
A COMPARISON OF NEURAL NETWORKS

FOR STOCK SELECTION

By

Yl1v1IN YANG

Bachelor of Arts
Hebei Teacher's University

Shijiazhuang, Hebei
People's Republic of China

1990

Bachelor of Science
Renmin University of China

Beijing, P.R.China
1992

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1999

A COMPARISON OF NEURAL NETWORKS

FOR STOCK SELECTION

Thesis Approved:

ii

ACKNOWLEDGMENTS

I would like to extend my sincere appreciation to my committee members for their

guidance and support. I am particularly grateful to my advisor, Dr. J. P. Chandler, for his

time and efforts invested in my whole graduate program and his sincere friendship with

me. My thanks also go to Dr. B. E. Mayfield and Dr. H. K. Dai for their great help in my

education and their time of serving as members of the committee.

My special thanks and love go to my wife, Yingjie Dong, for her great love and

encouragement in the whole journey of my graduate study and the past twelve years.

Every progress I made has had her contribution. My special thanks are also extended to

my parents, Shiguo Yang and Jianying Ma, especially to my morn who is very intelligent

but was robbed by the Communist party government of all the fortune she should inherit,

and all working opportunities. Even in such a hard environment, she continuously

encouraged and supported us brothers in attending the best universities in China and

studying abroad. 1completely understand her deep love for us.

My thanks also go to my brother, Fengming Yang, for his help in solving

problems in neural networks and debugging of the programs.

iii

Chapter

TABLE OF CONTENTS

Page

1 INTRODUCTION 1

1.1 Statement of the Problem. 1.
1.2 Objectives 2
1.3 What Is New About the Systems. 2

2 REVIEW OF 11IE LITERATURE. 4

2.1 Neural Networks and Artificial Intelligence 4
2.2 An Introduction to Speculators in the Stock Market 8
2.3 Neural Network Applications in Finance and Investment 9

3 MAIN IDEAS, DESIGN, AND PROBLEMS SOLVING 15

3.1 Main Ideas of the Systems IS
3.1.1. On-Balance Volume (OBV) 16
3.1.2. Relative Strength Indicator (RSn 17
3.1.3. Simple Moving Average 17
3.1.4. Weighted Moving Average 18

3.2 Design of the Systems 19
3.2.1. Target of the Neural Network 19
3.2.2. Choosing of Data... 20
3.2.3. Decision of Inputs to the Neural Network........ 22
3.2.4. Transform of the Data 23
3.2.5. Design of Neural Networks 25

3.2.5.1. :MLP in General 25
3.2.5.2. RBF in GeneraL. 28
3.2.5.3. Comparison of RBF Networks and MLP Networks 30
3.2.5.4. MLP Networks Using Conjugate Gradient Optimization .. 32
3.2.5.5. RBF Self-Organized Selection Centers network 34
3.2.5.6. RBF Adaptive Center Network 37

3.2.6. Implementation of the Neural Networks 37
3.2.6.1. Stopping Criteria 37
3.2.6.2. On-line or Off-line Training................ 38
3.2.6.3. Training and Testing of the Network 38

iv

3.2.6.4. Outputs of the Networks 39

4 DISCUSSION OF RESULTS 49
4.1 Things Said Before Making Comparison 49
4.2 Now We Can Discuss the Results of All Simulations 52

5 CONCLUSIONS AND RECOMMENDATIONS 55

5.1 Conclusions 55
5.2 Recommended Future Works 56

BIBLIOGRAPHY 58

APPENDIXES 69

APPENDIX A Training File 69
APPENDIX B Test File 73
APPENDIX C Code for Preprocessor...................................... 74
APPENDIX D Code for FRBF Simulator...................... 81
APPENDIX E Code for Adaptive RBF Sirnulator................................. 97
APPENDIX F Code for MLP Simulator 113

v

Figure

LIST OF FIGURES

Page

3.1 The inputs to the network (1) 22

3.2 The inputs to the network (2) 23

3.3 Flowchart of a system 24

3.4 Architectural graph of a :MLP with two hidden layers 27

3.5 The radial basis function neural network 29

3.6 The conjugate gradient algorithm 34

3.7 K-means clustering algorithm 35

3.8 LMS algorithm 36

vi

Table

UST OF TABLES

Page

3.1 Records for NNS Training and Test 39

3.2 Output for FRBF Test File 43

3.3 MI...P Output for Test File 47

3.4 ARBF Output 48

4.1 Output Comparison 51

4.2 Rank Table for All Simulations 52

vii

CHAPTER 1

INTRODUCTION

1.1 Statement of the Problems

Individual and institutional investors apply various selection and optimization

strategies in the process of creating a securities portfolio, which they hope will provide

high return on their capital investment. Such strategies are frequently based on research in

a particular industry, historical price data for individual stocks, analysis of fundamental

data, etc. A common problem in forming such a strategy is, however, the overwhelming

amount of the available market information, which can't be readily interpreted. For this

reason, investors are confined to specific techniques, which rely on limited subsets of

data. In addition, stock selection is a complex process. You may list more than a hundred

factors that can affect the price movements of a particular stock. There are thousands of

stocks listed in a market. For example, there are more than 2000 stocks listed in New

York Stock Exchange (NNSE). Selecting several stocks from all stocks traded in the

markets requires dealing with millions of records of various data. It is not the work that

can be done in a short time by human brains. But decisions need to be made in a short

time to catch up with the rapidly changing markets, so computers are used to deal with

these large amounts of numerical information. Traditionally, computers have been used Lo

do such work as computation, sorting and comparison. according to the user's order. But

1

that is not enough for stock selection. Sophisticated techniques are required to analyze

and combine disparate infonnation that can potentially impact security price.

In the past few years, neural networks have become popular in solving problems

in many fields, from interest rate prediction to speech recognition. The main attractive

character of the neural networks is that they can work like human brains. They can learn

from experience and make predictions according to what they have learned. As a human

brain can predict it's going to rain or not according to the clouds in the sky and other

factors, a neural network can predict the price movements of a particular stock according

to its past trading information and other infonnation. Unlike traditional artificial

intelligence systems (also called expert systems) which are rule-based and don't need

training, a neural network can learn from examples and modify itself according to

changing conditions. Training is very important to neural networks.

1.2 Objectives

A comparison will be made of selected neural networks for stock selection.

Multi-Layer Perceptron (MLP) neural networks and Radial Basis Function (RBF) neural

networks will be used in the stock selection systems.

Each system will be trained to select stocks from all stocks traded in a market; the

perfonnances of the selected stocks will be expected to be among the top ones in the near

future (two weeks); tests will be made and results will be compared.

2

1.3 What Is New About the Systems.

1. The RBF systems in this thesis are the first stock-selection systems using RBF neural

networks the author has seen although much work in this area is unpublished.

