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PREFACE

This thesis was conducted to study the effects of surfactants and chelating agents

on the removal of zinc, lead and cadmium from contaminated soils. These metals are

commonly found among most Superfund sites and are considered toxins, according to the

Environmental Protection Agency.

This report is organized into several sections. The introduction describes the

problems with having heavy metals present in high concentrations in the soil. The

literature review discusses other research, first describing why removal is so difficult and

then what must be done in order to remove metals from the soil. Previous research

involving the use of surfactants and chelating agents is also evaluated.

The next section describes the preliminary tests that were run in order to e tablish

optimum test procedures and the setup of the experiments. [n the results and discussion

section"the removal efficiencies of both surfactant and combinations of a chelating agent,

citric acid, are be presented. This is followed by a sequential extraction procedure that

shows the partitioning of each ofthe three metals into four soil fractions. Hypotheses are

then presented as to why metals were or were not removed. These results are then

compared to similar studies performed by other researchers, to put this project into

perspective rdative to the state of the art of removing metals from soils using surfactants

and/or chelating agents.
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Introduction

Problem Description

Heavy metal contamination of soil is common among many hazardous waste

sites. A survey of 395 remedial action sites listed by the U.S. EPA showed that heavy

metals were the most common contaminant (U.S. EPA 1984). Cadmium, copper, lead,

zinc and mercury are some common metals found at these sites. Remediation typically

has taken the form of excavation and disposal into hazardous waste landfills,

solidification/stabilization, and extraction (Steele and Pichtel 1998). Once these metals

are released into the environment they tend to adsorb strongly to the soil matrix. Heavy

metals in the environment, unlike organics, will not degrade or be reduced by the

presence of microbial activity or through chemical oxidation techniques (Cline and Reed

1995).

In the state of Oklahoma there are approximately 13 abandoned smelt r site.

Each of these sites have various levels of metal contamination, usually depending upon

the length of time the smelter operated. The longer the smelter operated, the greater the

extent of contamination. One problem common among the majority of the smelters is the

removal of contaminated material from the facility for use offsite. This material was

often seen as a cheap and available source of fill and has been used for residential

purposes, such as backfill for foundations and filler material for nearby yards and

driveways. These past practices served to increase the area of metals contamination far

beyond the facilities boundaries (Stegmann 1998).



In Oklahoma, there is no one way in which these smelter sites are remediated.

Each site is dealt with on an individual basis. Some approaches that have been used

include burying the contaminated soil and dilution of the contaminated soil with "clean

soil" to acceptable levels. Recently, the abandoned smelter, Eagle Picher, located near

Henryetta, Okla.. was remediated using the burial approach. The contaminated soil was

removed from the residential areas nearby and brought to the Eagle Picher site. This soil

was then combined with the contaminated soil that was present at the site and placed into

a large pit area. The pit was then capped with approximately one foot of clay and one

foot of topsoil. Sewage sludge was added to the topsoil in order to promote plant growth.

The area was then sodded and sprigged with grass in order to prevent erosion. (Stegmann

1998)

This leaves open the possibility of long term risks associated with leakage of the

clay liner and leaching of metals into groundwater and surrounding soils. 0 date the

technology has not been firmly established that would allow the metals to be removed or

recovered from the soil, reducing the long term liabilities if landfilling i de ired or

returning the site back to useable conditions.

Typical Smelting Operations

Smelting operations used to recover zinc from sulfide ore differ from those

treating other non-ferrous metals, in that zinc, when heated in a furnace will sublimate

rather than liquefy. The smelting processes used to produce zinc were refined in the late

19th century in Europe and used in the U.S. in the 20th century. There are four major

steps involved in the refining process. They include;
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1) Crushing and concentrating the ore by gravity or flotation.

2) High temperature roasting of the ore in the presence of oxygen to produce

an impure substance called zinc oxide or calcine, usually followed by the

addition of coal pellets and zinc bearing materials in a secondary roasting

to process to produce a sintered ore known as a clinker.

3) High temperature distillation under reducing conditions to produce

gaseous zinc from the zinc oxide.

4) Condensation of the gaseous zinc into a liquid form.

Crushing and concentrating the raw ore usually took place at the mine sites,

though some additional concentrating may have occurred at the smelter site. The later

three operations occurred exclusively at the smelter sites (ODEQ 1994).

Roasting of the raw sulfide ores is an exothennic process which produces an

impure zinc oxide called calcine. The calcine was produced because the oxide tied up

less zinc in retort residues, on a weight basis, than the original zinc sulfide forms. The

roasting furnaces that were used were not muffled; that is, there were no pollution control

devices to prevent sulfur dioxide from venting into the atmosphere. [n addition to sulfur

dioxide, metals such as arsenic and cadmium were volatilized and released into the

atmosphere.

Typically, calcine that was produced in the roasting process was too fine to

provide for efficient charging of the distilling retorts. Therefore, calcine was put through

a secondary roasting process and combined with coal pellets, silica and recycled zinc

bearing materials. The result of this secondary roasting was a porous sintered ore known

as a clinker or sinter cake. During this secondary roasting, additional sulfur, cadmium,
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arsenic, bismuth and lead were volatilized and released into the atmosphere.

Occasionally, retorts were broken and they were usually recycled if possible. If not, they

were discarded into dumps. The coatings on the inside of these retorts often contained

high levels of lead.

After roasting of the clinkers, they were crushed and placed into horizontal retort

distillation furnaces. These furnaces were typically five feet long and open at one end to

allow for charging and collection of the zinc vapors. After the distillation furnaces were

charged, condensers were placed over the open ends to collect and condense the gaseous

zinc into a liquid fonn known as spelter. When the distillation process was complete the

residue (slag) was removed and discarded into landfills. This slag often had high levels

of arsenic, cadmium, lead and zinc.

In the state of Oklahoma, only two of the thirteen smelter sites have been

remediated. One of the sites, Eagle Picher, was remediated through the use of landfilling.

The other site that is considered closed is the National Zinc Smelter located in

Bartlesville. At this site the contaminated soil was combined with "clean" soil until the

metals concentration in the soil combination reached acceptable levels (Stegmann 1998).

The soil was then used as cover for landfills. These practices do not remove the metals

present in the soil; they are designed to reduce the accessibility of the metals. These two

methods still leave open the possibility of long term liabilities.

Objective of Study

The purpose of this study is to evaluate the use of anionic and cationic surfactants

in removing zinc, lead and cadmium from contaminated soils. The effects of a chelating

agent, citric acid, when combined with surfactants, was also evaluated for their removal
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efficiency for the three metals listed above. These results were compared to the removal

efficiency of water and citric acid alone. The effects of varying the pH on the solutions

mentioned above was also examined. Also, using a sequential extraction procedure, the

specific fraction the metals are associated within the soils was determined. This allowed

determination of what portion of the metals bound to each specific soil fraction can be

removed by each of the treatment methods utilized in this study.
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Literature Review

Metal Chemistry

In soil, metals are usually found in one or more of the following fractions: I)

dissolved in the soil solution, 2) occupying exchange sites on the inorganic soil

constituents, 3) adsorbed on the inorganic soil constituents, 4) associated with insoluble

soil organic matter, and 5) precipitated as pure or mixed solids (Shuman 1991). The

degree to which metals are found associated with these specific areas are largely a

function of the properties of the individual metals themselves. Hickey and Kittrick

(1984) and Tessier, et al. (1979) reported that the greatest percent of zinc found in soils is

associated with the iron and manganese oxides. In contrast, the largest fraction of

cadmium is associated with the exchangeable sites of the soil matrix. Tessier et al.

(1979) states that lead can be found in all of the areas of the soil matrix with the majority

being associated with the organic fraction. At pH values above 6 lead is either

transformed into lead carbonate or is adsorbed on clay surfaces.

Metal Removal Techniques

Instead of landfilling contaminated soils, more emphasis is being placed upon

lowering the metals content of the soils to acceptable levels. These are levels which

significantly reduce the potential for the remaining metals to leach into surface and

groundwater zones.

Pickering (1986) suggested that there are four methods of mobil izing metals that

are sorbed onto soil; 1) change in acidity, 2) change in ionic strength, 3) change in

oxidation/reduction potential, and 4) complex formation.
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Effects of pH

With most cationic metals the potential for adsorption increases with increasing

pH. Harter (1983) pointed out that adsorption of metals increases significantly at pH's

greater than 7. Depending upon the individual metal, the pH at which hydrolysis occurs

varies. Cadmium has been shown to hydrolyze at a pH arowld 8, while zinc became

nonexchangable at a pH greater than 5.5. (Cavallaro and McBride 1980, Stahl and James

1991). As seen in Figure 1 below, the maximum amount of lead, copper and zinc

adsorption onto four different types of soils increased with an increase in pH.
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Figure 1. Effects of pH on Metal Adsorption (Harler 1983)

As pH in the soil decreases, the number of negative sites available for cation

adsorption decreases. Also, as pH decreases the number of sites available for anion
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also a class of surfactants that have both positive and negative charges on their head

groups, these are called zwitterionic surfactants (West and Hartwell 1992).

One property unique to surfactants is the ability to form clusters called micelles.

These micelles only occur at surfactant concentrations above the critical micelle

concentration (CMC). Figure 2 shows the different types of micelles that are formed

above the CMe. Figure 2 also shows some of the different properties surfactant exhibit

and their arrangements at concentrations less than the CMC. The degree to which the

surfactant exhibits these various structures depend upon the individual surfactant.

Hemlmicelle

BelowCMC
(monomers)

Spherical mloelle "'-0 b
s?&~p

~ at--.· OCfb~
Above CMC
(monomers and micelles)

99999
wquld oooo~ ~ Admicelle

//f);;;/////£ ~00///£~0W////
Solid

Figure 2. Examples of surfactant micellization.

(West and Hartwell I992)

Surfactants have been shown to be effective in solubilizing chlorinated solvents

such as perchloroethylene (PCE) and trichloroethylene (TCE) (Sabatini et al. 1995) and

polycyclic aromatic hydrocarbons (PAH's) (Huang et al. 1997). They have also been
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used to solubilize metals such as lead (Huang et a1.1997, Kornecki 1997 and Herman et

ai. 1995) chromium (Nivas et a1. 1996), cadmium (Tan et a1. 1994 and Herman et a1.

1995) and zinc (Herman et a1. 1995).

Use of Surfactants to Remove Metals

Huang et al. (1997) used Dowfax 3B2D, Dowfax 8390 D, Triton X-I 00 and

Emcol CC-9 to enhance removal of lead-spiked Minoa sand. The Dowfax surfactants are

classified as anionic surfactants. Triton X-lOG is a nonionic surfactant, while the Emcol

CC-9 is cationic. For the lead desorption experiments, the solid to solution ratio was kept

at I: 10 and the ionic strength was kept constant at 0.1 Musing NaN03• The researchers

then varied the pH of the samples from 2 to 8 and also varied the surfactant

concentrations. The samples were shaken for 24 hours The liquid portion was then

removed and analyzed for lead concentrations using an atomic absorption

spectrophotometer (AAS). Huang et al. (1997) also investigated the amount of surfactant

losses due to sorption on to the soil.

