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Abstract

One of the most critical areas in a flight program for unmanned vehicles is getting the

feedback controls to the point that the vehicle can achieve stable flight reasonably well

so that the best tradeoff between flight performance and stability and the vehicle’s flight

envelop can be determined and finalized in actual flight conditions. Two basic methods

are most often used for this purpose. One is the extreme method of pilot assistance (i.e.

remote control) without the use of test stands. In this case, theory, experience, and pilot

assistance are used to develop an autonomous feedback controller. That is, a remote

pilot on the ground flies the unmanned vehicle high up into the air and flight behavior is

observed after the controls on board are switched from remote pilot to autonomous flight.

The feedback controller is modified through these observations to achieve stable flight.

The second method is pilot assistance with the use of test stands. In this case, theory,

experience, pilot assistance, and results from tests on flight stands are used to develop

an autonomous feedback controller. In this thesis, we explore the other extreme method

of only using test stands results without any pilot assistance to develop an autonomous

controller for unmanned vehicles. The main objective is to develop a method for deriving

an autonomous flight controller for a miniature scaled model helicopter by only using

test stands together with theory and previous experience, all without pilot assistance

and without damaging the vehicle.

In this work, we show how to computerize a helicopter to fly attitude axes controlled

hover flight without the assistance of a pilot and without ever crashing. We start by devel-

oping a helicopter research test bed system including all hardware, software, and means

for testing and training the helicopter to fly by computer. We select a Remote Controlled

helicopter with a 5 ft. diameter rotor and 2.2 hp engine. We equip the helicopter with a
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payload of sensors, computers, navigation and telemetry equipment, and batteries. We

develop a differential GPS system with cm accuracy and a ground computerized nav-

igation system for six degrees of freedom (6-DoF) free flight while tracking navigation

commands. We design feedback control loops with yet-to-be-determined gains for the five

control ”knobs” available to a flying radio-controlled (RC) miniature helicopter: engine

throttle, main rotor collective pitch, longitudinal cyclic pitch, lateral cyclic pitch, and

tail rotor collective pitch.

We develop helicopter flight equations using fundamental dynamics, helicopter mo-

mentum theory and blade element theory. The helicopter flight equations include heli-

copter rotor equations of motions, helicopter rotor forces and moments, helicopter trim

equations, helicopter stability derivatives, and a coupled fuselage-rotor helicopter 6-DoF

model. The helicopter simulation also includes helicopter engine control equations, a he-

licopter aerodynamic model, and finally helicopter stability and control equations. The

derivation of a set of non-linear equations of motion for the main rotor is a contribution

of this thesis work.

We design and build two special test stands for training and testing the helicopter to

fly attitude axes controlled hover flight, starting with one axis at a time and progressing

to multiple axes. The first test stand is built for teaching and testing controlled flight of

elevation and yaw (i.e., directional control). The second test stand is built for teaching

and testing any one or combination of the following attitude axes controlled flight: (1)

pitch, (2) roll and (3) yaw. The subsequent development of a novel method to decouple,

stabilize and teach the helicopter hover flight is a primary contribution of this thesis.

The novel method included the development of a non-linear modeling technique for

linearizing the RPM state equation dynamics so that a simple but accurate transfer

function is derivable between the ”available torque of the engine” and RPM. Specifically,

the main rotor and tail rotor torques are modeled accurately with a bias term plus a

nonlinear term involving the product of RPM squared times the main rotor blade pitch

angle raised to the three-halves power. Application of this non-linear modeling technique
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resulted in a simple, representative and accurate transfer function model of the open-loop

plant for the entire helicopter system so that all the feedback control laws for autonomous

flight purposes could be derived easily using classical control theory. This is one of the

contributions of this dissertation work.

After discussing the integration of hardware and software elements of our helicopter

research test bed system, we perform a number of experiments and tests using the two

specially built test stands. Feedback gains are derived for controlling the following: (1)

engine throttle to maintain prescribed main rotor angular speed, (2) main rotor collective

pitch to maintain constant elevation, (3) longitudinal cyclic pitch to maintain prescribed

pitch angle, (4) lateral cyclic pitch to maintain prescribed roll angle, and (5) yaw axis to

maintain prescribed compass direction. Videos are taken of the tests showing that the

helicopter has been successfully taught to fly attitude axes controlled hover flight. Next

we teach the rotorcraft how to maintain attitude stability and track navigation commands

in x, y, z space without ever needing the assistance of a pilot. Furthermore, neither the

author nor his advisor knows how to pilot the helicopter, and all the work proceeds

without ever crashing the helicopter. To be sure, the training ”wheels” of the test stands

do save the helicopter many times from crashing until the helicopter learns how to fly

attitude axes controlled hover flight, and fly well. The development of the test stand

and related processes presented in this thesis work constitute a primary contribution

that can be applied to numerous real world projects. Another contribution is the entire

integration of the flight program by one single engineer (the author) and no technicians.
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Chapter 1

Introduction

1.1 Introduction

The bee hummingbird, measuring about two inches long and weighing about one-half

ounce, has incredible flight ability, hovering with absolute precision over flowers as he

feeds and darting with rapid flight from one target flower to the next. The hummingbird is

nature’s highest standard for aerospace engineering to mimic in building an autonomous

unmanned aerial vehicle (AUAV) that flies to a target in very tight quarters, hovers

in mission as long or as short as is needed, and then darts swiftly back to base. The

helicopter is aerospace engineering’s greatest marvel in trying to mimic the capability

of a hummingbird’s exemplary hover and darting flight. Our research herein focuses on

teaching a helicopter to fly autonomously, unmanned, without the assistance of a remote

pilot, and without crashing the vehicle. The helicopter treated in this work is 25 times

longer and 800 times heavier than the bee hummingbird.

Historically, someone teaching a helicopter to fly has met enormous challenges. The

history of helicopter flight is well covered in literature in the works of Gregory [60], Boulet

[10] and Liberatore [94] (to mention a few). Early helicopter work had to overcome many

problems related to mechanics and science [92]. On the scientific side, early work had

to overcome the problem of understanding the basic aerodynamics of vertical flight, the

need to compensate for rotor torque, and the need to provide proper helicopter stability

through individual blade control. On the mechanical side, early work with helicopters

1



had to deal with structural integrity and weight, engine size, available engine power, and

proper means to overcome machine vibrations.

The solutions to these early problems with helicopter flight created a large and vast

array of scientific literature that covers all aspects of full size helicopter flight. Therefore,

most of the research literature to this present day deals with full-size helicopters. Limited

research with model rotors and blades and scale helicopters were important for their use

in wind tunnel research as illustrated in the work done in the 1950’s by Castles and Gray

at Georgia Tech [83, 84].

Early work with miniature helicopters began in the 1960’s. One example were the

Schlüter Helicopter Meetings in Germany in the late 1960’s and early 1970’s [129]. Their

work consisted of small radio-controlled helicopters that varied much from one to the

other, mainly because the application of full-scale helicopter principles and know-how

did not directly apply or directly scale to miniature helicopters, and early results were

more art than science.

Early work with small scale-helicopters for autonomous flight began during the last

years of the 1980s and early 1990s. In 1990, the Association for Unmanned Vehicle

Systems International (AUVSI) created the International Aerial Robotics Competition

on the campus of Georgia Tech. The competition attracted mostly research institutions

whose early work used inexpensive radio controlled (RC) helicopters with a rotor radius

of 3 to 4 feet ( 1.0 m) with weight in the range of 10 lb (4.5 Kg). The payload that

these helicopters could carry was limited, in contrast to the need for sensors and flight

computers required by autonomous helicopter flight [157].

The advent of sensor and flight computer miniaturization, as well as the availability

of powerful small engines, were enabling technologies that made rotary wing scaled aerial

robots possible. Fifteen years of aerial robotics research work is beginning to produce

results such as the work done by Amidi, Mettler and coworkers at Carnage Mellon [3, 50,

107] and Schrage, Johnson, Prasad and coworkers at Georgia Tech [59, 80, 81]. Currently,
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there are three national Centers of Excellence (COE) for rotary wing research where a

large portion of helicopter research takes place. Each center manages multi-million dollar

programs, and each center is charged with advancing the state of the art for rotary wing

research.

• Georgia Institute of Technology Center of Excellence for Rotary Wing Aircraft

(CERWAT) [117]. This is the largest of the three national centers. The key research

areas in this center are aerodynamics, aeroelasticity, structures and materials, and

flight controls and mechanics.

• University of Maryland Alfred Gessow Rotorcraft Center of Excellence [116]. The

core program involves aerodynamics, dynamics, flight mechanics, CFD, acoustics,

transmissions, and composite structures. This center also works with the Army in

smart structures.

• Pennsylvania State Rotorcraft Center of Excellence Vertical Lift Research Center

[18]. Their work includes unsteady, turbulent, separated flow around helicopter

fuselages, tilrotor aeromechanical stability analysis, experimental and computa-

tional instrumentation for rotorcraft, carefree maneuvering control laws for rotor-

craft, simulation/control of helicopter shipboard launch/recovery, flight control de-

sign for future generation compound rotorcraft, and rotary-wing Unmanned Air

Vehicles (UAV).

Modeling of miniature helicopter dynamics has been a great challenge. In the case

of scale helicopters, the lower weights and lower inertias make miniature helicopters

extremely agile, unstable platforms that are difficult to model. Moreover, the helicopter

dynamics and rotor aerodynamics change considerably during hover, climb, descent and

cruise flight conditions [13, 82]. This is due to aerodynamic effects on the helicopter body

and the various working states of the helicopter rotor [92]. The difference in behavior

during the various flight conditions affects the helicopter modeling and control design
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[124]. The assistance of a remote pilot has often been used to help overcome some of

these modeling challenges, but not without bringing some problems of its own along with

it.

It was the experience of the author, before coming to the University of Oklahoma, that

the method for flight automation included the use of an experienced remote pilot. Even

though remote pilot assistance was present, preliminary helicopter flight occasionally

resulted in the destruction of the helicopter, long before any useful research could be

done for control law development. In those occasions where research work proceeded, one

feedback loop was enabled at a time, and every one hoped for the best. On some occasions

the feedback control law would not work as expected, and on other occasions experienced

pilots reacted adversely to proper control and aided instability. Most of these failures

resulted in a helicopter crash and subsequent loss of flight hardware. Experimental

development flight testing had to be put on hold to tend to the mechanical issues of

replacing parts and understanding what failed. A fully instrumented aerial robot, which

is very expensive and difficult to repair or replace, can only be maintained in such cases

by richly funded research programs.

Current research programs for UAV based on a helicopter platform use remote pilots

for testing and for obtaining real-time flight data that can be used in system identifica-

tion and control development research [145]. It is the fast helicopter dynamics and the

dominance of the rotor in the vehicle dynamics what makes helicopter flight difficult. In

the case of small-scale aerial robot helicopters, the dynamics are very fast due to the

low weight and low inertias of the helicopter as well as the rigidity of the main rotor

hub assembly. The possibility of crashing a vehicle is eliminated if test stands are used

rather than remote pilot-assisted free flight. Therefore, there is an advantage to using

test stands to teach a helicopter to fly. The test stands remove the need for the remote

pilot. There are no crashes. And, there is no down time for repairs. The training can

be carried out by one test engineer. Furthermore, the tests are done without traveling
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beyond the lab to remote field locations.

Goal of dissertation: To design and test control laws that will fly a miniature

(scale-model) helicopter with controlled attitude axes and track navigational commands

without skilled remote pilot inputs and with no loss of hardware at any point.

This thesis approach to attaining the goal of the dissertation is to use test stands

instead of the assistance of a pilot. We will now review in the literature the use of test

stands in the development of feedback control laws for helicopters.

Many programs use scale helicopters as testbeds for controls research. An instru-

mented helicopter crash -while testing controls laws in free flight- is very expensive be-

cause of the loss of the aircraft testbed and some or all of the sensors and actuators.

Many research programs have developed test stand technology as a step to validate the

control work. In many cases, validation of the feedback control is all that matters, and

the test stands are built indoors for easy access, independence from weather conditions,

as part of laboratory setup, and are able to operate within a more controlled environ-

ment. The indoors testing of helicopters very frequently necessitates the use of electric

motors to avoid the complexities associates with gas engines and exhaust fumes. The

simplest test stands are sold for hobby enthusiasts to aid with and build up flying skills

for pilots. Some examples of the use of test stands follow.

Weilenmann [156, 155] rigged a scale helicopter linked to a plate through a 3 degree

of freedom joint. This upper plate is joined to a ground plate via rods that flex. Prior

to takeoff, the rods carry the weight of the helicopter, and at one point, the helicopter

carries its own weight and the weight of the plate. The helicopter is powered by a

DC motor, and it is free to translate and rotate within certain limits. Weilenmmann

developed an accurate, non-linear differential equation model of the helicopter from full-

scale helicopter theory. Subsequent linearization about the hover flight condition resulted

in an 18 state model with a number of parameters that were directly measured, but

some were estimated. The effort was successful, but the applicability of the effort to
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real systems is limited in that other flight conditions would have generated much more

complicated mathematical models.

Bendotti and Morris [7, 109] used a small scale helicopter (35 in rotor) attached to a

wrist with three angular degrees of freedom for system identification experiments. The

wrist rotates freely in roll, pitch and yaw, but cannot translate in any of the linear

directions. The small helicopter is powered by a DC motor, and the sensors are attached

to the structure and not the helicopter. The authors ensured that the helicopter remained

within the linear range of operation, and superimposed small signal excitations on top

of the trim signals. The authors used rigid body dynamics to identify the model which

produced a fair match with experimental data.

The Autonomous Helicopter Project headed by Amidi from the Carnegie Mellon Uni-

versity [123] developed a number of testbeds for indoor flight control systems. Their work

used incremental test beds that lead to full autonomous flight [2, 3]. The first testbed

used an electrical model helicopter mounted on a swiveling arm platform attitude control

in yaw, pitch and roll. A second six degree of freedom testbed was used to evaluate vari-

ous helicopter control schemes. A third indoor testbed used tethered flight that allowed

full six-degree of freedom limited motion. A progressive number of experiments led to

full autonomous flight. This program has been successfully demonstrated to perform

visual-based stability and control, autonomous trajectory following, aerial mapping, and

object recognition and manipulation.

Students at Southern Polytechnic State University developed a test stand that tests

the helicopter attitude control one axis at a time [17]. A student at The University of

Toronto developed a test stand for indoors use that can exercise all three angular axes

and one linear motion [95]. Researchers at the University of Toronto also developed a

three degrees of freedom testbed for testing formation flying [134].

As we have shown above, test stands have been used previously to teach a helicopter

to fly attitude axes in controlled hover flight. We also will use test stand, and will point
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out the differences in our novel approach. Indeed, the test stand technology developed

in this present work is one of the contributions of the thesis.

The work done in this document uses an entry level small helicopter that weighs 11

lb (5 kg) empty and has a rotor diameter of 4.86 ft (1.48 m). This helicopter is our base

platform for autonomous unmanned aerial vehicle research. The helicopter is structurally

modified to support the sensor suite necessary for instrumented flight. The key dynamics

and aerodynamics of the helicopter need to be simplified to make the problem tractable

with the intent of increasing the level of technical difficulty as the stability of the system

increases with the design of each control loop. The final control design needs to stabilize

the platform in flight to be ready for free flight without aid from a pilot. The method

developed to achieve controlled hover flight is a primary contribution of this thesis work.

A brief outline of the work presented in the following chapters follows.

Chapter 2 This chapter describes the components that make up the Helicopter Re-

search Testbed. A description of the basic helicopter gives an understanding of the

various components that make up the basic frame with components such as the main

rotor, the tail rotor, the engine, and the electro-mechanical servo mechanisms. A general

description of how the basic components work attempts to familiarize the reader with

the system that will become a UAV.

The sensor suite that instruments the University of Oklahoma Helicopter Research

Testbed (OU-HRT) is presented as well. This includes a brief description of the sensors

themselves and the signals that the sensors measure. An introduction to the onboard

processing unit follows as well as a brief description of the architecture framework with

regard to how the processing unit function. Finally, a description of the test equipment

utilized throughout the project gives a familiarization with the tools used in the project.

Chapter 3 The helicopter electromechanical actuators introduced in Section 2 on
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page 12 in turn control the aerodynamic actuators (the main rotor collective and two

cyclic inputs, the tail rotor collective) and the engine throttle. This chapter explains

in great detail how the electromechanical actuators affect the throttle and aerodynamic

actuators. This information is necessary to understand the open loop helicopter dynamic

reaction to pilot inputs.

Chapter 4 This chapter points out the differences between the test stands used in this

dissertation and those used in other dissertations. Unlike all other uses of test stands in

other research projects, the test stands built for this dissertation are portable, and able

to operate indoors and outdoors. Such capability is highly valuable because it enables

the use of real flight hardware at all times during the development of the feedback control

laws. The test stands are an enabling technology that allows the researchers to teach

the helicopter hover flight without using a remote pilot and without crashing the scale

helicopter.

Chapter 5 An understanding of the math models that describe the fundamental be-

havior of the helicopter is very important for the development of the simulation tools and

the control laws that follow. First, models for each of the major helicopter components

bring to the front of the task at hand the need to understand the underlying physics,

dynamics and aerodynamics that influence the behavior of the individual components

and the system as a whole. The fundamental theories that describe the helicopter as a

flying machine help to identify key signals necessary for the operation of the helicopter

and their relation with other signals. A model for the rigid body dynamics provides

the framework for the development of simplified equations of motion. Trim models and

the corresponding perturbation models allow for the development of linearized dynamics

about a trim condition. In the present work, hover is by necessity the trim condition

that highlights the relevant dynamics.
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Chapter 6 Autonomous flight necessitates the use of a complimentary sensor suite able

to cover a wide spectrum of signals. This chapter explores the sensors themselves along

with the signals that the sensors measure. Signals and sensors are intrinsically related

to the automation process, and therefore this chapter is a preamble to the development

of the feedback control laws.

Chapter 7 This chapter explores each of the relevant feedback control loops. Each

feedback control loop helps to stabilize the helicopter system, and therefore, each feedback

control loop takes away a layer of complexity by automating some part of the helicopter

operation. The engine governor and main rotor angular velocity feedback control loop

is the first and most important control loop to implement. This feedback control loop

takes away the complexities associated with the nonlinearities pertaining to the main ro-

tor angular velocity. In turn, the directional control loop automates the torque changes

involved in normal operation of the helicopter. As before, this feedback control loop peels

away another layer of non-linearities. Next, the roll and pitch attitude feedback control

loop put the final touches on the stability of the helicopter as a platform. From this point

onward, the helicopter is ready for stable free flight.

Chapter 8 The main rotor angular velocity is one of the most important parameters

that influence the helicopter behavior. The main rotor angular velocity influences rigid

body dynamics via gyroscopic moments, and in addition, torque and power needs are

directly affected by the main rotor angular velocity. This chapter explores the approach

to design an engine governor that maintains a constant angular velocity.

Chapter 9 Once the main rotor angular velocity is stable, a series of experiments help

with some simple parameter identification that validate the models obtained from first
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principles. A good knowledge of the aerodynamic characteristics of the main and tail

rotor is very important at this point. The development of a set of non-linear equations of

motion for the main rotor from first principles is a contribution of this thesis work. The

results obtained in this chapter constitute the basis for a comprehensive aerodynamic

model of the helicopter.

Chapter 10 Yaw rate and heading feedback control loops compensate for the torque

needs of the main rotor. The main rotor torque, main rotor blade drag, the engine power

available, and the fuselage reaction torque are all intrinsically linked in non-linear ways.

Specifically, the main rotor torque and power requirements vary continuously because of

cyclic inputs to the rotor blades and other non-linear variations that take place at the

rotor. This very important control loop helps to stabilize the helicopter as a whole by

peeling away one layer of non-linearities from the overall helicopter platform.

Chapter 11 Once the helicopter operates with constant angular velocity, and once

the torque and power needs are automatically compensated with the yaw rate and head-

ing loop, then the helicopter rotor behaves as an aerodynamic actuator. Stabilizing the

aerodynamic actuator is difficult but very much feasible. This chapter describes the steps

needed to achieve stable hover flight.

Chapter 12 Concepts from System Engineering (SE) help with the development of

the overall University of Oklahoma Helicopter Research Testbed (OU-HRT) system ar-

chitecture. This chapter describes the hardware and software interface, and the hardware

and software integration. A description of the embedded code generation method empha-

sizes the advantages of current graphical simulation tools and the process of embedding

auto-generated code into the actual flight computer.
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Chapter 13 This final chapter summarizes results from the work effort, achieved goals

and contributions of this thesis work. The work effort is considerable and highly difficult

because it involves real hardware operating in a real environment where the laws of

physics test every mistake. The stated goal of developing a method to teach a miniature

helicopter to fly stable hover is accomplished. Finally, the primary contributions of this

thesis work are the derivation of a full set of equations of motion for the main rotor, the

development of a novel test stand enabling technology that allow for real-time Hardware-

in-the-Loop (HWIL) helicopter tests, and the ultimate development of a method to teach

a miniature helicopter hover flight with no remote pilot in the loop.

Appendix A through Appendix G provide necessary theoretical background. Work

in subsequent Appendices derive results from these fundamental principles and applied

science. Appendix H derives various mathematical tools used in modeling the helicopter

in flight. The emphasis is in understanding the underlying physics that allows for the

control of the vehicle. Appendix I documents the physical characteristics of the helicopter.

This Appendix details the systematic approach needed to calibrate and characterize

various physical quantities associated with the helicopter airframe, sensors and actuators.

Appendix J explores the approach to design an engine governor that maintains a constant

angular velocity in the presence of disturbances. Feedback linearization mechanization

enables the engine governor to operate throughout the allowable flight envelope. Appendix

K details the approach for parameter identification of various aerodynamic quantities.

This work results in the aerodynamic characterization of the helicopter model. Appendix

L documents the design and synthesis of the feedback control laws for roll, pitch and yaw

control. Finally, Appendix M illustrates how this thesis work fits into widely accepted

system engineering framework currently utilized throughout government, academia and

industry.
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Chapter 2

Helicopter Research Testbed

2.1 Introduction

Figure 2.1 on the next page shows the basic helicopter frame. A number of attributes

that characterize the helicopter are tabulated in Table 2.1, and Appendix I.1.2 on page

372 describes and tabulates the complete set of helicopter parameters.

Table 2.1: Basic Helicopter Parameters

unit description

R 0·74 m rotor radius (diameter ≈ 4.86 ft)
Ω 157·1 rad/sec nominal main rotor angular speed (1500 rpm)
TMR 106·7 N nominal hover maximum thrust (24 lbf)
RTR 0·13 m tail rotor radius (diameter ≈ 10.23 in)
Rstab 0·31 m stabilizer bar radius (diameter ≈ 12.2 in)
Mheli 5·21 kg basic (empty) helicopter mass (11.46 lbf)
Mfuel 0·494 kg fuel mass (1.1 lbf)

2.2 Helicopter Research Testbed Components

The principal component of the University of Oklahoma Helicopter Research Testbed

(OU-HRT) is the basic helicopter shown in Figure 2.1 on the next page. The basic

helicopter comes equipped with five digital servo mechanisms and a Remote Control (RC)

receiver matched to a RC transmitter shown in Figure 2.6 on page 21. This transmitter-

receiver combination is the primary means of control for most RC pilots. Table 2.1

indicates that the basic helicopter has an empty mass of 5.21kg ( 11.46lbf). When fully
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Figure 2.1: Helicopter Research Testbed Mechanical Components.
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fueled, the mass of the helicopter increases to 5.7kg ( 12.6lbf). The addition of sensors

and various test apparatus completes the Helicopter Research Testbed, and Table 2.2

itemizes these additional components.

Table 2.2: Helicopter Research Testbed Components

basic helicopter
main rotor lift & locomotion
tail rotor torque compensator & heading
engine vehicle power source
RC receiver primary and back-up link
digital servo-mechanisms electro-mechanical actuators

motionPak linear acc, angular rates sensor
GPS inertial position
FreeWave primary digital link
ultrasound & infrared altimeters range to ground
electronic compass inertial attitude & heading
hall effect sensor main rotor angular velocity
on Board Computing Processing Units (CPU)

Ampro PC104 main on-board CPU
Motorola MC68332 actuator input/output CPU

ground station computer
rate table stand (RTS) angular rates measurements
linear and directional test stand (LDTS) lift/altitude, heading
rotational dynamics test stand (RDTS) roll, pitch, yaw, test stand

2.2.1 Basic Helicopter

The basic helicopter is a self-contained airframe capable of vertical take-off and landing.

As such it is a very versatile machine that has been used extensively and successfully in

a number of civil and military scenarios.

2.2.1.1 Main Rotor

The main rotor blades are attached to a main shaft that rotates the blades around

with a particular angular velocity, and in doing so, the rotating blades interact with the

flow. The governing principle responsible for helicopter lift is the change of momentum

that the rotating blades impart to a stream tube accelerated through the rotor. As
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a reaction to the air change of momentum, the accelerated flow imparts an equal but

opposite reaction that keeps the blades, and thus the helicopter, in the air. A penalty

for imparting momentum to the airmass passing through the rotor in exchange for lift

comes in the form of blade induced and profile drag, helicopter body parasite drag, and

the need for torque compensation via a tail rotor or comparable device. The primary

control inputs to the helicopter rotor are the rotor angular velocity and the blade pitch

angle. Figure 2.2 on the next page shows a top view of the main rotor with the fly-bar

or auxiliary rotor that augments both the main rotor blade pitch angle control input and

the main rotor damping.

Section C on page 202 explores the details of the Momentum Theory (MT), Blade

Element Theory (BET) and combined Blade Element Momentum Theory (BEMT). In

turn, Section D on page 234 details the development of the rotating blades equations of

motion, and Appendix E on page 316 looks into the rotor forces and moments. Finally,

Appendix J on page 398 together with Appendix K on page 418 apply previously devel-

oped theory to derive an aerodynamic model for this particular helicopter and a rotor

angular velocity controller.

2.2.1.2 Tail Rotor

The tail rotor thrust has three primary functions:

1. compensate for the fuselage reaction torque due to the main rotor dragging the

blades through the air.

2. provide lateral trim due to main rotor side forces

3. provide directional control for the helicopter

The tail rotor is an aerodynamic actuator, and control of the tail rotor thrust is done

via collective pitch of the tail rotor blades. Since a primary function for the tail rotor

is to compensate for torque and forces produced by the main rotor, then the tail rotor
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Figure 2.2: Main Rotor and Stabilizer Bar Dimensions.

thrust is a function of the main rotor angular rotation and main rotor blade collective and

cyclic pitch angles. The exception arises when the the tail rotor is used for directional

control. Appendix K on page 418 results in an aerodynamic model for the tail rotor, and

Section L.2 on page 434 in Appendix L generates closed loop directional feedback control

laws.

2.2.1.3 Helicopter Engine

Figure 2.3 on the next page shows the engine used for the operation of the research

helicopter. Table 2.3 on the following page tabulates the most important parameters

pertaining to the engine [37]. The engine maximum power output is about 2.2 horsepower,

but its useful output is less than the maximum rated output due to the losses that take

place within the various components of the helicopter power transmission.
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Table 2.3: O.S.61 Helicopter Engine

RPM 2, 000− 18, 000
Output 2.2 hp @ 16, 000 rpm
Torque 1.052 Nm @ 10, 720 rpm
Weight 600 g

Figure 2.3: O.S.61 Helicopter Engine

2.2.1.4 Transmission Gears

Figure 2.4 on the next page shows the transmission gear implementation for the Uni-

versity of Oklahoma Helicopter Research Testbed. The engine transmits angular motion

and torque via a belt gear to an interim main rotor transmission gear. The interim

transmission gear drives the main rotor gear via a clutch that engages when the clutch

has sufficient angular velocity of approximately 200 RPM or more. The tail rotor trans-

mission gear feeds directly from the main rotor gear at all times. Therefore, when the

main rotor rotates so does the tail rotor. Table 2.4 tabulates the gear ratios between the

engine and the main rotor, the main rotor and the tail rotor, and the engine and the tail

rotor.

Table 2.4: Engine, Main Rotor and Tail Rotor Gear

description

nMR 9·29 engine to main rotor gear ratio
nTR 4·667 main rotor to tail rotor gear ratio
neTR 43·4 engine to tail rotor gear ratio
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Figure 2.4: Belt and Transmission Gears between the Engine, Main Rotor and Tail Rotor.
In the figure, (1) is the engine gear, (2) is the transmission belt-gear, (3) is an interim
gear between the engine and the main rotor, (4) is the main rotor gear with a clutch
inside (not visible), (5) is the tail rotor transmission gear. The clutch in the main rotor
gear engages when the clutch has sufficient angular velocity of 200 RPM or more.

2.2.1.5 Swashplate and Blade Pitch Angle Control Links

Figure 2.5 on the next page shows the swashplate and the main rotor blade pitch angle

inputs. The Bell input is a direct swashplate angle input to the main rotor blade. The

Hiller input link augments the Bell input with a component that is proportional to

the stabilizer bar flapping angle [88, 105]. The main blade pitch angle is therefore a

proportional mix of Bell and Hiller inputs, and the mixing mechanism is commonly

known as the Bell-Hiller cyclic mixer.

2.2.1.6 Digital Electro-Mechanical Actuator and Radio Control Transmit-

ter/Receiver

Figure 2.6 on page 21 shows a typical Radio Controlled (RC) helicopter transmitter, a

receiver, and two digital electro-mechanical actuators commonly known as servos. In a

normal flying scenario, a pilot commands the various digital actuators on the helicopter

via the transmitter stick and other control settings [73]. The on-board receiver decodes
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Figure 2.5: Helicopter Swashplate and Blade Pitch Control Links. In the figure, (1) is the
swashplate that tilts, (2) is the lateral cyclic control link, (3) is the longitudinal control
link, (4) is a direct swashplate input to main rotor blade pitch (Bell input), (5) is the
stabilizer bar input to main rotor blade pitch (Hiller input).
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the transmitted data from the carrier signal, and makes it available on various channels as

pulse-width modulated (PWM) TeleTYpe (TTY) level signals (fast-switching 0-5 volts,

10-30 mA). A main advantage of PWM signals is that the signal remains digital from

the receiver’s output to the servo’s transducers.

Figure 2.7 on the next page shows a picture of the five servos available for helicopter

control:

1. main collective (θ0): controls the main rotor blade pitch angle. This control input

is responsible for generating the necessary main rotor blade pitch angle to maintain

lift.

2. longitudinal cyclic (θlon): adds a differential angle to the main rotor collective

blade pitch angle. This control input is responsible for longitudinal (forward and

backward) locomotion.

3. lateral cyclic (θlat): adds a differential angle to the main rotor collective blade pitch

angle. This control input is responsible for lateral trim (counter tail rotor thrust),

and occasionally lateral cyclic inputs that provide sideways locomotion.

4. tail rotor collective (θtr): controls the tail rotor blade pitch angle. This control

input is responsible for generating the necessary trim setting that will compensate

the main rotor torque induced by the generation of lift and drag. This control also

provides directional control.

5. throttle input (θth): controls the fuel flow rate into the carburetor as well as the

fuel/air mixture that the carburetor provides to the engine.

2.2.1.7 Helicopter Component Hardware Interface

Figure 2.8 on page 22 shows the hardware interface among the various components on the

helicopter. The servos connect to the helicopter hardware via adjustable mechanical links
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Figure 2.6: JR Pro PCM 10S Radio Control (RC) Transmitter.
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Figure 2.7: Electro-Mechanical Digital Servo Devices and their respective Control Tasks.
In the figure, (1) is the main rotor collective, (2) is the longitudinal cyclic, (3) is the
lateral cyclic, (4) is the rudder or tail rotor collective, and (5) is the throttle servo.
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(shown in Figure 2.7 on the previous page). The main rotor collective and cyclic servos

connect to the swashplate via adjustable mechanical links. The same type of adjustable

mechanical links connect the throttle servo to the throttle arm on the engine carburetor,

and the tail rotor servo to the tail rotor collective link at the tail rotor hub. The engine

connects to the main rotor and tail rotor via a belt gear, a gear set and a clutch shown

in Figure 2.4 on page 18. The engine shaft motion engages the main rotor gear and shaft

via a clutch when the clutch as angular velocity is sufficiently large at 200 RPM or more.

The tail rotor is always engaged such that the tail rotor turns when the main rotor does.

read 
sensors

main rotor
collective

main rotor
longitudinal cyclic

main rotor
lateral cyclic

engine throttle

main rotor
shaft

tail rotor
collective

tail rotor gear & shaft

air intake

fuel

engine start
glow plug

Figure 2.8: Helicopter Components Hardware Interface. Red lines represent hard con-
necting links between the servos and the connecting hardware.
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2.2.2 MotionPak

Figure 2.9 shows a picture of the Systron Donner MotionPak, a six degree of freedom

sensor that measures the body inertial acceleration in three orthogonal axes u̇, v̇, ẇ, and

the three body inertial angular rates roll p, pitch q, and yaw r. Section I.2.1 on page 376

details the most important parameters pertaining to the MotionPak sensor. With a mass

of 1.1kg(2.43lbf), this is the heaviest of all on-board equipment.

Applications

• Vehicle Instrumentation

• Robotics

• Automotive Testing

• Attitude Reference Systems

• Control Systems

• Dead Reckoning Aiding GPS

• Flight Testing

• Buoy Instrumentation

Description
The MotionPak™ is a “solid-state” six degree of freedom inertial sensing system
used for measuring linear accelerations and angular rates in instrumentation
and control applications. It is a highly reliable, compact, and fully self-
contained motion measurement package. It uses three orthogonally mounted
“solid-state” micromachined quartz angular rate sensors, and three high
performance linear servo accelerometers mounted in a compact, rugged
package, with internal power regulation and signal conditioning electronics.

Features
• “Solid State” Sensors • High Level Analog Outputs
• Compact, Rugged Package • Wide Bandwidth
• Long Operating Life • Fast Start-Up
• Low Cost • Fully Self-Contained System

Operation
Angular rates are sensed using micromachined quartz gyroscopes. Linear 
accelerations are sensed using linear servo accelerometers. The MotionPak™

is directly powered by a + and - 15 Vdc input and provides six high-level, wide-
bandwidth analog signal outputs. There are three outputs for linear acceleration
and three for angular velocity. The package contains internal power regulators
and includes temperature sensors for high performance applications.

BEI MotionPak™
Multi-Axis Inertial Sensing System

For applications assistance or more information on any of 
Systron Donner Inertial Division’s micromachined inertial sensors,
Call 1-800-227-1625.

BEI GyroChip SYSTRON DONNER INERTIAL DIVISION 
B E I  T E C H N O L O G I E S ,  I N C .

Figure 2.9: Systron Donner MotionPak.

2.2.3 Differential GPS System

The Differential GPS system (DGPS) is based on the ruggedized NovAtel ProPack II

technology as the ground reference unit and a stand alone MiLLennium L2 GSPCard as

the on-board kinematic and dynamic GPS unit. The MiLLenium L2 GPScard has an

integrated radio frequency (RF) and digital sections capable of receiving and tracking

the L1 C/A code, the L1 and L2 carrier phase, and the L2 P-code for up to 12 satellites

[63, 76]. Figure 2.10 on the next page shows a ProPack unit along with a stand alone
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GPScard unit with their respective antennas. Section I.2.2 on page 378 contains some

additional information regarding this sensor package.

Figure 2.10: NovAtel GPS Ground Station Receiver, On-Board Card, Antenna, and
Reference Station Antenna.

2.2.4 FreeWave Wireless Data Transceiver

The FreeWave wireless digital transceiver shown in Figure 2.11 on the next page is a

robust and very reliable hardware component. The unit presents a serial port interface

to the host computer and to the ground station for seamless serial port communication

between the two for up to 20 miles. Section I.2.3 on page 381 presents more details about

the FreeWave wireless digital serial port.

2.2.5 Range Sensor

The Helicopter Research Testbed uses two complimentary range transducers for the esti-

mation of distance and altitude. Figure 2.12 on the next page shows the SHARP GP2D02
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Figure 2.11: FreeWave Wireless Data Transceiver On-Board Card and Ground Station
Unit.

infrared sensor, and Figure 2.13 on the following page shows the ultrasound sensor. The

infrared sensor has a range of 10 − 80 cm while the ultrasound sensor has a range of

15 − 120 cm. The infrared sensor is more sensitive for measurements of short range

distances, and the ultrasound sensor is more reliable at measuring long range distances.

As such, the two sensors complement each other in their operational envelope. The com-

plimentary range information for altitude estimation is useful for automated takeoff and

landing maneuvers. Section I.2.4 on page 382 and Section I.2.8 on page 388 provide more

detailed information pertaining to the infrared and ultrasound sensors respectively.

Mechatronic Systems, Sean Brennan  Sharp GP2D02 Ultrasonic Sensor Spec. Sheet, Page 1 of 5 

Spec Sheet  
for the  

Sharp GP2D02 Infrared Ranging Sensor 
 

 
Section 1: General Description and How Used  

 
Advantages over other sensing devices: 

• Impervious to color and reflectivity of reflected object  

• High precision distance measurement through output for direct connection to microcomputer  

• Low dissipation current at OFF-state (Typically 0.3 uA).  

• Capable of changing of distance measuring range through use of a lens 

 

This sensor takes a distance reading when enabled and reports the distance as a byte-value 
cooresponding to the distance between 10cm (~4") to 80cm (~30"). The interface is 4-wire and 
requires a JST connector which is included with each detector.  A JST connector stands for a Japan 
Solderless Terminal Connector; see http://www.acroname.com/robotics/parts/R9-JSTCON.html for 
pricing.  Also included in the package is a diode required for interfacing the detector to TTL/CMOS 
logic. Controlling the detector is done by lowering the input line, waiting for ~70ms, and then clocking 
the detector 8 times to read out the distance measurement on the output line.  Each package includes a 
booklet that describes plugging together the connector, interfacing the detector to logic and the 
protocol used to take measurements using the GP2D02.  

Figure 2.12: SHARP GP2D02 Infrared Distance Sensor.
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Figure 2.13: Ultrasound Sensors

2.2.6 Electronic Compass

Section I.2.6 on page 384 details the various characteristics of the Honeywell HMR3000

electronic compass shown in Figure 2.14 on the following page. The HMR3000 measures

inertial roll φ, pitch θ, and heading ψ. The HMR3000 automatically compensates for

pitch and roll attitude in its heading sensor signal.

2.2.7 Hall Effect Sensors

The Helicopter’s main rotor gear has three permanent magnets embedded at 120o to each

other as shown in Figure 2.15 on the next page. The permanent magnet swoops very

closely by a Hall effect sensor embedded in the helicopter’s frame as shown in Figure 2.16

on page 28. Each time the magnet is next to the sensor, the sensor activates a pulse that

is detected by an on-board computer. The estimation of the main rotor angular velocity

follows by counting the time lapse between pulse events. The angular velocity of the

main rotor is one of the most important measurements necessary for automatic control

of the various aerodynamic and electro-mechanical actuators as indicated in Section 6.2

on page 68.

2.2.8 On-Board Central Processing Units (CPU)

The on-board Central Processing Units (CPU) are responsible for the interface with

sensors via the available input/output ports and the implementation of the control laws
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Figure 2.14: Electronic Compass Honeywell HMR3000

Figure 2.15: Main Rotor Gear with Embedded Permanent Magnets
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Figure 2.16: Hall Effect Sensor near the Main Rotor Gear with Embedded Permanent
Magnet

that stabilize and control the helicopter. There are two primary on-board CPUs

1. principal decision making CPU that plans and controls the mission: Figure 2.17 on

the following page

2. secondary CPU that interfaces with the various sensors and actuators: Figure 2.18

on the next page

2.2.8.1 Primary Mission Planning and Control CPU: Ampro PC104

The primary Mission Planning and Control (MPC) CPU in its current instantiation runs

on a platform based on the Intel x86 ship at 100 MHz. The MPC runs on the QNX

Real-Time Operation System (RTOS) [49, 93, 125].

2.2.8.2 Low Level Actuator Command and Sensor Input/Output CPU: Mo-

torola MC68332

The MC68332 is a highly-integrated 32 bit microcontroller that combines high-performance

data manipulation capabilities with powerful peripheral subsystems. This MCU is built
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Figure 2.17: Mission Planning and Command CPU: Ampro PC104

Figure 2.18: Actuator Command and Sensor I/O CPU: Dual Motorola MC68332
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up from standard modules that interface through a common intermodule bus (IMB).

The MCU incorporates a 32 bit CPU (CPU32), a system integration module (SIM), a

Time Processing Unit (TPU), a queued serial module (QSM) and a 2 Kbyte static RAM

module with TPU emulation capability (TPURAM) [45, 46].

2.2.9 Rate Table Stand

The Rate Table Stand in Figure 2.19 is a vintage 80’s device that rotates at a precise

rate. It is useful for testing rate gyros, angular orientation devices, and other transducers

that may need periodic triggering events.

Figure 2.19: Rate Table Stand (RTS).
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2.2.10 Linear and Directional Test Stand

Figure 2.20 on the next page shows the Linear and Directional Test Stand (LDTS) with

the instrumented helicopter on top of the stand. The LDTS is primarily used to aid in

the test and design of rotor angular velocity testing (Appendix J), altitude and heave

mode testing, and directional control testing (Section L.2 on page 434). Section I.4 on

page 395 presents more information related to the LDTS.

2.2.11 Rotational Dynamics Test Stand

Figure 2.21 on page 33 shows the Rotational Dynamics Test Stand (RDTS) with the

helicopter during a test run. The RDTS allows free movement about the roll, pitch and

yaw axis one at a time or all axes combined.
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Figure 2.20: Helicopter Research Testbed sitting on the instrumented, purposed built
Linear and Directional Test Stand (LDTS).
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Figure 2.21: Real-Time Run of the Helicopter on top of the Rotational Dynamic Test
Stand (RDTS).
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Chapter 3

Helicopter Electro-Mechanical Control Actuators

3.1 Introduction

Figure 2.7 on page 21 and Figure 2.8 on page 22 show the five electromechanical con-

trol servos available to the model helicopter. This chapter explores the mechanics of

each control servomechanism, and its influence in helicopter flight. The servos primary

functions are listed below:

Table 3.1: Helicopter Electromechanical Control Servos

primary function secondary function

main rotor collective δθ lift altitude control
main rotor lon. cyclic δlon lon. stability lon. locomotion
main rotor lat. cyclic δlat lat. stability lat. locomotion
tail rotor main collective δTR torque compensation directional control
throttle δth engine power

3.2 Main Rotor Collective Control Servo

The main rotor collective control servo transducer uniformly changes the main rotor

blade pitch angle θ during a complete blade revolution. That is, the main rotor collective

provides the same blade pitch angle at all blade azimuth. The collective servo achieves

uniform blade pitch angle input by mechanically raising and lowering the swashplate

while maintaining a constant swashplate angle with respect to the x, y plane of the
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Figure 3.1: Collective control servo settings with corresponding swashplate deflections
and main rotor collective pitch angle θ. Left column corresponds to θ = −3 deg. The
middle column corresponds to the idle setting of θ = 3 deg. The right column corresponds
to a maximum collective deflection of θ = 12 deg.
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helicopter body. The swashplate position determines the main rotor blade pitch angle

via mechanical links shown in Figure 3.1 on the previous page.

Section I.3.1 on page 389 details the calibration whereby the main rotor collective

servo input δθ maps to the main rotor collective pitch θ0. Calibration results are plotted

in Figure I.13 on page 389. The calibration curve is a direct function of the mechanical

links settings which have a direct effect on the main rotor blade pitch angle. The links are

set such that the main rotor blade pitch angle θ0 = 3 deg for a stick input δθ = 1500µsec.

3.3 Main Rotor Longitudinal and Lateral Cyclic Con-

trol Servo

Figure H.2 on page 370 shows the source of longitudinal δlon and lateral δlat cyclic inputs

to the main rotor blade pitch. Bell cyclic inputs δcyc result from direct blade pitch

contribution from pilot stick, and Hiller cyclic inputs result from the teetering blade

angle βstab of the stabilizer bar. Both contributions to cyclic inputs are given by equation

(H.2.4) in Section H.2.1 on page 367.

θcyc =
L2

L4

δcyc +
L1L3

L4 (L2 + L3)
βstab

θcyc = Kcyc δcyc +Kstab βstab

(3.3.1)

Figure 3.2 on the following page shows the swashplate settings for the longitudinal cyclic

stick inputs. In turn, Figure 3.3 on page 38 shows the swashplate settings for lateral cyclic

stick inputs. Section I.3.2 on page 390 details the calibration sequence for the longitudinal

and lateral Bell cyclic inputs, and the calibration results are shown in Figure I.14 on

page 390 and Figure I.15 on page 391.
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Figure 3.2: Longitudinal control servo settings with corresponding swashplate deflections
and main rotor Bell cyclic pitch angle θlon. The left column corresponds to positive
longitudinal cyclic inputs which result in positive pitch attitude or nose up motion. The
right column corresponds to negative longitudinal cyclic inputs which result in negative
pitch attitude or nose down motion.
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Figure 3.3: Lateral control servo settings with corresponding swashplate deflections and
main rotor Bell cyclic roll angle θlat. Left column corresponds to negative lateral cyclic
inputs which result in negative roll attitude or left-wing-up motion. The right column
corresponds to positive lateral cyclic inputs which result in positive roll attitude or left-
wing-down motion.
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3.4 Tail Rotor Collective Control Servo

The tail rotor blade pitch angle θTR has a single collective stick input δTR. Section I.3.3

on page 392 details the calibration results for the tail rotor servo inputs and its mapping

to the tail rotor collective pitch angle. Figure 3.4 presents a summary of these calibration

results. By convention, positive tail rotor blade angle of attack provides the necessary

torque that compensates for the main rotor torque.

0

1700 sec

15
lat

lat

δ μ

θ

=

≈0

1100 sec

9.7
lat
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δ μ

θ

=

≈ − 0

1300 sec

0
lat

lat

δ μ

θ

=

≈

Figure 3.4: Tail Rotor collective settings and corresponding calibration results. The
right-most column corresponds to positive tail rotor thrust that compensates for the
main rotor torque.
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3.5 Throttle Control Servo

Figure 3.5 shows the engine throttle servo settings for the closed and opened servo set-

tings. Figure I.17 on page 394 in Section I.3.4 on page 392 shows the corresponding

throttle calibration settings.

2100 sec
0%

thδ μ=1000 sec
100%

thδ μ=

0%

Figure 3.5: Throttle servo settings. The left column corresponds to a fully opened
throttle with 100% air-fuel mixture flow, and the right column corresponds to a fully
closed throttle with 0% air-fuel mixture flow.

3.6 Summary of Control Servo Settings

Table 3.2 on the following page summarizes the servo control inputs and corresponding

aerodynamic actuator settings. In most cases the calibration results are due to direct
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measurement of servo input and actuator deflection. The same estimates result from

careful consideration of mechanical links and kinematic constraints. Both methods are

equivalent, and both methods yield approximate servo input to actuator deflection map-

ping due to nonlinear effects such as mechanical links bending, loose play in the servo-link

attachments, non-linear relations between angular motion and linear motion of several

links, and others. The effects of non-linear mapping between servo inputs and actuator

deflection are equivalent to and of the same order of magnitude of gusts of wind and

other aerodynamic effects.

Table 3.2: Helicopter Servos Inputs and Corresponding Actuator Settings

δ (·deg) servo input (µsec)

main rotor collective δθ −3·0 1200
3·0 1500

11·0 1900

main rotor lon. cyclic δlon −21·0 1200
0·0 1482

21·0 1800

main rotor lat. cyclic δlat −3·0 1200
0·0 1482

21·0 1800

tail rotor main collective δTR −9·7 1100
0·0 1300

15·0 1700

throttle δth 100·% 1000
0·% 2100

41



Chapter 4

Test Stand

4.1 Introduction

Many research studies related to miniature helicopter modeling and feedback control

development have used or currently use test stands to aid in the development and testing

of modeling techniques and related control work. The large number and wide variety

of different and ingenious test stand designs that are currently in use are a testimony

to the importance that researchers give to avoiding using a human pilot. But perhaps

more importantly, test stands used for helicopter research are indeed Hardware-in-the-

Loop (HWIL) testbeds that serve as teaching aids. The experience that newly mint

researchers obtain from working with real hardware is very valuable. The skills obtained

from HWIL experimentation carry over in very useful ways to work duties after the school

years are over. Some advantages of using a test stand for miniature helicopter research

are listed below.

• helicopters rigged to test stands allow for careful experimentation without the pos-

sibility of crashing the helicopter [2].

• instrumented test stands can provide ground truth to sensor data obtained during

the testing [7].

• test stands can isolate any number of degrees of freedom, and can operate in one

or more axes at the time
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• test stands offer an excellent platform for testing hardware and software interaction.

• test stands offer a controlled lab environment immune to weather conditions. This

is particularly important for researchers in extreme geographical latitudes during

winter time [95].

Equally important are some concerns that must be accounted for when using a test

stand.

• the test stand influences the inertias and weight of the experimental vehicle

• aerodynamic interactions between the helicopter and the test stand must be ac-

counted for with care

• mechanical interactions between the helicopter and the test stand must be ac-

counted for with care

• results obtained from the test stand experimentation must account for the test

stand effects on the data.

• results obtained from the test stand experimentation must be post processed to

yield real physical meaning

• experimental data is not equivalent to real flight data. Results obtained from a

test stand may not be suitable for system identification, unless the model explicitly

accounts for the influence of the test stand.

This chapter explores various test stand designs and the major characteristics of

these designs. Then an overview of the test stand developed for work on this dissertation

follows. Finally, the contribution of combining a test stand with real flight hardware is

well stated.
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4.2 Test Stand Survey

The simplest test stands are used by pilots of Remote Controlled (RC) miniature he-

licopters. These consist of a helicopter rigged at or near the center of mass to a light

rod that allows for six degrees of freedom movement. These stands are a great aid for

RC pilots to learn and share knowledge. The main disadvantage relates to the limited

weight that these stands can carry. The most involved test stands allow the helicopter six

degree of freedom hover motion. In research done at the Autonomous Helicopter Project

at Carnegie Mellon [3, 2], the use of different test stands allowed for incremental devel-

opment of helicopter autonomy. The following is a characterization of key parameters of

test stands found in the literature.

Table 4.1: Test Bed

DOF power loc.
ref. (lin/ang) dc/gas in/out

[2] 6 dc in
[17] 1-ang gas out
[95] 3-ang, 1-lin+1-ang dc in
[155, 156] 6 dc in
[134] 2-ang, 1-lin dc in
[144] 2-lin (x,y), dc in

A number of research facilities have indoor test stands for vibration, noise, perfor-

mance, and aerodynamic studies of blades and fuselage. Examples are the Active Aeroe-

lasticity and Structures Research Laboratory (A2SRL) at the University of Michigan and

the Fully Instrumented Helicopter Rotor Test Stand Facility at Pennsylvania State. These

test stands are not generally used for scaled helicopter research.

4.3 Test Stand for Helicopter Research

Three test stands were build to aid with this thesis research. The Linear Directional Test

Stand (LDTS), the Rotational Dynamics Test Stand (RDTS), and the Rate Table Stand
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(RTS). Each will be discussed in the following sections.

4.3.1 Linear and Directional Test Stand

Figure 4.1 on the next page shows the altitude axis with the attachment platform ex-

tended and compressed. When the helicopter generates thrust and lifts, the springs

exerts less force on the helicopter until a point when the helicopter starts to lift more

than its own weight. Figure 4.2 on the following page shows the range of rotation about

the z-axis when experimenting with the yaw rate and heading track and hold commands.

Figure 4.3 on page 47 shows the middle plates and the Lazy-Suzy arrangement. The

LDTS can operate the linear altitude command independent of the yaw rate command.

The two degrees of freedom can operate simultaneously as well.

The test stand built for this dissertation is unique in various aspects:

1. portable and easily transportable

2. can be used for indoors or outdoors tests

3. the test stand is robustly built, and it is therefore immune to helicopter forces,

moments or vibration environment.

4. the test stand can handle gas or electric helicopters.

To the authors knowledge, there is no single test stand in use any where that has the

characteristics listed above. Most of the test stands are built for indoors use, but no

stand has the versatility and wide rage of applications that the LDTS has.
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Figure 4.1: Side view of the LDTS. Note that in the left picture the altitude stand is at
its minimum point. On the right, the attachment plate is at its maximum height of 14
in (0.36 m).

Figure 4.2: Top view of the LDTS. Note the top-left against the red-stopper, and the top-
right against the stopper. The stopper prevented the test helicopter from winding around
when performing heading track and hold. The stoppers can be removed to perform 360o

yaw rate experiments.
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Figure 4.3: On the left, note the view of the two middle steel plates. On the right, note
the Lazy-Suzy attachment.

4.3.2 Rotational Dynamics Test Stand

The Rotational Dynamics Test Stand (RDTS) can operate on only one axis, or it can

operate in several axes simultaneously in any combination. Figure 4.4 shows various

attitude positions for the RDTS. The RDTS is portable, and can perform experiments

indoors or outdoors. The RDTS is robustly constructed, and can handle large payloads.

Figure 4.4: Rotational Dynamic Test Stand (RDTW). The RDTS can rotate freely about
the z-axis for yaw rate and heading track and hold commands. The RDTS can also
rotate independently or in combination rotation about the x and y axes for roll and pitch
attitude control.
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4.3.3 Rate Table Stand

The Rate Table Stand (RTS) is a 1980’s vintage hardware used to test angular rates and

angular acceleration components. The RTS has been very useful in this research to test

the various sensors available, and to validate models for sensor measurements. Additional

use of the RTS was to test yaw rate and heading command track hold experiments on

a device with very little friction. Figure 4.5 shows a picture of the venerable rate table

stand.

Figure 4.5: Rate Table Stand (RTS).

4.4 Conclussions.

This chapter has shown three test stands, two of which were designed and built by

the two members of the helicopter team. The test stands are valuable assets that are

48



unique among those used in other research efforts. All three test stands, the Linear and

Directional Test Stand (LDTS), the Rotational Dynamic Test Stand (RDTS) and the

Rate Table Stand (RTS) are robust but portable test stands that can operate equally well

in the lab or in an outdoor environment. The LDTS is configurable and able to operate

in one or two degrees of freedom. The RDTS is also configurable and can operate in one,

two or three degrees of freedom. The RTS is a one degree of freedom device that can

rotate at precise rates for testing of angular rates and other measuring sensors. More

importantly, all three stands are enabling technologies fundamental to the operation

of helicopters with gas engines when outdoors. All these characteristics make the test

stands developed for this thesis work and their use one of the primary contributions of

this dissertation.
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Chapter 5

Math Models

5.1 Introduction

Dynamic modeling of scale helicopters is challenging because the small weight and related

inertias of scale helicopters results in higher natural frequencies and faster response of

the fuselage-rotor dynamics. Mathematical models for scale helicopters need to capture

the high bandwidth inherent in the physics of the vehicle. Two complimentary mod-

eling techniques exists, first principles and system identification, and both are widely

used in rotatory aircraft research. First-principle modeling uses the fundamental laws of

mechanics and aerodynamics to arrive at a physics-based model [13, 82, 119, 120, 135].

First-principle derived models where the aerodynamics, structures, and controls are mod-

eled explicitly can be daunting, and in general, simplification of these models is necessary

and adequate for the design of control laws. First-principle models can be put into mathe-

matical models that can be used in simulation programs [21, 68, 70, 74], but these models

require real flight data for their validation.

In contrast, system-identification modeling [97, 89, 147] requires the use of real flight

data, and is often used for flight control design because the model is based on re101gal

data. Often, system identification techniques are used to identify and validate models

obtained from first principles. An example of system-identification tools used in rotary

aircraft research is the Comprehensive Identification from FrEquency Responses (CIFER)

tool developed by the Army/NASA Rotorcraft Division [146].

Modeling related to small-scale helicopter is an active research area [30]. Until very

recently, available literature on small helicopters was limited, and the existing literature
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for full-scaled helicopters did not apply directly due to scaling factors and operational

Reynolds number [92, 104]. Mettler has studied scaling factors between full-sized heli-

copters and scale-model helicopters, and has extensively researched the area of modeling

and system identification [105, 106, 108]. Other existing work has also enriched the

literature on small-scale helicopters. [50, 87, 88, 91]

In the recent past, researchers have used system identification methods for modeling

of scaled helicopters with some measure of success [7, 16, 109]. Mettler [105] used real

flight data from two instrumented helicopters to perform system identification techniques

[108] that characterized open loop aircraft dynamics. Mettler developed a general he-

licopter model that describes key physical effects of helicopter dynamics, and used the

real flight data with system identification methods [147] to obtain abstract physical in-

formation from the identified model. His system identification model is applicable to

other small-scaled aircraft. More recently, Tischler and coworkers have successfully used

system identification techniques in a number of UAV programs [145, 147] which include

Northrop Grummans Fire Scout vertical takeoff unmanned air vehicle demonstrator; the

broad-area unmanned responsive resupply operations UAV based on Kamans twin-rotor

K-MAX helicopter; AeroVironments Pathfinder solar-powered stratospheric research air-

craft; Yamahas R-50 small-scale helicopter; and the class of small-scale ducted fan vehicles

developed separately by Allied Aerospace (formerly Micro Craft) and Honeywell [145].

As previously stated, first-principle modeling is not a substitute for system iden-

tification methods, and system identification methods utilize first principle results to

understand and analyze the data that is collected from the various experiments. The

two complimentary methods have their use for proper problems. Modeling based on first

principles is complex and results in a number of equations that describe the physics of the

helicopter. In developing equations from first principles, it is important to understand

they key aspects that influence helicopter behavior. A number of simplifying assump-

tions may be relevant, and with an understanding of the underlying physics, a simplified
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model may yield results useful for control applications.

This chapter presents results from first principles. Various mathematical models have

been derived for the OU helicopter. First, the main helicopter components are identified,

and subsequently, respective models are presented. The main rotor and the tail rotor

are both represented as aerodynamic actuators. The Momentum Theory, the Blade

Element Theory and the combined Blade Element and Momentum Theory are presented

along with their fundamental results. Following this, the main rotor blade equation of

motion is presented along with the first order Tip Path Plane (TPP) blade equations

of motion. The main rotor stabilizer bar is presented as a teetering rotor with modified

TPP equations of motion. The tail rotor model is presented as an extension of the main

rotor. The helicopter engine is also presented as an actuator, and a closed-feedback

control loop is presented. Other components of the helicopter are tabulated with a short

note on how these are accounted for in the various models. Following this, the six degree

of freedom rigid body equations of motion are presented along with the three inertial

position dynamics and three kinematic equations. The trim equations are presented as

well as the linear equations of motion about the trim condition.

5.2 Models of the Helicopter Components

Figure 5.1 on the following page illustrates the primary helicopter components and mech-

anisms. The main rotor is the primary aerodynamic actuator responsible for generating

lift and locomotion. The tail rotor provides torque compensation and heading control.

The engine converts chemical energy stored in the available fuel into mechanical power

necessary to drive the various helicopter components.

5.2.1 Main Rotor Aerodynamic Actuator Model

Section C on page 202 summarizes the theory that allows for the prediction of lift, torque,

and the necessary power to generate and maintain lift. Following this, Section H.1.2 on
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Figure 5.1: Helicopter Research Testbed Mechanical Components.

page 361 explores the main rotor contribution to the forces and moments. The tail rotor

is a specialized extension of the same main rotor analysis.

5.2.1.1 Momentum and Blade Element Theories for the Helicopter

Two theories provide the framework for the analysis of the main rotor forces and mo-

ments. Momentum Theory (Section C.1 on page 203) applies the conservation laws of

aerodynamics to predict basic performance factors of the helicopter. A fundamental as-

sumption in Momentum Theory is the presence of a stream tube through the walls of

which there is no fluid flux. The theory brakes down in flight regimes where the up-

ward velocity of the rotor equals the rotor induced velocity (slow descend), when the slip

stream expands and recirculating flow exists throughout the rotor (vortex ring state),

and when the wake above the rotor becomes turbulent and aperiodic (turbulent wake

state) [92, 124]. During axial-symmetric flight (hover, ascent, and high speed descent),

the necessary assumptions for momentum theory hold. In these cases, the governing

principle is the work done by the rotor on the flowing air. This work results in a sudden

increase of flow velocity as the flow passes through the rotor (induced velocity vi). The

change of momentum on the column of air imparts an opposite reaction force (thrust T )
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given by equation (C.1.12) on page 206

T = 2ρ πR2 v2
i (5.2.1)

where ρ is the air density, R is the rotor radius and πR2 is the rotor area. Equation

(5.2.1) is a fundamental result from Momentum Theory in the flight regimes in which

the theory applies. In hover case, the induced velocity vi = vh, and the general theoretical

results are listed in Table 5.1.

Table 5.1: Momentum Theory Applications

hover (Vc = 0, vh =
√
T/2ρπR2) Section C.1 on page 203

vertical climb (Vc/vh > 0) Section C.1.1 on page 209
windmill break state (Vc/vh ≤ −2) Section C.1.2 on page 213
forward flight (vi � V∞) Section C.1.3 on page 217

Section C.2 on page 222 discusses the Blade Element Theory (BET). The BET es-

timates the dynamic forces and moments associated with each blade element at a given

radius from the rotating axis and at a given position of the blade azimuth. A blade sec-

tion has a speed that is proportional to the local radius. If the blade section is sufficiently

small, conditions across the section are constants [92]. In this way, the drag and thrust

of the blade element can be readily computed, and the contributions of all the small

blade elements are added to generate the total or net rotor thrust, drag and moment.

Thus, a fundamental theoretical result from (BET) for lift is given in equation (C.2.10)

on page 226

dCT =
σ

2
Clr

2dr (5.2.2)

where CT is the thrust coefficient defined in equation (C.1.17) on page 208, σ is the

solidity ratio defined in equation (C.2.11) on page 226, Cl is the section lift coefficient,

and r = y/R is the blade section station where y is the distance to the blade section from

the rotational axis. This result does not depend on any specific rotor configuration, and

applies to all blade platforms.
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Section C.3 on page 229 follows on with results from the combined Blade Element and

Momentum Theories (BEMT). A primary result from BEMT is given in equation (C.3.7)

on page 231

dCT =
1

2
σa
(
θr2 − λr

)
dr

λ (r, λC) =

√(
σa

16
− λC

2

)2

+
σa

8
θr −

(
σa

16
− λC

2

) (5.2.3)

where r = y/R is the blade station as given before, and λ (x, λC) is the inflow ratio as a

function of blade station and climb inflow λC .

5.2.1.2 Main Rotor Blade Equation of Motion

Appendix D on page 234 derives the main rotor blade equation of motion which results

in equation (D.3.117) on page 298.

β̈ +
γ

8
ΩKβ̇β̇ + Ω2

(
ν2 +

γ

8
Kβµ

)
β =

γ

8
Ω2Kθθ −

γ
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γ

8
Ω2Kpq
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Ω
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q

Ω
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)
+2Ω2ν2

β

( p
Ω

cosψ − q

Ω
sinψ

)
+ν2

β (ṗ sinψ + q̇ cosψ) + ν2
0βP

(5.2.4)

Equation (5.2.4) above is the fundamental equation of motion for the main rotor blade

as it rotates about the rotor shaft [13, 22, 68]. The equation applies for blades of uniform

mass attached to the main rotor via lead/lag and flapping hinges, and includes the

effects of the fuselage roll p and pitch q rates and their derivatives. Given the above

expression for the Blade Equation of Motion (BEOM), equation (D.3.121) on page 299

and equation (D.3.124) on page 300 are the full expressions for the thrust and torque

coefficients respectively. Section D.3.7 on page 292 shows the application of the BEOM

to specific flight conditions which are summarized below in Table 5.2 on the next page.

The derivation of the above set of main rotor equations of motion is one of the
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Table 5.2: Blade Equation of Motion Application

simplified CT and CQ Section D.3.7.2 on page 301
non-constant blade flap coefficients Section D.3.7.3 on page 302
low frequency dynamics ṗ, q̇ → small Section D.3.7.4 on page 304
low translational speed µ→ small Section D.3.7.4.1 on page 306
no hinge offset e = 0, no precone βp = 0 Section D.3.7.4.2 on page 307
first order Tip Path Plane BEOM Section D.3.7.4.3 on page 308
teetering blade BEOM Section D.3.7.4.4 on page 310
forward flight with constant flap coefficients Section D.3.7.5 on page 311

contributions of this thesis work. Some researches and engineers derive main rotor blade

equations of motion with physics based arguments such as gyroscopic effects and angular

dynamics. While valid, these derivations are difficult to reproduce. Most researches and

engineers make reference to authors that have derived similar equations from hinge force

and moment equilibrium equations. While valid and insightful, such derivations do not

quite derive the full non-linearities associated with the complexity of a rotating blade.

In all cases, most of the linearities can be neglected, and even the remaining equations

of motion are burdensome. Many simplifications must be made to arrive to a set of

tractable mathematical equations. Even further simplifications may be needed to arrive

at the same results obtained from hinge force and moment equilibrium equations. The

work presented in this section and related appendices mechanizes the derivation of the

blade equation of motion such that a full non-linear equation for a given set of simplifying

conditions is readily available. This is one of the contributions of this thesis work.

