
EFFICIENT AEROELASTIC CFD PREDICTIONS

USING SYSTEM IDENTIFICATION

By

T1MOTHY JOHN COWAN

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1996

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1998

EFFICIENT AEROELASTIC CFD PREDICTIONS

USING SYSTEM IDENTIFICAnON

Thesis Approved:

11

ACKNOWLEDGEME TS

This research was conducted under a NASA Graduate Student Research Program

Fellowship sponsored by Dryden Flight Research Center. Specifically, I would like to

thank Dr. Kajal K. Gupta and the rest of the STARS group at Dryden Flight Research

Center for their generous support of this research.

I would like to express my sincere appreciation to my major advisor, Dr. Andrew

S. Arena, for his enthusiastic support and guidance in this research. In addition to being a

source for inspiration in academics and research, he has also been an excellent role model

during my time at OSU. Similarly, I would like to thank the other members of my

committee, Dr. P. M. Moretti and Dr. G. E. Young, for their efforts in furthering my

education.

I would also like to thank my parents, Timothy M. and Marsha L. Cowan, for

their early efforts at molding me into who I am today. Their ongoing support and

encouragement is much appreciated.

Finally, I would especially like to thank my wife, Leslie, for her understanding

and support during the past two years. I will be eternally grateful for her love and

devotion.

111

Section

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

1.1. Background 1
1.2. Research Objective , 2

2. LITERATURE REVIEW 4

2.1. Piston Perturbation Method 4
2.2. Reduced Order Modeling 6
2.3. System Modeling Techniques 8

2.3.1. Linear and Nonlinear Models 9
2.3.2. Indicial Approach 11
2.3.3. System Identification 14

3. METHODOLOGy 20

3.1. Model Development 20
3.1.1. Input Optimization 21
3.1.2. Parameter Identification 28
3.1.3. Model Accuracy 33
3.1.4. ModeIOrder 35
3.1.5. Model Implementation 40

3.2. Two-Dimensional Example .41
3.2.1. Panel Method Implementation , 44
3.2.2. Preliminary Panel Method Results 46

3.3. STARS Implementation 52
3.4. STARS Modeling Procedure 56

3.4.1. Gathering Training Data 57
3.4.2. Training The Model. 62
3.4.3. Model Implementation 64

4. RESULTS 67

4.1. AGARD 445.6 67
4.1.1. Flutter Analysis 69
4.1.2. Model Order Analysis 76

IV

4.2. 2x1 Plate 83
4.2.1. Panel Flutter 84
4.2.2. Static Divergence 90

4.3. Generic Hypersonic Vehicle 92

5. CONCLUSIONS AND RECOMMENDATIONS 97

5.1. Conclusions 97
5.2. Recommendations 98

BIBLIOGRAPHy 100

APPEN·DICES 102

APPENDIX A: DERIVATION OF 2-D EQUATIONS OF MOTION 103

APPENDIX B: NONDIMENSIONAL 2-D EQUATIONS OF MOTION 105

APPENDIX C: SAMPLE DATA FILES FOR STARS TESTCASES I08

APPENDIX D: SUMMARY OF AGARD RESULTS , 115
D.l. AGARD 445.6 Data for Mach 0.499 115
D.2. AGARD 445.6 Data for Mach 0.678 117
D.3. AGARD 445.6 Data for Mach 0.90 119
D.4. AGARD 445.6 Data for Mach 0.96 122
D.5. AGARD 445.6 Data for Mach 1.072 125
0.6. AGARD 445.6 Data for Mach 1.141. 127

APPENDIX E: SUMMARY OF PLATE RESULTS 129
E.1. 2x I Plate Data for Mach 0.90 129
E.2. 2x 1 Plate Data for Mach 1.5 132
E.3. 2xl Plate Data for Mach 2.0 136
EA. 2x 1 Plate Data for Mach 2.5 140
E.5. 2xl Plate Data for Mach 3.0 144

APPENDIX F: SUMMARY OF GHV RESULTS 148
F.1. GHV Data for Mach 2.20 148

APPENDIX G: SOURCE CODE 153
G. 1. MULTISTEP Subroutine From STARS CFDASE 153
G.2. AEROMODEL Subroutine From STARS CFDASE 155
G.3. CFDMDL Program 158
G.4. RMSERR Program 182

v

LIST OF FIGURES

Figure Page

2.1. Box Diagram for a Basic Dynamic System Model... 8

2.2. Box Diagram for an Unsteady CFD Model. 8

2.3. Superposition of Step Functions to Form an Arbitrary Input. 12

3.1. 3211 Multistep Input Signal 23

3.2. Considered Displacement (-) and Velocity (-) Input Signals 24

3.3. Power Spectral Density Plot For Each Input Signal Considered 25

3.4. Possible Combination of Two Multisteps For a Two-Input System 26

3.5. Compact Combination of Two Multisteps For a Two-Input System 27

3.6. Comparison of Original Training Data With Dc-trended Training Data 31

3.7. Format of Singular Value Decomposition Data 32

3.8. Effect of Computational Chattering on Model Output. 37

3.9. Implementation of System Model in Coupled Aeroelastic Solution 41

3.10. Two Degree of Freedom Airfoil System...... 42

3.11. Optimized Input Signals for Training the Multi-Input Model. 46

3.12. Comparison Of Model (- - -) to Panel Code (-) Predictions
of C, and Cm for the Multistep Input. 48

3.13. Comparison Of Model Output (.) to Panel Code Output (-)
of C, and Cm for a Chirp Input of a 49

Vl

3.14. Comparison Of Model Output C-_.) to Panel Code Output (-)
of C, and Cm for the Exponential Pulse Variation in a 49

3.15. Comparison of Aeroelastic Response Predicted by Unsteady
Panel Method and Discrete Time ARMA Model 51

3.16. Summary of STARS Aeroelastic Analysis Routine 52

3.17. Structure of Multistep as Implemented in STARS CFDASE
Module with isize = 1 58

4.1. AGARD 445.6 Test Wing Geometry and Surface Discretization 68

4.2. Multistep Input Implemented For The AGARD at Mach 0.96 69

4.3. Euler and Model Solutions for Multistep Responsl' of
AGARD at Mach 0.96 70

4.4. Comparison of Euler and Model Solution For AGARD
Aeroelastic Response at Mach 0.96 71

4.5. Comparison Of Total Computational Time Required to
Predict a Flutter Point for The AGARD at Mach 0.96 73

4.6. Comparison of Flutter Boundary Predicted by STARS to Experimental.. 76

4.7. Chi-Squared Error ys. Model Order for the AGARD at Mach 0.96 78

4.8. Scaled RMS Error YS. Model Order for the AGARD at Mach 0.96 79

4.9. Flutter Speed Index YS. Model Order for the AGARD at Mach 0.96 81

4.10. Close-up of Flutter Speed Index for Higher Order Models of the
AGARD at Mach 0.96 82

4.11. 2x I Plate Geometry and Surface Discretization " 84

4.12. Euler and Model Solutions for Multistep Response ohhe
2x 1 Plate at Mach 2.0 86

4.13. Comparison of Euler, Model, and Piston Solution for the
2x 1 Plate Aeroelastic Response at Mach 2.0 88

4.14. Comparison Of Total Computational Time Required to
Predict a Flutter Point for the 2x I Plate at Mach 2.0 90

4.15. Comparison of Euler and Model Solution for the 2x 1 Plate
Aeroelastic Response at \1ach 0.90 and a dynamic Pressure of 43.3 kPa 91

YII

4.16. GHV Geometry and Surface Discretization 93

4.17. Euler and Model Solutions for Multistep Response of GHV
Modes 1 through 4 at Mach 2.2 94

4.18. Comparison of Euler and Model Solution For GHV Aeroelastic
Response at Mach 2.20 95

VIII

NOMENCLATURE

ai ~ constant coefficients for model outputs

bi ~ constant coefficients for model inputs

C/ ~ sectional lift coefficient

ern ~ sectional moment coefficient

h ~ plunge

h ~ plunge rate

na ~ number of past outputs required in ARMA model structure

nb ~ number of past inputs required in ARMA model structure

nr ~ number of roots or modes

q ~ dynamic pressure

q ~ generalized displacement vector

q ~ generalized velocity vector

Uj ~ system input

Yf ~ nondimensional flutter speed index

Yi ~ system output

a ~ angle of attack

a ~ pitch rate

p ~ density

IX

CHAPTER 1

INTRODUCTION

1.1. Background

The study of aeroelastic phenomena is a multidisciplinary problem involving the

interaction between inertial, elastic, and aerodynamic forces. The spectacular Tacoma

Narrows Bridge disaster serves as a reminder to designers of modem structures that the

coupled effects of these three forces can be devastating. Thus, predicting the conditions

for aeroelastic divergence, both static and dynamic, must be an important consideration

before implementing a design.

The cutting edge research In aeroelasticity is presently being applied to the

analysis of modem high performance aerospace vehicles. These vehicles operate over a

wide range of speeds and are often designed to be extremely light weight for their size,

making them extremely susceptible to aeroelastic phenomena such as wing flutter. In

addition, aeroservoelastic instabilities may result from the interaction between the flight

control systems and the aircraft structural modes [Kehoe, 1988]. Hence, the accurate

prediction of these instabilities is necessary before flight testing the vehicle and

establishing its flight envelope.

With recent advances in CPU speeds, current research has turned toward the

application of CFD models to the solution of aeroelastic problems. Using an unsteady

Euler or Navier-Stokes CFD algorithm coupled with a structural dynamics solver, the

complete aeroelastic response of the structure can be predicted. However, the major

limitation to applying such a CFD model is the computational time required to run a full

aeroelastic simulation due to the high dimensionality of even the simplest geometry.

Compounding the problem, an aeroelastic instability cannot be predicted by just one such

simulation. Rather, several simulations are required over the flight regime in order to

predict the crossover from stable to divergent time histories.

When running these coupled simulations, it is the unsteady CFD solution at each

time step which requires the greatest amount of CPU time. The faster structural

dynamics solver is essentially left waiting on the unsteady CFD solver at each time step.

Hence, if an accurate and efficient replacement for the CFD solver could be developed,

aeroelastic instability predictions would be much more computationally efficient. In

particular, one might apply a modeling technique which is capable of rapidly estimating

the CFD solution at each time step. Implementing such a technique would yield a

significant improvement in the overall speed of the coupled solution, thus making the use

of CFD models more practical in aeroelastic analysis.

1.2. Research Objective

The emphasis of the present work is to develop a suitable modeling technique

which is capable of accurately and expediently estimating the unsteady CFD solution

around a three-dimensional structure. For such a technique to be of practical use, it must

2

be accurate over a wide range of flow regimes from subsonic to supersonic as well as

being applicable to any arbitrary three-dimensional structure. Additionally, the technique

should be easy to implement and be compatible with coupled CFD-Structural computer

codes already in use.

The objective of this research will be to integrate the modeling technique into the

aeroelastic analysis module of the STARS codes developed at NASA Dryden Flight

Research Center. STARS is an highly integrated, finite element based code for

multidisciplinary analysis of flight vehicles including static and dynamic structural

analysis, computational fluid dynamics, heat transfer, and aeroservoelastic capabilities

[Gupta, 1997]. The CFD module in STARS is an Euler based flow solver capable of

simulating three-dimensional compressible inviscid flows. Several different modeling

techniques will be reviewed, while the implemented technique wiJl be evaluated on

several practical three-dimensional structures over a wide range of flow regimes.

3

CHAPTER 2

LITERATURE REVIEW

2.1. Piston Perturbation Method

The piston perturbation method [Hunter, 1997] is one example of a proven

aerodynamic modeling technique which has already been implemented in STARS. Using

piston theory alone, one can predict the surface pressure at any point on a body in a

supersonic flow using the outward surface normal of the body at that point. More

specificalJy, the pressure at a given point is related to the local normal component of fluid

velocity through the unsteady wave equation, Equation (2.1).

(2.1) [
r -1 w]:~I

P=Pa; 1+--
2 Qoo

Due to the simplicity of the unsteady wave equation, piston theory is an attractive

aerodynamic modeling technique for superson.ic flow. However, piston theory alone

tends to over predict the pressure on three-dimensional bodies since it is based on a point

function [Hunter, 1997].

The piston perturbation method utilizes the aforementioned piston method as a

perturbation to an existing mean flow solution. In. the STARS implementation of this

4

method, one first uses the finite-element Euler solver to compute the steady flow solution

about a three-dimensional body. Then, the local pressure generated by the body's motion

in a coupled aeroelastic solution can be predicted using a modified unsteady wave

equation, Equation (2.2), which predicts the local pressure as a perturbation to the mean

flow solution.

(2.2)

This method is much more accurate for three-dimensional bodies since it is a perturbation

to the mean flow solution which already includes the relaxation effects of the body.

As shown by Hunter and Arena [1997], the piston perturbation method is a fairly

accurate aerodynamic modeling technique for computationally predicting the dynamic

aeroelastic response of a three-dimensional body in a supersonic flow. Based on this

method, an extremely fast algorithm can be developed which directly computes the

unsteady aerodynamic loads acting on the surface of a three-dimensional body withollt

having to iterate through the entire CFD volume. Estimates of the instability boundaries

using the coupled solution can then be made on the order of minutes rather than days.

However, this modeling teclmique is limited in that in can only be accurately applied to

supersonic flows. Additionally, it only provides us with an estimate for the instability

boundaries of a complicated three-dimensional body which means we must still rely on

the full unsteady CFD model for refinement of the solution.

The results of this effort are encouraging though. This demonstrates that a

modeling technique can be successfully used to estimate the unsteady CFD solution for at

5

least supersonic flows. The expansion of a similar capability over the entire range of

Mach numbers should then be possible by exploring other modeling techniques.

2.2. Reduced Order Modeling

Reduced order modeling IS a computational modeling technique already in

common use by finite element structural solvers where we refer to it as modal

superposition. From a structural standpoint, this technique involves first computing the

eigerunodes of the structure and then use the dominant modes to construct a reduced

order model for the dynamic system. In this case, the technique is physically intuitive

since the eigerunodes represent the shape of a natural vibration mode for the structure.

and by modal superposition any arbitrary deformation of the structure can be described

by a linear combination of these mode shapes.

Reduced order modeling was recently applied to unsteady aerodynamic systems

by Dowell, Hall, and Romanowski r1997]. They write that it is not a great leap to thi nk

of eigenvalues and eigenvectors of an unsteady CFD model since the eFa model is

typically a set of ordinary differential equations derived from a finite difference or finite

element solution scheme. As with a structural model, the reduced order aerodynamic

model is constructed from the dominant eigenmodes of the unsteady flow. This then

allows us to construct a computationally efficient aeroelastic model based entirely on

eigenmode models, both structural and aerodynamic. The resulting coupled eigenmode

model can be run at almost no computational cost compared to a typical aeroelastic eFD

solution.

6

This methodology has an obvious advantage over the piston perturbation method

in that a reduced order aerodynamic model can be constructed for the full range of flows

from subsonic to supersonic as long as the unsteady CFD model is valid in that regime.

Of course, the eigenmodes would be different for different flow conditions, such as

different Mach numbers, and the reduced order model would need to be recomputed. As

with the piston perturbation method, these eigenmodes are for a perturbation with respect

to the steady flow solution. Results using this methodology show that it is extremely

accurate for a variety of different geometries and flowfields [Dowell, 1997J.

However, there are several issues to consider before attempting to implement tbis

method with an unsteady CFD model. First, implementation of this method requires a

major re-engineering of the existing CFD code such that it will solve for and output the

eigenmodes of the unsteady flowfield. Although this is no trivial task, a more serious

issue arises in the solution methodology for determining these eigenmodes. While

solving for the eigenmodes of a typical structural model is fairly straight forward, a

typical CFD model is often one or two orders of magnitude more compl.icated. This is

particularly true of even the simplest STARS CFD models used by NASA. The high

dimensionality of such models would result in an eigenvalue matrix in the range of 104 to

l05 squared. Matrices of this size pose serious problems for both eigenvalue extraction

algorithms and computer hardware.

Finally, this methodology is not very intuitive from a physical standpoint.

Although it makes sense to mathematically compute the eigenmodes for an unsteady

flowfield, it is not clear what they physically represent. Unlike structural problems where

the eigenmodes represent the deformation of a natural vibration mode, the eigenmodes of

7

an unsteady flow are somewhat abstract leaving us with no obvious way of picking which

or how many modes are dominant in the solution.

2.3. System Modeling Techniques

Ljung [1987J defines a system as: an o~ject in which variables ofdifferent kinds

interact and produce observable signals. This basic system relationship is shown

graphically in Figure 2.1, which depicts a dynamic system with a vector of inputs, iJ, and

a vector of outputs, y.

u -------j~..1Dynamic System I---..~ y
Input. . Output

Figure 2.1: Box Diagram for a Basic Dynamic System Model

This same sort of input-output relationship describes the basic function of a typical

unsteady CFD model where one is computing the aerodynamic forces acting on a three-

dimensional body based on the structural defom1ation or motion of that body. Hence, the

box diagram for an unsteady CFD model would be similar to that shown in Figure 2.2

where q is a vector of generalized structural displacements and .1 is a vector of

generalized aerodynamic forces.

I----~• .1
Output

~I Unsteady CFD
q -----.. Model

Input

Figure 2.2: Box Diagram for an Unsteady CFD Model

8

By thinking of an unsteady CFD model as a simple dynamic system, one could

then use system theory to develop a mathematical model describing the input-output

relationship for the unsteady CFD model. A variety of extremely efficient system

modeling techniques have been developed for linear systems. However, it is not obvious

at this point whether we are dealing with a linear system. In fact, the transonic flow

regime is highly nonlinear due to the presence of complex shock interactions on the body.

This presents a potential problem for system modeling techniques since the transonic

flow regime is extremely important in the aeroelastic analysis of flight vehicles.

Although nonlinear system modeling techniques do exist, they are much too complicated

for multi-input, multi-output (MIMO) systems, and it is unlikely that a single

methodology could be developed that would work for any arbitrary aeroelastic problem.

2.3.1. Linear and Nonlinear Models

Dowell [1995] says that there are three basic classes of models that one must

consider when studying aeroelastic systems. These three classes may be defined as

follows:

I) Fully Linear Models, when both the static and dynamic behavior of the

physical system are linear.

2) Dynamically Linear Models, when the static behavior of the physical

system is nonlinear but the dynamic behavior is treated as linear.

3) Fully Nonlinear Models, when both the static and dynamic behavior of the

physical system are nonlinear.

9

For subsonic and supersonic flows, a fully linear model is generally a good

approximation to the actual behavior of the flowfield for small disturbances (away from

flow separation). This sort of classical linear aerodynamic theory has been used

successfully for years to analyze the flight characteristics of aircraft. However, most

researchers believed for many years that fully nonlinear models were needed for

transonic flow due to the well known breakdown of linear aerodynamic theory for two

dimensional, steady flow as the Mach number approaches unity [Dowell, 1995].

The breakdown of linear aerodynamic theory for the transonic flow regime IS

caused by the development of shocks on the body in the flowfield. These shocks

represent a discontinuity in pressure and result in a highly nonlinear flowfield. However.

recent research using transonic CFD models has shown that only the staLic shock

nonlinearity is important as long as the flow does not separate [Dowell, 1995]. Hence,

one could model an unsteady transonic flow as a linear dynamic system perturbed about a

nonlinear steady flowfield. Dowell [1995] writes that the key is to accurately compute

the nonlinear steady flowfield including the static shock strength and location, and then

model the dynamic perturbations about the steady flow using linear models.

In the case of the STARS CFD module, the nonlinear aerodynamics are computed

using a time-marched, finite element approach to solving the unsteady Euler equations.

For such a solution scheme, the steady flow solution becomes important for two reasons.

First, an unsteady aeroe1astic analysis must be started from the steady flow solution in

order to achieve time accuracy. This is true not just for the transonic now regime, bu.t fOT

subsonic and supersonic flow as well. If the steady flowfield is not aHowed to develop

10

first, the unsteady response of the structure will not be time accurate and predictions of

aeroelastic divergence will be incorrect.

Second, linear modeling techniques can only be used to model the small (linear)

perturbations about a nonlinear mean flow. That these perturbations are linear is an

important assumption to remember. For most problems this should be a good assumption

unless one is researching aerodynamic stall or searching for limit cycles. The following

sections discuss techniques for developing a linear dynamic model for an unsteady CFD

solution.

2.3.2. Indicial Approach

The indicial response is the response of a system to a step change in input. Given

this indicial response for a linear system, the indicial approach provides a methodology

for computing the response of the system to any arbitrary input using the principle of

superposition for linear systems. This methodology is based on the fact that any arbitrary

input can be approximately reconstructed by superimposing a series of step functions as

shown in Figure 2.3. The response of the system to this arbitrary input is then

approximated by linearly superimposing the system response to each step function

making up the reconstructed input.

II

x (I)

x(O)

Figure 2.3: Superposition of Step Functions to Form an Arbitrary Input

Obviously, the step functions shown in Figure 2.3 are not a very accurate

approximation for the actual input to the system, so one might be led to think that the

indicial method would yield an inaccurate measure of the system response. This problem

can be corrected by decreasing the time interval, 13.t, between step functions until the

12

The indicial approach has successfully been applied to simple unsteady transonic

A(t), relating x(t) to y(t).

yet) = A(t)x(O) + Jdx"(T) A(t - T)cIT
o dT

(2.3)

Equation (2.3) is applicable to any linear system with an indicial admittance function,

flows by BaJlhaus and Goorjian [1978J. For such a system, the indicial response is the

flowfield response to a step change in a given mode of motion for the body in the flow

input is more accurately modeled. In fact, by letting 13.1 ~ 0 the exacl response of the

system could be computed using Duhamel's integral, Equation (2.3) [Bisplinghoff, 1996}.

-

computed using a time-accurate CFD scheme [BaUhaus 1978]. As discussed previously.

all outputs must be treated as smalJ perturbations about a nonlinear steady state solution

so that the system can be considered linear and superposition will apply.

For single mode system, this methodology is fairly straightforward. First, the

aerodynamic response of the unsteady CFD solution to a step change in input is

computed and recorded. This indicial response, A(t), can then be used in Equation (2.3)

which gives us an indicial model that is capable of predicting the aerodynamic response

to any arbitrary motion of the single structural mode. The obvious advantage here is that

the unsteady CFD solution must only be used once to compute the indicial response of

the system, and this will generally be a fairly short computational run compared to the

length a typical aeroelastic time history. Once done, the unsteady CFD solution can be

bypassed and the indicial model can be used in the couple aeroelastic solution at a

fraction of the computational cost.

As with reduced order modeling, an indicial model can be constructed for the fulJ

range of flow regimes as long as the original unsteady CFD model is valid for that

regime. The major drawback of this modeling technique becomes apparent when one

tries to apply it to a multiple mode system. For a system with n structural modes n

separate indicial response must be computed for the unsteady CFD solution. Although

this is not a real problem for one or two modes, as the number of modes increases it

becomes rather tedious to compute several indicial responses and keep track of each

separately. The actual implementation of the indicial model still relies on the application

of Duhamel's integral, but it must now be applied several times to account for the affect

of each mode on each aerodynamic force.

13

Unfortunately, this makes the indicial approach a rather cumbersome method for

today's complicated three-dimensional structures which often have six or more structural

modes. With some patience, one could stilI apply this methodology to such a structure

and construct an accurate model which would yield a significant savings in computational

time for the aeroelastic solution. However, a more efficient technique could perhaps be

found which would not require multiple runs of the unsteady CFD model to obtain the

indicial response for each mode.

2.3.3. System Identification

As it is defined, system identification is a process for obtaining a mathematical

model of a dynamic system based on a set of measured data from the system [Ljung,

1987]. It involves taking a time history of input(s) and measured output(s) and fitting the

parameters of a model structure such that its output error is minimized. The success of'

this technique is dependent on the initial choice of the model structure and the amount

and quality of data used to "train" the model.

One of the most commonly used model structures is the autoregressive moving

average CARMA) model, which describes the response of a system as a sum of scaled

previous outputs and scaled values of inputs to the system. The response, y(t), for such a

model can be written explicitly for a single-input, single-output (8ISO) system with no

delay as shown in Equation (2.4).

14

Notice the simplicity of this model. The system response at any given time is an

algebraic series of multiplications and additions. This makes the model very easy to

implement mathematically and makes it extremely efficient computationally. Equation

(2.4) can also be adapted to a multi-input, multi-output (MIMO) system. In this case, the

model's parameters, Gi and hi, become matrices that are then multiplied by vectors of

previous outputs and inputs to the system. Equation (2.5) presents the ARMA structure

for a MIMO system where y and u are column vectors of length nr, while [An] and [Bill]

are nrxnr matrices of model coefficients.

110 tJh-1

(2.5) y(t) =2:JA"l y(t - n) + 2]Bml· U(l - m)
n;:;1 m=O

Although there are many different model structures that can be used in system

identification, the ARMA model is one of few that can be neatly expanded to

accommodate MIMO systems.

The ARMA model has recently been implemented in modeling of flight test data.

However, the success of these experiments was limited by the presence of measurement

noise [Hollcamp, 1991] and accurate control of the input signal [Hamel, 1996J. For the

system we are modeling however, neither of these will be a problem. The unsteady CFD

model will compute the outputs (aerodynamic forces) based on any inputs (structural

displacements) that can be mathematically represented within the program code. With

only the specified inputs affecting the model, the resulting response will be calculated

and output by the unsteady CFD model without noise.

The task at hand is then to identify the actual values for the parameters in

Equation (2.4) for an arbitrary unsteady CFD model. The system identification procedure

15

to do so has three basic steps. First, a known input is sent through the system, and the

response of the system is observed and recorded. Next, the size of the model (or its

number of parameters) is assumed, and the model's parameters are fit to the data in the

least squares sense. Finally, the model is run for the same known input signal and the

model's response is compared to the actual response of the system in order to determine

if the model structure has fit the data accurately. If not, a different model size is chosen

and the parameters are refit to the response data.

Notice that this procedure is similar to the indicial approach in that the system

model is derived from a set of time history data obtained from the unsteady CFD model.

However, system identification has the advantage that a model can be derived based on

just one set of response data rather than requiring a separate indicial response for each

individual structural mode of motion. Of course, system identification could also be used

to develop a model where the time history data was just a series of indicial responses,

although this would probably not be the most efficient appl.ication of system

identification. Rather, a compact input should be chosen that excites all modes of motion

over a wide range of frequencies in order to really capture the ful I dynamic response of

the system.

Notice also, that the model structure obtained using system identification is much

simpler than that obtained using the indicial approach. Using the ARMA model

structure, the aerodynamic response can be computed at each time step using a simple

linear equation rather having to evaluate an integral at each time step as is done in the

indicial approach. It is also interesting to notice that the structure of the ARMA model,

Equation (2.4), could be thought of as representing the output, yet), in terms of numerical

16

time derivatives of the input and output. This is rather physically representative of what

we know about the flow physics from linear aerodynamic theory.

