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CHAPTER ONE

INTRODUCTION

Background and Problem Statement

Remote sensing has become an important source of land cover information for

practical geographic applications. Classifications derived from multispectral satellite

imagery can be useful tools for determining land cover for monitoring environmental

concerns and natural resource inventory. Detecting change in land cover over time is

especially valuable for applications which investigate and implement policy regarding

land use. Land use/land cover infmmation is used for the location and measurement of

non-point sources in water pollution models (Fostel et al., 1979). Variations in land

cover affect physical characteristics of the land such as albedo, emissivity, roughness, and

plant transpiration which in tum influence the hydrological cycle and land-atmosphere

energy fluxes (Lambin and Strahler, 1994). Land use/land cover classifications ar ,

therefore, essential for input in hydrologic models. This study will investigate the

development of a procedure for the derivation of multitemporalland cover infonnati.on

from multispectral satellite data. The land cover classifications produced by this study

will be used for hydrologic modeling in a larger project involving the Little Washita

Watershed in southwestern Oklahoma.

Most land cover classifications are generated from single image data sets acquired

at one instant in time, so assessing land cover changes at various times during a year



using conventional approaches requires multiple images and classifioations. A

multitemporal approach is preferred because classifications derived from a singl -date

image rarely contain enough information to spectrally distinguish different cover types or

to adequately represent all land cover types present in an area over a period of time (Lo et

aI., 1986).

During a growing season, land cover will change, and it will also change from

year to year. For example, a classification derived from an image of Oklahoma acquired

in the spring will contain areas where winter wheat was growing. An image depicting the

same area in the summer will show no winter wheat and will also contain indications of

crops such as com or grain sorghum that were not being grown in the spring. A

classification derived from the spring image would represent only those agricultural

classes present at that time, but any other classes for crops planted later in the growing

season would be absent.

When conducting multiple-year studies, numerous classifications which may be

composed of differing land cover classes can become diffi.cult to compare. Every satellite

scene requires extensive image processing and classification procedures that sometimes

produce results that do not conform with other classifications. Images acquired at

different dates represent various types ofland cover in different states of growth and

result in different spectral signatures for the same cover type. Different planting dates for

any crop result in growth states that are dissimilar both in one growing season and from

year to year. For this reason, different crops may have identical spectral signatures in one

image, or in the comparison of two scenes from different years. A spectral signature is

the distinctive reflectance and emittance properties of a particular land cover type, which
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will usually exhibit a pattern that differs from other types (Avery and Berlin, 1992).

Single-date classifications derived from a set of images acquired at differ nt dates usually

consist of a set of land cover classes which do not reflect the temporal nature of the data

(Singh, 1989). Such classifications may have only a single class to represent agricultural

crops if no field verification data is available to identify different crop types and derive

their individual spectral signatures.

These problems give rise to a need for improved methods of using multispectral

data for land cover change detection. A single image which can display changes in land

cover through one growing season based on temporal data would be more effective for

some purposes than several single-date classifications. Such an image could be classified

according to multitemporal land cover classes that are appropriate for the growth stages

present during a growing season. These classes would represent all types of cover present

in every image and identify at which points in time those cover types existed, depending

on the number of scenes used and the dates of acquisition. This approach would allow

for the identification of different types ofcrops based on the growth patterns of the

vegetation in an area throughout a growing season. The process would require

normalization of the solar illumination differences inherent in images acquired at

different times, and the registration of each image to real-world coordinates to ensure

accuracy when overlaying images. Also required would be the reduction in the

redundancy and dimensionality ofthe data, the combination of scenes from different

dates into a single image, and a method of classifying that image using land cover classes

that are appropriate for the data set. Studies performed by Howarth and Boasson (1983)
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and Lo et al. (1986), among others, used similar methods that will be described in the

Literature Review chapter.

Purpose of the Study

The US Department of Agriculture (USDA) - Agricultural Research Service's

National Agricultural Water Quality Laboratory (NAWQL) in Durant, Oklahoma selected

the Little Washita Watershed in southwestern Oklahoma as its target for an ongoing

experiment with the objective to "test the usefulness of remotely sensed data in

hydrologic modeling" (Jackson and Schiebe, 1992). The NAWQL has collected a long

time-series ofhydrologic data using conventional ground sources and remotely sensed

methods, focusing on soil moisture and evaporative change. Microwave radiometers,

multispectral scanners, and imaging radar were flown aboard two NASA aircraft and used

to obtain data in 1992. Land cover information focusing on crop cover inventory is

needed for entry into the time-series hydrologic model for the purposes of the larger Little

Washita project. The purpose of the research described in this thesis was to develop a

procedure to derive land cover information from satellite data representing one growing

season in order to create multitemporal land cover classifications for entry into the

hydrologic model.

Satellite-based multispectral imagery has been collected and archived since the

launch of Landsat 1 in 1972. That satellite and the four subsequent Landsat satellites

carried the Multispectral Scanning System (MSS) radiometers. MSS scenes from every

even-numbered year from 1972 to 1992 are to be used to create a database of
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multitemporal land cover information for the watershed that will be used in the

NAWQL's hydrology project. This set ofMSS imagery was used to develop the

procedure for creating that database. Thematic Mapper (TM) and SPOT imagery was

also used for more recent land cover analyses and will be used in future work on the

project, as the MSS sensors are no longer used to collect data.

Large amounts of hydrologic and meteorologic data have been collected from the

Little Washita Watershed, which makes the area extremely useful for study with remotely

sensed imagery (Allen and Naney, 1991). The multitemporalland cover classification

method described in this study represents an attempt to research the potential of satellite

imagery in collecting data for use in monitoring human activity and impact in the Little

Washita watershed.

Study Area

The area of this study was the Little Washita River Watershed, which has been the

target of extensive research since the late 1930s when the area was chosen for a national

project for soil erosion control. Since the 1940s, the USDA - Natural Resource

Conservation Service (NRCS) has applied extensive soil and water conservation

structures and measures. The USDA - Agricultural Research Service (ARS) began

collecting hydrologic data on the watershed in 1961. An extensive rain gauge network

and stream gauges have been used to measure continuous flow, suspended sediment

transport, and water quality. The area was one of seven watersheds nationwide that were

chosen in 1978 for the Model Implementation Project, which was to demonstrate the
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effects of intensive land conservation treatments on water quality in watersh ds that are

larger than 25 square miles. The watershed is presently the subject of an extensive

hydrology study undertaken by the National Agricultural Water Quality Laboratory

(NAWQL) of the Agricultural Research Service. Figure 1 is a map of the watershed and

its location in Oklahoma (Jackson and Schiebe, 1992).

The watershed covers 612.6 square kilometers (235.6 square miles) and is a

tributary of the Washita River in southwestern Oklahoma. The climate is classified as

moist and subhumid; summers are typically hot and dry and winters are short, temperate

and dry. Most of the annual precipitation and large floods occur in the spring and fall.

Bedrock fonnations in the watershed consist ofPennian age sedimentary rocks and

surface drainage is generally to the east. The flatter upland soils were developed from

fine-textured shale fonnations. The topography of the watershed is gently to moderately

rolling with no relief greater than 600 feet, and a well-developed stream channel system

drains the watershed, extending nearly to the drainage divide throughout the area. The

land use in the watershed can be confined to eight major land cover types for hydrologic

purposes: rangeland, pasture, forest, cropland, oil waste land, quarries, urbanlhighways,

and water (Jackson and Schiebe, 1992). The boundary polygon used for this study and

shown in Figure 1 was extended 500 meters outside the actual watershed boundary.

Objectives

The main objective of this study was to develop a procedure to define, create, and

evaluate a multitemporal land cover classification which indicates cover changes through
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a growing season using multispectral imagery. This process was developed to address the

problems, as described earlier, which are associated with the comparison of single-date

classifications derived from imagery for which no field verification information is

available. The further objective of this research is to use this procedure to create a land

cover database from Landsat MSS data for every even-numbered year from 1972 to 1992

for the Little Washita project, and to continue deriving land cover infonnation in the

future from Landsat Thematic Mapper and SPOT imagery. However, due to limitations

in the data which will be explained in the Scope and Limitations section, only four of

these years could be used effectively for this study. The satellite platforms and their

sensors will be described in the Multispectral Imagery Sources section below.

Multispectral Imagery Sources

The imagery used in this study was that acquired by Landsat MSS. This sensor

was first launched on the ERTS-l satellite in July of 1972, and was included on the four

subsequent Landsat satellites. Other multispectral satellite imaging systems such as

Thematic Mapper (1982) and SPOT (1986) have since been launched which have also

been used to provide some ancillary data for this study, and will be used in future land

cover classifications for the Little Washita project. However, only MSS imagery was

used for the development of the classification procedure in this study, in order to provide

a spatially and spectrally consistent data set. The MSS sensors aboard Landsats 4 and 5

are no longer used to collect data, so the methods developed in this study were designed
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to be applicable to other imagery sources for future research. The following discussion is

a short comparison of each scanning system.

The MSS collects data in four wavelength bands, with two bands which sense

visible light and two which sense near-infrared energy. Bands 1 and 2 record green. (0.5

to 0.6 ,urn) and red (0.6 to 0.7 ,urn) light, respectively. Comparisons between these and

the near-infrared bands, band 3 (0.7 to 0.8 ,urn) and band 4 (0.8 to 1.1 ,urn), are useful for

the detection ofvegetation (Avery and Berlin, 1992). Figure 2 shows that in the near-
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Figure 2. Typical spectral reflectance curves for vegetation, soil, and water
(Lillesand and Kiefer, 1992).

infrared region of the electromagnetic spectrum plant reflectance is typically 40 to 50

percent of the incident energy, but is much lower in the visible portion. Comparisons

between bands result in distinct spectral response patterns, or spectral signatures for
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different land covers such as vegetation, soil, and water. Landsat Thematic Mapper (TM)

imagery uses three more bands than MSS, allowing for more infOlmation and therefore

better means of distinguishing land cover types. TM scanners use three visible bands,

one near-infrared, two mid-infrared, and one thermal band. The visible and near-infrared

band-widths are narrower than those of MSS and are centered on areas of maximum

sensitivity to plant vigor, which means they are more finely tuned for sensing vegetation.

SPOT imagery uses only three bands, two visible and one near-infrared, which are also

narrower than MSS bandwidths (Lillesand and Kiefer, 1992).

Radiometric resolution refers to the digital number range used when a

multispectral scanner converts analog energy signals to digital format. MSS data is

scaled between 0 and 127, except for band 4 on Landsats 1,2, and 3, which is between 0

and 63. Both TM and SPOT use radiometric resolutions ofato 255. The increase in

Digital Number (DN) scale enables these scanners to display a greater range of gray tones

in each band, which reveals more information about the reflectivity being measured.

