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CHAPTER I

INTRODUCTION

Background

The beef industry is currently one of the largest agricultural industries in the U. S. In

recent years, it has comprised more than 20% of the total agricultural market. Total retail

value of beef consumed in 1996, was $51.4 billion (USDA Cattle and Beef Statistics,

1996). However, changing consumer preference and the need to be competitive have

driven the rapid shift from a commodity-oriented to a consumer-oriented industry (Cross

et aI., 1989). Increased consumer awareness of health and food relationships has initiated

strong signals from meat packers to beef producers to place more emphasis on carcass

quality (Park et aI., 1994).

In the U.S., beefhas traditionally been graded by trained United States Department of

Agriculture (USDA) personnel. USDA developed standards for the grading of beef

carcasses as early as 1926. The 1986 National Consumer Retail Beef Study showed

consumer preference for closely trimmed products (Fielding, 1994). The marketing

system, however was tolerating and even encouraging the production of excess fat.

There was no objective, reliable way to detennine the value of individual carcasses.
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This situation, in tum, prevented the packer from passing the right signals to the feeders

by offering monetary incentives to produce cattle that would yield products with the

quality and composition desired by consumers. There was a reduction of confidence in

the accuracy ofUSDA graders, who make visual, subjective detennination of carcass

quality and yield. USDA graders maintain a level of trust, not because they are infallible,

but because they are an impartial third party in the marketing chain (Fielding, 1994). The

incorporation of an accurate automatic grading system for beef carcasses would eliminate

subjective bias from the grading procedure and would be more desirable to both the

feeders and the packers.

Beef carcass grading assesses two factors; yield and quality. Yield grade defines the

amount of lean meat obtainable from a carcass, whereas the quality grade is more closely

related to taste or palatability of the meat. Physical characteristics of the longissmus

dorsi (J.d.) muscle, or ribeye, like size and the amount and distribution of intramuscular

fat (marbling) are important factors in the determination of carcass yield and quality

grades. The ribeye area, rib-fat thickness, and carcass weight are used to estimate the

yield grade of the carcass. Visually discernible characteristics such as muscle color and

marbling indicate "eating" quality of the meat and are used to assign quality grade

(Gerrard et al., 1995).

A human grader generally estimates these visual characteristics from observation of the

cross-sectional surface of the J.d. muscle. Although highly trained, these graders are

subject to fatigue, emotional strain, and other stresses, which can affect their decision-
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making process. Further, the working environment and the high rate of inspection

demanded are tiring and can cause inconsistencies injudgement of quality. Because this

grading decision establishes the value of the carcass, a methodology providing objective

quality assessment would be desirable. Automation of the grading process suggests the

need for computer-based simulation of the observational and reasoning skills of a human

grader.

Machine vision and digital image processing have great potential for automating

machines and quality control processes. Machine vision technology in the form of video

cameras, image digitizers, and computer processing best matches the human eye for

automated grading. Over the past 10 to 15 years, work has been done to apply video

image analysis to the automation of grading various agricultural products, including beef.

Today's advanced video imaging technology offers much in the area of color and

morphological quality evaluation.

Objectives

This study is intended to develop a system to assess the quality grade of beef. The

objectives ofthis research are to:

1. Extract relevant grading parameters using USDA Marbling Standards and the

Iowa State University Color Standards as reference.

2. Develop an algorithm to separate and isolate the ribeye from beef steak images,

measure marbling and color parameters, and assign quality grades.

3. Train the system with tests using sample steaks and information from the standards.
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4. Evaluate performance by comparing quality parameters and grades determined by the

machine vision system with those assigned by the expert graders.

Asswnptions

Certain assumptions about the handling and grading environment were required to put a

reasonable limit on the extent of this research and study.

The first asswnption was that the steaks would be chilled for at least 24 hours before

grading. This procedure is required to accentuate the distinction between the fat and the

lean in the ribeye (Lenhart and Gilliland, 1985).

The second assumption was that only one steak at a time would appear in the field-of­

view (FOV) of the camera. The image processing procedure is much simpler if the

algorithm must identify only one object per image. Orientation of the steak was not a

constraint.

Lighting adequate for color definition was asswned. A dedicated lighting chamber was

designed to provide unifonn, diffuse lighting throughout the imaging area.

The final constraint was the presence of a dark background to provide contrast with the

steak image. A pan with a non-reflective black surface was used to position the steak

beneath the camera.



CHAPTER II

REVIEW OF LITERATURE

Introduction

Goals of the U.S. beef industry are to become more competitive in the marketplace and to

regain and enhance consumer demand, confidence, and profitability (Cross and

Whittaker, 1992). The industry has been rapidly transitioning from a commodity-driven

to a consumer-driven industry (Park et aI., 1994). The need for instrument-based,

objective assessment of carcass value has grown, because the cattle producers feel that

the present subjective grading system does not give sufficient confidence to the

consumers or themselves.

Carcasses are graded, based on degree of development of specific desirable physical

characteristics. The most important considerations are differences in the proportion of

the more desirable to less desirable components. The important beef carcass quality

attributes are (Thane and Whittaker, 1990):

1. Degree ofmarbling

2. Level of skeletal maturity

3. Texture oflean muscle

5
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4. Firmness oflean muscle and fat

5. Color of lean muscle and fat

Quality of a carcass can be defined as the relative desirability or expected palatability

(tenderness, flavor, and juiciness) of the meat (Thane and Whittaker, 1990). In

determining the final quality grade of a carcass, the level of marbling and muscle color

are the most important parameters (USDA, 1989).

Carcass maturity is determined by evaluating the skeletal characteristics; the size, shape

and degree of ossification of the bones and cartilage (Thane and Whittaker, 1990). The

color and texture of the ribeye surface between the 12th and 13th rib cross-section is

believed to be equally important in determining the maturity of the carcass. Color of the

lean may be divided into eight different classes (Iowa State University, 1989) as shown in

Figure 1.

1. Bleached red

2. Very light red

3. Moderately light cherry red

4. Cherry red

5. Slightly dark red

6. Moderately dark red

7. Dark red

8. Very dark red

The USDA beef grading standards recognize five levels of carcass maturity for beef,
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represented by levels A, B, C, D, and E (USDA, 1989). In evaluating the overall

maturity level, expert graders combine the scores suggested by the lean color of the

ribeye section between 12th and 13th ribs and by the skeletal characteristics with more

emphasis on the latter. Maturity levels D and E are not relevant in quality grading, since

their presence would place the overall grade below acceptable range.

Marbling is the visible fat found on the surface and distributed throughout the ribeye

muscle (Thane and Whittaker, 1990). Eleven degrees of marbling are used in beef

grading (USDA, 1989):

1. Very Abundant

2. Abundant

3. Moderately Abundant

4. Slightly Abundant

5. Moderate

6. Modest

7. Small

8. Slight

9. Traces

10. Practically devoid

II. Devoid

Some ofthe most common distributions are shown in Figure 2.

I
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(a)
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Figure 2. Degree of marbling according t SD landards: (a) moderately abundant.
(b) slightly abundant. (c) moderate, (d) mode. t. (e) mall, (f) light.

---------------
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Historical Background

The USDA adopted standards for grading beef carcasses in 1927. The inspection assigns

two different grade types to the carcasses; yield grade and quality grade. Quality grade is

based on the marbling, texture, and maturity of the carcass. Research has shown that

these factors correlate with the palatability of beef to a limited extent (Lenhert and

Gilliland, 1985). The USDA quality grades are; Prime, Choice, Select, Standard,

Commercial, Utility, Cutter, and Canner, in order of decreasing palatability (Thane and

Whittaker, 1990).

Yield grade indicates the amount of usable meat present in the four major primal cuts of a

carcass after the waste fat has been trimmed. The grades are represented by the numbers;

USDA 1,2,3,4, and 5. Yield grades are determined from the following four parameters:

1. Fat thickness

2. Ribeye area

3. Percent of kidney, heart, and pelvic fat

4. 'Warm carcass weight.

Yield grade is computed as: yield grade = 2.5 + (2.5 * fat thickness in inches) + (0.2 *

percent of kidney, heart, and pelvic fat) - (0.32 * inches squared of ribeye muscle)

(Lenhert and Gilliland, 1985).

Before a carcass can be graded, it should be chilled for at least 24 hours. This treatment

enables the marbling to become more visually apparent. In actual on-line grading

operations, the USDA grader has approximately 10 to 15 seconds per carcass to evaluate
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all the criteria and assign the yield and quality grades. Because ofthis critical constraint,

the grader has insufficient time to manually measure the parameters. Hence, the grading

becomes a visual judgement process, instead of an objective process. The system carries

an inherent error rate due to this subjectivity.

Cross et al. (1983) indicated that about 21 percent of carcasses were graded incorrectly

by the trained USDA graders. Apart from grading inaccuracies within a supervisory

mainstation, there was inconsistency in interpretation of marbling levels among

mainstations. Even though the yield grading process was more objective, the report

concluded that in actual applications, the error was greater for yield grading than quality

grading. This result encouraged the USDA to seek a more objective means for grading

carcasses.

Demands for automated grading had also been felt in other agricultural areas like fresh

produce quality evaluation. Machine vision was the technology of choice in most of the

suggested and implemented systems. Developments in the field of image processing

have been instrumental in building systems that grade produce like fruits and vegetables.

