
UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE 

 

 

SYSTEMATICS OF THE MECARDONIA ACUMINATA (TRIBE GRATIOLEAE, 

PLANTAGINACEAE) COMPLEX OF SOUTHEASTERN USA 

 

 

 

A DISSERTATION 

SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfillment of the requirements for the  

degree of  

Doctor of Philosophy 

 

 

 

 

 

 

By 

ADJOA RICHARDSON AHEDOR 
Norman, Oklahoma 

2007 
 

 i

 



UMI Number: 3261117

3261117
2007

Copyright 2007  by
Ahedor, Adjoa Richardson

UMI Microform
Copyright

All rights reserved. This microform edition is protected against 
    unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road

P.O. Box 1346
     Ann Arbor, MI 48106-1346 

All rights reserved.

 by ProQuest Information and Learning Company. 



 
SYSTEMATICS OF THE MECADONIA ACUMINATA (TRIBE GRATIOLEAE, 

PLANTAGINACEAE) COMPLEX OF SOUTHEASTERN USA  
 

 

 

A DISSERTATION APPROVED FOR THE  
DEPARTMENT OF BOTANY AND MICROBIOLOGY 

 

 

 

 

 

BY 

      _________________________________ 
      Dr. Wayne J. Elisens, chair 
       

                
_________________________________ 

      Dr. Richard Broughton 
 
 
      _________________________________ 
      Dr. Linda L. Wallace 
 
           
                 ________________________________ 
      Dr. Scott Russell 

     
                          
_________________________________ 

      Dr. Jia Li 
 

 
 
 

 ii
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 

© Copyright by ADJOA RICHARDSON AHEDOR 2007 
All Rights Reserved. 

 iii 



 
ACKNOWLEDGEMENTS 

 
This research was partly funded through grants provided to the primary author 

by the University of Oklahoma Graduate Student Senate and the Department of 

Botany and Microbiology. I would like to recognize members of my graduate 

committee for their critical review of this project, especially Dr. Wayne Elisens for 

his directions and encouragement, Dr. Scott Russell for the use of microscopes and 

imaging equipments in the Samuel Robert Noble Electron Microscopy Laboratory, 

and Dr. Jia Li for the use of his laboratory equipment. I would like to thank Mr. Bill 

Chissoe and Mr. Greg Strout for their directions and assistance in the use of the SEM 

and image software.  

I would like to thank Ms Amy Buthod for providing assistance with specimen 

loan requests from other herbaria and Ms. Nancy Zehrbach for providing assistance 

with ISSR analysis software. I would like to acknowledge Mr. Dwayne Estes of the 

University of Tennessee Knoxville, Dr. Robert McMichael of the Louisiana State 

University Shreveport, and Mr. Brent Berger for field assistance. I would like to 

thank Mr. Cal Lemke for assistance in the greenhouse, Mr. Bud DeBerry for ordering 

supplies and Ms Tina Lee for laboratory assistance. My appreciation goes to Dr. Phil 

Gibson for his critical review of the ISSR component of the dissertation, Dr. 

Xioaping Gou, Dr. Kathleen Duncan, Ron and Gloria Hoggard, and Ms. Kyong Sook 

Chung for discussions on technical issues. Thanks to Dr. Joseph Zume for assistance 

with maps. 

Last but not the least I’ll like to acknowledge my family especially my 

husband John, my children Michael and Monica, my brother and sister in law, Kweku 

 iv



and Ellen Richardson for their support and encouragement during my program of 

study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 v



TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS          iv 

LIST OF TABLES           ix 

LIST OF FIGURES            xi  

ABSTRACT OF DISSERTATION          xiii  

LIST OF APPENDICES          140 

CHAPTER I.     Seed Morphology in Tribe Gratioleae       1 

(Plantaginaceae) and its Taxonomic  

Significance 

   Abstract           2 

   Introduction           4 

   Materials and Methods         10 

   Results           12 

   Reticulate Seed Patterns        13 

   Striate Seed Patterns         15 

   Discussion          17  

   Literature Cited         23 

   Tables            27 

   Figures           32 

    

 

    

 vi



          Page 

 CHAPTER II.  Genetic Variation on Inter-Simple Sequence  

Repeats (ISSR) Markers in the Mecardonia  

acuminata Complex in Southeastern USA    39 

   Abstract          40 

   Introduction                     41  

   Materials and Methods       43  

   Sampling Strategy          44 

   ISSR Amplification        44 

   Data Analysis – Genetic Diversity      44 

    Data Analysis – Genetic relationships    45 

   Results            47 

    Genetic Variation       47 

    Genetic Relationships          48  

   Discussion          50 

    Genetic Diversity       50 

    Genetic Relationships          53 

   Systematic and biogeographic implications        53 

   Literature Cited        56 

   Tables          62 

   Figures         76 

 

 

 vii



             Page  

CHAPTER III  Morphological Variation in the Mecardonia  

acuminata (Plantaginaceae) Complex  

in Southeastern USA          79 

   Abstract            80 

   Introduction             82 

   Materials and Methods          85 

   Results             89 

    Morphological variation within M. acuminata    89 

    Character correlations within M. acuminata       90 

    Character correlation to latitude, longitude        

    and biogeographic region         90 

    Character correlation to subspecies delimitation  92 

   Discussion             94 

    Taxonomic Implications         98  

   Literature Cited           100 

   Tables             104 

   Figures            111 

   Appendices             121 

 
 
 
 
 
 
 
 

 viii



LIST OF TABLES 
         
         Page 
 

CHAPTER I. Seed Morphology in Tribe Gratioleae  

(Plantaginaceae) and its Taxonomic  

Significance 

1. Seed surface characteristics for species of  

tribe Gratioleae.                           27 

 CHAPTER II.  Genetic Variation based on Inter-Simple  

Sequence Repeats (ISSR) Analysis in the  

Mecardonia acuminata Complex in  

Southeastern USA 

1. Locations of 23 populations in southeastern USA   62 

2. Attributes of ISSR primers      64 

3. Genetic variability at ISSR loci                         65 

4. Genetic differentiation, gene flow and gene      

  variation      67 

5. Measures of genetic identity coefficient   72 

CHAPTER III  Morphological Variation in the Mecardonia  

acuminata (Plantaginaceae) Complex in  

Southeastern USA     

    1. Variations among quantitative characters             104 

    2. Variations among qualitative characters             107 

 ix



    3. Correlation among morphological characters        109

    4. Results of multivariate analyses              110

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 x



LIST OF FIGURES 

Page 

CHAPTER I. Seed Morphology in Tribe Gratioleae        

(Plantaginaceae) and its Taxonomic  

Significance 

Seed types of Mecardonia, Bacopa,  

and Benjaminia.    32 

1. Seed types of Gratiola, Sophronanthe, 

 Amphianthus and Scoparia   34 

2. Seed types of Stemodia    36 

 CHAPTER II  Genetic Variation based on Inter-Simple Sequence  

Repeats (ISSR) in the Mecardonia acuminata 

Complex in Southeastern USA 

1. Map of eastern USA showing population  

locations         76     

2. Neighbor-joining dendrogram   77 

CHAPTER III  Morphological Variation in the Mecardonia  

acuminata (Plantaginaceae)  

Complex in Southeastern USA   

1. Map of distributional range of M. acuminata 111 

2. Box plots illustrating variations in 

morphological characters   113

    

 xi



           Page 

3. Linear Regression Analysis        114 

4. Canonical Discriminant Function Analysis 

 Compared to latitude and longitude       116 

5. Canonical Discriminant Function Analysis 

 Compared to biogeographic regions       117 

6. Canonical Discriminant Function Analysis 

 Compared to subspecies        118 

7. Distribution of subspecies peninsularis and  

and microphylla         119 

 

   

  

 

 

 

 

 

 

 

 

 

            

 xii



DISSERTATION ABSTRACT 

 Seed surface morphology is known to be of taxonomic significance in some 

plant taxa, and has been used as diagnostic features of some families, genera and 

species. The tribe Gratioleae (Plantaginaceae) consists of 16 genera with worldwide 

distribution. Similar seed surface morphologies have been observed in some members 

of the tribe. This study employed scanning electron microscopy (SEM) to examine 

detailed seed surface scultpturings of 37 species belonging to eight genera of the 

tribe. Sixteen seed types were identified and unique to most genera. The overall 

diversity of seed surface morphology observed in the tribe Gratioleae suggests 

extensive but taxonomically significant seed morphological variations in the tribe. 

Three reticulate seed types were identified for the genus Mecardonia that has three 

species endemic to the USA. Mecardonia acuminata, a widespread species in 

southeastern USA consists of at least three subspecies (acuminata, peninsularis and 

microphylla). Inter-simple sequence repeat markers (ISSR) were employed to 

elucidate the genetic variation of 23 populations in the species complex. 

Morphological examinations of the individuals sampled across the entire range of the 

species were also performed to evaluate subspecies diagnostic features and to assess 

the actual distributional range of each of the subspecies. Analysis of ISSR markers 

confirmed a widespread distribution of subspecies acuminata and identified 

populations with high genetic diversities occurring mainly in the southern ranges of 

the species. The ISSR analysis also revealed some populations of subspecies 

microphylla that were originally considered to be populations of subspecies 

acuminate. Morphological analyses also revealed possible broad historical range 

 xiii



distributions of subspecies peninsularis and microphylla that occurred throughout 

most of the range of subspecies acuminata. Clinal variations were also observed in 

some characters particularly leaf length which was found to increase from south to 

north across the distributional range. Regional biogeographic analysis of the 

morphological data revealed separation of individuals endemic to southern Florida. 
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ABSTRACT 
 

Seed morphology provides important taxonomic characters that can be used to 

infer relationships among plant genera and species. The tribe Gratioleae is made up of 

terrestrial to aquatic herbs with non-alveolated (non-honeycomb) endosperm. The 

tribe consists of 16 genera and about 182 species distributed worldwide. Scanning 

electron microscopy (SEM) was employed to evaluate variation in testa surface 

patterns of 37 species representing eight genera in the tribe Gratioleae. Fiftteen seed 

types were identified based on testa surface sculpturing. Seed surfaces were mostly 

reticulate with radial walls of high or low relief and varied tangential wall patterns. 

The combination of radial wall thickenings and tangential wall patterns suggests 

varying seed types that are unique to most genera. Similar seed types were observed 

among some species of the genus Gratiola and its segregate monotypic genus 

Sophronanthe, and the genus Bacopa and its segregate monotypic genus Benjaminia. 

These observations suggest that the segregation of Sophronanthe from Gratiola and 

Benjaminia from Bacopa are ambiguous. The seed types observed for the genus 

Mecardonia also a segregate of Bacopa were significantly different from those of 

Bacopa. The distinct differences in seed morphology observed for these two genera 

support the segregation of Mecardonia from Bacopa. Seed surfaces of the genus 

Stemodia were either striate or reticulate. Four seed types were identified for the 

genus Stemodia alone, suggesting seed morphological variations in the genus. This 

observation indicates that the taxonomic placement of some species of the genus is 

ambiguous. The overall diversity of seed surface morphology observed in the tribe 

Gratioleae suggests extensive but taxonomically significant seed morphological 
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variations in the tribe. The current study also demonstrates the taxonomic significance 

of intricate seed surface sculpturing and the importance of employing SEM in plant 

systematics.  
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INTRODUCTION 

Seed surface morphology provides many useful taxonomic characters that can be 

used to distinguish genera and some species in the order Lamiales (Ichaso, 1978; Thieret 

1954; Elisens, 1985). Evidence of the taxonomic significance of seed surface 

ornamentations has been documented in various plant families including the 

Scrophulariaceae (Thieret, 1954; Ichaso, 1978), Hydrangeaceae (Hufford, 1995) and 

Annonaceae (Svoma, 1998). Seed morphology can be used to infer relationships within 

families (Hufford, 1995; Svoma, 1998), within tribes (Elisens and Tomb, 1983, 1985; 

Takahashi, 1993), and within genera (Mathews and Levin, 1986; Ness 1989). For example, 

investigations of seed morphology have been used to support relationships within the tribes 

Antirrhineae of Plantaginaceae (Elisens and Tomb, 1983), and Pyroloideae of Ericaceae 

(Takahashi, 1993); and within the genera Cordylanthus and Orthocarpus of Orobanchaceae 

(Chuang and Heckard, 1972, 1983); Paulownia of Paulowniaceae (Vujicic, 1993), and 

Nama of Hydrophyllaceae (Bacon and Bragg,1986). Despite the reliability of seed 

morphology in taxonomy, it has been less commonly used than vegetative and floral 

characters, or nuclear and chloroplast markers (Barthlott, 1981, Albach & al., 2005).  

Several seed morphological variations of taxonomic significance have been 

identified among some members of the order Lamiales particularly in the families 

Plantaginaceae and Orobanchaceae (Ichaso, 1978; Thieret, 1954, 1967). Light 

microscopic seed examinations of four genera of tribe Antirrhineae (Plantaginaceae) 

endemic to Brazil by Ichaso (1978) revealed five seed types unique to those genera. 

Subsequent Scanning Electron Microscopy (SEM) seed examinations on 

representative species of all sections of that tribe by Elisens and Tomb (1983) 
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revealed a total of seven morphological categories based on seed shape and surface 

ornamentation. Examinations of seed coat ornamentations in the family 

Orobanchaceae revealed three seed coat types in the genus Orthocarpus as well as 

many species-level differences (Chuang and Heckard, 1972, 1983). Seed surface 

investigations of four species of the genus Agalinis were found to be taxonomically 

significant for species identification (Canne, 1980). Similarly, seed surface 

ornamentations of the genus Aureolaria (Orobanchaceae) and genus Angelonia 

(Plantaginaceae) were also found to be taxonomically significant for species 

identification (Canne, 1980; Moro & al., 2001). 

Previous light microscopic seed investigations of members of the tribe 

Gratioleae (Scrophulariaceae s.l) endemic to Central America (Thieret, 1954) 

revealed four main seed types including the  reticulate seed type in the genera Bacopa 

and Lindernia, and longitudinally furrowed seed type in the genus Stemodia. 

Subsequent light microscopic investigations of 99 species of the family 

Scrophulariaceae (s.l.) that included tribe Gratioleae revealed 17 seed types in six 

tribes (Ichaso, 1978). In that study, six seed types were identified for tribe Gratioleae 

and at least 3 seed types for the genus Stemodia alone. Reticulate seed types were 

predominantly observed for some members of tribes Digitalideae and Buchnereae and 

most members of tribe Gratioleae. Thieret (1967) also observed similarities between 

seed characters of the genera Bacopa and Scoparia in tribe Gratioleae and Albach & 

al., (2005) suggested that seed characters may be useful for characterizing tribe 

Gratioleae. 
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Despite taxonomic evidence of the importance of seed surface morphology in 

some genera of the family Scrophulariaceae (s.l), very few detailed SEM studies have 

been conducted on the identification of seed types at the tribal or subtribal levels. The 

tribe Gratioleae as presented by Bentham and Hooker (1876) comprises 37 genera 

distributed worldwide particularly in North and South America, Australia and Africa. 

The tribe was characterized by an evoluted corolla tube, four or two stamens with two 

distinct anther locules, and capsules with two or four valves. One of the most 

important characters that distinguish the tribe is the seed morphology, which includes 

smooth or furrowed endosperm and longitudinal ridges with hook-like wall 

thickenings (reticulate) of the testa cells (Rahmanzadeh & al., 2005). Wettstein 

(1895) also recognized 37 genera in the tribe but excluded eight genera formerly 

classified by Bentham and Hooker (1987) namely, Herpestis, Microcarpaea, 

Mimulus, Limnophilia, Beyrichia, Bonnaya, Vandelia and Sibthorpia. Wettstein’s 

classification of tribe Gratioleae, however included Achetaria, Ambulia, 

Brythophyton, Dizygostemon, Geochorda, Ildefonsia, Lindernia, Mimetanthe, 

Otacanthus and Bacopa and was revised to include Herpestis (Wettstein, 1891; 

Albach & al., 2005). Recent molecular phylogenetic studies using two or three plastid 

genes by Olmstead and Reeves, (1995) and Olmstead & al., (2001) recognized 25 

genera of Wettstein’s Gratioleae as part of the “Scroph II” clade, thereby excluding 

12 of his genera. The tribe Gratioleae of the “New” Plantaginaceae (APG 1998; 2003; 

Olmstead, R. G. 2001; Oxelman & al., 2005), as proposed by Albach & al (2005), 

corroborated with the “Scroph II” of Olmstead and Reeves (1995).  
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Fischer (2004) in his recent treatment of the family Scrophulariaceae (s.l.), 

classified the family into 3 subfamilies; Antirrhinoideae, Gratioloideae, and 

Digitalidoideae. Subfamily Gratioloideae was further divided into 5 main tribes; 

Gratioleae, Angeloniaeae, Stemodieae, Limoselleae and Lindernieae (Fischer 2004). 

According to Fischer’s classification, the tribe Gratioleae is made up of terrestrial to 

aquatic herbs with non-alveolated (non-honeycomb) endosperm. The tribe consists of 

16 genera and about 182 species that can be grouped into three subtribes; Caprarinae, 

Dopatrinae and Gratiolinae. Subtribe Gratiolinae is characterized by herbs that are 

mostly aquatic, with opposite leaves, racemose or frondose inflorescence with 

subrotate to 2-lipped corolla and two to four stamens (Fischer, 2004). The fruit is a 

capsule and seeds of most members have been reported to be mainly reticulate or 

striate (Fischer, 2004; Ichaso, 1978; Thieret, 1954; 1967). Subtribe Gratiolinae 

consists of ten genera and about 121 species with temperate and tropical America or 

Pantropical distribution (Fischer, 2004; Pennell, 1935, 1946; Thieret, 1954). The ten 

genera belonging to this subtribe are Bacopa and Mecardonia (formerly Herpestis), 

Amphianthus, Gratiola, Sophronanthe, Benjaminia, Scoparia, Boelkea, Maeviella and 

Braunblequetia (Fischer, 2004). In a recent molecular phylogenetic analysis of the 

enlarged family Plantaginaceae using nuclear and plastid DNA regions (Albach & al., 

2005), the genera Bacopa, Mecardonia, Scorparia, Gratiola, Otacanthus and 

Stemodia formed a well supported clade (Bootstrap = 90%). The first four genera of 

this lineage are also members of subtribe Gratiolineae, therefore partly supporting 

Fischer’s classification of the subtribe. Similarly, a phylogenetic study of members of 

the order Lamiales using four plastid DNA sequences found a well supported clade 
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(bootstrap = 98%) for the genera Gratiola, Scoparia, Mecardonia and Stemodia 

(Oxelman & al., 2005). A previous molecular phylogenetic study of the family 

Scrophulariaceae (s.l) found a well supported clade (Bootstrap = 100%) comprising 

Bacopa, Gratiola and Amphianthus (Olmstead et al., 2001).  

