
A SECURE AND FLEXIBLE C01v1MON

GATEWAY INTERFACE (CGI)

WRAPPER

by

M1NSUCHOI

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1995

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1998



A SECURE AND FLEXIBLE COMMON

GATEWAY INTERFACE (CGI)

WRAPPER

Thesis Approved:

Thesis A:tlvisor
C
,c_ '

-l~/
{!~ ~U
D~e Graduate College

11



ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my thesis advisor, Dr. K. M. George

for his outstanding supervision, guidance and friendship. J would like to thank to my

other committee members Dr. J. P. Chandler and Dr. G. E. Hedrick for their excellent

assistant and advise. Thanks also go to my parents in Korea for their precious support

and encouragement. Finally, I would like to thank the Department of Computer Science

for supporting during Jast two years of study.

III



TABLE OF CONTENTS

CHAPTER I Introduction 1

CHAPTER II Related Works 6

1. Writing secure CGI scripts 6
2. CGI wrapper progralTI 7

CHAPTER III Problem Statement 12

CHAPTER N Secure and Flexible CGr Wrapper Organization 13

1. Apache suEXEC SUPPOlt J 3
2. SuEXEC Security Model I5
3. Apache user authentication and access control module 2 I
4. Essential UNIX System Resources and Functions 22
5. SFW Resource-User Mapper 33
6. CGI Transaction Procedure on SFW 36

CHAPTER V Secure and Flexible CGI Wrapper: Results 38

CHAPTER VI Conclusion 47

iv



LIST OF TABLES

Table I Fields in password file [15] 23

Table 2 Fields in group file [15] .. ···· ·· 24

Table 3 Nine file access permission bits [15] 26

Table 4 COl environment variables [I] 30

Table 5 Differences between six exec functions [15] 32

v



LIST OF FIGURES

Figure 1 The Common Gateway Interface (CGI) [1] 3

Figure 2 The CGr execution cycle [1] .4

Figure 3 "nobody" CGl execution 8

Figure 4 SUID CGI execution 10

Figure 5 CGl wrapper CGI execution I I

figure 6 FWlctions for the password file [15] 24

Figure 7 Functions for group file [15] 25

Figure 8 Functions for changing real and effective IDs [15] 28

Figure 9 Environnlent variable list [15] 29

figure 10 Functi.ons for changing current working directory [15] 31

Figure 11 SFW mapper design 35

Figure 12 SFW CGI Transaction System 37

Figure 13 Example SFW user password file 38

figure 14 Example SFW group file 39

Figure 15 Example SfW resource-user map files 39

Figure 16 User name and password required by SFW mapper .40

Figure 17 Valid user name and password .41

vi



Figure 18 SFW CGI transaction resulL .43

Figure 19 Invalid user name and password .44

Figure 20 Access denied 45

Figure 21 Authorization error message .46

Figure 22 SFW CGI transaction environment 48

vii



CHAPTER I

INTRODUCTION

The World Wide Web(WWW) makes using the Intemet easy and efficient. Information

providers can provide hypeltext links,fill-in-forms, clickable images, and even

executable programs through it [10]. Users can enjoy various forms of those services.

They can also make their home page, similar to information providers. In addition to it,

more people wanted to make interactive home pages to make their pages alive.

To develop interactive home pages, one needs to understand the Client-Server

interaction [2] between the WWW clients (commonly known as browsers sllch as

Mosaic, Netscape and Internet Explorer) and an Hypertext Transfer Protocol (HTTP)

server called HTTPD [10]. This interaction involves two distinct but closely related

issues. The first issue is the HTTP protocol used for communication with HTTP servers.

This protocol has several specific communication methods (for example, GET or POST)

that allow clients to request data from the server and send information to the server riO].

The second issue is the way HTTP servers handle a client's requests. If the request is for

a file, the server simply locates the file and sends it, or sends an appropriate error message

if the file is not available. Of interest here is the situation when the client wants to send

information to the server for more complicated processing. In general, Web servers do

not perform this processing themselves. The work is delegated to other programs called



gateway programs. The Common Gateway Interface (CGl) specification defines the

mechanism by which HTTP servers commwlicate with gateway programs [1].

CGI is a method for running programs on the Web server based on input :5:om a Web

browser. Gateway programs can be referenced by Universal Resource Locators (URLs)

[3,11,12]. For example, GET is used to get a file or other resource, possibly with

parameters specifying more exactly what is needed. In the case of form input, GET fully

includes it in the URL, like

http://www.cs.okstate.eduJ-choim/myscript.cgi?name1 =value1&name2=value2

When a client accesses a URL pointing to a gateway program such as a script or

executable code, the server activates the program and uses the COl mechanisms to pas to

the program data sent by the client (if any). The gateway program processes the data and

sends its response back to the HTTP server, again using the CGl mechanisms. The server

then forwards the data to the client such as Netscape and Mosaic that initiated the request

using the HTTP protocol, completing the transaction. Figure 1 illustrates the COl

transaction in the context of World Wide Web computing.

2



Common Gateway Interface (CGI)

wwvv
Client

(netscape)

WWW
Senter
(httpd)

Figure 1 The Common Gateway Interface (CGI) (adopted from [1))

Since CGI scripts allow anyone on the Web to run a program on the server based on any

input they choose to supply, CGI executables are probably the largest security risk for the

Web sites [4, 7, 9]. The problem with CGI scripts is that each one presents yet another

opportunity for exploitable bugs. CGI scripts should be written with the same care and

attention given to Internet servers themselves, because, in fact, they are miniature servers

which can handle specific user requests [13]. Figure 2 illustrates the CGI execution

cycle.

3



\NVVW
Browser

www
Server

(HTTPD)

Figure 2 The CGI execution cycle (adopted from [1))

COl scripts can present security holes in two ways [7] :

1. They may intentionally or unintentionally leak information about the host

system that will help hackers break in.

2. Scripts that process remote user input, such as the contents of a form or a

"searchable index" command, may be vulnerable to attacks in which the

remote user tricks them into executing commands.

Some possible attacks are [9] :

4



1. Mailing the password file to the attacker (Wlless shadowed)

2. Mailing a map of the filesystem to tIle attacker

3. Mailing system information from fetc to the attacker

4. Starting a login server on a high port and telneting in

5. Many denial of service attacks: for example, massive file system searches,

suspected infinite loops or other resource consuming commands.

6. Erasing and/or altering the server's log files

Those problems will never happen if CGr transaction is completely disabled, but

powerful and convenient capabilities of cor cannot be utilized. On the other hand, if

COl transaction is fully allowed to every remote user, security risks mentioned above

cannot be avoided. Therefore, it is necessary to research a better CGI environment which

ensures more security and more capability. Chapter nwill discuss numerous related

works which is currently used to resolve those security problems with COL Those

problems with COl transaction model as well as weaknesses of current solutions will be

formally stated in chapter Ill. As a new solution to the problems, Secure and Flexible

CGI Wrapper (SFW) will be introduced after that chapter.

5



CHAPTER II

RELATED WORKS

1. Writing secure CGI scripts

Whenever a program is interacting with a networked client, there is the possibility of

that client attacking the program to gain unauthorized access to the resources of the

server. Even the most innocent looking script can be very dangerous to the integrity of

computer systems. With that in mind, Stein [4] and NCSA (The National Center for

Supercomputing Applications) at UillC (University of Illinois at Urbana-Champaign) [7]

presented valuable guidelines to making sure that a software program does not come

under attack. Following is a summary of those guidelines:

Beware of the eval statement

Languages like PERL and the Bourne shell provide an eval command which allows one

to construct a string and have the interpreter execute that string [14]. This can be very

dangerous. Observe the following statement in the Bourne shell:

eval 'echo $QUERY_STRING Iawk 'BEGIN {RS="&"} {printf"QS_%s\n",$l}"

6



This script takes the query string, and converts it into a set of variable set commands.

The interpreter executes those commands at the end. If the query string contains "rm -r'·.

this short script may destroy the whole directory structure under current directory.

Do not trust the client to do anything

A well-behaved client will escape any characters which have special meaning to the

Boume shell in a query string and thus avoid problems with the CGI script

misinterpreting the characters. A mischievous client may use special characters to confuse

the CGr script and to gain unauthorized access.

Be careful with popen and system commands.

If any data from the client is used to construct a command line for a call to popenO or

systemO, be sure to place backslashes before any characters that have special meaning to

the Bourne shell before calling the function.

2. CGI wrapper program

Most Hyper-text Transmission Protocol Daemons (HTTPDs) do not change user ID to a

COl script's owner. Instead they run the program as "nobody", since effective user ID of

7



CGr process is to be set same as executor's user ill, which is nobody [5, 13]. CGI scripts

available on the Internet assume that the CGr script will be run as nobody so they require

either files to be world-writable or CGls to be Superuser ill (SUID). One, however,

almost never need files to be world-writable. Usually a directory can be made world-

writable so that the CGI can create files owned by nobody. Directory permission can be

restored afterwards. This is not a very good idea since other users can access those

world-accessible files at the same time, too. In addition to it, nobody scripts are too

limited to provide advanced CGI services, since they cannot access files other then world-

accessible files. Figure 3 shows how nobody CGI script works. In this case, incoming

remote user tries to execute local user choim's COl executable. Process real user ill is

set to choim's but effective user ID is nobody's. It means that the COl process is as

exactly powerful as nobody who only can access world-accessible resource domain.

local server
resource
domain local user choim's

resource
domain

Remote user
CGI

request

HTTPD

World-accessable
resource
domain

Runs CGI
executable
as nobody

-1
CGI executable

Nobody CGI process
only can access

world-accessable
resource
domain

leGI pmcess

EHeetive UIO
is same as noOOdy's

Figure 3 "nobody" eGI execution

8



The user with U1D 0 is special and called the superuser (or root) [15]. The superuser

has the power to read, write and execute all files in the system, no matter who owns them

and no matter how they are protected. Making scripts sum is very dangerous if

implementers of the CGI scripts are malicious [4, 13]. For example, in a university

machine with many users or in a commercial Internet service provider's machine, it is not

safe to trust the other users. SUID scripts have many more potential security holes than

normal CGI scripts. It is impossible to have a secure SUID shell script on some operating

systems. The simplest methods for attacking SUlD scripts depend on setting environment

variables maliciously. Figure 4 illustrates how CGI executable can be executed on behalf

of superuser. To make sum CGI process, owner of CGI executable has to be superuser

and its set-user ill bit must be on [13,15]. For example,

$ chown root test.cgi

$ chmod 4711 test.cgi

will allow SUID CGI execution.

