
AN ANALYSIS OF CACHE COHERENCE PROTOCOLS

FOR MULTll...EVEL CACHE ARCillTECTURE

By

DO-YOUNG CHUNG

Bachelor of Science

Ohio University

Athens, Ohio

1992

Submitted to the Faculty oftbe
Graduate College ofthe

Oklahoma State University
in partial fulfi1lment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1998

AN ANALYSIS OF CACHE COHERENCE PROTOCOLS

FOR MULTILEVEL CACHE ARClllTECTURE

Thesis Approved:

/(

Dean oftbe Graduate College

11

ACKNOWLEDGMENTS

I sincerely thank my graduate adviser Dr. K. M. George for the guidance, help and

time he has given me for the completion of my thesis work. His perseverance and hard

work inspired me to venture into the advanced aspects oftbis work. I would like to

express my sincere thanks to Dr. 1. P. Chandler for his direction and leadership. Without

the encouragement and help he has given me, the completion oftms work would have

been impossible. I also sincerely thank Dr. Mayfield for serving on my committee.

My respectful thanks goes to my parents Mr. Yeon-Ok ChlUlg and Mrs. Soon-Ja

Kim for all the love and support they have given me throughout my life. Especially, I

would like to express thank my wife Yang-Eui Kang. Without her support and

encouragement, the completion ofthis work would have been impossible. And, my love

goes to my beautiful children, my son Min-lae and my daughter Kyung-Ran.

I would also like to express my gratitude to all those people who have contributed

by giving many valuable insights.

iii

Chapter

TABLE OF CONTENTS

Page

]. rnTRODUCTION ..

2. >LlTERATURE REVIEW 5

2. 1 Cache coherence problem.. 5

2.2 Cache coherence solutions.. 7

2.2. 1 Hardware solution 7

2.2.1.1

2.2.1.2

Snooping protocols ..

Directory protocols ..

8

9

2.2.2 Software solution... 1,0

3. OVERVIEW OF~ PROTOCOLS •••••.•••••.••••.•••...••••.•••••••..•••••.... 11

3.1 11ne arc~tecture ••••••••••.••••••••••••••••.•••••••••••••••••••••••••••••••••• I I

3.1.1 Exten.ded write-once protocol •••••.•••••...•••••••.•••••••••••••••... l3

3.1.2 M,astership-based protocol.. 13

3.1.3 Cluster-based protocol.. 13

3.2 The protocol descriptions . 13

3.2.1 Protocol states . 14

3.2.1.1 Extended write-once protocol •••...••••••.•.••.•.•...•.••. IS

3.2.1.2 Mastership-based protocol

IV

................................ IS

3.2.1.3 Cluster-ba.sed protocol..... 17

3.2.2 Bus request types .. 18

3.2.2.1

3.2.2.2

3.2.2.3

Extended write-once protocol.... •. •• ••. •.. 18

Mastership-based protocol............................. ..•. 19

Cluster-based protocol.... 20

3.2.3 Processor / b'lls cache actions 21

3.2.3.1

3.2.3.2

3.2.3.3

Extended write-once protocol ..••...••.....•••..••..•....• 22

Mastership-based protocol........ 23

Cluster-based protocol.. ..•....•.......•...•.....•..• 24

3.2.4 Block (Lme) replacement .. 26

3.2.4.1

3.2.4.2

3.2.4.3

Extended write-once protocol .••••......•.•....•..•......

M.astersbip-based protocol ..

Cluster-based protocol ..

26

27

27

4. lLLUSTRATIONS OF PROTOCOL IN ACTIONS...•.•.....•... .•......•. 28

4.1

4.2

4.3

Extended write-once protocol .

Mastership-based protocol .

Cluster-based protoco,l•..................................

28

32

34

5. PERFORMANCE ANALYSIS AND RESULTS ••••..•..•••••••.••••.••......... 38

5.1 Parameters for performance evaluation •...•.•••...••.••••.•.••.•..•••...•.... 38

5.2 .An.alysis... 50

v

6. CONCLUSION •.••••.••••••...•...•••..••••••.••.•..•••••••.••••••••.•••••••••.•... 47

6.] Summa-IJ'. ••••••••••••. ••••••• . . ••••. •••••••. •••••••• . •••••••••••••. •••••••. . • 47

642 f'uturevvork •••••••.•••••••••••••••••••••••••••.••••••••.•••••••••••••.••••••• 47

BffiLIOGRAPHY 48

GRLOSSARY•..•.........•.............•.••.••....••.•.•.•••••.••••..•.•...

VI

50

Figure

LIST OF FIGURES

Page

I.] A shared-memory multiprocessor system with private caches................. 2

1.2 Multilevel cache organizations.. 3

(a) private, (b) multiport shared, and (c) bus-based shared

2. 1 Cache configuration after a Load on X by processors. •. . •. •• . •. •. 6

2.2 Cache configuration after a Store on X by processor i (write-through) ...•.•.• 6

2.3 Cache configuration after a Store on X by processor i (write-back) 7

3. I Machine Architecmre 12

3.2 State Diagram for a Second Level Cache Using the Extended Goodman's

Algorithm 22

3.3 State transition diagram of a block in a processor cache ..••...•.•••.•..•••••• 24

3.4 State transition diagram of a block in a higher level cache................... 24

3.5 State transition diagram of a block in a processor cache .•.•.•....••.•.....•. 25

3.6 State transition diagram of a block in a higher level cache.................. 26

4.1 Initial configuration before write request.................................... 28

4.2 Operation of Initial Write-through in Write-Once Algorithm 29

4.3 Final configuration of initial write-through................................... 30

4.4 Initial configuration .. 3a

V1l

4.5 Final configu.ration 3 1

4.6 Mastership movement fOT a write operation................................... 32

(a) States of the block in the caches before write operation

(b) States ofthe block in the caches after write operation

4.7 Mastership movement for a read operation 33

(a) States of the block in the caches before read operation

(b) States of the block in the caches after read operation

4.8 Initial configuration before read/write request 34

4.9 System with read request at top ofhierarchy 35

4.10 System after read reply has been generated .•.•.....•••.•••...••.••........•.• 35

4.11 System after read has been completed .•.•.•......•.•••.•.•.••.•.•...•••..•...• 36

4. 12 System after write has been completed 37

5.] Hit ratio offust level cache ..••.............................•................. 42

5.2 L2 cache hit ratios ...•............... 42

5.3 Number ofreplacements and write backs ••••..•.•••••••...••..••..••.••...•.. 43

5.4 Bus utilization ration 44

5.5 Average access time vs number of processors •••••.••••.•••••.••.••.••.•.••..• 45

VlU

CHAPTER 1

lNTRODUCTION

For decades, computer designers have been looking for speedup of computers.

The most important factor to achieve this is to share the infonnation. The desire for more

computing power introduces shared-memory multiprocessors. However, the shared­

memory multiprocessors suffer longer latencies in accessing shared memory. CPUs are

getting faster and main memories are getting larger, but slower relative to the faster CPUs.