Scanning electron microscopy investigations of seed coat ornamentations 

provide insights into intricate microsculpturing patterns on the radial and tangential 

walls of the seed coat cells Canne, 1979, 1980; Chang and Heckard, 1972, 1983; 

Vujicic, 1993; Juan & al., 1994; Moro et al., 2001). Although previous seed surface 

studies of some members of Plantaginaceae by Thieret (1954; 1967) and Ichaso 

(1978) have suggested that reticulate seed type is common in tribe Gratioleae, 

particularly in subtribe Gratiolinae, and it has been observed that there is some 

similarity between seed characters of Bacopa and Scoparia (Thieret, 1967), no 

detailed SEM observations of seed surface ornamentations have been conducted at 

the tribal or subtribal level. The present paper presents SEM investigations of seed 

morphology in the subtribe Gratiolinae (Fischer, 2004). The investigations include 

species of eight of the ten genera classified under the subtribe as well as some species 

of the genus Stemodia (Table 1). The genus Stemodia was included in the current 

study since previous morphological studies (Bentham and Hooker, 1876; Wettstein, 

1895; Small, 1913; Bigazzi, 1993) and recent molecular phylogenetic studies of the 

enlarged family Plantaginaceae (Olmstead & al., 2001; Albach & al., 2005; Oxelman 

& al., 2005) have found the genus to be closely related to some members of subtribe 

Gratiolinae, and the group was referred to as the ‘core” Gratioleae in Albach et al., 

2005). In Fischer’s treatment of the Scrophulariaceae, the genus Stemodia is 
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classified under tribe Stemodieae (Fischer, 2004) The relevance of this investigation 

is therefore, to identify similarities or differences in seed surface ornamentations 

among genera of the subtribe Gratioliinae and the genus Stemodia, and to identify 

new and additional morphological characters that can be used in delimiting the group. 

Examinations of microsculpturing of the seed coats of species of the genera will serve 

as additional taxonomic evidence for the tribe Gratioleae as a whole. 
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MATERIALS AND METHODS 

Mature whole seeds were removed from herbarium specimens obtained from 

the Missouri Botanical Garden (MO), the Botanical Research Institute of Texas 

(BRIT), Vanderbilt University (VDB), New York Botanical Garden (NY), and the 

University of Oklahoma (OKL). Samples were obtained from 41 species representing 

eight genera considered closely related in taxonomic treatments of subtribe 

Gratiolinae in tribe Gratioleae (Fischer 2004) or indicated as members of a 

monophyletic clade in molecular phylogenetic analyses (Albach & al., 2005; 

Rahmanzadeh & al., 2005; Estes and Small in press, unpublished data) (Table 1). 

Eighteen species were sampled for Bacopa, nine species for the genus Mecardonia, 

six species for Stemodia, three species for Gratiola, two species for Scoparia and one 

species each for the monotypic genera Sophronanthe, Benjaminia and Amphianthus.  

Samples of species of Bacopa were obtained for five of six sections (Pennell, 1946):  

Bacopa Wettstein, Bramia (Lamarck) Wettstein, Chaetodiscus (Bentham) Wettstein, 

Herpestis (C. F. Gaertner), and Mella (Vandelli) Wettstein. Samples of section 

Silvinula (Pennell) were not included in this study. 

Seeds from multiple specimens were observed initially under the compound 

microscope and representative seeds were selected from one herbarium sheet to 

represent each species. One to four seeds per species were mounted on double-sided 

carbon tape affixed to aluminum SEM stubs.  Specimens were sputter-coated with 

approximately 200 Å of gold/palladium.  Seeds were examined on a JEOL-880 SEM 

operating at 15 kV and images digitally captured using IXRF/EDS system.  Images 
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were prepared, and plates were assembled using Adobe Photoshop version 7.0.  A list 

of specimen collections examined is provided in the Appendix 1-1.  
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RESULTS 

Among species examined, seeds are numerous per capsule and range in size 

from 0.4 mm (Mecardonia flagellaris) to 1.1 mm (Amphianthus pusillus).  Seed 

shapes are ellipsoidal, cylindriodal or ovoid, and vary depending on seed packaging 

in the capsule. A cross section of Mecardonia acuminata seeds shows that the seed 

coat consists of two layers of cells. The inner layer is made up of small and 

rectangular cells whereas the outer layer comprises of large cells. The radial cell walls 

of the outermost layer the epidermis, are thickened and project into ridges to form a 

reticulate pattern (not shown).  

Fifteen seed patterns were identified (Table 1).  Thirteen reticulate and two 

striate seed patterns were described based on general seed surface pattern, variation in 

the ornamentation of the tangential walls, and the relative height and ornamentation 

of the radial walls.  Reticulate seeds had a surface pattern characterized by a 

reticulum outlined by elongated radial walls against a tangential surface without 

grooves or lines.  In contrast, striate seeds had several longitudinal grooves present on 

the seed surface.  Tangential wall ornamentation varied in both reticulate and striate 

seeds, with the structural range characterized as smooth, alveolate, corrugate, 

nodulate, papillate, rugulate, or verrucate.  Radial walls were assessed subjectively 

with either ‘high’ or ‘low’ relative height, whereas radial wall ornamentation patterns 

were described as smooth, mammilate, or nodulate.  

Species of Mecardonia exhibited three reticulate seed patterns (1, 2, 3) that 

differed in the ornamentation pattern of the radial walls.  Patterns 1 and 3 were unique 

to Mecardonia, although pattern 2 was found also in Amphianthus pusillus.  Species 

 12



of Bacopa were characterized by five reticulate patterns (4, 5, 6, 7, 8), which differed 

primarily in ornamentation of the tangential walls that were either alveolate, papillate, 

reticulate, or verrucate.  Seeds of Bacopa generally had low radial walls, except for B. 

crenata.  Reticulate pattern 5 was the most common pattern in Bacopa (eight species) 

and also was observed in seeds of Benjaminia reflexa (= Bacopa reflexa (Benth.) 

Loefgr. & Edwall).  Reticulate patterns 9 and 10 were confined to Gratiola and 

differed in height of the radial walls and tangential wall ornamentation.  Reticulate 10 

seeds were present also in the segregate Sophronanthe hispida (= Gratiola hispida 

Pollard). Whereas both species examined in the genus Scoparia had seeds 

characterized as Reticulate 11, four unique seed patterns were observed in Stemodia.  

Two reticulate patterns (12, 13) and two striate patterns (1 2) were observed among 

seeds of six species of Stemodia.  Striate seeds were observed only in the genus 

Stemodia.  The 15 primary seed patterns are described below. 

Reticulate Seed Patterns.  Reticulate seeds characterize the Gratioleae as 

usually defined (Thieret 1954, Dathan 1995, Fischer 2004, Olmstead et al. 2005, 

Rahmanzadeh et al. 2005), although Stemodia with both reticulate and striate seeds 

has been placed in the Stemoideae by Fischer (2004) and Rahmanzadeh et al. (2005). 

Reticulate pattern 1 (Figs. 1A, 1B) was characterized by smooth tangential 

walls and high radial walls with a mammilate ornamentation.  Reticulate I seeds were 

observed only in the genus Mecardonia in M. dianthera, M. procumbens, M. 

vandelloides and M. veronicaefolia.   

Reticulate Pattern 2 (Figs. 2G, 2H) was characterized by smooth tangential 

and radial wall ornamentation and high radial walls.  Reticulate II seeds were 
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confined to Amphianthus and three species of Mecardonia:  M. acuminata, M. 

montevidensis, and M. tenella. 

Reticulate Pattern 3 (Figs. 1C, 1D) had seeds with smooth tangential walls 

and high radial walls with nodulate ornamentation.  Reticulate III seeds only were 

observed for M. flagellaris. 

Reticulate Pattern 4 (Figs. 1E, 1F) was characterized by alveolate tangential 

walls with smooth radial walls of comparatively low relief. This seed pattern was 

observed only in B. axillaris in Section Mella and B. egensis, B. rotundifolia, B. 

salzamanii and B. stragula in Section Herpestis. 

Reticulate Pattern 5 (Figs. 1G, 1H, 1K, 1L) seeds had papillate tangential 

walls and smooth radial walls with low relief.  It was the most common seed type in 

Bacopa and characterized the seeds of eight species in two sections:  B. aquatica, B. 

bacopoides, B. decumbens, B. floribunda, B. gratiloides, B. lacertosa, B. laxiflora (all 

of Section Mella), and B. monnieri (Section Bramia).  Reticulate V seeds also 

occurred in Benjaminia reflexa. 

Reticulate Pattern 6 (not shown) seeds were observed only in Bacopa crenata 

of Section Mella.  The seed coat had papillate tangential walls and smooth radial 

walls of high relief.  

Reticulate Pattern 7 (not shown) seeds also were observed only in Bacopa in 

three species of Section Mella (B. auriculata, B. bracteolata, B. sessiflora) and B. 

caroliniana of Section Chaetodiscus.  Reticulate VII seeds had verrucate tangential 

walls with smooth radial walls of low relief.  
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Reticulate Pattern 8 (Figs.  1I, 1J) was characterized by reticulate tangential 

walls and low radial walls with smooth ornamentation. Reticulate VIII seeds were 

observed only in B. egensis of Section Herpestis. 

Reticulate Pattern 9 (Figs. 2C, 2D) had seeds with verrucate tangential walls 

and smooth radial walls of high relief.  This seed pattern was observed only in 

Gratiola aurea and G. neglecta. 

Reticulate Pattern 10 (Figs. 2A, 2B, 2E, 2F) was characterized by corrugate 

tangential walls and low radial walls with a smooth ornamentation pattern.  Reticulate 

X seeds were observed in Gratiola pilosa and in the segregate genus Sophronanthe 

(S. hisida). 

Reticulate Pattern 11 (Figs. 2I, 2J, 2K, 2L) seeds had rugulate tangential walls 

with smooth radial walls of low relief.  Seeds with this pattern were observed for the 

two species examined for Scoparia, S. dulcis and S. montevidensis. 

Reticulate Pattern 12 (Figs. 3E, 3F) had seeds characterized by verrucate 

tangential walls and low radial walls with a nodulate ornamentation pattern.  

Reticulate XII seeds were observed in Stemodia durantifolia and S. lanceolata. 

Reticulate Pattern 13 (Figs. 3G, 3H) seeds were similar to Reticulate XII 

seeds with verrucate tangential walls and nodulate radial walls, but differed from 

Reticulate XII by high radial walls.  Seeds with this pattern only were observed in 

Stemodia schottii and S. stricta. 

Striate Seed Patterns.  Striate seeds were observed only in two species of the 

genus Stemodia.  Two patterns were observed and differed in tangential wall 

ornamentation and radial wall height and ornamentation pattern. 
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Striate Pattern 1 (Figs. 3C, 3D) seeds combined longitudinal grooves and 

reticulate patterns on the seed surface.  The tangential walls were verrucate and the 

radial walls had a low relief with a smooth ornamentation pattern. Striate I seeds were 

observed only in Stemodia suffructicosa.  

Striate Pattern 2 (Figs. 3A, 3B) seeds were characterized by longitudinal 

grooves and a surface sculpturing pattern described as nodulate.  Reticulations are not 

apparent or similar in appearance to those described for the reticulate seed patterns.  

Striate II seeds were observed only in Stemodia verticillata. 
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DISCUSSION 

 The identification of 12 reticulate seed types for the nine genera investigated 

demonstrates extensive variation in reticulate seeds. Reticulate testas observed for all 

species of subtribe Gratiolinae also support the monophyly of the group (Thieret, 

1954; Fischer, 2004; Albach & al., 2005). Most of the large genera had two or more 

seed types that were unique to the genus. These unique reticulate seed types provide 

further taxonomic evidence in support of the monophyly of each of the genera, 

Scoparia Bacopa and Mecardonia (Rossow, 1987; Pennell, 1946). One seed type 

(XI), was identified for the two species of Scoparia investigated. Although this genus 

had limited sampling, the identification of seed type XI, can be considered a 

representation of the seed type for the genus. Seven seed types were identified for the 

genus Bacopa which has about 60 species distributed worldwide. The seed types of 

Bacopa were all unique to the genus, but not unique to any particular section thereby 

indicating that, either seed characters are not useful in section characterization or the 

taxonomic circumscription of the sections may be ambiguous (Pennell, 1946). None 

of the Bacopa seed types was identified in the genus Mecardonia which is a segregate 

of Bacopa (Pennell, 1946). Despite the variation of seed types in this genus, four of 

the seed types were not identified in any other genus investigated. Seed type IV was 

however observed in the monotypic genus Benjaminia (Fig. 1K, L), a segregate of 

Bacopa (Bentham, 1873), section Chaetodiscus (Pennell, 1946). Seed type V 

(papillate tangential walls and smooth radial walls with low relief) was identified in 

eight of the eighteen species of Bacopa examined (Table 1), and was the most 

common seed type observed for the genus. Benjaminia reflexa has long been 
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considered congeneric with Bacopa but differs in its dissected leaves and slightly 

connate subequal clayx lobes (D’Arcy, 1979). The shared seed type V observed 

between Benjaminia and some members of Bacopa provides additional evidence in 

support of previous classification of this genus as a species of Bacopa (Bentham, 

1873; Pennell, 1946). The three seed types I, II and III observed for the genus 

Mecardonia, also a segregate of Bacopa (Pennell, 1923), were not observed in any 

species of Bacopa s.s.. The tangential walls of all these seed types are smooth, 

whereas those of Bacopa are sculptured (Table 1; Fig. 1E – J). These unique seed 

types of Mecardonia support the segregation of the genus from Bacopa (Pennell, 

1946; Rossow, 1987). Seed type II of Mecardonia was also observed in the genus 

Amphianthus. However, the seeds of Amphianthus are much bigger (1.1 mm long) -  

about double the size of Mecardonia seeds (0.4 mm – 0.6 mm). The shared seed type 

between Amphianthus and some members of Mecardonia suggests that these two 

genera may be closely related than originally thought. 

 Seed examination of the genus Gratiola, revealed 2 main seed types, IX (G. 

aurea and G. neglecta) and X (G. pilosa). Seed type X was similar to that observed 

for the genus Sophronanthe except that, the corrugate tangential wall patterns on S. 

hispida were not as closely spaced as observed in G. pilosa. The taxonomic 

placement of G. pilosa, was once in the genus Sophronanthe and then Tragiola 

(Small, 1933). The presence of similar seed types observed for the two taxa suggests 

close relatedness between these two taxa. Phylogenetic analysis of members of the 

genus Gratiola using ndhF gene sequences revealed that G. pilosa is sister to S. 

hispida (Estes and Small, unpublished data). Striate seed types (Thieret, 1979) were 
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not identified for any of the genera examined under subtribe Gratiolinae except for 

the genus Stemodia (tribe Gratioleae/Stemodieae). 

The identification of both reticulate and striate seed types for the genus 

Stemodia demonstrates variations in the seed morphology for that genus and 

corroborates with previous seed investigations of the genus (Thieret, 1954, Ichaso, 

1978, Fischer, 2004). The taxonomic placement of the genus in the tribe Gratioleae 

remains ambiguous (Fischer, 2004, Albach & al., 2005). Whereas most molecular and 

morphological studies have included Stemodia under the tribe Gratioleae (Albach & 

al., 2005; Oxelman & al., 2005; Thieret, 1978), some morphological studies have 

included the genus in the tribe Stemodieae (Fischer, 2004). Both Gratioleae and 

Stemodieae are classified under the subfamily Gratioloideae (Fischer, 2004; 

Rahmanzadeh & al., 2005). Previous Stemodia seed investigations by Thieret (1978) 

revealed three seed types; reticulate, striate and granulate. In the current study, two 

types of reticulate seeds (XII and XIII) and two types of striate seeds (Striate I and II) 

were identified (Fig. 3).The presence of five seed types in six of the Stemodia species 

investigated suggests variation in seed morphology and concurs with its uncertain 

taxonomic placement in the family. These seed observations raise questions on the 

infrageneric relationships, and suggest that the genus may be polyphyletic. In an 

attempt to determine the phylogenetic relationships among members of the newly 

segregated Plantaginaceae, Albach & al., (2005) employed nuclear and plastid 

markers to establish well supported clades within the family. One of these clades was 

the Gratioleae clade of which Gratiola, Bacopa, Mecardonia, Scoparia, Stemodia and 

Otacanthus were referred to as the ‘core’ Gratioleae. Previous phylogenetic studies of 
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the family Scrophulariaeae s.l. using three plastid genes revealed a strongly supported 

group of three representatives (Bacopa, Amphianthus and Gratiola) of the tribe 

Gratioleae (Olmstead & al., 2001). Similarly, phylogenetic analysis of the order 

Lamiales employing plastid DNA sequences found strong support for the Gratioleae 

representatives, Mecardonia, Gratiola, Scoparia and Stemodia (Oxelman & al., 

2005). Molecular evidence for further support of the ‘core’ Gratioleae was presented 

by Rahmanzadeh & al. (2005) but was based on limited sampling. These phylogenetic 

analyses involving Stemodia and some members of ‘core’ Gratioleae, found weak 

support for Stemodia as a sister to Gratiola and Otacanthus (ITS and rps16 intron – 

Albach & al., 2005), sister to Otacanthus (trnL-F region – Albach & al., 2005) or 

sister to Gratiola (trnL-F and rps16 or ndhF – Oxelman & al., 2005).The combined 

evidence from all these phylogenetic studies indicated that the tribe Gratioleae 

included Gratiola, Bacopa, Mecardonia, Scoparia, Amphianthus, Stemodia and 

Otacanthus (Olmstead et al., 2001; Albach & al., 2005; Oxelman & al., 2005; 

Rahmanzadeh & al., 2005). Most of the placement of genera belonging to the ‘core’ 

Gratioleae was concordant with the morphological revision of the tribe by Fischer, 

(2004) except for Stemodia and Otacanthus. However, results of this seed study 

indicate that sampling of Stemodia in any Gratioleae phylogenetic or taxonomic study 

is critical since some members (with reticulate seeds) may be more closely related to 

Gratioleae than others as is evident in the diverse seed types. The phyogenetic study 

of Albach & al., (2005) is the only recent study with an expanded sampling of the 

Gratioleae. The ‘core’ Gratioleae included only Bacopa, Mecardonia, Scoparia and 

Gratiola, and the Stemodieae included Stemodia, and Otacanthus. This clade was 
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well supported (Bootstrap 100%) although some of the internal nodes were weakly 

supported. Comparing the current seed investigations with this Gratioleae clade, we 

observe that the seed type of Mecardonia I, II and III (characterized be smooth 

tangential walls, high relief radial walls that are either smooth, nodulate or 

mammilate) may be ancestral to the tribe. Mecardonia and Amphianthus are the only 

genera with smooth tangential walls. This infers that smooth tangential wall may be a 

plesiomorphic character in the group. The diversification of seed types resulted from 

ornamentations of the tangential walls with a retention or reduction of high radial 

wall relief. Evolution of the seed types may therefore have involved minimum or no 

ornamentation of radial walls in the Gratioleae. The smooth radial wall is a feature 

that was retained in most members of the group whereas, the mammilate radial walls 

were reduced to nodulate as seen in M. flagellaris and in some species of Stemodia, 

particularly in S. durantifolia, which shows a clear reduction of the radial wall height 

(Fig 3E, F).  The SEM investigations reveal that the description of Gratioleae seeds as 

reticulate is not adequate due to variations in tangential wall patterns. The reticulate 

morphology of the seeds is due to the presence of smooth and distinct radial walls 

that appear like ridges when observed under low power magnification. The tangential 

wall patterns are obscure due to their intricate designs and are discernible only under 

high power magnification. Nevertheless, these tangential wall patterns are critical in 

characterizing the various genera. 