The spatial resolution of these three systems also affects the accuracy of land

cover classification. The instantaneous field of view (IFOV) of a scanner is the ground

area represented by one pixel in an image. MSS has an IFOY of about 80m x 80m, TM's

i.s 28.5m x 28.5m, and the SPOT multispectral scanner's is 20m x 20m (Avery and

Berlin, 1992). Increasing spatial resolution reduces the number of mixed pixels, which

contain more than one land cover type, but also results in a larger number ofpixels

needed to view the same area of land, which increases the size of image files and

processing time.
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The improvements in the quality of raw data produced by TM and SPOT sensors

have helped to increase accuracy in land cover analyses, but with increased costs as well.

MSS imagery is available at a lower cost and, having been archived since 1972,

represents a long time-series of data from which to extract information for the procedure

development for this research. AJso, the data transformations used in this study which

will be described in the Literature Review chapter have been shown to increase the

information potential ofMSS images, and can be applied effectively to TM and SPOT

Imagery.

Scope and Limitations

Three MSS scenes from every even-numbered year from 1972 to 1992 were

supplied by the NAWQL for this research. The three scenes for each year represented

distinct and important points in a growing season. Spring images acquired before May

displayed winter wheat that was planted the year before at its peak of growth in the Little

Washita region. In summer scenes, those fields planted in wheat were harvested and had

a bare soil or stubble ground cover whereas summer crops such as grain sorghum were at

their peak greenness. Images acquired in the fall showed winter wheat that had been

planted for harvest the next year and the senescence of summer crops. Examination of

these three points in a growing season made it possible to identify different land covers

based on these growth patterns. Woodlands showed vigorous growth in spring and

summer but were nearly barren in the fall, depending on the date. Rangelands showed a

II



similar pattern, but had a lower infrared response than dense trees. Urban areas and water

bodies, of course, had little or no vegetative cover.

The eleven-year set ofMSS images was examined to detennine the years that

were suitable to create the classification procedure for this study. The overabundance of

clouds in some scenes excluded those from being used. Minimal cloud cover (less than

10%) could be overlooked, but those scenes containing a higher percentage of ground

obstruction, including cloud shadow, were unusable. Cloud presence not only covers and

negates the data in a single image, but in this multi temporal application, creates

additional false spectral signatures when combined with other cloud-free images from the

same year. Unfortunately, scenes acquired in summer were rarely cloud-free. Four years

TABLE I
MSS SCENE DATES AND STATUS FOR YEARS USED

TO DEVELOP MULTITEMPORAL CLASSIFICATION PROCEDURE

YEAR SCENE DATE IMAGE QUALITY

1976 16 April Good
16 July Cloudy - Not Used
11 August Good
13 October Good

1984 10May Good
5 July Good
10 November Good

1986 14 April Good
27 July Good
31 October Good

1988 13 May Good
30 June Good
1 August Cloudy - Not Used
5 November Good
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were selected that were acceptable for this research. Table I is a list of the MSS scenes

and their quality for the years that were used in this study.

The absence of field verification information, or ground truth, for the imagery

from the years that were used also presented limitations in the classification of the data.

A knowledge of the ground cover present at the time of acquisition is needed to

determine the accuracy of a land cover classification. However, using some ancillary data

such as aerial photos, topographic maps, and "windshield surveys," conclusions were

drawn about ground cover using image interpretation techniques such as field shape and

size, texture, feature association, and recognition. The process used to determine land

cover information for the years used in this study will be explained in the Analysis and

Results chapter.

This thesis will illustrate that the classifications derived from these years represent

the development of a valid method of land cover change detection using multitemporal

satellite imagery. This procedure was applied to the historical MSS data supplied by the

NAWQL for this study and will be used for future classifications of TM and SPOT

imagery of the Little Washita Watershed.
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CHAPTER TWO

LITERATURE REVIEW

Radiometric Correction for Multitemporal MSS Imagery

The use of satellite imagery and spectral indices to monitor land cover is

extensive, but the normalization of the digital data in accordance to the calibration of the

sensors is sometimes ignored (Price, 1987). The data set for the study consisted of

images from five MSS units which acquired images using different sensor calibrations at

different times with different solar iJ]umination conditions, resulting in images whose

Digital Number (DN) values could not be compared directly. To correct this problem, a

radiometric correction was performed, normalizing each image's DN values in relation to

all other MSS scenes. This operation converted the image's raw DN values into

exoatmospheric reflectance; that is, a unitless value of the radiance reflected to the top of

the earth's atmosphere, which is received by the satellite (Lillesand and Kiefer, 1994).

This process removed the effect of sun elevation angle differences and the eccentricity of

the earth's orbit (Schiebe et aI., 1992). This process can also be used for the radiometric

correction of raw data from other sensors such as TM and SPOT.

The formula used for the transformation ofraw DN values into exoatmospheric

reflectance (EREF) was developed in the study of Lake Chicot in Arkansas by Schiebe et

al. The first step in the operation was the calculation of in-band radiance (LA) which is

dependent on spectral radiance (L I..) and the band-width for each MSS band (BW). The

14



band-widths used were those published in Table 6 of Landsat Technical Notes (Markham

and Barker, 1986), which is found on page 30 in the Methodology chapter of this thesis.

Integrated in-band radiance was calculated as follows:

L = (BW)(L)..)

Spectral radiance (L)..) was found for each band using the following equation:

LMAX;.. - L LMIN;..

QCALMAX;..
)(QCAL)

where QCAL is the digital number, LMIN). and LMAX). are the post-calibration dynamic

range of spectral radiance. QCALMAX;.. is the range of the rescaled radiance in digital

numbers (Markham and Barker, 1986), or the maximum number of gray levels that is

sensed in each band. LMIN;.. represents the spectral radiance sensed when the ON is 0,

and LMAX;.. is the spectral radiance when the ON = QCALMAX;... Figure 3 shows the

radiometric response function found using the above equation for spectral radiance

(Lillesand and Kiefer, 1994).

The final equation for the calculation of exoatmospheric reflectance using in-band

radiance is as follows:

(n)(L)
EREF= -------­

(SSl)(Ecc)(sin {EL V})

where SSI is the solar spectral irradiance at the top of the atmosphere for the

corresponding Landsat satellite and the MSS band-width, Ecc is the eccentricity

15



LMAX

LMIN

o
DN = Digital Number

Slope = LMAX - LMIN
255

255

Figure 3. Radiometric response function (Lillesand and Kiefer, 1994).

correction factor, and EL V is the sun elevation angle (Schiebe et aI., 1992). The values

for solar spectral irradiance used were based on the spectrum recommended by the World

Radiation Center (Iqbal, 1983). The eccentricity correction factor (Ecc) is:

Ecc = 1.000110 + (O.034221)(cos{DA}) + (O.001280)(sin{DA})

+ (0.000719)(cos{2DA}) + (O.000077)(sin{2 DA})

16



where the day angle (DA) in radians is:

DA = (2)(7t)(d - 1)/365

and where the day number (d ) ranges from 1 on January 1st to 365 on December 31 st

(Iqbal,1983).

Multispectral Dimension Reduction

A land cover classification that is derived from a single date is rarely complete for

all cover types present during a growing season. In order to create multitemporal

classifications, it is possible to simplify multispectral images through transformations

which minimize the extraneous data present in multi-band data sets, thereby simplifying

multidimensional data and minimizing processing. Transformed data from different

times and sources can then be more effectively combined and analyzed. Many

transformations have been developed to emphasize a wide range of features existent in

multispectral imagery. Some techniques which are useful for land cover analysis and are

to be discussed in this section include difference vegetation indices, the Tasselled Cap,

and principal components analysis (PCA), among others.

The dimensionality of multi-band images can be reduced through the

transformation of imagery into a one-band vegetation index. This process reduces the

amount of data but retains useful information which indicates levels of plant growth

(Kauth and Thomas 1976). A vegetation index is an image which displays pixels on a

gray-scale where higher DN values represent more vigorous plant growth; that is, areas

which appear black have little or no plant life and brighter pixels indicate the presence of

17



plant life. One example of such an unage is a normalized difference vegetation index

(ND VI), which is a ratio of near infrared (NIR) and visible (VIS) bands of a multispectral

image:

NDVI =
(NIR - VIS)

(NIR+ VIS)

The result of this calculation can range between -1 and 1, where higher values indicate

greater vegetation vigor.

The Kauth-Thomas Tasselled Cap transformation was specifically developed for

identification of agricultural crop growth stages. The following discussion is a simple

explanation of the Tasselled Cap transformation, which part of the transformation was

used, and how the output of that operation is useful to this classification method.

When a single field planted with a given crop is remotely sensed a number of

times throughout the growth and maturity of the crop, a pattern emerges that can be

graphically represented on two-channel scatter plots. Before the emergence of the crop,

the field has a bare soil response which, when displayed on a scatter plot ofMSS Band 4

versus Band 2 appears as a diagonal line along which lies the mean reflectance of soils

from light to dark, called the soil line. As the crop grows and gets greener, the near­

infrared (NIR) reflectance increases which, on the scatter plot, draws the bulk of the

pixels toward a point that is higher in Band 4 and lower in Band 2, or up and to the left.

As growth reaches its peak, all pixels converge toward this point, creating a triangular

shape like a woolen cap. When the crop begins to mature, reflectance for both Bands 4

and 2 is higher, which draws the pixels on the scatter plot up and to the right. This is the

18



"foldover" or the beginning of the tassels of the cap. As the crop gets yellower, the

foldover increases and starts to drawdown the NIR reflectance and the scatter plot tends

Foldover

\.

Band 4

Band 2

Figure 4. The Tasselled Cap (Kauth and Thomas, 1976).

back toward the soil line "from whence it came" (Kauth and Thomas, 1976). This forms

the completion of the tasselled cap shape on a scatter plot in two dimensions. MSS

images contain four bands, so this shape would exist in four dimensions, which is

difficult to visualize.

The actual transformations of the image are algebraic expressions which rotate the

axes of the four-dimensional space in which the image pixels are found. These rotations

correspond to the directions determined by the tasselled cap shape described before. The
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first transformation rotates the axis in the direction of the diagonal soil line, which results

in an image which displays a feature called brightness. The second transformation is

determined by an axis which is orthogonal to the soil brightness axis, and is called

greenness, or a greenness vegetation index (Kauth and Thomas, 1976):

GYl -.290(Band 1) + -.562(Band 2) + .600(Band 3) + .491 (Band 4)

The image produced by this transformation displays the level of green vegetation growth

and represents the triangular cap part of the tasselled cap shape.

Principle and canonical component analyses are similar to the Tasselled Cap

method in that they also perform a linear transformation of a multispectral image's axes.

Images generated by different bands often appear to contain the same information due to

interband correlation. These transformations are designed to reduce or remove such

redundancy and compress the information into a new set of channels, or components,

which are fewer in number than in the original data (Avery and Berlin, 1992). The

tasselled cap transformation uses the same concept, but its components are determined by

finding a spectral soil line as described above. A principal component analysis is

performed by rotating the coordinate axes in spectral space according to the line along

which the greatest variance is found. That axis is the first principal component, from

which the second component is determined by an axis that is orthogonal to the first and

whose data shows far less variance and therefore less information. Additional orthogonal

components are determined for as many bands as are present in the original image, but

each succeeding component contains far less information.