For a simple two-dimensional problem, linear aerodynamic theory predicts that

the nondimensional lift acting on an airfoil is a function of a and a as shown in

Equation (2.6).

(2.6)

Using a finite difference approximation for the time derivative, a(t), Equation (2.6) can

be rewritten as follows:

(2.7) C() -C () C' a(t)-a(t-l),t- ,at+ I
a a ~t

Further manipulation of Equation (2.7) yields the following:

(2.8) (
C J CC,(t) = C, +~ a(t) - ~a(1-1)

a ~t ~1

Notice that Equation (2.8) now looks exactly like the ARMA model structure of Equation

(2.4) where the output, CAt), is based on a scaled current input, aU), and a scaled

previous input, aCt -]), to the system. The full ARMA model structure can carry this

analogy one step further by accounting for unsteady wake effects if the flow is subsoni c.

Such a model would also be based on scaled previous outputs from the system similar to

Equation (2.9).

(2.9)

17

We can also extend this analogy to a MIMO system where the two degrees of

freedom for the system are pitch. a, and plunge, h. Again using linear aerodynamic

theory, we could write equations for the two generalized forces of the system,

nondimensionallift and moment, as given by Equations (2.10) and (2.11).

(2.10)

(2.11)

C,(I) =C, aCt) + C, aCt) + C, h(t) + C, h(t)
tI (J h It

C/II (I) =C/II aU) + C/II a(t) + Cm h(t) + Cm h(t)
fl (I it h

Equations (2.10) and (2.11) could then be rewritten in matrix form as Equation (2.12).

(2.12) C,]{a(t)} [C,
CII~_ h(l) + CI/:~

c,]{a(l)}
CI/~ h(t)

If we again use a finite difference approximation for the time derivatives, Equation (2.12)

can be rearranged into the form shown in Equation (2.13).

(C J (C + C,. J C CC 'a
'" + !J.l '" I-

(2.13) {~,(t)} ~
I. !J.l t(l)} !J.l !J.l {a(l-i)}

em(t)
(C J (C J

h(t) (''''11 ('m h(t - 1)
C' +~ C "'- •

mil t1t /11.+--;;:;- !J.l !J.I

Notice that Equation (2.13) now looks very much like the ARMA model structure for a

MIMO system presented previously as Equation (2.5).

These sorts of analogies give us a great deal of insight into what the ARMA

model physicaJly represents for the unsteady CFD solution, and provides us with some

physical intuition about how many parameters might be necessary to accurately model

18

the dynamics of a particular flow. As with the previous two methods, this technique can

also be applied to the entire flow regime as long as the original CFD solution being

modeled is applicable in that range. Of the methods reviewed so far. this seems to be the

easiest to implement and the most efficient, along with being a good physical

representation of an unsteady flow field with respect to linear aerodynamic theory.

19

CHAPTER 3

METHODOLOGY

In this research effort, system identification was selected as a method for

accurately and expediently modeling the unsteady CFD solution around an arbitrary

structure. In the following sections, the procedure for developing such a model using the

ARMA model structure for MIMO systems will be examined. Preliminary tests of the

modeling procedure were performed using an unsteady panel code to predict the

aeroelastic response for a simple two-dimensional airfoil. The procedure was then

adapted for use in the STARS aeroelastic module and tested on more compl icated three

dimensional structures. A variety of computer codes were developed in conjunction with

the modeling procedure so that it is a self-contai.ned module for the STARS codes.

3. I. Model Development

As mentioned previously, there are three basic steps involved in system

identification, all of which are equally important. They can be summarized as follows:

I) Observe and record the response of the system to a predetermined input.

2) Assume a model order (or size), and fit the model's parameters to the

"training" data gathered in step I) such that its output error is minimized.

20

-

3) Evaluate the accuracy of the model by comparing the model's response to

the actual response of the system.

If the final step in the procedure shows that the model does not do an accurate job of

predicting the system's response, a different model order can be tried and the model's

parameters recalculated. However, it may be that the initial data set used to estimate the

model's parameters did not sufficiently excite the response of the system and a different

set of "training" data should be tried.

Notice that step one of the system identification procedure requires that a

predetermined input be used to obtain a set of time history data from the unsteady CFD

model. The important point here is that the unsteady CFD model will not be used in the

typical fashion of an aeroelastic analysis where the structure is free to move under the

action of the aerodynamic forces acting on it. Rather, the unsteady CFD model will be

run and the motion of the structure will be forced to follow a predetermined input. The

hope then is that an ARMA model can then be fit to match this training data allowing us

to use the ARMA model in place of the unsteady CFD solution in the coupled aeroelastic

analysis.

3.1.1. Input Optimization

The accuracy of the system model is very dependent on the input used to obtain

the training data. There must be as much information about the system's dynamics as

possible packed into the training set of data in order for the identification procedure to

succeed. To get an accurate model for a system, an the optimum input signal must be

chosen such that it will best excite the frequency range of interest. Hence, the harmonic

21

-

content of the input should be examined before the test to ensure it is suitable [Hamel,

1996]. For a system such as an unsteady CFO solver, we have very careful control over

the inputs, so an almost unlimited amount of signals are available for testing. The only

limitation is that the input must be mathematically describable in terms of the boundary

conditions for the flow solver so that the flow physics are accurately represented.

Recall that the inputs to an unsteady CFO solver are the generalized

displacements of the structure in the flowfield. In addition, the CFO code also requires

the calculation of velocities consistent with the structural displacements to satisfy

boundary conditions. This means that any input signal chosen for the displacement of the

structure must be differentiable in order to compute a physically consistent velocity for

the structure. In fact, the velocity boundary condition is fairly important in a dynamic

analysis as it results in an effective angle of attack for the structure. Hence, it may be

equally important that the derivative of the displacement input has equally good harmonic

content even though only the displacement input will be used in the model structure.

In flight test applications of system identification, a great deal of research has

already been devoted to finding the "perfect" input signal that will guarantee accurate

parameter identification for aircraft every time. Generally, the multistep is the most

commonly used input since it is easy to implement in experiments and it elicits the best

frequency response [Hamel, 1996]. The standard 3211 multistep input is shown below in

Figure 3.1.

22

T,
! -
I

J 1
I
I

- -- -
,
i

I~ 2

I '----

x

Figure 3.1: 3211 Multistep Input Signal

1

Notice that this type of signal actually presents a problem computationally. In order to

achieve a true multistep for the displacement input signal, the velocity would have to be

infinite at the edge of each step. Even if we approximated the velocity in discrete time

using the finite time between computational time steps, the velocity would be a series of

five spikes which is not a very interesting signal.

However, one could use the multistep as the desired velocity, and then integrate

the multistep to get a varying ramp function for the displacement input signal. Although

this type of input would be quite difficult for a pilot to implement in flight testing, it is

not a problem to implement a multistep on velocity in a computer algorithm. However, it

should not be assumed that the best input in flight testing applications of system

identification will also be the best input to use here. There may be a variety of input

signals that would perform better than the multistep, but were never considered in flight

testing due to the logistics of implementing such a signal. Hence, a variety of different

input signals should be tested in order to find the best input for this particular application.

23

Figure 3.2 presents a graphical summary of six different inputs (with displacements and

velocities) that were considered in this research effort.

Sinusoid Chirp
0.02 I 0.02 0.02 T 0.2

0.01 t 0.01 0.01 01

0 I' % 0

-0.01 -0.01 -O.QI

-002 . I -0.02 ·002 .

3211 Multistep Impulse
0.03

[1.5 0.03 : , O.OJ

0.025 ,---- ,--. • 1

I I I

-r--{ :'
002 I 0.02 • 0.02

I,
% 0.015 ----L __ • % ,

I
0.01 I • -0.5 . 0.01

I
0.005 ~ J I -I

I
o : .. ~........ + ~--r~ -1.5 I , I ()

0 5 5

Exponential Pulse
0.Q2 I 0.02 0.005 .

I

0.01 001 0.0025 j

x 0 0 v x

e

/
5

-0.01 . ·0.01

/
-0.02 -0.02 -0005

Random

,~

I11.02

I, I
II . 0.01

I' I

-002

Figure 3.2: Considered Displacement (-) and Velocity (-) Input Signals

24

To get a better feel for what inputs will excite the system the most, the harmonic

content of the signals needs to be evaluated by converting them to the frequency domain

for comparison. The power spectral density (PSD) plot is the most commonly used

method for comparison in the frequency domain. A PSD plot shows what type of

frequency content is contained in the input signal so you can visually see what

frequencies will be excited in the system. Figure 3.3 shows the frequency spectrum for

each different input signal.

c
Vl
l:::
(I)

Cl
"@....u
8-

VJ
....
~
o

0..

o

__sin chirp

__ impulse multistep

_ . _. _. E!<pon. _ random

#/'.--,

10
Frequency

20

Figure 3.3: Power Spectral Density Plot For Each Input Signal Considered

From the plot in Figure 3.3, it would appear that the multistep has the best harmonic

content since it has the widest bandwidth at the low end of the frequency spectrum.

However, subsequent testing of each input will be necessary to validate this observation.

There is one final consideration remaining on the topic of input design. The

discussion so far has only been about single input signals. In most cases, aeroelastic

problems involve multiple structural modes which means there will need to be multiple

25

input signals in order to identify the system's parameters. Recall that in the indicia)

method one had to compute separate step input responses for each individual mode shape.

When comparing the two methods, system identification held the advantage that just one

input response for the system was needed regardless of the number of mode shapes being

considered. It should be quite obvious intuitively that one cannot simply input a

multistep for each mode shape simultaneous and expect to be able to distinguish between

the effects of each individual mode shape on the response of the system. Hence, the

na"ive way to construct an input signal for a MIMO system might be to input a sequence

of multisteps for each mode shape one after another as shown in Figure 3.4.

I
Jr---'o--r--; -~-+--.--I---+-+-If- --'--+---r,----1\ X 2 . -i -- ~_o-.-, -~-

I
I
I-
I
!

... - .. _..... .

I---'--!--I--I---+--/--I-~ ----+-

Figure 3.4: Possible Combination of Two Multisteps For a Two-Input System

-r. o ,

The obvious disadvantage of assembling the input signal in this fashion is that, for

systems with a large number of mode shapes, the input time history becomes fairly long

26

and the computational time required to compute the response becomes expensive. The

goal of using this system identification methodology is to decrease the amount of time

spent running the complex unsteady CFD model. Hence, it will be advantageous if the

input signal is as short and compact as possible. With this in mind, one could try

constructing a multiple input signal by combining multisteps for each mode shape that

are slightly out of phase with each other similar to that shown in Figure 3.5.

·w"_ ._......

I :,
X 2 - ~- +--"- - . -'- i-

r

t
XI

I
l-

I

\
J

1

f·'"· '· '· .

I

~ - ...
, '. '

~ .. _t

x

I

1
'-- '--' ~ ..'

Figure 3.5: Compact Combination of Two Multisteps For a Two-Input System

Obviously this signal will be much more compact than that shown in Figure 3.4.

Subsequent testing will show that this type of signal is sufficient in the identification

procedure for a MIMO system.

27

3.1.2. Parameter Identification

Once the system response to the predetermined input has been computed, this set

of "training" data is then used to numerically determine the constant coefficients for the

ARMA model structure, Equation (2.4). The easiest way to do so is to import the

training data into MATLAB and compute the model using the System Identification

Toolbox. Within MATLAB's System Identification Toolbox, the ARX function can be

used to fit the parameters of an ARMA model to the training data such that the model's

output error is minimized. One must simply tell the ARX function what data to use and

specify a model order, and the model's parameters are computed using a least squares fit

to the data.

Although this will work well for preliminary testing of different inputs and model

orders, the objective of this research effort is to develop a self-contained system

identification module that will complement the STARS aeroelastic analysis routine.

Hence, an algorithm must be developed for computing the ARMA model parameters that

does not rely on access to the MATLAB System Identification Toolbox. Fortunately, this

problem is simply a matter of adapting a linear least-squares algorithm to compute the

parameters for the model structure.

Notice that the SISO ARMA model structure of Equation (2.4) could be written

using series notation in a very generalized form similar to Equation (3.1).

(3.1)
M

yet) = L>/IX,,(I)
,,=1

In Equation (3.1), the Xn(t) are commonly referred to as basis functions, and are simply

28

the past values of the inputs and outputs of the system. Using this notation, a least-

square, or chi-square, merit function can be defined as follows:

(3.2) 2 N I [M]2
X =t;0/ y, - ~aIlXII(ti)

Notice that Equation (3.2) can be written in matrix notation as follows:

(3.3)

The problem then becomes finding the constant coefficients, G, that minimize the matrix

Equation (3.3).

This is the basic structure for all linear least-squares problems, and the method of

choice for solving such problems is generally singular value decomposition (SVD). This

is because for many linear least-squares problems, a very small or even a zero pivot

element may occur during the solution of the linear equations resulting in an unstable

solution [Press, 1996]. It turns out that a small or zero pivot element is the computational

manifestation of the physical data not distinguishing between two or more of the basis

functions. Press [1996] writes that "there is a certain mathematical irony in the fact that

least-squares problems are both overdetermined (number of data points greater than

number of parameters) and underdetermined (ambiguous combinations of parameters

exist)."

SVD provides a solution for an overdetermined system of equations that is the

best approximation in the least-squares sense. However, it will also drive the parameters

of computationally ambiguous basis functions to zero rather than allowing them to

destabilize the system. The actual development of the SVD algorithm is beyond the

29

scope of this research. Rather, our focus is simply how to implement an existing SVD

algorithm such that we can obtain the parameters for the ARMA model structure. The

problem then is to organize the training time history data into a suitahle matrix format

that is useable by an SVD algorithm.

First, recall that the ARMA model structure, Equation (2.4), has no constant terms

capable of accounting for a steady-state offset. This is because the structure is only a

model of the dynamics for a system oscillating about some steady-state solution. Hence,

the first step in developing the model will be to de-trend the response data so that its

mean condition (for zero structural displacement) is zero. It would then be convenient if

the input training signal were led into by several steps of zero displacement so that the

mean conditions could be easily identified. The de-trending procedure is then to simply

subtract off the mean value from every data point in the output time history. The basic

de-trending procedure is shown graphically in Figure 3.6 for a single input and output.

30

0.2 _
Training Data Input Time His/ory

0')
Traing Data Output Time Histor)'

0.151 0.6 j/\\r,i

J\x 0.1 T f 0.4 t.
i \rV0.05

0: ! / .--

0 ---l - --~ ~

0 0.05 0.1 0.15 0 0.05 0.1 0.15

02 f De-trended InpUI Time History 08

l
De-trended Output Time HisLOry

\1\-
o 15 --- 0.61

J

/\\;~
, 01 I f OA f

0.2 ~) \
0.05 .

o j oL-t-/ 'v/
I - - - I

0 0.05 0.1 0.15 0 0.05 0.1 0.15

Figure 3.6: Comparison of Original Training Data With De-trended Training Data

Notice in Figure 3.6 that the input time history is not altered in any way during

the de-trending process. The only effect of de-trending the data is to shift the output ti.me

history to the origin. Note that for a MIMO system, each unique output is de-trended

separately since the offsets may be different in each case. Following the de-trending

procedure, the offset for each output must then be saved so that it can be added back on

to the response when implementing the model in place of the CFD solution in an

aeroelastic analysis.

Once the training data has been de-trended, it must then be organized into the

appropriate matrix form suitable for analysis using SVD. Assume for a moment that we

are constructing a model for a S1S0 system using two past outputs and three past inputs

31

from a set of training data with twenty data points. This means that there are five

unknown coefficients in the ARMA model, aI, a2, bo, bl, and b2. Figure 3.7 then shows

the fonnat for the matrices that are constructed from the training data for analysis using

SVD. Notice that each row in the matrix of Figure 3.7 contains three input values

(current, 151 past, and 2nd past) and two output values (1 st past and 2nd past) with respect to

the vector of current outputs.

____ _~f~l ___:S!l___~S~)___~V)___~(~l _________________~i~)___
x(3) x(2) x(l) y(2) y(l) y(3)
x(4) x(3) x(2) y(3) y(2) y(4)
x(S) x(4) x(3) y(4) y(3) y(S)

A=
x(6) x(S) x(4) y(S) y(4)

b= ,
y(6)

x(7) x(6) x(S) y(6) y(S) y(7)
x(S) x(7) x(6) y(7) y(6) y(S)
x(9) x(S) x(7) y(S) y(7) y(9)

x(19) x(18) x(17) y(18) y(17) y(19)

Figure 3.7: Fonnat of Singular Value Decomposition Data

Once the data is organized in this fashion, it is passed to an SVD algorithm and

the coefficients of the ARMA model are computed and returned. Continuing with the

simple example used in Figure 3.7, five coefficients would be computed which would

then be used in the model structure of Equation (3.4) to compute the dynamic output, y(I),

for any time, t.

32

Remember though that the actual output will be the sum of this dynamic output and the

steady-state offset that was subtracted off in the de-trending process.

At this point, we have not addressed parameter identification for MIMO systems

at all. Fortunately, all of the equations presented so far can be vectorized to account for a

MIMO system. The parameter identification scheme for a MIMO system is then

identical to that presented for the SISO system with one added loop. Rather than

executing the least-squares algorithm for just one input, we must be execute it once for

each output of the system. Imagine the coefficients from Equation (3.4) to be one row in

a large matrix of coefficients for the first output. We can then run through the same

parameter identification scheme to compute the second row of coefficients for the next

output and further more for other outputs. By doing this, we can then construct the

complete matrix of coefficients for the MIMO system model with only some extra

bookkeeping required beyond that of the SISO system.

3.1.3. Model Accuracy

Once the model parameters are computed, one must then determine the accuracy

of the model with respect to the actual system. One convenient measure of the accuracy

of the model comes from the definition of the least-squares merit function, Equation

(3.2). When computing the parameters for the model structure, the SVD algorithm is

attempting to minimize the value of this merit function, X2
. Hence, computing X2 for

each output would give us a measure of how successful the SVD algorithm was with this

minimization. Theoretically, X2 equal to zero would mean that the computed coefficients

are an exact match for the physical system. However, it is unlikely that such a perfect

33

minimization could be attained in actual practice so one is just looking for a sufficiently

small value for X2
.

This discussion then brings up the question of how small must X2 be in order to

guarantee that a good fit to the data has been found. Unfortunately, there is no straight

forward answer to this question since X2 is a dimensional error value that couLd vary

wildly from system to system depending on the relative magnitude associated with the

outputs for each system. This problem could possibly be handled by scaling X2 using

some appropriate measure of the relative magnitude of the system's outputs. However,

there is a more subtle problem associated with using X2 as a measure of the model's

error.

As it is defined, X2 is the sum of the squared difference between the actual system

output and the model output computed from the training data. However, the model

output at any given point can be a function of the output from any number of previous

points. If one then strictly uses the training data to compute the model output it will not

be an actual measure of the error one would obtain if the model were actually

implemented. For an actual implementation of the model, the output at a point would

have to be based on previous model outputs since the actual output history of the system

that was in the training data would no longer be available. Hence, a more accurate

measure of the model's error would be to implement the model using the same training

input and then compute an error between the model output and the system output

recorded in the training data.

A convenient way of measure for such an error is the root mean square (RMS)

34

error. The RMS error for any given output is defined in Equation (3.5), where Yi is the

actual system output and Yi is the model output.

(3.5) a=
n

With the RMS error, we still have a problem determining whether the model's

error is small enough since it is still a dimensional error term. To alleviate this problem,

the RMS error for each output can be divided by the maximum value for that output so

that we are left with a sort of scaled RMS error that is then nondimensional.

3.1.4. Model Order

The scaled RMS error together with the X2 error should now be able to give us a

good feel for the accuracy of the computed model. However, one must then decide what

to do if the computed model does not seem to be accurate. One option, and the easiest. is

to change the model order and recompute the model parameters and associated errors.

During the parameter identification procedure, an assumption is made about the

number of parameters that make up the model that is being computed. In general, a

model can be made up of any arbitrary number of past outputs and inputs which means

there will be a similar number of a;'s and b;'s that must be computed. For such a model,

it is convenient to define the model order by specifying the number of each parameter

making up the model. Hence, a 2-3 model would be one composed of 2 a;'s and 3 b;'s.

For convenience, we could define an arbitrary model made up of na past outputs and nb

35

past inputs as having order na-nb (this sort of naming convention will be used through

out when referring to the model order).

Following parameter identification and model error calculation, one then has the

option of keeping the computed parameters, or choosing a new model order and re

computing the parameters in order to obtain a better fit of the data. In general, increasing

the overall model order will result in a better fit of the data. However, there is a

realizable limit to this trend at which a further increase in the model order will yield a

less accurate fit. This less accurate fit is typically due to the model becoming unstable.

As the limit on the model order for the system approaches, one should watch for

three possible indicators of model instability. First, the computed X2 error for one or

more of the outputs may begin to increase. If this occurs, one should decrease the model

order and search for the optimum model order that minimizes the X2 error for all outputs.

Second, a computational roadblock may be encountered for extremely high model orders

in that the SVD algorithm will not be able to converge on a solution for the parameters.

Again, decreasing the model order and re-computing will typically correct this problem.

The other phenomenon that one might observe when the model becomes unstable

is computational "chattering". This is a more subtle effect that does not manifest in the

X 2 error terms. As mentioned before, the X2 error does not take into account the fact that

the model output at a given point should be a function of past model outputs rather than

past training data outputs. This means that if the fitted parameters result in an unstable

model output, the reported X2 error might not change significantly since it is a function of

the training data output which is not unstable. However, the instability of the model will

be quite obvious once the model itself is run in a dynamic solution. Figure 3.8 show

36

graphically how computational chattering affects the output of the model.

! ..~..... Actual Responsel

I~_ -. Unstable Model I

r
1

1jl' .,
. , ,
I •

I
I'

x ,
~

"

t
j

Figure 3.8: Effect of Computational Chattering on Model Output

Notice that the general trend of the output predicted by the model is correct, but

the signal is oscillating back and forth randomly about the correct solution. This is

because na is too large in the model order, and the model output is essentially

overcorrecting itself. If such a phenomenon is observed in the output of the model,

reducing the model order (by decreasing na) should correct the problem.

At this point, it probably is not clear what sort of model order will be required to

actually model an unsteady CFD solution. However, we can make some physical

analogies about model orders by recalling the discussion presented in Section 2.3.3 where

we derived ARMA model structures using linear aerodynamic theory. In that section, it

was demonstrated that the ARMA model structure represents time derivatives through

finite difference approximations. Let's consider the simple two-dimensional problem

again where we want to model the nondimensional lift acting on an airfoil that is free to

pitch in a flowfield. For a 0-1 model order, the nondimensional lift would be a function

37

of only one past input as shown in Equation (3.6).

(3.6)

Hence we see that a 0-1 model order is equivalent to a steady aerodynamic model for the

system.

Next, consider a 0-2 model order similar to that shown in Equation (3.7) where

the nondimensionallift is now a function of two past inputs.

(3.7)

This type of model could be considered a first-order quasi-steady model since it is

capable of numerically capturing the first time derivative of the input, a(1). Similarly, a

0-3 model order with three past inputs adds the second time derivative of the input(s) to

the model and might be thought of as a second-order quasi-steady model. Continuing

this analogy further, one can develop higher order quasi-steady models with more and

better approximations for the time derivatives of the input(s) to the system. Hence we

can see that a O-x order model represents different levels of quasi-steady aerodynamic

models.

For many aerodynamics problems, a steady or quasi-steady model may not be

sufficient to model the aeroelastic response of the system. An unsteady model can then

be formed by increasing na in the model order. For example, a 1-1 model order applied

to the simple two-dimensional problem we were discussing earlier would look like

Equation (3.8).

(3.8) C, (1) =hi C/ (t - 1) + aoa(t)

38

In this case, the nondirnensional lift is a function of the current angle of attack and the

previous lift output by the system. The b l teon in Equation (3.8) could then be thought as

a wake influence coefficient. Further increasing na in the model order would then serve

to add wake time derivative coefficients to the system model.

Based on this discussion, one should have a reasonable understanding of what na

and nb physically represent in a system model. Obviously, the actual model order will be

highly dependent on the physics of the actuai system being modeled, but there are some

general trends that one would expect. Since nb represents the steady or quasi-steady

dependence of the aerodynamic forces on the motion of the structure and na represents

their unsteady dependence on previous forces or the aerodynamic wake, one would

intuitively expect that na would always be less than nb. This argument is made because

the wake really only has secondary effects on the flow while the motion of the structure

strongly influences the aerodynamic forces. Also, the wake has no effect on the

aerodynamic forces in a supersonic flow since the body is outrunning the downstream

pressure waves. Hence, the required na for a given geometry should be expected to

decrease as the Mach number increases.

Although these guidelines provide a way of picking the relative magnitude for na

and nb with respect to each other, they do not provide us with a way of estimating the

expected model order for an arbitrary configuration. Picking the actual values for na and

nb will require some experimenting for each model. Any initial guess for the model

order will suffice for the first attempt at parameter identification. Then one must adjust

the model order and re-compute its parameters repeatedly until the model's output error

has been minimized with respect to both the X 2 and the scaled RMS error discussed

39

previously. Once this optimum model has been found, it is then ready to be implemented

into the coupled aeroelastic solution in place of the unsteady CFD solution.

It should also be noted that the optimum model order may be higher than what

one might expect from a physical standpoint. Since we are identifying a system model of

a CFD model for the actual flow physics, additional model coefficients may be necessary

to capture the numerical dynamics of the CFD model. Basically, any numerical errors in

the CFO model will be carried over to the system model so that system model will not

only be modeling the flow physics, but also the numerical dynamics of the CFO model.

Hence, higher order models may be necessary to get a "perfect" fit to the CFO training

data by introducing higher order derivatives to model the numerical dynamics of the CFD

solution.

3.1.5. Model Implementation

The implementation of the system model simply becomes a matter of replacing

the unsteady CFO solver in the coupled solution with a new module which implements

the ARMA model structure with the parameters computed for the unsteady flowfield.

One could imagine a sort of software switch that can be thrown to use the discrete time

system model instead of the unsteady CFD solver. The unsteady CFO solution is used to

first compute the model training data needed to construct the system model, but then one

switches over to the model for computing the aeroelastic response of the structure. This

concept is illustrated in Figure 3.9.

40

-

Unsteady CFD
Solution

Dynamics
Solver

Discrete Time
Model

Figure 3.9: Implementation of System Model in Coupled Aeroelastic Solution

The actual system model module itself will simply rely on matrix algebra to

implement the ARMA model structure for any arbitrary number of model parameters.

This module would then be capable of predicting aerodynamic forces based on any

arbitrary motion of a structure given the appropriate model parameters.