2. One of the more advanced learning algorithm (Conjugate Gradient) rather than the

backpropagation algorithm will be used in the MLP neural networks.

3. The systems are mainly for speculators.

4. Some financial indicators (see following sections) developed by the author will be

used in the software to ensure that this software is unique.

3

CHAPTER 2

REVIEW OF THE LITERATURE

2.1 Neural Network and Artificial Intelligence

The modern era of neural networks is said to have begun with the pioneering work

of McCulloch and Pitts (1943); their classic paper [68] described a logical calculus of

neural networks. This paper was widely read at the time and still is.

In 1948, Wiener's famous book "Cybernetics" was published [69], describing

some important concepts for control, communications and statistical signal processing.

In 1949, Hebb gave the clear statement about the concept of learning rule in his book

"The Organization of Behavior"[70]. This was the first time the concept of a learning

rule was formally presented which encouraged the development of computational models

of learning and adaptive systems.

In 1952, Ashby's book, "Design for a Brain: The Origin of Adaptive

Behavior"[71], was published, which is just as fascinating to read today as it must have

been then. The book was concerned with the basic notion that adaptive behavior is not

inborn but rather learned.

In 1954, Minsky wrote a "neural network" doctorate thesis at Princeton Uni versity

[72], which was entitled "Theory of Neural-Analog Reinforcement Systems and Its

4

Application to the Brain-Model Problem". In 1961, an excellent J>aper by Minsky on AI,

entitled "Steps Toward Artificial Intelligence", was published [72]; this later paper

provide lots of terms used today in the neural network field.

Also in 1954, Gabor, one of the early pioneers of communication theory, and the

inventor of holography, proposed the idea of a nonlinear adaptive filter [35].

Another topic that was investigated in the 1950s is "associative memory", which was

initiated by Taylor (1956) [33].

An issue of particular concern in the context of neural networks is that of

designing a reliable network with neurons that may be viewed as unreliable components.

Von Neumann (1956) [26] using the idea of redundancy, which motivated Winograd and

Cowan (1963) [17] to suggest the use of distributed redundant representations for neural

networks, solved this important problem. Also in 1962, Frank Rosenblatt "Set forth the

principles, motivation, and accomplishment of perceptron theory in their entirety" [36].

An important problem encountered in the design of a multilayer perceptron is the

credit assignment problem (i.e. the problem of assigning credits to hidden neurons in the

network). The terminology "credit assignment" was first used by Minsky (1961) [66],

under the title "Credit Assignment Problem for Reinforcement Learning Systems".

An important event that did take place in the 1970s was self-organizing maps

using competitive learning. The computer simulation work done by von der Malsburg

(1973) [22] was perhaps the first to demonstrate self-organization.

In the 1980s, major contributions to the theory and design of neural networks were

made on several fronts, and with it there was a resurgence of interest in neural networks.

5

Grossburg (1980) [69], building on his early work on competitive learning, established a

new principal of self-organization that combines bottom-up adaptive filtering and contrast

enhancement in short tenn memory.

In 1982, Hopfield [73] used the idea of an energy function to formulate a new way

of understanding the computation petformed by recurrent networks. Another impoI1ant

development in 1982 was the publication of Kohonen's paper [74] on self-organizing

maps using a one or two dimensional lattice structure.

In 1984, Braitenberg's book, "Vehicles: Experiments in Synthetic Psychology",

was published [76].

In 1986, the development of the back-propagation algorithm was reported by

Rumelhart, Hinton, and Williams [77].

In 1988, Linsker described a new principle for self-organizing in a perceptual

network (Linsker, 1988) [63]. The principle is designed to keep maximum information

about input patterns. Also in 1988, Broomhead and Lowe [78] described a procedure for

the design of layered feedforward networks using radial basis functions, which provide an

alternative to multilayer perceptrons. We'll use two radial basis function systems in this

project.

In 1989 Mead's book "Analog VLSI and Neural Systems" [79] was published,

which provides an unusual mix of concepts drawn from neurobiology and VLSI

technology.

6

Perhaps the 1982 paper by Hopfield and the 1986 two volume book by Rumelhart

and McCLelland {80] were the most important publications which brought about the

recovery of interest in neural networks in the 1980s.

In above, we give an outline of the development of the neural networks. Because

the most exciting part of the neural network is its ability of learning, we will focus our

discussion on learning algorithms in the following.

Each learning algorithm is related to some specific kind of neural networks. There

are fOUf different classes of neural network architectures [58]:

1. Single-Layer Feedforward Networks

A single-layer feedforward network has in fact two layers of neurons; the

input layer and the output layer. But the computation happens only in the

output layer and it is strictly feedforward.

2. Multi-layer Feedforward Networks

The second class of feedfoward networks is different from the first class is

that a multi-layer feedforward network has more than one hidden

(computation) layers

3. Recurrent Networks

A recurrent network distinguishes itself from a feedforward network in that it

has at least one feedback loop.

4. Lattice Structure

7

A lattice consists of a one-dimensional, or high-dimensional array of neurons.

A related input array is also needed. A lattice network is really a feed.forward

network with output neurons arranged in rows and columns.

Of the four classes of networks as we described above, multi-layer feedforward

networks are the most widely used ones. There are two different groups of networks

among multi-layer feedforward networks. They are multi-layer perceptron neural

networks (MLP) and radial basis function neural networks (RBF).

A traditional MLP network uses backpropogation learning algorithms. An MLP

with such learning algorithms is successfully used in many fields [58]. But it has also

some drawbacks of which, needing lots of time on training is the major one. Some

advanced algorithms such as quasi-newton method, conjugate gradient method are used

to MLPs to overcome these drawbacks.

The first conjugate gradient method was proposed by Hestenes [106] in 1980.

Several other conjugate gradient methods such as the fletcher-Reeves method, the Polak­

Ribiere method appeared since then. According to Meishan Cheng [107], these conjugate

gradient methods are relatively equivalent. Some experiments report that MLPs with

conjugate gradient method have great improvement over MLPs with backpropogation

method [43].

Broomhead and Lowe were the first to use radial basis functions in the design of

neural networks [108]. Other contributions in this field were made by Moddy and Darken

[lO9], and Poggio and Girosi [110]. The range of application of RBFs is quite broad

though RNF networks are not as popular as MLP networks.

8

2.2. An Introduction to Speculators in the Stock Market.

Webster gives a number of definitions on speculation. Among them we find: [32]

(l) "mental view of anything in its various aspects; intellectual examination";

(2) "the act or practice of buying land or goods, etc., in expectation of the rise of price

and of selling them at an advance".

To the second he added the complacent observation that U a few men have been

enriched but many have been ruined by speculation" [32]. According to Webster, the

moti ve is the test by which we must distinguish between an investment and a speculative

transaction.