20



Canonical component transformations also define new coordinate axes, but are

used when particular areas of interest contain known different feature types. The

canonical component axes are rotated in order to maximize class separability and

minimize the variability within those classes. This process also results in new

components whose subsequent images contain lesser amounts of additional information

(Avery and Berlin, 1992). The Tasselled Cap is a similar transformation but is based on

agricultural crop cover.

The Tasselled Cap transformation was used in this study because it was developed

specifically for agricultural applications. As the result of a hnear transformation of all

four MSS bands, the Kauth-Thomas GVI contains more information than a two-band

NDVI ratio and is a more useful representation of ground cover. Also, resulting values in

an NDVI tend to polarize towards very high or low ends of the range, whereas the

distribution of values in a Greenness Vegetation Index tend to be more normal (Lo et aI.,

1986). The principal or canonical components analysis techniques were not used because

the resulting information mayor may not have been based on the same variations

between bands in different images.

Studies Involving Multitemporal Land Cover Dynamics

Various procedures exist which can be used to monitor land cover change and it is

generally accepted that different methods produce different maps of cover change (Singh,

1989). Several applications will be reviewed here that operated on the basic premise that
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land cover changes are the greatest factor responsible for radiance changes detected by

remote sensors on different dates.

One method for detecting land cover change using muJtitemporal imagery is to

create single-date classifications for different years and compare each separately. One

such application used Landsat MSS and TM data from six years in an investigation of

tropical forests in Brazil to find patterns of forest regrowth over time (Lucas et aI., 1993).

A time-series of Landsat data was required to classify various stages of regrowth that

would have similar spectral signatures on a single-date image. The objective was to

determine the age of secondary forest by analyzing the biomass accumulation of the

regrowth. The dates of acquisition of the TM scenes used were 1985, 1988, 1989, and

1991, all in the summer. The images were all geometrically registered to the 1991 scene.

A supervised classification method was used with reference data from 60 training sites

representing only three broad land cover types: primary forest, secondary forest, and

agricultural land. Each image was classified separately and examined for land cover

changes according to each pixel location over the six-year period. The accuracy of the

classifications was to be tested at a later date, but a problem was encountered with the

"inability to adequately discriminate plantations from secondary forest" (Lucas et aI.,

1993).

A similar investigation was perfonned by Howarth and Boasson (1983) using

MSS data for change detection in the urban environment ofthe city of Hamilton in

Ontario, Canada. This study used only two dates, 6 July 1974 and 12 July 1978. The

single-date classification method was rejected in favor of enhancement procedures using

both dates which could better identify land cover changes. Three enhancements were
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used: an overlay of band 2, ratios of bands 2 and 4, and a vegetation index. The first

enhancement overlayed band 2 from both images and displayed the 1974 image in green

and blue on a CRT monitor, and the 1978 image in red. Areas that had changed in cover

were highlighted in one of the colors while gray pixels represented no change. The next

method ratioed one band from the first image with the same band from the second image.

The result gave areas that had no change a ratio of 1.0 which were displayed as a medium

gray tone. Areas of changed cover were identified in lighter or darker tones, with the

level of intensity indicating the extent of change. The results from NDVIs performed on

both dates were also overlayed and displayed using different color guns. This process

identified areas that had experienced changes in vegetative cover.

All three enhancement methods were successful in locating areas that had

undergone land cover changes, which was generally based on vegetation presence or

nonpresence due to new construction. In this instance, the enhancements described were

sufficient for locating areas that had undergone the basic change from nonurban to urban.

However, identifying land cover change on a broader scale including agricultural land

requires a more extensive classification procedure due to varying spectral signatures for

di [ferent plants and growth states.

Lambin and Strahler (1994) described a successive-year change detection process

for Advanced Very High Resolution Radiometer (AVHRR) data using a change-vector

analysis. Their study investigated the nature and magnitude of land cover change in West

Africa using high temporal-resolution data. Instead of using individual classifications

from different years, they based their method on a "comparison of the temporal

development curve, or time-trajectory, for successive years," using multiple NDVIs from
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100 AVHRR images acquired throughout a two-year period. The change vector

measured the intensity of the changes in NDVI values between each pixel in multi­

dimensional space. This approach represents a simultaneous analysis of multitemporal

data that was able to detect subtle land cover changes within a class both during one

growing season and from year to year (Lambin and Strahler, 1994).

A study using multitemporal AVHRR data was conducted to analyze "dynamic

processes of terrestrial vegetation" in Africa (Holben, 1986). The obj ective of this

investigation was to use multidate imagery to simulate a single date rather than observe

land cover change over years. Composites were created based on NDVls from a series of

georeferenced multitemporal AVHRR images from seven successive days. The

procedure was called a maximum-value composite (MVC), where each NDVI value was

examined on a pixel-by-pixel basis and only the highest value was kept, resulting in a

single-band image essentially representing a single date. This process was performed in

order to minimize problems that are inherent to single-date acquisitions such as cloud

cover and atmospheric attenuation. The MVC technique was found to be effective for

producing suitable images for observing land cover dynamics.

A land cover change detection process based on one growing season would have

the ability to identify different agricultural crops being produced and specify which parts

of the season those crops were being grown in during that year. This concept was

demonstrated by Hlavka et al. (1979) in a study of a multiternporal classification of

winter wheat in Kansas. Their objective was to use a growth state model to create crop

signatures that represent specific levels of maturity of winter wheat. MSS data from five

observation times was transformed using Kauth-Thomas greermess coefficients into a
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vegetation index from which growth state signatures were derived using an iterative

clustering technique. A category signature was found for each band and growth state for

each observation based on the mean spectral reflectance in a small patch ofwinter wheat.

The initial mean signature for a category was run through an iterative procedure with

successive growth states and observations which results in a final mean signature for each

observation. Using field verification of the wheat, classification results were 85% correct

when using a signature based on 36 growth states and 79% correct using a 5 growth state

signature. These conclusions emphasize the conclusion that increasing points of

observation improves the accuracy of multitemporal land cover studies.

A study undertaken by Lo et al. (1986) used a method of multitemporal land cover

classification that is most similar to the one used in this study. MSS imagery

representing the Green Bay, Wisconsin area for the 1979 growing season was used to

compare single-date and multitemporal classification approaches and to evaluate a

number of supervised and unsupervised classification techniques. The dates chosen to

represent different stages in a growing season were 20 May, 25 June, 5 July, and 6

September and were all cloud fTee and of good quality. Field surveys of the study area

were also conducted to verify crop development. Radiometric correction of the images

was performed to normalize solar illumination conditions. The tasselled cap

transformation was used to isolate measures of greenness, and band ratios and principal

component transformation were also used for data compression. The field verification

data available made it possible to use both unsupervi.sed and supervised classification

techniques.
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The best results for multitemporal unsupervised classifications obtained in the Lo

et a1. study in tenns of overall accuracy were found with a band 4/band 2 ratio (85.7%)

and the GVI transformation (83.9%). The accuracy was determined by an error matrix

comparing the ground reference data with the actual number of pixels occurring in each

class. The discrepancies between the classifications and reference data were attributed to

inseparability of the multitemporal profiles of some of the known ground covers, errors in

the location or interpretation of ground reference points, and misregistration of the

multi temporal images.

Comparisons between the multitemporal and single-date classifications revealed a

definite advantage in multi-date analysis. The September scene was classified using the

same unsupervised method and resulted in an accuracy of 66%. It was found that certain

features were not spectrally separable using a sillgle date; the spectral reflectance of

woodland was identical to com at that point in the growing season. As a result, 30 out of

51 pixels which should have been classified as woodland were assigned to the corn class.

The unsupervised analysis of the band ratio images resulted in nine land cover classes:

woods, pasture/grass, com, alfalfa, oats, bare soil, water, impervious surfaces, and mixed,

which represents pixels containing more than one land cover type. The increased ability

to identify specific crops using a multitemporal approach was well illustrated in the study

(Lo et a1., 1986).
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Accuracy in the Registration of Overlayed Images

The importance of image registration to the accuracy of a multi temporal land

cover classification was also mentioned in the Lo et a1. (1986) study. Any misregistration

in a set of overlayed images will result in incorrect data in that a given pixel in each

image represents a different area on the ground. For instance, a physical feature such as a

field boundary may be offset between images so that there appears to be more than one

boundary. This offset would show that a pixel which represents an vegetative cover on

one image would display a different ground cover on the same pixel in an overlying

image. In a multi temporal composite this would be interpreted as a change in land cover

because of the different spectral response in each pixel. Howarth and Boasson (1983)

also stated that "inaccuracies can be introduced by misregistration on the two images

being compared" in their study of change detection in urban environments. An accurate

geographic referencing of each scene that is to be overlayed makes it possible to avoid

this problem. Holben's (1986) maximum-value composite of multi temporal AVHRR

imagery was also affected by misregistration. AVHRR registration is "dependent on the

accuracy oflocation infonnation embedded in the data", which is dependent on the data's

source. Some location error occurred in their study, but the very large viewing area

represented by AVHRR data did not present a serious problem, and was corrected using

control-point rectification.

The imagery used in this study represented a much smaller area of land and a

higher spatial resolution than AVHRR data and required a much more accurate

registration. This was accomplished using a geometric rectification procedure that
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resampled each image, assigned geographic coordinates to each pixel, and assured that

each image was registered correctly.
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CHAPTER THREE

METHODOLOGY

Chapter Overview

This chapter describes the procedure developed in this study for the creation of a

land cover classification ofmultitemporal Landsat MSS data based on changes during a

growing season. This method of land cover change detection is a. simultaneous analysis

ofmultitemporal data similar to the approaches used by Lambin and Strahler (1994) and

by Lo et a1. (1986). However, the change detection process for this study was based on a

comparison of temporal development during one growing season rather than Lambin and

Strahler's objective of obtaining indications from successive years.

The procedure consisted of the transformation and integration of three MSS

scenes from one year resulting in one image which indicated the land cover changes

during the year. That image was then analyzed and classified in multitemporaJ land cover

classes. The growing season for one year was represented by one MSS scene each from

spring, summer, and fall. After being radiometrically and geometrically corrected, these

scenes were transformed using the greenness coefficients from the Kauth-Thomas

Tasselled Cap Transformation. Each scene was converted to a single-band greenness

vegetation index which displayed varying intensities of plant growth, and was then

overlayed in a three-band image and displayed as a composite.
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This composite image displayed the multitemporal land cover changes that were

present in the t.hree MSS scenes. Bands I, 2, and 3 of the composi te were represented by,

respectively, the spring, summer, and fall greenness indices and were displayed with band

1 in red, band 2 in green, and band 3 in blue. The colors resulting from the combinations

of the pixel DNs of the indices indicated levels of plant growth at the three distinct points

in the growing season.