3.2. Two-Dimensional Example

Before attempting to implement the system identification procedure on a complex

three dimensional structure with the STARS codes, there are a few questions remaining

to be answered. Most importantly, we must decide what the optimum input is for the

training data, and whether or not a linear model will work effectively in the coupled

solution. In an attempt to answer these questions, the system identification procedure

was first tested on the simple two degree of freedom system outlined in Figure 3.10.

41

,,,
I,,

I,
I,

I,,
I
I

I
I,.

h

2b

Figure 3.10: Two Degree of Freedom Airfoil System

,,,,,,,
I,.,

•,,,
I,,

I,,

The structure shown in Figure 3.10 is a simple two dimensional airfoil which is

free to pitch and plunge in an ideal flow. This sort of geometry is often used to study the

influence of various parameters on the coupling between the bending and torsional

motions of a relatively large aspect ratio wing [Bisplinghoff, 1996J.

To analyze this system, one must develop a methodology for computing both the

unsteady aerodynamic forces acting on the airfoil and the dynamic motion of the airfoil

as a result of the applied aerodynamic load. The aerodynamic forces acting on the airfoil

were approximated using an existing 2-D, unsteady flow solver which employs the

Smith-Hess panel method. The panel method code computes the nondimensional

aerodynamic lift and moment acting on the airfoil for any arbitrary pitching and plunging

motion. The predicted nondimensional coefficients can then be multiplied by the free

stream dynamic pressure to compute the actual load acting on the airfoil for use in a

structural dynamics solution.

42

A simple dynamics solver can then be constructed by first deriving the equations

of motion for the system using Lagrange's equations as outlined in Appendix A.

Equations (3.9) and (3.10) present the resulting coupled dynamic equations of motion for

this two degree of freedom system.

(3.9)

(3.10)

With some further effort as outlined in Appendix B, Equations (3.9) and (3.10)

can be nondimensionalized and rewritten in a form which can then be approximately

solved using a Runge-Kutta numerical integration. An aeroelastic solution is then

achieved by coupling the Runge-Kutta dynamics solution with the unsteady, 2-D panel

code. In doing so, we have constructed a simplified version of the time-marched solution

scheme employed in the STARS aeroelastic analysis module. The solution algorithm

will involve first computing the nondimensional aerodynamic load at a given instant in

time, and then integrating the nondimensional equations of motion to predict the new

orientation of the airfoil for the next time step.

Of course, there are some numerical problems with this type of solution. Most

significant is the fact that the aerodynamic load at each time step will have to be assumed

constant in order to integrate the equation of motion and get to the next time step.

However, for a small enough time step this may prove to be an insignificant issue.

Regardless, the main focus here is to determine if a linear system model can be created

that is capable of replacing the flow solver in the coupled solution. Whether the coupled

CFD solution actually models the real world is not as important as whether the model can

43

be made to match the CFD solution.

It is also interesting to notice the significance of the unsteady panel code

computing nondimensional aerodynamic coefficients. These nondimensional coefficients

can be multiplied by the free stream dynamic pressure to compute the actual aerodynamic

lift and moment, but the panel method solution itself is not a function of the free stream

dynamic pressure. Hence, any model created for the unsteady panel code would also be

independent of the free stream dynamic pressure. The advantage of this becomes quite

obvious since one is most often interested in analyzing the effect of the dynamic pressure

on the aeroelastic response for a given geometry. Once a model is constructed, the model

can be used in a coupled solution with the dynamics solver for a variety of different

dynamic pressures as long as the physical dimensions of the geometry are not changed.

The output from the model will simply have to be scaled by whatever dynamic pressure

is being tested in order to compute the aerodynamic load needed by the dynamics solver.

This wi.ll save a significant amount of time as the model requires very Iittle computational

effort compared to the unsteady panel method solution.

3.2.1. Panel Method Implementation

For the first phase in this implementation, the unsteady panel code will be used to

compute a single output, sectional lift coefficient, when given a single input, angle of

attack. Using this simple SISO system, the six different inputs presented earlier in Figure

3.2 will be tested as possible training signals for the system identification procedure.

After time history data for each of the six inputs has been gathered, the MATLAB

System Identification Toolbox can then be used to construct an ARMA model using the

44

different sets of training data.

Once a model is constructed in MATLAB, it can then be implemented using each

of the different inputs and the model time history can be compared with the time history

from the unsteady panel code. By evaluating each model's ability to predict the actual

unsteady solution for a variety of different inputs, one should be able to determine which

input signal will give the system identification procedure the best chance of capturing the

full spectrum of the system's response. For example, one could use the training data

from a sinusoidal input to construct a system model for the unsteady panel code. Then,

the model could be used to predict the response of the panel code to the multistep input.

A comparison of the model response for the multistep and the actual panel code response

would then provide some insight into whether the sinusoidal input excited the system's

dynamics enough to yield an accurate modd which can predict the system response for

any arbitrary input.

Each of the six inputs was analyzed using the unsteady panel code for a NACA

0012 airfoil which was restricted to pitch motions only in the flow field. The unsteady

panel code computed and output complete response time histories for the lift coefficient

of the airfoil as its pitch motion obeyed each input signal. For each of the six response

time histories, the MATLAB system identification toolbox was then employed to find the

optimum ARMA model that best matched the computed response data. This then left of

with six different models, each based on a different set of training data from the same

system.

The best model could then be chosen by testing to see whether each model could

accurately predict the response time history for each of the other six inputs. This proved

45

to be a serious problem for most of the models. Although a model could be accurately fit

to each set of data, that model could not in tum be used to predict the response for any

arbitrary input unless the original training data had captured that part of the system's

response. Results from this preliminary comparison showed that the multistep and

random signals excited the complete spectrum of the system's response the best as the

models trained on these two signals did accurately predict the response of the pulse,

sinusoidal, exponential pulse, and chirp inputs as well as each other's response.

3.2.2. Preliminary Panel Method Results

Based on the success of the multistep and random input signals as training signals

for a S1S0 system, the more complicated MIMO system was studied. To do so, a

staggered input signal was used for each input as discussed in Section 3.1.1. Figure 3.11

shows how the staggered input signal for the multistep input would be implemented in

order to correctly specify the pitch and plunge motion of the airfoil.

rHO O.ro (103 0.03

lUllS 0.015 HHI~ 0015

! I of ! °i"
I

" ·1·

~
-,-. -. - --. .-. "

'" • .c l iI '" '.c

I i-l1.llIS
I -0015 ..cIIH~ -o.01S

.J I

~HO -0.00 ..cuo -0.03
Time (s) TIme (s)

Figure 3.11: Multistep Input Si.gnals for Training the Multi-Input Model

After implementing both the multistep and the random inputs, the response data

46

was again analyzed using the system identification toolbox in MATLAB. From both sets

of training data, an optimum system model was constructed and each model was then

evaluated by again implementing them to predict the response to the other inputs. As

with the SISO models, models trained using both the multistep and random inputs were

able to predict the aerodynamic response of the airfoil to a variety of inputs. However,

the random input had the drawback of needing a significantly longer time history for

training the model. While the multistep was a much more compact signal which required

about half the computational time to complete. This prompted the selection of the

multistep as the optimum input for training an ARMA model to match the unsteady panel

method solution. Figure 3.12 presents an example of the aerodynamic response for the

airfoil as predicted by the unsteady panel method and the system model trained using the

multistep time history.

47

0.5

o

- 0.5 . - - - . - - -,' - --

5432

- 1 '-------'---- --l. --'- ---L --J

o

--_. --- ••• _ •• --;. ---. - ••• - -- •• _. i. •••• -_ •• _.. .

E
(.)

o 1

o

- 0.1

o 1 2 3
Tim e

4 5

Figure 3.12: Comparison Of Model (- - -) to Panel Code (-) Predictions of CJ and
Cm for the Multistep Input

One rather interesting feature to notice in the aerodynamic response of the airfoil

are the spikes in the C, and c'n plots of Figure 3.12. Each of these spikes corresponds to

the beginning or end of a step in the velocity input signal. These spikes seems to indicate

the significance of the velocity boundary condition in the panel method solution. In fact,

the velocity signal seems to really dominate the overall response of the system. Hence,

we can see the justification for implementing the multistep input on the velocity

boundary condition rather than on displacement as is done in flight testing. flthe

multistep had been implemented on di.splacement, we would not have captured some of

the more interesting features ofthe aerodynamic response.

Now, let's compare the multistep model's response with the actual panel method

response for several of the other input signals. Figure 3.13 presents a comparison

48

between the computed model response and the panel method response to a chirp input for

pitch, and Figure 3.14 presents a comparison between the computed model response and

the panel method response to a exponential impulse for pi tch.

0 .5 ~ ~

0 0 ,

- 0 .5

1
0 2 3 4 5 6 7 8 9 10

0.2

0.1

E 00

- 0 1

- 0.2

0

. -. >...• -....'.

· .· .
.", .· .· .

2 3 4 5
Time

6 7

, ~.:....

8 9 10

Figure 3.13: Comparison Of Model Output (- - -) to Panel Code Output (-) of (',
and Cm for a Chirp Input of a

0.0 5 ~--,..---.-------r-----r------'

o 1 .

o1------. - " .

v:
E 0 r--;---'~'"".~.. ;.
o

7
7

. 0 1 '---L__--'-__.l...-_---'__--'-_--' . 005 LL__...l-__.L-_---L__---l..-_-..!

2 25 3 3.5 4 2 2.5 3 3 5 4

Figure 3.14: Comparison Of Model Output (- - -) to Panel Code Output (-) of C,
and Cm for the Exponential Pulse Variation in a

49

Thus far, the panel method has been utilized to perfonn a qualitative analysis on

which input signal is the best for use in the model training data. The final question that

remains to be answered is whether or not the model can be utilized in place of the panel

method code in a coupled solution where the aerodynamics influence the structural

dynamics of the system. The procedure then is to take the model that has been

constructed in MATLAB based on the multistep training data and implement it in a

coupled aeroelastic simulation with the Runge-Kutta dynamics solver. We will then

compare the aeroelastic response computed with the model to the actual aeroelastic

response predicted with the panel method code. Figure 3.15 presents such a comparison

between the aeroelastic responses predicted by the panel method code and the model.

Note that for an aeroelastic response, we are most interested in whether the forces

predicted by the model couple well with the dynamics solver to predict an accurate time

history response for pitch and plunge. Figure 3.15 shows a time history which is fairly

close to the flutter point for the air foil.

50

_ Panel -oOOl

o d.t. model

-

0001

h 0 ~--f-r--1l----,rI----t--,--f--'"

-0,001

0.002

0.001

0. 0 ~-Il-------rl-~l------,----JJ---'r---I-------,

-0002 -0002

Figure 3.15: Comparison of Aeroelastic Response Predicted by Unsteady Panel Method
and Discrete Time ARMA Model

I
_Panel

__ • d.t. model0008

0.006

0.01

-0.002

-0.004

CL 0.004

0002

_Panel

o d.t. model

0.001

0

-0.001

CM
-0.002

-0.003

-0,004

Notice that the model does a fairly good job predicting the aeroeJastic response of i
•

the airfoil. The model was tested for a variety of different structural configurations by

varying the frequency ratios for the pitching and plunging oscillations. In each case, the

model proved capable of capturing the dynamics of the system. Based on these results,

we should be able to take the system identification procedure to the next level and model

a fully three-dimensional CFD solution. It will be necessary however to develop a

parameter identification code so that the procedure will not have to rely on MATLAB to

compute the model parameters.

51

3.3 . STARS Implementation

Based on the preliminary results from the unsteady panel method implementation,

the 3211 multistep for the velocity boundary condition was chosen as the optimum

training input for use in modeling the STARS unsteady CFD module. Before

implementing the modeling procedure, it is important to examine the STARS aeroelastic

analysis module in detail. Figure 3.16 presents a flow chart outlining the basic time-

marching solution scheme used by STARS for aeroelastic problems.

p

Aero

Forces

FEM Solids Steady State
AnaJysis CFD Solution

Modal
I.C.'s

arameters
~r ~r

~
Dynamics

... Solver

CFD B.Co's

~

Unsteady CFD

Solution

,,
(

t.

Global lime Step

Figure 3.16: Summary of STARS Aeroelastic Analysis Routine

The two boxes at the top of Figure 3.16 represent the preprocessing that must be

done prior to running an aeroelastic simulation. First, a free vibration analysis must be

completed using the STARS Solids module to compute the dominant eigenvectors or

modes of the structure. Next, the steady flow solution must be computed using the

STARS Steady CFD module so that any static nonlinearities in the flowfield are captured.

52

As discussed previously, this ensures that the unsteady solution will be both time accurate

and linear about the mean flowfield. Both the modal parameters and the steady CFD

solution are then used as inputs in the coupled aeroelastic solution.

The coupled solution is a time marched methodology for solving Equation (3.11),

the matrix equation of motion for an arbitrary structure using generalized coordinates.

(3.11) Mq + Cq + Kq =fa (t)

where ...

M = generalized mass matrix

C = generalized damping matrix

K = generalized stiffness matrix

q = generalized displacement vector

faCt) = generalized aerodynamic force vector

This equation is solved by the dynamics solver at each time step in order to

compute the generalized motion of the structure. Following the flowchart in Figure 3.16,

the generalized displacement vectors, q and q, are then passed to the unsteady CFO

solver as boundary conditions. The unsteady CFD solution then predicts the generalized

force vector which is in tum passed back to the dynamics solver for use at the next time

step. The system model fits nicely into this time marched solution scheme as a

replacement for the unsteady CFO solution. In the coupled solution, the system model

then acts as a mathematical map between the generalized displacements and generalized

forces.

It is now important to examine how the generalized forces are computed in the

unsteady CFD solution. The relationship used to compute the generalized force vector is

53

•••(
t·

given in Equation (3.12).

(3.12)

where ...

<D = modal matrix

P = Euler pressure vector

A = surface area vector

We can see from Equation (3.12) that the generalized forces needed for the

dynamics solver are directly proportional to the Euler pressures computed by the

unsteady CFD solution at each time step. Upon further investigation, one finds that the

Euler pressure for each node is computed using a relationship similar to Equation (3.13).

(3.13) P; =2q(1 2 - Pi J
y·M

Equation (3.13) shows that the dimensional Euler pressure at a node is directly

proportional to the difference between the nondi mensional free stream pressure (1/1' M2
)

and the pressure coefficient acting on the node, Pi, as computed by the Euler solver. The

important thing to notice is that the dynamic pressure, q, is simply a scaling factor for a

nondimensional pressure difference computed by the unsteady Euler solution. In fact.

one could redefine the generalized forces by dividing the dynamic pressure out of the

equations, leaving us with a sort of nondimensional generalized force coefficient.

Although we can divide out the dynamic pressure from the generalized force, it is

important to note that the generalized force coefficient is still a function of the Mach

number. This is due to the fact that the Euler pressure, Pi, is dependent on the Mach

54

•,,
(

I.

number at which the Euler solution is run.

This leaves us with a situation similar to that in the 2-D panel example where the

system model could be used to predict the force coefficient based on the generalized

displacements. Since the force coefficient is not a function of the dynamic pressure, the

model is valid for all dynamic pressures at a given Mach number. To implement the

model in the coupled solution, the force coefficient predicted by the model must simply

be multiplied by the dynamic pressure before being sent to the dynamics solver since it

needs the actual generalized force.

This is where the real benefit of the model can be seen. Once a model IS

constructed for a given structure and Mach number, it can be executed repeatedly at

different dynamic pressures to search for the dynamic divergence pressure. Also notice

that since we are modeling only the aerodynamic response, the system model will not be

dependent on the structural parameters such as the mass, stiffness, and damping. The

model is only dependent on the physical dimensions of the geometry presented to the

flowfield. Hence, one could change to any or aU of the structural parameters to study

their effects on the divergence point and retain the same model. As long as one docs not

change the physical dimensions of the problem or the free stream Mach number, the

model can be used to compute an accurate aeroelastic response for the system at almost

no computational cost compared to the unsteady Euler solution.

Since one is often most interested in determining the divergence q for a given

structure, it is important to now examine exactly how one would vary the dynamic

pressure in a STARS aeroelastic solution. Equation (3.14) gives the expression for

calculating the dynamic pressure, q.

55

(3.14) q = t p(MaY

Notice that the dynamic pressure is a function of the Mach number (M), free

stream density (P), and the free stream speed of sound (a). Since the model is only valid

at the specific Mach number for which it was originally trained, the dynamic pressure

must be varied only by changing either the free stream density or speed of sound for

some constant Mach number. Now, let us look at exactly how the system identification

procedure can be used to construct a model of the unsteady Euler solution used by

STARS.

3.4. STARS Modeling Procedure

It will be assumed that one has some expenence usmg the varIOUS STARS

modules and can successfully complete the preprocessing necessary before starting a

coupled aeroelastic analysis for a structure. As discussed previously, this preprocessing

includes a free vibration analysis of the structure using STARS Solids and the completion

of a static flow solution using the STARS steady CFD module. In addition, it will also be

necessary to convert the STARS Solids data into a format useable by the STARS

aeroelastic module including an interpolation of the modal vectors to the CFD mesh.

This procedure is outlined in the STARS user's and verification manual [Gupta, 1997].

The system identification procedure as implemented in STARS can be

summarized by the following steps:

l) Run the multistep solution using the CFDASE module and rename the

output xn.dat time history file to multi.dat.

56

•,
(

t.

-

--

2) Use the training data in multi.dat to compute the optimum ARMA model

using the CFDMDL module to compute the model parameters.

3) Implement the model in the coupled aeroelastic solution in place of the

finite element, unsteady Euler flow solver.

Each of these steps will now be explored in greater detail.

3.4.1. Gather Training Data

The first step is to gather the time history data that will be used to train the system

model. Since the model will be a sort of map between the generalized displacements

computed by the dynamics solver and the generalized forces computed by the unsteady

Euler solution, one must be able to extract this time history data for both the generalized

displacements and forces from the STARS aeroelastic module. Fortunately, STARS by

default already outputs a time history file containing the generalized displacements and

velocities for each mode. This infonnation is stored in the xn.dat file output during the

time-marched solution. It was a simple matter to then modify this output to include the

generalized forces in this file. This allows one to gather the necessary time history data

needed to train the model.

As discussed previously, the training data for the model is based on a multistep

input for the velocity boundary condition of the unsteady flow solver. Hence, one will

need to run the CFDASE module for the given geometry and Mach number, but specify

that the structural motion should follow the multistep rather than obeying the structural

equation of motion. This will be accomplished by setting the ibex parameter in the

scalars input file to 4 (see Appendix C for sample scalars files). With ibex equal to 4, the

57

dynamics solver in CFDASE will be bypassed and the motion of the structure will be

based on the multistep shown in Figure 3.17. It is important to note that the multistep is

for the velocity boundary condition, so the actual motion of the structure will be

computed internally by numerically integrating the velocity to get the appropriate

displacement for each mode shape.

rbcx ~

~-:- ~- -.-.-_e--,~-+--+-/-+-\c+--_.-.~~-.-e---._-;~-._--.-.-2.5.- •

-rbcx 1

e- •

30

3025205

e-<o---e-_.•_l_-\-<--+--+~.-.-.- __e----e---e __

rbcx T

~, 1_-
~

-rbcx J

• • • • • •

rbcx T

~ .
;. ~

-rbcx J

• • • .- • • • 25 JO

••,
(

t

rbcx I
i

r
-rbcx i

5 + 4-isize -(nr- I)~L ·\
..-e--e. ---.-.-e--.-.-'--'-.--e -e--= ---o---f--,--+--

\
\

5 + isize -(4-nr + 3)

nr = number of roots (mode shapes)

isize = unit size of multistep

Figure 3.17: Structure of Multistep as Implemented in STARS CFDASE Module with
isize = 1

58

Notice in Figure 3.17 that there are two other parameters that are used to describe

the structure of the multistep. The magnitude of each multistep is set using the rbcx

parameter in the scalars file, and the scaling factor for the multistep is set using the new

parameter isize which has been added to the scalars file just to the right of the rbex

parameter. In the current research effort, isize equal to 5 has been used exclusively and

will be shown to work for each geometry tested to date. However, the isize parameter

does effect how long it takes to run the multistep solution for a geometry with a given

number of modes.

Notice in Figure 3.17 that the end of the multistep for the last mode occurs at time

step 5 + isize'(4'nr + 3). This means that if the structure has three modes, it will take 80

time steps to complete the last multistep sequence for isize equal to 5. Decreasing isize

would significantly decrease the number of time steps needed to complete the multistep

run especially for structures with a large number of modes. However, the isize parameter

has a significant effect on the frequency content of the multistep input due to aliasing

effects in discrete time, and thus should be adjusted with caution. Since isize 5 will be

shown to work, it is recommended that this value or greater be used. Recent work has

indicates that larger values of isize may be required for problems where the time step is

very small relative to the unsteady response of the flowfield.

Choosing the magnitude of the multistep, rhex, is not quite as straight forward and

will require some physical insight into the system being modeled. The magnitude of the

multistep must be selected such that the resulting generalized aerodynamic forces are

substantial, and yet also small enough that they can still be assumed to be linear

fluctuations about the nonlinear, static solution. Although this is important for subsonic

59

..
•,
(

I.

and supersonIc, this assumption IS critical for transonic flows. Since the modal

parameters for each geometry represent very different motions and can be scaled

differently, there is no general rule of thumb for calculating the ideal rbcx value. Recall

also that the multistep is implemented on the velocity boundary condition not

displacement. Hence, one would have to integrate the velocity multistep to determine the

maximum structural displacements that results from the specified rbcx.

First, let's consider how to compute the maximum displacement for a given value

of rbcx. The time step used by the STARS CFDASE module can be computed using

Equation (3.15) where the parametersfreq and nstpe are defined in the conu file.

(3.15) dt = 2",
freq . nstpe . (M .a)

Based on the structure of the multistep given in Figure 3.17, the maximum displacement

for each mode will occur at n steps after the multistep starts, where n is given by

Equation (3.16).

(3.16) n =3· isize

..,,
(

t.

We can then compute the maximum displacement for each mode shape by integrating the

first step of the velocity multistep. Since an integral is simply the area under a curve,

Equation (3.17) is used to compute the maximum displacement for each mode shape for a

given multistep size, rbcx. Notice that the maximum displacement is the same for each

mode since the same multistep is implemented for each mode.

(3.17) q max =n . dt .rbcx

60

Although Equation (3.17) can be used to compute the maximum displacement for

a mode, the question still remains as to whether that maximum displacement is too large

or too small. As previously discussed, the maximum displacement must be small enough

that the system can be assumed to be linear, but also large enough that it induces a

response that is larger than the numerical dynamics of the CFD model. However, one

must be able to detennine how each generalized displacement physically relates to the

actual motion of the structure if any qualitative decision is to be made about the

magnitude of the multistep. Unfortunately this is not always easy to do.

Consider an example of a simple wing geometry with two mode shapes

representing wing bending and torsion. To maintain the assumption about the linearity of

disturbances, such a structure should be limited to angles of attack no greater than about

one or two degrees in a transonic flow. Hence the problem then becomes detennining

how the angle of attack for the wing is related to a generalized displacement of the wing

torsion mode. To detennine this, one must examine the modal parameters in the arrays

file and convert the displacements of nodes into an angle of attack for the wing.

However, the structures are often more complicated than this simple system and are

modeled with a larger number of arbitrary mode shapes. For a complicated system, it

may not be plausible to try and convert from generalized coordinates into physical

deflections.

For these complicated systems, a practical method that has proved useful is to run

a "fast" multistep solution using the piston solver for some arbitrary rbcx value.

Although the generalized forces will not be correct, the generalized displacements will be

accurate and one can then observe the magnitude of the displacements for the structure.

61

Since the generalized displacements are scaled arbitrarily with the modal parameters~ one

should then use a postprocessor to animate the actual motion of the structure and

qualitatively decide whether the motion is too large or too small.

After setting ibex, rbex, and isize in the scalars file, it is time to then run CFDASE

to compute the time history file, xn.dat. As discussed previously,S + isize·(4·nr + 3) time

steps will be required to complete the multistep sequence for the last structural mode.

Hence, CFDASE should be run for that many time steps plus 20 extra time steps to

resolve any transient effects for the last mode. Once the multistep solution is complete,

the xn.dat time history file should be renamed to multi.dat and saved for use as the model

training data.

3.4.2. Training The Model

At this point in the modeling procedure, one should have a complete multistep

time history computed by the unsteady CFD solution in the file multi.dat. This file is

used by the CFDMDL module to compute the coefficients of an ARMA model structure

that best fits the training data. Before running CFDMDL, two parameters must be added

to the bottom of the scalars file that specify the model order. The following two lines

should appear at the bottom of the scalars file:

$ na, nb
3, 7

These two new parameters, na and nb, describe the model order as presented in

Section 3.1.5. As a starting point, an initial guess should be made for the model order

based on what is known about the physics of the system. As discussed in Section 3.1.5, a

model order with na set to zero will be a form of quasi-steady model with higher order

62

••,
(

t·

time derivatives of the input as nb is increased. This sort of model should be fairly

accurate for supersonic flow and in some cases even subsonic flow. For cases where the

quasi-steady model will not be accurate, increasing na then introduces an unsteady

approximation for the flow field. Note that for most aerodynamic problems analyzed

using STARS, na should always be less than nb. For these types of problems, our work

has shown that the model error is always higher for models where na is greater than or

equal to nb.

Once the initial model order is selected, CFDMDL can then be executed and the

coefficients of the model will be automatically computed using the computational

algorithm discussed in Section 3.1.2. It is important to note that CFDMDL uses

information contained in the scalars and conu files in addition to the time history data in

muIti.dat. Hence, the settings in each of these files should be the same as when the

multistep was originally run. Specifically, CFDMDL is interested in the number of time

steps specified in the conu file and the Mach number and free stream density in the

scalars file. After CFDMDL computes the coefficients for the ARMA model, it will then

create a mdl file which contains information about the testcase in addition to the actual

model parameters (see Appendix C for sample mdl files).

In addition to creating the mdl file, CFDMDL will also report the X2
, chi-squared,

error for each mode as discussed in Section 3.1.4. These errors will give the user a

general idea of how well the assumed model order was able to fit the training data.

Typically the first guess for the model order will not be the optimum model order, so

CFDMDL must be run multiple times while changing the assumed model order in the

scalars file. During each successive cycle, one should be observing the output errors and

63

•••(
t

looking for the optimum model order that will minimize the X2 error as. discussed in

Section 3.1.4.

Once the optimum model has been chosen, it is then ready to be implemented in

an unsteady solution. However, recall that the X2 error is not a measure of the expected

error for the model in an actual implementation. Hence it is recommended that before

implementing the model in a coupled aeroelastic solution, the model first be implemented

in the same multistep solution used to obtain the training data. One could then compare

the model time history for the multistep with the training data in multi .dat and compute a

scaled RMS error as discussed in Section 3.1.4. The actual details involved in

accomplishing this will be discussed in the next section. Note that if the scaled RMS

error of the model solution is large or if computational chatter is observed in the model

time history, the model order will need to be tweaked again and the coefficients

recomputed.