5.2.1.3 Tip Path Plane Blade Equations of Motion

Section B.6.3 on page 200 defines the Tip Path Plane (TPP). A useful assumption re-

garding the main rotor blade motion is that the thrust vector is perpendicular to the
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TPP [82]. Equation (D.3.156) on page 309 describes the TPP BEOM

16

γΩ
β̇1c = −β1c +

p

Ω
− 16

γ

q

Ω
+

8

γ

Kβ

Ω2Iβ
β1s − θ1s

16

γΩ
β̇1s = −β1s −

q

Ω
− 16

γ

p

Ω
− 8

γ

Kβ

Ω2Iβ
β1c + θ1c

(5.2.5)

where the main rotor time constant τMR is given by

τMR =
16

γΩ
(5.2.6)

The same time constant applies to the longitudinal τMR q and lateral τMR p flapping

produced by the body pitching rate q and rolling rate p respectively

q τMR = − 16

γΩ
q

p τMR = − 16

γΩ
p

(5.2.7)

These terms above are important in that they are a source of rotor damping. The terms

−p/Ω and −q/Ω are, respectively, the longitudinal and lateral blade flapping produced

by aerodynamic cross coupling via the body roll p and pitch q rates. Finally, the term

8

γ

Kβ

Ω2Iβ
(5.2.8)

results from hinge offset and flapping restraint. It is a source of cross-coupling and it is

related to the blade natural flapping frequency defined in D.3.101

8

γ

Kβ

IβΩ2
=

8

γ

(
ν2
β − 1− ε

)
(5.2.9)

The main rotor aerodynamic forces and moments are described in Appendix E on page

316, and are summarized next in Table 5.3 on the following page.

In the case when x̄CM ≈ 0, ȳCM ≈ 0, and the body angular rate of change ṗ, q̇ are
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Table 5.3: Blade Equation of Motion Application

aerodynamic rotor forces and moments Section E.1 on page 316
rotor forces Section E.2 on page 321
rotor hub moments Section E.3 on page 325
coupled rotor forces and moments Section E.4 on page 329

neglected, the non-dimensional rotor forces and moments are given by equation (E.4.3)

on page 329.

CxMR =
(
h̄CT +

aσ

16
Sβ

)
β1s + ν2

β

aσ

γ

q

Ω

CyMR =
(
h̄CT −

aσ

16
Sβ

)
β1c + ν2

β

aσ

γ

p

Ω

(5.2.10)

where the stiffness number Sβ = 8 (ν2 − 1) /γ is given by equation (D.3.19) on page 263,

and its value is tabulated in Table I.4 on page 373.

5.2.1.4 Main Rotor Stabilizer Bar

Section H.2.1 on page 367 develops the equations of motion and associated model for the

stabilizer bar shown in Figure 2.2 on page 16. The stabilizer bar is a teetering rotor that

carries negligible force, but serves the very important dual purpose of augmenting the

main rotor cyclic pitch command and increasing the damping moment in the helicopter

attitude dynamic [88, 87, 105]. An application of the main rotor blade dynamics in

equation (5.2.5) on the preceding page results in the first order Tip Path Plane (TPP)

equation of motion for the stabilizer bar in equation (H.2.6) on page 368

16

γΩ
β̇stab,1c = −βstab,1c +

p

Ω
− 16

γ

q

Ω
− θstab,1s

16

γΩ
β̇stab,1s = −βstab,1s −

q

Ω
− 16

γ

p

Ω
+ θstab,1c

(5.2.11)
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5.2.2 Tail Rotor Aerodynamic Actuator Model

The tail rotor is the primary mechanism for torque compensation for the helicopter in

its current configuration. The tail rotor is a two-blade rotor with symmetric airfoils

with collective pitch control. Adjustments to the collective tail rotor blade pitch angle

generates sufficient thrust to counter the main rotor torque and any side forces that may

result from main rotor Tip Path Plane tilt. The tail rotor also provides the means for

directional heading control. Appendix L in Section L.2 on page 434 details the design of

control laws for automated tail rotor torque compensation.

In full scale helicopters, the tail rotor consumes about 5 − 10% of the main rotor

power during normal flight, and as much as 20% during flights at the edge of the flight

envelope [92]. For model helicopters, the tail rotor power consumption is about 10−20%

due to the lower Raynolds number involved which increases the profile drag considerably

[105]. During normal flight operations, the trim side force needed to compensate for

the main rotor torque is found from equation (F.1.15) on page 338 and augmented in

equation (L.2.9) on page 437.

YTR =

[
QMR + nTRQTR

lTR

]
ṙ=r=0

(5.2.12)

An equivalent formulation is found directly from the power required to operate the heli-

copters [92]

YTR ≈ TTR =
Pi + P0 + Pp

ΩlTR
(5.2.13)

where the term Pi +P0 +Pp is the total power of the helicopter which can be found from

equation (C.2.14) on page 227 with the addition of the tail rotor power and parasite

power λC CW

CP = CQ =
k√
2
C

3/2
T +

1

8
ρCD + λC CW + CPTR (5.2.14)

where the term k is an empirical factor that accounts for nonlinear aerodynamic physics

such as non-uniform rotor inflow, blade tip loses, nonlinear slip stream and wake effects
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on the tail rotor, etc. For the OU research helicopter, the value for k = 1.2.

5.2.3 Model of Helicopter Engine

The University of Oklahoma Helicopter Research Testbed (OU-HRT) runs with a 2-cycle

engine with a fuel capacity of 0.61 in3 or 9.9582 cc. Table I.16 on page 387 summarizes the

primary characteristics of this engine which has a maximum power output of about 2.2

Hp [8, 37]. The engine has a three needle carburetor that provides fine tune adjustments

throughout the operational range.

Section J on page 398 explores in detail the experiments related to the coupled engine

and main rotor characterization. Table J.1 on page 416 summarizes the primary com-

ponents that relate the operation of the engine-carburetor to the helicopter rotational

elements. Equation (J.2.19) on page 411 is the main rotor control design shown in Figure

J.10.

ki =
π2

k

kp =
π
√

2

k
− kΩ

(5.2.15)

Q∂
∂Ω

1
rotI

1
s+i

p
kk
s

+
-

C i−Ω Ω e u ΔΩ

-

Figure 5.2: Closed Loop Control Design Diagram.

Finally, the continuous time control design and loop transfer function characteristics

are summarized in table J.2 on page 417.
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5.2.4 Models of Remaining Components

Other components in the helicopter serve useful purposes. Table 5.4 tabulates the most

important of these components and how they are accounted for in the various models.

Table 5.4: Other Helicopter Components and their Models

equation description

cooling fan (5.2.14) induced power factor k
transmission gears (5.2.14) induced power factor k
semi-rigid blade equivalent flapping hinge
drag hinge dynamics (D.2.41) model not used

Equation (D.2.41) on page 250 indicates that when the blade only rotates about

the drag (or lead/lag) rotation axis ζ with pure lead/lag motion, the blade does not

induce any feathering or flapping rotation. Therefore, the main rotor blade drag hinge

dynamics are mostly important for high fidelity models and for research concerned with

the main rotor overall vibration signature and associated higher order effects on helicopter

dynamics [53, 119]. For first order dynamic modeling, the drag hinge dynamics are

considered stable with a net zero average effect in the rotor dynamic behavior.

5.3 Rigid Body Dynamics

Section B.5.1 on page 191 derives that translational dynamics which results in the six de-

grees of freedom (6-DOF) rigid body equation of motion (EOM) given by equation (B.5.6)

on page 193. In turn, Section B.5.3 on page 194 derives the rotational dynamics given
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by equation (B.5.14) on page 196. The resultant derivations are summarized in equa-

tion (H.1.1) on page 359 in Section H.1.1 on page 358.

u̇ = rv − qw + x
(
q2 + r2

)
+ y (pq − ṙ) + z (pr + q̇)− g sin θ +

X

m

v̇ = pw − ru+ y
(
p2 + r2

)
+ z (qr − ṗ) + x (pq + ṙ) + g sinφ cos θ +

Y

m

ẇ = qu− pv + z
(
p2 + q2

)
+ x (pr − q̇) + y (qr + ṗ) + g cosφ cos θ +

Z

m

ṗ =
L

Ix
+
Iyz
Ix

(
q2 − r2

)
+
Izx
Ix

(ṙ + pq) +
Ixy
Ix

(q̇ − rp) +
(Iy − Iz)

Ix
qr +

BH i
x

Ix

q̇ =
M

Iy
+
Izx
Iy

(
r2 − p2

)
+
Ixy
Iy

(ṗ+ qr) +
Iyz
Iy

(ṙ − pq) +
(Iz − Ix)

Iy
rp+

BH i
y

Iy

ṙ =
N

Iz
+
Ixy
Iz

(
p2 − q2

)
+
Iyz
Iz

(q̇ + rp) +
Izx
Iz

(ṗ− qr) +
(Ix − Iy)

Iz
pq +

BH i
z

Iz

(5.3.1)

where [X Y Z]T are the total forces acting on the vehicle, [LM N ]T are the total moments

acting on the vehicle, and [BH i
x
BH i

y
BH i

z]
T are the total moment contribution from all

rotating parts other than the main rotor and the tail rotor. In the above expressions,

the )MR subscript applies to the main rotor, )TR applies to the tail rotor, )HT applies to

the horizontal tail, the )V T applies to the vertical tail, )F applies to the fuselage. The

following simplifications apply:

1. the current helicopter configuration does not have a vertical and horizontal tail,

and the )HT and )V T components drop.

2. the center of pressure coincides with the vehicle’s center of mass, and the fuselage

moment contribution MF = 0, NF = 0 are zero.

3. the rotating engine components contribution to moment is negligible when com-

pared to the main and tail rotor moment contributions.

4. all the rotating moment contributions are accounted for by the main rotor and the

tail rotor, and the terms BH i are zero.

5. take the moments about the center of mass, and the x, y, z components of the
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moment arm are zero.

6. the cross inertias are much smaller than the principal inertias, and the cross product

moment of inertia can be neglected without loss of accuracy [91].

The resultant 6-DOF EOM are now

u̇ = rv − qw +−g sin θ +
XMR +XF

m

v̇ = pw − ru+ g sinφ cos θ +
YMR + YF + YTR

m

ẇ = qu− pv + g cosφ cos θ +
ZMR + ZF + ZTR

m

ṗ =
(Iy − Iz)

Ix
qr +

LMR + LTR
Ix

q̇ =
(Iz − Ix)

Iy
rp+

MMR

Iy

ṙ =
(Ix − Iy)

Iz
pq +

NMR +NTR

Iz

(5.3.2)

Section B.5.2 on page 193 derives the position dynamics resulting in equation (B.5.8)

on page 194, and work in Section B.4 on page 189 yields the kinematic equations equa-

tion (B.4.6) on page 190. The two results are again summarized in equation (H.1.6) on

page 361


φ̇

θ̇

ψ̇

 =


1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ



p

q

r



ẋE

ẏE

żE

 =


cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

− s θ sφcθ cφcθ



u

v

w


(5.3.3)
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5.3.1 Simplified Equations of Trim

Appendix F on page 331 explores the trim equations. Equation (F.1.12) on page 336

presents the most general equation of trim. Derivation of the trim equations use the

following considerations where they apply

1. the linear and angular trim velocity vector is constant or equal to zero

2. for symmetric flight, the trim velocities are set to zero

3. small angle approximation apply such that sin θ ≈ θ and cos theta ≈ 1

4. the thrust generated by the main rotor T and the helicopter weight W = mg

dominate the force related dynamics.

5. small drag terms multiplied by small angles are of much less in magnitude than the

thrust T and the weight W

Given the above conditions, then equation (F.1.15) on page 338 present a set of trim

equations

0 = W − TMR

0 = D +HMR − TMR θF

0 = YMR + TTR + YF + TMR φF

0 = MyMR +MyF +W (h θF − xCM)− hD

0 = MxMR +MxF +W (hφF − yCM) + TTR hTR

0 = QMR − YTR lTR

(5.3.4)
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5.3.2 Linear Equations of Motion about Trim

Section F.1.2 on page 339 derives the linear equations of motion about the trim condition

u̇+ q w0 =
X

m

v̇ + r u0 − pw0 =
Y

m

ẇ − q u0 =
Z

m

Ixṗ− Izxṙ = L

Iy q̇ = M

Iz ṙ − Izxq̇ = N

(5.3.5)

The equivalent state space representation of the linear equations of motion is given by

Equation (F.1.21) on page 339

ẋ = Ax+Bu(t) + d(t) (5.3.6)

where the state and control vector are given by Equation (F.1.24) on page 340

x =

[
u w q θ v p r φ

]T
u =

[
θ0 θ1s θ1c θ0TR

]T (5.3.7)

The elements of the input control vector u are the main rotor collective, longitudinal and

lateral cyclic, and the tail rotor collective input.
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The respective longitudinal and lateral stability matrices are

Alon =



Xu Xw − q0 Xq − w0 −g cos θ0

Zu + q0 Zw Zq + u0 −g cosφ sin θ0

M̄u M̄w M̄q 0

0 0 cosφ0 0



Alat =



Yv Yp + w0 Yr − u0 g cosφ cos θ0

L̄v L̄p + Īprq0 L̄r − Īpq0 0

N̄v N̄p − Īrq0 N̄r − Īprq0 0

1 cosφ0 tan θ0 0



(5.3.8)

The cross-coupling matrices are

A12 =



Xv + r0 Xp Xr + v0 0

Zv − p0 Zp − v0 Zr −g sinφ cos θ0

M̄v

M̄p · · ·

−Īqr0 − 2Īzxp0

M̄r · · ·

−Īqp0 + 2Īzxr0

0

0 0 − sinφ0 K̄φ



A21 =



Yu − r0 Yw + p0 Yq −g sinφ sin θ0

L̄u L̄w L̄q + Īprp0 − Īpr0 0

N̄u N̄w N̄q − Īrp0 − Īprr0 0

0 0 sinφ0 tan θ0 K̄θ



(5.3.9)

The control matrix is given as

B =

 Blon

Blat

 (5.3.10)
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where the longitudinal and lateral control matrices are

Blon =



Xθ0 Xθ1s Xθ1c XδT

Zθ0 Zθ1s Zθ1c ZδT

M̄θ0 M̄θ1s M̄θ1c M̄θTR

0 0 0 0


Blat =



Yθ0 Yθ1s Yθ1c YδT

L̄θ0 L̄θ1s L̄θ1c L̄δT

N̄θ0 N̄θ1s N̄θ1c N̄δT

0 0 0 0


(5.3.11)

5.4 Stability Derivatives

Section G on page 342 looks into the stability derivatives that affect the helicopter coupled

rotor-fuselage equations of motion.
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Chapter 6

Helicopter Sensors

6.1 Signals and Sensors

Table 6.1 summarizes the sensors available to the OU research helicopter.

Table 6.1: Sensors

main rotor angular velocity Ω hall effect sensor
body inertial angular rates p, q, r pizo-elec rate gyro, MotionPak
angular attitude angles φ, θ, ψ electronic compass
body inertial linear acceleration u̇, v̇, ẇ pizo-elec accelerometers, MotionPak
inertial position x, y differential GPS
altitude above ground z ultrasound/infrared transducers
on-board battery voltage Vbat analog-to-digital transducer
blade pitch angles (static mea.) θblade inclinometer

6.2 Main Rotor Angular Velocity Measurement

The engine, main rotor, tail rotor and transmission angular velocities are related via fixed

gears relations. The belt that transmits angular motion from the engine to the main

rotor is flexible, and thus the belt drive provides a degree of damping. The remaining

set of transmission gears are fixed. Therefore, measurements of the main rotor angular

velocity provides an estimate for the angular velocity of all rotating components. Table I.1

on page 372 tabulates various parameters that characterize the rotating components

including the overall rotational inertia Irot. Equation (C.1.17) on page 208 indicates that

the main rotor angular velocity Ω is a most fundamental parameter due to the large
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magnitude of the angular velocity for model helicopters (Ω ≈ 1500 rpm) and it is being

raised to the second or higher power in each of the thrust T , torque Q and power P

expressions.

T = ρ πR2 (ΩR)2CTQ = ρ πR2 (ΩR)2RCQP = ρ πR2 (ΩR)3CP (6.2.1)

where CT , CQ, CP are the thrust, torque and power coefficients respectively. In turn, the

thrust T and the thrust coefficient CT are necessary to compute the main rotor blade

pitch angle to generate the proper lift as indicated in equation (C.2.15) on page 227

θ =
6

aρ
CT +

3

2

√
CT
2

(6.2.2)

The torque Q is necessary to compute the tail rotor compensating torque as indicated

by the trim equation equation (F.1.15) on page 338

0 = QMR − YTR lTR (6.2.3)

and the overall power P is necessary to compute the engine throttle setting as indicated

by equation (L.2.9) on page 437.

YTR =

[
QMR + nTRQTR

lTR

]
ṙ=r=0

(6.2.4)

6.2.1 Main Rotor Angular Velocity Ω Measurement via a Hall

Effect Sensors

The Helicopter’s main rotor gear has three permanent magnets embedded at 120o of each

other as shown in Figure 2.15 on page 27. The permanent magnet swoops very closely

by a hall effect sensor embedded in the helicopter’s frame as shown in Figure 2.16 on

page 28. Each time the magnet is next to the sensor, the sensor activates a pulse that
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is detected by an on-board computer. The estimation of the main rotor angular velocity

follows directly by counting the time lapse between pulse events.

6.3 Fuselage Linear Acceleration and Angular Veloc-

ity Measurements

The Systron Donner MotionPak precision sensor suite measures the fuselage linear iner-

tial accelerations and the body inertial angular rates. Both the linear accelerations and

the angular rates where calibrated with the use of the rate table shown in Figure 2.19 on

page 30.

Section I.2.1 on page 376 on Appendix I details the most important parameters per-

taining to the MotionPak sensor.

6.3.1 MotionPak Sensor Suite Location

The actual location of the MotionPak sensor suite is very important. Figure 6.1 on the

following page shows the MotionPak rigidly attached to a structure at the nose of the

helicopter. This position is far from the engine heat with cooling airflow from the main

rotor wake, but the location is not optimal due to excessive vibrations encountered at

this location. Figure 6.2 on the next page shows the relocation of the MotionPak sensor

suite rigidly attached beneath the engine, closer to the center of mass. A thermal cover

over the MotionPak (not shown) deflected the hot air pushed along the sides of the engine

by the cooling fan. Figure 6.3 on page 72 presents the MotionPak measurements of the

linear accelerations (u̇, v̇) and angular rates (p, q) during a real-time test run when the

helicopter is constrained to move only along the z-axis. The acceleration and rates should

be nearly zero during this run, but both the measured accelerations and rates vary widely

in amplitude rendering the data useless for feedback control or navigation purposes.
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Figure 6.1: MontionPak Sensor Suite Location at front of the Helicopter.

Figure 6.2: MontionPak Sensor Suite rigidly attached to the fuselage and positioned
beneath the engine, close to the vehicle’s center of mass.
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Figure 6.3: MotionPak linear accelerations (u̇, v̇) and angular rates (p, q) measurements
with sensor suite positioned beneath the engine close to the vehicle’s center of mass.
Data collected during a test run with main rotor angular velocity Ω actively controlled
in real-time.
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Figure 6.4 on the next page shows the MotionPak sensor suite mounted on vibration

isolation pads, and Figure 6.5 on the following page is a close-up of the MotionPak

as mounted on the helicopter. Figure 6.6 on the next page is a photo montage that

shows the MotionPak position in the helicopter relative to the main rotor, tail rotor and

engine. Figure 6.7 on page 75 shows data collected during a test run with roll, pitch and

yaw actively controlled in real-time. The blue curve on the top graph is the measured

heading ψ, the black curve is the command heading ψC , the red curve is the yaw rate,

the green curve is the measured main rotor angular velocity Ω, the magenta curve is the

tail rotor autopilot command, and the dark-green curve is the main rotor blade pitch

angle θ command. Figure 6.8 on page 76 shows the Gaussian distribution of the collected

data for runs with the MotionPak rigidly attached to the helicopter frame, and for data

collected with the MotionPak mounted on the vibration isolation pads. The plots indicate

that the data quality is more than one order of magnitude better than data measured

prior to mounting the MotionPak on vibration isolation pads. 6.2 tabulates the standard

deviation of two data runs. The first data run on the left column was taken with the

MotionPak rigidly mounted underneath the engine, and the second data run on the right

column was taken with the MotionPak mounted on isolation pads.

Table 6.2: Standard Deviation of MotionPak Measured Data.

Mounting Option → Rigidly·Attached Isolation·Pads
linear x-axis velocity u̇ 0·0887 0·0191
linear x-axis velocity v̇ 0·1501 0·0276
roll rate p 5·5546 0·0575
pitch rate q 2·4315 0·0399

73



Figure 6.4: Photo montage of the MontionPak Sensor Suite mounted on vibration isola-
tion pads.

Figure 6.5: MontionPak Sensor Suite mounted on vibration isolation pads and positioned
beneath the helicopter engine.

Figure 6.6: MontionPak Sensor Suite positioned beneath the engine and mounted on
vibration isolation pads.
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Figure 6.7: MotionPak linear accelerations (u̇, v̇) and angular rates (p, q) measurements
with sensor suite positioned beneath the engine and mounted on vibration isolation pads.
Data collected during a test run with roll, pitch and yaw actively controlled in real-time.
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gular rates (p, q). The dash-dash curves present data taken with the MotionPak rigidly
attached to the fuselage, and the solid curves present measured data with the MotionPak
mounted on vibration isolation pads.
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6.4 Center of Mass Position

Position information comes from differential GPS setup that uses the NovAtel ProPack

reference station and MiLLennium II RTK2 GPScard as the dynamic GPS engine (Sec-

tion I.2.2 on page 378). The GPS latitude and longitude are converted to Earth Centered

Earth Fixed Coordinate (Section B.1.8 on page 181) system using the WGS-84 ellipsoidal

datum and the standard algorithm [].

X = (N + h) cosφ cosλ

Y = (N + h) cosφ sinλ

Z =
[
N
(
1− e2

)
+ h
]

sinφ

N (φ) =
a√

1− e2 sin2 φ

f =
a− b
a

e2 = 2f − f 2

(6.4.1)

and the following holds

• φ, λ, h are the geodetic latitude, longitude, and hight above ellipsoid.

• X, Y, Z are the Earth-Centered Earth-Fixed Cartesian Coordinates.

• N (φ) is the radius of curvature in prime vertical.

• a is the semi-major Earth axis (ellipsoid equatorial radius).

• b is the semi-major Earth axis (ellipsoid polar radius).

• f is the Earth flattening.

• e2 is the eccentricity squared.

Helicopter flight involves angular dynamics that are inherently faster than the Earth’s

rotation ΩE. Therefore a large number of helicopter flight missions neglect the Earth’s
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rotation and assume a non-rotating earth approximation. In addition, the three dimen-

sional displacements and velocities involved in most helicopter maneuvers do not require

taking into account the curvature of the Earth. Therefore it is reasonable to accept

a locally flat Earth approximation for helicopter missions of short duration. For any

particular mission, the distance traveled is known by computing the differential ECEF

coordinates from the current position to the starting position. The differential ECEF

coordinates computed on board the helicopter correspond to a particular place on the

GPS antenna. Simple geometry transfers this knowledge to the helicopter’s center of

mass.

 
 
 

Figure 6.9: Differential GPS Experiment at the University of Oklahoma. Portions of
differential data loss are the result of positioning the GPS antenna under a tree canopy.

6.5 Helicopter Body Attitude

Section I.2.6 on page 384 presents the specifications related to the Honeywell HMR3000

electronic compass. The compass gives information at a rate of 10 Hz about the roll

φ, pitch θ and heading angle ψ attitude of the helicopter. The compass’s input stream

passes through non-linear filters that keep missed readings from corrupting the data.
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6.6 Center of Mass Altitude

Section I.2.8 on page 388 presents data pertaining to the ultrasound transducers used in

the helicopter. The helicopter has three ultrasound transducers working in unison in an

attempt to provide redundant altitude information and attitude information. The ultra-

sound interfaces with a host CPU via digital input/output, and the host CPU controls the

sensitivity of the various ultrasounds by varying the setting on a digital potentiometer.

79



Chapter 7

Design of the Helicopter Feedback Control Loops

7.1 Engine Governor and Main Rotor RPM Control

Loop

Figure 7.1 on the following page presents a block diagram of the the engine governor and

the main rotor angular velocity control loop. A component of the available torque Qe

generated by the engine is utilized to turn the main rotor and to drag the main rotor

blades through the air. When an equilibrium point exists, the difference between the

available engine torque and the summation of all required torques will be zero Qe−Σ =

0, and the angular velocity will remain constant. To ensure that this is the case in

all flight conditions, the main rotor angular velocity Ω is subtracted from a reference

or command angular velocity ΩC to generate an error signal equal to the difference

errorΩ = ΩC − Ω. The error signal errorΩ serves as an input to a proportional plus

integral (PI) compensator which will output a differential command δth to the throttle

electro-mechanical digital servo. The end result is a control loop that will track a desired

main rotor angular velocity Ω.

7.2 Yaw Rate and Heading Control Loop

Figure 7.2 on page 82 shows a graphical representation of the torque equilibrium about

the Center of Mass (CM) along the z-axis. The engine generates torque to turn the main

and tail rotors and to drag the main and tail rotor blades. Since the engine is attached to
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Figure 7.1: Block diagram for the engine governor and main rotor angular velocity control
loop.

the fuselage, the fuselage responds with an equal but opposite reaction torque. The tail

rotor compensates by generating sufficient thrust TTR such that, when multiplied with

the moment arm lTR, the tail-rotor-compensating torque lTR · TTR is equal but opposite

to the fuselage torque. Figure 7.3 on page 83 shows two instances of tail rotor collective

pitch angle. In the first case (1), the thrust generated by the tail rotor is in the negative

y-direction. In the second case (2), the thrust is in the positive y-direction and provides

proper compensation.

Figure 7.4 on page 84 presents a block diagram for the yaw rate and heading control

loop. The heading measurement ψ is subtracted from the desired heading setting ψC ,

and the heading error errorψ is the input to the proportional plus integral (PI) heading

feedback control compensator. A proportional yaw rate measurement also contributes to

the output of the compensator that provides a differential input to the tail rotor collective

blade pitch angle command. The loop is designed to track the desired heading and to
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reject disturbances at the tail rotor.

Tail rotor collective
3

Ω

fuselage
reaction torque

engine 
shaft torque

main rotor 
torque

tail rotor 
compensating
torque

TRΩ

TRl

TRT

TRΩ

TRQ

CM
EQ

MRQ

MR TR TRn QQ= +
TR TR MR TR TRl T n QQ= +

engine 

tail rotor hub 

Figure 7.2: Torque Equilibrium about the Center of Mass (CM) along the z-axis. In
the figure, Ω is the main rotor angular velocity, ΩTR is the tail rotor angular velocity,
QE, QMR, QTR are the engine available torque, the main rotor torque and the tail rotor
torque respectively. In addition, nTR is the main rotor to tail rotor gear ratio, and lTR is
the location of the tail rotor hub behind the CM.

7.3 Pitch Rate and Pitch Attitude Control Loop

Figure 7.5 on page 84 shows the swashplate longitudinal inputs δlon to the main rotor

blade pitch angle θ. In the first case (1), the longitudinal cyclic forces the main rotor

blade to reach a maximum angle of attack at the 90o blade azimuth station (positive

y-axis at the right side of the aircraft). At this azimuth point, the blade experiences

the largest thrust, which in turn forces the blade to flap upward. The blade reaches its

maximum flapping angle at the nose of the aircraft which has the effect of tilting the Tip
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Tail rotor collective

1

3

2

Figure 7.3: Tail Rotor collective pitch angle. In the figure, the tail rotor collective pitch
angle (1) generates the least thrust as illustrated in Figure 7.2 on the previous page, and
the thrust may even be in the opposite direction. The tail rotor collective pitch angle (2)
is in the same direction as in Figure 7.2, and provides proper compensation.

Path Plane (TPP) and the rotor thrust vector rearward. A rearward tilt of the thrust

vector causes the nose of the aircraft to pitch up. In the same figure, the swashplate

longitudinal input (2) causes the blade to reach its maximum angle of attack at the

blade azimuth station of 270o degrees (negative y-axis at the left side of the aircraft). In

this case the maximum thrust at this location causes the blade to flap to its most upward

angle at the blade azimuth station of 0o degrees. The TPP tilts up at this location and

down at the nose of the aircraft, and the thrust vector follows soon thereafter. The result

is a nose-down fuselage attitude.

Figure 7.6 on page 85 shows a block diagram in which a pitch attitude error errorθ is

the input to a proportional plus integral compensator. A proportional pitch rate q adds

to the output of the PI compensator to generate a differential input to the longitudinal

cyclic servo.
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Figure 7.4: Block diagram for yaw rate and heading angle control loop.

Cyclic longitudinal

1
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2

Figure 7.5: Swashplate longitudinal cyclic control input. In the figure, the swashplate
position (1) inputs longitudinal cyclic to the main rotor blade pitch angle that will result
in a nose-up tilt of the fuselage. The swashplate position (2) inputs longitudinal cyclic
to the main rotor blade pitch angle that will result in a nose-down tilt of the fuselage.
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7.4 Roll Rate and Roll Attitude Control Loop

Figure 7.7 on the following page shows the swashplate lateral inputs δlat to the main

rotor blade pitch angle θ. In the first case (1), the lateral cyclic reaches maximum angle

of attack at the 180o blade azimuth station (positive x-axis at the nose of the aircraft).

At this azimuth point the blade experiences the largest thrust, which in turn forces the

blade to flap upward at this location. The blade reaches its maximum flapping angle

at the left side of the aircraft which has the effect of tilting the Tip Path Plane (TPP)

and the rotor thrust vector to the right. A positive tilt of the thrust vector causes the

fuselage to roll to the right. In the same figure, the swashplate longitudinal input (2)

causes the blade to reach its maximum angle of attach at the blade azimuth station of

0o degrees (at the rear of the aircraft). In this case the maximum thrust at this location

causes the blade to flap to its most upward angle at the blade azimuth blade station of

90o degrees blade azimuth station (positive y-axis at the right side of the aircraft). The

TPP tilts up at this location and down at the left of the aircraft, and the thrust vector

follows soon thereafter. The result is a left roll of the fuselage attitude.

Figure 7.8 on the next page shows a block diagram for the lateral roll rate q and roll

attitude φ feedback loop. A proportional plus integral compensator takes as its input

the roll attitude error errorφ, and a proportional component of the roll rate q adds to

the compensator output to provide a lateral cyclic δlat to the lateral cyclic servo.

7.5 Altitude Control Loop

Figure 7.9 on page 88 shows a photo montage of the swashplate with no cyclic inputs,

and therefore the swashplate remains horizontal with respect to the x-y plane of the he-

licopter. In this figure, position (1) corresponds to the lowest position of the swashplate

at which the rotor generates negative or downward thrust. In turn, position (2) is a mid-

way position where the rotor generates positive or upward thrust, while the swashplate
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Figure 7.7: Swashplate lateral cyclic control input. In the figure, the swashplate position
(1) inputs lateral cyclic to the main rotor blade pitch angle that will result in a positive
roll of the fuselage. The swashplate position (2) inputs lateral cyclic to the main rotor
blade pitch angle that will result in negative roll of the fuselage.
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Figure 7.8: Block diagram for lateral roll rate q and roll attitude φ control loop.
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position (3) is at its highest where the blade pitch angle will be the largest.

Figure 7.10 on the next page shows a block diagram for the baseline altitude h control

loop. The vertical velocity w is estimated from the vertical acceleration measurement

and the collective blade pitch angle inputs. The proportional portion of the estimated

vertical velocity is added to the output of an altitude compensator that takes the altitude

error errorh as its input. The output of the compensator provides the differential input

to the collective blade pitch angle servo.

1 2 3

collective

Figure 7.9: Main Rotor Collective Blade Pitch Angle Input. In the picture, the swashplate
is at its lowest position at (1), mid position at (2), and highest position at (3).

7.6 Baseline Helicopter Feedback Control

Figure 7.11 on page 91 shows the baseline control design for the research helicopter. The

sensor models are ignored in this diagram. The main rotor angular velocity feedback

maintains a constant angular velocity Ω and decouples the rest of the control loops from

this measurement. The heading feedback control loop automatically compensates for the

torque induced when generating thrust. This loop decouples the engine and tail rotor

toque from the remainder of the control loops. The roll and pitch rate and attitude loops

stabilize the helicopter platform. The altitude hold loop provides the necessary inputs
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to maintain a desired altitude above the ground. At this point, the helicopter is a stable

platform with the main rotor that serves as an actuator to provide locomotion at an

altitude.

7.7 Helicopter Position Feedback Control

Figure 7.12 on page 92 shows the baseline helicopter feedback control block diagram

with augmented controls to provide locomotion and position hold. The control loop is

designed for position hold and small displacements. The aircraft will navigate between

waypoints and hold altitude and position at the destination point.
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Chapter 8

Engine Governor and Main Rotor Angular Velocity

Experiment

8.1 Experiment Setup

The Linear and Directional Test Stand (LDTS) is restricted to move in the vertical

direction only with a lock on the angular motion about vertical. The tail rotor collective

pitch angle is disconnected to allow the tail rotor blades to spin freely to its equilibrium

position. This avoids unnecessary stress on the helicopter structure and on the LDTS

itself. The experiment consists of four parts

1. open loop engine and main rotor dynamics characterization

2. modeling of the open loop engine and main rotor dynamics

3. engine governor and main rotor angular velocity control design and implementation

4. testing and experimental results of closed loop feedback control

Appendix J on page 398 details the above steps, a summary of which follows.

8.1.1 Open Loop Engine and Main Rotor Dynamics Character-

ization

Figure 8.1 on the following page plots data characteristic of an open loop real-time test

run. The inputs consists of steps in throttle command, and the collected data yields
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information related to the engine-main rotor system time constant, rise time, and rotor

damping, throttle gain, etc. Figure 8.2 on the next page shows an example of data

extraction from open loop data. This work is detailed in Section J.2 on page 399.
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Figure 8.1: Sample Main Rotor Angular Velocity Ω data resulting from varying throttle
inputs and Main Rotor Blade Pitch Angle θ set at 8 degrees.

8.1.2 Modeling of the Open Loop Engine and Main Rotor Dy-

namics

Figure 8.3 on page 96 presents simulation results superimposed on real-time data ob-

tained from open loop commands to the engine-main rotor system. The block diagram

in Figure 8.4 on page 96 shows the mathematical simulation model with the previously

obtained time constant, rise time, rotor damping and throttle gain. The simulated data

follows the collected data closely, with the caveat that the model lacks some drag terms.

In contrast, the rise time and the rotor damping are captured very well by the model.
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Figure 8.2: Time to Rise and Time Constant estimates for Engine/Carburetor-Main
Rotor dynamic system.
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This model is therefore suitable for control design. Section J.2.1 on page 404 and Sec-

tion J.2.2 on page 409 detail the steps taken to arrive at these results.
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Figure 8.3: Open Loop Simulation Result for Rotor Angular Velocity Ω.Q∂
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8.1.3 Engine Governor and Main Rotor Angular Velocity Con-

trol design and implementation

Once the open model predicts the fundamental dynamics for the system that needs

control, the control design can readily take place. This is done in Section J.2.3 on

page 410, and Figure 8.5 shows the block diagram for the engine governor and main

rotor angular velocity feedback controller.
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Figure 8.5: Closed-Loop Engine-Carburetor, Main Rotor Dynamics Model.

8.2 Testing and Experimental Results of Closed Loop

Feedback Control

Section J.3 on page 416 summarizes the results from the engine governor and main rotor

angular velocity experiments. This is the main result of the experiment; the closed loop

control on Figure 8.5 is able to maintain constant angular velocity in the presence of

disturbances (changing blade pitch angle) with model uncertainties. Figure 8.6 on the

next page shows real-time data obtained with the system operating under closed loop

feeback. The black curve present open loop changes in the main rotor blade angle of

attack, and the red curve is the measured angular velocity during the test flight. The

main rotor angular velocity remains constant even when the main rotor blade pitch angle
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changes.

Figure 8.6 also plots the simulated data. The simulated data matches the collected

data almost exactly, and the throttle command input obtained from simulation matches

the actual input very closely. This is a component of the main result for the experiment,

that the simulation model for the engine-main rotor system dynamics accurately predicts

the real system behavior.
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Figure 8.6: Engine-Carburetor model simulation results compared with real-time data.
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Chapter 9

Helicopter Aerodynamic Model Experiment

9.1 Experiment Setup

The Linear and Directional Test Stand (LDST) is allowed to move both in the vertical

direction and with angular motion about about vertical axis. The experiment consists

of two parts. The first part disconnects the tail rotor collective blade pitch input to

characterize the torque generated by the main rotor induced and profile blade drag.

During the second part of the experiment the tail rotor collective pitch angle is active,

and inputs to the tail rotor will result in torque generation of the tail rotor thrust times

the moment arm. This part of the experiment attempts to characterize the tail rotor

thrust and torque. A cantilever beam fitted with strain gages acts as a bending beam

load cell used to measure the reaction torque generated by the fuselage as a result of the

available engine torque.

Figure 9.1 on page 101 shows the torque equilibrium setup present in this experiment.

The engine generates sufficient torque to drag the main and tail rotor blades through the

air, and the fuselage reacts with equal and opposite torque. As said previously, the first

part of the experiment frees the tail rotor inputs such that the tail rotor blades find an

equilibrium position with minimum energy. This minimum energy equilibrium state for

the tail rotor corresponds to the torque consumed to overcome profile drag. In contrast,

the main rotor generates thrust which induces a component of drag in addition to profile

drag. This is the torque that the engine puts on the body, and the toruqe that the

bending beam load cell measures. During the second part of the experiment, the lad
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cell beam measures the difference between the reaction force from the fuselage and the

torque generated by the tail rotor. This allows for the characterization of the tail rotor

torque.

The experiment consists of four parts

1. open loop main rotor torque characterization

2. open loop tail rotor aerodynamic characterization.

Appendix K on page K details this experiment. The main rotor angular velocity

remains constant throughout the duration of the experiments. Figure 9.2 on page 102

shows the helicotper on top of the Linear and Directional Test Stand (LDTS).

9.2 Open Loop Main Rotor Torque Characterization

Section K.3.1 on page 421 details the work done during this part of the experiment.

Figure 9.3 on page 104 shows data collected during this portion of the experiment. The

main rotor angular velocity remains constant for portions of the data run when the

collective blade pitch angle is varied to generate thrust. The torque measured by the

bending beam load cell measures the reaction torque from the fuselage. It is easy to see

that the fuselage reaction torque follows the main rotor collective blade pitch angle; this

is due to the torque induced by the generation of thrust (lift on the rotating wings or

blades). Figure 9.4 on page 105 shows a portion of the data presented in the previous

figure, and the measured average torque for a section of the flight data when the blade

pitch angle remained constant. The change of altitude of the helicopter (bottom graph)

helps determine the thrust generated by the helicopters as described in Section I.4 on

page 395. With the thrust of the main rotor known, the related torque is also known.

These values are varied until the aerodynamic model matches the data collected as shown

on Figure 9.5 on page 106.
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Figure 9.2: Helicopter Research Testbed sitting on the instrumented, purposed-built
Linear and Directional Test Stand (LDTS).
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A fundamental non-linear model of RPM is derived in Section J.2 on page 399 and

proved experimentally in Section K.3.1 on page 421. Figure K.6 on page 427 shows

that the compound main rotor and tail rotor torques could be modeled very accurately

with a bias term plus a nonlinear term involving the product of RPM squared times the

main rotor blade pitch angle raised to the three-halves power. It follows that this model

(equation (J.1.3) on page 398) is key to developing a simple, but accurate transfer function

model of the open-loop plant for the entire helicopter system which is then used to develop

all the feedback control laws for autonomous flight purposes. In particular, the model is

used to linearize the state-equation for RPM dynamics and develop a simple but accurate

transfer function between the available torque of the engine and RPM (equation (J.2.5) on

page 403). Consequently, it is of paramount importance, then, that the data in the upper

graph in Figure 9.5 on page 106 matches the theory developed in Section J.2 on page 399.

This validation of the theory for developing a simple, but accurate transfer function of

the open-loop plant (Figure J.9 on page 409) paves the way for developing simple, but

robust feedback control laws for autonomous flight of the helicopter. Moreover, the model

in equation (J.1.3) on page 398 and experimental data in Figure 9.5 on page 106 are used

in a feedback linearization loop that estimates the trim engine torque very accurately for

all flight conditions. That is, for a given input RPM and main rotor blade pitch angle

θMR, equation (J.1.3) on page 398 and experimental results in Figure 9.5 on page 106

give a non-linear estimate of the trim throttle setting throughout the helicopter flight

envelope. The intrinsic and fundamental importance of this result cannot be overstated.

The development of accurate and robust open-loop transfer function for the helicopter

main rotor RPM and the development of a torque feedback linearization mechanism

valid throughout the allowable flight envelope are key milestones for and two primary

contributions of this thesis work.
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Figure 9.3: Torque Experiment with no Tail Rotor Inputs.

104



2.385 2.39 2.395 2.4 2.405
0

5

10

15
black (dash−dot) −>  throttle (pulse width/500)
blue (dash−dash) −> blade pitch angle θ (deg)
red  (solid) −> offset altitude (in/2) 

time (sec) 

2.385 2.39 2.395 2.4 2.405
0

1

2

3

4

5

6

7
red (solid) −>  measured torque (Nm)
blue (dash−dash) −> measured ang vel Ω (rpm/1000)

Ω = 1400

Figure 9.4: Torque Experiment sample data Ω = 1400 rpm.

105



0 500 1000 1500
0

1

2

3

4

5

6

Ω2 ⋅ θ3/2    [(rad/sec)2 ⋅ rad3/2]

to
rq

ue
 (

N
m

)

Q ≈ kQ ⋅ Ω2 ⋅ θ3/2

red (solid) −> measured torque (Nm)
circles (o) −> measured torque (Nm)
asts (∗) −> computed induced torque (Nm)

red

blue

green

magenta

black

Ω = 1100

Ω = 1200

Ω = 1300

Ω = 1400

Ω = 1500

0 500 1000 1500
1

2

3

4

5

6

7

8

9

    ←  Q ≈ kQ ⋅ Ω2 ⋅ θ3/2 + kQ
0

    ←  Q ≈ kQ ⋅ Ω2 ⋅ θ3/2

red (solid) −> measured torque (Nm)
circles (o) −> computed profile torque (Nm)
asts (∗) −> computed torque (Nm)

Ω2 ⋅ θ3/2    [(rad/sec)2 ⋅ rad3/2]

to
rq

ue
 (

N
m

)

Figure 9.5: Torque Measurements Experiment with free tail rotor inputs.
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9.3 Open Loop Tail Rotor Aerodynamic Character-

ization

Once the main rotor aerodynamic model and related torque characterization is complete,

then the tail rotor aerodynamic characterization use these results to arrive at a reasonable

model for the tail rotor. The tail rotor is particularly difficult to characterize because

of the complex airflow characteristics in which the tail rotor operates. The tail rotor

sees flow components from the main rotor wake which is turbulent and highly non-linear,

from the angular rotation of the body, and from its own rotatory related aerodynamics.

A characterization of the tail rotor will provide the necessary understanding to design

closed loop directional control laws. Section K.3.2 on page 431 details the work done in

this part of the experiment.

Figure 9.6 on the next page shows a data set from a real-time run in which the

tail rotor actively controlled the heading of the helicopter. The bending beam load cell

measured the difference between the reaction torque and the compensating tail rotor

torque. The tail rotor thrust and compensating torque are isolated from the data by

subtracting the component of main rotor torque. The residual torque is the torque

generated by the tail rotor thrust times the moment arm from the center of mass to

the tail rotor hub. In this figure, the red curve is the experimental measured data with

the model-theoretical main rotor torque subtracted from the data. The dark blue curve

is the tail rotor thrust times the moment arm. The light blue curve at the top of the

graph is the main rotor angular velocity in RPM units, the magenta curve is the tail

rotor collective input to the corresponding tail rotor servo. The green curve is the main

rotor induced torque. The graph shows that the model-theoretical computed (dark blue

curve) tail rotor torque closely matches the torque (red curve) estimated from real-time

data measurements.
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9.4 Experimental Results

The top graph on Figure 9.7 on the following page shows the measured torque (red curve)

and the computed torque (black curve). The blue curve is the total computed torque.

The difference between the measured torque and the total computed torque amounts

to losses in the system and in the experimental setup. The induced torque matches

the measured torque very closely. In turn, Figure 9.6 on the previous page shows close

agreement between measured data and estimated tail rotor data.
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Chapter 10

Helicopter Yaw Rate and Heading Control

Experiment

10.1 Experiment Setup

The yaw rate and heading hold experiments were conducted in two steps. During the

first part, the yaw rate experiments utilized the Rotational Dynamics Test Stand (RDTS)

seen in Figure 10.1 on the following page. The second part of the experiments used the

Linear and Directional Test Stand (LDTS) shown in Figure 10.2 on the next page. The

following steps followed the development of the experiments

1. open loop tail rotor control input characterization

2. yaw rate control design

3. heading hold control design

Section L.2 on page 434 covers the development of this section in great detail.

10.2 Open Loop Tail Rotor Control Input Charac-

terization

The principal objective in this portion of the experiment is to find the trim settings

when the tail rotor operates in open loop. This empirical solution to find the tail rotor

trim bypasses a number of difficulties with the tail rotor aerodynamic model, principally
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Figure 10.1: Helicopter on the Rotational Dynamics Test Stand (RDTS) during a real-
time yaw rate experiment.

Figure 10.2: Helicopter on the Linear and Directional Test Stand (LDTS) during a real-
time yaw rate experiment.
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as it relates to the tail rotor thrust prediction in the presence of the main rotor wake.

Figure 10.3 shows data from a real-time data run with the helicopter operating on the

LDTS. The heading of the helicopter is held constant over short periods of time at

various flight conditions indicated by the different main rotor angular velocity settings and

different settings in the main rotor blade pitch angle. Figure 10.4 on the following page

and Figure 10.5 on page 115 plot a collection of data taken during multiple real-time runs,

and the empirical trend in both figures show the relationship between the aerodynamic

model and the trim condition for the tail rotor. These empirical relations are bounded

within errors, and the general trend for tail rotor setting for various flight conditions is

sufficient to predict the corresponding tail rotor trim control setting. Section L.2.1 on

page 437 covers the details pertaining to this work.
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Figure 10.3: Real Time Run with Tail Rotor Inputs.
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10.3 Yaw Rate and Heading Hold Control Design

Figure 10.6 in Section L.2.2 on page 438 shows the model for the yaw rate control design

while Figure 10.7 in Section L.2.3 on page 443 shows the overall design for the yaw rate

and heading hold control. The present control design leads to the general compensator

seen in Figure 10.8 on the next page presented on Section 7.2 on page 80
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Figure 10.6: Yaw Rate p Feedback Control Law.
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10.4 Experiment Results

Section L.2.5 on page 445 presents the results for both the yaw rate and heading hold

experiments. The heading hold experiment is shown in Figure 10.9 on page 118 for

convenience. The heading hold works with adequate performance which can be modified

by tuning of the proper control gains.
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Chapter 11

Helicopter Pitch and Roll Attitude Experiments

11.1 Experiment Setup

The roll θ and pitch φ attitude experiments take place on the Rotational Dynamics Test

Stand (RDTS) shown in Figure 11.1 on the next page. This test stand can pitch, roll and

yaw in all three axis simultaneously or one axes at the time, or with any combination

of the three axes. As such, it is particularly useful for the testing of the pitch and roll

control loops of the helicopter. The experiments consist of three parts:

1. pitch rate q stability and pitch command θc tracking and hold

2. roll rate p stability and roll command φc tracking and hold

3. pitch and roll stability and command attitude command track while tracking and

holding heading commands ψc

11.1.1 Pitch Rate Stability and Pitch Command Track and

Hold Experiment

Unlike previous experiments, the pitch rate stability and command track and hold exper-

iment does not require special test runs to determine the trim conditions. The control

loop is as shown in Figure 11.2 on page 121, and Section L.3 on page 448 presents the

derivation of the control laws. In this test run, the main rotor angular velocity Ω and

the main rotor blade pitch angle θblade remain constant. The RDTS is configured such
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Figure 11.1: Real-Time Run of the Helicopter on top of the Rotational Dynamics Test
Stand (RDTS).
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that only pitch attitude is possible to minimize damage in case the experiment does not

go as planned. Figure 11.3 on the following page presents data from test results. It

can be seen that the pitch control loop remains stable while tracking and holding the

pitch command. During free flight, the pitch command would not remain constant for

an extended period of time, but rather, the pitch command would track commands from

a performance locomotion loop as shown in Figure 7.12 on page 92.
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loop.
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Test Stand (RDTS). In the figure, the top graph plots the roll p and pitch q rates and
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11.1.2 Roll Rate Stability and Roll Command Track and Hold

Experiment

The roll rate and roll command track and hold control law design is as shown in Fig-

ure 11.4 on the following page, and Section L.4 on page 452 presents the derivation of the

control laws. Similar to the test run for the pitch control loop, in this test run, the main

rotor angular velocity Ω and the main rotor blade pitch angle θblade remain constant. The

RDTS is configured such that only roll attitude is possible to minimize damage in case

the experiment does not go as planned. Figure 11.5 on page 125 presents data from test

results. It can be seen that the roll control loop remains stable while tracking and holding

the roll command φc. During free flight, the roll command would not remain constant for

an extended period of time, but rather, the roll command would track commands from

a performance locomotion loop as shown in Figure 7.12 on page 92.

11.1.3 Simultaneous Pitch and Roll Stability Command Track

and Hold Experiment while Tracking and Holding Head-

ing Commands

The simultaneous roll and pitch attitude control laws operate as shown in Figure 11.6 on

page 127. The control laws are the same as those derived in previous sections. During

tests, the main rotor angular velocity Ω and the main rotor blade pitch angle θblade remain

constant. In this case, however, the RDTS is configured to move in all axis. Figure 11.7

on page 128 shows data results from a test run experiment with all axes free. During

the first part of the experiment, the pitch and roll loops track and hold a zero attitude

command. The loops remain stable during the complete flight even in the presence of

hard directional maneuvers. During the second part of the experiment, the heading loop

tracks and holds a constant command even when subject to a hard attitude maneuver.

All throughout the experiment, the roll rate p and the pitch rate q remain bounded as
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expected. At this point, the helicopter is a stable platform ready for free flight. Figure

11.7 tells us that the helicopter knows how to maintain attitude stability
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Figure 11.7: Simultaneous attitude command tracking and hold for roll φ, pitch θ and
heading ψ with constant angular velocity Ω. In the figure, the top-most graph presents
the heading command tracking and hold, the second graph shows the roll p and pitch
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for the first part of the run, and tracking commands for the second part of the run. The
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Chapter 12

Helicopter Hardware and Software Integration

12.1 OU Helicopter Research Testbed: A Systems

Engineering Design Approach

Section M on page 459 details a System Engineering (SE) approach to the design of the

University of Oklahoma Helicopter Research Testbed (OU-HRT). The systems require-

ments originate from the customer or principal stakeholder. Careful consideration of the

Voice of the Customer (VOC) through the use of SE tools such as Affinity Diagrams,

Tree Diagrams and Quality Function Deployment (QFD) arrives at the need to develop

a computer based method for autonomous fight (the process) with a miniature helicopter

ad the testbed (the product). In this regard, the combined autonomous miniature he-

licopter and the method for autonomous flight is collectively named the OU Helicopter

Research Testbed. Figure M.11 on page 476 illustrates the top level functional decom-

position for the OU-HRT, and Figure M.12 on page 477 shows the OU-HRT subsystem

decomposition and related work break-down structure. Based on these results from the

SE analysis, Figure M.13 on page 478 shows the complete system architecture for the

OU-HRT. This system architecture is useful within the context of a much larger project

that the present. A simplified system architecture shown in Figure 12.1 on the follow-

ing page is suitable for initial autonomous flight research. Moreover, Figure 12.2 on the

next page illustrates an architecture suitable for Hardware-in-the-Loop (HWIL) work the

OU-HRT.
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Embedded Vehicle 
Control

Vehicle Control Unit

Mission Control Unit

IMU

GPS

Ground Station
Human Computer Interface (HCI)

Fault Detection and 
Identification Control Unit

Stability Augmentation System

• Teleoperation
• HWIL real-time test control
• Real-Time Telemetry

• Operator Command Processing
• Sensor Fusion (Exteroceptive and 

Proprioceptive Features)
• Behavior State Machine Based
• Execute Mission and Obstacle avoidance
• Guidance and Navigation

Mission Planning and 
Control (MPC)

• Mission Planning and Control
• Way-Point generation
• Operator’s Model and Expert System

• Read Mission and Sensor Inputs 
• Process Mission State Machine
• Command and Actuate

Figure 12.1: Simplified system architecture for the University of Oklahoma Helicopter
Research Testbed for Autonomous Flight.

Embedded Vehicle 
Control
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Ground Station
Human Computer Interface (HCI)
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Identification Control Unit

Stability Augmentation System

• Teleoperation
• HWIL real-time test control
• Real-Time Telemetry

• Operator Command Processing
• Sensor Fusion (Exteroceptive and 

Proprioceptive Features)

• Read Mission and Sensor Inputs 
• Process Mission State Machine
• Command and Actuate

Figure 12.2: Simplified system architecture suitable for Hardware-in-the-Loop real-time
tests with the University of Oklahoma Helicopter Research Testbed.
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12.2 Hardware Interface

Figure 12.3 on the following page shows the primary hardware interface among the various

components of the autonomous helicopter. Two sets of flight computers interface the

hardware to the software. A dual MC68332 µC1 (Figure 2.18 on page 29) interfaces to the

aerodynamic actuators via electromechanical servomechanisms and related mechanical

links (Figure 2.5 on page 19, Figure 2.8 on page 22 and other details in Chapter 3 on

page 34). The interface to the engine is via a servo and a throttle that controls the air-

fuel mixture to the engine, and the engine interface to the rotating main and tail rotor

components is via a set of belt-gear and other related gears (Figure 2.4 on page 18). In

addition, the dual MC68332 µC interfaces to some sensors via a digital bus.

A second (primary) flight computer in the PC104 form factor (Figure 2.17 on page 29)

interfaces to various sensors via analog, digital and serial bus, to the dual MC68332 µC

via a serial bus, and to the ground station via serial wireless link. Figure 12.4 on page 133

shows the data bus interface among the various hardware components, and Table 12.1

on page 134 itemizes the bus interface for the same hardware components.

1µC = microcontroller
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serial bus 
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serial 
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MotionPak

data link
(FreeWave)
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RTK GPS
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Figure 12.4: Hardware data bus architecture.
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Table 12.1: Hardware Interface to Flight Computers

bus interface component

dual MC68332 µC digital ultrasound sensor (z)

PWMa Hall sensor (Ω)

PWM servo inputs (δ0, δφ, δθ, δTR, δth)

serial main CPU (PC104)

main CPU (PC104) serial compass (φ, θ, ψ)

serial GPS (x, y, z)

analog MotionPak (u̇, v̇, ẇ, p, q, r)

serial dual MC68332 µC

serial wireless link to ground

a PWM = digital pulse-width modulation

12.3 Software Interface

Figure 12.5 on the following page shows a UML2 sequence diagram [9, 35, 128] with the

primary helicopter software components. The ground station provides the human inter-

face to the rest of the system. A wireless link provides a data path between the ground

station and the free flying helicopter. The flight code that executes on the primary flight

computer performs three main tasks: (1) gather sensor and ground station command

information, (2) perform data fusion and step the control software, and (3) send actuator

commands to the hardware actuators. The helicopter dynamics and the environment

actions are themselves software components during simulation runs.

2UML = Unified Modeling Language
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: d a t a _ f u s i o n ( )

: g e t _ c m d D a t a ( ): g e t _ d a t a ( )

: g e t _ a t m P r e s s ( ): r o t o r B o d y _ e o m ( )
: d a t a _ i o ( )

: d a t a _ i o ( ): g e t _ d a t a ( ) : g e t _ t e m p ( ): s t e p _ f l i g h t C o n t r o l ( ): a c t u a t e ( )
: g e t _ g u s t ( ): g e t _ w i n d ( )

: d y n a m i c s _ r i g i d B o d y ( ): d y n a m i c s _ r o t o r ( )
: n a v i g a t e ( )

: e n v i r o n m e n t: f l i g h t c o d e: g r o u n d s t a t i o n : h e l i c o p t e r: s e n s o r / a c t u a t o r s: w i r e l e s s l i n k : g e t _ s e n s o r D a t a ( )
: m i s s i o n c o n t r o l ( )

D i a g r a m : s e q u e n c e d i a g r a m P a g e 1
Figure 12.5: Software abstraction for data input/output across the various software com-
ponents.

12.4 Hardware, Software and Systems Integration

Figure 12.3 on page 132 shows the basic layout of the helicopter system. The various

onboard hardware sensors are itemized in Table 6.1 on page 68 and in Table 12.1 on the

previous page. Figure 12.4 on page 133 shows the hardware bus architecture used for data

collection and data transfer, and Figure 12.5 shows the primary software components that

glue together the control code with the various sensors and hardware actuators shown in

Figure 2.8 on page 22.

Figure 12.6 on the next page shows the top level simulation diagram for the helicopter

SIMULINK [101] simulation and control environment. The simulation block implements

a physics-based aerodynamic model of the helicopter’s main rotor, tail rotor, and the

helicopter rigid body six degrees-of-freedom (6DoF) equations of motions (EOM). The

control block, which operates in the primary flight control computer shown in Figure 12.3

on page 132, implements the helicopter flight controls and the guidance and navigation

scheme. The control block implements all the signals and integrates the various feedback

control loops (Figure 7.12 on page 92) and the bus management control logic (Figure 12.4

on page 133) into a single control module [136].
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t

main rotor
 Results

init

Signal Setup

Helicopter Dynamics

Helicopter Controller

Clock

Figure 12.6: Helicopter SIMULINK simulation environment.

12.4.1 Embedded Software Generation

The simulation environment shown in Figure 12.6 is implemented in SIMULINK [101].

This is a pictorial or diagram based simulation language that provides two major advan-

tages. The first advantage is that pictorial diagrams make complex information man-

agement and processing easier to understand and communicate. The second advantage

is that SIMULINK allows for automated code generation via the Real Time Workshop

(RTW) software suite. Once the diagrams have been debugged in simulation, the RTW

automated code generation tool exports error free C/C++ code that is easily integrated

within the helicopter embedded software architecture. The code that is used in simula-

tion is exactly the same code that is used in implementing the real-time embedded flight

code [136]. Figure 12.7 on the following page shows the process for embedding the control

code in the working hardware with the following steps:

1. design and test the control code in the SIMULINK simulation environment

2. generate automated C/C++ code from SIMULINK via the RTW tools.

3. interface the embedded control code with the real-time operating system (RTOS)

in a middleware (wrapper) code.

4. run the executable code within the real-time hardware-in-the-loop (HIL) environ-

ment.
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12.4.2 Hardware and Software Integration

The hardware and software integration takes place in the middleware or wrapper code.

The middleware code connects the various software components with the hardware via

input/output interface to sensors and actuators. The nature of the interface is dictated

by the hardware itself and can be digital, analog, serial or other related standards such

as CAN or 1553 standard interface. The abstract top-most middleware embedded code

takes the form in Listing 12.1 on page 138.� �
main ( )

{

i n i t ( ) ;

while ( true )

{

r e a d s e n s o r s ( ) ;

s t e p c o n t r o l c o d e ( ) ;

update ac tuator s ( ) ;

}

}� �
Listing 12.1: Embedded runtime hardware/software integration code

The initialization code contained within the init () method contains the necessary

commands that set the hardware to a known initial state. Subsequent to this, an infinite

loop reads the sensor outputs, steps the embedded control code that generate the proper

actuator commands, and sends those new updated commands to the hardware actuators.

12.4.2.1 Hardware Initialization

The hardware initialization process is of paramount importance. The initial system state

defines a known starting point that define initial stabilization, guidance and navigation
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control inputs. Table 12.2 defines initialization actions for the various hardware compo-

nents, and Figure 12.8 illustrates the top-most level for the initialization state diagram.

Table 12.2: Hardware Initialization Action

hardware component signal initialization action

hall effect sensor Ω initialize software filter
pizo-elec rate gyro, MotionPak p, q, r bias reading

initialize software filter
electronic compass φ, θ, ψ bias reading

initialize software filter
pizo-elec accelerometers, MotionPak u̇, v̇, ẇ bias reading

initialize software filter
differential GPS x, y establish differential link

read initial position
ultrasound/infrared transducers z initialize software filter
analog to digital transducer Vbat initiate reading
electro-mechanical servos PWM initiate to neutral settings

(see Table 3.2 on page 41)
ground station init comm. with helicopter

ground commands ready

setbiascalculationsreadsensorsaveragesensorreadingsgeneratebiasreadingssetdifferentialGPSestablishGPScomm:ground+RTKestablish2cmSphericalErrorProbable

systemreadyhealthmoniotorreadygroundcommandsreadyfeedbackcontrolready

init
resetfaultdetectionandidentificationresetsystemstates
error systemready
error initializesystemsinitfiltersinitactuatorcommandsinitguidanceandnavigationsetMainRotoriddleang.vel:700RPM

Diagram:initPage1
Figure 12.8: Helicopter top level initialization state diagram.

12.4.2.2 Sensor Reading

Table 6.1 on page 68 summarizes the signals available to the various sensors. In turn,

Table 12.1 on page 134 summarizes the hardware interface to the sensors themselves.
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Figure 12.3 on page 132 and Figure 12.4 on page 133 illustrate the hardware interface

between the sensors and the flight computers. The sensor information is recorded asyn-

chronously from the respective sensors and stored in a universaly available data bus.

The data bus information is available to all software engines (i.e. the embedded control

executing in the main and secondary flight control computers and the ground station

software) at every control step. The sensor data record is obtained by low level drivers

which update the data bus at proper intervals. There is no direct control of the low level

input drivers from any of the supervisory control loops. This ensures modularity between

the system specific low level drivers and the more general supervisory control schemes

running in the distributed flight and control computers.

12.4.2.3 Step Embedded Controller

The embedded controller step takes place at 50 Hz which is the update rate for the

actuator pulse with modulation signals. The embedded control code is contained within

the SIMULINK Helicopter Control in Figure 12.6 on page 136. This embedded control is

designed, simulated and tested within the SIMULINK environment, and auto generated

into C/C++ code via the Real Time Workshop (RTW) SIMULINK tools. Figure 7.12

on page 92 illustrates the general control design for the stability augmentation control

(SAC) scheme implemented in the control step. Guidance and Navigation (G & N)

commands are executed at a higher level that feed position commands to the embedded

SAC controller.

12.4.2.4 Update Actuator Commands

The embedded controller generates a new set of actuator commands that are directly fed

to the five basic helicopter actuators (Figure 2.7 on page 21 and Figure 2.8 on page 22).
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Chapter 13

Summary and Conclusions

13.1 Summary

The work accomplished in this dissertation included building an entire experimental

flight program from scratch that encompassed (a) the instrumentation of a miniature

helicopter (4.86 ft. main rotor diameter, 11.5 lbs. empty weight) with 6DOF accelerators

and gyros, telemetry, differential GPS system, compass, on-board computer, hall effect

sensor, (b) design and fabrication of test stands for testing flight controls, (c) development

of dynamics/aerodynamics models of main rotor, tail rotor, and main rotor stabilizer

bar, helicopter engine, and rigid body frame, (d) design and development of feedback

control for engine governor, main rotor RPM control, heading and yaw rate control,

pitch and pitch rate control, roll and roll rate control, (e) running numerous real-time

hardware-in-the-loop experiments with helicopter on test stands to test flight behavior,

(f) on-board software integration of sensors, actuators, telemetry, controls, and models,

(g) development of ground station interaction with helicopter, and (h) understanding

how main rotor longitudinal and lateral cyclic control works.

The hardware sensors installed aboard the helicopter included the Systron Donner

MotionPak (6DOF inertial system), NovaAtel ProPack II (Differential GPS), SHARP

GP2D02 infrared and Ultrasound sensors (short range and altitude), Honeywell HMR3000

electronic compass (direction), and Hall effect sensor (main rotor RPM). The performance

specifications for these sensors are detailed in Appendix I. Five servos were installed to
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provide control inputs to main collective (lift control), tail rotor collective (heading con-

trol), throttle input (RPM control of main rotor), longitudinal cyclic (pitch control), and

lateral cyclic (roll control).

The Ampro PC104 (Intel x86 chip at 100 MHZ) which runs on the QNX Real-Time

Operating System and the Dual Motorola MC68332 were selected as the two on-board

CPU systems for carrying out all mission planning, sensor, telemetry and control func-

tions. The PC104 is a 32bit microcontroller with 32 DIO, 32 TPU channels, and QSPI

communication between it and the MC68332. It served as the primary flight computer

and handled the FreeWave data link, the RTK GPS, compass sensor, and MotionPak as

well as communications between its serial bus and the serial bus of the auxiliary flight

computer (i.e., the dual MC68332). The two MC68332 microcontrollers are 32bit in

which one is the master and the other is the slave. The master does the ground station

i/o, handles the direct RC-safety link to the five actuators, and produces the five servo

inputs through its PWM bus as well as sensor i/o from the Hall sensors through its PWM

bus. The slave communicates with the PC104, handles GPS i/o, and handles sensor i/o

from the ultrasound sensor through its digital bus. The software packages used to pro-

gram the CPUs with embedded C/C++ code were MATLAB, SIMULINK, Real-Time

Workshop, QNX RTOS.

Two novel test stands were designed and fabricated so that the instrumented heli-

copter could be placed on them for experimental testing of feedback control behavior.

These were build from scratch. The first one is a linear and directional test stand (LDTS)

for testing elevation, yaw, and heading commands. The second one is a rotational and

dynamics test stand (RDTS) for testing pitch, pitch rate, roll, and roll rate commands.

These two test stands were designed and built so that the RDTS stand could be mounted

easily on top of the LDTS test stand making a combined LRDTS stand. The combined

LRDTS stand is a test stand for testing all the above in any combination as desired:

elevation, yaw, heading, pitch, pitch rate, roll, and roll rate commands. Finally, we made
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use of a third test stand - the rate-table test stand (RTS) for calibrating the compass

and MotionPak sensors as well as calibrating for horizontal position, ranging position,

and angular motion about axes of rotation. The calibration of all sensors and hardware

parameters (e.g., inertias) are presented in detail in Appendix I.