Results of the investigations, suggest that seed morphology is a significant 

taxonomic character that can be employed in delimiting the tribe and provides 

evidence supporting the monophyly of the tribe (Thieret, 1979; Fischer, 2004). 
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Variations in the seed surface morphology are consistent for most genera and are 

characteristic of a genus (Thieret, 1979). The diverse seed variations observed in the 

‘core’ Gratioleae (subtribe Gratioliinae) demonstrate the reliability of seed surface 

morphology in the taxonomic characterization of members of the group. These 

observations concur with previous findings on the taxonomic significance of seed 

morphology in the family Scrophulariaceae (Elisens and Tomb 1983; Chuang and 

Heckard, 1983, 1992; Canne, 1979, 1980; Ichaso, 1978; Moro et al., 2001). The 

results obtained also corroborate the current classification of Mecardonia as a 

segregate genus but raises questions on the taxonomic placement of G. pilosa and its 

relationship with the genus Sophronanthe. 
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Table 1.  Seed surface characteristics among species of tribe Gratioleae.   
____________________________________________________________________________________________________________ 

Genus                            Tangential wall                   Radial Wall              
      Section Species                        Illustration (Figure) Seed Type           Ornamentation           Relative    

Ornamentation 
                                                                                                                                                                          Height 
____________________________________________________________________________________________________________ 
 
Amphianthus Torr.  

 pusillus Torr.                               2G, 2H Reticulate II smooth high smooth 

Bacopa Aubl.  

      Bacopa aquatica Aubl.                             1G, 1H Reticulate V papillate low smooth  

      Mella auriculata Robins. Reticulate VII verrucate low smooth  

27       Mella axillaries Benth. Reticulate IV alveolate low smooth  

      Mella bacopoides Benth. Reticulate V papillate low smooth 

      Mella bracteolata (Pennell) Standl. Reticulate VII verrucate low smooth 

      Chaetodiscus caroliniana (Walter) Robinson Reticulate VII verrucate low smooth 

      Mella crenata (Beauv.) Hepper Reticulate VI papillate high smooth 

      Mella decumbens Fernald. Reticulate V papillate low smooth       
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Table 1 continued 
____________________________________________________________________________________________________________ 
Genus                            Tangential wall                   Radial Wall              
 
     Section Species                         Illustration (Figure)    Seed Type           Ornamentation           Relative    Ornamentation 
                                                                                                                                                                            Height 
____________________________________________________________________________________________________________ 
 Herpestis egensis Poeppig                         1I, 1J Reticulate VIII reticulate low smooth     

 Mella floribunda R. Brown Reticulate V papillate low smooth 

      Mella gratiloides Chamisso Reticulate V papillate low smooth

 Mella  lacertosa Standl. Reticulate V papillate low smooth 

      Mella laxiflora Benth. Reticulate V papillate low smooth 28 

      Bramia monnieri (Linn) Penn. Reticulate V papillate low   smooth 

      Herpestis rotundifolia Gaertn. Reticulate IV alveolate low smooth 

      Herpestis salzamanii (Benth.) Edwall       1E, 1F Reticulate IV alveolate low smooth 

      Mella sessiflora Benth. Reticulate VII verrucate low smooth 

      Herpestis stragula Fern. Reticulate IV alveolate low smooth 

Benjaminia Mart.  

reflexa (Benth) D’Arcy              1K, 1F Reticulate V papillate low smooth 

28
 

 



Table 1 continued 
____________________________________________________________________________________________________________ 
Genus                            Tangential wall                   Radial Wall              
 
     Section Species                         Illustration (Figure) Seed Type           Ornamentation           Relative    Ornamentation 
                                                                                                                                                                          Height 
____________________________________________________________________________________________________________ 
Gratiola Linn. 

 aurea Pursh                                      2C, 2D Reticulate IX verrucate high smooth 

 neglecta Torr. Reticulate IX verrucate high smooth 

  pilosa Michx.                                   2A, 2B Reticulate X corrugate  low smooth 

Mecardonia Ruiz & Pav. 

29   acuminata (Walter) Penn. Reticulate II smooth high smooth 

  dianthera (Swartz) Penn. Reticulate I smooth high mammilate  

       flagellaris (Charm. & Schl.) Penn.  1C, 1D Reticulate III smooth high nodulate 

 grandiflora (Benth.) Penn. Reticulate II smooth high smooth 

      montevidensis (Spreng) Penn. Reticulate II smooth high smooth 

  procumbens (Mill.) Small                1A, 1B Reticulate I smooth high mammilate 

       tenella (Charm. & Schlecht) Penn. Reticulate II smooth high smooth 
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Table 1 continued 
____________________________________________________________________________________________________________ 
Genus                            Tangential wall                   Radial Wall              
 
     Section Species                           Illustration (Figure) Seed Type           Ornamentation           Relative        Ornamentation 
                                                                                                                                                                           Height 
____________________________________________________________________________________________________________ 
  vandelloides (H.B.K.) Penn. Reticulate I smooth high mammilate 

       veronicaefolia (Charm. & Schl.) Reticulate I smooth high mammilate 

Scoparia Linn. 

 dulcis Linn.                                         2I, 2J Reticulate XI rugulate low smooth 

 montevidensis (Spreng) R.E. Fries     2K, 2L Reticulate XI rugulate low smooth  

Sophronanthe Benth. 

 hispida Benth                                      2E, 2F Reticulate X corrugate low smooth 

Stemodia Linn. 

30 

 durantifolia (Linn.) Swartz                3E, 3F Reticulate XII verrucate low nodulate 

 lanceolata Benth. Reticulate XII verrucate low nodulate 

 schottii (Holz) Reticulate XIII verrucate high nodulate 

 stricta Charm, & Schlecht                 3G, 3H Reticulate XIII verrucate high nodulate 

30
 

 



Table 1 continued 
____________________________________________________________________________________________________________ 
Genus                            Tangential wall                   Radial Wall              
 
     Section Species                       Illustration (Figure) Seed Type           Ornamentation           Relative      Ornamentation 
                                                                                                                                                                           Height 
____________________________________________________________________________________________________________ 
 

 suffruticosa Kunth                        3C, 3D Striate I verrucate low smooth 

 verticillata (Mill.) Hassl.              3A, 3B Striate II nodulate N/A N/A 

____________________________________________________________________________________________________________ 

31  
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Fig 1.  Reticulate seed patterns of Mecardonia, Bacopa, and Benjaminia.  A-B, 

Reticulate I, smooth tangential walls and high mammalate radial walls, Mecardonia 

procumbens.  C-D, Reticulate III, smooth tangential walls and high nodulate radial 

walls, Mecardonia flagellaris.  E-F, Reticulate IV, alveolate tangential walls and low 

smooth radial walls, Bacopa salzamanii  G-H, Reticulate V, papillate tangential walls 

and low smooth radial walls, Bacopa aquatica.  I-J, Reticulate VIII, reticulate 

tangential walls and low smooth radial walls, Bacopa egensis.  K-L, Reticulate V, 

papillate tangential walls and low smooth radial walls, Benjaminia reflexa. Scale: A, 

E, G, K = 50 um; B, C, F, H = 20 um; D, L = 10 um. 
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Fig 2.  Reticulate seed patterns of Gratiola, Sophronanthe, Amphianthus, and 

Scoparia.   A-B, Reticulate X, corrugate tangential walls and low smooth radial walls, 

Gratiola pilosa.  C-D, Reticulate IX, verrucate tangential walls and high smooth 

radial walls, Gratiola aurea.  E-F, Reticulate X, corrugate tangential walls and low 

smooth radial walls, Sophronanthe hispidi.  G-H, Reticulate II, smooth tangential 

walls and high smooth radial walls, Amphianthus pusillus.  I-J, Reticulate XI, regulate 

tangential walls and low smooth radial walls, Scoparia dulcis.  K-L, Reticulate XI, 

regulate tangential walls and low smooth radial walls, Scoparia montevidensis. Scale: 

A, C, E, I, K = 50 um; B, D, F, H, J = 10 um; L = 5 um. 
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Fig: 3.  Reticulate and striate seed patterns of Stemodia.  A-B, Striate II, nodulate 

seed surface,  S. verticillata.  C-D, Striate I, verrucate tangential walls and low 

smooth radial walls, S. suffruticosa.  E-F, Reticulate XII, verrucate tangential walls 

and low nodulate radial walls, S. durantifolia. G-H, Reticulate XIII, verrucate 

tangential walls and high nodulate radial walls, S. stricta. Scale: A, E, G = 50 um; B, 

F, G = 10 um; C = 100 um; D = 20 um. 
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__________________________________________________________________
Appendix 1.1 Information on sources of herbarium specimens used in the seed study 

Amphianthus: Amphianthus  pusillus, S. R. Hill 27728 (BRIT), USA, S. Carolina, 

Lancaster Co. Bacopa: B. aquatica, van der Werff, Gonzales 5108 (MO), Venezuela, 

Tachira; B. salzamanii, Kral, Boom, Stergios, Aymard 71776, Venezuela, Atures; B. 

egense K Vincent 71776 MO, Dale, Thomas, LA, Union Parish; Benjaminia: B. 

reflexa Mass, Koek-N, Hall, ter Welle Westra 7688 (NYBG), Guyana, Karanambo. 

Gratiola: G. aurea W.R Faircloth, R. Norris 4801 (MO), USA, Georgia, Brooks Co.; 

G. pilosa S. T. Orzell, E. L. Bridges 19936, (BRIT), USA, Florida, Nassau Co.; G. 

neglecta, Delzie Demaree 19159 (OKL ), USA, Arkansas, Lincoln Co. Mecardonia: 

M. procumbens, E. Palmer 200 (MO), Mexico, Tamaulipas; M. flagellaris, Nerulg 

Berro 161 (MO), Argentina, Province Cordoba. Scoparia: S. dulcis, U. T. Waterfall, 

C. S. Willis 14665 (OKL), Mexico, Tamaulipas; S. montevidensis, R. K. Godfrey 

59488 (BRIT), USA, Florida, Franklin Co., Sophronanthe: S. hispida, Delzie 

Demaree 23095 (BRIT), USA, Mississippi, Jackson Co., Stemodia: S. suffruticosa, 

Camilo Diaz, S. 2007 (BRIT), Peru, Cajamarca, San Ignacio; S. stricta, B. Rambo 

41249 (BRIT), Brasil, Rio Grande de sul, Cai; S. durantifolia, R. B. Hamblett 1771 

(BRIT); S. verticillata E. Schwindt 2290 (OKL), Argentina, Igaazu. S. lanceolata, A. 

G. Schulz 7476 (BRIT) Argentina, Colonia Benitezm;  

_____________________________________________________________________ 
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ABSTRACT 

Mecardonia acuminata is a wetland species in southeastern USA, distributed 

throughout the region. Previous classifications proposed three subspecies acuminata, 

peninsularis, and microphylla based on the shape and size of leaves, and length of 

pedicel. Subspecies acuminata is widespread and occurs throughout most of the 

distributional range of the species, whereas subspecies microphylla and peninsularis 

are known to occur in sympatry with subspecies acuminata in the southern ranges. 

Inter simple sequence repeats (ISSR) were employed to elucidate the genetic 

relationships among 23 populations of the M. acuminata complex sampled from 7 

states ranging from Texas and Tennessee to Florida. Ninety-four loci scored for seven 

ISSR primers were utilized in the genetic investigation of 237 individuals. Results of 

the analysis revealed appreciable levels of common loci shared among most 

populations with only 11 population-specific loci (private alleles). Percentage 

polymorphism was estimated to be 100% for total populations. Moderate to high 

levels of genetic variation as estimated from percentage polymorphisms were 

observed for populations suspected to be mixed populations of two or more 

subspecies. Populations of low genetic variation were indicative of the predominance 

of one main subspecies.  Neighbor-joining analysis revealed that some populations of 

subspecies peninsularis sampled from central Florida actually consisted of mixed 

populations of that subspecies and subspecies acuminata. The current study reveals 

more subspecies microphylla populations embedded within the range of subspecies 

acuminata, and also confirms a widespread distribution of subspecies acuminata.  
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INTRODUCTION 

Mecardonia acuminata (Plantaginaceae) is a widespread species in southeastern 

USA and can be identified by its white corolla with longitudinal purple veins on the 

posterior side of its throat (Pennell 1947; Rossow, 1987; Wunderlin and Hensen, 2003). 

This species is typically found on moist sandy loam, or heavier loam soil, subacidic or 

acidic, usually near streams in pineland or deciduous woodland (Pennell, 1935). It occurs 

along the eastern and southeastern regions of the United States, from Maryland to Texas 

(Pennell, 1922; Rossow, 1987). Flowering occurs mainly though the summer, followed by 

the formation of fruits, which occur throughout the fall (Pennell, 1946; Rossow, 1987; 

Wunderlin and Hensen, 2003). Previous classifications of the species have included three to 

four subspecies (Pennell, 1922). In his classification of the species, Pennell (1935) 

suggested three subspecies based on the shape and size of leaves, and length of the pedicel 

(subspecies acuminata, penisularis and microphyla). Subspecies acuminata is widespread 

and can be found almost in the entire distributional range of the species (Pennell 1946; 

Rossow, 1987); subspecies microphylla occurs from and northern Florida through southern 

Georgia to southeastern Louisiana (Pennell 1946; Rossow, 1987); and subspecies 

peninsularis, occurs only in southern Florida (Pennell 1922; Wunderlin and Hensen, 2003). 

In his recent taxonomic revision of the genus Mecardonia, Rossow (1987) confirmed the 

taxonomy of the three subspecies of M. acuminata, based on the size of leaves, length of 

pedicel and branching patterns of the stem. A recent guide to the vascular plants of Florida 

by Wunderlin and Hensen (2003) also confirmed the occurrence of all three subspecies in 

that state. Identification of subspecies peninsularis and acuminata in the field is relatively 

obvious, whereas subspecies micophylla is ambiguous.  
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Despite the widespread distribution of these species in southeastern USA, no 

population genetic studies have been conducted to test the morphological classification of 

these 3 subspecies, to assess the genetic variation among the subspecies or to determine the 

genetic structure of the species complex. The current study employs Inter Simple Sequence 

Repeats (ISSR) to assess the genetic structure of the species complex and to assess genetic 

variation among populations of the three subspecies. Simple sequence repeats (SSR) are 

short tandem nucleotide repeats of about six base pairs or less that are scattered evenly 

throughout the eukaryotic genome (Hamada and Kakunga, 1982). The region between any 

two SSRs (ISSR), can be amplified and employed as markers in plant genetic studies to 

facilitate cultivar identification (Charters et al., 1996), assess clonal diversity and patterns of 

gene flow among species and populations (Wolfe and Liston 1998). Primers designed from 

within the SSR motifs can be used to amplify an individual’s ISSR regions via the 

Polymerase Chain Reaction (PCR) (Wolfe and Liston 1998). The resulting amplified 

fragments can be resolved on agarose or polyacrylamide gels, and the band sizes scored and 

analyzed (Wolff and Morgan-Richards, 1998; Wolfe and Liston 1998). The principal goals 

of this study were genetically to test the morphological classification of the subspecies, to 

determine the amount of genetic differentiation and gene flow among populations of the 

species complex, and to determine the level of genetic variation among the three subspecies 

of M. acuminata. 
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MATERIALS AND METHOD 

Sampling Strategy 

Several herbarium specimens of M. acuminata were initially observed to 

identify locations of the three subspecies in the southeastern USA. Twenty-three 

populations were sampled from seven southeastern USA states: Florida, Georgia, 

Alabama, Mississippi, Tennessee, Louisiana and Texas (Table 1, Fig 1). Populations 

were named according to counties, except for Rutherford County, TN where four 

populations were sampled. Populations from that county were therefore named 

alphabetically (Table 1). The sampling locations comprised two populations of 

subspecies microphylla, three populations of subspecies peninsularis, and 17 

populations of subspecies acuminata (Fig 1). The two populations of subspecies 

microphylla were also located in the distributional range of subspecies acuminata. 

Two of the three populations of subspecies peninsularis also occurred in the 

distributional range of subspecies of subspecies acuminata, and the third population 

from Polk County, FL occurred in the distributional range of subspecies peninsularis.  

This population sampled from Polk County, FL (FL polk) was therefore considered 

an outgroup since it occurred outside the range of the two other subspecies. Four of 

the 17 southern populations of subspecies acuminata were also located in the range 

distribution of subspecies microphylla (GAwilc, MS georg, LA stTm, AL covi). A 

total of eight populations sampled from the southeast occurred in the distribution 

region of overlap of two or three subspecies. Eleven individuals were sampled for 

most populations, except for very small populations with few individuals. A total of 

237 individuals were sampled. Leaf tissues were silica-dried and stored in the freezer.  
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ISSR Amplification 

DNA was extracted from leaves using a modified CTAB method of Doyle and 

Doyle (1990). Fifty ISSR primers obtained from the University of British Columbia 

(UBC) were screened and seven primers that revealed both intra and inter-population 

variations were selected for the study (Table 2). For each individual, ISSR regions 

were amplified with a single primer at a time via PCR. Total reaction mixtures of 

25uL consisted of 1.0 uL DNA, 15uM primer, 1.25 mM dNTP, 5U/uL Taq, 50 mM 

MgCl2, 1X Taq polymerase buffer. The PCR was performed on a MiniCycler (MJ 

Research Inc., South San Francisco, CA) with the thermocycler program set at 1.5 

min at 94oC; 35 cycles of 40s at 94oC, 45s at 45oC, 1.5 min at 72oC; 40s at 94oC, 45s 

at 45oC, 5 min at 72oC (Wolfe and Randle, 2001). All experiments conducted 

included negative control reaction mixtures that had all ingredients except DNA. The 

PCR products were resolved on a 1.5% agarose gel in 1X TAE and a 100 bp standard 

marker ladder was loaded alongside to determine the size of the fragments. Gels were 

stained with ethidium bromide, images visualized in UV light and digitally captured 

with a camera and Kodak Digital Science ID software. Images were saved as Tiff 

files and fragment sizes determined using Kodak ID Image Analysis software. Loci 

for each of the primers were assigned based on fragment sizes, and ISSR data scored 

as diallelic, 1 (band present) and 0 (band absent).  

