.1 sd L8 %2
VoV vl
4 . t 0.2 t

Figure 4.18: Comparison of Euler and Model Solution For GHV Aeroelastic Response at
Mach 2.20

Notice in Figure 4.18 that the aeroelastic response predicted by the model again
matches the response predicted by the coupled Euler solution.. Again using RMSERR,
we find that the scaled RMS errors for the model solution compared to the Euler solution
are 0.0075, 0.0626, 0.0084, 0.0646, 0.0075, 0.0620, 0.0112, 0.0087, and 0.0145 for the

generalized displacements of modes one through nine respectively.

96

CHAPTER $

CONCLUSIONS AND RECOMMENDATIONS

5.1. Conclusions

The system identification procedure presented here has been shown to be an
efficient technique for increasing the computational speed of a time-marched CFD
aeroelastic analysis. By first developing a model to replace the time-marched CFD
solution, the computational time required to complete a coupled aeroelastic analysis can
be reduced by at least a factor of ten. The modeling methodology has been shown to be
applicable to a wide range of three-dimensional structures and flow regimes, including
the transonic flow regime.

System identification was chosen as the best modeling technique in this study for
several reasons. First because 1t 1s fast and easy to implement with existing unsteady
CFD codes. Nest, it is applicable over the entire rage of {low regimes from subsonic to
supersonic as long as the CFD solution being modeled 1s applicable in that range.
Finally, the structure of the ARMA mode! provides an excellent physical representation
of an unsteady flow.

The modeling procedure for any structure must begin with the computation of the

nonlinear mean flow about the geometry using a steady CFD analysis. A dynamic

97

system model can then be developed which will represent the small (linear) perturbations
about the nonlinear mean flow which have been shown to be the driving force in
aeroelastic problems. In developing the model, the parameters for an ARMA model are
fit in a least-squares sense to a set of training data from the unsteady CFD solution. The
tralning data 1s gathered in advance by forcing a 3211 multistep input on the generalized
velocity for each structural mode.

Once a model has been developed, it can then be implemented in the coupled
acroelastic solution in place of the unsteady CFD solver. The system model executes in a
fraction of the CPU time required by the unsteady CFD solution, thus saving a significant
amount of effort in predicting the flutter point for a structure. Since the model depends
only on the physical dimensions of the structure and the Mach number of the unsteady
CFD solution, the model can be used to explore the effects of the dynamic pressure (by
varying free stream density) and any structural parameters (generalized mass, stiffness,

and damping) on the aeroelastic response of the system.

5.2. Recommendations

Based on the results presented here, several areas are recommended for further
development and investigation. First, the effect of the isize parameter on successful
parameter identification should be investigated further. This parameter effects the length
of the multistep input which in tum determines how long the unsteady CFD solution must
be run when gathering training data. An isize of 5 has been shown to work here, but this

may not be a universal value.

98

Obviously, validation of the procedure on more structures and Mach numbers js
necessary. The procedure has proved successful on all configurations tested so far, but
there may be some cases where the model will not provide sufficient results. Next, it is
recommended that a methodology be developed for automating the search for the
optimum model order. The code could even be modified to automatically generate charts
of output error versus model order similar to those presented for the AGARD.

Finally, the model solution is ideal for searching for the flutter point of a structure
since it executes quickly. To automate this process, one could couple the mode] solution
with a search algorithm to find structural damping ratios that are approximately zero.

This would greatly enhance the effictency of finding a flutter point for a structure.

99

BIBLIOGRAPHY

Ballhaus, W.F. and Goorjian, P.M., “Computation of Unsteady Transonic Flows by the
Indicial Method,” A/4A4 Journal, February 1978, pp. 117-124.

Bisplinghoff, R.L., Ashley, H., and Halfman, R.L., Aeroelasticity, Dover Publications,
Inc., 1996.

Cunningham, H.J., Batina, J.T., and Bennett, R M., “Modern Wing Flutter Analysis by
Computational Fluid Dypamics Methods,” Journal of Aircraft, Vol. 25, No. 10,
October , 1998, pp.962-968.

Dowell, EH., et al, 4 Modern Course in Aeroelasticity, 3" Revised and Enlarged Edition,
Klewer Academic Publishers, 1995.

Dowell, E.H., Hall, K.C, and Romanowsk:, M.C., “Reduced Order Aerodynamic
Modeling of How to Make CFD Useful to and Aeroelastician,” AD-Vol. 53-3,

Fluid Structure [nteraction, Aeroelasticity, Flow-Induced Vibration and Noise,
Volume I11, ASME 1997.

Gupta, K.K., “STARS - An Integrated General-Purpose Finite Element Structural,
Aeroelastic, and Aeroservoelastic Analysis Computer Program.” NASA TM-4795.
1997.

Gupta, K.K., “Development of a Finite Element Aeroelastic Analysis Capability,”
Journal of Aircrafl, Vol. 33, No. 5, September-October 1996, pp. 995-1002.

Hamel, P.G. and Jategaonkar, R. V., “Evolution of Flight Vehijcle System ldentification,”
Journal Of Aircraft, Vol. 33, No. 1, 1996, pp. 9-28.

Hollcamp, J.J. and Batil], S.M., “Automated Parameter Identification and Order
Reduction for Discrete Time Series Models,” AIAA Journal, Vol. 29, No. 1. 1991,
pp. 96-103.

Hollcamp, JJ. and Batill, S.M., “A Recursive Algorithm for Discrete Time Domain
Parameter Identification.” AIAA-90-122]-CP.

Hunter, J.P. and Arena. A.S.. “An Efficient Method for Time-Marching Supersonic
Flutter Prediction Using CFD,” AJ4AA4-97-0733, AlAA 35™ Aerospace Sciences
Meeting and Exhibit, January 6-10, 1997, Reno, NV.

100

Kehoe, Michael W., “Aircraft Flight Flutter Testing at the NASA Ames-Dryden Flight
Research Facility,” NASA TAM-100417, 1988.

Lee-Rausch, E.M. and Batina, J.T., “Wing Flutter Boundary Prediction Using Unsteady
Euler Aerodynamic Method,” Jowrnal of Aircraft, Vol. 32, No. 2, March-April
1995, pp. 416-422.

Ljung, L., System Identification: Theory For The User, Prentice Hall, Inc., New Jersey.
1987.

Ljung, L., System Identification Toolbox User's Guide, The Math Works, Inc.

Pinkelman, J.K. and Batill, S.M., “Total Least Squares Criteria in Parameter
Identification for Flight Flutter Testing,” Journal of Aircraft, Vol. 33, No. 4,
1996, pp. 784-792.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., Numerica! Recipes in
Fortran 77: The Art of Scientific Computing, 2" Edition, Vol. |, Cambridge
University Press, 1996.

Rausch, R.D., Batina, J.T., Yang, H.T.Y., “Three Dimensional Time-Marching
Aeroelastic Analyses Using An Unstructured-Grid Euler Method.” NASA TM
107567, March 1992.

Robinson, B.A., Batina, J.T., and Yang, H.T.Y., “Aeroelastic Analysis of Wings Using

the Euler Equation with a Deforming Mesh,” Journal of Aircraft, Vol. 28, No.
11, November 1991, pp. 781-788.

101

APPENDICES

102

APPENDIX A:

DERIVATION OF 2-D EQUATIONS OF MOTION

I
y

The expression for the potential energy of the airfoil is. ..
U=21kh +3k,0’

The general expression for the kinetic energy of a rigid body in plane motion is...

For our airfoil, we have...

V,=-hk, o=qg, Py =bx,(cosai —sinek), 1, =1,
Hence, the expression for the kinetic energy of the airfoil is...
= tmh® + m(~ }51?) : [a] x bx, (cos ai ~ sin al?)] +31,a°

T =3mh® + mhabx, cosa +41,a’

103

Using Lagrange, the two equations of motion will be. ..

TEATE % T (1) oT, &

d\a) & & ar\aa

o

O,

.‘—+ A —
Jo oa

Taking the necessary derivatives, we get...

d(ory 4,)
— | =— (mh +mbx cos aa) = mh + mbx , cosaa — mbx, sinaa”

di\ h dt
ar ou
— -0 = =
k,h
d(r d . - - ;
Z(_;;) = Z([ﬂa +mbx, cosa}j) = [, a+mbx, cosah — mbx,, sin acha
—— = —mbx_ sin ahé — =k
P mbx , sin cha Sy o«

Substituting into the Lagrangian equations of motion, we get...
mh + mbx, cosad — mbx,, sinad’ +k,h = Q,

1,G +mbx, cosah+k,a=Q,

Assuming small deflections (cosar =1 and sina = a'), we get...
mh + mbx & — mbx ac’ + k,h =0,

1,G+mbx h+k,a=0Q,

Where Oy and O, can be shown to be...

0, = —Aerodynamic Lift Q,= Aerodynamic Moment

Hence, the linearized equations of motion for this two-dimensional system are...
mh +mbx & + k,h=—L

1,0 +nrbxaii +k,a=M

104

APPENDIX B:

NONDIMENSIONAL 2-D EQUATIONS OF MOTION

h=hc=2hb, and a=a

Vertical Degree Of Freedom:

mh+S, d+mwlh=-L

2 2
d h+Sa d’'a
dr’ dr’

m

+mojh=-pbV C,

2) 2 2) Vz) . I
md P sz 2h+8, T Loy stk 2b =~ pbVC, b2

ir S, dat 4bey . 2pb
d({.}z 2bmd(,‘)2 V: m

Cl

d*h’ mbx, dla’ 4b'rlw) . 2h?

w n

o 4rj . 2
h +3x,a +U5 h =—;T7C,

Rotational Degree Of Freedom:

S h+l g+l wia=M,

105

d*h da

S,—+1,—F+l,wa=2pbV}C,
dr- dar '
dn’ v da’ V! b
S, 20+ 1, s+l ela =2pb"VIC, | =
d([.)- 4b- d([')~ 4b2 aa pb = I SGVIZ

an o ta d’a’ +2blaro§ a._4p63c
d(r')2 2b§, d(z')z sy oS,

d%'+mw¢ dﬁ'+ﬂmNﬁw§dh4dﬂC
“\? 2bmbx \? mbx V2 mbx
dl(t a dlt a’ ®

a

23

R R

d’h’ oy dla’ e, . 4pht -

d*h’ Ira2 da’ N 2r} 0 - 4h* c
dy T x Ay w U T,

2
i ra I 2rﬁl

h +3——4 + —a = C
x x,U; ar,x

Now, re-arrange the equation of motion for the vertical degree of freedom...

L Al 2 . 2 VL
h tyx,a + 2h :"_C, = h =——(,/—5Xaa - Th
/ 7y r, U/

Substitute it into the equation of motion for the rotational degree of freedom...

2) b

2 0, L A v, ..o 2y 4
-—C, -3x,0 ~—57h +3—a + T = C,
m‘t, ! xa xaU/ m:txu

Solving this equation for & ...
2 \ 2 2
’ L. 4dro 2r . 4 ‘ 2
%{L_xaja = ﬂ; h - a2 a + (m +_CI
\x, Uy x,U; mx, ,

106

a = il h - i, "+ 8 C, + 4 C

TUE rmx) U 1) i) T i)
i 8rjxa o 4ra2 o 4x, C o+ 8 c
Uir -xt) U2 -xl) m(hd-x2) T il -xl)

Now, substituting this equation back into the previous equation for 4" ...

2 8rlx, 4r; . 4x,

h =- C,-1x h - a + C+...
.1 27« 2(,2 2 2(.2 2 (2 3} !
mf’ U/I;U - XG‘) U / (ru - xu) m’l/ rﬂ - xu

Simplifying this expression...

i - (4rix] N 4r} s 2%, o ~(i¢ 2x]]C 4, c
Cluiz-x) U) k-l e (- (el -xl) T
i 4r’ : x; \h 2rlx, 2 []+ x]]C 4x c
== — + _-— -
E R e L P e G FE) A

107

APPENDIX C:

SAMPLE DATA FILES FOR STARS TESTCASES

agard?2 .scalars:

$ aeroelastic scalars data file { factor=0.50 «t mach=2.0)
$ nr, ibc (0=full modes, l=g{l} = 0.01, 2=q(nr+1)=0.01)
2, 1, §.G, 5
7, 1, 2, 3, 4, 5, 7, 8
$ iread, iprint

2, {
S dimensional params; mach-inf, rho-inf(sl/in**3), a-inflin/sec),
gamma, pinft
1.141 6.091860e-C9 12571.08 1.
0.0
$ snift factor and nravaty constant
0.5, 1.0
5 flag, ££fi, ns, ne
2, 0.0, 2, 4
$ cfa, cfi
1, 1
$ nterms, nsteps
20, 2
$ na, nb
3, 7
agard2.conu:
tcontrol
mach = 1.141,
ncut = 20M0,
nstep = 106,
nsty. = = 20,
ncycl = 30,
ncyci = 30,
z1lpha = 0.9,
beta = 7.0,

108

nstage = 3,

cfl = 0.7,
restart = .,

nsmth = 2,

smofc = 0.25,
low = .false.,
debug = .false.,
meshc =
meshf =
tlz =
amplitude=
freg =
phase =
x0 =
y0 =
2.0 =
wux =
wuy =
wuz =
trans =
pistonn_sol
model sol

- 0~

~ ~

PO 000000 RO K -

Nt

~

H OO Oo oo

oo
®

.false.,
.false,,

i

agard2.mdl:

$ System medel created for agard2

$ Mach # rho-inf t samp
.214100E+01 .604186E-08 .109500E-02

$ offsets

.254166E+01 .169092E+0)
5 na nb nr
2 7 2

S Model parameters..
0.2566687465
0.000000000CE+NQ
0.0000000000E+00
0.9636212885E-01
0.84789460380
C.0000000000E+0D
0.0000000000E+00
0.8113466289
-0.4077515006
C.0000000000E+00
71,0000000000E+00
-0.2261693203
19.80261803
1.673:64725
20.56688799
8.143075%943
-36.31234741

109

-5.542323112
-12.73830986
-14.31336403
23.98897116
4.725830078
-7.153613091
5.691219330
-6.252622604
-1.185570955
5.9164162614
-0.2255736291
0.5666835509
-0.3380652145E~0)
-0.5000129342
0.2771528959
-0.53989]10120E-01
0.526647865BE-01
0.2386615574
C.2390516177E-01
0.6928021461E-01
-0.1498120278E-01
C.1627010554
0.8598821610E-01

plate 2x1.scalars:

P

1.0

12,

3.0

13,

rhe-0.227,

0.01,

14

5 aeroelastic scal:rs data file,
)T
$ nr, ibc (C=full modes, l-q(l)

6, 0, .01, 5

9, 6, 7, 8, 9, 10, 1
$ iread, iprint

2, 1
$ dimensional parameters; ma~h-inf
gamma, pinf
0.0
$ shift factor and gravity constant
.883492088E+01
$ flag, ffi, ns, ne
2, 5.0, 6, 10
$ cfa, cfi
1, :
$ nterms, nsteps
20, 2

$ na, nb

i, B

rno-inf (kg/m-*3),

0.403

110

this is convergent

2 g(nr+1)=0.01)

340.R%

(

4.7%

a-inf (m/sec),

plate_2x].conu:

&control

mach = 3.,
nout = 2000,
nstep = 7u9,
nstpe = 20,
ncycl = 40,
nstou = 40,
ncyci = 40,
alpha = 0.0,
beta = 0.0,
nstage = 3,

cfl = 1.0,
restart = 0,

nsmth = 2,

smofc = 0.2,

low = .false.,
debug = .false.,
meshc = 1,

meshf =1,

tlr = 0.001,
cbt (1) = 1.0,

cbt (2) = 0.5,

cbt (3) = 0.0,

cbr (4) = 0.0,
amplitude= .1,

freq = 0.36349,
phase = 0.0,

x" = 0.0,

yo =0.¢,

20 = 0.0,

wux = 0.0,

woy = 0.0,

wuz = 1.0,
"rans = .true.,
piston:. scl=.true.,
model sol= .false.,

&

plate 2x]).mdl:

S System model created for pla.= 2xl

S Mach #

. 30000°E+0

S offsets

-.380341E-03

.206591E-02
$ ne nb
1 8

rho-inf tsSamp

1 .403C00E+00 .B45%99E-03

.443780E-03 .986158E-04

nr
6

111

. 158644E-03

.270967E-"13

$ Model paramerters. .