The three-band composite was then processed using an unsupervised

classification resulting in a specified number of spectral clusters. The classification

procedure was performed using output images consisting of forty, fifty, and sixty clusters.

The fifty-cluster image was found to be most effective, as forty clusters did not separate

similar cover types sufficiently and sixty clusters revealed no more useful separability

than did fifty. Using image intetpretation techniques, aerial photographs, topographic

maps, and some field verification, these clusters were grouped into classes representing

the land cover of the region. The classes differed from those used for conventional

classifications (those not using multitemporal data in one image) due to the need for

c.Iasses depicting seasonal variations and the nature of the output from the linear

greenness transformation. This issue and the entire method of image processing and

classification will be examined in detail in this chapter. The determination of the land

cover in each classification for each year will be discussed in the Analysis and Results

chapter.

As mentioned in the Introduction, the methods developed in this study will be

applied to other sources ofmultispectral imagery, notably Thematic Mapper and SPOT,

in research after this study. Every operation described in this chapter can be performed
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on TM and SPOT images, including the derivation of the greenness vegetation index, for

which coefficients have been developed for use with those alternative sources. However,

the image types cannot be combined for use in the same classi fication due to the

differences in spatial resolution.

The methodology involved with this study consisted almost entirely of image

processing executed with Erdas software, specifically, PC Erdas 7.5 and Erdas Imagine

8.0. The operations perfonned included image loading, subscene isolation, radiometric

correction, geometric correction, delineation of the Little Washita Watershed, Kauth­

Thomas greenness vegetation index transfonnation, combination of the three indices into

a three-band composite images, and unsupervised classification of those images. Since

field verification was impossible for this research, aerial photographs, topographical

maps, and "windshield surveys" of land cover were used to draw basic conclusions

regarding the structure of the landscape at the field level. That issue will be described in

detail in the Analysis and Results chapter.

Image Loading and Subsetting

Every MSS image used in this study was delivered on 9-track computer­

compatible tape (CCT) on which a full scene was recorded. The [onnat used to record

the data on the tape and, therefore, to retrieve the data varied according to the date of

acquisition. Landsat 1 MSS scenes used a band-interleaved-by-pixel (BIP) fonnat called

X-Format and consisted of four separate images which represented a full scene that was

divided into four columns. Scenes from Landsats 2 and 3 were also divided into four
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sections, but these were in band-interleaved-by-line (BIL) format. The other two

satellites used a band sequential format where the full scene of each band was recorded as

a separate file on the tape. PC Erdas allows for the loading of each of these formats using

the LOADX and LDDATA (Load Data) modules. The following is a description of the

steps used to load and process one image from aCCT.

To save hard disk space on the computer and image processing time, a subset of

the full scene which included the study area was loaded from tape. Using the PREVIEW

module, it was possible to view the full scene on the tape and determine the coordinates

needed to define a subscene which includes the area needed. The upper left and lower

right comer pixels of the subset desired were located and their X and Y file coordinates

on the tape were noted and used to load the study area to a single four-band file on the

hard disk. For the X-Format images the study area was defined from the full scene using

the SUBSET module.

Radiometric Correction

The need to normalize the image data used in this study, having been acquired by

five different satellites and with varying solar illumination conditions, was explained in

the Literature Review chapter. The raw image data were converted to exoatmospheric

reflectance (EREF) using the formula developed by Schiebe et a1. (1992). This process

was executed using the ALGEBRA module. The EREF formula was applied to every

pixel in each band in the raw MSS image, resulting in another four-band image whose

DNs represented exoatmospheric reflectance. Since the output of the equation was a
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measure of reflectance, which was a percentage that ranged between 0 and 1, it was

necessary to apply a scalar of200 to better utilize the 8-bit file structure in PC-Erdas.

This structure consisted of 256 gray levels and only stored DNs as integers. Below is the

EREF fonnula as it was used in ALGEBRA for each of the four MSS bands:

EREF = {((rt)*(BW)*(LMIN+((LM/N-LMAX)IQCALMAX)*X)
I(SS/*Ecc*sin(EL V)} *200

where BWis the bandwidth (shown in Table II, taken from Markham and Barker, 1986),

LM/N and LMAX detennine the post-calibration dynamic range of spectral radiance

(shown in Table III, taken from Markham and Barker, 1986), QCALMAX is range of

digital numbers representing rescaled radiance, X is the digital number, SS/ is the solar

spectral irradiance (shown in Table IV, taken from Schiebe et al., 1992), Ecc is the earth's

TABLE II
LANDSAT MSS SPECTRAL BANDS

BAND MSS 1 MSS2 MSS3 MSS4
Satellite Band-Pass Band- Balld-Pass Band- Band-Pass Banll-Willth IJand-Pass Band-Width

(;Jm) Width (;.zm) Width (;Jm) (11m) (pin) (nm)
(nm) (nm)

"Nominal" .5 100 .6 100 .7 100 .8 300
Soecification 6 .7 8 I.J
Landsat 1 4968 108.2 .5988 108.0 .6885 120.1 7909 241.7

.6050 .7068 .8086 1.0326

Landsat 2 .4943 108.5 .6036 112.8 .6909 119.9 7896 242.8
.6027 .7164 .8108 1.0323

Landsat 3 .4939 105.1 .6026 107.9 .6872 113.1 .7966 221.8
.5991 .7105 .8003 1.0185

Landsat 4 .4921 1173 .5998 1009 .6954 117.5 .7903 273.5
6094 .7006 .8129 1.0637

Landsat 5 .4947 116.2 .6001 98.8 .6985 116.3 7937 275.2
.6109 .6990 .8148 1.0690

(Markham and Barker, 1986)
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TABLE III
LANDSAT MSS POST-CALIBRATION DYNAMIC RANGES FOR

U.S. PROCESSED DATA
SPECTRAL RADIANCES, LMIN AND LMAX

(in roW * cm-2 * stefl ... ,urn-I)

BAND MSS 1 MSS2 MSS 3 MSS4
Satellite LMfNl. LMAXI. LMfNl. LMAXI. LMIN, LMAX>. LMfNl.. LMAXI.

Landsat 1
ALL 0.0 248 0.0 20.0 0.0 176 0.0 15.3

Landsat 2 I

< 7/16/75 1.0 210 0.7 15.6 0.7 J4.0 0.5 13.8
>7/16/75 0.8 263 0.6 17.6 (J.6 15.2 0.4 13.0

Landsat 3
I< 6/1/78 0.4 22.0 0.3 17.5 0.3 145
!

0.1 14.7
> 6/1/7S 0.4 259 0.3 17.9 0.3 14.9 0.1 128

Landsat 4
< 8/26/82 0.2 250 0.4 18.0 0.4 J50 0.3 13.3
8/26/82 -
3/31/83 0.2 23.0 0.4 18.0 0.4 130 0.3 13.3
> 4/1/83 0.4 23.8 0.4 16.4 05 142 0.4 116

Landsal5
< 4/6/S4 0.4 24.0 OJ 170 0.4 15.0 0.2 12.7
4/6/84·
11/8/84 0.3 26.8 0.3 17.9 0.4 15.9 0.3 12.3
> 11/9/84 0.3 26.8 0.3 17.9 0.5 14.8 0.3 12.3

(Markham and Barker, 1986)

TABLE IV
LANDSAT MSS SOLAR SPECTRAL IRRADIANCE VALVES

(in mW cm·2
)

Satellite MSS 1 MSS2 MSS 3 MSS4
Landsat 1 20.060 16.991 15.373 21.520

Landsat 2 20.138 17.486 15.274 21.648

Landsat 3 19.870 19.592 16.845 14.619

Landsat 4 23.682 21.730 15.942 14.854

Landsat 5 23.626 21.488 15.688 14.614

(Schiebe et al., 1992)
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eccentricity factor, and ELV is the sun elevation angle. Each ofthese variables changed

for each band except the Eee and ELV, which were determined by the date ofthe scene's

acquisition and remained constant in aU four calculations.

Geometric Correction

A geometric correction was performed on each image to rectify the distortion

inherent in MSS imagery due to the satellite's altitude, attitude, and velocity, as well as

other factors such as earth curvature, relief displacement, and panoramic distortion,

among others (Lillesand and Kiefer, 1994). This correction gave the image the geometric

integrity of a map and referenced each pixel to real-world coordinates which was

necessary for the delineation of the Little Washita Watershed, which will be discussed

later. The process of geometric correction required the location of ground control points

(GCPs) in the image. These GCPs were places which were accurately located and

identified on the image, such as road intersections, and had a known ground location. A

set of 83 GCPs in and around the Little Washita Watershed were located specifically for

this study and their Universal Transverse Mercator (UTM) grid coordinates determined

using USGS 7.5 minute quadrangles. The minimum number of controls points needed to

perform a geometric correction is generally around 60. About 75 GCPs were found in

each subset image and both their UTM and X,Y coordinates in the raw image were

recorded using the GCP module.

The GCPs were transformed into an output raster grid defined by the UTM

coordinates using the COORDN module, which performed a multiple regression analysis
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using the GCPs' image and UTM coordinates, and the root means squared (RMS) error

was calculated. The RMS error was based on each GCP's accuracy according to its

UTM, or real-world, location and its relationship to the other GCPs, and the size of the

pixels in the images. An error greater than 1% indicated that a pixel in the output grid

would be more than one pixel's width away from its true ground location. Ifthe RMS

error was above 1%, the GCP with the highest contributing error was removed from the

set and the RMS error was recalculated. This process was repeated until the RMS error

was below 1%, and an accurate output grid was defined by the coordinate transformation.

A resampling function was then camed out by the LRECTIFY module which

transformed the distorted image into a geocorrected image according to the grid created

by the coordinate transformation. The output image was georeferenced so the top of the

image represented true north. The resampling technique used was a nearest neighbor

assessment, which assigned a DN for a pixel in the geometrically correct output matrix

based solely on the DN of the nearest pixel in the distorted input matrix. This method

resulted in features that may appear disjointed in the output image, because the output

location can be offset by up to one-half pixel. However, this method left the original ON

value unaltered, which was important for this study, as comparisons between yeaTS

depended on the exoatmospheric reflectance value. The other available resampling

techniques, bilinear interpolation and cubic convolution, result in an output DN

calculated by a given pixel's surrounding pixel values (Lillesand and Kiefer, 1994).

The subset image represented an area larger than the watershed, including land

west and north of the study area, throughout which the 83 GCPs were evenly distributed.

This insured an accurate transfonnation while eliminating the need to geocorrect a full
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MSS scene. For this study, the watershed was required to be identified and separated

from the subset as a distinct image. In order to delineate the Little Washita Watershed

from the corrected subscene, a separate file was created using the CUTTER module and a

polygon file representing the watershed boundary extended out by 500 meters. The

resulting image was in the shape of a rectangle, but every pixel that lay outside the

watershed buffer polygon had a DN value of zero and was displayed as black.