Next, the fundamental helicopter aerodynamic theory was fully developed for our

specific application to the helicopter system under study. Momentum theory and Blade

element theory were combined to provide the theory for blade element-momentum theory

(BEMT) and documented in Appendix C. This was used to develop the blade equations

of motion in Appendix D which in turn was used to develop the rotor force and moment

equations in Appendix E. The rigid body dynamics equations of motion were used to pro-

vide the trim equations about a flight conditions (Appendix F) and helicopter stability

derivatives (Appendix G) and these were used together with the rotor forces and mo-

ments equations (Appendix E) in deriving the coupled rotor-fuselage equations of motion

(Appendix H). These in turned were used together with the trim equations (Appendix

F) to develop the final set of linear rotor-fuselage equations of motion (Appendix H) for

the Helicopter model.

The open-loop dynamics model for helicopter engine and main rotor RPM control was

derived in Appendix J using the combined Blade Element and Momentum and Theory

(BEMT) of Appendix C, taking into account the coupled dynamics of the carburetor,

engine, main rotor and blade systems. Experimental data from test stand runs were

used to estimate parameters of our theoretical model and, therefore, estimate accurately

available power and main rotor torque. The non-linear throttle command input mapping

to fuel rate was obtained using this method. A very important development was made

at this step. We showed that main rotor and tail rotor torques could be modeled very

accurately with a bias term plus a nonlinear term involving the product of RPM squared

times the main rotor angle-of-attack raised to the three-halves power. This model was

then used to linearize the state-equation for RMP dynamics and develop a simple but
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accurate transfer function between the ”available torque of the engine” and RPM. This

transfer function was then used to develop a simple, but accurate transfer function model

of the open-loop plant for the entire helicopter system which was then used to develop

all the feedback control laws for autonomous flight purposes. Classical control methods

(e.g., Nyquist diagrams, Bode plots, pole placement, gain and phase margins) were used

to derive the feedback controller for controlling the main rotor RPM and achieve 60

degrees phase margin and infinite gain margin. An engine-carburator model was used

to perform simulation of the closed loop systems. The simulation results compared well

with the real-time data; see Figure J.14. Reliable control of the main rotor RPM is

very fundamental for subsequent control and performance work since this control loop

decouples the engine and the main rotor RPM from the remainder of the helicopter

dynamics. Consequently, the RPM could be taken as a constant in the development of

the other feedback controllers.

Combined Blade Element and Momentum theory was used to derive theoretical mod-

els for main and tail rotor aerodynamics of the helicopter. The parameters of these theo-

retical models were fine tuned using experimental data from runs on the test stands. The

identification results for these helicopter aerodynamic models are described in Appendix

K. The governing equations for yaw and heading angular motion were then obtained

by implanting these identified models into the rigid body equations of motion that had

been derived in Appendix B. Applying the appropriate trim conditions for the hover case

(Appendix F), the open loop plant dynamics are derived for the yaw and heading control

loops in Appendix L in Section L.2. Using the open loop plant and classical control, a

yaw rate feedback controller was designed. After its implementation into the helicopter’s

CPU, test stand runs were made. The experiments on the test stands demonstrated accu-

rate tracking of heading commands as well as holding a prescribed heading. Simulations

were also conducted. The simulation results were shown to agree well with the real-time

flight data obtained from the test stand experiments, Figures L.9 and L.10. This closed

144



loop decoupled another layer of non-linear dynamics from the overall helicopter equations

of motion. That is, the heading feedback control loop automatically compensates for the

torque and power changes due to the main rotor and tail rotor aerodynamics.

With RPM and heading loops well stabilized and with the helicopter tracking RPM

and heading commands accurately, we focused next on the pitch axis. Main rotor longi-

tudinal cyclic blade flapping theory (Appendix D) and the rigid body equations of motion

(Appendix E) together with the extended linearized equations of motion (Appendix H)

were used to derive a theoretical model for the open loop plant for the pitch axis, Section

L.3 in Appendix L. Parameters of the model were fine tuned using experimental flight

data from test stand runs. The application classical control techniques generated a closed

loop system that provides adequate performance and disturbance rejection and is illus-

trated in Figure L.15. Again, simulation runs were conducted and the results compared

well with real-time flight data gathered on the test stand, Figure L.15.

Next, we focused on the roll axis. The process for developing feedback control for

the roll axis was similar to that used for the pitch axis except that lateral cyclic was

used instead of longitudinal cyclic. That development was documented on Section L.4

of Appendix L. The application of classical control techniques generated a closed loop

system that provides adequate performance and disturbance rejection and is illustrated

in Figure L.17. Again, simulation runs were conducted and the results compared well

with real-time flight data gathered on the test stand, Figure L.17. Coupled pitch and

roll axis behavior is shown in Figure L.18 and demonstrates that the feedback controllers

for the pitch and roll axes track commands very well in the presence of disturbances.

The experimental results that came from the test stands proved invaluable in devel-

oping stability and tracking capability for the helicopter to track RPM, heading, yaw

rate, pitch, pitch rate, roll, and roll rate commands in the presence of disturbances. This

was achieved with the execution of all the real-time hardware-in-the-loop (HWIL) experi-

mental testing on the test stands. The Real-time HWIL testing on the test stands proved
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valuable in every aspect of our work since such HWIL tests utilized actual flight hardware

to characterize the dynamic and aerodynamic behavior of the helicopter. The feedback

control law development in this dissertation demonstrates that helicopter stability and

its capability to track commands are completely achievable by using only test stands and

actual flight hardware in HWIL, all without pilot assistance and without crashing the

vehicle

Appendix M describes a modern system engineering approach to the design of the

overall helicopter system. Furthermore, Chapter 12 details the steps taken to integrate

all hardware and software. The hardware interface or hardware data bus architecture

between the various sensors and actuators and the flight computers were described in

Figure 12.4. Next, the integration of the relevant embedded software with the actual

hardware had to follow a specific process for proper system initialization and subsequent

operation. This process was described in Figure 12.5. Part of the embedded software was

auto generated from SIMULINK using the control laws that had been developed earlier

and that had been validated against the various models obtained from actual flight data.

This step was of great importance because the auto code generation process implemented

in this way, using only proven and validated software without any further (hand-coded)

human intervention, minimizes the possibility of human errors.

The hardware and software integration also included the development and integration

of the ground station with the flight hardware and flight software. The ground station

provided the flight vehicle with reference GPS information needed for differential GPS.

In addition, the ground station provided a proper engineering graphical user interface

(GUI) that enabled a necessary human-computer interface (HCI). The ground station,

therefore, was both a vital link and enabling technology that made the real-time HWIL

testing possible as well as a highly desirable data collection link.

In summary, the method developed in this thesis work consisted of at least four

fundamental steps. The first step was to achieve an in-depth understanding of how
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the complete overall system works. This step started with gaining a theoretical and

fundamental understanding of how the rotor aerodynamics interacted with the fuselage

and how that affected the control of the vehicle. Understanding this interaction indicated

how to decouple a highly non-linear system via feedback linearization techniques. That

is, the RPM feedback loop had to be closed first so that RPM could be treated very much

like a constant for the rest of the feedback loops. Next, it was beneficial to compensate

the tail rotor torque for tracking heading commands before proceeding to the pitch and

roll attitude axes. As a result, the feedback controllers for the pitch and roll attitude

axes could be easily derived using classical control techniques.

Second, the integration of the relevant sensor suite hardware with embedded soft-

ware necessitated an understanding of system engineering techniques that enabled the

encapsulation of a complex problem (generation of embedded real-time code) to be eas-

ily abstracted as part of the system characterization, simulation and validation work.

Third, the design of relevant real-time HWIL tests that are needed for proper system

identification, subsequent development of feedback controllers, and performance testing

served as a tool of great value to the engineer, since flight hardware is an essential part of

the package that is needed to fully characterize any real system. Fourth, the application

of control theory in the development of feedback controllers follows naturally and with

relative ease once the other steps have been done correctly.

In conclusion, the main contribution of this work is laying out every detail of what is

required to design and execute successfully a helicopter hover mode flight program based

on using only test stands without the assistance of a pilot and without ever crashing

the vehicle. The main point is that every unmanned helicopter flight program could

implement this method for flying autonomously in the neighborhood of the hover mode

before ever bringing in pilot assistance to do gain scheduled flight across an extended

flight envelop.
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Appendix A

First Principles

A.1 Notations

A summary of kinematics definitions follows [85]. In general the angular velocity A~ωB of

body B in A is given by:

A~ωB = ~b1

Ad~b2

dt
•~b3 +~b2

Ad~b3

dt
•~b1 +~b3

Ad~b1

dt
•~b2 (A.1.1)

and also:

A~ωB = A~ωX + X~ωN1 + · · ·+ Nn−1~ωZ + N ~ωB (A.1.2)

where n is the number of auxiliary frames. The angular acceleration of B in A is such

that:

A~αB =
AdA~ωB

dt
=
BdA~ωB

dt
(A.1.3)

Given that ~n is a vector fixed in body B, then:

Adñ

dt
= A~ωB × ñ (A.1.4)

If ~n is any vector, its time derivative in both frames A and B are related as:

Adñ

dt
=
Bdñ

dt
+ Aω̃B × ñ (A.1.5)

where Aω̃B is the angular velocity of B in A. Let vector ~p be a vector from a fixed

point O in A to any other point moving in reference frame A, then the velocity A~vp and
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acceleration A~ap of ~p in A are given by:

A~vp =
Ad~p

dt
(A.1.6)

A~ap =
AdA~vp

dt

Let P and Q be two points fixed on a rigid body B with angular velocity A~ωB in A,

and also let ~r be the position vector from Q to P. Then the velocity A~vp and acceleration

A~ap of P in A, and the velocity A~vq and acceleration A~ap of Q in A follow the following

relation [85]:

A~vp =
Ad~p

dt

=
Ad(~q + ~r)

dt

= A~vq + A~ωB × ~r

A~ap =
AdA~vp

dt

=
AdA~vq

dt
+
AdA~ωB

dt
× ~r + A~ωB ×

Ad~r

dt

= A~aq + A~αB × ~r + A~ωB ×
(A~ωB × ~r)

(A.1.7)

Let point P be moving in the rigid body B, while the body B is itself moving within the

reference frame A, then the velocity A~vp of P in A and the acceleration A~ap of P in A

are given by [85]:

A~vp = A~vp̂ + B~vp (A.1.8)

A~ap = A~ap̂ + B~ap + 2A~ωB × B~vp

where A~vp̂ is the velocity in A of point P̂ of B that coincides with P at the same instant

under consideration, and B~vp is the velocity of P in B. Similarly, the term A~ap̂ is the

acceleration of P̂ in A, B~ap is the acceleration of P in B, and 2A~ωB × B~vp is the Coriolis

acceleration experienced by point P moving in frame B.
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A.2 Angular Momentum and

Moment of Momentum

The following originates from a variety of sources, mainly [39, 62, 96, 103].

Let o~rdm be the position vector from point O to a differential mass element dm in

body B, and let I~vdm be the velocity of the mass element dm in the inertial frame I.

The moment of momentum ~Ho of a rigid body B about a point O is defined as:

~Ho =

∫
B

o~rdm × I~vdm dm (A.2.1)

where quantity I~vdm dm is the momentum of the differential mass element dm, the quan-

tity o~rdm is the moment arm, and the cross product o~rdm × I~vdm dm is the moment of

that momentum about point O in body B.

Using equation A.1.7 we have that the velocity I~vdm is given by

I~vdm = I~vo + I~ωB × o~rdm (A.2.2)

and equation A.2.1 becomes:

~Ho =

∫
B

o~rdm ×
[
I~vo + I~ωB × o~rdm

]
dm

=

∫
B

[
o~rdm × I~vo

]
dm+

∫
B

[
o~rdm ×

(
I~ωB × o~rdm

)]
dm

(A.2.3)

Next we use the triple product identity to get:

~a× (~b× ~c) = ~b(~a · ~c)− ~c(~a ·~b) = ~b~a · ~c− ~c~a ·~b (A.2.4)
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and reverse the order of dot products to get:

o~rdm ×
(
I~ωB × o~rdm

)
= I~ωB o~rdm · o~rdm − o~rdm

I~ωB · o~rdm

= o~rdm · o~rdm
I~ωB − o~rdm o~rdm · I~ωB

(A.2.5)

We now use identity tensor operator such that:

~~I · ~n = ~n · ~~I = ~n

then

o~rdm · o~rdm
I~ωB = o~rdm · o~rdm

~~I · I~ωB = or
2
dm
~~I · I~ωB (A.2.6)

using A.2.5 and A.2.6 then equation A.2.3 becomes:

~Ho =

∫
B

[
o~rdm × I~vo

]
dm+

∫
B

[
or

2
dm
~~I · I~ωB − o~rdm o~rdm · I~ωB

]
dm (A.2.7)

In the above equation A.2.7, both terms I~vo and I~ωB are constant with respect to the

variable of integration, and can therefore come outside the integral such that:

~Ho =

∫
B

o~rdm dm× I~vo +

∫
B

[
or

2
dm
~~I − o~rdm o~rdm

]
dm · I~ωB (A.2.8)

the term

~Co =

∫
B

o~rdm dm (A.2.9)

is the first moment of inertia about point O in body B, and the term

~Io =

∫
B

[
or

2
dm
~~I − o~rdm o~rdm

]
dm (A.2.10)

is the second moment of inertia about point O. Equation A.2.8 becomes

~Ho = ~Co × I~vo + ~Io · I~ωB (A.2.11)
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In the case when the point O is the center of mass of body B, then the first moment

of inertia ~Co becomes zero (no distance o~rdm). In this case the moment of momentum

about the center of mass (CM) of body B becomes:

~HCM = ~ICM · I~ωB (A.2.12)

In turn, the angular momentum ~ho about point O of a rigid body B is defined as:

~ho =

∫
B

o~rdm × o~̇rdm dm (A.2.13)

Note that in the above equation A.2.13 the term o~̇rdm dm is not the momentum of the

differential element dm. Making use of equation A.1.5 we have that

o~̇rdm =
Ido~rdm

dt
=
Bdo~rdm

dt
+ I~ωB × o~rdm (A.2.14)

but
Bdo~rdm

dt
= ~0 (A.2.15)

since o~rdm is fixed in body B. Substituting the above in equation A.2.13 we have:

~ho =

∫
B

o~rdm ×
(
I~ωB × o~rdm

)
dm (A.2.16)

Following the preceding development, equation A.2.16 above becomes:

~ho = ~Io · I~ωB (A.2.17)

It is worthwhile to notice that the moment of momentum ~Ho and the moment of inertia

~ho are equal only when point O coincides with the center of mass of body B. Both

quantities are not equal in all other cases.
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A.3 Newton’s Law for Moment of Momentum

An application of Newton’s 2nd Law tells us that the sum of all moments ~Go about point

O in body B equals the rate of change of moment of Momentum ~̇Ho about that point

such that:

~Go = ~̇Ho (A.3.1)

Since both the first moment of inertia ~Co and the second moment of inertia ~Io are constant

in the body frame, we have that

~̇Ho = ~Co × I~̇vo + ~Io · I ~̇ωB + I~ωB ×
(
~Io · I~ωB

)
(A.3.2)

Noticing that I~̇vo = I~ao and rearranging the above equation we have:

~Go − ~Co × I~ao = ~Io · I ~̇ωB + I~ωB ×
(
~Io · I~ωB

)
= ~̇ho (A.3.3)

Again, when point O coincides with the center of mass of body B, then the first moment

of inertia becomes zero (~Co = ~0) and:

~GCM = ~̇hCM (A.3.4)

A.4 Newton’s Law for Linear Momentum

Derivations of Newton’s laws are seen in references [39].

Let m be the mass of a rigid body with center of mass velocity ~vCM , then the rate of

change of linear momentum m~v is given by:

∫
~F =

dm~v

dt
(A.4.1)

In the case when all internal forces occur in equal and opposite vector tuples, then the

internal forces cancel. In this case the term
∫
~F equals the resultant of all the external

forces acting on the system.
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A.5 Fluid Equations of Change

Figure A.1 illustrates a fluid region R at times t and t + ∆t. Let Q = Q (~r, t) be a

property of a fluid volume dv at position ~r and time t, the general integral of the fluid

property for a region R (t) and its derivative are

I (t) =

∫∫∫
R(t)

Q (~r, t) dv

d I (t)

dt
= lim

∆t→0

I (t+ ∆t)− I (t)

∆t

d I (t)

dt
= lim

∆t→0

∫∫∫
R(t+∆t)

Q (~r, t+ ∆t) dv −
∫∫∫
R(t)

Q (~r, t) dv

 1

∆t

(A.5.1)

( )tℜ

n

sV

V

V

( )S t

dv

( )S t t+ Δ
( )t tℜ + Δ

r

Figure A.1: Differential fluid element volume dv with fluid velocity ~V in region <(t)

delimited by surface S(t) with surface normal ~n and surface velocity ~Vs.

Figure A.2 on the next page illustrates equation (A.5.2) on the following page graph-

ically. Region R (t+ ∆t) result from Q (~r, t+ ∆t) dv changes over the original region

R (t) and volumetric changes Q (~r, t+ ∆t) ~VS · ~n∆t over the differential surface dS (t)

where dv = ∆S ~VS · ~n∆t.
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( )t tℜ +Δ

n

sV

( )S t

( )S t t+ Δ

( )tℜ

( )s tΔ

sV tΔ

Figure A.2: Differential fluid volume dv resulting from surface velocity ~Vs.

∫∫∫
R(t+∆t)

Q (~r, t+ ∆t) dv =

∫∫∫
R(t)

Q (~r, t+ ∆t) dv

+

∫∫
©
S(t)

(
Q (~r, t+ ∆t) ~VS · ~n∆t

)
dS +O

(
∆t2
) (A.5.2)

Substituting equation (A.5.2) into (A.5.1) yields

d I (t)

dt
= lim

∆t→0

∫∫∫
R(t)

Q (~r, t+ ∆t) dv −Q (~r, t) dv

 1

∆t

+

∫∫©
S(t)

(
Q (~r, t+ ∆t) ~VS · ~n∆t

)
dS

 1

∆t
+O

(
∆t2
) (A.5.3)
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After taking the limit, the above expression gives Leibniz rule of integral differentiation:

d

dt

∫∫∫
R(t)

Q (~r, t) dv =

∫∫∫
R(t)

∂

∂t
Q (~r, t) dv

+

∫∫
©
S(t)

(
Q (~r, t) ~VS · ~n

)
dS

(A.5.4)

Equation (A.5.4) is a general expression for an open finite region R (t) that does not have

knowledge of any physical concept. A specialization of the above equation takes place

when the surface is attached to the material such that

~VS = ~V (~r, t) ,
d

dt
→ D

Dt
(A.5.5)

In this case the general derivative operator d/dt becomes the material or substantial

derivative operator D/Dt. Application to equation (A.5.4) yields

D

Dt

∫∫∫
R(t)

Q (~r, t) dv =

∫∫∫
R(t)

∂

∂t
Q (~r, t) dv +

∫∫
©
S(t)

(
Q (~r, t) ~V (~r, t) · ~n

)
dS (A.5.6)

Equation (A.5.6) is the Reynold’s Transport Theorem for closed or material regions.

Next, taking the difference of the open region and the closed region gives

d

dt

∫∫∫
R(t)

Q (~r, t) dv =
D

Dt

∫∫∫
R(t)

Q (~r, t) dv −
∫∫
©
S(t)

(
Q (~r, t)

(
~V − ~VS

)
· ~n
)
dS (A.5.7)

Equation (A.5.7) says that the rate of change of an open region equals the rate of change

of a closed region minus the velocity of fluid relative to the material surface.
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A.5.1 Mass Equations of Change: Conservation of Mass

Let Q (~r, t) = 1, and let ρ (~r, t) be the mass density per unit volume. In this case, the

mass of region R is given by

∫∫∫
R(t)

ρQ (~r, t) dv =

∫∫∫
R(t)

ρ (~r, t) dv , ρ (~r, t) = mass per unit volume (A.5.8)

Application of equation (A.5.7) on the preceding page gives

d

dt

∫∫∫
R(t)

ρ (~r, t) dv =
D

Dt

∫∫∫
R(t)

ρ (~r, t) dv −
∫∫
©
S(t)

(
ρ (~r, t)

(
~V − ~VS

)
· ~n
)
dS (A.5.9)

but by definition of ρ as the mass density per unit volume,

D

Dt

∫∫∫
R(t)

ρ (~r, t) dv = 0 (A.5.10)

then
d

dt

∫∫∫
R(t)

ρ (~r, t) dv = −
∫∫
©
S(t)

(
ρ (~r, t)

(
~V − ~VS

)
· ~n
)
dS (A.5.11)

Equation (A.5.11) is the expression for conservation of mass for an open region where

the density ρ can be discontinue. The term on the left is the time rate of change of mass

in the region R, and the term on the right is the net outflow of mass from region R.

Applying equation (A.5.10) to the Reynold’s Transport Theorem in equation (A.5.6) on

the previous page gives

0 =

∫∫∫
R(t)

∂

∂t
ρ (~r, t) dv +

∫∫
©
S(t)

ρ (~r, t) ~V (~r, t) · ~n dS (A.5.12)

Equation (A.5.12) is the expression for conservation of mass when ρ is continuous and

belongs to the same material. Applying the divergence theorem

∫∫∫
R(t)

div ~A dv =

∫∫
©
S(t)

~A · ~n dS (A.5.13)
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to the right most portion of equation (A.5.12) on the previous page gives

∫∫∫
R(t)

div
(
ρ~V
)
dv =

∫∫
©
S(t)

ρ~V · ~n dS

div
(
ρ~V
)

= lim
∆v→0

1

∆v

∫∫
©
S(t)

ρ~V · ~n dS
(A.5.14)

Equation (A.5.14) gives the divergence theorem physical meaning in that div
(
ρ~V
)

equals

the net outflow from region R as the region shrinks to a point. Application of the

divergence theorem to equation (A.5.12) on the previous page gives

0 =

∫∫∫
R(t)

[
∂ρ

∂t
+ div

(
ρ~V
)]

dv (A.5.15)

For an arbitrary region , the integrand in (A.5.15) must be zero

0 =
∂ρ

∂t
+ div

(
ρ~V
)

(A.5.16)

Equation (A.5.16) is the continuity equation, a conservative form for a point expression

for continuous mass conservation that holds at every point in the flow. The term ρ~V is

the mass flux or flow of mass per unit time per unit area. For steady flow ∂ρ/∂t = 0 and

div
(
ρ~V
)

= 0 (A.5.17)

Equation (A.5.17) is the continuity equation for steady flow. Expanding the term

div
(
ρ~V
)

as

div
(
ρ~V
)

= ρ div~V + ~V ∇ρ

and substituting in equation (A.5.16)

0 =
∂ρ

∂t
+ ~V ∇ρ+ ρ div~V

0 =
Dρ

Dt
+ ρ div~V

(A.5.18)
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where Dρ/Dt = ∂ρ/∂t+~V ∇ρ is the material or substantial derivative. Equation (A.5.18)

on the previous page is the non-conservative or particle form of the continuity equation.

For incompressible flows

div~V = 0 = lim
∆v→0

1

∆v

∫∫
©
S(t)

~V · ~n dS

Dρ

Dt
= 0

(A.5.19)

Equation (A.5.19) says that the density per unit volume ρ is constant or the density of a

fluid particle is constant but different particles in the fluid might have different densities.

A.5.2 Momentum Equations of Change: Conservation of Mo-

mentum

Let Q (~r, t) = ~V (~r, t), then mass flux vector ρ~V represents the transport of mass through

space per unit time per unit area. For a fixed mass system, the time rate of change of

momentum equals the sum of the forces acting on the region R

D

Dt

∫∫∫
R(t)

ρ~V dv =
∑

(forces acting on region)

=

∫∫∫
R(t)

ρ~f dv −
∫∫
©
S(t)

p~n dS +

∫∫
©
S(t)

~n · ¯̄τ dS
(A.5.20)

where ¯̄τ is the viscous stress tensor. Substituting equation (A.5.20) into equation (A.5.7)

on page 171 gives

d

dt

∫∫∫
R(t)

ρ~V dv =

∫∫∫
R(t)

ρ~f dv −
∫∫
©
S(t)

p~n dS +

∫∫
©
S(t)

~n · ¯̄τdS

−
∫∫
©
S(t)

(
ρ~V
(
~V − ~VS

)
· ~n
)
dS

(A.5.21)

where the right most term in the above equation represents the outflow of momentum.

Equation (A.5.21) on the previous page is the most general form of the equation of change
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for angular momentum for region R. It says that the time rate of change of momentum

of an open region equals the time rate of change of momentum of a closed region minus

the outflow of momentum from the region. Application of the gradient and divergence

theorems to the Reynold’s transport theorem in equation (A.5.6) on page 171 and to

equation (A.5.20) on the previous page to a flow in a continuous region R gives

D

Dt

∫∫∫
R(t)

ρ~V dv =

∫∫∫
R(t)

ρ~f dv −
∫∫∫
R(t)

grad (p) dv +

∫∫∫
R(t)

div (¯̄τ) dv

=

∫∫∫
R(t)

[
ρ~f − grad (p) + div (¯̄τ)

]
dv

=

∫∫∫
R(t)

[
∂

∂t
ρ~V + div

(
ρ~V ~V

)]
dv

(A.5.22)

The integrand in the above equation must banish for an arbitrary region R, then

∂

∂t
ρ~V + div

(
ρ~V ~V

)
= ρ~f − grad (p) + div (¯̄τ) (A.5.23)

Equation (A.5.23) above is a differential equation for the conservative form of the time

rate of change of momentum. The term ρ~V ~V is the momentum flux tensor such that

div
(
ρ~V ~V

)
=
(
divρ~V

)
~V + ρ~V · ∇~V (A.5.24)

Substitution of equation (A.5.24) into (A.5.23) and expanding gives

ρ
∂

∂t
~V +

[
∂ρ

∂t
+ divρ~V

]
~V + ρ~V · ∇~V = ρ~f − grad (p) + div (¯̄τ) (A.5.25)

where ∂ρ/∂t+ divρ~V = 0 by virtue of the continuity equation (A.5.16) on page 173. In

addition,

ρ
∂~V

∂t
= ρ

∂

∂t
~V + ρ~V · ∇~V
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and therefore equation (A.5.25) on the previous page becomes

ρ
∂~V

∂t
= ρ~f − grad (p) + div (¯̄τ) (A.5.26)

Equation (A.5.26) is the particle equation for continuous flow.

A.5.3 Energy Equations of Change: Conservation of Energy

The internal energy of a differential fluid volume dv with mass ρdv is given by (ρdv) e

where e is the internal energy per unit mass. The kinetic energy of the fluid volume is

(ρdv)V 2/2. The total internal and kinetic energy of a fluid particle is therefore

ρdv

(
e+

V 2

2

)

For a continuous region R, the first law of thermodynamics says that the time rate of

change of internal plus kinetic energy following a closed region equals the rate of work

done by the forces action on the system plus the rate of heat going into the system from

the surroundings. Mathematically

D

Dt

∫∫∫
R(t)

ρ

(
e+

V 2

2

)
dv =

∫∫∫
R(t)

ρ~f · ~V dv +

∫∫
©
S(t)

~n · ¯̄σ · ~V dS −
∫∫
©
S(t)

~q · ~ndS (A.5.27)

where ¯̄σ is the surface stress tensor. The term

∫∫∫
R(t)

ρ~f · ~V dv

is the total amount of work done by body forces. In turn, the term

∫∫
©
S(t)

~n ·¯̄σ · ~V dS
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is the total work done by surface stresses. The term

−
∫∫
©
S(t)

~q · ~ndS

is the energy out of the system as indicated by the negative sign. The term

D

Dt

∫∫∫
R(t)

ρ

(
e+

V 2

2

)
dv

is the time rate of change of energy in a fixed-mass system or closed system. In this case

D

Dt

∫∫∫
R(t)

ρ

(
e+

V 2

2

)
dv =

∫∫∫
R(t)

D

Dt
ρ

(
e+

V 2

2

)
dv

=

∫∫∫
R(t)

[
D (ρdv)

Dt

(
e+

V 2

2

)
+ ρ

D

Dt

(
e+

V 2

2

)
dv

]

=

∫∫∫
R(t)

ρ
D

Dt

(
e+

V 2

2

)
dv

(A.5.28)

since D (ρdv)/Dt is invariant for a fluid particle. Applying the divergence theorem to

equation (A.5.27) on the previous page gives

0 =

∫∫∫
R(t)

[
ρ
D

Dt

(
e+

V 2

2

)
−
(
ρ~f · ~V div

(
¯̄σ · ~V

)
− div~q

)]
dv (A.5.29)

Since the region R is arbitrary, the above equation is true for any region, and the inte-

grand must be equal to zero. The resulting equation

ρ
D

Dt

(
e+

V 2

2

)
= ρ~f · ~V + div

(
¯̄σ · ~V

)
− div~q (A.5.30)

is the equation of change of energy for a continuous medium since the equation does

not specify the stress for solid or fluid or the material to which it applies. This is the

governing equation commonly known as the conservation of energy. For a fluid, the stress
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tensor ¯̄σ takes the form

¯̄σ = −p ¯̄I + ¯̄τ

where ¯̄I is the hydrodynamic unit tensor. Substituting into equation (A.5.30) on the

preceding page yields

ρ
D

Dt

(
e+

V 2

2

)
= ρ~f · ~V − div

(
p~V
)

+ div
(

¯̄τ · ~V
)
− div~q (A.5.31)

Equation (A.5.31) is the conservation of energy equation for a fluid mass in a continuous

region R.
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Appendix B

Helicopter Frames of Reference

B.1 Inertial and Earth Reference Frames

A first order tensor satisfies the transformation law [161]

B~x = BTA A~x (B.1.1)

where the vector ~x describes the position of a point in space with respect to a reference

frame A or B respectively. The transformation BTA contains the mechanism necessary

to transform the description of the point from one reference frame A to another reference

frame B. Seven reference frames are of particular importance for flight mechanics [40,

161], and these are summarized in Table B.1.

Table B.1: Reference Frames in Flight Mechanics

Heliocentric: important for interplanetary travel
Geocentric: considers the rotation of the Earth,

important for orbital trajectories.
Earth-Centered origin at the Earth’s center, considers Earth rotation,

important for orbital flight
Earth-Surface: centered at a local horizontal plane,

reference frame for atmospheric flight
Vehicle-Carried: origin attached to the vehicle.
Atmosphere-Fixed: relevant for aerodynamic velocity and forces
Body frame: relevant for the position and orientation of a vehicle

B.1.1 Heliocentric Reference Frame

The Heliocentric frame H is located at the center of the Sun with its orientation defined

such that its ~h1 axis points toward the Autumnal Equinox on the plane of the ecliptic,
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the ~h2 axis points toward the Winter Solstice on the same ecliptic plane, and the ~h3

axis completes a right-handed orthonormal set perpendicular to the ecliptic plane. The

Heliocentric plane is of importance for interplanetary travel[161].

B.1.2 Geocentric Reference Frame

The Geocentric G reference frame is located one astronomical unit from the center of

the Sun, and its orientation is given by the base vector [~xEC , ~yEC , ~zEC ]. The vector ~gi1 is

oriented toward the vernal equinox , the ~gi3 vector is oriented with the Earth’s rotational

axis, and the vector ~gi2 completes the orthonormal right-handed vector. Notice that for

this frame to be truly an inertial frame, then the frame must define its position and

orientation with respect to a particular epoch [161]. Such a frame has been defined by

astronomers as the J2000 System [152].

B.1.3 Earth-Centered Reference Frame

The Earth-Centered frame EC is collocated with the Geocentric reference frame with

its origin at the Earth center, and is defined by the base vectors [~xEC , ~yEC , ~zEC ]. The

Earth-Centered Frame is similar to the Geocentric reference frame G except that the EC

frame has its ~xEC vector aligned with the equatorial vernal equinox. The orientation of

the EC frame differs over long periods of time with respect to the orientation of G and

J2000 systems. The EC frame is commonly used in Earth orbital flight since the duration

of these orbital flights are short with regard to the drift rate of its defining axis.

B.1.4 Earth-Surface Reference Frame

The Earth-surface E frame is located on the surface of the Earth, and its most impor-

tant characteristic is that it neglects the rotation I~ωE of the Earth. The base vectors

[~xE, ~yE, ~zE] describe the orientation of this frame such that ~zE is directed toward the

center of the Earth, ~xE is directed toward the north, and ~yE completes the right-handed

orthonormal tuple [40].
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B.1.5 Vehicle-Carried Reference Frame

The vehicle carried frame V frame is attached to and is located at the center of mass

CM belonging to a vehicle. The base vectors [~v1, ~v2, ~v3] are oriented such that the ~v3

axis is directed toward the center of the Earth along the gravity vector ~g. The ~v1 axis

is oriented toward the north, and its ~v2 axis completes the right-handed orthonormal

tuple. The reference frame V is parallel to the reference frame E when the travel time

or distance is short.

B.1.6 Atmosphere-Fixed or Wind Reference Frame

The Atmosphere-fixed reference frame A is located relative to E through a distance

related to the average wind velocity E ~w in E . Let the vehicle velocity relative to the

atmosphere be A~v, then the vehicle velocity relative to E is given by

E~v = E ~w + A~v (B.1.2)

B.1.7 Body-Fixed Reference Frame

The Body-Fixed reference frame B is located at the center of mass CM of the vehicle.

The orientation of this reference frame is such that the ~b3 axis is oriented downward, the

~b1 axis is oriented toward the nose of the vehicle, and the ~b2 completes the orthonormal

right-handed set of axes. In this frame, the velocity components relative to a suitably de-

fined inertial reference frame are given by [u, v, w] and the corresponding inertial angular

velocity is given by the [p, q, r] vector [39, 119] .

B.1.8 Inertial Reference Frame

Consider a stationary or not moving coordinate system or inertial reference frame I in

which Newton’s laws are valid for mass (m) particle motion such that

1. ~f = sum of all external forces acting on a particle

2. ~a = particle’s acceleration relative to I

3. then ~f = m~a
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The angular rotation of the Earth in an inertial frame is a superposition of several angular

rotations:

1. rotation on Earth’s axis,

2. rotation of Earth’s axis in its orbit around the Sun,

3. additional motion of the solar system and galaxy.

Space and hypervelocity flights need to account for all three angular motions, but atmo-

spheric flight is mostly concerned with Earth’s rotation about its axis when the flight

time is significant with respect to both distance and time. Local (less than 15o of Earth

radii) and relatively slow moving helicopter flight (such as hover flight with zero wind)

considers the Earth’s axis as an inertial frame fixed in space [39]. In this case, Earth’s

sidereal angular velocity ΩE is constant with respect to inertial frame. The inertial

angular velocity of the Earth expressed in Earth Fixed frame EC is

I~ωEC =


0

0

ΩE

 (B.1.3)

Figure B.1: Earth-Centered Reference Frame and Earth-Surface Reference Frame
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In turn, the Earth’s inertial angular velocity expressed in Earth Surface frame E is

= ET EC2 (λE)ΩE

I~ωE =


sinλE cosλE

1

cosλE − sinλE




0

0

ΩE

 =


cosλE

0

− sinλE

ΩE

(B.1.4)

where (λE, µE) are the latitude and longitude of a reference point oE in the Earth frame

E (see Figure B.1 on the preceding page).

The inertial angular velocity I~ωV of the vehicle frame V is

I~ωV = I~ωEC + EC~ωV (B.1.5)

where the inertial velocity I~ωE of the Earth Centered frame in terms of the vehicle frame

V is

= VT EC2 (λ)ΩE

I~ωECV =


sinλ cosλ

1

cosλ − sinλ




0

0

ΩE

 =


cosλ

0

− sinλ

ΩE

(B.1.6)

and the angular velocity E~ωV of the vehicle frame V relative to the Earth Centered frame

EC takes the form

= −λ̇~v2 + µ̇ ~zEC

EC~ωV =


0

−λ̇

0

+


sinλ cosλ

1

cosλ − sinλ




0

0

µ̇

 =


µ̇ cosλ

−λ̇

−µ̇ sinλ


(B.1.7)
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Substituting equations (B.1.6) and (B.1.7) into equation (B.1.5) gives the angular velocity

of the vehicle frame V expressed in the V reference frame

I~ωV =


(ΩE + µ̇) cosλ

−λ̇

− (ΩE + µ̇) sinλ

 (B.1.8)

Helicopter flight involves angular dynamics that is inherently faster than the Earth’s rota-

tion ΩE. Whence a large number of helicopter flight missions neglect the Earth’s rotation

and assume a non-rotating earth approximation. In addition, the three dimensional dis-

placements and velocities involved in most helicopter maneuvers do not require taking

into account the curvature of the Earth. Whence it is reasonable to accept a locally flat

Earth approximation for helicopter missions of short duration. Heretofore, the devel-

opment of the equations of motion (EOM)are based on the following two fundamental

assumptions:

1. Local Flat Earth

2. Non-rotating Earth

B.2 Relations between the Body B and Vehicle V

Reference Frame

Figure B.2 on the next page illustrates the body-fixed reference frame B with body axis

[x, y, z]T , inertial body velocity [u, v, w]T , inertial body angular velocity [p, q, r]T , and

corresponding inertial aerodynamic and propulsive forces [XY Z]T and inertial moments

[LMN ]T . The angular attitude of the helicopter is most commonly specified by a set of

angular rotations about three independent directions. The standard rotation sequence

used in flight mechanics consists of a yaw ψ rotation about the v3 axis of the vehicle frame

V (equation (B.2.1)), a subsequent pitch θ rotation about the new y-axis (equation

(B.2.2)), and a final roll φ rotation about the intermediary x-axis (equation (B.2.3))
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[39, 119, 141].

XT V3 (ψ) =


cosψ sinψ

− sinψ cosψ

1

 (B.2.1)

ZTX2 (θ) =


cos θ − sin θ

1

sin θ cos θ

 (B.2.2)

Figure B.2: Vehicle Body-Fixed Frame B

BTZ1 (φ) =


1

cosφ sinφ

− sinφ cosφ

 (B.2.3)

where the frames X and Z in the above equation are intermediary frames. The
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resultant transformation BT V from Vehicle Frame V to body frame B is therefore

= BTZ1 (φ)ZTX2 (θ)XT V3 (ψ)

BT V =


cθcψ cθsψ − s θ

sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ


(B.2.4)

where c(·) = cos(·), s(·) = sin(·). The transformation BT V is orthonormal such that

[BT V]T =
[BT V]−1 ⇔ VTB =

[BT V]T (B.2.5)

Figure B.3, Figure B.4 on the next page and Figure B.5 on the following page show

the standard nomenclature for helicopter flight with a view from the side, top and rear

respectively.

( ),x X

( ),z Z

r

M

3v

p
u

α
Vθ

1v

w

g

Ω

Figure B.3: Symmetric flight nomenclature and body frame axis. Side view.
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reference direction

β

V
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N

Ω

Figure B.4: Asymmetric flight nomenclature and body frame axis. Top view.

( ),z Z

r

2v

g

( ),y Y

3v

φ

N

w

Figure B.5: Euler angles and frame rotations. Rear view.
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B.3 Relations between Wind Reference Frame W

and Body Reference Frame B

The wind reference frame W is aligned with the free stream velocity vector. The aircraft

aerodynamic forces and moments are related to the velocity vector, and therefore, the

wind reference frame is of great significance in forward flight. The sideslip angle β (see

Figure B.4 on the previous page) and the angle of attack α (see Figure B.3 on page 186)

relate the orientation of the wind reference frame W to the body reference frame B.

From Figure B.4 on the previous page and Figure B.3 on page 186 it follows


u

v

w

 =


V cosα sin β

V sin β

V sinα cos β



V

β

α

 =


(u2 + v2 + w2)

1/2

sin−1 (u/V )

tan−1 (w/u)


(B.3.1)

To align the vehicle with the relative wind, the aircraft performs a left-handed rotation

XTW3 (−β) through sideslip angle β, and a right-handed rotation BTX3 (α) through angle

of attack α such that

= BTX3 (α)XTW3 (−β)

=


cosα − sinα

1

sinα cosα




cos β − sin β

sin β cos β

1



BTW =


cα cβ −cα sβ −sα

s β c β

sα cβ −sα sβ cα



(B.3.2)
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B.4 Euler Angle Rates

Rate gyros physically mounted in the body of the helicopter measure the absolute inertial

body rates I~ωB = [p, q, r]T . The angular velocity of the body frame B is

I~ωB = I~ωV + V~ωB (B.4.1)

where I~ωV is given by equation (B.1.8) and V~ωB = [P,Q,R]T is the angular velocity of

the body frame B relative to the angular velocity of the vehicle carried frame V such

that

I~ωB − I~ωV =


P

Q

R

 =


p

q

r

− BT V

(IωE + µ̇

)
cos(λ)

−λ̇(IωE + µ̇
)

sin(λ)

 (B.4.2)

Integration of the absolute inertial angular rates [p, q, r]T has no useful physical meaning

since the body rates are expressed in body axes. For the inertial rates measured in

the body frame to be useful, they must be related to the Euler angles [φ, θ, ψ]T used in

determining the body frame orientation in equation (B.2.4) [39, 119, 141]. The inertial

Euler rates expressed in body axes are related to the inertial body angular velocity as:


P

Q

R

 =


φ̇

0

0

+ BTZ1 (φ)


0

θ̇

0

+ BTZ1 (φ)ZTX2 (θ)


0

0

ψ̇



=


1 0 −sθ

0 cφ sφcθ

0 −sφ cφcθ



φ̇

θ̇

ψ̇


(B.4.3)

Inverting equation (B.4.3) gives an expression for the Euler rates in terms of the relative

rates [PQR]T 
φ̇

θ̇

ψ̇

 =


1 sinφ tan θ cosφ tan θ

cosφ − sinφ

sinφ sec θ cosφ sec θ



P

Q

R

 (B.4.4)
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Using the flat non-rotating Earth assumption on page 184, the expression for I~ωV vanishes

such that equation (B.4.2) becomes

I~ωB − I~ωV =


P

Q

R

 =


p

q

r

 (B.4.5)

and the Euler rates in equation (B.4.4) are found by the following differential equations


φ̇

θ̇

ψ̇

 =


1 sinφ tan θ cosφ tan θ

cosφ − sinφ

sinφ sec θ cosφ sec θ



p

q

r

 (B.4.6)

Figure B.6: Euler rates tracking.

The above equation (B.4.6) involves transcendental differential equations for the Euler

angles. This implies that in general, the above equation does not have a closed form

solution, and a solution may have to use numerical methods. The diagram in Figure B.6

illustrates an algorithm that keeps track of the body frame B attitude using Euler rates

and sensor information from the body fixed mounted gyros.
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B.5 Applied Newton’s Laws

The goal of this section is to develop a basic set of non-linear equations of motion that

describe the kinematics and dynamics that relate to the motion of a six degree of freedom

rigid body in atmospheric flight. Standard representation for kinematic equations can

be found in reports and papers by McFarland [102], Alderete [1], Heffley and Jewell [67].

Etkin [39] covers a wide range of topics related to atmospheric flight and flight mechanics

including the derivation of equation of motion for atmospheric flight. Other literature

such as Padfield [119], Seckel [132], Stevens and Lewis [143] and Stengel [141] are sources

for detailed flight mechanics derivations. Zipfel [161] covers the topic of flight mechanics

from a tensor transformation-invariant perspective. The linear form of Newton’s Second

Law is given by equation (A.4.1) on page 168, and the angular form of Newton’s Laws

are given by equation (A.3.1) on page 168. Newton’s law is applied to the force and

moment resolved into body axes, taking Coriolis and gravity forces into consideration.

B.5.1 Translation Dynamics

Figure B.7: Inertial Body Dynamics.
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Consider the Earth Centered EC frame an inertial frame. Further assume a flat, non-

rotating Earth (section §B.1.8 page 184) such that the Earth fixed E frame of reference

is also an inertial frame. Let point O in Figure B.7 on the preceding page be a reference

point in E , the vector ~q be a vector from O to the center of mass of body B, and the

vector ~p be a vector from O to an arbitrary point p in B. Let ~r be the vector from the

body’s center of mass q to the arbitrary point p. Then the following holds [85] :

~p = ~q + ~r

Id ~p

dt
=

Id ~q

dt
+

Id~r

dt

I~vp = I~vq + I~ωB × ~r

Id I~vp
dt

=
Id I~vq
dt

+
Id I~ωB

dt
× ~r + I~ωB ×

Id~r

dt

=
Bd B~vq
dt

+ I~ωB × B~vq + I~αB × ~r + I~ωB ×
(I~ωB × ~r

)
I~ap = B~aq + I~ωB × B~vq + I~αB × ~r + I~ωB ×

(I~ωB × ~r
)

(B.5.1)

where ~r = [x y z]T , I~vq = ETB[u v w]T , I~ωB = [p q r]T are expressed in terms of the body

frame B span vector [~b1, ~b2, ~b3]T . Expansion of the inertial acceleration I~ap gives

I~ap =


u̇

v̇

ẇ

+


qw − rv

ru− pw

pv + qu

−

x (q2 + r2) + y (pq − ṙ) + z (pr + q̇)

y (p2 + r2) + z (qr − ṗ) + x (pq + ṙ)

z (p2 + q2) + x (pr − q̇) + y (qr + ṗ)

 (B.5.2)

In the case when point p coincides with the center of mass then the vector ~r = 0. In this

case the above equation (B.5.2) reduces to

I~ap =


u̇

v̇

ẇ

+


qw − rv

ru− pw

pv + qu

 (B.5.3)

Let Newton’s Second Law be valid in the Earth fixed E inertial frame and expressed
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in the body frame takes the form:

I ~FCM =
d(m I~vCM)

dt
(B.5.4)

where the vector I ~FCM is the sum of inertial forces external to body B

I ~FCM =


X

Y

Z

+ BT V


0

0

g

 (B.5.5)

The above equation (B.5.5) is expressed in body frame B axis where the gravitational

force is BT V [0 0 g]T , and the aerodynamic and propulsive forces are lumped into [XY Z]T .

Substituting equations (B.5.3) and (B.5.5) in equation (B.5.4) and expanding yields the

translation dynamic equations:

u̇ = rv − qw +
X

m
− g sin θ

v̇ = pw − ru+
Y

m
+ g cos θ sinφ

ẇ = qu− pv +
Z

m
+ g cos θ cosφ

(B.5.6)

The forces [X Y Z]T originate form various components in the helicopter such as the main

rotor, the tail rotor, the fuselage, the horizontal and vertical tail, and others. These forces

are mostly aerodynamic in nature, but other dynamic effects also contribute, for example,

gyroscopic and Coriolis effects in the case of the main rotor rotating blades.

B.5.2 Position Dynamics

Consider the case when the Earth Fixed E frame is the inertial frame, then the time

derivative of vector ~q in equation (B.5.1) and Figure B.7 on page 191 is

Id ~q

dt
= I~vq = ETB B~vq (B.5.7)
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where B~vq = [u v w]T , ETB =
[BT E]T and BT E = BT V is given by equation (B.2.4). The

position of the vehicle in the inertial frame I = E for a flat, non rotating Earth expressed

in Earth Fixed Frame E is
ẋE

ẏE

żE

 =


cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

− s θ sφcθ cφcθ



u

v

w

 (B.5.8)

B.5.3 Rotational Dynamics

Section A on page 163 describes the rotational dynamics for a rigid body. The total

moment about the body center of mass ~GCM and associated angular momentum ~hCM are

given by:

~GCM =


L

M

N


B~hCM = BI I~ωB +

∑
i

B~hi

(B.5.9)

The moments [LM N ]T originate from various components in the helicopter such as the

main rotor, the tail rotor, the fuselage, the horizontal and vertical tail, and others. These

moments are mostly aerodynamic in nature, but other dynamic effects also contribute,

for example, gyroscopic moments. Equation (A.3.4) describes the rotational equations of

motion. Presently (A.3.4) takes the form

=
IdB~hCM
dt

=
BdB~hCM

dt
+ I~ωB × B~hCM +

∑
i

B~̇hi +
∑
i

I~ωB × B~hi

~GCM = BI ∗ I~αB + I~ωB × B~hCM +
∑
i

B~̇hi +
∑
i

I~ωB × B~hi

(B.5.10)
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where the term
Bd BI

dt
= 0 (B.5.11)

since the body inertia does not change in the body axis. Also, the terms
∑
i

B~̇hi +∑
i

I~ωB × B~hi relate to the angular momentum of individual rotor components [39]. The

inertia tensor is given by

BI =


Ix −Ixy −Izx

−Ixy Iy −Iyz

−Izx −Iyz Iz

 (B.5.12)

For an xz plane of symmetry the above term becomes:

BI =


Ix 0 −Izx

0 Iy 0

−Izx 0 Iz

 (B.5.13)

The standard helicopter does not have a plane of symmetry because of the tail rotor

and the main rotor rotation. But the assumption of a plane of symmetry is still useful

for first order approximations since symmetry simplifies the set of equations. Let the

helicopter be a rigid body with rotor terms and a plane of symmetry, then expanding
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equation (B.5.10) results in [39, 40, 103]:

ṗ =
L

Ix
+
Iyz
Ix

(q2 − r2) +
Izx
Ix

(ṙ + pq) +
Ixy
Ix

(q̇ + rp) +
(Iy − Iz)

Ix
qr

+
1

Ix

[∑
i

Bḣix + r
∑
i

Bhiy − q
∑
i

Bhiz

]

q̇ =
M

Iy
+
Izx
Iy

(r2 − p2) +
Ixy
Iy

(ṗ+ qr) +
Iyz
Iy

(ṙ + pq) +
(Iz − Ix)

Iy
rp

+
1

Iy

[∑
i

Bḣiy + p
∑
i

Bhiz − r
∑
i

Bhix

]

ṙ =
N

Iz
+
Ixy
Iz

(p2 − q2) +
Iyz
Iz

(q̇ + rp) +
Izx
Iz

(ṗ+ qr) +
(Ix − Iy)

Iz
pq

+
1

Iz

[∑
i

Bḣiz + q
∑
i

Bhix − p
∑
i

Bhiy

]

(B.5.14)

B.5.4 Solution and System Simulation

Equations (B.4.6), (B.5.6), (B.5.8) and (B.5.14) form a set of 12 ODE’s. Six of these

equations are dynamic in nature, and the six remaining equations come from kinematic

considerations. The state vector is given by:

x̃ =

[
u v w p q r φ θ ψ xE yE zE

]T
(B.5.15)

The forces and moments are created by the aerodynamics, gyroscopic, Coriolis forces and

other effects. Some of the components that contribute to the forces and moments are the

main and tail rotors, the fuselage, the vertical tail and horizontal stabilizer, and other

components. Figure B.8 on the next page shows a sketch for a simulation block diagram

that accounts for linear and angular dynamics.

B.6 Main Rotor Frame of Reference

Bramwell [11], Leishman [92], Padfield [119], and Prouty [124] each give descriptions

of the various reference frames used in the analysis of rotor dynamics . Four natural

rotor reference frames are most commonly used in the dynamic analysis of rotors, and
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Figure B.8: Simulation Block Diagram Sketch.
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no one reference is unique [92]. Rather, the selection of one frame over another is a

matter of choice and convenience. The most frequently used rotor coordinate systems

are [11, 92, 119, 124]:

1. Hub Plane (HP): The HP is also known as shaft plane axis. In this reference

system, the rotor hub (a physical part of the helicopter) is perpendicular to the

rotor shaft, and it is oriented with respect to the body axis system. Both flapping

and feathering take place in this plane, and therefore the HP is significantly less

convenient for the calculation of forces and moments. However, such forces and

moments defined in this plane can be easily resolved along the body axis, and

consequently the HP is generally used for blade dynamic analysis.

2. Non Feathering Plane (NFP): The NFP is also known as the control plane. No

variations in cyclic pitch take place in this reference plane, but the blade flap angle

varies cyclically. Performance analysis uses this plane.

3. Tip Path Plane (TPP): The TPP is also known as the Disc Axis. For a rotor with

no hinge offset, the blade tips describe the boundary of this plane. In this plane

there is no first harmonic flapping. When there is a finite hinge offset, then there

is both feathering and flapping in this plane, but the flapping is negligible for small

hinge offsets.

4. Control Plane (CP): The CP is also known as the swashplate plane. This plane is

aligned to the cyclic pitch. In the absence of mechanical cross coupling between

flapping and feathering, the control plane is the same as the NFP. Coupling between

flapping and feathering is present when the blade is free to move about the drag

hinge via Coriolis effects, and when the flapping and drag hinges are deliberately

inclined to induce such coupling [120].

When coupling between blade flapping and feathering exists, the control plane lies be-

tween the NFP and TPP.

B.6.1 Hub Plane (HP) Reference Frame

θ = θ0 − θ1c cosψ − θ1s sinψ

β = β0 − β1c cosψ − β1s sinψ

(B.6.1)
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1. X-axis runs along fuselage symmetry plane and is normal to Z.

2. Y -axis is perpendicular to fuselage symmetry plane and perpendicular to Z.

3. Z axis is normal to shaft.

4. Less convenient to work in this plane, but more useful due to its orientation with

respect to the body axis system.

1 1s cb q-

[ view toward the rear of the rotor @                 ]0oy =

270oy =

1cb

90oy =
1cq

z

y
[ HP ]

[ NFP ]

[ TPP ]

[ TPP ]

[ HP ]

W

[ NFP ]

[advancing blade @                  ]90oy =

z

x
0oy =

180oy = [ HP ]

[ NFP ]

[ NFP ]

[ TPP ]

[ TPP ]

1sq

1cb

NFPa
T PPa

HPa

1sq
[ HP ]

[ relative wind ]

W

1 1c sb q+

Figure B.9: Rotor Reference Frames [11, 92, 119, 124].

B.6.2 Non Feathering Plane (NFP) Reference Frame

1. Collective control moves the blades in pitch by the same amount.

2. Cyclic control tilts the swash-plate.
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[θ]NFP = [θ0]NFP

[β]NFP = [β0]NFP − [β1c]NFP cosψ − [β1s]NFP sinψ

(B.6.2)

B.6.3 Tip Path Plane (TPP) Reference Frame

1. This plane is defined by two straight lines.

• The first connects the blade tips at azimuth angle ψ = 0 and ψ = 180 deg.

• The second connects the blade tips at azimuth angle ψ = 90 and ψ = 270 deg.

2. The rotor thrust is roughly perpendicular to this plane. Whence, this plane is

commonly used in aerodynamic analysis.

3. When the flapping hinges are offset, flapping occurs in this plane. However, for

small hinge offset, the assumption of no blade flapping is valid.

4. In general, analysis in this plane sets flapping to zero.

[θ]TPP = [θ0]TPP − [θ1c]TPP cosψ − [θ1s]TPP sinψ

[β]TPP = [β0]TPP

(B.6.3)

B.6.4 Relations Among Main Rotor Frame of Reference

The amount of blade feathering and flapping depends on the rotor reference frame. For

a teetering type rotor, the amount of blade pitch in the TPP is equivalent to the amount

of flapping in the NFP. For other types of rotors, the feathering and flapping relations

between the TPP and NFP still hold [92]. The feathering/flap equivalence is illustrated

in Figure B.9 on the preceding page from where the following holds [11, 92, 119, 124]

β1c + θ1s = constant = [β1c]NFP = [θ1s]TPP

β1s − θ1c = constant = [β1s]NFP = [θ1c]TPP

[α]TPP = [α]NFP − (β1c + θ1s)

[α]TPP = αh − β1c

[α]NFP = αh + θ1s

(B.6.4)
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In the above equations αs is the angle of attack pertaining to the hub plane. In general, if

the swash-plate is tilted, then the blade chord remains parallel to the swashplate. As the

blade rotates, then feathering takes place in the Hub Plane perpendicular to the shaft.

The swashplate defines the plane of no feathering, and the axis of no feathering passes

through the hub and is perpendicular to the swashplate plane.
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Appendix C

Helicopter Momentum Theory and Blade Element

Theory

Helicopters operate in a number of flight regimes that include hover, vertical, and forward

flight, and also perform maneuvers which combine elements from the aforementioned

and more basic flight conditions. Hover flight involves upward or downward vertical

flow through the rotor, and as such hover is of axial type. In contrast, forward flight

introduces a component of the free stream velocity which adds a cyclic element to the

rotational blade velocity. Therefore, the flow distribution that the blade encounters in

forward flight as it rotates around its rotational axis varies with blade azimuth and results

in asymmetric flow through the rotor. Whence, in forward flight regime, the free stream

velocity combines with varying blade pitch angle and blade flapping to produce non-

linear induced inflow through the rotor. In turn, the rotor inflow affects the blade angle

of attack and the resulting blade lift distribution, rotor thrust and power consumption.

References [26, 27, 53, 82, 92, 124, 133, 154] treat the subject of helicopter rotor

aerodynamics to great depth. This appendix compiles the basic theory and mathematical

models of rotor aerodynamics, and summarizes the main results derived from Momentum

Theory and Blade Element Theory. These two theories combined explain the fundamental

physics involved in helicopter flight mechanics:

1. Simple Momentum Theory:

• Based on an actuator disk concept.

• Provides basic relationships for induced velocity and power required to produce

thrust

• Theory is adequate for hover and vertical flight.
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• Theory does not dwell in the mechanisms that allow the helicopter to produce

thrust.

2. Blade Element Theory:

• Provides a framework for the analysis of the physical mechanisms that keep

the helicopter in the air.

C.1 Simple Momentum Theory in Hovering Flight

Hover flight consists of axisymmetrical, mostly uniform flow through the main rotor. The

flow through a rotor also contains complicated vortice patterns which result from con-

centration of aerodynamic forces at the blade tips due to the existence of high dynamic

pressure at that location. The mathematics that involve modeling of vortice in rotor

aerodynamics is an important active research topic since vortice analysis helps predict

rotor flow effects with greater accuracy [92]. These more elaborate analysis tools are nec-

essary for helicopter and rotor design studies as well as for maneuver flight performance

prediction of main rotor thrust, torque and overall power consumption. Momentum The-

ory is a simpler mathematical approach to the analysis of hovering flight that results in

first order prediction of helicopter performance.

Figure C.1 on the next page illustrates a control volume of air used for analysis of

a helicopter in hover flight [92]. This control volume surrounds the rotor and the air

stream with surface area S and unit vector d~S, and includes the free stream velocity Vc

and wake velocity Vc + w such that

∫∫
©

S

ρ~V · d~S = 0 (C.1.1)

where ρ is the local fluid density and ~V is the local fluid velocity. The above equation

governs the mechanics of conservation of fluid mass (Section A.5.1 on page 172), and

it says that the mass flow entering the control volume must equal the mass flow that

exits the same control volume. With the reasonable assumptions that the streamlined

flow within the rotor wake does not mix with flow outside the wake, and that the flow
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through the rotor behaves in a quasi-steady manner, then the mass flow rate ṁ remains

constant throughout the stream tube that includes the rotor wake. In this case the mass

flow rate ṁ of air within the wake is given by

ṁ =

∫∫
@4

ρ~V · d~S =

∫∫
@3

ρ~V · d~S (C.1.2)

With the added assumption that the stream tube is one-dimensional and incompressible,

then equation (C.1.2) becomes a one dimensional equation with the form

ṁ = ρA∞w = ρAstation2vi = ρAvi (C.1.3)

station 1

station 2

station 3

station 4

cV

c iV v+

c iV kv+ cV V w∞ = +

c iV v+

cV

streamtube

P∞

P∞

1P

2P

mg

dSdS

+ +

Figure C.1: Actuator disc concept for rotor in vertical flight (for hover case Vc equals
zero)

The force exerted on the control volume shown in Figure C.1 equals the rate of

change of momentum of the air mass flowing through S. This mechanics takes the form
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(Section A.5.2 on page 174):

~F =

∫∫
©

S

pd~S +

∫∫
©

S

(
ρ~V · d~S

)
~V (C.1.4)

where the net pressure force on the fluid inside the control volume is zero [56, 92].

∫∫
©

S

pd~S = 0 (C.1.5)

In a hovering helicopter, the main rotor blades form a disk that behaves as an actuator;

that is, the rotor imparts energy to the air mass by accelerating air downwards over

the rotor or actuator disk region. The rotor therefore imparts the force ~F in equation

(C.1.4) above. By virtue of Newton’s third law, the air flow exerts an equal and opposite

force (or thrust ~T ) on the rotor. The quasi-steady, one-dimensional, incompressible flow

assumptions simplify the above equation to the form

~F = ~T =

∫∫
@4

ρ
(
~V · d~S

)
~V −

∫∫
@1

ρ
(
~V · d~S

)
~V (C.1.6)

Equation (C.1.6) is the net change of momentum between station 1 and station 4 in

Figure C.1 on the previous page. In hover flight however, the velocity far above the rotor

is zero such that ∫∫
@1

ρ
(
~V · d~S

)
~V = 0

and therefore

~T =

∫∫
@4

ρ
(
~V · d~S

)
~V = ṁw (C.1.7)

The rotor or actuator disk imparts energy to the airflow passing through the rotor with

the effect of increasing the flow’s kinetic energy. This mechanism in which work W done

on the system per unit time (or power consumed by the rotor) is conserved takes the

form (Section A.5.3 on page 176):

W =

∫∫
©

S

1

2

(
ρ~V · d~S

)
~V 2 (C.1.8)

With the quasi-steady, one-dimensional, incompressible flow assumptions, the work done
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by the rotor per unit time W , or equivalently, the power P consumed by the rotor is

P = W = Tvi =

∫∫
©

@4

1

2

(
ρ~V · d~S

)
~V 2 −

∫∫
©

@1

1

2

(
ρ~V · d~S

)
~V 2 (C.1.9)

In hover flight, the free stream velocity far above is at rest with respect to the rotor, in

this case the term ∫∫
©

@1

1

2

(
ρ~V · d~S

)
~V 2 = 0

and equation (C.1.9) becomes

T vi =

∫∫
©

@4

1

2

(
ρ~V · d~S

)
~V 2 =

1

2
ṁw2 (C.1.10)

Substituting equation (C.1.6) into the above equation (C.1.10) yields

w = 2 vi (C.1.11)

Rearranging equations (C.1.3), (C.1.6) and (C.1.11) gives

T = ṁw = (ρAvi) (2vi) = 2ρAv2
i

vh =

√
1

2ρ

T

A
=

√
DL

2ρ

(C.1.12)

In the above equation vh is the hover induced velocity, and DL = T/A is the disk loading

ratio. The above equation (C.1.12) along with equation (C.1.9) gives the ideal power

that is required to hover as

P = Tvi =
(
2ρAv2

i

)
vi = 2ρAv3

i =
T 3/2

√
2ρA

(C.1.13)

Equation (C.1.13) assumes that the air flow behaves as a quasi-steady, one dimensional

fluid, and does not take into consideration viscous effects or non-linear flow patterns

such as blade tip vortices. The above equation does indicate that for a helicopter to

hover at minimum power for a given thrust (or aircraft weight) it is necessary to keep
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the induced velocity of the rotor at a minimum, with a large mass flow through the disk.

Both conditions for minimum power require a large rotor disk area, and as such, the

main rotor disk area is a major design feature for helicopters.

The above development and results from momentum theory consider the main rotor as

an actuator disk. The above basic laws of physics say that when the actuator disk imparts

energy to the airflow passing through the rotor, this actuation changes the momentum

of the air mass, and the resulting reaction force keeps the helicopter in the air. Basic

assumptions regarding momentum theory and helicopter rotor are [53, 154]:

1. An infinite number of blades forms an actuator disk or rotor.

2. Across this actuator disk there is a sudden increase of pressure.

3. To satisfy conditions far above or below the actuator disk, the pressure gradient

must be decreasing except at the actuator disk.

4. No thrust loss at the blade tips.

5. Vortices generated at blade tips are not directly accounted for.

6. Viscosity effects are not directly accounted for.

7. Velocity across the actuator disk is continuous.

8. Clearly defined stream tube above and below the disc.

9. Air flow is constrained to the stream tube and does not mix with the outside air

10. Rotor disk does not disturb the air outside the stream tube.

11. The actuator disk does not impart flow rotation.

The governing principle is the work done on the column of air by the actuator disk

or rotor. The rotor imparts velocity (kinetic energy) to a column of air downwards

through the rotor plane. As the air accelerates toward the actuator disk with continuously

increasing velocity, the pressure falls and the air tube contracts to conserve the air mass

and energy. At the instant when the air passes through the actuator disk, the flow energy

increases with a resultant increment in flow velocity known as induced velocity vi. This
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change of momentum of the air column in turn produces a reaction force or upward

thrust. Limitations of the simple momentum theory are that the theory only accounts

for losses that originate from producing thrust (induced drag), neglects viscosity and

blade tip losses in the form of vortices, and considers the profile drag to be zero.

Quasi-steady assumptions on the flow imply that the continuity of mass flow ((C.1.3))

in the stream tube imparts the condition that the velocity is continuous through the disc.

One-dimensional flow assumptions allow for the application of the Bernoulli’s equation

to streamlines of the flow above and below the disc respectively such that

P∞ +
1

2
ρV 2

c
= P1 +

1

2
ρ (Vc + vi)

2 (C.1.14)

P2 +
1

2
ρ (Vc + vi)

2 = P∞ +
1

2
ρ (Vc + w)2 (C.1.15)

The disk loading T/A equals the pressure jump across the disk. Subtracting (C.1.14)

from (C.1.15) gives
T

A
= (P2 − P1) =

1

2
ρ (2Vc + w)w (C.1.16)

As expected, manipulations of the above equation (C.1.16) yields equation (C.1.12) again.

Define non-dimensional coefficients pertaining to thrust, power and induced velocity

(for the hover case when Vc = 0):

thrust coefficient: CT ≡
T

ρA (ΩR)2

pressure and torque coefficients: CP ≡
P

ρA (ΩR)3 =
Q

ρAR (ΩR)2 ≡ CQ (C.1.17)

normalized induced velocity: λi ≡
VC + vi

ΩR

where Ω is the angular velocity of the rotor and R is the rotor radius. Substituting

equation (C.1.17) into equation (C.1.12) yields (Vc = 0, hover case):

λi =
1

ΩR

√
T

2ρA
=

1

ΩR

√
DL

2ρ
=

√
T

2ρA (ΩR)2 =

√
CT
2

(C.1.18)
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where the term T/A is the disk loading (DL). Also

CPi =
Tvi

ρA (ΩR)3 =
T

ρA (ΩR)2

vi
ΩR

= CTλi = CT

√
CT
2

=
C

3/2
T√
2

(C.1.19)

Equations (C.1.18) and (C.1.19) are direct results of the application of momentum theory

for hover case when climb velocity is zero. These results are mainly used to obtain first

order performance values.