-0.6747343540

SO OOC T OO0 I OCOTCODOO0 | ODOOOQCO |1 OOO0OOCOO

oC

o

.0000C0C000E+0D
.0000007J00E+CO
.0000000000E+00
.000000C000CE+00
.00C000000CE+CO
.000000000CE+CO
0.6543811774

.COC000000CE+0DC
.00C00C0000E+0Q0
-COCOO000002E+00
-0000000000E+00
.0000000C00E+00
.0000000CO0E+00O
0.1992329657

.0000000000E+00
.0000000000E+Q0
.0000000000E+00
.0000000000E+00
.0000000000E+00
. COOODD0DOCHE+0O
0.6370608807

.G000000000E+00
.00950900000E+00
.0000000000E+00
.0000000000E+00
. G0O00000000E+00
.COC0JOCODCOE+00
.121091%470

.00000C0000E+00
.00COD00000E+CC
. COCODCOOOVE+QD
. 00COSCOODAE+QD
.000000GC0OGE+0Q
0.

00000C0CO0E+0Q

-0.6250070333
15538.19531
-58389.536133
-275.0993958
-21.81824684
1662.699341
€9.02862549
3904,.5712R9
19646.99023
-9015.994141
-87.66749573
485.5173950
-42.89769745
-54.14569473
1751.844127

. etc.

(12

ghv_b2.scalars

$ aeroelastic scalars data file (flutt puram =4., mach=2.7)
$ nroots, 0, 0.0CL, nsurf on alrcraft, ibc (v=fu1ll modes, l=q('' =
0.01, 2=g(nr+1)=0.01)

9, 0, 1.0, 5

17, 123456789510 1) 12 13 14 15 16 17
$ iread, iprint (leave)

2, 1
$ dim params;mach-inf, rho~sl(sl/in**3},a-sl(in/scz),gam,pint {static sl
or 0)

2.20 2.63651E~07 1339¢6.8 1.4 0.0
$ shift factor (from out.l } and gravity ceonstant (from genmass)
1.000, 1.0
$ flag(peturb 1 or 2), ffi(force to start), nstart(step}), nend
2, 100.0, 5, 7
S cfalaero on, zero to test static fregs), cfi(impulse on)
1, 1
S nterms(not read?), nsteps(?)
20, 2
$ na, nb
3, 7

$ Sea level density
1.14%312-07

ghv_b2.conu:

&control

mach = 2.20,
nout = 1000,
nstep = 220,
nstpe = 20,
ncycl = 40,
nstou = 40,
ncyci = 40,
alpha = 0.0,
beta = 0.0,
nstage = 4,

cfl = 0.4 ’
restart = 1,

low = .false.,
debug = ,false.,
maeshc =1,

mesnhf =1,

tlr = 0.01,
cbt (1) = 1.0,

cbt (2 H = C.: ’

ck= (3} = 0.0,

cbt (4) = 0.0,
amplitude= 2.0,

113

freq = (0,00201,
phase = 0.0,
% = 0.0,
y0 = 0.0,
20 = 0.0,
Wu X = 1.0,
wuy = 1.0,
wuz = 1.0,
dissl = 1.0,
diss? = 1.0,
relax = 1.0,
nlimit = 2,
1g =1,
nitel 1,
nitel =1,
nite2 = 0,
disx = .18,
oulkvis = .true.,
xcl = -.5,
xC2 = =-0.,
xC3 = 0.014,
xcA4 = C.0714,
trans = .true.,
pistonn_so. = .false.,
model _sol = .true.,
/
ghv_b2.mdl:
$ System model created for ghv b2
$ Mach # rho-inf tsamp
.2200D0E+01 .286577E-06 .530005E-02
$ offs~ts
.467196E+05 .142193E+05 .550075E+05
~.383374E+04 ~.256670E+05 .164058E+05
$ na nb nr
3 7 9
$ Model parameters..
0.3412233293

0.0000000000E+QC
0.0000000000E+0G

..etc.

114

-.902893E+04
.132331E+05

~.148716E+0"

APPENDIX D.1.1:

AGARD 445.6 Training Response Data for Mach 0.499, g = 0.119 psi

02 -
0.15
xi 0.1 S

0.05
0 0.05 0.1

0.2

0.5 -

0.05 :

0 0.05 ol

x| 6 08 Cufer
vl I 4 & o diy model’
06 o LY
) &
2 o® Y,
IRV
- 0 Vi f| 04 r ? q&
4
- 2 L)
02 &
CTE
e AR f OI_ — - - . R .
0.18 0.2 012§ 0 00S 0.1 0.15 0.2 a2s
t
- . 6 01 -
2 . Euter
\E | 4 | ° dJ.modcl!
) 02 %
0 v (. 4 ° S ———
| . s A
P2 -03 voog R
w F
- R
)
) S 0.4 . ; .
0.8 02 0.25 0 00s 01 s 02 028

Mode) Order = 6-11

X2 Ertor Scaled RMS Error
/1 2.095228E-06 35587E-03
}) 8.166132E-07 29279E-03

1S

LY}

APPENDIX D.1.2:

AGARD 445 .6 Free Response Data for Mach 0.499, g = 0.787 psi

03 " Culer 10

e Euler
0.2 3 o C.L model 'Y o du model
0.1 - °T -3 &

: ; &, 4
0¢ o 0% 5% g% I N
> ¢ § o L3) #0 K °
0190 0 S° 02} 4 %3 $ o 04 N
Llee \4 °.L LI S $ e o |
4 ® !
0.2 . & : ' X v °) ol ° 0 °
RIS
03,4 Zf E: Se 2 Ly %
> X 5

0.4 . v ¥ v %93 9?

0.5 1

08 Buer ' 6, © Euler

0.6 i : . o di. model % o drimudel

Scaled RMS Ermrors
mode x f/
1 .20496E-01 .65620E-02
2 43228E-02 .88310E-02

116

APPENDIX D.2.1:

AGARD 445.6 Training Response Data for Mach 0.678. g = 0.219 psi

0.15
) o
ol !
| 1
Xy
0.05 .
I
0 -
0 0053 0.1
1
0.15
').
0.1
X
0.05
0 . . .
0 0.0 0.1

Model Order = 6-10

x) 6 4 ! Buler
v .4 12 S | o d.t model’
_ . = o ¢
LA
0 v, 1 ;‘. E&
| 2 y
4 06 fwj
' |
R . 04 4 o .o .
0.15 02 0 0035 01 013 02
t
X2 -6 01 Euler
v2 4 02 s dt model
2 -\ Q
03 2N
0 . 1, b Q :EF—
04 % 036\:
-2 - jo &
y 05 %%o
@
. . <6 -0.6 . .
0.1 02 0 EIN 01 01s 01

X2 Error Scaled RMS Error
f1 1.283586E-06 .29047E-03
)z 4.568292E-07 .52083E-03

117

APPENDIX D.2.2:

AGARD 445.6 Free Response Data for Mach 0.678. g = 0.581 psi

VIS . S L 4 | Fuler
g 0.l 02 03 0.4 s o Ui model
I° -
' 2. c-: %
0t ¢ o ¢
. ; gg\; ﬁ ;A; ﬁ f MRS
o s % > ¢ o ¢ 3 f . e
é -3 8 e % s 3 [0! o¢ - i .
.. 1) 56 2 : ¢ X ¢ : e ¢ ° °
080 8¢ o f g8 s ¢ 8 o o 0.1 0.2 03 0.4
vy Y VYV VL
;¥
o 2
$
. °
Euler ,+¢
03 1 _ d.ximodel ' .4 ¥ \
CEder 2. ' Fuler
03 . % o d1.model 8 '+ o dt model
& toT T .
Rl
4o) el
K3 i
0 e %; &,VWW
% ?o y O o ?I
ool ¥ OI 02 0.3 ng I Lol
3 % o, b S | 13 4
02 o e S
|‘E 9:
04 1 2 .

Scaled RMS Errors
mode X f/
| .10084E-0} 43738E-02
2 .18499E-02 47760E-02

118

0.12 .
0 .
008 |

X 0.06 -

0.04

002

0.12

0l .

0.08

5 006
004

0.02 .

APPENDIX D.3.1:

AGARD 445.6 Training Response Data for Mach 0.90, g = 0.387 psi

x|
vii . 4

v2 4

0 v,

Euler
o di model]

0 0.03 0.1 013

Fuler
s 41 model

fy-0.4

08 . .
01 (ais

Model Order = 5-9

X Error Scaled RMS Error
S1 4.096597E-06 73479E-03
1 1.724984E-06 12566E-02

119

0.1

01

0.2

04 .

03
02

o1 .

-0 1

02 48

03
04

05 -

APPENDIX D.3.2:

AGARD 445.6 Free Response Data for Mach 0.90, g = 0.333 psi

, Euler 3 Euler
. o dt model. . 8 o d.lmodel
i - T R 4
| > ?i
g_._ K J— 3 2.9 _ - i - 1 16\9 N :
¢ o %0l ¢ 02 ¢ 4 0.5 *4 ¢
e ¢ 9 ° ¢ § S e S e o f, 0 -??I B 4 . A
SEE T SR T I S R A 2+ got
R SR SR I AR 328 5% A 02 03 04 0s
R ‘o’ ¢ o g ¢ b¢ e b4 ¢ F R 7 o
‘o 2 @ 3 z o : : ° 2 A : 3 ;?‘ ‘
° ¢ o °© ¢ ° 2 8 -2 0l
> & ° 2 ° ‘e
VYV Voo
3 le
R
| Al 1
N Enler 2 Euler
4 o d.t model ‘8 I e di madel
e : 15 o
o, &
002% | |és
-3 B
3'?::3 - = o8 ﬁ
q,‘o g } 0.2 0.3 04 05 05 o
% R
N °
o° ¥ 0 jeed .
0 4 | 032 4 as
® °‘? W
;: 05 ? ?
t { l
Scaled RMS Errors
mode x f
] .14223E-01 .54725E-02
2 .19338E-02 A9110E-02 ;

120

APPENDIX D.3.3:

AGARD 445.6 Free Response Data for Mach 0.90, ¢ = 0.358 psi

.l
X 0 , ﬁ» Q
Q.1
¢ o o
o1 ¥ e $%
i AR R AR
RO R S S
02 T 60 g b
| ° =
e o 28 2
<

oo

ca006000°°™

o

A

900000

&
<«
e

— Euler
o 4t model

MR

o= 4

ooooo"°°°m
o o

066000°

boooovOooo
3

000009¢06
66000007

T el
<
<5
<

0006v000

_ Euler
| o dit model,

fy

3.) Euler
> 3 % Lo d.l. model
MBS
j %’.gﬂ
o °
0 1'..“;‘ Ry
| Q?J 01 02 Ul 04 05
i ®
!? ¢
22
o
)
-4 Is |
2. Culer
:€ o d1 model
s %
&
bl
R4
Y
05 SEIN

Scaled RMS Errors
mode x !
] 16495E-01 .60477E-02
2 20130E-02 53659E-02

121

APPENDIX D 4.1:

AGARD 445 .6 Training Response Data for Mach 0.96, g = 0.440 psi

0.1 . « -6 3 Euler
’ ®
: ' vio oy $ o d.l. model
008 : I [:)s £
P . d
i 1 . 2
boe 'I; | : e: "’,&i&_—
00 f Foo : - 0wy 2 s
4 Lo .
. L2 /
. i 15
002 . b
0 .- PR - e - . -6)
0 005 1 0f G615 0 005 b 01s
(
0.1 —a 6 0
oy 00S 0l 01s
o8 : 02 ’ Luler
| .2 ’ 2N o d1 model
006 . . ¢
? -) 0 v i bb ﬁ
014) ty-04 ° o*&\ &
i . A PRY
002 . g
- 06 . .
0. . s
0 005 . 0l 0)s 08 \

Model Order = 4-10

X2 Error Scaled RMS Error
/i 8.535348E-07 29133E-03
fr 3.855529E-07 T1631E-03

122

Xy -

03 .
02 .
01 -

Loz

o
- ©
PR

60D &

& 5 b &
wn &> [N
<

¢ 000000,

AGARD 445.6 Free Response Data for Mach 0.96, ¢ = 0.197 psi

ooo@‘:""
.
:m

°Q000e

<

"‘"’:b

AL

~
A LTI

(=]
(=

a

Y1144
-3

<.

°

@w

APPENDIX D .4.2:

Euler 2

° dlmodel (s

U 0.5 C.’#.-gl?
IR

e

NI [4

Euler I
o d.t mode) ’%

_o% & o3

Culer
o dt modet

04 (3

Euler
o 4.l model

Scaled RMS Errors

mode X f
] .17002E-01 .78799E-02
2 .10579E-02 .69822E-02

123

Xy

APPENDIX D.4.3:

AGARD 445.6 Free Response Data for Mach 0.96, ¢ = 0.233 psi

0.3 " Euer 2 Euler
02 . ° dl model 1.5 | g %é o 6.1. model
H I °
0 '- o °I
% & e o "_3
0% 3 ?l P 028 % og g 24
(SR U AR N A U T N A
0.2 88 b g k3 é’ 3 % go
03 _.‘\}? 3 § £
04 V -2 i
0.5 ! 25 I
0.4 Euler 12 X Euler
03 . ¢ o d1 mode} | i:°° o du model
- i
02 .} 0.8
cr & Lo
Oli°°5i& 06 .%,
o] t r'Rd ?o:g R 0.4
018,08 T 02 03 04 " gy
-]
02 |[¢° %o 3 0
03 :40 3 02
04 i? 04,
05 { 06 '
Scaled RMS Errors
mode x f i
| .17306E-01 .80539E-02
2 12232E-02 .66647E-02

124

01

008 .