As shown in Figure 1. 1, the cache memory is introduced as a solution to this problem.

These attached private caches to processors help reduce the average latencies. Such

caches temporarily holds the in-use contents ofmain memory. The usefulness ofcache

memory depends on the prope,Tty of locality. The sequence ofmemory addresses

generated by a program typically exhibits the properties of temporal and spatial locality

[LIL93, FRA84]. The temporal locality means that data to be referenced in the near future

is likely to have been in use recently. It is exhibited by program loops in which instructions

and data are reused. Spatial locality means nearby locations will be referenced in the near

future. It results from some common characteristics ofprograms, such as sequences of

instructions and related data items that are stored. Because ofthat, a system retri,eves the

information from memory and store it in a cache as a block (or a line) of consecutive

words. A block is the minimum unit ofinformation that can be either present or not

present in a cache [HEN90]. Private caches exploit these memory-referencing properties

to reduce the average time required to access the large main memory. Processors can

access the data in related caches in much less time than it would take if it were in main

memory. Thus processor performance is increased, since less time is spent waiting for

instructions and for data to be fetched.

MEMORY

BUS

••••••• . .

Figure 1.1 A shared-memory multiprocessor system with private caches

However, single-level caches can not satisfy the adequate speed and size. The

growing disparity between fast processors and relatively slow memories leads to introduce

cache memory. Two contradictory demands are required from the cache: to be fast and to

be large enough. This is not possible using only single-level caches, so multiple-level cache

hierarchies emerge as appropriate solutions. Multilevel cache architecture seems to be the

unavoidable solution to the problem[TOM94]. It makes the cache faster to keep pace with

the speed ofCPUs and the cache larger to overcome the widening gap between the CPU

and main memory. By adding another level of cache between the original cache and

2

memory, the first-level cache can be small enough to match the clock cycle time of the

CPU while the larger second-level cache can be enough to capture many accesses that ')

would go to main memory. Thus, this architecture reduces the memory latency by smaller

but faster lower level caches and reduces the traffic on the interconnection network by

slower but much larger upper level caches. The problem of cache speed is solved on the

first level and hit ratio on the second level. A large second level cache not only reduces the

memory traffic but also shields the first-level cache from unnecessary coherence

interference, which is achieved by following the inclusion property. Inclusion implies that

upper level cache is the superset of aU caches in the hierarchy below [BAE88]. This filters

coherence actions toward lower levels and reduces the number of actions to the really

necessary ones, lowering the cache interference. This inclusion property must be ensured

to maintain cache coherence in multilevel caches. In [TOM94-2], multilevel caches are

mainly classified into three types as shown in Figure 1.2.

(a)

S8

(b)

SB

(c)

CI First-level cache
P Processor
C8 Cluster bus

C2 Second-level cache
S8 System bus

Figure 1.2 Multilevel cache organizations:
(a) private, (h) multiport shared, and (c) bus-based shared

3

-

The first organization extends a single level cache to one in which every processor

has its private hierarchy of caches. On-c¥p_ r~ad:only_~ach~s Qelon~ to this p~rlldi~ In

the second organization the upper level cache is multiported between the lower level

caches. It consists of a secQ.nd-level cac e C-2 sha.n~dJlirect1y by a limited number (at most

4 Qf~st le~el caches GI as shown in figure l.2 (b). This architecture can be extended to

one where several C2 caches are used. Directory cache coherence approach between the

CI caches is used for this architecture. The third organization consists of a large second­

level cache C2 being shared by up to two dozen first-level_caches Cl. Bus-based protocols

are used to maintain cache coherence. An extension of this arcbitecture leads to a system

with clusters of second-level cache, first-level caches and associated processors with the

clusters being connected by a common bus.

4

-

CHAPTER 2

LITERATURE REVIEW

2.1 Cache coherence problem

Data can be found in memory or in the caches. When caches are used in

multiprocessors, multiple copies of the same data block can exist in different caches at the

same time. Ifprocessors are allowed to update their own copies independently, an

inconsistent view ofthe memory is possible, leading to program malfunction. The different

cached copies may have different values at the same time. This is generally referred to as

the cache coherence problem [HEN90]. Performance of a multiprocessor program

depends on the performance ofthe system when sharing data. The protocols to maintain

coherency for multiple processors are called cache coherence protocols. These protocols

ensure that whenever a processor reads a memory location, it receives the correct value.

There are two different policies when a write operation of data in cache is to be

perfonned. If the corresponding memory block is also updated on that occasion, the write­

through policy is applied. In the write-back policy, the update is postponed until the cache

block is evicted to make room for another block (replacement). Data coherence problems

do not exist in multiprocessors if only a single copy of data is allowed. Cache coherence

problems exist in multiprocessors with private caches (Figure 1.1) and are caused by three

factors: sharing ofwritable data, process migration, and I/O activity [DUB88]. Examp les

ofdata inconsistencies are illustrated below in the following.

5

BUS

x MEMORY

....... . . CACHES

Pi Pk PROCESSORS

Figure 2.1 Cache configuration after a Load on X by processors.

If the caches do not contain copies ofX initially, a Load (primitive operation) of

X by the thIee processors results in consistent copies ofX as shown in figure 2.1. Next, if

PI issues a Store on X, then the copies in the caches are inconsistent. But, consistency is

maintained between cache and memory ifwrite-through policy is used as shown in the

following Figure 2.2.

BUS

X' MEMORY

.. ••••••• CACHES

Pi Pk PROCESSORS

Figure 2.2 Cache configuration after a Store on X by processor i (write-through)

6

However, cache-memory consistency like the above is not maintained at the time

of "store" by a processor ifwrite-back policy is used. Figure 2.3 shows the state after a

store operation. Eventually memory is updated when the modified data in the cache are

replaced.

BUS

x MEMORY

....... . . CACHES

Pi Pk PROCESSORS

Figure 2.3 Cache configuration after a Store on X by processor i (write-back)

2.2 Cache coherence solutions

There are two large groups of cache coherence protocols: software-based and

hardware-based. Usually aU proposed protocols fall into one ofthese traditional but

useful classification. Sometimes the combined solutions of software and hardware are used

for cache coherence protocols.

2.2.1 Hardware solution

Hardware-based solutions are usually called cache coherence protocols. This

approach has several advantages over software-based ones. First, it gives better

performance because of the dynamic recognition of inconsistent conditions for shared data

7

at runtime. Secondly programmers and compilers are free from responsibilities for

coherence maintenance and there are no restrictions on any layer of software. This is a

result of being totally transparent to software. Hardware based solutions are classified into

snooping protocols and directory protocols.