3.4.3. Model Implementation

To actually implement the model in place of the unsteady CFD solution in

CFDASE, an extra parameter has been added to the namelist group in the conu file. The

model_sol parameter should be added to the conu file and set to true if one wants to run

the model solution using the coefficients stored in the mdl file. When running the model

solution, CFDASE reads the information stored in the mdl file and uses the model to

compute the generalized forces at each time step rather than the unsteady CFD solution.

CFDASE will also compare the Mach number and model order stored in the mdl file with

the similar values from the scalars file before starting the solution. If the Mach number

64

..
•
f
(

t.

or model order do not agree, then the model is not applicable and the solution will

tenninate.

The actual model calculations required to compute generalized forces are

completed using simple matrix algebra to multiply the model coefficients extracted from

the mdl file by the generalized displacements and forces for each mode. Then, the most

challenging aspect of the model implementation was the internal book keeping required

to keep track of the appropriate time history data. It is more interesting to note how the

generalized forces output by the model are actually interpreted and used in the coupled

solution.

Since STARS has been modifi.ed to output generalized forces, the system model

will be trained to predict the same generalized forces for an arbitrary input. However, the

generalized forces output by the model will then be correct only for the dynamic pressure

used in the training data. This is not consistent with our previous discussion about the

model being independent of the dynamic pressure, or free stream density. Fortunately,

we can correct this problem by storing the training density for the model in the mdl file

and then scaling the forces appropriately if the model is run at a different density. All of

this is handled internally by the STARS modules, but it is important to understand how

the model is implemented so one can diagnose modeling problems. For example, one

must be sure not to change the density in the scalars file until after the model has been

trained using CFDMDL. The CFDMDL module reads the density in the scalars fi.le and

stores it as the training density in the mdl file. If the density in the scalars fi.le had been

changed prior to training the model, the generalized forces output by the model would be

off by a scaling factor.

65

..
II

•(
t.

Once a model has actually been implemented, one might want to compare the

model time history data with the Euler time history data for the same problem to evaluate

the accuracy of the model. In particular, the model should always be use to predict the

same multistep response as it was trained on to make sure the model predicts the

generalized forces correctly. The RMSERR module can then be used to compute a

scaled RMS error as discussed in Section 3. 1.4. RMSERR will need to know the names

of the Euler time history file and the model time history file that are being compared, the

number of time steps to compare, and the number of modes in the time history files.

RMSERR then reads in the specified time history data and outputs a scaled RMS error

for each mode's generalized displacement, velocity, and force. Recall from Section 3.1.4

that the RMS errors will be scaled by the maximum value for each particular signal.

Hence, one might think of it as a kind of percent error, and in most cases we should

expect to see errors less than one percent or even a tenth of a percent if the model has

been fit well.

The final phase of the model implementation is to then use the model to predict

the aeroelastic response of the system for various free stream densities. One can use the

model repeatedly at very little computational expense to search for a dynamic instability,

if one exists. It is of course recommended that after identifying an instability, the Euler

solution be run at the instability condition to validate the model's prediction. The same

RMSERR module can then be used to compare the model and the Euler solution.

66

..
•,
(

t.

-

CHAPTER 4

RESULTS

Using the methodology outlined in Chapter 3 for applying system identification in

the STARS codes, the aeroelastic characteristics of several interesting three dimensional

structures were investigated. The results of these investigations are presented here both

to validate the modeling procedure and to show how to actually implement the modeling

procedure on a real problem. Each of the structures analyzed here are fairly well known

in the aeroelastic literature and have already been analyzed extensively using the STARS

codes.

The modeling procedure will be shown to save a significant amount of

computational time over the classical method when searching for an aeroelastic

instability. All computational work was performed on an IBM 3BT/RS6000 Workstation

with the various STARS modules already described.

4.1. AGARD 445.6

The AGARD 445.6 wing configuration is a standard aeroelastic test case that has

been investigated experimentally in the Langley Transonic Dynamics tunnel. A pJanform

view of the AGARD configuration showing the CFD surface mesh is presented in Figure

4.1.

67

~ .· ~
~ i
• 4
• J• •(.
t ~
• c

~ !
(.

paz

Figure 4.1: AGARD 445.6 Test Wing Geometry and Surface Dis·cretization

This wmg geometry is often used in the literature as a validation case for

computational aeroelastic codes in the transonic flow regime. Both experimental and

computational results for the AGARD have been presented by Batina, et. at. [1988, 1991,

1992, and 1995]. Gupta [1996J went on to show that the STARS aeroelastic analysis

module is also capable of predicting the experimental data for this wing geometry

including the transonic dip in the flutter boundary around Mach 1.0.

The AGARD 445.6 will be modeled structurally using the two dominant

eigenvectors representing the first two natural vibration modes of the structure. These

mode shapes physically represent wing first bending and torsion as computed by the

STARS Solids module. The corresponding frequencies for the first two modes were 9.60

and 38.20 Hz respectively. The CFD mesh for the AGARD consists of 70,036 nodes and

376,125 tetrahedral elements, which is a fairly typical CFD model for most structures

when analyzed using STARS.

68

..

4.1.1. Flutter Analysis

The first step in the system identification procedure is to run CFDASE with the

ibex parameter set to 4 which implements the multistep solution. As suggested, the isize

parameter was set to five, and an amplitude of 5.0 was chosen for the multistep and

specified using the rhex parameter. Since a two mode solution is required, 60 time steps

will be required to complete the multistep. Hence, a total of 100 time steps were run in

order to ensure that any transients in the flow field following the completion of the

multistep could be sufficiently resolved. Figure 4.2 shows the actual structure for this

multistep with parameters as specified above.

01 f I -XII 1 6 0.1 T xli 6

0.08 ·!x • \:~~J

[: 0.08 1
v2 : 4

t I ' J

006

1
2I I , \ I

0.06 . , '
X, j' : l\; --- -[0 V, Xl .IJ\ o vl

0.04 • I I 0.04
. I I I ~ ---- -2 -2, I,

0.02 : I -4 0.Q2 I' I
~ I I , , , -4

aU- I -6
0 i. -6

a 0.05 01 0.15 0 0.05 0.1 015

Figure 4.2: Multistep Input Implemented For The AGARD at Mach 0.96

CFDASE was run using the prescribed input signal show in Figure 4.2 at Mach

0.96 and a free stream density of 6.04xlO-9 slinch/inJ
, which corresponds to a dynamic

pressure of 0.440 psi. The output time history file from CFDASE, xn.dat, was then saved

as multi.dat for use in parameter identification. Using CFDMDL, a variety of model

orders were tried until the best fit for the training data was found. A model order of 4-1 0

was ultimately chosen as the best fit for the data saved to multi.dat. When employing this

69

...

model order, CFDMDL reported a chi-squared error of 8.53 x 10-7 and 3.85x 10-7 for

modes one and two respectively. The new system model was then implemented in

CFDASE to test if it could accurately predict the multistep response. Figure 4.3

compares the multistep time history data obtained using an Euler solution to same

solution using the discrete-time model constmcted using CFDMDL.

Simply based on a visual inspection of Figure 4.3 one can qualitatively see that

we use the RMSERR module to compare the time history data in multi.dat to the new

time history data predicted by the model in xn.dat. The results from RMSERR show that

0.1 0.15

I-- Euler I
L~ ct.!. model I

o ~- - ~ _

02~O.Ol

r,04 \ tV
-06 V ~

-0.8
0.15

l
--Euler

o ct.!. model

0.10.05o

3 T
'1'1go

o \

! \1i' o·
" 0 ~T --_.'"''----

/oJ
1.5

Figure 4.3: Euler and Model Solutions for Multistep Response of AGARD at Mach 0.96

the system model fits the training data extremely well. For a more quantitative analysis,

the scaled RMS errors are 0.00029 and 0.00072 for generalized force one and two

respectively. This is equivalent to saying the RMS errors were 0.03% and 0.07% of the

maximum generalized force for each mode. Notice that, as expected, these errors are

significantly larger than the chi-squared errors reported by CFDMDL.

After validating that the model accurately matches the Euler solution, the newly

constructed discrete-time model is then used to search for instabilities at this Mach

number by repeatedly varying the free stream density and computing the aeroelastic

70

response of the system with ibex now equal to O. Once the point of aeroelastic instability

is found, the coupled Euler solution can then be run once to verify the accuracy of the

coupled model solution. For Mach 0.96, the instability boundary was found to be at a

density near 3.2x 10-9 slinch/in3
, or a dynamic pressure of 0.233 psi. Running the coupled

Euler solution served to verify the response data obtained using the model at the

instability boundary as shown in Figure 4.4.

qualitatively matches the response predicted by the coupled Euler solution. Notice also

that we are now more interested in how well the generalized displacements match in the

Euler - 1

o d.l. model I___ oJ

OJ 0.4

OJ r -Euler I
02 i 0 d.t. model

,:i~' -A..b I Ao"A-A 1.
I· t ~ ~ g t: t t \!

02 'I' ~ " .. 0 0 0
-. ,0 0 0 0 0 0 0 .. t 0

-OJ l°\it V iVl °Vg

~;
-0.4 '. V

1-0.5 ,

Notice in Figure 4.4 that the aeroelastic response predicted by the model

Figure 4.4: Comparison of Euler and Model Solution For AGARD Aeroelastic
Response at Mach 0.96

coupled solution rather than how well the model predicts the generalized forces for a

prescribed time history of generalized displacements. Again using RMSERR, we find

that the scaled RMS errors are 0.017 and 0.0012 for the generalized displacements of

modes one and two respectively. Although these errors are much larger than those

observed for the multistep, it is still quite obvious that the model has accurately predicted

the coupled response.

71

At this point it might not be clear exactly how much time has been saved by

developing the discrete-time model for the CFD solution before running the aeroelastic

analysis. First consider the current method for applying CFD to aeroelastic analysis in

STARS. For a given Mach number, the fuIi unsteady CFD solution is run at least four

times at different densities in a search for the crossover point between stable to divergent

time histories. The results from these time histories are then interpolated to detennine the

approximate point at which the system is unstable. The total computational time to run

just one unsteady CFD solution of sufficient length to be qualitatively useful is 120 CPU

hours on an IBM 3BT/RS600 workstation for the AGARD 445.6 geometry as presented..

Multiply that time by four and it requires 20 days to detennine the approximate stability

boundary for the AGARD 445.6 at one Mach number.

The new system identi.fication technique requires only one run of the unsteady

CFD solution for a prescribed motion of the structure. The length of the prescribed time

history is about one fourth of the length required for a full aeroelastic run, so it runs in

just under 30 CPU hours. The entire procedure for computing the best parameters for the

discrete-time model takes less than 30 minutes, and then the discrete-time model can be

run repeatedly at different densities to predict complete aeroelastic time histories in less

than 60 CPU seconds. The total savings in computational time realized is then over 400

CPU hours to predict the divergence crossover point using the system model. A

comparison of the total time required to compute the neutral point of the AGARD 445.6

at Mach 0.96 is shown graphically in Figure 4.5.

72

500 474.4

---. 400
~
:::s
0 300..c
'-'

.~ 200l- i

::J I
0..
U 100 J

30.0

Io .'-
Euler d.1. ITXldel

Figure 4.5: Comparison Of Total Computational Time Required to Predict a Flutter
Point for The AGARD at Mach 0.96

It should be noted that it is still recommended that an Euler solution be run to

validate the instability point predicted by the model. However, the validation run would

only need to be long enough to show that the model solution follows the correct trend in

the response and would not have to run long enough to actually validate the complete

time history.

Another distinct advantage of developing a system model for the AGARD is that

the model is not dependent on structural parameters such as generalized mass, stiffness,

and damping. Hence, these parameters could also be varied along with the free stream

density to observe their effect on the flutter point of the system. This sort of problem

would be difficult to study using the complete Euler solution. Consider that it takes

approximately 475 CPU hours to predict the flutter point for the AGARD at one Mach

number and one set of structural parameters using the Euler solution. If one then changed

a structural parameter, it would take an additional 475 CPU hours to predict the flutter

point for the AGARD. Since our model was developed for the aerodynamics of the

system independently of the structural parameters, there is no need to re-compute the

73

~ ..,
: ...
• 004: ~
• 1. 1

: ai:1
; ~,

· -I
; ?:;
: :::,
; ~I
: -I

~ :s::
: "I
: 1;1
• c(l

: :&1
': "'1
~ ...
,~ X·
· ~l

t il
(:)

-
multistep and re-train the model. The same system model will be valid for all

combinations of structural parameters for the Mach number at which it was trained.

Hence, one can change any structural parameter and then predict the flutter point in the

time it takes to compute four time histories using the model (about 10 CPU minutes).

This means that the time presented for the model in Figure 4.5 is approximately the same

time it would take to predict the flutter point for the AGARD at one Mach number for all

combinations of structural parameters. Typically one would not even consider doing

such a problem with the Euler solution, but it is now possible with the system model.

Based on the success at Mach 0.96, the system identification procedure was then

put to the test on the AGARD for several other Mach numbers. Models were also

constructed for Mach 0.499, 0.678, 0.90, 1.072, and 1.141 using the same procedure

outlined above. The models were then employed in a search for the flutter boundary at

each Mach number. Appendix D contains comparisons between the model solution and

the Euler solution for the multistep input and the coupled response at the neutral point for

each Mach number. It is shocking to note that by using the system identification

procedure to construct a model at each Mach number, the neutral point over the entire

Mach range could be determined in less than a week, compared to several. months using

the brute force method.

Using the data gathered from the system model at each Mach number, we can

then plot the instability point at each Mach number to construct a composite flutter

boundary for the AGARD test wing. This is most often done by plotting the flutter speed

index, Vf, versus Mach number. The relationship defining flutter speed index is given in

Equation (4.1).

74

-

--

(4.1)

--

where ...

Vn = free stream velocity

bs = root semichord

OJa = first torsional frequency

11 = mass ratio

By computing the flutter speed index predicted by STARS for each Mach

number, we can then compare our results with the experimental results presented in the

literature. Figure 4.6 presents a comparison of the flutter speed index at each Mach

number predicted by STARS to that determined experimentally. Notice that although

STARS did not predict the exact flutter boundary, the qualitative trend of the two plots

are consistent, including the often difficult to predict transonic dip. Also note that the

most important comparison of results for this research effort is between the model

solution and the Euler solution, not a comparison with experimental data. The

experimental data is only presented to show that the STARS codes are capable of

accurately modeling real aeroelastic behavior for practical structures.

75

:1 ..,
: ...

.• '04

· n,• ,;;1.
• "I

· '::1
.: ;Jo.

-\
;1"

Ii ."1

.. :;:,
:: "
· -I

~~
· "'1

,: 10

-

~.-

0.5 -

oJ 6-

:> III 6

X l ---.. /<l)
CiI \"0.s

i"0 0.3 ,ll CiI
<l) ..
8- - CiI

VJ... 0 STARS Model I
<l)

t::
STARS Euler CiI::l 0.2 x

i:i:
6- Experimental

._~ -

0.1

0.4 0.6

, I

0.8

Mach Number, M

1.2

Figure 4.6: Comparison of Flutter Boundary Predicted by STARS to Experimental

4.1.2. Model Order Analysis

Each of the optimum models for the AGARD in the previous section were chosen

by varying the model order until the model's error was minimized. However, it is not

very clear at this point what sort of trends one should expect when searching for the

optimum model order. Using a higher order model generally decreases the output error,

but one must be able to decide at what point the model order should not be increased any

further. Also, one must consider what sort of effect changing the model order has on the

flutter point predicted in the coupled solution.

Using the AGARD geometry at Mach 0.96, every possible combination of na

from 0 to 5 and nb from I to 13 was used as a model order for the system yielding a total

of 78 different models. For each model order, the Chi-Squared error was recorded in

addition to the scaled RMS error when the model was implemented on a multistep

76

......
~
..:.;1
;10.
'wl

• ;1"
'~I:::,

solution. During this process, model orders with nb less than na were thrown out since

their output errors proved to be much higher than the other models which is in agreement

with the earlier recommendation that na always be less than nb. For the remaining 63

models, both the Chi-Squared and scaled RMS error for generalized force one and two

was plotted to explore the effect of model order on output error. Figure 4.7 and Figure

4.8 present plots of Chi-Squared error and scaled RMS error respectively for different

model orders. Note that model orders with nb equal to 13 are not shown in the plots as

their was no significant change in the errors. Also note that nb equal to 13 is the upper

limit on the model order for this system. When nb is greater than 13, the SVD algorithm

in CFDMDL does not always converge on a solution for the model parameters. In this

case, CFDMDL reports that the solution did not converge to warn the user that the

specified model order is unreasonably high for the given set of training data.

77

,,",

...
'04

@
'::1
;~,

'wl
I ;)1'

°MI:::,
"

0.4
'OF! OF2 Il . ! OFI oF2 I

03
0.02

0.2

0.1

o f-L...L..L.,-''-L..lJlJlIlr1Lru dJ, cO , cD , = ..,, _

0.01

o
G-I G-2 G-3 G-4 G-5 0-6 0-7 G-8 0-9 G-l0 G-il G-12

Model Order

1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 I-II 1-12
Model Order

0.003 rl 0 Fl
0.0001

OF!

0.002
0.00008

, Ito.

.......
n
.J.
•;:i
;~.

'WI
;JI'

I '-4

::1
~I
-I

:t::
"'1
f~1

lei

'lil...'...1
XI
l~l

~I:c.
:>

I OFI 0 F21

3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12

Model Order

O.CXXlOO8

000006

000004

Model Order

2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12

O.OCOOI

0.00X04

O.OOCOO6

0.001

O.OOX08

4-5 4-6 4-7 4-8 4-9 4-10 4-11 4-12

Model Order

5-6 5-7 5-8 5-9 5-10 5-11 5-12

Model Order

Figure 4.7: Chi-Squared Error vs. Model Order for the AGARD at Mach 0.96

78

0.02

0.08 .J

0.015 1

O()5 i

0.01 1

~I ~2 ~3 ~4 ~5 ~6 ~7 ~8 ~9 ~IO ~II ~12

Model Order

0.005

o
1-2 1-3 1-4 1-5 1-6 J-7 1-8 1-9 1-10 I-II 1-12

Model Order

,..,

on'

o F2
I

OFI

OFI

5-10 5-11 5-12

~dldJ
5-95-85-7

3-5 3-6 3-7 3-8)·9 3-10 3-1 I 3-12

ModelOrdei

3-4

I
() f-

5-6

0.003

0.001

0.
005 1

0.0<»

0.002

OFJ oF21
___--J

4-10 4-11 4-124-94-8

Model Order

4-6 4-7

r ~.L....L...J.....r~If_,dLdldl

2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-J [2-12

0.003

4-5

0.002

0.005

I
0.001 1

air

0.006

0.007

0.0<»

0.002 -

000) ,

Model Order Model Order

Figure 4.8: Scaled RMS Error vs. Model Order for the AGARD at Mach 0.96

Based on the plots presented i.n Figure 4.7 and Figure 4.8, we can see what

happens to the output error as the model order is increased for this system. Notice that

79

for the model orders used here, the Chi-Squared tends to decreases as the model order is

increased. However, this does not always prove true for the scaled RMS error which is a

much better indicator of the actual error for the model. Based on the Chi-Squared error

plots in Figure 4.7 alone, one might be led to believe that the highest possible model

order should be used. However, the scaled RMS error for the 5-12 model is actually

larger than that of the 4-12.

To actually pick the optimum model order, one must consider the results from

both sets of error plots. Looking at the Chi-Squared error plots, one notices that the

output error begins to be minimized for the models with na = 4. Increasing na to 5 does

continue to decrease the error, but the return on this increase in model order is not as

significant as the increase from 2 to 3 or 3 to 4. This trend is also supported by looking at

the scaled RMS error plots where we see that the models with na = 4 do have the smallest

errors. Consider that the model initially chosen as the optimum model order for this

system was a 4-10. At the time that model order was chosen, these plots had not been

constructed. The 4-10 model was chosen by varying na and nb until the output error was

small and further increases in model order did not yield significant decreases in the error

values. Based on the plots of scaled RMS errors presented here, it would seem that this

initial choice for the model order probably was the best.

Now, let's consider what effect the model order has on the flutter point for the

coupled aeroelastic problem. Each of the remaining 63 models was implemented in the

coupled solution, and the flutter speed index was computed by searching for the density

at which the damping ratio for mode one was approximately zero. Figure 4.9 presents a

80

-

plot of the computed flutter speed index, Vf, versus model order for the AGARD at Mach

0.96.

0.28

I

0 na= D-
o- na= I I

na= 2
,

0 6-
0.26 ' 0

l
na = 3)(I

0 na = 40-
0

0.24
0_

0 II _na=51
0

i'
p [I '~
-~'~.8~t

, e
'=.IVr

I

" ~ I'" --; /1 -0.22 (/' '

[I

q (\ J
, J

"\
I

0.2 \
(

\ I

\

'0'

0.18

0.16 I j-~,
.,

3 5 7 9 II 13

nb

Figure 4.9: Flutter Speed Index vs. Model Order for the AGARD at Mach 0.96

Notice in Figure 4.9 that the flutter speed index seems to converge to a constant

value as the model order is increased. Although there is some initial discrepancies for the

lower order models with na = 0 or 1, the flutter speed index converges to approximately

0.22 or 0.23 as nb is increased. In fact, the time histories predicted by all of the models

with nb = 13 look identical when plotted together. The slight variations in damping ratio

for mode one are not visually perceptible and can only be computed using a newly

developed algorithm which identifies modal damping values for MIMO systems.

Based on the plot shown in Figure 4.9, the models with na = 0 and 1 are probably

not the most desirable models to use due to the large fluctuations in the flutter index

speed for different values of nb. If we eliminate these two classes of models from the

81

aq

-

plot and zoom in on the converged plot of flutter index speed, we can try and decide

which model would really be optimum for this system. Figure 4.10 presents a plot of

flutter index speed for models with na = 2 through 5.

0.24 - 6- na= 2

)(na= 3

0 na= 4

0.23 }{ na= 5

x

(--t.~.
6 ~ .. - -i,--. _a
§-~ -i- 6-- -6

-: -l--- -: x x x 0

Vf 0.22

j

0.21 I /

t /
J

j

0.2

3 5 7 9 II 13

nb

Figure 4.10: Close-up of Flutter Speed Index for Higher Order Models of the AGARD
at Mach 0.96

Notice in this plot that all four of these model classes converge reasonably well

with each other for nb greater than 5. In fact, any discrepancies between the four plots

above nb greater than 5 only equates to about a 0.0001 change in the damping ratio for

mode one. This sort of change is only be noticeable when using an algorithm that can

compute the exact damping ratio. Using visual inspection alone, one would be lucky to

notice a 0.005 change in the damping ratio of mode one. This result shows that one can

be confident that the model is accurately predicting the aeroelastic response of the system

as long as the output error of the model with respect to the training data is small.

82

-

-

There is one other important trend that we can begin to see develop in Figure

4.10. Notice that for the largest model orders, the flutter index speed is beginning to

oscillate slightly. Although it does not really effect the solution for the AGARD, other

test cases have shown a tendency to become unstable for extremely high model orders.

Presumably if we increased the model order even higher for the AGARD and could

converge on a reasonable solution, we wold see this oscillation build as the model

developed some internal dynamics of its own. Hence, it is recommended that the lowest

possible model order that still minimizes the output error be used. As we can see from

Figure 4.10, even a 3-6 or a 2-6 model would have predicted the flutter index speed

reasonably well.

Although we did not have this data at the time we chose the 4-10 as the optimum

model order, we could go back and look at the scaled RMS errors for the na = 3 models

and see that these models do have a reasonably low output error. Increasing to the na = 4

models, only earned us a couple hundredths of a percent in the error. Hence, one should

be aware that it is not necessary to use an extremely high model order and be careful

when using too large a model as it may become unstable.

4.2. 2xl Plate

Another structural configuration often studied in aeroelastic literature is the thin,

flexible plate exposed to fluid flow on one side. This sort of structure is representative of

the individual panels which make up the external surface skin of a flight vehicle. In this

research effort, a flat plate two units long and one unit wide was studied. Figure 4.11

shows the CFD surface mesh used to model this structure. Note that the flexible plate is

83

*4

'.,

-

centered on a rigid surface four units long by three units wide and is simply supported

along each edge.

Figure 4.11: 2x I Plate Geometry and Surface Discretization

The plate will be modeled structurally usmg the six dominant eigenvectors

representing various bending modes for the plate as computed by the STARS Solids

module. The CFD mesh for the plate consists of 24,498 nodes and 123,969 tetrahedral

elements, which is significantly smaller than the AGARD mesh so it should execute

faster.

4.2.1. Panel Flutter

The main reason this sort of plate geometry is interesting to study is because it is

susceptible to panel flutter. Panel flutter is an aeroelastic phenomenon which has

84

-

recently become of interest as flight vehicles achieve increasing speeds. In fact. panel

flutter typically occurs at supersonic speeds, so this geometry will first be tested at Mach

2.0. For this first Mach number, the training data will be gathered at a free stream density

of 0.403 kg/m3
, which corresponds to a dynamic pressure of 93.3 kPa.

Before running the training data, the characteristics of the multistep must first be

selected. For this testcase, the isize parameter was again set to five, but an amplitude of

0.01 was chosen for the multistep. Since a six mode solution is being used this time, 140

time steps will be required to complete the multistep. Hence, a total of 160 time steps

were run in order to ensure that any transients in the flow field following the completion

of the last multistep could be sufficiently resolved.

After executing CFDASE with the multistep input as described above, the

response time history was saved as multi.dat and CFDMDL was used to develop the

optimum model. A model order of 1-5 was chosen as the optimum model order for this

geometry at Mach 2.0. When applying this model order, CFDMDL reported chi-squared

errors of 8.02xl0-4, 1.5Ixl0'3, 9.00xlO'\ 2.95xlO's, 3.97xlO'4, and 9.23xlO's for modes

one through six respectively. The system model was then implemented to predict the

multistep response, and Figure 4.12 presents a comparison between the Euler and model

solution for the multistep response of the plate at Mach 2.0. The RMSERR module was

also run to compare the model solution to the Euler solution. RMSERR reported scaled

RMS errors of 0.0026, 0.0026, 0.0013, 0.0017, 0.0011, and 0.0030 for modes one

through six respectively.

85

..

...

.....

- •

1.5 T I - Euler 1.5 T;

't 1\ r.
l 0 d.t. model

I t A.1

0- 1o <> .~ 1 ~ ~,.

05 r V<>
ot. V'f, 1'1

0r\
~\ 0.1

0.1 0.15 0.2 -0.5 t t
-05 V 1 \ 1\

-l-~ t o J,

-I .:.
\;..