Due to its poor performance in solubilizing naphthalene, which was another

purpose of the study, the cationic surfactant was not continued through the entire

experiment. Therefore, no data was available for soil sorption or lead desorption. Huang

et a1. (1997) showed that at very low pH's (pH<2), anionic surfactants tended to have

high losses due to sorption. The nonionic surfactant studied did not seem to be affected

by pH. Huang et a1. (1997) also showed that lead could be effectively removed, up to

100%, from spiked soils using anionic surfactants. This study showed that anionic

surfactants enhanced the removal of lead, whereas the nonionic surfactant exhibited an

inhibitory effect on lead desorption. This phenomenon is hypothesized to be caused by

10
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the lead reacting with the head group of the anionic surfactant, enhancing its desorption

in a manner analogous to the reactions that take place when a complexing ligand is

introduced. With both the anionic and the nonionic surfactants, as the pH of the samples

decreased the amount of lead removed increased.

In a similar study, Komecki (1997) used cationic surfactants to remove spiked

lead from both Teller loam and Slaughervillcr sandy loam. Komecki (1997) found that

up to 82% of the lead was desorbed from the Slaughterville soil using a surfactant

concentration of 0.1 moles/liter. The author tested ten cationic surfactants from both the

Witco Corp. and Aldrich Chemical Co., and obtained the highest removal efficiency with

Emcol ISML manufactured by Witco Corp. Kornecki (1997) found that the percentage of

lead desorption into solution was highly pH dependent. The lower the pH the more lead

was desorbed, which agrees with other published results (Harter 1983 and Huang et al.

1997).

Nivas et al. (1996) tested a variety of surfactants for their ability to remove

chromium from contaminated soils. Dowtax 8390 0 was one of the anionic surfactants

tested, along with Deriphat-160, zwitterionic and T-Maz 20, a nonionic surfactant. The

authors used batch studies with various surfactant concentrations, both with and without a

chelating agent, dipbenyl carbazide (DPC), to evaluate removal efficiency. One unique

feature about this study is that the soil used was not artificially contaminated. It was

contaminated by a chrome plating shop operating for approximately 30 years. The results

of this experiment showed that the use of a surfactant alone increased the removal of

chromium 2-3 times that obtained with water alone. The greatest removal occurred with

the Deriphat-160, a zwitterionic surfactant. It is hypothesized that ion exchange was
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taking place between the chromate anion and the negatively charged head group of the

surfactant, along with a direct attraction between the positive charge on the surfactant and

the chromate anion. The anionic surfactant, Dowfax 8390 D, had the second highest

removal efficiencies.

When the complexing agent, DPC, was added to the solution, the percentage of

chromium removal, compared to that of water, increased by a range of 9-12 percent.

N ivas et al. (1997) concluded that the greatest removal efficiency (-80%) of chromium

overall, occurred with the Dowfax 8390 D surfactant at concentrations at or slightly

below the CMC.

Use of Chelating Agents to Remove Metals

Along with the use of surfactants to remove metals, chelating agents or various

acids can be used to increase efficiency. Chelators and acids that have been used include

ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), pyridine-2-6

dicarboxylic acid (PDA), citric acid, nitric acid, hydrochloric acid and fluorosilicic acid

(FS) (Steele and Pichtel 1998 and Neale et al 1997). Neale et al. (1997) conducted a

series of batch tests using the above mentioned chelators and acids. Various

concentrations were prepared ofeach solution at 0.0 I M, 0.05 M, and 0.1 M. Batch tests

were run on eleven different soils taken from various contaminated sites throughout the

United States. The results showed that citric acid, nitric acid, hydrochloric acid and FS,

at concentrations of 0.05M and 0.1 M, were very efficient (>80% removal) at sites

contaminated with lead. Up to 99% of cadmium was effectively removed from the soils

using lower concentrations (0.0 IM and O.05M) of acid and chelators, suggesting that

cadmium was easier to remove than lead over the range of concentrations tested. Neale et

12
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al. (1997) showed that removal of lead increased in soils that had an appreciable quantity

of clayey sand material over sandy or silty material. The removal efficiency of cadmium

did not appear to be affected by the constituents of the soil.

Sequential Extraction Techniques

The majority of the work done concerning metals in soils has focused primarily

upon total metal concentrations. This suggests that all forms of a given metal have the

same effect on the environment. It does not take into account the partitioning of the

various forms in which the metal might exist when in the soil. A simple measure of total

metal concentration does not take into account the 'availability' or 'mobility' the metal

may have in the soil. When it comes to determining the frac60natjon of metals in soils

there are essentially two approaches (Tessier et a1. 1979). The first is a method designed

to differentiate between residual and nonresidual metals only. This technique uses only a

single extraction and offers a rapid and a relatively simple approach. The drawback of

this technique is that the choice of extractant is often debatable because one wants a

reagent that would dissolve nonresidual forms of the metal without attacking the detrital

(fractions other than residual) forms. The second approach is the lise of sequential

extractions. The use of multi-step sequential extractions provides more information as to

the biological and physicochemical availability, mobility and the partitioning of heavy

metals within the soil.

Typically, a sequential extraction procedure involves five to six different steps

designed to remove the metals from specific sites within the soil matrix. These steps are

ordered such that the easiest fraction to remove (exchangeable cations) is removed [Lrst

13
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and the extraction of hardest fraction (residual) is performed last. The five main fractions

that are usually investigated (Gibson and Farmer 1986) include;

1) Exchangeable fraction. This fraction of the metals found in the soil is

highly susceptible to changes in ionic strength.

2) Fraction bound to carbonates. This is the fraction of metals that are

associated with the soils carbonates and are susceptible to changes in pH.

3) Fraction bound to iron and manganese oxides. These oxides exist as

nodules, concretions or as coatings on particles. They are excellent

scavengers of trace metals, but are very unstable under anoxic conditions.

4) fj'action bound to organic matter. This fraction can be associated with

the humic and fulvic acids found in the soil. Under certain oxidizing

conditions found in natural waters the organic matter can be degraded,

releasing soluble metals.

5) Residua/fruction. This is the last fraction in which metals can be found.

The metals found in this area are often in thl: crystalline structures of the

primary and secondary minerals. The metals found in these areas are not

expected to be removed within a reasonable time span under natural

conditions.

These are the most common soil fractions examined (Tessler et al. 1979). There

are several methods presented in the literature that use various types ofextracting agents

to remove metals from the above mentioned fractions (Sposito et al. 1984, Shuman 1991

and Kou et a1. 1983). Gibson and Fanner (1986), however, further divided the fraction

bound to iron and manganese into two separate parts. The first part is classified as easily

14



reducible. This targets the oxides and hydroxides of manganese, while the second

fraction is called the moderately reducible fraction. This fraction targets the portion of

metals bound to the oxides and hydroxides of iron. Table 1 shows the analytical reagents

that are used to remove the metals from each fraction. It shows two different sequential

extraction methods that have been used on soils that are contaminated with cadmium,

lead, zinc and copper.

Table I. Sequential Extraction Reagents

Authors Exchan geabIe Fraction Fraction Fraction Fraction
fraction associated with associated associated associated

the carbonates with Mn with Fe with
oxides oxides organic

matter
Tessler 1M CHJCOONa 1M CHJCOONa 0.04M NH20H. HCI in 25% 0.02M
et al. at pH= 8.2 +IM CH)COOH (v/v) CHjCOOH at 96°C HNOJ

( 1979) at pH=7 +30%
H20 2 at
&5°C

Gibson 1M CHJCOONH4 1M CHJCOONa O.IMNHpH 1M NH20H 30% HP2
and at pH=7 at pH=5 +O.OIM in 25% +0.02M
Farmer HNO) CH 1CO()11 HNOJ at
( 1986) 85°C

Residual
fraction

HF
HCIO.

Aqua
regia +
/IF

Summary

In previous research, surfactants have been shown to be effective in removing a

variety of metals from recently spiked soils including lead, cadmium and chromium. It

has been shown that one of the most important factors in removal efficiency is the pH of

the soil/solution. At low pH's «4) the removal efficiency is increased, whereas when the

pH is increased above 7 the removal efficiency decreases. This is due to hydrolysis of the

metal cation. When complexing agents such as citric acid, EDTA, NTA or DPe are used

alone the removal efficiency is also very high, > 80 %. Using sequential extraction
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procedures one is able to detennine which area of the soils the metals are being held.

This is done using different extraction reagents that target specific sites on the soil.

One important factor which has not been addressed in the literature is the effect

surfactants have on soils that have been contaminated for long periods oftime. The

majority of the soils used in the literature were artificially contaminated in the laboratory

(Cline and Reed 1995 Chen et a1. 1995, Huang et al. 1997 and Kornecki 1997). In

conjunction with this, the use of surfactants when combined with a chelating agent used

to removed lead, zinc and cadmium simultaneously has not been investigated. Chelating

agents when used alone have been shown to have promising removal efficiencies (Neale

et al. 1997 and St~ele and Pichtel 1998), but their effects when combined with surfactants

and their use on soils which have been contaminated with lead, zinc, and cadmium for a

long period of time has not been examined.

It is known, generally, where the highest concentrations of lead, zi nc and

cadmium are located with respect to the different sites on the soil (Hickey and Kittrick

1984). What is not known, however, is where these metals that are being removed are

coming from. This holds true for both removal due to surfactants alone and surfactants

combined with a chelating agent.

With several of the previous studies, solutions of either 0.1 M NaNO) or 0.01 N

CaCl2 were used to keep the ionic strength constant (Huang et al. 1997 and Nivas et al.

1996). While in other studies the effects of ionic strength were neglected (Kornecki

1997, and Steele and Pichtel 1998). There has not been anything to date that shows

directly how the effects of controlling ionic strength can enhance or inhibit the effects of

16
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-

surfactants, surfactants with chelating agents or chelating agents used alone when trying

to remove lead zinc and cadmium from the soil.

17



Materials and Methods

Site History

The soil used for this research came from an abandoned zinc smelter and brick

foundry located in Kusa, Oklahoma. Kusa is located approximately 10 miles northeast of

Henyretta in Okmulgee County. The zinc smelter operations began in 1915 operated by

Kusa Spelter Company and the Oklahoma Spelter Company using horizontal retort

furnaces to distill zinc from raw ore. In the 1920's, Kusa Brick and Tile Company

operated on the site, producing construction grade bricks and fireclay retorts and

condensers used in the zinc operations. By 1928 the zinc operations had ceased, and the

brick production facilities were removed from the site by 1949 (ODEQ, 1984). In the

period between 1916 and 1918 the Kusa smelter produced between 10,720 and 15.440

retorts per year (D.S.DI 1918). Currently only the building foundations and remnants of

the furnaces and kilns can be found at the site. The site does have areas that contain

broken retorts and furnace slag found as surface debris or in small piles.

Sampling Methods

Soil samples were taken from the Kusa site on January 30, 1998. The top two

inches ofthe surface was removed and any plant growth, i.e. weeds or grass, were

removed before the samples were taken. Surface samples were gathered at depths

ranging from 2-6 inches. Prior to sampling, the equipment to be used was cleaned

according to EPA Appendix B. "Standard Field Cleaning Procedures" (l998). For each

sample a separate shovel and five gallon container lined with plastic bags was used.