2.2.1.1 Snooping protocols

In snooping protocols, every cache that has a copy ofthe data from a block of

pbysical memory also has a copy of the infonnation about it. These caches are usually on a

shared-memory bus, and all cache controllers monitor or snoop on the bus to detennille

whether or not they have a copy of the shared block. And, these local controllers

recognize the actions and conditions for coherence violations. As a processor snoops on

the other processors' memory references, it detects when a block that it has cached has

been changed by another processor. It then invalidates its cached copy so that its next

reference to the block will force a cache miss, and thus a current value will be obtained

from memory, or from another cache. Alternately, it can directly update its cached copy

with the new value available on the bus. Lilja's study shows advantages and disadvantages

of these two approaches [LIL93]. Invalidation strategy marks all cached copies as invalid

within the cache to force the processor to miss the next time it references that block. This

approach reduces the bus-traffic compared to the update strategy, but it increases the miss

rate ifthe block is reused. With an update approach, the new value of the shared location

is distributed to all processors with a copy of the block whenever it is written by any

processor. The advantage ofthis approach is that it prevents an additional miss ifthe

cache block is reused by a processor with a cached copy after it has been written by

g

-

another processor. A disadvantage is the additional bus traffic produced by the potentially

large number ofupdate messages. Snooping protocols became popular with

multiprocessors that use a shared bus as a global interconnection, since the shared bus

provides very inexpensive and speedy broadcasts.

2.2.1.2 Directory protocols

Directory-based schemes keep the information about data blocks in just one

location. There is logically a single directory that keeps the state of every block in main

memory. Thus the directory stores the global, systemwide state information relevant for

coherence maintenance. It is called centrali2ed in memory. Agarwal et a1. introduces one

useful classification of directory schemes for broadcast and non-broadcast schemes

[AGA89]. TIle directory maintains information about which processors have a copy of the

same block cached at the same time. Before a processor writes to a block, it must request
--=--

exclusive acces~to the block from the directory. Before the directory grants this exclusive

access, it sends a message to all processors with a cached copy of the block forcing each

processor to invalidate its copy. After receiving acknowledgments from all of these

processors, the directory grants exclusive access to the writing processor. When a

processor tries to read a block that is exclusive in a different processor, it will send a miss

service request to the directory. The directory then will send a message to the processor

with the exclusive copy telling it to write the new value back to memory. After receiving

this new value, the directory sends a copy ofthe block to the requesting processor.

9

Directory protocols are p~rily suitable for multiprocessors with general interconnection

networks.

2.2.2 Software solution

According to Tomasevic, software-based solutions generally rely on the actions of

the programmer, compiler, or operating system [TOM94-1]. These coherence schemes try

to predict which memory addresses may become stale by analyzing the program's

referencing behavior when it is compiled. The static coherence schemes determine at

compile-time which particular cache blocks may be stale, and when they may be stale, and

then invalidate stale cache entries before they are accessed. These schemes are software

based since they rely on a compiler, they also need some hardware support to maintain

the current state information about the memory locations. Therefore, it is not correct to

refer to these mechanisms as software only coherence mechanisms. The advantage of

software-based approaches is that they are less expensive than hardware-based ones. The

disadvantage is that the compiler analysis cannot predict the flow ofprogram execution

accurately.

10

-

CHAPTER 3

OVERVIEW OF PROTOCOLS

In this chapter, three cache coherence protocols with invalidation policy in multiple

cache/ bus-based architectures are introduced and studied for performance analysis.

Reducing access time and bus traffic is the most important factor to improve system

performance. These protocols are designed to reduce the amount of traffic by using higher

level cache as filter, which will ignore the remote bus request ifit dose not have a line with

its cache for the request. Also, they reduce average latency by high hit ratio in lower level

cache so that a request for a line dose not need to go up to memory. Consequently, this

will reduce miss penalty. Wilson introduced the concept ofhierarchies ofshared buses and

proposed a simple cache coherence scheme based on the write-once protocol [WIL87].

lIDs protocol will be called extended write-once protocol from now on. Yang and

Bhuyan proposed similar hierarchical bus coherence protocol relying on inclusion and

block ownership [YAN92]. lIDs protocol will be called mastership-based protocol in

this paper. Anderson and Baer proposed a scheme that is based on clusters ofprocessors

connected via a tree hierarchy ofbuses. Determining proper number ofprocessors that

share a common bus in a cluster is essential to avoid bus saturation [AND92]. This will be

called cluster-based protocol.

3.1 The architecture

The architecture is represented as:

II

Cache(S,L,N) where:

S is the supercluster number,

L is the level number, and

N is the number of the cache on that level.

For example, Cache(N,O,Z) in the bottom right most in figure 3.1 specifies that

this cache belongs to group N in right hand side dotted rectangle and is located at the

bottom -level hierarchy and attached level oftree to Zth processor Wlder Nth group in the

system.

Bus(N.I,xl

'---____._--' Cad:1e(N.2.0)

Bus(N.I.O)Bus(O.lX)

Cad:1e(O,2.0) '----__--'

Bus(O,l,O)

Figure 3.1 Machine Architecture

12

-

3.1.1 Extended write-once architecture

This architecture is viewed. as a hierarchy of caches/buses where a cache contains

a copy of all blocks cached underneath it [WIL87]. This requires large higher level oache

modules. Memory modules connect to the topmost bns.

3.1.2 Mastership-based architecture

A hierarchical architecture that consists of a hierarchy of caches and buses except

the d.otted rectangular line in Figure 3.1. Every cache at any level of the system has an

intelligent snooping controller that continuously monitors the higher level bus and receives

requests from the lower level bus, or from local processor. The entire system forms a

tree of buses with the main memory being at the root that is connected to the top level

bus and processors being at leaves connected to the bottom level buses through private

caches [YAN92]. This hierarchical approach is quite suitable for building large scale

multiprocessors.

3.1.3 Cluster-based architecture

The architecture consists of a hierarchy ofbuses in tree-like structure [AND92].

At the bottom ofhierarchy (level 0) are processors along with their caches. In the cluster­

based architecture, the processors are grouped into clusters of some number ofprocessors

per cluster as shown in the above figure 3.1, typically two or eight.

3.2 Protocol descriptions

To maintain consistency among copies, Wilson proposed an extended write-once

protocol. Consistency among copies stored at the same level is maintained in the same

13

way as for traditional snoopy cache protocols. However, an invalidation must propagate

vertically to invalidate copies in aU caches[WIL87]. The most important elements in

cluster based protocol is to keep the inclusion property, that is, each cache at a given level

contains a superset of the contents of the cache below it in the hierarchy [AND92]. At the

top of the hierarchy is memory that has lines with no state. The mastership based

coherence protocol is similar to extended write-once protocol and it allows multiple

copies of a shared block [YAN92]. The existence ofmultiple copies of a shared block in

the large hierarchical network can result in a significant amoWlt of traffic to enforce cache

coherence and thus degrade the system perfOlIDance. This cache coherence scheme for

hierarchical networks is designed to effectively handle multiple shared read while reducing

the network traffic. TIle protocols above are designed to minimize response time and bus

traffic, especially at the higher levels of the hierarchy. To do this, requests are satisfied as

close as possible to the requesting processor. The protocol will attempt to satisfy a request

using caches attached to the same bus as the requester; the request is forwarded to higher

levels only when necessary. In some cases, a request may need to travel up the hierarchy,

then back down to another branch of the tree; the reply retraces the same path back to the

request originator. Lines are written back only to the next higher level ofthe hierarchy.