I _ Euler I
L 0 d.l. model

0.15 0.2

Euler I
I 0 d.t. model I

o
\ 01 0.15 02

\ 1\/\
o/'i\ ~:--

V \/V
~

o.os

0.05

0.1
I
j

0

l~ -0.1

-0.2

-OJ

0.3

02

1
0.1 I

0
t~,

I

-0.1

-02

-03

-OA

0.2

0.15

r- Euler

o d.l. model

I'OE~Id.l. model

0.15

0.1

~2 ..l..

-1.2

-1.6

1.6 f
IA !

l~
1.2 j i \

J t . ..

fd.S) I \f\/'J'--. to' ,
06 ! 0 It

j t
OA I ,

0.2: .A.,J
o L£ -~--=-

o 005

f -0.8
]

Figure 4.12: Euler and Model Solutions for Multistep Response of the 2x I Plate at
Mach 2.0

After validating that the model accurately matches the Euler solution, the system

model was used to search for instabilities at this Mach number by repeatedly varying the

free stream density and computing the aeroelastic response of the plate. For Mach 2.0,

the neutral point of the plate was found to be at a density near 0.313 kg/m3
, or a dynamic

86

-

pressure of72.5 kPa. The coupled Euler solution was then run to verify the response data

predicted by the model at this density. Since this test is being done for a supersonic

Mach number, it is also interesting to use the piston solver in CFDASE to predict the

response time history and compare both the piston and model solution to the Euler

solution at this density. Figure 4.13 presents a comparison between these three different

solutions for the aeroelastic response of the plate at Mach 2.0.

87

•

...

.'..

,"..
r.

- c

0.0006 -,-

0.0004 t ft ~ !
I

I

0.0002: I
XJ

o 1 I

-0.0002

00006

0.0004

0.0002

x.. 0

-0.0002

-00004 _
1

-0.0006 1

Euler vI...1
t 0 dt.rn:J

. •L ~" ;~:, ";,~'I , I, " :, "P~lon
'iT ' ~! , I 'I I I \ •

Irllllllllllll'Wj:ll
I , I 1:.1! 1\ .'Ti I' I ~~~

"\' ~i~i~:i~' 'It I I : ~'" " .4, ,'~~ ,', :i:, Ii '" " ': i . '
If I~ 1 I J

I • ~ II II \1 \

'..
•'.j
:i

r---:::--:---
0.0006 I - Euler I

j ; t 0 d.t model

o0004 : 1\ \ ~ I piston I
~ I \ '

0.0002 i ~ I ~ N
Xl 0 :i~'I*!\!L': ,,~~JA1iA~., ,£~~'t'tftf+ft1, "W·~ ;V)3~V'¥"4

0(.)0002 J n~ 't t t

-0.0004 !4 !
-0.0006 J

0.0004

0.0002

-(J,0002

-0.0004

,
II j •

, I'll

: "

1- -EUler '[
I 0 d.t. model

piston I

"',. ,

Figure 4.13: Comparison of Euler, Model, and Piston Solution for the 2x 1 Plate
Aeroelastic Response at Mach 2.0

Notice in Figure 4.13 that the aeroelastic response predicted by the model

matches the response predicted by the coupled Euler solution extremely well, where as

the piston solution does not. Again using RMSERR, we find that the scaled RMS errors

for the model solution compared to the Euler solution are 0.04, 0.03, 0.02, 0.006, 0.01,

and 0.007 for the generalized displacements of modes one through six respectively.

88

-
Although these errors are more significant than those seen when comparing the

aeroelastic responses for the AGARD, it is still quite obvious based on Figure 4.13 that

the model has done a good job capturing the Euler solution.

Again, we can determine how much time can be saved usmg the system

identification procedure to predict the aeroelastic response of the plate. The total

computational time to run just one unsteady CFD solution of sufficient length to be

qualitatively useful is 45 CPU hours on an IBM 3BTIRS6000 workstation for the plate.

Multiply that by the four time histories required to predict the divergence crossover point

and it requires 7.5 days to determine the approximate stability boundary for the plate at

one Mach number. Comparing this to the model solution, it only takes 17.2 CPU hours

to run the multistep training signal, and an extra 30 minutes to construct the system

model. The resulting discrete-time model can be executed repeatedly at less than 60 CPU

seconds per run to predict the flutter density for the plate. The total savings in

computational time realized is then 160 CPU hours or over 6 days for each Mach number.

A comparison of the total time required to compute the neutral point of the plate at Mach

2.0 is shown graphically in Figure 4.14.

89

c

.,

-

150 1 135

125
,.....,
~]00
~

0 ,
6-

75 ~~
f=
5: 50 1
u I

25 17.7

a , _J 1__ ,

Euler d.t. rrodel

Figure 4.14: Comparison Of Total Computational Time Required to Predict a Flutter
Point for the 2x I Plate at Mach 2.0

As with the AGARD, the plate case was also analyzed at several other Mach

numbers to test if the system identification procedure would be effective across different

flow regimes. Models were also constructed for Mach 0.9, 1.5, 2.5, and 3.0, giving us

another test for the system identification procedure in the transonic regime. Appendix E

contains comparisons between the model solution and the Eurer sol utian for the multistep

input and the coupled response near the neutral point for each Mach number. However, it

is worthwhile to take a look at the results from Mach 0.90 here also.

4.2.2. Static Divergence

As discussed previously, panel flutter most typically occurs at supersonic speeds.

For this plate in particular, we find that static divergence occurs before flutter in the

transonic regime as evidenced by the results from our Mach 0.90 test. After creating a

model for the unsteady Euler solution around the plate at Mach 0.90, the model was then

90

-.

.,..

-

..

run at various densities in search of the flutter point for the plate. However, at a density

corresponding to a dynamic pressure of 43.3 kPa the model predicted that the plate would

statically diverge before fluttering. Figure 4.15 presents a comparison between the model

solution and the Euler solution for the plate's aeroelastic response at Mach 0.90 and a

dynamic pressure of 43.3 kPa.

91

••
i
~I
'.
"...

- -

00006]

~ X2 0.2 0.4 0.6 0.8

00004 .:.

~ ~
r -

Euler iI

1 l 0
d.t mode

i1~
0.0002 i + : -0.0005 "----~ :

~ -t 4
~ o d.t. model

X, 0
t3 1

0.2 0.4 0.6 08
j

-0.001 i

Xl

O~ ~
--, --r- -, 0.0001 T

I Ellb I02 0.4 0.6 0.8 0I dl.mode

1f
0

0.001105

I-0 ODD I I
x.. a ill 11

I ' ' I 0.6 0.8

OOOOll I tft - Euler -000005 "I "

t 0 d.l. model

-0.0001 j
~ I

-.-0.0003 "",
;,

~I
'I

r-- ~:J
"

0,00005 Euler 0.00004

I
"

Euler "
o d.t. model

d,t. l~odeJ
:1

I
0 ",

o I :!
x" "'

Xj I :1
0.4 06 08 0.4 0.6 0.11 "4

.~

~I
-000004 'ff

" :>I
1

-0.000 I . -0.00008 f

Figure 4.15: Comparison of Euler and Model Solution For the 2x 1 Plate Aeroelastic
Response at Mach 0.90 and a Dynamic Pressure of 43.3 kPa

Notice in Figure 4.15, that the model solution no longer matches with the Euler

solution perfectly. Qualitatively, both the model and the Euler solution predict the same

aeroelastic response, static divergence. However, the model solution begins to deviate

92

-

from the exact path taken by the Euler solution after the solution starts to statically

diverge. This is because our assumption about the model being a linear perturbation

about the mean flow does not hold up for static divergence. In the Euler solution, a static

divergence results in new static nonlinearities in the form of shocks developing on the

plate. The mean flow solution is essentially diverging and so the model is no longer

accurate since it was trained on a different nonlinear mean flow. However, one can see

that the model is still capable of predicting this effect qualitatively even if the exact path

it follows once it diverges is not accurate.

4.3. Generic Hypersonic Vehicle

Another interesting geometry to study is that of the Generic Hypersonic Vehicle

(GHV). The GHV is a testcase developed by NASA to test the aeroelastic effects that

might be seen on a hypersonic vehicle. Figure 4.16 shows the CFD surface mesh used to

model the GHV. The CFD mesh for the GHV consists of 58,786 nodes and 323,417

tetrahedral elements,

93

"
"

• ------------------------------

Figure 4.16: GHV Geometry and Surface Discretization

Structurally, the GHV is the most complicated system analyzed so far. It is

modeled using nine eigenvectors which represent various bending and torsional modes

for the wings and the body itself. This geometry will first be tested at Mach 2.2 and a

free stream density of 2.8658x I0-7 slinchlin3
, which corresponds to a dynamic pressure of

114.5 psi. The multistep will be run with isize = 5, rbcx = 1.0, and a total of 220 time

steps. Figure 4.17 presents a comparison between the Euler and model solution for the

multistep response of the GHV at Mach 2.0. A model order of 3-7 was chosen as the

optimum fit for this training data. To save space, only modes 1 through 4 are shown in

Figure 4.17 with the complete solution presented in Appendix F.

94

[

Euler

o d~~del

..

52000I I - Euler I

/
~ 0 d.t. modelI

5QOO) : \ A

r, 48~ 1~ V\tf'l--..--
,-rn,

46000
1

.,.,.

44@ L- '~------,-_

15~!
15000 + I

' \
r, 14'00} /vJw~

14000 t: -"__

...

o 0.5 o 05

-8750

-9000

-9250

f4 -9500

-9750

OOסס1-

-10250

-

Figure 4.17: Euler and Model Solufons for Multistep Response of GHV Modes I
through 4 at Mach 2.2

After validating that the model accurately matches the Euler solution, the system

model was used to search for instabilities at this Mach number by repeatedly varying the

free stream density and computing the aeroelastic response of the GHV. For Mach 2.2,

the neutral point of the GHV was found to be at a density near 2.6365xlO-7 slinch/in3
,

which is approximately 2.3 times sea level density. The coupled Euler so~ution was then

run to verify the response data predicted by the model at this density. Figure 4.18

presents a comparison between the Euler and model solutions for the aeroelastic response

of the GHV at Mach 2.2.

95

I
I.,
I,

"

"

I
'i.)
4

~

:~.-
)

0.5 ~

j

01_~., t'\ f'.. 01\ 0' I

~, \ ! I i\.v.! \ (\ ,
j •• • 0 V

f V
-1 ~ V V

1
-1.5 1

o~ 1

~ 0 ~--I\ .. A---t\
~ ~.2. fl4~ .46' h + 1I

-0.5 t t t , l : : f ~ I'
.... ",. f 0it.: to ~f'f

-I V \! i
V
: \. \ t

-15 I V V ",Y j

-2 ! 0 d.l. model

)(j O~--~r---,---,---,----,

1\ 2\ 0A. 0.6 0.8
\ ,; : ..

-I \ ft \ I \ f\ f\
., ~ •• to 0

-2 • + • f ~ ! \V: V• t ,~ t ..
~. · Vt f • t 0

-3 V V
-4

I _ _Euler

o d.t. model

0.3 _

0.2

0.1

1

-0.1 t
i
I-0.2 .L

.-..

Figure 4.18: Comparison of Euler and Model Solution For GHV Aeroelastic Response at
Mach 2.20

Notice i.n Figure 4.18 that the aeroelastic response predicted by the model again

matches the response predicted by the coupled Euler solution.. Again using RMSERR,

we find that the scaled RMS errors for the model solution compared to the Euler solution

are 0.0075, 0.0626, 0.0084, 0.0646, 0.0075, 0.0620, 0.0112, 0.0087, and 0.0145 for the

generalized displacements of modes one through nine respectively.

96

I

!,
)
4

~

i
of
)

CHAPTERS

CONCLUSIONS AND RECOMMENDATIONS

5.1. Conclusions

The system identification procedure presented here has been shown to be an

efficient technique for increasing the computational speed of a time-marched CFD

aeroelastic analysis. By first developing a model to replace the time-marched CFD

solution, the computational time required to complete a coupled aeroelastic analysis can

be reduced by at least a factor of ten. The modeling methodology has been shown to be

applicable to a wide range of three-dimensional structures and flow regimes, including

the transonic flow regime.

System identification was chosen as the best modeling technique in this study for

several reasons. First because it is fast and easy to implement with existing unsteady

CFD codes. Nest, it is applicable over the entire rage of flow regimes from subsonic to

supersonic as long as the CFD solution being modeled is applicable in that range.

Finally, the structure of the ARMA model provides an excellent physical representation

of an unsteady flow.

The modeling procedure for any structure must begin with the computation of the

nonlinear mean flow about the geometry using a steady CFD analysis. A dynamic

97

I

I
;
)
~

~

~•)

......

system model can then be developed which will represent the small (linear) perturbations

about the nonlinear mean flow which have been shown to be the driving force in

aeroelastic problems. In developing the model, the parameters for an ARMA model are

fit in a least-squares sense to a set of training data from the unsteady CFD solution. The

training data is gathered in advance by forcing a 3211 multistep input on the generalized

velocity for each structural mode.

Once a model has been developed, it can then be implemented in the coupled

aeroelastic solution in place of the unsteady CFD solver. The system model executes in a

fraction of the CPU time required by the unsteady CFD solution, thus saving a significant

amount of effort in predicting the flutter point for a structure. Since the model depends

only on the physical dimensions of the structure and the Mach number of the unsteady

CFD solution, the model can be used to explore the effects of the dynamic pressure (by

varying free stream density) and any structural parameters (generalized mass, stiffness,

and damping) on the aeroelastic response of the system.

5.2. Recommendations

Based on the results presented here, several areas are recommended for further

development and investigation. First, the effect of the isize parameter on successful

parameter identification should be investigated further. This parameter effects the length

of the multistep input which in tum determines how long the unsteady CFO solution must

be run when gathering training data. An isize of 5 has been shown to work here, but this

may not be a universal value.

98

I

1

1•
)

..

Obviously, validation of the procedure on more structures and Mach numbers is

necessary. The procedure has proved successful on all configurations tested so far, but

there may be some cases where the model will not provide sufficient results. Next, it is

recommended that a methodology be developed for automating the search for the

optimum model order. The code could even be modified to automatically generate charts

of output error versus model order similar to those presented for the AGARD.

finally, the model solution is ideal for searching for the flutter point of a structure

since it executes quickly. To automate this process, one could couple the model solution

with a search algorithm to find structural damping ratios that are approximately zero.

This would greatly enhance the efficiency of finding a flutter point for a structure.

99

c

I
I

I

1
t
)

-

BIBLIOGRAPHY

BaUhaus, W.F. and Goorjian, P.M., "Computation of Unsteady Transonic Flows by the
Indicial Method," AIAA Journal, February 1978, pp. 117-124.

Bisplinghoff, R.L., Ashley, H., and Halfman, R.L., Aeroelasticity, Dover Publications,
Inc., 1996.

Cunningham, H.J., Batina, J.T., and Bennett, R.M., "Modern Wing Flutter Analysis by
Computational Fluid Dynamics Methods," Journal ofAircraft, Vol. 25, No. 10,
October, 1998, pp.962-968.

Dowell, E.H., et aI, A Modern Course in Aeroelasticity, 3rd Revised and Enlarged Edition,
Klewer Academic Publishers, 1995.

Dowell, E.H., Hall, K.c., and Romanowski, M.C., "Reduced Order Aerodynamic
Modeling of How to Make CFD Useful to and Aeroelastician," AD-Vol. 53-3,
Fluid Structure Interaction, Aeroelasticity, Flow-Induced Vibration and Noise,
Volume III, ASME 1997.

Gupta, K.K., "STARS - An Integrated General-Purpose Finite Element Structural,
Aeroelastic, and Aeroservoelastic Analysis Computer Program," NASA TM-4795,
1997.

Gupta, K.K., "Development of a Finite Element Aeroelastic Analysis Capability,"
Journal ofAircraft, Vol. 33, No.5, September-October 1996, pp. 995-1002.

Hamel, P.G. and Jategaonkar, R. V., "Evolution of Flight Vehicle System Identification,"
Journal OfAircraft, Vol. 33, No.1, 1996, pp. 9-28.

Hollcamp, 1.1. and BatiU, S.M., "Automated Parameter Identification and Order
Reduction for Discrete Time Series Models," AIAA Journal, Vol. 29, No.1, 1991,
pp.96-103.

Hollcamp, J.1. and Batill, S.M., "A Recursive Algorithm for Discrete Time Domain
Parameter Identification," AlAA-90-1221-CP.

Hunter, J.P. and Arena, A.S., "An Efficient Method for Time-Marching Supersonic
Flutter Prediction Using CFD," AIAA-97-0733, AIAA 35th Aerospace Sciences
Meeting and Exhibit, January 6-10,1997, Reno, NV.

100

c

..

Kehoe, Michael W., "Aircraft Flight Flutter Testing at the NASA Ames-Dryden Flight
Research Facility," NASA TM-I00417, 1988.

Lee-Rausch, E.M. and Batina, IT., "Wing Flutter Boundary Prediction Using Unsteady
Euler Aerodynamic Method," Journal of Aircraft, Vol. 32, No.2, March-April
1995, pp. 416-422.

Ljung, L., System Identification: Theory For The User, Prentice Hall, Inc., New Jersey,
1987.

Ljung, L., System Identification Toolbox User's Guide, The Math Works, Inc.

Pinkelman, 1.K. and Batill, S.M., "Total Least Squares Criteria in Parameter
Identification for Flight Flutter Testing," Journal of Aircraft, Vol. 33, No.4,
1996, pp. 784-792.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., Numerical Recipes in
Fortran 77: The Art of Scientific Computing, 2nd Edition, Vol. 1, Cambridge
University Press, 1996.

Rausch, R.D., Batina, J.T., Yang, RT.Y., "Three Dimensional Time-Marching
Aeroelastic Analyses Using An Unstructured-Grid Euler Method," NASA TM
107567, March 1992.

Robinson, B.A., Batina, J.T., and Yang, H.T.Y., "Aeroelastic Analysis of Wings Using
the Euler Equation with a Deforming Mesh," Journal of Aircrafi, Vol. 28, No.
11, November 1991, pp. 781-788.

101

..

:po

APPENDICES

102

Q

-

APPENDIX A:

DERIVATION OF 2-D EQUATIONS OF MOTION

a

,
I

J
I

x

,
I

"

The expression for the potential energy of the airfoil is ...

The general expression for the kinetic energy of a rigid body in plane motion is ...

T 1 V 2 V~ (- -) I J 2= "2 m A + m A' (j) x rex! A +"2 .4(0

For our airfoil, we have...

Hence, the expression for the kinetic energy of the airfoil is ...

103

po

Using Lagrange, the two equations of motion will be...

Q

&

Taking the necessary derivatives, we get. ..

d (or) d (.) ..
dl iii = dl mh + mbxa cos aa = mh + mbx(1 cos aa - mbxa sin aa2

or
-=0az

cJU
az = k"h

or .
oa = -mbxa sin ahei

cJU
-=k aoa a

Substituting into the Lagrangian equations of motion, we get. ..

Assuming small deflections (cosa ~ 1 and sina ~ a), we get. ..

Where Qh and Qa can be shown to be ...

Q,,= -Aerodynamic Lift Qa = Aerodynamic Moment

Hence, the linearized equations of motion for this two-dimensional system are ...

104

APPENDIX B:

NONDIMENSIONAL 2-D EQUATIONS OF MOTION

Q

Let:
t' c 2t' b

t----
- V", - V", ' and a=a

Vertical Degree Of Freedom:

2' b d 2' 4b 2 ., ., 2h 2d h m xa a r,; co~ • .
--2+-- 2 + J h =--2- C,
d{t') 2bm d{t') V; nb rd

h··• I ..• 4r,~ h' 2 C'+-x a +- =--
2 a U~ 7U"J'

Rotational Degree Of Freedom:

105

....

Now, re-arrange the equation of motion for the vertical degree of freedom ...

". 4r
2

• 2h +.lX a' +_'_<1 h = --C
2 v U2 I

f Jrr"

-

Substitute it into the equation of motion for the rotational degree of freedom ...

Solving this equation for a' ...

1 (r
2 J' 4r~, 2r: ,4 2- ~-x a =--h ---a +--C +-c

2 a U2 U2 11/ I
X a r X a J Jrr"X a Jrr"

106

-

Now, substituting this equation back into the previous equation for ii' ...

8 CJ 4r~h'
+ (2_ 2) 111 - U"

1lr" fa Xu I

Simplifying this expression ...

ii'

-

107

..

APPENDIX C:

SAMPLE DATA FILES FOR STARS TESTCASES

agard2.scalars:

$ aeroelastic scalars data file (factor=O.50 at mach=2.0)
$ nr, ibc (O=full modes, l=q(l) = 0.01, 2=q(nr+1)=0.01)

2, 1, 5.0, 5
7, 1, 2, 3, 4, 5, 7, 9

$ iread, iprint
2, 1

$ dimensional params; mach-inf, rho-int(sl/in**3), a-inf(in/sec),
garruna, pint

..

0.0
$ shift factor and gravity constant

0.0, 1.0
$ flag, ffi, ns, ne

2, 10.0, 2, 4
$ cfa, cfi

1, 1
$ nterms, nsteps

20, 2
$ na, nb

3, 7

--

agard2.conu:

&control
mach
nout
nstep
nstpe
ncycl
ncyci
alpha
beta

1.141,
2000,
100,
20,
30,
30,
0.0,
0.0,

1.141 6.041860e-09

108

12571.08 1.4

nstage 3,
efl 0.7,
restart 0,
nsmth 2,
smofe 0.25,
low . false. ,
debug .false.,
meshe I,
meshf 1,
tlr 0.0001,
amplitude= 1.0,
freg 0.02,
phase 0.0,
xO 0.0,
yO 0.0,
zO 0.0,
wux 0.0,
wuy 0.0,
wuz l.O,
trans .true.
pistonn_sol .false.,
model sol = .false.,

I

agard2.mdl:

$ System model created for agard2
$ Mach # rho-inf tsamp

.114100E+Ol .604186E-08 .109500E-02
$ offsets

.254166E+01 .169092E+01
$ na nb nr
372

$ Model parameters ..
0.2566687465
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
0.9636212885E-01
0.8478946090
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
0.8113468289
-0.4077 515006
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
-0.2861693203
19.80261803
1.673164725
20.56698799
8.143075943
-36.31234741

109

-5.542323112
-12.73830986
-14.31336403
23.98997116
4.725830078
-7.153613091
5.691219330
-6.252622604
-1.185570955
5.816416264
-0.2255736291
0.5666895509
-0.3380652145E-Ol
-0.5000129342
0.2771528959
-0.5398910120E-Ol
0.5266478658E-01
0.2386615574
0.2390516177E-Ol
0.6928021461E-Ol
-0.1498120278E-Ol
0.1627010554
0.8598821610E-Ol

plate_2x l.scalars:

$ aeroelastic scalars data file, rho=0.227, this is conv rgent (4.75
)
$ nr, ibc (O=full modes, l=q(l) = 0.01, 2=q(nr+l)=0.01

6, 0, .01, 5
9, 6, 7, 8, 9, 10, 11, 12, 13, 14

$ iread, iprint
2, 1

$ dimensional parameters; mach-inf, rho-inf(kg/m**3), a-inf(m/sec),
gamma, pinf

c

3.0
0.0
$ shift factor and gravity constant

.883492088E+Ol 1.0
$ flag', ffi, ns, ne

2, 5.0, 6, 10
$ cfa, cfi

I, 1
$ nterms, nsteps

20, 2
$ na, nb

1, 8

0.403

110

340.3 1.4

•

plate_2xI.conu:

&control
mach 3.0,
nout 1000,
nstep 700,
nstpe 20,
ncyc1 40,
nstou 40,
ncyci 40,
alpha 0.0,
beta 0.0,
nstage 3,
cfl 1.0,
restart 0,
nsmth 2,
smofc 0.2,
low .false.,
debug . false. ,
meshc 1,
meshf 1,
tlr 0.001,
cbt (1) 1. 0,
cbt(2) 0.5,
cbt (3) O. 0,
cbt (4) O. 0,
amplitude= .1,
freq 0.36349,
phase O. a,
xO o. 0,
yO O. 0,
zO O. 0,
wux 0.0,
wuy 0.0,
wuz 1. 0,
trans . true. ,
pistonn sol=.true.,
model sol= .fa1se.,

&

plate_2xI.mdl:

$ System model created for plate 2x1
$ Mach # rho-inf tsamp

.300000E+01 .403000E+OO .845999E-03
$ offsets

-.380941E-03 .443780E-03 .986158E-04 -.158644E-03
.206591E-03
$ na nb nr
186

111

.270967E-03

-
$ Model parameters ..
-0.6747343540
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
-0.6943811774
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
-0.1992329657
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
-0.6370608807
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
0.1210919470
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO
-0.6250070333
15538.19531
-8399.536133
-275.0993958
-21.81824684
1662.699341
69.02862549
8904.571289
19646.99023
-9015.994141
-87.66749573
485.5173950
-42.89769745
-54.14569473
9751.844727

... etc.

112

-
ghv_b2.scalars

$ aeroelastic scalars data file (flutt param =4., mach=2.2)
$ nroots, 0, 0.001, nsurf on aircraft, ibc (O=full modes, l=g(l)
o.01, 2=g (nr+ 1) =0. 01

9,0,1.0,5
17, 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

$ iread, iprint (leave)
2, 1

$ dim params;mach-inf,rho-sl(sl/in**3),a-sl(in/sec),gam,pinf(static sl
or 0)

2.20 2.63651E-07 13396.8 1.4 0.0
$ shift factor (from out.1) and gravity constant (from genmass

1.000, 1.0
$ flag(peturb 1 or 2), ffi(force to start), nstart(step), nend

2, 100.0, 5, 7
$ cfa(aero on, zero to test static fregs), cfi(impulse on)

1, 1
$ nterms(not read?), nsteps(?)

20, 2
$ nat nb

3, 7
$ Sea level density

1.14631E-07

ghv_b2.conu:

&control
mach
nout
nstep
nstpe
ncycl
nstou
ncyci
alpha
beta
nstage
cfl
restart
low
debug
meshc
meshf
tlr
cbt(l)
cbt(2)
cbt(3)
cbt(4)
amplitude=

2.20,
1000,
220,
20,
40,
40,
40,
0.0,
0.0,
4,
0.4,
1 f

. false.,

. false. ,
1,
1,
0.01,
1. 0,
0.5,
0.0,
0.0,
2.0,

113

wux
wuy
wuz

freq
phase
xO
yO
zO

.550075E+05
.164058E+05

-

0.00201,
0.0,
0.0,
0.0,
0.0,
1. 0,
1. 0,
1. 0,

diss1 1. 0,
diss2 1. 0,
relax 1. 0,
nlimit 2,
19 1,
niteO 1,
nitel 1,
nite2 0,

disx .18,
bulkvis . true. ,
xcI -.5,
xc2 -0.,
xc3 0.014,
xc4 0.0714,

trans . true. ,
pistonn_sol = .false.,
model sol = .true.,

/

ghv_b2.mdl:

$ System model created for ghv b2
$ Mach # rho-inf tsamp

.220000E+01 .286577E-06 .530005E-02
$ offsets

.467196E+05 .142193E+05
-.383374E+04 -.256070E+05

$ na nb nr
3 7 9

$ Model parameters ..
0.3412233293
O.OOOOOOOOOOE+OO
O.OOOOOOOOOOE+OO

...etc.