According to Philip L. Carrel ("The Art of Speculation", 1930), speculation may

be defined as U The purchase or sale of securities or commodities in expectation of

profiting by fluctuations in their prices".

There are many fields in which one can speculate: commodity markets, stock

markets, bond markets, currency markets, and gold markets. There are many methods by

which one can speculate: futures, options, sellinf short, buying long in actual objects. This

software only considers the stock market. It specializes in finding stocks that will perform

among the top ones in the near future.

2.3. Neural Network Applications in Finance and Investment

In a global economy, the finance and investment industries need to deal with large

amounts of data and they are facing more and more hard competition from many

9

corporations and many countries. They will develop and use every new technique to help

them keep leading positions in the market. Naturally computer technologies were the

most widely used technologies. The neural network is one of the most attractive

techniques.

Many of the first neural network researchers were excited by the idea of learning

that the neural network can achieve through similarity to a small part of a human brain.

Although most early attempts to apply neural networks to financial decision making were

rudimentary, clumsy, and generally unsuccessful, recent innovation in the technology and

improvements in our understanding of the strengths and weaknesses of neural networks

are now resulting in commercially successful systems.

Neural networks are especially suited for simulating intelligence in pattern

recognition, association, and classification activities. These problems frequently arise in

such areas as credit assessment, security investment, and financial forecasting [89]. It is

worth noting that, after the Department of Defense in 1989 investing on a five-year,

multimillion-dollar program for neural network research, financial institutions have been

the second largest sponsor of research in neural network application.

Lapedes and Robert perfonned one of the first applications of neural networks in

forecasting [90]. They designed networks for forecasting chaotic time series. Early

applications of neural network forecasting to the stock market were reported to be

unsuccessful [91].

Weigend et a1. [92] made a foreign exchange rate prediction using a neural

network with two output neurons, one for return and one for the sign of the return.

10

Chakrabortyet al [93] applied neural networks to forecasting monthly flour price indices

in three commodity exchanges.

Bergerson and Wunsch [94] developed a hybrid neural network and expert system

for predicting the S&P 500 stock index. The targets were selected as buy/sell/no-action

signals by a human expert in a labor-intensive exercise, in contrast to predicting every

rise and fall of the index.

Zaremba [95] described three neural network forecasting models for the S&P SOD,

US Treasury Bonds, and gold futures. He reported moderate success in actual trading.

A number of articles have appeared in Technical Analysis ofStocks and Commodities on

forecasting with neural networks. Shih [96] described a neural network trained on long

and short indicators. Fishman et a1. [97] trained a neural network on the S&P SOD price

difference to predict a week ahead. Katz [98] discussed development issues in neural

forecasting, and advised the use of separate neural networks, one trained to predict top

and the other bottom turning points. The journal Futures has also featured articles on the

subject. Jurik [99J discussed aspects of preprocessing input data based on harmonic

analysis.

Yoon and Swales in 1991 [100] adopted a four-layered network with nine input

parameters. They reported that, on the average, 77.5 percent of test cases were correctly

classified. This result outperformed the classifying power of multiple linear discriminant

analysis, which correctly classified only 65 percent [88].

Kamijo and Tanigawa (1990) [102] developed a recurrent neural network model

to predict a price pattern, called the "triangle" pattern, from a candlestick chaI1. After the

11

network was trained on 15 patterns by iterating 2,000 times, it correctly classified 15 out

of 16 test cases, but this model may use so few patterns such that the model may

memorize all patterns.

Kimoto and Yoda in 1990 [l01] developed a network to determine optimal buy­

and-sell timing for the TOPIX (Tokyo Stock Exchange Price Index). The terminal

investment value of 3,129 in September 1989, which would have resulted from following

the neural network model recommendations, exceeded the 2,642 TOPIX value at that date

by 487 points-a significant difference.

In a study by Jiang and Lai in 1994 [103] using Taiwan stock data, the annual

rates of return generated by a neural network-driven buy-and-sell strategy were

considerably higher than those of a competing buy-and-hold strategy_

Some investment banks and journals provide lists of stocks, which show a

tendency of irregular movements. A big investment bank can employ many analysts to

follow all stocks, but the personal investor cannot do that, so software is very helpful in

determining which stock to buy.

Some work has been done on neural network software by Neurostock Company

(http://www.neurostock.com) which provides a variety of products of neural network

software.

Several applications of neural nets to the domain of finance are already known in

the art.

U.S. Pat. No.5, 109,475 to Kosaka et al covers a system that uses a Hopfield neural

network for selection of time series data. It only considers historical risk and return data,

12

and assumes that the relation between risk and return factors will remain about the same

in the future, but in a rapidly changing market environment such an assumption may not

be accurate.

u.K. Pat. Application 2 253 081 A to Hatano et a1. covers a system that describes

a neural network stock-selection scheme using only price data as input.

u.s. Pat. No. 5,761,442 to Barr, et al. is called "Predictive neural network; means

and method for selecting a portfolio of securities wherein each network has been trained

using data relating to a corresponding security". This patent was granted in June 1998, so

it can be considered as the most recent job done in this field. It is a good system, trying to

cover as many as factors as possible in predicting the price of a particular security. As we

said above, a lot of research on quantitative investing remains unpublished and secret,

however.

Differences between Barr's System and This RBF System:

1. Barr's system provides methods for selecting securities and constructing an

investment portfolio, which is expected to provide a return that is superior to the broad

index benchmarks of a given capital market. Its goal is just to beat the index. The goal of

this system is to provide methods for selecting securities to maximize the return.

2. Barr's system can be used by individual investors and institutions whereas the

systems in this thesis can be better used by speculators.

3. Barr's system uses both fundamental and technical factors as input. while this

system uses only technical factors as input.

4. This system uses different technical factors from that of Barr's system.

5. Different neural networks (RBF) will be used in this system from that of Barr's

system.

6. Only stocks having the best appreciation potentials will be considered by this

system, whereas Barr's system also considers those stocks having the worst appreciation

potentials.

7. This system will use the same neural network for each stock, whereas Barr's

system uses different neural networks for different stocks.

14

CHAPTER 3

MAIN IDEAS, DESIGN, AND PROBLEM SOLVING

3.1 Main Ideas of the Software

The purpose of this software is to help someone win in the stock market. How to

achieve this goal is critical to the design and implementation of this program. If a stock

shows a tendency to be upgoing, it may be (by computing examples and borrowing

research results of other articles) that its price will increase at least, say 35% in the near

future (say in one month). If one wants to win as much as this increase, this software

should discover as early as possible these stocks and recommend them to the user. But

how to find them is difficult. Fortunately, such stocks may show some common signs in

the early stages of their upgoing [16]. These common signs are that the stock's price and

trading volume will be strong and go beyond the general index [12]. So I design this

software focusing on finding and listing those stocks whose price and trading volume has

gone strongly beyond the general index in a fixed period of time, say, fi ve days or ten

days.