Notable examples are the automation of a cucumber processing line, which sorted

according to shape and length (Nakahara et aI., 1979) and the apple sorting technique

outlined by Rehkugler and Throop (1986). This has encouraged the development of

similar systems to grade beef, using advanced image processing techniques and grading

schemes.
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One of the earliest serious efforts to develop an objective means of grading beefcarcasses

was carried out by the National Aeronautics and Space Administration (NASA). In 1978,

research was conducted at the NASA Jet Propulsion Laboratory (JPL) to determine if

NASA technology could be applied to beef grading (Cross and Whittaker, 1992). They

concluded that ultrasound and video image analysis were the best available methods for

the automation of beef grading (JPL Invention Report, 1987). Image analysis was judged

to hold the most direct and immediate application to assist the grader, while ultrasOlUld

had the advantage of being useful on live animals or intact carcasses. The Agricultural

Research Service was subsequently funded to develop an instrwnent to provide quality

and yield grading of beef carcasses (Cross and Whittaker, 1992). A technical committee

was formed to develop a Request for Proposals. Among the eight different proposals

based on imaging analysis and ultrasound, Kansas State University was awarded the

contract in 1980.

From 1981 to 1983, the Roman L. Hruska USDA Meat Animal Research Center

cooperated with Kansas State University to develop and test a video image analysis

(VIA) unit (Cross et aI., 1983). The system consisted of a camera, video monitor, data

terminal, and computer. The camera was positioned at a controlled distance and angle,

with respect to the beef carcasses. The angle of the camera appeared to influence the

results. The system took approximately 10 to 14 seconds to grade a carcass. The

subcutaneous fat thickness was measured at several points and averaged. The VIA

measured the following parameters:

1. Total fat area
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2. Total lean area

3. Number of, and area occupied by, marbling flecks

Cross et al. (1983) reported that the system had more potential as a yield-grading than a

quality-grading device.

In 1984, the USDA invited industry representatives to discuss the status of instrument

grading (Cross and Whittaker, 1992). Five state-of-the-art-technologies were identified

and assessed:

1. Nuclear Magnetic Resonance (NMR)

2. Near Infrared Reflectance (NIR)

3. Real-time Ultrasound

4. Video Imaging

5. Computerized Axial Tomography (CAT) Scan

The NMR and CAT technologies were eliminated because they were too expensive.

Research in NIR had not progressed far enough to be useful in determining marbling.

Video imaging had limitations because of its need for unribbed, unchilled carcasses.

Ultrasound, which at that time had an edge because of the advances made in the medical

field, was judged the best choice to automate beef grading.

In 1984 and 1985, research was conducted to determine the potential of ultrasound for

beef grading (Cross and Whittaker, 1992). Staff from the National Livestock and Meat

Board, the American Meat Institute, National Cattlemen's Association, Texas A & M

University, and Cornell University met and combined their efforts for this purpose.

13
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Texas A & M University investigated the usefulness of ultrasOlmd in measuring the yield

traits. Studies were conducted at Cornell University to measure marbling content

Results on fat thickness and ribeye muscle were promising, but the results on marbling

were marginal. Results did suggest that ultrasound had potential for grading beef.

In 1989, the Australian Meat and Livestock Corporation and the Australian Meat and

Livestock Research and Development Corporation hosted a symposiwn in Sydney on the

"Automated Measurement of Beef." State-of-the-art activities were discussed, and

ultrasound was identified to have the greatest potential for grading beef (Cross and

Whittaker, 1992).

In a project initiated in 1983, the Danish Meat Research Institute developed the Beef

Classification Center (BCC) (Petersen et. aI., 1989). The prototype instrument, using

VIA technology, was tested in 1989. The output of the unit consisted of an index for

muscularity and an index for the value of the carcass, based on carcass composition

detennination. The system included a reflection probe measuring device and an

electronic weighing system. The BCe was installed after regular meat inspection on the

slaughterline. The carcass was illuminated from the back and a camera placed about 3 m

away. Information gathered was used to measure the carcass length and width. Later, a

green light was used to illuminate the front to achieve good discrimination between the

fat and lean. A probe was used manually to measure fat thickness. Weight was measured

automatically.

-
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Work proceeded in the U.S. at the same time, with concentration on the VIA method.

Many advances were made in the image-processing field. Chen et aI. (1989) developed

an algorithm to segment and isolate the ribeye from the cut surface of the 12th and 13th

cross-section of the carcass. The gray-scale image was first binarized using a simple

threshold. There was a large difference between the gray scale values for the

intennuscular fat and lean. That range easily facilitated the process of choosing a

threshold. Next, a chain-coding algorithm (Ali and Burge, 1988) was used to define the

boundary of the ribeye. Some extraneous tissue was nonnally included with the actual

ribeye. The next step was to separate the intramuscular fat from the lean. Because gray

values in the histogram were not clearly separated, a minimwn error method was used to

pick an optimal threshold. This method had limitations, because it required the

background illumination to be unifonn throughout the image for correct thresholding.

McDonald and Chen (1990a) developed two algorithms to remove the extraneous tissues

that normally were segmented along with the ribeye. Quality grade may be affected if the

marbling properties of external portions are significantly different from the J.d. itself.

Meyer (1979) developed an algorithm to separate component parts from a union of

convex sets. The algorithm was based on sequential shrinking of overlapping

components causing the connecting points to erode away and thus leaving two disjointed

blobs (McDonald and Chen, 1990a). This algorithm had limitations in separating the J.d.

muscle because of the concavities present in its shape. McDonald and Chen (1990b)

modified the algorithm by limiting the number of image erosions. It was justified by the

asswnption that there is a limit in size to the connecting pieces. This method performed
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well on images, except when the connection between the ribeye and the unwanted tissue

was relatively long. The second method, called the removal algorithm, used binary

opening procedures. Binary opening is similar in function to mechanical sieving. It

removes all the bridges connecting external pieces to the largest blob, and thus everything

except the largest blob disappears from the image. The only constraint was that the

structuring element had to be larger than the largest piece of extraneous tissue. The

algorithm produced good results in most cases. However, for both algorithms, time

consumed for the operation made it almost impractical to be used for real-time grading.

Zhuang et al. (1992) reported developing a neural network to segment pork images using

the color infonnation from the red, green, and blue spectral channels. It showed

satisfactory results for segmenting pork ham images.

Gerrard et al. (1995) pioneered the use of color image processing techniques for assessing

beef muscle color and marbling. The muscle was segmented from fat based on three­

dimensional color space (red, green, and blue). Marbling flecks were then segmented

from the muscle. The means and variances of the red, green, and blue components were

used to score the color of the lean. It was found that the red and green means were better

predictors of color than the blue mean. The areas as well as the density of the small

flecks were found to strongly influence the marbling score. Their research suggested that

the size and number of flecks biased the perception of marbling by manual graders, even

though USDA standards mandate considering flecks regardless of their size. Apart from

color and marbling, work has also been conducted to extract the texture features from the
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beef images. The texture features were found to be good indicators of beef tenderness,

which is considered important in quantitative palatability evaluation (Li et al., 1997).

They attempted to utilize machine vision techniques, including neural networks, to

extract texture features that are difficult for graders to capture. It also allowed

characterization of coLor and marbling in a more efficient manner.

Most recently, the Canadian Computer Vision System was developed by the Canadian

Cattlemen's Association and Canadian Meat Council in conjunction with the Lacombe

Research Station. This system incorporated neural networks, used two separate cameras

to measure carcass and ribeye characteristics, and produced a combined yield grade

which was found to be twice as accurate as their current yield ruler method.

A vast amount of research aimed at developing an objective method for grading beef has

been conducted over the past 10 to 15 years. Recent advances in the field of color image

processing can make contributions toward this goaL. This research is intended to

investigate the use of color infonnation from the L.d. muscle to determine the quality

grade of the carcass.



CHAPTER III

METHODS AND PROCEDURES

Chapter Overview

This chapter discusses the design and development of beef grading system based on

video image analysis. System design was accomplished and implemented primarily in

software. The goal of the VIA unit was to reproduce human grader's skills and

judgement in meat grading. The algorithm was hence based on the methods used by a

professional grader to grade meat according to quality standards. However, there were

constraints regarding the grading environment that could be recreated in the lab that had

to be accommodated.

The beginning of this chapter is divided into two sections, the first one describing the

hardware design and the second software design. This development description is

followed by an account of the testing procedures used.

Hardware Design

A VIA unit capable of grading beef requires simulation of the human grader's vision and

image processing capabilities. Therefore, the basic requirements for the system were a

18
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color camera, an image digitizer board, and a computer. The color camera captured the

image, and the digitizer converted the analog image signal to digital fonnat. This digital

image was processed and analyzed by the computer.

A MicroImage A209 RGB color video camera and 8-mrn lens were used. Lens aperture

was selected to avoid saturation of the red, green, and blue components in the image.

Focus of the camera was fine-tuned when the first steak was presented.

An Integral Technologies Flashpoint 128 digitizer board was installed in a Pentium Pro

200MHz computer equipped with 64Mb ofRAM, 4GB ofhard disk space, and Windows

NT operating system. These features ensured the sufficient speed and memory for the

application. Images were regularly backed up on CD ROM.

A vaulted lighting chamber was designed for uniform and diffuse distribution of light.