9



local server
resource
domain

SUID CGI process
can access
entire seNer

resOll"ce
domain

Remole user
CGI

request

HTIPD Runs CGI
executable
as nobody

CGI executable

Owner IS root.
Set-user ID bit is on.

Figure 4 sum eGI execution

CGI process

Effecti~e UID
is same as roors

The program CGlwrap which is developed by Nathan Neulinger is a good way to allow

users to run CGIs under their own UTD [6]. Figure 5 shows how it works. However,

CGJwrap does not have capabilities to achieve more flexible and secure approach to the

user directory mapping. For the duration of the CGI transaction, CGI script only can

access resources with same UrD of CGJ script with Nathan Neulinger's CGlwrap. In

addition to it, malicious remote or local user can by-pass CGlwrap and are able to directly

access to the local CGI executables and resources. Thus, more flexibl.e and secure CGI

wrapper system can possibly resolve these limitations.

10



Remote user
CGI

request

HTIPD

local server
resource
domain

CGI executable

exec
system

call

Wrappad CGI process
only can access

a local uler
choim'. re.aurce

domain

CGI'::]

EffeClive UID
IS same as rool's

Runs CGI
wrapper

89 nobody

CGI~_.. L_C_G_I_w_ra_p_pe_r_~ process

Owner is root.
Sel-u.er 10 bit is on.

Figure 5 eGI wrapper eGI execution

11

Change ,Is 10.
I.me as cholm's

and execute CGI execulable
by uling exec Iyltem call



CHAPTER III

PROBLEM STATEMENT

Writing secure eGI scripts enhance eGr security, but it is not secure enough when

attackers make eGI scripts which has intentionally injected malicious features such as

mailing important system files such as password file and log files of the server.

eGl wrapper program such as eGlwrap is a good way to allow users to run eGIs

under their own urn. It means that wrapper partially solves surD eGI execution

problems and nobody eGI execution limitations, since it gives eGl owner's UfD to

users who wants to run those eGIs. It means every user who wants to run the same

CGI script will have the same access privilege since the eGl script run under eGI

executable owner's UIn [6]. This situation is considered too restrictive ancl

inflexible. CGlwrap can be by-passed and server system may be enclangered.

Different users of a eGI executable also cannot be applied by different access

privileges. Thus, an advanced eGI wrapper system which is capable of better security

and capabiJity is necessary.

12



CHAPTER IV

SECURE AND FLEXIBLE CGI WRAPPER (SFW) ORGANIZATION

1. Apache suEXEC Support

Apache WWW server was originally based on code and ideas found in the most popular

HTTP server of the time NCSA (The National Center for Supercomputing Applications)

httpd 1.3 (early 1995). It has since evolved into a far superior system which can rival

almost any other UNIX based HTTP server, in terms of functionality, efficiency and

speed [13]. Since it began, it has been completely rewritten, and includes many new

features. Apache is the most popular WWW server on the Internet (13].

The suEXEC feature, which was introduced in Apache 1.2, provides Apache users the

ability to run CGI programs through dedicated CGI wrapper program [13]. Apache

HTTPD is freeware. Thus, new CGI wrapper can be implemented on apache suEXEC

support.

The configuration of suEXEC is a four step process: configure CGJ wrapper source

code to make it suitable for given Web server, compile wrapper program, place the

wrapper binary in its proper location, and configure Apache for use with suEXEC and

recompile it.

13



---

By default, Apache is compiled to look for the suEXEC wrapper location srclhttpd.h.

The following defines the path to the suEXEC wrapper:

#define SUEXEC_BIN "/usr/local/apache/sbin/suexec"

If the installation requires location of the wrapper program in a different directory, editing

src/httpd.h and recompiling Apache server is required.

After COl wrapper program is compiled, it has to be placed at the defined location for

SUEXEC_BIN. In order for the wrapper to set the user lD, it must be installed as owner

"root" and must the set user TD execution bit set is on. Examples are given below:

chown root /usr/local/apachelsbin/suexec [ENTER]

chmod 47J1 /usr/locaf/apache/sbin/suexec [ENTER]

After properly installing the CGI wrapper executable, the apache server needs to be

killed and restarted. Upon startup of the web-server, if Apache finds a properly

configured CGl wrapper, it will print the following message to the console:

Configuring Apache for use with su.exec wrapper.

14



---

If this message does not appear at server startup, the server is most likely not fmding the

wrapper program where it expects it, or the executable is not owned by root, or the

executable's set user ID bit is off.

The primary benefit from the apache suEXEC support is that no remote user can

possibly by-pass CGI wrapper program. Every CGI transaction can be security checked

and log-in controlled by the properly implemented and configured CGI wrapper. It is

very important since making of security CGI wrapper is not possible without this kind of

Web server support.

2. suEXEC Security Model

suEXEC is based on a setuid CGI "wrapper" program that is called by the main Apache

web server. This wrapper is called when an HTTP request is made for a CGI program

that the administrator has designated to run with user ID other than that ofthe main

server. The wrapper employs the following procudure [13]. The security model employs

several checks to determine success or failure -- if anyone of these conditions fail, the

program logs the failure and exits with an error, otherwise it will continue:

1. Was the wrapper called with the proper number ofarguments?

15



The wrapper will only execute if it is given the proper number of arguments. The

proper argument format is known to the Apache web server. If the wrapper is not

receiving the proper number of arguments, it is either being hacked, or there is

something wrong with the suEXEC wrapper system.

2. Is the user executing this wrapper a valid user ofthis system?

This is to ensure that the user executing the wrapper is truly a user of the system.

A special user name "nobody" or "www" is used, in general.

3. Is this valid user allowed to run the wrapper?

[s this a user allowed to run this wrapper? Only one user (the Apache user) is

allowed to execute the program. Direct execution of the wrapper program must

be prohibited.

4. Does the target program have an unsafe hierarchical reference?

The target program which contains a leading 'I' or has a I • .' back-reference is not

allowed and the target program must reside within the Apache web space.

5. Is the target user name valid?

16



Every CGl resource has its owner. To ensure that owner's user name exists in the

local system, UNIX password file (/etc/passwd) must be referenced.

6. Is the target group name valid?

The owner of CGl resource can be a member of one or more group(s). To ensure

that owner's group name exists in the local system, UNIX group file (Jetc/group)

must be referenced.

7. Is the target user superuser?

SUID CGI execution has potential security risk, since the CGI process wilillave

same access privileges as superuser.

8. Is the target userid grater than the minimum ID number?

The minimum user ID number is specified during configuration. This allows to

set the lowest possible user ill that will be allowed to execute COl programs.

This is useful to block out "system" accounts.

9. Is the target group the superuser group?

17



-

Members in the superuser group has same access privileges as superuser. SUlD

CGI execution has potential security risk, since the COl process will have same

access privileges as superuser.

iD.is the target group ID grater than the minimum iD number?

The minimum group ill number is specified during configuration. This allows to

specify the lowest possible group ID that will be allowed to execute CGr

programs. This is useful to block out "system" groups.

f 1. Can the wrapper successfully become the target user and group?

CGI program acquires the target user and group via setuid and setgid calls. The

group access list is also initialized with all of the groups of which the user is a

member.

i2. Does the directory in which the program resides exist?

Non-existence of directory implies given file name is invalid.

18



13. Is the directory within the Apache webspace?

If the request is for a regular portion of the server, the requested directory has to

be within the server's document root. Uthe request is for a user directory, usually

specified by -<user_name>, the requested directory has to be within the user's

document root such as -choimlpublic_html.

14. Is the directory writable by anyone else?

Only the owner user may be able to alter contents of the target directory. It means

that the owner of the target directory is supposed to be the only one who can

access it.

15. Does the target program exist?

Non-existence of the target COL program implies that the file does not exist.

Thus, there is no means to execute the target COL program.

J6. Is the target program writable by anyone else?

If anyone other than the owner can possibly alter the COL program, the CGI

program can be replaced by a malicious cor program.

19



17. Is the target program setuid or setgid?

If the target CGI program is setuid or setgid program, it will change urn and GID

of the target CGI process again. This situation is not desirable, since the target

CGI program is supposed to be executed on behalf of its owner's IDs.

18. Is the target user/group the same as the program's user/group?

The target user and group name have to be same as target CGI program's user and

group name.

/9. Can the process environment successfully clean the process environment (0 ensure

safe operations?

A wrapper program designated by suEXEC support cleans the process'

envirorunent variables by establishing a safe execution PATH (defined during

configuration), as well as only passing through those variables whose names are

listed in the safe environment list (also created during configuration).

20. Can the wrapper process successfully become the target program and execute?

20



The wrapper process executes target CGI program by invoking one of the exec

UNIX system calls.

SFW must be compliant on this security model in order that the wrapper program takes

advantage of Apache Web server's suEXEC support. CGI resources which are under the

control of the SFW CGI transaction environment must be set up on this security model as

well.

3. Apache user authentication and access control module

User authentication module of the apache server allows the web administrators to

control access to documents on an individual user basis by utilizing user and passwords

Iists to provide the necessary authentication [5]. When a remote user tries to access a

restricted portion of the site, the server requires the user to log in by specifying a

username and a password. If the user supplies the proper information, access is granted

to that user to across the site without additional login requests. (Although the user does

not enter a password, the usemame and password get re-sent by the browser with each

new request to the protected realm.) User authentication based on access control provides

more selecti.ve security because access permission is validated on a per-user basis.

Apache requires login and a password validation before granting access to a restricted

portion of web site [13]. It is important to note that there is no correlation between the

21



-

UNIX password file (/etc/passwd) and the server's password files; it is not necessary for a

remote user to have an account on the local system to be able to access protected

materials on a Web server. To provide user authentication, a password file and group file

have to be created and maintained properly. By also using a group file, access restrictions

based on the user's group memberships can be established. For the Secure and Flexible

cor Wrapper, a built-in resource-user mapping application called sfwmapper creates,

modifies and mai.ntains a password file and a group file. This topic will be fully covered

in chapter 5.