X)

004

50?2 .

006

APPENDIX D.5.1:

AGARD 445.6 Training Response Data for Mach 1.072, g = 0.549 psi

I 6 4 5 Euler
vl Pe o dt model
- :' 35 . ; %oo
¢ °° A
; owvw f 3 ; ?f"q
5: 4
’ 2 25 /‘\f
4 !
- -6 2| . .
al 4] 003 0l
1
x2| 6 H i Euler
'V2| - 4 I o dt model!
2 I \ o‘\o
| NN
0w 6 oY ‘ D
2 AR
4 0.k u‘a
. -6 u7 .
0.3 0 0.05 01
t
Model Order = 4-9
X? Error Scaled RMS Error
i 8.104036E-07 82613E-04
/> 8.944349E-07 .71828E-03

125

Xy -

X3

-0.3

04

03
02
0.1

=4

01 9
02
03
04
05

AGARD 445 .6 Free Response Data for Mach 1.072, ¢ = 0.250 psi

Rivor-1
~ |
ii.?‘;:b

%o0o000

<

By

op 600

0000 P
60000

Q0 O0C 00

PR S S SR
Lo L1008

<

000000000
©00 00000

<7
<o

APPENDIX D.5.2:

Fulet
: o d.t mode) 9

¢
- 8¢
s
ﬁ 14
°
: 6 69
¢
§
§ o

Moooo%s
wooeoﬂh

Euler 14
o dl mo_dcl 12 :%
| :‘?o]
R
i °$

Euler
o ¢t model

Guter
o d1 mode)

08 1°¢o0

P et
04 0s oe U0 ke
»°?°¢‘o
04 %3? 838

0 0.1 02 0.1

04 Q.5

Scaled RMS Errors

mode x J
| 33614E-01 .12096E-01
2 15693E-02 .93875E-02

126

01

008

0.06 .

0.04

0.02

0

01l

008 |

0.06
Xy

004

002

APPENDIX D.6.1:

AGARD 445.6 Training Response Data for Mach 1.14), g = 0.622 psi

x| 6 43 | Edler
Y 4 ‘ J’ﬁ'“ o d.L model
2 | 90 %x @
T A
0 v I °
"":'. -2 ’ /J
4 25
R . _ -6 2
005 0.1 o 008 ol
! 1
x2 6 17 .
I V2 -4 fg ,6%
2 | ! - !) f_
0w fy 1o ¢ g $'
-2 : [Culer
o d1 model’
-4
-6 1.5
005 0.1 0 005 0
! (
Model Order = 3-7
X2 Error Scaled RMS Error
fi 4.206180E-06 .97420E-04
b 3.132446E-07 62405E-04

127

APPENDIX D.6.2:

AGARD 445.6 Free Response Data for Mach 1.141, g = 0.453 psi

0.) . | Euler
4.3 o dl madel
pist pert.

.03 Euler
o d.1 model
04 1 pist pert
0.3 Fuler 2 & Culer
. g o dt model S o dJt model,
015 ® pist pert. 175 T} g pist pert
i |
v eb Vo
15 ‘??
" of T'O g 3 .
i goygrlae: .
135 DR AV
AL
SRR
t b? °¢ ¥ o I
s ¥ o
075 . '
0 0l 2 0.3 04

Scaled RMS Errors
mode X f
] | .30972E-01 .80074E-02
2 | 32554E-02 65347E-02

128

APPENDIX E.1.1:

2x1 Plate Training Response Data for Mach 0.9, g = 18.9 kPa

0.0005

xt 0015 025
vl
00004 . 001 - ;i
. -3
' . 0005 0% :D tw 03
00003 | - 025 ¢ Sesy ey
X, | ‘I - 0 v, °° z 1: v
0.0002 | X ; f F
- ! .0005 1
! N <
0.0001 . i 075 . a8
{ -00l | kS Fler
|
0 . - . - . -0015 | o d.t model
. 2 . 4 : : h
0 o1 0 l 03 0 0.5 G l
0 000 . o003 03
K2|
00004 , v 00! 0 .\Wﬁ : -
' - 040 02 03 04 05
0.0003 ' , - 0005 035 3 .
000 v ae &
X ‘ 1] V2 -1 . ° o, ‘%‘ °W
0.0002 hoo e ¥y
. ;0005 as oy, :: ¥
9
0.0001 001 o, oo 4
0 001S 25 ti: L:uler
0 01 v2 63 04 05 ° ?: o diI model
L R 1
0.0005 3 aos K luler
: 04 d1 model
0 6004 , Vi nol P °
. 0005 0 -Aw s
0.0003 ' 04 0 Y o+ 0.2 0.3 0a 0
X1 . -0 vy o ° b
0.0002 . heos - R P f\ufv\,‘_
S -0.005 it J\r
: - 12
0.0001 .] RN
. . -0l .t
. -16 o 9 Qé
0 R 0015 ; %
0 01 Q2 03 04 05 ®
l 224 t

129

0 000S

o . 001s 002
00004 . - _"d | 001 0 ——d - —
0.1 2 0.3 0.4 5
00003 - ; 0005 002 0 D’, Ty M) ’
X ' -0 v .04 1 4% ?ﬁ'"ﬁ-
00002 f, % :z: ~a o
v -0005 006 . R
0.0001 ° i by
000 00l 008 gt: b
0 o _ . -0.015 0 | Culer
o 0l 02 0) 04 05 o o di made)
012 ! ¢
00005 S 0015 0
00004 | ¥ . 00l 04 %) _
| | : W, .)
0.0003 | ; 0.005 05 i’ ° » 0 04 03
X4 . i 0 v i 5 W
0.0002 . ; fo - pif
, « Il ':-0,005 % : s
00001 : 00 'S : o4
0. - — tois 2 b Luler
0 01 02 03 04 05 s ! o d.t model
|
0.0005 : xb 0013 0.1 |
0.0004 ¥ , . 00l o
© 0005 0 01 02 3 04 0s
0 0003 01, S
« .0 v, % o
b 0002 5, <02 Y @ f
-0.005 ¢ 838
00001 00 01 '3“.3 4
0 . . ¢ 0018 YR ﬁg Lt
0 01 02 03 04 05 o | s gt model
Model Order = 3-7
Xz ErTor Scaled RMS Error
i 0.65019E-04 0.16376E-02
1 0.71099E-3 0.19035E-02
/3 0.60215E-03 0.23282E-02
1 0.65482E-06 0.82354E-03
Is 0.49594F-03 0.26093E-02
fs 0.12489E-04 0.18831E-02

130

APPENDIX E.1.2:

2x] Plate Free Response Data for Mach 0.90, g = 43.3kPa

0 0006

o

00004 |

0.0002 -

. OQ
0000 00 ¢ oo
X 000 000000

o
>
og
«@%5,
0"“’°°°~a~o¢‘.
[e]
tv

€

04 06

X,y

T C%

pxd-

©-o
8",

00001 e

(-3

P

-0.0002 o

o

-0.0001 !

Foler
dr model

0 060005
o
[4 o

®
000008 °

®-0

-0 0001 t

0.6 OB 1

0 .
. :)k 02 04
L3

-(+000S

-0 00)

00601 . % Eulker

0 00004 . ! Lvker
LA o dU node
I
YA
spd
A 0 .lﬁ..i.W
Te e
o'y bl 0.4 06 IR o
Fde
A
-.00004
1
°
(-3
-0 0008 t

*Scaled RMS Errors not reported for static divergence case.

131

Appendix E.2.1:

2x] Plate Training Response Data for Mach 1.5, g = 52.5 kPa

00003

00002 .

00003
0 6002 '
N

0000t

(L

00003
00002 -
X\

0 (001

(U

Al 001s I3 Euler
vl 00l N o d1.model
. %
0005 :oi ‘%
. _ $
.0 vy 05 - f %‘,’
4 fl .
| -0003 0 ¢ B
' .00 o% 05 01 0I5 02 025 03
| o0s . &4
. -001S$ - }
03 .
Nl L
x2 0013 '3 Liter
V2 001 i % o 4.1 mode) |
e
]
0.005 6 ?!%
0 v. :IQ‘
. SEPE 2
. -0 005 0<° 005 01 015 02 02 03
o ¢
-0 01 \ o
- 'S @
[
-0.015 s 0&-}
03 | vt
22 1
3 001s 0.5 Tauler
X o dt model
v) ool v O A
. 0005 0 ®s 0.t 01s 02 025 03
05 °
| ! °
L0 Va ! o°
. ®
\ . m
' 0,005 PO o4 3
3882 %
. .00 1S oo & s 2
o: % .o‘?
. -001S 2 % %.‘.
o3 i
225 1

132

00003 ‘
- X

. Euler
w00 ' o g1 madel
0 e, — _ :
0.0002 . 0005 0 00s 014 015 02 n2s 03
X .0 v 0.05 2 t -
0000t) © 0,003 | 10 524 4 ,}f—
0.01 E Y &
0 . 0013 0.t5 Q%:
0 0. 02 03)
(02 t
0.0003 x5 0013 2 Euler
%) L G0 o dt model
. " 16 . :0 -
0002 . 0005 ' 6%
! [E | 12 | 23
X\ ' 0 vi I, . ‘ f %:’:
0 000) . | -0.008 5 3 ot
’ | -00I 04 :
1] | 6’
0. .- - . -0015 0 u_/\N
0 005 01 015 02 025 03 0 005 01 01S 02 035 03
t (
00003 . " 0.015 02 . Euler
w0 J 0.01 w o dt model
00002 . 0.005 [, O - S
0 005 01 0I5 §02 025 01
) V. 3 & o
) 03 b °
00001 C 0005 - VY
d 4 ¥
NOf o° :
04 ¢
0 0015 °;
0 0 02 03
1 06
Model Order = 2-6
X? Error Scaled RMS Error
Ji 0.24537E-03 0.12578E-02
}s) 0.13413E-02 0.21981E-02
3 0.71204E-03 0.98087E-03
I+ 0.44684E-05 0.97407E-03
s 0.32080E-03 0.92901E-03
Is 0.13145E-04 0.76119E-03

133

APPENDIX E.2.2:

44.7 kPa

x 1 Plate Free Response Data for Mach 1.5, g

2

Euler

0.001

d.t. model

Q

e

00004 .

<

i

€0 o

=, °
00 607

>
9?666000

066@

~ o
QQOOO.QQ

<,

oovovo.?Poo

pe- 4

60
o000 o

LS g}
>0 L SPPIN

b

xvoo.oo
oAO&c
ﬁoo
91?60.0¢¢o
o999
<

>
0?04.00000

000 O
| o0 @ O
9096060 M
o o-
° w6 g,

oo 00 22

—

<

<

oOé‘Odéo

00005 .
-3.0005 .

3

Fuler
o dol mcde

anooo@

-0 0008

-0.001

Euler

o dl mode

00006

00008

00003

[ler

-0 0006

dt model

o

-0 0008

Fuker

) 0gu4

Cuaker
o 41 mok!

00008

o di ikt

00004 .

09

03

-0 0008

-0 D008

134

Scaled RMS Errors

mode x f
1 0.16081E-01 0.85533E-02
2 0.13339E-01 0.10084E-01
3 0.77644E-02 0.11591E-01
4 0.22816E-02 0.35492E-02
5 0.36543E-02 0.85351E-02
6 0.24299E-02 0.46461E-02

135

0 0002
2
%, 00001 . .
0.
0 00s
00002
X (Y OMI
0
0 00s a1
1
00002
X 60001 -
1
0 . .
0 00s 0.1 gl1s
(

Appendix E.3.1:

X1

2x1 Plate Training Response Data for Mach 2.0, ¢ = 93.3 kPa

0013 15 Euler
! . 001 | &; o dl model
! . °
| 0.005 . f:% &
¢ Vi 03 ° 6.:%
' 4
. 0005 o by _ d
001 0.\3 005 01 015 02
0S
. 0015 j
01 0.15 02
(-1 t
0015 1.5 Evler
v2 - 00l \ ﬁ o di mode)
é°
! 0005 PR
03 # Eﬁ
0 v & 2w @
0 - TN
. -0.005 4
0% 005, o1 018 02
001 085 0% P
3 33’. N
0018 0 3;6 ! ‘;JJ
0ls 02 1
y 5 %: 1
Ot
N (1
.) M
vl I DOl o
0 ., 005 0.1 a5 02
0003 04 S luber
M TP i
.0 v, ¢ !o_e s o d1 mnde)
K -08 o oo o°
-0.005 MDA 3
i - '3 ° [oo P {P
- -3
. -0.01 o ! v 5
: 4 WS
. -0015 -16 . oy %
o s
0.2 N Iy
.2 1

136

0.0002

X, 00001 .

00002 -

% 0.0001

0 0002

00001 .

W ouis 01 Euler
\:l C00) o dI model:
0005 0 2
: 0 005 §’!0| ; 015 02
-0 vy oﬂ
G ooes 0! !ﬁ‘f °°,~
F 001 i . % :g”,
i 02 . : LN
- . 10018 ;‘3
0.05 0.1 0.15 0.2 i;
t 03 t
x5 001$ 16 Euler
¥ | .II . 0.0! 14 ; & o d.L model
/. 0005 I? , :“g
T -) i IR
SRR YT R
! ' ' { 0005 06 ' : 16 %N
’ : oo 04, o
, e 02 .
_ _A’_‘_ _ . .0.01S 0 N
0.05 0.1 0.15 0 D03 01 015
| {
- X6 aois 0.3 Euler
% . ool 02 o d.i model
J 0005 ol . \9&";
\ |0 Y) 10 3
,'I i I 0005 .0 0058 ol i{lsz’e%‘f 0.2
' 0ol 03 | B
. _ . 0013 03 6’3‘
005 0l 015 02 ‘ °
1 D4 1
Mode] Order = 1-5
X2 Error I Scaled RMS Error
S 8.020806E-04 .25668E-02
S 1.508839E-03 26402E-02
f3 8.996098E-04 12979E-02
4 2.950224E-05 .16760E-02
fs 3.973964E-04 J1353E-02
fs 9.230612E-05 .294083E-02

137

APPENDIX E.3.2:

72.5 kPa

2x| Plate Free Response Data for Mach 2.0, g

&

o

0
d.1 inodel

MR
i3
‘o
(P W
J j
Fuler
o

=TT

530 00
Qﬂ&u °
oo &P 00

a}T -
- Tbléleé.a..é o0 6?