3.2.1 Protocol states

All the caches that are directly connected to the processors are called level 0

caches or processor level caches. In the figure 3.1, the second parameter L indicates

14

levels in (S,L,N). IfL is greater than one, then the caches in that level are called non­

processor caches.

3.2.1.1 Extended write-once protocol

Processor I non-processor level cache states

INVALID

VALID

RESERVED

DIRTY

There is no data in the block.

There is data in the block which has been read from backing store and

has not been modified.

The data in the block has been locally modified exactly once since it

was brought into the cache and the change has been transmitted to

backing store.

The data in the block has been locally modified more than once since it

was brought into the cache and the latest change has not been

transmitted to backing store.

3.2.1.2 Mastership-based protocol

Processor level

VALID -MASTER The block is owned exclusively and can be read and written locally;

for a remote write request, the block is invalidated and given to the

requesting cache; for a remote read, the block is supplied and

mastership moves up; write back is necessary in case of

replacement.

15

-

VALID-SLAVE Valid block, multiple copies may exist; a read can be performed

locally; write is not allowed before acquiring mastership; write back

is not necessary when purged.

INVALID The block is not present or does not contain useful data.

Non-processor cache states

VALID -MASTER The cache having this block has mastership;

multiple copies may exist in the subtree;

for a remote read, block is supplied and mastership moved up;

invalidated and supplied for a remote write;

Ifpurged, should be written back and other copies invalidated;

a local write request moves mastership do\NU to the requesting cache.

VALID-SLAVE Block is valid;

a V-M copy exists in an ancestor cache or the main memory;

a local write request causes invalidation of other copies and change

ofstate to 0-0;

a remote write request causes invalidation.

DESCENDANT- A descendant cache has the mastership for the block;

OWNED 0-0 serves as a pointer to set up read paths to the latest copy for

remote requests.

The block need not be physically present and can be purged.

INVALID Block does not contain valid data or is not present.

16

3.2.1.3 Cluster-based protocol

Processor level

INVALID The line is Dot present in the cache

DIRTY

INVALID

VALID EXCLUSrVE The line is present in no other processor ca.che except this

one, and the data has not been written by the processor.

READ SHARED The data in the block is up-to-date, and is possibly shared by

other processor caches. The data may be dirty with respect

to main memory, but it is not the responsibility of this cache

to write it back.

The line is present in no other processor cache except this

one, and this cache has modified the data with respect to

memory or other non-processor cache. This cache is

responsible for writing the line back.

NOD-processor cache states

The line is not present in this cache or any other in the

sub-hierarchy rooted at this cache.

READ SHARED The line is present in the cache in a clean state. The line may

exist in a clean state in caches below this one in the hierarchy.

The line may exist outside the hierarchy in a clean state.

VALID EXCLUSIVE The line is present in the cach.e, but is not guaranteed to be

up-to-date. The line may exist below this cache in a dirty or

clean state.

17

pas

DIRTY SHARED Th.e line is present in the cache and is dirty with respect to

memory. This cache is responsible for writing the value back

to the next higher level in the hierarchy. In addition, the line

may exist lower in the hierarchy in READ SHARED state

only.

DIRTY OWNED The line is present in the cache and is dirty with respect to

memory. The line does not exist lower in the hierarchy.

The transitional states

TRANS fNVALID

TRANS SHARED

The line is in transition to the INYALID state.

The line is in transition to the READ SHARED state.

TRANS EXCLUSIVE The line is in transition to DIRTY (for processor caches) or in

transition to the VALID EXCLUSIVE state (for bus caches).

This transition states inhibit additional requests for a line when the state is in flux.

Ifa cache that has a line in transitional state detects a request for that line on the bus, it

signals that the request is canceled. The request is then sent back to the originator, which

will try the request again after waiting a period of time.

3.2.2 Bus request types

3.2.2.1 Extended write-once protocol

CLUSTER BUS READ A request to load a cache line.

18

-
GLOBAL BUS READ

CLUSTER BUS WRITE

GLOBAL BUS WRJTE

CLUSTER BUS INVAL

GLOBAL BUS INVAL

PURGE

A request to load a cache line that is traveling down one

part ofthe hierarchy after traveling up another part ofthe

hierarchy.

A request to load a cache line so that the originating

processor may write the line.

Similar to a CLUSTER BUS WRITE request except that

it is traveling down the hierarchy.

A request to invalidate other copies of a given line.

A request to invalidate other copies of a given line. The

request is traveling down the hierarchy

A request to invalidate the line in question in all caches at

this level of the hierarchy and below. No response is

needed by the originating cache.

LOCAL WRITE

3.2.2.2 Mastership-based protocol

LOCAL READ A request to load a cache line.

REMOTE READ A request to load a cache line that is traveling down one

part of the hierarchy after traveling up another part ofthe

hierarchy.

A request to load a cache line so that the originating

REMOTE WRITE

processor may write the line.

Similar to a CLUSTER BUS WRITE request except that

it is traveling down the hierarchy.

19

READ-MEMORY A request to load a cache line from memory.

READ EXCLUSIVE

READ

READ DOWN

3.2.2.3 Cluster-based protocol

A request to load a cache line.

A request to load a cache line tbat is traveling down one

part of the hierarchy after traveling up another part oftbe

hierarchy.

A req uest to load a cache line so that the originating

processor may write the line.

READ EXCLUSIVE DOWN Similar to a READ EXCLUSIVE request except that it is

WRlTE-BACK PURGE

INVALIDATE

INVALIDATE DOWN

SWAP INVALIDATE

traveling down tbe hierarchy.

The line is being written back to the next higher level in

the hierarchy due to replacement in the lower level cache.

A request to invalidate other copies ofa given line.

A request to invalidate other copies of a given line. The

request is traveling down the hierarchy, unlike an

INVALIDATE request which travels up the hierarchy.

Similar to an INVALIDATE request except that (part of)

the line is atomically swapped with a register value rather

than written in the originating cache. SWAP

INVALIDATE requests are propagated as INVALIDATE

requests above the hottom layer in the hierarchy.

20

-

SWAP READ EXCLUSIVE Similar to a READ EXCLUSIVE request except that the

line is swapped rather than written in the originating cache.

PURGE

PURGE (and) REPLY

A request to invalidate the line in question in all caches at

this level ofthe hierarchy and below. No response is

needed by the originating cache.

Like a PURGE request, except that the originating cache

waits for some sort of reply from a cache below it.

3.2.3 Processor I bus cacbe actions

3.2.3.1 Extended write-once protocol

This scheme extends the algorithm proposed by Goodman [00084]. Write-once

utilize initial write-through mode for recently acquired copies to invalidate other caches in

the local modification of data. Data write following first modification will be handled in

local so that no write to memory is neccessary. The operation ofthe protocol can be

specified by making clear the actions taken 011 processor reads and writes.

Read hits : can always be perfonned locally in the cache and do not result in state

transitions.