Host-based access control grants or denies access depending on the lnternet Protocol

(IP) address of the machine that generated the request. This system is the least intrusive

to legitimate users because access is granted on the basis of the machine address.

Machines matching a description are allowed or denied access to documents without

requesting further information from the client. SFW utilizes user authentication based 011

host-based access control. More information will be provided in chapter 6.

4. Essential UNIX System Resources and Functions

Functions for user and group accounting

The UNIX system password file contains the fields shown in Table 1. These fields are

members of a system defined structure called passwd that is defined in <pwd.h> header

file [15]. Each line of password file contains the seven fields shown in Table 1, separated

22



by colons. User name is a unique string which identifies user in the local system. There

are numerous special purpose user names in UNIX system. Two of them are closely

related to this research. First special system user name is root. It is a special user name

for the super user who is able to access aU system resources with no limitation at all.

Table I Fields in password file (adopted from [15])

Description structpasswd member

User name char *pw_name

Encrypted password char *pwyasswd

Numerical user ill uid_t pw_uid

Numerical group ID gid_tpwyid

Comment field char *pw~ecos

Initial working directory char *pw_dir

Initial shell (user program) char *pw_shell

Second one is nobody. This system user name can be used by network servers that

allow users login to a system, but with a user ID and group TO that provides no privileges.

The only files that users can access with this user ill and group 10 are those that are

readable or writable by the world.

The encrypted password field contains a copy of the user's password that has been put

through a one-way encryption algorithm. The algorithm that is currently used always

generates 13 printable characters form the 64-character set [a-zA-ZO-9./] [15]. Some

23



fields in a password file entry can be empty. lfthe encrypted password field is empty, it

usually means the user does not have a password. An empty comment field has no effect.

There are two functions, getpwuid and getpwnam, to fetch entries from the password

file. These two functions allow one to look up an entry given a user's login name or user

ill. Figure 6 shows prototypes of the functions.

#include <sys/types.h>

#include <pwd.h>

struct passwd *getpwuid(uid_t uid);

struct passwd *getpwnam(const char *name);

Figure 6 Functions for the password file (adopted from (15))

The UNIX group file contains the fields shown in Table 2. These fields are contained

in a group structure that is defined in <grp.h>.

Table 2 Fields in group file (adopted from [15 J)

Description struct group member

Group name char *gr_name

Encrypted password char "'gryasswd

Numerical group 10 inl gr_gid

Array of pointers to individual user names char **gr_mem

24



The field gr_mem is an array of pointers to the user names that belong to this group.

This array is terminated by a null pointer. Either a group name or a numerical group 10

can be looked up by the two functions shown in Figure 7.

#include <sys/types.h>

#include <grp.h>

struct group *getgrgid(gid_t gid);

struct group *getgrnam(const chat *name);

Figure 7 Functions for group file (adopted from [15])

File Information, Type and Permission

Given a path name, the stat function retums a structure of information about the named

file. The fstat fWIction obtains information about the file that is already open. The Istat

function is similar to stat, but when the named file is a symbolic link, Istat returns

information abollt the symbolic link. The Secure and Flexible Wrapper program utilizes

Istat function to avoid following symbolic links. With stat function family, following file

information is returned in a system stat structure [15]:

• File type and mode (pennissions)

• i-node number

• Device number

• Device number for special files

• Number of links

25



-

• User ID of owner

• Group ill of owner

• Size in bytes

• Time infonnation

• Best va block size

• Number of blocks allocated

Whenever a remote user accesses CGr program through the Secure and Flexible

Wrapper, the wrapper checks target CGI program file with Istat nmction.

The type of a file is encoded in the st_mode number of the stat structure. The type of

file can be tested by system macros such as S_rSREGO, S_rSDIRO and S_ISLNKO [15].

The S rSREGO macro tests whether or not the given file is a regular file. The S ISDIRO- -

macro checks if the given file is a directory. Similarly, the S_ISLNKO macro examine if

the given file is a symbolic link.

The st_mode val ue also encodes the access permission bits for the file. There are nine

permission bits for each file, divided into three categories. These are shown in Table 3.

Table 3 Nine file access permission bits (adopted from [15])

st mode mask Meaning

S IRUSR User-read

S IWUSR User-write

S IXUSR User-execute

S IRGRP Group-read

S IWGRP Group-write

26



S IXGRP

S !ROTH

S IROTH

S IROTH

Group-execute

Other-read

Other-read

Other-read

The chrnod command and system function is typically used to modify these nine

permission bits. The set-user-lO bit and set-group-TO bit of executable files also can be

set by chmod command or system function. For example,

$ chmod 4711 sfiv<enter>

makes the sfw CGr wrapper program a world executable set-user-TO program. It means

that this program will be executed on behalf of owner's access privileges.

Changing User IDs and Group IDs

A running instance of a program is called a process. Every process has at least six lOs

associated with it. The real user ID and real group ID identify whom the process really

belongs to. Normally these values do not change during a login session, although there

are ways for a superuser process to change them. These ways are utilized to change IDs

of the requested CGr process. The effective user 10, effective group 10 and

supplementary group IDs determine file access permissions [15]. These effective lOs

reflects who executes the program usually. However, program owner's IDs can be

27

!n



assigned, if the program is set-user-ID or set-group-ID [13]. For example, if the owner of

the file is the super user and if the file's set-user-ill bit is set, then while that program file

is running as a process, it has super user privileges. This is very important feature, since

HTIPD user (normally nobody) can execute the Secure and Flexible Wrapper program

associated with root's effective IDs. The saved set-user-ID and saved set-group-ID

contain copies of the effective user ill and effective group ID when a program is

executed. An unprivileged user can set its effective user ill to either its real user ill or its

saved set-user-ID.

The real IDs and effective IDs can be changed by functions shown in Figure 8. The

setuid function sets real user ID and effective user ill at the same time. Similarly group

Figure 8 Functions for cbanging real and effective IDs (adopted from ILS])

IDs can be set by setgid function. The seteuid and setegid functions only changes

effective IDs.

#include <sys/types.h>

#include <unistd.h>

int setuid(uid_t uid);

int setgid(gid_t gid);

int seteuid(uid_t uid);

int setegid(gid_t gid); /* returns 0 if OK, -1 on error */

28



Environment list and CGr Environment Variables

CGI environment variables are a set of special variables that are set in the environment

when a CGI program is requested [1]. These variables are accessed via a global array

called environment list [15]. Like the argument list, the environment list is an array of

character pointers, with each pointer containing the address of a null-terminated string.

The address of the array of pointers is contained in the global variable called environ r13,

is]. Following is the definition of this variable:

extern char *environ;

Figure 9 illustrates an environment list containing five strings.
n

- -. USER-c/1olmlO

---- __ SHELL-/binlC8hlO

[__J--~_
environment

strings

-. HOME-/home/cholmlO

- 1-. PATH-:/U8rfDln:fDlnlO

environment
list

environment
pointer

environ

_ LOGNAME-c/1olmlO

NULL

'------------

Figure 9 Environment variable list (adopted from [I 5))

29

--



Each string is explicitly tenninated by null characters. In addition to it, the environment

list is terminated by NULL. By convention the environment consists of "name=value"

strings, as shown in Figure 9. CGI environment variables also can be obtained by

referencing the list. Table 4 swnmarizes major CGI environment variables.

Table 4 CGI environment vari abIes (adopted from [I])

Environment Variable

SERVER NAME

SERVER SOFTWARE

GATEWAY INTERFACE

SERVER PROTOCOL

SERVER PORT

REQUEST_METHOD

HTTP ACCEPT

HTTP USER AGENT- -

HTTP REFERER

PATH INFO

PATH TRANSLATED

SCRIPT NAME

QUERY_STRING

REMOTE HOST

REMOTE ADDR

REMOTE USER

Meaning

The host name or IP address on which the CGI program is running,

as it appears in the URL.

The type of server: for example, CERN/3.0 or NCSAJI.3.

The version of CGI: for example CG IlL I

The version ofHTTP: for example HTTP/l.O

The TCP POlt on which the server is running. Usually POl1 80 is

assigned for WWW servers.

POST or GET.

A list of Content-types the browser can accept directly.

Browser inJol1mtion.

The URL of the document that this form submission came from.

Extra path information, as sent by the browser using the query

method of GET in a fonn.

The actual system-specitic path name of the path contained in

PATH iNFO.

The path name to the CGI executable.

The arguments to the script or the form input (if submitted using

GET). QUERY_STRING contains everything after the question

mark in the URL.

The name of the host that submitted the executable. This value

CaJIDO! be set.

The IP address of the host that submitted the executable.

The name of the user that submitted the executable. This value will

be set only if server authentication is tumed on.

30

-



-

CONTENT TYPE

CO TENT LENGTH

In forms submitted wilh POST, the value

For [Olms submitted with POST, the nwnber of bytes in the

standard input.

chdir, fchdir and getcwd functions

Every process has a current working directory. This directory is where the search for all

relative path names starts. Improper setting of current working directory ofCGI process

implies possible security risk, since same relative path names may be translated into

different absolute path names on different current working directory information. Cunellt

working directory of the calling process can be changed by calling the chdir or fchdir

functions [15].

#include <unistd.h>

int chdir(const char *pathname);

int fchdir(int ,filedes); /* returns 0 if OK, -Ion error */

char *getcwd(char *buf, size_t size); /* returns bufifOK, NULL on error"'/

Figure 10 Functions for changing current working directory (adopted from [15])

As shown in Figure 10, either a pathname or an open file descriptor specifies the new

current working directory. The absolute path name of current working directory can be

retrieved by the getcwd function also. Valid CGI programs are supposed to be under the

user document root directory such as ~username/public_html/cgi-bin [3]. These

functions mentioned above help to check the validity of the CGI path information.

31

--



-

Replacing current process by the new program with exec function

When a process calls one of the exec functions, that process is completely replaced by

the new program, and the new program starts executing at its main ftmction. The process

ill does not change across an exec since a new process is not created but the old process

is replaced. The exec function merely replaces the current process with a new process.

There are six different exec functions in UNIX system [15]. Table 5 shows the

differences between the six exec functions.