 

Data Analysis – Genetic Diversity  

A combined data matrix of 1s and 0s (diallelic) was generated for all 

populations and primers. From this matrix, levels of genetic variation were assessed 
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from the total number and range of loci per primer, and the number of genotypes 

obtained per primer. Number of genotypes per primer was estimated as the number of 

unique banding patterns. The total number of ISSR loci was estimated for each 

population. From this estimate, loci that occurred in 12 (52%) or more populations 

were identified as common loci. Population-specific loci (private alleles) were 

identified as loci or locus occurring in only one population but absent in all other 

populations. The ISSR data were analyzed using POPGENE version 1.31 (Yeh et al., 

1999). Estimates of percentage polymorphism (P) for each population and total 

populations were calculated as the number of polymorphic loci divided by the total 

number of loci obtained for a primer Nei (1987). The mean genetic identity 

coefficients (I) for pairs of populations, measures of genetic similarity were computed 

using models of Nei (1978).  

 

Data Analysis – Genetic Relationships 

Phylogenetic relationships among populations were determined by employing 

the neighbor-joining algorithm. The diallelic data matrix was formatted as a NEXUS 

file, gaps treated as missing and the analysis conducted using PAUP 4.0 (Swofford, 

2003) with distance (minimum evolution) set as the optimality criterion. Individual 

primer data were analyzed separately and the minimum evolution (ME) score 

determined for each primer.  Minimum evolution is a distance method that minimizes 

the sum of the lengths of the branches of a phylogenetic tree (Van de Peer, 2003). The 

sum of the tree length (S) is estimated as:  
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S = Σ vi  
  2n = 3 

  i =1 

     

where n is the number of populations in the tree (23) and vi is the ith branch (Salami, 

2003). The topology of the resulting trees from the individual primer data analyses 

were compared to identify sister populations or groups of closely related populations 

that were consistent with most data. Next, data from all primers were combined 

systematically starting from primer data with the lowest ME score and similar tree 

topologies. The relevance of this stepwise analysis was to identify reliable primers 

and to exclude primer data with systematic or sampling errors that may increase 

evolutionary “noise” caused by high levels of homoplasy. Nei’s genetic distances 

were estimated for pairs of populations using POPGENE 1.31 and the new data 

formatted as a NEXUS file and analyzed using PAUP 4.0 (Swofford, 2003). The 

phylogram obtained was imported into Treeview (Win 32) 1.6.6 (Page, 2001). Nei’s 

genetic distances (D) were calculated as  

D =  -In [Gxy/πGxGy]  

where Gx and Gy are the frequencies of the ith allele in populatins x and y (Nei’s 

1978). 
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RESULTS 

Genetic Variation  

Ninety four loci were scored for all seven primers, with a range of eight (UBC 

842) to 18 (UBC 836) loci per primer (Table 2). The fragment sizes varied for each 

primer. The largest band size range was scored for UCB 836 (180 – 2700 bp), and the 

smallest range scored for UCB 842 (200 – 900 bp). The number of genotypes (unique 

banding patterns) per population ranged from one (no variation among individuals of 

a population) to 11 (variation in all individuals of a population). The total number of 

loci per population scored for all seven primers ranged from 51 (AL lawr) to 82 (FL 

levy); of these, 47 - 68 were common loci found in 12 or more populations (Table 3). 

Private alleles were detected in only five populations (Table 3). MS georg had six 

loci, TN ruth B had two, FL levy, LA stTm and LA winn had one locus each (Table 

3). Percentage polymorphism (P) was 100 % for total populations but moderate to 

high for individual populations. The populations with high P values were TN ruth B 

(58.95%), FL levy (57.89%), TN ruth D (56.87%) and MS geor (55.79%). These P 

values are above the average (50.5 %) reported for plant species (Crawford, 2003). 

Populations with the lowest P values were TN bedf (32.63%), FL polk (36.68%), AL 

lawr and AL alln (36.84%). The mean genetic identity coefficients (I) for pairwise 

populations ranged from 0.775 (LA alln – FL polk (FL1 – GA1)) to 0.957 (AL lawr – 

TN ruthB (AL1 – TNR2)) (Table 5). The low identity coefficients were observed 

between distant populations of different subspecies, whereas the high coefficients 

were observed for closely located populations that may belong to the same 

subspecies. 
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Genetic Relationships 

The NJ minimum evolution scores for the individual primer data ranged from 

2.051 (UBC 36) to 2.854 (UBC 9) (not shown). Tree topologies for individual 

primers were similar, except for UCB 812, and therefore data from the latter primer 

were excluded from further phylogenetic analyses. The dendrogram with a minimum 

evolution of 0.955 obtained from the neighbor-joining analysis suggests two main 

clusters of populations (Fig 2). The data matrix of pairwise genetic distances 

employed in the neighbor-joining analysis is shown in (Table 4). The first cluster 

comprises populations sampled mainly from the northwestern region of the complex, 

and the second cluster comprises populations sampled mainly from Florida and the 

Gulf Coastal Plains. The Tennessee populations were found to be polyphyletic since 

six of the eight populations clustered together. Populations FL polk, FL calh and TN 

wils were found to be distantly related to the two main clusters (Fig 2). Population FL 

polk is a population of subspecies peninsularis, whereas FL calh is a population of 

subspecies microphylla. Although genetic relatedness was observed between TN wils 

and FL polk, the differences in branch lengths of both pairs at the same node suggests 

that FL polk has undergone more genetic changes and accumulated more mutations 

than TN wils. This further suggests that FL polk is ancestral to TN wils. 

Present/absence (diallelic) character data sets such as those of ISSR have been found 

to be less suitable for parsimony and distance analysis compared to multistate-

character data sets (Simmons et al., 2006). Comparative analysis of phylogenetic 

relationships of the genus Amaranthus (Amaranthaceae) using ITS (internal 

transcribed spacer), AFLP (amplified fragment length polymorphism) and ISSR 
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markers revealed that the ISSR neighbor-joining tree had much lower bootstrap 

values than the AFLP- based tree and ITS-based tree (Xu and Sun, 2001). Parsimony 

analysis also indicated higher retention indices (RI) in AFLP-based analysis than 

ISSR-based analysis.  
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DISCUSSION 

Genetic Diversity 

Increased variability of loci allows for the detection of population-specific 

markers that may provide important information on the genetic structure of a species 

(Wyttenbach et al., 1999). Markers such as ISSRs are highly variable and have 

revealed high genetic variability in natural populations including Cycas (Xiao et al., 

2004), and Botrichium (Camacho and Liston 2001). In Cycas, ISSR analysis revealed 

low genetic diversity in endangered populations and high levels of genetic 

differentiation among all populations (Xiao et al., 2004) that were originally not 

detected with allozyme markers (Yang and Meerow, 1999). In the current study, the 

overall number of loci scored for the seven primers demonstrates the genetic 

variability of ISSR markers and its potential for identifying population-specific loci 

(Xiao et al., 2004). However, the presence of very few population-specific loci in the 

M. acuminata species complex suggests that the populations evolved recently, and are 

not completely diverged from one another although morphologically, three subspecies 

have been identified (Rossow, 1987). The absence of population-specific markers in 

18 of the 23 populations, and the presence of high levels of common loci in all 

populations further supports the low level of divergence in the species complex.  

Alternatively, some populations may be mixed populations of two or more subspecies 

occurring in sympatry and possibly exchanging genes. Recent morphological studies 

of the species complex revealed mixed populations of two or more subspecies in 

several locations. The morphological studies also revealed intermediates of two or 

more subspecies embedded within the range of one or more subspecies.  
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The presence of large numbers of common loci, high total percentage of 

polymorphic loci (100 %) detected in all populations suggest gene flow among 

populations, or the effects of historical events. Historical events may include recent 

evolution of the species, or an initial widespread distribution of the species followed 

by fragmentation of populations into subpopulations during the Pleistocene. A recent 

morphological study of the M. acuminata complex indicated a fragmented broad 

range of subspecies microphylla and peninsularis occurring within the range of 

subspecies acuminata.  

The high levels of genetic variation particularly observed in the southern 

populations such as FL citrus, FL levy, FL libe, MS geor, and LA stTm (total number 

of loci > 68, P > 52%) all of which occur within the region of overlap, support the 

distribution of more than one subspecies in that area (Pennell, 1946, Rossow, 1987, 

Wunderlin and Hensen, 2003) although morphologically, these populations appear 

like single subspecies.  Subspecies microphylla is considered to be rare and has been 

sited in very few southern locations including Calhoun County, FL (Wunderlin and 

Hensen, 2003). The lower genetic variability observed for FL calh relative to other 

southern populations with higher genetic variability indicates that the population may 

constitute one main subspecies (subspecies microphylla) instead of mixed populations 

of two or more subspecies, thereby supports the predominant occurrence of 

subspecies microphylla in that area (Wunderlin and Hensen, 2003). Low levels of 

genetic variability may reduce the potential of a population to survive in a changing 

environment (Ellstrand and Elam, 1993). The position of FL calh on the dendrogram 

suggests that it is distantly related to the other populations including FL libe. 
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Evidence from this ISSR study also confirms the sympatric distribution of subspecies 

microphylla and acuminata as evident in the position of FL libe on the phylogram 

although these two subspecies are not completely diverged from each other (Fig 2). 

The rarity of subspecies microphylla may be due to gene flow with subspecies 

acuminata that has resulted in shared morphological characteristics and genetically 

mixed populations of the two subspecies. For example, results of ISSR analysis of 

Micromeria (Lamiaceae) on the Canary Islands reflected patterns of introgression that 

has resulted in homogenization of genotypes of different species on the island 

(Meimberg et al., 2006). 

The populations of FL citr and FL levy morphologically appear like 

peninusularis although they occur within the boundaries of subspecies peninsularis 

and acuminata (Wunderlin and Hensen, 2003). The lack of clustering of these 

populations with FL polk suggests that these two populations are not closely related 

to FL polk. The clustering of FL levy and FL citrus with other populations of 

subspecies acuminata indicate that these two Florida populations may be mixed 

populations of the two subspecies although morphologically they resemble subspecies 

peninsularis.  The higher levels of genetic variation observed for these two 

populations compared to that observed for FL polk, suggests possible gene flow 

between subspecies peninsularis and acuminata and further support gene flow among 

subspecies. The low level of genetic variation observed in FL polk is also evidence of 

the occurrence of a single subspecies in that population. Similarly, lower genetic 

variation were estimated for most northwestern populations that occur in the range 
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distribution of one subspecies such as TN bedf, TN mars, TN wils, TN ruth A & B, 

AL lawr and AL fran and LA alln (Table 3).  

 

 

Genetic Relationships 

The topology of the neighbor-joining (NJ) dendrogram suggests that the 

subspecies are not significantly diverged from one another (Fig. 2). The NJ tree also 

shows that the groupings of populations are not subspecies specific. The two main 

clusters suggest a southern and northwestern cluster of populations. Populations TN 

ruth D and LA winn, exhibited high levels of loci and polymorphism indicating 

mixed populations of two subspecies in the northern ranges (Table 3). FL polk of 

subspecies peninsularis was not found to be closely related to the other Florida 

populations. This may be due to the absence or reduced presence of subspecies 

acuminata or subspecies microphylla individuals in that population. The distant 

relatedness of population TN wils from other Tennessee populations suggests that the 

population is diverging. Previous botanists have proposed the possibility of three or 

four subspecies of M. acuminata all occurring in southeastern USA (Rafinesque, 

1840; Pennell, 1922). 

 

Systematic and biogeographic implications 

The current ISSR analysis reveals high genetic diversity in most southern 

populations. This region of distribution overlap of two or all three populations mostly 

constitutes the Gulf Coastal Plain that is known to harbor large numbers of endemic 
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genera and species (Avise, 2000; Crawford, 2003; Soltis, 2006). It is believed that the 

Plain may have served as a refuge for many species during the Pleistocene glaciations 

(Delcourt and Delcourt, 1981; Estill et al., 2001; Crawford, 2003). The flora in the 

Gulf Coastal Plain is considered to be of geologically-recent origin (Thorne, 1993). 

Southeast of this Plain is the restricted dominant distribution of subspecies 

peninsularis. The climate in this region is subtropical and may account for the 

restricted range of the subspecies.  

The basal position of the southern populations particularly FLPolk in the 

dendrogram suggests that this population maybe ancestral to the other populations. 

The higher genetic diversity observed in FLlevy and FL citrus indicates they may be 

mixed and ancestral populations or may represent the center of diversity of the 

species from which two or more subspecies evolved. Subspecies microphylla maybe a 

recent subspecies based on its rarity, low genetic variation and position of FL calh on 

the dendrogram. However, distance trees depict mathematical optimizations of 

genetic distances and greatly reduce phylogenetic information (Van de Peer, 2003), 

thus the evolutionary history of populations cannot be assumed from the topography 

of the dendrogram. The lack of grouping of some of the Tennessee populations is 

consistent with recent reports of several phylogeographic breaks in that area (Soltis et 

al., 2006). The high genetic diversity observed for TN ruthB and TN ruth D both from 

Rutherford County in Tennessee, concur with results of the morphological studies 

that revealed a likely historical occurrence of subspecies peninsularis in that area.  

The absence of a significant level of private alleles in the species complex and 

the presence of common loci further suggests that the species complex represents a 
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single evolutionary lineage with three or more incompletely differentiated 

morphological subgroups, or represents remnants of a once widespread subspecies 

peninsularis and microphylla occurring in mixed populations with subspecies 

acuminata. Gene flow among individuals of the three subspecies occurring in 

sympatry may be resulting in homogenization of genotypes in the species complex. 
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Table 1. Locations of 23 populations sampled from M. acuminata complex in southeastern USA 
 ___________________________________________________________________________________ 
  

Population            Sample               Location 
(County/State)         Code     Size           Latitude (oN)  Longitude (oW) 

Subspecies peninsularis 

Florida - Citrus  FL citr   11    28.7295  82.2715 

Florida - Levy   FL levy  11        29.4415  82.6365 

Florida - Polk   FL polk  11   28.3109  82.0561 

Subspecies microphylla 

62 Florida - Liberty  FL libe   11  30.2043  84.7483 

Florida - Calhoun  FL calh  11    30.4072  85.1622 

Subspecies acuminata 

Alabama - Covington  AL covi  11    31.1718  86.2908 

Alabama - Franklin  AL fran  11   34.4820  87.6490 

Alabama - Lawrence  AL lawr  11    34.4880  87.5007 

Georgia - Wilcox  GA wilc  11    31.9488  83.5589 
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Table 1 continued. 
__________________________________________________________________________________ 
Louisiana - Allen  LA alln  11    30.5185  93.0152 

Louisiana - Beauregard LA beau  10    30.5100  93.2328 

Louisiana - St. Tammany LA stTm  11    30.4962  90.1988 

Louisiana - Winn  LA winn  11  35.7532  92.9170 

Mississippi - George  MS geor  11    30.7791  88.7171    

Tennessee - Bedford  TN bedf  11    36.6772  86.5223 

Tennessee  - Marshall  TN marsh  7    35.6251  86.8105 

Tennessee - Maury  TN maur  11    35.5872  86.8975 

Tennessee  - Rutherford TN ruth A  11    35.7394  86.5955   63 

Tennessee - Rutherford B TN ruth B  7    36.6551  86.4576 

Tennessee - Rutherford C TN ruth C  11    35.8738  86.2844 

Tennessee - Rutherford D TN ruth D  11    36.0590  86.4847 

Tennessee -Wilson  TN wils  11    36.0274  86.3673 

Texas - Nacadoches  TX nacd  11    31.6190  94.6832 
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Table 2. Attributes of ISSR primers used to generate markers from 237 individuals sampled from 

 the M. acuminata complex. 

____________________________________________________________________________ 

Primer  Sequence Total No. of       Range of Fragment       No. of Genotypes 
     Loci (= 94)         Sizes (bp)       Per Population 

_____________________________________________________________________________ 
UBC 807 (AG)8T  14  215 – 1400   4 - 11 

UBC 809 (AG)8G  13  204 – 1500   2 - 9 

UBC 812 (GA) 8A  15  220 – 1400   2 - 11 

UBC 815 (CT)8G  14  230 – 1500   3 - 11 

64 UBC 836 (AG)8YA  18  180 – 2700   3 – 11 

UBC 842 (GA)8YG  8  200 – 900   1 - 7 

UBC 845 (CT)8RG  12  260 – 1700   3 – 10 

____________________________________________________________________________ 
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Table 3. Genetic variability at 94 ISSR loci in 23 of M. acuminata species complex. P = Percentage of polymorphic loci. Common loci 

are present in 0.53 % of populations sampled; Private alleles (loci) are observed only in one population. 

_________________________________________________________________________________________________________ 
Population                 Total Number     Number of        Number of Population     Percentage             
(County/State)                   of loci             Common Loci            Specific Loci                 Polymorphic loci    
               (Private alleles)     
AL covi       63   53     0         44.21       

AL fran     57   52     0          44.21      

AL lawr     51   47     0          36.84     

FL calh     52   49     0          48.42      

FL citrus     68   60     0          52.63       

FL levy     82   68     1          57.89          

FL libe        62   55     0          53.68     

FL polk     55   48     0          36.68     

GA wilc     61   55      0          52.63       

LA alln     64   54     0          36.84     

LA beau       53   51     0          51.58  
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Table 3 continued.  
____________________________________________________________________________________________________________ 
LA st.Tm     68   56     1          48.42     

LA winn   70   56     1          50.53       

MS geor   70   57     6          55.79     

TN bedf   53   50     0          32.63      

TN marsh   55   51     0          44.32   

TN maury   61   55     0          47.37       66 

TN ruth A     53   48     0          41.05     

TN ruth B     65   59     2          58.95      

TN ruth C     56   48     0          42.21    

TN ruth D     70   62     0          56.85    

TN wils   59   51     0          43.16      

TX nacd     55   50     0          47.37       

Total              94   -               11          100     
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Table 4. Nei and Li’s (1978) genetic distances between pairs of populations among three subspecies in the M. acuminata complex. 