C.1.1 Momentum Theory: Vertical Climb

In vertical climb the fluid can be considered quasi-steady and one-dimensional since the

flow properties are uniformly distributed at each cross section and vary only in the axial

dimension [92]. Referring back to Figure C.1 on page 204 and equation (C.1.2)

ṁ =

∫∫
@4

ρ~V · d~S =

∫∫
@3

ρ~V · d~S

= ρA@4 (Vc + w) = ρA (Vc + vi)

(C.1.20)

In turn, the momentum equation (C.1.6) becomes

=

∫∫
@4

ρ
(
~V · d~S

)
~V −

∫∫
@1

ρ
(
~V · d~S

)
~V

~T = ṁ (Vc + w)− ṁVc = ṁw

(C.1.21)

The work equation yields

=

∫∫
@4

1

2

(
ρ~V · d~S

)
~V 2 −

∫∫
@1

1

2

(
ρ~V · d~S

)
~V 2

T (Vc + vi) =
1

2
ṁ (Vc − w)2 − 1

2
ṁV 2

c =
1

2
ṁw (2Vc + w)

(C.1.22)
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Equations (C.1.21) and (C.1.22) combined yield w = 2vi as in equation (C.1.11). Using

equations (C.1.20) trough (C.1.22) results in

T = 2ρA (Vc + vi) vi (C.1.23)

Given that thrust in hover is the same as the thrust in un-accelerated climb gives

T = 2ρAv2
h = 2ρA (VC + vi) vi (C.1.24)

where vh is the hover induced velocity for the same thrust T in both hover and un-

accelerated cases. Then

v2
h = (VC + vi) vi

0 =
v2
i

vh2

+
viVC
v2
h

− 1
(C.1.25)

solving for vi/vh

vi
vh

= − VC
2vh
±

√√√√([ VC
2vh

]2

+ 1

)
(C.1.26)

The ratio vi/vh must be positive for a real flow, and therefore the only valid solution is

the one with the positive sign for the squared root [92]

vi
vh

= − VC
2vh

+

√√√√([ VC
2vh

]2

+ 1

)
(C.1.27)

There are two special cases:

vi
vh
' − VC

2vh
+
VC
2vh
≈ 0 given

(
1� VC

2vh

)
(C.1.28)

vi
vh
' − VC

2vh
+ 1 ⇒ vi ≈ vh −

VC
2

given

(
VC
2vh
� 1

)
(C.1.29)
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Figure C.2: Variation of induced velocity for climbing rate

Equation (C.1.28) shows that the induced velocity decreases asymptotically towards

zero as the climb velocity vc increases. In turn, equation (C.1.29) says that for a low

climb rate, then the induced velocity behaves as a linear function of the climb rate.

Figure C.2 below shows the behavior of functions (C.1.28) and (C.1.29). Notice that the

climb solution described by equation (C.1.27) is only valid for flight conditions for which

the climb velocity is greater than or equal to zero. All other flight conditions violate the

flow model used thus far, and the results are therefore not valid.

The required power to climb is related to the rate of change of kinetic energy in the

stream tube.

Pi =
∆energy

∆ time
=

1

2
ṁ
[(
V 2
C + V 2

∞
)
− V 2

C

]
=

1

2
ρA (VC + vi)

(
V 2
∞ + 2vcV∞

) (C.1.30)

and using equation (C.1.24) yields

Pi = 2ρA (vi + VC) vi (vi + VC) = T (vi + VC) (C.1.31)
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Figure C.3: Effects of climb speed on induced power

It is convenient to see the how the hover induced power relates to the climb induced

power. Combining equations (C.1.13), (C.1.27) and (C.1.31) gives

Pi
Ph

=
T (VC + vi)

Tvh
=
VC
vh

+
vi
vh

=
VC
2vh

+

√(
VC
2vh

)2

+ 1

(C.1.32)

The above equation (C.1.32) (see Figure C.3) says that the induced power increases

as the climb speed itself increases. Equations (C.1.27) and (C.1.28) show that at very

high speeds of climb, the induced velocity approaches zero and the induced power also

approaches zero. In this case, equation (C.1.32) becomes

Pi
Ph
≈ VC

2vh
+ 1 ⇒ Pi ≈ Ph +

VC
2vh

Ph

≈ Ph +
TvhVC

2vh

= Ph +
Tvc
2

given

(
1 <<

VC
2vh

) (C.1.33)
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C.1.2 Momentum Theory: Vertical Descent

In vertical descent the climb velocity is less than zero (VC < 0, VC is positive in the down-

ward direction), and the axial flow through the rotor disk is such that the slipstream and

rotor vortex are above the rotor. During some descend states the flow pattern is not well

defined or recirculating in a non-linear fashion, there is no clearly defined slipstream, and

therefore there is no well defined control volume. Under these circumstances, momentum

theory is not applicable. Four different descend states are of interest [92, 124]:

1. windmill brake

2. low descend rate

3. vortex ring state

4. autorotation

C.1.2.1 Windmill Break State (VC/vh ≤ −2)

In this case, the rate of descent is large, the flow is smooth, and the slip stream exists. The

flow goes up through the rotor, and due to the induced velocity, the velocity decreases

as the flow approaches the rotor. This results in the slip stream expanding above the

rotor. In the Windmill brake state, power is transferred from air to rotor, and simple

momentum theory is applicable once again [124]. Figure C.4 shows the axial descent flow

model along with the control volume used to develop results from momentum theory

[92]. This flow model works as long as the the slipstream remains well defined. The sign

convention for VC indicates that the flow well below the rotor has magnitude |VC |, at the

rotor disk the flow velocity has magnitude |VC | − vi, and the flow well above the rotor

has magnitude |VC | − w. During this type of descent the net flow within the slipstream

above the rotor is less than VC and, as previously said, the flow above the rotor expands.

The mass flow rate ṁ is constant within the stream tube:

ṁ =

∫∫
@4

ρ~V · d~S =

∫∫
@3

ρ~V · d~S

= ρA@4 (Vc + w) = ρA (Vc + vi)

(C.1.34)
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Figure C.4: Actuator disc concept for rotor in axial descent

In this case, the momentum equation (C.1.6) becomes

= −
∫∫

@4

ρ
(
~V · d~S

)
~V +

∫∫
@1

ρ
(
~V · d~S

)
~V

~T = −ṁ (Vc + w)− (−ṁ)Vc = −ṁw
(C.1.35)

where the flow rate ṁ is negative during descent. The corresponding work equation is

=

∫∫
@4

1

2

(
ρ~V · d~S

)
~V 2 −

∫∫
@1

1

2

(
ρ~V · d~S

)
~V 2

T (Vc + vi) =
1

2
ṁV 2

c −
1

2
ṁ (Vc + w)2 = −1

2
ṁw (2Vc + w)

(C.1.36)

The negative work indicates that the flow does work on the rotor, or conversely, equation

(C.1.36) above says that the rotor extracts power from the flow. Thusly, when the

descend speed VC/vh ≤ −2, then the descend region is known as the windmill break state.

Equations (C.1.35) and (C.1.36) yield the usual result w = 2vi. Following a development
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similar to that of section §C.1.1 gives

T = 2ρA (−VC − vi) vi = −2ρA (VC + vi) vi (C.1.37)

Similar steps leading to equation (C.1.27) result in

v2
h = − (VC + vi) vi

v2
i

vh2

+
viVC
v2
h

+ 1 = 0
(C.1.38)

solving for vi/vh

vi
vh

= − VC
2vh
±

√√√√([ VC
2vh

]2

− 1

)
(C.1.39)

In this case the only physically possible solution is the one for which VC/vh ≤ 0, then

vi
vh

= − VC
2vh
−

√√√√([ VC
2vh

]2

− 1

)
(C.1.40)

Figure C.5: Theoretical and empirical induced velocity profiles
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Figure C.5 on the preceding page shows the theoretical and empirical induced velocity

curves for the axial climb (normal working state) and large descend rates (windmill break

state). As previously noticed in equations (C.1.27) and (C.1.40), the results from momen-

tum theory only work in the normal working state and the windmill break state. Dashed

curves indicate when the momentum theory does not work. Moreover, the Figure C.5 on

the previous page shows the variation of the induced velocity with vertical flight. Notice

that in the vortex ring state, the induced velocity increases to as much as twice the

induced velocity during hover. Equation (C.1.40) indicates that when Vc/2vh � 1 then

the model generates an invalid solution. There is one special case:

vi
vh
' − Vc

2vh
− Vc

2vh
≈ −Vc

vh
given

(
1 <<

Vc
2vh

)
(C.1.41)

Equation (C.1.41) along with Figure C.5 on the preceding page show that the induced

velocity asymptotically decreases to zero as the descend velocity increases to large values.

C.1.2.2 Vortex Ring State

In the case of low descend rate, the flow is dominated by the induced velocity. The

upward velocity of the rotor is close to or equal in magnitude to the induced velocity. In

this mode the tip vortex filaments are closer to the plane of the rotor and move radially

outward away from the rotor [92]. As a consequence, the expansion of the slipstream is

very large, and there is recirculating flow in the rotor [83, 124]. As mentioned before, both

the expansion of the slip stream and the recirculating flow invalidate the assumptions

necessary for momentum theory, and therefore the momentum theory does not work.

The momentum theory also breaks down when the upward velocity equals the induced

velocity with a zero net velocity through the rotor which results in no thrust. In real

life, the rotor still is able to develop thrust in these circumstances. The vortex ring state

is an unsteady state which causes erratic fluctuations in lift such that the helicopter is

subject to severe vibrations as well as pitch and roll attitude changes with some loss of

rotor control [92, 124]. When the tail rotor experiences a state similar to the vortex ring

state (when flying sideways and hovering in a cross wind), the helicopter may experience

loss of directional control. A healthy research in the subject is on-going as seen in Chen
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[19]. For a more in-depth treatment on the subject matter, references [92] present a good

modern and actualized exposition of this and other working states.

C.1.2.3 Turbulent Wake State

In this state (with higher descent rates) of air flow through the rotor, the wake above

the rotor becomes more turbulent and aperiodic than during the vortex ring state [92].

C.1.2.4 Autorotation

If the collective pitch of the main rotor is set such that the helicopter begins to fall, the

inflow through the rotor reverses and the rotor takes momentum from the air. The source

of energy is the potential energy lost due to the falling machine, the change of momentum

causes the blades to rotate, and the blade rotation at a suitable angle of attack produces

sufficient thrust to slow the rate of descent of the machine. [124]. This condition takes

place at a point when P/Ph = 0 for a given VC/vh and thrust. The topic of autorotation

is covered to a great level of detail by the literature, especially references [92, 124].

C.1.3 Momentum Theory: Forward Flight

A helicopter in forward flight develops a well defined slip stream which allows for a control

volume necessary to apply momentum theory. As previously stated, momentum theory

allows for development of first order performance estimation of forward flight with useful

insight into the physics of forward flight [124]. A simple derivation of momentum theory

results to forward flight can be found in [92]. The original development for application

of momentum theory to forward flight was done by Glauert [54, 57] and referenced by

Leishman [92].

Application of the mass flow rate equation (see equation (C.1.1)) gives

= ρA

√
(V∞ cosα)2 + (V∞ sinα + vi)

2

ṁ = ρA
√
V 2
∞ + 2viV∞ sinα + v2

i

(C.1.42)

Momentum exchange (see equation (C.1.4)) between the flow through the rotor and the
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rotor takes the form:

= ṁ (V∞ sinα + w)− ṁ (V∞ sinα)

T = ṁw

(C.1.43)

Energy exchange between the rotor and the flow (see equation (C.1.9)) yields an expres-

sion for power as

P = T (V∞ sinα + vi) =
1

2
ṁ (V∞ sinα + w)2 − 1

2
ṁV 2

∞ sin2 α

=
1

2
ṁ
(
2wV∞ sinα + w2

) (C.1.44)

where T ∗ V∞ sinα is the required power for climb and propulsion, and Tvi is the power

required for lift. Equations (C.1.43) and (C.1.44) yield w = 2vi. Whence from equations

(C.1.42) and (C.1.43)

T = 2ṁvi = 2ρAvi

√
(V∞ cosα)2 + (V∞ sinα + vi)

2

= 2ρAvi

√
V 2
∞ + 2viV∞ sinα + v2

i

(C.1.45)

In the case when V∞ = 0, then equation (C.1.45) reduces to the hover case in equation

(C.1.12). In forward flight when vi � V∞, equation (C.1.45) becomes equal to the lift of

an elliptically loaded wing [55, 92] as

T = 2ρA viV∞ (C.1.46)

Using hover results from equation (C.1.12) and the above equation (C.1.45) gives

2ρAv2
h = 2ρAvi

√
(V∞ cosα)2 + (V∞ sinα + vi)

2

vi =
v2
h√

(V∞ cosα)2 + (V∞ sinα + vi)
2

(C.1.47)
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Define tip speed ratio or advance ratio µ as

µ =
V∞ cosα

ΩR
(C.1.48)

For forward flight, the normalized inflow velocity or inflow ratio λ is

λ =
V∞ sinα + vi

ΩR
= µ tanα + λi (C.1.49)

were λi = (VC + vi)/(ΩR) is given by equation (C.1.17). Rearranging equation (C.1.47)

such that

vi =
v2
h√

(V∞ cosα)2 + (V∞ sinα + vi)
2

(ΩR)2

(ΩR)2

becomes

λi =
λ2
h√

µ2 + λ2
(C.1.50)

In equation (C.1.18) λh =
√
CT/2 and equation (C.1.50) is now

λi =
CT

2
√
µ2 + λ2

(C.1.51)

Substituting (C.1.51) in equation (C.1.49) gives

λ = µ tanα +
CT

2
√
µ2 + λ2

(C.1.52)

which in general requires numerical procedures to solve for the inflow λ. Equation

(C.1.52) can only be applied when the momentum theory itself is valid. Small upward

or descent axial flow contributes a small normal component of the velocity that passes

through the rotor. As seen in section §C.1.2.2, when this axial flow component is such

that −2vi ≤ V∞ sinα ≤ 0, then the flow direction through the rotor can be in two di-

rections and there is no well defined slipstream. Under these conditions results from

momentum theory are not valid.
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C.1.4 Momentum Theory: Power Consideration in Forward

Flight

Equation (C.1.44) gives an expression for the propulsive and lift power estimates (viscous

effects are not accounted for in this expression). With regard to the power necessary to

hover Ph = Tvi given by equation (C.1.13), equation (C.1.44) becomes [92]:

=
P

Tvh
=
T (V∞ sinα + vi)

Tvh
=
V∞ sinα + vi

vh
P

Ph
=

λ

λh
=

µ

λh
tanα +

λh√
µ2 + λ2

(C.1.53)

In straight and level flight, the equilibrium of forces are such that

T cosα = W

T sinα = D cosα ≈ D

tanα ≈ D

T
=

drag

lift

(C.1.54)

Equation (C.1.53) is now
P

Ph
=

µ

λh

D

T
+

λh√
µ2 + λ2

(C.1.55)

In the case when there is climb or descent, equation (C.1.53) becomes

P

Ph
= λc cosα +

µ

λh
tanα +

λh√
µ2 + λ2

(C.1.56)

where λc is the climb velocity ratio.

C.1.5 Summary of Results from Momentum Theory

Momentum theory captures first order rotor performance characteristics while in hov-

ering, climbing, large descent rate axial flight and forward flight. As such, momentum

theory gives insight into some of the factors that influence basic helicopter performance.

Among the most important contributions of momentum theory are [92, 124, 140]:

220



1. provides means for quantification of first order rotor performance (thrust and

power) in hover, forward and axial (climb and decent) flight.

2. insight into the importance of inflow velocity through the rotor.

3. shows importance of disk loading as a parameter that influences rotor performance

4. physical insight into the relation between low disk loading and hover performance

5. allows for empirical modifications to momentum theory to account for viscous and

other non-linear effects

6. momentum theory is intrinsically simple to develop and apply

Momentum theory does not, however, capture viscous effects such as profile drag, and

dynamic effects such as blade tip vortex and wake flow field dynamics. An example of

momentum theory shortcomings are the vortex effects on power. Momentum theory fails

to account for the effect of the flow conditions due to one blade following the next as the

rotor rotates. The net result of this particular nonlinear effect is a change in the rotor

upwash velocities that for small climb rates, the required power to climb is somewhat

less than the required power to hover. Some additional issues associated with simple

momentum theory are:

1. ignores profile drag losses

2. ignores performance of rotor wake vortex

3. provides no information regarding blade load distribution

4. no insights on how to design rotor blades to produce a given performance (thrust

and related power)

5. does not deal with development of thrust in the individual blade elements

6. analysis breaks down in the vortex-ring state

Blade element theory and combined momentum and blade element theory address many

of the above shortcomings.
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C.2 Blade Element Theory

Leishman [92] provides an excellent historical perspective and a straight forward devel-

opment on the subject of Blade Element Theory (BET). Prouty [124] gives a complete

exposition on BET and its application to rotor design, performance and control. Ref-

erence [26] explores a preliminary engineering approach that uses BET in the design of

helicopter rotors. This appendix summarizes the main results from the blade element

theory compiled from the previous citations.

Blade Element Theory (BET) estimates the dynamic forces and moments associated

with each blade element at a given radius from the rotating axis and at a given position of

the blade azimuth. A blade section has a speed that is proportional to the local radius. If

the blade section is sufficiently small, conditions across the section are constants. In this

way, drag and thrust of the blade element can be readily computed, and the contributions

of all the small blade elements are added to generate the total or net rotor thrust, drag

and moment. Blade element theory has the following characteristics:

1. accounts for profile drag losses

2. gives insight into conditions at the rotor and in the wake

3. deals with thrust in the individual blade elements

The following are reasonable assumptions that can be made with blade element theory

[26, 92, 124]

1. the radial (out-of-plane) velocity UP and the tangential (in-plane) velocity UT are

such that UP � UT ⇒ U =
√
U2
T + U2

P ≈ UT .

2. UP � UT is not valid at the root, but forces close to the root are small.

3. considers each blade element independently from other elements

4. thrust and torque result from integration of the individual contributions of each

element along the rotor radius

5. blade is rigid due to large centrifugal forces
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6. induced flow angle φ is small such that

φ→ small⇒ sinφ ≈ φ, cosφ ≈ 1→ tan−1(UP/UT ) ≈ UP/UT

7. blade incidence angle θ is small such that sin θ ≈ θ, cos θ ≈ 1

8. L/D is large. That is, drag is one order of magnitude less than the lift such that

dD sinφ ≈ dDφ� dL⇒ dDφ→ negligible

9. when appropriate, BET necessitates the use of vortex theory to assess the inflow

at the root and tip of the blades.

For a given blade element, the incremental lift and drag are given by

Figure C.6: Velocity, angles and parameters associated with a rotor blade element.
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dL = q∞ClS =
1

2
ρU2Cl c dr

=
1

2
ρ
[
(Ωy)2 + (vi + Vc)

2]Cl [c dy]

dD = q∞CdS =
1

2
ρU2Cd c dy

=
1

2
ρ
[
(Ωy)2 + (vi + Vc)

2]Cd [c dy]

(C.2.1)

where c is the local blade section chord, S is the blade section unit area, Cl, Cd are the

lift and drag coefficients. Also, since y = eR + r = R(e + x), then dy = dr = Rdx. The

effective local angle of attack α is a function of the blade pitch angle θ (i.e. the angle

between the chordline and the disk plane or disk of rotor angular motion) and the local

inflow angle φ (i.e. the angle between the effective velocity U and the disk plane), and it

is given by

α = θ − φ = θ − tan−1 UP
UT
≈ θ − UP

UT
(C.2.2)

where (x = r/R)

UP = VC + vi

UT = Ωy = ΩR (e+ x)

φ = tan−1 vi + Vc
Ωy

≈ vi + Vc
Ωy

=
UP
UT

U2 = (vi + Vc)
2 + Ω2y2 = (vi + Vc)

2 + (ΩR)2 (e+ x)2

(C.2.3)

The inflow ratio in equation (C.1.17) on page 208 now takes the form

λ =
VC + vi

ΩR

(
Ωy

Ωy

)
=
VC + vi

Ωy

( y
R

)
=
UP
UT

(e+ x) = φ(e+ x) (C.2.4)
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For small angles

= Clα (α− α0) = Clα (θ − α0 − φ)

= Clα

(
θ − α0 − tan−1 UP

UT

)
≈ Clα

(
θ − α0 −

UP
UT

)
Cl = Clα

(
θ − α0 −

vi + Vc
Ωy

)
Cd = cD = f (α,Ω)

(C.2.5)

where Clα is the two-dimensional lift-curve-slope of the airfoil section, and α0 is the zero-

lift angle of attack. For incompressible flow, Clα is a function of Reynolds and local Mach

numbers , but a constant average value for Clα will not result in significant error [92]. In

this case let a = Clα , and substituting back in (C.2.1)

dL =
1

2
ρac

[
(Ωy)2 + (vi + Vc)

2](θ − α0 −
vi + Vc

Ωy

)
dy

dD =
1

2
ρc
[
(Ωy)2 + (vi + Vc)

2] cDdy (C.2.6)

in the case when (vi + Vc)
2 � (ΩR)2 , and when α0 = 0 for a symmetric airfoil, then

dL =
1

2
ρac (Ωy)2

(
θ − vi + Vc

Ωy

)
dy

dD =
1

2
ρc (Ωy)2 cDdy

(C.2.7)

where the term θ− α0 − (vi + Vc)/(Ωy) is the effective angle of attack given by equation

(C.2.2). From Figure C.6 on page 223, for a number of blades b, the thrust, torque and

power are given by:

dT = b (dL cosφ− dD sinφ)

dQ = b y (dL sinφ+ dD cosφ)

dP = Ω dQ = b (dL sinφ+ dD cosφ) Ωy

(C.2.8)
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Using the set of assumptions in page 222, equation (C.2.8) becomes (yφ = Rλ):

dT ≈ b dL

dQ ≈ y b (φdL+ dD) = y (φdT + b dD) =
(vi + Vc)

Ω
dT + b y dD

dP = Ω dQ ≈ b (φdL+ dD) Ωy = (φdT + b dD) Ωy

≈ (vi + Vc) dT + bΩ y dD

(C.2.9)

Equation (C.1.17) on page 208 defines the Thrust, Torque and Power coefficients. In

terms of the expression for dL in equation (C.2.1) on page 224 and for dT in equa-

tion (C.2.9), along with the aforementioned definition for the thrust coefficient CT , the

incremental thrust coefficient takes the form

=
bdL

ρπR2 (ΩR)2 =
bρU2

TCl [cdy]

2ρπR2 (ΩR)2 =
1

2

[
bc

πR

] [
Ωy

ΩR

]2

d
( y
R

)
dCT =

σ

2
Clr

2dr

(C.2.10)

where σ is the blade solidity σ is defined as the ratio of the total blade area to the rotor

disc area

σ =
blade area

disk area
=
bcR

πR2
=

bc

πR
(C.2.11)

Equation (C.2.10) is a fundamental result from Blade Element Theory [92]. This result

does not depend on any specific rotor configuration, and applies to all blade platforms.

Continuing with the integration of the above set of equations (C.2.9) along the rotor

blade gives

T =
1

2
ρabc (ΩR)2

(
1

3
θR− 1

2

vi + Vc
Ω

)
D =

1

6
ρbcR (ΩR)2 CD

Q =
(vi + Vc)

Ω
T +

1

8
ρbc (ΩR)2R2CD

P = (vi + Vc)T +
1

8
ρbc (ΩR)3RCD

=
1

2
ρa σA (ΩR)2

(
1

3
θ − 1

2
λ

)
=

1

6
ρσA (ΩR)2 CD

= λRT +
1

8
ρσAR (ΩR)2 CD

= λΩRT +
1

8
ρσA (ΩR)3 CD

(C.2.12)
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where λi = (Vc + vi)/(ΩR) is given by equation (C.1.17) on page 208 and revisited in

equation (C.2.4) on page 224 and the rotor disk area is given by A = πR2. In terms of

the results in equation (C.2.12) then

CT =
a σ

2

(
1

3
θ − 1

2
λ

)
CP = CQ =

a σ

2
λ

(
1

3
θ − 1

2
λ

)
+

1

8
σCD = λCT +

1

8
σCD

(C.2.13)

Using results from simple momentum theory in equation (C.1.18), then equation (C.2.13)

above becomes

CT =
a σ

2

(
θ

3
− 1

2

√
CT
2

)

CP = CQ =
C

3/2
T√
2

+
1

8
ρCD

(C.2.14)

where the thrust coefficient CT results from an iterative solution of the above equation.

Solving for pitch angle θ

θ =
6

aρ
CT +

3

2

√
CT
2

(C.2.15)

In the above equation, the term 6CT/(a ρ) is the blade pitch angle required to generate

thrust, and the term 3/2
√
CT/2 is the blade pitch necessary to compensate for the

induced flow. The above equations are valid for rotors with uniform inflow velocity λ

across the rotor, for a constant rotor lift-curve-slope Clα , and for a symmetric airfoil with

no tip loss. Other additional non-ideal and non-linear effects such as flow and thrust at

the blade root and tip vortex shading may be accounted for by introducing a first order

induced power loss factor k in the Cp, CQ equation such that

CP = CQ =
k√
2
C

3/2
T +

1

8
ρCD (C.2.16)

where the factor k is approximately equal to 1.2 to 1.5 [13, 92].
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C.2.1 Tip-Loss Factor

The BET allows for the blade tip to generate finite thrust which is physically unrealistic

[92]. Leishman points out that original work by Gessow [52] and Gessow and Myers

[53], and work by Payne [120], Johnson [82] account for the blade tip not to carry thrust

by introducing the concept of effective blade radius Re = BR where B ≈ 0.95 − 0.97.

Integration of the thrust equation (C.2.9) from 0 to B results in

CT =
a σ

2
B2

(
1

3
θB − 1

2
λ

)
(C.2.17)

The above effective rotor blade radius concept in equation (C.2.17) indicates that the

R−Re portion of the blade does not contribute to thrust generation. A more appropriate

interpretation by Bramwell [11] and Leishman [92] considers an increment of the induced

flow for a given thrust such that equation (C.1.12) would become

vh =

√
T

2ρ (AB2)
=

1

B

√
T

2ρA
(C.2.18)

where the effective rotor area Ae = AB2 = π(RB)2. In this case integration of equations

(C.2.9) result in

CT =
a σ

2

(
1

3
θ − 1

2

λ

B

)
CP = CQ =

a σ

2

λ

B

(
1

3
θ − 1

2

λ

B

)
+

1

8
σCD

(C.2.19)

The above equation (C.2.19) says that for a given thrust, the induced flow will be higher

for results from BET than the induced flow obtained from simple momentum theory.

Similarly, the induced power increases in results from BET as those obtained from mo-

mentum theory.
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C.3 Combined Blade Element and Momentum The-

ory

Combined Blade Element Momentum Theory (BEMT) uses Blade Element and Momen-

tum theory principles to find the inflow distribution as function of blade element. This

method was first explored by Gustafson & Gessow [61] and Gessow [51] for hovering

rotors. The main reference for this section is given by Leishman [92] which explores the

subject from a modern vantage point. Figure C.7 shows a rotor disk annulus at a dis-

tance r from the rotating axis and with differential area dA = 2πrdr. Simple momentum

theory gives the thrust given by this annulus, and from BET we re-use the assumption

that one rotor annuli does not have an impact on the neighbor sections.

Figure C.7: Rotor annulus used in local momentum analysis for hovering [53, 92].

The differential mass flow dṁ through the rotor annulus, the resulting differential

thrust dCT generated by the rotor annulus, and the differential induced power coefficient
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dCPi are

dṁ = ρ (VC − vi) dA = 2πρ (VC − vi) rdr

dT = 2ρ (VC − vi) vidA = 4πρ (VC − vi) virdr

dCT =
dT

ρ (πR2) (ΩR)2 = 4
(VC − vi)

ΩR

( vi
ΩR

)( r
R

)
d
( r
R

)
= 4λλirdr

dCT = 4λ (λ− λC)xdx

dCPi = λdCT = 4λ2 (λ− λC) x dx

(C.3.1)

where λC = VC/(ΩR), λi = vi/(ΩR)⇒ λi = λ− λC and x = r/R. For the hovering case

λC = 0 and the differential thrust coeeficient CT and induced power coefficient are

dCT = 4λ2xdx

dCPi = λdCT = 4λ3xdx

(C.3.2)

Following the development in [92], the inflow λ can be expressed as a function of blade

station x = r/R such that

λ(x) = λtipx
n ∀ n > 0 (C.3.3)

Substituting equation (C.3.3) in (C.3.2) and integrating gives

CT = 4

∫ 1

0

λ2xdx = 4λ2
tip

∫ 1

0

x2n+1dx = 4
1

2n+ 2
λ2
tip

CPi = 4

∫ 1

0

λ3xdx = 4λ3
tip

∫ 1

0

x3n+1dx = 4
1

3n+ 2
λ3
tip

(C.3.4)

Solving for λtip in the above expression for CT and substituting back in the expression

for CPi

λtip =
√
n+ 1

√
CT
2

CPi =
2 (n+ 2)3/2

3n+ 2

C
3/2
T√
2

= k
C

3/2
T√
2
⇒ k =

2 (n+ 2)3/2

3n+ 2

(C.3.5)
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When the flow through the rotor is uniform n = 0 → k = 1. When n > 0 → k > 1

and the flow becomes less ideal and more biased toward the blade tip [92]. A related

approach equates results from BET and momentum theory. From equations (C.2.7) and

(C.2.9)

=
(dT ≈ bdL)

ρ (πR2) (ΩR)2 =
1

2

ρabc (Ωr)2 (θ − λ (R/r))

ρ (πR2) (ΩR)2 dr

dCT =
1

2
ρa
(
θx2 − λx

)
dx

(C.3.6)

where as before a = Clα and x = r/R. Equating the above expression for the incremental

thrust coefficient dCT to the momentum result in equation (C.3.1) gives

dCT =
1

2
σa
(
θx2 − λx

)
dx = 4λ (λ− λC)xdx

⇒ 1

8
σaθx− 1

8
σaλ = λ2 − λCλ

⇒ λ2 +

(
1

8
σa− λC

)
λ− 1

8
σ a θ x = 0

λ (x, λC) =

√(
σa

16
− λC

2

)2

+
σa

8
θx−

(
σa

16
− λC

2

)
(C.3.7)

For the hover case when λC = 0 then

=

√(
1

16
σa

)2

+
1

8
σaθx− 1

16
σa

λ (x) =
1

16
σ a

[√
1 + 32

θ

σa
x− 1

] (C.3.8)

Equations (C.3.7) and (C.3.8) provide the means to compute the inflow distribution as

a function of blade station x = r/R and for a given airfoil and blade pitch θ. Once λ is

known, then integration of equations (C.3.2) across the rotor disk gives the total thrust
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and induced power as [90, 92]

CT = 4

∫ 1

0

λ2xdx

CPi = 4

∫ 1

0

λ3xdx

(C.3.9)

The profile power comes from equations (C.2.7) and (C.2.9) as

=
(dPo ≈ bΩrdD)

ρ (πR2) (ΩR)3 =
1

2

ρbcΩr (Ωr)2 cD

ρ (πR2) (ΩR)3 dr

dCPo =
1

2
σcDx

3dx

(C.3.10)

The airfoil section drag coefficient can be approximated as

= d2α
2 + d1α + cd0

cD = d2

(
θ − λ

x

)2

+ d1

(
θ − λ

x

)
+ cd0

(C.3.11)

where the section angle of attack α is given by equation (C.2.2) together with equation

(C.2.4). Substituting the above into equation (C.3.11) and integrating gives

=
1

2
σ

∫ 1

0

cDx
3dx =

∫ 1

0

[
d2

(
θ − λ

x

)2

+ d1

(
θ − λ

x

)
+ cd0

]
x3dx

CP0 =
1

2
σ

∫ 1

0

[
d2 (θx− λ)2 x+ d1 (θx− λ)x2 + cd0x

3
]
dx

(C.3.12)

The above equation is for an untwisted blade. In the case when the induced velocity λ

is not a function of blade station, then

CPi = 2λ3

CP0 =
σ

2

[
1

4

(
d2θ

2 + d1θ + cd0
)
− 1

3
(2d2θ + d1)λ+

1

2
d2λ

2

] (C.3.13)
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C.3.1 Other Effects

Blade Element Theory accounts for profile drag as a driving force that requires torque

to be included in the equations. Other effects include:

1. blade twist

2. variations in induced velocity

3. inflow variations

4. three dimensional flow effects

5. vortex flow effects

6. tip loss and non-uniform flow

7. compressibility effects

8. ground effects

Johnson [82], Prouty [124], Padfield [119], Leishman [92], and other authors cover

the various aspects of non-linear aerodynamic effects on helicopter flight, rotor-fuselage

interaction, vorticity effects, etc.
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Appendix D

Helicopter Rotor Equations of Motion

D.1 Preliminaries and Motivation

Figure D.1 shows that while in forward flight, the helicopter’s advancing blade of the

rotor encounters a higher free stream velocity (Vtip = RΩ + V∞) than the retreating

blade (Vtip = RΩ − V∞). A direct consequence is that the dynamic pressure on the

rotating wing varies both radially and azimuthally. This creates an asymmetric lift in

the rotor which will induce a significant rolling moment.

Figure D.1: Helicopter rotor in forward flight.

Commonly, the following standard and equivalent solutions counter the asymmetric

lift and resulting rolling moment:

1. blades hinged at the root: lift transfers to the shaft, but no moment is transmitted

to the hub. Hub tilting achieves the desired thrust vector.
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2. blades rigidly attached: cyclic feathering of the blades decreases the pitch in the

advancing blade, and increases the pitch in the retreating blade. Lift is equalized,

and no rolling moment results.

3. lead-lag hinges: mitigate the forces and stresses created by Coriolis effect. This

motion turns out not to have significant aerodynamic effect, and in most cases it

is ignored.

The main difference in the above methods resides in the reference axis. Also, rotors with

hinges have the hinges located with a small offset from the root. It is then important to

study both the effects of blade hinges and feathering with regard to helicopter stability

and control as well as performance.

D.2 Fundamental Rotor Equations of Motion

The hub reference frame H shown in Figure D.2 on the next page rotates along with

the blades with angular velocity π/30 Ω(rpm) = ω(rad). In this case every point at a

distance r from the hub axis of rotation experiences an acceleration −(ω2 × r)~h1. As

the blade rotates, its mass appears to be located at a distance ρ called the center of

gyration. This inward or centripetal (latin: center seeking) force accelerates the blade

into a circular path. Moreover, when the blade flaps up or down, the blade center of mass

moves toward or away from the axis of rotation. When the blade flaps in the upward

direction, its center of mass moves closer to the axis of rotation which causes the blade

to accelerate to conserve angular momentum. That is, as the blade flaps upwardly, it

will also accelerate with corresponding forward motion in the off-plane direction[154].
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where

R = rotor radius

eR = hinge offset

ω = rotor angular velocity

β = blade flap angle

ã0 = acceleration of blade hinge origin at distance eR from the rotor shaft

H̃ = rotor central angular momentum

G̃ = rotor total moments

r̃g = position vector from blade hinge to blade c.g.

Mb = rotor blade mass

I = rotor inertia dyad

Figure D.2: Rotor blade nomenclature.

The transformation from the rotating hub reference frame H to the body frame B
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through azimuth angle ψ is:

BTH3 (ψ) =


b1

b2

b3

 =


− cosψ sinψ

sinψ cosψ

−1



h1

h2

h3

 (D.2.1)

where azimuth blade angle ψ is measured from the retreating blade. The transformation

between the rotating hub frame H and the drag frame D (in the blade lead/lag direction)

about the drag hinge through an angle ζ is:

DTH3 (ζ) =


d1

d2

d3

 =


cos ζ sin ζ

− sin ζ cos ζ

1



h1

h2

h3

 (D.2.2)

The transformation between the drag frame D and the blade flap F about the blade flap

hinge through the angle β is:

FTD2 (β) =


f1

f2

f3

 =


cos β sin β

1

− sin β cos β



d1

d2

d3

 (D.2.3)

Finally, the transformation between the blade flap frame F and the blade frame E

through the feathering or blade pitch angle θ is:

ETF1 (θ) =


e1

e2

e3

 =


1

cos θ sin θ

− sin θ cos θ



f1

f2

f3

 (D.2.4)

The governing equation of motion of rotor blades as they rotate around the rotor axis is
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given by equation (A.3.3), and it is reproduced below for convenience.

~Go − ~Co × I~ao = ~Io · I ~̇ωE + I~ωE ×
(
~Io · I~ωE

)
= ~̇ho (D.2.5)

In the above equation, the term ~Go represents the resultant aerodynamic blade moments

and takes the form:

~Go =


L

M

N

 =


feathering moment

flapping moment

drag (lead/lag) moment

 (D.2.6)

Moreover, for a blade of uniform mass, the first moment of inertia term ~Co in equation

(D.2.5) takes the form:

~Co =

∫
B

o~rdm dm =

(1−e)R∫
0

mr dr ~e1

= mR2 (1− e)2

2
~e1

= Mblade rCM R ~e1

(D.2.7)

where the reference point o is the flapping hinge axis, the mass of the blade is Mblade =

mR(1− e), and the blade center of mass is RrCM = R (1− e)/2 as measured from the

flapping hinge axis. Note that RxCM = R (rCM + e) is the distance to the blade center

of mass as measured from the rotational axis. Also, the acceleration term I~ao takes the

form (see Figure D.2 on page 236)

I~ao = I~ao′ +
Iω̃H ×

(Iω̃H × o′ r̃o
)

+ Iα̃H × o′ r̃o (D.2.8)

where I~ao′ = 0 when the helicopter itself does not accelerate. In the most general case,

the rotor blade angular velocity I~ωE takes the form:

I~ωE = I~ωB + B~ωH + H~ωD + D~ωF + F~ωE (D.2.9)
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and:

I = inertial reference frame

B = helicopter body reference frame

H = rotating hub reference frame

D = drag or lead/lag reference frame

F = flap reference frame

E = blade reference frame

The rotor hub angular velocity is,

= I~ωB + B~ωH

I~ωH = p~b1 + q~b2 + Ω~h3

(D.2.10)

where (r = 0). In terms of the rotor hub frame H

= HTB1 (ψ)
[
p~b1 + q~b2

]
+ Ω~h3

I~ωH =


− cosψ sinψ

sinψ cosψ

1



p

q

0

+


0

0

Ω

 =


−p cosψ + q sinψ

p sinψ + q cosψ

Ω


(D.2.11)

The main rotor hub angular acceleration I~αH is (ψ̇ = Ω, Ω̇ = 0) expressed in terms of

hub frame H follows

I~αH =


Ω (p sinψ + q cosψ)− (ṗ cosψ − q̇ sinψ)

Ω (p cosψ − q sinψ) + (ṗ sinψ + q̇ cosψ)

0

 (D.2.12)

Provided the helicopter body is not accelerating (I~ao′ = 0), and substituting equations
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(D.2.11), (D.2.12) in equation (D.2.8), I~ao becomes

= Iω̃H ×
(Iω̃H × o′ r̃o

)
+ Iα̃H × o′ r̃o

=


−p cosψ + q sinψ

p sinψ + q cosψ

Ω

×


−p cosψ + q sinψ

p sinψ + q cosψ

Ω

×

eR

0

0




+


Ω (p sinψ + q cosψ)− (ṗ cosψ − q̇ sinψ)

Ω (p cosψ − q sinψ) + (ṗ sinψ + q̇ cosψ)

0

×

eR

0

0



I~ao = −eR


Ω2 + (p sinψ + q cosψ)2

(p sinψ + q cosψ) (p cosψ − q sinψ)

2Ω (p cosψ − q sinψ) + ṗ sinψ + q̇ cosψ



(D.2.13)

where the above equation (D.2.13) is given in terms of the hub frame H. In the particular

case when the body rates are zero (p = 0, q = 0), and when the rotor angular velocity is

constant (Ω̇ = 0), then Iα̃H = 0. In this case equation (D.2.8) becomes,

I~ao = Iω̃H ×
(Iω̃H × o′ r̃o

)

=


0

0

Ω

 ×


0

0

Ω

×

eR

0

0

 =


−Ω2eR

0

0


(D.2.14)

where o′ r̃o = eR~h1. Moreover, with no loss of generality, the second moment of inertia

~Io can take the form of a thin actuator disk such that

~Io =


Ia

Ib

Ic

 (D.2.15)

where for a thin disk Ic = Ia + Ib and Ia = Ib.
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D.2.1 Pure Blade Flap Equations of Motion

Pure blade flap motion analysis begins by restricting the blade to up and down motion

only (an unrealistic assumption in practice, but useful for the present analysis). In this

case, I~ωE in equation (D.2.9) takes the form

I~ωE = I~ωB + B~ωH + H~ωE (D.2.16)

where for the case when the helicopter is in stable hover (q = 0, q = 0, r = 0)

I~ωE = ~0 + Ω~h3 − β̇ ~e2 (D.2.17)

or in terms of the blade frame E

I~ωE = ~0 + ETH2 (β)
[
Ω~h3

]
− β̇ ~e2

=


cos β sin β

1

− sin β cos β




0

0

Ω

−


0

β̇

0



=


Ω sin β

−β̇

Ω cos β



(D.2.18)

the term I ~̇ωE is therefore (for Ω̇ = 0)

I ~̇ωE =


Ω β̇ cos β

−β̈

−Ω β̇ sin β

 (D.2.19)
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Similarly, expressing the terms in equation (D.2.14) in terms of frame E gives

I~ao = ETH2 (β)


−Ω2eR

0

0

 =


cos β sin β

1

− sin β cos β



−Ω2eR

0

0



=


−Ω2eR cos β

0

Ω2eR sin β


(D.2.20)

Substituting the various terms in equation (D.2.5) from equations (D.2.6), (D.2.7), (D.2.14),

(D.2.15), (D.2.18), (D.2.19), (D.2.20) gives (expressed in terms of frame E):


L

M

N

 =


Mblade rCM R

0

0

×

−Ω2eR cos β

0

Ω2eR sin β



+


Ia

Ib

Ic

 ·


Ω β̇ cos β

−β̈

−Ω β̇ sin β



+


Ω sin β

−β̇

Ω cos β

×


Ia

Ib

Ic

 ·


Ω sin β

−β̇

Ω cos β




(D.2.21)
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which results in
L

−M

−N

 =


0

Mblade rCM eΩ2R2 sin β + Ib

(
Ω2 cos β sin β + β̈

)
2IbΩβ̇ sin β



=


feathering moment

Ma = aerodynamicmoment

drag moment


(D.2.22)

In the above equation (D.2.22) the term Mblade rCM eΩ2R2 sin β is the first moment of

inertia effect about the flap hinge. This contribution arises from both (1) the center of

mass being at a distance rCMR from the flapping hinge, and (2) the hinge itself being

a distance eR from the rotation axis and experiencing an acceleration −Ω2eR~h1 as a

consequence. The term Ibβ̈ is the inertial moment about the flapping hinge, and the term

IbΩ
2 cos β sin β is the centrifugal moment acting on the same hinge. The term −M = Ma

is the resultant aerodynamic moment. By convention, a positive aerodynamic moment

causes the blade to flap upwardly, but such a moment equals a negative total moment

about the blade flapping hinge. Equation (D.2.22) indicates that when the blade flaps

upward there is no resultant feathering moment, but there is a resultant reward moment

of magnitude 2IbΩβ̇ sin β. In the absence of this restoring moment, an upward blade flap

induces a blade forward motion in the plane of rotation. This resultant in-plane Coriolis

moment arises from conservation of angular momentum [92, 154]. As the blade flaps

upward, the blade center of mass moves closer to the rotation axis, and the energy stored

in the rotating blade induces a forward motion on the blade to keep the total momentum

constant. The presence of a drag (i.e. lead/lag) hinge allows the blade to move in the

plane of rotation to relieve the induced in-plane Coriolis moment [27, 92, 154]. For small

angles β, the governing equation for blade flapping in equation (D.2.22) takes the form

β̈ + Ω2

(
1 +

e rCMMbladeR
2

Ib

)
β =

Maero

Ib
(D.2.23)
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Equation (D.2.23) above is the fundamental equation of motion for blade flapping. For

the equilibrium condition when β̈ = β̇ = 0, equation (D.2.23) reduces to

−M
Ib

= Ω2

(
1 +

Mblade rCM eR2

Ib

)
β

Maero

Ib
= Ω2 (1 + ε) β

(D.2.24)

where the term ε

ε =
Mblade rCM eR2

Ib
=

static moment

inertial moment

ν2 = 1 + ε

(D.2.25)

is the ratio of the moment due to the mass of the blade and the inertial moment due to the

blade flapping motion itself. The term ν2 is the nondimensional blade flap frequency. The

blade flapping equation (D.2.23) assumes small flap angle and is due to aerodynamic and

inertial moments. Assumptions needed to arrive at this equation include a thin blade with

uniform mass distribution, or equivalently, a rotor modeled as a thin disk. In addition,

the blade center of mass is aligned with the blade axis and passes through the flap

hinge. These are reasonable assumptions which result in a representative blade flapping

equation. In turn, the aerodynamic term Maero/Ib depends on a specific flight condition

(i.e. hover vs. forward flight) and other dynamic terms such as body acceleration and

body pitch and roll rates. The effects of the aerodynamic term Maero/Ib will be expanded

in coming sections.

D.2.1.1 Pure Blade Flap Equilibrium Equations

Figure D.3 on page 246 below shows the distribution of forces acting on a flapping blade

in equilibrium. In this case β̈ = 0, and for a blade with constant mass the centrifugal
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force FCF takes the form

FCF =

(1−e)R∫
0

Ω2 (rcosβ + eR)(m dr)

= Ω2cosβ

(1−e)R∫
0

mrdr + Ω2eR

(1−e)R∫
0

mdr

= Ω2m

[
cosβ

(1− e)2

2
R2 + eR(1− e)R

]

= Mblade xCM Ω2R

(D.2.26)

where the small angle assumption gives cosβ ≈ 1. Also RxCM = R (1 + e)/2 is the

distance to the blade center of mass when measured from the axis of rotation, and

Mblade = mR(1− e) is the blade mass. Equivalently

FCF =

R∫
eR

(Ω2 y)(m dy) = Ω2mR2 1

2

(
1− e2

)
= Ω2mR2 1

2
(1− e)(1 + e)

= Mblade xCM Ω2R

(D.2.27)

Equations (D.2.26) and (D.2.27) yield the same result since

r cos β = (y − eR) ⇐⇒

r = 0

r = (1− e)R

y = (rcosβ + eR)

y = eR

y = R

dy = dr

(D.2.28)

Notice that when the flap hinge offset e = 0, then the centrifugal force reduces to FCF =

1
2
MbladeΩ

2R.

The centrifugal moment MCF about the hinge equals the component of the centrifugal
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Figure D.3: Rotor blade rotating about the flapping hinge.

force (mdy)(yΩ2 sin β) acting at a distance r from the flap hinge.

MCF =

(1−e)R∫
0

[
(r + eR) Ω2 sinβ

]
r (m dr)

= Ω2sinβ

(1−e)R∫
0

m (r2 + r eR) dr

= Ω2msinβ

[
1

3
(1− e)3R3 +

1

2
(1− e)2R2eR

]
= Ω2 sinβ

[
1

3
Mblade(1− e)2R2 +

1

2
Mblade(1− e)eR2

]
= Ω2 sinβ

[
Ib +Mblade rCM eR2

]

(D.2.29)

where RrCM = R (xCM − e) = R (1 − e)/2 is the distance to the point of action of the

centrifugal force (i.e. center of mass of the blade) as measured from the flapping hinge

(note that xCM = (1 + e)/2 is the distance to the blade center of mass as measured from

the rotational axis). Also, the mass of the blade is Mblade = mR(1− e). In like manner,
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using equation (D.2.28), recast equation (D.2.29) as

MCF =

R∫
eR

[
(Ω2 y)sinβ

]
(y − eR) (m dy)

= Ω2sinβ

R∫
eR

my(y − eR) dy

= Ω2sinβ

R∫
eR

m
[
y2 − yeR− yeR + yeR− (eR)2 + (eR)2

]
dy

= Ω2sinβ

 R∫
eR

m(y − eR)2dy + eR

R∫
eR

m(y − eR)dy


= Ω2sinβ

[
Ib + eRm(1− e)R2 1

2
(1− e)

]
= Ω2sinβ

[
Ib +Mblade rCMeR

2
]

(D.2.30)

The above equations (D.2.29) and (D.2.30) yield the same answer as expected. The

aerodynamic moment Maero acts in the opposite direction to the centrifugal moment

such that for small angles

−M
Ib

=
Maero

Ib
= Ω2 β

(
1 +

Mblade rCMeR
2

Ib

)
(D.2.31)

As expected, equation (D.2.31) yields the same result obtained in equation (D.2.24) when

the equilibrium condition β̈ = β̇ = 0 holds. Moreover, assuming that β is a small angle,

and solving for β in equation (D.2.31) gives

β0 =
Ma

ν2
β Ω

2
Ib

(D.2.32)

where ν2
β is the non-dimensional natural frequency of the flapping rotor such that

= 1 +
Mblade rCMeR

2

Ib(ωn
Ω

)2

= ν2
β = 1 + ε

(D.2.33)
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and ε = Mblade rCMeR
2/Ib as given in equation (D.2.25) which together with equation

(D.2.29) yields

ε =
3

2

e

(1− e)
≈ 3

2
e (D.2.34)

Equation (D.2.32) indicates that the rotor conning angle β0 decreases with increasing

blade rigidity and angular velocity Ω.

D.2.2 Pure Blade Drag Equations of Motion

This time we restrict the blade to lead/lag motion about the drag hinge. In this case,

I~ωD in equation (D.2.9) takes the form

I~ωD = I~ωB + B~ωH + H~ωD (D.2.35)

where for the case when the helicopter is in stable hover (q = 0, q = 0, r = 0)

I~ωD = ~0 + Ω~h3 + ζ̇ ~d3 (D.2.36)

or in terms of the blade frame D

I~ωD = ~0 + DTH3 (ζ)
[
Ω~h3

]
+ ζ̇ ~d3

=


cos ζ sin ζ

− sin ζ cos ζ

1




0

0

Ω

+


0

0

ζ̇



=


0

0

Ω + ζ̇



(D.2.37)
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the term I ~̇ωD is therefore (for Ω̇ = 0)

I ~̇ωD =


0

0

ζ̈

 (D.2.38)

Similarly, expressing the terms in equation (D.2.14) in terms of frame D gives

I~ao = DTH3 (ζ)


−Ω2eR

0

0

 =


cos ζ sin ζ

− sin ζ cos ζ

1



−Ω2eR

0

0



=


−Ω2eR cos ζ

Ω2eR sin ζ

0


(D.2.39)

Substituting the various terms in equation (D.2.5) from equations (D.2.6), (D.2.7), (D.2.14),

(D.2.15), (D.2.37), (D.2.38), (D.2.39) gives (expressed in terms of frame D):


L

M

N

 =


Mblade rCM R

0

0

×

−Ω2eR cos ζ

Ω2eR sin ζ

0



+


Ia

Ib

Ic

 ·


0

0

ζ̈



+


0

0

Ω + ζ̇

×


Ia

Ib

Ic

 ·


0

0

Ω + ζ̇




(D.2.40)
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which results in 
L

M

N

 =


0

0

Mblade rCMeΩ
2R2 sin ζ + Icζ̈



=


feathering moment

Ma = aerodynamicmoment

drag moment


(D.2.41)

Equation (D.2.41) indicates that when the blade only rotates about the drag rotation

axis ζ with pure lead/lag motion, the blade does not induce any feathering or flapping

rotation.

D.2.2.1 Pure Blade Drag Equilibrium Equations

Figure D.4 shows a rotor blade in pure drag motion about the drag (lead/lag) hinge. At

each position on the blade we have [92]:

tan (ξ)

tan (ζ)
=
y − eR
y

Figure D.4: Rotor blade rotating on a drag (lead/lag) hinge.

from where (using small angle approximation):

(ζ − ξ) =
eR

y
(D.2.42)
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The centrifugal force of mass mdy and acceleration yΩ2 is

FCF =

R∫
eR

(
yΩ2

)
(ζ − ξ) (mdy) (D.2.43)

where (yΩ2) (ζ − ξ) is the component of the acceleration perpendicular to the blade. This

force acts at a distance y − eR from the drag hinge. Thus the centrifugal moment takes

the form:

Mζ =

R∫
eR

(
yΩ2

)
(ζ − ξ)(y − eR) (mdy) = eRΩ2ζ

R∫
eR

m (y − eR) dy

= eRΩ2ζm

[
1

2
(R2 − e2R2)− eR(R− eR)

]
= eRΩ2ζmR2

[
1

2
(1− e)(1 + e)− e(1− e)

]
= MbladeeΩ

2R2ζ
1

2
(1− e)

= Mblade rCMeΩ
2R2ζ

(D.2.44)

where blade mass is Mblade = mR(1−e) and the distance from the drag hinge to the blade

center of mass is rCMR = 1
2
(1 − e)R. Equation (D.2.44) must equal the aerodynamic

moment N such that

N = Mblade rCMeΩ
2R2 sin ζ (D.2.45)

Equation (D.2.45) gives the same result as in equation (D.2.41) when the equilibrium

condition ζ̈ = 0 holds.

D.2.3 Pure Blade Feathering Equations of Motion

Feathering motion takes place about the blade axis through the blade angle θ. Effects of

feathering motion are evident when flapping and drag motion are restricted to zero. In

this case, I~ωE in equation (D.2.9) takes the form

I~ωE = I~ωB + B~ωH + H~ωE (D.2.46)
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where for the case when the helicopter is in stable hover (q = 0, q = 0, r = 0)

I~ωE = ~0 + Ω~h3 + θ̇ ~e1 (D.2.47)

or in terms of the blade frame D

I~ωE = ~0 + ETH1 (θ)
[
Ω~h3

]
+ θ̇ ~e1

=


1

cos θ sin θ

− sin θ cos θ




0

0

Ω

+


θ̇

0

0



=


θ̇

Ω sin θ

Ω cos θ



(D.2.48)

the term I ~̇ωD is therefore (for Ω̇ = 0)

I ~̇ωD =


θ̈

θ̇Ω cos θ

−θ̇Ω sin θ

 (D.2.49)

Similarly, expressing the terms in equation (D.2.14) in terms of frame D gives

I~ao = ETH1 (θ)


−Ω2eR

0

0

 =


1

cos θ sin θ

− sin θ cos θ



−Ω2eR

0

0



=


−Ω2eR

0

0


(D.2.50)
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Substituting the various terms in equation (D.2.5) from equations (D.2.6), (D.2.7), (D.2.14),

(D.2.15), (D.2.37), (D.2.38), (D.2.39) gives (expressed in terms of frame E):


L

M

N

 =


Mblade rCM R

0

0

×

−Ω2eR

0

0



+


Ia

Ib

Ic

 ·


θ̈

θ̇Ω cos θ

−θ̇Ω sin θ



+


θ̇

Ω sin θ

Ω cos θ

×


Ia

Ib

Ic

 ·


θ̇

Ω sin θ

Ω cos θ




(D.2.51)

which results in 
L

M

N

 =


Ia θ̈ + Ia Ω2 sin θ cos θ

0

−2Ia Ω θ̇ sin θ



=


feathering moment

Ma = aerodynamicmoment

drag moment


(D.2.52)

Equation (D.2.52) says that pure feathering blade motion induces a small dragging mo-

ment on the blade. This drag moment is usually very small.
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D.2.4 Combined Blade Flap and Drag Equations of Motion

This time we restrict the blade to lead/lag motion about the drag hinge. In this case,

I~ωD in equation (D.2.9) takes the form

I~ωD = I~ωB + B~ωH + H~ωD + D~ωE (D.2.53)

where for the case when the helicopter is in stable hover (p = 0, q = 0, r = 0)

I~ωD = ~0 + Ω~h3 + ζ̇ ~d3 − β̇ ~e2 (D.2.54)

or in terms of the blade frame E

I~ωD = ~0 + ETD2 (β)DTH3 (ζ)
[
Ω~h3

]
+ ETD2 (β)ζ̇ ~d3 − β̇ ~e2

=


cos β cos ζ cos β sin ζ sin β

− sin ζ cos ζ 0

− cos ζ sin β − sin β sin ζ cos β




0

0

Ω



+


cos β sin β

1

− sin β cos β




0

0

ζ̇

−


0

β̇

0



=


Ω sin β + ζ̇ sin β

−β̇

Ω cos β + ζ̇ cos β



(D.2.55)

the term I ~̇ωD is therefore (for Ω̇ = 0)

I ~̇ωD =


Ωβ̇ cos β + β̇ζ̇ cos β + ζ̈ sin β

−β̈

−Ωβ̇ sin β − ζ̇ β̇ sin β + ζ̈ cos β

 (D.2.56)
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Similarly, expressing the terms in equation (D.2.14) in terms of frame E gives

I~ao = ETD2 (β)DTH3 (ζ)


−Ω2eR

0

0



=


cos β cos ζ cos β sin ζ sin β

− sin ζ cos ζ 0

− cos ζ sin β − sin β sin ζ cos β



−Ω2eR

0

0



=


−eRΩ2 cos β cos ζ

eRΩ2 sin ζ

eRΩ2 sin β cos ζ



(D.2.57)

Substituting the various terms in equation (D.2.5) from equations (D.2.6), (D.2.7), (D.2.14),

(D.2.15), (D.2.37), (D.2.38), (D.2.39) gives (expressed in terms of frame E):


L

M

N

 =


Mblade rCM R

0

0

×

−eRΩ2 cos β cos ζ

eRΩ2 sin ζ

eRΩ2 sin β cos ζ



+


Ia

Ib

Ic

 ·


Ωβ̇ cos β + β̇ζ̇ cos β + ζ̈ sin β

−β̈

−Ωβ̇ sin β − ζ̇ β̇ sin β + ζ̈ cos β



+


Ω sin β + ζ̇ sin β

−β̇

Ω cos β + ζ̇ cos β

×


Ia

Ib

Ic

 ·


Ω sin β + ζ̇ sin β

−β̇

Ω cos β + ζ̇ cos β




(D.2.58)
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which results in 
L

M

N

 =


0

−e rCMMbladeΩ
2R2 sin β cos ζ

e rCMMbladeΩ
2R2 sin ζ



+


Iaζ̈ sin β

−Ib
(

Ω2 + 2Ωζ̇ + ζ̇2
)

cos β sin β − Ibβ̈

−2Ibβ̇ sin β
(

Ω + ζ̇
)

+ (Ia + Ib) ζ̈ cos β



=


feathering moment

−Ma = aerodynamicmoment

drag moment



(D.2.59)

Assuming small angles and letting the higher order terms go to zero we have:


L

M

N

 =


Iaβζ̈

−Ibβ̈ − e rCMMbladeΩ
2R2β − IbΩ2β − 2IbΩζ̇β

e rCMMbladeΩ
2R2ζ − 2IbΩββ̇ + Icζ̈



=


feathering moment

−Ma = aerodynamicmoment

drag moment


(D.2.60)

were the moment of inertia of a thin rotor disk is given by equation (D.2.15) and Ic =

Ia + Ib. The flap and drag blade equations are coupled by the Coriolis moments terms

2IbΩβζ̇ and 2IbΩββ̇. This coupling is induced by the change of the radial distance to the

blade center of mass which results when the blade bends, flaps and/or drags about the

respective flapping and dragging hinges [27, 92, 154]. The coupled blade flap equation of

motion in equation (D.2.60) can be rewritten as

Ma = −M = Ib

[
β̈ +

(
1 +

e rCMMbladeR
2

Ib

)
Ω2β + 2Ωζ̇β

]
(D.2.61)
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The term ν2
β = 1 + (e rCMMbladeR

2)/Ib is the non dimensional flap frequency in terms of

the rotational frequency Ω [92]. This is the same term present in equations (D.2.29) and

(D.2.30). Also

ν2
β = 1 +

1
2
Mblade(1− e)eR2

1
3
Mblade(1− e)2R2

νβ =

√
1 +

3e

2(1− e)
≈
√

1 +
3

2
e

(D.2.62)

where rCM = 1
2
(1− e) as before and νβ is the undamped natural frequency of the uncou-

pled flapping blade. Equation (D.2.61) now takes the form

Ma

Ib
= β̈ + ν2

βΩ2β + 2Ωζ̇β (D.2.63)

In like manner, the coupled drag equation of motion in equation (D.2.60) is

N = Ic

[
ζ̈ +

e rCMMbladeR
2

Ic
Ω2ζ

]
− IcΩββ̇ (D.2.64)

where the term ν2
β = (e rCMMbladeR

2)/Ic is the non-dimensional drag frequency in terms

of the rotation frequency Ω, and Ic ≈ 2Ib. In this case, for an individual blade

ν2
ζ =

1
2
Mblade(1− e)eR2

1
3
Mblade(1− e)2R2

νζ =

√
3e

2(1− e)
≈
√

3

2
e (D.2.65)

Rewrite equation (D.2.64) as

N

Ic
= ζ̈ + ν2

ζΩ2β − Ωββ̇ (D.2.66)
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D.3 Rigid Blade Flapping Equations of Motion

Equation (D.2.60) shows that the induced Coriolis moment is the only coupling mech-

anism for a flapping and dragging blade. Equation (D.2.52) shows that pure blade

feathering does not induced flapping, and the blade feathering induced drag moment

is sufficiently small that it can be ignored . Whence the following two assumptions hold

[27]:

• blade drag (lead/lag) motion induced by blade feathering does not affect the blade

flap dynamics significantly (see equations (D.2.41), (D.2.52) and (D.2.60))

• blade feathering motion does not create significant feedback that can affect the

blade flap motion (see equation (D.2.52) )

D.3.1 Blade Flapping Disturbance at Constant Feather Angle

Figure D.5 on the next page shows a rotor at steady hover with Ω̇ = 0, q = 0, p = 0 and

no body accelerations. In this case the blade flapping with angular velocity β̇ about the

flap hinge induces a down velocity rβ̇ such that [27]:

∆α ≈ tan ∆α ≈ −rβ̇
Ω (eR + r)

δL = −1

2
caρΩ2 (eR + r)2 rβ̇

Ω (eR + r)
δr

= −1

2
caρΩ (eR + r) rβ̇δr

Maero =

∫ (1−e)R

0

r dL

= −1

2
caρΩβ̇

∫ (1−e)R

0

(eR + r) r2 dr

= −1

8
caρΩβ̇R4 (1− e)3

(
1 +

e

3

)
Maero

Iblade
= −γ

8
Ωβ̇ (1− e)3

(
1 +

e

3

)

(D.3.1)

where δL is the blade element lift which results from the flapping motion disturbance,
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Figure D.5: Blade Flapping Disturbance at Constant Feather Angle.

Maero is the resultant aerodynamic moment, and γ is Lock’s inertial number defined as

γ =
caρR4

Iblade
=

aerodynamic term

inertial term
(D.3.2)

The non-dimensional Lock’s number or mass factor represents the mass constant of the

blade [53]. The aerodynamic moment coefficient about the flapping hinge n is

n = (1− e)3
(

1 +
e

3

)
(D.3.3)

Substituting (D.3.1) and Lock’s number γ into equation (D.2.23) yields

β̈ +
γ

8
Ω (1− e)3

(
1 +

e

3

)
β̇ + ν2

βΩ2β = 0 (D.3.4)

or in terms of Lock’s number and the aerodynamic moment coefficient about the flapping

hinge n

β̈ +
nγ

8
Ωβ̇ + ν2

βΩ2β = 0 (D.3.5)

Equation (D.3.5) is a second order differential equation with natural frequency ωn and

damping ratio ζ given by

(ωn
Ω

)2

= ν2
β

2ωnζ =
γ

8
Ω (1− e)3

(
1 +

e

3

)
ζ =

γ (1− e)3 (1 + e/3)

16νβ
=

nγ

16νβ

(D.3.6)

where n is as given in equation (D.3.3). When the hinge offset e = 0, then νβ = 0, ωn = Ω
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and the system is in resonance. In this case feathering input drives flapping with a phase

shift of 90o.

D.3.2 Flapping Motion with Cyclic Feather Angle

Figure D.6 shows that the angle of attack α = (θ−φ) and UT = (eR+R)Ω. The resultant

lift is given by [27]

δL =
1

2
caρU2

T (θ − φ) δr

≈ 1

2
caρU2

T

(
θ − UP

UT

)
δr

≈ 1

2
caρθΩ2 (eR + r)2 δr

(D.3.7)

where

φ = tan−1 UP
UT
≈ UP
UT

UP � UT ⇒
UP
UT
� 1⇒ U2

T

(
θ − UP

UT

)
≈ U2

T θ = θΩ2 (eR + r)2

Figure D.6: Blade Flapping Disturbance at Constant Feather Angle.