There are two primary approaches of stock market analysis: fundamental and

technical; these systems belong to the technical approach. These systems do not care

whether it is a bull or bear market; they are for stock selection, not for whole-market

analysis. Some technical analysis is based on the idea that the future price of a stock is

15

-

predictable; others on the idea that it is not predictable. This system is based on

predictability.

Some technical analysts think there exist trends in the stock market; others think

the price of the stock fluctuates like a random walk. This software is based on the idea

that there exist trends in the stock market. There are mainly three kinds of technicians;

they are tide-watchers, manipulators, and purists. This software is better for tide watchers.

There are many aspects of stock market analysis. There are thousands of books written on

it; there are hundreds of indicators created for it. As said above, this software focuses on

stock selection, and behaves like a tide watcher, thus, its domain is narrowed greatly. In

this narrowed field, like other software, this software also builds its forecasts on price and

volume analysis of a stock. There are two famous indicators existing in this field for

many years; they are "Relative Strength" and "On-Balance Volume". I will, in the

following, briefly describe the ideas of these two indicators and show the differences

between them and my indicators used in the software.

3.1.1 On-Balance Volume (OBV)

One technique for measuring accumulation and distribution, first developed by

Joseph Granville (Granville's New Key to Stock Market Profits) [6], the On-Balance

Volume system is based on the assumption that volume trends lead price trends. The

cumulative on-balance volume series is calculated by adding successive daily OBV

figures. The total is increased when the stock gains in price and is decreased when the

stock falls. If cumulative on-balance volume is positive, meaning the price will go up, the

16

-

stock is under accumulation. and if cumulative OBY is negative, the stock is being

distributed (meaning the price will go down).

3.1.2 Relative Strength Indicator (RSI)

RSI was first developed by Robert A. Levy, a successful fund manager and

computer researcher. Levy summarized his most important research conclusion in the

November. 1967 issue of the Financial Analysts Journal ("Random Walks: Reality or

Myth"). His study was based on an analysis of weekly closing price of 200 NYSE

common stocks for the 260-week period beginning October 25,1960 and ending October

15, 1965. Each week, the 200 stocks were ranked on the basis of their relative price

perfonnance over the preceding 26 weeks (especially, the ex.tent to which the current

price was above or below the average price of the last 26 weeks). The experiments with

various portfolio strategies are based on different strength ranks. The validity of RSI has

been confinned in numerous other studies but there is reason to believe that the finest

work in this field remains unpublished.

This software will use moving averages and general indices. The stock ex.changes

or other security corporations such as Dow Industries, Standard & Poors 500, and the

Shanghai Index provide the general indexes. As for moving averages, this will use price

moving averages and volume moving averages, for 5-day or 7-day or other periods. There

are two versions of moving averages popularly used in practice:

3.1.3 Simple Moving Average

l7

-

A simple ten-day moving average of the Dow Jones Industries consists of successive

average of its ten most recent days' closing values. Just add up the latest ten values and

divide the total by ten.

This simple moving average is subject to criticism on two counts. First, it assigns equal

weight to each of the base observations. Second, as a simple average moves through time,

its point-to-point fluctuations are strictly dependent upon only two numbers, the one

being dropped and the one being added.

3.1.4 Weighted Moving Average

This is based upon the assignment of greater weight (hence greater important) to more

recent observations and lesser weight to old values. Each method has its adherents, but

the weighted moving average is probably the best.

There are no magic numbers in trend following. Some technicians assert that a ten-day

moving average is not optimal, that a 5-day or 20-day or perhaps some thing such as a 13­

day moving average is superior on a long-term basis. Some analysts might insist that a

lO-week, 30-week or 4O-week moving average is best, while others suggest that perhaps

some odd moving average length say, 7 or 39 weeks is optimal. As for my software, it is

better to use short period moving averages because the requirement of my software is to

find as early as possible the targeted stocks. If the price of the stock has already increased

greatly when my software recommends the stock, then my software is a failure. So I will

test 5-day moving averages.

18

-

The above indicators are used in this software as support indicators. I will create new

indicators with the help of them. This software will produce results according to the new

indicators I created.

3.2 Design of the System

According to Valluru [85], there are 12 steps in building a forecasting model. as

listed below.

1. Decide on what your target is and develop a neural network for each target.

2. Determine the time frame that you wish to forecast.

3. Gather information about the problem domain.

4. Gather the needed data and get a feel for each input relation to the target.

5. Process the data to highlight features for the network to discern.

6. Transfonn the data as appropriate.

7. Scale and bias the data for the network, as needed.

8. Reduce the dimensionality of the input data as much as possible.

9. Design network architecture (topology, number of layers, size of layers, parameters,

and learning paradigm).

10. Go through the train/test/redesign loop for a network.

11. Eliminate and correct inputs as much as possible, while in step 10.

12. Deploy your network on new data and test it and refine it as necessary.

19

3.2.1 Target of the Neural Networks

The targets of the neural networks will be trained to predict the price of a stock two

weeks into the future according to the movements of the stock in the past two weeks.

3.2.2 Choosing of Data

There are some choices for choosing data for the training and testing of the neural

networks. One method is to choose few stocks with longer period. For example, we may

use three year's data of one stock to train the network. The other method is to choose

many stocks with shorter period. For example, we may use two week's data of 100 stocks

to train the networks. The first method is better for predicting a particular stock. This

method was used in Barr's system [83]. The second method is better for stock selection,

because if the network learns from only one stock, its generalization will be bad. So the

second method is used to choose data for training and testing of the networks in this

project. An ideal method would be to use many stocks with a very long period (say 20

years); this would be beyond the scope of this project.

The data we will use to train the neural networks are chosen arbitrarily from New

York Stock Exchange (NYSE). It covers from 1996 to 1998. Such choice of data also has

some drawbacks.

1. The period of time covered may not be typical. The longer the period is, the

better the neural networks are trained. A good experiment may need as long

as 20 years or more of data coverage. Due to insufficient time and equipment

(we can't access a database), we just use the 17 days data for 100 stocks to

train our neural networks. This may affect the generalization of the networks.

20

-

For future work, we recommend that fully selected data should be used to

train the neural networks.

2. In our systems, the past two-week's information is used to predict two weeks

into the future. A further study may try use more than two week of past data

to predict two weeks into the future, say using four weeks of data to predict

two weeks into the future.

3. For the systems to be universally used, the data used to train the neural

networks may be chosen from several major markets rather than from only

one market.

The data we chose directly from stock is called raw data. It is saved in a file

named "rawdata" which will be processed by the preprocessor to make a training

file for the neural network. Another group of data chosen in the same way is saved

in a file called "testdata" which will also be processed by the preprocessor to

make a test file for the neural network simulators. The fonn of each line in file

"rawdata" and "testdata" will be listed below.