Table 5 Differences between six exec functions (adopted from [15])

Function pathname filename Arg list argv[] environ envp[]

exec1 • • •
execlp • • •
execle • • •
execv • • •
execvp • • •
execve • • •

letter p I v e

Almost every COl wrapper implementation utilizes this technique to replace a properly

wrapped COl wrapper process with a requested COl program [6, 13]. In that way, the

requested CGI process can be executed using the owner's access privileges. The full

pathname information, argument list and environment variable list has to be passed to the

32

--



target CGI program. Thus, execv function is considered as appropriate for implementing

cor wrapper program in this research.

5. SFW Resource-User Mapper

The user-resource mapper of the SFW consists of three components, which are SFW

password file handler, SFW group file handler and SFW mapping constraint tile

interpreter. To utilize the user and group authentication mentioned in chapter 3, SFW has

to maintain its own password file and group file (Ietc/sfwyasswd and letc/sfw_group) for

user and group authentication. Each line of the SFW user-resource mapping constraint

file is also interpreted into the global access configuration file (ACF) which is also

descri bed in chapter 3.

Each line of the SFW password file consists of a login ID and its password. The

encrypted password field contains a copy of the user's password that has been put through

a one-way encryption algorithm. The algorithm that is currently used always generates 13

printable characters form the 64-character set [a-zA-ZO-9.1] [5, 15]. For example, a line

of the SFW password file looks like "choim:kadKUREkd234 ".

This file has same structural format as UNIX system password file explained in chapter

4. However, it is used for the SFW user authentication purpose only.

33

•••••••c



-

Groups are simply a way of providing an alias for a set ofusers. Each line ofthe SFW

group file contains a group name and the user IDs that make up that group. For example,

consider the line:

mygroup: choim, kim, john

This line defines a group named mygroup and its group members choim, kim and john. It

also has same structural format as UNIX group file, but only used for the SFW group

authentication purpose.

SFW resource-user mapper interprets a resource-user mapping constraint file and

configures the SFW section of the global access control file (ACF) [13J according to the

interpretation from the mapper. The resource-user mapping constraint file has

information about access controlled SFW COl resources, users, groups and hosts. For

example:

/home/choim/public_htmllcgi-bin *. bad. org kim, lee mygroup

This line implies following information:

• Absolute pathname of CGI resource is /home/choim/public_html/cgi-bin.

• Access from the domain bad.org to this resource will be denied.

34



• Access by the users kim and lee is allowed. However those users must provide

their user IDs and passwords in order to enter the resource space.

• Access by the group mygroup is allowed. However members of the group mllst

provide their user IDs and passwords in order to enter the resource space.

Obviously, user names and group names have to be pre-defined in the SFW password

file and group file. Finally, SFW resource-user mapper configures the global ACF based

on the interpretation of the resource-user mapping constraint file. Figure lllllustrates

SFW resource-user mapper design.

SFW Password File
HTTPD

choim:sdfEFj45d8dst
kim.' 23482dfhkajdD
lee.·398dfG34ddjf4 i-- I..L. §

U:.J« ro

I
....

- ::JroOl.c .-0 ....._ c

SFW Group File " 0
SFW Resource-User<..>

Mapping Constraint File
r--- - --------- -

mygroup: choim.kim
Ihome/choim/public_hlml/cgi-bin/cgi·

I ourgroup.1ee,kim
SFW Resource-User bin '.bad.org lee mygroup

Mapper
I--

I

Figure 11 SFW mapper design

35



-

6. CGI Transaction Procedure on SFW

When a remote user requests COl transaction to HTTPD, the server retrieves pathname

of target cor program, its owner's user rD, its owner's group ID and argument list for the

CGI program. Then, the server executes SFW and passes these four data as arguments to

the SFW process, SFW process, now, follows the security check procedure described in

the suEXEC security model (see chapter 2) [13]. If any security check fails, SFW

discards current COl transaction request and logs error messages to SFW log file

(Ivar/l0 g/httpd/sfwJog). HTTPD also sends an error message ,such as intemal server

error, to the remote user's browser. If every security check has been successfully passed,

SFW process changes its user IDs and group IDs same as the owner's. Then, it executes

the target COL program with exec system function. The execv system function is

preferable since the argument list and environment list has to be passed to the target COl

program (see chapter 4). Upon execution of the target COl program, the global ACF and

the SFW resource-user mapping constraint files are referenced. If the target COl program

is access controlled resource, the remote user will be prompted by the authentication

module to provide correct SFW user name and password. lfthe remote user entered

correct user fD and correct password, the requested COl program is executed and the user

gets the result from it. Note that successful SFW COl transactions are also logged in the

SFW log file. Figure 12 Illustrates SFW COl transaction system. Gray filled components

of the system are implemented as a part of this research.

36

I:,
I'
!,
•

•.'·~IJ



SFW Group fie

SFW Passwor<l File

SFW Rssource-Ussf
Constraint File

InterpretaUonMapper
log

Request

SFWlog File

SFW
Reource-Us.r

Mapper

SFWlog
Request

SFW

HTTPO

Figure 12 SFW CGI Transaction System

CGI Resource
(Wrapped & Secured)

UNIX System
Group File

UNIX Syslem
Password File

37

--



CHAPTER V

SECURE AND FLEXIBLE cor WRAPPER: RESULTS

As discussed in chapter N, Secure and Flexible CGl Wrapper (SFW) utilizes three

system files, which are a SFW user password file (/etc/sfw-passwd), a SFW group file

(/etc/sfw_group) and a SFW resource-user mapping constraint file (.Ir_u_map). An

example SFW user password file is given in Figure 13. It has four users and their one-

way encrypted passwords. Remote users who want to access restricted CGI resources

must use those user names and corresponding passwords in order to be authenticated.

#

# SFW Password File

# letc/sfw_passwd

# Format: <User_name>:<Encrypted_password>

#

kim: UQS/IE4pau4Gk

lee:lqvPLAeB.Ynks

park:dgUVxWDxwtZ61

joe:EIWNnjnoOr1M.

Figure 13 Example SFW user password file

An example SFW group file is shown in Figure 14. It defines three SFW user groups.

Groups are simply a way of providing an alias for a set of users. Group information is not

required by SFW, but users can be easily grouped with it.

38



#

# SFW Group File

# fete/sfw_group

# Format: <Group_name>:<User_nameJist>

#

team: kim, lee

party: lee, park

project: kim, lee, joe

Figure 14 Example SFW group file

An example SFW resource-user mapping constraint file is shown in Figure 15. It

indicates that four CGI resources are under access control of SFW. The authentication

behavior of SFW will be determined by these mapping constraints. For example, the first

line implies that user "kim" and "lee" will be authenticated when they access to the CGr

resource "lhome/choim/public_html/cgi-bin".

#

# SFW Resource-User Map File

# Format: <CGI_resouree_name> <Host_nameJist> <User_nameJist> <Group_nameJist>

# Remark: - indicates null list

#

Ihome/choim/public_html/cgi-bin - kim,lee 

Ihome/minsu/public_html/cgi-bin "'.bad.org - party

fhome/john/public_htmllcgi-bin - - project

fhome/jane/public_htmllcgi-bin/locaI3gi/- - project

Figure 15 Example SFW resource-user map files

39

...



Note that resource names are absolute path names of directories or files of the local

system. Their URLs will vary. For example, an absolute pathname

/home/choim/public_htmVcgi_bin is equivalent to http://localhostJ-choim/cgi-bin.

When a remote user accesses a CGI resource controlled by SFW, the user will be

prompted to enter his SFW user name and password as illustrated in Figure 16. If the

user accesses CGI resources that do not require authentication, she/he will not be

prompted to provide access authentication information.

~I

Figure 16 User name and password required by SFW mapper

40



As specified in the SFW resource-user mapping constraint file in Figure 15, SFW user

"kim" and "lee" are only allowed access. For illustration, user name "kim" and its correct

password are entered as shown in Figure 17.

~I

Figure 17 Valid user name and password

After the remote user clicks on OK button on the authentication di.aJog box in Figure

17, the HTTPD automatically transfers its control to the SFW process. Then, SFW runs

the requested COl program (-choimlcgi-binltest.cgi) on behalf of the COl program

owner. The requested cor program "test.cgi" in this example is actually a simple COl

41



script that shows its IDs and two COl environment variables, REMOTE_USER and

REMOTE_HOST. The information displayed is shown in Figure 18. It is very obvious

that those user IDs and group IDs 500 are same as the COl resource owner's user IDs and

group IDs. Following lines of the server log file and SFW log file show that the COl

program was successfully wrapped and executed, and the result was successfully

transmitted back to the remote user's browser.

127.0.0.1 - kim [25/Mar/1998:06:37:20 -06001 "GET /~choim/cgi-binltest.cgi
LP Address Usemame Access Time lnfo Transaction Method CGJ Location

HTTP/l.O" 200 247
HTTP Version Server Status Bytes Transferred

[06:37:1725-03-981: UID: (choim/choim) GID: (choim/choim) test.cgi
Access Time Info Real and Effective UID Real and Effective GID CGI name

Note that server status value of 200 means that the CGI transaction based on SFW was

successful. More detailed example log files are available in Appendix C.

42

'00\1



-~~ ~~ ""'-. - .. ~~~~~-

,'" UetsC<\Ile:

File Edit View Go Communicator

Security . top

ttp:/l1ocalhost/Ncho~/cgi-bin/test.cgi

=========:ac============••==••: ••====.==.z=.=•••••••••c••••••
Hello? :I III the soript )lou requested...
> \lID : 500
> EUID : 500
> G:ID : 500
> EG:ID : 500
Exeouted by kim
from 127.0.0.1

Figure 18 SFW CGI transaction result

What if the remote user enters an invalid user name and/or password? In that case, CGI

transaction request should be denied by the SFW authentication module. Figure 19 and

Figure 20 illustrate this situation. An user name "joe" is not supposed to access the CGI

resource "-choim/cgi-bin/test.cgi". According to the SFW map file, only two users

"kim" and "lee" can utilize the resource. Thus, SFW user "joe" will not be authorized.

The remote user's access request will be denied.