The blade feathering angle with respect to the hub axis takes the form:

θ = θ0 − θ1c cosψ − θ1s sinψ (D.3.8)

where θ0 corresponds to collective blade pitch input, and (θc, θs) correspond to lateral and

longitudinal cyclic input respectively. From the pilot’s perspective, the lateral cyclic pitch

input θc produces a rolling rate and lateral attitude changes while the longitudinal cyclic

input θs produces pitch rate and attitude motion. The sign convention in equation (D.3.8)
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produces steady state blade flapping angles that are consistent with the body attitude

sign convention in Figure D.1 on page 234. The pilot longitudinal δlon and lateral δlat

stick inputs correspond to the blade cyclic inputs via a direct gear transformation such

that

θ1c = Klatδlat

θ1s = Klonδlon

(D.3.9)

The resultant aerodynamic moment Maero is

Maero =

∫ (1−e)R

0

r dL

≈ 1

2
caρΩ2 (θ0 − θc cosψ − θs sinψ)

∫ (1−e)R

0

(eR + r)2 r dr

=
1

2
caρΩ2 (θ0 − θc cosψ − θs sinψ)R4 (1− e)2

4

[
1 +

2

3
e+

1

3
e2

]
Maero

Iblade
=
γ

8
Ω2 (θ0 − θc cosψ − θs sinψ) (1− e)2

[
1 +

2

3
e+

1

3
e2

]
(D.3.10)

The total flapping moment is given by adding the results from equation (D.3.1) and

equation (D.3.10) above

Maero

Iblade
=

γ

8
Ω2 (θ0 − θc cosψ − θs sinψ) (1− e)2

[
1 +

2

3
e+

1

3
e2

]
−nγ

8
Ωβ̇

(D.3.11)

Substituting (D.3.11) into equation (D.2.23) yields

β̈ +
nγ

8
Ωβ̇ + ν2

βΩ2β =

γ

8
Ω2 (θ0 − θc cosψ − θs sinψ) (1− e)2

[
1 +

2

3
e+

1

3
e2

] (D.3.12)

The above blade flapping equation (D.3.12) includes the effects of constant and cyclic

blade pitch. Considering the periodic nature of the cyclic input with respect to blade
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azimuth angle ψ, the change of variable ψ = Ω t results in

ψ = Ω t

β̇ =
dβ

dt
=
dβ

dψ

dψ

dt
= Ω

dβ

dψ

β̈ =
d2β

dt2
= Ω2 d

2β

dψ2

(D.3.13)

Application of (D.3.13) to equation (D.3.12) gives

d2β

dψ2
+
nγ

8

dβ

dψ
+ ν2

ββ =
γ

8
ēθ (θ0 − θ1c cosψ − θ1s sinψ) (D.3.14)

where ēθ takes the form

ēθ = (1− e)2

[
1 +

2

3
e+

1

3
e2

]
(D.3.15)

The first harmonic steady state periodic solution for a blade flapping angle, as the blade

completes one revolution is given by

β = β0 − β1c cosψ − β1s sinψ

dβ

dψ
= β1c sinψ − β1s cosψ

d2β

dψ2
= β1c cosψβ1s sinψ

(D.3.16)

Substituting (D.3.16) into (D.3.14) gives

β1c cosψ + β1s sinψ +
nγ

8
(β1c sinψ − β1s cosψ)

+ ν2
β (β0 − β1c cosψ − β1s sinψ)

=
γ

8
ēθ (θ0 − θ1c cosψ − θ1s sinψ)

(D.3.17)
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Harmonic balancing of the constant and periodic terms on both sides of the above equa-

tion results in the following relations

ν2
ββ0 =

γ

8
ēθθ0

Sββ1s − nβ1c = ēθθ1s

Sββ1c + nβ1s = ēθθ1c

(D.3.18)

Define the stiffness number Sβ

Sβ =
8 (ν2 − 1)

γ
(D.3.19)

The stiffness number Sβ provides a measure of the ratio of the hub stiffness to aerody-

namic moment [119, p. 35]. Rearranging the above expression (D.3.18) takes the form

β0 =
γ

8

ēθ
ν2
β

θ0

(
n2 + S2

β

)
β1c = ēθ (Sβ θ1c − n θ1s)(

n2 + S2
β

)
β1s = ēθ (n θ1c + Sβ θ1s)

(D.3.20)

In the case of zero hinge offset
(
e = 0⇒ ν2

β = 1, Sβ = 0
)
, equation (D.3.20) reduces to

β0 =
γ

8
θ0

β1c = −θ1s

β1s = θ1c

(D.3.21)

Substituting (D.3.21) in (D.3.16) gives the flap response in terms of cyclic inputs

= β0 − β1c cosψ − β1s sinψ

= β0 + θ1s cosψ − θ1c sinψ

β = β0 − θ1c cos
(
ψ − π

2

)
− θ1s sin

(
ψ − π

2

) (D.3.22)

Equations (D.3.21) and (D.3.22) say that for the case of zero hinge offset and the absence
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of any blade restraining mechanism, the blade flap lags the aerodynamic blade pitch input

by 900. This is the behavior of a resonant system exited at its natural frequency, which

in this case equals Ω, the angular velocity of the main rotor. When the hinge offset is

finite or a blade restraining mechanism exists, then the system is no longer in resonance,

in which case equation (D.3.20) describes the relation between the blade aerodynamic

pitch input and ensuing blade flap [92, 119].

D.3.3 Flapping Motion with Body Pitch Rate

In this case, the rotor hub angular velocity I~ωH takes the form

I~ωH = I~ωA + A~ωH

= q~a2 + Ω~h3

(D.3.23)

where (p = 0, r = 0). In terms of the rotor hub frame H

= HTA1 (ψ)q~a2 + Ω~h3

I~ωH =


cosψ sinψ

− sinψ cosψ

1




0

q

0

+


0

0

Ω

 =


q sinψ

q cosψ

Ω


(D.3.24)

Whence the main rotor hub angular acceleration I~αH is (Ω = ψ̇)

I~αH =


Ωq cosψ

−Ωq sinψ

0

 (D.3.25)

264



Reusing equation (D.2.8), I~ao becomes

= Iω̃H ×
(Iω̃H × o′ r̃o

)
+ Iα̃H × o′ r̃o

=


q sinψ

q cosψ

Ω

×


q sinψ

q cosψ

Ω

×

eR

0

0




+


Ωq cosψ

−Ωq sinψ

0

×

eR

0

0



I~ao =


−eRΩ2 − eRq2 cos2 ψ

eRq2 sinψ cosψ

2eRΩq sinψ



(D.3.26)

Equation (D.3.26) above expresses the inertial acceleration of a point coincident with the

flapping hinge in terms of the Hub frame axis. In terms of the blade frame E we have

= ETH2 (β)
[I~ao]H

=


cos β sin β

1

− sin β cos β



−eRΩ2 − eRq2 cos2 ψ

eRq2 sinψ cosψ

2eRqΩ sinψ


[I~ao]E =


− (eRΩ2 + eRq2 cos2 ψ) cos β + 2eRΩq sinψ sin β

eRq2 sinψ cosψ

(eRΩ2 + eRq2 cos2 ψ) sin β + 2eRΩq sinψ cos β



(D.3.27)
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Using equations (D.2.6) and (D.3.27), the term ~Co × I~ao in equation (D.2.5) takes the

form

=


Mblade rCM R

0

0

×

− (eRΩ2 + eq2R cos2 ψ) cos β + 2eqRΩ sinψ sin β

eq2R sinψ cosψ

(eRΩ2 + eq2R cos2 ψ) sin β + 2eqRΩ sinψ cos β


~Co × I~ao ≈Mblade rCM R2

0

− (eΩ2 + eq2 cos2 ψ) sin β − 2eqΩ sinψ cos β

eq2 sinψ cosψ



(D.3.28)

Using small angle assumptions and neglecting higher order terms (eq2 ≈ 0, q2 sin β ≈ 0),

equation (D.3.28) becomes

~Co × I~ao ≈Mblade rCM R2


0

−eΩ2β − 2eΩq sinψ

0

 (D.3.29)

The inertial angular velocity of the blade frame E expressed in terms of frame E is

= ETH2 (β)
[
HTA1 (ψ)q~a2 + Ω~h3

]
− β̇~e2

I~ωE =


Ω sin β + q sinψ cos β

q cosψ − β̇

Ω cos β − q sinψ sin β


(D.3.30)
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and the corresponding inertial angular acceleration I~αE takes the form

I~αE =


Ωq cosψ cos β + (Ω cos β − q sinψ sin β) β̇

−Ωq sinψ − β̈

−Ωq cosψ sin β − (Ω sin β + q sinψ cos β) β̇

 (D.3.31)

The term ~Io · I ~̇ωE + I~ωE ×
(
~Io · I~ωE

)
in equation (D.2.5) takes the form

~Io · I ~̇ωE + I~ωE ×
(
~Io · I~ωE

)
=

IaΩq cosψ cos β + Ia (Ω cos β − q sinψ sin β) β̇

−IbΩq sinψ − Ibβ̈

−IcΩq cosψ sin β − Ic (Ω sin β + q sinψ cos β) β̇



+


Ω sin β + q sinψ cos β

q cosψ − β̇

Ω cos β − q sinψ sin β

×

Ia (Ω sin β + q sinψ cos β)

Ib

(
q cosψ − β̇

)
Ic (Ω cos β − q sinψ sin β)



=


Ia (2Ω cos β − q sinψ sin β) q cosψ

−Ib
(
2Ωq sinψ cos β +

(
Ω2 − q2 sin2 ψ

)
sin β

)
cos β − Ibβ̈

−IcΩq cosψ sin β − Ic (Ω sin β + q sinψ cos β) β̇



(D.3.32)

where I~αE = I ~̇ωE . Using small angle assumptions and neglecting higher order terms

(q2 sin β → small, ββ̇ → small), equation (D.3.32) becomes

~Io · I ~̇ωE + I~ωE ×
(
~Io · I~ωE

)
≈


2IaΩq cosψ

−2IbΩq sinψ − IbΩ2β − Ibβ̈

−IcΩβq cosψ − Icβ̇q sinψ

 (D.3.33)
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Equations (D.3.29) and (D.3.33) give


L

−M

N

 = Mblade rCM eR2


0

Ω2β + 2Ωq sinψ

0



+


2IaΩq cosψ

2IbΩq sinψ + IbΩ
2β + Ibβ̈

−IcΩβq cosψ − Icβ̇q sinψ



=


gyroscopic+ feathering moment

gyroscopic+ (Ma = aerodynamic)moment

drag moment



(D.3.34)

Equation (D.3.34) says that a steady pitch rate induces both blade pitch and drag mo-

ments. The induced drag moment is relieved by the drag (lead/lag) blade hinge, and the

induced blade pitch moment is sufficiently small and can be ignored. The resultant blade

flapping equation takes the form

β̈ + Ω2ν2
ββ + 2Ωqν2

β sinψ =
Maero

Ib
(D.3.35)

where ν2
β is the non dimensional flap frequency previously defined in equation (D.2.62)

such that

rCM =
1− e

2

Iblade =

∫ (1−e)R

0

mr2dr =
m

3
R3 (1− e)3 =

Mblade

3
(1− e)2R2

ε =
Mblade rCM eR2

Ib
=

3e

2 (1− e)
=

static moment

inertial moment

ν2
β = 1 + ε

(D.3.36)

Figure D.7 on the following page shows the perturbation to the angle of attack ∆α

due to a combination of flapping rate rβ̇ and pitch rate rq cosψ. The corresponding
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Figure D.7: Blade Flapping Disturbance due to Body Pitch Rate.

differential lift δL and resultant aerodynamic moment Maero are respectively

∆UP = rβ̇ − (r + eR)q cosψ

∆α = − tan−1 ∆φ ≈ −∆φ = −∆UP
UT

=
(r + eR)q cosψ − rβ̇

Ω (eR + r)

δL =
1

2
ρV 2

T sCL ≈
1

2
ρΩ2 (r + eR)2 (cδr)

(
a

(r + eR)q cosψ − rβ̇
Ω (eR + r)

)

=
1

2
ρacΩ (r + eR)

(
(r + eR) q sinψ − r β̇

)
δr

≈ 1

2
ρacΩ (r + eR)

(
q sinψ − β̇

)
r δr

Maero =

∫ (1−e)R

0

rdL =
1

2
ρacΩ(q cosψ − β̇)

∫ (1−e)R

0

r2 (r + eR) dr

=
1

8
ρacΩR4(q cosψ − β̇) (1− e)3

(
1 +

1

3
e

)
Maero

Ib
=
γ

8
Ω(q cosψ − β̇) (1− e)3

(
1 +

1

3
e

)
=
nγ

8
Ω(q cosψ − β̇)

(D.3.37)

where e2 → small, r eR � r2, and n = (1− e)3 (1 + e/3). Equating equations (D.3.35)

and (D.3.37) yields

β̈ +
nγ

8
Ωβ̇ + Ω2ν2

ββ =
nγ

8
Ωq cosψ − 2Ων2

β q sinψ (D.3.38)

Applying the change of variables in (D.3.13), equation (D.3.38) becomes

d2β

dψ2
+
nγ

8

dβ

dψ
+ ν2

ββ =
nγ

8

q

Ω
cosψ − 2ν2

β

q

Ω
sinψ (D.3.39)
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Expanding the periodic terms

(β1c cosψ + β1s sinψ) +
nγ

8
(β1c sinψ − β1s cosψ)

+ ν2
β (β0 − β1c cosψ − β1s sinψ)

=
nγ

8

q

Ω
cosψ − 2ν2

β

q

Ω
sinψ

(D.3.40)

Harmonic balancing of the periodic steady-state solution (D.3.16) to the above equation

(D.3.39) gives

nβ1c − Sββ1s = −ν2
β

16

γ

q

Ω

Sββ1c + nβ1s = −n q
Ω

(D.3.41)

where the rotor stiffness number Sβ = 8 (ν2 − 1)/γ is given by equation (D.3.19) on

page 263. Solving for βc1, βs1 results in the following set of equations

(
n2 + S2

β

)
β1c = −n

(
Sβ +

16

γ
ν2
β

)
q

Ω(
n2 + S2

β

)
β1s = −

(
n2 − 16

γ
ν2
βSβ

)
q

Ω

(D.3.42)

For the case of zero hinge offset (e = 0, ε = 0), the above equations become

β1c = −16

γ

q

Ω

β1s = − q
Ω

(D.3.43)

Equations (D.3.42) and (D.3.43) indicate that a non zero steady pitch rate induces lateral

cross-coupling flapping which result on a rotor tilt to port (down at station ψ = 2700)

regardless of whether the blade has a flap hinge offset. In addition, a positive steady body

pitch (body nose-up) results on downward blade flapping and corresponding nose-down

rotor tilt at blade azimuth station ψ = 1800. Such rotor tilt produces a moment that

opposes the original nose-up moment of the vehicle. This behavior is a source of stable

longitudinal aerodynamic dampening response of the rotor to body pitch rate [27, 92].
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The longitudinal flapping damping factor

−β1c
Ω

q
=

16

γ
∝ inertia or rotor

aerodynamic forces
(D.3.44)

is inversely proportional to the Lock’s number. Equivalently, the longitudinal flapping

damping factor is directly proportional to the inertia of the rotor due to gyroscopic

effects and inversely proportional to the aerodynamic forces generated by the rotor. The

interaction of inertial and aerodynamic effects with the hinge offset is an important factor

to consider for the design of rotor control laws which may depend on flight conditions

such as flight altitude. For example, at high altitude, the rotor inertial response due

to gyroscopic effects will tend to be greater due to the diminishing relative effect of

aerodynamics forces at altitude [27].

D.3.4 Flapping Motion with Body Roll Rate

A development similar to the one presented in the previous section follows. In this case

however, the rotor hub angular velocity I~ωH is given by

I~ωH = I~ωA + A~ωH

= −p~a1 + Ω~h3

(D.3.45)

where (q = 0, r = 0). In terms of the rotor hub frame H

= HTA1 (ψ)− p~a1 + Ω~h3

I~ωH =


cosψ sinψ

− sinψ cosψ

1



−p

0

0

+


0

0

Ω

 =


−p cosψ

p sinψ

Ω


(D.3.46)
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Whence the main rotor hub angular acceleration I~αH is (Ω = ψ̇)

I~αH =


Ωp sinψ

Ωp cosψ

0

 (D.3.47)

Reusing equation (D.2.8), I~ao becomes

= Iω̃H ×
(Iω̃H × o′ r̃o

)
+ Iα̃H × o′ r̃o

=


−p cosψ

p sinψ

Ω

×


−p cosψ

p sinψ

Ω

×

eR

0

0




+


Ωp sinψ

Ωp cosψ

0

×

eR

0

0



I~ao =


−eRΩ2 − eRp2 sin2 ψ

−eRp2 cosψ sinψ

−2eRΩp cosψ



(D.3.48)
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Equation (D.3.48) above expresses the inertial acceleration of a point coincident with the

flapping hinge in terms of the Hub frame axis. In terms of the blade frame E we have

= ETH2 (β)
[I~ao]H

=


cos β sin β

1

− sin β cos β



−eRΩ2 − eRp2 sin2 ψ

−eRp2 cosψ sinψ

−2eRΩp cosψ


[I~ao]E =


−
(
eRΩ2 + eRp2 sin2 ψ

)
cos β − 2eRΩp cosψ sin β

−eRp2 sinψ cosψ(
eRΩ2 + eRp2 sin2 ψ

)
sin β − 2eRΩp cosψ cos β



(D.3.49)

Using equations (D.2.6) and (D.3.49), the term ~Co × I~ao in equation (D.2.5) takes the

form

=


Mblade rCM R

0

0

×

−
(
eRΩ2 + eRp2 sin2 ψ

)
cos β − 2eRΩp cosψ sin β

−eRp2 sinψ cosψ(
eRΩ2 + eRp2 sin2 ψ

)
sin β − 2eRΩp cosψ cos β


~Co × I~ao ≈Mblade rCM eR2

0

−
(
Ω2 + p2 sin2 ψ

)
sin β + 2Ωp cosψ cos β

−p2 sinψ cosψ



(D.3.50)
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Using small angle assumptions and neglecting higher order terms (eq2 ≈ 0, q2 sin β ≈ 0),

equation (D.3.28) becomes

~Co × I~ao ≈Mblade rCM eR2


0

−Ω2β + 2Ωp cosψ

0

 (D.3.51)

The inertial angular velocity of the blade frame E expressed in terms of frame E is

= ETH2 (β)
[
HTA1 (ψ)(−p)~a1 + Ω~h3

]
− β̇~e2

I~ωE =


Ω sin β − p cosψ cos β

p sinψ − β̇

Ω cos β + p cosψ sin β


(D.3.52)

and the corresponding inertial angular acceleration I~αE takes the form

I~αE =


Ωp sinψ cos β + (Ω cos β + p cosψ sin β) β̇

Ωp cosψ − β̈

−Ωp sinψ sin β − (Ω sin β − p cosψ cos β) β̇

 (D.3.53)
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The term ~Io · I ~̇ωE + I~ωE ×
(
~Io · I~ωE

)
in equation (D.2.5) takes the form

~Io · I ~̇ωE + I~ωE ×
(
~Io · I~ωE

)
=

IaΩp sinψ cos β + Ia (Ω cos β + p cosψ sin β) β̇

IbΩp cosψ − Ibβ̈

−IcΩp sinψ sin β − Ic (Ω sin β − p cosψ cos β) β̇



+


Ω sin β − p cosψ cos β

p sinψ − β̇

Ω cos β + p cosψ sin β

×

Ia (Ω sin β − p cosψ cos β)

Ib

(
p sinψ − β̇

)
Ic (Ω cos β + p cosψ sin β)



=


Ia (2Ω cos β + p cosψ sin β) p sinψ

Ib (2Ωp cosψ cos β − (Ω2 − p2 cos2 ψ) sin β) cos β − Ibβ̈

−IcΩp sinψ sin β − Ic (Ω sin β − p cosψ cos β) β̇



(D.3.54)

where I~αE = I ~̇ωE . Using small angle assumptions and neglecting higher order terms

(p2 sin β → small, ββ̇ → small), equation (D.3.54) becomes

~Io · I ~̇ωE + I~ωE ×
(
~Io · I~ωE

)
≈


2IaΩp sinψ

2IbΩp cosψ − IbΩ2β − Ibβ̈

−IcΩβp sinψ + Icβ̇p cosψ

 (D.3.55)
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Equations (D.3.51) and (D.3.55) give


L

−M

N

 = Mblade rCM eR2


0

Ω2β − 2Ωp cosψ

0



+


2IaΩp sinψ

−2IbΩp cosψ + IbΩ
2β + Ibβ̈

−IcΩβp sinψ + Icβ̇p cosψ



=


gyroscopic+ feathering moment

gyroscopic+ (Ma = aerodynamic)moment

drag moment



(D.3.56)

Equation (D.3.56) says that a steady pitch rate induces both blade pitch and drag mo-

ments. The induced drag moment is relieved by the drag (lead/lag) blade hinge, and the

induced blade pitch moment is sufficiently small and can be ignored. The resultant blade

flapping equation takes the form

β̈ + Ω2ν2
ββ − 2Ων2

βp cosψ =
Maero

Ib
(D.3.57)

where ν2
β is the non dimensional flap frequency previously defined in equation (D.2.62)

such that

rCM =
1− e

2

Iblade =

∫ (1−e)R

0

mr2dr =
m

3
R3 (1− e)3 =

Mblade

3
(1− e)2R2

ε =
Mblade rCM eR2

Ib
=

3e

2 (1− e)
=

static moment

inertial moment

ν2
β = 1 + ε

(D.3.58)

Figure D.7 on page 269 shows the perturbation to the angle of attack ∆α due to a

combination of flapping rate rβ̇ and roll rate rp sinψ. The corresponding differential lift
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Figure D.8: Blade Flapping Disturbance due to Body Roll Rate.

δL and resultant aerodynamic moment Maero are respectively

∆UP = rβ̇ − (r + eR)p cosψ

∆α = − tan−1 ∆φ ≈ −∆φ = −∆UP
UT

=
(r + eR)p cosψ − rβ̇

Ω (eR + r)

δL =
1

2
ρV 2

T sCL ≈
1

2
ρΩ2 (r + eR)2 (cδr)

(
a

(r + eR)p cosψ − rβ̇
Ω (eR + r)

)

=
1

2
ρacΩ (r + eR)

(
(r + eR) p sinψ − r β̇

)
δr

≈ 1

2
ρacΩ (r + eR)

(
p sinψ − β̇

)
r δr

Maero =

∫ (1−e)R

0

rdL =
1

2
ρacΩ(p sinψ − β̇)

∫ (1−e)R

0

r2 (r + eR) dr

=
1

8
ρacΩR4(p sinψ − β̇) (1− e)3

(
1 +

1

3
e

)
Maero

Ib
=
γ

8
Ω(p sinψ − β̇) (1− e)3

(
1 +

1

3
e

)
=
nγ

8
Ω(p sinψ − β̇)

(D.3.59)

where e2 → small, r eR � r2, and n = (1− e)3 (1 + e/3). Equating equations (D.3.57)

and (D.3.59) yields

β̈ +
nγ

8
Ωβ̇ + Ω2ν2

ββ =
nγ

8
Ωp sinψ + 2Ων2

βp cosψ (D.3.60)

Applying the change of variables in (D.3.13), equation (D.3.60) becomes

d2β

dψ2
+
nγ

8

dβ

dψ
+ ν2

ββ =
nγ

8

p

Ω
sinψ + 2ν2

β

p

Ω
cosψ (D.3.61)
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Expanding the periodic terms

(β1c cosψ + β1s sinψ) +
nγ

8
(β1c sinψ − β1s cosψ)

+ ν2
β (β0 − β1c cosψ − β1s sinψ)

=
nγ

8

p

Ω
sinψ + 2ν2

β

p

Ω
cosψ

(D.3.62)

Harmonic balancing of the periodic steady-state solution (D.3.16) to the above equation

(D.3.61) gives

nβ1c − Sββ1s = n
p

Ω

Sββ1c + nβ1s = −ν2
β

16

γ

p

Ω

(D.3.63)

Solving for β1c, β1s results in the following set of equations

(
n2 + S2

β

)
β1c = −

(
n2 − 16

γ
ν2
βSβ

)
p

Ω(
n2 + S2

β

)
β1s = n

(
Sβ −

16

γ
ν2
β

)
p

Ω

(D.3.64)

where n̄ = nγ/8. For the case of zero hinge offset (e = 0, ε = 0), the above equations

become

β1c =
p

Ω

β1s = −16

γ

p

Ω

(D.3.65)

Equations (D.3.64) and (D.3.65) indicate that a non zero steady starboard roll rate

induces longitudinal cross-coupling flapping which result in a rotor tilt to the rear (down

at blade azimuth station ψ = 00) regardless of whether the blade has a flap hinge offset.

In addition, a positive steady body roll results in blade flapping which corresponds to

port rotor tilt (down at blade azimuth station ψ = 2700). Such rotor tilt produces a

moment that opposes the original rolling moment of the vehicle. This behavior is a

source of stable lateral aerodynamic dampening response of the rotor to body roll rate
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[27, 92]. The lateral flapping damping factor

−β1s
Ω

p
=

16

γ
∝ inertia or rotor

aerodynamic forces
(D.3.66)

is inversely proportional to the Lock’s number. Equivalently, the lateral flapping damping

factor is directly proportional to the inertia of the rotor due to gyroscopic effects and

inversely proportional to the aerodynamic forces generated by the rotor. The interaction

of inertial and aerodynamic effects with the hinge offset is an important factor to consider

for the design of rotor control laws which may depend on flight conditions such as flight

altitude. For example, at high altitude, the rotor inertial response due to gyroscopic

effects will tend to be greater due to the diminishing relative effect of aerodynamics

forces at altitude [27].

D.3.5 Flapping Motion with Body Angular Roll and Pitch Rates

and Angular Rates of Change

The rotor hub angular velocity I~ωH, corresponding angular acceleration, and resulting

flapping hinge acceleration are given by equations (D.2.11), (D.2.12) and (D.2.13) re-

spectively in terms of the rotor hub frame H where (ψ̇ = Ω, Ω̇ = 0)

I~ωH =


−p cosψ + q sinψ

p sinψ + q cosψ

Ω

 (D.3.67)

I~αH =


Ω (p sinψ + q cosψ)− (ṗ cosψ − q̇ sinψ)

Ω (p cosψ − q sinψ) + (ṗ sinψ + q̇ cosψ)

0

 (D.3.68)

I~ao = −eR


Ω2 + (p sinψ + q cosψ)2

(p sinψ + q cosψ) (p cosψ − q sinψ)

2Ω (p cosψ − q sinψ) + ṗ sinψ + q̇ cosψ

 (D.3.69)
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Equation (D.3.69) above expresses the inertial acceleration of a point coincident with the

flapping hinge in terms of the hub frame axis H. Equation (D.3.69) can be written in

terms of the blade frame E as

= ETH2 (β)
[I~ao]H

= −eR


cos β sin β

1

− sin β cos β




Ω2 + (p sinψ + q cosψ)2

(p sinψ + q cosψ) (p cosψ − q sinψ)

2Ω (p cosψ − q sinψ) + ṗ sinψ + q̇ cosψ



[I~ao]E =



[2Ω (p cosψ − q sinψ) + ṗ sinψ + q̇ cosψ] sin β + . . .[
Ω2 + (p sinψ + q cosψ)2] cos β

(p sinψ + q cosψ) (p cosψ − q sinψ)

[2Ω (p cosψ − q sinψ) + ṗ sinψ + q̇ cosψ] cos β − . . .[
Ω2 + (p sinψ + q cosψ)2] sin β



(D.3.70)

Using equations (D.2.7) and (D.3.70), the term ~Co × I~ao in equation (D.2.5) takes the

form

=


MbladerCMR + eR cos β

0

−eR sin β

× [I~ao]E

~Co × I~ao ≈ −Mblade rCM eR2 . . .
0

Ω2β − 2Ω (p cosψ − q sinψ)− (ṗ sinψ + q̇ cosψ)

0



(D.3.71)
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where equation (D.3.71) includes small angle assumptions and drop of higher order terms

of the form ( p2 → 0, q2 → 0, pq → 0, eq2 → 0, q2 sin β → 0, etc). The inertial angular

velocity of the blade frame E expressed in terms of frame E is

= ETH2 (β)
[
HTA1 (ψ) (−p~a1 + q~a2) + Ω~h3

]
− β̇~e2

I~ωE =


Ω sin β − (p cosψ − q sinψ) cos β

p sinψ + q cosψ − β̇

Ω cos β + (p cosψ − q sinψ) sin β


(D.3.72)

and the corresponding inertial angular acceleration I~αE takes the form

I~αE =



Ω (p sinψ + q cosψ)− (ṗ cosψ − q̇ sinψ) + . . .

Ωβ̇ + (p cosψ − q sinψ) ββ̇

Ω (p cosψ − q sinψ) + (ṗ sinψ + q̇ cosψ)− β̈

−Ω (p sinψ + q cosψ) β + (ṗ cosψ − q̇ sinψ) β − . . .

Ωββ̇ + (p cosψ − q sinψ) β̇


(D.3.73)

Equation (D.3.73) includes the usual small angle and higher order neglect simplifications.

The term ~Io · I ~̇ωE + I~ωE ×
(
~Io · I~ωE

)
from equation (D.2.5) takes the form

~Io · I~αE + I~ωE ×
(
~Io · I~ωE

)
=

2IaΩ (p sinψ + q cosψ)− Ia (ṗ cosψ − q̇ sinψ)

Ib

[
2Ω (p cosψ − q sinψ) + (ṗ sinψ + q̇ cosψ)− Ω2β − β̈

]
Ic

[
(p cosψ − q sinψ) β̇ − Ω (p sinψ + q cosψ) β + ṗ cosψ − q̇ sinψ

]


(D.3.74)

where equation (D.3.74) results from applying small angle assumptions and neglecting

higher order terms (p2 → 0, q2 → 0, p q → 0, p2 sin β → small, ββ̇ → small). Next,
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substituting equations (D.3.71) and (D.3.74) in equation (D.2.5) give


L

−M

N

 = Mblade rCM eR2 . . .


0

Ω2β − 2Ω (p cosψ − q sinψ)− (ṗ sinψ + q̇ cosψ)

0

+ . . .


2IaΩ (p sinψ + q cosψ)− Ia (ṗ cosψ − q̇ sinψ)

Ib

[
β̈ + Ω2β − 2Ω (p cosψ − q sinψ)− (ṗ sinψ + q̇ cosψ)

]
Ic

[
(p cosψ − q sinψ) β̇ − Ω (p sinψ + q cosψ) β + ṗ cosψ − q̇ sinψ

]


=


gyroscopic+ feathering moment

Ma = aerodynamicmoment

drag moment



(D.3.75)
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D.3.5.1 Flapping Motion with Body Angular Roll and Pitch Rates

When the angular rate of change ṗ = 0, q̇ = 0, equation (D.3.75) becomes


L

−M

N

 = Mblade rCM eR2 . . .


0

Ω2β − 2Ω (p cosψ − q sinψ)

0

+ . . .


2IaΩ (p sinψ + q cosψ)

Ib

[
β̈ + Ω2β − 2Ω (p cosψ − q sinψ)

]
−Ic

[
(p cosψ − q sinψ) β̇ − Ω (p sinψ + q cosψ) β

]


=


gyroscopic+ feathering moment

gyroscopic+ (Ma = aerodynamic)moment

drag moment



(D.3.76)

Equation (D.3.76) says that a steady pitch rate induces both blade pitch and drag mo-

ments. The induced drag moment is relieved by the drag (lead/lag) blade hinge, and the

induced blade pitch moment is sufficiently small and can be ignored. The resultant blade

flapping equation takes the form

β̈ + Ω2ν2
ββ − 2Ων2

β (p cosψ − q sinψ) =
Maero

Ib
(D.3.77)

where ν2
β is the non-dimensional flap frequency previously defined in equation (D.2.62)

on page 257 such that
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Figure D.9: Blade Flapping Disturbance due to Body Roll and Pitch Rates.

rCM =
1− e

2

Iblade =

∫ (1−e)R

0

mr2dr =
m

3
R3 (1− e)3 =

Mblade

3
(1− e)2R2

ε =
Mblade rCM eR2

Ib
=

3e

2 (1− e)
=

static moment

inertial moment

ν2
β = 1 + ε

(D.3.78)

Figure D.7 on page 269 shows the perturbation to the angle of attack ∆α due to a

combination of flapping rate rβ̇ and roll rate rp sinψ. The corresponding differential lift
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δL and resultant aerodynamic moment Maero are respectively

∆UP = rβ̇ − (r + eR) (p cosψ + q cosψ)

∆α = − tan−1 ∆φ

≈ −∆φ = −∆UP
UT

=
(r + eR) (p cosψ + q cosψ)− rβ̇

Ω (eR + r)

δL =
1

2
ρV 2

T sCL ≈
1

2
ρΩ2 (r + eR)2 (cδr) a∆α

≈ 1

2
ρacΩ (r + eR) (p sinψ + q cosψ − β̇)rδr

Maero =

∫ (1−e)R

0

rdL

=
1

2
ρacΩ(p sinψ + q cosψ − β̇)

∫ (1−e)R

0

r2 (r + eR) dr

=
1

8
ρacΩR4(p sinψ + q cosψ − β̇) (1− e)3

(
1 +

1

3
e

)
Maero

Ib
=
γ

8
Ω(p sinψ + q cosψ − β̇) (1− e)3

(
1 +

1

3
e

)
=
nγ

8
Ω(p sinψ + q cosψ − β̇)

(D.3.79)

where e2 → small, r eR � r2, and n = (1− e)3 (1 + e/3). Equating equations (D.3.77)

and (D.3.79) yield

β̈ +
nγ

8
Ωβ̇ + Ω2ν2

ββ =
nγ

8
Ω (p sinψ + q cosψ) + 2Ων2

β (p cosψ − q sinψ) (D.3.80)

In the case when there is no blade offset e = 0, ε = 0, νβ = 1, the above expression takes

the form

β̈ +
γ

8
Ωβ̇ + Ω2β =

γ

8
Ω (p sinψ + q cosψ) + 2Ω (p cosψ − q sinψ) (D.3.81)

Equation (D.3.80) above applies for slender, uniform mass blades that form a thin disk

when they rotate, for small flapping angles β, and for hover case undergoing pitch and

roll angular rates. Also we assume that the blade center of mass does pass through the
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axis along the flap hinge. The term

β̈ + Ω2ν2
ββ

is the contribution due to inertial forces and moments about the hinge which include the

static moment due to the mass of the blade and the inertial moment due to the blade

flapping motion itself. The term ε is in essence a ratio of these two moments as shown

in equation (D.3.78). The term
nγ

8
Ωβ̇

is caused by the blade flapping and the effect that this flapping has on the angle of attack

that the blade sees as it rotates around the rotor shaft. This terms adds damping to the

flapping motion of the blade; whence, a major role played by aerodynamic terms is to

add damping to the rotor system [119, p. 34][124]. The term

nγ

8
Ω (p sinψ + q cosψ)

corresponds to pitch and roll rate contributions due to aerodynamics effects and the term

2Ων2
β (p cosψ − q sinψ)

corresponds to contributions due to gyroscopic effects. For a scaled-model helicopter

the flapping undamped natural frequency is approximately that of the rotorspeed at

Ω ≈ 157 rad/sec ( 1500 rpm), and the damping ratio is approximated by γ/8. The time

to settle within 5 % of the steady state value would be −8ln(0.05)/γΩ ≈ 0.05 seconds

for a Lock number γ ≈ 3. At a rotorspeed of 157 rad/sec this corresponds to about one

revolution. Then the blade flapping needs about one revolution of blade rotation in about

0.05 seconds to settle. Based on this approximate calculation, the forcing term dynamics

(on the right hand of equation (D.3.80)) of the body pitch and roll are much slower

that the blade flapping dynamics, and therefore, the rotor behaves as a quasi-steady

actuator [119]. Also, the above equation says that body pitch and roll rates will force

blade flapping via aerodyanmic and gyroscopic effects. Applying the change of variables
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in (D.3.13), equation (D.3.80) becomes

d2β

dψ2
+
nγ

8

dβ

dψ
+ ν2

ββ =
p

Ω

(nγ
8

sinψ + 2ν2
β cosψ

)
+
q

Ω

(nγ
8

cosψ − 2ν2
β sinψ

)
(D.3.82)

Expanding the periodic terms

(β1c cosψ + β1s sinψ) +
nγ

8
(β1c sinψ − β1s cosψ)

+ ν2
β (β0 − β1c cosψ − β1s sinψ)

=
p

Ω

(nγ
8

sinψ + 2ν2
β cosψ

)
+

q

Ω

(nγ
8

cosψ − 2ν2
β sinψ

)
(D.3.83)

Harmonic balancing of the periodic steady-state solution (D.3.16) to the above equation

(D.3.82) gives

nβ1c − Sββ1s = n
p

Ω
− ν2

β

16

γ

q

Ω

Sββ1c + nβ1s = −ν2
β

16

γ

p

Ω
− n q

Ω

(D.3.84)

Solving for β1c, β1s results in the following set of equations

(
n2 + S2

β

)
β1c = −

(
n2 − 16

γ
ν2
βSβ

)
p

Ω
− n

(
Sβ +

16

γ
ν2
β

)
q

Ω(
n2 + S2

β

)
β1s = n

(
Sβ −

16

γ
ν2
β

)
p

Ω
−
(
n2 − 16

γ
ν2
βSβ

)
q

Ω

(D.3.85)

For the case of zero hinge offset (e = 0, ε = 0, without loss of generality), the above

equations become

β1c =
p

Ω
− 16

γ

q

Ω

β1s = −16

γ

p

Ω
− q

Ω

(D.3.86)

The above results in (D.3.85) and (D.3.86) are consistent with results in equations

(D.3.42) and (D.3.64). As expected, non zero roll and pitch rates induce respective
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longitudinal and lateral cross-coupling flapping which result in a rotor tilt to the rear

(p/Ω) and to port (q/Ω) directions due to aerodynamic effects. This happens regardless

of whether the blade has a flap hinge offset. In addition, gyroscopic effects work such

that a positive steady body roll results in rotor tilt to port (16p/γ/Ω), and a positive

steady pitch rate results in a nose-down rotor tilt (16q/γ/Ω). These rotor tilt produce

a moments that opposes the original rolling moments of the vehicle, and are therefore

sources of stable aerodynamic dampening response of the rotor to body rates [27, 92].

The rotor roll and pitch damping factors

−β1c
Ω

q
=

16

γ
∝ inertia or rotor

aerodynamic forces

−β1s
Ω

p
=

16

γ
∝ inertia or rotor

aerodynamic forces

(D.3.87)

are inversely proportional to the Lock’s number. These are directly proportional to the

inertia of the rotor due to gyroscopic effects and inversely proportional to the aerodynamic

forces generated by the rotor. The interaction of inertial and aerodynamic effects with

the hinge offset is an important factor to consider for the design of rotor control laws

which may depend on flight conditions such as flight altitude. For example, at high

altitude, the rotor inertial response due to gyroscopic effects will tend to be greater due

to the diminishing relative effect of aerodynamics forces at altitude [27].

D.3.5.2 Flapping Motion with Body Roll and Pitch Rates Rate of Change

Equation (D.3.75) gives the contribution of pitch and roll angular rate of change


Ia (ṗ cosψ − q̇ sinψ)

− (Mblade rCM eR2 + Ib) (ṗ sinψ + q̇ cosψ)

−Ic (ṗ cosψ − q̇ sinψ)

 (D.3.88)
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which augment equation (D.3.80) such that

β̈ + n
γ

8
Ωβ̇ + Ω2ν2

ββ = n
γ

8
Ω (p sinψ + q cosψ)

+2Ων2
β (p cosψ − q sinψ)

+ν2
β (ṗ sinψ + q̇ cosψ)

(D.3.89)

Applying the change of variables in (D.3.13) equation (D.3.89) becomes

d2β

dψ2
+ n

γ

8

dβ

dψ
+ ν2

ββ =
p

Ω

(
n
γ

8
sinψ + 2ν2

β cosψ
)

+
q

Ω

(
n
γ

8
cosψ − 2ν2

β sinψ
)

+
ν2
β

Ω

(
dp

dψ
sinψ +

dq

dψ
cosψ

) (D.3.90)

Let the following expression for β(ψ) be a solution to (D.3.90) above with non-constant

coefficients as function of blade azimuth angle ψ

β (ψ) = β0 (ψ)− β1c(ψ) cosψ − β1s (ψ) sinψ (D.3.91)

such that

∂β (ψ)

∂ψ
=
∂β0

∂ψ
− ∂β1c

∂ψ
cosψ − ∂β1s

∂ψ
sinψ + β1c sinψ − β1s cosψ

∂2β (ψ)

∂ψ2
=
∂2β0

∂ψ2
− ∂2β1c

∂ψ2
cosψ − ∂2β1s

∂ψ2
sinψ

+2
∂β1c

∂ψ
sinψ − 2

∂β1s

∂ψ
cosψ + β1c cosψ + β1s sinψ

(D.3.92)
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Substituting (D.3.92) into (D.3.90), and performing harmonic balancing of the periodic

solution gives

∂2β0

∂ψ2
+ n

γ

8

∂β0

∂ψ
+ ν2

ββ0 (ψ) = 0

∂2β1c

∂ψ2
+ 2

∂β1s

∂ψ
+ n

γ

8

(
∂β1c

∂ψ
+ β1s

)
+
(
ν2
β − 1

)
β1c

= −2Ω2ν2
β

p

Ω
− nγ

8
Ω2 q

Ω
−
ν2
β

Ω

∂q (ψ)

∂ψ

∂2β1s

∂ψ2
− 2

∂β1c

∂ψ
+ n

γ

8

(
∂β1s

∂ψ
− β1c

)
+
(
ν2
β − 1

)
β1s

= −nγ
8

Ω2 p

Ω
+ 2Ω2ν2

β

q

Ω
−
ν2
β

Ω

∂p (ψ)

∂ψ

(D.3.93)

With no loss of generality, let the hinge offset be zero (e = 0), the roll rate p = 0 and

the pitch rate p be sinusoidally varying

p = 0

q (ψ) = q0 sin νψ → ∂q

∂ψ
= q0ν cos νψ

The resulting coupled equation is now

∂2β1c

∂ψ2
+ 2

∂β1s

∂ψ
+
γ

8

(
∂β1c

∂ψ
+ β1s

)
= −γ

8

q0

Ω
sin νψ − ν q0

Ω
cos νψ

∂2β1s

∂ψ2
− 2

∂β1c

∂ψ
+
γ

8

(
∂β1s

∂ψ
− β1c

)
= 2

q0

Ω
sin νψ

(D.3.94)

An approximate solution for β1c and β1s is:

β1c = −16

γ

q

Ω
+

[(
16

γ

)2

− 1

]
1

Ω

dq

dψ

β1s = − q
Ω

+
24

γ

1

Ω

dq

dψ

(D.3.95)

Typical values for longitudinal and lateral oscillation of the helicopter body are in the

range of 10 seconds as compared to a rotor frequency Ω = 1500 rpm for a model helicopter

(and 240 rpm for a conventional helicopter). In all cases, the ratio 1/Ωdq/dψ is much
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less than one and of the order 0.025 such that the terms involving 1/Ωdq/dψ can be

discarded [119, p. 35]. The results would again be those given in the case of steady pitch

and roll rates in equation (D.3.86). When the helicopter encounters transient states, the

longitudinal and lateral blade flapping is proportional to the pitch and roll rates, and the

rotor behaves as if the transient instantaneous values were the steady values instead. This

rotor behavior is known in literature as quasi-steady behavior [124]. Under quasi-steady

assumption, the rotor behaves such that a sequence of steady state values adequately

describes continuously changing motion.

D.3.6 Flapping Motion for Semi-rigid Rotors with Hinge Offset,

Hub Precone and Spring Restoring Moment

The blade flapping contribution of a hub precone β − βP , and spring restoring moment

Kβ proprotional to the blade flap angle is given by

Kβ (β − βP ) (D.3.96)

The fundamental equation of motion for blade flapping is given by equation (D.2.23)

β̈ + Ω2

(
1 +

e rCMMbladeR
2

Ib

)
β =

Maero

Ib
(D.3.97)

where ε in equation (D.2.25) is

ε =
Mblade rCM eR2

Ib
=

static moment

inertial moment
(D.3.98)

Substituting the restoring spring and hub precone in (D.3.96) into (D.3.97)

β̈ + Ω2 (1 + ε) β +
Kβ

Iβ
(β − βP ) =

Maero

Iβ

β̈ + Ω2

(
1 + ε+

Kβ

Ω2Iβ

)
β =

Maero

Iβ
+
Kβ

Iβ
βP

∂2β

∂ψ2
+ ν2β =

Maero

Ω2Iβ
+ ν2

0βP

(D.3.99)
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where the nondimensional rotating flap frequency ν2 and the non-rotating, nondimen-

sional blade flap frequency ν0 take the form

ν2 = 1 + ε+
Kβ

Ω2Iβ

ν2
0 =

Kβ

Ω2Iβ

(D.3.100)

The term Ω in the ν2
0 expression is the nominal rotor angular velocity. Also, the coefficient

of the β term relates to the blade natural flapping frequency such that [105, 119, 124]

ν2 = 1 + ε+
Kβ

IβΩ2
=
ω2
β

Ω2
(D.3.101)

D.3.7 Blade Equation of Motion for Forward Flight Including

Body Pitch and Roll Rates

Figure D.10 on the next page and Figure E.1 on page 318 show the rotor and blade

conditions in forward flight. During forward flight, the following takes place :

1. the air loads have higher harmonic content (imposes safety limit on forward motion)

2. the advancing blade encounters higher dynamic pressure which may cause shock

waves. Cyclic feathering flapping and/or cyclic feathering alleviates this effect.

3. the retreating blade encounters low dynamic pressure. Flap down or increased

angle of attack alleviates this effect, but stall may occur.

4. all of the above works to decrease total lift as forward speed increases. Lift will

impose a limit on forward speed.

To find the rotor forces and moments during forward flight, the velocities at a blade

section airfoil determine the angle of attack seen by the blade section. In general, the

angle of attack that the rotor blade sees depends on

1. pilot collective and cyclic pitch input

2. blade twist (if any)

3. free stream advance ratio µ and rotor inflow ratio λ

4. blade flapping
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5. anhedral and dihedral effects due to rotor conning

6. body pitch and roll

Following traditional methods for helicopter aerodynamics [82, 92, 105], the collective

and cyclic pilot inputs are given by equation (D.3.8) on page 260, and the blade flap angle

β is given by equation (D.3.16) on page 262

β = β0 − β1c cosψ − β1s sinψ

θ = θ0 − θ1c cosψ − θ1s sinψ

(D.3.102)

The free stream advance ratio µ and rotor inflow ratio λ are given by equation (B.6.4)

and subsequently by equation (E.1.1) above.

µ =
V cosα

ΩR

λ =
vi + V sinα

ΩR
= µ tanα + λi

(D.3.103)

At any blade azimuth angle ψ, the anhedral and dihedral effect due to blade flapping

and consequent rotor conning is the component of the free stream radial velocity normal

to the blade at a flap angle β

anhedral/dihedral effect =
V∞ cosα sin β cosψ

ΩR

= µ cosψ sin β ≈ βµ cosψ

(D.3.104)

As the blade section airfoil flaps up and down, the airfoil experiences a downwash equal

in magnitude and opposite in direction to the blade angular velocity about the flapping

hinge

blade flapping effect = r
dβ

dt
= rβ̇ (D.3.105)

The steady state body pitch and roll also contribute to the Up component of the blade

velocity

steady body pitch and roll effect = (eR + r) (p sinψ + q cosψ) (D.3.106)
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Referring to Figure D.10 on page 293, the total velocity encountered by the blade section

airfoil in forward flight is then

uT =
UT
ΩR

= (x+ e) + µ sinψ

uP =
UP
ΩR

= λ+ x
β̇

Ω
+ µβ cosψ − (e+ x)

( p
Ω

sinψ +
q

Ω
cosψ

)
≈ λ+ x

β̇

Ω
+ βµ cosψ − x

( p
Ω

sinψ +
q

Ω
cosψ

)
ur =

UR
ΩR

= µ cosψ

(D.3.107)

where x = r/R, e p→ small, e q → small and eR is the blade flap hinge offset. Also

u2
T = (x+ e)2 + µ2 sin2 ψ

uT (x+ e)
( p

Ω
sinψ +

q

Ω
cosψ

)
= −(e+ x)

[
(x+ e) + µ sinψ

( p
Ω

sinψ +
q

Ω
cosψ

)]
≈ −x (x+ e+ µ sinψ)

( p
Ω

sinψ +
q

Ω
cosψ

)
uTβµ cosψ = βµ cosψ (x+ e+ µ sinψ)

uTx
β̇

Ω
= x (x+ e+ µ sinψ)

β̇

Ω

uTλ = λ (x+ e+ µ sinψ)

(D.3.108)

The blade aerodynamic moment about the flapping hinge takes the form

Maero =

∫ (1−e)R

0

r dL

=
1

2
ρac (ΩR)2R2

∫ (1−e)

0

(e+ x)
[
θu2

T − uTuP
]
dx

Maero

Iβ
=

1

2

ρac (ΩR)2R2

Iβ

∫ (1−e)

0

(e+ x)
[
θu2

T − uTuP
]
dx

=
γ

2
Ω2

∫ (1−e)

0

(e+ x)
[
θu2

T − uTuP
]
dx

(D.3.109)
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where Iβ is the blade moment of inertia about the flapping hinge and the Lock number

γ in equation (D.3.2) is

γ =
ρacR4

Iβ

Substitution of (D.3.108) into the above equation (D.3.109) and integrating

8

γ

Maero

IβΩ2
= (e− 1)2

(
1 +

(e+ 2)

3
(e+ 2µ sinψ)

)( p
Ω

sinψ +
q

Ω
cosψ

)
−(1− e)3

(
1 +

e

3
+

4

3
µ sinψ

)
β̇

Ω

−(e− 1)2

(
2

3
(e+ 2) + 2µ sinψ

)
(βµ cosψ + λ)

+(e− 1)2

(
1 +

(e+ 2)

3
(e+ 4µ sinψ) + µ2 [1 + cos 2ψ]

)
θ

(D.3.110)

For the case when the flap hinge offset e = 0 the above expression becomes

8

γ

Maero

IβΩ2
=

(
1 +

4

3
µ sinψ

)( p
Ω

sinψ +
q

Ω
cosψ

)
−
(

1 +
4

3
µ sinψ

)
β̇

Ω
−
(

4

3
+ 2µ sinψ

)
(βµ cosψ + λ)

+

(
1 +

8

3
µ sinψ + µ2 [1 + cos 2ψ]

)
θ

(D.3.111)

Moreover, if in addition the advance ratio µ = 0 then

8

γ

Maero

IβΩ2
= θ − β̇

Ω
− 4

3
λ+

( p
Ω

sinψ +
q

Ω
cosψ

)
(D.3.112)

Rearranging the terms in the the general expression (D.3.110) above

8

γ

Maero

IβΩ2
= Kθθ −Kλλ−Kβ̇

β̇

Ω
−Kβµ β +Kpq

( p
Ω

sinψ +
q

Ω
cosψ

)
(D.3.113)
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where the following non-constant terms are functions of blade azimuth angle ψ

Kpq = (e− 1)2

(
1 +

(e+ 2)

3
(e+ 2µ sinψ)

)
Kλ = (e− 1)2

(
2

3
(e+ 2) + 2µ sinψ

)
Kβµ = (e− 1)2

(
2

3
(e+ 2)µ cosψ + µ2 sin 2ψ

)
Kβ̇ = (1− e)3

(
1 +

e

3
+

4

3
µ sinψ

)
Kθ = (e− 1)2

(
1 +

(e+ 2)

3
(e+ 4µ sinψ) + 2µ2 sin2 ψ

)
(D.3.114)

The blade flapping equation of motion with flap hinge offset, hub precone, blade restoring

spring, and body pitch and roll rates and pitch/roll rates of change in forward flight is

given by equation (D.3.75) and equation (D.3.77) on page 283, and equation (D.3.99) on

page 291

β̈ + Ω2ν2β =
Ma

Iβ
+ 2Ων2

β (p cosψ − q sinψ)

+ ν2
β (ṗ sinψ + q̇ cosψ) + ν2

0βP

(D.3.115)

where as before in equations (D.2.25) and (D.3.100)

ε =
Mblade rCM eR2

Ib
=

static moment

inertial moment

ν2
β = 1 + ε

ν2 = 1 + ε+
Kβ

IβΩ2

ν2
0 =

Kβ

IβΩ2

(D.3.116)
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Substituting equation (D.3.113) into (D.3.115) and rearranging yields the following ex-

pression

β̈ +
γ

8
ΩKβ̇β̇ + Ω2

(
ν2 +

γ

8
Kβµ

)
β =

γ

8
Ω2Kθθ −

γ

8
Ω2Kλλ

+
γ

8
Ω2Kpq

( p
Ω

sinψ +
q

Ω
cosψ

)
+2Ω2ν2

β

( p
Ω

cosψ − q

Ω
sinψ

)
+ν2

β (ṗ sinψ + q̇ cosψ) + ν2
0βP

(D.3.117)

Equation (D.3.117) is the fundamental equation of blade flapping [13, 22, 68] since it

defines the stability of the blade flapping dynamics. Exact analytical solutions are not

possible and numerical methods must be used.

D.3.7.1 Thrust and Torque Coefficients in Forward Flight

From Blade Element Theory (BET) in Section C.2 on page 222, the differential thrust

and torque coefficients are given by equation (C.2.9) on page 226

dL = q∞sCl =
1

2
ρU2 [c dy] Cl

=
1

2
ρU2 [c dy] a

(
θ − UP

UT

)
dD = q∞sCd =

1

2
ρU2 [c dy] Cd

dT ≈ bdL

dQ ≈ b y (dLφ+ dD) = [bdL] [φy] + bydD = RλdT + bydD

(D.3.118)
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where Rλ = φy. Using the following integration formulas

2π∫
0

sinψdψ =

2π∫
0

cosψdψ =

2π∫
0

sin2 ψ cosψdψ = 0

2π∫
0

sinψcosψdψ = 0

2π∫
0

sin2 ψdψ =

2π∫
0

cos2 ψdψ = π

(D.3.119)

Integration over the length of the blade and through one revolution gives the thrust

coefficient CT

T ≈ 1

2
ρabc (ΩR)2R

1

2π

∫ 2π

0

∫ 1−e

o

[
θu2

T − uTuP
]
dxdψ

CT =
T

ρ (ΩR)2 πR2
=

1

2

ρabc (ΩR)2R

ρ (ΩR)2 πR2

1

2π

∫ 2π

0

∫ 1−e

o

[
θu2

T − uTuP
]
dxdψ

=
aσ

2

1

2π

∫ 2π

0

∫ 1−e

o

[
θu2

T − uTuP
]
dx dψ

(D.3.120)

Given the velocity expressions in equation (D.3.107) on page 295, the thrust coefficient

is then

2CT
σa

=

(
(1− e3)

3
+

(1− e)
2

µ2

)
θ0 +

(e2 − 1)

2
λ

+

((
e2 − 1

)
θ1s + (1− e) eβ1c +

(1− e2)

2

p

Ω

)
µ

2

(D.3.121)

For the case when the hinge offset is zero e = 0, then

CT =
σa

2

[(
1

3
+

1

2
µ2

)
θ0 +

(
1

2

p

Ω
− θ1s

)
µ

2
− λ

2

]
(D.3.122)
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The corresponding torque coefficient CQ is

=
Q

ρ (ΩR)2 (πR2)R

CQ =
σa

2

1

2π

∫ 2π

0

∫ 1−e

0

(e+ x)

[
uTuP − u2

P +
Cd
a
u2
T

]
dxdψ

(D.3.123)

After integration the torque coefficient becomes

2CQ
σa

=
CD
4a

(
1 + µ2

)
+
λ

4

(
4

3
θ0 + (2β1c − θ1s)µ

)
− λ2

2

+
µ2

16

(
β1sθ1c + β1cθ1s − 4β2

0 − 3β2
1c − β2

1s

)
+
µ

6

(
2
q

Ω
β0 −

p

Ω
θ0 + β0 (2β1s − θ1c)

)
− 1

8

(
β2

1c + β2
1s

)
+
θ1s

8

( p
Ω
− β1c

)
+
θ1c

8

( q
Ω

+ β1s

)
+

1

4

( p
Ω
β1c −

q

Ω
β1s

)
− 1

8

(
p2

Ω2
+
q2

Ω2

)
+
e

12
(· · ·) +

e2

16
(· · ·) +

e3

12
(· · ·) +

e4

24
(· · ·)

(D.3.124)

For the case when the hinge offset is zero (e = 0), the above becomes

2CQ
σa

=
CD
4a

(
1 + µ2

)
+
λ

4

(
4

3
θ0 + (2β1c − θ1s)µ

)
− λ2

2

+
µ2

16

(
β1sθ1c + β1cθ1s − 4β2

0 − 3β2
1c − β2

1s

)
+
µ

6

(
2
q

Ω
β0 −

p

Ω
θ0 + β0 (2β1s − θ1c)

)
− 1

8

(
β2

1c + β2
1s

)
+
θ1s

8

( p
Ω
− β1c

)
+
θ1c

8

( q
Ω

+ β1s

)
+

1

4

( p
Ω
β1c −

q

Ω
β1s

)
− 1

8

(
p2

Ω2
+
q2

Ω2

)
(D.3.125)
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For the case of steady symmetric flight the body rates (p, q) are small and can be ne-

glected resulting in the following

2CQ
σa

=
CD
4a

(
1 + µ2

)
+
λ

4

(
4

3
θ0 + (2β1c − θ1s)µ

)
− λ2

2
− 1

8

(
β2

1c + β2
1s

)
+
µ2

16

(
β1sθ1c + β1cθ1s − 4β2

0 − 3β2
1c − β2

1s

)
+
µ

6
(β0 (2β1s − θ1c))

+
1

8
(θ1cβ1s − θ1sβ1c)

(D.3.126)

Neglecting squared terms and products of small flapping angle with cyclic inputs yields

CQ =
σa

2

[
CD
4a

(
1 + µ2

)
+
λ

4

(
4

3
θ0 + (2β1c − θ1s)µ

)
− λ2

2

]
(D.3.127)

An approximation to the latest expression uses equation (D.3.118) on page 298 to arrive

at a simpler form for the torque coefficient

= λCT +
σCd

2

1

2π

∫ 2π

0

∫ 1−e

0

(e+ x)u2
Tdxdψ

CQ = λCT +
σCd

8

(
1 + µ2

) (D.3.128)

D.3.7.2 Simplified Thrust and Torque Coefficients in Forward Flight

Substituting equation (D.3.107) on page 295 for uT , uP while neglecting fast dynamic

contributions of the flapping blade β̇ and body angular rates (p, q → small) such that

uT ≈ (e+ x) + µ sinψ

uP ≈
V sinα + vi

ΩR
= µ tanα + λi = λ
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Integrating first with respect to azimuth blade angle ψ results in

=
1

2
aσ

∫ 1−e

o

[
θ

(
(x+ e)2 +

µ2

2

)
− (x+ e)λ

]
dx

CT =
aσ

2

[
θ

3
(1− e)

(
(e+ 1)2 − e+

3

2
µ2

)
− (e2 − 1)

2
λ

]
CQ = λCT +

σCd
2

∫ 1−e

0

(
(e+ x)2 +

µ2

2

)
(e+ x) dx

= λCT −
Cd
8

(e− 1) (e+ 1)
(
1 + e2 + µ2

)
(D.3.129)

For the case where there is no flapping hinge (e = 0)

CT =
a σ

2

[
θ

3

(
1 +

3

2
µ2

)
− λ

2

]
CQ =

a σ

2

[
λ θ

3

(
1 +

3

2
µ2

)
− λ2

2
+
Cd
4a

(
1 + µ2

)]
= λCT +

σCd
8

(
1 + µ2

)
(D.3.130)

D.3.7.3 Blade Equation of Motion for Forward Flight: Non-Constant Blade

Flap Coefficients

Using the transformation equation (D.3.13) on page 262, the flapping equation (D.3.117)

on page 298 becomes

β′′ +
γ

8
Kβ̇β

′ +
(
ν2 +

γ

8
Kβµ

)
β =

γ

8
Kθθ −

γ

8
Kλλ

+
γ

8
Kpq

( p
Ω

sinψ +
q

Ω
cosψ

)
+ 2ν2

β

( p
Ω

cosψ − q

Ω
sinψ

)
+ ν2

β

(
ṗ

Ω2
sinψ +

q̇

Ω2
cosψ

)
+ ν2

0βP

(D.3.131)

Assume that the following expression for β(ψ) is a solution to (D.3.131) above, and the

expression for θ represent the blade pitch input

θ = θ0 − θ1c cosψ − θ1s sinψ

β (ψ) = β0 (ψ)− β1c(ψ) cosψ − β1s (ψ) sinψ

(D.3.132)
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such that

∂β (ψ)

∂ψ
=
∂β0

∂ψ
− ∂β1c

∂ψ
cosψ − ∂β1s

∂ψ
sinψ + β1c sinψ − β1s cosψ

∂2β (ψ)

∂ψ2
=
∂2β0

∂ψ2
− ∂2β1c

∂ψ2
cosψ − ∂2β1s

∂ψ2
sinψ

+2
∂β1c

∂ψ
sinψ − 2

∂β1s

∂ψ
cosψ + β1c cosψ + β1s sinψ

(D.3.133)

Substituting expression (D.3.133) into (D.3.131), expanding the periodic terms, and per-

forming harmonic balancing with first harmonic terms gives [22]

[A] β′′ + [D] β′ + [K] β = [F (θ, ω, λ)] (D.3.134)

where β′ = ∂β/∂ψ

β =

[
β0 β1c β1s

]T
θ =

[
θ0 θ1c θ1s

]T
ω =

[
p q ṗ q̇

]T (D.3.135)

The matrix [A], the damping matrix [D] and the stiffness matrix [K] are

A =


8/γ

8/γ

8/γ



D =


−x3n4 −2x3µ/3

−x3n4 16/γ

4x3µ/3 −16/γ −x3n4



K =


8ν2/γ −x2eµ

−n3µ/2 Sβ −n1 + x2µ2/2

n1 + x2µ2/2 Sβ



(D.3.136)
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The components of the forcing function [F ] = [C] θ + [R]ω + [O] take the form

C =


n2 + x2µ2 0 −2n3µ

0 n2 + x2µ2/2 0

−4n3µ 0 n2 + 3x2µ2



R =


n3µ/Ω

−16ν2
β/γΩ − (1− 4e/3) /Ω −8ν2

β/γΩ2

− (1− 4e/3) /Ω 16ν2
β/γΩ −8ν2

β/γΩ2



O =


−2n3

2x2µ

λ+


8ν2

0βP/γ



(D.3.137)

and the rotor stiffness number Sβ = 8 (ν2 − 1) /γ is defined by equation (D.3.19) on

page 263. Also the following convenient definitions apply

x = (e− 1)

n1 = (e− 1)2

(
2e

3
+
e2

3
− 1

)
n2 = (e− 1)2

(
1 +

2e

3
+
e2

3

)
n3 =

2

3
− e+

e3

3
n4 =

(
1 +

e

3

) (D.3.138)

D.3.7.4 Blade Equation of Motion for Forward Flight: Low Frequency Dy-

namics

Following results from section §D.3.5.2, equation (D.3.95), terms involving the rate of

change of roll ṗ/Ω → small and pitch q̇/Ω → small are discarded such that equation
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(D.3.131) becomes

β′′ +
γ

8
Kβ̇β

′ +
(
ν2 +

γ

8
Kβµ

)
β =

1

8
γKθθ −

1

8
γKλλ

+
1

8
γKpq

( p
Ω

sinψ +
q

Ω
cosψ

)
+2ν2

β

( p
Ω

cosψ − q

Ω
sinψ

)
+ν2

0βP

(D.3.139)

In this case, the [R] matrix of the forcing function in equation (D.3.134) on page 303

becomes

R̄ =


n3µ/Ω 0

−16ν2
β/γΩ − (1− 4e/3) /Ω

− (1− 4e/3) /Ω 16ν2
β/γΩ

 (D.3.140)

Since the rotor dynamics are much faster than the body dynamics [22, 68, 105], further

simplification discards the blade dynamic second order terms β′′. Moreover, inasmuch as

the following assumption within terms in the damping matrix [D] hold

(1− e)3 (1 + e/3) < 16/γ

(1− e)3 4µ/3 < 16/γ

(D.3.141)

then the cross coupling terms and the conning mode can be discarded from the longitu-

dinal and lateral flapping dynamics resulting in the following simplified expression

 0 16/γΩ

16/γΩ 0


 β̇1c

β̇1s

+

 Sβ − (n1 − x2µ2/2)

−n1 − x2µ2/2 −Sβ


 β1c

β1s


=

 n2 + x2µ2/2 0

0 − (n2 + x2µ2)


 θ1c

θ1s


+

 −16ν2
β/γΩ − (1− 4e/3) /Ω

(1− 4e/3) /Ω −16ν2
β/γΩ


 p

q

+

 0

−2x2µλ


(D.3.142)
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where x, n1, n2 are defined in Equation (D.3.138) on page 304. In the time domain the

above expression takes the form

[D] β̇/Ω + [K] β = [F (θ, ω, λ)] (D.3.143)

In an expanded form

16

γΩ
β̇1c −

(
n1 + x2µ

2

2

)
β1c − Sββ1s

= −
(
n2 + x2µ2

)
θ1s +

(
1− 4e

3

)
p

Ω
− ν2

β

16

γ

q

Ω
− 2x2 µλ

16

γΩ
β̇1s −

(
n1 − x2µ

2

2

)
β1s + Sββ1c

=

(
n2 + x2µ

2

2

)
θ1c − ν2

β

16

γ

p

Ω
−
(

1− 4e

3

)
q

Ω

(D.3.144)

Equation (D.3.144) describes the Tip Path Plane (TPP) first order blade flapping dy-

namics.