Read miss : Ifno dirty copy exists, then memory has a consistent copy and supplies a

copy to the cache. This copy will be in the valid state.

Ifdirty copy exists, then the corresponding cache inhibits memory and sends

a copy to the requesting cache. Both copies will change to valid and the

memory is updated.

Write hit : If the copy is in the dirty or resetved states, then the write can be carried

21

out locally and the new state is dirty. If the state is valid, then a Write-Iov

consistency command is broad-cast to aU caches, invalidating their copies.

The memory copy is updated and the resulting state is Reserved.

Write miss : The copy either comes from a cache with a dirty copy, which then updates

memory, or from memory. This is accomplished by sending a Read-inv

consistency command, which invalidates all cached copies. The copy is

updated locally and the resulting state is dirty.

Replacement: lfthe copy is dirty, then it has to be written back to main memory.

Otberwise, no actions are taken.

The state transitions are shown in figure 3.2.

Any L2 Operation L2BR or LIBR

L2BW,L2Bf or Purge

LIBRJL2BR~----_

L2BR
LIBFL2BW

L2BRlL2BI

LIBI \
Purge/ ~

LIBF-LIB

LIBW

Purge
LIBF
LIBL LIBW/

L2BW

L2BR or L2BI

LIBR LIBR or LlBW

LIBR:
LIBW:
LIBI:
LIBF:

Custer Bus Read
Cluster Bus Write
Cluster Bus Inval
Cluster Bus Flush

L2BR:
L2BW:
L2BI:
Purge:

Global Bus Read
Global Bus Write
Global Bus Inval
Replacement of cache memory

Figure 3.2 State Diagram for a Second Level Cache Using
the Extended Goodman's Algorithm

22

»

3.2.3.2 Mastership-based protocol

Processor level

A read hit is said to occur if a cache at level L, second parameter in (S,L,N) of

figure 3.], receives a read request from level L-l, and finds the block in V-M or V-S state.

The block is moved to the requesting processor and the state is unchanged. All the caches

along the path including the local cache of the requesting processor change their states to

V-So A read miss occurs ifa cache at level L finds on a read request from level L- J that

the block is in I-V. In this case the request is propagated on the level L bus. There are four

different ways in which the request gets data.]) The cache at level L+ I bas the block in

V-M or V-So 2) One of the peer caches has the block indicated as 0-0. 3) One of the peer

caches has the block in V-M state. 4) The cache at level L+ 1 also has the block in I-V. If a

processor issues a write request, and the level 0 cache has the block in V-M state then the

write is perfonned locally since it is the only copy in the system. However, if the block is

in V-S state, the mastership has to be obtained and an invalidation signal has to be

broadcast before the write operation is performed. Also all the ancestor caches up to the

previous master cache have to be informed about the write operation to change their block

state from V-S to 0-0. Upon a write miss, a requested block is loaded in the same way as

a read miss except that the block is loaded with V-M state. All the caches that have a copy

of the block invalidate their copies and the ancestor caches change the block state to 0-0

state. State transitions for processor and non-processor level are shown in figure 3.3 and

3.4, respectively.

23

LR-Processor read
RR-Remote read
LR-M-Processor read satisfied in memory
RW-Remote write
LW-Processor write

Figure 3.3 State transition diagram of a block in a processor cache.

Non-processor cache states

LR-Local read
RR-Remote read
LW-Local write
RW-Remote write
LR-Read from a local cache

that does not have the block
LR-M-Local read satisfied in memory

Figure 3.4 State transition diagram of a block in a higher level cache

3.2.3.3 Cluster-based protocol

All memory accesses hit if the line is DIRTY or VALID EXCLUSIVE. Iftbe line

is VALID EXCLUSIVE and the request is Dot a LOAD, the line status is changed to

DIRTY. A LOAD request to READ SHARED line hits. All other cases are considered

processor cache misses. When a request misses in a processor cache, the processor waits

24

-
until the request is satisfied. The processor's cache allocates a line for the data and

enqueues the appropriate bus request. lfthe request succeeds, the processor is restarted~

otherwise the processor will wait some fixed amount of time after the failed request has

been returned to it, then retry the request. A hit in a bus cache means that the request will

not need to proceed further up or down the hierarchy. A bus cache in a READ SHARED

state can satisfy a READ request, while a bus cache in either the DIRTV OWNED or

DlRTV SHARED state can satisfy READ or READ EXCLUSIVE requests.

Processor level

INVALID
RIV/RRE

REP READ SHARED

LR/RR

REPI

~
LR

RR

DIRTY

~
LRlLW

LR:
LW:
REP:

Processor read
Processor write
Line replace

RR: Remote read
RRE: Remote read exclusive
RIV: Remote invalidate

Figure 3.5 State transition diagram of a block in a processor cache.
Non-processor cache states

25

LRiL

RRElLTV
READ SHARED

LR/RW

DIRTY SHARE

LLR

LR: Local read
LRE: Local read exclusive
LIV: Local invalidate
LP: Local write back purge

RR: Remote read
RRE: Remote read exclusive
RTV: Remote invalidate

Figure 3.6 State transition diagram of a block in a higher level cache

3.2.4 Block replacement

3.2.4.1 Extended write-once protocol

Ifa processor cache needs to replace a line not in the DIRTY state, it simply

overwrites the current line with no further action needed. Ifthe line is in the DIRTY state,

the processor schedules a write-back PURGE request. When the request is serviced, the

line in the second level cache changes its status to DIRTY state. Replacing a line in non-

processor cache must maintain inclusion property. Ifthe state of the line in the replacing

cache is DIRTY, the cache simply writes the line to the next higher level in the hierarchy.

26

3.2.4.2 Mastership-based protocol

lfthe block selected for replacement is in V-S state in a cache, then aU the copies

ofthe block in the cache's descendant must. be invalidated before it is purged. This

invalidation is necessary because the removal ofa V-S block in a cache breaks the path

from its descendants to the master cache. The invalidation counter of the parent cache

needs to be decremented. However, write back is not necessary. Any request for the

same block from the cache's descendants will be satisfied in a higher level ancestor cache

or the main memory. In case the block selected for replacement is in V-M state, the cache

sends invalidation messages to its descendant caches so that copies of the block are

invalidated. The V-S states in the intermediate caches and the 0-0 states in the ancestors

are changed to I-V states. Then the block is written back into the main memory. This

write back operation is necessary since the block may have been modified during the time

when the cache has the mastership. It is also possible that the block is written into an

ancestor cache when purged instead of the main memory, provied there is enough space in

the ancestor cache. In this case the 0-0 states of the caches between the ancestor cache

and the main memory remain unchanged. The ancestor cache where the block is WItten

assumes the new mastership ofthe block.