43



-
~ ~ ~ ~ ------- ~-~-- - - - ~ - ----- - - - - -

I' 'O/E.. f1etsC<\f)e f1avigatnr 4.04 !!'~
File Edit View Go Communicator

'. ttp: Illocalhost/.... choim./cgi-bin/test. cgi

********1

Enter usemame for SFW security check at localhost

User 10: :=-:=-_.:=========:::::.
Password:

Figure 19 Invalid user name and password

The remote user may retry to enter correct user name and password as many times as he

wants. If the user decides not to retry anymore, however, server error message will be

transmitted back to the browser as shown in Figure 21. Following line from the server

log file shows that the requested CGI transaction was not too successful.

127.0.0. J - joe [25/Mar/l998:06:38:3J -0600/ "GET /-choim/cgi-bin/test.cgi
IP Address Usemame Access Time Info Transaction Method CGI Location

HTTP/l.O" 401 350
HTTP Version Server Status Bytes Transferred

The server status code 401 means that user authentication failed.

44

-



:>....

Authorization failed. Retry?

Figure 20 Access denied

,

45



Thi.s SUVel could not verify that you are authorized to access the document you requeste.d. Either you
suppJieCl, thewrong credentials (e.g., bad password), or your browser doe.sn'tunderstand how to supply the
credentials required.

_ Cl x

Help

StopPrint Security

:lllocalhost/Ncholin/cgi-bin/test.cgi

Reload Home Search Guide

File Edit View Go Communicator

t -~~-~~~~~- --~

t... Uetscaf)e: 401 Authorization Requirecl
I

Figure 21 Authorization error message

,

46



-

L

CHAPTER VI

CONCLUSION

As mentioned in problem statement, the Common Gateway Interface (COl) has

numerous server-side security problems. Current solutions to the problems are not good

enough to secure it and to deliver its full power. In usual cases, more security means less

flexibility (for example, "nobody" CGI execution model shown in Figure 3); more

flexibility means less security (for example, SUrD COl execution model shown in Figure

4). Thus, a new CGI wrapper system called Secure and Flexible CGI Wrapper (SFW) has

been designed, implemented and tested in this research. As discussed in the body section

of this thesis, the new COl wrapper system is capable of performing mandatory security

checks based on the suEXEC security model. It executes a target COl program with its

owner's lOs in response to authorized remote users, based on pre-configured resource-

user mapping constraints information. SFW system has numerous advantages over

previous solutions discussed in the problem statement of this paper. SFW can be

maintained with minimal cost and maintenance since numbers of features are effectively

integrated in one system and its configuration procedures are significantly simple and

straight forward. SFW is able to significantly enhance server-side security since it has a

mandatory security checking routine and a dedicated user authentication module and cor

resource wrapping capability. Besides, source codes in C programming language can be

conveniently ported for a number of different UNIX based machines. Thus, SFW, as a

47

,

-cC



trusted gateway agent [8], easily establishes more secure and flexible CGI transaction

environment for sure. Figure 22 illustrates a properly configured CGl transaction

environment based on the SFW suite; gray filled portion of the figure was implemented

as a part of this research. Source codes in C are available in Appendix A; example

configuration files are listed in Appendix B; example SFW log files are placed in

Appendix c.

Figure 22 SFW eGI transaction environment

48



References

1. D. R. T Robinson, "The Common Gateway Interface Version 1.1", Internet Draft,
University of Cambridge, February 1996.

2. Douglas E. Comer, Internetworking with TCPfIP Volume 1, Prentice Hall, April 1995

3. Fielding, R., "Relative Uniform Resource Locators", Request for comments(RFC)
1808, June 1995

4. Lincoln D. Stein, The World Wide Web Security FAQ,
http://www.genome.wi.mit.edu/WWW/faqs/www-security-faq.htmI. Massachusetts
Institution of Teclmology (MIT) , February] 997

5. N. Haller and R. Atkinson, "On Internet Authentication", RFC 1704, Bell
Communications Research and Naval Research Laboratory, Octover 1994

6. Nathan Neulinger, CGfWrap Home Page, http://www.lUllJ.edu/-cgiwrap, University
of Missouri at Rolla, Octover 1996

7. The National Center for Supercomputing Applications (NCSA) , CGr security,
http://hoohoo.ncsa.uiuc.edu/cgilsecurity.html, NCSA, June] 996

8. Nigel Edwards, Owen Rees, "High Security Web Servers and Gateways", The 6111

International WWW conference proceedings, June 1996

9. Paul Phillips, The CGr security FAQ, http://www.cerfnet/-paulp/cgi-security/safe
cgi.txt, Octover ] 996

10. T. Bemers-Lee and D. Connolly, "Hypertext Markup Language - 2.0", MIT/W3C,
November 1995

II. T. Berners-Lee, "Universal Resource Identifiers (URI) in WWW", RFC ]630, CERN,
June 1994

12. T. Berners-Lee, L. Masinter, and M. McCahill, "Uniform Resource Locators (URL)",
RFC 1738, CERN, Xerox PARC and University of Minnesota, December 1994.

13. The Apache Group, Apache HITP Server Version 1.3 User's Guide, The Apache
Group, January 1998

14. Tom Christiansen and Shishir Gundavaram, Perl CGr FAQ,
http://www.per1.comlperl/faq/perl-cgi-faq.html. June 1996

49

......



-
15. W.Richard Stevens, Advanced Programming in the UNIX Environment, Addison

Wesley, June 1992

50

....

...



APPENDIX A

SFW SOURCE CODES IN C

51

...



#

# Make file for secure & flexible wrapper

#

# To compile, type "make".

# To clean up, type "make clean".

#

# By Minsu Choi

# Graduate Student

# Computer Science Dept.

# Oklahoma State University

# Stillwater, Oklahoma

#

all : sfw sfwmapper

.PHONY : all

sfw sfw.o

cc -0 sfw sfw.o

sfwmapper : sfwmapper.o

cc -0 sfwmapper sfwmapper.o

sfw.o : sfw.c sfw.h

cc -c sfw.c

sfwmapper.o : sfwmapper.c sfwmapper.h

cc -c sfwmapper.c

clean

rm -f *.0 core

52

)

•
~..
)

;
I
)



/*

* Secure & Flexible Wrapper

* Header file for sfw.c

*

* by Minsu Choi

* Graduate Student

* Computer Science Dept.

* Oklahoma State Uiversity

* Stillwater, Oklahoma

*/

/*

* Secure and Flexible CGl Wrapper header file

*/

#include <stdio.h>

#include <ctype.h>

#include <sys/stat.h> /* for file permission stating */

#include <sys/param.h> /* for parameter manipulation */

#include <errno.h> /* for error handling */

#include <stdlib.h> /* for standard library functions */

#include <stdarg.h> /* for standard arguments */

#include <pwd.h> /* forpassword file handling */

#include <grp.h> /* forpassword file handling */

#include <unistd.h> /* for setting user id */

#include <sys/types.h> /* types for uid */

#include <string.h> /* for string manipulation */

#include <time.h> /* time for logging */

#include <syslog.h> /* for system log file generation */

/* Define who runs httpd. Usually nobody */

#define HTTPD USER "nobody"

...,

/* CGl path */

#define CGl PATH "/public_html/cgi-bin/"

53



/* SFW log file location */

#define LOG SFW "/var/log/httpd/sfw_log"

/* user document root */

#define USER DIR "public_html"

/* system document root */

#define DOC ROOT "/home/httpd/html"

/* safe path info */

#define SAFE PATH "/usr/local/bin:/usr/bin:/bin"

/* minimum UID and GID (lower IDs are assigned system users) */

#define MIN UID 500

#define MIN GID 500

......
1..
:'l

/* maximum length of path */

/* maximum number of environment variables */

#define ENV BUFF 256

extern char **environ;

.......
)

~
........
~

)

•
1
;
}
4,
I
»

/* SFW log file */

/* environment variable list */

8192#define MAX PATH

static FILE *log file;

/* environment variable templete from apache's suEXEC model */

char *safe env_lst[]

"AUTH_TYPE" ,

"CONTENT LENGTH",

"CONTENT TYPE",

"DATE_GMT" ,

"DATE_LOCAL" ,

"DOCUMENT_NAME" ,

"DOCUMENT PATH INFO",

"DOCUMENT ROOT",

54



paz

" DOCUMENT_URI" ,

"FILEPATH_INFO" ,

"GATEWAY INTERFACE",

"LAST_MODIFIED" ,

"PATH_INFO" ,

"PATH_TRANSLATED" ,

"QUERY_STRING" ,

"QUERY STRING_UNESCAPED",

" REMOTE_ ADDR " ,

"REMOTE HOST II ,

"REMOTE IDENT" ,

"REMOTE PORT",

"REMOTE USER", ..

} ;

"REDIRECT_QUERY STRING",

"REDIRECT STATUS",

"REDIRECT_URL" ,

II REQUEST_METHOD" ,

"SCRIPT_FILENAME" ,

"SCRIPT NAME",

"SCRIPT_URI" ,

"SCRIPT_URL" ,

"SERVER ADMIN",

"SERVER NAME",

"SERVER SOFTWARE",

I'TZ" ,

NULL

55

..·..
)

~

•....
•)
•,
•)
I

I

I
t



-

/*

* Secure & Flexible Wrapper

* Source code in C

*
* by Minsu Choi

* Graduate Student

* Computer Science Dept.

* Oklahoma State Diversity

* Stillwater, Oklahoma

*/

/* header file of header files */

#include "sfw.h" ..