Immediately after the sample was taken the plastic bags were sealed in order to preserve
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soil moisture levels. In total, three separate soil samples were taken. According to soil

metal concentrations provided by the Oklahoma Department of Environmental Quality

(ODEQ) a representative sample was taken from areas that corresponded to low, medium

and high concentrations of metals, hereafter known as SL. SM and SH respectively.

Samples were taken from locations S-32, S-15 and S-21 which can be found on the site

map provided in Appendix A. These samples were taken as close as possible to the sites

used by ODEQ, but the samples used in this study may not have been taken at the exact

location or depths. The metal concentrations that correspond to each of the sampling

locations can be found in Appendix A. The analysis of these samples was performed by

Hydrometries Inc. at the request of the ODEQ. Hydrometries Inc. used X-Ray

Florescence Spectrophotometry (XRF) to determine these results (Hydrometries 1997).

Soil Properties

The soil type found around the Kusa smelter site is classitied as Okemah silt loam

according to the U.S. Soil Conservation Service (1968). The soil used in this experiment

was air dried at 105°C and passed through a 2 mm sieve (US Standard Sieve Size #10).

Wet sieve analysis and hydrometer tests were performed on each of the three samples

according to ASTM Method D 421 and D 422 (ASTM X). The pH of the soil was tested

by combining 3 grams of soil with 50 mL of distilled water. The soil/water solution was

then agitated for 30 minutes and the pH was read using a Fisher Accumet 900 pH meter.

This was done separately for each of the three soils.
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Background Concentrations

The metals analysis that were perfonned for this experiment were done using a

Perkin-Elmer Model 5000 Atomic Absorption Spectrophotometer (AAS). An air

acetylene flame was used with a wavelength of213.9 nm for zinc 283.3 nm for lead and

a wavelength of 228.8 run for determination of cadmium. Metal standards for each metal

were purchased from Fisher Scientific Co. (Pittsburgh, PA), at concentrations of 1000

ppm for each of the three metals, (In, Pb and Cd), being evaluated.

The initial baseline metals concentration for each of the three soil samples was

determined using the method outlined for acid digestion of soils with HN03 in Standard

Methods for Examination of Water and Wastewater (APHA 1992), section 3030 E. For

this study, five grams of soil was placed in an 80 mL beaker along with 25 mL ofreagent

grade nitric acid (Fisher Scientific Co., Pittsburgh, PA). The solution was then stirred

and placed on a hotplate and allowed to reflux for a period of three days. Any losses or

acid due to evaporation was replaced with an equivalent amount of nitric acid. After

three days the samples were removed from the hot plate and centrifuged at 3000 rpm for

25 minutes using an IEC Centra 7 centrifuge. The samples were then tested for zinc, lead

and cadmium on the AAS using the conditions described above.

Due to problems encountered later in the experiment, the soils were subjected to

another digestion using HN03-HCI04, section 3030 H, in Standard Methods for

Examination of Water and Wastewater (APHA 1992). Nitric-perchloric acid was chosen

because of ]is ability to remove more of the metals from the mineral and the organic

surfaces. This digestion involved combining 5 grams of soil in an 80 mL beaker along

with 20 mL of concentrated HN03 . The solution was brought to a boil and allowed to
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reflux for a period of three hours. After the solution cooled down 10 mL of both HN03

and HCI04 were added to the soil. The mixture was then reheated to boiling for 3 hours

and allowed to cool. The liquid portion was then diluted to 100 roL with distilled water

and analyzed for lead, zinc and cadmium using AAS.

Preliminary Experiments

In order to determine the parameters that would be optimum for this particular

study, several preliminary experiments were performed. These experiments consisted of

evaluating the metals removal efficiency of nine surfactants, determining an appropriate

shaking time, finding the optimum surfactant and citric acid concentrations and

performing an initial sequential extraction of the soils

Metals Equilibrium Time

The purpose of this experiment was to determine the minimum length of time the

samples need to be shaken in order to estabLish equillibrium. In the literature, a shaking

time of 24 hours is commonly used (Huang et a1. 1997, Kornecki 1997, Neale et a!. 1997,

and Nivas et al 1996), but there was no information provided to as to whether or not this

was a long enough time for the samples to reach equilibrium. An experiment was

performed in order to determine if the samples did reach equilibrium at or before this

time.

Dowfax 8390 D was used as the surfactant for this experiment. The solid to

solution ratio was kept at the same I: 10 ratio used throughout the research. Three grams

of SM soil was combined with 30 mL of surfactant solution and placed in a polyethylene

container. The pH of the samples was adjusted to 7 ± 0.3 and the samples were placed on
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a horizontal shaker table. The samples were withdrawn from the shaker at various time

intervals ranging from 1.75 hours to 29.5 hours. As soon as the individual sample was

taken from the shaker it was centrifuged at 3,000 rpm for 30 minutes and the liquid

portion was removed. Analysis for zinc, lead and cadmium was performed using AAS on

each sample.

Screening of Surfactants

In this experiment, nine surfactants were tested for their metals removal

efficiency. The purpose was to determine which two surfactants would have the best

overall removal efficiency of the metals and therefore would be carried into the next

stages of the experiment. The surfactants that were considered include: Dowfax 382-0,

Dowfax 8390 D, Glucopon 220 UP, Glucopon 625 UP, Glucopon APG 325 N, Emcol E

607L, Emcol ISML, Emphos CS-141 and Emphos CS-147. The Dowfax products were

received in a powder form with approximately 90 percent active ingredient from Dow

Chemical Company (Midland, MI). The Glucopon products came from the Henkel

Corporation and Emery Group (Hoboken, N. J.), while the Emcol and Emphos surfactants

were samples from the Witco Corporation (Greenwich, CT). These last seven surfactants

were received in a liquid form, with the exception of Emcol E-607L which was in powder

form. All of the surfactants were used in the same condition as received without any

modification. Each surfactant's respective head group charge, molecular weight and

CMC are presented in Table 2. All of the CMC for the surfactants came from the

company which produces them with the exception of Emcol ISML which was

experimentally calculated (Salama 1998).
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Table 2. Surfactant Properties

Surfactant Head Group Average Critical Micelle
Charge Molecular Concentration

Weight
Dowfax 3B2-Da amomc 542 3.0mM
Dowfax 8390 Da anIOnIC 642 6.3 mM
Glucopon 220 Upb anIOnIC 390 0.52 mM
Glucopon 625 Upb , anIOnIC 441 0.07 mM
Glucopon APG 325 Nb aniOniC 403 0.77 rnM
Emcol E-607Lc cationic 320 0.03 roM
EmcoIISMLd cationic 460 0.02 mM
Emphos CS-141 c cationic 2032 0.02 roM
Emphos CS-147c cationic 1852 0.03 mM

a Dow Chemical Company
b Henkel Corporation and Emery Group
C Witco Corporation
d Salama, 1998

In the screening step of this experiment a one liter solution of each of the nine

surfactants was prepared. The surfactant concentration for each of these solutions was at

the CMC for the individual surfactant being investigated. Three grams of soil (SM) along

with 30 mL of surfactant solution were placed into a 50 mL polyethylene container. The

sample was then shaken for approximately 30 minutes to aHow the pH to equilibrate.

The pH was then adjusted to 7 ± 0.3 for each of the samples using either IN NaOH or IN

HN03. The samples were then placed on a horizontal shaker table and shaken for 24

hours. After approximately 24 hours the samples were centrifuged for 20 minutes at

3000 rpm. At the end of the centrifuge cycle the supemant was drawn off the sample and

analyzed. For each of the samples the concentrations oflead, zinc and cadmium in the

solution was determined using the AAS method previously mentioned.
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Surfactant Concentration

In the literature, surfactant concentrations varied from study to study. Some

researchers found that maximum chromium removal occurred at surfactant concentrations

slightly less than the CMC (Nivas et al. 1996). Others found that surfactants performed

more efficiently at concentrations greater than the CMC (Huang et a1. 1997, Rouse and

Sabitini 1993). In order to determine where maximum metal removal occurs, samples

ranging from 0.5X CMC - 100X CMC were prepared using Dowfax 8390 D. Six

samples were made using a solid to solution ratio of 1: 1O. Three grams of SM soil was

added to 30mL of surfactant solution and shaken for 24 hours. At the end of the 24 hour

shaking period the samples were removed and centrifuged at 3,000 rpm for 20 minutes to

remove the solids. The liquid portion was then withdrawn and analyzed for zinc, lead

and cadmium.

Citric Acid Concentration

The purpose of this experiment was to evaluate the use of a chelating agent, citric

acid, both with and without a surfactant. [n order to determine the lowest concentration

of citric acid that can be added and still provide adequate metals removal, several

concentrations of citric acid were evaluated. Concentrations ranged from 0.005M to

0.1 M citric acid. One sample using 0.0 1M EDTA was prepared as a comparison.

Previous research indicated that a concentration of 0.0 1M EDTA and a concentration of

0.1 M citric acid had the highest removal efficiency of lead and cadmium (Neale et al.

1997). Six samples were prepared using 3 grams of SM soil along with 30 mL of

solution. The samples where shaken for 24 hours, then centrifuged for 20 minutes at

3,000 rpm. The concentrations of zinc, lead and cadmium removed were then evaluated.
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Ionic Strength

Due to the lack of consensus among previous research, the effects of ionic

strength was evaluated. Sodium nitrate (NaN03) was chosen as the electrolyte based

upon previous studies (Cline and Reed 1995, Huang et a1. 1997 and Tan et al. 1994). The

range of concentrations used in previous studies was from 0.04 M to 0.2 M NaN03. A

median value of 0.1 M NaN03 was chosen; as this concentration corresponds to the

concentration used by Huang et al. (1997). For this experiment water with and without

NaN03 was tested at pH 4 and 7. In addition to this, Dowfax 8390 0 both with and

without addition of NaN0 3 was evaluated at pH 4 and 7.

For each of the samples 3 grams of soil SM was combined with 30 mL of

solution. The samples were then shaken for 24 hours and then centrifuged at 3,000 rpm

for 20 minutes. The liquid portion was then with drawn and analyzed for zinc, lead and

cadmium using AAS.

Sequential Extraction

The technique used in this experiment is one adapted from Gibson and Farmer

(1986). The only divergence from the Gibson and Farmer technique is that 5 grams of

soil was used instead of the] gram used by the authors. This was done in order to reduce

the number of replicates necessary to gain accurate values. The ratio of soil/extractant

solution was kept at the same value that the authors used. i.e. the solution volumes were

increased by five fold per sample.

Sequential extractions were performed on each of the three soils examined in this

study. This was done to determine what fraction the metals are associated with before any
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treatments were performed. Each of the three soil extractions were performed in

duplicate.

Extractions were also performed on the soils that had undergone treatment using

the surfactant plus citric acid combination that had the highest removal efficiency. A

sequential extraction was also done on soil that had undergone treatment using the

surfactant alone. The purpose of this was to determine what fraction of the soil the

metals are being removed from.

Five grams ofSM soil were combined with 50 mL of treatment solution. The

samples were then shaken for 24 hours and the liquid portion was decanted and analyzed

for zinc, lead and cadmium. These experimental conditions are the same as those used

for the rest of the samples and should produce comparable removal results. The residual

soil was then carried on through the sequential extraction technique adapted from Gibson

and Farmer (1986).