The white interior of the arched cover directed base lighting to a 20 x 30 cm imaging

area. Light was supplied by six 50-watt halogen lamps powered by a feedback controller,

to stabilize illwnination level.

The camera was mounted above the lighting chamber, viewing the imaging area through

an observation port. A removable pan with a non-reflective black surface was used to

center the steak beneath the camera. Distance from the camera lens to the pan was

approximately 0.3 m.
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Software Design

Optimas Ver. 6.1 was used for software development (Optimas, 1997). This image

processing software supports a substantial library of image acquisition and processing

fimctions. Custom macros were created in the Optimas proprietary programming

language, Analytical Language for Images (Appendix B).

Algorithm

An algorithm was designed on the basis of procedures used by a trained grader. The

quality grading scheme is defined by the chart shown in Figure 3 (Dolezol et aI., 1996).

The two most important factors in deciding quality grade are the marbling level and the

carcass maturity. Expert graders assess the marbling and maturity by observing the

carcass after sectioning between the 12 th and 13th ribs. In this study, ribeye steaks cut

between the 12th and 13th ribs were used in place of a ribbed carcass (Fig. 4).

Fat percentage on the ribeye surface was determined by segmenting and measuring the

area ofthe fat flecks within the ribeye. The arrangement in Table I was adopted, after

preliminary studies, to convert the actual fat area percentage to marbling class levels.

The chart shown in Figure 3 requires the marbling to be represented as a level in a

marbling class.

Carcass maturity is assessed by the grader by observing the lean color on the sectioned

carcass and specific skeletal characteristics. VIA used only the lean color between the

12th and 13 th rib-sections to gauge the carcass maturity, because it was not designed to

20
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Degrees of
Marbling

A

Maturity Levels

B c

Traces

bun. Prime ~
Commercial

Choice

~
Select

Utility

id Standard ~

Slight

Small

Modest

Moderate

Slightly A

Practically Devo

Figure 3. Relationship between marbling, maturity and carcass quality
grade.
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measure other parameters. The algorithm was developed to distinguish only between

maturity levels A. B, and C. Levels D and E were not considered, because they are

outside of acceptable quality standards. The lean color was divided into eight different

classes and then converted into a carcass maturity score. Tables II and III show the

values used for this purpose.

When the marbling level and the carcass maturity were decided, they were combined to

generate a quality grade based on the chart in Figure 3.

Program

The program began by spatially calibrating the system. The height and position of the

camera were decided before the imaging process began, after sample steaks were

presented. A standard calibration grid was then placed beneath the camera. and the

image was used to calibrate the system. The settings were saved into a calibration

configuration file. The program used this configuration file to calculate the area in

centimeters.

Proper color calibration of the machine vision system was ensured by imaging color

standards for red, green, and blue and by camera aperture adjustment to avoid saturation

under current light settings.

The first and the most difficult of the image processing tasks was to segment and isolate

the ribeye from the steak. Images were acquired and saved in the red, green. blue (RGB)
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format. The software supported conversion between ROB and hue, saturation, intensity

(HSI) formats. Both of these models were analyzed to determine which could provide

more information for segmentation. By comparison, the red band information from the

RGB model was found to be most definitive for segmenting the lean from the

intermuscular fat and the background. The green band, however, separated the fat

effectively from the lean and the background. Thresholding based on color band

intensity was implemented to segment the lean using the red band and the fat using the

green band.

The first task was to remove the intermuscular fat from the steak image. This operation

was required in order to isolate the ribeye from the image. On some of the sample steaks,

a certain amount of intermuscular fat had been trimmed. This effect challenged the initial

program, which defined the ribeye as the largest lean area enclosed by the intermuscular

fat. Removing the intermuscular fat from the image before isolating the ribeye solved

this problem.

The green band was used to threshold the fat. The program was designed to define areas

based on this threshold as fat pieces. These fat pieces were spatially filtered to choose

those with an area larger than 0.6 sq. em. This precaution ensured that no intramuscular

fat was eliminated along with intermuscular fat. The intennuscular fat pieces were then

removed from the image. These steps are shown in Figures 5 and 6.

The resulting image consisted of only the ribeye and a few extraneous tissues. The
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extraneous tissues were a result of incomplete separation by fat, between the ribeye and

the tissues. Morphological operations were required to isolate the ribeye. Several

available algorithms were considered. Processing time involved with each of these

algorithms was the primary selection criterion. A trade-off was required between the

level of segmentation and the processing time required.

McDonald and Chen (1 990b) had developed two algorithms for this purpose. The first

was a modification ofthe Meyer's algorithm (Meyer, 1979). Meyer's algorithm

suggested binary erosions (shrinking) of the image until the touching blobs were

separated. This sequence was followed by dilations (expansions) to regrow the image to

original size. The second algorithm, called the Removal Algorithm, involved binary

"opens". A binary open consists of consecutive erosions and dilations and is similar to

mechanical sieving in effect. It removes the bridge connecting blobs and generally

smoothes the boundaries. This process, even though very effective, consumed

considerable processing time. To compromise between processing speed and

segmentation quality, the modified Meyer's algorithm (McDonald and Chen, 199Gb) was

chosen. These image processing steps ensured the isolation of the ribeye from all the

extraneous tissues (Fig. 7 and 8).

The next task was to detennine marbling percentage on the ribeye. Only fat flecks

satisfying the constraint that surface area be less than I sq. cm were considered while

computing the fat percentage. This limit followed the assumption that the human graders

would disregard the larger fat pieces when assigning the marbling level.
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Uniformity of fat distribution was also accounted for in determining the marbling score.

After calculating the centroid of the ribeye, the image was divided into quadrants. Green­

band thresholding was applied, and the marbling pieces were identified. Marbling

percentage for each quadrant was then computed separately and the average taken. Total

fat percentage for the ribeye was also computed. These two values were compared and

the lower value was chosen. This selection ensured that when fat distribution was highly

non-uniform, the quadrant average (being lower) would be chosen for the final marbling

score (Fig. 9).
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Figure 4. Ribeye steak cut between lh I_"I and 13lh rib
of the carca "

Figure 5. Interrnu cular fat identified and hown with
yellow border.
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Figure 6. Ribeye and extraneou ti ue. after
inlermuscular fat is identified and removed.

Figure 7. Intermediate tage in separation of xtraneous
tissue.

7
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Figure 8. The isolated ribeye.

Figure 9. Fat flecks identified with blue border in second
quadrant.
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Marbling scores are normally represented in terms of their marbling level in each class.

The percentage of fat computed thus needed to be converted into standard USDA

marbling class values (Table I). By repeated comparison, the percentage values

classifying each ofthe marbling levels were bracketed and implemented.

The final relevant information to be obtained was the lean color. The Iowa State

University standards were used to calibrate the color range (Fig. I). These standards

divided the lean color into eight different classes. Lean color is an indirect indicator of

carcass maturity. Graders normally assign carcass maturity as perceived average of the

lean color of ribeye and bone color. In this study, because ribeye steaks were used

instead of ribbed carcasses, maturity was computed from the lean color alone.

Instead of the means of the three color bands (red, green, and blue), their peaks or modes

were used to generate a color score. It was determined by comparison that giving equal

weights to the red, green, and blue contents resulted in closer matching of scores with

human grading. The color scores were then converted to levels on one of the three

maturity classes. Lean colors I to 4 were classified as A, 5 to 7 as B, and 7 to 8 as C.

Once marbling and maturity scores were determined, the grader's chart (Fig. 3) was used

as reference for computing the quality grade. This chart is normally used by expert

graders to assign quality grade. The chart was logically implemented in the processing

software. A quality grade was then determined by the program, based on the image

analysis, scores, and the chart.
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Procedure

The system was designed and trained with the standard photo cards for marbling and lean

color used by manual graders. After this procedure, three different sets of 10 to 15

sample steaks graded by an expert grader were used to fine-tune the system.

Performance evaluation of the VIA system was conducted with a new set of 40 pairs of

ribeye steaks obtained from an area commercial packing plant. Steaks presenting a broad

range of marbling and color levels were removed from the 12th and 13th ribs of carcasses

that had been chilled for bloom development. One steak in every pair was used to

conduct proximate chemical analysis to determine the total fat percent. The remaining

halfwere imaged individually by the VIA system for marbling, color, and grade as

described earlier.

Prior to imaging, each steak was evaluated by two beef grading experts from Oklahoma

State University Animal Science Department who assigned color scores, marbling scores,

and quality grades according to standards the same as those used by the VIA system. For

further comparison ofmarbling, results from the proximate chemical analysis for fat

content were analyzed against grades assigned by the experts and the system.
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CHAPTER IV

RESULTS AND CONCLUSIONS

A sample set of 40 steaks was evaluated for marbling, color, and quality grade by the

VIA system and by two expert meat graders. Scores and grades generated by the experts

were averaged for comparison with machine vision assessment. For further marbling

comparison, matched steaks were analyzed chemically for fat content.

Statistical tests were conducted to compare results obtained from these three evaluation

sources. Source data are included in Appendix A.

Results

Comparison of color scores Color scores were compared using paired t-tests and ~

values. The paired t-test results showed a significant difference between the expert

grader's color scores and the machine's computed color scores. The t-computed had a

value of 6.389 and exceeded the t-critical 2.021 at a 95 % confidence interval (Table V).