Line 1+17*x, x=I,2, ... N has two fields.

Field 1. The stock name

Field 2. The highest price in two weeks from the last day of chosen data. It is

used as the expected output.

Each of the 17 lines folIowing line 1+17*x has five fields.

Field 1. Trading date.

21

Field 2. Trading volume of the whole market.

Field 3. Closing value of the market index (Dow Industries Average in our case)

Field 4. Trading volume of the particular stock

Field 5. Closing price of the particular stock.

3.2.3 Decision of Inputs to the Neural Network

One can list more than 100 factors that can affect the price movements of a stock. so a

decision must be made as to which factors should be used as the input to the network.

The decision should be based on the target of the network. The targets of these networks

are to predict two weeks into the future. That is a short period, so we only need to

consider those factors that can affect the stock's price in the near future. Based on this

principle, the following eight factors were chosen:

PAN

number of days in
which the price is
greater than the 5-day
price moving
average(nl)
O<=n1<=10
if(nl= 10)
return J011 a

if(nl=4) 4/10
if(nl=3) 3110
if(nl=2) 2110

PDP

Number of days in which
the price increase
percentage is greater than
that of Dow Jones index
(n2) 0<=n2<= 10
if(n2=5) return 511 0
if(n2=4) 4110
if(n2=3) 3110
if(n2=2) 2110
if(n2=Jlln2~~0) 1110

PRN

Number of days in
which the price of
current day is greater
Ihan the lastday(n3)
0<=n3<=5
if(n3=5) rerum 5110
if(n3=4) 4/10
if(n3=3) 311°
if(n3=2) 2110
if(n3=11\0) 1110

PRO?

5 day price increase
percentage is greater
than that of Dow

'Jones index?(n4)
if(n4= I)(true)
return numJ·num2

Figure 3.1 The inputs to the network

22

-

VAN

number of days in
which the volume is
greater than the 5-day
volume moving
average(n 1)
O<=nl<=IO
if(nl=5) return 5/10

.if(nl=4) 4/10

if(nl=3) 3/10
if(n 1=2) 2/1 0
if(nl=lll=O) 1/10

VDV

umber of days in which
the volume increase
percentage is greater than
that of Dow Jones index
(n2) 0<=n2<=10
jf(n2=5) return 5/1 0
if(n2=4) 4/1 0
if(n2=3) 3110
if(n2=2) 2/1a
if(n2=llIn2=0) 1110
5P%>DP%=20;

VR

Number of days in
which the volume of
current day is greater
than the last day(n3)
0<=n3<=10
if(n3=5) return 5/1 0

if(n3=4) 411°
if(n3=3) 3/10

if(n3=2) 211°
ifCn3= 1110) 1/10

RG

5 day price increa e
p rc ntage is greater
than that of Dow
Jones index?(n4)
if(n4= 1)(true)
return numl-num2;

Figure 3.2 The inputs to the network

Other factors may be added to the input vector easily.

The choice in this way is arbitrary. A more thorough study would choose the best factors

from a large set. As we said above, there are more than one hundred factors that can

affect the price movement of a particular stock. A more thorough study should begin with

many factors and eliminate factors step by step until similar results are obtained with as

few factors as possible. That means if a factor doesn't affect or only slightly affects the

result of the neural network (after testing), this factor will be removed from the input

vector.

3.2.4 Transform of the Data

The input vector obtained from the raw data must be transformed into the range between

-1 and 1 to feed the neural networks. This work is done by the preprocessor of the

system.

23

-

IBM (as an example)

11 12 13 14 15 16 17 18 19

no III Il2 I13114lJ5 Il6 Il7

,

Dow Jone (D) (COlT ponding index)

DID2D3D4D5D6D7D8D9

DlO Dll D12 D13 DI4 DIS DI6 D17

Data Processing System

,r

Neural Network

"
OUTPUT

if output>standard then go to
lis

,

i
List of Selected Stocks

Figure 3.3. Flowchart of A System

24

-

3.2.5 Design of Neural Network

According to Hush and Horne [81], neural networks can be partitioned into two

categories: static networks and dynamic networks. Static works are characterized by node

equations that are memoryless. Representative static networks are:

1. Multi-layer Perceptron networks (MLP).

2. Radial Basis Function networks (RBF).

Dynamic networks are systems with memory. Their node equations are typically

described by differential or difference equations. Representative networks are Hopfield

networks and recurrent neural networks.

In the following I will describe the two most widely used static networks (MLP

and RBF) and make a comparison of them.

3.2.5.1. MLP in General.

Typically, an MLP consists of a set of source nodes that form the input layer. one

or more hidden layers of computation nodes, and an output layer of computation nodes.

The input signal propagates through the network in a forward direction. on a layer-by­

layer basis.

MLPs have been applied successfully to solve some difficult problems by training

them in a supervised manner with a highly popular algorithm known as the error back­

propagation algorithm. This algorithm is based on the error-correcting learning rule

(also known as the delta rule).

Basically, the error backpropagation process consists of two passes through the

different layers of the network: a forward pass and a backward pass. In the forward pass, a

pattern (input vector) is processed forward through the first hidden layer. its outputs from

25

the first hidden layer continue forward to the next layer and its effects propagate through

the network, layer by layer. Finally, one or some outputs are produced as the actual

outputs of the network. Then the error signal is computed by the formula:

error =expected output - actual output.

The error is then propagated backward through the network; in this way it comes

by the name" error backpropagation". During the forward pass the weights of the

neural network are all fixed. During the backward pass, on the other hand, the weights are

all adjusted in accordance with the error correction rule.

The backpropagation method is based on the Steepest Gradient Descent method. Other

optimization methods include Conjugate Gradient, Newton, Quasi-Newton, and Genetic

Algorithms. For the MLP network, this thesis will use a Conjugate Gradient method,

which shows a great improvement in speed over backpropagation method.

An:MLP has two distinctive characteristics:

a. At least one nonlinear computation will take place in :MLP neural networks. Some

MLP neural networks use this computation only in the hidden layer; other MLP

networks use this computation also in the output layer. A commonly used

nonlinearity is a sigmoidal nonlinearity defined by the logistic function [81]:

1
Yj =------------------

l+exp(-Vj)
(3.1)

where Yj is the net internal activity level of neuron j, and Yj is the output of the

neuron.

26

-

b. The network contains one or more layers of hidden neurons that are not part of the

input or output of the network. More hidden layers don't necessarily mean better

performance. A typical MLP neural network usually has no more than three hidden

layers [82]; the most common numbers of hidden layers are one and two.

Input
Layer

first hidden
layer

second hidden
layer

output
layer

Figure 3.4 Architectural graph of a MLP with two hidden layers [81].