Metal Extraction Technique

Using the results of the surfactant screening process the two best performing

surfactants were selected to be carried throughout the rest of the experiment. One liter

solutions with the appropriate surfactant concentration were prepared for each of the

surfactants. These solutions contained the selected surfactant at the appropriate

concentration and 0.1 M NaND}. Using polyethylene containers, 3 grams of soil was

added to 30 mL of solution. The samples were then allowed to shake for approximately

15 minute to allow the solution to come to equilibrium with the soil. At the end of the 15

minutes the solutions were adjusted to the appropriate pH's, (4,7 or 10) using mi nimal
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volumes of either 1.0 N NaOH or 1.0 N HNO). The solutions were then shaken for the

remainder of the 24 hours.

After the shaking process was complete the pH of the samples was then read again

and compared to the initial pH. The samples were centrifuged for 20 minutes at 3000

rpm to remove any solids. The liquid portion was then removed and analyzed for zinc,

lead and cadmium using the analytical methods described earlier. Due to the large

number of samples tested using this procedure duplicates were not performed.

Quality Control

In order to assure that the values obtained in this experiment are reliable a series

of known additions were performed on a randomly picked 5% of the samples. These

known additions involved adding lead, zinc and cadmium standards into the liquid

portion of a sample where the initial concentration is already known. The sample was

then tested using an AAS to determine how close the experimental measurements were to

the theoretical values. In addition to this technique several of the initial soil digesti.on

samples were split and sent to an independent lab for analysis as described in the

background soil concentration section. Another element of the quality control procedure

used in this work was the construction of metal mass balances for selected sampl.es.

Approximately 10 % of the samples had the residual soil acid digested, following the

extraction procedure using either a surfactant, citric acid or both. Samples subject to this

procedure were picked at random. The metal concentration left in the soil was then added

the concentration of metals removed by the test solution (i.e. surfactant, citric acid or

both) and compared to the total concentrations. This was used to complete the mass

balance between what was removed with the treatment solutions and the total
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concentration of metals in the original soils. The final quality control element for this

study, involved testing the reagents used in the sequential extraction for metal

concentrations.
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Results and Discussion

Soil Properties

Properties of each of the three soils are provided in Table 3. In addition to the

physical characteristics of each soil sample the percent carbon, pH, and moisture content

can also be seen in the following table. In order to insure that the soil being used in this

study are indeed soils, not residual slag left from the smelting process, the percent iron

was determined.

Table 3. Soil Properties

Soil Property Sample S-32 Sample S-15 Sample S-21 Source
SL SM SH (method)

% Gravel NA <5 35 ASTM (0 422)
% Sand 20 36 54 ASTM (0 422)
% Silt 34 19 11 ASTM (D 422)

% Clay 46 40 10 ASTM (D 422)
% Carbon 0.84 4.2 7.2 Soils and Forage Lab,

OSU

% Moisture 21 18 18 ASTM (0 2216-90)

% Iron 4.9 8 5.2

pH 6.5 ± 0.2 6.5 ± 0.2 6.5 ± 0.2

NA = not applicable

Table 3 shows that the percentages of sand, silt and clay varied considerably

between the three soils. Soil SL is mostly clay with no larger gravel sized particles while

soil SH is the opposite, having a substantial percentage of gravel and very little clay. The

soil labeled as SM is in between the other two soils. It has a small percentage of gravel

but also has a substantial portion of clay. The percent carbon in soil SL is close to an

average value of 1% (Basta 1998). The carbon present in soils SM and SH however, are
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4 to 7 times higher than average. When both the SM and SH san1ples were sieved a fine

black carbon-like substance was noticed in the smaller sieve sizes, this may contribute to

the large percent carbons in these samples. The percent iron determined for SL, SM and

SH showed that they are soils, not residual slag. In order for the material to be classified

as slag the iron content would need to be in the range of 20-30% (Basta 1998).

Background Concentration Results

The soil metal concentrations shown in Table 4 are the values determined for the

ODEQ using X-ray fluorescence spectrophotometry, along with the results of the initial

nitric acid digestion procedure used in this project. As seen in Table 4, the concentrations

that were obtained using AAS were significantly lower than those found using XRF. Due

to this fact, the same nitric acid digested samples that were evaluated in this study were

split and sent to an independent lab (Bates Analytlcallab, SandSprings, OK) for

confirmation of the metals concentration following the extraction procedure earlier.

Bates Lab used an AAS to determine the metals concentration.

Table 4. Baseline Metals Concentration.

Soil Metal ODEQ Experimental Bates Lab % difference
values* results
mglkg mg/kg mglkg

SL Zinc 1,202 293 293 0
Lead 182 54 70 23
Cadmium 20 2 3 33

SM Zinc 57,274 7,392 7,654 3
Lead 31,399 2,683 2,358 14
Cadmium 78 39 35 II

SH Zinc 94,420 18,930 21,174 11
Lead 25,008 2,732 2.472 11
Cadmium 1,281 III 105 6

* ODEQ, 1984
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Table 4 shows that the percent difference between the measured values for the

metal concentrations obtained using the nitric acid digestion method mentioned above are

quite good. The percent difference ranged from 0 to 33% with an average of 12% and a

standard deviation of 10%. The highest percent difference (33) occurs with the cadmium

on SL. Since the concentrations are so small any variance between the two numbers

corresponds to a large percent difference.

As mentioned previously, due to problems encountered later in the study, a more

aggressive acid digestion was perfonned using a combination of nitric-perchloric acid.

The purpose of the nitric-perchloric acid digestion was to make sure that all possible

metals are removed from the organics and mineral surfaces. The metal concentration

values that were determined using the nitric-perchloric acid digestion can be seen in

Table 5.

Table 5. Baseline Concentrations, Nitric acid and Nitric-Perchloric acid

Nitric-Perchloric acid Digestion Nitric acid Digestion

Duplicate # I Duplicate #2 Average Duplicate # I Duplicate #2 Average
Concentration removed, mglkg Concentration removed, mg/kg

SL Zinc 333 296 315 254 359 306
Lead 60.9 53 57 32 47 40

Cd 2.5 2.9 2.5 1.2 1.8 1.5

SM Zinc 8,796 9,444 9,120 10,157 6,496 8327
Lead 2,649 2,649 2,649 3,785 3,038 3412

Cd 44 42 43 57 65 61

SH Zinc 20,320 29,629 25,000 21,197 24,358 22,778

Lead 3,709 4,503 4,105 6,886 6,114 6,500

Cd 200 213 206 161 l47 154
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The results of the njtric-perchloric acid digestion show that the nitric acid

digestion alone removed the majority of the metals. The largest difference (-41 %) was

noticed with lead in soil SH. The nitric-perchloric acid digestion method for the called

for the residual soil, at the end of the digestion, to be subjected to an additional digestion

with ammonium acetate if lead was to be determined in the presence of high amounts of

sulfates. This portion of the digestion was not deemed necessary because high levels of

sulfates were not suspected. The exclusion of this portion of the digestion however,

could have lead to the lowering of the lead concentration recovered.

An average of the two nitric acid digestion values was used in determining

removal efficiencies. This was done for two reasons. First, the difference between the

two digestions is minimal, and second, the determination of high organic matter was

observed after receiving the data from the soil forage lab which took place during the

later parts of the study after all the samples had already been compared to the

concentration obtained in the initial nitric acid digestion.

Results of Preliminary Experiments

Results of Surfactant Screening

The results of the surfactant screening process are shown in Table 6. Each of the

surfactants were utilized at their respective CMe. Soil SM was us~d for all of the

surfactant screening tests because there was more of this soil initially taken from the Kusa

site.
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Table 6. Surfactant Screening: Concentration of Zn, Pb, and Cd Removed.

Surfactant Zn cone. removed Ph cone. removed Cd cone. removed
mg/kg mglkg mglkg

Dowfax 382-D 184 1.3 2.6
Dowfax 8390 D 193 1.9 2.4
Glucopon 220 UP 157 1.3 2
Glueopon 625 UP 72 0.63 1.2
Glueopon APG 325 N 57 0.63 1.1
Emeol E-607L 54 1.3 1.1
EmeolISML 193 1.3 2.4
Empbos CS-141 152 1.3 1.9
Emphos CS-147 170 0.63 2.2

As can be seen above, Dowfax 8390 0 had the best overall performance of all the

surfactants. The second best surfactant tested was Witco's EmcoIISML, which is a

cationic surfactant. The performance of both of these two surfactants was very similar,

with Dowfax 8390 0 removing slightly more lead than Emcol ISML. One intention of

this study was to test the removal efficiencies of both a cationic and an anionic

surfactants. Thl' refore, Dowfax 8390 D and Emcol ISML were selected to be carried

throughout the rest of the experiment. The other seven surfactants were not utilized

during the rest of the study.

Dowfax 8390 D is classified as a C 16 straight chain hexadecyl alkyl diphenyl

oxide disulfonate anionic surfactant. The chemical formula is CI6HJJCJ2H70(SOJNa)2

(Nivas et al. 1996). Dowfax 8390 D meets the requirements of the FDA Food Additive

Regulation 21 CFR 178.3400 (emulsifiers and/or surface-active agents). This means that

it is approved for applications that may come into indirect contact with food. Dowfax

8390 D also meets the requirements for EPA Pesticide Regulation 40 CFR 180.1001 (c),

which makes it an approved inert ingredient in pesticides. In addition, 8390 0 is
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classified as biodegradable by the test criteria for the Soap and Detergent Association's

semicontinous activated sludge procedure (Rouse and Sabatini 1993).

The second surfactant carried through the rest of the procedure is a cationic

surfactant from Witco Corporation. Emcol ISML is classified as a C25

lsostearamidopropyl Morpholine Lactate cationic surfactant. The chemical formula is

biodegradability or the EPA's or FDA's classification of this particular surfactant.

Results of Metals Equilibrium Experiments

A plot of metal concentration removed versus time of shaking was generated for

each of the three metals. The graph produced for the metals zinc and lead can be seen in

Figure 3. Due to the large differences in scale the data for the cadmium were plotted

separately on Figure 4.
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Figure 3. Concentration of Zinc and Lead Removed vs. Shaking Timl:.

The graph (Figure 3), shows that within the first 10 hours of shaking the majority

of the metals that can be removed have been. This shows that 24 hours is more than
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enough time for the sample to reach equilibrium for the metals zinc and lead. Figure 4 is

a graph of the concentration of cadmium removed for a given shaking time.
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Figure 4. Concentration of Cadmium Removed vs. Shaking Time

The graph for cadmium, much like the graph for zinc and lead, shows that the

majority of metal removal occurs within the first 1ahours of shaking. Since a 24 hour

shaking time is shown to be adequate for the removal of each of the three metals in

question the remainder of the samples to be tested lIsed this time. This value agrees with

the shaking times found in the literature (Nivas et al. 1996, Huang et al. 1997 and Rouse

and Sabitini 1993). The numerical data for the shaking time experiments is compiled in

Appendix B.