However, the ~ value obtained when the machine scores were regressed against the

expert grader's scores was 0.80. This result suggested relatively high correlation ability

of the VIA system to predict expert color scores.

31
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Comparison of marbling scores Apart from the expert graders' scores and the machine

vision system's scores, another set of marbling data was available from the proximate

analysis procedure. Proximate marbling percentages were converted into marbling levels

using the classification criteria developed for the machine scores. The expert graders'

scores were available in marbling class levels, only. Analysis ofvariance statistics

(Anova) tests were used to compare the three sets, as well as every combination as a pair.

The three sets ofdata were found to be significantly different (95 % confidence), with an

F-computed of 3.74 and F-critical of3.073. The F-computed for Anova applied to expert

grader scores and machine vision system scores was 0.842. It was concluded that the two

sets were not different from each other, since the F-critical was as high as 3.96. The

machine vision system data was, however, determined to be significantly different from

the proximate analysis data with F-computed of7.021 and F-critical of 3.96 at a 95 %

confidence level. The last comparison was made between the human graders' scores and

proximate analysis data. The F-computed was 3.043 and the F-critical was 3.96. The

two sets were thus concluded to be not significantly different from each other. The

Anova test results are shown in Table VI.

Paired t-test comparisons were also performed on the three pairs of marbling data (Table

V). The t-computed was 1.186 for the grader scores vs. machine scores and indicated

that the two groups were not different at a 95% confidence leveL Proximate analysis

scores were found to be different from the machine scores with a t-computed of 3.668,

and from the human grader's scores with a t-computed of 3.44. Confidence level used in

both cases was 95%. The t-critical in all the cases was 2.021.
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The? value for the machine-human pair was 0.55, the machine-proximate pair was 0.23,

and the human-proximate was 0.16 (Table IV).

Comparison of grades The average of the human graders' scores was compared with the

machine scores. A paired t-test was conducted. The t-computed was 0.813 as opposed to

at-critical of2.021 (Table V). Therefore, the two sets were concluded to be not

significantly different. The ~ was only 0.18, suggesting a low predictative correlation

between the two data sets (Table IV).

Conclusions

Statistical tests performed on the data obtained from the test steaks were used as the basis

for the following conclusions.

The machine vision system's scores were found to be reasonably close to the human

grader's scores regarding the color, marbling, and quality grades. The high ~ of 0.8 for

the color comparison means that the system was able to very closely predict the human

grader's judgement.

The proximate analysis results for the marbling score were found to vary considerably

from the human grader's as well as the machine's assessment. This result could be

attributed to the fact that the proximate analysis assesses the fat content based on the

whole ribeye, rather than surface appearance. Machine results were found to be closer to

the expert grader's marbling scores. The paired t-test as well as the Anova test results
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showed that the two sets were not significantly different. Also, the ~ value for this pair

is higher than either of the other two combinations.

The ~ for the grade comparison was relatively low, but the paired t-test results indicated

that they were not significantly different. Hence, we can say that the total quality grade

computed by the machine followed the expert graders' assignments. Perfonnance of the

system in marbling prediction did not achieve the level shown for color prediction.

Overall, it can be concluded that the machine vision system was able to successfully

simulate a human grader's skills in quality grading of beef.

Further Research

The results from testing the VIA system showed promising results in substituting or

assisting a human grader for quality inspection of beef. Color image processing appears

to offer a system that is better and more efficient. Algorithms can be developed to assess

additional parameters such as the distribution of fat specks, intennuscular fat thickness,

skeletal muscle color, etc., to provide more useful infonnation in deciding the quality

grade of beef. This would in tum assist in simulating the human grader's complex

processing and grading procedure.

-
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Table I - Conversion from fat area percentages to marbling levels.
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Fat area percentages

0-1.5

1.5 - 3

3-5

5 -7.5

7.5 - 10

10 - 13

13 - 15

15 - 18

18 - 21

Marbling levels assigned

Practically Devoid

Traces

Slight

Small

Modest

Moderate

Slightly Abundant

Moderately Abundant

Abundant
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Table II - Conversion from color scores to color classes.
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Color scores (R+B+G)

518 - 468

468 - 418

418 - 368

368 - 318

318 - 293

293 - 268

268 - 243

243 - 218

218 - 0

Color classes

Bleached red

Very light red

Moderately light cherry red

Cherry red

Slightly dark red

Moderately dark red

Dark red

Very dark red

Dark cutler (out of acceptable range)

Table III - Conversion from color classes to maturity levels.

Color classes

Bleached red

Very light red

Moderately light cherry red

Cherry red

Slightly dark red

Moderately dark red

Dark red

Very dark red

Dark cutter (out of acceptable
range)

Maturity levels

A

A

A

A

B

B

C

C

D
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Table IV - Regression of machine color scores, marbling scores, and
quality grades vs. expert evaluation.
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Sensory scores r-squared

0.80Color

Marbling

Expert vs. Machine 0.55

Machine vs. Proximate 0.23

Expert vs. Proximate 0.16

Quality Grades 0.18

Table V - Paired t-test results for the machine color scores, marbling scores,

and quality grades vs. expert evaluation.

Sensory scores t-critical t-computed

Color 2.021 6.389

Marbling

Expert vs. Machine 2.021 1.186

Machine vs. Proximate 2.021 3.668

Expert vs. Proximate 2.021 3.44

Quality Grades 2.021 0.813

95% confidence level
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Table VI - Comparison of the expert, machine, and proximate analysis
marbling scores.

Marbling scores F-critical F-computed

Expert, Machine, and Proximate 3.073 3.74

Expert vs. Machine 3.96 0.842

Machine vs. Proximate 3.96 7.021

Expert vs. Proximate 3.96 3.043

95 % confidence level

38



"'""
39

REFERENCES

Ali, S.M. and R.E. Burge. 1988. A new algoritlun for extracting the interior of bounded
regions based on chain coding. Computer Vision, Graphics, and Image
Processing, 43: 256-264.

Chen, Y.R., T.P. McDonald and J.D. Crouse. 1989. Determining percent intra-muscular
fat on ribeye surface by image processing. ASAE Paper No. 89-3009, ASAE, St.
Joseph, MI 49085.

Cross, H.R., D.A. Gilliland, P.R. Durland and S. Seideman. 1983. Beef carcass
evaluation by use of a video image analysis system. J. of Animal Science, 57(4):
910-917.

Cross, H. R., A D. Whittaker and J. W. Savell. 1989. The objective measurement of
value in meat animals. The Automated Measurement ofBeef: The Australian
Meat and Livestock Corporation.

Cross, H.R. and AD. Whittaker. 1992. The role of instrument grading in a beef value­
based marketing system. J. of Animal Science, 70: 984-989.

Dolezol, H.S., c.P. Foutz, C.S. Nick, B.A. Gardner, lS.Nelson, and B.R. Schutte. 1996.
Meat Grading and selection. Department of Animal Science, Oklahoma State
University.

Fielding, W. G. 1994. Carcass tracking, computer assisted vision grading as tools for
value based marketing. Proceedings of the International Congress of Meat
Science and Technology, 40: 153-155.

Gerrard, D.E., X. Gao and J. Tan. 1995. Determining beef marbling and color scores by
image processing. J. Food Science, 61(1): 145-148.

Iowa State University. 1989. Standards for Beef Color. Iowa State Extension
Publication, #515.

JPL Invention Report. 1987. Electronic inspection of beef. NASA Tech Brief II (6).

Li, J., 1. Tan and F.A Martz. 1997. Predicting beef tenderness from image texture
features. ASAE Paper No. 97-3124, ASAE, St. Joseph, MI 49085.



'""""

40

Lenhert, D.H. and D.A. Gilliland. 1985. The design and testing of an automated beef
grader. ASAE Paper No. 853035, ASAE, St. Joseph, MI 49085.

McDonald, T. P. and Y R Chen. 1990a. Application of morphological image
processing in agriculture. Trans. of ASAE, 33(4): 1345-1352.

McDonald, T.P. and YR Chen. 1990b. Separating connected muscle tissues in images
of beef carcass ribeyes. Trans. of ASAE, 33(6): 2059-2065.

Meyer, F. 1979. Iterative image transformations for an automatic screening of cervical
smears. J. Histochemistry and Cytochemistry, 27(1): 128-135.

Nakahara, S., A Maeda and Y. Norma. 1979. Automatic cucumber sorting using pattern
recognition technique. IEEE, Tokyo, Proceedings Denshi Tokyo, No. 18:46-48.

Optimas. 1997. Optimas 6.1 image analysis software. Optimas Corporation, Bothell,
WA

Park, B., YR. Chen, AD. Whittaker, RK. Miller and D.S. Hale. 1994. Neural network
modeling for beef sensory evaluation. Trans. of ASAE, 37(5): 1547-1553.

Petersen, F., S. Klastrup, N.T. Madsen and S.E. Sorensen. 1989. Beef Classification
Center. Proceedings of the International Congress of Meat Science and
Technology, 35: 49-52.

Rehkugler, G.E. and lA Throop. 1986. Apple sorting with machine vision.
Transactions of ASAE, 29(5): 1388-1397.

Thane, B.R. and AD. Whittaker. 1990. Automated assessment of marbling in ultrasonic
images of beefanimals. ASAE Paper No. 90-7055, ASAE, St. Joseph, MI 49085.