The .MLP can complete both approximation and pattern recognition tasks.

However, there are a number of practical concerns:

1. The first is the choosing of the network size.

2. The second is the time used on learning (training). That is, we may ask if it is

possible to learn the desired mapping in a reasonable amount of time.

27

-

3. The third is the abtlity of the neural network to generalize: that is, its ability to

produce accurate results on new samples outside the training set.

4. A key shortcoming in the MLPs as often implemented is the large amount of

training time required by the backpropagation algorithm [82]. But

backpropagation is not required in an MLP, and we will not be using it .

3.2.5.2. REF in General

RFB networks have been used successfully in many fields in which they have

proved to be good enough to replace multilayer perceptrons (MLPs). These fields include

chaotic time-series prediction, speech recognition, and data classification. In addition, the

RBF network is a widely used approximator if given enough hidden units. This means an

RBF may need more hidden nodes than an MLP neural network. The REF architecture

has exactly three layers (Figure 2), an input layer which performs no computation, a

hidden layer, and an output layer. You may notice that there are no weights between the

input layer and the hidden layer. Instead, there is a function used to map each input vector

with each hidden node. The defining feature of an RBF as opposed to other neural

networks is that the basis functions, the transfer functions of the hidden units, are radially

symmetric.

The function computed by a general RBF network is therefore of the form

k
F(~ w) = L WbSb (~) ,

1>=1
(3.2)

where ~ is the vector applied to the units and Sb denotes a basis function [81].

28

-

F(~)

Figure 3.5 A radial basis function network. Each of the N components of the input

vector ~ feeds forward to K basis functions whose outputs are I1nearly combined with

weights {Wb} Kb=1 into the network output f (~) [81].

The most common choice for the basis functions is the Gaussian, in which case

the function computed becomes [81]

k -n ~ - mb 11
2

F (~, w):;: L Wb exp(----),
b=1

(3.3)

where each hidden node is parameterized by two quantities: a center m in input space,

corresponding to the vector defined by the weights between the node and the input nodes,

and a width Ob -

29

There are two conunonly used methods for training RBFs.

1. One method used to train the REF neural networks is to fix. both the radial basis

function center and widths. The centers can be set using an unsupervised training

method such as clustering, or the user can just randomly choose input vectors from

the training file as centers. After setting the centers, only the hidden-to-output

weights are adaptable when training, which makes the problem linear in those

weights. Although fast to train, this approach has some drawbacks due to its fix.ed

centers and widths.

2. The other method is to adapt the hidden-layer parameters, either just the center

position or both center positions and widths. The second method is more general in

form. Some reports show that the second method perfonns better than the first

method [58]. The great investment of time in adjusting the positions of the centers

should yield considerable improvement, one could hope.

3.2.5.3 Comparison of RBF Networks and MLP Networks

Radial basis function networks and multilayer perceptrons are examples of nonlinear

layered feedforward networks. They can both do tasks like approximation and pattern

recognition. You may replace an MLP neural network with an RBF neural network to

solve the same problem. However, there are still some distinctive differences between

them.

a. An REF network only has one hidden layer, whereas an MLP may have one or more

hidden layers.

30

--

-

b. Usually, a sigmoid function will be used both in hidden layers and the output layer in

an MLP neural network. But in REF neural networks, a radial basis function is used

only in the hidden layer, and usually a linear function is used in the output layer. This

means that both hidden layers and output layer are nonlinear in MLP neural networks

whereas in REF networks, the hidden layer is nonlinear and the output layer is linear.

c. The radial basis function of each hidden unit in an RBF network computes the

Euclidean norm (distance) between the input vector and the center of that unit. On the

other hand, the activation function of each hidden unit in an N1LP computes the inner

product of the input vector and the weight vector of that unit.

d. The training of an RBF network can be done separately, that is, its hidden layer and

output can be trained separately using different methods, thus saving training time.

MLP neural networks can't be trained separately; therefore more time would be

needed in training :MLP networks. But in order to reach a similar result, the number of

radial basis functions needed for an RBF may have to be very large.

e. The MLP is a traditional neural network technique, where RBF is the most recent

popular one. Barr's patent [83] uses :MLPs networks implemented using the

generalized delta rule (also called error-correcting learning rule). The hidden layer of

nodes is split into two groups: a) a group of nodes using a Gaussian activation

function; and b) a second group of nodes using a Gaussian complement activation

function. The output node layer uses a logistic activation function.

31

--

Kosaka's patent [84] uses a Hopfield network. No training method or activation

function information is provided.

This thesis will build an MLP neural network stock selection system using a

conjugate gradient optimization method and two RBF neural network stock selection

systems using the two methods we described above, train and test them with the same

data, compare their results, and make a report. Some experiments report that an RBF

network is better than an :MLP network in applications of prediction [58]. We will see if

the results of our experiments support that conclusion.

3.2.5.4 MLP Network Using Conjugate Gradient Optimization

MLP networks wi th backpropagation (based on the steepest decent method) is the

most popular type of neural network in past years. But more advanced optimization

methods have been used in recent years, of which conjugate gradient algorithms, quasi­

newton methods, simulated annealing algorithms and genetic optimization algorithms are

the widely used ones [105]. The conjugate gradient algorithms gained notice in the

optimization world because for a wide class of problems they promise convergence to an

optimal solution in a finite number of steps. This is a big improvement over steepest

descent, which is guaranteed to require an infinite number of steps if it does not reach an

optimal solution on its first iteration.

The name "conjugate" comes from the use of "conjugate direction" vectors. In a vector

space of dimension D, a set of D-vectors {PI, ...Pd } is said to form a set of A-conjugate

directions if

(3.4)

32

where A is a D by D positive definite matrix (a positive definite matrix is a square matrix

all of whose eigenvalues are positive). Vectors satisfying Equation (3.4) are said to be A­

conjugate [105].

How does the conjugate gradient algorithm achieve finite convergence? Suppose

we wish to minimize the quadratic function

F(w)=(b-Aw)*(b-Aw) (3.5)

where b and w are D-vectors, and A is as said above. Suppose we are iteratively searching

for the optimal w* that minimizes F(w), and we currently have some guess WOo Pick a

nonzero vector PI which serves as the search direction for the next iteration. Choose WI

to be the vector

WI=WO+aPl (3.6)

where the a has been chosen to minimize F(WO + aPl). Now comes the key point. The

optimal direction to go in the next iteration, must fonn an A-conjugate pair with PI. The

optimal direction is W*-WI, so the A-conjugate condition

(W*-Wl) * A Pl=O

must be satisfied. We don't know w* at this point. However, in a D-dimension vector

space, there can be only D-1 independent vectors that form an A-conjugate pair wi til P l.