The importance of the accuracy of the geometric correction has been explained

and was checked by overlaying the three images from one year and visually inspecting

the images' registration. An error of one pixel was easily recognized and was corrected

by adjusting the file coordinates of the uncorrected image that did not overlay properly

wi th the other two. If such errors were found, the rectification process was then

performed again until all three overlayed correctly.

Derivation of the Greenness Vegetation Index

The next step in the process called for the compression of the four-band MSS

data. The Kauth-Thomas Greenness coefficients described earlier were applied to each

watershed image, reducing the dimensionality of each image. As with the radiometric

correction, this process was also perfonned with the ALGEBRA module. An output file

representing a greenness vegetation index resulted from the operation. Each pixel was

subjected to the following formula according to that pixel's DN value in each of the four

bands:

GVI=-.290*(Xl) + -.562*(X2) + .600*(X3) + .491*(X4)
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where X represents the pixel's DN for that band number and GVlis the output pixel's

greenness value. The program was directed to scale the resulting values by adding 10 and

then multiplying by a factor of 3 to effectively spread the DNs through the range of the 8­

bit output file. This was a necessary step because the DNs in the image were stored as

integers and a larger degree of precision was needed since the unsealed output derived

from the exoatmospheric reflectance data usually had a minimum value of -10 and a

maximum value around 50. After being scaled, the GVI was represented by a range from

oto about 150, which afforded a better indication of variations in ground cover according

to vegetation vigor.

GVI Composite Construction and Interpretation

To create a land cover classification for one year that included three separate MSS

scenes, an image was created by transforming the information contained in those scenes

into a single image. Thjs was accomplished! by converting each four-band image into a

one-band image and combining the three into one scene. A Kauth-Thomas Greenness

transformation was applied to each image, which created a one-band file from a four­

band MSS file, containing an image representing a greenness vegetation index.

As mentioned before, a false-color composite was created by placing each single­

band greenness vegetation index into a three-band file where the spring index was band 1

and displayed in red, the summer index was band 2 and displayed in green, and the fall

index was band 3 and displayed in blue. This operation was performed using the

SUBSET module. The resulting image was very useful for determining crop growth
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states throughout a growing season. Figure 5 shows the GVI composite for 1988. In

such a scene, an area having high greenness, or vigorous plant growth, in one band of the

image (during one part ofthe season) and low greenness in the other two bands (the rest

of the season), appeared brightly in the color assigned to that band. For example, over

the course of one year, a field planted in winter wheat would have vigorous growth in the

spring, would be bare in the summer after harvesting, and may be left fallow in the fall.

This field would appear bright red on the false-color GVI composite. Accordingly, bright

green areas would represent fields with high greenness in summer and no growth in the

spring and fall. Bright blue areas would be fields showing growth in the fall and none in

the spring and summer.
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Figure 5. False-Color Composite of3 GVls -May, June, & November, 1988
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Further conclusions were made from other colors in the image with the use of the

additive color process, that is, different colors of light superimposed. When red and blue

light were combined, as they were when an area in both the spring and fall bands of a

composite showed high greenness, the resulting color was magenta. Mixtures of red and

green were yellow, and cyan resulted from mixing blue and green. All colors

superimposed resulted in white, which represented areas with high greenness values in aU

three seasons. Through interpretation of the GVI composite, it was possible to

differentiate between crop types and which seasons and years those crops were produced,

which leads to the discussion of the classification process.

Unsupervised Classification of the GVI Composite Image

Land cover classifications are produced by categorizing every pixel in an image

into distinct classes. This is done by grouping pixels into clusters based on spectral

response and pattern recognition. Spatial and temporal patterns are important indicators

of land cover (Avery and Berlin, 1992), especially for the data set used in the research

described here. Spatial patterns are drawn from image pixels' relationships with

surrounding pixels, such as delineating an agricultural field based on its shape and image

texture. Temporal patterns are those which are based on the number of images used and

the time spanned between acquisitions. These indications and the multitemporal data set

used here allowed for the discrimination ofpixels representing crops grown at various

times in a growing season.
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The method of classification used was an unsupervised classification. This

process consisted of two steps: the image was classified into natural spectral clusters

which were then grouped into land cover classes based on ground reference data. An

unsupervised classification works on the premise that the data in the image can be

separated into distinct spectral groups which represent different types of land cover. The

data in these groups are assumed to be related closely in the spectral measurement space,

while the groups themselves should be well separated from each other spectrally (Hord,

1986). Forty of these clusters were found for the Little Washita images. These clusters

were determined by the ISODATA module using an algorithm called the "K-means"

approach, where arbitrary mean vectors were determined in spectral space for forty

groups, then each pixel was assigned to the nearest vector, and new mean vectors were

calculated and another iteration was performed. The procedure was repeated until all

pixels had been classified into groups that showed no significant change in the location of

their mean vectors between successive iterations.

An unsupervised classification is dependent upon ground reference data on which

to base the determination ofland use classes and how the forty clusters will be assigned

to those classes. Field verification was, of course, impossible for the dates of the imagery

used in this study. However, ancillary ground reference data was available for the Little

Washita Watershed in the form of topographic maps, aerial photographs taken in 1968,

TM and SPOT scenes, and extensive "windshield surveys" done in 1992 and 1994. This

information was used to draw conclusions on the historic locations of features such as

agricultural fields, wooded areas, and different qualities of rangeland. These features

were used to group other areas with similar spectral responses into the same class. Other
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image interpretation techniques such as shape, texture, site, and association recognition

were used to find spatial patterns in the images.
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CHAPTER FOUR

ANALYSIS AND RESULTS

Methodology of Analysis

The output image from the unsupervised classification was a one-band file which

consisted of forty clusters. The next step was to group those clusters into classes which

represented the land cover present in the three images depicted a growing season. This

required the analysis of each cluster's spectral signature and the interpretation of the

appropriate cover from those signatures. The image was then recoded as a land cover

classification in which each pixel was assigned to one of the land cover classes used in

this study.

The land cover classification was based on classes detennined by the

multitemporal nature of the data set. As mentioned earlier, a standard classification uses

classes that may not differentiate between spring, winter, and fall crops such as winter

wheat and summer crops such as alfalfa or com. When detennining a classification

process, it is necessary to allow for the inclusion of all parts of the study area and provide

a unit of reference for each land cover type (Anderson et al., 1976). The classes that were

used for this research were defined both by the types of land cover present in the

watershed and the multitemporal data. The combination of images acquired at three

different times during a growing season (spring, summer, and fall) created a unique set of
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land cover classes based on the presence of crops at those times. The composite

described earlier generated the following agricultural classes:

Winter Wheat - Spring Only
Winter Wheat - Fall Only
Winter Wheat - Spring and Fall
Summer Crops
Spring and Summer Crops
Summer and Fall Crops
Spring, Summer, and Fall Crops

The other land cover classes used were those determined by the National Agriculture

Water Quality Laboratory for their Washita '92 project and included the following:

Water
Urban/Highways
Bare (Bare soil, quarries, oil waste land)
Native Rangeland
Improved Rangeland (Pasture)
Woodland

In a greenness vegetation index, those pixels having Water, Bare, and Urban/Highway

responses all had very low values, because they represented areas with little or no

vegetation. For this reason, those land cover types were combined into one class for this

research.

The analysis of the spectral signatures and recoding of the land cover data was

performed using Erdas Imagine. This software allows for statistical analysis of the

separability of each duster and graphical interpretation of signatures in feature space. In

the case of this study, the spectral signatures were based on the greenness values in each

of the three bands of the GVI composite. A feature space image plots a pixel's value in

one band against its value in another band. In this way, each cluster was located in

feature space according to the greenness level in each band and was compared with other
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clusters' locations. This process was valuable for visualizing and grouping spectrally

similar clusters into the same land cover class and detennining the comprehensive

signatures for each class.

Multitemporal Land Cover Class Spectral Signatures

Each of the forty clusters was assigned to a cover class through an interpretation

process using the spectral signatures and spatial association techniques. The signatures

created for each cluster are represented by the greenness value in each of the three bands

in the GVI composite. This infonnation was analyzed using the Signature Editor in Erdas

Imagine. As in the composite source image, the signature averages were output as a red,

green, or blue color according to the source image bands which represented spring,

summer, and fall. The combinations of the averages for each season resulted in a distinct

color just as in the GVI composite. Tables V-VIII list each cluster's si.gnaturcs, the

number of pixels, and the class assigned for each year used in this study.

The patterns created by the variations in greenness for each season were indicators

of the type of land cover represented by each cluster. For example, a signature whose

greenness values were fairly high in spring and summer but low in the fall was

representative of a woodland's multi temporal response. A low response in the spring and

fall but a little higher in summer was indicative of a rangeland signature. For this study,

two rangeland classes were used: Native Rangeland and Improved Rangeland. The

growth patterns for each class were simi.lar, but Improved. Rangeland was assumed to

have shown a higher greenness response, as such a land cover would represent some type
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TABLE V
CLUSTER SIGNATURE LISTING FOR 1976

Cluster Count Spring Summer Fall Class
( I) 59548 0.054 0.034 0.052 Water Urban Bare
( 2) 1672 12.434 5.136 54.616 Winter Wheat - Fall Only
( 3) 1491 13.064 76.732 14.422 Summer Crops
( 4) 3631 13.448 3.836 28.959 Native Rangeland
( 5) J163 14.025 84.415 43.046 Summer Crops
( 6) 2872 14.271 111.931 18.065 Summer Crops
( 7) 598 l4.188 38.379 42.624 Native Rangeland
( 8) 676 14.857 24.074 19.961 Native Ran~eland

( 9) 3739 14.902 46774 16.465 Native Ran~eland

( 10) 2300 16.881 11781 99.073 Winter Wheat - Fall Only
( II) 6712 18.312 114.539 66.212 Summer and Fall Crops
( 12) 3459 18.349 57.923 56.877 Improved Rangeland
( 13) 605 20.598 146.370 28.663 Summer Crops
( 14) 3054 22.478 22.447 36.848 Native Rangeland
( 15) 4129 22.924 60.234 34.184 Improved Ran~eland

( J6) 6487 24.377 3.232 13.120 Native Ran~eland

( 17) 5595 25.461 36.441 27.372 Native Rangeland
( 18) 4323 29.824 45.812 39.191 Improved Ran~eland

( 19) 2454 30.905 28.947 55.940 ImDroved Ran~eland

( 20) I 4068 32.379 3.054 37.523 Native Rangeland
(2\) 2799 32.527 22.555 21.710 Native Ran~eland

( 22) 5630 33.751 78.162 70.077 Woodland
( 23) 3363 34.466 45.518 77.126 Woodland
( 24) 5659 34.707 48.224 53.316 Improved Rangeland
( 25) 3733 35.989 70.643 46.669 Woodland
( 26) 4738 37414 48.162 20.516 Improved Ran~eland