POPERE oo

A
uonl. -
- ~ (=] ~ T 0
% 2 [=l o =
3 = S =1 > <]
=] < S o > L=
S 5] < Q < o
%

o0 oo0000®

piston

Euker
d.1. model
04

S

~ S v
JRNPN ofe R 09

23
9900 o.o.rv *s00a
..vhovwg
ﬂ”bé» 209 >
ooeom.v)géwg —-

0&060%00@69

3

s,

o0
ooﬁb.o&&.o

_.
o0 0 hed o~ hed b4
S o & o o 9o o
S & & S S S <
S & & o 5 3 B
S ©o o o o o ©

X\

peston

Euler

0.0006

0 0006

pion

m -
*'
£ K X
NS0
° w2
m&bﬁ%
$3ee
333 -
Q.waON.xPO.
- 2 3
2%,%3,5752
2% 0 5 ap
. ap 0 0
o _9 -0 b‘ —
oy %1 R
- O 0 oo
"2, %, 0
£-—-0 0.00‘
AWpop R b ¢
UL P P
¥ %20 % o
G R
g o S
co-g g S°% °
o -0 > ot rove
A= §2 g o - -3
— > — =6 -9 — .-
o Vo ° P~ a0
oy, >, T T °
> * - o -
o B8
=r 7 = ~1 - 0
e £ s 8 2
D & = Z Z
S e 2 2 3
Py
- ~ v
&09\(}0 ﬁ
=7 5
2 s
r-x-3
zw_v.oo.?“%
°
PR 2-0-v o290
9 o o.,é.%t
gﬂfvﬁ
o 0 e-o 009
< o
M%obo&v
_h.v?‘}mv OQW. -
BwEx 2 O Lo]
ﬁlé -3 09’
Y - A
90 9-9 o o P
#5890, % 0 ¢
° -0 0.000
g-0 © 9--0 2
e e o o3 o-_o
o6 Fiv. o0
T3 %se
%2
® - 0- -0 _—o . °
L S < o 0, Fe
~ %
O ooo N -4
03 °
-~ ~ < ~ - o
S = =) = =]
S <] =} b Es)
S < S S >
o 5 2 5 2
s

Ay mode!
04

Fuler
p;slun

[

03

10004
1000

o

Euler
d.t model
peston
Ak -
3 4

00006
N 0004

-0 0004

-0 0006

138

Scaled RMS Errors

mode x S/
1 .39945E-01 .25323E-01
2 .31449E-01 .21554E-01
3 .18765E-01 .25949E-01
4 .S6595E-02 .57867E-02
5 .10028E-01 21094E-01
6 73449E-02 .88454E-02

139

APPENDIX E4.1:

2x1 Plate Training Response Data for Mach 2.5, g = 145.8 kPa

00002
x, 0.0001 .
0 . B
0 005
0.0002
%, 0.000t
1
Q
0 005
0.0002
x, 00007 -
0 _
o 005

xt s 0.015 15 [zuler
MY s o d(modet
; 1. i::
! 0005 : 5
£55
. 0 v § °o¢§
f: 0.5 9' Q‘?‘
-0.005 ¢
, o
001 o | _4 _ \
. - . .0015 0 é 005 0.1 als
‘ 0.] 015 05 (
0015 15 s Euler
v2 00l I 3% ¢ dt model
y &
0.005 R
0.5 g 18
0 v b dq &
» 2 R A4 L 3 V SAS
: |
boos 1 U= 2
3 005 0.1 ul1s
05 ¢ ¢
00l S e A
> 30:
Q015 A % e
0l 0.45 %3
2 33
13 A t
. GOIS
x3 - 0 gy
.0
d, ;00 o3 o.osa\” 0.4 0.15
: D00S 04 . ¢
| T ke ¥
. 0 v M f%.’ %
e 08 l f. °°
. -0.005 o © % ﬁz‘
i _|2 1 ¢ °. & Ly
;001 °: 23 .
P ? vler
= - <0015 16 o4 o dl mode!
015 ®

140

Euler

0.0002 « 003 0.1
v 001 o d.1 model,
- 0 .
- 0005 0 005 0 n1s
X 0000) - S0 v 01 /‘&;&.
oo0s K [
02 . L oatd
. 2 -00) 3¢ <
0. — b 0015 03, gj
0 003 01 015 s
t 04 1
0 0002 ' 5 00135 14 Euler
v | 001 12 ’g o 91 model
i 7
| 0005 I oz \
x¢ 00001 . ! 0 v, ,.!zz ! : 0152 M
v -0.005 T f L
: _ 04 . ¢
oo 0.2 M
0 . _ _ - -0015 04 R . _
0 0.05 0.) 0ts 0 0.05 0.l 01s
L]
1 0002 x6 0015 0.4
‘6| ; ool 03 f I 'd:.Ll]_]::odcl
| 0005 : 3 e
02 SAN
X 0.0001) 0 s K \n%
, :.'0005 L o1 . f \ 3“
00! 0 4 gj{
0 0.05 0l 4 018
0. 005 01 1 ¥
0 00S 01 015
| v l
Mode! Order 1-3
X Error Scaled RMS Error
1 1.896773E-03 .32495E-02
1 3.089939E-03 .34275E-02
) 1.310361E-03 .16354E-02
fi].728338E-04 .33200E-02
I 4.715930E-04 .13263E-02
/s 2.935628E-04 43694E-02

141

APPENDIX E.4.2:

d 1, model

Coler

d.1. model
prston
m‘i
t-uke

4t inokt
eton

=z
L M. 600%%
o - = o
P
M p oo”%g
AR T
- ’M‘O
sy L3
S o 9 - -
~ P LTI
e o e Boe
00 e % [
oo 2000 s e
[@) 6\066&4;\“ oy X .vow.v o
1] ®3) s o Lo R AR PaniNg -
= ©o 00 PN ob-wbﬂ?..o.,vﬁav.
- °o ob’?ooo\u.v) w«uwu..rb.uwuoo oo -8 ||W..
P -2l DA &lley JEg X2 2 2 vo- 8 -zf T 1% “oy coa
. > 2939 gl@ll‘ - |¢@ o2 A‘°|06 ® 4
o % P2 ;T30 A..ou!sy? 0P 0T :
M.‘w V=] -1 oL [ol - -] -r ~ = o < e} ~t o
< [} o o) [l [=3 [l = [~ 2 < - =
M =l S f= < [= 2D = < =4 z Q =2
=1 <3 S S = 3 > 3 s = & = =)
_.Ol o < (=) < Q@ <o = < 2 > < < =
[= = i
& w3, 1, me
-G &S - m 1 - E %
Q B&.Nmo ® o 6.0 kTl] u m oL ?Qlohﬁa
2 AR 3353 Py
8 «283%5%°% o o o Q%Ma.o L.
oa % 30w
7 o ForLs
R &0.060_060 ’.Wwdx,b 000
22 RV 900 o P 6%
O bbob.oowog éo&o‘oéb .0wa%
m P 9‘.&000..»00!00” o £8® W07 540 som
(49} &Oo * o 0&&%‘ =4 8 L otew
V] 06.’0@ - ﬁo DD 9 - OnG.W% | < -
= ! e W ke AR LI IN
= i AP = Lot AN NP4
(a9 PN &o%ﬂoooo bl RS T
4400000 o o o 0 3 o053 T o
- oovﬁowv WL oo PR PR SO AN
X o000 e 0022 e 800 a o b 3ee RO Ak
e giz = 3 o ol g 0:9.0 o 2% 4o
JRRReE- S SVENS N Seneg s 8 dom
Y o :
000 >p00° 00.0'04401$ *®- % " %o ..00000)
s, R A g So 8l
bad o *P% 5.0 Y o- 20 %o o> P DY - 0" ﬂ.|0.. PPN
i v e 9.0 o PP Y PR A o
AT 3% el P
ol < ~) = < b= ¢ O O b 4 o~ o o™ -t Fel
E 3 g ° g g & g 8 B8 3 28 8 g 8 2 2 8 8
S g8 28 2 g8 38 S s 3 S 3 o s & o 3 o [S]
S g S = Mw P a o & L 9 c o o < = o &

Xy
X\
X

142

Scaled RMS Errors

mode x f
1 40654E-01 35291E-01
2 32910E-01 35601E-0l
3 40622E-01 22889E-01
4 9192SE-02 .10053E-01
S 19524E-01] .30012E-01
6 87521E-02 .10680E-01

143

APPENDIX E.S.1:

2x] Plate Training Response Data for Mach 3.0, g = 210.0 kPa

0.0002 Tl 00($ 15 Guder
vi . 001 & o d.t model
— K o
.] 43
. 0005
3 ’ R 2
. @ g
x; 00001 . . 0 vy é’ .oz
, fi 0.5 s ¥3

.) - 1 .0015 0 & 00s 0\ 0.3
D, 0\ | '
0 05 ‘ 015 05 l
0.0002 ° 0015 2 Culer
v2 , 001 LS o d1 model
. A
| 0005 : g 4
0s & 3
X; 0 0001 | 0 ., © ¢ M
Lo ,
- -0.005 6 3\9;005 X 0.1s
085 Y & : - i
‘ B
. =00l g
|
0 . . -00IS s
0 0.05 01 0.15
1 -2 !
D 0002 O . 0015 05 Euler
o d mmndc!
vl - 001 ,
0 om—, 3
. 0.008 o % 00 0l 013
. % :
\ 00001 S0y 03 M ﬁ‘
‘ f\ .
' -0 00S q S e [
s ¢
B -0,01 : °
: s %
0 - : 0015 ¢
0 nos 01 01S
()

144

00002 9 0015 01
W .00l 0 i
i 0.008 o 0 005 "ﬁ 0.1 015
X 00001 - 20wy J %
| -0005 02 p fo‘lg_
P Euler °° P o
- Lo 03 o d.L model 1%
o . L .. <0015 ' ®
0 00s 01 6.15 04
1
0.0002 < L 0015 14 Euler
V2 . o dl.model
001 | : “; ﬁ ,
0.005 . :0: § ‘},Q 3
x1 0 000] - 0 v o1 2 iﬂ f
0.6 Y P
N 3 4
-0.003 04 :g 9
- 001 02 $
0 = 4001 0 '_/\,\
0 005 0l 015 0 005 . 0l 01
£ 0002 0015 04
X6 ¢ Eufer
¥ - oo 03 ! oé";t o dt model
. 0.005 I 3 { %
x. 0 0001 ;o T v Loo2 : ¢ '3?9
-0 00S ; N \\ %5—
| ol . 4
| -00f ' 3 3/?
0 L ols) .;‘\J
0 005 01 01s 0 00s l ol 0is
Model Order 1-8
X* Error Scaled RMS Error
M 1.321868E-03 .34478E-02
¥ 1.165202E-03 32248E-02
1 5.163262E-04 15764E-02
T+ 7.336602E-05 29532E-02
s 2.077165E-04 .14443E-02
s 8.023278E-05 31326E-02

145

APPENDIX E.5.2:

2x1 Plate Free Response Data for Mach 3.0, g = 131.8 kPa

0.0006
00004 - %
3 T3
00002 :% R
%) s g b ¢
@ * 4 3
0 3
o b4
* <
-0 0002 . v
1
-0 0004 S
0 0006 , Euler
o db. model
wLon
0000t g & ¢ L
e 2 > & 35
0 0002 :oozgqot%m Z° g‘« ;Z&:,:
9 A ol o o,
< o e, 02:%&:' °¢ 0! of o 4o |
1 } ;050 » 9 1é 97“ ®op
00002 ©% {diled XK. "
? bo§% o 9 ey %g ;
i % o [
-0 (004 ; 3 % % % 3
- DOO6
0 0006 Fuler
M % Iy $ g ° dt. modzl:
00004 ,4 go g g6 2 & psion
§i %ﬁ %» 3§ gy};ﬁg:%§;:
00002 &%, ¢pee 285 48 00 ege
° -4 .0000,: R '¢¢00W° %?-06 o‘°°°v
Toa) o1 00% T g
Xt 0 %pg :,00?1@“’??10 P “Qt O.o .? 0}_0.'25'950:?
oﬁb‘o °°°°°Q°£’° w I° A °°°°Tu°§’4
00002 12 T Lok TN
K2 LT O {ha¢6§0°°g"“ 2 of
AP IR IS T I TN
00004 g g .‘: f o;' F
LI

-D 0G06 t

146

00006 Euler
' o dl. model
polon
0.0004 |
00002 . 33 49
o§ et
Xy to o: i
) $ °3 ® °
‘ . e 'y % .
?'U te
P4
.00002 | E:
9
-0 0004 1 ﬁ
0 0006 Eukr
° U ode!
00008 | 554 pision
o4
002 . s be
1
X i) I;
00002 12 *
-0 0004 .
-0 0006 1
OO Fuler
o J1 model
. 2 '{% psion
0 0002 'w"tfii
RN : :
a.,°°°|3°7§ 3§%$.
TING ﬁ:-‘hm* é%g '
0 0 que’ §‘°’ bt 3%?’&%’ & DM
1 .
A L1 gev o
AR 13 i
00002 Sode
ol
g,
U 0004 ¢ 1

Scaled RMS Errors

mode x S
1 27560E-01 28512E-01
2 29716E-01 .42520E-01
3 A43792E-01 .36328E-01
4 S1908E-02 .16343E-01
5 44204E-01 .30009E-01
6 62852E-02 .11916E-01

147

|

ol

008 :

0.06

]

002 .

al

008 .

0 06
Xy

004

0.02

01

nys .

006

004 .

004 .

APPENDIX F.1.1:

GHV Tratning Response Data for Mach 2.2, g = 114.5 ps)

x|
v||

05 |

[}
2
V2
05 1
1
x3
vl
0s)

s
|
.05
-0 v

08§

- 03

05

103
0 v
05
-1

-5

52000

50000

Iy 48000

£6000 .

44000 .

15500

15000

14500

14000

6000

§5500

55000
fy
54500

$4000 .

53500

148

liuler
\ I o d.it model
‘i
bat
é
P*M
- I
s 3
[¢] 0S5 |
Fuler
| o d.t modcl
i
/N
L
0 08§ 1
1adcr
o dl model
N o
9
,/ V‘/*\@. ’; aék..__
oo
§ 5o
$ed
144
0 0s 1

o1 -) -87s0 . . . S

x4
0 05 i
008 oW ! -9000 | 4 .
' 05 o
006 . 9250 _v s
“ ‘ -0 % q L9500 -
004) :
. _ .03 9750 . ,;'.
002 . 0 ! g 4 Viuler
0 s 10000 . I o dt ntudcl
0 0s | 10250
t 1
o1 ‘5 (s 13900
v5 b 0 05 |
008 . N ["
: ' : +14000 X Exler
006 - L o3 b4 3 o d.l.model
: NPT P
Xy] . 0 v e 48
004 : s $ 8.0 \
. L) L) ¢
i 2 - -0.5 -14200 - { é f.
002 T - ¢ / K
14300
0 - S-S
0 0.5 l I .14400 .
ol “ .18 -3700 -
“ - 9 05 I
008 . : .1800
' .05 oo
006 o -3900) % ~
Ny, N - °
804 b §o »'ég \ 44
03 -4000) [3
! °
uo2 _ S
' 4100 . ° F-ualer
0 . 15 I o dU modcl
0 053 (-4200
t (
ol - 1.5 .24000 i
x7
7 | 9 0.5)
008 Y -25000 .
- 05 .M
606 -26000 .'\(‘q. t
X5 , 0w T, > ry o
004 : T
, 05 27000 b
! ’ . e
002 3 .
228000 . XY Euler
0 -1 j o dJ moudel
4} [INS | 29004

149

01

G0o8

006

Ny

004 .