Thus, we have only a finite number of directions to search in order to find the optimal

direction.

The version of the conjugate gradient algorithm which we will implement is

shown in Figure 3.6

33

O. Initialize the weight vector W, and compute the gradient G=gradE(W)
of E at W. Set the initial direction vector p equal to -G/IIGIi.

1. Find a which minimizes E(W + ap). Set new W=W +ap.
2. If E(new W)<error tolerance, or the stepsize becomes very small,

then Stop. Else compute new direction:
New G=gradE(new W).
If (# iterations mod #Weights)=O then new direction =
-(new G)/II new Gil;
Else{

~= (new G) (new G)/G*O
new direction vector= -(new G) + ~p/II-(new G) + ~Il}

3. Replace G with new 0, and p with new direction vector. Go to 1.

Figure 3.6 The Conjugate Gradient Algorithm [105].

3.2.5.5 RBF Self-Organized Selection of Centers Neural Network

In REF self-organized networks, the centers of the hidden layer are set using an

unsupervised training method. A common choice for this is the k-mean cluster algorithm.

The linear weights of the output layer are computed using a supervised learning rule,

usually the least mean square method. In other words, the network undergoes a hybrid

learning process [58]. The self-organized training method (k-mean) can set the centers

only in these places where the most input data fall.The number of the centers of the

network is fixed. For the self-organized selection of the hidden unit's centers, we may use

the standard k-means clustering algorithm [74].

34

Procedure K_MEANS
Initialize the cluster centers Wj, j=1,2, ... ,N
lItypically these are set equal to the first N training examples
repeat

!!group all patterns with the closest cluster center
for all Xi do

Assign Xi to Wj* where Wj*=minIlXi-Wjll
Endloop
l/compute the simple mean
for all Wj do

1
Wj=----- I.

Mj
Xi',

Where Wj*3Xi;
Endloop

Until there is no change in cluster asssignments
End {K_MEANS}

Figure 3.7 K-Means Clustering Algorithm [74]

In Figure 3.7, the nonn IIXi-WjH is a weighted norm; it usually is the Euclidean nonn

[58J:

N
Dij = llXi-Xjll =[I. (Xin-Xjn)2] 1/2

n=1

(3.7)

For the output layer, we may use the supervised least-mean-square (LMS) learning

method; the outputs of the hidden units in the RBF network serve as the inputs of the

LMS algorithm. Other optimization methods also can be used for the output layer of the

RBF neural networks. For comparison purposes, we only use the traditional methods.

35

Procedure LMS
Initialize the weights to small random value j=1,2, ... ,N
Repeat

Choose next training pair (Ul,D);
//compute outputs
for all j do
Yj=Wj*Ul;
Endloop
//compute error
for all j do
Ej=Yj-Dj;
Endloop

/fUpdate weights
for all j do
Wj(k+l)=Wj(k)-u*Ej*Ul;
Endloop

Until termination condition reached
End; {LMS}

Figure 3.8 LMS Algorithm [74]

The fixed center REF is considered to be a "sensible" approach [58], because the centers

are fixed. Only when the training data are distributed in a representative manner for the

problem at hand can we finish the task effectively. To solve this problem, an adaptive

center method can be used in selecting the centers.

3.2.5.6 RBF Adaptive Center Network

In this method, the centers of the radial basis functions and all other free

parameters of the network undergo a supervised learning process; in other words, the

RBF network takes on its most generalized form. In addition to what we do in self-

36

-

organized REF network described above, we allow the number of centers to increase

under certain conditions. That means, we keep a record of the biggest distance CD 1)

between the selected centers. When a new pattern arrives, we compute its distance from

all the selected centers. If the biggest distance (B2) between the new pattern and the

selected centers is bigger than Bl, then a new center is created. That is, the new pattern

will be set as the new center. In this way, even if the training data are not distributed in a

representative manner, we will not worry about the spread of the centers.

Another characteristic of the adaptive center network is that after the selection of the

centers using the k-mean clustering algorithm, we still allow the centers to be modified

according to some criteria. The usual criterion is that only the nearest center to the

coming pattern can be modified whereas other centers are unchanged. So in this method,

both hidden layer and output layer undergo a supervised training.

3.2.6 Implementation of the Networks

3.2.6.1 Stopping Cri teria:

1. The maxmum training cycles reach.

2. The average error per cycle goes below the tolerance rate.

3. The step sizes becomes very small.

3.2.6.2 On-line or Off-line Training

On-line learning means that if a pattern is input and an error produced, the weights

will be updated at once. Off-line learning means that the updating of the weights will be

postponed until all training patterns have been processed and all errors accumulated. In

the on-line mode, it is sometimes claimed that the le.arning process is more sensitive to

each pattern [104J, so it may help to find the global minimum. For an adaptive REF

37

network, both on-line training and off-line training are used. For the k-means cluster

algorithm, only off-line training can be used. For modification of the centers, usually on-

line training is used, because each time we update the centers, we only update the nearest

center.

3.2.6.3 Outputs of the Networks

Type Archi tecture Cycles Learning Average Error Average Largest
Rate In Training Error In Individual

Last Cycle Test File Error
FRBF 8-10-1 500 0.00009 0.0592784 0.0611237 0.205
AFRBF 8-10-1 500 0.0013 0.0599917 0.0657163 0.275
MLP 8-10-1 432 0.0399974 0.0635255 0.285

Table 3.1 Records for NNS Training and Test

3.2.6.4 Explanation of the preprocessor and simulators

All the coding of the programs is in C++ , and the programs can be run in Unix or Visual

C++ 6.0

All function names and variables are meaningful; necessary comments are included.

The preprocessor (Appendix C)

The preprocessor will process raw data from file "rawdata" and produce input

factors for the neural network simulators. It also transforms the input factor value to lie

between -1 and 1. The output from processing file "rawdata" is saved in file "training"

which will be used by aU neural network simulators of this project as input. It will also

process the file "testdata" and write its outputs into a file named "testfile". The test file

will also be used by all simulators to test their performances. Each line in file "rawdata"

38

--

and "testdata" has the fonn we described in section 3.2.2. Each line in tile "training" and

file "testfile" has the following fonn (see Appendix A and Appendix B):

Line n+1, n =O,I,2, ...N are inputs to the simulator (also called one pattern or input

vector);

Line n+2, n =0,1,2, ...N are the desired output for the above eight inputs.

The Simulators

The fixed-center radial basis function simulator uses the method described in

section 3.3.5.5. Training of the simulator is conducted on the file "training" produced by

the preprocessor, and testing is conducted on the file "testfile". After compiling and

begin to run, there appears on the screen a user interface, telling you to choose an

architecture and other parameters for the simulator. You may follow the instructions

easily. Though only 8-10-1 and 8-4-1 architectures have been tested, you may have as

many as 100 hidden nodes if needed.