USDA. 1989. Official United States standards for grades of beef carcasses. Agricultural
Marketing Service, US Dept. of Agriculture, Washington, DC.

USDA Cattle and Beef Statistics. 1996. http://www/usdalgov/statistics.

Zhuang, X., A. Hetzroni, C.J. Precetti, B.A Engel and G.E. Miles. 1992. Neuro­
segmentation of color images in quality evaluation of pork hams. ASAE Paper
No. 923595, ASAE, St. Joseph, MI 49085.



APPENDIXES

41



APPENDIX A - STATISTICAL ANALYSIS

42



F"'"

Paired Observations Comparisons between the
machine and human marbling level prediction

10# Human Avg Machine Difference SUMMARY OUTPUT
beef1 5.8 5.29 0.51
beef2 7 7 0 Regression Statistics
beef3 5.55 5.5 0.05 Multiple R 0.402650353
beef4 6.75 7 -0.25 R Square 0.162127307
beef5 6.8 5.7 1.1 Adjusted R Square 0.140078025
beefS 5.9 5.04 0.86 Standard Error 0.709604158
beef7 5.9 5.2 0.7 Observations 40

beef8 5.25 6.5 -1.25
beef9 6.5 5.94 0.56 Dependent Var Human AV9
beef10 7.2 5.84 1.36 Independent Var Machine
beef11 6 5.79 0.21
beef12 7.35 5.67 1.68
beef13 6.75 7 -0.25
beef14 5.85 5.15 0.7
beef15 5 5.87 -0.87
beef16 6.35 5.52 0.83
beef17 5.25

I
6.5 -1.25

beef18 4.75 4.8 -0.05
beef19 4.55 4.4 0.15
beef20 5.35 5.2 0.15
beef21 5.9 5.92 -0.02
beef22 6.2 5.52 0.68
beef23 5.65 5.05 0.6
beef24 6 5.44 0.56
beef25 5.45 5.11 0.34
beef26 5.15 4.8 0.35
beef27 6.25 5.62 0.63
beef28 5.5 7 -1.5 Sum 6.09
beef29 4 5.3 -1.3 Mean 0.15225
beef30 6.55 5.22 1.33 Sum(O sqrd.) 26.6139
beef31 5.85 7 -1.15 CT=(Sum(D))sqrd/40 0.9272025
beef32 5.85 5.35 0.5 55 25.6866975
beef33 5.9 6.5 -0.6 Var.O 0.658633269
beef34 6.75 6.5 0.25 I 5.0.0 0.81156224
beef35 6.8 5.75 1.05 S.D. Dmean 0.128319257
beef36 5.75 4.8 0.95 T computed 1.186493777

I

beef37 4.8 5.27 -0.47 T critical 2.021 I

beef38 5.15 6.5 -1.35
beef39 6.85 6.5 0.35
beef40 6.45 6.5 -0.05

Hence the two sets of observations are not different at error level 0.05
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Paired Observations Comparisons between the human
and Proximate analysis marbling assessment

SUMMARY OUTPUT

Regression Statistics
MUltiple R 0.7482808
R Square 0.5599241
Adjusted R Square 0.5483432
Standard Error 0.5142697
Observations 40

Sum -12.73

Mean -0.31825
Sum(D2) 17.4005
CT=Sum(D2)/40 4.0513225
SS 13.349178
Var. D 0.3422866
S.D. D 0.5850526
S.D. Dmean 0.0925049
Tcomputed -3.440357
T critical 2.021

Human Avg

Prox. Anal.
Dependent Var
Independent Var

10# Human Avg Prox. Anal. Difference
beef1 5.8 5.98 -0.18
beef2 7 7 0
beef3 5.55 5.86 -0.31
beef4 6.75 7.66 , -0.91
beefS 6.8 8.33 -1.53
beef6 5.9 6.5 -0.6
beef? 5.9 5.2 0.7

beef8 5.25 6.5 -1.25
beef9 6.5 5.98 0.52
beef10 7.2 7.66 -0.46
beef11 6 7 -1
beef12 7.35 7.66 -0.31
beef13 6.75 6.5 0.25
beef14 5.85 6.5 -0.65
beef15 5 5.96 -0.96
beef16 6.35 7 -0.65
beef17 5.25 4.8 0.45
beef18 4.75 I 5.22 -0.47
beef19 4.55 5.26 -0.71
beef20 5.35 5.18 0.17

beef21 5.9 6.5 -0.6
beef22 6.2 5.66 0.54
beef23 5.65 5.62 0.03

beef24 6 5.52 0.48

beef25 5.45 5.47 -0.02

beef26 5.15 5.2 -0.05

beef27 6.25 5.8 0.45

beef28 5.5 6.5 -1

beef29 4 4.8 -0.8

beef30 6.55 6.5 0.05
! beef31 5.85 6.5 -0.65
beef32 5.85 5.88 -0.03

beef33 5.9 6.5 -0.6

beef34 6.75 7.66 -0.91

beef35 6.8 7 -0.2

beef36 5.75 5.39 0.36

beef37 4.8 5.66 -0.86

beef38 5.15 6.5 -1.35

beef39 6.85 7 -0.15

beef40 6.45 5.97 0.48

Hence the two sets of observations are significantly different (error level 0.05)
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Paired Observations Comparisons between the
machine and proximate analysis predictions of
marbling levels

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.486251
R Square 0.23644
Adjusted R Square 0.216346
Standard Error 0.635606
Observations 40

Sum 18.82
Mean 0.4705
Sum(D2) 34.5232
CT=Sum(D2)/40 8.85481
55 25.66839
Var. D 0.658164
S.D. D 0.811273
S.D. Dmean 0.128274
T computed 3.667943
T critical 2.021

Machine
Prox. Anal.

Dependent Var
Independent Var

ID# Prox. Anal. Machine Difference

beef1 5.98 5.29 0.69

beef2 7 7 0
beef3 5.86 5.5 0.36
beef4 7.66 7 0.66
beefS 8.33 5.7 2.63
beef6 6.5 5.04 1.46
beef7 5.2 5.2 0

beef8 6.5 6.5 0
beef9 5.98 5.94 0.04
beef10 7.66 5.84 1.82
beef11 7 5.79 1.21
beef12 7.66 5.67 1.99
beef13 6.5 7 -0.5
beef14 6.5 5.15 1.35
beef15 5.96 5.87 0.09
beef16 7 5.52 1.48
beef17 4.8 6.5 -1.7
beef18 5.22 4.8 0.42
beef19 5.26 4.4 0.86
beef20 5.18 5.2 -0.02
beef21 6.5 5.92 0.58

, beef22 5.66 5.52 0.14
beef23 5.62 I: 5.05 0.57
beef24 5.52 5.44 0.08

beef25 5.47 5.11 0.36

beef26 5.2 4.8 0.4
beef27 5.8 5.62 0.18
beef28 6.5 7 -0.5
beef29 4.8 5.3 -0.5
beef30 6.5 5.22 1.28
beef31 6.5 7 -0.5
beef32 5.88 5.35 0.53
beef33 6.5 6.5 0
beef34 7.66 6.5 1.16
beef35 7 5.75 1.25
beef36 5.39 4.8 0.59
beef37 5.66 5.27 0.39

beef38 6.5 6.5 a
beef39 7 6.5 0.5
beef40 5.97 6.5 -0.53

Hence the two sets of observations are significantly different (error level 0.05)



Anoya: Single Factor

SUMMARY

Human ya Machine at 0.05

46

Groups
Column 1
Column 2

Count
40
40

Sum
236.65
230.56

Average Variance
5.91625 0.585562

5.764 0.515527

ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 0.4636012 1 0.463601 0.842077 0.361632 3.9634642
Within Groups 42.942497 78 0.550545

Total 43.406099 79

Anoya: Single Factor

SUMMARY

Human ys Machine at 0.01

Groups
Column 1
Column 2

Count
40
40

Sum
236.65
230.56

Average Variance
5.91625 0.585562

5.764 0.515527

ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 0.4636012 1 0.463601 0.842077 0.361632 6.9713906
Within Groups 42.942497 78 0.550545

Total 43.406099 79



Anova: Single Factor

SUMMARY

I\1achine YS Proximate Analysis at 0.01

,

. Grot,ps
Column 1
Column 2

Coort
40
40

SUn
230.56
249.38

AV6'"~e

5.764
62345

Vcriance
0.515527
0.745548

ANOIA
SO!¥ce cI VeriEticn SS dt MS F P-vaJue FCfit

Between Gro~s 4427405 1 4.427405 7.021633 0.009746 6.971391
Withn Groups 49.18195 78 o63J538

Total 53.009355 79
,l:o.
-.l



Anova: Single Factor Human YI Prox. Analysis it 0.05

,

SUMMARY
GfOJ..PS

Column 1
Column 2

Court
40
40

sum
236.65
249.38

AVe'~

5.91625
62345

Vcriance
0.585562
0.745548

ANOIA
SCl.lfce ct VEr'if1.fOn 55 df M5 F P-value F crit
Between Groups 2.025661 1 2.025661 3.043565 0.084997 3.9634642
Withln Groups 51.91333 78 0.665555