Results of Surfactant Concentrations

In this section of the study, surfactant concentrations ranging from a.5X the CMC

to lOax the CMC were evaluated for their removal efficiency. Using the methods

described in the previous chapter, a graph was generated for zinc, as seen in Figure 5

below. Due to the large difference in scale lead and cadmium were plotted on a separate

graph.
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Figure 5. Concentration of Zinc Removed vs. Surfactant Concentration

The critical micelle concentration for Dowfax 3890 D was taken to be 6.3 mM (Rouse

and Sabitini 1993), which is represented by a value of 1 on the graph shown above,

Figure 5. It is noticeable in Figure 5, that in order to observe effectively what takes place

around the CMC the data must be replotted. Therefore, Figure 6 shows only the

surfactant concentrations up to 50 times the CMC.
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Figure 6. Concentration of Zinc Removed vs.

Surfactant Concentration ~ SOX CMC

As Figure 6 shows, the maximum amount of zinc removed occurs at the

concentration equal to the CMC. At surfactant concentrations less than and greater than

the CMC the amount of zinc removed is reduced.
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Figure 7 shows the concentrations of lead and cadmium removed as a function of

surfactant concentration. The parameters used in the experimental setup were exactly the

same as those used for the zinc. Like the experiment conducted for zinc the range of

surfactant concentrations varied from 0.5X to 100X the CMe.
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Figure 7. Concentration of Lead and Cadmium Removed vs.

Surfactant Concentration.

As with the graph generated for the zinc analysis, the range of concentrations

tested were too large to examine what was taking place around the CMC for both of the

metals. Therefore, Figure 8 was developed which presents the same data as in Figure 7

except that the surfactant concentrations shown are those less than SOX CMe. The CMC

for the Dowfax 8390 D is 6.3 mM, but it is represented on Figure 8 as a numerical value

of one.
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As seen in Figure 8 the maximum concentration of lead removal occurred both at

the CMC and at lOX the CMC. The concentration of cadmium removed was greatest at

surfactant concentrations greater than the CMC. It was decided that for the remainder of

the experiments the surfactant concentration was to be kept at the CMC. This is because

zinc and lead removal are greatest at the CMC and the difference between removal at the

CMC and 100X the CMC for cadmium is approximately 40 percent. The cadmium

concentrations are so small the a slight change in the amount recovered would generate a

large percent difference. This design set the surfactant dosage at the lowest level to give

maximum overall performance of the technology. The low surfactant dosage directly

impacts the cost of this technology. The numerical data for the various surfactant

concentrations and their removals can be found in Appendix B.

Results of Citric Acid Concentration

A range of citric acid concentrations were tested in order to determine the lowest

concentration that would provide the greatest metals removal. A graph of the data for the

metals zinc and lead is presented in Figure 9. Due to the large scale difference between
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zinc and cadmium, zinc and lead were plotted separately from cadmium. This graph is

shown with citric acid concentration on a molar basis, which is the unit of concentration

most commonly found in the literature (Neale et al. 1997).
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Using the same concentrations of citric acid that were used for the zinc and lead

tests a graph of the molar concentration of citric acid versus concentration of metal

removed for cadmium can be seen in Figure la.
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Figures 9 and 10 show that maximum removal for each of the three metal

occurred at a concentration of 0.1 M citric acid. For comparison, 0.01 M EDTA had

removals of 4256 mg/kg, 1440 mg/kg and 39 mg/kg of zinc, lead and cadmium,

respectively. This showed that D.DIM EDTA had higher removal efficiencies for lead

and cadmium than even the 0.1 M citric acid. This trend corresponds with similar trends

noticed in the literature (Neale et a1. 1997 and Cline and Reed 1995). Chelators such as

EDTA are classified as hexadentate which mean that they posses six sites available for

metals to react with. Citric acid is c1assifi~d as tridentate meaning that it has three sites

available for metal interactions (Strumm and Morgan 1970). For the purposes of this

research the concentration of citric acid was kept at 0.1 M. This dosage provided the

maximum removal efficiency with the least amount of citric acid addition with the range

of concentrations tested. The numerical results for the various citric acid concentrations

and the values for the EDTA are tabulated in Appendix B.

Effects of Ionic Strength

The purpose of this experiment was to determine the effects of stabi lizing the

ionic strength on the removal efficiency of zinc, lead and cadmium. The removal

efficiencies of water both with and without NaNO) are shown in Figure 11.
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Figure 11 shows the importance of controlling the ionic strength of the solution.

At the low pH's, the removal efficiency of both zinc and cadmium is increased by 7-8

times with the addition of 0.1 M NaN03. The addition ofNaN03 appears to be less

important when the pH of the solution was raised to 7. The effects of the ionic strength

on the metal lead can not be well observed in the above graph because water when used

without any other treatment additives did not remove a substantial amount of lead.

The next graph, Figure 12, shows the removal efficiency of Dowfax 8390 f) with

and without the addition of 0.1 M NaNO]. The figure shows the percent removals or

zinc, lead and cadmium at pH of 4 and 7.
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The effects of stabilizing the ionic strength of a surfactant solution behaved much

like that of water. That is, at the low pH, pH = 4, there was an 8-9 times increase in the

removal of zinc and cadmium. As the pH of the solution increased the importance of

ionic strength decreased. This same trend was noticed with the water solutions. The

concentrations of lead removed are too low to effectively see the impacts of ionic

strength.

Both graphs (Figures 11 and 12) showed that the addition ofan electrolyte

increased the removal effici,ency of zinc and cadmium at a pH of 4. The importance of

NaN03 decreased as the pH of the solution increased. This shows that the Na ion was

effectively competing with zinc and cadmium for speci,fic exchange sites on the soil at

low pH's. Whereas, lead has a stronger affinity at these sites when compan~d to the Na

ion. This would agree with the findings of Harter (1992) and Cavallaro and McBride

(1978), who used CaCl2 as a background electrolyte.

The addition of NaN0, has been shown to increase the removal efficiency of both

zinc and cadmium at a pH of 4. Therefore, 0.1 M NaNO, was added to the rest of the

samples in order to keep the ionic strength constant.

Experimental Design

The experimental approach used in this work utilized a complete block design as

seen in Table 7. The experimental variables included pH (4, 7 and 10), surfactant

(Dowfax 8390 D and EmcoIISML), the addition of 0.1 M citric acid and background soil

concentration (SL, SM and SH). All of the solutions contained a background electrolyte,

0.IMNaN03·
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Table 7. Experimental Design

W/O Citric Acid WI Citric Acid

pH SL SM SH SL SM SJ-I

Dowfax pH=4

8390 D pH =7

pH= 10

Emcol pH=4

ISML pH =7 I

pH = 10

Water pH =4

pH = 7

pH = 10
I

Utilizing the variables set out in Table 7 replicate blocks of the experimental

design were set up to contain removal values for zinc, lead and cadmium. This

experimental setup allowed the removal efficiencies of the anionic surfactant (Dowfax

8390 D) to be compared to the cationic surfactant (Emcol ISML). In addition, the effects

of citric acid when combined with both of the surfactants arc portrayed. Also, the

removal efficiencies of solutions with various pH's ranging from 4 to 10 are evaluated.

Sequential Extraction

Using the method outlined by Gibson and Farmer (1986) the amount of metals

associated with the exchangeable, carbonate, manganese and iron oxides fractions were

determined. The percent associated with the organic and residual fractions was taken as

the difference between the sum of the first four fractions and the total metal concentration

as determined by the initial nitric acid digestion. This was done for each of the three
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metals and each of the three soils. The results from the SL soil can be seen below in

Figure 13.

4%

61%

3% 8%

--
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Figure 13. Partitioning ofZn, Cd and Pb on SL

\

The results of the sequential extraction showed the fractions that each metal are \
I

associated with varied depending upon the individual metal. For zinc, the majority of the

metals are associated with either the organic or the residual fraction, shown together as

one fraction for this study. This is different than lead, for which showed the

overwhelming majority associated with the Fe oxides. Lead did not appear to have any

measurable amounts associated with the exchangeable fraction, and very little of the

metal was associated with the carbonates. The impact of this factor on removal

efficiencies is discussed later in the thesis. Cadmium, at least for the soil labeled SL,

showed a fairly even distribution between the four fractions. One noticeable trend is that

with both cadmium and lead there is not an appreciable amount of metal associated with

the residual or organic fractions.

A sequential extraction was also performed on the soil labeled as SM. The

partitioning of the metals into the five fractions tested in this study can be seen in Figure

14.
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Figure 14. Partitioning of Zn, Cd and Pb on SM

The sequential extraction performed on the soil labeled as SM showed that the

metals occupied significantly different sites when compared to soil SL. Zinc is present in

all of the soil fractions with a fairly even distribution between the exchangeable,

carbonate and the Mn and Fe oxide portions. The largest percentage of zinc resides in the

Fe oxide fraction. This is in contrast to the soil SL, where the largest percentage of zinc

was in the organic and residual fractions. The effects of the zinc partitioning is discussed

later in the thesis. There is a percentage ofcadmium spread throughout each of the five

different fractions, with the exchangeable and the organic and residual fractions

containing the majority of the metal. This differs from SL, where there was no cadmium

associated with the residual and organic fractions. The fact that SM contains

approximately 1/3 of its cadmium in the residual and organic fractions is important when

determining how much cadmium can be removed through conventional soil washing

techniques. The lead in the SM soil is partitioned much like that in the SL soil, with the

majority of the lead associated with the Fe oxide fraction of the soil matrix. The

differences are that approximately 30% of the lead is in the residual and organic fractions

and the SM soil contains a small amount of lead in the exchangeable fraction. Both of
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these factors are important when trying to remove the lead through the use of surfactants

and chelators.

Like the two previou soils, a sequential extraction was done on the SH soil to

determine where the metals reside before any treatment was done. This infonnation can

be used to determine where the removal using the soil treatments is coming from.

27%
55%

34%

6%

-

.Exchangeable 0 Carbonates 0 Mn Oxides 0 Fe Oxides. Organics and Residual

Figure 15. Partitioning of Zn, Cd and Pb on SH

The sequential extraction perfomled on soil SH shows that the majority of the

zinc metal is associated with the Fe oxide fraction. The zinc in soil SH tends to resemble

the partitioning of zinc observed in soil SM, with the majority of the metal associated

with the Fe oxides. It is important to note that no measurable amount of zinc is

associated with the residual and organic fractions, unlike the soils SL and SM. This

becomes an important factor when the zinc is to be removed using the treatment methods

examined in this work. The cadmium in soil SH can be found in all fractions of the soil.

The majority of the metal is associated with the exchangeable fraction, with only a small

percentage (-4%) being in the organic and residual fractions. The majority of the lead in

soil SM is associated with the Fe oxide and organic and residual fractions. The residual
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and organic fractions accounted for approximately 34% of the metal. Among all the soils

tested, this is the largest percentage of lead in this fraction. Also, around 6% of the lead

is associated with the exchangeable fraction. This is the largest percentage of lead.

among all the soils tested, for this fraction. Both of these factors playa important role in

the removal of the lead from the soil.

Figure 16 shows a combination of the sequential extractions on all three of the

soils, for all three of the metals. With Figure 16 comparisons can be made between soils

as to what fraction the metals reside.
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Figure 16. Summary of Sequential Extractions

Although there are large variations between the individual soils being tested, an

average of all three of the soils shows that the majority of the zinc (49%) was found in the

oxide fractions of the soil. This agrees with the observations of Hickey and Kittrick

(1984) which found the majority (39%) of the zinc associated with the oxide fraction.