/* writes message into log file */

void log_msg(const char *format str, ... )

time t curr time;

va list v_list; /* varable argument list */

/* numerical format current time */

'4·..
)

~

••I
I

struct tm *local time; /* structured current time */

/* open log file if it is closed */

if (!log_file)

if ((log_file = fopen(LOG SFW, "a")) NULL)

fprintf(stderr, "failed to open log file\n")

perror (II fopen")

exit (1) ;

/* prepare to get variable argument list */

va start (v_list, format str)

/* get current time in numerical format */

time (&curr time)

/* convert it into human recognizable time */

56



-

local time localtime(&curr time);

/* write time info into the log file */

fprintf(log file, "[%.2d:%.2d:%.2d %.2d-%.2d-%.2d]

local_time->tm_hour, local time->tm_min,

local_time->tm_sec, local_time->tm_mday,

(local time->tm mon + 1), local time->tm year)

/* write messages into the log file */

vfprintf(log file, format str, v list);

/* flush log file pointer */

fflush(log_file) ;

/* specifies end of variable argument list */

return;

void main(int argc, char *argv[])

char *user name; /* user name */-

char *group_name; /* group name */

char *real user_name; /* real user name */

char *real_group name; /* real group name */

...

i

i
)

~

•,
•I

char *scr~pt name;

char *owner home;

char *script-path;

/* script name */

/* ex : test.cgi */

/* script owner's home dir */

/* ex : /home/choim */

/* path where scipt exists */

/* ex : /home/choim/public_html/cgi-bin */

57



-

char *script_full-path; /* script_path + script_name */

/* ex : /home/choim/public_html/

cgi-bin/test.cgi*/

struct passwd *execute_user; /* for executer of script */

char cwd[MAX PATH]

char dwd[MAX_PATH]

uid t sfw_DID;

uid t UID;

uid t GID;

struct passwd *owner;

struct group *group;

struct stat path_stat;

/* current working directory */

/* document working directory */

/* checks - */

/* UID of secure & flexible wrapper */

/* UID of owner */

/* GID of owner */

/* password information structure

for owner */

/* for executer of script */

/* for directory stating */

'.

4
)

~

•••,

struct stat script stat; /* for file stating */

char tmp_path[512] /* temporary storage for path info */

char **safe env; /* safe environment variable pointer */

char **env ptr; /* temp env pointer */

int env index; /* index for checking env var list */-

int tmp_index; /* same as above */

/* apache server passes 4 arguments user name, group name

eGI program name and arguments to the program */

if(argc!=4)

log_msg("incorrect number of arguments.\n")

exit (101) ;

/* retrive script name */

58



-

script name strdup(argv[3)) ;

1* figure out who owns script */

user name = strdup(argv[l]);

group name = strdup(argv[2]);

1* get UIO of sfw process *1

sfw UIO = getuid();

1* figure out who wants to execute eGI script *1

if(! (execute_user=getpwuid(sfw_UIO)))

1* executer not found in password file */

log msg("Executer of script is not found in password file\n");

exit(102) i

} ;

1* script name check

contains leading /?

contains leading .. /?

contains any .. ? *1

l.f((scnpt name[O]=='/') II
(!strncmp(script_name," .. /",3)) II
(strstr(script_name,"/ .. /") != NULL))

log msg(IIscript name check failure (%s)\n", script_name);

exit (104) ;

};

/* HTTPO user and executor are same? */

if(strcmp(HTTPD_USER,execute_user->pw_name) )

log msg(" u ser mismatch (%s/%s)\n",HTTPO_USER,

execute_user->pw_name) i

exit (103) i

};

59



-

/* user name check

contains leading -? */

if(user name[O)=='-')

user_name = strdup(++user_name);

user_dir_flag = 1;

/* check password info of owner */

if(! (owner=getpwnam(user_name)))

/* owner not found */

log_msg ("Owner of script not found in passwd file (%s). \n" J

user_name) ;

exit (105) ;

} ;

/* check group info of owner */

if (strlen(group_name) !=strspn(group_name, "0123456789"))

if ( (group=getgrnam (group_name) ) ==NULL)

/* group not found */

log_msg ("Group of script not found in group file (%8). \n",

group_name) ;

exit (106) ;

} ;

GID=group->gr_gid;

real_group_name=strdup(group->gr_name) ;

else /* numerical group name */

GID=atoi(group_name) ;

real_group_name=strdup(group name);

};

60



-

/* get UIO, real user name and user's home dir */

UIO=owner->pw_uid;

real_user_name=strdup(owner->pw_name) i

owner_home=strdup(owner->pw_dir) ;

/* log request */

log msg("UIO: (%s/%s) G10: (%s/%s) %s\n",user_name,real user_name,

group_name, real_group_name, script_name) i

/* user 10 minimum check */

if ((UID==O) II (UID<M1N UIO) )

10g_msg(lIminimum UIO check failed (%d/%s) \n",UIO, script_name) ;

exit(107) i

} i

/* group 10 minimum check */

if ((GID==O) II (GID<M1N_GID))

log_msg(lIminimum G10 check failed (%d/%s)\n",G10,script name);

exit(108) ;

} ;

/* Now, change UIO and G10 with setuid and setgid */

if (setgid (GID) ! =0)

log_msg ("setgid failed (%d/%'s) \n", GIO, script_name) ;

exit (109) ;

} ;

if (setuid (UID) ! =0)

log_msg("setuid failed (%'d/%s) \n",U10,script name);

exit (110) i

};

61



-

/* get the current working directory */

if (getcwd(cwd,MAX_PATH)==NULL)

10g_msg(lIcannot get current working directory\n");

exit(lll) i

};

/* path check */

if (user_dir flag) /* user dir */

if( ((chdir(owner_home)) !=O) I I

( (chdir (USER_DIR» ! =0) II
((getcwd(dwd,MAX PATH))==NULL) I I

( (chdir (cwd) ) ! =0»)

/* go to home dir first */

/* and then public html */

/* and then get

document dir */

/* then go to current dir */

{

log_msg ("cannot get document root info (%-s) \n", owner home) ;

exit (112) i

};

else

if(((chdir(DOC_ROOT))!=O)II /* go to system doc root */

((getcwd(dwd,MAX_PATH»==NULL) I I /* get the path */

( (chdir (cwd) ) ! =0) ) /* then go to current dir * /

log_msg{lIcannot get document root info (%-s)\n",DOC_ROOT) i

exit(113) ;

};

};

/* comapre suffix of current working directory and

document working directory */

if( (strncmp(cwd,dwd,strlen(dwd))) !=O)

log_msg(IICGI executable not in docroot(%s/%s)\n",cwd,dwd);

62



-

exit (114);

} ;

/* stat the current working directory */

if ( ((lstat (cwd, &path_st.at) ) ! =0) II
/* make sure it is directory */

log_msg( P1 dirctory stat failed: (%s)\nPl,cwd);

exit (115) ;

} ;

/* check current. directory is not writable by other */

if((path_stat.st_mode&8_IWOTH) I I
(path stat.st_mode&8 IWGRP))

log_msg("directory is writable by others: (%s)\nPl,cwd);

exit (116) ;

/* check CGr program file */

if (( (lstat (script_name. &script_stat)) ! =0) II
/* make sure it is not symbolic link */

(8 18LNK(script stat.st_mode)))

log_msg ("CGI program stat failed: (%s) \n", script_name) ;

exit (117) ;

};

/* check CGI program is not writable by other */

if( (script_stat.st_mode&S_IWOTH) I I
(script_stat.st_mode&S_IWGRP) )

log msg("CGI program is writable by others: (%s/%s)\n".cwd.

script_name) ;

exit(llB);

63



-

/* check CGI program is setuid or setgid */

if({script_stat.st_mode&S_ISUID) I I /* setuid? */

(script stat. st_mode&S ISG1D)) /* setgid? * /

10g_msg(IICGI program is setuid or setgid:

(%s/%s) \n", cwd, script_name) ;

exit (119) ;

} ;

/* target UID and GID check */

if ( (OID! =path stat. st uid) I I- -

(GID!=path_stat.st_gid) I I
(UID!=script stat.st uid) I I
(GID!=script_stat.st_gid))

log msg (II target UID/GID (%ld/%ld) ", UID, GID) ;

log msg(" mismatch with directory (%ld/%ld) ",path_stat.st uid,

path_stat.st_gid) ;

10g_msg(1I or rpogram (%ld/%ld) ",script_stat.st_uid,

script_stat.st_gid) j

exit (200) ;

} ;

/* check CGI environment variables */

env_index=O;

1* dynamic allocation of environment variable pointer list */

if({safe_env=(char **)calloc(ENV_BUFF,sizeof(char *)) )==NULL)

10g_msg(lIdynamic allocation of env list failed\n");

exit (120) ;

} ;

64



if (lstrncmp(*envytr, "HTTP_",S))

safe_env[env_indexl=*env_ptr;

env index++;

else

/* variables with leading

HTTP are just skipped */

if (!strncmp(*env_ptr,safe_env_lst [tmp_index] ,

strlen(safe env_lst[tmp_index])))

/* check and move one by one */

safe_env[env_index]=*envytr;

env_index++;

break;

} ;

};

/* modify path info environment variable to block

malicious execution */

sprintf (tmp_path, "PATH=%s" ,SAFE_PATH) ;

safe_env[env_index]=strdup(tmpyath) ;

safe env(++env index]=NULL;

/* copy safe list back to original */

environ=safe_env;

/* close log file */

fclose (log file);

/* assign NULL to make sure that it is closed */

log file=NULL;

65



/* execute requested CGI program with exec system call */

execv(script_name,&argv[3]) ;

/* if exec fails, log it */

109_msg("exec failed (%s)\n",script_name);

exit (255) ;

66



/*

* Resource-User Mapper for SFW

* Header file for sfwmapper.c

*
* by Minsu Choi

* Graduate Student

* Computer Science Dept.

* Oklahoma State Uiversity

* Stillwater, Oklahoma

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define HTPASSWD_FILE "/etc/sfw_passwd"

#define HTGROUP_FILE "/etc/sfw_group"

#define TMP_FILE "/tmp/.sfw_group tmp"

#define ACCESS CONF "/etc/httpd/conf/access.conf"

#define HTPASSWD "/usr/sbin/htpasswd"

#define LF 10

#de fine CR 13

#define MAX ARRAY LEN 300

#define MAX STRING LEN 256

67



/*

* Resource-User Mapper for SFW

* Source code in C

*

* by Minsu Choi

* Graduate Student

* Computer Science Dept.