D.3.7.4.1 Blade Equation of Motion: Low Translational Speed

In this case the advance ratio µ → small, the rotor inflow ratio λ ≈ λi and equation

(D.3.139) takes the form

β′′ +
γ

8
K̄β̇β

′ + ν2β =
γ

8
K̄θθ −

γ

8
K̄λλi

+
γ

8
K̄pq

( p
Ω

sinψ +
q

Ω
cosψ

)
+ ν2

β

( p
Ω

cosψ − q

Ω
sinψ

)
+ ν2

0βP

(D.3.145)

where the constant coefficients are defined as

K̄pq = K̄θ = n2 = (e− 1)2

(
1 +

2

3
e+

e2

3

)
K̄β̇ = (1− e)3

(
1 +

1

3
e

)
K̄λ = (e− 1)2

(
4

3
+

2

3
e

) (D.3.146)
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In this case equation (D.3.144) on the preceding page becomes

16

γΩ
β̇1c − n1β1c − Sββ1s = −n2θ1s +

(
1− 4e

3

)
p

Ω
− ν2

β

16

γ

q

Ω
− 2x2 µλ

16

γΩ
β̇1s − n1β1s + Sββ1c = n2θ1c − ν2

β

16

γ

p

Ω
−
(

1− 4e

3

)
q

Ω

(D.3.147)

D.3.7.4.2 Blade Equation of Motion: No-Flapping Hinge Offset and no Hub

Precone

For a rotor that hinges at the hub the hinge offset is zero e = 0, ε = 0, with a hub

spring Kβ such that ν = Kβ/IβΩ2 with no hub precone βP = 0. Equation (D.3.145)

becomes

β′′ +
γ

8
β′ +

(
1 +

Kβ

Ω2Iβ

)
β =

γ

8
θ − γ

8
λi

+
γ

8

( p
Ω

sinψ +
q

Ω
cosψ

)
+ 2

( p
Ω

cosψ − q

Ω
sinψ

) (D.3.148)

Substituting expression (D.3.133) in the above equation, and performing harmonic bal-

ancing results in the following coupled equations

β′′0 +
γ

8
β′0 +

(
1 +

Kβ

Ω2Iβ

)
β0 =

γ

8
θ0 −

γ

8
λi

β′′1c + 2 β′1s +
γ

8
(β′1c + β1s) +

Kβ

Ω2Iβ
β1c =

γ

8
θ1c −

γ

8

q

Ω
− 2

p

Ω

β′′1s − 2 β′1c +
γ

8
(β′1s − β1c) +

Kβ

Ω2Iβ
β1s =

γ

8
θ1s −

γ

8

p

Ω
+ 2

q

Ω

(D.3.149)

Discarding the rotor conning dynamics and transformation back to the rotating coordi-

nate axis

8

γΩ2
β̈1c +

1

Ω
β̇1c +

16

γΩ
β̇1s + β1s +

8

γ

Kβ

Ω2Iβ
β1c = θ1c −

q

Ω
− 16

γ

p

Ω

8

γΩ2
β̈1s −

16

γΩ
β̇1c +

1

Ω
β̇1s − β1c +

8

γ

Kβ

Ω2Iβ
β1s = θ1s −

p

Ω
+

16

γ

q

Ω

(D.3.150)
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In matrix form

8

γΩ2

 β̈1c

β̈1s

+
1

Ω

 1 16/γ

−16/γ 1


 β̇1c

β̇1s


+

8

γ

 Kβ/IβΩ2 γ/8

−γ/8 Kβ/IβΩ2


 β1c

β1s


=

 1

1


 θ1c

θ1s

+
1

Ω

 −16/γ −1

−1 16/γ


 p

q


(D.3.151)

As previously stated in equation (D.3.134) on page 303, the above equation has the form

[A]β̈ + [D]β̇ + [K]β = [F ] (D.3.152)

Neglecting second order terms [22, 105], the equation (D.3.150) becomes

16

γΩ
β̇1c −

1

Ω
β̇1s + β1c −

8

γ

Kβ

Ω2Iβ
β1s = −θ1s +

p

Ω
− 16

γ

q

Ω

1

Ω
β̇1c +

16

γΩ
β̇1s + β1s +

8

γ

Kβ

Ω2Iβ
β1c = θ1c −

q

Ω
− 16

γ

p

Ω

(D.3.153)

In matrix form

1

Ω

 1 16/γ

16/γ −1


 β̇1c

β̇1s

+
8

γ

 Kβ/IβΩ2 γ/8

γ/8 −Kβ/IβΩ2


 β1c

β1s


=

 1

−1


 θ1c

θ1s

+
1

Ω

 −16/γ −1

1 −16/γ


 p

q


(D.3.154)

Similar results were obtained by Chen [22] and utilized in practice by Mettler et. all

[50, 105, 107, 108].

D.3.7.4.3 Simplified First Order Tip Path Plane Blade Flapping Equation

of Motion
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Discarding the cross coupling effects as suggested by equation (D.3.141) on page 305,

the expanded form of equation (D.3.154) on the previous page is

16

γΩ
β̇1c + β1c −

8

γ

Kβ

Ω2Iβ
β1s = −θ1s +

p

Ω
− 16

γ

q

Ω

16

γΩ
β̇1s + β1s +

8

γ

Kβ

Ω2Iβ
β1c = θ1c −

16

γ

p

Ω
− q

Ω

(D.3.155)

Rearranging some terms

16

γΩ
β̇1c = −β1c +

p

Ω
− 16

γ

q

Ω
+

8

γ

Kβ

Ω2Iβ
β1s − θ1s

16

γΩ
β̇1s = −β1s −

q

Ω
− 16

γ

p

Ω
− 8

γ

Kβ

Ω2Iβ
β1c + θ1c

(D.3.156)

In equation (D.3.156) above, the term

τMR =
16

γΩ
(D.3.157)

is the rotor time constant which depends on the rotor angular speed and corresponding

Lock number. The same time constant applies to the longitudinal τMR q and lateral τMR p

flapping produced by the body pitching rate q and rolling rate p respectively

q τMR = − 16

γΩ
q

p τMR = − 16

γΩ
p

(D.3.158)

These terms above are important in that they are a source of rotor damping. The terms

−p/Ω and −q/Ω are, respectively, the longitudinal and lateral blade flapping produced

by aerodynamic cross coupling via the body roll p and pitch q rates. Finally, the term

8

γ

Kβ

Ω2Iβ
(D.3.159)
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results from hinge offset and flapping restraint. It is a source of cross coupling and it is

related to the blade natural flapping frequency defined in equation (D.3.101) on page 292

8

γ

Kβ

IβΩ2
=

8

γ

(
ν2
β − 1− ε

)
(D.3.160)

Inasmuch as the term Kβ relates to the flapping blade natural frequency ω2
β/Ω

2 via

equation (D.3.101), then Kβ relates directly to the phasing of the flapping response

[105, 119].

D.3.7.4.4 Blade Equation of Motion: Teetering Blade

In this case there is no restoring spring Kβ and equation (D.3.148) becomes

β′′ +
γ

8
β′ + β =

γ

8
θ − γ

8
λi +

γ

8

( p
Ω

sinψ +
q

Ω
cosψ

)
+ 2

( p
Ω

cosψ − q

Ω
sinψ

)
(D.3.161)

In turn, the set of coupled equations (D.3.149) takes the form

β′′1c + 2 β′1s +
γ

8
( β′1c + β1s) =

γ

8
θ1c −

γ

8

q

Ω
− 2

p

Ω

β′′1s − 2 β′1c +
γ

8
(β′1s − β1c) =

γ

8
θ1s −

γ

8

p

Ω
+ 2

q

Ω

(D.3.162)

After discarding the second order blade dynamics and transforming to the time domain

16

γΩ
β̇1c −

1

Ω
β̇1s + β1c = −θ1s +

p

Ω
− 16

γ

q

Ω
1

Ω
β̇1c +

16

γΩ
β̇1s + β1s = θ1c −

q

Ω
− 16

γ

p

Ω

(D.3.163)

Applying the simplifications suggested by equation (D.3.141) on page 305, the above

expression becomes

16

γΩ
β̇1c = −β1c +

p

Ω
− 16

γ

q

Ω
− θ1s

16

γΩ
β̇1s = −β1s −

q

Ω
− 16

γ

p

Ω
+ θ1c

(D.3.164)

310



Equations (D.3.156) and (D.3.164) differ by the term

8

γ

Kβ

Ω2Iβ

which is a cross-coupling term due to the presence of a flapping restraint, in this case

a blade flap restoring device with spring constant Kβ. A teetering rotor does not have

a hinge offset and flaps about the main rotational axis, and therefore a teetering rotor

cannot develop hub moments, in which case Kβ = 0. Equation (D.3.163) describes the

first order equation of motion for a teetering blade in the rotor hub reference frame.

When steady state conditions apply (β̇1c = 0, β̇1s = 0) with no body angular motion

(q = 0, p = 0), then

β1c + θ1s = constant

β1s − θ1c = constant

(D.3.165)

The above is the same as equation (B.6.4) on page 200.

D.3.7.5 Blade Equation of Motion for Forward Flight: Constant Blade Flap

Coefficients

The fundamental equation of motion for a flapping blade in forward flight is given by

equation (D.3.117) on page 298, and is reproduced below for convenience

β′′ +
γ

8
Kβ̇β

′ +
(
ν2 +

γ

8
Kβµ

)
β =

γ

8
Kθθ −

γ

8
Kλλ

+
(γ

8
Kpq

p

Ω
− 2ν2

β

( q
Ω

))
sinψ

+
(

2ν2
β

( p
Ω

)
+
γ

8
Kpq

q

Ω

)
cosψ + ν2

0βP

(D.3.166)
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where the transformation equation (D.3.13) on page 262 is used. Discard slow body rates

of change dynamics (q̇, ṗ→ small) and the hub precone βP to obtain

β′′ +
γ

8
Kβ̇β

′ +
(
ν2 +

γ

8
Kβµ

)
β =

γ

8
Kθθ −

γ

8
Kλλ

+
(γ

8
Kpq

p

Ω
− 2ν2

β

q

Ω

)
sinψ +

(
2ν2

β

p

Ω
+
γ

8
Kpq

q

Ω

)
cosψ

(D.3.167)

Substituting equation (D.3.114) and equation (D.3.116) on page 297 into (D.3.167), and

after performing trigonometric reduction and harmonic balancing gives

(
1

3
− e

2

)(
(µθ1s + λ)− p

2Ω
µ
)
−

(
(e− 1)2 µ2

4
+

(
1

4
− e

3

))
θ0

+

(
e− 1

2

)
eµ

2
β1c +

8ν2

γ
β0 = 0

(
(e− 1)2 µ2

8
+

(
1

4
− e

3

))
θ1c −

(
ν2 − 1

)
β1c +

(
1

3
− e

2

)
µβ0

−

((
1− 8e

3
+ 2e2

)
+

(e− 1)2 µ2

2

)
β1s

4
+

(
e

3
− 1

4

)
q

Ω
−

16ν2
β

γ

p

Ω
= 0

(
3 (e− 1)2 µ2

8
−
(
e

3
− 1

4

))
θ1s +

(
e− 2

3

)
µθ0

+
(e− 1)2 µ

2
λ−

(
ν2 − 1

)
β1s +

(
e

3
− 1

4

)
p

Ω

−

(
(e− 1)2 µ2

2
−
(

1− 8e

3
+ 2e2

))
β1c

4
+

16ν2
β

γ

q

Ω
= 0

(D.3.168)

In an effort to make the math tractable, the above expression discards higher powers of e

and µ which restrict results to low advance ratio µ but with no loss of generality. Solving

for the flap coefficients still results on very cumbersome and long expressions. To once

again make the algebra tractable, the resulting flap coefficients are given for the case when

the hinge offset is zero e = 0, and ε = 0, νβ = 1, ν2 = 1+Kβ/IβΩ2 (see equation (D.3.116)
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on page 297). Use the definition for stiffness number in equation (D.3.19) on page 263

Sβ =
8

γ

(
ν2 − 1

)
Sµ =

(
1− µ4

4

)
+ S2

β

(D.3.169)

The resulting flapping coefficients are then

β0 =
γ

8ν2

[
θ0

(
1 + µ2

)
− 4

3
(µθ1s + λ) +

2µ

3

p

Ω

]

(
1− µ4

4
+ S2

β

)
β1s =

8

γ
µSβ

(
2λ− γ

3
θ0

)
+

(
1 +

3

2
µ2

)
Sβθ1s

+
4µ

3
β0 + (Sµ − Sβ) θ1c

+

(
16

γ
Sβ +

µ2

2
− 1

)
q

Ω
−
(
Sβ −

16

γ

(
µ2

2
− 1

))
p

Ω

(
1− µ4

4
+ S2

β

)
β1c = 4

(
1 +

2

3
µ2

)
µθ0 −

(
1 + 4µ2

)
θ1s

+

(
1 +

µ2

2

)
Sβθ1c −

(
8

γ

)(
4µ

3

)
β0 −

(
4 + µ2

)
µλ

−
(

16

γ
Sβ +

4

3
µ2 − 1

)
p

Ω
−
(
Sβ +

16

γ

(
1 +

µ2

2

))
q

Ω

(D.3.170)

For the case when the advance ratio is zero µ = 0 the flapping coefficients become

β0 =
γ

8ν2

[
θ0 −

4

3
λ

]
(
1 + S2

β

)
β1s = Sβθ1s + θ1c +

(
16

γ
Sβ − 1

)
q

Ω
−
(
Sβ +

16

γ

)
p

Ω(
1 + S2

β

)
β1c = Sβθ1c − θ1s −

(
16

γ
Sβ − 1

)
p

Ω
−
(
Sβ +

16

γ

)
q

Ω

(D.3.171)

For a teetering rotor (e = 0) in forward flight (µ 6= 0) when the hub or blade spring is zero

(Kβ = 0), then ν2 = 1 and the constant flapping coefficient solution to equation (D.3.167)
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on page 312 becomes

β0 =
γ

8

[(
1 + µ2

)
θ0 −

4

3
(µθ1s + λ) +

2µ

3

p

Ω

]
(

1− µ2

2

)
β1c =

8

3
µθ0 − 2µλ−

(
1 +

3µ2

2

)
θ1s +

p

Ω
− 16

γ

q

Ω(
1 +

µ2

2

)
β1s =

4

3
µβ0 +

(
1 +

µ2

2

)
θ1c −

q

Ω
− 16

γ

p

Ω

(D.3.172)

For small advance ratio µ� 1

β0 =
γ

8

[
θ0 −

4

3
(µθ1s + λ) +

2µ

3

p

Ω

]
β1c =

8

3
µθ0 − 2µλ− θ1s +

p

Ω
− 16

γ

q

Ω

β1s =
4

3
µβ0 + θ1c −

q

Ω
− 16

γ

p

Ω

(D.3.173)

For hover flight the advance ratio is zero µ = 0 and the above simplifies to

β0 =
γ

8

(
θ0 −

4

3
λ

)
β1c = −θ1s +

p

Ω
− 16

γ

q

Ω

β1s = θ1c −
q

Ω
− 16

γ

p

Ω

(D.3.174)

D.4 Summary of Blade Equations of Motion
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Table D.1: Summary of Blade Equations of Motion

Fundamental blade EOM Equation (D.3.117) on page 298
thrust coefficient CT in forward flight Equation (D.3.122) on page 299
torque coefficient CQ in forward flight Equation (D.3.124) on page 300

teetering rotor e = 0 Equation (D.3.125) on page 300
symmetric flight Equation (D.3.126) on page 301

q, q̇, p, ṗ→ small
Non-constant blade flap coefficients Equation (D.3.134) on page 303

low frequency dynamics Equation (D.3.142) on page 305
q̇, ṗ→ small

low translational speed µ→ small Equation (D.3.147) on page 307
e = 0, βP = 0 Equation (D.3.149) on page 307

no hub precone
discard conning dynamics Equation (D.3.151) on page 308
discard higher order terms Equation (D.3.154) on page 308

Simplified 1st order TPP Equation (D.3.156) on page 309
teetering rotor Equation (D.3.162) on page 310

simplified teetering EOM Equation (D.3.164) on page 310
Constant blade flap coefficient Equation (D.3.168) on page 312

discard higher order terms Equation (D.3.170) on page 313
e2, µ2 → small

no advance ratio µ = 0 Equation (D.3.171) on page 313
teetering rotor e = 0 Equation (D.3.172) on the preceding page

small advanced ratio Equation (D.3.173) on the previous page
µ→ small

hovering µ = 0 Equation (D.3.174) on the preceding page
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Appendix E

Helicopter Rotor Forces and Moments

Section B.6 on page 196 explores the relationship among the various reference frames

for the helicopter rotor. Figure E.1 on page 318 and Figure D.10 on page 293 show

the relevant parameters pertaining to the rotor forces and moments with the hub plane

(HP) as a reference plane. Work related to rotor forces and moments are fundamental

for the development of helicopter dynamic models and control laws. Early work by

Glauert [54, 55, 57], Goldstein [58], and Lock [98] established a theoretical basis for

the physics based modeling of the helicopter aerodynamic. More contemporary work

resulted in the development and application of standard models for rotor forces and

moments [21, 22, 23, 25, 68]. Modern references to the subject can be found in Johnson

[82], Leishman [92], Padfield [119] and Prouty [124] which detail derivations of the rotor

forces and moments.

E.1 Aerodynamic Rotor Forces and Moments

The advance ratio µ and the inflow ratio λ are defined in section §C.1.3 (page 217) by

equations (C.1.48) and (C.1.49), and are reproduced below for convenience

µ =
V cosα

ΩR

λ =
vi + V sinα

ΩR
= µ tanα + λi

(E.1.1)

where the above inflow value for the main (and tail) rotor result from momentum theory

in equation (C.1.52) (page 219)

λ = µ tanα +
CT

2
√
µ2 + λ2

(E.1.2)
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For small angle of attack α → small, the advance ratio µ = V cosα/ΩR ≈ V/ΩR is

independent of the reference frame. Also, the thrust TMR is an order of magnitude

larger that the other rotor forces, and in this case, the rotor thrust TMR is approximately

independent of the reference plane. Based on the relations among the various rotor

reference frames in equation (B.6.4), section §B.6.4 (page 200) the following holds [13, 92]

β1c + θ1s = constant = [β1c]NFP = [θ1s]TPP

β1s − θ1c = constant = [β1s]NFP = [θ1c]TPP

[µ]HP ≈ [µ]TPP ≈ [µ]NFP = µ

[λ]HP = λ = [λ]TPP + µβ1c = [λ]NFP − µ θ1s

[α]TPP = [α]NFP − (β1c + θ1s)

[α]HP = α = [α]TPP + β1c = [α]NFP − θ1s

[CT ]HP ≈ [CT ]TPP ≈ [CT ]NFP = CT

[CH ]HP = CH = [CH ]NFP − θ1sCT = [CH ]TPP + β1cCT

[CY ]HP = CY = [CY ]NFP + θ1cCT = [CY ]TPP + β1sCT

(E.1.3)

In section §C.2, Figure C.6 on page 223 illustrates the relationship between the various

parameters associated with forces on rotor blades. A summary of results [82, 92] from

equations (C.2.1) through (C.2.12) follows. Based on diagrams in Figure E.1 on the next

page and Figure D.10 on page 293, and rearranging equations (C.2.6) and (C.2.8) results

in the following set of equations [13, 11, 82, 92]:
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dL =
1

2
ρU2cCldr =

1

2
ρU2

T cClα

(
θ − UP

UT

)
dr

=
1

2
ρcClα

(
θU2

T − UTUP
)
dr

dD =
1

2
ρU2cCddr =

1

2
ρcCdU

2
Tdr

dFz = dL cosφ− dD sinφ ≈ dL

≈ 1

2
ρcClα

(
θU2

T − UTUP
)
dr

dFx = dL sinφ+ dD cosφ ≈ dLφ− dD

≈ 1

2
ρcClα

(
θUTUP − U2

P +
Cd
Clα

U2
T

)
dr

dFr = −dFz sin β +Dradial = [dL cosφ− dD sinφ] sin β

≈ −1

2
ρcβClα

(
θU2

T − UTUP
)
dr

(E.1.4)

Multiply times the number of blades to obtain loads on the entire rotor, and integrating

from 0→ 2π to find the average over one revolution to get [13, 92]

TMR =
b

2π

∫ 2π

0

∫ R(1−e)

0

dFzdψ

HMR =
b

2π

∫ 2π

0

∫ R(1−e)

0

[dFx sinψ + dFr cosψ] dψ

YMR =
b

2π

∫ 2π

0

∫ R(1−e)

0

[−dFx cosψ + dFr sinψ] dψ

QMR =
b

2π

∫ 2π

0

∫ R(1−e)

0

(r + eR) dFxdψ

MxMR =
b

2π

∫ 2π

0

MMR sinψdψ

MyMR = − b

2π

∫ 2π

0

MMR cosψdψ

(E.1.5)

where MMR is the main rotor moment about the hub. A non dimensional version of

equation (E.1.5) requires non-dimensional velocities such that

uT =
UT
ΩR

, uP =
UP
ΩR

, a = Clα , γ = ρacR4, σ =
bc

πR
, b = # of blades
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The non-dimensional force equations become

CTMR
=

TMR

ρ (πR2) (ΩR)2

=
ρabc

2ρ (πR2) (ΩR)2

R (ΩR)2

2π

∫ 2π

0

∫ (1−e)

0

(
θu2

T − uTuP
)
dxdψ

=
aσ

4π

∫ 2π

0

∫ (1−e)

0

(
θu2

T − uTuP
)
dxdψ

CHMR
=

HMR

ρ (πR2) (ΩR)2

=
aσ

4π

∫ 2π

0

∫ (1−e)

0


(
θuTuP − u2

P +
Cd
a
u2
T

)
sinψ · · ·

−β
(
θu2

T − uTuP
)

cosψ

 dxdψ
CYMR

=
YMR

ρ (πR2) (ΩR)2

= −aσ
4π

∫ 2π

0

∫ (1−e)

0


(
θuTuP − u2

P +
Cd
a
u2
T

)
cosψ · · ·

+β
(
θu2

T − uTuP
)

sinψ

 dxdψ

(E.1.6)

The aerodynamic rotor torque takes the form

QMR =
b

2π

∫ 2π

0

∫ R(1−e)

0

(eR + r) dFxdψ

=
ρabcR2

2

(ΩR)2

2π

∫ 2π

0

∫ (1−e)

0

(e+ x)

(
θuTuP − u2

P +
Cd
a
u2
T

)
dx dψ

CQ =
QMR

ρ (πR2)R (ΩR)2

=
aσ

4π

∫ 2π

0

∫ (1−e)

0

(e+ x)

(
θuTuP − u2

P +
Cd
a
u2
T

)
dx dψ

(E.1.7)
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A general expression for the velocities seen at each blade element is given by equa-

tion (D.3.107) on page 295 and reproduced below for convenience

uT =
UT
ΩR

= (x+ e) + µ sinψ

uP =
UP
ΩR

= λ+ x
β̇

Ω
+ µβ cosψ − (e+ x)

( p
Ω

sinψ +
q

Ω
cosψ

)
≈ λ+ x

β̇

Ω
+ βµ cosψ − x

( p
Ω

sinψ +
q

Ω
cosψ

)
ur =

UR
ΩR

= µ cosψ

(E.1.8)

E.2 Rotor Forces

After integration of equation (E.1.5) on page 319 and equation (E.1.6) on the preceding

page with the velocity at each blade element given by equation (E.1.8), the following

expressions give results for the average steady state forces. The thrust coefficient CT is

given by equation (D.3.121) on page 299 and is reproduced below for convenience

2CT
σa

=

(
(1− e3)

3
+

(1− e)
2

µ2

)
θ0 +

(e2 − 1)

2
λ

+

((
e2 − 1

)
θ1s + (1− e) eβ1c +

(1− e2)

2

p

Ω

)
µ

2

(E.2.1)

The longitudinal force coefficient CH takes the following form

2CH
σa

=
(
1− e2

) µCD
2

+
((

4− 3e− e3
)
β1c + 2

(
e3 − 1

) p
Ω

) θ0

12

+
(

(e− 3) β1c + (e+ 1)
(

2
p

Ω
− θ1s

)
+ 2µθ0

) (1− e)λ
4

+
(e− 1)µθ1s

4

(
(e− 2)

2
β1c +

3 (e+ 1)

4

p

Ω

)
+

(1− e) θ1c

4

(
2 (1 + e+ e2)

3
β0 −

eµ

2
β1s +

(e+ 1)µ

4

q

Ω

)
+

(e2 − 1)µβ1c

16

p

Ω
+

(
2 (e3 − 1)

3
β0 +

(e2 − 1)µ

4
β1s

)
q

4Ω

−2 + 3e+ e2

12
β0β1s +

(1− e)µ
4

(
(e+ 1) β2

0 +
(e+ 2)

2
β2

1c +
e

2
β2

1s

)

(E.2.2)
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For a teetering rotor the hinge offset is zero (e = 0) then

2CH
σa

=
µCD

2
+
(

4β1c − 2
p

Ω

) θ0

12
+
(
−3β1c + 2µθ0 − θ1s + 2

p

Ω

) λ
4

+
µθ1s

4

(
3

4

p

Ω
− β1c

)
+
θ1c

4

(
2

3
β0 +

µ

4

q

Ω

)
−µβ1c

16

p

Ω
−
(

2

3
β0 +

µ

4
β1s

)
q

4Ω
− β0β1s

6
+
µ

4

(
β2

0 + β2
1c

) (E.2.3)

For a teetering rotor in hover (e = 0, µ = 0)

2CH
σa

=
(

2β1c −
p

Ω

) θ0

6
−
(

3β1c + θ1s − 2
p

Ω

) λ
4

+
(
θ1c −

q

Ω
− β1s

) β0

6
(E.2.4)

The corresponding average steady state lateral force coefficient CY takes the form

2CY
σa

=
(

(e− 3) β1s + 6µβ0 − 2 (e+ 1)
q

Ω

) (1− e2)λ

4

+

(
(4 + e+ e2 + 6µ2) β1s

3
− 3 (e+ 1)µβ0 +

2 (1 + e+ e2)

3

q

Ω

)
(1− e2) θ0

4

+

(
(e+ 1)λ−

(
3e

2
+ 1

)
µβ1c −

(e+ 1)µ

4

p

Ω

)
(1− e2) θ1c

4

+

(
2 (1 + e+ e2 + 3µ2) β0

3
− (4 + 3e)µβ1s

2
− (e+ 1)µ

4

q

Ω

)
(1− e2) θ1s

4

+

(
2 (e3 − 1)

3
β0 +

5 (e2 − 1)µ

4
β1s

)
p

4Ω
− 7 (e2 − 1)µβ1c

16

q

4Ω

−
(

(e+ e2 + 12µ2 − 2)

3
β0 − µβ1s

)
(1− e2) β1c

4

(E.2.5)

For a teetering rotor the hinge offset is zero (e = 0) then

2CY
σa

=
(

6µβ0 − 3β1s − 2
q

Ω

) λ
4

+

(
(4 + 6µ2)

3
β1s − 3µβ0 +

2

3

q

Ω

)
θ0

4

+
(
λ− µβ1c −

µ

4

p

Ω

) θ1c

4
+

(
2 (1 + 3µ2) β0

3
− 2µβ1s −

µ

4

q

Ω

)
θ1s

4

+

(
5µ

4
β1s −

2

3
β0

)
p

4Ω
− 7µβ1c

16

q

Ω
+

(
µβ1s +

(2− 12µ2)

3
β0

)
β1c

4

(E.2.6)
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For a teetering rotor in hover (e = 0, µ = 0)

2CY
σa

=
(
θ1c − 3β1s − 2

q

Ω

) λ
4

+

(
4

3
β1s +

2

3

q

Ω

)
θ0

4
+
β0θ1s

6
+
β0β1c

6
− β0

6

p

Ω
(E.2.7)

E.2.1 Simplified Rotor Forces

The disc incidence and blade flapping arrangement are given in Section §B.6.4 by Fig-

ure B.9 on page 199 and equation (B.6.4) on page 200. From these, the rotor hub forces

are given by [82, 119]

α = αHP = αNFP − θ1s = αTPP + β1c

HHP = HNFP − Tθ1s = HTPP + Tβ1c

YHP = YNFP + Tθ1c = YTPP + Tβ1s

(E.2.8)

where the force X = −H in which case an equivalent expression for the longitudinal force

would be

XHP = XNFP + Tθ1s = XTPP − Tβ1c (E.2.9)

The fundamental assumption is that the thrust vector has the same magnitude in all

three rotor axis frames [119], and remains orthogonal to the TPP. This assumption

usually holds true for hover and low speed flight [13, 105]. Under this assumption, the

Tip Path Plane (TPP) forces in (E.2.8) and (E.2.9) are zero (XTPP = 0, YTPP = 0) such

that the projection of the thrust vector (in Figure E.2) onto the hub plane gives

XMR = −T cos β1s sin β1c ≈ −T β1c

YMR = T cos β1c sin β1s ≈ T β1s

ZMR = −T cos β1s cos β1c ≈ −T

(E.2.10)
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Figure E.2: Forces and Moments with Blade Flap Angles
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Figure E.3: Blade force equilibrium

E.3 Rotor Hub Moments

The main rotor moment MMR about the hub center results from the sum of all forces

acting on the blade element δm as shown in Figure E.3. The blade weight rmg is usually

very small compared to the other forces, and can be neglected. The forces acting on a

blade element m and the moment arm associated with the relevant force are summarized

in Table E.1 The moment about the hub center is given by

Table E.1: Moment contribution about the hub

force moment arm

inertial: mβ̈ r dr eR + r
centrifugal: Ω2(eR + r)mdr rβ
aerodynamic: Fz eR + r

Mhub = −
R(1−e)∫

0

(eR + r)
(
mβ̈rdr

)
−

R(1−e)∫
0

[
Ω2m (eR + r) dr

]
(rβ)

+

R(1−e)∫
0

(eR + r) dFz

(E.3.1)
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The terms β̈, β,Ω do not take part in the integration and can come outside the integral

such that

Mhub = −Ω2

(
β̈

Ω2
+ β

) R(1−e)∫
0

m (eR + r) rdr

+

R(1−e)∫
0

(eR + r) dFz (E.3.2)

In addition, the term β̈ is given by the fundamental flap equation (D.2.23) on page 243

β̈ + Ω2ν2β =
Maero

Iβ
(E.3.3)

or in a more general case, the flap equation for a rigid rotor modeled as a rotor with

hinge offset, hub precone and blade flap restoring spring as given by equation (D.3.115)

on page 297

β̈ + Ω2ν2β =
Ma

Iβ
+ 2Ων2

β (p cosψ − q sinψ) + ν2
β (ṗ sinψ + q̇ cosψ) + ν2

0βP

β̈

Ω2
+ ν2β =

Maero

Ω2Iβ
+ C0

C0 = 2ν2
β

( p
Ω

cosψ − q

Ω
sinψ

)
+ ν2

β

(
ṗ

Ω2
sinψ +

q̇

Ω2
cosψ

)
+
ν2

0βP
Ω2

(E.3.4)

where ν2 and ν2
0 are given by equation (D.3.100) on page 292. Substituting equation

(E.3.4) in equation (E.3.2) gives

Mhub = −Ω2

 R(1−e)∫
0

m (eR + r) rdr

[(1− ν2
)
β +

Maero

IβΩ2
+ C0

]

+

R(1−e)∫
0

(eR + r) dFz

(E.3.5)

where the blade mass moment of inertia about the hub center is

[Ib]Hub = HIb =

R(1−e)∫
0

m (eR + r) rdr (E.3.6)
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and the blade aerodynamic moment about the hub center

Maero =

R(1−e)∫
0

(eR + r) dFz (E.3.7)

The resultant moment about the hub center is [27, 82, 92, 110, 119, 120]

Mhub = IbΩ
2
(
ν2 − 1

)
β − IbΩ2C0 (E.3.8)

The average pitch and roll moment about the hub center are

MxMR =
b

2π

∫ 2π

0

Mhub sinψdψ

MyMR = − b

2π

∫ 2π

0

Mhub cosψdψ

(E.3.9)

and the corresponding pitch and roll moment coefficients are

CxMR =
MxMR

ρ (πR2)R (ΩR)2

=
IbΩ

2

ρ (πR2)R (ΩR)2

ac

ac

b

2π

∫ 2π

0

((
ν2 − 1

)
β − C0

)
sinψdψ

=
aσ

γ

(ν2 − 1)

2π

∫ 2π

0

β sinψdψ

CyMR =
MyMR

ρ (πR2)R (ΩR)2

= − aσ

2πγ

∫ 2π

0

((
ν2 − 1

)
β − C0

)
cosψdψ

(E.3.10)
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Substituting the blade flap angle β = β0 − β1c cosψ − β1s sinψ in the above equation

(E.3.10). Using the following integration formulas

2π∫
0

sinψdψ =

2π∫
0

cosψdψ =

2π∫
0

sin2 ψ cosψdψ = 0

2π∫
0

sinψcosψdψ = 0

2π∫
0

sin2 ψdψ =

2π∫
0

cos2 ψdψ = π

(E.3.11)

and integrating equation (E.3.10) gives [27, 82]

CHxMR =
aσ

2γ

((
ν2 − 1

)
β1s + 2ν2

β

(
q

Ω
− ṗ

2Ω2

))
CHyMR = −aσ

2γ

((
ν2 − 1

)
β1c − 2ν2

β

(
p

Ω
+

q̇

2Ω2

)) (E.3.12)

Equation (E.3.12) above says that the hub moment results from the tilt of the Tip Path

Plane (TPP) relative to the Hub Plane (HP) [82]. The hub precone βP has no effect on

the hub moment, and the blade restoring spring Kβ is part of the nondimensional rotating

frequency ν2 as given by equation (D.3.100) on page 292. The above equation indicates

that as the TPP tilts, the rotor thrust vector tilts as well. This thrust vector tilt causes

an offset of the thrust vector relative to the helicopter center of mass (CM) which results

in additional moment about the body’s CM (see Figure E.1 on page 318). Articulated

rotors obtain half of the hub moment from hinge offset and half from rotor thrust tilt

[82]. In contrast, a hingless or semirigid rotor obtains direct hub moment contributions

from the blade centrifugal stiffness and a smaller portion from blade compliance under

the presence of aerodynamic forces. The blade centrifugal stiffness can be modeled with a

restoring spring, and the blade bending first harmonic mode can be modeled as a virtual

hinge offset. Options for a model of a rigid rotor with no flap hinge range from a central

hub spring [137], a virtual effective hinge offset and hub spring [159], and an effective

flap hinge offset [12]. For a hingless rotor, the hub moment is 2 to 5 times the moment

due to thrust tilt [13].
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The various quantities in equation (E.1.5) would apply to the main rotor and the tail

rotor correspondingly. The set of equations presented in this section can be solved via

nonlinear computational methods. A number of strategies are available in the literature,

most notably by Prouty [124] and Padfield [119] among others.

E.4 Coupled Fuselage-Rotor Forces and Moments

The in-plane longitudinal and lateral forces produced by the tilting of the rotor forces in

equation (E.2.10) on page 323 as shown in Figure E.2 on page 324 induce a moment on

the fuselage center of mass such that

LT = hYMR + yCM (−ZMR) = hTβ1s + yCMT = (hβ1s + yCM)T

MT = h (−XMR) + xCMZMR = hTβ1c − xCMT = (hβ1c − xCM)T

(E.4.1)

Using the result in equation (E.3.12) on the previous page, the resultant non-dimensional

rotor moment coefficients acting on the fuselage are then

CxMR =
LT

ρ (πR2) (ΩR)2R
+ CHxMR

=
(
h̄β1s + ȳCM

)
CT +

aσ

2γ

((
ν2 − 1

)
β1s + 2ν2

β

(
q

Ω
− ṗ

2Ω2

))
CyMR =

MT

ρ (πR2) (ΩR)2R
+ CHyMR

=
(
h̄β1c − x̄CM

)
CT −

aσ

2γ

((
ν2 − 1

)
β1c − 2ν2

β

(
p

Ω
+

q̇

2Ω2

))
(E.4.2)

where h̄ = h/R, x̄CM = xCM/R, ȳCM = yCM/R, and the nondimensional rotating flap

frequency ν2 is given by equation (D.3.100) on page 292. In the case when x̄CM ≈

0, ȳCM ≈ 0, and the body angular rate of change ṗ, q̇ are neglected, the above becomes

CxMR =
(
h̄CT +

aσ

16
Sβ

)
β1s + ν2

β

aσ

γ

q

Ω

CyMR =
(
h̄CT −

aσ

16
Sβ

)
β1c + ν2

β

aσ

γ

p

Ω

(E.4.3)
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where the stiffness number Sβ = 8 (ν2 − 1) /γ is given by equation (D.3.19) on page 263.

330



Appendix F

Helicopter Trim Equations

Steady helicopter flight requires equilibrium of forces and moments in all three axes of

the helicopter. For a given flight condition, a helicopter trim solution converges on rotor

and body orientation and corresponding control settings that archive equilibrium of all

forces and moments. The collective and cyclic blade controls are necessary to impart the

appropriate rotor and fuselage orientation for trim conditions. A number of solutions to

the trim problem exist, and in essence, all trim solutions attempt to find the controls

that are necessary to achieve a set of forces and moments that will achieve equilibrium.

Figure F.1 on page 333 and Figure F.2 on page 333 show a simplified version of the forces

and moments acting on a standard helicopter. Such a simplified approach is suitable for

level 1 mathematical modeling and subsequent dynamic analysis [119]. Trim analysis is

fundamental to the understanding of flight dynamics and control of aerospace systems,

and as such, trim analysis is a basic tool for dynamic simulation and control synthesis

and implementation. Many examples abound in the literature regarding trim equations

of motion for the helicopter, more notably Prouty [124] examines the helicopter in trim

and presents methods to determine the stability derivatives corresponding to the different

helicopter components. Bramwell et. all [13], Cooke et. all [27] and Padfield [119]

each provide fundamental analytical expressions for the trim equations. Leishman [92]

sketches the helicopter trim solution as it relates to blade motion and associated collective

and cyclic pitch of the blade.

Without loss of generality, the shaft incidence angle is set to zero in Figure F.1 on

page 333 and Figure F.2 on page 333. These two figures show the longitudinal and lateral
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trim forces and moments where

xcm = distance from shaft to center of mass (CM).

Positive if xcgis ahead of the shaft

h = distance from CM to the hub center along the shaft.

θF = αs , is the shaft angle. Positive if shaft is tilted forward.

Note: assume zero shaft incidence angle with respect to the fuselage

α = angle of attack with respect to the fuselage or the hub plane

θFP = flight path angle such that (θFP = 0 for straight and level flight) and

αs = α− θFP

ycg = distance from shaft to center of mass (CM).

Positive if ycgis ahead of the shaft

φF = shaft angle with respect to vertical. Positive if shaft is tilted forward.

Note: assume zero shaft incidence angle with respect to the fuselage

hTR = distance from CM to the tail rotor hub center along the shaft h̄ = h− hTR

F.1 Small Perturbation Theory and Trim Equations

The non-linear rigid body force equations of motion are given by equation (B.5.6) on

page 193

u̇ = rv − qw +−g sin θ +
X

m

v̇ = pw − ru+ g sinφ cos θ +
Y

m

ẇ = qu− pv + g cosφ cos θ +
Z

m

(F.1.1)
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The moment equations are given by equation (B.5.14) on page 196

Ixṗ = L+ Izx (ṙ + pq) + (Iy − Iz) qr

Iy q̇ = M + Izx
(
r2 − p2

)
+ (Iz − Ix) rp

Iz ṙ = N + Izx (ṗ− qr) + (Ix − Iy) pq

(F.1.2)

Solving for ṗ, q̇, ṙ gives the following alternate expression

ṗ =
Iz

IxIz − I2
xz

L+
Izx

IxIz − I2
xz

N

+
(Ix − Iy + Iz) Izx

IxIz − I2
xz

pq − (Iz − Iy) Iz + I2
xz

IxIz − I2
xz

qr

q̇ =
M

Iz
+
Izx
Iz

(
r2 − p2

)
+

(Iz − Ix)
Iz

pr

ṙ =
Ix

IxIz − I2
xz

N +
Izx

IxIz − I2
xz

L

−(Iy − Ix) Ix − I2
xz

IxIz − I2
xz

pq − (Ix − Iy + Iz) Izx
IxIz − I2

xz

qr

(F.1.3)

Define the following terms

ĪpL =
Iz

IxIz − I2
xz

Īp =
(Iz − Iy) Iz + I2

xz

IxIz − I2
xz

Īq =
(Ix − Iz)

Iy

ĪrN =
Ix

IxIz − I2
xz

Īr =
(Iy − Ix) Ix − I2

xz

IxIz − I2
xz

Īzx =
Izx
Iy

ĪLN =
Izx

IxIz − I2
xz

Īpr =
(Ix − Iy + Iz) Izx

IxIz − I2
xz

L̄ = ĪpLL+ ĪLNN M̄ =
M

Iy
N̄ = ĪrNN + ĪLNL

(F.1.4)

Rewrite equation (F.1.3) as

ṗ = L̄+ Īprpq − Īpqr

q̇ = M̄ + Īzx
(
r2 − p2

)
− Īqpr

ṙ = N̄ − Īrpq − Īprqr

(F.1.5)
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The kinematic rigid body motion is described by equation (B.4.6) on page 190

φ̇ = p+ q sinφ tan θ + r cosφ tan θ

θ̇ = q cosφ− r sinφ

ψ̇ = q sinφ sec θ + r cosφ sec θ

(F.1.6)

Equations (F.1.1), (F.1.5) and (F.1.6) are non-linear equations that describe the six

degrees of freedom motion of a rigid body. Dynamic stability analysis and control design

require the linearization of these non-linear equations about a trimmed flight condition.

Once the aircraft is in a trimmed state, then the behavior of small disturbance forces and

moments and the resulting motion should be linear. In this case, the forces involved in

the deviation from trim can be described as a Taylor series expansion about the trimmed

point [119].

Z = Z0 +
∂Z

∂u
δu+

∂Z

∂w
δw + · · ·+ ∂Z

∂θ
δθ + · · ·

M = M0 +
∂M

∂u
δu+

∂M

∂w
δw + · · ·+ ∂M

∂θ
δθ + · · ·

(F.1.7)

In general, the linearization consists of a first order variation addition δx to a trim state

x0 such that x = x0 + δx. In like manner, the control inputs e are expressed such that

x = x0 + δx

e = e0 + δe

(F.1.8)

Substituting the trim plus variation in the non-linear equations yields a system of equa-

tions such that

δu̇ = (ro + δr) (vo + δv)− (qo + δq) (wo + δw)

−g sin (θo + δθ) +X0 +Xuδu+Xwδw + · · ·+Xθδθ + · · ·
(F.1.9)
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Let the variation δx = x in the above equations, then upon expansion

0 = rovo − qowo − g sin θo +X0

u̇ = vro + rvo − wqo − qwo

−gθ cos θo +Xuδu+Xwδw + · · ·+Xθδθ + · · ·

(F.1.10)

where the product of perturbation terms has been neglected and small angles assumption

is implicit in the derivation. Also, the force derivatives are semi-normalized such that for

the mass of the aircraft Mheli then

1

Mheli

∂Z

∂u
δu ≡ Zu

Mheli

u ≡ Zuu (F.1.11)

as is customary in aerospace literature [13, 119, 120, 124]. The context of the equation

will tell weather Zu is semi-normalized as in the above expression.

F.1.1 Symmetric Flight Equilibrium Equations

Expanding the non-linear equations as done in equation (F.1.10) and selecting the equi-

librium equations yield

0 = r0v0 − q0w0 − g sin θ0 +
X0

m

0 = p0w0 − r0u0 + g sinφ0 cos θ0 +
Y

m

0 = q0u0 − p0v0 + g cosφ0 cos θ0 +
Z

m

0 = L0 + Izxp0q0 + (Iy − Iz) q0r0

0 = M0 + Izx
(
r2

0 − p2
0

)
+ (Iz − Ix) r0p0

0 = N0 − Izxq0r0 + (Ix − Iy) p0q0

(F.1.12)

where the subscript )0 denotes the equilibrium condition in trim. The previous equation

shows that the most general trim conditions require that the trim velocity vector (both

linear and angular) be constant or equal to zero.
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For the case of symmetric flight, the trim rates are set to zero. In this case, the

summation of the equilibrium forces and moments for the longitudinal and lateral cases

in Figure F.1 on page 333 and Figure F.2 on page 333 are set to zero for trim conditions:

0 = W − TMR cos θF cosφF +D sin θFP

−HMR sin θF + YMR sinφF + YTR sinφF

0 = D cos θFP +HMR cos θF − TMR sin θF cosφF

0 = YMR cosφF + TTR cosφF + YF cosφF + TMR cos θF sinφF

0 = MyMR +MyF −W (xCM cos θF − h sin θF )−D (h cos θF + xCM sin θF )

0 = MxMR +MxF + TTRhTR +W (h sinφF − yCM cosφF )

0 = QMR − YTRlTR

(F.1.13)

where the aircraft weight is W = mg. Applying small angle approximations to the above

set of equations (F.1.13) gives

0 = W − TMR +DθFP −HMRθF + (YMR + YTR)φF

0 = D +HMR − TMRθF

0 = YMR + TTR + YF + TMRφF

0 = MyMR +MyF −W (xCM − hθF )−D (h+ xCMθF )

0 = MxMR +MxF + TTRhTR +W (hφF − yCM)

0 = QMR − YTRlTR

(F.1.14)

The terms (YMR+YTR)φF , HMRθF , DθFP are all much less than TMR and weightW = mg.
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Similar approximations with other terms result in the following simplified trim equations

0 = W − TMR

0 = D +HMR − TMR θF

0 = YMR + TTR + YF + TMR φF

0 = MyMR +MyF +W (h θF − xCM)− hD

0 = MxMR +MxF +W (hφF − yCM) + TTR hTR

0 = QMR − YTR lTR

(F.1.15)

Equations (E.1.3) through (E.1.2) in section §E.1 contain the necessary expressions to

solve the above set of equations (F.1.15). The equilibrium equations must be solved along

with the inflow equation (E.1.2) which now takes the form below

0 =

[
λ− µ tanα +

CT

2
√
µ2 + λ2

]
MR

0 =

[
λ− µ tanα +

CT

2
√
µ2 + λ2

]
TR

(F.1.16)

In the numerical solution, the trim process adjusts the main rotor blade pitch θ defined

in equation (B.6.1) on page 198 as

θ = θ0 − θ1c cosψ − θ1s sinψ (F.1.17)

Bramwell’s et. all [13], Johnson [82], Leishman [92], Padfield [119], and Prouty [124] are

examples of literature that explore the helicopter trim solutions.
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F.1.2 Linearized Equations of Motion about a Trim Condition

Expanding the non-linear equations as done in equation (F.1.10) and selecting the equa-

tions that describe the linear motion about the trim point yield

u̇ = vro + rvo − wqo − qwo

−gθ cos θo +Xuδu+Xwδw + ...+Xθδθ + ...

(F.1.18)

During trimmed symmetric flight conditions described in Figure F.1 and Figure F.2 on

page 333 the body B linear and angular velocity vector have the form

~v = (uo + u)~b1 + v~b2 + (wo + w)~b3

~ω = p~b1 + q~b2 + r~b3

(F.1.19)

where [b1 b2 b3]T are the body unit vectors as described in Section B.2 on page 184. Given

that the perturbations from trim are small, then the second order quantities produced by

squares and products are small also. Setting higher order terms to zero and substituting

the above expressions in the equations of motion (F.1.1), (F.1.5) and (F.1.6) gives [13]

u̇+ q w0 =
X

m

v̇ + r u0 − pw0 =
Y

m

ẇ − q u0 =
Z

m

Ixṗ− Izxṙ = L

Iy q̇ = M

Iz ṙ − Izxq̇ = N

(F.1.20)

An equivalent method for the linearization of the non-linear equations of motion yields

a first order trim set of equations that can be represented as [119]

ẋ = Ax+Bu(t) + d(t) (F.1.21)
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where d(t) represents disturbances to the model. Let F represent the set of non-linear

equations of motion (F.1.1), (F.1.5) and (F.1.6), then

A =

(
∂F

∂x

)
x=x0

B =

(
∂F

∂u

)
u=u0

(F.1.22)

The stability matrix A can be divided in longitudinal and lateral dynamics such that

A =

 Alon A12

A21 Alat

 (F.1.23)

where the submatrix A12 is the coupling of lateral states into the longitudinal modes,

and the submatrix A21 is the coupling of longitudinal states into the lateral modes. The

state and control vector are

x =

[
u w q θ v p r φ

]T
u =

[
θ0 θ1s θ1c θ0TR

]T (F.1.24)

The control input vector u consists of the main rotor collective, longitudinal and lateral

cyclic input, and the tail rotor collective inputs. The respective longitudinal and lateral

stability matrices are

Alon =



Xu Xw − q0 Xq − w0 −g cos θ0

Zu + q0 Zw Zq + u0 −g cosφ sin θ0

M̄u M̄w M̄q 0

0 0 cosφ0 0



Alat =



Yv Yp + w0 Yr − u0 g cosφ cos θ0

L̄v L̄p + Īprq0 L̄r − Īpq0 0

N̄v N̄p − Īrq0 N̄r − Īprq0 0

1 cosφ0 tan θ0 0



(F.1.25)
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The cross-coupling matrices are

A12 =



Xv + r0 Xp Xr + v0 0

Zv − p0 Zp − v0 Zr −g sinφ cos θ0

M̄v

M̄p · · ·

−Īqr0 − 2Īzxp0

M̄r · · ·

−Īqp0 + 2Īzxr0

0

0 0 − sinφ0 K̄φ



A21 =



Yu − r0 Yw + p0 Yq −g sinφ sin θ0

L̄u L̄w L̄q + Īprp0 − Īpr0 0

N̄u N̄w N̄q − Īrp0 − Īprr0 0

0 0 sinφ0 tan θ0 K̄θ



(F.1.26)

The control matrix is given as

B =

 Blon

Blat

 (F.1.27)

where the longitudinal and lateral control matrices are

Blon =



Xθ0 Xθ1s Xθ1c XδT

Zθ0 Zθ1s Zθ1c ZδT

M̄θ0 M̄θ1s M̄θ1c M̄θTR

0 0 0 0


Blat =



Yθ0 Yθ1s Yθ1c YδT

L̄θ0 L̄θ1s L̄θ1c L̄δT

N̄θ0 N̄θ1s N̄θ1c N̄δT

0 0 0 0


(F.1.28)

341



Appendix G

Helicopter Stability Derivatives

The goal in this section is to develop the stability derivatives that describe the motion of

the helicopter due to a perturbation from a trim condition. The static stability derivatives

describe the initial instantaneous reaction to a perturbation, and say something related

to the direction of the actuation control. If the initial reaction opposes the disturbance,

then the static stability is stable. The moments generated due to changes in the velocity

components along the body axis are a metric for static stability. The most important

terms that describe the helicopter static stability are

1. Mu, longitudinal static stability with respect to forward speed u.

2. Mw, longitudinal static stability with respect to angle of attack. Vertical velocity

is used instead of rotor incidence angle α because α = 0 in hover flight.

3. Lv, lateral static stability or dihedral effect.

4. Nv, directional static stability or Weathercock stability. Nv is used for a measure

of the Weathercock stability because sideslip is not defined in hover. In fixed wing

airplanes, this stability is given by CLβ .

The dynamic stability derivatives describe the subsequent behavior after a perturba-

tion has taken place.

Bramwell [11, 13], Cooke et. all [27], Padfield [119], and Prouty [124] derive and

develop analytical and experimental methods for obtaining the various helicopter stability

derivatives. The work in this appendix is based on the previous mentioned literature and

other references are noted where appropriate.
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G.1 Main Rotor Stability Derivatives

The thrust coefficient in forward flight is given by equation (D.3.129) on page 302 for the

case when the flap hinge offset e 6= 0,

CT =
aσ

2

[
θ

3
(1− e)

(
(e+ 1)2 − e+

3

2
µ2

)
− (e2 − 1)

2
λ

]
. (G.1.1)

The rotor inflow is given by equation (C.1.49) on page 219,

λ =
V sinα + vi

ΩR
= µ tanα + λi (G.1.2)

Use equation (C.1.51) on page 219 together with (C.1.49) to obtain

λi =
CT

2 (µ2 + λ2)1/2
=

CT

2
(
µ2 + (λi + µz)

2)1/2
(G.1.3)

Consider the following approximation

= V 2
∞ cos2 α + (V∞ sinα + vi)

2

= V 2
∞ cos2 α + V 2

∞ sin2 α + vi (2V∞ sinα + vi)

(ΩR)2 V̄ 2 ≈ V 2
∞ + v2

i

(G.1.4)

then equation (G.1.3) takes the form

λi ≈
CT

2
(
V̄ 2 + λ2

i

)1/2
(G.1.5)

where the hover induced hover velocity vh is related to CT by equation (C.1.18) on

page 208 such that [13]

2λ2
h = CT → 2v2

h = (ΩR)2CT

Ṽ =
V̄

λh
=
V

vh

ṽi =
vi
vh

(G.1.6)
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Moreover, it follows that

λ2
h =

CT
2

for µ = 0

λi =
CT
2µ

for µ > 0.08

ṽi =
vi
vh

=
λi
λh

=
CT
2µ

(
CT
2

)−1/2

V

vh
≈ µ

λh
= µ

(
CT
2

)−1/2

(
V

vh

)(
vi
vh

)3

= µ

(
CT
2µ

)3(
CT
2

)−2

=
CT
2µ2

(G.1.7)

G.1.1 Main Rotor Forward Velocity Stability Derivatives

Differentiation of thrust coefficient CT with respect to the advance ratio µ in equation

(G.1.1) gives
2

aσ

∂CT
∂µ

= (1− e) θµ2 − (e2 − 1)

2

∂λ

∂µ
(G.1.8)

The corresponding change of the rotor inflow λ with respect to the advance ratio µ as

given by (G.1.2) is
∂λ

∂µ
≈ α +

∂λi
∂µ

(G.1.9)

and from equation (G.1.5)

λi ≈
CT

2
(
V̄ 2 + λ2

i

)1/2
→

(
2λi
CT

)2

≈ 1(
V̄ 2 + λ2

i

)
∂λi
∂µ

=
1

2
(
V̄ 2 + λ2

i

)1/2

∂CT
∂µ
− CT

2
(
V̄ 2 + λ2

i

)3/2

(
V̄ + λi

∂λi
∂µ

)
∂λi
∂µ

=
λi
CT

∂CT
∂µ
− 4λ3

i

C2
T

(
V̄ + λi

∂λi
∂µ

) (G.1.10)

Using the expressions in (G.1.6) yields

∂λi
∂µ

=
λi
CT

∂CT
∂µ
− Ṽ ṽ3

i − ṽ4
i

∂λi
∂µ

(G.1.11)
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where the terms ṽi and Ṽ are readily available or can be obtained from experimental

data. Solving for ∂λi/∂µ and substituting back into (G.1.9) and subsequetly into (G.1.8)

gives

∂λi
∂µ

=
2aσ (1− e) θµ− aσ (e2 − 1)α− 4 (CT/λi) Ṽ ṽ

3
i

aσ (e2 − 1) + 4 (CT/λi) (1 + ṽ4
i )

∂CT
∂µ

=
2 (1− e) θµaσ − aσ (e2 − 1)α− 2Ṽ ṽ3

i aσ/ (1 + ṽ4
i )

4 + aσ (e2 − 1) (λi/CT ) / (1 + ṽ4
i )

(G.1.12)

An equivalent result can be found in [13, p. 151]. The above expression does not take

into account aerodynamic augmentation to the rotor system such as a stabilizing bar

[50]. Equation (C.1.46) on page 218 is valid in forward flight when vi � V∞ then ṽ4
i � 1,

and λi = CT/2µ. In this case equation (G.1.12) becomes

∂λi
∂µ

=
2aσ (1− e) θµ− aσ (e2 − 1)α− 4CT/µ

aσ (e2 − 1) + 8µ

∂CT
∂µ

= 2µaσ

(
2 (1− e) θµ− (e2 − 1)α− CT/2µ2

8µ+ aσ (e2 − 1)

) (G.1.13)

Bramwell [13, p. 151] gives equivalent results to equation (G.1.13) for the case when the

hinge offset e = 0.

Equation (D.3.173) on page 314 represents a simplified expression for steady state

blade dynamic coefficients for flight conditions with small advance ratio µ� 1. The lon-

gitudinal blade flapping coefficient β1c and its partial derivative with respect to advance

ratio is given by

β1c ≈
8

3
µθ0 − 2µλ− θ1s +

p

Ω
− 16

γ

q

Ω
∂β1c

∂µ
≈ 8

3
θ0 − 2λ

∂λ

∂µ

(G.1.14)
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where ∂λ/∂µ is given by equation (G.1.9) and G.1.13 above. For cases when µ� 1

∂λi
∂µ
≈ Kλα , µ� 1

∂λ

∂µ
≈ α +

∂λi
∂µ
≈ (1 +Kλ)α

∂β1c

∂µ
≈ 8

3
θ0 − 2λ (1 +Kλ)α

(G.1.15)

The above is a first order approximation for a hingeless rotor with no restraining devices.

The effects of advance ratio on α expressed in the term 2λ (1 +Kλ)α can be lumped

together with other un-modeled effects in the following simpler expression [50]

∂β1c

∂µ
≈ Kµ

(
8

3
θ0 − 2λ

)
(G.1.16)

To accomodate blade restraining mechanisms such as a hub spring and blade hinge offset,

inspection of equation (D.3.170) on page 313 suggests the following modification to the

above stability derivative

∂β1c

∂µ
≈ Sβ

1 + S2
β

Kµ

(
8

3
θ0 − 2λ

)
(G.1.17)

Given rotor symmetry, the response to in-plane velocities is similar in magnitude and

behavior regardless of the direction of the incoming wind [50, 105]. In this case

∂β1c

∂µ
=
∂β1s

∂µ
(G.1.18)

The above equation for the lateral dihedral derivatives indicates that the rotor flaps away

from the incoming air. Whence

∂β1c

∂µ
=

Sβ
1 + S2

β

Kµ

(
8

3
θ0 − 2λ

)
∂β1s

∂µ
=

Sβ
1 + S2

β

Kµ

(
8

3
θ0 − 2λ

) (G.1.19)

The scaling factor Kµ can be estimated from steady state cyclic input in constant forward
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flight [50].

G.1.2 Main Rotor Vertical Velocity Stability Derivatives

Consider the inflow through the rotor λ given by the following expression

λ =
V∞
ΩR

sinα + λi = V̄ sinα + λi = V̄ sinα + λi

∂λ

∂µz
= V̄

∂α

∂µz
cosα +

∂λi
∂µz

(G.1.20)

The change of rotor angle α due to a disturbance δµz is

δα =
δµz
V̄

∂α

∂µz
=

1

V̄

and equation (G.1.20) is
∂λ

∂µz
= 1 +

∂λi
∂µz

(G.1.21)

Using the previous expression with equation (G.1.1) the following holds

4

aσ

∂CT
∂µz

=
(
e2 − 1

) ∂λ
∂µz

=
(
e2 − 1

)(
1 +

∂λi
∂µz

)
(G.1.22)

Use (G.1.3) to obtain

λi =
CT

2
(
µ2 + (λi + µz)

2)1/2

∂λi
∂µz

=
1

2
(
µ2 + (λi + µz)

2)1/2

∂CT
∂µz

− (λi + µz)CT

2
(
µ2 + (λi + µz)

2)3/2

(
1 +

∂λi
∂µz

)
∂λi
∂µz

=
λi
CT

∂CT
∂µz

− 4λ3
i

C2
T

(λi + µz)

(
1 +

∂λi
∂µz

) (G.1.23)

347



Let the vertical hub velocity µz be the result of a velocity variation in the vertical axis z

such that δµz → 0, then the above expression for ∂λi/∂µz becomes

≈ λi
CT

∂CT
∂µz

− 4λ4
i

C2
T

(
1 +

∂λi
∂µz

)
=

λi
CT

∂CT
∂µz

− ṽ4
i

(
1 +

∂λi
∂µz

)
∂λi
∂µz

=
λi
CT

aσ

4

(
e2 − 1

)(
1 +

∂λi
∂µz

)
− ṽ4

i

(
1 +

∂λi
∂µz

) (G.1.24)

where 4v4
h = (ΩR)4C2

T in (G.1.6) and

4λ3
i

C2
T

= 4
(vi/ΩR)4

C2
T

= 4
v4
i

(ΩR)4C2
T

=
v4
i

v4
h

= ṽ4
i

Solving for ∂λi/∂µz in equation (G.1.24) and substituting in (G.1.20) and (G.1.22) gives

∂λi
∂µz

=
(λi/CT ) aσ (e2 − 1)− 4ṽ4

i

4− aσ (e2 − 1) (λi/CT ) + 4ṽ4
i

∂λ

∂µz
= 1 +

∂λi
∂µz

=
4

4− aσ (e2 − 1) (λi/CT ) + 4ṽ4
i

∂CT
∂µz

=
(
e2 − 1

) ∂λ
∂µz

=
aσ (e2 − 1)

4− aσ (e2 − 1) (λi/CT ) + 4ṽ4
i

(G.1.25)

In the hover case µ = 0, ṽi = 1, CT = 2λ2
i then (G.1.25) becomes

∂λi
∂µz

=
aσ (e2 − 1)− 8λi
16λi − aσ (e2 − 1)

∂λ

∂µz
=

8λi
16λi − aσ (e2 − 1)

∂CT
∂µz

=
2aσ (e2 − 1)λi

16λi − aσ (e2 − 1)

(G.1.26)
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In the case when the advance ratio µ > 0.08, ṽ2
i � 1, CT = 2µλi then (G.1.25) becomes

∂λi
∂µz

=
aσ (e2 − 1)

8µ− aσ (e2 − 1)

∂λ

∂µz
=

8µ

8µ− aσ (e2 − 1)

∂CT
∂µz

=
2aσ (e2 − 1)µ

8µ− aσ (e2 − 1)

(G.1.27)

Bramwell [13, p. 154] and Padfield [119, p. 219] give similar results for the case when

the hinge offset e = 0. The above results do not account for the cases when the rotor

exhibits aerodynamic augmentation via a stabilizer bar. Finally, care must be taken

when considering the sign convention as it relates with the direction of flow through the

rotor and direction of the main rotor angular motion.

G.1.2.1 Main Rotor Heave Damping

The variation of vertical motion from equilibrium is given by

w0 + δw

and the simplified variation of vertical acceleration due to changes in vertical force is

given by equation (F.1.20) on page 339 as

Mheli (ẇ0 + δẇ) = Zo +
∂Z

∂w
δw +

∂Z

∂θ
δθ + · · · (G.1.28)

where Mheli is the mass of the helicopter. Following the convention in equation (F.1.11)

on page 336, let the current context be such that δw → w be a small perturbation

from equilibrium, then for the case when body rates are zero, the w component of equa-

tion (F.1.20) on page 339 takes the form

=
1

Mheli

(
∂Z

∂w
δw +

∂Z

∂θ
δθ

)
=
∂Z

∂w
δw +

∂Z

∂θ
δθ

ẇ = Zww + Zθθ

(G.1.29)

349



The heave damping Zw follows [119, p. 188]

=
∂Z

∂w
≈ −∂TMR

∂w
= −ρ (ΩR)2 πR2

Mheli

∂CT
(ΩR) ∂µ

Zw = −ρ (ΩR) πR2

Mheli

∂CT
∂µ

(G.1.30)

Using results from equation (G.1.26) and equation (G.1.27) on the preceding page gives

for the hover case µ = 0

=
ρ (ΩR) πR2

Mheli

2aσ (e2 − 1)λi
16λi − aσ (e2 − 1)

Zw =
2 a ρAb(ΩR) (e2 − 1)λi
Mheli [16λi − aσ (e2 − 1)]

(G.1.31)

For the forward speed case µ > 0.08

=
ρ (ΩR) πR2

Mheli

2 aσ (e2 − 1)µ

8µ− aσ (e2 − 1)

Zw =
2 a ρ µAb(ΩR) (e2 − 1)

Mheli [8µ− aσ (e2 − 1)]

(G.1.32)

where Ab = b cR is the total blade area. The ratio of helicopter mass to total blade area

Mheli/Ab is the rotor blade loading, and equations (G.1.31) and (G.1.32) show that it is

an important parameter in the definition of heave damping [13, 119].