The second most important fraction for zinc is the organic and residual fractions. This

--
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fraction holds approximately 25% of the zinc. Tessier et a1. (1979) found that more than

50% of the zinc in the soils they tested were contained in the residual fraction with very

little being held in the organic fraction. This trend would correspond with soil SL but

when the concentration of zinc in the soil increases, less is associated with the

exchangeable fraction. The fact that large amounts of zinc are associated with this

fraction imply that the zinc is not as mobile or bioavailabile as other metals where the

majority can be found in other fractions (Hickey and Kittrick 1984). The third most

important fraction where the zinc can be found is the carbonate fraction. It holds

approximately 17% of the zinc.

As with zinc, the partitioning of cadmium varied greatly between the three soils

evaluated. The effects of this are discussed in relationship to the removal efficiencies of

the individual soils. When the percentages of each fraction for all three of the soils are

summed up, the majority of the cadmium (-36%) can be found in lhc exchangeable

fraction of the soil. This corresponds with results obtained by Hickey and Kittrick (1984)

and Tessier ct a1. (1979). This is in contrast to zinc, where only a small percentage is

found in this fraction. With so much cadmium being associated with the exchangeable

fraction, it can be concluded that this metal is quite mobile and biologically available

(Hickey and Ki ttrick 1984). Hickey and Kittrick (1984) state that the mobility of metals

decreases as one proceeds down through the series of sequential extractions. This means

that metals associated with the exchangeable fraction are more mobile that metals found

in the residual fractions. The second most important fraction for cadmium in this study is

the oxide fractions. Approximately 32% of the cadmium is associated with these

fractions. This is in contrast with Hickey and Kittrick (1984) which found the second
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most important fraction to be the carbonate fraction. This shows the strong scavenging

efficiency of the Mn-Fe oxides (Tessier et a1. 1979).

The partitioning of lead in the three soils tested showed that the majority (-68%)

of the lead is associated with the Fe-Mn oxides. Although there is variability in the

amount of lead in the oxide portions, an average of the three soils shows that the largest

percent is found in the oxide fractions. This is in contrast to the findings of Tessier et al.

(1979), which found the majority ofthe lead associated with the residual fraction. This

could be due to differences in the types of soils tested. Tessier et al. (1979) performed

the sequential extraction on river sediments. while the soils that were used for this study

were near surface soils that were contaminated by smelter operations. The next largest

fraction that lead occupied was the organic and residual fractions. Approximately 21 % of

the lead was associated with these sites. Lead is considered to be one of the hardest of

the heavy metals tested to remove from soil (EPA 1992). The fact that a substantial

percentage of the lead is in the organic and residual fractions could explain this

phenomena.

Removal Efficiencies

The removal efficiencies were analyzed based upon the three soils being

investigated. In addition the metals were grouped into the three different solution pH's

utilized in this project. A bar chart was constructed to show the results visually, while the

numerical values obtained for each of the sample runs are seen in Appendix C.

The first bar chart, Figure 17, shows the samples that were run using the SL soils

initially adjusted to a pH of 4. The pH of the samples was also tested at the end of the
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shaking period and found to range from 6, in the sample that did not contain citric acid, to

4.5 in the samples that were run with citric acid.
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Figure 17. Removal of Efficiency using SL at pH = 4

The next chart, Figure 18, illustrates the removal efficiency using the same soil,

SL, but at an ini tial pH of 7. The pH of the samples were again taken at the end of the

shaking period and ranged from 6.0, in the sample which did not contain citric acid, to

7.1 in the samples which did contain citric acid. The pH of these samples did not vary as

much as the rest of the samples because a pH of 7 is very close to the pH or the soil itself

,6.5.
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Figure 19 shows a bar chart of the same soil SL, but with an initial pH of 10. As

with the previous samples, the pH was tested at the end of the shaking period. The pH of

the samples which did not contain citric acid were much lower than the ones which did.

The pH varied from 7.5 to 9.5, with the citric acid varying the least.
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Figure 19. Removal Efficiencies using SL at pH = 10

Figures 17, 18 and 19 showed two major trends that are generally consistent for

all three of the metals evaluated. The first trend is that as pH of the soil/solution is

increased from 4 the removal efficiency of lead and zinc decreases. The removal

efficiency of lead using Dowfax 8390 0 dropped from 50% to 10% to 5 % at pH's of 4, 7

and 10, respectively. This trend is consistent for both the zinc and the lead samples. The

cadmium, however, showed that the highest removal efficiency, (>100%), occurs at a pH

around 7. This tendency can be observed for cadmium in all the soils. The second

consistent trend is that the surfactants did not achieve removal of metals much more than

water alone. The majority of the metals removal can be attributed to the addition of citric

acid. When the surfactant plus citric acid is compared to just citric acid the increase in

removal is minimal, with the exception of cadmium at a pH of 10. Another feature
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unique to cadmium is, as the pH of the solution increases. the role citric acid plays in the

removal process decreases. At a pH of 4 citric acid alone removed 100% of the

cadmium, but at a pH of 10 the efficiency of citric acid alone decreased to approximately

10 %.

There also appears to be little difference in the removal efficiencies between the

anionic and the cationic surfactants. At lower pH's the removals using the two

surfactants are almost identical. As the pH is increased to 10 the cationic Emcol ISML

showed higher efficiency than the anionic Dowfax 8390 0 when both were combined

with citric acid.

When just examining the soil SL, the ease of metal removal is Cd>Pb>Zn. When

comparing the sequential extraction results with the availability of metals for removal; it

can be seen that the majority of zinc (-61 %) is associated with the organic and residual

fractions. With so much ofthe zinc in this particular fraction the removal efficiency is

expected to be low because the surfactant and citric acid cannot effectively bind with this

fraction. On the other hand, cadmium which has the highest removal efficiency, has the

largest portion of the metal associated with the exchangeable and the carbonate fractions

of the soil.

The data for the removal efficiencies for the soil washing treatments using SM

soil are presented below. The first chart (Figure 20) contains data for the samples run

with the SM soil at a pH of 4. The pH of the samples was initially adjusted to 4 using

either IN NaOH or IN HN03. The pH of the samples was also tested after the 24 hour
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shaking period. They ranged from 4.2 to 5, with the greatest deviation coming from the

samples which did not have citric acid.
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The removal efficiencies for the various soil washing treatments for SM soil at pH

7 can be seen in Figure 21. The soil/solution was initially adjusted to a pH of 7. After

the shaking period the pH was tested and ranged from 6.5-7.2. The samples that did not

contain citric acid had the largest deviation from a pH of7.
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Figure 21. Removal Efficiencies using SM at pH=7

Figure 22 shows the removal efficiency of the various soil washing treatments

using SM soil at an initial pH of 10. The pH of the soil/solution was read again at the cnd

of the shaking period and ranged from 6.3 to 9.5, with the solutions containing surfactant
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alone having the greatest deviation from the initial pH. The addition of citric acid acted

as a buffer, and prevented the pH of the solution from dropping dramatically. The

amount ofNaOH added to the solutions was greater in the samples that had citric acid.

although the total amount added to any of the samples did not exceed 1 mL.
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Figure 22. Removal Efficiencies using SM at pH=lO

The initial metals concentration found in the soil, SM, range from 41 to 85 times

higher than those found in the soil SL. The same trend was observed in the SM soil as

the SL soil, in that as the pH of the solution increased the removal efficiency of lead and

zinc decreased. This phenomenon is most apparent with lead. The removal efficiency

with citric acid at a pH of 4 is around 40%, but when the pH of the solution is increased

to 10 the removal efficiency falls to approximately 5%. Also, the efficiency of both

surfactants is not any greater than water itself. The main mechanism for metals removal

comes from the addition of citric acid. In general, the citric acid out-performed the

surfactant and citric acid combinations at lower pH's, but at higher pH's the surfactant

and citric acid combination removed more of the three metals.
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When comparing the effectiveness ofthe two surfactants Dowfax 8390 D appears

to be the most effective. The only exception was for the metal zinc at a pH of 4 where

ISML had a 15% higher removal efficiency. As the pH increased, Dowfax 8390 0

became more effective and removed 30% more zinc and 40% more cadmium than ISML.

With the SM soil zinc was shown to be the easiest metal to remove. This is not

the same as that which was observed in the SL soil. With soil SL, the highest removal

efficiency for zinc was 50% while, soil SM showed removals of zinc greater than 100%.

This is similar to the work of Neale et a1. (1997), which found that metals bound to soils

with smaller total metal concentrations held the metals tighter and made extraction more

difficult. One reason which would account for the higher removal efficiency would be

that only 15% of the zinc is associated with the residual and organic fractions of the soil

SM, compared to 61 % being held in the residual and organic fraction for soil SL. Soil

SM also had approximately 30% of the zinc in the exchangeable and carbonate fractions,

whereas soil SL only had I] % in these two fractions. For zinc, the citric acid was shown

to be the most efficient of the treatments at the low pH's; however as the pH of the

solution increased, the citric acid alone was not as effective as a combination of citric

acid and surfactant. This same trend was noticed in soil SL.

Next to zinc, cadmium was the easiest metal to remove from the soil. The highest

removal percentage (85%) occurred at a pH of7 using a combination of Dowfax 8390 0

and citric acid. Cadmium in soil SM behaved much the same as it did in soil SL, in that

the highest removal occured at a pH of 7. The removal efficiency dropped somewhat as

the pH is lowered to 4, and falls more dramatically as the pH is raised to 10. Overall, on

a percentage basis, not as much cadmium was removed from soil SM as that observed in
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soil S1. This is because 32% of the cadmium resides in the residual and organic fractions

of the soil SM, making it more difficult to be removed. In soil SL. none of the cadmium

was associated with this these fractions.

As with the previous soil, SL, lead was shown to be the hardest of the three metals

examined to remove. This is consistent with the findings of Huang et a1. (1997) and

Abumaizar and Khan (1996). The maximum percentage of lead removed was 50%,

occurring at a pH of 4 using Dowfax 8390 D and citric acid. As mentioned previously,

the percentage of lead removed varied with pH of the extracting solution. The highest

removal efficiency occurred at pH 4, and the lowest efficiency at pH 10. With soil SM

no lead was removed using either water or any of the surfactants alone.

Using the soil SH removal efficiencies were determined for each soil washing

solution. Each solution was tested at a pH of 4, 7 and lO. Figure 23 shows the removal

efficiency of soil SH at a pH of 4. The initial pH of the solution was adjusted to a pH of

4. After the shaking time was complete the pH of the solutions ranged from 4.4 to 5.5.

with the samples having citric acid deviating less from the initial value.

-

Figure 23. Removal Efficiency using SH at pH=4
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Figure 24 shows the same soil and experimental setup, as above, with the

exception that the pH of the samples was adjusted initially to 7. The pH of the samples

after shaking ranged from 5.8 to 7.0. As before. samples with the citric acid had the

smallest deviation from the initial setting, in this case the pH did not change at all.
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Figure 24. Removal Efficiency using SH at pH=7

In the final portion of the study the samples were adjusted to an initi.al pH of 10.