( 27) 1236 37.598 30.950 39.094 Improved Rangeland
( 28) 4946 39.315 3.189 62.966 Woodland
( 29) 3348 41.209 99.696 43.758 Woodland
( 30) 2681 42.207 73.921 25.131 Woodland
( 31) 1400 43.678 1.552 10.575 Winter Wheat - Spring Only
( 32) 2491 44.377 52.846 39.224 Improved Rangeland

( 33) 2858 45.410 61.960 60.804 Woodland
( 34) 634 53.528 81.992 59.956 Woodland
( 35) 3064 54.325 103.883 79.490 Spring, Summer and Fall Crops

( 36) 2332 54.824 40.408 57.011 I Improved Rangeland
(37) 2383 57.440 35.387 29.772 Winter Wheat· Spring Only

( 38) 989 58.267 3.036 35.461 Winter Wheat - Spring Only

( 39) 349 58.369 6.114 126.683 Winter Wheat· Spring and Fall
( 40) 2817 59.318 68.529 76.690 Woodland
( 41) 1341 60.842 65.075 44.117 Woodland
( 42) 1145 62.985 1.440 8.317 Winter Wheat - Spring Only
( 43) 443 64.295 6151 67.596 Winter Wheat - Spring and Fall

( 44) 1035 80.247 71701 136.425 Spring, Summer and Fall Crops
( 45) 195 80.305 92.268 45.632 Spring and Summer Crops

( 46) 90 88.273 2.024 11.092 Winter Wheat - Spring Only
( 47) 83 105.218 123.711 67.699 Spring, Summer and Fall Crops
( 48) 188 111.779 27.336 51.366 Winter Wheat - Spring and FaJ!
( 49) 130 120.220 141.844 136.043 Spring, Summer and Fall Crops
( 50) 85 150.243 150.583 53.010 Spring and Summer Crops

46



TABLE Vl
CLUSTER SIGNATURE LISTING FOR 1984

Cluster Count Spring Summer Fall Class
( I) 58817 0.029 0.024 ! 0.022 Water, Urban Bare
( 2) 255 1.980 61.875 46.165 Water, Urban, Bare
( 3) 213 4.446 2.596 43.901 Water Urban, Bare
( 4) 268 3.601 57.015 1.836 Water Urban, Bare
( 5) 80 23.363 19.575 101.325 Winter Wheat - Fall OnlY
( 6) 756 35.459 33.767 23.044 Water, Urban, Bare
( 7) 3763 45.739 44.089 42.238 Native Ranlleland
( 8) 2918 47.873 56.326 24.514 Native Rangeland
( 9) 757 51.918 18.206 35.268 Water, Urban Bare
( 10) 5654 51.862 57470 37.856 Native Rangeland
( I I) 1896 52.397 82.459 35.627 Woodland
( 12) 4757 55.261 44.534 31.771 Native Rangeland
( 13) 665 56.123 138277 60.370 Summer Crops
( 14) 6573 57.947 56389 51.790 Native Rangeland
( 15) 2534 58.848 54.497 74.872 Improved Rangeland
( 16) 4075 58.850 43.090 60.511 Improved Rangeland
( 17) 4361 59.067 69.622 42.022 Woodland

, (18) 6741 59.366 43.562 44.918 Native Rangeland
( 19) 1619 59.562 101.053 52,463 Summer Crops I

( 20) 3207 60.622 73.828 60.809 Improved Rangeland
(21 ) 7598 64.464 54,202 37.640 Native Rangeland
( 22) 1340 65.246 39,549 106.935 Winter Wheat - Fall Only
( 23) 3531 66.932 67.518 28.651 Improved Rangeland
( 24) 397 68.557 142.882 120.841 Summer and Fall Crops
( 25) 5966 70.230 63.888 45375 Woodland
( 26) 2033 7l.919 65,516 91.803 Improved Rangeland
( 27) 1358 72.616 25.377 55.056 Winter Wheat - Spring and Fall
( 28) 4908 72.996 48.910 50.470 Improved Rangeland
( 29) 4258 74.164 58,761 62,435 Improved Rangeland
(30) 4887 74.541 81387 40.634 Woodland
( 31) 770 74.534 71,065 129.842 Winter Wheat - Spring and Fall
( 32) 1089 75.112 102.798 88.955 Summer Crops
( 33) 2826 77.372 39.383 75.437 Winter Wheat - Spring and Fall
( 34) 2042 79.250 41.472 35.496 Winter Wheat - Spring Only
( 35) 2755 80.458 79.934 66.096 Improved Rangeland
( 36) 834 83.080 40.642 151.531 Winter Wheat - Spring and Fall
( 37) 4290 83.953 65.860 43336 Woodland
( 38) 1607 90.225 101.694 45889 Woodland
( 39) J827 91.781 38.296 104.199 Winter Wheat - Spring and Fall
( 40) 2225 92.042 56,407 76.644 Winter Wheat - Spring and Fall
( 41) 3130 93.760 80.818 42.382 Woodland
( 42) 2146 97.782 ' 45.846 50.539 Winter Wheat - Spring Only

I (43) 2133 102.429 29.022 69386 Winter Wheat - Spring and Fall
( 44) 755 102.620 79.054 105.l10 Spring, Summer and Fall Crops
( 45) 804 117.279 69.531 69.270 Winter Wheat - Spring Only
( 46) 1675 119.487 30.361 32.936 Winter Wheat - Spring Only
( 47) 689 120.055 36.322 136.737 Winter Wheat - Spring and Fall
( 48) 1292 123.720 34.063 96.144 Winter Wheal - Spring and Fall
( 49) 1364 129.013 28.614 63.247 Winter Wheat - Spring and Fall
( 50) 323 151.025 119.375 101.613 Spring, Summer and Fall Crops
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TABLEVll
CLUSTER SIGNATURE LISTING FOR 1986

Cluster Count Spring Summer Fall Class
( I) 58659 0023 0.019 0.012 Water Urban, Bare
( 2) 322 6.926 10.432 39.761 Water Urban Bare
( 3) 278 8.191 74.237 49.863 Water, Urban, Bare
( 4) 470 28.438 58.202 12.730 Native Ranlteland
( 5) 2182 42.843 45.056 36.122 Water Urban Bare
( 6)

,
4204 44.675 67.577 33.043 Native Rangeland

( 7) 387 46.773 25.279 64.354 Native Rangeland
( 8) 4438 46.845 60.727 49.208 Native Rangeland
( 9) 4423 50.775 80.569 52.036 Summer Crops
( 10) 258 52.671 10.240 8.601 i Water Urban, Bare
( Il) 3063 52.7\8 69.005 71.442 Woodland
( 12) 4047 52.457 82.49\ 34.44\ Improved Rangeland
( 13) 4800 52.703 56.593 33.462 Native Rangeland
( 14) 7826 56.293 69.692 40.570 Woodland
( 15) 2297 56.\\2 \04.316 45.401 Improved Ranireland
( 16) 1920 57.010 46.092 56.730 Native Rangeland
( 17) 1957 59.000 96.188 74.831 Summer and Fall Crops
( 18) 5735 61.064 65.692 54.895 Native Rangeland
( 19) 5144 62.695 57235 42.682 Native Rangeland
( 20) 1239 63.519 37.866 95.234 Winter Wheat - Fall Only

(21 ) 449 64.200 2.711 45.040 Water, Urban, Bare
( 22) 4564 65.431 67.298 29.804 Native Rangeland
( 23) 5078 65.925 83.052 55.064 Native Rangeland
( 24) 5620 67.396 83250 36.778 Woodland
( 25) 6699 69.308 71.554 43.969 Improved Range.land
( 26) 2328 69.260 72.972 86.480 Improved Rangeland
( 27) 1173 72.637 68.962 122.113 Winter Wheat - Fall Only
( 28) 2328 72.398 54.601 68.615 Winter Wheat - Spring Only

( 29) 1402 74.014 34,814 40.611 Improved Rangeland

( 30) 4296 75.754 70634 60.144 Improved Rangeland

( 31) 2697 78.423 98.839 44.560 Summer Crops

( 32) 1484 78.875 \20.226 65.729 Summer CroDs
( 33) 3185 81.967 58.463 43.817 Winter Wheal- Spring Only

( 34) 3067 82.293 87.\47 66.063 Spring and Summer Crops

( 35) 1365 84.163 32292 74.309 Winter Wheat - Spring and Fall

( 36) 3948 85.088 77.632 40.456 Woodland

( 37) 152\ 88.139 33.038 114.168 Winter Wheat - Spring and Fall
( 38) 76\ 88.838 35.594 153.376 Winter Wheat - Spring and Fall

( 39) 1399 90.646 58.668 92.400 Winter Wheat - Sprinlt and Fall

( 40) 1394 94.123 97.546 88.852 Spring, Summer and Fall Crops

( 41) 2509 100.408 66.564 62,954 Winter Wheat - Spring and Fall

( 42) 1450 102.899 34.717 54,070 Winter Wheat - Spring Only

( 43) 1639 104.633 92.94l 53.344 Spring and Summer Crops

( 44) 1014 110.318 42.181 31.782 Winter Wheat - Spring Only

( 45) ]574 114.867 33.782 85.987 Winter Wheat - Spring and Fall

( 46) 693 124.522 73.937 102.515 Winter Wheat - Spring and Fall
( 47) 1059 124.250 33.705 117.502 Winter Wheat - Sprin~ and Fall

( 48) 1047 136.294 32.974 51.204 Winter Wheat - Spring Only

( 49) 888 135.749 72.096 56.788 Winter Wheat - Spring Only

( 50) 481 146.168 113.391 77.081 Spring and Summer Crops
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TABLE VIn
CLUSTER SIGNATURE LISTING FOR 1988

Cluster Count Spring Summer FaIl Class
( 1) 58970 0.024 0.016 0.010 Water, Urban, Bare
( 2) 379 4.855 62.496 54.385 Water, Urban, Bare
( 3) 367 7.826 42.063 27.542 Water, Urban, Bare
( 4) 645 38.459 25236 26.465 Water Urban, Bare
( 5) 1940 42.128 41.072 56.830 Native Ran~eland

( 6) 1269 42.907 84597 43.101 Summer Crops
( 7) 3330 43.870 40.969 34.453 Native Rangeland
( 8) 1518 49.192 69.681 81.615 Summer and Fall Crops
( 9) 3798 50.352 61988 45.690 Native RanS!:eland
( 10) 1032 51.533 31.373 166.371 Winter Wheat - Fall Only ,

( II) 4424 Native Rangeland
I

52.237 52.905 29.363 !