* Oklahoma State Uiversity

* Stillwater, Oklahoma

*/

#include "sfwmapper.h"

main(int argc, char *argv[])

FILE *g file;

FILE *tmp_file;

FILE *map file;-

FILE *conf file;

/* SFW group file */

/* temporary flie */

/* SFW map file */

/* SFW configuration file */

char tmp str[MAX STRING_LEN];

char tmpl[MAX_STRING LEN];

char tmp2[MAX STRING LEN];

char tmp3[MAX STRING LEN];

char tmp4[MAX STRING_LEN];

/* temporary strings */

char m_string[MAX_ARRAY_LEN] [MAX_STRING_LEN]; /* map strings */

char host list [MAX_ARRAY_LEN] [MAX STRING LEN] ; /* list of hosts */- -
char user list [MAX_ARRAY_LEN] [MAX STRING LEN] ; /* list of users */-

char group_list [MAX_ARRAY LEN] [MAX STRING LEN] ; /* list of groups */
-

char *found group; /* matched group name */

char tmp_char; /* temporary character */

int i, j, k; /* index */

int num host; /* number of hosts */
-

68



-

int num_user;

int num_group;

/* number of users */

/* number of groups */

/* flag * /

/* this program is to have 3 arguments

name, option and third argumnt */

if(argc!:3)

printf("Invalid number of arguments.\n")

exit (1) ;

/* examine option */

switch (argv [1] [1] )

{

/* options */

/* option -c makes a SFW passwd file with initial entry */

case Ie':

/* write arguments to temp string buffer */

sprintf(tmp_str, "%s -c %s %s",HTPASSWD,HTPASSWD_FILE,argv[2]);

/* runs apache password file generator */

system (tmp str);

break;

/* option -u adds user */

case 'u':

/* write arguments to temp string buffer */

sprintf(tmp_str, "90s 90s %s",HTPASSWD,HTPASSWD_FILE,argv[2]) i

/* runs apache password file generator */

system (tmp_str) ; /* add or modifiy user */

break;

/* option -C makes SFW group file with initial entry */

case I C' :

/* open SFW group file */

if ( ! (g file:fopen (HTGROUP FILE, "w") ) )

69



printf ("Could not open group file. \n") ;

exit (1) ;

} ;

/* get a list of group member */

i=O;

while (I)

printf {"Enter member (enter 0 to end) ,,) ;

scanf ("%s" ,m_string[i]) ;

/* if 0 is entered, stop */

if (strcmp(m_string[i] ,"0")==0) break;

i++;

printf ("Adding group entry %s. \n", argv [2] ) ;

/* write entry to group file */

fprintf (g_file, "%s: ", argv [2] ) ;

i - - .,

/* write group members */

for (j =0; j < i; j ++)

fprintf(g_file, "%s, ",m string[j]);

fprintf(g_file, "%s\n",m_string[j]);

/* close group file */

fclose (g file) ;

break;

/* option -g adds or modify group info */

case 'g':

/* initialize flag */

70



/* open group file for read */

if(l (g_file=fopen(HTGROUP_FILE, nrn)))

printf(nCould not open group file.\nn);

exit (1) i

};

/* decide add or modification */

while(!feof(g file))

i = 0;

/* read a line from group file */

while (1)

tmp_str[i] = fgetc(g file);

if (feof (g_fileJ )

} i

tmp str[O]

break;

'\0' i

if(tmp_str[i] == 13)

tmp_str[i] = fgetc(g_file);

if((tmp_str[i]==OX4) II (tmp_str[i]==10) II (i==255))

tmp_str[i]='\O'i

break;

} ;

i++;

/* extract group name */

i = 0;

71



while (tmp_str[i] !=': ') /* skip to delimeter */

i++;

tmp_str[i]='\O' ;

found_group = strdup(tmp_str);

/* compare group names */

if(strcmp(found_group,argv[2])==O) m_flag

};

/* no match means addition */

fclose (g_file) ;

/* open group file to append */

If(! (g_file=fopen(HTGROUP FILE, "a")))

printf("Could not open group file.\n");

exit (1) ;

} ;

i=O;

/* get list of members */

while(l)

l'I

printf ("Enter member (enter 0 to end) ") ;

scanf ("%8", m...string [i] ) ;

if (strcmp(m_string[i] I "0")==0) break;

i++;

} ;

printf ("Adding group entry %s. \n", argv [2] ) ;

/* add group entry */

72



}

fprintf(g_file, "%s: ".argv(2));

i- - ..
for(j=O;j<i;j++)

fprintf (g_file, "90s. ", m_string [j) ) ;

fprintf(g_file, "%s\n",m_string[j]) ;

else /* match means modification */

/* close groufile and reopen */

fclose(g file);

1* open group file */

if (! (g_file=fopen (HTGROUP_FILE. " r +")) )

printf("Could not open group file.\n");

exit (1) ;

} ;

/* open temp file */

if(! (tmp_file=fopen(TMP_FILE, "w+")))

printf("Could not open group file.\n");

exit (1) ;

} ;

/* read a line from group file */

whlle(!feof(g file))

i = 0;

while (1)

{

tmp str[i] = fgetc(g file);

if (feof (g file))

tmp str[O] '\0' ;

73



break;

} ;

if (tmp_str[i] == 13)

tmp_str[i] = fgetc(g_file);

if ( (tmp_str [i] ==Ox4) II (tmp_str [i] ==10) II (i==255) )

t mp s t r [i] = I \ 0' ;

break;

i++;

i o·,

/* skip to delimeter */

while (tmp str [i] ! =' : ,)

i++;

/* copy group name */

tmp_str[i]='\O'i

found_group strdup(tmp_str) ;

/* write all group entries but matched one */

if (strcmp(found_group,argv[2] ) !=O)

tmp_str [i] =' : ' ;

J.f(strlen(tmp str) !=O)

fprintf(tmp_file, "%s\n",tmp_str);

} ;

/* copy tmp file to group file */

rewind (tmp_file) ;

fclose(g_file) ;

74



/* open group file again */

if (! (g_file=fopen (HTGROUP_FILE, "w") ) )

printf("Could not open group file.\n");

exit (I) i

} ;

/* copy char by char */

tmp char = getc(tmp_file);

while (tmp_char!=EOF)

putc(tmp_char,g_file) i

tmp_char = getc{tmp file} i

} i

/* remove temporary file */

remove{TMP FILE} i

i=O;

/* get list of members */

while(l)

printf("Enter member (enter 0 to end) II} i

scanf("%s",m_string[i]} i

if(strcmp(m string(i], "O")==O} break;

i++i

printf ("Modifing group entry %s. \n", argv [2] ) i

/* write modified group at the end of group file */

fprintf (g flle, "%s: ", argv [2]) ;

i--·,

75



for{j=O;j<i;j++)

fprintf (g__file, "%"s, ", m_string [j) ) ;

fprintf(g_file, "%s\n",m_string[j));

fclose(g_file) ;

break;

/* option -f processes map file */

case I f ':

/* open map file */

if(! {map_file=fopen(argv[2] , "r")))

printf{"Could not open map file.\n");

exit(l} ;

};

/* open access configuration file */

if (! (conf file=fopen (ACCESS CONF, "r") ))

printf("Could not open access configuraion file.\n");

exi t (l) ;

} ;

/* open access configuration file */

if (! (tmp_file=fopen (TMP_FILE, "w+")}}

printf(IICould not open temp file.\n"};

exit(l} ;

};

/* copy block above SFW section */

/* read a line from group file */

while(!feof(conf file))

i 0;

76



while(1)

tmp_str[i] = fgetc(conf file);

if(feof(conf file))

} ;

tmp_str [0]

break;

'\0' ;

if (tmp_str[iJ == 13)

fgetc(conf file);

i

if ( (tmp_str [i] ==Ox4) II (tmp_str [i] ==10) II (i==255) )

tmp_str [iJ =' \0 ';

break;

} ;

i++;

o·,

/* find a line with "# SFW section" */

if( !strstr(tmp str, "# SFW section"))

fprintf(tmp_file, "%'s\n",tmp_str);

else

fprintf(tmp_file, "%'s\n\n",tmp_str) ;

break;

};

} ;

fclose(conf file);

rewind(tmp flle);

77



/* open access configuration file */

if ( ! (conf_file=fopen (ACCESS_CONF, "w+ II) ) )

printf("Could not open access configuraion file.\n");

exit(l) ;

};

/* copy char by char */

tmp char = getc(tmp_file);

whlle(tmp char!=EOF)

putc(tmp_char,conf_file) ;

tmp_char getc(tmp_file);

} ;

/* remove temporary file */

remove (TMP_FILE) i

/* interprete map file line by line */

while(lfeof(map_file) )

i=O;

/* read a line from map file */

while(l)

tmp_str[i] = fgetc(map_file);

if(feof(map file))

};

tmp_str[O]

break;

I \0 I;

if (tmp_str[iJ 13)

78



tmp str[i] fgetc(map_file} ;

if ((tmp_str [i] ==Ox4) II (tmp_str [i] ==10) II (i==255) )

tmp_str [i] = I \0 ';

break;

} ;

1++;

/* if line is not empty and not comment */

if ( (strlen (tmp_str} >O) && (tmp_str [0] ! = I # I) }

/* read four entries */

sscanf(tmp str, "%s %s %s %s",tmp1,tmp2,tmp3,tmp4}j

/* if host list is not empty, get host names */

if (strcmp(tmp2, "*"} !=O}

i 0;

j 0;

k 0;

/* get denied host names */

while(l}

if(tmp2[i]=='\O')

host list [J] [k]

breakj

else

if (tmp2 [i] == I , r )

host list [J] [k]

j ++;

k = 0;

79

tmp2 [i] ;

I \0 ';



L

else

host list [j] [k]

k++;

} ;

i++;

tmp2[i];

num host j; /* number of hosts */

/* if user list is not empty, read users */

if (strcmp(tmp3, "*") !=O)

i 0;

j 0;

k 0;

/* get access controlled user list */

while(l)

if (tmp3 [i] == I \0 I)

user list[j] [k]

break;

else

if (tmp3 [i] = = I , I )

user list[J] [k]

j ++;

k = 0;

else

user list [J] [k]

80

tmp3[i];

I \0 ';

tmp3 [i] ;



};

k++;

} ;

l++;

} ;

num user j ; /* number of users */

/* if group list is not empty, read them */

if (strcmp(tmp4, n*,,) !=o)

i

j

k

0;

o·,

0;

/* get access controlled group list */

while (1)

if(tmp4[i]=='\O')

} ;

group list [j] [k]

break;

else

if (tmp4 [i] == I , I )

group_list [j] [k]

j++;

k = 0;

else

group_list [j] [k]

k++;

};

i++;