The pH of the solutions were determined after the shaking and ranged from 6.2 to 9.5. As

with the SM and SL soils, the addition of citric acid served as a butfer preventing the pH

from falling as much as the samples that did not have citric acid.
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Soil SH showed a unique trend when compared to other soils. he removal

percentage of both zinc and cadmium did not fluctuate as much with changes in pH. The

percentage of zinc removed is highest (> 100%) at a pH of 4 and only fell to

approximately 80% at pH of 10. Likewise, cadmium's highest removal (- 80%) occurred

at a pH of 7, (which has been the case with the previous soils), and only fell to 70% at its

most inefficient pH, 4. This happened for two reasons unique to the SH soil. The tirst is

that there was no zinc associated with residual and organic fractions. The two previous

soils both had metal contained in these fractions ranging from 15 to 61 %. Secondly. with

both zinc and cadmium, a large percentage of the metals were associated with the

exchangeable and carbonate fractions. With zinc, 37% of the metal was found in these

two fractions. This is higher than any of the two previous soils. Cadmium also had 69%

of its concentration associated with theses two fractions. This is also higher than any of

the previous soils. These two conditions would allow the treatments to remove the metal

effectively regardless of the pH.

Comparisons can be made with an individual metal as to which soil would have

the greatest removal efficiency based upon its predominant fraction. No comparisons can

be made however, between different metals on the same soil as to which would have the

highest removal efficiency based solely upon its partitioning.

Sequential Extractions of Post-Treatment Soils

Sequential extractions were performed on the residual soil, using SM, that had

been treated with the Dowfax 8390 D with and without citric acid. This treatment was

selected because Dowfax 8390 D with citric acid, at pH = 7, had the highest removal

effi'ciency for all of the three metals being evaluated. A sequential extraction was
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performed on soil treated with Dowfax surfactant alone, at pH 7. This was done in order

to determine the soil fractions the surfactant was efficient at removing metals from. The

purpose of this experiment was to determine from what soil fractions metals removal was

taking place as a result of the treatments.

The surfactant solution that was initially removed before the sequential extraction

process began was analyzed for zinc, lead and cadmium concentrations. This was done in

order to determine how much of the metals were initially removed through the soil

treatments. The concentrations removed along with the percent of the total metals

concentration are presented in Table 8.

Table 8. Removal Efficiency of Dowfax 8390 D With and Without Citric Acid

Treatment Metal Concentration Removed Percent of Total
mglkg

Dowfax 8390 D Zinc 428 5
Lead 4 0.12
Cadmium 5 8

Dowfax 8390 D wi Zinc 8,41 J 101
Citric acid Lead 1.391 41

Cadmium 61 99

Table 8 shows approximately 100% of both zinc and cadmium were removed

using the Dowfax surfactant plus citric acid. The Dowfax surfactant alone had a highest

removal efficiency of 8%. These values are very close to the percent removals shown in

the previous section.

As previously stated, the residual soil, from sample SM, was subjected to a

sequential extraction procedure. Table 9 shows the concentrations of each metal in each

of the four fractions.
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Table 9. Results of Sequential Extraction on Post-treatment Soils

Metal Fraction oowfax % in fraction Dowfax + Citric % in fraction
mg/kg mg/kg

Zinc Exchangeable 678 8.1 1,707 20.5
Carbonates 1,108 13.3 764 9.2
Mn Oxides 958 11.5 523 6.3
Fe Oxides 1,556 18.7 1,706 20.5

!Total 4,300 4,700

Pb Exchangeable 68 2.0 394 11.5
Carbonates 196 5.7 327 9.6
Mn Oxides 430 12.6 126 3.7
Fe Oxides 980 28.7 662 19.4
Tota! 1,674 1,509

Cd Exchangeable 14.8 24.3 11.3 18.5
Carbonates 8.1 13.3 44 7.2

, Mn Oxides 6 9.8 25 4.1
Fe Oxides 7.2 11.8 3.7 6.1
Total 36.1 21.9

The percent in fraction column is based upon the concentrations in each fraction

when compared to the original baseline concentration, found in Table 5. The data

obtained for the soil that was treated with Dowfax alone seemed to agree with what one

would expect when comparing this to the original partitioning of the metals. In that, the

percentages of metal in each fraction are tess after the treatment than before the treatment.

Problems arise when looking at the samples that were treated with Dowfax and citric

acid. With the metals zinc and cadmium, approximately 100% of the initial metals were

removed with the surfactant/citric acid solution. This should mean that there would be

minimal amounts of zinc and cadmium recovered in the sequential extraction procedure.

However, this was not the case, almost 50% more zinc and 40% more cadmium were
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recovered in the sequential extraction. This would add up to be 150% of zinc and 140%

of cadmium, when compared to the original baseline concentrations.

There are three possible reasons for this. The first is that the total metals

concentrations established as the baseline are lower than what is actually present in the

soil. It is conceivable that due to the high organic content in the soil the nitric acid was

not able to effectively remove all the metals from this portion. To test this hypothesis a

stronger digestion (HN03-HCl04) was performed. The results can be seen in Table 5

shown previously. Table 5 shows that the baseline established using just nitric acid is

very close to the concentrations obtained using nitric-perchloric acid. Therefore, it can be

assumed that the baseline concentrations are accurate and not the reason for the

discrepancy.

The second potential explanation for this phenomenon would be matrix effects

caused by the addition of citric acid. In order to test for matrix effects, four samples were

prepared and analyzed for zinc, lead and cadmium. These samples consisted ol'the liquid

extraction from the soil digestion using nitric acid of soil SM. To these extracts one of

the following supplements was added: 0.1 M citric acid, 6.3 mM of Dowfax 8390 J) or a

combination of 0.1 M citric acid and 6.3 mM of Dowfax 8390 D. The results of this

analysis can be seen in Table 10, below.
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Table 10. Results of Possible Matrix Effects

Treatment Concentration recovered
mg/kg

Zinc
Digestion extract 12,309
Citric acid 11,957
Dowfax 83900 11,957
Citric acid + Dowfax 83900 11,605

Lead
Digestion extract 2,681
Citric acid 2,573
Dowfax 83900 2,573
Citric acid + Oowfax 83900 3,431

Cd
Digestion extract 67
Citric acid 67
Oowfax 83900 62
Citric acid + Oowfax 83900 62

These results showed that neither the surfactant, (Dowfax 8390 D), nor the citric

acid produced matrix effects which impacted the detection of the metals. This therefore,

was not the cause of the problem.

The third possible explanation is that the sequential extraction is able to remove

metals from specific sites on the soil which the nitric or perchloric acid can not. [[this is

the case, then a comparison between the original sequential extraction and the sequential

extraction performed after the soil washing treatments would not be valid, because the

total metals concentration initially in the soil is unknown. To test if the sequential

extraction was indeed targeting sites on the soil which the acids can not reach, a

sequential extraction was performed on the residual soil left after digestion using nitric-

perchloric acid. The results of this experiment can be seen in Table 11, below.
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Table 11. Sequential Extraction of SM Soil that

has Undergone HNOJ-HCI04 Digestion

Metal Fraction SM
mg/kg

Zinc Exchangeable 348
Carbonates 557
Mn oxides 102
Fe oxides 66

Lead Exchangeable 46
Carbonates 188
Mn oxides 19
Fe oxides 120

Cadmium Exchangeable 3
Carbonates 2
Mn oxides 0.3
Fe oxides 0

This table shows that the sequential extraction is able to retrieve metals that the

nitric-perchloric acid did not. What is not known however, is if the concentrations shown

in Table 11 are simply an artifact of the digestion acid trapped in the pore spaces of the

soil. This does not appear to be the case, because with lead the concentration initially is

low (i.e. the exchangeable fraction) and then gets higher as one goes through the

extractions. [f residual digestion acid was the cause for the concentrations shown above,

the values would initially start high and decrease with each subsequent extraction simply

due to dilution effects. Also, a rough calculation was perfonned in order to test if these

metals were from residual digestion acid trapped in the pore spaces of the soil. The

assumptions were, a specific gravity of2.65 #/ft3 and the residual soil contained 30%

void volume, which was saturated with digestion acid. The results show that, with the

given assumptions the quantity of metals trapped in the pore spaces could not account for
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the additional metals recovered with zinc and lead. With cadmium since the

concentrations recovered are so small digestion acid trapped in the pores could account

for the recovered numbers. The values obtained for this calculation were 311 mglkg, 108

mg/kg and 29mg/kg for zinc, lead and cadmium, respectively.

The analytical reagents used in the sequential extractions were analyzed for lead,

zinc and cadmium concentrations. This was done in order to assure that the reagents

were not contaminated and therefore the cause of the discrepancy. The results confirm

that none of the reagents contained any measurable amounts of any of the three metals.

Quality Control

A series of known additions were performed on a randomly selected 5% of the

samples. These known additions were tested for zinc, lead and cadmium. The results of

this experiment can be seen in Table 12.

Table 12. Results of Known Additions

Sample Metal Initial cone. Spiked cone. AAS results Percent difference
mg/L mg/L

ISML, w/soil Zinc 12 20 26.7 33.5
SM,@pH=7 Lead 0 10 14 28

Cd 0.17 1 1.4 29
Dowfax 8390 Zinc 90.6 100 93 -7
w/soil SM, Lead 0.13 10 14.3 30
@pH=4 Cd 0.81 2 2.14 7
Dowfax 8390 Zinc 18.8 40 4l.7 4
w/soil SM Lead 0 10 13.6 26
@pH=7 Cd 0.3 2 2.48 24

The results show, the average percent difference of 19 percent and a standard

deviation of 14%. Zinc appears to be the metal with the widest range of recovery (-7% to
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35%). This could be due to slight errors with the addition of the zinc standard being

magnified by several 100 to 1 dilutions.

Besides the known additions, a series of nitric acid soil digestions were performed

on soil that had undergone the soil washing treatments. This was done on a randomly

selected 10% of the total samples. The results can be seen in Table 13.

Table 13. Mass Balances

Sample Recovered Recovered Total Initial %
in digestion wi treatment conc. recovered
mg/kg mg/kg mg/kg mg/kg

ISML, wi soil SL Zinc 257 5.9 263 306 86
@pH=4 Lead 31 1.4 32 40 82

Cd 1.4 0.2 1.6 1.5 107
ISML plus citric, Zinc 2,766 8,704 11,470 8,327 137
w/soil SM, @ Lead 1,801 1,399 3,200 3,412 94
pH =7 Cd 15 27 42 61 69
Dowfax plus citric, Zinc 3,397 7,547 10,944 8,327 131
w/soil SM, @ Lead 2.342 1,667 4.009 3AI2 117
pH = 7 Cd 31 36 67 61 110
Dowfax plus citric, Zinc 8AOO 17.925 26,325 22.778 116
wi soil SH, @ Lead 4,008 303 4,3 11 6,500 67
pH = 10 Cd 58 108 166 154 IDS

. Citric acid, w/soil Zinc 5Al3 4,764 10,176 8,327 122
SM, @pH= 10 Lead 1,688 86 1,774 3,412 52

Cd 32 22 54 61 89

Table 13 shows that in general, all of the metals are fairly completely recovered.