__________________________________________________________________________________________________________ 

     FL calh LA beau TN wils AL lawr TN maur LA winn TN ruth A TN bedf        AL fran 
      

FL calh  0 0.064  0.051  0.070  0.075  0.063  0.063  0.10  0.088 
        
LA beau  0  0.076  0.051  0.106  0.107  0.069  0.149  0.068 
           
TN wils     0  0.073  0.105  0.072  0.103  0.087  0.085 
                   
AL lawr       0  0.116  0.094  0.049  0.148  0.046 
                  
TN maur         0  0.116  0.102  0.131  0.119 
              
LA winn           0  0.109  0.107  0.138  
 
TN rutA             0  0.149  0.079 
               
TN bedf               0  0.138 
       
AL fran                 0  
 

GA wilc TN mars TX nacd TN ruth C TN ruth B AL covi FL libe  TN ruthD  

FL calh 0.103  0.062  0.182  0.101  0.045  0.089  0.091  0.094 

LA beau 0.083  0.093  0.060  0.087  0.062  0.120  0.086  0.078  
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Table 4 continued 

GA wilc TN mars TX nacd TN ruth C TN ruth B AL covi FL libe  TN ruthD  

________________________________________________________________________________________________________ 

TN wils 0.085  0.100  0.084  0.100  0.106  0.101  0.057  0.046  

AL lawr 0.061  0.097  0.059  0.053  0.055  0.116  0.080  0.062  

TN maur 0.083  0.086  0.113  0.129  0.110  0.126  0.102  0.101  

68 LA win 0.084  0.143  0.137  0.103  0.147  0.090  0.077  0.079 

TN ruth A 0.060  0.069  0.067  0.059  0.051  0.135  0.066  0.068  

TN bedf 0.132  0.170  0.150  0.171  0.188  0.107  0.138  0.101 

AL fran 0.067  0.870  0.058  0.084  0.076  0.131  0.134  0.065  

GA wilc  0  0.709  0.058  0.055  0.073  0.089  0.50  0.046  

TN mars    0  0.067  0.109  0.092  0.131  0.092  0.070  

TX nacd      0  0.072  0.055  0.124  0.064  0.067  

TN ruth C        0  0.056  0.130  0.060  0.061  

TN ruth B          0  0.142  0.054  0.070 
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Table 4 continued 

_______________________________________________________________________________________________________ 

GA wilc TN mars TX nacd TN ruth C TN ruth B AL covi FL libe  TN ruthD 

AL covi            0  0.084  0.067  

FL libe              0  0.041   

TN ruth D                0 

  

FL levy FL citr  LA stTm MS geor LA alln FL polk 

FL calh 0.083  0.073  0.050  0.040  0.095  0.073  

FL beau 0.012  0.097  0.145  0.089  0.184  0.138     69 

TN wils 0.076  0.070  0.113  0.069  0.155  0.093   

AL lawr 0.083  0.083  0.142  0.097  0.226  0.136  

TN maur 0.099  0.089  0.143  0.132  0.146  0.161 

LA win 0.078  0.085  0.101  0.093  0.186  0.153  

TN ruth A 0.116  0.105  0.132  0.062  0.227  0.152     
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Table 4 continued 

__________________________________________________________________________________ 

FL levy FL citr  LA stTm MS geor LA alln FL polk 

TN bedf 0.147  0.107  0.100  0.123  0.159  0.137  

AL fran 0.145  0.098  0.152  0.119  0.177  0.131  

GA wilc 0.097  0.052  0.129  0.082  0.143  0.157  

TN mars 0.137  0.097  0.156  0.121  0.163  0.175  

TX nacd 0.123  0.094  0.141  0.090  0.137  0.153  

TN ruth C 0.100  0.095  0.150  0.092  0.187  0.155  70 

TN ruth B 0.098  0.111  0.148  0.085  0.209  0.163  

AL covi 0.116  0.100  0.103  0.087  0.153  0.129  

FL libe  0.063  0.074  0.120  0.044  0.123  0.140  

TN ruth D 0.076  0.051  0.094  0.062  0.148  0.107  

FL levy  0  0.082  0.112  0.091  0.182  0.160  
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Table 4 continued 

_________________________________________________________________________________________________ 

FL citr  LA st.Tm MS geor LA alln FL polk 

FL citr    0  0.125  0.092  0.121  0.163  

LA stTm      0  0.122  0.136  0.149  

MS geor        0  0.182  0.140  

LA alln          0  0.256  

FL polk           0  

___________________________________________________________________________________________________ 
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Table 5. Measures of Genetic Identity Coefficients between pairs of 23 populations sampled from the M. acuminata species complex.    

Code: ALl = ALLaw, AL2 = ALFran, AL3 = ALCovi, FL1 = FLCalh, FL2 = FLLibe, FL3 = FLLevy, FL4 = FLCitr, FL5 = FLPolk, 

GA1 = GAWilc, LA1 = LABeau, LA2 = LAWin, LA3 = LASTt, TN1 = TNWils, TN2 = TNMaur, TN3 = TNBedf, TN4 = TNMars, 

TNR1 = TNRutA, TNR2 = TNRutB, TNR3 = TNRutC, TNR4 = TNRutD, TX1 = TXNacd, LA4 = LAAlln, FL5 = FLPolk 

___________________________________________________________________________________________________________ 
FL1        LA1      TN1       AL1         TN2       LA2     TNR1       TN3        AL2        GA1        TN4      TX1     TNR3      TNR2        

__________________________________________________________________________________________________________ 
FL1     ****     0.939      0.950      0.934       0.928     0.939     0.939      0.902       0.916      0.956       0.915     0.913     0.911       0.930     

LA1          ****      0.927      0.950       0.900      0.900     0.933      0.861       0.935      0.921       0.911     0.942     0.917       0.951        

72 TN1                   ****      0.930       0.900      0.930     0.902      0.917       0.918      0.918       0.905      0.920     0.905      0.908     

AL1                                               ****        0.890      0.910     0.953      0.862      0.955      0.940        0.908     0.942     0.948      0.957       

TN2                                                               ****       0.891     0.903      0.878       0.888     0.921        0.917     0.894     0.880      0.906     

LA2                                                                              ****      0.897      0.899       0.871     0.919        0.867     0.872     0.902      0.874  

TNR1                                                                                         ****        0.861        0.924     0.941       0.934     0.935     0.943      0.962       

TN3                                                                                                            ****        0.871     0.876       0.844     0.860     0.843      0.837     

AL2                                                                                                                             ****      0.936      0.917     0.943     0.919      0.936     
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Table 5 continued. 
__________________________________________________________________________________________________________ 

FL1        LA1      TN1       AL1         TN2       LA2     TNR1       TN3        AL2        GA1        TN4      TX1     TNR3      TNR2        
__________________________________________________________________________________________________________ 
 
GA1                                                                                                                                           ****       0.932     0.944     0.947     0.940       

TN4                                                                                                                                                            ****     0.936     0.897     0.923        

TX1                                                                                                                                                                          ****     0.939     0.956     

TNR3                                                                                                                                                                                      ****      0.946      

TNR2                         ****     

 
____________________________________________________________________________________________________________ 

AL3        FL2        TNR4       FL3         FL4         LA2       MS1       LA3        FL5 73 ____________________________________________________________________________________________________________ 

FL1 0.942      0.960      0.970        0.910      0.930      0.902      0.940      0.833       0.904  

LA1 0.895      0.927      0.935        0.890      0.907      0.865      0.915      0.832       0.871  

TN1 0.912      0.953      0.963        0.927      0.932      0.893      0.934      0.856       0.912   

AL1 0.899      0.933      0.950        0.920      0.921      0.867      0.908      0.797       0.873  

TN2 0.890      0.913      0.914        0.906      0.915      0.866      0.877      0.864       0.852   
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Table 5 continued. 
____________________________________________________________________________________________________________ 

AL3        FL2        TNR4       FL3         FL4         LA2       MS1       LA3        FL5 
____________________________________________________________________________________________________________ 

LA2 0.922      0.935      0.933        0.925      0.918      0.904      0.912      0.830       0.858  

TNR1 0.884      0.947      0.946        0.901      0.900      0.877      0.940      0.797       0.859 

TN3 0.906      0.879      0.911        0.871      0.899      0.905      0.884      0.853       0.872  

AL2 0.884      0.909      0.945        0.891      0.907      0.859      0.888      0.838       0.878     

GA1 0.924      0.961      0.964        0.918      0.949      0.879      0.921      0.867       0.855  74 

TN4 0.886      0.922      0.943        0.883      0.917      0.856      0.887      0.850       0.839  

TX1 0.891      0.947      0.944        0.902      0.911      0.869      0.914      0.872       0.858 

TNR3 0.879      0.942      0.941        0.905      0.909      0.861      0.912      0.829       0.857  

TNR2 0.868      0.947      0.933        0.907      0.895      0.863      0.918      0.812       0.850   

AL3 ****       0.919      0.936        0.890      0.905      0.902      0.916      0.859       0.880   

FL2     ****       0.960        0.939      0.929      0.887      0.957      0.882       0.870   

TNR4         ****       0.927      0.950       0.910      0.940     0.863      0.898   

FL3     ****      0.922      0.894      0.913     0.833      0.852  
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Table 5 continued. 
____________________________________________________________________________________________________________ 

AL3        FL2        TNR4       FL3         FL4         LA2       MS1       LA3        FL5 
____________________________________________________________________________________________________________ 

FL4         ****      0.882      0.912     0.886      0.850  

LA3            ****      0.885     0.790       0.862 

MS1                 ****      0.834     0.869 

LA4          ****     0.775  

FL5             ****     

 75  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 75 



 
Figure 1. Map of eastern USA showing locations of sampled populations in southeastern USA. 

Circles denote subspecies acuminata populations, squares denote subspecies peninsularis 

populations, diamonds denote subspecies microphylla populations 
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Fig 2. Neighbor-joining dendrogram showing genetic relationships among 23 populations 

sampled from the M. acuminata species complex in southeastern USA. Numbers denote branch 

lengths. 
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ABSTRACT 

Mecardonia acuminata is a classic example of a widespread endemic species in the 

southeastern USA. Morphological variations in the complex resulted in the classification of at 

least three varieties or subspecies for the species by previous botanists. However, the 

distributions and diagnostic features of two of the subspecies; peninsularis and microphylla are 

unclear due to the shared morphological features of these two subspecies and the widespread 

subspecies acuminata. The present study involved examination of three vegetative and five 

reproductive characters that were known to serve as diagnostic features of one or more taxa of 

the species. The study employed biostatistical analyses to assess character correlations and 

clinal variations in the complex. Leaf length was observed to increase from south to north 

across the distributional range and therefore, not a reliable diagnostic character north of the 

peninsular Florida. Discriminant function analyses were conducted to distinguish taxa based on 

latitude, longitude, and biogeographic associations. Two clusters of specimens were identified 

for all three associations. Latitudinal and biogeographic analyses both indicated separation of 

individuals of southern Florida origin from the remaining northern, eastern and western 

individuals. Longitudinal analysis indicated partial separation of eastern individuals sampled 

along the Atlantic Coastal region. Attempts to distinguish taxa based on branching pattern and 

overall subspecies characteristics revealed that branching pattern is not reliable diagnostic 

character. Results of this study indicate that subspecies peninsularis can be distinguished by its 

ascending peduncle angle of suspension, diffuse basal branching pattern of the shoot and small 

leaves especially in the southern ranges of the complex. Subspecies microphylla can be 

distinguished based on its short (< 20 mm) fruit peduncles and divaricate peduncle angle of 

suspension. Subspecies acuminata comprises individuals with divaricate peduncle angle of 
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suspension and long fruit peduncles (> 20mm). Subspecies acuminata was also observed to 

comprise many individuals that were intermediates of two or more subspecies. Wilks’ lambda 

estimates confirmed similarities among taxa for some characters. These findings suggest a much 

broader historical range distribution of subspecies peninuslaris and microphylla than originally 

established. The historical populations of these two subspecies are currently integrating into 

subspecies acuminata as evident in the identification of a third branching pattern in the 

complex. Taxa were not identified as distinct groups in specific regions which raises questions 

about the subspecific classification of the species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTRODUCTION 
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Mecardonia acuminata (Walt.) Small is a perennial wetland herb or subshrub that 

exhibits pronounced morphological variation throughout its range from Maryland to south 

Florida to east Texas and southeastern Missouri.  The species is one of three within the genus 

Mecardonia Ruiz & Pav. native to North America; M. acuminata and  M. procumbens (Mill.) 

Small are congeners native to the southeastern USA (Rossow 1987).  The seven remaining 

species of Mecardonia are native to South America.  Mecardonia acuminata (axilflower) is 

morphologically distinct within Mecardonia based on its erect habit, white corollas with purple 

nerves, and distinctly pubescent corollas (Rossow 1987).   

Morphological variation within the species has resulted in three or four infraspecific taxa 

proposed by Rafinesque (1840), Pennell (1935) and Rossow (1987). Three varieties or 

subspecies are most commonly recognized based on variation in nine morphological characters:   

branching pattern, leaf length, leaf shape, leaf base, peduncle length, peduncle angle in fruit, 

sepal length, sepal width, and corolla length.  Morphological variation is most pronounced in 

peninsular Florida and the eastern Gulf region where all three subspecies occur with sympatric 

or parapatric ranges (Fig 1). 

Rafinesque (1840) first recognized variation among populations of M. acuminata by 

naming four varieties that implicated variation in leaf shape throughout the range of the species:  

var. obovata Raf. from North Carolina, var. microphylla Raf. from Florida, var. cuneata Raf. 

from Carolina and Alabama, and var. angustifolia Raf. from Florida.  Pennell (1922) carefully 

evaluated diagnoses of these varieties and searched in vain for Rafinesque’s types, because he 

had described (Pennell 1920) M. acuminata var. brevifolia Pennell, which became synonymous 

with Rafinesque’s (1840) earlier named var. microphylla. Three varieties were proposed by 

Pennell (1935) to accommodate morphological variation in M. acuminata: var. acuminata (= 
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var. typica), the larger-leafed variant that occurs throughout the range of the species except for 

southern Florida; var. microphylla (Raf.) Pennell, which occurs along the eastern Gulf coast and 

is characterized by an ovate leaf shape, cuneate leaf base, and shorter peduncle length; and var. 

peninsularis (Pennell) Pennell, which was segregated based on its shorter leaf , sepal  and 

corolla lengths, diffusely spreading branching pattern, and distribution in southern Florida.  

Citing Pennell’s (1935) treatment, most North American taxonomists have recognized three 

varieties of M. acuminata, which is presented widely in floristic treatments (e.g., Small 1933, 

Long and Lakela 1971, Wunderlin 1982, Wunderlin and Hansen 2003).   

Rossow (1987) revised the genus Mecardonia, recognized 10 species distributed in 

North and South America, and presented the most thorough taxonomic and morphological study 

of the genus to date.  He commented on the distinctness of M. acuminata within the genus and 

recognized three taxa within M. acuminata, but elevated them to subspecific rank:  subsp. 

acuminata, subsp. microphylla (Raf.) Rossow, and subsp. peninsularis (Pennell) Rossow.  

Delimitation and characterization of the subspecies essentially followed Pennell’s (1935) earlier 

treatment and differentiated subspecies based on two new characters, peduncle angle and sepal 

width, and four characters used by Pennell (1935):  branching pattern, leaf length, leaf base, and 

peduncle length.  We follow Rossow’s (1987) taxonomy in the present study. 

Summarizing variation within M. acuminata, subsp. acuminata is found throughout the 

geographic range of the species and is characterized by leaves longer than 25 mm, peduncles 

ranging between 25 – 35 mm long, and lateral branches arising at the midpoint from the stem 

base.  Subspecies peninsularis occurs only in central to southern Florida, but overlaps with 

subsp. acuminata in north central Florida and is distinguished from the other subspecies by 

leaves less than 25 mm long and diffuse basal branching.  Subspecies microphylla is rarely 
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identified and annotated in collections.  It occurs from northern Florida and southern Georgia to 

southeastern Louisiana, and is characterized by peduncle lengths less than 12 mm and sepal 

widths ≥ 2 mm.  Subspecies microphylla is sympatric with subsp. acuminata and plants have 

been identified to each subspecies within the same population (Ahedor and Elisens, unpublished 

data).  No chromosome number determinations for M. acuminata are published, but the 

chromosome base number for Mecardonia is x = 11 based on multiple chromosome counts of 

2n = 22 for M. procumbens (e.g., Kaul 1974, Sinha 1988, Trivedi 1984) and one count of 2n = 

44 (Kaul 1975).  

The present study was initiated to assess morphological variation throughout the range 

of the species and to test for character correlation among characters, geographic locations 

(latitude and longitude), and biogeographic regions (Soltis et al. 2006).  Specimen sampling was 

concentrated in Florida and the Gulf Coastal Plain region where taxonomic and morphological 

variation is most pronounced.  An additional goal was to test taxonomic hypotheses delimiting 

three subspecies in M. acuminata. 

 
 

 

 

 

 

 

MATERIALS AND METHODS 

 A total of 402 specimens were examined for morphological variation from six herbaria 

(330 specimens) and from the authors’ field collections (72 specimens) deposited at OKL.  
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Herbarium specimens were examined from the Botanical Research Institute of Texas (BRIT), 

University of Florida (FLAS), University of Georgia (GA), Missouri Botanical Garden (MO), 

Vanderbilt University (VDB), and the University of Oklahoma (OKL). Herbarium specimens 

represented individuals in 13 states throughout the geographic range of M. acuminata. 

Specimens representing collections made by the authors from 23 field populations were 

obtained from seven states: Florida (5), Georgia (1), Alabama (3), Mississippi (1), Tennessee 

(8), Louisiana (4) and Texas (1). Sources of all specimens used in the study are compiled in 

Appendix 3-1. 

Three vegetative and five reproductive characters were evaluated; branching pattern, leaf 

length, leaf shape, peduncle length in flower, peduncle length in fruit, peduncle angle of 

suspension, sepal width and fruit length (Table 1). Three characters were qualitative (branching 

pattern, leaf shape, peduncle angle of suspension) and variation was assessed using multiple 

states (Table 2). Some reproductive characters (peduncle length in flower, peduncle length in 

fruit, sepal width and fruit length) were not measurable on all specimens, because of 

developmental differences among plants at the time of collection. Branching pattern was not 

recorded for all herbarium specimens since the shoot base had been removed from some 

specimens. Leaf length and leaf shape were recorded for all specimens. Leaf length was 

measured from the tip of the leaf to the base of the lamina for leaves located in the mid section 

of the plant (mature leaves). Floral and fruit peduncle lengths were measured from the base of 

the sepals enclosing the petals or fruit to the point of attachment of the peduncle to the stem. 