81

tmp4 [i] ;

'\0' ;

tmp4 [i] ;



} ;

j; 1* number of groups */

/* writes a directory access control directive

to the access configuration file */

fprintf(conf_file, II <DIRECTORY %s>\n",tmpl);

/* disable user based access control */

fprintf(conf file,"AllowOverride None\n");

/* enable authentication module */

fprintf(conf file, "AuthType Basic\n");

fprintf(conf_file, "AuthName SFW security check\n");

/* SFW user and group file locations */

fprintf (conf file, "AuthUserFile %s\n", HTPASSWD_FILE) ;

fprintf(conf file, "AuthGroupFile %s\n",HTGROUP_FILE);

/* access control for GET and POST methods */

fprintf(conf_file, "<LIMIT GET POST>\n");

/* denied hosts */

if (tmp2 (0) ! = I - , )

fprintf(conf file," deny from II);

for(i=O;i<=num_host;i++)

fprintf(conf file,"%s ",host list[i));

fprintf(conf file,"\n");

/* access controlled users */

if(tmp3(O] !='-')

fprlntf(conf flle," require user ");

for(i=O;i<=num_user;i++)

82



} ;

fprintf(conf_file, "%s ",user list[i]);

fprintf(conf_file, "\n");

} ;

/* access controlled groups */

if (tmp4 [0] ! = I - , )

fprintf(conf file," require group ");

for(i=O;i<=num_group;i++)

fprintf(conf_file, "%s ",group_list[i]);

fprintf (conf file, "\n");

};

fprintf(conf_file, "</LIMIT>\n");

fprintf(conf_file, "</DIRECTORY>\n\n");

} ;

fclose(conf file);

break;

/* close configuration file */

};

default:

printf("Invalid switch.\n"); /* invalid switch */

exit (1) ;

83



APPENDIX B

EXAMPLE SFW CONFIGURATIONS

84



#

# SFW Password File

# jetcjsfw-passwd

#

# Format

#

<User_name>:<Encrypted-password>

kim:UQSjlE4pau4Gk

lee: IqvPLAeB.Ynks

park:dgUVxWOxwtZ61

joe:E1WNnjnoOrlM.

85



#

# SFW Group File

# jetcjsfw_group

#

# Format

#

team: kim, lee

party: lee, park

project: kim, lee, joe

86



#

# SFW Resource-User Map File

#

# Format

#

# Remark

#

<CGI resource name> <Host name list> <User name list>

<Group name_list>

- indicates null list

/home/choim/public_html/cgi-bin - kim,lee 

/home/minsu/public_html/cgi-bin *.bad.org - party

/home/john/public_html/cgi-bin - - project

87



APPENDIX C

EXAMPLE SFW LOG FILES

88



**
# /var/log/httpd/sfw_log

** Log file for CGI transactions based on SFW

#

[03:22:43 18-03-98] UIO: (choim/choim) GIO: (choim/choim) test.cgi

[02:33:20 19-03-98] UIO: {minsu/minsu} GIO: (minsu/minsu) test.cgi

[02:33:20 19-03-98] directory is writable by others:

(/home/minsu/public_html/cgi-bin)

[02:33:35 19-03-98] : UIO: (choim/choim) GIO: (choim/choim) test.cgi

[12:37:38 20-03-98] UIO: (jane/jane) GIO: (j ane/ jane) multiply. cgi

[05:50:45 25-03-98] UIO: (choim/choim) GIO: (choim/choim) test.cgi

[05:56:51 25-03-98] uro: (john/john) GIO: (john/john) counter.cgi

[06:37:19 25-03-98] UIO: (minsu/minsu) GIO: (minsu/minsu) env.cgi

89



r

#

# /var/log/httpd/access log

# Global HTTPD log file

#

127.0.0.1 [19/Mar/1998:02:33:29 -0600J "GET /-choim/cgi-bin/test.cgi

HTTP/1.0" 401 350

127.0.0.1 - park [19/Mar/1998:02:33:29 -0600J "GET /-choim/cgi

bin/test. cgi HTTP/ 1. 0" 4 01 350

127.0.0.1 - lee [19/Mar/1998:02:33:35 -0600J "GET /-choim/cgi

bin/test.cgi HTTP/1.0" 200 247

127.0.0.1 [20/Mar/1998:12:36:15 -0600J "GET /-choim/cgi-bin/test.cgi

HTTP/1.0" 401 350

127.0.0.1 - kim [20/Mar/1998:12:37:39 -0600J "GET /-choim/cgi

bin/test.cgi HTTP/l.O" 200247

127.0.0.1 [25/Mar/1998:05:50:35 -0600J "GET /-choim/cgi-bin/test.cgi

HTTP/1.0" 401 350

127.0.0.1 - kim [25/Mar/1998:05:50:45 -0600J "GET /-choim/cgi

bin/test.cgi HTTP/l.O" 200 247

127.0.0.1 [25/Mar/1998:05:54:16 -0600J "GET /-choim/cgi-bin/test.cgi

HTTP/l.O" 401 350

127.0.0.1 - kim [25/Mar/1998:05:56:51 -0600J "GET /-choim/cgi

bin/test.cgi HTTP/1.0" 200247

127.0.0.1 [25/Mar/1998:05:57:46 -0600J "GET /-choim/cgi-bin/test.cgi

HTTP/l.0" 401 350

127.0.0.1 - joe [25/Mar/1998:05:58:21 -0600J "GET /-choim/cgi

bin/test.cgi HTTP/1.0" 401 350

127.0.0.1 [25/Mar/1998:06:35:09 -0600J "GET /-choim/cgi-bin/test.cgi

HTTP/I.O" 401 350

127.0.0.1 - kim [25/Mar/1998:06:37:20 -0600J "GET /-choim/cgi

bin/test.cgi HTTP/l.0" 200 247

127.0.0.1 [25/Mar/1998:06:37:55 -0600J "GET /-choim/cgi-bin/test.cgi

HTTP/1.0" 401 350

127.0.0.1 - joe [25/Mar/1998:06:38:31 -0600J "GET /-choim/cgi

bin/test.cgi HTTP/1.0" 401 350

90



APPENDIXD

GLOSSARY OF TERMS AND ABBREVIATIONS

IN ALPHABETICAL ORDER

91



TERM
Absolute Pathname

Access Control

ACF

Apache H7TPD

Authentication

CGI

CGI Environment
Variables

Client-Server

Current Working
DirectOlY

FTP

Gateway

GJD

Gopher

Host

MEANING
Absolute pathname points to file based on its absolute location on
the file system. [15]

Access control means that access to the resources within a
webspace is somehow restricted. [13]

(Access Configuration File) HTTPD Global access control is
defined by ACF. [13]

It a freeware Web server from Apache organization. [13]

It allows one to control access to resources so that remote users
must enter a valid user name and password to be able to use them.
[4,5,9,13]

COl stands for Common Gateway Interface, a method for running
programs on the Web server based on input from a Web browser.
[1]

They are a set of special variables that are in the environment
when a CGI program is requested. [1]

The model of interaction on a distributed system in which a
program at one site sends a request to a program at another site
and awaits a response. The requesting program is called a client;
the program satisfying the request is called the server. [21

Every process has it. This directory is where the search for all
relative pathnames start. [15]

(File Transfer Protocol) The standard, high-level protocol for
• transferring files over the Internet. [2]

It refers to an application program that interconnects two services.
[2]

Group Identification Number. [15]

A text-based information service used throughout the Internet. [2]

Any end-user computer system that connects to a network. Hosts
range in size from personal computers to supercomputers. [2]'

92



Host Name The host name is the system on the Internet where the infonnation
is stored, such as www.cs.okstate.edu. [2]

HTML (Hypertext Markup Language) The language used to develop web
documents. [10]

HTTP (Hypertext Transfer Protocol) Web servers and browsers
commWlicates using this protocol. [13]

IP Internet Protocol is the standard commWlication protocol of the
Internet. [2]

IP Address A 32-bit address assigned to each host that participates in the
Internet. [2]

NCSA The National Center for Supercomputing Applications.

Nobody This special user name can be used by network servers that allow
remote users to log in to a system, but with a UID and Gill that
provide no privileges. [15]

Port The abstraction that TCP/IP transport protocols use to distinguish
among multiple destinations within a given host computer. [2]

Query String The arguments to the CGI program or the form input (i f submitted
using GET). It contains everything after the question mark in the
URL. [1]

Relative Pathnames Relative Patlmames points to files based on their locations
relative to the current working directory. [15]

RFC (Request For Comments) The name ofa series of notes that
contain surveys, measurements, ideas, techniques, and
observations, as well as proposed and accepted TCP/fP protocol
standards.

Root (superuser) The special user whose UTD is 0 is called either root or superuser.
If a user has superuser privileges, most file permission checks are
bypassed. [15]

SFW Secure & Flexible CGI Wrapper is a security CGI wrapper suite
which ensures more secure and flexible CGI transaction.

Symbolic Link A type of file that points to another file. [15]

93



TCPI/P

TELNET

UlD

URL

www

(Transmission Control ProtocolfIntemet Protocol) A standard
connection-oriented communication protocol for the Internet. [2]

The TCPIIP standard protocol for remote tenninal service.
TELNET allows a user at one site to interact with a remote system
at another site. [2]

User Identification Number. [15]

A Universal Resource Locator specifies address of a web
document. [11, 12]

World Wide Web is a global, interactive, dynamic, cross
platform, distributed, graphical hypertext information system that
nms over the Internet. [2]

94



VITA

Minsu Choi

Candidate for the Degree of

Master of Science

Thesis: A SECURE AND FLEXIBLE COMMON GATEWAY (CGI) WRAPPER

Major Field: Computer Science

Biographical:

Education: Graduated from Dae-Sung High School, Seoul, Korea in 1988;

received Bachelor of Science Degree in Computer Science from Oklahoma

State University, Stillwater, Oklahoma in 1995. Completed the

requirements for the Master of Science degree with a major in Computer

Science at Oklahoma State University, Stillwater, Oklahoma in May 1998.

Experience: Employed by Oklahoma State University, Department of Computer

Science as a graduate teaching assistant; Oklahoma State University,

Department of Computer Science, ]996 to present.

Professional Membership: Golden Key National Honor Society.