The mass balance on the samples showed the average recovery was 98% of the metals are

accounted for, with a standard deviation of ± 24%. Variability within the individual soils

accounts for the percent recoveries that are greater than the initial concentrations. The
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mass balances performed on lead showed the least amount of reco ery. This could be

because lead has shown to be the hardest of three metals examined be removed.
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Conclusion and Recommendations

This study evaluated the use of surfactants in removing zinc. lead and cadmium

from contaminated soils. The combination of a chelating agent, citric acid, with the

surfactant was also examined. The effects of various pH's ranging from 4 to 10 were also

evaluated. All of the removal efficiencies were compared to that of water or the citric

acid alone. Several preliminary experiments were performed in order to determine

optimal conditions for six experimental parameters. They included screening of nine

surfactants, establishment of an adequate equil.ibrium time, detennining surfactant

concentration, selecting citric acid concentration evaluating the effects of ionic strength,

and perfonning an initial sequential extraction.

Several trends can be seen from this experiment. The results will be listed in order

of their importance towards remediation of metal contaminated sites.

I) The most important trend which can be observed from this experiment is that of

surfactants did not greatly enhance the removal of metals on soils that have been

contaminated for long periods oftime, over that of water. This is in contrast with

previous work done on soils that were artificially contaminated.

2) Lead was the hardest of the three metals (Zn, Pb, and Cd) examined to remove.

Even under the best removal scenario, Dowfax 8390 D plus citric acid at pH 4,

had limited success «50%) in the removal oflead.

3) Zinc was shown to be the easiest metal to remove overall between the three soils

examined. Removal efficiencies were 100% for both samples with citric acid

alone and those that included either one of the surfactants.
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4) The pH ofthe solution was very important in optimizing removal efficiencies of

each of the three metals examined. The removal efficiencies were much higher for

zinc and lead at low pH (-4) when compared to a higher pH (-10).

5) The majority of the metals removal can be attributed to the addition of citric acid.

Only minimal improvement (ranging from 0-30%) was noticed when either of the

surfactants was combined with citric acid.

6) Comparisons of removal efficiency between soils for a given metal can be related

to its partitioning in the soil. No comparison can be made between metals on a

soil strictly based upon their partitioning.

7) No correlation between soil types and removal efficiencies were observed

This study using soil that has been contaminated for some time showed poor

agreement with the previous literature, which showed very high removal efficiencies

using a surfactant alone on recently contaminated. This could be due to the fact that in

the majority of the previous studies the soils that were used were artificially contaminat d

in the lab (Huang et a1. 1997 and Abumaizar and Khan 1996). The metals that were

added may not have had enough time to form the strong bonds that forms in nature when

the metals are in contact with the soil for longer periods of time. The soi I used in this

study has been contaminated for 70+ years, and subsequently large portions of the zinc

and lead reside with the organic and residual fractions. The partitioning of metals in soils

that have been artificially contaminated may not resemble that of weathered soil. The

cited authors also did not perform sequential extractions on their soils, so the fractions

where the metals are associated with are unknown.
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The results of this project, when applied to a remediation site, suggest that money

could be save by not using a surfactant. The most important factor when trying to

remove metals from soils that have been contaminated for long periods of time is through

the use of a chelating agent. It is also very important to know what fraction of the soi Is

are occupied by which metal. If the majority of the metal of interest is found in the

exchangeable or carbonate fractions removal of the metal might be quite complete.

However, if a large percentage of the metal resides in the organic or residual fractions, the

amount of metal that can be removed is decreased.

This study attempted to compare the partitioning of zinc, lead and cadmium

originally present in the soil with partitioning present after treatment. This was done in

hopes of determining from what soil fraction the surfactant and citric acid were efficiently

removing the metals. Discrepancies were noticed when metal concentrations removed

using Dowfax 8390 D and citric acid were added to metal concentrations recovered using

a sequential extraction on the residual soil. With both zinc and cadmium. an additional

50% and 40%, respectively, were recovered above a baseline concentration established

using a nitric acid digestion. The reason for this phenomenon is unknown at this time.

Three possible causes were examined.

1) Possible matrix effects due to citric acid and Dowiax 8390 0 were examined and

ruled out as a cause.

2) A more stringent soil digestion using nitric-perchloric acid was performed in

order to test the initial nitric acid digestion. The nitric-perchloric acid digestion

showed that nitric acid when used alone was able to remove all of the metals
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possible with a stronger acid combination. Therefore the initial baseline

concentrations are considered to be accurate.

3) A sequential extraction was perfonned on the residual soil left after the nitric

perchloric acid digestion. This was done in order to detennine if the sequential

extraction removed metals from sites on the soil the acid could not reach. The

sequential extraction did extract additional metals.

Future Research

This research brought to light several items which either did not agree with

previous work or matters that need to be investigated further. They include:

I) The further investigation on the use of a sequential extraction to detennine from

what fractions metals are being removed when using a soil. washing treatment.

2) This research showed that metals in weathered soils behave differently from soils

that have had the metals added in a laboratory. The partitioning of metals is

known for these soils. How this partitioning relates to the soils that have been

artificially contaminated is not known.
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Appendix. A

Site map

Site Map and Sampling Locations
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Appendix B.

Data for:
Equillibrium Time
Citric Acid Concentrations and EDTA
Surfactant Concentrations
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Equilibrium Time
Zn Pb Cd

Sample # Time, Hrs Cone, mg/kg Cone, mg/kg Cone, mg/kg
E1 1.75 248.7 16.1 2.17
E2 5 365.1 25.8 2.33
E3 9 317.4 19.4 2.09
E4 24 323 29 2.25
E5 30 328 32.3 2.25

Citric acid and EDTA
Concentration Zn Pb Cd

mg/kg mg/kg mg/kg
0.005 M Citric 0.005 1446 17.6 8.66
0.01 M Citric 0.01 2561 60.8 14.1
0.03 M Citric 0.03 6364 640 21.7
0.07 M Citric 0.07 7603 960 28.9
0.1 M Citric 0.1 7975 1120 28.9
0.01 M EDTA 0.01 4256 1440 39

Surfactant Concentration Experiment
Zn Pb

Surfactant Cone. mass removed Surfactant mass removed
Cone.

mM mg/kg mM mg/kg
3 274 3 266

6.3 410 6.3 28.2
13 196.3 13 21.1
63 379 63 28.2
315 306 315 113
630 319 630 12.7

Cd
Surfactant Cone. Mass removed

mM mg/kg

3 1.92
6.3 3.64
13 1.09
63 3.16
315 5.2
630 5.97
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Appendix C.

Removal Efficiencies

Comparison of Dowfax 8390 D, Emcol ISML, Citric acid and water
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0.1 M NaND3 + Surfactant
oowfax SL SM 8H

8390
1

mg/kg mg/kg mg/kg

@6.3mM Experimental 1% Removed Experimental 1% Removed Experimental 1% Removed

IpH =4 Zn 17.5 5.1 906 10.9 2735 12.0
Pb 0 0.0 1.3 0.0 7.6 0.1
Cd 0.5 21.8 8.1 13.3 4.2 2.7

!pH =7 Zn 0.68 0.2 188 2.3 175 0.8
Pb a 0.0 0 0.0 0 0.0
Cd 0.14 7.8 3 4.9 7.5 4.9

IpH = 10 Zn 0.25 0.1 0.5 0.0 6.8 0.0
Pb 0 0.0 a 0.0 a 0.0
Cd 0.07 3.9 0.14 0.2 0.42 0.3

0.1 M NaND3 + Surfactant
Emcol SL 8M SH

ISML mg/kg mg/kg mg/kg

@ 0.02 mM Experimental/% Removed Experimental I% Removed Experimental!% Removed

IpH = 4 Zn 5.9 1.9 838 10.1 5185 22.8
Pb 1.4 3.5 2.8 0.1 8.4 0.1
Cd 0.2 11.1 7 11.5 47.1 30.6

IpH =7 Zn 2.1 0.7 120.3 1.4 231.5
,

1.0
Pb 1.4 3.5 0 0.0 1.4 0.0
Cd 0.13 7.2 I 1.7 2.8 7.3 4.7I

IpH =10 Zn 0.5 0.2 4.6 0.1 18 0.1
Pb 0 0.0 0 0.0 1.4 0.0
Cd 0 0.0 0.07 0.1 0.7 0.5

a.1M NaND3

IpH = 4 Zn 9.6 3.1 674 8.1 2642 11.6
Pb 0 0.0 1.5 0.0 4.5 0.1
Cd 0.29 16.1 6.04 9.9 36 23.4

IpH = 7 Zn 2.3 0.8 101 1.2 165 0.1
Pb 0 0.0 a 0.0 a 0.0
Cd 0.07 3.9 1.4 2.3 4.8 3.1

IpH = 10 Zn 0.24 0.1 0.9 0.0 15.6 0.1
Pb 0 , 0.0 0 0.0 0 0.0
Cd 0 0.0 0 0.0 0.6 0.4
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0.1 M NaN03 + 0.1 M Citric Acid + Surfactant

Dowfax SL SM SH

8390/ mg/kg mg/kg mg/kg

@6.3mM Experimental!% Removed Experimental I% Removed Experimental 1% Removed

IpH = 4 Zn 123 40.2 7547 90.6 20283 89.0 ,I

Pb 19.7 49.3 1667 48.9 1818 28.0 I
Cd 1.6 88.9 36 59.0 100.7 65.4 I

IpH = 7 Zn 65.6 21.4 8301 99.7 20283 89.0
Pb 4.5 11.3 1061 31.1 1667 25.6
Cd 1.87 103.9 50.4 82.6 115.1 74.7

IpH=10 Zn 3.2 1.1 7736 92.9 17925 78.7
Pb 1.5 3.8 136.4 4.0 303 4.7
Cd 0.94 52.2 43.2 70.8 108 70.1

a.1M NaN03 + Surfactant + a.1M Citric acid

Emcol SL SM SH

ISML mg/kg mg/kg mg/kg

@OO2mM Experimental % Removed Experimental % Removed Experimental % Removed
pH =4 Zn 125 40.8 8704 104.5 24074 105.7

Pb 18.2 45.5 1399 41.0 1678 25.8
Cd 1.6 88.9 27 44.3 108 70.1

IpH = 7 Zn 111 36.3 7454 89.5 17593 77.2
Pb 11.2 28.0 1119 32.8 1259 19.4
Cd 1.9 105.6 34 55.7 101 65.6

IpH=10 Zn 13.8 4.7 5046 60.6 12500 54.9
Pb 2.8 7.0 16.4 , 0.5 230 3.5,

,

Cd 1.4 77.8 20.2 33.1 94.3 61.2

0.1 M NaN03 + 0.1 M Citric Acid
IpH = 4 Zn 150.9 49.3 9339 112.2 24528 107.7

Pb 18.2 45.5 1364 40.0 2424 37.3
Cd 1.8 100.0 36 59.0 108 70.1

IpH = 7 Zn 79.2 25.9 5613 67.4 25943 113.9
Pb 6.1 15.3 1121 32.9 1515 23.3
Cd 1.8 100.0 42.4 69.5 122 79.2

IpH = 10 Zn 2.5 0.8 4764 57.2 14150 62.1
Pb 1.5 3.8 86 2.5 303 4.7
Cd 0.22 12.2 21.6 35.4 101 65.6
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