( 12) 317 54886 Water Urban Bare
,

2.896 3.514
( 13) 3790 56.928 35.5]1 31.763 Native Rangeland
( 14) 2149 56.419 33.383 96.572 Winter Wheat - Fall Only
( (5) 6262 57.589 46.173 43.358 Native Rangeland
( 16) 3417 58222 30.824 49.862 Native RanS!:eland
( 17) 4424 59563 49.993 60.475 Native Rangeland
( 18) 1071 61.103 110.275 5l.312 Summer Crops
( 19) 3113 62.555 81.244 38.484 Woodland
( 20) 3644 62.532 35.248 73.047 Native Rangeland

, (21) 3966 65241 63.147 34.758 Native Rangeland
( 22) 4275 65347 66.933 59.299 Native Rangeland
( 23) 1977 I 65.718 33.812 128.579 Winter Wheat - Fall Only
( 24) 1501 68.051 65.484 109.295 Winter Wheat - Fall Only
( 25) 420 71.481 137.460 116.512 Summer and Fall Crops
( 26) 2809 68778 85.652 58.822 Woodland
( 27) 588 67.427 67.791 143.541 Summer and Fall Crops
( 28) 4674 69442 44.958 33.667 Native Rangeland
( 29) 5451 70.365 54.326 47.032 Improved Ran,geland

,

( 30) 3553 71.978 57.158 80.001 Improved Rangeland
( 3 \) 4560 72.037 38.657 53.348 Improved Rangeland
( 32) 1859 78.561 87954 82.839 Spring, Summer and Fall Crops
( 33) 4278 79.892 68710 43.654 Woodland
( 34) 2092 80.615 37.033 98.593 Winter Wheat - Spring and Fall
( 35) 4259 81.423 49.715 62.077 Improved Rangeland
( 36) 2156 81.370 25.814 40.755 Winter Wheat - Spring Only
( 37) 218 84.858 4.005

,

3.509 Winter Wheat - Spring Only
( 38) 2596 84.740 30371 75.256 Winter Wheal - Spring and Fall
( 39) 3186 85.862 87539 44.286 Woodland
( 40) 673 86.746 36915 161.909 Winter Wheal - Spring and Fall
( 41) 3335 87.566 69.457 62.101 Improved Rangeland
( 42) 3825 87.880 49.29l 39.184 Winter Wheat - Spring Only
( 43) 2162 98.357 58.492 82791 Winter Wheal - Spring and Fall
( 44) 974 100.580 42.501 120.961 Winter Wheal- SprinS!: and Fall
( 45) 1181 102.436 104.627 50.699 Woodland
( 46) 2716 103.377 64.165 45.390 Woodland
( 47) 2075 105.968 39.258 53.548 Winter Wheat - Spring Only
( 48) 2717 106.128 84.177 55.254 Woodland
( 49) 756 105.950 88.058 109.323 Spring, Summer and Fall Crops
( 50) 413 139.269 63.707 77.041 Spring, Summer and Fall Crops
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of pasture grass which was irrigated or fertilized. Those classes representing agricultural

crops had less vague growth patterns, as an agricultural field would either show a very

high or very low greenness value, depending on whether a crop was planted or not.

These classes appeared as bright colors in the image due to the color combinations

resulting from the growth patterns, whereas non-agricultural classes had greenness values

in the low to middle range in their signatures. Areas representing water, bare soil, or

urban cover were also easily identified as having little or no growth in all seasons. A

more specific description of the average signature statistics will be given below.

Spatial image interpretation techniques were also used to assign each cluster to the

appropriate land cover class. Those clusters representing agricultural crops were easily

i.dentified because they usually contained many contiguous pixels that represented a field

planted with the same crop in the same growth state. However, the signatures for

rangelands and woodlands were sometimes similar. For this reason, a familiarity with the

spatial patterns of the watershed was necessary to identify areas with known land cover

that did not change from year to year. Large tree stands, riparian zones, and dominant

rangelands were identified on aerial photographs and were located 011 the source image.

This information was helpful but was not used exclusively to detem1ine land cover for

those areas.

When all clusters were classified, the spectral signatures were merged according

to each land cover class. When merged, the average signatures were found for each class,

and were then examined in order to analyze class separability and to compare to

signatures for the other years. Tables XIII-XVI list the classes' average signatures for

each year. The final average land cover class signatures show that each class had
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essentially the same greenness pattern for the three acquisition dates, but the signature

averages were not the same for every class from year to year. These variations can be

attributed to varying dates of acquisition for each point in the growing season for each

year and wide spectral ranges due to mixed pixels.

The most major discrepancy between yearly averages occurred in the Woodland

class in 1976, in the fall of that year. The fall signature value in that class was much

higher (56.729) than the other three years' (42.181 in 1984,47.312 in 1986, and 48.084 in

1988). The date of the fall scene used in 1976 was 13 October, which was the earliest fall

image ofthe four years. The other three were 10 November 1984, 31 October 1986, and

5 November 1988. The time difference should not account for the 1976 result, but could

be attributed to a late senescence of woodland vegetation in that year. The woodland

classes were identified by the existence of known tree stands as shown on

TABLE IX
AVERAGE SPECTRAL SIGNATURE STATlST1CS

FOR 1976

Class name Spring Summer Fall
Water, Urban, Bare Soil 0.054 0.034 0.052
Native Rangeland 21.624 22.310 27.176
Improved Rangeland 34.547 45.945 43.928
Woodland 44.603 64.868 56.729
Winter Wheat - Spring Only 66.741 10.472 21.161
Winter Wheat - Fall Only 14.657 8.458 76.844
Winter Wheat - Spring and Fall 69.530 10.288 64.055
Summer Crops 15.489 104.862 26.049
Spring & Summer Crops 115.274 121.425 49.321
Summer & Fall Crops 18.312 114.539 66.212
Spring, Summer, & Fall Crops 90.003 110.285 104.914
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TABLE X
AVERAGE SPECTRAL SIGNATURE STATISTICS

FOR 1984

Class name Spring Summer Fall
Water, Urban, Bare Soil 16.239 28.914 25.039
Native Rangeland 54.645 50.939 38.675
Improved Rangeland 68.099 61.507 61.956
Woodland 74.882 77.961 42.181
Winter Wheat - Spring Only 103.450 46.803 47.060
Winter Wheat - Fall Only 44.304 29.562 104.130
Winter Wheat - Spring and Fall 96.664 39.919 95.822
Summer Crops 63.599 114.043 67.263
Spring & Summer Crops NA NA NA
Summer & Fall Crops 68.557 142.882 120.841
Spring, Summer, & Fall Crops 126.822 99.214 103.362

TABLE XI
AVERAGE SPECTRAL SIGNATURE STATISTICS

FOR 1986

Class name Spring Summer Fall
Water, Urban, Bare Soil 29.142 23.783 29.900
Native Rangeland 53.156 58.775 43.197
Improved Rangeland 66.151 72.797 51.841
Woodland 65.374 74.895 47.312
Winter Wheat - Spring Only 106.604 49.172 51.046
Winter Wheat - Fall Only 68.078 53.414 108.674
Winter Wheat - Spring and Fall 101.979 45.948 100.402
Summer Crops 69.358 . 99.878 54.108
Spring & Summer Crops 111.031 97.826 65.496
Summer & Fall Crops 59.000 96.188 74.831
Spring, Summer, & Fall Crops 94.123 97.546 88.852
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TABLEXn
AVERAGE SPECTRAL SIGNATURE STATISTTCS

FOR 1988

Class name Spring Summer Fall
Water, Urban, Bare Soil 21.210 26.541 22.383
Native Rangeland 56.954 47.477 46.047
Improved Rangeland 76.674 53.862 60.912
Woodland 87.004 82.302 48.084
Winter Wheat - Spring Only 90.019 29.592 34.249
Winter Wheat - Fall Only 60.430 41.013 125.205

. Winter Wheat - Spring and Fall 90.208 41.062 107.902
Summer Crops 52.005 97.436 47.206
Spring & Summer Crops NA NA NA
Summer & Fall Crops 62.700 91.644 113.889
Spring, Summer, & Fall Crops 107.927 79.906 89.734

aerial photographs and image interpretation. These techniques were reliable for this

classification in spite of the inconsistency of the growth patterns for trees in 1976 in

comparison with other years.

It is important to note that these signatures are the means of the ranges of the

original cluster signatures. The minimum and maximum greenness values in each cluster

were affected by class mixing, where one pixel may have contained more than one cover

type. In such a situation, the dominant cover type was determined by the multitemporal

growth pattern, but would result in varying signature statistics. An example of this can be

seen in the lower ranges of Class 31 in the 1976 image which was classi fied as Winter

Wheat - Spring Only based on its growth pattern, in addition to the relative locations of

the pixels in that cluster which were adjacent to large wheat fields. The greenness value

in the spring for Class 31 was a low 43.678, but the extremely low values in the summer
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and fall (1.552 and 10.575) indicate the appropriate growth pattern ofthe class that cluster

was assigned to. This signature, when averaged with the other five Winter Wheat - Spring

Only clusters, contributed to the lower average spring signature (66.741) in comparison

with the other years' (103.450, 106.604, and 90.019).

Every class except Woodland in 1976 exhibited very similar signature statistics

and growth patterns in each year. However, the Spring and Summer Crops class was not

used in every years' classifications as no clusters were found that met the criteria for that

class in two of the years studied. Crops grown in both spring and summer but not fall

were only found in 1976 and 1986.

The class signatures for each of the four years were averaged in order to develop a

general multitemporal spectral profile for the Little Washita Watershed. Table XVII lists

the combined average signatures for all four years. This information can be used to

TABLE XIII
COMBINED AVERAGE SPECTRAL SIGNATURE STATISTICS

FOR 1976, 1984, 1986, AND 1988

Class name Spring Summer Fall
Water, Urban, Bare Soil 16.661 19.818 19.344
Native Rangeland 46.595 44.875 38.774
Improved Rangeland 61.367 58.528 54.659
Woodland 67.966 75.007 48.576
Winter Wheat - Spring Only 91.703 34.010 38.379
Winter Wheat - Fall Only 46.867 33.112 103.713
Winter Wheat - Spring and Fall 89.595 34.304 92.045
Summer Crops 50.113 104.055 48.657
Spring & Summer Crops* 113.152 109.626 57.408
Summer & Fall Crops 52.142 111.313 93.943
Spring, Summer, & Fall Crops 104.719 96.738 96.716

*1976 and 1986 only
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quickly classify the other multiternporal images that will be generated for the Little

Washita project. It is possible for classification algorithms to use a pre-defmed signature

file and assign each pixel directly to a land cover class, bypassing the interpretation of a

forty-cluster output image. However, more conclusive data concerning the incomplete

classes for every year should be derived for a reliable classifi.cation using this method ..