Specimens with only flowers or fruits were evaluated for characters present only. Sepal width 

was measured at the broadest mid-portion of the outermost sepal. Fruit length was measured 

from the tip of the fruit to the point of attachment of the fruit to the peduncle. Branching pattern 
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was assessed to be either dendriform at mid region (1), dendriform at the base (2), or 

intermediate (3 - dendriform at mid region but also with reduced basal branching). Peduncle 

angle was determined to be divaricate (1) or ascending (2). Leaf shape for each plant was 

determined to be ovate (1), elliptic (2), lanceolate (3), linear (4) or oblanceolate (5) (Pennell, 

1935).  

Morphological data were analyzed statistically using Statistical Package for Social 

Sciences (SPSS) ver. 15.0 for windows (SPSS, Inc. 2006), and graphs plotted using SigmaPlot 

ver. 10.0 (SYSTAT, 2006) and Excel (Microsoft Corp., 2003). Quantitative data were analyzed 

using analysis of variance (ANOVA) and Fisher’s F statistics (F-values = Group mean 

squares/error mean square) and significance levels estimated. Calculated F-values depict the 

level of variability within a group of samples - the larger the F-value, the greater the variability 

of the sample data. Box plots were constructed to depict patterns of variation in characters 

(Pereira et al., 2007). Descriptive statistics were performed for qualitative characters; 

percentages of variables for each character were determined, and Chi square analysis was 

conducted to assess the level of variation in each character. Chi square is a statistical measure of 

how far a sample distribution deviates from a theoretical distribution χ2 = (observed – expected) 

2 / expected (Zar 1996).  

Spearman’s Rank-Order correlation analysis was performed on all data to determine 

relationship among pairs of characters. Correlations were tested for significance with two-tailed 

tests. Regression analyses were performed to determine clinal variations for each character 

(Henderson, 2005). Regression coefficients were calculated for each character, with longitude 

and latitude as the independent variables. The curves corresponding to the highest regression 

coefficient of five relationships (linear, logarithmic, exponential, power and quadratic) were 
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chosen (Schmalzel et al., 2004). Regression lines and coefficients were calculated using the 

Least-Squares method in Excel (Microsoft Corp., 2003).  

Multiple analysis of variance (MANOVA) and discriminant function (DF) analysis were 

conducted (Zar, 1996; Woods et al., 2005). F-values with levels of significance and Wilks’ 

lambda values (U-statistics), were estimated from these analyses. Wilks’ lambda is a direct 

measure of the proportion of variance in the dependent variables (characters) that is 

unaccounted for by the independent variable (latitude, longitude, biogeographic regions and 

subspecies). Wilks’ lambda is an inverse measure whereby, values near 0 denote high 

discrimination between groups (Everitt, B. S., and Dunn, G. 1991). Samples with missing 

values were excluded in each analysis. Discriminant fuction analysis was conducted to 

investigate differences between groups (independent variables) and to determine the most 

parsimonious way of distinguishing groups. Individual specimens served as operational 

taxonomic units (OTUs), and missing data were excluded from the analyses. Since most of the 

herbarium specimens were not identified to the subspecies level, DF analysis were performed to 

determine if samples grouped into clusters without a priori assumption of the three subspecies 

(Boonkerd et al., 2002; Woods et al., 2005). In these evaluations, separate DF analyses were 

conducted based on latitude, longitude and the five phylogeographic regions that were 

predetermined based on physiogeographic barriers in southeastern USA (Soltis et al., 2006). To 

assess the distinctness of taxa in these DF analyses, scatter plots were visually inspected for 

partial or distinct clusters. 

The data matrix was then partitioned into subspecies based on known morphological 

characteristics (Pennell 1922, 1935; Rossow, 1987; Wunderlin and Hensen, 2003). Thus, a 

priori decision of subspecies was imposed in these subsequent analyses. Univariate analyses of 
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variance (ANOVA) were performed on quantitative characters and Chi-Square analyses were 

performed on qualitative characters to determine if a statistically significant difference existed 

among subspecies. In order to establish similarities among subspecies, Duncan’s Multiple 

Range Test was conducted to identify subsets of subspecies for each quantitative character 

examined. Regression analyses were conducted to assess clinal variations in each subspecies, 

and DF analyses were performed to evaluate subspecies delimitations. 

Diffuse branching at the base (dendriform at base) is believed to be one of the 

major diagnostic features of subspecies peninsularis (Pennell 1922, 1935; Rossow, 1987; 

Wunderlin and Hensen, 2003). In order to test the taxonomic significance of branching 

patterns, the original data matrix was again partitioned into the three observable 

branching patterns; dendriform at mid-point, dendriform at base and intermediate. 

Discriminant function analysis was conducted to determine if the different subspecies 

would segregate into distinct or partial clusters. 
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RESULTS 

Morphological variation within M. acuminata 

 All specimens had been collected from Latitude 25o – 38o North, and Longitiude 76o – 

96o West. Leaf lengths ranged from 7.00 mm to 45 mm long with a mean of 23.50 mm. Fruit 

lengths ranged from 4 mm to 9 mm with a mean of 6.50 mm. Sepal widths ranged from 1.00 

mm to 2.50 mm, with a mean of 1.60 mm (Table 1). Floral peduncle lengths ranged from 5 mm 

to 32 mm with a mean of 17.01 mm, whereas fruit peduncles ranged from 11 mm to 38 mm 

with a mean of 22.70 mm (Table 1; Fig 2). Leaf shapes were mainly oblanceolate (55.3%), 

elliptic (41.7%), linear (2.5%), ovate (0.2%) or lanceolate (0.2%).  Branching patterns of 

specimens were observed to be 57.6% dendriform from mid-point, 23.7 % dendriform from 

base, and 15.6% intermediate (Table 2). Intermediate branching pattern has not been reported in 

previous studies, but was observed to be prevalent in some populations especially in Arkansas, 

Tennessee and northern Alabama. Peduncle angle was divaricated in 65.1 % of the specimens 

and ascending in 32.2% of the specimens. All the characters were found to be statistically 

significant across latitude (P < 0.01) and/or longitude (P < 0.05) except for leaf shape (Table 4). 

Estimates of Fisher’s F statistics (F-value) suggest that leaf length (F = 108.95; P = 0) and fruit 

peduncle length (F = 42.34; 0) (Table 1) were the two most variable quantitative characters in 

the species, whereas leaf shape (χ2 = 479.1; P = 0) and habit (χ2 = 131.14; P = 0) were the two 

most variable qualitative characters (Table 2). 

 

Character correlations within M. acuminata 

 All characters were correlated with one or more other characters. Eleven of the 28 

pairwise character correlations were significantly correlated at P = 0, P < 0.01 or P < 0.05 
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(Table 3). The strength of significant associations ranged from |r| = -0.24 (leaf length and 

peduncle angle) to 0.66 (floral peduncle and fruit peduncle). Leaf length and peduncle angle 

exhibited significant associations with both latitude and longitude (Fig. 3). Fruit length and 

sepal width were also correlated with latitude, whereas floral and fruit peduncles were 

correlated with longitude. Moderate to weak clinal variations were therefore observed for most 

characters from south to north (latitude) and from east to west (longitude). Leaf length exhibited 

the strongest clinal variation along latitude (R2 = 0.282; P = 0) and longitude (R2 = 0.1; P = 0) 

(Fig 3). These analyses indicate low but statistically-significant associations between leaf length 

and both latitude and longitude.  

 

Character Correlation to Latitude, Longitude and Biogeographic Region 

Multivariate ANOVA (MANOVA) for each character along latitude indicates 

statistically significant results (P < 0.01) for seven out of the eight characters measured (Table 

4). The results indicate similarities within most characters except for leaf length and peduncle 

angle. No significant difference was observed for leaf shape along latitude (Wilks’ Lambda = 

0.944; P = 0.43). Similarities within characters were observed across longitude for habit, leaf 

length, peduncle angle and sepal width (Table 4). The two DF analyses on latitude and 

longitude did not reveal distinct but partial clusters. The first DF analysis based on latitude 

revealed partial separation of samples occurring along latitude 26 o - 28o North in southern 

Florida, where most subspecies peninsularis occurs (Fig 4). Samples of latitude 29o North 

(northern Florida Peninsular) were intermediates between subspecies peninsularis and the 

remaining M. acuminata cluster, but closer to the latter group. This indicates that plants in 

latitude 29o north are morphologically similar to subspecies acuminata even though they have 
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basal branches and small leaves similar to subspecies peninsularis. The second DF analyses 

based on longitude did not reveal any significant clusters, although samples from longitude 76o 

– 82o west along the Eastern Coastal Plains were slightly separated from samples from the 

remaining locations (Fig 4). Both latitude and longitude DF analyses therefore support the 

occurrence of subspecies peninsularis in southern Florida but suggest a much smaller range of 

distribution than previously reported (Pennell 1922, 1935; Rossow, 1987; Wunderlin and 

Hensen, 2003). The DF analyses did not reveal a partial segregation of samples occurring along 

latitude 30 o - 31 o North or longitude 83o – 90 o West where subspecies microphylla is known to 

occur. This suggests that subspecies microphylla is morphologically similar to subspecies 

acuminata and is embedded in the range of the latter thus, confirms the sympatric distribution of 

the two subspecies. 

 Results of DF analysis to test the effect of biogeographic barriers on the 

distribution of the species, showed a consistent and marked partial separation similar to 

that obtained for latitude (Fig 5). Region 1 (southern Florida) was partially separated 

from the remaining four regions (2 - 5), that did not show any apparent biogeographic 

pattern or separation. The lack of a biogeographic pattern for regions 2 – 5, is consistent 

for species exhibiting high levels of outbreeding and physiological tolerance to 

fluctuating environmental conditions (Fritsch and Lucas, 2000).  

 

 

Character Correlation to Subspecies delimitation 

Discriminant function analysis to test subspecies delimitation based on previously 

reported diagnostic features (Pennell 1922, 1935; Rossow, 1987; Wunderlin and Hensen, 
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2003), clearly separated subspecies into 3 distinct clusters (Fig 6). Seven out of the eight 

characters analyzed showed significant variations within each subspecies (Table 1 and 2). 

Fruit length was less variable in subspecies acuminata and peninsularis (Fig 2). 

Subspecies acuminata demonstrated the most variants for all characters with most 

outliers within the range of the other two subspecies. Discriminant function analyses 

conducted to test the reliability of branching patterns in distinguishing subspecies, did not 

resolve the data into 3 subgroups, but suggested that specimens with intermediate 

branching patterns can be considered intermediates of those with branching at mid point 

and branching at the base (Appendix 3-2). Diffuse branching at the base (dendriform at 

base), a character used in identifying subspecies peninsularis was found to be present 

among 18.2 % of subspecies acuminata and 26.7% of  subspecies microphylla mostly 

occurring north of central Florida (Table 2; Fig 7). The remaining six characters 

measured were less variable in each subspecies, therefore reliable for delimiting 

subspecies. Duncan’s multiple range test (Table 1) separated leaf length into 2 subsets 

and indicated a statistically-significant difference between subspecies peninsularis and 

the other two subspecies (P = 0.05). Two subsets were also obtained for both floral and 

fruit peduncle lengths. In each of these two characters, subspecies microphylla was 

separated from the other two subspecies. Fruit length/size of subspecies peninsularis was 

smallest with a mean of 6.0 mm, and that of subspecies acuminata was large with a mean 

of 6.56 mm. The lack of statistically-significant subsets for some characters indicates 

overlap of ranges among subspecies (Fig 2). Linear regression analyses for each 

subspecies suggest moderate clinal variations for most characters of subspecies 

microphylla (Appendix 3-3). Clinal variations in leaf length and peduncle lengths were 
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also observed for subspecies peninsularis (Appendix 3-4), but no significant clinal 

variation was observed for any character of subspecies acuminata (Appendix 3-5). 
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DISCUSSION 

 The current investigations confirm the widespread distribution of subspecies 

acuminata even at the lower latitudes (26o North) where subspecies peninsularis is 

predominant. Subspecies acuminata exhibits a wide range of variation in all characters 

examined, with no significant clinal variations of characters. As latitude increases, leaf 

length (size) for subspecies peninsularis and microphylla increases. This latitudinal 

association with leaf length has also been observed in some endemic southeastern USA 

taxa such as Halesia carolina (Styracaceae) complex (Fritsch and Lucas, 2000). The leaf 

length latitudinal association in M. acuminata complex indicates that when subspecies 

peninsularis and microphylla occur north of their known ranges, they are not 

distinguishable due to their larger leaf sizes except for the short peduncle lengths in 

subspecies microphylla (Table 1; Fig 2). Larger leaves are therefore not unique 

taxonomic characters of subspecies acuminata and microphylla alone, but present in 

subspecies peninsularis occurring at higher latitudes. Although subspecies peninsularis 

was not readily identified in the northern ranges of the species complex, its diffuse basal 

branching pattern and ascending peduncle angle were observed in some members of 

subspecies acuminata. These diagnostic features found in subspecies acuminata suggest 

that subspecies peninsularis once had a broader distribution range than presumed by 

previous botanists. Subspecies acuminata individuals with one or two diagnostic features 

of subspecies peninsularis may be intermediates of the two subspecies. These individuals 

may also depict remnants of the historically broad range peninsularis, which are currently 

isolated and possibly integrating into subspecies acuminata populations. Evidence from 
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this study revealed that subspecies peninsularis has a sympatric distribution with other 

subspecies north of Florida. It was identified in the states of Georgia, Tennessee, 

Maryland and Texas (Fig 7; Appendix 3-6). In northern Georgia, it was found in the same 

county (Catoosa) as subspecies microphylla (Appendix 3-6). The southern populations of 

subspecies peninsularis represent relicts that were restricted to a glacial refuge in 

southern Florida (Pennell, 1935). It has been reported that southern Florida served as a 

refuge for many plants and animals during the Pleistocene (Soltis, 2006). The small leaf 

lengths/sizes of these populations may be due to climatic or ecological factors and not 

taxonomy. These climatic or ecological effects are also evident in its prolonged flowering 

season (Pennell, 1935). Most members of subspecies acuminata and microphylla sampled 

from southern Florida had small leaf lengths ranging from 8 mm to 20 mm.   

The separation of specimens from southern Florida (most of Florida Peninsular) 

from the rest of the specimens by the DF analyses confirms the climatic, biogeographic 

or ecological impact of that region on the morphology of the species. This biogeographic 

pattern has been observed in a few angiosperms in SE USA including Liriodendron 

tulipifera (Sewal et al., 1996; Parks et al., 1994). Lack of a biogeographic pattern on the 

distribution of subspecies acuminata and microphylla north of Florida Peninsula, 

indicates effective dispersal mechanism(s) of the species irrespective of 

physiogeographic barriers. No clear geographic patterns have been found in some plant 

species occurring in the region including Liquidambar styraciflua (Soltis et al., 2006), 

Prunus (Shaw and Small, 2005) and Arabidopsis thaliana (Jorgensen and Mauricio, 

2004). Although the dispersal mechanisms of M. acuminata complex were not examined 

in this study, pollen is known to be dispersed by bees. The small seed sizes of the species 
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(< 0.5 mm) may be easily dispersed by wind and water (my personal observation). 

Physiogeographic barriers in southeastern USA such as, rivers and high elevations 

therefore may not pose barriers to the species dispersal. Species distributed over one or 

more climatic belts spanning latitudes, often possess clines for physiological 

characteristics and their associated vegetative characters (Stebbins, 1950). These clines 

result from adaptive responses to the environmental conditions prevailing in the different 

parts of the species range (Fritsch and Lucas, 2000; Spurr and Barnes, 1980). Thus, the 

partial separation of subspecies peninsularis occurring in southern Florida may be due to 

subtropical climatic effects on leaf size in that region and other physiological 

characteristics that were not evaluated in this study. Clustering of specimens from 

latitude 29o North in central Florida with other northern specimens (north of Latitude 29o 

North) of subspecies microphylla and acuminata instead of specimens from southern 

Florida (Figure 4), suggest these assumed subspecies peninsularis specimens are 

probably intermediates of subspecies peninsularis and one or two other subspecies 

particularly, subspecies acuminata. This region may be a major contact or suture zone of 

subspecies peninsularis and one or two subspecies, where individuals may have 

hybridized and exhibit diffuse basal branches similar to subspecies peninsularis. It has 

been documented that extensive hybridization of species and genera may have occurred 

in the Florida Peninsular refuge during the Pleistocene when many taxa were forced into 

close proximity (Edwards et al., 2006; Soltis et al., 2006). 

It is apparent from the current investigations that the major diagnostic characters 

of subspecies microphylla are shorter floral and fruit peduncles. This confirms earlier 

reports by Pennell (1935) and Rossow (1987). Although short floral peduncles were 
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observed in some members of subspecies acuminata, their corresponding fruit peduncles 

were relatively long (> 20 mm). Due to the many shared characteristics of the two 

subspecies and their sympatric distribution, identification of subspecies microphylla is 

still problematic especially prior to its reproductive stage. The current investigations also 

revealed that subspecies microphylla is fragmented but widespread in the range 

distribution of the complex particularly, in the western ranges (Fig. 7). Eastern Texas and 

western Louisiana, where most of these subspecies microphylla populations were 

detected was also once a Pleistocene refugium (Swenson and Howard, 2005). The 

observed distribution of subspecies microphylla in the southeastern USA suggests a 

historical discontinuous distribution separated by the Mississippi river. This pattern is 

similar to that observed for loblolly pine, Pinus taeda (Al-Rabab’ah and Williams, 2002; 

Soltis et al., 2006). Few samples of subspecies microphylla were also observed in 

southern Florida (Charlotte County) where subspecies peninsularis is prevalent 

(Appendix 3-6). Therefore, subspecies microphylla may not be as rare as originally 

thought but, may either be distributed within the range of the other two subspecies as 

low-density populations, or was originally widespread and continuous but now 

fragmented. Paleoecological reconstructions of postglacial tree distributions suggests that 

many temperate species were restricted to the southern latitudes during the last ice age, 

but rapidly dispersed northwards following glacial warming (Davis, 1981; Delcourt and 

Delcourt, 1987). On the other hand, Bennett (1985) had suggested that temperate species 

of North America may have occurred in low densities much across the continent even 

during most of the glacial periods. It was therefore inferred from the current 

investigations that subspecies microphylla can be found in at least 10 states as oppose to 
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five as earlier reported (Pennell, 1935; Rossow, 1987). The sympatric distribution of this 

subspecies also suggests a fairly recent evolution possibly from subspecies acuminata. 