114

-.902893E+04
.132331E+05

-.139716E+05

APPENDIX D.1.I:

AGARD 445.6 Training Response Data for Mach 0.499, q = 0.119 psi

02502

- Euler -I

o d.t. model I

0.150.10.05

r~
J V~

) 0 _..,...__

/'~

o
o

0.8 ,

1

106 1

I, 0.41

0.2

: 2

/ '.\,
V\ ~ 0 v,

, , \' I

0.
05 1 ' J::
o -I-.,.-.--,-+-~~~-r--.------"-'-"---.---'-~ ·6

o 0.05 0.1 0.15 02 0.25

0.2 1
~ ,

0.15 ~. '

XI 0.1 J "

·2
I
, ·4

0.2

1
0.15 r

Xl 0.1 .

I
0.05

o -:...
o

f. xli T
6

, 1\:, :~v2 :

/V\
I

. - . I~_~. ..~---' ... -- .. o· • : ·6

0.05 01 0.15 0.2 0.25

-0.1

02~\
, "

f

2

• II \ iV"""
0': V

-04 I ., . I . , .. ,

() 0.05 (J I 0 15

- Euler I

o~l.modelj

.. ;

0.2 0.25

Model Order => 6-11

x2 Error Scaled RMS Error

fi 2.095228E-06 .35587E-03

h 8.166132E-07 .29279E-03

1t5

-

APPENDIX D.I.2:

AGARD 445.6 Free Response Data for Mach 0.499, q = 0.787 psi

OJ f r --Eule-r- . 10 .
I •

0.2 r ~ 0 d.t. model I t
0.1 j r

6
A ~ 5 j t ~ r

ot-~~ -A A~A-t~ 0 U-t-+-~~-

"::; rJ ~ r, f\VT'til \t31 \jtf' f" ·jlt VII 0

~-:0.:~5 1

1
v v ~ y ~'" \ -10 1~

-15 :

1- Euler

o d.L m~elcll

::: j 4
0.4 1 I~
0.2! !' l' f~

Xl 0 1-1! I U~
-0.2 ~ I~! ~O.I

h~ ~
-04 :.

j b
o-0.6 1'1

-0.8 !.

0.2

I
=- Euler I

o ell. model I

0.3 0.4

-4

-6 .

- Euler

o d.t. model i

.4

Scaled RMS Errors

mode x f
1 .20496E-OI .65620E-02

2 .43228E-02 .88310E-02

116

APPENDIX D.2.1 :

AGARD 445.6 Training Response Data for Mach 0.678, q = 0.219 psi

0[5 t T6 14 ~

I
- ------,

1- xl I Euler I,- -l d.t. mode~I \
L_~

: 4

I.~ 1
.., ..

0.\ ; I: 2 i\
• ~ Itf ,

; . ~

" / 0 V, i
f \; \1 I

08 +0.05 : I -2
~

·1 -4 ::~.o .-L ~~·6 -- .

0 0.05 0.1 0.15 0.2 0 0.05 0.1 015 0.2
t

0.15

1 -~ T 6 -01 '1 Euler Ij

~t.modell
i '\ :' 1/2 ' 4 -02 .l ' T

-().3~\0.1 . ' I 2
.;.

I: \:/~ .I
X2 I 0 j~ \ VAt- V2 v·\ I I' I -2 .0'10.05 / \I \

I I -0.5
I : -4
I

I
, I

o -_ . ~_L: , -r--- . ----,-. , - I -6 -0.6

0 0.05 0.1 0.15 0.2 () [) 05 0.1 015 02
t t

Model Order~ 6-10

x2 Error Scaled RMS Error

fi 1.283586E-06 .29047E-03

h 4.568292E-07 .52083E-03

117

0.4

I
Euler

~ d.l. model!

4

2

AGARD 445.6 Free Response Data for Mach 0.678, q = 0.581 psi

APPENDIX D.2.2:

or --0"--'1 ---0.2 - --03---0.4

~ ,

,,01 t 1'\ !\ fi :~ f\ !n! J~ \ ! ~ ; \ ! i t \ t
-0.2 ~VV V V V V V
I -Euler

-0 3 0 d.l. model

4

I
Euler

o d.t. modej

-2 I

Scaled RMS Errors

mode x f
1 .10084E-Ol .43738E-02

2 .18499E-02 .47760E-02

118

APPENDIX 0.3.1:

AGARD 445.6 Training Response Data for Mach 0.90, q = 0.387 psi

0.12 . ,-
~r

2.5 I - Euler
..,

)

It°l r .. d.t. m~dcll
9 \

0.08' : \ : : f •
I I I I

2 • \;\"::: iJ '\1_ V, f, I- - - - - • 0

I -2
J15V 0

I _ ~002 f ' , ; -4, , I

~~i-6
,

o -1 _---,--_ --J---r--_

0 0.05 0.1 0.15 0 0.05 01 fl. IS

0.12 _ -xl- T 6 o ! Euler,
0.1 } v2 [4 .. d.t. model

p - ---1

l ! ! 2 o.2~0.08 - I

1,-04 : tV'I I, \' :
I

C
Xl 0.06 /'\ ; 0 VI/' I' \ I , ~

/ I ' : -20.04 - ' '

-0.6 V'. \

1-'
0.02 :.

,

o1 i
j.

'-~~ -6 -0.8 I

a O.OS O.l 015 0 0.05 (J.1 0.15

Model Order ~ 5-9

x2 Error Scaled RMS Error

fi 4.096597E-06 .73479E-03

h 1.724984E-06 .12566E-02

119

APPENDIX D.3.2:

AGARD 445.6 Free Response Data for Mach 0.90, q = 0.333 psi

0.4 D.5

[

Euler

o d.t. model J

OJ020.\

3 _

-I

-3

-4

-2

01 I
Xl 0

-0.1

Euler

<> d.t. model

2

15

05

r2 0

-0.5

-I I
I

1- Euler

<> d.t. model
0.3 f t
02 ~

0.1 ~ l!a
X,_ 0 ~ t~a ~--- ..., -..., -- -f1;

-0.1 ~ 0 ~.I 0.2 OJ 0.4 0.5
:' ~

-0.2. ~

I 8
-0.3 "0

-0.4 ~1.
-0.5 l

Scaled RMS Errors

mode x f
1 .14223E-Ol .54725E-02

2 .19338E-02 .49110E-02

120

..

APPENDIX Do3.3:

AGARD 445.6 Free Response Data for Mach 0.90, q = 0.358 psi

1.':"":::'Eul-er-

0.1 I I 0 d.l. model I

x, 0 t*f001 fl,~-",fr~'4-~-,.0.5
-0.1 ~ 0 Q o. 0 0 0 0 / \

~o1°ooooooo
o 0 ~ 0 Q 0 ~ : too I _I

-0.2 t ~ : ; 0 g ~ g i 0 Q g ~ I

OJV VVVVVV
-04 1

- Euler

I 0 d.t. mOd.:!J

2

1.5

Scaled RMS Errors

mode x f
I o16495E-Ol o60477E-02

2 .20130E-02 o53659E-02

121

-

APPENDIX DA.1:

AGARD 445.6 Training Response Data for Mach 0.96, q = 0.440 psi

I
Euler

o d.t. model I

o 1 015

3 r
I f\

2'5~' : f\I V'-- _
f, 2 ~

15

2

o V,

-2

I x) , T 6

__- v-.JII t 4

0.1 _

0.081, :\\ '

1 " ,
0.06: I :'

x, f : :.A'.--0.04 I' ,
, -------

002 tI , :; -4

o U------,--------r----+~ -6

o 0.05 0.1 0.15

0.1 _ - xli
_ 6

0-

1\
I

t 4 ~o.os 01 0.15. - 1/2

0.08 t / \ Euler

! ' ~ 2
-02 ,

o d.t. model
0.06

/ \:/\ [0 VI \vX2 l- I
0.04 I I 12 -0.4 t

I

,-2 I
I

002 I -4 V, -0.6 I

-: -6
1o :

0 005 01 a 15
-D.8 I

Model Order => 4-10

x2 Error Scaled RMS Error

fi 8.535348E-07 .29133E-03

fi 3.855529E-07 .71631 E-03

122

APPENDIX D.4.2:

AGARD 445.6 Free Response Data for Mach 0.96, q = 0.197 psi

0.5 fl 0.25

o .---¥----h---+.~--,-~~._f_

x, -01 l !
-0.2 ~ g

:~: tV
-0.5 I

-Euler I
o d.l. model

0.4

1',

0.75

0.5

(J

-0.25
,

-0.5 J

I E~1
I 0 d.t. model \

r
EUieri
~~

Scaled RMS Errors

mode x f
1 .17002E-Ol .78799E-02

2 .10579£-02 .69822E-02

123

...

APPENDIX DA.3:

AGARD 445.6 Free Response Data for Mach 0.96, q = 0.233 psi

OJ y , - Euler

02 j I 0 dl. model I

0; !_/\ 1\ -A fJ. !
XI -0.1 l 1 ~ l 0 2[i 01 \ fA

j'~ ~ 000
0

0 0

:: r\}l %Vi ~V: ~vg \ J
-0.4 ~ V
-0.5 .!-

I -Eul~

o d.t. model

2

1.5

I

0.5

o
f l -0.5

-I

-1.5

-2

-2.5

Euler

o d.\. model

4

Scaled RMS Errors

mode x f
1 .17306E-Ol .80539E-02

2 .12232E-02 .66647E-02
!

124

-

APPENDIX 0.5.1:

AGARD 445.6 Training Response Data for Mach 1.072, q = 0.549 psi

01 J r---j ~ 6 4]
- -

1: -xl Euler
<9

0 d.t. model I, vI ;.4 0\ 0
0.08 J , '\

-~
3.5 1 I 0i

f '\ i\
006t \'

. 2 1I '

"
I • 0 \

x, I :lL~ =J0" f,
3 r J ~

0.04
·2

2:~0.02 T
I

, . ·4

a 1 I -6 , - ,

a 0.05 0.1 0 0.05 01

0.1

0.08

0.06

0.04 I

002 1
I

o ~

a

'{' ': \:0:
\I: \.

j \1",

!
i
/

.1.-"""""T-'

0.05

r -Il---~

0.1

T 6
t

1:

1
0 Vl

·2

-4

_: -6

'-I

f2 0.9 1

I
0.8 I

() 7 ;

o (L05

I
Euler

o d.l. model I

0.1

Model Order => 4-9

x2 Error Scaled RMS Error

.fj 8.104036E-07 .82613E-04

12 8.944349E-07 .7] 828E-03

]25

APPENDIX D.5.2:

AGARD 445.6 Free Response Data for Mach 1.072, q = 0.250 psi

- Euler I
o~model.

0.2 T - Euler
j 0 d.l. model I

o~ ~.AA-A-A-A
X, -0.1 Y 0 g t g t g ~ : t g

:::vvvvvv
-04 -3 .

, --Euler

~ dt model

0.2 OJ

Euler

o d.l. model

0.4 0.5

Scaled RMS Errors

mode x f
1 .33614£-01 .12096E-Ol

2 .15693£-02 .93875£-02

126

APPENDIX D.6.1 :

AGARD 445.6 Training Response Data for Mach] .14], q = 0.622 psi

ELder

o d.t. model I

0.10.05

:\
t \ r\
1 V.o -""..... _

~

- 6 4.5-
L 4
r 4

2
3.5

0 V, f,

-2

-4 2.5

! -6 2 -
00.1

xl

l _~~
0.1 -

1

0.08 t
<
I

0.06 •

x,

0.04

0.02

01 I ~
T 6 171\v2
t 4

~ ftr0.08 . , h,' , t \ -
, c 2 I i, J!!0.06 : 1'\/\

.
i V"X2 1 ; 0 V2 f2 16 ~;

0.04 . r rI -2 Euler I/ ' ", \ I d.l. model0.02 : I 0

I ; -4

I I -6o j J 1.5

0 0.05 0.1 0 (J.05 0.1

Model Order => 3-7

x2 Error !
Scaled RMS Error

jj 4.206180E-06 .97420E-04

12 3.132446E-07 .62405E-04

127

APPENDIX 0.6.2:

AGARD 445.6 Free Response Data for Mach 1.141, q = 0.453 psi

, '

X,

" - - .- Euler --,

[

' 0 d.t model I
- - PiS! pert J -6

Euler 1

o d.l. model I
pisI. pert.

Euler

o dt mOdelj

PISl pert
-- -

-Euler

o d.\. model I

~ _pis\. pert I
.,

'I I,

0.\ 012 0.3 04

Scaled RMS Errors

mode x .f
1 .30972£-01 .89074E-02

2 .32554E-02 .65347E-02

128

po

APPENDIX E.1.1 :

2xl Plate Training Response Data for Mach 0.9, q = 18.9 kPa

0.0005 _ -xl I 0.QI5 0.25 .

0.0004 J
vi i 0.0 I

r-I~~~ :' f 0.005
0.5

0.0003 I" -0.25 i ~ \1
x,

I, \/\
: 0 v, o f

i g
0.0002 f,

I
~ rI I ~ I JOO05 \1I , ------ ~

0.0001 I , -0.75 -I . - -001

I
1 I : Euler

oU -r- -0.0\5 0 d.l. modell

0 0.1 0.2 0.3 0.4 0.5
-125

0.0005 _

0.0004[',

0.0003
X2

0.0002 ,

0.000\

o :
o

f
' ,
il I

" I,
,I "

1",
I l'

J :1,'\
,I.'

\

01 0.2 0.3 0.4

05

Euler

o d.l. model,

.J

05

Euler

o d.l. model

OR ;

0.4 .

.0: ~vlt 02 0.3 0.4

. +~i Al~~f, -0.8 ~
I

.J 2 i +~j.1t
-1.6 j ~

-2
i ~

-2.4'

xJ
v3

0.40.30.2

~
/,
I

0.1

, 0.015

[0.01

l0005

I ' 'I r:\' ~ 0 VJ

I ' If' j -0.005
, L I

/ ~ -ODI
I I

_-1 ~-~ -0015

0.5

0.0003

"
0.0002 -

0.000 I l
a.

o

00004

0.0005

129

--,..---' -

- uJer 1
o d.l. model I

~2 0.3 0.4 0.5

~!~
0.1

-0.Q2

0.02

O;-- 'b---~--~-~

.
-004 ~

f~ _

006

1'

-0 08

-0.1

-012

1

0.015

0.0\

0.005

~ a

-x41

- --.4

0.0005 ~

1
I

0.0004 .:. - {\ ,

j , ;"\"0.0003 T ' ,
x.. : I \ ~

0.0002 .:. I \:I~;
1 I I}" ~ -0.005

0.0001 / 1-0 01

o 1----J-----~-J -0015
o 0.1 02 OJ 0 .. 0.5

n.5

-2.5 L

a
0.005

05 ,
I

O~~~_, __~
-05 ~ OV ~2\i \ OJ 0.4

~ f' j' ~ v~
l -1 \ f

-0.005

-1.5 I \ t
-2 ~ Euler

I 0 d l. mode' I

10.01 5

0.01

:A
, 'I:
I ! \

1,,1--
, " j -0.01

a I----r---,.---'----,---.--- -0.015

o 0.1 02 OJ 0.4 0.5

0.0001

:~~:: I.
000031

Xl .i

0.0002 '

0.0005

1
,

. x6 1 10
.
015

01 I
0.0004 ~ ~ 0.01

h I 0.005

o f
,

lil
0.0003 : \ I -0.1

Ix,., i \' ~I ~ 0 Yr,

n0002 I j~, ,02\'/ It 1j,I\ I -0.005

0.0001 I
,

-OJ' -001I I
- [-0015o ! 1 -0.4

0 U.J 0.2 OJ 04 0.5
-05

Model Order => 3-7

J" ~--;::- -
0.1 01 -~ OA 05

~ N'\ /.
V

Euler

I 0 d t. model

x2 Error Scaled RMS Error

jj 0.65019E-04 0.1 6376E-02

fi 0.71099E-3 0.19035E-02

,fj 0.60215E-03 0.23282E-02

14 0.65482E-06 0.82354E-03

}5 0.49594E-03 0.26093 E-02

/6 0.12489E-04 0.18831 E-02

130

APPENDIX E.1.2:

2xl Plate Free Response Data for Mach 0.90, q = 43.3kPa

I - Euler

L 0 d.1. model I

0.0006 r

0.0004 t

X,

-0000 I

I

j~
-0.0002

-0.0003

0.4

0.4

0.6

0.6

Euler

o d.1. model

0.8

0.8

0.6

Eilla

o d.1. mode I

0.8

000005

-0.0001

,
o
~

Euk:r

I 0 d.1. modell
0.00004

x" 0

-(1.00004 I

iii
,~

-0.U0008 1

0.4 0.6

I
Ellb

. 0 d.1. model

OR

*Scaled RMS Errors not reported for static divergence case.

131

Appendix E.2.1 :

2x 1 Plate Training Response Data for Mach 1.5, q = 52.5 kPa

0.0003

o 0.1 02

1.5 Euler

o d.l. model i

0.25 03

00003
x2 1

0.0 15 15 Euler

0.0002
1

' 0.0\ I l ~
I 0 d.l. modelj

~, ,; v2

!'\ ' I 0.005

0: I ~. .~.i
Xl

, ' r a Vz fz ,

0.0001 \[(I -0.005 D.2 025 UJ
I I \ -0.5 i +

, -0.01 _I . t
a ! - -0.015

-1.5 i V
0 0.1 02 OJ $

-2

0.0003
- X31

I 0015 0.5 Euler
I

~ 0.01
I 0 d.l. model

v3 f, O~-f, : I

00002 I
-05 ~ 15 0.1 o 15 02 0.25 OJ, I ~ 0.005

, , ,

t 0 V,
x, V', I \ Arri- -\

0.000 I - V: I . -0005
- - - - I, I

f ·00\ ·1 5 ~ \1J \ Ar·
o1

~ f 0 • o.
---1 ---- I -0015 ·2 V ~ t i

01'

a OJ 02 03 V
-2.5

,

132

0.0003 _ 0015 0.05 r I - Euler I-x4
1 1 <> d.t. model I

\'4 0.01 ,,, -- o .
~r ' l~

0.0002 - ,\ f 0.005 (> 0.05 0.1 t 0.15 0.2 0.25 OJ1\

l 0

,,
-005 :

\ A\Af-
x.. / ' " \'4

I"
I

I II' t

j
00001 !-0005

I
ll't -- - -0.1

<> 1 ff -001 \I ~ foL_ l -0.15 1
--~-~-- . -0.015

0 0.1 0.2 OJ ! !
I-02 ~

o

-0.005

_ 0015

0.25 0.3

Euler

<> d.t. modelJ

020.15
I

2

1.2

I

16 ~

D.8

0.01

0.005

0.0003 r - ~, -0

'! ~-~
0.0002 t

x, ~ ill:
0.0001 '1 I _

1 1,1, '. J-0.01

a j!------L,-~- ----r-. -0.015
o 0.05 0.1 0.15 02 0.25 0.3

I

0.0003 r

0.0002

Xj,

0.0001

a 1

0

-x6 '

v6

01

0015

I0.01
i'.

,
\ fr'l ! 0.005 flo,

1\ :
\

~ 0I , \ r,' Yr.

I: V'I: -0005I ., ,
/ ,I

,

, ·0 01

[-0015

02 OJ

0.2 T I Euler

, ~. <> d.t.model!L--L-=--=-- ~ --.0:' O.OS ~-l-~S- \.2

jV
O;S OJ

-0.4 V
-0.6

Model Order ~ 2-6

x2 Error Scaled RMS Error

fi 0.24537E-03 0.12578E-02

/2 0.13413E-02 O.2198lE-02

.fj 0.71204E-03 0.98987E-03

./4 0.44684E-05 0.97407E-03

15 O.32080E-03 O.92901E-03

./6 O.13145E-04 0.761 19E-03

133

0.001 r
\

0.0005

0.0008 .

,
-00008 j

APPENDIX E.2.2:

2x 1 Plate Free Response Data for Mach 1.5, q = 44.7 kPa

!
0.0004 j

-0.0008 l

Euler

o (J.t. model

Euler

o d.1. model

-0.0008 .

134

Euler I
I 0 d.l.l~ode

--

Scaled RMS Errors

mode x f
1 0.16081 E-O 1 0.85533E-02

2 0.13339E-Ol 0.10084E-Ol

3 0.77644E-02 0.11591E-Ol

4 o.22816E-02 0.35492E-02

5 O.36543E-02 0.85351 E-02

6 0.24299E-02 I 0.46461 E-02

135

Appendix E.3.1:

2x 1 Plate Training Response Data for Mach 2.0, q = 93.3 kPa

0.0002 - xl r 0015

j\ vi . 001

r" . 0.005I,IIx, 00001 \' '
0 v,

, "\1 , t ·0005--

1.0.0 I

a
~ _ •• __~ - - (. ·0.015

0~5 0.1 0.15 02
l

Euler I
o d.l. model I

02

Euler

l 0 d.t. modelj

J.5

.) .5

0.5 , I\ttI ' ~

f
2

a --\ ~'~S ~ 0·\.';"'---0·.1-5--~O.2
·0.5

I \ A
-J \ 1

V

0.005

·0.005

• 0.015
I
.0,01

I ·0.01

L ·0015

0.20.15

-'~

0.1

n
1\
1'\ I,\

\ I

\ r\
\ I'
,\

I

0.05

o
o

0.0002 •

x,O.OOOI

0015

a _ """
0.0002

x, 0.000 I •

o
o

I
I
j

-L

0.05

,
'i

" \.
\
r

0.1 0.15
t

x3 I

v3 i 001
I

I 0.005

I
;. 0
I-t ·0.005

i ·0.01

-0015

0.2

o
·0.4

f, ·0.8

.1.2

·16

-2

: 0.05 0.1 Cl.IS 0.2

Euler

o d.L model

136

0.2

I -Euler 1
: 0 ~l ~odel

o ·0---O".O-S-~\-O~'-1 ---0.~J5-

\ /\:'t
\ I I t. ~1t-
V \ IV

V

0.1 1

I
-OJ -

-0.2

f. -0.1 _

t 0.005
[...;. ° VI

t -0.005----.

-- ~ .. 0.015
-x4 i

",,' ! 0.01

\
• \ jl'

,I I,
tt' \

\

~
I
I ,
/', ,, ,

I

I
i -001

o ,.--_~_--L.J---~------Jl -0.015

o 0.05 0.1 0.15 0.2
t

0.0002 .

X, 00001

0.15

Euler ,

L 0 d::'-~OdeIJ

0.1

1 0015
r
r 0.01

0.15

16 .
J

:: ~ A

:005 Vs f, o~ j' /\~ AA
-0.005 0.6 I ~ V V-

OA ~
. -0.01 : ~

-,-'-__-.----1.' -0.01 5 O.~~
o ODS0.10.05

r---=XSl
L~

0.0002 T

X5 0.000 I 1

I
o I-

o

Euler

I 0 d.L model i

0.1

, 0.015 0.3
,

f 0.01 0.2 +
i, : O.OOS 0.\ II

, ,:'\
:V:' _

0 V"~ 0

-0.005
fr, 005

-0.1
, ,

-(J.OI -0.2

--: -0015
-OJ I

0.1 015 0.2 I-OA

Model Order ~ 1-5

0-. -

o 0.05

00002 _

l«, 0.000 I

x2 Error Scaled RMS Error

fi 8.020806E-04 .25668E-02

h 1.508839E-03 .26402E-02

jj 8.996098£-04 .12979E-02

14 2.950224£-05 .16760£-02

15 3.973964E-04 _11353E-02

./6 9.230612E-05 .29493E-02

137

..

APPENDIX E.3.2:

2x 1 Plate Free Response Data for Mach 2.0, q = 72.5 kPa

0.0008 _ - Euler I

0.0006 1 0 d.t. model I,A _ piston

:::::1 P!\ AAIi:n j'" od· ~ '4~+:t3 'l·t :
·0000" V'\ ~.I t ,t 'Jf1 '1.r ". - I t '0/

6
'l 1000 It I

·00004 ~ it ~'t V VV
-0.0006 : V V t

Xl

00006 _

00004 j

-0.0004

-0.0006 1

0.0006 .

Euler

o d.1. ",odel

, ,

U.0004

-00004

00006

0.0002

-00002.~ H~

-00004 .• ~ t

-00006 t

138

-

Scaled RMS Errors

mode x f
1 .39945E-Ol .25323E-OI

2 .3 1449E-O 1 .21554E-OI

3 .18765E-Ol .25949E-Ol

4 .56595E-02 .57867E-02

5 .IOO28E-OI .21094E-Ol

6 .73449E-02 .88454E-02

139

APPENDIX E.4.1:

2x1 Plate Training Response Data for Mach 2.5, q = 145.8 kPa

Euler

o d.l. model j
15 .

J.
1 A
i ! \
I f ~f\

f,O.', I~~
o~ 00'-- 01- -0'15

-05 .

o V,

0.01

0.005

0.QI5xl

vI
------'

I
L

-0.005

t-001

.---_---'-, -0015

0.1 0.15
I

"

o 0.05

0.0002 T

1.

X, 0.0001 t': tl\:: -

/
'; j\:

, '1 _

01L:-

0.0002

1
x2 0.0001 I

o
o

, -

I'

,I I Il I

\ /1'1
J" I,

005 0.1
t

,---~I

0.15

-0.QI5

1.5

-I

-1.5

Euler

o d.l. model

o 15

0.0002

x) 0000 I

a
o

x3 1 0.015 !
I {)~--

;!\i: '~ i:::'" f':: 1 \0 0;jV\01 ~. r- 0.15
I \'/ \, T -0.005 t" \/ ~

; .;\~----- t-0.01 -1.2 l, : 0\. V
t • ~cr

_------''- -,-~: -0.015 -1.6 J V 0 0 d.t.model

005 0.1 0.15
-2 :

140

0.0002

I,
x, 0.000 I _ - _ _ _ I \ -

I \ t,
I V
i
I

o , ---r

C - Euler 1
L 0 d.l. model,

0.05

0.1 -

0

0
-0.1 -

f~

-0.2 I

I
-OJ I,,,
-0.4 1

- - x4'

v4
-~

1 0.015

- 001

j 0005

f 0
r
f
: -0.005

-_._-- ..
~ -DOl

~-0.015
o 150.1

t

0.05o

0.0002 _ -x5 f 0015 1.4 T

~ I

Euler l

~
I

IlJ, l 0.01 0_ d t model)
,

"
I , I I

I
0.005, \'

I •"j'A-I . \', 0.8
Xs 00001 f-

. :'~---
. 0 Ys f f Vi ~I .\

1 0.6
I -0.005

0.4I .~ \ -0.01 : :
I 02~o !- ---,-__ .L-~ I -0.DI5 O· -
0 0.05 0.1 OJ 5 0 0.05 0.1 0.15

0.0002 T . 0.DI5 0.4 _
- x6

Euler- -I- - \61 ! 0.01
OJ L (\ n d.l. model I,--- 0/..