0.02 .

0

0.08 .
066 .
004

0.02 .

8 1.5 16700 Cller
@ ! o dt model
r) 16600
, 08
' 4
S0 w o f16500 /‘xx
, 05 ' §
16400 M
-1
_ R L R I {6300 — .
as . i 0 as . |
x;)- 15 13600 : baler
v | o d1 model g
(3500 -
05 f%g
0 v 13400 - é &;L
) -0.5 f
' 131300 | W
. . I I 13200 .
) X 1 0 0.3 \ |
Model Order = 3-7
g X2 Error Scaled RMS Error
fi ‘r 5538.39 0.14082x 10"
e 284.35 0.89520%10™ |
5 44476 0.31621x10™
f 208.22 0.11144x107
fs 147.71 0.80395x10™
Js 16.86 0.87107x10™
S 1908.15 0.12099x10” |
Ja 18.55 0.21570%10™
Jo | 79.92 0.46991x10™

150

APPENDIX F.1.2:

43.3kPa

GHYV Free Response Data for Mach 2.2, g

0.5

N

Euvler

— d d - . —
] < 2 “oeeensy
.M x x e eo.
E g £ y £ oo
. =1 = = oo 9
~ -] = voe®®
= TR | PRag— pe
A»o o a. o by
° ° - -
o e E,,
aneo?
cad®
]
=
-— — -
oo.oo.ﬁo <
ﬂ?o.o.Oc =
> e0o,
- oofbu
o w0t °
* 0
Sa, . ™~
- o m
A J
4040’
PECE g
<
.o
- - .
o ~ ~ ~ oL < 2 -+ 2
’ : . -— —~ - ~-
=) 0. -_— = < = =
Z
— = -~ S —
3 3 . 3
o m g
E g oot 5 =
— m -— R
- © a8 o .
Bl e i
° ° < 2000v ol =
- Y 2
.2 A 2
o o’éoo o
- e T -
’.
PR 9
eo®? 0000000
~
! o “”6 =1
< 00.0.00 009060
oooov TS e0,
2 609
LI B o-'e® 9
- o® - -9
o0 *? e o0
<5 Beees 3
° o - e o
20 -0-o .ay ° o.o?ﬁv
<
Hv > o 20
coov’ Abboo
OOO.Q\Qlcu L PO
- PV oy o
A — o — L] o < 2] ol — =3 - o
—_ \
i
2 2

151

0.2 " Euler 0 $

a o dL modl N a»n 04 0 0.8)
S o 5 P e Fy
o’o.‘, '0-4"’.“.?.015?.:.3&
o AR e A R T MO LR
:to:::‘.:iJ\/v '08-“. ‘0.‘|00.‘:‘0.°‘
::610 :: Iy ‘0.‘..‘0..,‘?¢. 61:04
Xy “ g ‘.: ?: X _|2 66 o %, “ o ¢ ., t‘ s 1°
0¢ % M4 . ' ¢ W b lg % % ‘; < >
¥ YIS ;’0 “ o | 3
0 0.2 0 06 08 t 16 ? < ‘:
: Eulee
0.1 l 2 1 s G model
02 . Euler
I o d modet
oy & .
e.:(gzﬁmgo.aaos |
I T IR SR LA S S
R R I AR i S L
“ 04 S L ORISR
Cle ot e T 29 o0 Yo 0 ¢ V
RPN BT I
0.6 :éi 0: 1. f', ot L ¢ ‘Q‘O 4
o v ¢
0.8 |
Scaled RMS FErrors
mode x /
I 0.75033x10 0.78669x10
2 0.62579%10"' 0.44279%1¢"
3 0.84022x10? 0.57940x1072
4 0.64602x10° 0.45618x10"
5 0.74672%10°? 0.84044% 10
. 6 0.62026x10"' . 0.58709x10"'
] 7 0.11230x10" | 0.11235%10"!
8 0.87352x1072 0.30137x102
9 0.14528x30 0.11506%10"

152

APPENDIX G.1:

MULTISTEP Subroutine From STARS CFDASE

subroutine multi (nr,nr2, xn,xnl, rbcx, isize,
& delt, istep, ntime, ttime)

c****wi*i*&*«**&******&wt*w*&i*&***ik*ii*-iiﬁ-iii*ii*&*.i***k***v*p**wic

C** Subroutine to force a multistep oscillation of generalized LiC
C!* displacements and velocities for each mode shape. LiC
C*i -ic
C** Written by Tim J. Cowan *+C
Cdvi- W*C
C** Comments: “*C
C** * the multisteps follow a standard 3-2-1-1 type funcrion. **C
C** * the magnitude of the step is set by rbcx *+C

Civui*tii**iii*****\h*«I-*&iv*****W**iﬁ*i*i***ii*ti*ii*f-‘ri?**i**-i—iotiktibc

implicit none

integer i, nr, nr2, istep, ntime

real rbcx, delt, rttime, =n(nrZ), xnl{nr2), xno’d
intzger isize, initial

data initial /5/

Cﬁf&&i*******tii**f***i**ii*i*ii*i*i**i*ti*'k&*ii—&ti*i*#ii**llih*b*r* l—ic
C*

C***+» Loop through each mode shape and determine the velocity and

Ct¥** displacement for this time step

CVH
write (*,*) 'Forcing Multi-Step!',6 rbcx
do i=1,nx
%xnold = xnl{i+nr)
C-«Ir

CH=+ews** Setup a Multi-Step of the generalized velocity for this mode
Cv

1f ((istep .LT. (initial + isize*(4*i - 4))} .CR,
& (istep .GE. (initial + isize*(4*1 + 3))) } then
xnl{i+nr) = 0.0
elseif ((istep .GE. (initial + isize* (4”1 - 4))) .AND.
& (istep .LT. (initia’. + isize*(4*i - 1))}) then
xnl{i+nr) = rbcx
elseif ((istep .GE. (initial + isize*(4*1i - 1))} .AND.
& (istep .LT. (initial + isize~({4*1 + 1)))) then
xnl (l+nr) = -rbcx

153

elseif [(istep
(istep

%nl (ienr) =
elseif ((istep

(istep
xnl (i+nr) =
endif
xnl (i) = xnl (i)
end do
return

end

.GE. (initial + isizer(4*i + 1))) .AND.
LT, (initial + isize*(4*1 + 2)))) then
rbex

LGE. (initial + 1i1size*»’ 441 Z2))) .AND
.LT. (initial + isize*(4*i + 3))))} then
-rbex

t 0.5%(xnl{i+nr) + xnold) *delt

154

APPENDIX G.2:

AEROMODEL Subroutine From STARS CFDASE

subroutine aeromodel (filen, istep,na,nb,A,B,u,y,nr,nr2,xnt, fa)
C&é-*i**iiiii*h#*i****ii*ii***h*’**iii**i*bi******i**iv‘&**bti1¢*$i¢*ac

C* Calculates the generalized forces based on generalized vC
C* displacements using a system model generated from a least *C
C* squares fit of test data. *C
c* “C
C* Written By Tim J. Cowan +C
c+ *c

C*#'+++***i*i**ﬁ*#i*******vii&iW**r&***ii*t*i***b**ii*\iﬁ*ﬁh**iﬂ+‘ﬁtiic
C*

character*20 filen

integer na, nb, nr, nrZ2, istep

real xnl(nr2), falnr)

real y(na*nr),u(nb*nr), templ (50), temp2 (50)

real A(nr,na*nr), B(nr,nb¥nr)
c+
Cv***i++**+ii***v**t**++i*i&*i********iii***}***i*iiiﬁ*i**+**+&*+i++i¢c
C+

write (*,*) 'Computing generalized forces using aeromodel...'
C\lr
C¥k+¥kvev Tnitialize the inputs/outputs to zero for first time stey
C*

if (istep .EQ. 1) then

do i = l,na*nr
y(i)y = 0.0
enddo
do i = 1,nb*nr
u(i) = 0.0
enddo
endif

Ci
Ctg&’i*ti&&isv*i**i**iJ-w&i*«it-iwk»w**&w,wttt*i+tti+ﬁ*+iit*¢iﬁnb;ih*&kh*iic
C* Calculate aerodynamics with system model LC
Ci+b*i*i*i*i*--**i:&it*ii*i**iiﬁh**ﬁk*ki-it&*&&bt*iii&*i&ﬁ*iii**biii*lc
C*

C**** Shift the input and output vectors so that they are setup for
C****%* the current time step. The system model requires na past

C**<* outputs (forces) and nb past inputs (displacements).

C*

do i = 1,nr
do j = na,2,-1
y(i+(3-1)*nr) = y{i+(j-2)*nx)
enddo

do 3 = nb,2,-1
u(i+ (j-1) *nr)
enddo
enddo

u{i+{(j-2)*nr)

155

do i = 1,nr
y(i) = fa{i)
u(i) xnl (1)
enddo

It

C*
C¥*** multiply the input and output vectors by our ccefficient
C**** matrices and we have the current cutput (gen. force)
C*
call mmult(A,y,templ,nr,na*nr,1)
call mmult (B, u, temp2, nr, nb nr, 1)

dga i = 1,nr
fa(i) = temp2{i) + templ (i)

enddo

C*b&wﬁ*ii*tiiiﬁ****it*k*&ii&*iiiiiv-**#*ittﬁitt*‘*ii+*i*bki**i&***ii*ic

C* End subroutine aeromocdel “C
C&i****‘&*wi**ﬁviiiwitbii**i*****b**i*i&*i&++wiiiiii**i*i***v++ii’i**ic
return
end

subroutine read_model(filen,na,nb,nr,A,B,rhoinf,offset)
C*\(—\b*-{%li&i—*i*l*****t*‘ei*ﬁ*i***ﬁiiﬁ*"i**i#ifii**fy**bﬁ L**ii*ii*#lvlt&AC

C* Subroutine to read in the aerodynamics model parameters from “C
C* a user specified data file. +C
(ohd i
C* called by: aeromodel.f v
c* ‘C
C* comments: “e
C* *C

Ci+**h**?*iﬁ'iiF**if*i**#*i****ifiii&&il*iiiii*ﬁi&***i}k‘&&‘nt**&&iiLﬂc
Ci

implicit none

character*20 filen

integer in, i, j, %, na, nb, nr, len

real mach, rhoinf, offset(nr)

real A(nr,na*nr), B(nr,nb*nr)

data in /12/
Ci
C*f‘*&*&&1**i*****ﬁ*i*******+****+i**v+i+Gf&hkii***iii*‘ﬁ*ité&’ii*iAwbﬂ

C-&-

write(*,*) 'Reading in model parameters...'
C%
C**** Open up the model coefficients file
C*
len = 0
do 10 i = 20,1,-1
if(filen{(i:i}.eq."' ') goto 10
len = 1
goto 11
10 continue
11 cpen(in, file=filen{(l:len)//'.mdl', status=‘old")
Ci

C*+++* Read in the model constants and number of parameters
Ci

156

Cﬁ

ci'*i

C&

C*
C-'i‘-*
Cﬁ

C*

Cl

C&vq+*oﬁ1ﬁ}&****&#i**i****t*t.ttrhiw*i*&iiﬁ*?Piiﬁillwﬁ+)q‘ihAb!lIrliJ.P
—

read{in, *)
read{(in,*)

read(in,*) mach, rhoinf

write (*,*) 'Mach#, roi'

write (*,”) mach, rhoinf

read{in, *:

read(in,*) (offset{i), i = 1,nr)

write (*,*) 'offsers...’

write {(*,*) | offset{i), 1 = 1,nr }

read{in,)

read(in, *) i, j, k

1f ((i .NE. na) .OR. (j .NE. nb) .OR. {k .NE. nr:) then
write (*,*) 'nma =',na,'nmmb =',nb, 'nr =',nr
write (*,*) 'ma =',1i,'nb =',3,'nr =',k
write (*,*) 'Invalid number of model parameters!''
stop

endif

Read in the A matrix of coefficients

read{in, *)
do 3 = 1,na*nr
do 1+ = 1,nr
read(in, *) A(i,]}
enddo
enddo
Read in the B matrix of coefficientcs
do j = 1,nb*nx
do i = 1,nr
read{in, *)
enddo
~nddo

B(i,j)

close (in)

write (*,*) ‘Done!’

C* End subroutine read model

Cﬁ&i*i*&i&w&*li**vi**&***i*ﬁ'hiP*#**ini*:*rviii*iii&lﬂ}Atii+l&t&ﬁiiiihﬁ

~
C*

return
end

157

APPENDIX G.3:

CFDMDL Program

program cfdmdl
Cit***i**!v*******ﬁt**ﬂY**ﬁi*i*k‘**i**i*****ﬁ***iﬁi***‘***il*iﬁt-‘#i*hc

-+

C rC
cY Written by Tim J. Cowan ‘o
c* *

C*****l(w*kii*ii&i*++i*i1**tiirfw*'***i**iv*vwiiili****ivﬁiiirﬁwiiwibic

c* General Subroutine Calls:

c*r
c* cfdmdl ----- input _asenl data ----- read_asenl scalars
c* ; | |-- read_asenl_namelist
c* [|-- create_pointers
c* I
c¥ mail ----- read_xndat
e~ |-- dtrend
c* |-~ create arx_pointers
c* {~~ arx —---=—---=---—-——-- svdcmp
c* {-- svbksb
C*
c*i****s+ibh**i*i*+1iv***i**ii**ii**i****iiii**‘****i*¢4éﬁi++riiiiqi&ic
C
parametexy [MXDIM = 3000000)
real a(MXDIM)
C
character filen*20, textread*20
common /tapes/ INA, IN3, NTAPXN, IMA
common /data/ nr, nr2, nstep, nma, nmb, tsamp,
& xmi, roi, ainf, gamma, winf, pinf
c
Cmmmm o T T T T - c
c
INA = 22
IN3 = 50
NTAPXN = 25
IMA = 17
c
G = e e e e e o — - m - c
c *** program header:
e m e e e e e e e e — e m e ————— - c
c
write(*, "(5(/),"'"' *=* Program CFDASE MDL ***'',3(/))")
c
o mmm oo oo o e e e e e — - m - C
¢ **~ Get the problem name
m e m e e e e e e ————————————— ——————————— -
c

filen = textread(' Enter problem name : ')