However, these hypotheses cannot be confirmed from the current study. The taxonomic 

circumscription of subspecies microphylla is further supported by results of DF analyses 

which demonstrate that when all eight characters examined are combined, three distinct 

three subspecies are identified including subspecies microphylla (Fig. 6).   

 

 

Taxonomic Implications 

The moderate clinal variations observed in M. acuminata complex raises 

questions about whether the clines developed from primary differentiation or secondary 

contact. The vegetative (leaf length) and reproductive (floral and fruit peduncle lengths) 

clinal variations, and overlap of characters such as habit, fruit length and sepal width 

suggest secondary contact of previously differentiated entities that are currently mixing 

freely. The current widespread distribution of the species in southeastern USA may be 

due to a northward range expansion following the Pleistocene and Quartenary glaciation 

events in eastern USA. The presence of subspecies peninsularis diagnostic characters in 

other subspecies, the sympatric distribution of subspecies microphylla and the 

identification of a third habit in the complex may be evidence of a historically broader 

range distribution of all three subspecies that have undergone fragmentation but currently 

exhibiting ongoing evolutionary processes. Results of this study depict complex 

evolutionary processes in M. acuminata that are masked by distinct but inconsistent 

morphological features. In view of these evidences, the taxonomic classification of the 

 98



three taxa forming the M. acuminata complex as subspecies is ambiguous. Classification 

of the taxa as varieties as originally classified by Pennell (1935) is more justified since 

taxa were not identified as distinct entities occurring in specific regions but occurred 

throughout the distributional range and exhibit clinal variations in most of the diagnostic 

features. 
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Table 1. Variation among quantitative morphological characters in the Mecardonia acuminata complex. (N = samples size, S.D. = 

standard deviation, F = Fischer’s statistics). Letters a and b denote subsets of taxa based on characters as obtained from Duncan’s 

Multiple Range Test. *** = P < 0.001, ** = P < 0.01, * = P < 0.05  

_______________________________________________________________________________________________________ 
Quantitative Character  Taxon   N  Mean (S.D)        F (ANOVA) 
_______________________________________________________________________________________________________ 

     M. acuminata  406  23.50   (7.05)  108.95*** 

Leaf Length (mm)   subsp acuminata 346  25.11b (5.77)  4.20***     104

     subsp peninsularis 48  11.29a (2.13)  1.74     

     subsp microphylla 16  22.53b (8.02)   2.69    

  

                                                            M. acuminata  298   17.01 (5.40)  13.23*** 

Floral Peduncle Length (mm)  subsp acuminata 251  17.20b (5.22)   2.58**     

     subsp peninsularis 40  17.13b (5.89)  1.16    

     subsp microphylla 10     9.0a (3.62)  1.49   
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Table 1 continued.  
_______________________________________________________________________________________ 
Quantitative Character  Taxon   N  Mean (S.D)       F (ANOVA) 
_______________________________________________________________________________________ 

      M. acuminata  338   22.73 (4.94)     42.34*** 

Fruiting Peduncle Length (mm) subsp acuminata 285  23.17b (5.21)  2.66**    

      subsp peninsularis 41  22.46b (6.12)  1.88    

      subsp microphylla 16  12.00a (1.50)  4.64*   

   

      M. acuminata  331  6.50 (0.84)  7.56*** 

105 

Fruit Length (mm)   subsp acuminata 280  6.56b (0.87)  0.83     

      subsp peninsularis 39  6.0a (0.80)  0.88     

      subsp microphylla 15  6.13ab (0.83)  0.63    
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Table 1 continued.  
______________________________________________________________________________________ 
Quantitative Character  Taxon   N  Mean (S.D)       F (ANOVA) 
______________________________________________________________________________________ 

      M. acuminata  387  1.60 (0.36)  7.16*** 

Sepal Width (mm)   subsp acuminata 328  1.62a (0.35)  2.03**  

      subsp peninsularis 47  1.42a (0.32)  2.50** 

      subsp microphylla 15  1.61a (0.49)  0.59  
           ______________________________________________________________________________________ 
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Table 2. Variation among qualitative morphological characters in the M. acuminata complex (N = sample size). 

_______________________________________________________________________________________________ 
Taxon   N   PERCENT  OBSERVED      Chi-Square 

       Basal      Mid-Point     Intermediate  value (χ2) 
_______________________________________________________________________________________________ 

M. acuminata  395  23.7  57.6  15.6   121.4***  

Dendriform subsp acuminata 340  18.2  69.2  18.8   131.14*** 

Branching subsp peninsularis 45  71.1  28.9  0   8.02* 

  subsp microphylla 15  26.7  73.3  0   3.27 107 

 

           Divaricate        Ascending    

  M. acuminata  405   61.5   32.2   47.184*** 

Peduncle subsp acuminata 339   72.9   28.0   65.49*** 

Angle  subsp peninsularis 48   25   75   12.00*** 

  subsp microphylla 15   80   20   5.4*  
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Table 2 continued.  
________________________________________________________________________________________________ 

Taxon   N   PERCENT  OBSERVED      Chi-Square  
      Ovate       Elliptic Lanceolate Linear    Oblanceolate   value (χ2) 
________________________________________________________________________________________________  
  M. acuminata  405  0.2         41.7      0.2       0.2       55.3     556.171*** 

subsp acuminata 345  0.3         43.2      2.3        2.3        55.9      479.1*** 

Leaf Shape subsp peninsularis 48  0         33.3      0         0        66.7       5.33* 

  subsp microphylla 15  0         40.0      0        13.3            46.7       2.8  

108 ________________________________________________________________________________________________ 
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Table 3. Correlation among morphological characters to latitude and longitude in the M. acuminata complex based on Pearson’s 

Rank-Order Correlation Analysis. Significance values: * 0.05, ** 0.01, *** 0.001 

=============================================================================================== 
  Habit Leaf Length Leaf Shape Peduncle Floral Pedun.  Fruit       Fruit  Sepal       Lat.      Long. 
       Angle  Length  peduncle    Length Width   
____________________________________________________________________________________________________________ 
Habit  1.0 -0.087  0.122*  0.154** -0.062  -0.03       0.065 0.05    -0.001       -0.09 

Leaf Length  1.0  -0.046  -0.24** -0.01        0.099       0.333**    0.248**   0.531***    0.307** 

Leaf Shape    1.0  0.001  0.076  0.022      -0.154**   -0.002      0.044         0.037  

Ped. Angle      1.0  116*  0.069      -0.075       -0.013    -0.219**   -0.342** 

Floral Ped. L        1.0  0.660***   -0.041 -0.132*     -0.049     -0.148*  

Fruit Peduncle          1.0        0.153** 0.018       0.003      -0.186**  

109

Fruit Length            1.0 0.259**    0.151** 0.006  

Sepal Width             1.0      0.196** 0.064  

Latitude                    1.0            0.249** 

Longitude                1.0 
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Table 4. Results of multivariate analyses (MANOVA) of M. acuminata complex showing extent to which morphological characters 

differ across latitude/longitude, and among biogeographic regions and subspecies. Significance values: * 0.05, ** 0.01, *** 0.001; df1 

(degrees of freedom for number of groups per analyses); Lat. = 13, Long, = 20, Biogeography = 4, Subspecies = 2; df2 (degree of 

freedom for total number of samples evaluated) = 208 

___________________________________________________________________________________________________________ 
Statistic      df1     Branching Leaf           Leaf     Peduncle   Floral Peduncle Fruit    Fruit      Sepal Width 
            Form  Length          Shape     Angle     Length  Peduncle Length    
Wilks’ Lambda 

110

 LAT         12    0.875 0.636           0.944        0.741  0.876  0.887  0.888  0.865 

 LONG      20      0.830 0.705           0.913        0.788  0.901  0.889  0.885  0.842 

      BIOGEOG       4    0.905 0.716           0.983        0.873  0.952  0.948  0.984  0.953 

  SUBSPECIES      2     0.975 0.668           0.998        0.871  0.903  0.790  0.946  0.974 

F-Value 
 LAT     2.483** 9.919***       1.021        6.051***  2.454** 2.215** 2.185**          2.705** 

 LONG     2.052** 4.185***       0.947        2.697***  1.101  1.215  1.302            1.876** 

 BIOGEOG  5.671*** 21.467***     0.941        7.824***  2.714*  2.953*  0.873            2.687** 

      SUBSPECIES  2.709  53.265***     0.230        15.832*** 11.431*** 28.494*** 6.129**          2.81 
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Fig. 1.  Map showing distribution range of M. acuminata in southeastern USA (shaded 

area) and the five biogeographic regions in southeastern USA. 
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Figure 2. Box Plots illustrating variation in five morphological characters in three 

subspecies of the M. acuminata complex. Means denoted by vertical bars (│), shaded 

boxes indicate 50% of variation ranging from 25th to 75th percentile. Horizontal bars 

delimit 10th and 90th percentile; dots denote outliers. 
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Figure 3. Linear Regression Analysis of all M. acuminata specimens showing latitudinal 

and longitudinal associations of characters. 
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Fig 3 continued 
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Figure 4. Two dimensional scatter plot of Cannonical Discriminant Function 

Analysis of morphological characters of M. acuminata compared to Latitude and 

Longitude. 
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Figure 5. Two dimensional scatter plot of Cannonical Discriminant Function 

Analysis of morphological characters of M. acuminata compared to five 

biogeographic regions (1 = Florida Peninsular, 2 = Eastern Coastal Plains, 3 = 

Central Coastal Plains, 4 = West Coastal Plains, 5 = Northeastern region of Fall 

Line. 
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Figure 6. Two dimensional scatter plot of Cannonical Discriminant Function 

Analysis of morphological characters of M. acuminata compared to subspecies;  
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Fig. 7. Map showing distribution of subspecies peninsularis(squares) and microphylla 

(circles) within the range distribution of the complex. Shaded region denotes 

distributional range of subspecies acuminata. 
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Appendix 3-1. Information on herbarium and field specimens examined for the 

morphological study of M. acuminata complex in southeastern USA. 

___________________________________________________________________ 

Mecardonia acuminata USA.  

Alabama: Autauga Co., Moore 821(VDB); Barbour Co., Kral 33211(VDB); Charleston, 

Backman 93300 (MO); Choctaw Co., Causey 2089 (VDB); Cleburne Co., Kral 44910 

(MO, VDB); Colbert Co., Webb 2225 (VDB); Covington Co., Duncan 14174 (GA); 

Covington Co., Elisens 1057 (OKL); Covington Co., Kral 88909 (VDB); Covington Co., 

MacDonald and Warren 13028 (VDB); Crenshaw Co., Diamond 12650 (VDB); Dale Co., 

Kral 54448 (VDB); Elmore Co., Kral 36612 (VDB); Elmore Co., McDaniel and Haynes 

24314 (VDB); Fayette Co., Kral 48659 (MO, VDB); Franklin Co., Ahedor 112 (OKL); 

Franklin Co., Baskin et al., 516 (VDB); Franklin Co., Webb 4220 (VDB); Geneva Co., 

Kral 90297 (VDB); Green Co., Whitehouse 24382 (BRIT); Hale Co., Maginness 48 

(VDB); Houston Co., MacDonald 3521(VDB); Jackson Co., Jones 7223 (VDB); Jackson 

Co., Webb 4840 (VDB); Lamar Co., Kral 66549 (VDB); Lawrence Co., 113 (OKL); Lee 

Co., Allison 2534 (GA); Lee Co., Kral 62508 (VDB); Marshall Co., Golden et al. (VDB); 

Monroe Co., Kral 32831(BRIT, VDB); Montgomery Co., Kral 41562 (VDB); Morgan 

Co., Webb and Dennis 3626 (VDB); Morgan Co., Whetstone and Atkinson 3439 (VDB); 

St. Clair Co., Kral 69566 (VDB); Sumter Co., Jones 13367 (VDB); Sumter Co., Kral 257 

(FLAS); Sumter Co., Kral 257 (FLAS); Sumter Co., Kral 37025 (VDB); Talladega Co., 

Hood 302 (FLAS);  Tuscaloosa Co., Thomas et al., 885 (VDB);  

Arkansas: Ashley Co., Hamburg 16381A (MO); Ashley Co., Thomas 94971 (BRIT, 

FLAS, GA, MO); Ashley Co., Delmaree 16381A (BRIT); Cleveland Co., Thomas and 
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Sundell 163066 (VDB); Bradley Co., Delmaree 18327 (BRIT); Bradley Co., Delmaree 

23854 (BRIT); Bradley Co., Delmaree 24646 (BRIT); Calhoun Co., Delmaree 22708 

(BRIT, MO); Calhoun Co., Delmaree 22673 (BRIT); Calhoun Co., Delmaree 22506 

(BRIT); Clay Co., Christ 2260766 (MO); Cleveland Co., Sundell and Ethridge 9135 

(VDB); Drew Co., Demaree 24606 (GA); Drew Co., Monticello 24659 (GA); Drew Co., 

Delmaree 18281 (BRIT); Drew Co., Delmaree 18519 (BRIT); Drew Co., Delmaree 

24566 (BRIT); Drew Co., Delmaree 24606 (BRIT); Drew Co., Delmaree 24659 (BRIT); 

Grant Co., Thomas et al., 173341 (BRIT); Hemptead Co., Moore 480481 (BRIT); Hot 

Spring Co., Delmaree 46683 (BRIT); Hot Spring Co., Delmaree 63026 (BRIT); Hot 

Spring Co., Scully 1853 (BRIT); Jefferson Co., Delmaree 24083 (BRIT); Lafayette Co., 

Delmaree 62985 (BRIT, VDB); Lee Co., McDaniel 1250 (BRIT); Little river Co., Tucker 

10566; Logan Co., Delmaree 16015 (BRIT); Miller Co., Whitehouse 20315 (BRIT); 

Montgomery Co., Delmaree 34308 (BRIT); Ouachita Co., Thomas et al., 163315 & CD-

593 (VDB); Perry Co., Delmaree 20151 (BRIT); Pope Co., Hightower (BRIT); Pope Co., 

Delmaree 19889 (BRIT); Woodruff Co., Delmaree 57266 (BRIT); 

District of Columbia: Jones 1225 (Univ. of Georgia); Georgetown, Hermann 10782 

(MO);  

Florida: Alachua Co., Easley 740 (GA); Alachua Co., Dunn 322 (FLAS); Alachua Co., 

Tan 119 (FLAS); Alachua Co., Weber and West 21931 (FLAS); Beach Co., McCart 

10895 (BRIT); Bay Co., Perkins and Nelson 396 (FLAS); Broward Co., McDaniel 9142 

(FLAS); Broward Co., Will and Ward 87607 (FLAS); Calhoun Co., Elisens 1058 (OKL); 

Calhoun Co., Godfrey 60305 (BRIT); Calhoun Co., Hood 2702 (FLAS); Charlotte Co., 

Beckner 1734 (FLAS); Charlotte Co., Kral 7504 (FLAS); Charlotte Co., Krall 11978 
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(VDB); Charlotte Co., Murrill and Arnold 33955 (FLAS); Citrus Co., Baltzell and 

Zomlefer 2083 (FLAS); Citrus Co., Cooley et al., 6065 (GA); Citrus Co., Elisens 1061 

(OKL); Citrus Co., Scanlon and Matthews 80 (FLAS); Citrus Co., West and Arnold 

35434 (FLAS); Collier Co., 2474 (FLAS); Collier Co., Hill 122555 (MO); Collier Co., 

Hill 122555 (MO); Columbia Co., Herring and Herring 455 (FLAS); Dade Co., Avery 

605 (FLAS); Craighead and Arnold 66609 (FLAS); Dade Co., Craighead and Arnold 

72952 (FLAS); Dade Co., Herndon 929 (FLAS); Dade Co., Kral 18194 (VDB); Dade and 

Monroe Cos., Dade Co., Small et al., 6972 (FLAS); Dade Co., Small et al., 5972 (FLAS, 

MO); Dade Co., O’Neill 21932 (FLAS); DeSoto Co., Schallert 814 (FLAS); Dixie Co., 

Godfrey 56019 (BRIT, VDB); Dixie Co., West and Arnold 27268 (FLAS); DeSoto Co., 

Schallert 814 (FLAS); Dixie Co., West and Arnold 27268 (FLAS); Escambia Co., Ford 

and West 5586 (FLAS); Flagler Co., Slaughter 13869 (BRIT); Gadsden Co., Henderson 

92-502 (MO); Gadsden Co., Henderson 96-752 (MO); Jacksonville, Curtiss 5170 (MO); 

Gadsden Co., Henderson 96-752 (MO); Gilchrist Co., Arnold 210 (FLAS); Hardee Co., 

Kirk and Arnold 38966 (FLAS); Hernando Co., Cooley et al., 6033 (GA); Curtiss 5170 

(GA); Palm Beach Co., Cassen 463 (GA); Hendry Co., Eyles 6806 (GA); Hendry Co., 

Curtis 1868 (GA); Hendry Co., D’Arcy 1367 (FLAS); Hendry Co., McCart 10602 

(BRIT, FLAS); Hernando Co., Baltzell and Judd 9531 (FLAS); Highlands Co., Brass 

15366 (FLAS); Highlands Co., Garrett 50762 (FLAS); Hillsborough Co., O’Neil 21928 

(FLAS); Hillsborough Co., Lakela 24011 (FLAS); Holmes Co., Godfrey 59008 (MO); 

Indian River Co., Baltzell and Judd 10786 (FLAS); Jackson Co., Garland 362 (GA); 

Jackson Co., Garland 362 (FLAS); Jackson Co., West 21966 (FLAS); Jacksonville, 

Curtiss 5170 (MO); Lake Co., Miller and Perkins 257 (FLAS); Lake Co., Robinson 1192 
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(FLAS); Lee Co., Hood 3422 (FLAS); Lee Co., Kral 57261 (VDB); Lee Co., Kral 64716 

(VDB); Lee Co., Murrill and Arnold 210 (FLAS); Lee Co., Schallert 814 (BRIT); Leon 

Co., Henderson 93-331 (MO); Levy Co., Arnold 210 (FLAS); Levy Co., Amoroso and 

Judd 878 (FLAS); Levy Co., Elisens 1064 (OKL); Levy Co., Greenberg 132 (FLAS); 

Levy Co., Tiley and Notis 2332 (FLAS); Levy Co., West and Arnold 27010 (FLAS); 