Total 53.93899 79

Anova: Single Factor

SUMMARY

Human YS Prox. Analysis at 0.01

GfOJ..PS
Column 1
Cliumn 2

ANOIA

Court
40
40

&m
236.65
249.38

AVe'a;}€

5.91625
62345

Vcriance
0.585562
0.745548

SOi.¥ce c:J VErict.k:.n
Between Groups
Withn Groups

Total

ss
2.025661
51.91333

53.93899

df
1
78

79

MS F P-va~ F em
2.025661 3.043565 0.084997 6.9713!})6
0.665555

~
00



Anova: Sing Ie Factor All three treatments at 0.05

SUMMARY
Group f!> Count Sum Average Variance
Column 1 40 236.65 5.91625 0.585562
Column 2 40 249.38 6.2345 0.745548
Column 3 40 230.56 5.764 0.515527

AN OVA
Source of Variation SS df MS F P-value Fcrit

Between Groups 4.611112 2 2.305556 3.745546 0.026502 3.073765
Within Groups 72.01889 117 0.615546

Total 76.63 119

Significant Test

Anova: Sing Ie Factor At 0.01

SUMMARY
Groupf!> Count Sum Average Variance

Column 1 40 236.65 5.91625 0.585562
Column 2 40 249.38 62345 0.745548
Column 3 40 230.56 5.764 0.515527

AN OVA
Source of Variation SS df 1.1S F P-vaJue F crit

Between Groups 4.611112 2 2.305556 3.745546 0.026502 4.791275
Within Groups 72.01889 117 0.615546

Total 76.63 119
~
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Color Comparlslon

SUMMARY OUTPUT

Regression Statistics

Regression Statistics

Multiple R 0.807596
R Square 0.652212
Adjusted R Square 0.643059
Standard Error 0.747036
Observations 40

Bilynn
Machine

Bilynn
Dr. Dolezol

SUMMARY OUTPUT

Dependent var
Independent var

Multiple R 0.895039
R Square 0.801096
Adjusted R Square 0.795861
Standard Error 0.564945
Observations 40

Dependent var
Independent var

Dr. Dolezol Bilynn MlC
4.75 3.75 3.36
4.25 3.75 3.38
5.75 5.25 4.52
6.75 4.75 4.24
5.25 3.75 3.72
5.75 4.25 3.98
6.25 4.25 4.36

5.75 3.75 3.24
5.25 3.75 2.94
4.75 3.75 3.38
8.75 8.75 7.2
2.75 2.25 2.58
5.75 4.75 3.96
6.25 4.75 4.24

4.75 3.75 3.2
6.75 5.75 5.52
3.75 3.25 3.08
5.25 4.75 3.94
6.25 6.75 4.8
5.75 5.25 4.68

5.75 4.75 4.68
5.25 4.25 4.52
4.25 3.75 2.76
6.25 5.25 4.84
7.25 4.75 5.2
5.25 3.75 3.7
3.75 3.25 2.78

8 8.75 6.08
4.25 3.25 3.12
6.25 4.25 4.08
6.25 4.75 3.9
5.25 4.25 3.48
4.75 4.25 3.5
3.25 3.75 2.82
4.25 4.75 3.84
5.75 4.75 3.9
4.25 4.25 3.32
4.25 4.25 3.32
5.25 4.25 3.52
4.75 4.75 3.7



Color Comparision using Paired T test

BUynn Mle Diff
3.75 3.36 0.39
3.75 3.38 0.37
5.25 4.52 0.73
4.75 4.24 0.51
3.75 3.72 0.03

I

4.25 3.98 0.27
4.25 4.36 -0.11
3.75 3.24 0.51
3.75 2.94 0.81
3.75 3.38 0.37
8.75 7.2 1.55
2.25 2.58 -0.33
4.75 3.96 0.79
4.75 4.24 0.51
3.75 3.2 0.55
5.75 5.52 0.23
3.25 3.08 0.17
4.75 3.94 0.81
6.75 4.8

,

1.95
5.25 4.68 0.57
4.75 4.68 0.07
4.25 4.52 -0.27
3.75 2.76 0.99
5.25 4.84 0.41
4.75 5.2 -0.45
3.75 3.7 0.05
3.25 2.78 0.47
8.75 6.08 2.67
3.25 3.12 0.13
4.25 4.08 0.17

4.75 3.9 0.85
4.25 3.48 0.77
4.25 3.5 0.75
3.75 2.82 0.93
4.75 3.84 0.91
4.75 3.9 0.85
4.25 3.32 0.93
4.25 3.32 0.93
4.25 3.52 0.73
4.75 3.7 1.05

Hence the means are significant Iy different

Sum 23.62
Mean 0.5905
Sum(D2) 27.2696
CT 13.94761
SS 13.32199
VarD. 0.341589
S.D. D. 0.584457
S.D. Dmean. 0.092411
T Compo 6.389953
T critical 2.021
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Grade Comparision

Avg MlC Q Grade1 Q Grade2 Difference
6 6 : 6 6 0

8.5 9 8 9 -1 SUMMARY OUTPUT
9 6 9 9 0
8 9 8 8 0 Regression Statistics
8 6 8 8 0 Multiple R 0.432737

6.5 6 7 6 1 R Square 0.187261
6 6 6 6 0 Adjusted R Sqr 0.165873

5.5 8 5 6 -1 Standard Error 1.460584
7.5 6 8 7 1 Observations 40

9 6 9 9 0
11 11 11 11 0
9 6 9 9 0
8 9 8 8 0

6.5 6 I 6 7 -1
5.5 6 6 5 1
9 9 9 9 0
6 8 6 6 0
5 5 5 5 0

5.5 5 5 6 -1
9 6 9 9 0
6 6 6 6 0
7 6 7 7 I 0
6 6 6 6 0
9 6 9 9 0
6 9 6 6 0

5.5 5 5 6 -1
7 6 7 7 0
11 9 11 11 0
5 6 5 5 0

7.5 6 8 7 1
6 9 6 6 0 Sum 1
6 6 6 6 0 Mean 0.025

6.5 8 7 6 1 Sum(D2) 13
8 8 8 8 0 CT 0.025
8 6 8 8 0 SS 12.975
6 5 6 6 0 Var D. 0.332692

4.5 6 5 4 1 S.D D. 0.576795
5.5 8 6 5 1 S.D. Dme 0.091199
8 8 8 8 0 T compu 0.274125

7.5 8 7 8 -1 T critical 2.021

The means are not different at a 95 % confidence level, between the human
avg and individual scores.
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APPENDIX B - IMAGE ANALYSIS PROGRAM
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II Open the saved calibration configuration file to initialize and enable the calibration
II settings (to measure in centimeters).

OpenConfiguration("c:/optimas6/config/stkcm.cfg");
Calibrate (stkem);
CloseWindow ("Calibrate Spatial");

II Define the working variables.

real diff;
real add;
real marbling;
real color;

II Set image to be grabbed in RGB format and save the original image,
II to be retrieved after morphological operations.

SetColorMode (l : 1 : 8 : 1 : 3 : 3);
saveimage("c:/optimas6/original.tif'",4);

II Data objects are defined as areas.

DataColleetionType = 2;

II Loadfile containing parameters defining the selection criteria for the various
II object classes required by the program.
II lean - constraints for ribeye
IIfats - constraints for intermuscular fat
II marble} - constraints for intermuscular fat (area < O. J sq.cm.)
II marble2 - constraints for intermuscular fat (0. J < area < 0,5 sq. cm.)
Ilmarble3 - constraintsfor intermuscular fat (area> 0.5 sq.cm.)

loadfromoptfile("e:/optimas6/eonfig/grading.cfg"," lean");
loadfromoptfile("e:/optimas6/config/grading.efg","fats");
loadfromoptfile("e:/optimas6/config/grading.efg", IImarble 1");
loadfromoptfile("e:/optimas6/config/grading.cfg","marble2");
loadfromoptfile("e:/optimas6/config/grading.cfg","marble3");
loadfromoptfile("e:/optimas6/eonfig/grading.efg" ,"white");
loadfromoptfile("e:/optimas6/config/grading.efg" ,"meat");

II Enable the intermuscular fat object class and disable everything else.

objeetclass (lean, false);
objectclass (fats, true);
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objectc1ass (marble!, false);
objectc1ass (marble2, false);
objectc1ass (marble3, false);
objectc1ass (white, false);
objectclass (meat, false);
getorsetfield(lean,305 ,true);
getorsetfield(lean,302,true);
getorsetfield(fats,305,true);
getorsetfield(fats,302,true);
getorsetfield(marble1,302,true);
getorsetfield(marble2,302,true);
getorsetfield(marble3,302,true);
getorsetfield(white,305,true);
getorsetfield(white,3 02,true);
getorsetfield(meat,302,true);

II Select only the green band and apply autothresholding to pick up the fat in the image.

BandOflnterest = 2;
REAL rPairs[,];
HistogramO;
rPairs = GetAutoThreshold(O : ArROIHistogram[1..(VectorLength(ArROIHistogram)-l)]
: 0,6,2"ActiveLuminanceRange,);
if ( rPairs && 1 < GetShape(rPairs)[O] )

{
Threshold(rPairs[1,0]:rPairs[1,1 D;

}
Delete(rPairs);

II Based on the threshold, find enclosed areas andjilter them to include the intermuscular
IIfat and exclude the intramuscular fat.