158

C = m e e e e e e c
¢ *** Read in the information in the scalars and namelist files
Cmmm e e e e e R A e e e e e e e . e — —————— o]
c
write (*,*) '
write (*,*) '">>> calling input_asenl data irom cfdmdl...'
call input_asenl data { filen
nr2 = nr*2
C
G m e e e e - c
c ¥¥¥*¥ Create the workspace pointers
o e e e e ————mmm—————————— ~
C
write (*,*) '
write (*,*) ’'>>> calling create pointers from cfdmdl...'
call creatve pointers{ ixn, ifa, iz, inn, ioff, ith, iend)
write(*,*) ' '
write(*,*('' **%¥ MEMORY ALLOCATED : v, 110)"') iend
write(*,*('*' *** MEMORY AVAILABLT : ‘', 110)') MXDIM
if (iend .GT. MXDIM } then
write(*,*) 'Increase MXDIM'
S5TOp
endif
c
Cmmmm e m e m e e - c
c ¥~*+v Call the main program here
Cmmmmmmm m m e e e e ——m— - - c
c
write (*,*y ' !
write (*,*) '>>> calling mail from mg asenl main...'®
zall mail(filen,
& a(ixn), a(ifa), a(iz), a(inn), al(ioff), a(ith),
& a(iend), MXDIM-iend)
C
= e e e e e e e R R A e e e e — S SR e e S — = — = [
c -** Successful completion of program
G m s m m e e e e e e e — - c

write (*,*)

stop ' OK!!!

end
C*ii&v****ii—iwiy«b*i***iv***ii*li*i'&&*i*iiitiiﬁ*ﬁik*b&&wl&-ﬁ&i*-ilthlwpc

Cki&*****iii******ii***i*iitiyi*t&i&;*&*i+w+-i&bk+i*iA¢;*+++h*++ia*¢'AC

subroutine input_asenl_data(filen)
C&*i,+i&i*&i*+*+i**&i+&*i&i**&*w*iwii*ihiiwa-&***i;****h++i+*#i+§+f1a+c

C
character filen*20
common /tapes/ INA, IN3, NTAPXN, IMA
common /data/ nr, nr2, nstep, nma, nmb, tsamp,
& xmi, rol, ainf, gamma, uinf, pinf
c

159

0
+
»
L]

(@]
heol
[p]
3
ot
o
1]
1)
0
o7}
'_.o
[+1]
[ad
wn

—

o

-

D

Y

3

Q

~

[¢]

a3}

.

e

o]

(g

o

a

(7]

ct

[\Y]

l = namlen(filen)
open (IN3, file = fi_en(l:1)//'.sca.ars’,

& status = ‘old', err = 2000)

rewind (IN3)

call read asenl_scalars

close (IN3)
c
c
o e et it e c
c *** Read in the namelist data
s m s T T T T T T T e T e e e e e e e e e e e e e e e e e s ——— - o
o]

1 = pnamlen(filen)

open (INB, file = filen(1l:1)//'.conu',

& status = 'old', erxr = 2005}

rewind (INA)

call read asenl namelist

close (INA)
c
T e e e e e e e —— i — - C
c *** Successful return
Cm e e e e e e e e e e e e e e e M, e e —— - ———— - —— Il
c

return
c
G mmmmm e m e e e e e e e e e c
c *** Unsuccessful error messages
Cmm i m o e e e e e e e e e e o <

2000 write(*,'(/,''Error: when opening asenl scaloers file'')')
stop '2read0’

2005 write(*,'(/,!''Error: when opening asenl namelist file'')’)
stop 'zreadl’

return
end

C*i*****iitf*i**t*yii***i*ii**ib’t**tii*ﬁ*i***iik*tii*h(*i*lbibﬁi*iii*c

Cii**i***iﬁ*i*WVii**i*iﬁi***k*i******iﬁ***tiii*ii+*i**&i*i*bt*‘ili*!iic

subroutine read _asenl_scalars
Y R A A R AR L R A S R N A N R R R AL S A SN A RS TFEEIRAEINENEANNELSENE RS FAE IR IE S 5 SRS N

C

dimension isnorm{1000}

common /tapes/ INA, IN3, NTAPXN, IMA

common /data/ nr, nr2, nstep, nma, nmb, tsamp,

& xmi, rol, ainf, gamma, uinf, pint

c
et e et o
c

~ Ecito to screen:

C
write (¥,*) '
write (*,*) ' >> READING NORMAL MODES *.scalars FILE..... !
write (*,*) ! !
c
G e e e e e c
c *** Get number of normal modes
Cmm e e e e e e e e R e e e A R e e e e e e, — - ———————— C
c
read (IN3, *,end=2010)
read (IN3, *, end=2020)
read (IN3,*} nr, ibecx, rbcx
read (IN3, *,end=2020) isnorm(l), { isnorm(i), i=2, isnorm(l)+1)
c
¢ Echo Lo screen:
c
write(*,*) ' > (3.23.7) NUMBER OF MODES °*
write(*,*) ' nr = ',nr
write(*,*) ! ibex, rbex: ', ibcx, rbcx
write(*,*) ' jsnorm: ',1snorm(1)
write(*,*) ' isnorm: ', (isnorm(i), i=2, isnorm(1l)-1 }
C
Cmm e e e e e e e e e C
c *** Read in flags for reading and writing:
T e R Stk et bt c
c
read (IN3, *,end=2030)
read (IN3, *,end=2030) iread, iprint
¢
Cmm e e e e e e e A e o c

c *** Read some parameters to dimensionalize the forces and pressures

c

read(in3, *,end=2040)

read(in3, *,end=2040) xmi, roi, ainf, gamma, pinf
¢ Echo to screen:

write(*,*) " > (3.23.5) mach-inf, rho-inf, a-inf, gamma, pinf'
write(*,11) xmi, roi, ainf, gamma, pinf
1l format (3x,£7.4,2x,E11.5,2x,£9.2,2x,£7.4,2%,£7.4)

c
Cmmmmm T T T T e e e e e e e e m e mm———— - c
c *** Read shift factor and gravitational constant:
O m e e e e e e e e e mm———— - — - c
c

read{in3,*,end=2050)

read(in3, *,end=2050) frmm, g
e
Cm mmm e e e e e e e e e e e e e e e m—— e m c
¢ *** Input constant load to create impulse load vector fi
G = == e e e e e m e — e ——— e c
c

read (IN3, *,end=2060)

read (IN3, *,end=2060) ioptpl
c

161

backspace (IN3)

if { ioptpl .eq. 1) then
read (IN3, *,end=2060) idum,

elseif | ioptpl .eg. 2) then

read(IN3, *,end=2060) idum, amppl, nstart, nendf

else
write(*,*) '+¥*¢+ }legal input for Impulse Force flag....’
write(*,*) ‘'**xv+ joptpl= ', ioptg!

stop 'ioptpl!'
endif

read(IN3,?*,end=2070)

amppl,

read (IN3, *,end=2070) ioptfa, ioptfi

+ Terms used in calculation transition matrrix,

tstart, tend

**+ strucrural time steps per zero time step

read (IN3, *, end=2080)

read (IN3, *, end=2080) nterm, nstp

___ I

“*+ Number of modcl parameters

___ N

read (IN3, *,end=2090)
read(IN3, *,end=2090) nma, nmb

Echo to screen:
write(*,*) ' > (3.23.25) NMA,
write(*,*) ! ', nma, nmb

return

NMB'*

nunber of

___ C

=+** (Jnsuccessful reads:

o = ———— - A -~ —— — o — = = = . e = am am e e e -

2010 write(=,*) '>>> ERROR reading
stop ‘zread'

2020 write(*, ™) '>>> ERROR reading
stop 'zread'

2030 write!*,*) '>>> ERROR reading
stop 'zxead'

204C writce(*,*) '>>> ERROR reading
stop 'zread’

2050 write(*,¥) '>>> ERROR reading
stop 'zreadg'

2060 write(*,*) '>>> ERROR reading

input;
input;
input;
input;
input;
input;

162

read/writes flags.....

fluid parameters.....

fmm, gconst.

inpulse data

stop 'zread'

2070 write(*,*) '>>> ERROR reading input; impulse flags..... !
stop 'zread'’

2080 write{*,*) '>>> ERROR reading input; transition data..... '
stop 'zread’

2090 write(*,*) '>>> ERROR reading input; system model data..... !
stop 'zread'

return
end

A ARA R L RS LEES DRSS I AGELRL ARSI RS RS SRSt ARl Attt R E R Al A I I

Ciﬁ*li***tv'*i*ﬁi!‘&i«+****~+l—ii****‘-}*‘i**‘#*i**i ii'ﬁ‘**iiﬂkﬂr&&)l')\l-&*ﬁ#c

subroutine read_asenl_namelist
Ck*%iw&***i***t*i**4***ﬁ-*l****4i*+i—#iw{x***i-}***i*d—i#-}ii*i—*klﬁlriva&*ii—c

c
dimension cbt {5)
logical trans, low, debug, bulkvis,
& pistonn_sol, model sol
real mach
c
common /tapes/ INA, IN3, NTAPXN, IMA
common /data/ nr, nr2, nstep, nma, nmb, tsamp,
& xmi, roi, ainf, gamma, uinf, pinf
c
namelist /control/ gamma, epsim, nstage, cfl, diss2, dissl,
& relax, mach, alpha, Dbeta, trans, restart,
& amplitude, freq, phase, nstep, nstpe, nout,
& x0, y0, 20, wuX, wuy, wuz,
& cbt, nsmth, smofc, lg, niteC, nit--1,
& nite2, ncycl, ustou, meshc, meshf, ncyci,
& bulkvis, low, nlimit, debug, disx, «cl,
& xc2, XC3, ved, tlr, pistonn_sol,
& model_sol
Cmmmm r s e e e e e T e S T S S T ST T T T s T e c
C
gamma 1.4
epslm = 0.05
nstage =5
cfl = 2.8
diss? = 1.0
dissl = 1.0
relax = 1.0
mach = 0.6
alpha 0.0
beta = 0.0
trans = .false.
restart =0
amplitude = 0.0
freqg = 0.0
phase = 0.0
nstep =1
nstpe =1

163

nout
x0

yO0

20
WUux
why
wuz
cbt (1}
cbt (2)
cbt (3)
cbt (4)
cbt (5)
nsmth
smofc
lg
nite0
nitel
nitez
ncycl
tlr
ncyci
nsctou
low
debug
meshc
meshf
bulkvis
nlimit
disx
xcl
xc2
xc3
Xx~4

[l

]

b

I O b=

-1
-0.2

OO0 UOOOO OO0

bt = =2 2 OO0 0O QOO OO0OO0O O =~
N
(5]

O =
S
o o
Q

1009
5

.false.
.false.

mme sh
1

.false.

0
.2

0.014
0.0714

pistonn_scl=.false,
model sol -

.false.

Echo to screen:

write(*, *)
write(*,*)
write(*,>)

)

>> Reading namelist file...'

o e A - - T — o —— o — o by 7 ot o ————— " —— o ————— v —— A -

read(INA,control}

1f (nstep .LE. 1)

write (*, ™)

stop
else

write(*, *)

endif

'nstep’

then

> number of time steps; nstep

164

'>>> Invalid number of time steps,

nstep =

', nstep

', nstep

return

end

C**i*****i**tt*&**k*****&6***&i~+ii*-f+*i*ii&iitii*&**i&iwbﬁiaww*+w4*¢c

Ck*******iiii#**ii*il*iir*ii**iiﬁiiit*#-**ii****b****ti*hiwiwibwiiw‘i&c

~
o
~
[

subroutine create pointers(ixn,

common /data/

iend
call
call
call
call
call
call

ipoint (
ipoint ¢
ipoint/!
ipoint (
ipoint{
ipoint/{

return

end

nr,
¥mi,

ixn ,
ifa ,
iz
inn ,
ioff,
ith ,

nr2, nstep,
roi, ainf,

nstep*nr2

nstep*nx

nstep*nr?2

nr*nr*3
nr

nma,

ifa,

nmb,

gamma,

’

’

nr* (nma+nmb*nr),

1z, 1nn,
AR A S S AR S eE AR R R et ARttt S R S AR AR AR e L R e R R RN R R R P

iend
iend
1end
iend
iend
iend

tsamp,
vinf, pinf

[U

cn**b*ii*'*tui**iiii-*&hw*.}r**«&ibtﬁhiﬁﬁ***iw#&&&‘l*«h*Altii*riliraiic

c\l‘qPvib*tﬁ*i*******ﬁ'*ﬁﬁ**‘ b*'b*i&i-&ﬁiii-&+’tl—ﬁ'bﬁ&&’l*-&&&k&i}b*&l‘)il‘hc

subroutine create_arx pointers{ ny,nu,nstep, nma,nbkm,n, nmax,
11,
15,
19,

&
&
&

I2, 13,
16, 17,
116, 111,

c**i{**i**i***ﬁii*il"i*****t**t**k&**0***"\‘**#**’***if**'ﬁ*bi b*-&id“l‘i#*c‘

Ih

ia
ib
ilend
call
call
call
call

nma+ (nbkm+1) *nu
nstep-nmax

=1

1point
ipoint {
ipoint (
ipoint (

Il
12
I3
14

ny*ny
ny*nu
ny*nu
ib

165

iend)
lend)
iend)
iend)

call ipoint({ IS , ib*n , iend

)

call ipoint(I6 , ia , ierd)

call ipoint(17 , la , lend)

call ipoint(I8 , iavia , iend ;

call ipoint(IS , ib~1ia . iend)

czll ipoint(I10 , ny ' iend)

call ipoint(111 , ia ' iend)
c
= m e e e e e e e e
c *** Successful return:
O m s m e e e e e e e - c
c

return

end

ciWﬁﬁfﬁ*4‘+i&***++k***ii**ii*i&**ii-i***+**i*l+#iiiiud*&t*ki&ﬂbAk*WDIPC

C*'*P*****&kv*i**i**v**'*iwi**tfﬂ***ﬁf*i**ii&06*&1-&***#‘h*******t*'&WC

subroutine ipoint{ ipt, nsize, iend)
C**{i*i**f**********i**iiii***fﬂ*********iii)*v*%&&i*ﬂir*****f**ii&l*}c

c

ipt = iend

iend = ipt + nsize
c

return
c

end

Cﬁrbi*‘?i’i'iii A”**'*‘-.*"-**")****"“**’i**f*‘“‘*i‘"‘*i""*".‘ih,l‘r*d*‘*..