Liberty Co., Elisens 1059 (OKL); Manatee Co., West 21967 (FLAS); Manatee Co., 

Cuthbert 1382 (FLAS); Manatee Co., Ray et al., 10162 (VDB); Marion Co., Baltzell and 

Judd 7700 (FLAS); Monroe Co., Porter 12434 (BRIT); Martin Co., Baltzell and Judd 

10235 (FLAS); Marion Co., West and Arnold 35348 (FLAS); Okaloosa Co., Stone and 

Bradley 3434 (MO); Okaloosa Co., West 61070 (FLAS); Okeechobee Co., Correll 51747 

(MO); Okeechobee Co., McCart 10,763 (BRIT, FLAS); Okeechobee Co., McCart 10763 

(BRIT); Osceola Co., Hall et al., 557 (FLAS); Orange Co., Beckner 1800 (FLAS); 

Orange Co., West 21965 (FLAS); Palm Beach Co., Cassen 563 (FLAS); Palm Beach Co., 

McCart 10,895 (FLAS); Palm Beach Co., McCart 10,911 (BRIT, FLAS); Palm Beach 

Co., West and Arnold 34210 (FLAS); Palm Beach Co., Kral 5654 (BRIT); Palm Beach 

Co., Palm Beach Co., Kral 5654 (BRIT); Palm Beach Co., McCart 10911(BRIT); Pasco 

Co., Baltzell 7742 (FLAS); Pinellas Co., Carter 2339 (VDB); Pinellas Co., West 257 

(FLAS); Polk Co., Baltzell and Zomlefer 9762 (FLAS); Polk Co., Hood 4184 (FLAS); 

Polk Co., Hood 4184 (FLAS); Putnam Co., Baltzell and Hall 1160 (FLAS); Putnam Co., 

Ionta and Marks 78 (FLAS); Santa Rosa Co., Burkhalter and Hall 5604 (FLAS); Saratosa 

Co., 257 (FLAS); Seminole Co., Scudder and Beckner 0433 (FLAS); St. Johns Co., Ward 

and Myint 2108 (FLAS); St. Lucie Co., Garland 899 (FLAS); Sumter Co., Sargent 6404 

(BRIT); Taylor Co., Duncan 14003 (GA); Taylor Co., Edwards and Ionta 60 (FLAS); 
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Taylor Co., Godfrey 60380 (BRIT); Union Co., Penneys 1135 (FLAS); Union Co., 

Cherry et al., 85 (FLAS); Volusia Co., Ray et al., 10835 (BRIT); Volusia Co., Robinson 

22959 (FLAS); Wakulla Co., Anderson 4353 (BRIT); Walton Co., 257 (FLAS); Walton 

Co., Hood 2999 (FLAS); Washington Co., Hood 2876 (FLAS); Washington Co., Hood 

2877 (FLAS);  

Georgia: Appling Co., Nordman (GA); Baker Co., Duncan 4114 (GA, MO); Bartow Co., 

Greear 64403 (GA); Bryan Co., Carter et al., 10330 (GA, VDB); Biscayne Bay Palmer 

353 (MO); Calhoun Co., Thorne 6495 (GA); Catoosa Co., Cronquist 5612 (BRIT, GA, 

MO); Catoosa Co., Duncan 13213 (GA); Catoosa Co., Kral 537 (VDB); Charlton Co., 

Blake 67708 (GA); Colquitt Co., Faircloth 4841 (GA); Columbia Co., Duncan 10248 

(GA); Crawford Co., Payne and Payne 7546 (GA); Cutler, Small and Carter 1161140 

(MO); Decatur Co., Duncan 13993 (GA); Echols Co., Carter 4451 (FLAS, GA); Elbert 

Co., Coile and Coile 1190 (GA); Elbert Co., Dunn 1268 (FLAS); Dekalb Co., McDowell 

and Venard M-482 (GA); Floyd Co., Duncan 13120 (GA); Floyd Co., Ware Sr. 31 (GA); 

Gordon Co., Moore et al., 4270 (GA); Grady Co., Faircloth 1611 (MO); Grady Co., 

Faircloth 2988 (GA, MO); Hancock Co., Allison and Duncan 30866 (GA); Hart Co., 

Credle 2534 (GA); Hart Co., Credle 2323 (GA); Hart Co., Duncan 7820 (GA); Heard 

Co., Allison 2508 (GA); Jasper Co., Duncan 21559 (GA); Jefferson Co., Pyron and 

McVaugh 1238 (GA); Lake Co., Nash 688 (MO); Lee co., Harper et al., 17165 (GA); Lee 

Co., Hitchcock 250 (MO); Liberty Co., Carter and Lusk 10407 (GA); Long Co., 

Bozeman 1754 (GA); Long Co., Duncan 7110 (GA); Madison Co., Duncan 11619 (GA); 

Marion Co., Orzell and Bridges 15111 (FLAS); Meriwether Co., Patrick et al., 2992 

(GA); McIntosh Co., Angerman 7546 (GA); Muscogee Co., Allison 2549 (GA); Newton 
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Co., Allison 2368 (GA); Oconee Co., Seward 1396 (GA); Orange City, Hood 850428 

(MO); Peach Co., Payne and Payne (GA); Seminole Co., Boring et al., 3144 (GA); 

Sumter Co., Harper  637 (MO); Sumter Co., Norris 6363 (GA); Tattnall Co., Zebryk 

0601 (GA); Tattnall Co., Zebryk 0730 (GA); Walker Co., Coile and Jones 24361 (GA); 

Wheeler Co., Carter 6355 (VDB); Wilcox Co., Elisens 1066 (OKL); Wilkes Co., Allison 

2776 (GA);Wilkes Co., Fitzgerald 504 (GA); Whitfield Co., Gioia 47 (GA);  

Kentucky: Calloway Co., Landon et al., 4494 (VDB);  

Louisiana: Allen Pa., Ahedor 101 (OKL); Allen Pa., Shinners 21518 (BRIT); Allen Pa., 

Vincent 3826 (BRIT); Beauregard Pa., Ahedor 102 (OKL); Beauregard Pa., Shinners 

21574 (BRIT); Bienville Pa., Slaugther 1419 (GA); Bossier Pa., Shinners 24499 (BRIT); 

Caldwell Pa., Shinners 21918 (BRIT); Caldwell Pa., Thomas 108,595 (FLAS); Caldwell 

Pa., Thomas 125, 216 (MO); Catahoula Co., Thomas and French 41195 (BRIT); 

Covington Pa., Arsene 11167 V; DeSoto Pa., Vincent 4173(BRIT); Evangeline Pa., 

Thieret 10181(VDB); Evangeline Pa., Thieret 16420 (VDB); Evangeline Pa., Vincent 

4131 (GA); Evangeline Pa., Thieret 16420 (BRIT); Elmore Co., Kral 36612 (GA); Grant 

Pa., Shinners 21332 (BRIT); Jackson Pa., Miller 125 (MO); Jefferson Davis Co., Vincent 

3773 (FLAS); LaSalle Pa., Thomas and Laird 30048 (VDB); Lincoln Pa., Kral 15790 

(VDB); Natchitoches Pa., Kral 16188 (VDB); Natchitoches Pa., Thomas et al., 108, 449 

(MO); Ouachita Pa., Thomas et al., 93755 (MO); Red River Pa., Shinners 28745 (BRIT); 

Sabine Pa., Shinners 21623(BRIT); Sabine Pa., Vincent 3850 (MO); St. Landry Pa., 

Vincent 3891 (FLAS); St. Tammany Pa., Allen 9610 and Vincent 2964 (FLAS); St. 

Tammany Pa., Allen 9610 and Vincent 2964 (MO); St. Tammany PA., Elisens 1053 

(OKL); St. Tammany Pa., Rylander 7 (BRIT); St. Tammany Pa., Rylander 31 (FLAS); 
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Tensas Pa., Thomas 101, 071 (MO); Union Pa., Shinners 24606 (BRIT); Washington Pa., 

Allen et al., 698 (BRIT); Washington Pa., Allen et al., 2698 (FLAS); Washington Pa., 

Allen 9660 and Vincent 3015 (MO); Washington Pa., Ewan 19427; Winn Pa., Vincent 

and Allen 195 (FLAS); Washington Pa., Vincent et al., 2698 (VDB); Webster Pa., 

Shinners 21781; West Feliciana Pa., Allen et al., 9535 (BRIT); Winn Pa., Elisens 1047 

(OKL); Winn Pa., Thomas et al., 56061(BRIT); 

Maryland: Montgomery Co., Iltis 1066 (BRIT); Mongomery Co., Painter 1041 (MO);  

Mississippi: George Co., Elisens 1056 (OKL); George Co., Shinners 28847 (VDB); 

Itawamba Co., Kral 74882 (VDB); Kemper Co., McDaniel and Daugherty 32036 (VDB); 

Lamar Co., Jones Jr. 2500 (GA); Madison Co., Chapman et al., 18035 (GA); Marion Co., 

Jones et al., 20276 (VDB); Marion Co., Parker et al., 20276 (GA); Oktibbeha Co., Bryson 

8291 (GA,VDB); Scott Co., Chapman et al., 17832 (FLAS); Scott Co., Jones et al., 

17744 (VDB); Simpson Co., Jones 14049 (GA); Smith Co., Jones 19154 (BRIT); Star, 

Tracy 8713 (BRIT); Tallahatchie Co., Temple 6802 (GA); Tishomingo Co., Ray Jr. 7382 

and Gleason 1960 (VDB);  

Missouri: Butler Co., Hudson 182 (MO); Butler Co., Hudson 287; Butler Co., Hudson 

325; Butler Co., Rowan 1066; Carter Co., Hudson 791 (MO); Howell Co., Summers 

3815; Howell Co., Summers et al., 9517; Howell Co., Summers 10092-A; Howell Co., 

Summers 10085; Howell Co., Summers 3420; Howell Co., Summers 7078 (MO); Jasper 

Co., Palmer 799; Jasper Co., Palmer 840; Jasper Co., Palmer 799 (MO); Jasper Co., 

Palmer 2816; Jasper Co., Palmer 3437 (MO); Jasper Co., Palmer 26294; Jasper Co., 

Palmer 2816 (MO); Howell Co., Summers 6336 (MO); Mississippi Co., Steyermark 

9077; Scott Co., Holmes 775; Stoddard Co., Brant 4794 (MO);  
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North Carolina: Bertie Co., Radford 5967 (GA); Chatham Co., Fox and Godfrey 3146 

(BRIT); Durham Co., Blonquist 16771(BRIT); Franklin Co., Ingle 2039 (VDB); 

Granville Co., Batson 1217 (BRIT); Jones Co., Radford 40053 (VDB); Lee co., Beard 

703 (BRIT); Mongomery Co., Oosting 1870 (FLAS); Orange Co., Nesom 124 (BRIT); 

Robeson Co., Terrell 2991 (FLAS); Rowan Co., Small and Heller 345 (MO); Union Co., 

Ahles 33912 (BRIT);  

Oklahoma: Bryan Co., Taylor and Taylor 3446 (OKL); McCarty GRU0773 (OKL); 

McCurtain Co., Hoagland and Benesh RSGS453 (OKL); McCurtain Co., Waterford 

10423 (BRIT); Muskogee Co., Bebb 4987 (OKL); Muskogee Co., Johnson et al., 

GRU0080 (OKL); Muskogee Co., Proctor and McCarty GRU0708 (OKL); Muskogee 

Co., Waterford 10297 (BRIT); 

South Carolina: Abbeville Co., Credle 3037 (GA); Aiken Co., Angerman (VDB);  

Allendale Co., Bell 5149 (GA); Berkeley Co., Merello and Noyes 417 (MO); Berkeley 

Co., Myers 16 (GA); Columbia Richland Co., Philson 15118 (GA); Diken Co., Eggert 

93299 (MO); Mebburtis 93296; 932297 (MO); McClellanville, PVS 1063199 (MO); St. 

Helen Island Cuthbert 21924 (FLAS);  

Tennessee: Bedford Co., Ahedor 107 (OKL); Benton Co., Shaver 8424 (GA); Benton 

Co., Shaver 7546; Bedford Co., Kral 40740 (BRIT, MO, VDB); Coffee Co., Baskin et a., 

30 (VDB); Coffee Co., Horn and Kral 375 (VDB); Coffee Co., Kral 26027 (VDB); 

Coffee Co., Kral 32289 (BRIT); Coffee Co., Kral 32289 (VDB); Coffee Co., Kral 40690 

(GA, MO, VDB); Coffee Co., Shaver 8425 (GA); Coffee Co., Somers and Collins 1512 

(VDB); Davidson Co., Guthrie 594 (VDB); Davidson Co., Franklin et al., 224 )VDB); 

Franklin Co., Shaver 8526 (GA); Hardin Co., Kral 76872 (VDB); Hardin Co., Shaver 
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9902 (VDB); Lawrence Co., Shaver 9925 (BRIT, VDB); Lewis Co., Kral 36201 (VDB); 

Macon Co., Kral 79582 (VDB); Madison Co., Webb et al., 2326 (VDB); Marshall Co., 

Ahedor 105 (OKL); Maury Co., Collins 4527 (VDB); Maury Co., Ahedor 106 (OKL); 

McNary Co., Svenson 4333 (BRIT); Meigs Co., Sharp and Underwood 2323 (GA); 

Moore Co., Kral 40652 (GA, VDB); Montgomery Co., Chester 4452 (VDB); 

Montgomery Co., Chester and Wofford 1781 (BRIT); Perry Co., Kral 68922 (VDB); 

Rutherford Co., Ahedor 104 (OKL); Rutherford Co., Ahedor 108 (OKL); Rutherford Co., 

Ahedor 109 (OKL); Rutherford Co., Ahedor 111 (OKL); Rutherford Co., Kral 29206 

(VDB); Rutherford Co., Shaver 7546 (VDB); Rutherford Co., Pyne 93-225 (VDB); 

Sequatchie Co., Rogers 44181(VDB); Shelby Co., Heineke 2852 (MO); Wilson Co., 

Quarterman 4018 (VDB); Wilson Co., Rogers 44301 (BRIT); Wilson Co., Rogers 44301 

(VDB); Wilson Co., Ahedor 110 (OKL); Texas: Anderson Co., Whitehouse 22385 

(BRIT); Angelina Co., Shinners 26799 (BRIT); Cass Co., Shinners 24828 (BRIT); Cass 

Co., Whitehouse 17682 (BRIT); Cherokee Co., Lewis et al., 5505 (BRIT); Echols Co., 

Carter 4451 (VDB); Harrison Co., Cory 57753 (BRIT); Harrison Co., Fleetwood 12397 

(BRIT); Harrison Co., Fleetwood 12407 (BRIT); Harrison Co., Lindheimer and Dapprich 

7466 (BRIT); Jasper Co., Lundell 11817 (MO); Jasper, Tharp and Pennell 10574 (MO); 

Jasper Co., Tharp 2503 (MO); Leon Co., Correll 14178 (BRIT); Montgomery Co., 

Shinners 16592 (BRIT); Nacogdoches Co., Ahedor 103 (OKL); Nacogdoches Co., Nixon 

and Stransky 2864 (MO); Newton Co., Cory 49781 (BRIT); Newton Co., Cory 49783a 

(BRIT); Orange Co., Corbin 80 (BRIT); Polk Co., Shinners 25332 (BRIT); Red River 

Co., Taylor 10668 (BRIT); Red River Co., Robertson Co., Starbuck 906 (BRIT); Sabine 

Co., Whitehouse 16578 (BRIT); San Jacinto Co., Shinners 25326 (BRIT); Shelby Co., 

 129



Whitehouse 16669 (BRIT); Whitehouse 20546 (BRIT); Smith Co., Fleetwood 

12621(BRIT); Tattnall Co., Zebryk et al., 0601 (VDB); Titus Co., Ajilvsgi 7136 (BRIT); 

Titus Co., Ajilvsgi 7004 (BRIT); Titus Co., Amerson 980 (BRIT); Tyler Co., Cory 54894 

(BRIT); Upshur Co., Shinners 16016 (BRIT); Van Zandt Co., Whitehouse 16450 (BRIT); 

Wilcox Co., Kral 81830 (VDB);  

Virginia: Amelia Co., Lewis 2024 (BRIT); Henrico Co., Seymour and Svenson 3005299 

(MO); King William Co., Bradley 24110 (GA); Matheus Co., Rothrock 93295 (MO); 

Nansemond Co., Hubricht B2676 (MO); New Kent Co., Soltis 548 (FLAS); 

Westmoreland Co., Iltis 359 (BRIT); York Co., Kirkman and Ware 815 (FLAS); 
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Appendix 3-2. Two dimensional scatter plot of Canonical Discriminant Function 

Analysis of morphological characters of M. acuminata compared to three branching 

patterns. 
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Appendix 3-3. Linear Regression Analysis of subspecies microphylla specimens showing 

latitudinal and longitudinal associations of characters. 
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Appendix 3-3. continued 
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Appendix 3-4. Linear Regression Analysis of subspecies peninsularis specimens showing 

latitudinal and longitudinal associations of characters. 
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Appendix 3-4 continued 
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Appendix 3-5. Linear Regression Analysis of subspecies acuminata specimens showing 

latitudinal and longitudinal associations of characters. 
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Appendix 3-5 continued 
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Appendix 3- 6. Table showing states and counties where subspecies peninsularis and 

microphylla were identified (counties in bold denote counties where both subspecies 

were identified) 

___________________________________________________________________ 
Subspecies peninsularis    Subspecies microphylla 
State  County     State   County  
____________________________________________________________________ 
Florida  Broward    Florida   Calhoun 

  Charlotte       Charlotte 

  Citrus        Jackson 

  Dade                 Washington 

  Desoto     Alabama  Geneva 

  Dixie        Lee 

  Gilchrist       St. Clair 

  Hardee     Mississippi  George 

  Hendry       Lamar 

  Hernando    Louisiana            Beauregard 

  Highlands       Evangeline 

  Indian River       Grant 

  Lake     Texas   Newton 

  Lee        Orange 

  Levy        Polk 

  Manatee       Red River 

  Martin        SanJacinto 

  Marion        Titus 
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Appendix 3- 6 continued. 

_____________________________________________________________________ 

  Okeechobe       Tyler 

  Palm Beach    Virginia        King William 

  Pasco     North Carolina Chatham 

  Pinellas    Georgia  Charlton 

  Polk        Catoosa 

  Seminole       Dekalb 

  St. Lucie    Arkansas  Drew 

  Taylor        Bradley 

  Volusia       Calhoun 

Georgia Catoosa       Lafayette 

Alabama Wilcox     Oklahoma  McCurtain 

(Maryland) D.C.          

Tennessee Rutherford         

Texas  Ushur         

_____________________________________________________________________ 
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