AreaCNVFactors[0..14] = 100.0 : 0.028125 : -1.0: 64.0 : 100.0: 0.28125 : -1.0 : 1.0: 1.0
: 0.0 : 255.0 : ·1.0 : -1.0 : 0.0;
CreateArea (, , TRUE);
MultipleMode = true;
MultipleExtract (TRUE);
BandofInterest = 0;

II Remove the intermuscular fat from the image.

RunMacro ("C:/OPTIMAS6/macsrc/cxroi/cmplxroi.mac", );
CMPLX_mAreasToMasks 0;
ImageToClipboard (, TRUE);
CloseWindow ("Complex Regions of Interest");
ImageMask (8);

-



SelectFullScreen (0);

II Enable the object class to differentiate the ribeye.

objectclass(fats, false);
Objectclass(lean, true);

II Select the red band and autothreshold the image.

Bandofinterest = 1;
REAL rPairs[,];
HistogramO;
rPairs = GetAutoThreshold(ArROIHistogram[O..(VectorLength(ArROIHistogram)-I)] :
0,6,2"ActiveLuminanceRange,);
if ( rPairs && 1 < GetShape(rPairs)[O] )

{
Threshold(rPairs[l ,0] :rPairs[1, I]);

}
Delete(rPairs);

II Filter the ribeye outfrom the image.

CreateArea (, , TRUE);
MultipleMode = true;
MultipleExtract (TRUE);
Bandoflnterest = 0;

II Eliminate everything except the ribeye (along with the extraneous tissue).

RunMacro ("C:/OPTIMAS6/macsrc/cxroi/cmplxroi.mac", );
CMPLX mAreasToMasks 0;
ImageMask (Ox1000);
ImageToClipboard (, TRUE);
ImageMask (Ox2000);
CloseWindow ("Complex Regions of Interest");
ImageMask (8);
SelectFullScreen (0);

II Convert the image to binary andperform binary erosions and dilations to
II remove the extraneous tissues.

Threshold(5:255::5:255::5 :255);
RunMacro ("C:/OPTIMAS6/macsrc/binary/binary.rnac", );
GrayToBinary 0;
Threshold ( 127.5:255.0:: 127.5:255.0:: 127.5:255.0);
BINHjIterations = 1;
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II brkapart.mac is a macro provided along with the software that was customized to
II meet the requirements ofthe progam. It performs binary morphological operations
II to separate connected blobs.

RunMacro("dialogslbrkapart.mac");
Threshold ( 127.5:255.0:: 127.5:255.0:: 127.5:255.0 );
BRK_nHoleDilates = 2;
BRK_nRawErodes = 4;
BRK_nErodesToPoint = 10;
BRK_bAutoAreas = TRUE;
B~bAutoPoints = FALSE;
BRK_bAutoNone = FALSE;
BRK_bShowWork = TRUE;
BRK_BreakApartBlobs 0;
CloseWindow ("Break Apart Touching Blobs");
CloseWindow ("Binary Morphology");

II Enable the object class 'white' to pick the largest ofthe separated blobs.

ObjectClass (lean, false);
objectclass (white, true);
MultipleMode = true;
MultipleExtract (TRUE);

II Eliminate everythingfrom the resulting image except the required mask.

RunMacro ("C:/OPTIMAS6/macsrc/cxroi/cmplxroi.mac", );
CMPLX_mAreasToMasks 0;
ImageMask (Ox1000);
ImageToClipboard (, TRUE);
ImageMask (Ox2000);
CloseWindow ("Complex Regions ofInterest");

II Fill in any holes that may have been generated as the result ofthe
1/ morphological operations.

ImageMask (8);
SelectFullScreen (0);
BINB_ilterations = 1;
FillFilter(,FALSE);

1/ Determine the centroid ofthe object.

CreateArea (" TRUE);
MultipleExtractAll (TRUE);
SetExport (ArCentroid, 1, TRUE);
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MultipleMode = FALSE;
Select(GetScreenItemHandlesO);
ExtractO;
MultipleMode = TRUE;

II Divide the object into four quadrants with the inner corner at the centroid.

REAL WholeROI = ROI;
REAL BottomLeft = WholeROI[O,O]:ArCentroid[I]::

ArCentroid[O]:WholeROI[I, 1];
REAL TopLeft = WholeROI [O,]::ArCentroid;
REAL TopRight = ArCentroid[O]: WholeROI[0, 1]::

WholeROI[1,0]:ArCentroid[l];
REAL BottomRight = ArCentroid::WholeROI[l,];

II Logically AND the original image with the mask to recover the isolated ribeye.

SetColorMode (l : 1 : 8 : 1 : 3 : 3);
filetolist("c:/optimas6/original.tif ');
ArithmeticOp 0;
ArithmeticOp ("And", "original.tif t

, 0.0: 142.02 ::
189.46: 0.0" "Clip", FALSE, FALSE);
CloseWindow ("Arithmetic Operations");

II Enable the object classes to identify the intermuscular fat.

objectclass (marble1, true);
objectclass (marble2, true);
objectclass (marble3, true);
objectclass (white, false);

II Determine the intermuscular fat percentage for the first quadrant.

ROl = TopLeft;

II Use the green band to threshold the fat.

BandOflnterest = 2;
REAL rPairs[,];
HistogramO;
rPairs = GetAutoThreshold(O : ArROIHistograrn[1..(VectorLength(ArROIHistogram)-I)]
: 0,6,2"ActiveLuminanceRange,);
if ( rPairs && 1 < GetShape(rPairs)[0] )

{
Threshold(rPairs[l ,0] :rPairs[l,1]);

}



Delete(rPairs);
CreateArea (" TRUE);
SetExport(ArArea, 1,TRUE);
MultipleMode = true;
MultipleExtract (TRUE);

II Obtain the sum ofareas belonging to each fat class.

fat3=Sum(mArArea[ Ar_marblel_Select_C]);
fat4=Sum( mArArea[ Ar_marble2_Select_D ] );
fat5=Sum( mArArea[ Ar_marble3_Select_E] );
TOTTL=fat3 ;

II Shift to the red band information to threshold the lean portion in the quadrant.

Bandofinterest = 1;
REAL rPairs[,];
HistogramO;
rPairs = GetAutoThreshold(ArROIHistogram,6,2"ActiveLuminanceRange,);
if ( rPairs && 1 < GetShape(rPairs)[O] )

{
Threshold(rPairs[1,0] :rPairs[1,1]);

}
Delete(rPairs);
objectclass(marble1, false);
objectclass(marble2, false);
objectclass(marble3, false);
objectclass(meat, true);
CreateArea (" TRUE);
SetExport(ArArea, 1,TRUE);
MultipleMode = true;
MultipleExtract (TRUE);

II Measure the ribeye area, and thus determine the fat area percent in that quadrant

ribarea=sum(mArArea);
marbletl=(TOTTL/ribarea)* 100;
macromessage("TL = ",marbletl);

II Determine the intermuscular fat percentage for the second quadrant.

ROJ = TopRight;
BandOflnterest = 2;
REAL rPairs[,];
HistogramO;
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Threshold(rPairs[l ,O]:rPairs[l,1]);
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rPairs = GetAutoThreshold(O : ArROIHistogram[l..(VectorLength(ArROIHistogram)-I)]
: 0,6,2"ActiveLuminanceRange,);
if ( rPairs && 1 < GetShape(rPairs)[O] )

{
ThreshoId(rPairs[l ,0] :rPairs[l,1]);

}
Delete(rPairs);
objectclass(marbIel, true);
objectclass(marbIe2, true);
objectclass(marble3, true);
objectdass(meat, false);
CreateArea (" TRUE);
SetExport(ArArea, 1,TRUE);
MultipIeMode = true;
MultipleExtract (TRUE);
BandOfInterest = 0;
fat3=Sum( mArArea[ Ar_marblel_Select_C] );
fat4=Swn( mArArea[ Ar_marble2_SeIect_D ]);
fat5=Sum( mArArea[ Ar_marble3_Select_E ] );
TOTTR=fat3;
Bandofinterest = 1;
REAL rPairs[,];
HistogramO;
rPairs = GetAutoThreshold(ArROIHistograrn,6,2"ActiveLuminanceRange,);
if ( rPairs && 1 < GetShape(rPairs)[O] )

{

}
Delete(rPairs);
objectclass(marble 1, false);
objectcIass(marble2, false);
objectclass(marble3, false);
objectclass(meat, true);
CreateArea (" TRUE);
SetExport(ArArea, 1,TRUE);
MultipleMode = TRUE;
MultipleExtract (TRUE);
ribarea=Sum( mArArea);
marbIetr=(TOTIRJribarea)* I00;
macromessage("TR = ",marbletr);
BandOflnterest = 2;
REAL rPairs[,];
HistogramO;
rPairs = GetAutoThreshold(O : ArROIHistogram[l .. (VectorLength(ArROIHistogram)-I)]
: O,6,2"ActiveLuminanceRange,);
if (rPairs && 1 < GetShape(rPairs)[O] )
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{
Threshold(rPairs'[1 ,O}:rPairs(l,1D;

}
Delete(rPairs);

II Determine the intermuscular fat percentage for the third quadrant.