I
0.005

02

JV~x,. 0000 I ° Yr., ,
, "

-0.005
1;, 0.1

'ry1 ,I,

, 1_.
, ' I -001 0

01 V0.15__-.-1 0,05
o ' ·0,015 -01

0 005 01 0.15
-0.2 1

Model Order 1-3

x2 Error Scaled RMS Error

ji 1.896773E-03 .32495E-02

h 3.089939E-03 .34275E-02

jj 1.310361E-03 .16354E-02

14).728338£-04 .33200E-02

15 4.7) 5930£-04 .) 3263E-02

.16 2.935628E-04 .43694E-02

141

APPENDIX E.4.2:

2xl Plate Free Response Data for Mach 2.5, q = 98.8 kPa

-00006 ~
I

-00004 .

-Euler I
o d.l, model I

-.!'islOlI j

x,

0.0006 • 0,0006 I I 0 Euler
d.1. model

" .0000: \ ~ '~'IiJ",: ':':J_': ',·
-00004 it i '

,
-00006 :

0.0004 , Euler

I Jl ~ 0 ~;;odell

0.0002! .; ~ J: :' :' " '
'·:tiJ lM~", ll.~'a:~,':.;"

o ~lo 1 ti! Ut~ ~ to;

€1'~ I II I M~~ iij i, " , ' '. 'OA

o tl f, ' '.' , . '
-0 0002 .~ +i ~ f. '

::to}{"
-0.0004' •

142

Scaled RMS Errors

mode x f
1 .40654E-Ol .35291£-01

2 .32910E-Ol .35601E-Ol

3 .40622E-Ol .22889E-Ol

4 .91925E-02 .10053E-Ol

5 .19524E-Ol .30012E-Ol

6 .87521E-02 .10680E-Ol

143

APPENDIX E.5.1:

2xl Plate Training Response Data for Mach 3.0, q = 210.0 kPa

0.0002 XII r 0.015 1.5 - 1Euler

1
f

~ o d.\. model I-vi I t0.01

I Jj .:. 0.005 rt

" 00001 l/\ , 1\~0 VI J Vr f, 0.5
I \' II -0.005

~I (: I

-001
o~I

005 0.1 0.15o .~ -0015

0 0.05 0.\ 0.15
i JI

-0.5 j

I' ,

I'.
I ,

- xl
v2 I

0.15

Euler
o d.t. model I
--_.j

/\ 1.f \J\,r-..-
~0.05 0.1
t

I :

2 r

1.5 r

0.5

-0.5

-I

-1.5

-2

0.01

0.005

. 0.015

, -0.005

, -0.01

l-0.015

0.\50.10.05

" I.
o ,

o

0.0002 T

1

X2 0.000 I

0.0002 _

x, 0.000 I I

o
o

x3

v3 I_I

~
- l; I,

I ,\ ~
\ ql

I ',1 \I '1 _

I
,---~ -

0.05 01

. 0015

~ 0.01

~ 0.005
I

~ 0 v,
I,
t -0.005
It-0.01

---: -0015

0.15

-I

-1.5

-2

Euler

o d t model

OJS

144

0.15

a I j

o ,.J--------.---

t o.O;Vf\V\ 0: I
-0.1 !

f, ,
; ~,....

-0.2 ; \ r~

-OJ J '='-Euler I \J.! ..
~ d.l.m~ t

-0.4

. 0.015
I

~ 0.01

-x4

wi

I:i I' :005 v,
1,\
I \ {\ ·0.005

I I, V'L
1 .,' -0.01I I r

o L --,.------+1 -0.015

a 0.05 0.1 0.15

0.0002 _

1

J

x.. 0.0001 - - - -

0.15

Euler

o d.l. model I
- I

OJ

12~
I :

14 _

l
~ fro.
.~ \A
I\~! '1\"......_
t ~\ 0

04 i ~ \if
, t
, 0

o~~__

o 0.05

08 ~
f~ .

0.6 :

[0015

L0.0 I

iI 0.005

x5

vS

0.05

,
, "
, I.' ': : a v~

r~-- I::'
--_L-,---J-00l5

0.1 0.15

a
o

0.0002

x~ 0.0001 _

00002.

x" 0.000 I

o .
o

- .x6,

'o6i
I

005

l 0015 0.4 _

A Eule~ 1i 0.01
0.3 ~~ 0 d.t model

I , t i\f\, I
, ~ 0.005

'NI ' 0 v" t~, 02 f \.~, .
V: "

" -0.005
0.\ j t ,.-, ' ,

, -001
I ~~ .- I -0.015 o ,

0.\ 0.\ 5 0 (LOS n.1 II IS

Model Order 1-8

x2 Error Scaled RMS Error

fi 1.321868E-03 .34478E-02

h 1.165202E-03 .32248E-02

13 5.163262E-04 .15764E-02
I

14 7.336602E-05 .29532E-02

15 2.077165E-04 .14443E-02

/6 8.023278E-05 .31326E-02

145

APPENDIX E.5.2:

2x 1 Plate Free Response Data for Mach 3.0, q = 131.8 kPa

0.0006 _ -Euler~ 0.0006 , E.iief - 1
1

0 d.t. model

1
dl.modell

0.0004 {

0

- piston pistOll
I

A
I, 00004

1 ~
1

I,

I

00002) ft r ,~ I

0.0002 1 .0
9 0

X, I1• X2

• •

o~~
,.~ " ~ "r5;] ~~l -

\t: '2:rl-0.0002 VV -00002 .

-00004 : -00004 : " tV

0.0006 .

. I 0

0.0004 I .!! ~

00002 1 flot:t~ .. , ... J A,t ".·
x, 0 0, t*\, " ,~, r1; ,

1 ,t ." .TI 00 ., . \ I .

-0.0006

Euler I
d.t. model

piston

-0.0006

146

po

Scaled RMS Errors

mode x f
1 .27560E-Ol .28512E-Ol

2 .29716E-Ol .42520E-Ol

3 .43792E-01 .36328£-01

4 .91908E-02 .16343E-Ol

5 .44204E-01 .30009E-Ol

6 .62852E-02 .11916E-Ol

147

APPENDIX F.l.l:

GHV Training Response Data for Mach 2.2, q = 114.5 psi

0.1 J -xl'

1 : 5

52000 , I Euler

~__ vJ j fl. d.t. model'
0.08 ., ,

50000 I
~ V~006!' 1:\

,
t05

1', 48000 4X, I r ! 0 V,

~
o04 ~ I \'1,1

1::'j I \ , ~ -_.- --- - 46000002 '

o :1 - ----r-- ----- - -1.5 44000 .
0 0.5 0 0.5

0.1 I

1
1.5 15500 Eulerx2

0.08 ! v2 I 0 d.l. model.
, I" ~ 0.5 15000

0.06 '.1 I

x~ , 0 VI fl

0.04
I -0.5

14500~,~
,I
I

I
002 I -I,

0 -1.5 14000
0 0.5 0 0,5

0.1 x3 I 1,5 56000 ' I Euler:

I A I·I I
d.l. model

v3
0,08 , 55500: ~

i , I 0.5
55000Jr tJ t ~L0,06

x, : 0 V, I,' i ru
0,04 "

54500 \{ J" : ·05
, I

002 ·1 54000 ~

0 -I 5 53500
0 0.5 0 0.5

148

.....

0.1 r.
0.08 ~

I
0.06 t

Jl.l '

0.04 r
J

002 •

o
o

Euler

~ d.t model

-- Euler

d.t model

0.5

-14200 :

-14300 i

- J3900 r

[, ~f/
i

~v5

-14400 .

1:5
,
t 0.5

· 0 VI,
I t~,

· -0.5
,

I-I
-1.5

-3700

0.5

:::::r\ fi
4000 i \ tr'1J

; ~g

-4100 • If

I
0 I Euler

-4200 0 d.L model I

0.1
x7

1

1.5 -24000

0.08
_v7

t,
0.5

0.06 ~

·2'000 ; ~
I, : 0.5

f,·26OO0~ \X7 _ I !,'
f

0.04
I \'" - - - - 1 a V7

I"I 1.1,

V I
i -

. \ I

0.02

' -0.)

.. I-I
-27000 . ,.

-28000 j I I r
0

,

0 0.5

· ·).5 it Euler

-29000
0 d t model

149

0.1 - 1.5 16700 T

~ J 1

_ Euler

0.08 i --=-.::..-:~
16600 1 " d.l. model I

, r t A, t050.06 .: : ,\ '

IV"I I'Xs f - - - , 'I I, t' · f, 16500
0.04 . I V;'

00: 1
-0.5I \ 16400

~I f .1

i
,
f
r -1.5 16300 .-

0 05 0 05

1360°1 -Euler I A
13500 j I .0 d' mod" f\4

t:j 13400 1 ; ¥\--
l Al~ !moo
W

yv ~

13200 1 -- - ----_
o 0.5

. 1.5

0.5

I I

: 1\ ' r 0.5

, /'\ I

1\1\' ~O v.I ,I : -05

I V,~_ I-I
O:-----~-- J ~-1.5

o

0.Q2

0:: j-.

006
Xl) .

0.04 !

Model Order => 3-7

Xl Error Scaled RMS Error

fi 5538.39 0.14082x 10-3

h 284.35 0.89520x 10-4

jj 444.76 0.31621 x10-4

14 208.22 O.11144x 10-3

15 147.71 0.80395 xl 0-4

16 16.86 0.871 07x 10-4

17 1908.15 0.12099 x10-3

I8 18.55 0.21570x 10-4

/9 79.92 0.46991 xl 0-4

150

APPENDIX F.1.2:

GHV Free Response Data for Mach 2.2, q = 43.3kPa

0.5

i\ !

o -A --A- -A--i8\-~
12• ,.4\ 1.6 \ ,.8 ,P

-0.5 , + \ • . f> 1 •\ t • \' , ~
\." ,; .

I V ·''·: 't T~- \ : ~V· t; t:
V 'l,J 't.;

-1.5 W j!f

I Euler I

-2 I 0 d.t. mOd~11

Euler ,
.. d.t. model I

1 -"-15

"O:l~~~_
~\ J'2\ f\ O.~ °rv·

8
1

-0.5 ... • .. t .. I \
\i1/\viV

-1 V V

I
-= -- Euler -

I ~.modell

X) o~ A~~-;-~~-~

-J : \, + \ 1 ~ f\ 1\t, t\ .. /1\
I •• '.::" V

-2 j. + ~ t • : \V" ..
"t' 1 ! I : ..o .! ,..

-3 • l' .; V." ...V \I

OJ - Euler

2

-I

Euler

• d.t. model

" {\ Ili.v.f\ j
~ It'·.1" ~ r • t.. r • ,• r- •• 0,

"t .i 0.4 0.6 t to 8 ~ 1 I

" V V-0.4

-0.2

I __ Euler 1.2 1

._~-!.~. mo~11 f-
0.8 .0

f 0
.. .

ft, . \

0.4 • ~.. •,..
X6 0 , •I

A••
A !,

~ t t ~ ..
". .. I... t ' ",. , . ~

l\S 0; __ ,- ~ \
. .' .-----.o • 102 ~

V

3

-4

-2 -08

]51

X7

: _Euler

o d.l. model'

0.8

0.8

Euler

o d.l. modelt

Scaled RMS Errors

mode x f
1 O.75033xI0-2 0.78669x 10-2

2 O.62579x 10-1 0.44279x J0-1

3 0.84022x 10-2 0.57940x 10-2

4 0.64602x lO- J 0.45618x 10- 1

5 0.74672x 10-2 0.84044x 10-2

6 0.62026x 10- 1 0.58709x 10- 1

7 O.11230xlO-1 0.11235xlO-1

8 0.87352x 10-2 0.30137xlO-2

9 O.14528xlO-1 O.11506 xl0- 1

152

APPENDIX G.1 :

MULTISTEP Subroutine From STARS CFDASE

subroutine multi(nr,nr2,xn,xn1,rbcx,isize,
& delt, istep, ntime, ttime)

C***C
C** Subroutine to force a multistep oscillation of generalized **C
C** displacements and velocities for each mode shape. **C
C** **C
C** Written by Tim J. Cowan **C
C** **C
C** Comments: **c
c** * the multisteps follow a standard 3-2-1-1 type function. **C
C** * the magnitude of the step is set by rbcx **C
C***C

implicit none
integer i, nr, nr2, istep, ntime
real rbcx, delt, ttime, xn(nr2), xn1(nr2), xnold
integer isize, initial

data initial /5/

c***C

C*
C**** Loop through each mode shape and determine the velocity and
C**** displacement for this time step
C*

write (*,*) 'Forcing Multi-Step! ',rbcx
do i=1,nr

xnold xnl{i+nr)
C*
C******** Setup a Multi-Step of the generalized velocity for this mode
C*

+ isize*(4*i - 4))) .AND.
+ isize*(4*i - 1)))) then

+ isize*(4*i - 1))) .AND.
+ isize*(4*i + 1)))) then

&

&

&

if (istep .LT. {initial + isize* (4*i - 4)))
(istep .GE. (initial + isize* (4*i + 3)))

xnl(i+nr) = 0.0
elseif ((istep .GE. (initial

(istep .LT. (initial
xnl(i+nr) = rbcx

elseif ((istep .GE. (initial
(istep . LT. (initial

xn1(i+nr) = -rbcx

153

.OR.
) then

elseH ((istep
& (istep

xnl(itnr) =
elseH ((istep

& (istep
xnl(i+nr) =

endif
xnl(i) = xnl(i)

end do

return
end

. GE. (initial + isize*(4*i t 1))) .AND •

.LT. (initial + isize*(4*i + 2)))) then
rbcx
. GE. (initia + isize*(4*i + 2») .AND .
.LT. (initial + isize*(4*i +))) then
-rbcx

t 0.5-" (xnl (itnr) + xnold)*delt

154

APPENDIX 0.2:

AEROMODEL Subroutine From STARS CFDASE

subroutine aeromodel(filen,istep,na,nb,A,B,u,y,nr,nr2,xn1,fa)
C***C

C* Calculates the generalized forces based on generalized
C* displacements using a system model generated from a least
C* squares fit of test data.
C*
C* Written By Tim J. Cowan
C*

*C
*C
*C
*C
*C
*C

C***C
C*

character*20 filen
integer na, nb, nr, nr2, istep
real xn1(nr2), fa(nr)
real y(na*nr),u(nb*nr),temp1(50),temp2(50)
real A(nr,na*nr), B(nr,nb*nr)

C*
C***C
C*

wri te (*, *) I Computing generali zed forces using aeromodel ... I

c*
C******** Initialize the inputs/outputs to zero for first time step
C*

if (istep .EQ. 1) then
do i = l,na*nr

y(i) = 0.0
enddo
do i = l,nb*nr

u(i) = 0.0
enddo

endif
C*
C***C
C* Calculate aerodynamics with system model *C
C***c
C*
C**** Shift the input and output vectors so that they are setup for
C**** the current time step. The system model requires na past
C**** outputs (forces) and nb past inputs (displacements).
C*

do i = l,nr
do j = na,2,-1

y(i+ (j-l) *nr)
enddo
do j = nb,2,-1

u (i+ (j-l) *nr)
enddo

enddo

y(i+(j-2)*nr)

u(i+(j-2)*nr)

155

do i = 1,nr
y(i) fa(i)
u (i) = xn 1 (i)

enddo
C*
C**** multiply the input and output vectors by our coefficient
C**** matrices and we have the current output (gen. force)
c*

call mmult(A,y,temp1,nr,na*nr,1)
call mmult(B,u,temp2,nr,nb*nr,1)

c
do i = 1,nr

fa(i) temp2(i) + temp1(i)
enddo

c***C

C* End subroutine aeromodel *C
C***C

return
end

subroutine read_ffiodel(filen,na,nb,nr,A,B,rhoinf,offset)
C***C
C*
C*
C*
C*
C*
C*
C*

Subroutine to read in the aerodynamics model parameters from
a user specified data file.

called by: aeromodel.f

comments:

*C
*C
*C
*C
*C
*C
*C

C***C
C*

implicit none
character*20 filen
integer in, i, j, k, na, nb, nr, len
real mach, rhoinf, offset(nr)
real A(nr,na*nr), B(nr,nb*nr)
data in /12/

C*
c***C

C*
wri te (*, *) 'Reading in model parameters.

C*
C**** Open up the model coefficients file
c*

len = 0
do 10 i = 20,1,-1

if(filen(i:i).eq.' ') goto 10
len = i
goto 11

10 continue
11 open(in, file=filen(1:len)//' .mdl', status='old')

C*
C**** Read in the model constants and nurr~er of parameters
C*

156

' nma =',na, 'nmb =',nb, 'nr =',nr
'na =', i, 'nb = I , j, 'nr =', k
'Invalid number of model parameters! I

(offset(i),
I offsets ... I

(offset(i),

i = 1,nr }

l,nr)

then(k . NE. nr)).OR.

i

.NE. nb)

read(in,*)
read(in,*)
read(in,*) mach, rhoinf
write (*,*) 'Mach#, roi'
write (*,*) mach, rhoinf
read(in,*)
read(in, *)
write (*,*)
write (*,*)
read(in,*)
read(in,*) i, j, k
if ((i . NE. na) .OR. (j

write (*,*)
write (*,*)
write (*, *)
stop

endif
C*
C**** Read in the A matrix of coefficients
C*

read(in,*)
do j = 1,na*nr

do i = l,nr
read(in,*) A(i,j)

enddo
enddo

C*
C**** Read in the B matrix of coefficients
C*

do j = l,nb*nr
do i = l,nr

read(in,*) B(i,j)
enddo

enddo
C*

close(in)
write (*,*) 'Done l '

C*
C***C
C* End subroutine read model
C***C
C*

return
end

157

APPENDIX G.3:

CFDMDL Program

program cfdmdl
c***c
c* *c
c* Written by Tim J. Cowan *c
c* *c
c***c

read asenl scalars- -
1-- read asenl namelist

input asenl_data
I
1-- create_pointers

read xndat
1-- dtrend
1-- create_arx_pointers
1-- arx ------------------ svdcmp

1-- svbksb

cfdmdl
I
I
I

mail

General Subroutine Calls:c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c*
c***c

c
parameter (MXDIM = 3000000)
real a(MXDIM)

c
character filen*20, textread*20

c

&

common
common

Itapes/
/data/

INA, IN3, NTAPXN, IMA
nr, nr2, nstep, nma, nmb, tsamp,
xmi, roi, ainf, gamma, uinf, pinf

c
c---c
c

INA = 22
IN3 = 50
NTAPXN = 25
IMA = 17

c
c---c
c *** program header:
c---c
c

write(*,' (5(/}," *** Program CFDASE_MDL *** ",3 (/)) ')
c
c---c
c *** Get the problem name
c---c
c

filen = textread(' Enter problem name: ')

158

c
c---c
c *** Read in the information in the scalars and namelist files
c---c
c

write (*, *)
write (*, *) I »> calling input_asenl_data from cfdmdl. .. '
call input asenl data (filen)
nr2 = nr*2

c

HO) ') iend
ilO) ') MXDIM, ., ,

c---c
c **** Create the workspace pointers
c---c
c

write (*, *)
write (*,*) '»> calling create_pointers from cfdmdl ... '
call create_pointers (ixn, ifa, iz, inn, ioff, ith, iend
wr i t e (* , *) I

write(*,' (" *** MEMORY ALLOCATED
write(*,' (" *** MEMORY AVAILABLE
if (iend .GT. MXDIM) then

write (*, *) 'Increase MXDIM'
stop

endif
c
c---c
c **** Call the main program here
c---c
c

write (*,*)
write (*,*)
call mail(

&

&

'»> calling mail from mg asenl main.
filen,
a (i xn), a (i fa), a (i z), a (inn), a (i 0 f f), a (it h) ,
a(iend), MXDIM-iend)

c
c---c
c *** Successful completion of program
c---c
c

write
stop I

end

(* , *)

OKI! '

c***c
c**'w********c

subroutine input_asenl_data(filen)
c***c

c
character filen*20

&

common /tapes/
common /data/

INA, IN3, NTAPXN, IMA
nr, nr2, nstep, nma, nmb, tsamp,
xmi, roi, ainf, gamma, uinf, pinf

c

159

c---c
c *** Open the scalars file and read in the data
c---c
c

1 = namlen(filen)
open (IN3, file = filen(l:l)//' .scalars',

& status = 'old', err = 2000)
rewind (IN3)
call read asenl scalars
close (IN3)

c
c
c---c
c *** Read in the namelist data
c---c
c

I = namlen(filen)
open (INA, file = filen(l:l)//' .conu',

& status = 'old', err = 2005)
rewind (INA)
call read asenl namelist
close (INA)

c
c---c
c *** Successful return
c---c
c

return
c
c---c
c *** Unsuccessful error messages
c---c
c

2000 write (*, ' (/, , 'Error: when opening asenl scalars file")')
stop 'zreadO'

2005 write (*, , (/, , 'Error: when opening asenl namelist file") I)

stop 'zreadl'
c

return
end

c***c
c***c

subroutine read asenl scalars
c***c

c
dimension isnorm(lOOO)

&

common
common

/tapes/
/data/

INA, IN3, NTAPXN, IMA
nr, nr2, nstep, nma, nmb, tsamp,
xmi, roi, ainf, gamma, uinf, pinf

c
c---c
c

160

c Echo to screen:
c

write (*,*)
write (*,*) , » READING NORMAL MODES *.scalars FILE
write (*,*)

c
c---c
e *** Get number of normal modes
c---c
c

read(IN3,*,end=2010)
read(IN3,*,end=2020)
read(IN3,*) nr, ibex, rbcx
read(IN3,*,end=2020) isnorm(l), (isnorm(i), i=2, isnorrn(l)+l)

c
c Eeho to screen:
c

write(*,*)
write(*,*)
write(*,*)
write(*I*)
write(*I*)

> (3.23.7) NUMBER OF MODES'
nr = " nr
ibex, rbcx: " ibex, rbcx
jsnorm: " isnorm(l)
isnorm: (isnorm(i), i=2, isnorm(l)+l)

c
c---c
c *** Read in flags for reading and writing:
c---c
c

read(IN3'*/end=2030)
read(IN3 / *lend=2030) iread, iprint

c
c---c
c *** Read some parameters to dimensionalize the forces and pressures
c---c
c

read(in3, *,end=2040)
read(in3,*,end=2040) xmi l roi, ainf, gamma, pinf

c
c Echo to screen:
c

write(*,*) > (3.23.5) mach-inf, rho-infl a-inf, gamma, pinf'
write(*,ll) xmi, roi, ainf, gamma, pinf

11 format(3x,f7.4,2x,Ell.5,2x,f9.2,2x,f7.4 / 2x,f7.4)
c
c---c
c *** Read shift factor and gravitational constant:
c---c
c

read(in3,*,end=20501
read(in3,*,end=2050) fmm, g

c
c---c
c *** Input constant load to create impulse load vector fi
c---c
c

read(IN3,*,end=2060)
read(IN3,*,end=2060) iaptp1

c

161

backspace (IN3)
if (ioptpl .eg. 1) then

read(IN3, *,end=2060) idum, amppl, tstart, tend
elseif (ioptpl .eg. 2) then

read(IN3, *,end=2060) idum, amppl, nstart, nendf
else

write(*,*) '***** Illegal input for Impulse Force flag '
write(*,*) '***** ioptpl= " ioptpl
stop 'ioptpl!'

endif
c
c---c
c *** Input aero/impulse load flags
c---c
c

read(IN3,*,end=2070)
read(IN3,*,end=2070) ioptfa, ioptfi

c
c---c
c *** Terms used in calculation transition matrix, number of
c *** structural time steps per aero time step
c---c

read(IN3,*,end=20BO)
read(IN3,*,end=2080) nterm, nstp

c
c---c
c *** Number of model parameters
c---c
c

read(IN3,*,end=2090)
read(IN3,*,end=2090) nma, nmb

c
c Echo to screen:
c

write(*,*)
write(*,*)

> (3.23.25) NMA, NMB'
',nma, nmb

c
c---c
c *** Successful return:
c---c
c

return
c
c---c
c *** Unsuccessful reads:
c---c

2010 write(*,*) '»> ERROR reading input; title card '
stop 'zread'

2020 write(*,*) '»> ERROR reading input; number of modes '
stop 'zread'

2030 write(*,*) '»> ERROR reading input; read/write flags '
stop 'zread'

2040 write(*,*) '»> ERROR reading input; fluid parameters r

stop 'zread'
2050 write(*,*) '»> ERROR reading input; from, gconst '

stop 'zread'
2060 write(*,*) '»> ERROR reading input; inpulse data '

162

stop 'zread'
2070 write(*,*) '»> ERROR reading input; impulse flags ...

stop 'zread'
2080 write(*,*) '»> ERROR reading input; transition data

stop 'zread'
2090 write(*,*) '»> ERROR reading input; system model data ...

stop 'zread'
c

return
end

c***c
c***c

subroutine read asenl namelist
c***c

c
dimension cbt(5)
logical trans, low, debug, bulkvis,

& pistonn_sol, model sol
real mach

c
common /tapes/ INA, IN3, NTAPXN, IMA
common /data/ nr, nr2, nstep, nma, nmb, tsamp,

& xmi, roi, ainf, gamma, uinf, pint
c

namelist /control/ gamma, epslm, nstage, ctl,
& relax, mach, alpha, beta,
& amplitude, freq, phase, nstep,
& xO, yO, zO, wux,
& cbt, nsmth, smofc, Ig,
& nite2, ncycl, nstou, meshc,
& bulkvis, low, nlimit, debug,
& xc2, xc3, xc4, tlr,
& model sol

diss2, dissl,
trans, restart,
nstpe, nout,

wuy, wuz,
niteO, ni el,
meshf, ncyci,
disx, xcl,

pistonn sol,

c
c---c
c

gamma
epslm
nstage
cfl
diss2
dissl
relax
mach
alpha
beta
trans
restart
amplitude
freq
phase
nstep
nstpe