3.2.4.3 Cluster-based protocol

Ifa processor cache needs to replace a line not in the OIRTV state, it simp.ly

overwrites the current line with no further action needed. Ifthe line is in the OIRTV state,

the processor schedules a WRITE-BACK PURGE request. When the request is serviced,

27

-

the line in the second level cache changes its status from VALID EXCLUSIVE to DIRTY

OWNED, since no other cache in the cluster has the line. Replacing a line in non­

processor cache must maintain inclusion property.lfthe state ofthe line in the replacing

cache is DIRTY OWNED, the cache simply vvrites the line to the next higher level in the

hierarchy. lfthe state is READ SHARED, a PURGE request is enqueued on the bus

below this cache. The PURGE request propagates down the h.ierarchy

4. ILLUSTRATIONS OF PROTOCOL IN ACTIONS

4.1 Extended write-once protocol

Cache{N,2.0)

Bus(O.l.O) 8us{O,J ,X) Bus{N.I,O) Bu.s(N.J 'xl

CadJe(N.O'zlCache(N,O,O) Cac:bc(N,O'x) Cache(N.O.Y)Cache(,0.0) CadJe(O.O,X) Cache(O,O.Y) CadJe(O,O'z)

1....-- write request

Figure 4.1 : Initial configuration before write request

Processor attached to Cache(O,O,O) issues an initial write in figure 4.1 and does

not find a block on its private cache. Then it puts a write request on Bus(O,l,O).

28

-

Cache(O,O,X) detects the block requested by Cache(O,O,O) and supplies the block X. Then

it invalidate its own copy.

Cac:bc(N.2.0)Cac:be(0,2.0) '"-__----'

Bus(O,I,O) 13us(O.lX) Bus(N.1.0) Bus(N.I X)

Cache(,0.0) Cache(O.OX) Cac:be(O,O.Y) Cac:he(O,02) Cachc(N.O.O) Cac:he(N,OX) Cac:ht.'(N.O.Y) Cac:he(N.O.z)

'--- a write request a processor attached to cache (0,0,0)

Figure 4.2 Operation of Initial Write-through in Write-Once Algorithm

Processor attached to Cache(O,O,O) receives the block from Cache(O,O,X) aud

modifies its own copy Cache(O,O,O) in figure 4.2 above. Then it propagate write-access up

to the highest bus. On the way to the Bus 3, the new modified value is rewritten on each

cache that has an associated block.

29

-

Cachc(N.2.0)

Bus(N.I.x)Bus(N.1.0)Bus(O.lX)

Cachc(0,2.0) L......---r---'

Bus(O.1.0)

Cache(.0.0) Cachc(O.O.x) Cadle(O.O,Y) Cache(O.O,Z) Cadlc(N,O.O) Cachc(N.O.x) Cache(N.O.Y) CadH.'(N.O.l)

1.--_ a write request a processor attached to cache (0,0,0)

Figure 4.3 Final configuration of initial write-through

When Cache(N,2,0) detects the write operation, it invalidates its own copy and send a

invalidation signal on Bus(N,2,O). Cache(N, 1,0) and Cache(N, I ,X) do the same operation

as Cache(N,2,O). Finally aU operations are done at this point as shown in figure 4.3.

Cac:hc(N.2.0)

Bus(N.LX)Bus(N,l.O)Bus(O,l .x)

Cachc(O.2.0) L......---r---'

Bus(O.I.O)

Cac:hc(N,O,llCac:he(N,O.O)Cac:hc(O,O.O) Cac:hc(O,OX) Cac:he(O,O.Y) Cache(O.O,Z)

a read request a processor attached to cache (N,O,Y

Figure 4.4 Initial configuration

30

-

A processor attached to Cache(N,O,Y) issues a read request on a block X. It does

miss on Cache(N,O,Y) and puts a read request on Bus(N,I,X). No caches on level °has

the block requested by Cache(N,O,Y) and propagates upper level. Then Cache (N, I X)

does the same process as lower level caches did.

CadJe(0.2.0) '-----r---l

Bus(O,I,O) Bus{O.I.x) Bus(N,l,O) Bus(N.I,X)

Cache(N.OLlCadle(N.O.Q)Cachc(O,O,O) Cadle(O.OX) Cache(O.O.Y) Cache(O,OZ)

a read request a processor attached to cache (N,O,Y

Figure 4.5 Final configuration

When Cache(O,2,O) detects read request on Bus 3, it supplies its own copy. And,

process is repeated in the reverse direction. Finally, the processor that issued the read

request gets the requested data as shown figure 4.5.

31

4.2 Mastership-based protocol

---,,..----....L..-__;;;..;Pkr-. writes the bl~

(a)

_...-----l. ---=ma:::;:.:st;.:.ership movement
and read path

(b)

Figure 4.6 Mastership movement for a write operation
(a) States of the block in tbe caches before write operation
(b) States of the block in the caches after write operation

Pk issues a write request to the block that is not present in its local cache. The

request is routed to the parent cache of PI and Pi which invalidates copies of the block in

its descendant caches. After the invalidation, the parent cache ofPI and Pi gives in the

mastership to P\;.'s local cache. The state changes as result of the write operation are

shown in Fig. 4.6(b).

32

-

~:;:::=::t===--~ma~st~e~rship movement

-r--L-_~- _--.-~t!=:::::::;~readpath

Invalidation
L.,----J

_r---'-__--.:Pk:...:,';,-reads the bloc~

(a) (b)

Figure 4.7 Mastership movement for a read operation
(a) States of the block in tbe caches before read operation
(b) States of tbe block in tbe caches after read operation

Pk issues a read request and has not found a block in its local cache, The request

propagates up and father ofPI and Pi has a block with VALID-MASTER state. So the

father ofPI and Pi grabs the request, supplies the block and changes its state to VALID-

SLAYE. Ancestor cache at level 2 obtains the block and becomes new master. Along the

path to requesting cache, all states are changed to VALID-SLAVE as shown above

Fig, 4. 7(b),

33

-

4.3 Cluster-based protocol

Bus(O,I.O) Bus(O,l,X)

· .· .· .· .

· .· .· .· .· .· . Bus(N,I.O) Bus(N.IJ()

read request a processor attached to cache (0,0,0)

Figure 4.8 Initial configuration before read/write request

Cache(O,O,O) issues to read a line in figure 4.8. Since it is not in its cache, it pre-

allocates and pins a line. The cache then enqueues a read request on bus(O, I,0). Because

none ofthe other caches in the cluster nor the levell cache(O,I,O) has the line, processor

cache(O,O,O) change its state to TRANS SHARED. Meanwhile, cache(O,l,O) pre-allocates

and pins a block and enqueues a read request on bus(0,2,0). When the read request gets

transmitted, the actions are similar to what took place on the level I bus. Current system

state is shown below in Fig. 4.9.