C*'.&**tii*&ith‘**ii*i*ttii**ﬁiJi*iibd—i &*itdrfbi&j*ﬁiii*hﬁ‘*‘b‘v&bviﬁtiic‘

subroutine mail{ filep, xn, €fa, z, nn, off, th, a, max)
Ci$i7ki**ii****b+****k***i*ii****iiiitii++iiili&ﬁblii*+§‘+++ht*&*ln*lAF

c
character filen*20, textread*20
dimension xn(nstep,nr2), fa(nstep,nr}, z{nstep,nr2),
& nn(nr,nr*3), off{(nr), th(nr,nma+nmb*ny), a(~)
c
common /tapes/ INA, IN3, NTAPXN, IMA
common /data/ nr, nr2, nstep, nma, nmb, tsamp,
& xmi, roi, ainf, gamma, vinf, pinf
C
G m s m o o e e e m—m—m—— o]
c *** Open the multi.dat file and read in the time nivtoery data
Cmm mmm o o e A e m———— - - - c
c
open (NTAPXN, f:le = 'multi.dat', status = 'c'd', err - 4000)
rewind {NTAPXN)
call read xndat({ xn, fa)
close (NTAPXN)
c

166

O 00
*
-
"
b
o
o
~
~
[\
3

te]
[¢)
t
>
[
Q.
o
r
[1}]
W
Jou
Q

o
B
7]
1]
-
(a4
rr
Q
r
los
(4]
:
3
C
G
o
o
—
1]
o

Reorganize the data

do i = 1l,nstep
do 3 = 1,nr
2(i,3) =
enddo
do 3 = nr+l,n
Z(ilJ) =
enddo
enddo
c
¢ Sertup the orders and
c

fa(i,3)

r2

®xn (i, j-nr)

delays matrix

e e o e e e e e e e e o AR A oA e S S v e M e WA e e e Ak e e e ——

nmax,

do i 1,nr
do j = 1,nr
1f (1 .EQ. j) then
nn{i,j) = nma
else
nn(i,j) =0
endif
enddo
do j = nr+l,nr2
nn{i,j) = nmb
nn(i,j+nr) = 0
enddo
enddo
c De-trend the dart:
c
call dtrend(z, nr, nstep, off)
c
c Calculate some interesting constants
c
ny = nr
nu = nr
nz = nr2
nbkm = nmb - 1
nkm = 0
nd = nma*nr + nmb*nr*nr
n = nma*ny + (nbkm-nkm+l)~nu
nmax = MAX0 (nma, nbkm)
c
c Create pointers for the model solver
c
write (*,*) ' !
write {*,*) ' »> calling create_arx pointers from mail...'
call create_arx_pointe:s(ny, nu, nstep, nma, nbim, n,
& ., X2, 13, 14,
& 15, 7Te6, 17, 18,
& I8, I10, 1x1, 1IEND)
C

write(*,*) ¢ '

167

O

O

0

write(*, ‘('" ¥** MEMORY ALLOCATED ', 110) ") TEND
write(*, ' ('’ ~*<~ MEMORY AVAILARBRLE 'Y, 110) ') MAX
1f (IEND .GT. MAX) then
write(*,*) 'Increase MXDIM'
stop
endif
Compute the model parameters
call arx{ 2z, nn, ny, nu, nstep, nz, nma, nbkm, nkm, nd, n,
& tsamp, th,
& a(ll), a(12), al{il3), a(l4y,
& alisy, ai{le), alry, al{lfy,
& a(Irs), aifIiloy, al(riyy)
*** Write the model parameters to file *.mdl
Open the model parameters file
1l = namlen(filen)
open (IMA, file = filen(1:1)//'.mdl', err = 4005)
rewind (IMA)
Echo to screen
write (*,*) ' !
write (*,*) ' >> Writing model parameters file...'
write (*,*) " !
Outrput model data to filw
write {IMA,*) 'S System model created for ', filen
write (IMA,*) 'S Mach 4 rho-inf tcamp'
write(IMA, 5005) xmi, roi, tsamp
write (IMA,*) 'S offsets'
write (IMA, 5015) (off({i), i = 1,nr)
write(IMA,*) 'S na no nr'
write (IMA,5000) nma, nmb, nr

write(IMA,*) 'S Model parameters..'
do k = 1,nma
do j = 1,ny
do i = 1,ny
1f { i .£0. j) then
write (IMA, *) th{i, k)
else
write (IMA,) 0.0
endif
enddo
enddo
enddo
o k = 1,nmb*nu
dgo j = 1,ny
write (IMA,*) th(j, k+nma)
enddo
enddo

168

nmax,

close (IMA)

wrice (*, %) ' > ',filen(l:i)//'.mdV',"' sucrcessiully created.’

4000 write(*,~) '>>> Errxor: when opening time history file xn.dat'
stop 'xn.dat'

4005 write{*,") '>>> Error: when opening model parametexy file ',
4 filen(1:1)//" .mdl"
stop '*.mdl'
Cc
oD e e e e c
c **¥ Format statements
Cm m e e e e e e e e e e e e e e e e e e m e — - c
c

2000 format(3IS)
5005 format(3(2x,El12.6) }
5015 format (<nr>(2x,E12.6))

ena
A AARERR R AR S AR SRR e R R A e R A R AR AR R AR R AR A R R e

Ci&**i&***iib**ii*i*ﬁk*li*k*&**iiﬁ*#*iiﬁbi*ik*&i**ﬁl*’i**t+iirtlki;&h*c

character“80 function textread(prompt)
C*b*i-‘r-&;ih***i***i**ﬁi‘*4 [2 k*i\h*ﬁi’i*iiﬁ'iﬁlk**i*tii‘b*\v}tilﬁiti«‘\“i*bc

c
character* (*) prompt
&
= mm e e e e c
c
write{*,'(/,a,$)") prompt
read{*, "(a)') textread
return
c
end

C*i**iii**i**&£i+i*+*ii+++i+*i&*i+iﬁ&*&-**ii***&t*i’h**b*iﬁitiii*ﬁiibtr

C***i‘wi'+&§*ii*++**+*++k**ii&i**ii**b*+++i&i**i&*lil**irtl‘+*ﬁi+*h&&¢c

integer function namlen(filen)
Ci**w************iﬁi**ﬁ*#+***i*ii+ib**+iwﬁi++*i+it*&*ﬁtL#**iﬁ**ii*tbk*c

C

169

character+*20 filen

c
G m e e e e e c
c
namlen = 0
do 1 = 20,1,-1
if (filern(i:i) .ne. ' ') then
namlen = i
goto 101
endif
enddo
101 return
c

end

C*i***i*wwii*tiﬁvtu**tﬁ*wwtiﬁil-*iﬁi*'ii—iv&iwh*++-«’i—ﬁiw-b*iti Wlrd Ak s a e~

C**i*tit*i)***i**ii*ﬁr***i'ﬁ*iiiﬁ*kh**iit}**ii*'(#‘ LR A R B AR AN R AR A I 2 AN

subroutine read xndat(xn, fa)

Ci*ik***yl—li***i**l***\(—*v**iiiii**)iﬂti Fd ok FEF A F rd kR ‘*ikiiih*lbld«t(—‘

c

dimension xn{nstep,nr2), fa(nstep,nr), ttime (2000}

common /tapes/ INA, IN3, NTAPXN, IMA
common /data/ nr, nr2, nstep, nma, nmb, tsamp,

& xmi, roi, ainf, gamma, uwinf, pinf
c
ol e et c
c
c Echo to screen:
C

write(*,>) " '

write(*,*) ' >> Reading time hi-tory data from mul‘'i.dac '

write(=,~y ' !
C
s m s m o o e e e e e e m e m o —m—m oo >
c =** Read in the xp header informaticn
o e e e e e e e i be e I
c

do i =1, 5+nr*3

read (NTAPXN, *, end=1000)

enddo
c
o e L L L e e e e L L L LD c
¢ *** Read in the time history data
== e e e - [
c

do £ = 1, nstep
read (NTAPXN, *, end=100) ttime(i}, (xn{i,J)), j=1,nr2),
& (fa{i,j), j=1,nx)
enddo
100 nstp = i-1
1£f {nstp .NE. nstep) then
write(*,*) '>>> Invalid # of time steps found in multi.gac®
stop ‘multi.dac’

170

endif

c
c Compute the sampling time
c

tsamp = ttime(nstep) ~ ttime(nsiep-1)
c
c Echo to screen:
c

write(*,*) * > number of time steps; nstep = ', nstep

write(“,*) ' > sampling time; tsamp - ', tsamp
c
Cmmm s m e e e e e e e e m—— e m———— - — c
c **> Zuccesful return
O m e e e e e e e e e m e c
c

return
c
o e e e e Pl c
¢ *** Unsuccesful error messages
O m s e e e e e e e e e e e e e e e e — c
c

1000 write(*,*} '>>> Error reading time history data'
stop 'multi.datf

c
c

return

end

subroutine dtrend{ z, nr, nstep, off)
c*ﬁitrkih*-aﬁ**i*‘it‘-t*ivf&tiE*iiiii—riiibiﬁi-&*lkl-bhlblvi’ivil-iihii-A!QA,.Ac
c

dimension z{nstep,nr*2), off(nr)
c
Cmmmm s T T T m T T o e e e e e R e e - r
c
¢ Echo to screen:
c

write{*,*) ' '

write!{*,*) ' >> De-trending the data... '

write(+*,>*) '
c
Cmmmmmmm e e e e e e e e e e c
c *** Subtract off the steady state offse“ from the data
Cmmmm m m e e e e e e e e e —— - — = c
c

c Determine what the offset is. Take last time step before multistep.

do 1 = 1,nstep
if (z{i,nx+l) .NE. 0.0) then
do j = 1,nr
off{j) = 2(1-1,73)
enddo
goto 100
endif
enddo

171

100 continue

c
¢ Subtracc the offset from each output (force) array
c
do 1 = 1,nstep
do 3 = 1,nr
z(i,3) = z(i,1) - off(3)
enddo
enddo
c
¢ Echo to screen
write(*,*) ' > offsets’
write (¥, 2000) {off(1), 1 = 1,nr)
c
Cmm e e

c *** Succesful return

e ——r——————————

return

o g gy g

c *** Unsuccesful error messages

1000 write({*,*) '>>> Error de-trending the data‘
stop 'dirend'

Y O

Q

2000 format(<nr>(2x,El12.6))

0

G

return
end

subroutine arx(z, nn, ny, nu, Ncap, nz, nma, nbkm,

____________ c

———————————— C

rkm, nd, n,

& nmax, Tsamp, eta,

& na, nb, nk, 33,

& phi, th, W, v,

§ temp, chisgq, rowind)
ct*i**********ﬁ***iitti****hk**ot**ii**t**t*r&**t****i&w&i*ﬁ*b****hvﬁic
[}

parameter { TOL = 1.0E-8)
c
dimension z({Ncap,nz), nn{ny,nu*3), eta(ny,nlia*+ (nbkm+1l}*nu),

& na(ny,ny), nb(ny,nu), nk{ny,nu), jj{(Ncap-nmax),

& phi {Ncap-nmax,n), th{nma+ (nbkm+l)*nu),

& w{nma+ {nbkm+1) *nu), v(nma+ (nbkm+1)*nu,nma+ (nbkm+l) *nu),

& temp (Ncap-nmax, nma+ {nbkm+1}*nu), chisg(ny)

integer rowind(nma+{nbkm+l)*nu), outp
(o

172

o

Echo t5 screen:
¢
wrate(>,*) ' !
write(*,*} ' >> Calculating ARX model... '
write(*,*) * !
write(*,*) ' > Computing',6nd,’'toral parameters'
c
O = = = e e e
c *** Initlalize the coeificient matrices
O e e e e e e e - c
c
do i = 1,ny
do j = 1l,ny
na{i,3) = nn(i,))
enddo
enddo
do i = 1,ny
do j = 1,nu
nob(i,j) = nn(i,j+ny)
nk{i,3) = nn{i,j+ny+nu)
enddo
enddo
c
Dl il e e e e e L L c
c *** Construct the regression matrix
e e c
c
¢ Initialize our matrices
c
do i - 1, Ncap-nmax
3j (i) = pmax+i
do 3 = 1,n
phi(i,j} = 0.0
enddo
enddo
c
do k1l = 1,nma
do i = 1,Ncap-nmax
do 3 = (kl-1)*ny+l,Xkl*ny
phi(i,3) = z{ jj(i)-kl,3-(k1l-1)*ny)
enddo
enddo
enddo
Ss = nma*ny
c
do k1l = nkm,nbkm
do i = 1,Ncap-nmax
do j = ss+(kl-nkm)* nu+l, ss+(kl-nkm+l)*nu
phi(i,3j) = z{ jj(i)-kl,j-ss-{kl-nkm) *nu+ny)
enddo
enddo
enddo
c
o~ m e e o e e m e m e m——— o — - c

¢ *#> Compute the loss functions

s T T S T e m - - C
c
do outp = 1,ny
nrow = 0
do kk = 1,ny
do J = kk, ny*na{outp, kk), ny
Nreoew = nrow + 1
rowind(nrow) = j
enddo
enddo
do kkx = 1,nu
do j = nma*ny+kk, nma*ny+nu*nb(outp, kk), nu
Nrow = nrow + 1
rowind(nrow) = J
enddo
enddo
if {nrow .NE. nma+{nbkm+1l}*nu} stop 'rowind’
call isort(rowind, nrcw)

c
do i = 1,Ncap-nmax
do 3 = 1,nrow
temp(i,3j) = phi(i,rowind(3))
enddo
enddo
c

c Get the solution using singular value decomposition cf the phi

c matrix and least squares estimation of the parameters

c
call svdcmp(temp, Ncap-nmax, nrow, Ncap-nmax, Nrow, w, v)
wmax = 0.0

do j = 1,nrow
if (w(j) .GT. wmax) wmax = w(j)
enddo
thresh = TOL*wmax
do j = 1l,nrow
if (w{(j) .LT. thresh) w(3) = 0.0
enddo
call svbksb(temp, w, v, WHcabp-nmax, nrow, Ncap-nmay, nOrow,
& z{ jj(1):1) (Ncap-nmax),outy), th)

¢ Compute the error function chi-sguare

c
chisqg{outp) = 0.0
do i = },Ncap-nmax
sum = 0.0
do j = 1,nrow
sum = sum + th(j)*phi(i, rowind(j))
enddo
chisgioutp) = chisgl{outp) + (z{jj(i),outp) - sum)**2
enddo
c
write(*,*) ' > Chi-Square',outp, '=',chisagloutp)
c
c Store the result in the return matrix
c
do i = l,nrow
eta(outp,i) = thi(i}

174

endde

c

enddo
C
Cmmm e e e e e m e m e m e —————— - c
c *** Succesful return
C—mm—————— i e it ————m - Rt it L C
c

return
c
Cmm—m—m - it it e — - et c
c **~ Unsuccesful error messages
Cmm m e e — e N e - C
c

1000 write(*,*) '>>> Error calculating model parameters'
stop 'arx'

return

end
C***i*iii***'i*mW*k*ﬂ*&i**w*****biiﬁ*it*t*i*iilti*twii***&iwi**ltit*jtc

c* R R N A e R R R R R R A RN R e AL N R A AR R AR A A AN A R Al AN ERENE R NN

subroutine isort{ ivec, nrow)

Cti*i&*k**lita****!&ti*ivh1*****W*viﬁiﬁ****}*ii*'&«*****iit&iiA,*&**;&c
c
dimension ivec(nrow)
C
= ————— e e e e m ———————— —_—————— ————————— —-—————
last = nrow
do j = 1,nrow-1
ptr = j
first = j+1
c
do k = first,last
1f { ivec(k) .LT. ivec(ptx) } ptr = k
enddo
Cc
ihold = ivec(j)
ivec(3) = ivec(ptr)
ivec{ptr) = ihold
enddo
c
return
c
Cmmm e m - —————- i ittt bkt bl b b c
c
end