Classification Results for Each Year

The fmal output of the classification process consisted of the eleven-class image

described above. The land cover maps for each year are shown in Figures 6-9. As

mentioned earlier, there is no way to test the accuracy of these classifications without

field verification data. However, the unique multitemporal spectral profiles of the classes

and their consistency from year to year were reliable indicators of general cover types,

especially when dealing with agricultural crops due to their homogeneous nature both in

spatial and spectral tenns (Lo et aI., 1986). The non-agricultural Woodland and

Rangeland classes were somewhat more difficult to separate from each other when their

growth patterns were similar. This problem was encountered in the 1986 classification

where some clusters contained pixels in areas which were known to have both wooded

and rangeland covers, but were assigned to the same cluster. The spectral response for

Improved Rangeland was very close to that of Woodland in this image, and resulted in

pixels which were classified as Woodland that appeared in areas that were known to be

Rangeland. The effect of this problem can be seen in the map of the 1986 classification

in Figure 8, where pixels assigned to the Improved Rangeland and Woodland classes
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were mixed significantly.

In the absence of any information regarding the locations of the two types of

rangeland used in this study, the only criteria used to differentiate the two was the

greenness spectral response, which was assumed to be higher for improved rangelands.

These problems accounted for the discrepancies between non-agricultural cover types as

they appear on the maps. However, it can be said that the agricultural classes were

differentiated between crop types and were distinguished from non-agricultural classes

successfully with the method developed in this study.

The numbers of pixels assigned to each class in each year's classification are

listed in Tables XVIII-XXI. Also listed are the total acres represented by each class. The

number of acres covered by one MSS pixel is 1.6 (Avery and Berlin, 1992). The total

number of acres delineated by the 500 meter buffer boundary polygon in the images was

198897.6. Various assessments may be made by comparing acre counts for different

cover types between years, such as agricultural versus non-agricultural land or the amount

of land used speci fically for growing winter wheat. For example, the number of acres

found to have an agricultural land cover in 1986 (64555.2 ac.) was significantly greater

than in the other three years (45430.4 ac. in 1976,45204.8 ac. in 1984, and 50 118.4 ac in

1988). This appeared to be abnormal until the agricultural land cover counts were

examined for those areas dassified as growing either winter wheat or crops grown in

summer.

Table XIX shows the number of acres belonging to the following groups of

classes: Non-Crop (Water/Urban/Bare Soil, Native Rangeland, Improved Rangeland),

and Agricultural (all other classes). The other two groups were selected from the Crops
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TABLE XIV
CLASS PIXEL COUNTS

FOR 1976

Class name Count Acres
Water, Urban, Bare Soil 3098 4956.8
Native Rangeland 30647 49035.2
Improved Rangeland 30821 49313.6
Woodland 31351 50161.6
Winter Wheat - Spring Only 4607 7371.2
Winter Wheat - Fall Only 3972 6355.2
Winter Wheat - Spring and Fall 2380 3665.2
Summer Crops 6131 9809.6
Spring & Summer Crops 280 448.0
Summer & Fall Crops 6712 10739.2
Spring, Summer, & Fall Crops 4312 6899.2

TABLE XV
CLASS PIXEL COUNTS

FOR 1984

Class name Count Acres

Water, Urban, Bare Soil 4616 7385.6
Native Rangeland 38004 60806.4
Improved Rangeland 27301 43681.6
Woodland 26137 41819.2
Winter Wheat - Spring Only 6667 I 10667.2
Winter Wheat - Fall Only 1420 2272.0
Winter Wheat - Spring and Fall 15318 24508.8
Summer Crops 3373 5396.8
Spring & Summer Crops NA NA
Summer & Fall Crops 397 635.2
Spring, Summer, & Fall Crops 1078 1724.8
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TABLE XVI
CLASS PIXEL COUNTS

FOR 1986

Class name Count Acres
Water, Urban, Bare Soil 5698 9116.8
Native Rangeland 36740 58784.0
Improved Rangeland 21069 33710.4
Woodland 20457 32731.2
Winter Wheat - Spring Only 9912 15859.2
Winter Wheat - Fall Only 2412 3859.2
Winter Wheat - Spring and Fall 10881 17409.6
Summer Crops 8604 13766.4
Spring & Summer Crops 5187 8299.2
Summer & Fall Crops 1957 3131.2
Spring, Summer, & Fall Crops 1394 2230.4

TABLE XVII
CLASS PIXEL COUNTS

FOR 1988

Class name Count Acres
Water, Urban, Bare Soil 4228, 6764.8
Native Rangeland 47944 76710.4
Improved Rangeland 21158 33852.8
Woodland 20000 I 32000.0
Winter Wheat - Spring Only 8274 13238.4
Winter Wheat - Fall Only 6659 10654.4
Winter Wheat - Spring and Fall 8497 13595.2
Summer Crops 2340 3744.0
Spring & Summer Crops NA NA
Summer & Fall Crops 2526 4041.6
Spring, Summer, & Fall Crops 3028 4844.8
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group: Winter Wheat (Spring Only, Fall Only, Spring and Fall), and All Summer Crops

(Summer Crops, Spring and Summer, Summer and Fall, and Spring, Summer and Fall).

In 1976, only 17534.4 acres were estimated to be used to grow winter wheat, compared to

37448.0 acres in 1984, 37128.0 in 1986, and 37488.0 in 1988. Classes that included all

crops grown in summer in 1986 totaled 27427.2 acres, which was close to the 27896.0

acres estimated for 1976. 1984 and 1988 had only 7756.8 and 12630.4 acres in summer

crops, respectively. So, the larger number of agricultural land cover acres in 1986 may be

explained by the estimates for both the winter wheat and summer crop classes, which

were both high compared to the other three years.

TABLE XVIIl
ACRES IN SELECTED CLASS GROUPS

Year Non-Crop Crops Winter Wheat All Summer Crops
1976 153467.2 45430.4 17534.4 27896.0
1984 153692.8 45204.8 37448.0 7756.8
1986 134342.4 64555.2 37128.0 27427.2
1988 149328.0 50118.4 37488.0 12630.4

Another discrepancy may be found when comparing the counts for the Woodland

class. It may be assumed that the amount ofland covered by trees in the Little Washita

watershed would not have changed as significantly as is indicated by the classifications

created in this study. The number of acres classified as Woodlands in 1976 was 50161.6,

41819.2 acres in 1984, 32731.2 in 1986, and 32000.0 in 1988. While it is expected for

woodlands to be cleared for agricultural use or rangeland, it is doubtful that almost 20000

acres of woodland were cleared between 1976 and 1988 for this purpose. This error was
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attributed to the relative inability of the classification method to discern between

woodland and rangeland signatures, as described above.
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CHAPTER FIVE

CONCLUSIONS

Summary

The purpose, objective, and method of the derivation of a land cover classification

using multitemporal Landsat MSS data has been described. The National Agricultural

Water Quality Laboratory has undertaken a time-series hydrologic study of the Little

Washita Watershed for which land cover data is needed, especially that of crop cover

inventory. Land cover infonnation for every even-numbered year from 1972 to 1992 will

be derived from a data set that consists ofthree MSS scenes from each of those years.

This study has examined the creation of a procedure which produced multitemporalland

cover classifications for four of those years: 1976, 1984, 1986, and 1988.

The main obj ective of this study was to use the three scenes from each year to

represent distinct points in a growing season: spring, summer, and fall, and derive a

classification from those images which could distinguish crop types by their presence at

those times in the growing season. It is generaHy accepted that land cover classifications

generated from a single date are not comprehensive, especially when attempting to

identify different types of agricultural land covers (Lo et al., 1986). The alternative

method that was used was to compress the multispectral data and combine images from

different dates. Several techniques for reducing the dimensionality and redundancy of

multispectral imagery were reviewed, including the normalized difference vegetation
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index, principal components analysis, and the Kauth-Thomas Tasselled Cap

transfonnation. The Tasselled Cap was used to reduce a four-band MSS scene into a one­

band Greenness Vegetation Index. The vegetation indices derived from the spring,

summer, and fall scenes from one year were combined as a three-band image, which was

then classified using an unsupervised method. Land cover classes were determined using

conventional image interpretation techniques and the use of multi temporal spectral

profiles based on the growth patterns of different cover types at the three points in the

growing season. Multitemporalland cover maps were created which identified the types

ofcrops that were grown and at which points in the growing season crops were present in

addition to rangelands, woodland, and non-vegetative land covers.

Discussion ofResearch Findings

The land cover maps derived from the multitemporal MSS imagery in this study

are unique representations ofthe Little Washita Watershed landscape, especially

concerning agricultural change detection. While there are discrepancies involving the

accuracy of such classifications due to the lack of field verification information, the

methods developed in this study and the derivation of specific vegetation profiles for the

Little Washita area are valuable for continuing research.

Several previous studies have used muhitemporal imagery for the detection of

land cover change, but the specific objectives and methodology used for this research

were unique. The overlay and false-color composite of three vegetation indices provided

an easy and infonnative means of observing land cover change through a growing season.
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Also, the general spectral signatures that were derived from the four years used in this

study will be used in future classifications for the Little Washita research. The signatures

resulting from the agricultural classes were definitive and consistent for each of the four

years. The variations in classification of the rangeland and wooded areas reveal

limitations in the process, but the growth patterns of these cover types should become

more defined as more years' classifications are processed. A standard set of signatures

should increase the reliability of the non-agricultural class assignments.

The analysis of the findings in this study show that the use of multitemporal

remotely sensed data to identify agricultural land cover without the aid of field

verification data can be perfonned effectively using the methods described. The Kauth­

Thomas Greenness Vegetation Index has been shown to be a very useful tool for

extracting important vegetation infonnation from multispectral data and for the derivation

of spectral profiles which are indicative of different land cover types. The Tasselled Cap

transfonn.ation was developed for agricultural observation and is most effective when

applied to that end. The land cover infonnation needed for the hydrologic research in the

Little Washita Watershed is focused primarily on crop cover inventory and the results of

this study have provided a valuable means of detecting agricultural land cover change.

Recommendations for Future Research

The most important factor in the continuing research for this project is the use of

better data sources. The need for multispectral data for the earliest dates possible

predetennined the use ofMSS, but the accuracy of this method would be greatly
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increased with the use of higher quality imagery. Thematic Mapper scenes have been

acquired for the study of the Little Washita Watershed for three points in the 1994

growing season. Using field verification data gathered for all three dates, the

multitemporal classification ofthe TM imagery would be able to be measured for

accuracy, and would result in a more effective set of spectral profiles, particularly for the

non-agricultural classes. As subsequent sensor platforms continue to be launched, the

availability of better data sources increases, as does the accuracy of derived land cover

classifications.

The other transformation techniques reviewed in this study should also be applied

and investigated for their effectiveness. The underlying concept of and the output from

principal components analysis are often confusing, but PCA has been shown to extract

valuable information that differs from those producing vegetation indices. Other

transformations such as canonical analysis and Leaf Area Index may also be investigated

for use in multitemporalland cover studies. Different spectral profiles may be developed

in combination with vegetation infom1ation that could further separate those cover types

with similar signatures. Incorporating this kind of information and using the methods

described in this study enables the use of historical remote sensing data to detect land

cover change without the aid of field verification data.
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