G.1.3 Main Rotor Control Derivatives

Differentiation of thrust coefficient CT in equation (D.3.121) on page 299 with respect to

collective blade pitch input θ0 gives

2

σa

∂CT
∂θ0

=

(
(1− e3)

3
+

(1− e)
2

µ2

)
+

(e2 − 1)

2

∂λ

∂θ0

(G.1.33)
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The corresponding differentiation of the rotor inflow λ from equations (G.1.5) and equa-

tion (G.1.2) on page 343 is

∂λ

∂θ0

=
∂λi
∂θ0

∂λi
∂θ0

=
1

2
(
V̄ 2 + λ2

i

)1/2

∂CT
∂θ0

− λiCT

2
(
V̄ 2 + λ2

i

)3/2

∂λi
∂θ0

=
λi
CT

∂CT
∂θ0

− ṽ4
i

∂λi
∂θ0(

1 + ṽ4
i

) ∂λi
∂θ0

=
λi
CT

∂CT
∂θ0

(G.1.34)

where as before in previous sections

=
λ2
i(

V̄ 2 + λ2
i

) = λ2
i

(
2λi
CT

)2

λiCT

2
(
V̄ 2 + λ2

i

)3/2
=

4λ4
i

C2
T

=
4v4

i

(ΩR)4C2
T = 4v4

h

=
v4
i

v4
h

= ṽ4
i

(G.1.35)

Solving for ∂λi/∂θ0 and ∂CT/∂θ0 gives

∂λi
∂θ0

=
σa

6

(1− e3) + 3 (1− e)µ2/2

(1 + ṽ4
i ) (λi/CT )− (e2 − 1)σa/4

∂CT
∂θ0

=
σa

6

(1− e3) + 3 (1− e)µ2/2

1− σa (λi/4CT ) (e2 − 1) / (1 + ṽ4
i )

(G.1.36)

For hover case µ = 0, ṽ4
i = 1 and 2λ2

h ≈ CT

∂λi
∂θ0

=
2

3

(1− e3)σaλi
4− (e2 − 1)σaλi

∂CT
∂θ0

=
8

3

(1− e3)σaλi
16λi − σa (e2 − 1)

(G.1.37)

For forward speed case when µ > 0.1, ṽ4
i � 1, and CT ≈ 2µλi

∂λi
∂θ0

=
2σ aµ

3

(1− e3) + 3 (1− e)µ2/2

2− (e2 − 1)µσa

∂CT
∂θ0

=
4σ aµ

3

(1− e3) + 3 (1− e)µ2/2

8µ− σa (e2 − 1)

(G.1.38)
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As before, the vertical force derivative is given by

Zθ0 = −ρ (ΩR)2 πR2

Mheli

∂CT
∂θ0

(G.1.39)

where ∂CT∂θ0 takes the form in expression (G.1.37) and (G.1.38) resulting in the follow-

ing expression

Zθ = −8

3

Ablade
Mheli

ρa (ΩR)2 (1− e3)λi
16λi − σa (e2 − 1)

(µ = 0)

Zθ = −4

3

Ablade
Mheli

[
(1− e3) + 3 (1− e)µ2/2

8µ− σa (e2 − 1)

]
ρa (ΩR)2 µ (µ > 0.1)

(G.1.40)

A similar development, this time with respect to θ1s yields

2

σa

∂CT
∂θ1s

=
(e2 − 1)

2

(
µ+

∂λi
∂θ1s

)
(
1 + ṽ4

i

) ∂λi
∂θ1s

=
λi
CT

∂CT
∂θ1s

(G.1.41)

From which the general solution is

∂λi
∂θ1s

=
(e2 − 1)σaµ

4 (1 + ṽ4
i ) (CT/λi)− (e2 − 1)σa

∂CT
∂θ1s

=
(e2 − 1) (1 + ṽ4

i )σaµ

4 (1 + ṽ4
i )− (e2 − 1)σa (λi/CT )

(G.1.42)

For the hover case µ = 0, the above two derivatives are zero (Zθ1s = 0), and for forward

flight the following approximation applies

∂λi
∂θ1s

=
(e2 − 1)σaµ

8 (1 + ṽ4
i ) 2µ− (e2 − 1)σa

∂CT
∂θ1s

=
2 (e2 − 1)σaµ2

8µ− (e2 − 1)σa

(G.1.43)
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The corresponding control derivative is then

= −ρ (ΩR)2 πR2

Mheli

∂CT
∂θ1s

Zθ1s =
Ablade
Mheli

2ρa µ2 (ΩR)2

σa− 8µ/ (e2 − 1)
µ > 0.1

(G.1.44)

In equations (G.1.40) and (G.1.44), the tip speed (ΩR)2 and the blade loadingAblade/Mheli

are the dominant factors.

G.1.4 Main Rotor Blade Flapping Derivatives

Section §D.3.7.5 gives expressions for the flapping coefficients under several flight con-

ditions. In particular, equation (D.3.170) and equation (D.3.171) on page 313 give the

results for forward flight (µ > 0.1) and for hover flight (µ = 0) conditions. The following

set of rotor control derivatives result directly from the previously mentioned equations.

The collective pitch longitudinal blade flapping derivatives are

∂β0

∂θ0

=
γ

8

(1 + µ2)

ν2

∂β0

∂θ1s

= −γ
6

µ

ν2

∂β0

∂θ1c

= 0

∂β1c

∂θ0

=
(1 + 2µ2/3)− (1 + µ2) /3ν2

1 + S2
β − µ4/4

(4µ)

∂β1s

∂θ0

=
(γ/6ν2) (1 + µ2)− (8/3)Sβ

1 + S2
β − µ4/4

(µ)

(G.1.45)

Change in the blade collective pitch setting influences the rotor thrust which results in

a moment about the aircraft center of mass. In addition, any change in collective pitch

setting changes the blade flapping angles, which induces a rotor hub moment proportional

to the new flap angles [119]. The corresponding flapping blade behavior to cyclic control

inputs is given by following direct ∂β1c/∂θ1c, ∂β1s/∂θ1s and coupled ∂β1c/∂θ1s, ∂β1s/∂θ1c

responses

∂β1c

∂θ1c

=
(1 + µ2/2)Sβ
1 + S2

β − µ4/4

∂β1s

∂θ1s

=
(1 + 3µ2/2)Sβ − 2γµ2/9ν2

1 + S2
β − µ4/4

∂β1c

∂θ1s

=
16µ2/9ν2 − (1 + 4µ2)

1 + S2
β − µ4/4

∂β1s

∂θ1c

=
1− µ4/4

1 + S2
β − µ4/4

(G.1.46)
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In moderate forward flight when there is a finite but small advance ratio such that µ� 1,

then
∂β0

∂θ0

≈ γ

8ν2

∂β0

∂θ1s

≈ −γ
6

µ

ν2

∂β1c

∂θ0

≈ (3ν2 − 1) 4µ

3ν2

∂β1s

∂θ0

≈ − ∂β0

∂θ1s

≈ γ

6

µ

ν2

∂β1c

∂θ1c

≈ ∂β1s

∂θ1s

≈ Sβ
1 + S2

β

∂β1c

∂θ1s

≈ −∂β1s

∂θ1c

≈ − 1

1 + S2
β

(G.1.47)

The direct and coupled blade flap derivatives due to cyclic control are almost independent

of forward speed at low advance ratios, and are a function of stiffness number Sβ. The

above equations indicate that hingeless rotors with a low stiffness number flap in much

the same way as teetering rotors [119]. The blade flap rate derivatives originate from the

same set of equations (D.3.170) and (D.3.171) from which

∂β0

∂p
=

γ

8

2µ

3Ων2
,

∂β0

∂q
= 0

C̄β
∂β1c

∂p
= −

(
16

γ

Sβ
Ω

+
4

3

µ2

Ω
− 1

Ω

)
− 8µ2

9Ων2

C̄β
∂β1s

∂p
= −

(
Sβ
Ω
− 16

γΩ

(
µ2

2
− 1

))
+

γµ2

9Ων2

C̄β
∂β1c

∂q
= −

(
Sβ
Ω

+
16

Ω

(
1 +

µ2

2

))
C̄β

∂β1s

∂q
=

(
16

γ

Sβ
Ω

+
µ2

2Ω
− 1

Ω

)
(G.1.48)

where C̄β = 1 + S2
β − µ4/4. As previously done, for moderate forward flight when the

advance ratio is finite but small (µ� 1), then

∂β0

∂p
=

γ

8

2µ

3Ων2

∂β0

∂q
= 0

∂β1c

∂p
≈ −∂β1s

∂q
≈ 1− (16/γ)Sβ

Ω
(
1 + S2

β

)
∂β1s

∂p
≈ ∂β1c

∂q
≈ − Sβ + 16/γ

Ω
(
1 + S2

β

)
(G.1.49)
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For a teetering rotor Kβ = 0, ν = 1, Sβ = 0, then the above simplifies to the classi-

cal result shown in equation (D.3.43) on page 270, equation (D.3.65) on page 278 and

equation (D.3.86) on page 287

∂β1c

∂p
≈ −∂β1s

∂q
≈ 1

Ω
∂β1s

∂p
≈ ∂β1c

∂q
≈ − 16

γΩ

(G.1.50)

G.1.5 Main Rotor Force and Moment Derivatives

Equation (E.2.10) on page 323 presents the simplified rotor in-plane forces as

XMR = −T cos β1s sin β1c ≈ −T β1c

YMR = T cos β1c sin β1s ≈ T β1s

(G.1.51)

The derivatives follow directly [105]

1

Mheli

∂X

∂β1c

= Xβ1c = − T

Mheli

≈ − W

Mheli

= −g

1

Mheli

∂Y

∂β1s

= Yβ1s =
T

Mheli

≈ W

Mheli

= g

(G.1.52)

Equation (E.4.3) on page 329 presents the simplified moment at the fuselage center of

mass

CxMR =
(
h̄ CT +

aσ

16
Sβ

)
β1s + ν2

β

aσ

γ

q

Ω

CyMR =
(
h̄ CT −

aσ

16
Sβ

)
β1c + ν2

β

aσ

γ

p

Ω

(G.1.53)

The corresponding derivatives follow

1

Ix

∂L

∂β1s

= Lβ1s =
hT

Ix
+
b

2

Iβ
Ix

(ΩR)2 (ν2 − 1
)

1

Iy

∂M

∂β1c

= Mβ1sc =
hT

Iy
− b

2

Iβ
Iy

(ΩR)2 (ν2 − 1
) (G.1.54)
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For the case when the hinge offset is zero e = 0, the above expression reduces to

Lβ1s =
hT

Ix
+
b

2

Kβ

Ix

Mβ1sc =
hT

Iy
− b

2

Kβ

Iy

(G.1.55)

where b is the number of blades, and Kβ is the hub retaining spring.
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Appendix H

Helicopter Model

Examples of work related to helicopter models abound in contemporary literature. For

example, mathematical modeling R. T. Chen [21, 22], helicopter modeling and handling

qualities Heffley et al. [66, 68], system identification Tomashofski and Tischler [148],

Mettler et al. [108, 107, 106]. A number of research centers across the United States are

actively engaged in modeling aspects for both full scale and scaled miniature helicopters.

The area of helicopter modeling is both wide and deep. Gavrilets et al. [50] explore the

development of a low order dynamic model of a miniature helicopter that is suitable for

dynamic simulation and control synthesis. Metter and other coauthors explore modeling

and system identification of miniature helicopters [105, 106, 107, 108]. A small sample

of work related to mathematical modeling and identification of miniature helicopters

includes work by Cvetkovic et al. [30], Kim and Tilbury [87, 88], Kodak et al. [91],

Perhinschi and Prasad [121].

H.1 Helicopter Model

Work by Gavrilets et al. [50], Mettler et al. [105, 108, 107] and Kondak et al. [91] have

shown that the main rotor forces and moments dominate the dynamic response of small

helicopters, and that the tail rotor can be considered a source of force. The main reason

for such conclusions are due to characteristics unique to scaled model helicopters that

fundamentally change the dynamic behavior of the helicopter system [50, 91]. In general,

model helicopters have the following characteristics

• high ratio of the main rotor mass to the fuselage mass

• hight thrust to weight ratio (2 to 3)
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• very high main rotor angular speed with dominant inertial effects (gyroscopic ef-

fects).

• main rotor hubs are very stiff and have no flapping hinges. This allows for large

rotor control moments.

The above characteristics of small scaled helicopters are very significant, and the body

of literature related to the dynamics of full-scaled helicopters does not apply fully to

scaled model helicopters [105]. Given that rotor dynamics are dominant in small scaled

helicopters, the interaction between the tail rotor, fuselage and rotor wake, vortex sheet,

and other physical characteristics of helicopter flight are of second and higher order.

Therefore the primary flight conditions for first order small-scaled helicopters simulation

are accurately modeled by

1. 6-DOF rigid body dynamics and 3D kinematics

2. first order main rotor and stabilizer bar dynamics

3. sensor and actuators modeling

Once a mathematical model is developed, model parameters need estimation. Model

parameter estimation necessitates performing experiments that will yield best fits to

unknown model parameters.

H.1.1 Rigid Body Equation of Motion

The six degrees of freedom (6-DOF) rigid body equation of motion (EOM) are given by

equation (B.5.6) on page 193 and equation (B.5.14) on page 196 and are summarized

below
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u̇ = rv − qw + x
(
q2 + r2

)
+ y (pq − ṙ) + z (pr + q̇)− g sin θ +

X

m

v̇ = pw − ru+ y
(
p2 + r2

)
+ z (qr − ṗ) + x (pq + ṙ) + g sinφ cos θ +

Y

m

ẇ = qu− pv + z
(
p2 + q2

)
+ x (pr − q̇) + y (qr + ṗ) + g cosφ cos θ +

Z

m

ṗ =
L

Ix
+
Iyz
Ix

(
q2 − r2

)
+
Izx
Ix

(ṙ + pq) +
Ixy
Ix

(q̇ − rp) +
(Iy − Iz)

Ix
qr +

BH i
x

Ix

q̇ =
M

Iy
+
Izx
Iy

(
r2 − p2

)
+
Ixy
Iy

(ṗ+ qr) +
Iyz
Iy

(ṙ − pq) +
(Iz − Ix)

Iy
rp+

BH i
y

Iy

ṙ =
N

Iz
+
Ixy
Iz

(
p2 − q2

)
+
Iyz
Iz

(q̇ + rp) +
Izx
Iz

(ṗ− qr) +
(Ix − Iy)

Iz
pq +

BH i
z

Iz

(H.1.1)

The total force is itemized as

X = XMR +XF

Y = YMR + YF + YTR + YV T

Z = ZMR + ZF + YTR + YHT

(H.1.2)

The total moments acting on the helicopter are

L = LMR + LTR + LV T + LF

M = MMR +MHT +MF

N = NMR +NTR +NHT +NF

(H.1.3)

The total moment contribution of the various rotating parts are

BH i
x =

∑
i

Bḣix + r
∑
i

Bhiy − q
∑
i

Bhiz

BH i
y =

∑
i

Bḣiy + p
∑
i

Bhiz − r
∑
i

Bhix

BH i
z =

∑
i

Bḣiz + q
∑
i

Bhix − p
∑
i

Bhiy

(H.1.4)
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In the above expressions, the )MR subscript applies to the main rotor, )TR applies to

the tail rotor, )HT applies to the horizontal tail, the )V T applies to the vertical tail, )F

applies to the fuselage. Some simplifications are possible. If the helicopter does not have

a vertical and horizontal tail, then the )HT and )V T components drop. Also, the fuselage

moment contribution MF = 0, NF = 0 are zero when the fuselage center of pressure

coincides with the vehicle’s center of mass. All the rotating moment contributions are

accounted for, and therefore the terms BH i are zero. Moreover, by taking the moments

about the center of mass, the x, y, z components of the moment arm are zero. In addition,

the cross product moment of inertia can be neglected without loss of accuracy since the

cross inertias are much smaller than the principal inertias [91]. The resultant 6-DOF

EOM are now

u̇ = rv − qw +−g sin θ +
XMR +XF

m

v̇ = pw − ru+ g sinφ cos θ +
YMR + YF + YTR

m

ẇ = qu− pv + g cosφ cos θ +
ZMR + ZF + ZTR

m

ṗ =
(Iy − Iz)

Ix
qr +

LMR + LTR
Ix

q̇ =
(Iz − Ix)

Iy
rp+

MMR

Iy

ṙ =
(Ix − Iy)

Iz
pq +

NMR +NTR

Iz

(H.1.5)

The inertial velocities are given by a standard transformation expressed by equation (B.5.8)

on page 194 from body B reference frame to the inertial I reference frame. In turn, the

rotational kinematic equations are given by equation (B.4.6) on page 190 with the as-

sumption of a non-rotating flat earth as the inertial reference frame (see Section B.1.8

on page 181). The three inertial velocity and three rotational kinematic equations are

360



summarized below in matrix form for convenience
φ̇

θ̇

ψ̇

 =


1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ



p

q

r



ẋE

ẏE

żE

 =


cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

− s θ sφcθ cφcθ



u

v

w


(H.1.6)

H.1.2 Main Rotor Forces and Moments

Wind tunnel tests by Harris [65] cited by Bramwell [13] and later used by Gavrilets et al.

[50] have demonstrated that momentum theory (see section §C.1 on page 203) predictions

are valid for steady state and over a wide range of advance ratio and blade collective pitch

angles [50]. From Simple Momentum Theory (SMT) (section ’C.1’) the trust coefficient

CT is defined by equation (C.1.17) on page 208, the normalized flow through the rotor or

induced inflow λi is given by equation (C.1.49), and equation (C.1.52) on page 219 gives

the rotor inflow λ for forward flight

=
V∞ sinα + vi

ΩR
= µ tanα + λi

λ = µ tanα +
CT

2
√
µ2 + λ2

(H.1.7)

From Blade Element Theory (BET) (Section C.2 on page 222), the thrust coefficient is

given by equation (D.3.130) on page 302

CT =
1

2
aσ

[
θ

3

(
1 +

3

2
µ2

)
− λ

2

]
(H.1.8)

Equation (H.1.7) resulting from SMT says that the rotor inflow λ depends on the thrust,

while equation (H.1.8) resulting from BET indicates that the thrust depends on the

rotor induced velocity. The inflow rotor λ and associated induced velocity field across

the rotor disk depend on knowledge of the individual blade tip vortices and consequent
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rotor wake, which in turn depends on the rotor thrust, airload distribution and blade

pitch and flapping dynamics [92]. From equation (H.1.8) above, the rotor inflow λ can

be approximated in hover (µ = 0) and in high speed forward flight (µ � V∞ cosα/ΩR)

as

λi =

√
CT
2

λ =
CT
2µ

, µ = 0

, 0.2 < µ

(H.1.9)

The above expression is valid for steady flight conditions when the rotor is trimmed

and the flow is slowly varying [119]. For forward velocities between 0 and µ = 0.15

(−2 ≤ µ/λi ≤ 0), the inflow transients are nonuniform and non-linear. During this low

speed regime and during slow descent flight (−2 ≤ VC/vh ≤ 0) when the vertical velocity

approaches the rotor induced velocity, the slip stream breaks and becomes unsteady with

the generation of toroidal vortex rings caused by blade tip vortices interacting with other

blades [92, 119, 124]. To model these unsteady and non-linear effects, researchers use

empirical results that accommodate both the causal physics and resulting dynamic effects

of the vortex ring state portion of the flight envelope. Numerous experimental results have

laid a rich body of literature related to the subject of rotor inflow modeling. Johnson [82],

and Leishman [92] provide a good summary related to inflow models based on work and

results by Brotherhood and Stewart [15], Heyson and Katsoff [69], Coleman et. al. [25],

Drees [36], Mangler and Squire [99]. Bramwell [11], Stepniewski and Keys [142] and Payne

[120] also summarize work on rotor inflow models. Other related literature includes early

work by Lock [98], Goldstein [58], and Azuma [6], contemporary work by Castles and De

Leeuw [84], R. T. Chen [23], and more recent work by Chen et. al. [19, 20], and Zhao et.

al. [160]. Padfield [119] gives an iterative solution for the rotor inflow calculation, and

Gavrilets [50] adapts this iterative solution to a scaled model helicopter. In this work,

the thrust coefficient and inflow ratio are found given an airspeed, rotor angular speed

and blade pitch collective setting. The modified Padfield [119, p. 123] iterative method
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[50] augmented by [92, p. 66] includes the following fixed point algorithm

λn=0 = λh =

√
CT
2

λn+1 = µ tanα +
CT

2ηw
√
µ2 + λ2

n

CT,max =
Tmax

ρ (ΩR)2 πR2

CT,BET =
1

2
aσ

[
θ

3

(
1 +

3

2
µ2

)
− λ

2

]

CT =


−CT,max CT,BET < −CT,max

CT,BET −CT,max 6 CT,BET 6 CT,max

CT,max CT,max < CT,BET

(H.1.10)

where

ε =

∥∥∥∥λn+1 − λn
λn+1

∥∥∥∥
Tmax =

(
T

W

)
max

mg

µ2 =
(u− uwind)2 + (v − vwind)2

(ΩR)2

µz =
w − wwind

ΩR

ηw − coefficient of non - ideal wake contraction

(H.1.11)

The term ε is the error estimator which indicates convergence when ε < 0.05%. The

term (T/W )max is the maximum thrust to weight ratio for a particular helicopter, and

the term CT,BET is the thrust coefficient result from BET in equation (H.1.8). The term

ηw accounts for non-ideal slipstream and wake contraction and for power loss due to tip

vortex and unsteady pressure distribution [50, 92, 119]. The above fixed point algorithm

can be modified to use a Newton-Raphson iterative process such that from equation
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(H.1.7)

f (λ) = λ− µ tanα− CT

2ηw
√
µ2 + λ2

n

= 0

∂f (λ)

∂λ
= 1 +

CT
2ηw

(
µ2 + λ2

n

)−3/2

λn+1 = λn −
[
∂f (λ)

∂λ

]−1

n

f (λn)

(H.1.12)

Results from the above algorithms rely on momentum theory, but momentum theory does

not apply in the vortex ring state during flight conditions when (−2 ≤ µ/λi ≤ 0). In

this case, the fixed point algorithm will not converge when µ = 0. In turn, the Newton-

Raphson method will converge in this range of flight conditions, but the solution may

be non-physical. Leishman [92, p. 58] proposes an empirical approximation to results

obtained from various experiments given by

vi
vh

= k0 + k1

(
vi
vh

)
+ k2

(
vi
vh

)2

+ k3

(
vi
vh

)3

+ k4

(
vi
vh

)4

(H.1.13)

with

k0 =

√
CT
2

k1 = −1.125

k2 = −1.372

k3 = −1.718

k4 = −0.655

(H.1.14)

The above empirical expression (H.1.13) is valid for the range (−2 ≤ VC/vh ≤ 0). The

rotor torque is given by equation (D.3.130) in section §D.3.7.1

CQ = λCT +
σCd

8

(
1 + µ2

)
(H.1.15)

The full expression for the rotor in-plane forces CH , CY are found in equation (E.2.2) and

equation (E.2.5) on page 322. Using the fundamental assumption that the rotor thrust

remains perpendicular to the rotor Tip Path Plane [13, 82, 119], then equation (E.2.10)

on page 323 represents a simplified set of the in-plane forces XMR, YMR. In turn, equa-

tion (E.3.12) on page 328 gives the rotor hub moments due to blade flapping, blade spring
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restraint and flap hinge offset. The corresponding rotor moments at the fuselage center of

mass are summarized in equation (E.4.3) on page 329. These equations are summarized

below for convenience.

XMR = −T cos β1s sin β1c ≈ −Tβ1c

YMR = T cos β1c sin β1s ≈ Tβ1s

ZMR = −T cos β1s cos β1c ≈ −T

CxMR =
(
h̄CT +

aσ

16
Sβ

)
β1s

CyMR =
(
h̄CT −

aσ

16
Sβ

)
β1c

(H.1.16)

H.2 Extended Linearized Rigid Body Equations for

Motion

Equation (H.1.1) through equation (H.1.4) on page 359 represent the full six degrees of

freedom (6-DOF) non-linear equations of motion (EOM) of a rigid body in atmospheric

flight. Equation (F.1.1) through equation (F.1.6) on page 335 represent a simplified set

of the 6-DOF rigid body EOM where it is assumed that the helicopter has a plane of sym-

metry, some of the rotating components have been dropped, and which also include three

kinematic equations and three translational equations. Also the angular rate of change

equations have been rearranged to make the set of equations suitable for linearization.

The full linearized equations of motion are given by equation (F.1.21) through equa-

tion (F.1.28) on page 341. Table D.1 on page 315 presents a summary of the flapping

blade equations of motion. Equation (D.3.144) on page 306 presents a first order ap-

proximation of the Tip Path Plane (TPP) blade dynamics while equation (D.3.147) on

page 307 presents a simplified version of the same TPP blade dynamics for the case of

low translational speed µ→ small. This first order TPP blade dynamic augments the 6-

DOF rigid body equations of motion along with equation (G.1.52) and equation (G.1.54)

on page 355.
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The augmented linearized longitudinal EOM is

Alon =



Xu Xw − q0 Xq − w0 −g cos θ0 Xβ1c

Zu + q0 Zw Zq + u0 −g cosφ0 sin θ0

M̄u M̄w Mβ1c

cosφ0

−ν2
β n1γΩ/16



A12 =



Xv + r0 Xp Xr + v0

Zv − p0 Zp − v0 Zr −g sφ0 cθ0

M̄v M̄p − Īqr0 − 2Īzxp0 M̄r − Īqp0 + 2Īzxr0

− sinφ0 K̄φ

(1− 4e/3) γ/16 γΩ/16Sβ


(H.2.1)

The corresponding augmented linearized lateral EOM is

A21 =



Yu − r0 Yw + p0 Yq −g sφ sθ0

L̄u L̄w L̄q + Īprp0 − Īpr0

N̄u N̄w N̄q − Īrp0 − Īprr0

sinφ0 tan θ0 K̄θ

− (1− 4e/3) γ/16 −γΩ/16Sβ



Alat =



Yv Yp + w0 Yr − u0 g cosφ cos θ0 Yβ1s

L̄v Īprq0 L̄r − Īpq0 Lβ1s

N̄v N̄p − Īrq0 N̄r − Īprq0

1 cosφ0 tan θ0

−ν2
β n1γΩ/16



(H.2.2)

The above Alon, Alat equations differ from equation (F.1.25) on page 340 in that the roll

and pitch damping derivatives L̄p, M̄q are now captured by the rotor damping τp, τq
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where τ = 16/γΩ is the main rotor time constant. In addition, the rotor forces and

moments are represented by the rotor flapping derivatives Xβ1c , Yβ1s , Lβ1s , Mβ1c [104].

H.2.1 Flapping Motion for Semi-rigid Rotors with Stabilizer

Bar

A model helicopter stabilizing bar and cyclic control mechanism is shown in Figure H.1

on page 369. The main rotor collective pitch results from the weighted sum of Bell cyclic

input δcyc originating from pilot stick inputs and the indirect Hiller input contribution

from the stabilizing bar flap angle βstab such that

δcyc = −Klatδlat cosψ −Klonδlon sinψ

δstab = δcyc(ψ +
π

2
) = −K̄latδlat sinψ + K̄lonδlon cosψ

= −θstab,1c cosψ − θstab,1s sinψ

θstab,1c = −K̄lonδlon

θstab,1s = K̄latδlat

(H.2.3)

where the constant K̄lat,long differs from the unbar version by some gear elements. Fig-

ure H.2 on page 370 illustrates the cyclic contributions by the pilot stick inputs δcyc and

the augmented contributions by the stabilizer bar flapping angle βstab

θcyc =
L2

L4

δcyc +
L1L3

L4 (L2 + L3)
βstab

θcyc = Kcyc δcyc +Kstab βstab

(H.2.4)

Similar results are given by [87, 88]. The stabilizing bar is a teetering rotor that carries

no thrust, and therefore has no conning angle. The paddle blade motion is then the same

as the first order TPP equation of motion for a flapping rotor minus the conning angle

[105]

βstab (ψ) = −βstab,1c cosψ − βstab,1s sinψ (H.2.5)
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Equation (D.3.161) is an expression for the equation of motion for a flapping blade when

neglecting effects due to advance ratio (µ → small, i.e. ignore translational dynamics)

and fast blade dynamics ([β̈, ṗ, q̇] → small, fast). Moreover, in the case of the stabilizer

bar there is no hinge offset (e = 0, ε = 0) and no blade restoring spring (Kβ = 0). In

this case equation (D.3.164) is an appropriate first order approximation of the teetering

rotor.

16

γΩ
β̇stab,1s = −βstab,1s +

p

Ω
− 16

γ

q

Ω
+ θstab,1c

16

γΩ
β̇stab,1c = −βstab,1c −

q

Ω
− 16

γ

p

Ω
+ θstab,1s

(H.2.6)

Let the stabilizer bar flapping time constant be τstab = 16/γΩ

τstabβ̇stab,1s = −βstab,1s +
p

Ω
− τstabq − K̄lonδlon

τstabβ̇stab,1c = −βstab,1c −
q

Ω
− τstabp+ K̄latδlat

(H.2.7)

The cyclic inputs to the main blade are now [105, 108]

θ1s = Klon (Kcyc δlon +Kstab βstab,1s)

θ1c = Klat (Kcyc δlat +Kstab βstab,1c)

(H.2.8)

Equation (D.3.147) on page 307 is the a general expression for the main blade flapping

dynamics. After rearranging some terms

τββ̇1c = n1β1c + Sββ1s − n2θ1s +

(
1− 4e

3

)
p

Ω
− ν2

βτβq − 2x2µλ

τββ̇1s = n1β1s − Sββ1c + n2θ1c − ν2
βτβp−

(
1− 4e

3

)
q

Ω

(H.2.9)

where the main blade flapping time constant τβ = 16/γΩ and x, n1, n2 are defined in

Equation (D.3.138) on page 304.. Equations (H.2.7), (H.2.8) and (H.2.9) comprise the

first order Tip Path Plane (TPP) dynamics of the rotor-stabilizer bar system. Mettler and

coworkers [50, 105, 108] have demonstrated that the rotor-stabilizer bar can be lumped

to reduce the order of their model to only two states.
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Appendix I

Hardware Parameters and Sensor Calibration

I.1 Helicopter Parameter Estimation

A number physical helicopter parameters listed below need estimation. To do so, physical

principles along with work done by previous researchers are used extensively and are so

noted where appropriate. Some parameters (such as the moment of inertia of the main

rotor shaft) follow directly from applied physics and do not need explanation.

1. rotational inertia.

2. other.

I.1.1 Rotational Inertia

The helicopter rotational inertia Irot can be estimated from the total kinetic energy

IrotΩ
2/2 associated with the various helicopter rotating components

(Ihub + 2IMR) Ω2 + Ieng (nMRΩ)2 + 2ITR (nTRΩ)2 = IrotΩ
2

IMR + Iengn
2
MR + ITR n

2
TR = Irot

(I.1.1)

where IMR is the main rotor blade inertia about the rotating axis, ITR is the corresponding

inertia for the tail rotor blades and tail rotor rotating parts, Ieng is the engine and other

inertia components associated with the engine such as the ducted fan and transmission

gears, IMR is the shaft and hub inertia, and nMR, nTR are the engine-to-main rotor and

engine-to-tail rotor transmission gear. Estimates for the engine and tail rotor inertias

are borrowed from previous work done on similarly sized helicopters [50, 105]. These

quantities are tabulated in Table I.1 on the following page.
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I.1.2 Helicopter Testbed Platform Parameters

The helicopter inertial properties were determined using a two step approach:

1. tortional pendulum [32, 64] on the basic helicopter structure made up by

tail boom

main rotor

engine

2. itemized inertial contributions from the varioud components

CPU boards

GPS system and GPS antenna

wireless digital modem

IMU

Table Table I.2 on the next page shows the inertial characteristics of the helicopter, while

Table I.3 on the following page shows the relevant helicopter dimensions as illustrated in

figure F.1 and figure F.2 on page 333.

Table I.4 on the following page tabulates the main rotor components, Table I.5 on

page 374 tabulates the stabilizer bar parameters and Table I.6 on page 374 tabulates

the tail rotor parameters. Finally, Table I.7 on page 375 tabulates the various mass

components for the Helicopter

Table I.1: Rotational Inertial Parameters

unit description

Irot 0·117 kg m2 rotating inertia
IMR 0·0852 kg m2 main rotor blade, shaft and hub inertia
ITR 0·0044 kg m2 tail rotor blade, hub and shaft inertia
Ieng 0·0003 kg m2 engine-related rotating inertia
nMR 9·29 engine-to-main rotor gear ratio
nTR 4·667 main rotor-to-tail rotor gear ratio
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Table I.2: Helicopter Mass and Inertial Parameters

unit description

Mheli 8·3 kg helicopter mass
Ixx 0·074 kg m2 roll moment of inertia
Iyy 0·34 kg m2 pitch moment of inertia
Izz 0·27 kg m2 yaw moment of inertia

Table I.3: Helicopter Dimensions

unit description

lMR 0·01 m main rotor hub location behind the cm
hMR 0·285 m main rotor hub location above the cm
lTR 0·932 m tail rotor hub location behind the cm
yTR −0·057 m tail rotor hub location sideways from the cm
hTR 0·093 m tail rotor hub location above the cm
Sx,fus 0·1 m2 frontal fuselage drag area
Sy,fus 0·22 m2 side fuselage drag area
Sz,fus 0·15 m2 vertical fuselage drag area

Table I.4: Main Rotor Parameters

unit description

R 0·74 m rotor radius
c 0·062 m blade cord
e 0·083 m geometrical hinge offset
b 2 number of blades
IMR 0·0855 kg m2 rotor hub inertia
Iβ 0·0299 kg m2 blade flapping inertia
Ω 157·1 rad/sec nominal rotor speed (1500 rpm)
TMR 106·7 N nominal hover maximum thrust (24 lbf)
CT,maxMR

0·0055 main rotor maximum thrust coefficient
ε 0·5 ratio of blade first to second moment of inertia
σ 0·0529 rotor solidity
γ 4·31 rotor Lock number
Kβ 54·0 N ·m/rad hub torsional stiffness
Sβ 1·07 rotor stiffness number
nTR 4·667 main rotor to tail rotor gear ratio
nMR 9·29 engine to main rotor gear ratio
Clα 5·7 rad−1 blade lift curve slope
CD0 0·024 blade zero lift drag coefficient
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Table I.5: Stabilizer Bar Parameters

unit description

Rstab 0·31 m stabilizer bar radius
Rstab,i 0·23 m inside stabilizer bar radius
cstab 0·06 m paddle cord
astab 2·67 rad−1 paddle lift curve slope
mpaddle 0·028 kg paddle mass
mrod 0·048 kg rod mass
lrod 0·483 kg rod length
Iβ,stab 0·005 kgm2 paddle and rod inertia
γstab 0·5 stabilizer Lock number

Table I.6: Tail Rotor

unit description

RTR 0·13 m tail rotor radius
cTR 0·029 m tail rotor cord
aTR 5·0 rad−1 tail rotor lift curve slope
CDTR 0·024 tail rotor zero lift drag
δtrim 0·1 rad tail rotor trim offset
CT,maxTR 0·05 tail rotor maximum thrust coefficient
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Table I.7: Helicopter Mass (Weight) Parameters

unit description

Mheli 5·21 kg basic (empty) helicopter mass (11.46 lbf)
Mframe 1·902 kg main frame (4.2 lbf)
Mengine 0·600 kg engine mass (1.32 lbf)
Mtail 0·464 kg tail boom + tail rotor mass (1.02 lbf)
Mmrgear 0·26 kg main rotor gear mass (9.12 oz)
Mhead 0·236 kg rotor hub mass (8.32 oz)
Mblade 0·202 kg mass of one (1) blade (7.2 oz)
Mshaft 0·114 kg main rotor shaft mass (4.0 oz)
Mbar 0·108 kg fly-bar assembly mass (3.8 oz)
Megear 0·096 kg engine gear + pulleys mass (3.4 oz)
Mexhaust 0·080 kg exhaust pipe mass (2.82 oz)

Mmpak 1·1 kg MotionPak mass (2.43 lbf)
Mbatt 0·652 kg battery mass (1.44 lbf)
MGPS 0·62 kg GPS + FreeWave mass (1.37 lbf)
Mcpu 0·6 kg main CPU mass (1.32 lbf)
Maux 0·57 kg auxiliary equipment mass (1.26 lbf)
Mfuel 0·494 kg fuel mass (1.1 lbf)
Mgpsant 0·230 kg GPS antenna mass (8.1 oz)

Mtotal 9·5 kg total mass ( 21.0 lbf)
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I.2 Sensors and Actuators

I.2.1 Systron Donner MotionPak

Figure I.1 shows the solid state Systron Donner MotionPak, a six degree of freedom

(6dof) inertial sensing system used for measuring linear accelerations and angular rates

in instrumentation and control applications. It is a highly reliable, compact, and fully

self-contained motion measurement package. It uses three orthogonally-mounted solid-

state micro-machined quartz angular rate sensors, and three high performance linear

servo accelerometers mounted in a compact, rugged package, with internal power regula-

tion and signal conditioning electronics [33, 34]. Table I.8 on the next page summarizes

the mechanical and electronic specifications for the MotionPak. In addition, Table I.9 on

the following page tabulates the MotionPak’s specifications regarding angular measure-

ments while Table I.10 on the next page tabulates similar information regarding linear

measurements.

Applications

• Vehicle Instrumentation

• Robotics

• Automotive Testing

• Attitude Reference Systems

• Control Systems

• Dead Reckoning Aiding GPS

• Flight Testing

• Buoy Instrumentation

Description
The MotionPak™ is a “solid-state” six degree of freedom inertial sensing system
used for measuring linear accelerations and angular rates in instrumentation
and control applications. It is a highly reliable, compact, and fully self-
contained motion measurement package. It uses three orthogonally mounted
“solid-state” micromachined quartz angular rate sensors, and three high
performance linear servo accelerometers mounted in a compact, rugged
package, with internal power regulation and signal conditioning electronics.

Features
• “Solid State” Sensors • High Level Analog Outputs
• Compact, Rugged Package • Wide Bandwidth
• Long Operating Life • Fast Start-Up
• Low Cost • Fully Self-Contained System

Operation
Angular rates are sensed using micromachined quartz gyroscopes. Linear 
accelerations are sensed using linear servo accelerometers. The MotionPak™

is directly powered by a + and - 15 Vdc input and provides six high-level, wide-
bandwidth analog signal outputs. There are three outputs for linear acceleration
and three for angular velocity. The package contains internal power regulators
and includes temperature sensors for high performance applications.

BEI MotionPak™
Multi-Axis Inertial Sensing System

For applications assistance or more information on any of 
Systron Donner Inertial Division’s micromachined inertial sensors,
Call 1-800-227-1625.

BEI GyroChip SYSTRON DONNER INERTIAL DIVISION 
B E I  T E C H N O L O G I E S ,  I N C .

Figure I.1: Systron Donner MotionPak.
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Table I.8: Mechanical and Electrical Specifications

Input Current (+15 Vdc): +252 mA
Input Current (-15 Vdc): -198 mA
Package Weight: 888 g
Temp. Sensor (AD590): 1 A/K

Table I.9: MotionPak Angular Measurements Specifications

X-AXIS Y-AXIS Z-AXIS
Range ±200 o/s ±200 o/s ±500 o/s
Scale Factor 12.469 mV/o/s 12.500 mV/o/s 5.014 mV/o/s
Temp Performance < ±0.03 %/oC < ±0.03 %/oC < ±0.03 %/oC
Bias (@ +22oC) +0.06 o/s +0.21 o/s -0.03 o/s
Temp Performance < 3o/s (↑ +22oC) < 3o/s (↑ +22oC) < 3o/s (↑ +22oC)
Alignment 0.83 o 0.12 o 0.09 o

Bandwidth (-90o) 77 Hz 77 Hz 78 Hz
Damping 0.70 0.66 0.72
Noise (100-100Hz) 1.0 mVRMS 1.1 mVRMS 0.4 mVRMS

Table I.10: MotionPak Linear Measurements Specifications

X-AXIS Y-AXIS Z-AXIS
Range * (max) ±15 g * (max) ±15 g * (max) ±15 g
Scale Factor 2.966 mA/g 2.961 mA/g 2.867 mA/g
Temp Performance +0.001 %/oC +0.001 %/oC +0.001 %/oC
Bias (@ +22oC) +1.22 mg +0.54 mg +9.37 mg
Temp Performance -14 µg/oC -6 µg/oC -46 µg/oC
Alignment 0.11 o 0.11 o 0.32 o

Bandwidth (-90o) 1632 Hz 1496 Hz 1648 Hz
Damping 0.44 0.32 0.46
Noise (100-100Hz) 2.0 µARMS 2.3 µARMS 1.9 µARMS
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I.2.2 NovAtel Global Positioning System

Figure I.2 on the following page shows the NovAtel [63] Global Positioning System (GPS)

components. The NovAtel GPS system consists of a ground base waterproof unit called

ProPack, on-board GPS card called MiLLennium GPScard, a ground reference antenna

with multipath elimination technology, and an on-board active antenna. The ProPack

ground station GPS unit knows its geological position very accurately, and as it receives

updated GPS information, it forms a message which it passes on to the on-board GPS

card. The ProPack and MiLLennium units work together to provide differential GPS

information with an accuracy of 2cm Circle Error Probable (CEP). Figure I.3 on the

next page shows a set of measurements taken with the differential GPS system from

NovAtel, and Figure I.4 on page 380 shows the setup of the GPS reference antenna on

top of the Sarkey Energy Center at the University of Oklahoma. Table I.11 tabulates

relevant data related to the MiLLennium GPScard [75]. The ProPack card performance

is equal to that of the MiLLennium card.

Table I.11: GPS MiLLennium GPScard Selected Performance Parameters

Frequency 1575.2 MHz & 1227.6 MHz (L2)
Codes Tracked C/A and P codes
Channels 12 L1/L2 channel pair
Time to First Fix 70 sec typical (cold start)
Re-acquisition L1: 3 sec, L2: 40 sec, typical
Computed Data Update Rate 4 solutions/sec
Measured Data Update Rate 4 data records/sec
Differential Pseudorange GDOP < 4, CEP < 0.75m,SEP < 1.00m
Position Latency 175 msec
Differential Velocity Latency 0.03 m/sec
Acceleration 6g max.
Power 7.5 watts
Weight 0.175kg(6.2oz)
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Figure I.2: NovAtel GPS Ground Station Receiver, On-Board Card, Antenna, and Ref-
erence Station Antenna.

 
 
 
 
 
 
 

Figure I.3: Differential GPS measurements with 2.0cm Circle Error Probable (CEP)
position accuracy at a location on the University of Oklahoma Campus.
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Figure I.4: GPS Reference Antenna on top of the Sarkey Energy Center at the University
of Oklahoma.
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I.2.3 FreeWave Wireless Data Transceiver

Figure I.5 shows the on-board card and the ground station version of the FreeWave

wireless digital data transceiver, and Table I.12 on the next page tabulates selected

parameter pertaining to the device. The FreeWave tranceiver sports the following features

[47, 48]. The FreeWave performance has been robust and flawless at all times.

• Frequency Hopping

• High Speed - 115.2 Kbps true throughput.

• Long Range - 20 mile range with clear line of sight, ability to extend through

repeaters

• Error Free Communications - 32 bit CRC with automatic retransmission

• Repeater and simultaneous Slave and Repeater function all in a single radio

• RS232 Interface

• Noise Immunity - Superior performance in noise congested environments

• UL Approved

Figure I.5: FreeWave Wireless Data Transceiver On-Board Card and Ground Station
Unit.
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Table I.12: FreeWave Selected Technical Specifications

Frequency 902− 928 MHz
Range 20 miles
RS232 Data Throughput 1200 Baud - 115.2 KBaud
Modulation Type Spread Spectrum, GFSK
Spreading Code Frequency hopping
Hop Patterns 15 user selectable
Output Power 1 Watt
Error Detection 32 Bit CRC with packet retransmit
Power 180mA average
Weight 0.340kg(12oz)

I.2.4 SHARP GP2D02 Infrared Sensor

Figure I.6 shows a SHARP GP2D02 infrared distance sensor with a range of 10− 80 cm.

The sensor uses a digital interface to a microcontroller to provide measurements at 10

Hz. A number of calibration runs resulted in the general formula for distance estimation

L =
1560

dec− 47.7
− 0.5 (I.2.1)

where L is the range distance in cm and dec is the output of the infrared sensor [28, 29].

The infrared sensor provides complimentary range information for altitude estimation.

Mechatronic Systems, Sean Brennan  Sharp GP2D02 Ultrasonic Sensor Spec. Sheet, Page 1 of 5 

Spec Sheet  
for the  

Sharp GP2D02 Infrared Ranging Sensor 
 

 
Section 1: General Description and How Used  

 
Advantages over other sensing devices: 

• Impervious to color and reflectivity of reflected object  

• High precision distance measurement through output for direct connection to microcomputer  

• Low dissipation current at OFF-state (Typically 0.3 uA).  

• Capable of changing of distance measuring range through use of a lens 

 

This sensor takes a distance reading when enabled and reports the distance as a byte-value 
cooresponding to the distance between 10cm (~4") to 80cm (~30"). The interface is 4-wire and 
requires a JST connector which is included with each detector.  A JST connector stands for a Japan 
Solderless Terminal Connector; see http://www.acroname.com/robotics/parts/R9-JSTCON.html for 
pricing.  Also included in the package is a diode required for interfacing the detector to TTL/CMOS 
logic. Controlling the detector is done by lowering the input line, waiting for ~70ms, and then clocking 
the detector 8 times to read out the distance measurement on the output line.  Each package includes a 
booklet that describes plugging together the connector, interfacing the detector to logic and the 
protocol used to take measurements using the GP2D02.  

Figure I.6: SHARP GP2D02 Infrared Distance Sensor.
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I.2.5 AccuStar II Dual Axis Clinometer

Figure I.7 shows the AccuStar II Clinometer. The AccuStar clinometer is a capacitance-

based sensor with an output proportional to the tilt of two orthogonal axis. Table I.13

shows typical performance numbers for the AccuStar clinometer device.

Figure I.7: Dual Axis Clinometer AccuStar II.

Table I.13: AccuStar II Performance

Range ±20o

Threshold / Resolution 0.01
Linearity

Null to 10o ±0.2o

10o to 12o ±2.5 %
12o to 15o ±3.0 %
15 to 20o Monotonic

Null Repeatability ±0.1
Frequency Response (−3db) 0.25 Hz

Figure I.8 on the next page shows the calibration curve for the AccuStar clinometer

device. The clinometer is set to generate a pulse width modulated (PWM) output with

a duty cycle given by

output =
t2

t2 − t1

where t1 and t2 varies from 0.2 to 0.7 msec. The simple calibration exercise consisted of
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measuring the inclinometer output when subject to a known inclination. The calibration

curves for the various clinometer devices are all consistently linear, and the small varia-

tions between the various curves amount to a master curve with a particular slope plus

some small offset.
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AccuStar clinometer Calibration

Figure I.8: Calibration Curve for the AccuStar II Dual Axis Clinometer.

I.2.6 Electronic Compass

Figure I.9 on the following page shows a picture of the Honeywell HMR3000 electronic

compass module [72]. The compass provides heading, pitch and roll output for pitch

and roll control, navigation and guidance. It is a solid state strapdown compass able to

provide rate information up to 20 Hertz with accuracy of about 0.5o with 0.1o resolution.

Table I.14 on page 386 and Table I.15 on page 387 tabulate the most relevant operational

specifications related to the HMR3000.

The HMR3000 communicates with an external host via RS-232 or RS-485 electrical

standard through simple ASCII character strings. ASCII characters are transmitted and
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received using 1 Start bit, 8 Data bits, (LSB first, MSB always 0), no parity, and 1 Stop

bit. Baud rate is user configurable to 1200, 2400, 4800, 9600, 19,200 or 38,400. HMR3000

responds to all valid inputs received with correct checksum value.

Figure I.9: Electronic Compass Honeywell HMR3000

I.2.7 O.S.61 Helicopter Engine

Figure I.10 shows an illustration of the O.S. 61 Max engine. In turn, Table I.16 on

page 387 tabulates the engine specification along with basic performance numbers [8, 37].

Figure I.10: O.S.61 Helicopter Engine
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Table I.14: Honeywell HMR3000 Specifications [72].

Heading
Accuracy (1) < 0.5o RMS (2)

< 1.5o RMS
Dip <50o, Tilt <20o *
Dip <75o, Tilt <20o *

Repeatability ±0.3o

Resolution 0.1o

Units Degrees/mils User Selectable
Pitch and Roll

Range ±40o

Accuracy ±0.4o

±0.6o
Tilt <20o

Tilt ≥20o

Repeatability ±0.2o

Resolution 0.1o

Units Degrees/mils User Selectable
Magnetic Field

Dynamic Range ±1.0 Gauss max ±0.5 Gauss Range
Resolution 1 mGauss

Interface
Serial RS-232

RS-485
Half Duplex

Baud Rate 1200 to 38400 bps
Standard NMEA 0183
Update Modes Continuous

Strobed
≤ 20 Hz per Sentence
Selectable Averaging

386



Table I.15: Honeywell HMR3000 Physical Characteristics [72].

Electrical
Supply Voltage 5.0 Vdc,

6-15 Vdc unregulated
Power 35 mA @ 6 Vdc

13 mA
2.0 mA

Normal Operation
STOP Mode
SLEEP Mode

Physical
Weight 0.75 oz (22g)

3.25 oz (92g)
Circuit Card Only
Housed

Dimensions 1.2 x 2.95 x 0.760
1.5 x 4.2 x 0.88

Circuit Card Only
Housed Compass

Environment
Operating Temp -20 to 70o C
Storage Temperature -35 to 100o C
Shock 30 inch drop MIL-STD-810E; TM 516.4
Vibration 20-2000 Hz

Random 2 hrs/axis
MIL-STD-810E; TM 514.4

Manufacturing
PCB IPC 6012
Assembly IPC 610 Class II or Better

Table I.16: O.S.61 Helicopter Engine

Displacement 9.95 cc
Bore 24.0 mm
Stroke 22.0 mm
RPM 2, 000− 18, 000
Output 2.2 hp @ 16, 000 rpm
Torque 1.052 Nm @ 10, 720 rpm
Weight 600 g
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I.2.8 Ultrasound Altimeters

Figure I.11 is an ultrasound sensor used to find the range from the helicopter to the

ground. This ultrasonic transducer has an approximate range of 3 − 24 inches that

can be modified from software. A logic line triggers a pulse and the echo is returned

on a second line. It is a compact, low weight sensor (86 grams) with minimal power

requirements, and a self contained design. Figure I.12 shows the location of two of three

ultrasound sensors in the helicopter.

Figure I.11: Ultrasound Sensors

Figure I.12: Ultrasound Sensors Location in the Helicopter
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I.3 Calibration

I.3.1 Helicopter Main Rotor Blade Pitch Angle Calibration

Calibration of the main rotor collective blade pitch angle θ0 takes place by positioning

the AccuStar II inclinometer device (see section Section I.2.5 on page 383) in lieu of

the main rotor blades. Subsequent commands to the main rotor blade collective inputs

generate the calibration curve seen in Figure I.13. After generating a number of similar

calibration curves, the conversion from pulse width to main rotor blade pitch angle takes

the form

θ0 = 0.0186 δ0 − 24.63 (I.3.1)

where the δ0 is the command servo pulse width input.
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Figure I.13: Calibration curve for main rotor collective blade pitch θ from collective stick
inputs δθ .
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I.3.2 Helicopter Main Rotor Cyclic Angle Calibration

A similar process to the one described above in Section I.3.1 on the previous page gen-

erates the calibration curves for the cyclic inputs shown in Figure I.14. The resultant

calibration equations take the form

θcyc = 0.07 δcyc − 103

δcyc = 14.2 θcyc + 1482

(I.3.2)

where θcyc is the Bell cyclic input in degrees, δcyc is the cyclic stick input in pulse-width

units (microseconds), and cyc is either lat for lateral inputs, or lon for longitudinal inputs.

Figure I.15 on the next page shows the range and effect of the longitudinal and lateral

cyclic stick inputs. Equation (H.2.4) on page 367 gives the final form to the main rotor

cyclic inputs.
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Figure I.14: Calibration Curve for longitudinal δlon and lateral δlat cyclic main rotor blade
stick inputs.
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I.3.3 Helicopter Tail Rotor Collective Angle Calibration

Figure I.16 on the next page records the calibration run for the tail rotor collective pitch

angle θTR. The inclinometer described in Section I.2.5 on page 383 provides the measured

angle data. The graph plots the inherent hysteresis present in the input mechanism for

the tail rotor pitch angle θTR = f(δTR). The bottom graph in Figure I.16 plots the best

estimate for the data (red curve) as a second order polynomial.

θTR = 0.0387 δTR − 50.2917

δTR = 24.3 θTR − 1310

(I.3.3)

I.3.4 OU Helicopter Throttle Fuel Flow Rate Calibration

The helicopter engine manufacturer (O.S. Engines) provides a set of instructions on how

to operate the engine [37]. Figure I.17 on page 394 shows a map from throttle servo

pulse-width command to throttle opening. Subsequent fuel and air mixing is a function

of the throttle opening, carburetor inlet temperature, and fuel back-pressure generated

by the engine.

I.3.5 Cantilever Beam Strain Gage Calibration

The cantilever beam in Figure I.18 on page 394 has a set of strain gages on each side of

the beam surface set up in a Wheatstone Bridge configuration. The strain on the beam

surface is the ratio of the change in length to the initial unstressed reference length. A

strain gage senses the change in the beam’s length by converting a variation in the strain

gage resistance into a measurable voltage []. In the current setup, the details of the

theory of elasticity are bypassed in favor of a simpler calibration setup. In this setup, a

number of known masses are applied at carefully chosen locations in the cantilever beam.

Then the voltage of the gage circuit is measured and correlated to the applied bending

moment which include the mass and weight of the beam itself. Figure I.19 on page 395

shows the calibration curve for the cantilever beam. Subsequent use of this device as a

bending beam load cell.
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Figure I.16: Calibration curve for tail rotor collective pitch angle θTR. Top graph plots
tail rotor servo input pulse-width δTR (µsec, dashed black curve) along with inclinometer
data (deg, blue curve) and best-fit estimation curve (red curve). The bottom graph
plots the measured tail rotor angle against the input pulse width. The data shows input
hysteresis due to mechanical slop in the linkage.
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Figure I.18: Cantilever Beam with strain gages.
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Figure I.19: Calibration Curve for cantilever beam with strain gages.

I.4 Helicopter Linear and Directional Test Platform

Figure I.20 on the following page shows a picture of the test Linear and Directional

Test Stand (LDTS) or Helicopter Test Platform (HTP) with the helicopter on top. The

LDTS is an apparatus conceived to aid in the development, testing and experimenting

of the the various helicopter experiments. It is of particular importance for performing

parameter estimation since it can operate in any combination of its two independent

degrees of freedom at any one time. The first degree of freedom is along the vertical

axis, while the second degree of freedom is rotation about the vertical axis or heading.

The LDTS consists of a base supported by four shafts in which four springs sustain the

weight of the helicopter. When the helicopter is placed in the LDTS, the springs deflect

to an equilibrium position. When the helicoter lifts and raises, the force exerted by

the helicopter can be computed with the help of the HFP calibration curve shown in

Figure I.21 on page 397.
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Figure I.20: Helicopter Test Platform.
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Figure I.21: Calibration curve for vertical force exerted by the HTF springs.
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Appendix J

Helicopter Engine Controller

J.1 Introduction

Equation (J.1.1) below shows previous results from the combined Blade Element and

Momentum and Theory (BEMT) presented in equation (C.2.14) on page 227.

CT =
a σ

2

(
θ

3
− 1

2

√
CT
2

)

CP = CQ =
C

3/2
T√
2

+
1

8
ρCD

(J.1.1)

The relevant control term in the thrust coefficient expression CT is the main rotor blade

pitch angle θ. The thrust and torque coefficients take the approximate form

CT ' kCT θ + CT0

CQ ' kCQθ
3/2 + CQ0

(J.1.2)

Using the thrust and torque coefficient definition in equation (C.1.17) the corresponding

main rotor thrust TMR and torque QMR approximation are given by

T ' kTΩ2θ + kT0

Q ' kQΩ2θ3/2 + kQ0

(J.1.3)

Equation (J.1.3) says that when the main rotor angular velocity is constant, both the

main rotor thrust and torque are simple functions of the blade pitch angle which is the

main rotor primary control variable.
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J.2 Main Rotor Characterization Experiment

This experiments has as it main goal the characterization of the coupled dynamics of the

carburetor, engine, main rotor shaft and blade systems. The result of the experiment is a

first order characterization of the aforementioned system that would lead to a preliminary

design of the engine controller. Once a preliminary engine controller maintains a constant

main rotor angular velocity ΩMR, then the identification of the main rotor aerodynamic

model follows via equations (J.1.1) through equation (J.1.3) on the previous page.

In this first experiment, the blade pitch angle remains constant while the main rotor

angular velocity ΩMR varies. The helicopter configuration is such that there is no yaw

movement, and the helicopter is only allowed to move along the vertical axis. Figure J.1

on the following page illustrates one such run with main rotor blade pitch angle set at 8o.

The green curve is the command input to the throttle servo, while the red curve is the

measured main rotor RPM. The corresponding throttle opening and estimated fuel flow

rate result from data presented in Figure I.17 on page 394. Similar experiments with the

main rotor blade pitch angle set at 2, 3, 4, 5, 6 degrees yield the necessary data for first

order system identification.

Data in Figure J.1 includes rotor dynamics, and carburetor dynamics, as well as losses

incurred from fuel energy conversion to torque delivered to the main rotor. A first order

estimate of the complete system dynamics is directly inferred from the step responses.

Figure J.2 on page 401 is a snapshot of the data presented previously. These data sets

yield approximate estimates for time to rise and time constant for the complete dynamic

system. Figure J.3 on page 402 shows the time constant mean value from the experiments

aforementioned. As expected, the time constant varies about a mean value which value

is equal to 2.2 sec. Data in Figure J.1 indicates that the engine/carburetor-main rotor

dynamic system could be expressed, in its most simple form as a first order lag transfer

function of the form
Ω̄(s)

ω̄f (s)
= P (s) =

Ks1

τs1s+ 1
(J.2.1)

where ωf is the fuel flow rate. Given that change in main rotor angular velocity is
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proportional to the total main rotor shaft torque, then

Ω̇− ṙ =
1

Irot
(Qe −QMR − nTRQTR) (J.2.2)

where Irot given in Table I.1 on page 372 is the combined rotational inertia which includes

the main rotor blades, hub and shaft, the tail rotor, engine and transmission rotational

inertias [50, 119]. The term Qe is the torque generated by the engine, QMR is the main

rotor torque, nTR is the main rotor-to-tail rotor gear in Table I.4 on page 373, and ṙ is

the fuselage angular acceleration.
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Figure J.2: Time to Rise and Time Constant estimates for Engine/Carburator-Main
Rotor dynamic system.

In the current experiments the fuselage remains stationary with motion along the

vertical axis alone, in which case ṙ = 0. Substitute equation (J.1.3) on page 398 in place

of QMR + nTRQTR to obtain

Ω̇ =
1

Irot

(
Qe − kQΩ2θ3/2 − kQ0

)
(J.2.3)
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According to equation (J.1.3), the damping torque ∂Q/∂Ω has the form

∂Q

∂Ω
= 2 kQ Ω θ3/2 (J.2.4)

Substituting back in (J.2.3) and taking the Laplace transform of the resultant linearized

equation yields

sΩ̄(s) +
2kQΩ0Ω̄(s)θ3/2

Irot
=

1

Irot
Q̄e(s)(

s+
2kQΩ0θ

3/2

Irot

)
Ω̄(s) =

1

Irot
Q̄e(s)

Ω̄(s) =
1/2kQΩ0θ

3/2

(Irot/2kQΩ0θ3/2) s+ 1
Q̄e(s)

(J.2.5)

where kQ0 is neglected momentarily. In the above equation (J.2.5) the term θ3/2 remains

constant for any given data run. The term Ω2 is substituted by a linearized equivalent

2Ω0Ω where Ω0 is a priori known rotor angular velocity about which Ω varies (as shown in

Figure J.3 on the previous page). In a closed-loop system this term would correspond to

the command (desired) angular velocity. In reality, for the current batch of experiments

in which the rotor angular velocity varies, the term Ω0 is not a constant. The penalty

for setting kQ0 = 0 and Ω0 to a constant will result in open loop offset. Equating terms

from equation (J.2.1) to the corresponding terms in the above equation (J.2.5) gives

Ks1 =
1

2 kQΩ0

θ−3/2

τs1 =
Irot

2 kQΩ0

θ−3/2

(J.2.6)

The above equation suggests that the time constant for the engine-carburetor and rotor

system is a nonlinear function of main rotor angular velocity and main rotor blade pitch

angle. In particular, the term kQ is a function of both angular velocity and blade pitch

angle:

kQ = f(Ω, θ)

Therefore, any linear approximation to a time constant will only be true for the given
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rotor angular velocity, main rotor blade pitch angle and corresponding main rotor torque.

The transfer functions in equation (J.2.1) and equation (J.2.5) on the preceding page

suggest a linear model as shown in Figure J.4.
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Figure J.4: Main Rotor Dynamics with Fixed Shaft Engine.

J.2.1 Estimation of Simple Engine-Rotor Dynamics from Ex-

perimental Data

The simplest approach for the estimation of the Engine-Rotor Coupled dynamics uses

the transfer function in equation (J.2.1) on page 399. The estimated time constant is

derived from results shown in Figure J.3 on page 402. The engine torque is a function of

the fuel flow and maximum engine power such that [50]

Pe = Pe,maxwf

Qe =
Pe
Ω

=
Pe,max

Ω
wf

wf = f (δTh)

(J.2.7)

where wf is the fuel flow and δTh is the throttle opening in Figure I.17 on page 394. The

estimation of the gain from fuel flow rate wf to torque Q follows the following steps:

1. estimate total power P

2. estimate total torque Q
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3. estimate the relation between the engine generated torque and available power

Qe = ∂Q/∂wf · wf

J.2.1.1 Estimation of Available Power and Main Rotor Torque

Based on data presented in Figure J.1 on page 400 for a number of main rotor blade

pitch angles, when the change in rotor angular velocity is zero (Ω̇ = 0), the engine power

available equals the total power required by the complete system. The total required

power is given by equation (C.2.14) on page 227. Equation (C.3.5) on page 230 modifies

the induced power coefficient by a factor k such that

CPi =
k√
2
C

3/2
T

and the resultant power coefficient is given by

CP =
k√
2
C

3/2
T +

ρ

8
CD (J.2.8)

The power loss factor k accounts for a number of non-linear effects which include tip

losses and nonuniform rotor air inflow [92, 119]. The engine power available is in this

case

Pe = ρπR2 (ΩR)3CP (J.2.9)

The main engine torque follows directly

CQ = CP

QMR = ρπR3 (ΩR)2CP − nTRQTR

(J.2.10)

where QTR is the tail rotor torque and nTR is the main rotor to tail rotor gear presented

in Table I.4 on page 373. In the experiments run to this point, the tail rotor is set to zero

blade pitch angle, and therefore the data does not include any tail rotor effects other than

parasite drag and transmission losses. This facilitates the engine-carburetor parameter

identification in that the total power computed accounts for transmission and profile tail

rotor power with no need for complex and error prone estimation of the tail rotor power
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and torque components. Figure J.5 shows data for runs with 2 (red dots), 3, 4, 5, 6, and

8 (cyan dots) degrees of main rotor blade pitch angle and varying throttle settings. The

torque and power are computed for places when the rotor angular velocity was stable

and non-varying for which Ω̇ = 0, Q̇ = 0 in equation (J.2.3) on page 401.
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Figure J.5: Estimated engine power available for required main rotor torque.

J.2.1.2 Relationship between Available Power and Main Rotor Torque Re-

quired

Figure J.5 suggests a linear relationship between the total required power and corre-

sponding torque for cases when changes in rotor angular velocity are small (∆Ω ≈ ±500,

see Figure J.6 on the following page ). This linear relationship between available power

and required torque indicates that the simplest linear transfer function between throttle

command input and the resulting torque delivered to the main rotor is linear for a vari-

ation of angular velocity and blade pitch angle settings about a trim point. In this case

a linearized version of (J.2.7) would take the form

Qe =
∂Q

∂wf
wf (J.2.11)
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Figure J.6: Change in Main Rotor Angular Velocity Ω and related throttle inputs δTh to
a Fixed-Shaft Engine.

Figure J.7 on the next page together with Figure J.6 plot experimental data that

confirms equation (J.2.11) above for the case when the rotor angular velocity changes are

small. The engine-carburetor mechanics can now be modeled as a lead/lag system with

a transfer function of the following form [119]

Q̄e

w̄f
=

∂Q

∂wf

(
1 + τeds

1 + τens

)
(J.2.12)

where the time constants are estimated from Figure J.2 and Figure J.3 on page 402. In

turn, Figure J.7 on the following page shows data that allows for computation of an esti-

mate for the engine torque control derivative ∂Q/∂wf . This graph of experimental data

shows that the engine torque control derivative is non-linear, and tapers to a maximum

as fuel flow increases. However, the control derivative ∂Q/∂wf can still be estimated

with a linear approximation of the data.
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Figure J.7: Engine Torque Control Derivative ∂Q/∂wf derived from estimated fuel flow
rate.
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Figure J.8: Engine-Carburetor and Main Rotor Dynamics Model.
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J.2.2 Engine-Carburetor and Coupled Main Rotor Dynamics

Open-Loop Modeling Results

Figure J.8 on the previous page shows the modified open loop engine-carburetor and main

rotor coupled dynamic model. Illustrated in figure J.8 is the non-linear throttle command

input mapping to fuel flow rate in Figure I.17 on page 394 with throttle input. The non-

linear map generates estimated fuel flow rate ranging from 0 to 1. Subsequently, data

in Figure J.7 on the previous page results in the carburetor mixing and chemical energy

conversion to engine power and corresponding engine torque Qe. Figure J.9 shows the

result of the open loop simulation. In this graph, the rotor angular velocity Ω exhibits the

same time constant and rise time as that of the real data. The estimated rotor damping

is not sufficiently adequate for this run, but as a first approximation, the current results

indicate that the model is adequate for subsequent engine-governor control design and

synthesis.
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Figure J.9: Open Loop Simulation Result for Rotor Angular Velocity Ω.
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J.2.3 Synthesis of the Engine Control Law Based on Experi-

mental Data Parameter Estimation

The current set of experiments (of which Figure J.1 on page 400 is an example) provides

the necessary data for the estimation of the various system derivatives. Figure J.10

on page 412 shows a linearized version of Figure J.8 on page 408 in which the nonlinear

terms related to throttle δTh, fuel flow rate wf , power losses and torque control derivative

∂Q/∂wf have been dropped. The integral (ki) plus proportional (kp) control gains have

replaced the non-linear open-loop dynamics instead. Standard manipulation of the single-

input/single-output (SISO) system leads to the the loop transfer function L̄

=

(
k

s+ kkΩ

)(
kp +

ki
s

)
L̄ =

k (kps+ ki)

s (s+ kkΩ)

(J.2.13)

The standard closed loop form of the complimentary sensitivity transfer function Ω̄(s)/Ω̄c(s)

=

(
k

s+ kkΩ

)(
kp +

ki
s

)(
Ω̄c(s)− Ω̄(s)

)
=

k (s kp + ki)

s (s+ kkΩ) + k (ki + skp)
Ω̄c(s)

Ω̄(s) =
k (s kp + ki)

s2 + s k (kΩ + kp) + k ki
Ω̄c(s)

(J.2.14)

where k = 1/Irot is the lumped rotational inertia of the engine-shaft-rotor system, and

kΩ = ∂Q/∂Ω. The corresponding sensitivity transfer function ē(s)/Ω̄c(s) for the closed

loop is given by

= Ω̄c(s)−
(

k

s+ kkΩ

)(
kp +

ki
s

)
ē(s)

ē(s) =
s (s+ k kΩ)

s2 + s k (kΩ + kp) + k ki
Ω̄c(s)

(J.2.15)
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Application of the Final Value Theorem (FVT) [31, 111] to the complimentary Ω̄(s)/Ω̄c(s)

and sensitivity ē(s)/Ω̄c(s) transfer functions (J.2.14) and (J.2.15) give

lim
t→∞

Ω (t) = lim
s→0

sΩ̄ (s) = 1

lim
t→∞

e (t) = lim
s→0

sē (s) = 0

(J.2.16)

The above result indicates that, as expected, a simple proportional plus integral control

design should deliver unity tracking and should reject disturbances adequately. The

characteristic equation is given by

s2 + s k (kΩ + kp) + k ki (J.2.17)

Let

k (kΩ + kp) = 2 ζωn

k ki = ω2
n

(J.2.18)

where ζ is the damping ratio, and ωn is the system’s natural frequency. For good control

quality, choose ζ =
√

2/2 and ωn = π where ωn = π � Ω/10, and Ω = 157 rad/sec ≈

25Hz is the main rotor natural frequency. Then

ki =
π2

k

kp =
π
√

2

k
− kΩ

(J.2.19)

Substituting k = 1/Irot, and kΩ = ∂Q/∂Ω then the above equation (J.2.14) becomes

Ω̄(s)

Ω̄c(s)
=

1

Irot

s
(
Irotπ

√
2− ∂Q/∂Ω

)
+ Irotπ

2

s2 + s π
√

2 + π2
(J.2.20)

This controller design is stable with poles at

s =
π
√

2

2
(−1± i) (J.2.21)
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Figure J.10: Engine governor and main rotor angular velocity closed loop control design
block diagram.