1.4
0.05
5
2.8
1.0
1.0
1.0
0.6
0.0
0.0
.false.
o
0.0
0.0
0.0
1
1

163

nout 1
xO 0.0
yO 0.0
zO 0.0
wux 0.0
wuy 0.0
wuz 0.0
ebt(l) 1.0
ebt(2) 0.5
ebt(3) 0.0
ebt (4) 0.0
ebt(5) 0.0
nsmth 0
smofe 0.25
Ig 1
niteO 1
nitel 1
ni te2 1
ncycl 1000
tlr 0.0
ncyci 1000
nstou 5
low .false.
debug .false.
meshc rnrnesh
meshf 1
bu1kvis .fa1se.
nlimit 1
disx 6.0
xc1 -1.2
xc2 -0.2
xc3 0.014
xc4 0.0714
pistonn sol=.false.
model sol = .false.

c
c---c
c
c Echo to screen:
c

write(*,*)
write (*, *) I » Reading namelist file ... '
write(*,*)

c
c---e
c *** Read in the namelist
c---e
c

read(INA,eontrol)
c

if (nstep .LE. 1) then
write(*,*) '»> Invalid number of time steps, nstep ',nstep
stop 'nstep'

else
wri te (*, *) > number of time steps; nstep , , nstep

endif
c

164

c---c
c *** Successful return:
c---c
c

return
end

c***c
c***c

subroutine create_pointers (ixn, ifa, iz, inn, ioff, ith, iend)
c***c

c

&

conunon /data/ nr,
xmi,

nr2, nstep,
roi, ainf,

nma, nmb, tsamp,
ganuna, uinf, pinf

c
c---c
c

iend = 1
call ipoint(ixn , nstep*nr2 iend
call ipoint(ifa , nstep*nr iend
call ipoint (iz nstep*nr2 iend
call ipoint(inn , nr*nr*3 iend
call ipoint(ioff, nr iend
call ipoint(ith , nr* (nma+nmb*nr) , iend

c
c---c
c *** Successful return:
c---c
c

return
end

c***c
c***c

subroutine create_arx_pointers(
&

&

&

ny,nu,nstep,nma,nbkm,n,nmax,
11, 12, 13, 14,
IS, 16, 17, 18,
19, IlO, Ill, lEND

c***c

c
c
c---c
c

ia
ib
iend
call
call
call
call

nma+ (nbkm+l) *nu
nstep-nmax
= 1
ipoint (11
ipoint(12
ipoint (13
ipoint (14

ny*ny
ny*nu
ny*nu
ib

165

iend
iend
iend
iend

call ipoint(15 ib*n iend
call ipoint(16 ia iend
call ipoint(17 ia iend
call ipoint(18 ia*ia iend
call ipoint (19 ib*ia iend
call ipoint(no , ny iend
call ipoint(III ia iend

c
c---c
c *** Successful return:
c---c
c

return
end

c***c
c***c

subroutine ipoint(ipt, nsize, iend)
c***c
c

ipt = iend
iend = ipt + nsize

c
return

c
end

c***c
c***c

subroutine mail (filen, xn, fa, z, nn, off, th, a, max)
c***c

c
character filen*20, textread*20
dimension xn(nstep,nr2), fa(nstep,nr), z(nstep,nr2),

& nn(nr,nr*3), off(nr), th(nr,nma+nmb*nr), a("k)

c

&

common
common

/tapes/
/data/

INA, IN3, NTAPXN, IMA
nr, nr2, nstep, nma, nmb, tsamp,
xmi, roi, ainf, gamma, uinf, pinf

c
c---c
c *** Open the multi.dat file and read in the time history data
c---c
c

open (NTAPXN, file 'multi.dat ' , status = 'old', err = 4000)
rewind (NTAPXN)
call read xndat(xn, fa)
close (NTAPXN)

c

166

c---c
c *** Rearrange the data and pass it to the ARX modeller
c---c
c
c Reorganize the data
c

do i = l,nstep
do j = l,nr

z(i,j) = fa(i,j)
enddo
do j = nr+l,nr2

z(i,j) = xn(i,j-nr)
enddo

enddo
c
c Setup the orders and delays matrix
c

do i = l,nr
do j = l,nr

if (i .EQ. j) then
nn (i, j) nma

else
nn (i, j) 0

endif
enddo
do j = nr+l,nr2

nn(i,j) = nmb
nn(i,j+nr) = 0

enddo
enddo

c
c De-trend the data
c

call dtrend(z, nr, nstep, off)
c
c Calculate some interesting constants
c

ny nr
nu nr
nz nr2
nbkm = nmb - 1
nkm = 0
nd = nma*nr + nmb*nr*nr
n = nma*ny + (nbkm-nkm+l)*nu
nmbh = MAXO(nma, nbkm)

c
c Create pointers for the model solver
c

c

write (*,*)
write (*,*)
call create

&

&

&

write(*,*)

, » calling create_arx_pointers from mail ... I

arx pointers (ny, nu, nstep, nma, nbkm, n, nmax,
II, 12, 13, 14,
15, 16, 17, 18,
19, 110, Ill, lEND

167

write(*,' (" *** MEMORY ALLOCATED
write(*, I (" *** MEMORY AVAILABLE
if (lEND .GT. MAX) then

write(*,*) 'Increase MXDIM'
stop

endif
c
c Compute the model parameters
c

, .
, . iIO) ') lEND

iIO) ') MAX

call arx (z, nn, ny, nu, nstep, nz, nma, nbkm, nkm, nd, n, nmax,
& tsamp, th,
& a (11), a (12) , a (13), a (14),
& a (IS) , a (16), a (17), a (18) ,
& a (19), a (110), a (Ill)

c
c---c
c *** Write the model parameters to file *.mdl
c---c
c
c Open the model parameters file
c

1 = namlen(filen)
open (IMA, file filen(l:I)//'.mdl', err
rewind (IMA)

c
c Echo to screen
c

4005)

write (*,*)
wri te (*, *) I » Writing model parameters file ... '
write (*,*)

c
c Output model data to file
c

System model created
Mach # rho-inf
xmi, roi, tsamp
offsets'
(off(i), i = l,nr)
na nb nr'
nma, nmb, nr
Model parameters .. '

wr it e (I MA, *) , $
wri te (IMA, *) '$
write {IMA, 5005)
write(IMA,*) '$
write(IMA,50IS)
wri te (IMA, *) '$
write(IMA,5000)
wri te (lMA, *) '$
do k = I,nma

do j = I,ny
do i = I,ny

if (i .EQ. j) then
write(IMA,*) th(i,k)

else
write(lMA,*) 0.0

endif
enddo

enddo
enddo
do k = I,nmb*nu

do j = l,ny
write (IMA, *) th (j, k+nma)

enddo
enddo

168

for " filen
tsamp'

close (1MA)
c

write (*,*) > ',filen(l:l)//' .mdl',' successfully created.'
c
c---c
c *** Successful return:
c---c
c

return

when opening model parameter file
filen(1:1)//' .mdl'

when opening time history file xn.dat'

Error:

Error:write(*,*) '»>
stop 'xn.dat'

4005 writ e (* , *) '>>>
&

stop T*.mdl'

c
c---c
c *** Unsuccessful error messages
c---c
c

4000

c

315)
3(2x,E12.6))
<nr>(2x,E12.6)

format (
format (
format (

c---c
c *** Format statements
c---c
c

5000
5005
5015

end
c***c

c***c

character*80 function textread(prompt)
c***c
c

character*(*) prompt
c
c---c
c

write(*,' (/,a,$)') prompt
read (*, ' (a) ') text read
r8turn

c
end

c***c
c***c

integer function namlen(filen)
c***c
c

169

character*20 filen
c
c---c
c

c

namlen = 0
do i = 20,1,-1

if (filen(i:il .ne.
namlen = i
goto 101

endif
enddo

101 return

end

then

c***c
c***c

subroutine read_xndat(xn, fa)
c***c

c
dimension xn(nstep,nr2), fa(nstep,nr), ttime(2000}

c
common
common

&

/tapes/
/data/

INA, IN3, NTAPXN, IMA
nr, nr2, nstep, nma, nmb, tsamp,
xmi, roi, ainf, gamma, uinf, pinf

c
c---c
c
c Echo to screen:
c

write(*,*)
write(*,*)
write(*,*)

» Reading time history data from multi.dat

c
c---c
c *** Read in the xp header information
c---c
c

do i = 1, 5+nr*3
read(NTAPXN,*,end=1000)

enddo
c
c---c
c *** Read in the time history data
c---c
c

do i = 1, nstep
read(NTAPXN,*,end=100) ttime(i), xn(i,j), j=1,nr2),

& fa (i, j), j = 1, nr)
enddo

100 nstp = i-I
if (nstp .NE. nstep) then

write(*,*) '»> Invalid # of time steps found in multi.dat'
stop 'multi.dat'

170

endif
c
c Compute the sampling time
c

tsamp = ttime(nstep) - ttime{nstep-l)
c
c Echo to screen:
c

write(*,*)
write(*,*)

> number of time steps; nstep = ',nstep
> sampling time; tsamp = ',tsamp

c
c---c
c *** Succesful return
c---c
c

return
c
c---c
c *** Unsuccesful error messages
c---c
c

1000 write (*, *) '»> Error reading time history data'
stop 'multi.dat '

c
c

return
end

subroutine dtrend(z, nr, ostep, off)
c***c

c
dimension z{nstep,nr*2), off{nr)

c
c---c
c
c Echo to screen:
c

write(*,*)
write(*,*) , » De-trending the data ...
write(*,*)

c
c---c
c *** Subtract off the steady state offset from the data
c---c
c
c Determine what the offset is.
c

Take last time step before multistep.

do i = l,nstep
if (z{i,nr+1) .NE. 0.0) then

do j = l,or
off(j) z(i-l,j)

enddo
goto 100

endif
enddo

171

100 continue
c
c Subtract the offset from each output (force) array
c

do i = l,nstep
do j = l,nr

z (i, j) z (i, j) - off (j)
enddo

enddo
c
c Echo to screen
c

write(*,*)
write(*,2000)

> offsets'
(off(i), i = l,nr)

c
c---c
c *** Succesful return
c---c
c

return
c
c---c
c *** Unsuccesful error messages
c---c
c

1000 write(*,*) '»> Error de-trending the data'
stop 'dtrend'

c
c---e
e *** Format statements
c---e
c

2000 format (<nr>(2x,E12.6)
c
c

return
end

subroutine arx(z, nn, ny, nu, Neap, nz, nma, nbkm, nkm, nd, n,
& nmax, Tsamp, eta,
& na, nb, nk, jj,
& phi, th, w, v,
& temp, chisq, rowind

c***c

e
parameter (TOL = 1.OE-8)

e
dimension z(Ncap,nz), nn(ny,nu*3), eta(ny,nma+(nbkm+l)*nu),

na(ny,ny), nb(ny,nu), nk(ny,nu), jj (Neap-nmax),
phi (Ncap-nmax,n), th(nma+(nbkm+l)*nu),
w(nma+(nbkm+l)*nu), v(nma+(nbkm+l)*nu,nma+(nbkm+l)*nu),
temp(Ncap-nmax,nma+(nbkm+l)*nu), chisq(ny)

rowind(nma+ (nbkm+l) *nul , outp

&

&

&

&

integer

c

172

c---c
c
c Echo to screen:
c

write(*,*)
wri te (*, *) , » Calculating ARX model ...
write(*,*)
write(*,*) > Computing',nd, 'total parameters'

c
c---c
c *** Initialize the coefficient matrices
c---c
c

do i = 1,ny
do j = l,ny

na (i, j)
enddo

enddo
do i = l,ny

do j = l,nu
nb (i, j)
nk(i,j)

enddo
enddo

nn(i,j)

nn(i,j+ny)
nn(i,j+ny+nu)

c
c---c
c *** Construct the regression matrix
c---c
c
c Initialize our matrices
c

do i = 1, Ncap-nmax
jj (i) = nmax+i
do j = l,n

phi(i,j) = 0.0
enddo

enddo
c

do kl = 1,nma
do i = l,Ncap-nmax

do j = (kl-l)*ny+l,kl*ny
phi(i,j) = z(jj(i)-Y.l,j-(kl-l)*ny

enddo
enddo

enddo
ss = nma*ny

c
do kl = nkm,nbkm

do i = 1,Ncap-nmax
do j = ss+(kl-nkm)*nu+l, ss+(kl-nkm+l)*nu

phi(i,j) = z(jj (i)-kl,j-ss-(kl-nkm)*nu+ny
enddo

enddo
enddo

c
c---c
c *** Compute the loss functions

173

c---c
c

do outp = l,ny
nrow = 0
do kk = l,ny

do j = kk, ny*na(outp,kk), ny
nrow = nrow + 1
rowind(nrow) = j

enddo
enddo
do kk = 1, nu

do j = nma*ny+kk, nma*ny+nu*nb(outp,kk), nu
nrow = nrow + 1
rowind(nrow) = j

enddo
enddo
if (nrow .NE. nma+(nbkm+1)*nu) stop 'rowind'
call isort(rowind, nrow)

c
do i = 1,Ncap-nmax

do j = l,nrow
temp(i,j) phi(i,rowind(j))

enddo
enddo

c
c Get the solution using singular value decomposition of the phi
c matrix and least squares estimation of the parameters
c

call svdcmp(temp, Ncap-nmax, nrow, Ncap-nmax, nrow, w, v)
wmax = 0.0
do j = l,nrow

if (w (j) . GT. wmax) wmax w (j)
enddo
thresh = TOL*wmax
do j = 1,nrow

if (w(j) .LT. thresh) w(j) = 0.0
enddo
call svbksb(temp, w, v, Ncap-nmax, nrow, Ncap-nmax, nrow,

& z(jj(l) :jj (Ncap-nmax),outp), th)
c
c Compute the error function chi-square
c

chisq(outp) = 0.0
do i = 1,Ncap-nmax

sum = 0.0
do j = l,nrow

sum = sum + th(j)*phi(i,rowind(j))
enddo
chisq(outp) = chisq(outp) + (z(jj (i),outp) - sum)**2

enddo
c

write(*,*) > Chi-Square',outp, '=',chisq(outp)
c
c Store the result in the return matrix
c

do i = 1,nrow
eta(outp,i) th(i)

174

enddo
c

enddo
c
c---c
c *** Succesful return
c---c
c

return
c
c---c
c *** Unsuccesful error messages
c---c
c

1000 write(*,*) '»> Error calculating model parameters'
stop 'arx'

c
return
end

c***c
c***c

subroutine isort(ivec, nrow)
c***c

c
dimension ivec(nrow)

c
c---c
c

last = nrow
do j = l,nrow-l

ptr j
first = j+l

c

c

c

do k = first, last
if (ivec(k) .LT. ivec(ptr)

enddo

ihold = ivec(j)
ivec(j) ivec(ptr)
ivec(ptr) = ihold

enddo

return

ptr k

c
c---c
c

end
c***c
c***c

175

subroutine svdcmp(a, m, n, mp, np, w, v)
c***

c
parameter (NMAX = 500)

c
integer m, n, mp, np, nm
integer i, j, k, 1, jj, its
real a(mp,np), w(np), v(np,np), rV(NMAX)
real c, f, g, h, x, y, z
real anorm, scale
real amag

c
c---c
c *** Perform Householder reduction to get bi-diagonal form
c---c
c

9 = 0.0
scale 0.0
anorm = 0.0

c
do i = l,n

1 = i+l
rv(i) = scale*g
9 = 0.0
s = 0.0
scale 0.0
if (i .LE. m) then

do k = i,m
scale = scale + abs(a(k,i)

enddo
if (scale .NE. 0.0) then

do k = i,m
a(k,i) = a(k,i)/scale
s = s + a(k,i)*a(k,i)

enddo
f a(i,i)
9 = -sign(sgrt(s), f)
h = f*g - s
a(i,i) = f - 9
do j = l,n

s = 0.0
do k = i, m

s = s + a(k,i)*a(k,j)
enddo
f = s/h
do k = i,m

a(k,j) a(k,j) + f*a(k,i)
enddo

enddo
do k = i, m

a(k,i) scale*a(k,i)
enddo

endif
endif
w(i) = scale*g
9 0.0
s = 0.0

176

scale = 0.0
if «i .LE. m) .AND. (i .NE. n)) then

do k = l,n
scale=scale+abs(a(i,k))

enddo
if (scale .ne. 0.0) then

do k = l,n
a(i,k) = a(i,k)/scale
s = s + a(i,k)*a(i,k)

enddo
f a(i,l)
9 = -sign(sqrt(s), f)
h = f*g - s
a(i,l) = f - 9
do k = l,n

rv(k) = a(i,k)/h
enddo
do j = l,m

s = 0.0
do k = l,n

s = s + a(j,k)*a(i,k)
enddo
do k = l,n

a(j,k) a(j,k) + s*rv(k)
enddo

enddo
do k = l,n

a(i,k) scale*a(i,k)
enddo

endif
endif
anorm = max(anorm, (abs(w(i)) + abs(rv(i)))

enddo
c
c---c
c *** Accumulate the right-hand transformations
c---c
c

do i = n,l,-l
if (i .LT. n) then

if(g.ne.O.O)then
do j = l,n

v(j,i) = a(i,j)/a(i,l))/g

enddo
do j = l,n

s=O.O
do k = 1, n

s = s + a(i,k)*v(k,j)
enddo
do k = l,n

v(k,j) v(k,j) + s*v(k,i)
enddo

enddo
endif
do j = l,n

v(i,j) 0.0
v(j,i) = 0.0

177

enddo
endif
v(i,i) = 1.0
9 = rv(i)
1 = i

enddo
c
c---c
c *** Accumulate the left-hand transformations
c---c
c

do i = mint m,n),1,-1
1 i + 1
9 w(i)
do j = l,n

a(i,j) = 0.0
enddo
if (g .NE. 0.0) then

9 = 1. Olg
do j = l,n

s = 0.0
do k = 1, m

s = s + a(k,i)*a(k,j)
enddo
f = (s/a(i,i))*g
do k = i,m

a(k,j) = a(k,j) + f*a(k,i)
enddo

enddo
do j = i,m

a(j,i) a(j,i)*g
enddo

else
do j = i,m

a(j,i) 0.0
enddo

endif
a(i,i) a(i,i) + 1.0

enddo
c
c---c
c *** Diagonalize the bi-diagonal form
c---c
c

do k = n,l,-l
do its = 1,30

do 1 = k,l,-l
nm=l-l
if ((abs(rv(l)) + anorm .EQ. anorm) goto 2
if ((abs(w(nm)) + anorm .EQ. anorm) goto 1

enddo
1 c = 0.0

s = 1. a
do i = l,k

f = s*rv(i)
rv(i) = c*rv(i)
if ((abs(f) + anorm .EQ. anorm) goto 2

178

2

9 = w(i)
h = amag(f,g)
w(i) = h
h 1. O/h
c = (g*h)
s = -(f*h)
do j 1,m

y = a(j,nm)
z = a(j,i)
a(j,nm) = y*c + z*s
a(j,i) = -y*s + z*c

enddo
enddo
z = w(k)
if (1 .EQ. k) then

if (z .LT. 0.0) then
w(k) = -z
do j = l,n

v(j,k) -v(j,k)
enddo

endif
goto 3

endif
if (its .EQ. 30) PAUSE 'no convergence in svdcmp'
x = w(l)
nm = k-1
Y w(nm)
9 rv(nm)
h rv(k)
f ((y - z)*(y + z) + (g - h)*(g + h)) / (2.0*h*y)
9 amag(f, 1.0
f ((x - z)*(x + z) + h*((y/(f + sign(g,f)}) - h))/x
c 1.0
s 1. a
do j l,nm

i j+1
9 rv(i)
y w(i)
h s*g
9 c*g
z = amag(f,h)
rv(j) = z
c f/z
s = h/z
f x*c + g*s
9 -x*s + g*c
h y*s
Y y*c
do jj = l,n

x = v(jj,j)
z = v(jj,i)
v(jj,j) x*c + z*s
v(jj,i) = -x*s + z*c

enddo
z = amag (f, h)
w(j) = z
if (z .NE. 0.0) then

179

z 1.0/z
c f*z
s h*z

endif
f = c*g + s*y
x = -s*g + c*y
do jj = l,m

y = a(jj/j)
z=a(jj,i)
a(jj,j) y*c + z*s
a(jj,i) = -y*s + z*c

enddo
enddo
rv (1) 0.0
rv (k) f
w(k) = x

enddo
3 continue

enddo
return

c
END

c*** ****************c

c*** ****************c

real function amag(a, b)
c***c
c

real a, b , absa, absb, r
c
c---c
c

absa
absb

abs(a)
abs(b)

c
c---c
c *** Compute a magnitude without overflow or underflow
c---c
c

then

then

1. 0 + r*r

1. 0 + r*r)

absb .EQ. 0.0)
amag = 0.0

else
r = absa/absb
amag = absb*sqrt(

endif
endif

if (absa .GT. absb)
r = absb/absa
amag = absa*sqrt(

else
if

c
return

c
end

180

c***c
c***c

subroutine svbksb(u, w, v, fi, n, mp, np, b, x)
c***c

c
parameter (NMAX = 500

c
integer m, mp, n, np
integer i, j, jj
real b(mp), u(mp,np), v(np,np), w(np), x(np)
real s, tmp(NMAX)

c
c---c
c *** Back substitution to compute the parameters of the model
c---c
c

do j = l,n
s = 0.0
if (w(j) . NE. O. 0) then

do i = I,m
s = s + u(i,j)*b(i)

enddo
s = s/w(j)

endif
tmp (j) s

enddo
do j = l,n

s = 0.0
do jj = l,n

s = s + v(j,jj)*tmp(jj)
enddo
x (j) s

enddo
return

c
END

c***c

c***c

181

APPENDIX 0.4:

RMSERR Program

program rmserr
c***c

c*
c* Written by Tim J. Cowan
c*

*c
*c
*c

c***c

c

c

real xnl(20), xn2(20), errx(20),
real vnl(20), vn2(20), errv(20),
real fnl(20), fn2(20), errf(20),

xmax(20)
vmax(20)
fmax (20)

character filenl*80, filen2*80, textread*80
c
c
c---c
c

INI 22
IN2 23

c
c---c
c *** program header:
c---c
c

write(*,' (5(/)," *** Program RMSERR ***",3(/)) ')
c
c---c
c *** Get the problem name
c---c
c

filenl = textread (' Enter the euler time history filename : ')
filen2 = textread (' Enter the model time history filename : ')
write(*,' (/,a,S)') , Input the number of timesteps to compare
read(*,*) nstep
write(*,' (/,a,S)') , Input the number of mode shapes:
read(*,*) nr

c
c---c
c *** Open the two time history files and scroll through the headers
c---c
c

open (IN1, file = filenl, status = 'old', err = 4001)
rewind(INl)
do i = 1, 5+nr*3

read(INl,*,end=400l)
enddo

c
open (IN2, file filE:n2, status

182

'old', err 4002)

rewind (IN2)
do i = 1, 5+nr*3

read(IN2,*,end=4002)
enddo

c
c---c
c *** Initialize the maximum values for each mode shape
c---c
c

do i = 1,nr
xmax (i) 0.0
vmax (i) 0.0
fmax(i) 0.0

enddo
c
c---c
c *** Read in the data and compute an RMS error for each mode shape
c---c
c

do i = 1, nstep
read(IN1,*,end=5001) ttime, xnl(j), j=l,nr),

& (vn1(j), j=l,nr), fn1(j), j=l,nr)
read(IN2,*,end=5002) ttime, xn2(j), j=l,nr),

& (vn2(j), j=l,nr), fn2(j), j=l,nr)
do j = 1, nr

if (i .EQ. 1) then
errx(j) 0.0
errv(j) 0.0
errf(j) 0.0

endif
errx(j) errx{j) + (xnl(j) - xn2(j))**2.0
errv(j) errv(j) + (vnl(j) - vn2(j))*'''2.0
errf(j) errf(j) + (fn1(j) - fn2(j))**2.0

if (abs(xn1(j)) .GT .xmax(j)) xmax(j)
if (abs (vn1 (j)) . GT. vmax (j)) vrnax (j)
if (abs (fn1 (j)) . GT. fmax (j)) fmax (j)

enddo
enddo

abs(xn1(j))
abs(vn1(j))
abs (fn1 (j))

c
do j = 1, nr

errx(j)
errv(j)
errf(j)

enddo

((errx(j)/nstep)**0.5)/xmax(j)
((errv(j)/nstep)**O.5)/vmax(j)
(errf(j)/nstep)**0.5)/fmax(j)

c
c---c
c *** Output the RMS error for each mode shape
c--- ----------------c
c

write(*,*)
write(*,*) , I

wr i te (* , *) '* * Scaled RMS Errors:'
write{*,*) ,---,
write{*,*) I Mode xn vn in'
write{*,*) ,---,
do j = 1, nr

183

write (*,1000) j, errx (j), errv(j), errf (j)
enddo
write(*,*)
wri te (*, *) '* Errors are scaled by max value of signal.'

c
c---c
c *** Successful completion of program
c---c
c

write
stop

(*, *)

OK! !'
c
c---c
c *** Format statements
c---c
c

1000 format(2x,I2,3x,E12.5,3x,E12.5,3x,E12.5)
c
c---c
c *** Unsuccessful error messages
c---c
c

4001 write(*,*) '»> Error: when opening time history file ',filen1
stop 'xn.dat'

4002 write(*, *) '»> Error: when opening time history file " filen2
stop 'xn.dat'

5001 write(*,*) '»> Error: out of timesteps in history file ',filenl
stop 'xn.dat'

5002 write(*,*) I»~> Error: out of timesteps in history file ',filen2
stop 'xn.dat'

c
end

c***c
c***c

character*80 function textread(prompt)
c***c
c

character*(*) prompt
c
c---c
c

write(*,' (I,a,$) ') prompt
read (*, I (a) ') textread
return

c
end

~***c

c***c

184

VITA

Timothy JOM Cowan

Candidate for the Degree of

Master of Science

Thesis: EFFICIENT AEROELASTIC CFD PREDICTIONS USING SYSTEM
IDENTIFICAnON

Major Field: Aerospace Engineering

Biographical:

Personal Data: Born in Tulsa, Oklahoma on March 31, 1973, the son of Timothy
M. and marsha L. Cowan. Married Leslie A. Graham on July 26, 1997.

Education: Graduated from Union High School, Tulsa, Oklahoma, in May 1991;
received Bachelor of Science degree in Mechanical Engineering from
Oklahoma State University, Stillwater, Oklahoma, in May 1996;
completed requirements for the Master of Science degree with a major in
Aerospace Engineering at Oklahoma State University in May 1998.

Experience: Systems Analyst, OSU Physical Plant CIS,]995-1996; Network
Administrator, OSU Mathematics Department, 1996; Level II Tutor,
Mathematics Learning Resource Center, 1994-1996; Coordinator,
Mathematics Learning Resource Center, 1997-1998; Graduate Research
Assistant, OSU Department of Mechanical Engineering and Aerospace
Engineering, 1996-1998.

Professional Memberships: American Institute of Aeronautics and Astronautics,
American Society of Mechanical Engineers, Pi Tau Sigma, Tau Beta Pi.