34

-

Bus(O.l,O) Bus(O.l,X) Bus(N,I,O) Bus(N,l ,X)

Cacbc(O,2,O)

Figure 4.9 System with read request at top of hierarchy

i.
1

Bus(O.I,O) Bus(O,l,X) llus(N,I,O) Bus(N.l,X)

Figure 4.10 System after read reply bas been generated

Once the READ request goes out over the level 3 bus, cache(N,2,O) answers with

an acknowledgment. It issues READ DOWN request on bus(N,2,O), and changes its state

to TRANS SHARED. The READ DOWN request proceeds down the hierarchy Wltil it

reaches bus(N, I,X).When the READ DOWN request gains access to bus(N, I,X),

cache(N,O,Z) responds and transfers the line hack to the cache(N, I ,X), along a flag

35

-

indicating that the line must be written back. It sets its state to READ SHARED. The

system is now in the state depicted below in fig. 4.11 .

Cache(O.2.0)

Bu.s(O.1.0) Bus(O.l.X)

.. : .

· .· .· .· .
· .
· .

HuseN.I.O) Bus(N.I.X)

Figure 4.11 System after read has been completed

Now, assume fig. 4.8 initial state for write operation. Cache(O,O,O) issues a write

request. The processor cache(O,O,O) sends a READ EXCLUSIVE request. This request

proceeds up the hierarchy to the level 3 bus, then back down to bus(N, I,X). Along the

way to level 3 bus, all the caches change their states to TRANS EXCLUSIVEAlong the

way to bus(N,I,X), all the caches change their states to TRANS INYALID. The reply

heads up the hierarchy while invalidating all affected caches, on the way back down to the

originator of the request while changing states cache(0,2,O) and (0,1,0) to VALID

EXCLUSIVE. Finally, this write operation completes by changing the state of

cache(O,O,O) to DIRTY. The system is depicted below in fig. 4.12.

36

-

Cad:1e(N,2.0)

Bu.s(N.IX)Bus(N,I.O)Bus(O.JX)

Bus(0.2.0)

Bus(O.l.O)

Cadlc(0.2.0)

Figure 4.12 System after write bas been completed

}

J

37

CHAPTERS

PERFORMANCE ANALYSIS AND RESULTS

In this chapter, we analyze the behavior of each protocols lUlder various

conditions, and discuss which protocols behave better or worse using different metrics.

Our simulation consists of random reference generators for each processor in parallel.

Architectures for performance analysis of above protocols are multilevel cachelbus

hierarchies, snoopy cache coherence protocols, and hardware based solutions. According

to Frank, there are four parameters for maximum performance in cache memories

[FRA84]. Three parameters must be minimized: the time needed to access data in cache,

the delay in getting data when it is not in the cache (cache miss), and the overhead of

updating main memory and maintaining cache coherence. One parameter, the hit rate,

must be maximized.

5.1 Parameters for performance evaluation

There are typical parameters evaluating performance ofmultilevel caches as

follows: cache size, block size, set associativity, block replacement algorit~ and write

policy. Since hit time and miss penalty effect the memory access time, they should be

counted too. The terms used in this performance study are defined in glossary at the end

ofthis thesis.

38

.'

}

J

-

Cache size

It is known that reducing the size of the cache increase the miss ratio and the bus

traffic. In general, the two correlate well with respect to this parameter. Therefore, it is

important to determine the size of caches (in the first and higher level) in order to achieve

desired system performance in a certain architecture.

Block size

The block size plays an important role in cache coherency. Ifa small block size is

used in first and second level caches, resulting miss rate would be higher than the miss rate

for a large block size. However, a large block size contribute false sharing. It is indicated

that two different shared variables are located in the same cache block, causing the block

to be exchanged between processors even though the processors are accessing different

variables. On the other hand, larger block size leads to lower miss rate and lesser transfer

time.

Set associative

It is a matter ofwhere to place a block in a cache. If a block is placed in a

restricted set ofplaces in the cache, the cache is said to be set associative. A set is a

group oftwo or more blocks in the cache. A block is first mapped onto a set, and then the

block may be placed anywhere within the set. Ifthere are 2 blocks in a set, the cache

placement is called 2-way set associative as used in this study.

39

-

Block placement algorithm

On a miss, a block in a cache must be replaced in favor of a newly referenced

block. There are several ways to replace a block: FIFO, random, LFU and so on. In this

study, LRU is chosen in case of a miss in both first and second level caches. This strategy

selects that block for replacement that has not been used for the longest time. In this

simulation study, LRU has been implemented with a list structure. Each time a block is

referenced, that block is placed at the head of the list. Therefore, in the situation of a miss,

the block in the tail is chosen to be replaced.

Write policy

While the choice between write-through and write-back has no impact on the read

ratio, but it has a major impact on bus traffic. It has been known that using write-back

instead ofwrite-through for a hypothetical processor would reduce the bus traffic by more

than half and if the processor ran to completion, the bus traffic would be decreased by a

factor of8 [NOR92].

5.2 Analysis

This section reports the results of executing our simulation model on the data stream. Our

simulation model permits many parameters to be varied. We have chosen to fix a number

of the parameters and to concentrate primarily on those which we consider most relevant,

40

4i
)
•

-
the sizes of the LI and L2 caches, and block size. A number of assumptions are made.

First, the line sizes ofthe L1 and L2 caches are identical (4 words). Second, it is assumed

to be 2-way set associative. Third, write-back policy is applied. For the convenience of

drawing graph, extended write-once, master-based and cluster-based protocols are

represented in short pI, p2 and p3 respectively.

Bit Ratios

Figure 5.1 shows hit ratios for a single-level cache ofvarious sizes with pl. These

hit ratios are consistent with those reported in a study ofCLA83. However, p2 and p3

perfonns slightly better. Because p2 and p3 are designed for multi-level cache

architectures. It is worthwhile to study the effect on hit ratio by using different parameters.

The hit ratio for a single level cache will be the same as the hit ratio for the Ll cache in

our two-level model. The figure also shows the effect ofusing different block sizes.

The total variation in cache hit ratio when increasing cache size from 8K bytes to

5] 2K bytes is less than 10 percent. For a memory access time of 15 cycles, this difference

in hit ratio makes a 50 percent better perfonnance achieved. The increased line sizes in

small cache sizes produce about 10 percent performance increase for an 8K byte cache.

Figure 5.2 shows the hit ratio of the L2 cache in our two-level cache system. As

the table shows, varying the size of the L2 cache has a significant effect on hit ratio, and

shows L2 hit ratios ran.ging from 20 to 90 percent. Block size also affect the hit ratio of

the L2 cache. For example, using an 8K LI cache, increasing the L2 block size from 2 to 4

lines increases its hit ratio by 7 to 20 percent, depending on its size.

41

'1
'f.

I'.,
I',.'

-

100

H 98

96

r 94
a

92

90o

1
--

~
~~

/ ~/
V/ r--

V

88

8 16 32 64 128 256 512
,­
I.