Ck***--ﬁ*&li*ii****}4&&**4**‘7***************itﬁ*&nl)b**&f-#itiii&itfir

Cw*&1-i*r*ifﬁ*i*i&&i*{it**ti*&i*ikiiﬁ*iii*ii+iv*}iﬁi*+i*«iAi&it*ttiii&c

175

subroutine svdcmp(a, m, n, mp, np, w, V)
-__»***)‘t+i—*ii—iv*i--'i*virvi******tiiii‘i#i LA A k'*i'ﬁ*'*ii--ﬁik*i&#td—i**#iic

c
parameter (NMAX = 500)
integer m, n, mp, np, nm
integer 1, j, k, 1, 3j, its
real a{mp,np), wi(np), v{inp,np), rv{(WMAX)
real c, £, g, h, %x, y, 2
real anorm, scale
real amag
c
Cmm———mmmm e e e e m e ———— - - c
c *** Perform Householder reduction to get bi-diagonal form
Cmm mmmmm e e e e e m—m o m—— - - C
C
g =0.0
scale = 0.0
anorm = 0.0
c
do 1 = 1,n
1 = 1+1
rv(i) = scale*q
g = 0.0
s = 0.0
scale = 0.0
i€ (1 .LE. m) then

do k = 1i,m

scale = scale + abs{ al(k,i))
enddo
if (scale -NE. 0.0) then

do k = i,m

alk,1) = a(k,1)/scale
s = s + oa(k,i)*a(k,i)
enddo

f = a{i,i)
g -sign(sgrt(s), £)
h = f*g - s
a{i,i)y = £
do 1 = 1,n
s = 0.0
do k = 1i,m
s = s + a(k,i)yvalk,3)
enddo
f = s/h
do k = 1i,m
a{k,3) = atk,j) + fra(k, i)
enddo
enddo
do k = i,m
a(k,1) = scale*a(k,1i)
enddo
endif
endif
w{i) = scale*g
g = 0.0
s = 0.0

I

-9

176

scale = 0.0
if ((1r -LE. m) .AND. (i .NE. n)} then
do k = 1,n
scale=scale+abs(.(i,k))
enddo
if {scale .ne. 0.)) then
doc k = 1,n
y kY = a(i,k)/scale
s + a{i,k}y*al(i, k)

III—'

s
enddo
f = a(i,))
g = -sign{ sqrt(s), £)
h = f*g - s
a(i,l)y = £ ~ g
do k = i,n
rv(k) = at(i,k}/h
enddo
do 3 l,m
s = 0.0
do k = 1,n
s s + a(3,k)*ali, k)
enddo
do k = 1,n
a(j, k) = a(j, k) + s*rv(k)
enddo
enddo
do x = 1,n
ali, k) = scale*al(i, k)
enddo
endif
endif
anorm - max(anorm, {(abs{w{i)) + abs(rv{i}))))
enddo

]

dc i = n,1,
if (i .LT. n} then
1f(g.ne.0.0)chen
do j = 1,n
v(j,1) = (a(i,j)/ali,.) }/g
enddo
do] =1,
=0.0
do k =1,n
s s + a(i,k)*vik,3j)
enddo
do k = 1,n
vik,3) = vik,3} + s*v(k,1)
enddo
enddo
endi f
do j =),n
vi{i,j) = 0.¢
v(i,1) = 0.0

177

endif
v(i,1i) = 1.0
g = rv(i)
1 =1
enddo
c
Cm e e e e e - - c
¢ *** Accumulate the left-hand transformations
ol e e i e LR C
c
do i = min(m,n },1,-1
1l =131 +
g = w(i)
do 3 = 1,n
al(i,j)y = 0.0
enddo
if (g .NE. 0.0) then
g=1.0/g
de j = 1,n
s = 0.0
do k = 1,m
s = s + alk,1)*a(k,j)
enddo
f = (s/alti,i))*g
do k = 1,m
alk,3) = a(k,j) + f*a(k,1i)
enddo
enddo
do j = i,m
1(3,1) = a(j, i) *g
enddo
else
do j = 1i,m
a{j,i} = C.0
enddo
endif
a{i,i} = ali,l) + 1.0
enddo
C
Cmm o e e M — e e e — c
c *** Diagonalize tnhe bi-diagonal form
Cmmmmm mm o e e e e e e m c
C
do Xk = n,l1,-1
do 1ts = ., 30
do 1l = k,1,-1
nm=1-1
if ((abs(rv{l)) + anorm) .EQ. anorm) go"> 2
if ((abs{w(nm)) + anorm)} .EQ. anorm) gorn 1
enddo
1 c =0.0
s = 1.0
do i = 1,k
f = s*rv (i)
rv(i) = c*rvs)
if ((abs{f) + anorm) .EQ. anorm) goto 2

178

wi(l)
amag(f,q)
y = h
1.0/h
(g*h)
= —(f*h)
Y = 1,m
= a({j,nm)
= a(i, 1)
al{j,nm) = y¥c + z~s
a(j,i) = -y*s + z*c
enddo
enddo
2 = wi(k)
if (1 .EQ. k) then
if {(z .LT. 0.0) then
wik)y = -2
do 3y =1,n
v(j, k) = -v(3j,k)
enddo
endif
goto 3
endif
if (its .EQ. 30) PAUSE 'no convergence in svdcmp'
X = w(l)
nm = k-1
w{nm)
= rv({nm)
= rv (k)
= {(({y - z)*{y + z) + (g-h)*{g+ h)) / (2.0%h*y)
= amag{ £, 1.0)
({x = Z)“(x + 2) + h*{ (y/(f *+ sian{qg,f)}) - h)
1.0
1.0

o

QWO TGO

9)
NG v

il

QYO DO
\

1,nm

j+1

= rv(i})
w(z)

= Siq

= C*g

= amag(f,h)

o]

NQ I Q P-u
Il !

I

= y“'c
o j3 = 1,n
x = vi{3ij, i)
z = v(jj, 1)
v{13,3} X*c + 2*s
v{jl,1) = -x*s + z*cC
enddo
z = amag(£, h)
w{jl = 2

179

) /%

[of

Il

1.0/z2
f*r2
h*z2

z
c
s
endif
f = c*g + s*y
X = -s*g + c*y
do jj = 1,m
y = a(3ii.,3)
z = a(jj,.i
a(33,3) = y*c + z*s
a(jj),L) = -y*s + z*c
enddo
enddo
rv{l)
rv (k)
wik) = x
enddo
continue
enddo
return

1l

I
O
o

END

ChlJ:‘&*’44*10**1’***1*&&*#4’* ﬁi**i\l-‘riIv\lv*\-*\lr":‘}hd*i‘&i**}*}k*r&-i**‘ibai-pc

ci***}k*+i+*+ii+*it***+§*i+*4&*+b+t&’**hi**ﬁ'i*ti*iii+i-*iiii+*i*ti‘&.C

real function amag{ a, b)

C+*+*+*i*i*ii}****ii******i**ii**i*-**ii***t****i***i*ii*i****i*ii*ii*p

real a, b, absa, absb, r

__ ~
absa - abs(a)

absb = abs(b)
__ c
Compute a magnitude without overflow or underflow
__ -

1f (absa .GT. absb) then
r = absb/absa
amag = absa*sqrt{(1.0 + r*r)

else
if (absb .EQ. C.0) then
amag = 0.0
¢’ se
r = absa/absb
amag = absb*sgrt({ 1.C + r*r)
endif
endif
return
end

180

ci*i*i**i***iivi*&iﬁ+i**ivi&i*&ii*iii*ii****ii*iii#*i+iivi*i*7+*k+4ﬁ‘*c

AR AAEEEE S S S E A R R N N A A L E RN E RS LN E S RN EE S R RN el

subroutine svbksb({(u, w, v, m, n, mp, no, b, x }
Ci**i***&t&q&**ik*&iiL-ii**ii*i&iiii&il*ﬁiikﬁﬁiiiﬁii**iuliwﬁﬁtiii+iyiic

c
parameter { NMAX = 500)
integer m, mp, n, np
inteqger i, 3, 33
real b(mp), ulmp,np), v(np,np), w(np), x{np)
real s, tmp(NMAX)
c
G e e e e c
¢ *** Back substitution to compute the parameters of the model
o e e e ettt e P T c
c
do j = 1,n
s 0.0
if { w{3) .NE. 0.0) then
do i =1,m
s = s + u(2,3)*D(1)
enddo
s = s/w(3)
endif
tmp(3j) = s
enddo
do 9 = 1,n
s = 1.0
do jj = 1,n
s s + v(3,3i “rmp(3j)
enddo
x{j) = s
enddo
return
Cc
END

Ci+§*i6*i*yiii*+i**iii++*k**it++#t*ii*&i*ii#ii&**i&i*ﬁ***+*ﬁiiiiblhbﬁ)C

C*)ﬁ*iiti*+*+ii***i***ii*iiiwiii+1w**wiiiW*Aii*i+*ii**AiPﬁ*b&**itil*b&c

181

APPENDIX G.4:

RMSERR Program

program rmserr

C"***t IEEE R EE AR R R R R R N R EE RS AR NEEEE EEREREEE R RN IR I I .

C
cC
c

*

* Written by Tim J. Cowan

4

e
e
e

ciifrt'***-&ti**i"i’&iﬁ*"iir'ﬁwi*'v****f&tivitifv*tiivﬁw&&ﬂ*-&i*ﬁii-&-&*&wi*c

c

real xnl(20), xn2(20}, errx(20), xmax(20)
real vnl(20), vn2(20), errv(20), vmax{(20)
real fnl(20), fn2(20), errf(20), fmax{20)

character filenl*B80, filen2*80, textread*80

=
z
b
)
N
Ny

program header:

___ [

write(-, ' (5(/y,"" *+% rogram RMSERR **#+') 3(/})"')

e s A e A4 A AA o A A A A b 4 v - bk i - A e e - Y

filenl = textread!{' Enter the euler time history filename

filen2 = textread({' Enter the model time history filename : °
write(*,'(/,a,$)'} ' Input the number of timesteps tu compars
read(*,*) nstep

write(*,'(/,a,%$)"') ' Input the number of mode shapes : '

read(*,*) nr

open (IN1, file = filenl, status = 'o0ld’', erxr = 4001)
rewind (IN1)
do i = 1, 5+nr*3
read(INl,*,end=4001)
enddo
open (IN2, file = filen2, status = "old', err = 4002)

182

rewind {IN2)

doe i =1, 5+nr*3
read(IN2, *,end=4002)
enddo
___ c
¥ Initialize the maximum values for each mode shape
___ c
do i = 1,nr
xmax (i) = 0.0
vmax{(i) = 0.0
fmax{i) = 0.0
enddo
___ c
*~4+ Read in the data and compute an RMS error for each mode shape
___ e
do i = 1, nstep
read (IN1, *,end=5001) ttime, (xnl(j), 3j=1,nr },
& (vnl(3), j=1,nx), { £nlij), j=1,nr
read (IN2,*,end=5002) ttime, { xn2(j), j=1,nr),
& (vn2(3}), 3=l,nx), { fn2(3), *=1,nr
do j =1, or
if (i .EQ. 1) then
errx(j} = 0.0
errv(j} = 0.0
errf(j) = 0.0
endif
errx(3) = errx(j) + (xnl(j) - xn2(j} 1**2.0
errv(j) = erxv(j) + (vnl(j) - vn2(3) »*»2.0
errf(j) = errf(j) + (fnl(j) - £fn2(3) ‘**2.0
if (abs(xnl(j)) .GT .xmax![3)) xmax(j) = abs(xnl(j))
if (abs(vnl(j)) .GT. vmax!(j)) vmax{)) = abs(vnl{j))
if (abs{fnl(j)) .GT. fmax!(3j)) fmax(j) = abs(fnl(j))
endds
enddo
do 3 =1, nr
errx(j) = {(errx(j)/nstep)**0.5)/xmax(j)
errv(j) = ((erxv(j)/nstep)**0.5)/vmax(]j)
errf(j) = {{ errf(j)/nstep)**0.5)/fmax(j)
enddo
___ pa
*++ Qutput the RMS error for each mode shape
___ C
write(*,*) ' ¢
write(*,) *
write(*,*) '** Scaled RMS Errors:'
write(*,*) 'mememeemmmrme e m e e - !
write(*,*) ' Mode xn vn tn’
write(*,*) '~mmemmmmm e e e '

/
do j =1, nr

write(*,1000) j, errx(j), errv(i), errf(3)
enddo
write(*,>) ' '
write(*,*) '* Errors are scaled by max value of signal.’

wraite (*,*) ' '
stop ' OK!!'

¢ **7¥ Format statements

4001 write(*,*) '>>> Error: when opening time history filc ', filenl
stop 'xn.dat’

4002 write{*,*) '>>> Error: when opening time history file ', filen2
stop 'xn.dat'

£001 write(*,*) '>>> Erxror: out of timesteps in history file ', filenl
stop 'xn.dat'

50602 write(*,*) '>>> Error: out of timesteps in history file *, filen2
stop 'xn.dat'

c

end
CAr,ti***L*h&i**++lk&itiiii**i*bi*i&ii*iiii*ii*hli‘iib+iﬁ**&ii*ﬁlb&{iir

J*#“**k*"********’****»**'**&’*’*’*'t‘********‘***’A‘**&*kb****«“*Ac

character*80 function textread(prompt}
7;k*+iv*b&***t&*&iv**y*iiﬁiit&b**&ﬁ*%*i#**ii*ﬁiiti*itiikil*tib1+A&*-éic

c
character*(~) prompt
C
Cmmm mm e m e e e e e e e e e e e - = - c
c
write(*,'(/,a,S8)"') prompt
read(*,’'(a)') textread
return
C
end

P E R A R R R R N AR R RN R S R NN I SR R R R R RN E R A SRR AR RS A RSN AR NSRS

c**ﬁﬁ*i*vb*i*ki&*i*&ii**i*&&tk&ﬁ*iii*+1++t+'*+&i+fiiiii&&ii*bi&iﬁii4iic

184

VITA

Timothy John Cowan
Candidate for the Degree of

Master of Science

Thesis: EFFICIENT AEROELASTIC CFD PREDICTIONS USING SYSTEM
IDENTIFICATION

Major Field: Aerospace Engineering
Biographical:

Personal Data: Bomn in Tulsa, Oklahoma on March 31, 1973, the son of Timothy
M. and marsha L. Cowan. Married Leslie A. Graham on July 26, 1997.

Education: Graduated from Union High School, Tulsa, Oklahoma, in May 1991
received Bachelor of Science degree in Mechanical Engineering from
Oklahoma State University, Stillwater, Oklahoma, in May 1996;
completed requirements for the Master of Science degree with a major in
Aerospace Engineening at Oklahoma State University in May 1998.

Experience: Systems Analyst, OSU Physical Plant CIS, 1995-1996; Network
Administrator, OSU Mathematics Department, 1996; Level II Tutor,
Mathematics Leaming Resource Center, 1994-1996; Coordinator,
Mathematics Learning Resource Center, 1997-1998; Graduate Research
Assistant, OSU Department of Mechanical Engineering and Aerospace
Engineering, 1996-1998.

Professional Memberships: American Institute of Aeronautics and Astronautics,
American Society of Mechanical Engineers, Pi Tau Sigma, Tau Beta Pi.