Figure J.11 on the following page plots the frequency domain characteristics of the

loop transfer function L̄ in equation (J.2.13) on page 410. The infinite gain margin

and the 600 phase margin give the control design sufficient margin for adequate stabil-

ity and performance even in the presence of disturbances and parameter uncertainties.

Figure J.12 on page 414 presents the data collected with the the helicopter running with

the implementation of the above controller. The main rotor angular velocity Ω was com-

manded in steps of 1100, 1200, 1300, 1400, 1500 rpm, and during every step, the main

rotor blade pitch angle was varied from 2 to 8 degrees. For each commanded step in

rotor angular velocity, the controller kept a constant angular velocity even when in the

presence of changing flight conditions due to the varying blade pitch angle.

Figure J.13 on page 414 shows the full linear engine-carburetor and main rotor simu-

lation diagram. Figure J.14 on page 415 plots simulation data obtained using the actual

command data utilized to run the real-time vehicle test presented in Figure J.12 on

page 414 in the simulation scheme in Figure J.13. In these graphs, the simulation data

overlays the experimental data. In the top graph, the throttle command input (in pulse-

width) estimated from the simulation run (dashed blue line) closely matches the actual

throttle used in the real-time run. Similarly, the main rotor angular velocity simulation

data closely matches the actual real-time data.
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J.3 Summary of Main Rotor Characterization Re-

sults

The main rotor characterization consists of two parts:

1. open loop characterization

2. closed loop control design and synthesis

The open loop characterization exercise uses a number of experiments such as the

one presented in Figure J.1 on page 400. In these experiments a step command of main

rotor angular velocity drives the dynamic of the coupled engine-carburetor and rotatory

elements in the helicopter. Each step command experiment is set at a different constant

setting for the main rotor blade pitch angle. A constant blade pitch angle allows for an

estimate of the rotor damping derivative ∂Q/∂Ω via the power absorbed and measured

rotor speed. The real-time data collected generates the necessary information to estimate

the system parameters listed in table J.1.

Table J.1: Engine-Carburetor and Main Rotor Rotational Dynamic Characteristics

rise time 2·5 sec
time constant 1·14 sec
carburetor control derivative ∂Q/∂wf 11·44 Nm
main rotor damping ∂Q/∂Ω 0·00037 Nm / rad/sec
throttle PWM to fuel flow (wf ) see Figure I.10 on page 385

The original system was inherently stable, but with no engine governor control, the

main rotor angular velocity would vary nonlinearly when the main rotor blade pitch

angle changes due to command inputs necessary to maintain stability and deliver per-

formance. The continuous time control design and loop transfer function characteristics

are summarized in table J.2 on the next page.

Data collected in the real-time run of the engine in closed loop control presented in

Figure J.11 on page 413, and subsequent simulation results presented in Figure J.14 on the

previous page indicate that the initial first order engine governor control implementation

is capable of maintaining a constant main rotor angular velocity Ω in the presence of

varying flight conditions. Moreover, the simulation setup in Figure J.13 on page 414
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Table J.2: Engine-Carburetor Control Characteristics

system damping ζ
√

2/2
system natural frequency ωn π
proportional gain kp Irotπ

2, equation (J.2.19) on page 411

integral gain ki Irotπ
√

2− ∂Q/∂Ω

system poles s = π
√

2/2 (−1± i), equation (J.2.21) on page 411
gain margin ∞
phase margin 60 deg

models the behavior of the engine-carburetor and main rotor adequately, and can be

used for subsequent simulation efforts.
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Appendix K

Helicopter Aerodynamic Model Identification

K.1 Introduction

Equation (C.3.6) and equation (C.3.7) on page 231 are fundamental results from Com-

bined Blade Element and Momentum Theory [92]. The equations are reproduced below

for convenience

λ (r) =
σ a

16

[√
1 + 32

θ

σa
r − 1

]

dCT (r) =
ρa

2

(
θr2 − λr

)
dr

(K.1.1)

where r is a given blade station. The torque coefficient can be estimated from equa-

tion (C.2.14) on page 227

CP = CQ =
k√
2
C

3/2
T +

1

8
ρCD (K.1.2)

where k ≈ 1.5 is a power loss factor that accounts for non-uniform inflow, tip losses and

other nonlinear effects. Empirical approximations for the thrust and torque are given by

equation (J.1.3) on page 398

T ' kTΩ2θ + kT0

Q ' kQΩ2θ3/2 + kQ0

(K.1.3)

Equations (K.1.1) through (K.1.3) provide the bases for first order parameter identifica-

tion of the helicopter aerodynamic terms. This time the main rotor angular velocity (and
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therefore the angular velocity off all rotating elements) remains constant with the use of

the engine controller in equation (J.2.19) on page 411 as implemented in Figure J.13 on

page 414.

K.2 Helicopter Thrust Experimental Setup

The experimental setup uses the Helicopter Test Platform (HTP) shown in Figure I.20

on page 396. The helicopter thrust experiment setup allows for vertical motion only and

locks the heading motion of the HTP. The tail rotor is disconnected from any control

inputs and it is free to rotate in its equilibrium state. This in effect decouples any tail

rotor effects on the thrust experiments. The ultrasonic range sensors shown in Figure I.12

on page 388 keep track of the height of the helicopter which can be correlated to the

weight that the helicopter is lifting via the HTP calibration curve shown in Figure I.21

on page 397. Figure K.1 on the next page shows data from a real-time data collection run

with the engine controller engaged to keep the rotor angular velocity constant. The solid

red line is the altitude data, the dashed blue line is the main rotor blade pitch angle, and

the green dash-dot line is the rotor angular velocity Ω. The altitude readings become

noisier as the angular velocity increased. This is an artifact of the helicopter being

constraint to the HTP with structural vibration feedback recorded in the ultrasound

signal. Wavelet analysis and other signal filtering techniques allow for the estimation of

the altitude in this portion of the data collected.

Figure K.2 on the following page plots the measured and computed force exerted by

the helicopter. The computed force uses equation (K.1.1) on the previous page with the

model parameters shown in Table K.1.

Table K.1: Aerodynamic Model Parameters for the Main Rotor

lift curve slope Clα 5·7 rad−1
drag coefficient Cd 0·024
zero-lift angle of attack α0 −1·2 deg
maximum thrust coefficient CT 0·0057
air density ρ 1·1840 kg/m2
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K.3 Helicopter Experimental Setup for Power and

Torque Characterization

The power and torque experiment uses the Helicopter Test Platform (HTP) with the

axial (altitude) and rotational (heading) enabled. The first portion of the experiment

does not issue control commands to the tail rotor, and the tail rotor is free to rotate in

its stick-free equilibrium trim setting. This portion of the experiment has as its main

goal the identification of the main rotor induced power and rotatory profile power. The

second part of the experiment engages the tail rotor, and the previous results are then

utilized to estimate the tail rotor aerodynamic parameters.

In both cases, the experiment is set with a cantilever beam restraining the heading

motion as shown in Figure K.3 on the next page. When the main rotor angular veloc-

ity increases, the resulting torque increases as per equation (K.1.2) on page 418. The

cantilever beam, acting as a bending beam load cell, senses the strain in the device and

records it as a voltage change. Figure I.19 on page 395 shows the calibration curve that

correlates the sensed voltage to the applied bending moment.

K.3.1 Main Rotor Induced and Profile Power Experiment

The particulars related to this experiment are summarized below:

1. the tail rotor is free to rotate in its stick-free equilibrium state. This setup item

decouples most of the tail rotor dynamics from the main rotor aerodynamics, with

the notable exception of the associated profile power signature of the tail rotor and

related transmission gear.

2. the helicopter is free to lift and sink along is vertical z-axis. This enables a coupled

optimization of the thrust and toque aerodynamic parameters.

Figure K.4 on page 425 plots the results of a real-time run. The angular velocity Ω

is constant for a short time while the blade pitch angle θ varies. Subsequent to this, the

angular velocity increases, and the experiment repeats. Figure K.5 on page 426 shows

a subset of this data for a run with constant rotor angular velocity Ω = 1400. The top

graph in this figure plots the recorded torque Q for various blade pitch angle θ plotted in

421



Figure K.3: Torque Experiment with Helicopter on the HTF with cantilever beam as a
torque measuring device.
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the bottom graph. Thus, the measured torque average for each step in blade pitch angle

and rotor angular velocity becomes a point in Figure K.6 on page 427. The top graph in

this figure plots the measured torque data (◦) and the derived induced torque (∗) from

equation (C.2.16) on page 227 and equation (K.1.3) on page 418

CQi =
k√
2
C

3/2
T

Qi ' kQ Ω2 θ3/2

(K.3.1)

The solid red line in this Figure K.6 is a best fit to the measured data, the x-axis

corresponds to the term Ω2 · θ3/2, and the term kQ = f(Ω, θ) in the above equation is

a non-linear third order polynomial. The bottom graph in Figure K.6 plots the total

torque from the previously mentioned equations (C.2.16) and (K.1.3)

CP = CQ =
k√
2
C

3/2
T +

1

8
ρCD

Q ' kQΩ2θ3/2 + kQ0

(K.3.2)

The circles (◦) in the bottom graph correspond to the profile drag kQ0 , and it is mostly

constant for any tuple (Ω2, θ3/2). The asterisks (∗) correspond to the computed torque Q

in utilizing the above equation, and the solid blue line is a best fit to this data. The solid

red line (below the solid blue) is the best fit to the measured data from the top graph

in this Figure K.6. The bending beam load cell in Figure K.3 on the previous page is

mostly sensitive to the induced torque since the constant profile torque serves to prime

the spring that makes up the flexible cantilever beam setup. Figure K.7 on page 428

plots the blade pitch angle θ and estimated angle of attack α against measured torque.

The torque is linear and then tapers off indicating that the torque available is less than

the torque required. Equation (K.3.2) suggests that the torque should be linear to θ3/2

which can be seen in the bottom graph of Figure K.7. The top graph in Figure K.8 on

page 429 plots the measured torque (solid red line), the computed induced torque (solid

black line), and the computed total torque (dashed blue line). The bottom graph plots

the input blade pitch angle (solid red line), the measured rotor angular velocity (dashed

blue), and the input engine throttle (dash-dot line).
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Figure K.9 on page 430 presents data related to engine torque as per equation (J.2.7)

on page 404

Pe = Pe,maxwf

Qe =
Pe
Ω

=
Pe,max

Ω
wf

wf = f (δTh)

(K.3.3)

where wf is the fuel flow and δTh is the throttle opening in Figure I.17 on page 394, and

the maximum engine power Pe is tabulated in Table I.16 on page 387.

Figure K.6 on page 427 shows that the compound main rotor and tail rotor torques

could be modeled very accurately with a bias term plus a nonlinear term involving the

product of RPM squared times the main rotor blade pitch angle raised to the three-

halves power. This data corresponds well with the model in equation (J.2.5) on page 403.

Moreover, Figure K.6 on page 427 indicates that the model in equation (J.2.5) is valid

throughout the helicopter flight envelope. That is, equation (J.2.5) provides an accurate

non-linear estimate of the trim throttle setting throughout the helicopter flight envelope

as a function of both RPM and main rotor blade pitch angle. This is a fundamental

result of this thesis work.
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K.3.2 Tail Rotor Aerodynamic Model Identification Experiment

Figure K.10 on the following page shows the data taken during a real-time experimental

run. During this experiment the tail rotor was actively engaged and the helicopter was

free to rotate about its z-axis. In the graph, the dashed blue curve is the rotor angular

velocity Ω/100 in rpm, the solid magenta curve is the throttle input pulse-width δTh/200

in microseconds, the solid dark green curve is the blade pitch angle θ in degrees, the solid

light green curve is the computed induced torque Qi via equation (K.1.3) on page 418

in Nm, the solid yellow and red curve are, respectively, the raw and filtered measured

torque Qmea in Nm measured by the bending beam load cell, and the solid blue curve

is a composite that contains the estimated tail rotor torque QTR and reaction torque for

equilibrium points when Q̇e = 0

Qi + nTRQTR = lTRTTR

Qi + nTRQTR − lTRTTR = Qmea

(K.3.4)

The measured torqueQmea matches very well with the computed torqueQi+nTRQTR−

lTRTTR which indicates that the Tail Rotor aerodynamic model is adequate for the present

first iteration. It can be seen that the bending beam load cell experiences a hysteresis,

but for the most part, both the magnitude and the trend match to an acceptable degree.

More detailed data requires the use of a torque load cell which is not available, and the

trade off between the resources needed to acquire or manufacture such torque load cell is

not commensurate to the small gain of obtaining slightly more accurate data. The tail

rotor aerodynamic data is given in Table K.2

Table K.2: Aerodynamic Model Parameters for the Tail Rotor

lift curve slope Clα 5·0 rad−1
drag coefficient Cd 0·024
maximum thrust coefficient CTTR 0·05
non linear torque factor kTR 1·146
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Appendix L

Helicopter Stability and Control

L.1 Introduction

The result of Section §J is an engine governor that keeps a constant angular velocity in

the presence of parameter uncertainty and environmental disturbances. The parameters

in the aerodynamic models were identified in Section §K via a series of experiments in

which the engine governor in equation (J.2.19) on page 411 maintained a constant main

rotor angular velocity. The rotor angular velocity is prominent in all the fundamental

aerodynamic terms such as thrust and torque and many stability derivatives, and it is

therefore important to simplify the control laws of the helicopter by keeping the rotational

dynamics at a constant angular speed.

The helicopter equations of motion (EOM) are summarized in equation (H.1.1) on

page 359. Under the set of simplifying assumptions in Section H.1.1 on page 358, the

governing rigid body EOM reduces to equation (H.1.5) on page 360:

u̇ = rv − qw +−g sin θ +
XMR +XF

m

v̇ = pw − ru+ g sinφ cos θ +
YMR + YF + YTR

m

ẇ = qu− pv + g cosφ cos θ +
ZMR + ZF + ZTR

m

ṗ =
(Iy − Iz)

Ix
qr +

LMR + LTR
Ix

q̇ =
(Iz − Ix)

Iy
rp+

MMR

Iy

ṙ =
(Ix − Iy)

Iz
pq +

NMR +NTR

Iz

(L.1.1)

For the sake of completion, the kinematic equations are presented in equation (H.1.6) on
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page 361, and reproduced in equation (L.1.2) for convenience.


φ̇

θ̇

ψ̇

 =


1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ



p

q

r



ẋE

ẏE

żE

 =


cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

− s θ sφcθ cφcθ



u

v

w


(L.1.2)

L.2 Experiment: Yaw Stability and Heading Control

The Helicopter Test Platform (HTP) is described in Section I.4 on page 395. When the

helicopter is mounted on the HTP, the ensuing linear motion of the helicopter is restricted

along the vertical axis and the angular motion is restricted about the vertical axis. In

this case, the governing EOM for the helicopter system becomes

ẇ = g cosφ cos θ +
ZMR + ZF + ZTR

m

ṙ =
NMR +NTR

Iz

(L.2.1)

where the u, v, p, q and related terms are dropped from the equations. The tail rotor

blade does not have cyclic pitch control, and the primary control of the tail rotor thrust

is via the tail rotor blade pitch angle θTR. In this case, the fuselage force ZF and tail

rotor force ZTR contribution to the vertical equation of motion (L.2.1) are small and can

be ignored safely. In turn, the linear ẇ and angular ṙ equations are coupled through

the main rotor torque QMR. The angular velocity controller developed in Section J.2.3

on page 410 decouples the rotor angular velocity Ω from the above equations, but the

main rotor blade pitch angle θMR appears in both equations via the primary force ZMR

and moment NMR components. The tail rotor torque NTR = lTR · TTR is the primary

control mechanism utilized to control body yaw attitude and maintain desired heading.

Figure F.2 on page 333 shows the lateral forces and moments acting upon the helicopter.

Figure L.1 on the following page presents an abstraction of the tail rotor hub as it relates
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to the helicopter center of mass CM .

[tail rotor hub]
TRl

z

CM

r

TRh

TRT

TRΩ

TRy

x

y q

p

TRQ

Figure L.1: Tail Rotor Hub referenced to the Center of Mass CM .

Based on the previous assumptions and on the force representation in Figure L.1 the

following holds

XTR = 0

YTR = TTR

ZTR = 0

LTR = hTRYTR

MTR = lTRZTR −QTR

NTR = −lTRYTR

(L.2.2)

For the helicopter sitting on the HTP, only the NTR has relevance. The tail rotor side

force YTR = TTR and torque QTR are given by

YTR = ρ
(
πR2

RT

)
(nTRΩMRRTR)2CTTR

QTR = ρRTR

(
πR2

RT

)
(nTRΩMRRTR)2CQTR

(L.2.3)
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The tail rotor operates in a very complex flow field, and the velocities present at the tail

rotor hub are equally complex. An estimation of the tail rotor thrust coefficient follows

from direct application of the results obtained for the main rotor thrust and torque

coefficients. The tail rotor has no flapping hinges and no cyclic inputs, and in this case

equation (D.3.130) on page 302 holds such that

CTTR =
(a σ)TR

2

[
θ

3

(
1 +

3

2
µ2

)
− λ− µz

2

]
TR

CQTR = λCTTR +

[
σCd

8

(
1 + µ2

)]
TR

(L.2.4)

Following development by Padfield [119], the tail rotor aerodynamic velocity and rotor

inflow are approximated by

µTR =

[
u2 + (w − kλTRλTR + qlTR)2]1/2

(ΩR)TR

µZTR =
(rlTR − phTR − v)

(ΩR)TR

λTR =
CTTR

2
[
µ2
TR + (µZTR − λTR)2]1/2

(L.2.5)

where kλTR is a scaled factor of the main rotor inflow at the tail rotor [119]. For the

helicopter test on the HTP, the above equation for the aerodynamic velocity reduces to

µTR = −kλTRλTR
(ΩR)TR

µZTR =
r lTR

(ΩR)TR

(L.2.6)

Equation (C.3.7) on page 231 is a numerical approximation that uses results from momen-

tum and blade element theory [92]. This discrete approximation sidesteps the iterative

approach of equations (L.2.4) and (L.2.5). In this case, λc,TR = µZTR together with
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equation (D.3.129) on page 302 which results in

λ (x, µZTR) =
σa

16

√(1− 8

σa
µZTR

)2

+
32

σa
θ (x)x−

(
1− 8

σa
µZTR

)
∆CT, TR =

σa

2

[
θ

(
x2 +

µ2

2

)
− xλ

]
∆x

(L.2.7)

where all relevant variables apply to the tail rotor with the subscript (·)TR.

L.2.1 Trim Tail Rotor Blade Pitch Angle

Equation (L.2.1) on page 434 together with equation (L.2.2) indicates that a trim con-

dition occurs when the yaw rate ṙ = 0. In this case

−NTR = NMR ⇒ YTR =
QMR

lTR
(L.2.8)

Equation (L.2.4) on the preceding page together with equation (L.2.6) suggest that an

important equilibrium case happens when the yaw angular rate r = 0. Then the case

when r 6= 0 could be treated as a perturbation of the primary flight condition r = 0.

Figure L.2 on the next page shows results from a real-time data run with open loop tail

rotor inputs δTR in pulse width (dash-dash black curve). Multiple runs similar to the one

in this figure allow for the selection of data points where the yaw rate r = 0 at different

set points for the main rotor angular velocity ΩMR and for different values of main rotor

blade pitch angle θMR. Results are shown in Figure L.3 on page 439.

Given the empirical relation for main rotor torque QMR in equation (K.3.2) on

page 423 along with equation (L.2.8), it is reasonable to expect that the trim value

for the tail rotor blade pitch angle is a function of the main rotor angular velocity ΩMR

and the main rotor blade pitch angle θMR. This assumption matches the results in Figure

L.3 and Figure L.4. This last Figure L.4 on page 440 presents the aforementioned trim

equilibrium condition for the case when ṙ = r = 0

YTR =

[
QMR + nTRQTR

lTR

]
ṙ=r=0

(L.2.9)
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Figure L.2: Real Time Run with Tail Rotor Inputs.

Notice that the results presented in this section differ from those in Section K.3.2 on

page 431 in that the helicopter is not constrained in the yaw axis as it was constrained

by a torque measuring device in Section K.3.2. The total torque and the tail rotor trim

torque presented in the bottom graph in Figure L.4 are those resulting from Section K.3.1

on page 421 and the previously mentioned Section K.3.2.

L.2.2 Helicopter Yaw Rate Control Design

Equation (L.2.1) on page 434 is the governing equation for the dynamic behavior of the

helicopter sitting on top of the Helicopter Testing Platform (HTP). Coupling effects are

accounted for by the engine governor derived in Section J.2.3 on page 410 and by the

trim condition in equation (L.2.9) on the previous page. In this case, the perturbation

yaw dynamics in the frequency domain can be simplified to

ṙ(s)

rc(s)
=

1

Izzs
(L.2.10)
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Figure L.3: Multiple Real Time Run with Tail Rotor Inputs.
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A simple gain with unit feedback allows for a design of a first order feedback loop as

shown in Figure L.5. In this case

r =
kr
IZZ

1

s
(rC − r)

r

rC
=

kr/Izz
s+ kr/Izz

=
1

τcs+ 1

τc =
Izz
kr

(L.2.11)

where τc is the time constant for the augmented system, and kr is the control gain that

will provide acceptable performance. The final value theorem [44, 118] says that for a

step command input

ψ
C

r'

actuator
command

3
error

2

r
1

yaw rate gain

kr 1/Izz
1
s

disturbance
2

1

Figure L.5: Yaw Rate p Feedback Control Law.

lim
x→∞

r(t) = lim
s→0

s r (s) = s
1/kr
τcs+ 1

1

s
= 1 (L.2.12)

where r(s) = L{r(t)} is the Laplace transform of r(t). The corresponding transfer

functions from command input to error e/ψC , from disturbance rd to error e/rd, and

from disturbance to yaw rate r/rd are give by

e

rC
=

s/τc
τcs+ 1

r

rd
= − e

rd
=

1/kr
τcs+ 1

(L.2.13)
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The steady state value of the above transfer functions are

[
e

rC

]
t→∞

= 0[
r

rd
= − e

rd

]
t→∞

=
1

kr

(L.2.14)

As expected, the constant gain for yaw rate feedback can not reject disturbances entirely,

but yaw rate command is seldom used as a performance measure in its own right. There-

fore, the non-zero steady error induced by a disturbance input to the plant (gust wind

affecting the tail rotor and fuselage) is not as relevant for the current flight regime under

consideration. The time constant is related to the rise time as given by

1− e−t1/tc =
1

10

e−t1/tc =
9

10
t1
tc

= ln 10− ln 9

1− e−t2/tc =
9

10

e−t2/tc =
1

10
t2
tc

= ln 10− ln 1

(L.2.15)

from which the time to rise tr results in

tr = tc ln 9 = t2 − t1 (L.2.16)

The time constant τc is related to the yaw rate gain kr via equation (L.2.11) on the

previous page as τc = Izz/kr. In this case the yaw rate control gain kr is then given by

tr = tc ln 9 =
Izz
kr

ln 9

kr =
Izz
tr

ln 9

(L.2.17)

For a desired rise time of tr = 1 sec, then the time constant tc ≈ 0.45 seconds and the

control gain is then kr = 0.593. In contrast, a desired rise time one-tenth the previous

one such that tr = 0.1 sec will result in a control gain equal to kr = 5.93. According to

equation (L.2.14) the disturbance rejection improves by an order of magnitude as well.

The final design choice takes into account other control design considerations that will
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be presented momentarily.

L.2.3 Helicopter Heading Control Design

Figure L.6 shows the heading control loop which wraps the rate control loop shown in

Figure L.5 on page 441. In turn, Figure L.7 shows the same loop with the stability yaw

rate feedback control collapsed as given by the transfer function in equation (L.2.11) on

page 441.

ψC
ψ

e
ψ δ

ψ
d
ψ

k
ψ

kr

32

1

yaw rate gain

kr

heading rate gain

kpsi
s+b

s+a
1/Izz

1
s

1
s

2

1

Figure L.6: Yaw Heading ψ Feedback Control Law.

ψC ψ

e
ψ

k
ψ

2

1

heading rate gain

kpsi
k1

s+k1

s+b

s+a
1
s1

Figure L.7: Yaw Heading ψ Feedback Control Law with collapsed inner stability yaw
rate loop. In this case, the constant k1 = kr/Izz. The inner loops are equivalent to the
transfer function equation (L.2.11) on page 441.

The compensator design for the heading loop follows a lead-lag formulation

uψ
eψ

= kψ
s+ b

s+ a
(L.2.18)

where uψ is the output of the heading compensator, and eψ is the heading error signal.

The first part of the compensator design follows by equating the numerator s+ b in the
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lead-lag portion of the compensator (shown above) to the stable form of the denominator

s+ kr/Izz of the augmented plant in (L.2.11). The zero in the lead-lag controller cancels

the inner rate controller pole, and the loop transfer function L(s) and the closed loop

transfer function ψ/ψC become

L (s) =
k̄kψ

s (s+ a)

ψ

ψC
=

k̄kψ
s (s+ a) + k̄kψ

=
k̄kψ

s2 + sa+ k̄kψ

(L.2.19)

where k̄ = kr/Izz for convenience. The characteristic equation s2 + sa+ k1kψ in the

above closed loop transfer function ψ/ψC has the standard form of s2 +2ζωns+ω2
n where

ωn is the undamped natural frequency and ζ is the damping ratio of a second order

system. Select ζ =
√

2/2, ωn = π or good flying qualities to obtain

s2 + sa+ K̄kψ = s2 + 2ζωns+ ω2
n

ω2
n = π2 ζ =

√
2

2

a = 2ζωn = π
√

2

k̄kψ = ω2
n → kψ =

π2Izz
kr

(L.2.20)

This choice of controller yields a heading compensator design uψ/eψ with a transfer

function as given in equation (L.2.18) on the previous page of the form

u

eψ
=
π2kr
Izz

s+ kr/Izz

s+ π
√

2
(L.2.21)

The choice of value for the yaw rate gain kr in the above transfer function determines

whether the heading compensator is a lead or a lag type. The choice for kr is determined

by performance considerations of the inner yaw rate loop since the heading performance

is not sensitive to this factor. To illustrate this point, it is of benefit to realize that given

the control choice in (L.2.20), then the performance transfer function ψ/ψC in (L.2.19)

becomes
ψ

ψC
=

ω2
n

s2 + 2ζωns+ ω2
n

(L.2.22)
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L.2.4 Helicopter Yaw Rate and Heading Control Synthesis

The Helicopter mass properties are tabulated in Section I.1.2 in Table I.2 on page 373.

Choose a yaw rate rise time of 0.2 seconds for good disturbance rejection, and the yaw

rate time constant becomes tc = 0.09 seconds with a feedback gain kr = 2.97. According

to equation (L.2.14) on page 442 this design gives good disturbance rejection with 1/kr =

0.337. The resulting yaw rate and heading control gains are summarized in Table L.1.

Table L.1: Yaw Rate and Heading Control Design

vehicle inertia Izz 0·27 kgm2

design choice for rise time tr 0·2 sec
yaw rate proportional control gain kr = ln(9) · Izz/tr 2·97
heading proportional control gain kψ = π2Izz/kr 0·897
heading compensator zero kr/Izz 11·0
heading compensator pole π ·

√
2 4·443

phase margin PM 65·5 deg
gain marging GM ∞
closed loop heading performance damping ratio ζ ≈

√
2/2 0·707

closed loop heading performance bandwidth ωb ≈ π 3·14 rad

After the zero cancellation of the heading compensator with the pole of the augmented

yaw rate stabilized plant, the loop transfer function L(s) in Figure L.7 on page 443

becomes

L (s) =
krkψ
Izz

1

s
(
s+ π

√
2
) =

π2

s
(
s+ π

√
2
) (L.2.23)

Figure L.8 on the following page presents the Bode and Nyquist plot for the control

design summarized in Table L.1.

L.2.5 Test Results for Helicopter Yaw Rate and Heading Con-

trol

Figure L.9 on page 447 plots data measured during a real-time test run of the helicopter

with the yaw rate r control loop enabled. The rate command loop from a run time of

250 seconds to 320 seconds was disabled and the helicopter was operating in open loop

mode with Radio-Control (RC) inputs providing commands. Toward the end of the run

at simulation time of 888 seconds, the main rotor angular velocity Ω was varied while the
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Figure L.8: Frequency plots for the heading compensator loop including inner yaw rate
stability loop.

yaw rate controller maintained the commanded zero rate. From simulation time equal

to zero to the simulation time of approximately 250 seconds, the commanded yaw rate

is set to zero. During this time the helicopter heading drifted very slowly due to bias

measurements. A similar behavior takes place from simulation time of 525 seconds to

about 726 seconds. The heading (solid blue curve in the graph) wraps around 3600 to

zero. The heading control loop is disabled during runs in which the yaw rate command

is enabled.

Figure L.10 on the next page plots data measured during a real-time test run of

the helicopter with the heading control ψ loop enabled. The heading control loop was

engaged at a simulation time of approximately 937 seconds. The controller is able to hold

a heading in spite of large overshoot. This data is from an earlier data run presented

with the intent to illustrate initial results. The large overshoot is due to inadequacies

of early modeling efforts and subsequent initial heading control designs which where

subsequently improved resulting in the heading control design presented in the previous

section. Adequate control response to heading commands are shown later in the the

appendix. It is important to note that had this controller been utilized in a free flying

vehicle, it is probable that the loss of the aircraft would have taken place.
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Figure L.9: Real-Time Data with Yaw Rate Command. The red solid curve is the yaw
rate command rC , dark green curve is the yaw rate r measured data. The solid blue
curve is the helicopter heading ψ, and the magenta curve is the tail rotor blade pitch
command δTR in pulse width (µ second). The light green curve is the scaled main rotor
angular velocity Ω/100. The outer loop for Heading performance is disabled.
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Figure L.10: Real-Time Data with Helicopter Heading Command. Red solid curve is
the heading command ψC , dark green curve is the yaw rate r measured data. The solid
blue curve is the helicopter measured heading ψ, and the magenta curve is the scaled tail
rotor blade pitch command δTR in pulse width (µ second/100). The light green curve is
the scaled main rotor angular velocity Ω/100.
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L.3 Experiment: Pitch Rate Stability and Pitch At-

titude Hold Control

The experimental setup for the pitch control loop involves the use of the Rotational

Dynamic Test Stand (RDTS) as shown in Figure L.11 on the following page. The RDTS

is a three degrees of freedom test stand able to pitch, roll and yaw at the same time.

The RDTS can be constrained to tilt in only one axis by setting stops on the second

axis, and the yaw motion can also be constrained. The equations of motion for this setup

involve the rotational dynamic equations Equation (F.1.5) on page 334 and the kinematic

equations Equation (F.1.6) on page 335

ṗ = L̄+ Īprpq − Īpqr

q̇ = M̄ + Īzx
(
r2 − p2

)
− Īqpr

ṙ = N̄ − Īrpq − Īprqr

φ̇ = p+ q sinφ tan θ + r cosφ tan θ

θ̇ = q cosφ− r sinφ

ψ̇ = q sinφ sec θ + r cosφ sec θ

(L.3.1)

For this particular experiment, the yaw axis and the roll axis are restrained, and motion

is only allowed about the y-axis or pitch angles only. The above equation simplifies to

Iyy q̇ = M

θ̇ = q cosφ0

(L.3.2)

where φ0 = 0 is the flight condition of choice and therefore θ̇ = q. Equation (E.4.1) on

page 329 provides the coupled rotor moment equations

LT = (hβ1s + yCM)T

MT = (hβ1c − xCM)T

(L.3.3)
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The resultant equations of motion for the helicopter mounted on the RDTS become

Iyy q̇ = (hβ1c − xCM)T

θ̇ = q

(L.3.4)

Figure L.11: Real-Time Run of the Helicopter on top of the Rotational Dynamic Test
Stand (RDTS).

The main rotor longitudinal blade flapping β1c is given by solving the coupled blade

flapping equations of motion Equation (H.2.9) on page 368. Given the restrictions of the

experiment, for simplicity, let the blade flapping angle be such that θ ≈ β1c, then the

equilibrium condition is simply

β1c ≈ θ0 =
xCM
h

(L.3.5)

which provides the trim pitch angle command. The approximation θ ≈ β1c yields the
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perturbation equation

Iyy q̇ ≈ hT θ

θ̇ = q

(L.3.6)

Figure L.12 shows a model of the perturbation equations. Taking the term hT θ as a

disturbance to the linear model, the yaw rate control loop follows directly as shown in

Figure L.13 on the following page. The transfer function from input to pitch rate q takes

the form

q =
kq/Iyy

s+ kq/Iyy
u (L.3.7)

The above equation suggests a value for the gain kq as

Iyy
kq

= τc =
16

γΩ

kq = k̄
γΩ

16
Iyy

(L.3.8)

where k̄ is a proportional design gain to be decided later in the process, the term 16/γΩ

is the time constant of the flapping blades as given by equation (D.3.157) on page 309,

and the main rotor Lock number is tabulated in Table I.4 on page 373.

q' q
θ

theta
1

1
s

1
s

h*T

1/Iyy
u
1

Figure L.12: Pitch Rate and Attitude Perturbation Model for the Helicopter on the
Rotational Dynamic Test Stand (RDTS).

A simple compensator design for command pitch attitude θc follows in Figure L.14

on page 452. A direct design choice is to let

s+ b = s+
kq
Iyy

(L.3.9)
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θ

theta
1

1
s
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sKq

h*T

1/Iyy
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1

Figure L.13: Pitch Rate Feedback Control Loop for the Helicopter on the Rotational
Dynamic Test Stand (RDTS).

The loop transfer function L(s) and the transfer function from desired pitch angle θc to

pitch attitude θ is then

L (s) =
1

Iyy

kqkθ
s (s+ a)

θ

θC
=

kq kθ/Iyy
s (s+ a) + kq kθ/Iyy

=
kq kθ/Iyy

s2 + sa+ kq kθ/Iyy

(L.3.10)

The characteristic equation has the form

s2 + sa+ k̄ kθ = s2 + 2ζωns+ ω2
n (L.3.11)

Then it follows

ω2
n = π2

ζ =

√
2

2

a = 2ζωn = π
√

2

kq kθ/Iyy = ω2
n → kθ =

π2Iyy
kq

(L.3.12)

Equation (L.3.8) on the preceding page and the previous equation (L.3.12) yield the

design for the pitch rate feedback control loop. The choice of k̄ in (L.3.8) is done for

stability and good flying qualities during the testing period. Figure L.15 on page 453

plots data collected during a real-time data run for pitch command tracking.
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1
s

1
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1/Iyy
theta_c

1

Figure L.14: Pitch rate and pitch attitude Feedback Control Loop for the Helicopter on
the Rotational Dynamic Test Stand (RDTS).

L.4 Experiment: Roll Rate Stability and Roll Atti-

tude Hold Control

The experimental setup for the pitch control follows the setup for pitch experiment very

closely. The setup involves the use of the Rotational Dynamic Test Stand (RDTS) as

shown in Figure L.11 on page 449. As before, the equations of motion for this setup

involve the rotational dynamic Equation (F.1.5) on page 334 and the kinematic Equa-

tion (F.1.6) on page 335

ṗ = L̄+ Īprpq − Īpqr

q̇ = M̄ + Īzx
(
r2 − p2

)
− Īqpr

ṙ = N̄ − Īrpq − Īprqr

φ̇ = p+ q sinφ tan θ + r cosφ tan θ

θ̇ = q cosφ− r sinφ

ψ̇ = q sinφ sec θ + r cosφ sec θ

(L.4.1)
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Figure L.15: Pitch command θc tracking with the helicopter on the Rotational Dynamic
Test Stand (RDTS). In the figure, the top graph plots the roll p and pitch q rates and
the main rotor angular velocity Ω.
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For this particular experiment, the yaw axis and the pitch axis are restrained, and motion

is only allowed about the x-axis or roll angle only. The above equation simplifies to

Ixx ṗ = L

φ̇ = p

(L.4.2)

Equation (E.4.1) on page 329 provides the coupled rotor moment equations

LT = (hβ1s + yCM)T

MT = (hβ1c − xCM)T

(L.4.3)

The resultant equations of motion for the helicopter mounted on the RDTS with the roll

loop enabled become

Ixx ṗ = (hβ1s + yCM)T

φ̇ = p

(L.4.4)

Following the work done previously for the pitch loop, let the blade flapping angle be

such that φ ≈ β1s, then the equilibrium condition is simply

β1c ≈ φ0 =
yCM
h

(L.4.5)

which provides the trim pitch angle command. The approximation φ ≈ β1s yields the

perturbation equation

Ixx ṗ ≈ hT φ

φ̇ = p

(L.4.6)

Figure L.16 on the next page shows the closed loop design for the roll rate. Following a
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similar procedure as done before for the pitch loop yields

p =
kp/Ixx

s+ kp/Ixx
u

L (s) =
1

Ixx

kpkφ
s (s+ a)

φ

φC
=

kp kφ/Ixx
s (s+ a) + kp kφ/Ixx

=
kp kφ/Ixx

s2 + sa+ kp kφ/Ixx

(L.4.7)

The control design yields

kp =
γΩ

16
Ixx

ω2
n = π2

ζ =

√
2

2

a = 2ζωn = π
√

2

kp kφ/Ixx = ω2
n → kφ =

π2Ixx
kp

(L.4.8)

Figure L.17 on the following page plots data collected during a test run with the roll

attitude control loop engaged. The roll tracks the signal with a large time constant

designed as such for tests with roll stability and performance. In general, the roll loop

should react very slowly to commands to avoid becoming unstable. Later control designs

improved upon roll performance (see Section L.5 on page 457)

p' p
φφc

phi
1

compensator

s+b

s+a

1
s

1
sKphi Kp

h*T

1/Ixx
phi_c

1

Figure L.16: Roll Rate Feedback Control Loop for the Helicopter on the Rotational
Dynamic Test Stand (RDTS).
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Figure L.17: Roll command φc tracking with the helicopter on the Rotational Dynamic
Test Stand (RDTS). In the figure, the top graph plots the roll p and pitch q rates and
the main rotor angular velocity Ω. Notice the large time constant of the feedback control
loop during an experiment stability test.
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L.5 Experiment: Roll and Pitch Stability with Yaw

Rate and Heading Control

This last experiment tests all three axis roll φ, pitch θ and heading ψ under closed

loop control with the main rotor angular velocity tracking its commanded setting. As

previously done, the experimental setup involves the use of the Rotational Dynamic Test

Stand (RDTS) as shown in Figure L.11 on page 449. Figure L.18 on the next page shows

data collected during a real-time data run during which the three attitude loops where

engaged simultaneously. In the top graph the heading ψ tracks and holds the command

during the duration of the flight. The pitch attitude θ plotted in the third graph down

tracks and holds a zero command during the heading maneuvers, and during the later

part of the experiment the pitch attitude tracks and holds the commanded values. The

roll attitude φ does likewise on the last graph. This experiment demonstrates a stable

platform able to remain stable while holding performance commands.
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Figure L.18: Simultaneous attitude command tracking and hold for roll φ, pitch θ and
heading ψ with constant angular velocity Ω. In the figure, the top-most graph presents
the heading command tracking and hold, and the second graph shows the roll p and pitch
rate q during the flight. The third graph shows the pitch attitude θ holding zero for the
first part of the run, and tracking commands for the second part of the run. The same
is true for the roll attitude φ in the fourth graph.
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Appendix M

Helicopter Systems Design

M.1 Systems Engineering and Integration

Systems Engineering (SE) is an interdisciplinary framework suitable for the complete

and accurate definition of systems requirements, analysis of the system as a whole with

a top-down engineering approach with focus on the entire system Life Cycle, and design

processes that focuses on system optimization and balance through the management and

integration of multiple scientific and technical disciplines. Similarly, System Engineering

and Integration (SE&I) is a mature engineering practice that brings together applied

science with current or emerging interdisciplinary technologies within an integrated envi-

ronment suitable for the creation and support of complex systems and related processes

and products. Relevant SE&I processes include project management, quality assurance

and hardware and software engineering. Relevant SE&I activities include system defini-

tion and design, manufacturing and production, operation and maintenance and other

life-cycle support activities that include logistics, phaseout and disposal [41, 71, 122].

M.1.1 Systems Engineering Standards

The practice of Systems Engineering and Integration varies in form and practice among

leading industries and research institutions. The United States Department of Defense

(DoD) along with industry at large has established systems engineering standards since

the 1960’s. The first widely accepted SE standard MIL-STD-499A was released in May

1974, and the updated draft MIL-STD-499B was issued in 1994 [115]. Table M.1 on the

following page tabulates various Systems Engineering standards that have been imple-

mented throughout the years [41].
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Table M.1: Systems Engineering (SE) Standards

standard year reference

MIL-STD-499 1969
MIL-STD-499A 1974
MIL-STD-499B (draft) 1994 [115]
· EIA/IS-632 1994

ANSI/EIA-632 1999 [4]
· IEEE-1220 (trial) 1994

IEEE-1220 1998 [138]
ECSS-E-10A 1994 [43]

M.1.2 Configuration Management Standards and Capability Ma-

turity Models.

Configuration Management (CM) deals with the specification and coordination of the

conceptual and preliminary systems design, follow on detailed design and development

and overall system engineering management. Capability Maturity Models (CMM) com-

pliment SE standards in that CMMs determine and rank how well the SE processes are

defined and implemented [5, 41]. CMMs evaluate the SE processes with the objective

of providing insight into improving the processes based on industry-wide best practices

[24, 77, 78]. Table M.2 summarizes relevant CMM standards.

Table M.2: Configuration Management (CM) Standards

standard year reference

MIL-STD-973 1992 classic CM standard, [114]
SECMM-95-01 1995 [149]
ANSI/EIA-649-1998 1998
EIA/IS - 731.1 1998 [5]
MIL-HDBK-61A(SE) 2001 [113]
CMU/SEI-2002-TR-011 2002 [78]
CMU/SEI-2002-TR-012 2002 [79]

Capability Maturity Models Integration (CMMI) encompasses current efforts to inte-

grate several CMM products. CMMI attempts to put under one umbrella four engineering

disciplines: System Engineering (SE), Software Engineering (SW), Integrated Product

and Processes Development (IPPD), and Supplier Sourcing (SS) [24, 41, 86].

460



M.1.3 Systems Engineering Processes

SE encompasses the practice of both system engineering management and the system

engineering processes. Three broad categories of SE tools allow for the implementation

of the actual systems engineering processes [41].

1. Analysis Tools: tools that focus on formal and systematic ways of gathering system

requirements. The practice of system requirements is essential to system engineer-

ing and product development, and is generally known as Requirements Engineering

(RE). Examples of RE tools are Six-Sigma Techniques (6−σ) and Quality Function

Deployment (QFD).

2. Synthesis Tools: these tools take the form of schematic tools (e.g. Unified Modeling

Language (UML) tools), physical modeling tools (e.g. Computer Aided Design

(CAD) tools), and physics based, mathematical modeling and simulation tools (e.g.

Mathematica [126], Maple [100], Matlab [101] and other Finite Element Analysis

(FEA) tools).

3. Evaluation Tools: decision-making aiding tools which include trade-off analysis

tools for the evaluation and selection of alternative feasible solutions. QFD and 6−σ

are examples of tools that provide for weighing criteria selection and identification

of alternative solutions.

M.1.4 Definition of Integrated Product and Processes Devel-

opment (IPPD)

According to Dr. William Perry, U. S. Secretary of Defense in 1995, IPPD is defined

below [153]

IPPD is an expansion of concurrent engineering utilizing a systematic ap-

proach to the integrated, concurrent development of a product and its asso-

ciated manufacturing and sustainment processes to satisfy customer needs.

Integrated Product and Process Development (IPPD) is a management tech-

nique that simultaneously integrates all essential acquisition activities through

the use of multidisciplinary teams to optimize the design, manufacturing and
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supportability processes. IPPD facilitates meeting cost and performance ob-

jectives from product concept through production, including field support.

The key tenets of IPPD methodology are summarized below [153]

1. Customer Focus

2. Concurrent Development of Products and Processes

3. Early and Continuous Life Cycle Planning

4. Maximizing Flexibility for Optimization and Use of Contractor Unique Approaches

5. Encouraging Robust Design and Improved Process Capability

6. Event-Driven Scheduling

7. Multidisciplinary Teamwork

8. Empowerment

9. Seamless Management Tools

10. Proactive Identification and Management of Risk

One of the focuses of the IPPD methodology is the capture of systems requirements

through the voice of the customer. The customer is an active participant in the SE process

throughout the life-cycle of the system at large. This practice ensures that the customer

needs are better satisfied within schedule and within budget. Various SE processing tools

(Section M.1.3 on the preceding page) implement the IPPD tenets mentioned above [127].

1. The Seven Management and Planning Tools

(a) Affinity Diagram

(b) Tree Diagram

(c) Inter-Relationship Digram

(d) Matrix Diagram

(e) Prioritization Matrices

(f) Process Decision Program Chart (PDPC)

(g) Activity Network Diagram

2. Quality Function Deployment (QFD)

3. Robust Design Simulation (RDS)

(a) Design of Experiments (DOE)

(b) Taguchi PDOM

(c) Response Surface Methodology (RSM)
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4. Six Sigma Methods

M.1.5 IPPD Case Studies

Integrated Product and Processes Development (IPPD) is a SE&I practice recommended

(and in some instances mandated) by the United States Department of Defense (U.S.

DoD) [112]. IPPD is also one of the four multidisciplinary engineering disciplines of

CMMI [41, 86]. Some case studies on the use of IPPD in the literature include the

New Attack Submarine (NSSN) [158] and the McDonnell Douglas Corporation (MDC)

design and subsequent procurement of the F/A-18E/F [139]. The Autonomous Scout

Rotorcraft Testbed (ASRT) program at Georgia Tech was a pilot program for the testing

of the IPPD practice from 1994 until 1997 [131, 150, 151].

M.2 Application of Integrated Product and Processes

Development (IPPD) to the University of Ok-

lahoma Helicopter Research Testbed

The University of Oklahoma Helicopter Research Testbed project is a small, focused and

fixed-cost ($50 K dollars) project sponsored by the Oklahoma Aeronautics Commission

(OAC). The original customer requirements are listed below.

1. identify available custom off-the-shelf technology applicable to autonomous minia-

ture helicopter flight

2. develop computer-based method for autonomous miniature helicopter flight

3. demonstrate autonomous hover flight

The development of a computer based method for autonomous flight with a miniature

helicopter requires the simultaneous development of a product (autonomous miniature

helicopter) and processes (method for autonomous flight). Application of the IPPD

methodology allows for customer satisfaction by capturing the voice of the customer

(VOC) and translating this established need into a set of design requirements that define

the problem. To this effect, a subset of The Seven Management and Planning Tools and
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the Quality Function Deployment (QFD) provide the means to translate the established

need (customer requirements) into a defined problem (design requirements) [14, 59, 42,

130]. The combined autonomous miniature helicopter and the method for autonomous

flight is collectively named the University of Oklahoma Helicopter Research Testbed

(OU-HRT).

M.2.1 Voice of the Customer (VOC)

Systems requirements originate from the customer needs or from an established need.

Capturing systems requirements is a fundamental step in systems engineering, and the

collective efforts of capturing systems requirements is in the realm of Requirements En-

gineering.

M.2.1.1 VOC: Mission Profile Requirements

Figure M.1 illustrates the mission profile for the OU autonomous helicopter. The he-

licopter must climb to an altitude and maintain stable hover flight for a short time.

Thereafter, the helicopter should navigate to a selected site a few feet away from the

takeoff site, and loiter for a short time before landing at the site.

Take-off and 
climb to 10 ft

Hover for 5 min

Loiter for 3 min

Land 10+ ft 
from take-off site

with 3-5 min fuel reserve

Figure M.1: Mission profile requirements for the OU autonomous miniature helicopter.
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M.2.1.2 VOC: Affinity Diagram

The principal program objective is to identify enabling technologies suitable for miniature

helicopter flight and to develop a method that automates the helicopter flight, all at a

fixed cost to the customer. The affinity diagram organizes available data into natural

groups that facilitate the identification of relationships among the various systems needs.

Figure M.2 illustrates the affinity diagram for the University of Oklahoma Helicopter

Research Testbed.

operating costs

safety

acquisition cost

schedule

enabling technologies

General Requirements

Mission Equipment Payload

communication equipment

20 ft range

endurance of 10 min

autonomous flight

Mission Requirements

system redundancy

maintenance

stable flight platform

flight computer

ground computer

Systems Capability
Requirements

reliability

method for 
autonomous flight

test equipment

Figure M.2: The Affinity Diagram, Voice of the Customer (VOC).

M.2.1.3 VOC: Tree Diagram

Figure M.3 on the next page illustrates the tree diagram tool that refines the voice of the

customer into finer levels of detail from the general to the more specific. In the figure,

the cost breakdown portion of the tree diagram helps communicate to the customer the

various sources of one-time and recurrent costs.

M.2.2 Voice of the Engineer (VOE)

Once the primary task of capturing the voice of the customer has been initiated, the

engineer acts on the customer needs and further expands the set of requirements in an
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iterative manner. In doing so, the engineer communicates back to the customer the

engineering significance of the established need and related requirements. The voice of

the engineer (VOE) uses the same tools that capture the customer requirements.

M.2.2.1 VOE: Affinity Diagram

Figure M.4 on the following page illustrates the voice of the engineer in an Affinity Dia-

gram. The VOC drives the initial systems requirements process, and the VOE expands

upon the requirements with engineering data that pertains to the system domain. This

process is repeated interactively until the requirements converge.

M.2.2.2 VOE: Tree Diagram

Figure M.5 on page 469 illustrate the engineer’s Affinity Diagram. As before, the VOC

drives the initial systems requirements process. The VOE adds pertinent engineering

details.

M.2.3 Quality Function Deployment (QFD)

Quality Function Deployment (QFD) focuses on identifying the products and services

that best meet the customer needs and delivers the best value to the customer. Figure M.6

on page 470 shows the overall QFD design resulting from the analysis of the Voice of

the Customer (VOC) (need) and the Voice of the Engineer (VOE) (design requirements)

obtained from previous sections. Details for the different portions of the Quality Function

Deployment (QFD) are shown in subsequent sections.

M.2.3.1 QFD: Functional Deployment Matrix

Figure M.7 on page 471 illustrates the actual QFD. Here, the VOC (the established need)

is deployed onto the VOE (design requirements). In doing so, the process identifies the

most relevant systems requirements and their correlation to the various engineering ac-

tivities. This VOE for the University of Oklahoma Helicopter Research Testbed indicates

that the development of a method for autonomous flight, actual autonomous flight and

safety are the requirements that will deliver the best value to the customer. In turn, the
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VOE matrix also identifies the helicopter gross weight, thrust and drag, and the devel-

opment of flight control laws as the most relevant engineering activities that will best

satisfy the customer needs.

Figure M.7: Quality Function Deployment matrix for the University of Oklahoma Heli-
copter Research Testbed.

M.2.3.2 QFD: Voice of the Customer Prioritization

Figure M.8 on the following page illustrates the customer prioritization of the system

requirements. The development of a method for autonomous flight, autonomous flight

and safety are the top selling points for the customer. The University of Oklahoma

Helicopter Research Testbed is a fixed cost project, and therefore costs are not high on

the requirements priority list. Demonstrating range and endurance are at the bottom of

the customer requirements priority list.
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Figure M.8: Voice of the Customer Prioritization. In the graph, the symbol � is a
strong selling point for the customer. The symbol © indicates some selling point for the
customer.
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M.2.3.3 Quality Function Deployment (QFD): Voice of the Customer Bench-

mark

Figure M.9 on the next page illustrates the benchmark results for the established need

(VOC) and related design requirements (VOE) and engineering activities. The current

solution for the University of Oklahoma Helicopter Research Testbed method for au-

tonomous flight meets the customer needs in totality, and therefore this need displays

total compliance in the benchmark. The safety record for the duration of all tests is

100%, and therefore this need is also fully met. The fixed cost for the project means

that the enabling technologies and the operational costs are fully compliant. The heli-

copter gross-weight exceeds the thrust developed by the rotor, and the requriement for

demonstrating autonomos flight remains unfulfilled. Similarly the range and endurance

capabilities are also unfulfilled. The original acquisition costs are inadequate for a pro-

gram of this magnitude, and therefore, the project did not meet the original budget. The

communication equipment or digital remote communciations between the flight platform

and the groundstation outperforms the expectations. Finally, the test equipment used

to achieve the various systems requirements outperformed the customer expectations.

M.2.3.4 QFD: Interaction Matrix for Design Requirements (VOE)

Figure M.10 on page 475 illustrates the interaction matrix for the various design require-

ments. This correlation matrix helps the engineers identify likely coupling among the

various systems design requirements.

M.3 Modular Functional Decomposition

The affinity and tree diagrams have established the need (VOC) and the primary systems

requirements (VOE). The QFD tool has helped identify the most important needs and

related engineering requirements that will result in the best value for the customer. Engi-

neering needs defined this way facilitate the functional decomposition of capabilities that

the University of Oklahoma Helicopter Research Testbed needs to perform. Figure M.8

on the previous page illustrates the Voice of the Customer prioritization, and the de-

velopment of a method for autonomous flight and a safe environment are the top-most
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Figure M.9: Voice of the Customer Benchmarking. In the graph, the VOC Benchmark
column folows the following convention: 1 = no compliance (empty circle), 2 = partial
compliance, 3 = general compliance, 4 = full compliance, 5 = total compliance (full dark
circle).
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Figure M.10: Interaction Matrix for Design Requirements (VOC). In the figure, a lone
horizontal bar indicates a primary correlation, a + sign indicates a possible positive
effect among the two design requirements, a double ++ sign indicates a positive effect,
a negative − sign indicates a possible negative effect, and a double negative sign −−
indicates a negative effect.
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priorities. Figure M.11 presents the result of the top level analysis in a functional decom-

position breakdown. In turn, Figure M.12 on the next page illustrates the University of

Oklahoma Helicopter Research Testbed work breakdown structure.

Flight Control
and Simulation (FCS)

plan
the mission

develop testing
environment

Aerial Vehicle

Develop Method
For Autonomous Flight

Using a miniature Helicopter

flight
capability

airframe
components

command
the mission

Mission Planning
and Control (MPC)

stabilize
the vehicle

control
the vehicle

Mission Sensors
and PayloadFlight Testing

Figure M.11: First level functional decomposition.

M.4 System Architecture

The modular functional decomposition (Figure M.11) and related subsystems decompo-

sition with a related work breakdown structure (Figure M.12 on the next page) helps

with the definition of the various architectural modules that make up the system. This

modular design facilitates identification and formalization of the interface between sub-

systems, and allows for clean maintenance and upgrade road of the various subsystems

components. Figure M.13 on page 478 shows the full system architecture suitable for

autonomous flight for the University of Oklahoma Helicopter Research Testbed. This

system architecture is a modified version of work done by Thornhill et. all [38] and

Gordon and Schrage et. all [59, 131].
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Embedded Vehicle 
Control

Vehicle Control Unit

Mission Control Unit

Proprioceptive
Sensors

IMU

GPS

Ground Station
Human Computer Interface (HCI)

Exteroceptive
Sensors

Perception Control Unit

Fault Detection and 
Identification Control Unit

Stability Augmentation System

Intelligent Systems 
InteractionsMission Equipment Unit

• Teleoperation
• HWIL real-time test control
• Real-Time Telemetry

• Operator Command Processing
• Sensor Fusion (Exteroceptive and 

Proprioceptive Features)
• Behavior State Machine Based
• Execute Mission and Obstacle avoidance
• Guidance and Navigation

• Read Mission and Sensor Inputs 
• Process Mission State Machine
• Command and Actuate

• Command Mission Subsystems

Mission Planning and 
Control (MPC)

• Mission Planning and Control
• Way-Point generation
• Operator’s Model and Expert System

Figure M.13: System Architecture for the University of Oklahoma Helicopter Research
Testbed for Autonomous Flight.
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Appendix N

Nomenclature

ε ratio of blade mass to inertial moments, Mblade rCM eR2/Ib = static moment
inertial moment

γ Lock number, caρR4/Iblade

λi normalized induced velocity, (positive downward through rotor disk), (VC + vi)/ΩR

µ advance ratio, V∞ cosα/ΩR

ν2 nondimensional rotating flap frequency, 1 + ε+Kβ/Ω
2Iβ

σ blade solidity, bc/πR

A rotor disk area, πR2

b number of blades

c blade chord

CP dimensionless power coefficient, P/ρA (ΩR)3

CQ dimensionless torque coefficient, Q/ρA (ΩR)2R

CT dimensionless thrust coefficient, T/ρA (ΩR)2

Sβ stiffness number, 8 (ν2 − 1)/γ
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Appendix O

Glossary

C

Computer Aided Design (CAD) Computer Aided Design tools, p. 461.

F

Finite Element Analysis (FEA) Mathematical modeling techniques used to study static,

dynamic and thermal behavior of systems, p. 461.

Q

Quality Function Deployment (QFD) An organized, disciplined process for determin-

ing the product or service requirements necessary to achieve customer-perceived

expressed or unexpressed quality., p. 461.

S

Six-Sigma Techniques (6− σ) An approach to reduce process output variation so that

six standard deviations lie between the mean and the nearest specification

limit. This will allow no more than 3.4 defect Parts Per Million (PPM) op-

portunities, also known as Defects Per Million Opportunities (DPMO), to be

produced., p. 461.

Systems Engineering (SE) Interdisciplinary framework suitable for the complete and

accurate definition of systems requirements, analysis of the system as a whole
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with a top-down engineering approach with a focus on the entire system Life

Cycle, and with a design process that focuses on system optimization and

balance through the management and integration of multiple scientific and

technical disciplines., p. xv.

U

Unified Modeling Language (UML) Abstract, general-purpose object modeling spec-

ification language., p. 461.
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Appendix P

Acronyms

6

six degree of freedom (6dof) , p. 376.

A

Autonomous Scout Rotorcraft Testbed (ASRT) Autonomous Scout Rotorcraft Testbed,

Georgia Tech, p. 463.

B

Blade Element Momentum Theory (BEMT) , p. 15.

Blade Equation of Motion (BEOM) , p. 55.

Blade Element Theory (BET) , p. 15.

C

Comprehensive Identification from FrEquency Responses (CIFER) , p. 50.

Configuration Management (CM) See Glossary, p. xv.

Capability Maturity Models (CMM) See Glossary, p. 460.

Capability Maturity Models Integration (CMMI) See Glossary, p. 460.

Control Plane (CP) , p. 198.
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G

Global Positioning System (GPS) , p. 378.

H

Hub Plane (HP) , p. viii.

Hardware-in-the-Loop (HWIL) , p. xxiii.

I

Integrated Product and Processes Development (IPPD) See Glossary, p. xii.

L

Linear and Directional Test Stand (LDTS) , p. vi.

M

McDonnell Douglas Corporation (MDC) McDonnell Douglas Corporation, p. 463.

Mission Planning and Control (MPC) , p. 28.

Momentum Theory (MT) , p. 15.

N

Non Feathering Plane (NFP) , p. 198.

O

University of Oklahoma Helicopter Research Testbed (OU-HRT) , p. xii.

Q

Quality Function Deployment (QFD) , p. xii.
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R

Remote Control (RC) , p. 12.

Rotational Dynamics Test Stand (RDTS) , p. vi.

Requirements Engineering (RE) See Glossary, p. 461.

Real-Time Operation System (RTOS) , p. 28.

S

System Engineering (SE) See Glossary, p. 10.

System Engineering and Integration (SE&I) See Glossary, p. 459.

Supplier Sourcing (SS) See Glossary, p. 460.

Software Engineering (SW) See Glossary, p. 460.

T

Tip Path Plane (TPP) , p. 52.

Time Processing Unit (TPU) , p. 30.

V

Voice of the Customer (VOC) , p. xii.

Voice of the Engineer (VOE) , p. xii.
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Index

Sβ, see stiffness number

ε, see inertia blade ratio

λ, see rotor, inflow ratio

λi, 208

µ, see advance ratio

ν, see flap frequency, see stiffness number

σ, blade solidity, 226

Linear and Directional Test Stand (LDTS),

31

Rotational Dynamics Test Stand (RDTS),

31

Voice of the Customer (VOC), 464

advance ratio, 219, 316

angular rates, see reference frames

BEMT, see combined blade element theory

BEOM, see rotor

BET, see blade element theory

blade element theory, 222

tip-loss factor, 228

central processing unit, 26

clinometer, see sensors

coefficient

power, 208

thrust, 208

torque, 208

combined blade element theory, 229

control servo

main rotor

collective, 34

lateral, 36

longitudinal, 36

setting, 40

tail rotor collective, 39

throttle, 40

dynamic stability, see stability

dynamics

position, 193

rotational, 194

translation, 191

electronic compass, see sensors

embedded software, see systems integration

experiments

main rotor

thrust, 419

torque, 100

pitch and roll, 123

pitch rate and pitch attitude hold, 119,

448

roll rate and roll attitude hold, 123,

452

pitch, roll and yaw hold, 457

tail rotor

aerodynamic identification, 107

trim collective, 437

yaw rate and heading hold, 116, 434
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heading hold, 443

yaw rate, 438

feedback control loops

altitude hold, 86

pitch rate and pitch attitude hold, 82

position hold, 90

roll rate and roll attitude hold, 86

RPM and engine governor, 80

yaw rate and heading hold, 80

flap frequency

rotating

nondimensional, ν2, 244, 248, 268,

284, 292

fluid equations, 169

conservation of energy, 176

conservation of mass, 172

conservation of momentum, 174

Global Positioning System, 378

helicopter

University of Oklahoma Helicopter Re-

search Testbed (OU-HRT), 14

calibration

bending beam load cell, 392

main rotor collective, 389

main rotor cyclic, 390

tail rotor collective, 392

test stand, 395

throttle fuel rate, 392

engine, 16, 385

equations of motion

linearized, 365

rigid body, 358

hardware interface, 20

main rotor, 14

torque and power models, 421

servos, 18

swashplate, 18

tail rotor, 15

aerodynamic model, 431

transmission gears, 17

induced velocity, see rotor

inertia

blade ratio, ε, 244, 248, 268, 284, 292

inflow ratio, see rotor

infrared sensor, see sensors

Lock number, 259

momentum

forward flight, 217

power, 220

hovering flight, 203

simple momentum theory, 202

vertical climb, 209

vertical descent, 213

autorotation, 217

turbulent wake state, 217

vortex ring state, 216

windmill break state, 213

MotionPak, see sensors

nondimensional rotating flap frequency, 292

OU-HRT, see helicopter
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power coefficient, 208

rate table stand, 30

reference frames, 179

atmosphere-fixed or wind , 181

body-fixed, 181

Earth-Centered , 180

Earth-Surface , 180

Euler angle rates, 189

geocentric, 180

heliocentric, 179

inertial, 181

main rotor, 196

hub plane, 198

non feathering plane, 199

tip path plane, 200

vehicle-carried , 181

rotor

Blade Equation of Motion (BEOM), 235

summary, 314

forces and moments, 316, 361

coupled fuselage-rotor, 329

forces, 321

hub moments, 325

simplified, 323

induced velocity, 208

λ, inflow ratio, 219, 316

rotational inertia, 371

σ, blade solidity, 226

sensors

AccuStar II Dual Axis Clinometer, 383

electronic compass, 384

FreeWave wireless transceiver, 381

GPS, 378

Hall effect, 26

MotionPak inertial measurement unit,

376

SHARP GP2D02 infrared sensor, 382

ultrasound altimeter, 388

SMT, see momentum

stability

dynamic, 342

static, 342

static stability, see stability

stiffness number, 263, 313, 330

swashplate, 198, 201

systems engineering, 459

CM & CMM, 460

functional decomposition, 473

IPPD, 461

processes, 461

QFD, 467

standards, 459

system architecture, 129, 476

systems integration

embedded software, 136

hardware and software, 138

hardware interface, 131

software interface, 134

test stand, 42

Linear and Directional Test Stand (LDTS),

45
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Rotational Dynamics Test Stand (RDTS),

47

Rate Table Stand (RTS), 48

survey, 44

thrust coefficient, 208

torque coefficient, 208

ultrasound altimeter, see sensors

wireless transceiver, see sensors
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