First level cache size "I,,­
I

Figure 5.1 Hit ratio of first level cache

L1=8k, blk=4

Ll=128k

512

__ J
~.

256

===-_---------, L1=8k, bl~2
L1=16k

L1=32k
L1=64k

128

- - - - - --;::;.~-~~-

64

105

95

H
85

75

65

r 55
a
t 45

35
0

25

15
32

Second level cache sIze

Figure 5.2 L2 cache hit ratios

42

Now it is time to investigate how each protocols perfonn on a miss. To do this, we

need to fix some parameters. We assume LI cache be 32K and L2 be 256 with a line size

]6 bytes in 2way set associative. In a cache architecture, a line replacement and write-back

to upper level cache on a miss is costly. Following Figure 5.3 shows clearly that the write-

once protocol produces the highest number of replacement, and results in many write-back

to upper level caches. Mastership-based protocol evidently produces the least number of

replacements. Because of the dynamic movement of a line ownership, it is possible to

avoid replacement and have a second chance to stay in a cache.

1000

~11
I

.",.,,.

800

600

400

200

pI p2 p3

Figure 5.3 Number of replacements and write backs

43

Figure 5.4 shows the bus utilization ratio when the number of processors is

increased. Extended write-once protocol produces the highest bus utilization ratio. Since

extended write-once protocol needs a write back ofthe line to the shared memory when a

dirty line is transferred between caches, its bus utilization ratio is large. Ownership-based

protocol shows the lowest bus utilization ratio. In ownership-based protocol, there are not

many bus requests since only ownership of a block moves up and down to the requested

cache.

Bus Utilization
25

~I
,'I

",

20 ' .

15 .

10

5

,. pI

01-----4----+----+----4--

2 4 6 8

Figure 5.4 Bus utilization ration

Figure 5,5 shows average access time for each protocol. Goodman's algorithm

indicates clearly the slowest one. Partly, a block that is in a dirty state being replaced

would be referenced by other processors. That block is no longer in a cache, hence lead to

44

read/write miss. Eventually the block must bring back to a requested processor from upper

level caches. This contributes large waiting time for processors.

Average access time

pI

20

OL-----::~-+----+----+------+-

40

60

100

80

8 16 32 64

Number ofprocessors

Figure 5.5 Average access time vs Dumber of processors

45

-

CHAPER6

CONCLUSIONS

6.1 Summary

In the design of a system where more than one processor sbares a common

memory, a major limiting factor on system performance is the number ofprocessors that

can effectively share memory. The limiting factor on the number of processors is the bus

bandwidth and, in turn, bus and mem.ory contention among the processors. As memory

contention increases, the average memory access time increases and the perfonnance of

each processor decreases. There are several factors contributing to overaU performance:

block size, cache size (first and upper level caches), block replacement algorithm., and

write policy. Best combin.ation of these parameters lead to optimal system performance.

From our study, each cache with large block size performs better than small block size.

[t is due to less transfer time required for a new request. In a multi-level cache, a large

upper level cache size reduces further memory access time. Since most requests are

satisfied locally, it is not necessary travel up to memory that delay memory access

significantly. Goodman's algorithm results in heavy bus traffic with the case of block

replacements. Since it has to do a write through operation up to tbe main memory. On the

other band, master-based and cluster-based protocols restricts bus operations on the

bottom levels of the hierarchy so that less bus traffic results. This reduced bus traffic

contributes to system performance significantly.

46

6.2 Future work

In this thesis, we are concerned with the performance of the three recognizable protocols

in same architecture. Future work in protocol performance would find the optimal point of

system performance by examining the combination ofparameters. More work needs to be

done simulating the whole architecture using comprehensive large and varied data.

47

[AGA89]

[AND92]

[BAE88]

[CLA83]

[DUB88]

[FRA84]

[GO083]

[HEN90]

[LIL93]

[NOR92]

BIBLIOGRAPHY

AAgarwal et aL An evaluation ofdirectory schemes for cache

coherence. Proc.16th [SeA, 1989, pp. 280-289.

C. Anderson and J.-L. Baer. A multi-level hierarchical cache coherence

protocol for multiprocessors. Technical Report 92-10-04, University of

Washington, 1992.

1.-L.Baer and W.-H. Wang. On the inclusion properties for multi-level

cache hierarchies. Proc. 15th fSCA, 1988, pp. 73-80.

D. W. Clark. Cache perfonnance in the VAX-l 11780, ACM Transactions

on Computer Systems, Vol.], No.1, Feb.]983, pp. 24-37.

M.Dubois and C.Scheurich. Synchronization. Coherence, and Event

Ordering in multiprocessors. Computer, VoI.2], No.2, Feb. 1988.

S. 1. Frank. Tightly coupled multiprocessor system speeds memory-access

times. Electronics, Vo1.57, Jan. 1984, pp.]64-169.

1. Goodman. Using cache memory to reduce processor-memory traffic.

10th Annual Symposium on Computer Architecture, 1983.

J.Hennessy and D.Patterson. Computer Architecture: a Quantitative

Approach, San Mateo, Cal. : Morgan Kaufmann Publishers, 1990.

D. 1. Lilja. Cache coherence in large-scale shared-memory multiprocessors:

issues and comparisons. ACM Computing Surveys, Vo1.25, No.3, Sep.

1993.

R.. L. Norton and 1. L. Abraham, Using write back cache to improve

48

performance of multiuser multiprocessors 1m. COil! 011 Par. Proc.,

IEEE Cat. No. 82CHI794-7, 1982.

[TOM94-1] M.Tomasevic and V. Milutinovic. Hardware approaches to cache

coherence in shared-memory multiprocessors, Part 1. IEEE Micro,

Dec.1994, pp. 52-59.

[TOM94-2] M.Tomasevic and V.Milutinovic. Hardware approaches to cache

coherence in shared-memory multiprocessors, Part 2. JEEE Micro,

Dec. 1994, pp. 61-66.

[WIL87]

[YAN92]

AW.Wilson IT. Hierarchical CacbelBus Architecture for Shared Memory

Mutiprocessors. In Proc. 14th Symposium on Computer Architecture

1987, pp. 244-252.

Q. Yang, G. Thangadurai, and L. Bhuyan. Design of an adaptive cache

coherence protocol for a large scale multiprocessors. IEEE Trans.

Parallel and Distributed Systems, Vol.3, No.3, May 1992, pp.281-293.

49

GLOSSARY

hit - a memory access found in a level

miss - not found in a level

hit time - the time to access the upper level of the memory hierarchy which

includes the time to determine whether the access is a hit or miss

miss penalty - the time to replace a block in the upper level with the

corresponding block from the lower level, plus the time to deliver

this block to the requesting device (normally the CPU)

access time - the time to access the first word of a block on a miss

average memory access time= hit time + miss rate x miss penalty

transfer time - the additional time to transfer the remaining words in the block

50

....

VITA

Do-Young Chung

Candidate for the Degree of

Master of Science

Thesis: AN ANALYSIS OF CACHE COHERENCE PROTOCOLS
FOR MULTILEVEL CACHE ARCHITECTURE

Major Field: Computer Science

Biographical Data:

Personal Data: Born in Seoul, Korea on December 23, 1960,
the son ofYeon-Ok Chung and Soon-Ja Kim.

Education: Received Bachelor of Science in Computer Science from Ohio
University, Athens, Ohio in 1992. Completed the requirements
for the Master of Science degree in Computer Science at
Oklahoma State University in December 1998.