ROI = BottomRight;
objectclass(marblel, true);
objectclass(marble2, true);
objectclass(marble3, true);
objectclass(meat, false);
CreateArea (" TRUE);
SetExport(ArArea,I,TRUE);
MultipleMode = true;
MultipleExtract (TRUE);
fat3=Swn( mArArea[ Ar_marblel_Select_C ]);
fat4=Sum( mArArea[ Ar_marble2_Select_D] );
fat5=Sum( mArArea[ Ar_marble3_Select_E] );
TOTBR=fat3;
bandofinterest = 1;
REAL rPairs[,];
HistogramO;
rPairs = GetAutoThreshold(ArROIHistogram,6,2"ActiveLuminanceRange,);
if ( rPairs && 1 < GetShape(rPairs) [0] )

{
Threshold(rPairs[l ,0]:rPairs(1,1 D;

}
Delete(rPairs);
objectclass(marble1, false);
objectclass(marble2, false);
objectclass(marble3, false);
objectclass(meat, true);
CreateArea (" TRUE);
SetExport(ArArea,l,TRUE);
MuItipleMode = TRUE;
MultipleExtract (TRUE);
ribarea=Swn( mArArea);
marblebr=(TOTBR/ribarea)·lOO;
macromessage("BR = ",marblebr);
BandOfInterest = 2;
REAL rPairs[,];
HistogramO;
rPairs = GetAutoThreshold(O : ArROIHistograrn[1 .. (VectorLength(ArROIHistogram)-l)]
: 0,6,2"ActiveLwninanceRange,);
if ( rPairs && 1 < GetShape(rPairs)[O] )



{
Threshold(rPairs[1,0]:rPairs[1,1]);

}
Delete(rPairs);
objectclass(marble1, true);
objectclass(marble2, true);
objectclass(marble3, true);
objectclass(meat, false);

II Determine the intermuscular fat percentage for the fourth quadrant.

ROI = BottomLeft;
CreateArea (" TRUE);
SetExport(ArArea, 1,TRUE);
MultipleMode = true;
MultipleExtract (TRUE);
fat3=Surn( mArArea[ Ar_marblel_Select_C]);
fat4=Sum( mArArea[ Ar_marble2_Select_D] );
fat5=Sum( mArArea[ Ar_marble3_Select_E]);
TOTBL=fat3;
Bandofmterest = 1;
REAL rPairs[,];
HistogramO;
rPairs = GetAutoThreshold(ArROIHistogram,6,2"ActiveLuminanceRange,);
if( rPairs && 1 < GetShape(rPairs) [0] )

{
Threshold(rPairs[l ,0]:rPairs[ 1,1]);

}
Delete(rPairs);
objectclass(marble1, false);
objectclass(marble2, false);
objectclass(marble3, false);
objectclass(meat, true);
CreateArea (" TRUE);
SetExport(ArArea,l,TRUE);
MuItipleMode = TRUE;
MultipleExtract (TRUE);
ribarea=Surn( mArArea);
marblebl=(TOTBL/ribarea)* 100;
macromessage("BL = ",marblebl);

II Determine the total fat percentage.

ROI = WholeROI;
SetExport(ArMajorAxisPoints,l,TRUE);
SetExport(ArArea, 1, TRUE);
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objectclass(lean, true);
CreateArea (" TRUE);
SetExport(ArArea, 1,TRUE);
MultipleMode = TRUE;
MultipleExtract (TRUE);
CreateLine(mArMajorAxisPoints);
ribeye=sum(mArarea);
macromessage(1t Ribeye = ", ribeye);
RunMacro (ItC:/OPTIMAS6/macsrc/cxroi/cmplXIoi.mac", );
CMPLX_mAreasToMasks 0;
closewindow ("Complex Regions of Interest");
BandOfInterest = 2;
REAL rPairs[,J;
HistogramO;
rPairs = GetAutoThreshold(O : ArROIHistogram[ 1..(VectorLength(ArROIHistogram)-I)J
: O,6,2"ActiveLuminanceRange,);
if ( rPairs && 1 < GetShape(rPairs)[0] )

{
Threshold(rPairs[1,0] :rPairs[1,1]);

}
Delete(rPairs);
objectclass(marblel, true);
objectclass(marble2, true);
objectclass(marble3, true);
objectclass(lean, false);
objectclass(meat, false);
CreateArea (" TRUE);
SetExport(ArArea, 1,TRUE);
MultipleMode = true;
MultipleExtract (TRUE);
fat3=Sum( mArArea[ Ar_marblel_Select_C ] );
fat4=Sum( mArArea[ Ar_marble2_Select_D] );
fat5=Sum( mArArea[ Ar_marble3_Select_E] );
ribeye=ribeye-(fat4+fat5); //Eliminating the effect of the larger fat pieces
marble=(fat3/ribeye)*100;
macromessage(" % Fat is ", marble);
avg=((marbletl+marbletr+marblebr+marblebl)/4);
macromessage("%avg fat is It, avg);

Bandoflnterest=O;
RunMacro ("C:/OPTIMAS6/macsrc/cxroi/cmplxroi.mac",);
CMPLX_mAreasToMasks 0;
ImageMask (Ox I000);
ImageToClipboard (, TRUE);
ImageMask (0x2000);
CloseWindow ("Complex Regions of Interest");



II In case ofabnormal distribution, choose the average distribution as the
II marbling score.

if (marble>avg)
{
marble=avg;
}

II Determine the marbling class level based on the conversion table shown in Table 1.

if (marble>=1 8)
{
diff=(2I-marble);
add=diff/3.0;
marbling=add;
}
else if (marble>=l 5)
{
diff=(l8-marble);
add=diff/3.0;
marbling=1.O+add;
}
else if (marble>=13)
{
diff=( IS-marble);
add=diff/2.0;
marbling=2.0+add;
}
else if (marble>=10)
{
diff=( I3-marble);
add=diff/3.0;
marbling=3.0+add;
}

else if (marble>=7.S)
{
diff=(1O-marble);
add=diff/2.5;
marbling=4.0+add;
}
else if (marble>=5)
{
diff=(7.5-marble);
add=diff/2.S;
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marbling=5.O+add;
}

else if (marble>=3)
{
diff=(5-marble);
add=diff/2.0;
marbling=6.0+add;
}
else if (marble>=1.5)
{
diff-=(3-marble);
add=diff/l.5;
marbling=7.0+add;
}
else if (marble>=O.5)
{
diff=(1.5-marble);
add=diff/l.O;
marbling=8.0+add;
}
else
{
diff=(marble);
add=diff/0.5;
marbling=9.0+add;
}

II Determine the red, green and blue bandpeaks.

BandOflnterest = 1;
histogramO;
red=arroihistogramstats[6];
macromessage(" The red mode is ", red);
BandOflnterest = 2;
histogramO;
green=arroihistogramstats[6];
macromessage(" The green mode is ", green);
BandOflnterest = 3;
histogramO;
blue=arroihistogramstats[6];
macromessage(" The blue mode is ", blue);
Bandoflnterest = 0;

II Compute the color scores based on the RGB values.
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score=red+green+blue;
if (score>318)
{
diff=(score-318);
add=diff/50;
color=(4.0 - add);
}
else if (score>218)
{
diff=(score-218);
add=diff/25 ;
color=(8.0 - add);
}
else
{
macromessage("Meat is dark cutter");
}

macromessage("Color score is ",color);
macromessage("Marbling score is", marbling);

II Determine the quality grade by combining color and marbling scores.
II A Maturity

if (color<=5 .0)
{
if (marbling>=8)
macromessage("Grade is Standard minus");
else if (marbling>=7)
macromessage("Grade is Standard plus");
else if (marbling>=6.5)
macromessage("Grade is Select minus");
else if (marbling>=6.0)
macromessage("Grade is Select plus");
else if (marbling>=5)
macromessage("Grade is Choice minus");
else if (marbling>=4)
macromessage("Grade is Choice average");
else if(marbling>=3)
macromessage("Grade is Choice plus");
else if (marbling>=2)
macromessage("Grade is Prime minus");
else if (marbling>=I)
macromessage("Grade is Prime Average");
else
macromessage("Grade is Prime plus");
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}

II B Maturity

else if (color<=7.0)
{
subcolor=(color-5)/2;
score=subcolor+marbling;

if (marbling<=1.0)
{
if (score<=l.O)
macromessage("Grade is Prime plus");
else
macromessage("Grade is Prime Average");
}
else if (marbling<=2.0)
{
if (score<=2.0)
macromessage("Grade is Prime Average");
else
macromessage("Grade is Prime minus");
}
if (marbling<=3 .0)
{
if (score<=3.0)
macromessage(TtGrade is Prime minus");
else
macromessage("Grade is Choice plus");
}
else if (marbling<=4.0)
{
if (score<=4.0)
macromessage("Grade is Choice plus");
else
macromessage("Grade is Choice Average");
}
else if (marbling<=5.0)
{
if (score<=5.0)
macrornessage("Grade is Choice Average");
else
macrornessage("Grade is Choice minus");
}
else if(marbling<=7.0)
{
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macromessage("Grade is Standard plus");
}
else if (marbling<=8.0)
{
if (score<=8.0)
rnacrornessage("Grade is Standard plus");
else
macrornessage("Grade is Standard minus");
}
else if (marbling<=9.0)
{
if (score<=9.0)
rnacrornessage("Grade is Standard minus");
else
rnacromessage("Grade is Utility");
}
}

II C Maturity

else if (color <=8.0)
{
if (score<=13.0)
macromessage("Grade is Commercial");
else
macromessage("Grade is Utility");
}
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