You may see the output for "testfile" in Table 3.2. In Table 3.2. each four lines represent

the result of a pattern from testfile.

Line 1: "for pattern"

Line 2: the inputs to the simulator (one pattern)

Line 3: target (desired output)

Line 4: actual output from simulator

The MLP Simul.ator uses Conjugate Gradient Optimization method described in

section 3.2.5.4. Tt uses the same training file and test file as described above for the

FRBF simulator.Though only 8-10-1 and 8-4-1 architectures have been tested, you may

39

--

have as many as 100 hidden nodes if needed. Also you may try two or more hidden layers

for this simulator.

You may see the output for the "testfile" in Table 3.3. In Table 3.3. each five lines

represent the result of a pattern from the testfile. The first four lines function the same as

the FRBF output described above. The fifth line is the following:

Line 5: the difference between the target output and the actual output.

The Adaptive Radial Basis Function Simulator (ARBF) uses the method described

in section 3.3.5.6. It uses the same training file and test file as described above. You milY

see the output for "testfile" in Table 3.4. In Table 3.4. each first two lines have the same

functions as described above for FRBF and MLP simulators. The third line is:

Line 3: actual output and desired output

The following is the output from the FRBF simulator

for pattern:
0.444444 0.222222 0.222222 0.199083 0.555556 0.444444 0.666667 1
target is: 0.0275229
actual output from neural network is: 0.106739

for pattern:
0.666667 0.333333 0.444444 0.0242453 0.333333 0.111111 0.333333 1
target is: 0.043755
actual output from neural network is: 0.117221

for pattern:
0.666667 0.555556 0.444444 0.111211 0.222222 0.444444 0.444444 1
target is: 0.0031348
actual output from neural network is: 0.11455

for pattern:
0.333333 0.555556 0.555556 -0.0120284 0.444444 0.444444 0.444444 1
target is: 0.297297
actual output from neural net~ork is: 0.115015

for pattern:
0.888889 0.555556 0.666667 0.021788 0.333333 0.444444 0.444444 0
target is: 0.0317757

40

actual output from neural network is: 0.0447694

for pattern:
0.111111 0.222222 0.333333 -0.0434186 0.333333 0.444444 0.444444 1
target is: 0.0925926
actual output from neural network is: 0.113244

for pattern:
0.555556 0.333333 0.444444 0.123203 0.222222 0.444444 0.555556 0
target is: 0.0532915
actual output from neural network is: 0.0572898

for pattern:
0.555556 0.333333 0.444444 -0.0134872 0.333333 0.444444 0.222222 1
target is: 0.0401753
actual outpu~ from neural network is: 0.120587

for pattern:
0.333333 0.444444 0.555556 -0.010056 0.111111 0.444444 0.333333 0
target is: 0.0708661
actual output from neural network is: 0.0603566

for pattern:
0.333333 0.555556 0.333333 -0.0192748 0.222222 0.444444 0.333333 1
target is: 0.0510949
actual output from neural network is: 0.11952

for pattern:
0.444444 0.222222 0.222222 -0.0120284 0.222222 0.444444 0.444444 0
target is: 0.0536585
actual output from neural network is: 0.0646472

for pattern:
0.444444 0.444444 0.444444 -0.0246181 0.333333 0.333333 0.333333 0
target is: 0.0348259
actual output from neural network is: 0.0630041

for pattern:
0.555556 0.444444 0.444444 0.0520486 0.555556 0.333333 0.555556 0
target is: 0.167183
actual output from neural network is: 0.0527304

for pattern:
0.555556 0.555556 0.555556 -0.0215317 0.444444 0.333333 0.444444 0
target is: 0.0564103
actual output from neural network is: 0.0537227

for pattern:
0.111111 0.333333 0.333333 -0.08085 0.444444 0.222222 0.555556 0
target is: 0.170147
actual output from neural network is: 0.0592208

for pattern:
0.666667 0.555556 0.444444 0.025]106 0.555556 0.333333 0.555556 0
target is: 0.0217391
actual output from neural network is: 0.0487529

for pattern:
0.444444 0.444444 0.444444 0.0161982 0.444444 0.333333 0.444444 0
target is: 0.346405
actual output from neural network is: 0.0594768

41

for pattern:
0.666667 0.444444 0.444444 0.040317 0.444444 0.333333 0.666667 0
target is: 0.142857
actual output from neural network is: 0.0498557

for pattern:
0.444444 0.444444 0.555556 0.0657433 0.333333 0.333333 0.444444 0
target is: 0.0110497
actual output from neural network is: 0.0589694

for pattern:
0.444444 0.333333 0.444444 0.052823 0.555556 0.333333 0.555556 0
target is: 0.1375
actual output from neural network is: 0.0554948

for pattern:
0.555556 0.444444 0.444444 0.00251368 0.333333 0.333333 0.333333 0
target is: 0.106918
actual output from neural network is: 0.0613181

for pattern:
0.222222 0.222222 0.333333 -0.0534004 0.222222 0.333333 0.444444 0
target is: -0.0273556
actual output from neural network is: 0.0669927

the average error for testfile is : 0.0768373
Total patterns is: 22

Table 3.2 Output for FRBF Test File (above)

The following is output from the 'MLP simulator

For pattern :
0.444444 0.2222220.2222220.1990830.5555560.444444 0.666667 1

The actual output from network is: 0.0465932

The target output is: 0.0275229

The difference between target and actual is:0.0190703
For pattern :

0.6666670.3333330.444444 0.0242453 0.333333 0.111111 0.333333 I
The actual output from network is: 0.0518808

42

The target output is: 0.043755

The difference between target and actual is:0.00812577
For pattern :

0.6666670.5555560.444444 0.111211 0.2222220.4444440.444444 1
The actual output from network is: 0.0523276

The target output is: 0.0031348

The difference between target and actual is:0.0491928
For pattern :

0.3333330.5555560.555556 -0.0120284 0.4444440.444444 0.444444 1
The actual output from network is: 0.0418075

The target output is: 0.297297

The difference between target and actual is:0.25549
For pattern :

0.8888890.5555560.6666670.0217880.333333 0.444444 0.444441 0
The actual output from network is: 0.081526

The target output is: 0.0317757

The difference between target and actual is:0.0497503
For pattern:
0.111111 0.2222220.333333 -0.0434186 0.3333330.444444 0.444444 1
The actual output from network is: 0.0379364

The target output is: 0.0925926

The difference between target and actual is:0.0546562
For pattern :

0.5555560.3333330.4444440.1232030.222222 0.4444440.5555560
The actual output from network is: 0.0738734

The target output is: 0.0532915

The difference between target and actual is:0.0205819
For pattern :
0.5555560.3333330.444444 -0.01348720.333333 0.4 r14444 0.222222 1
The actual output from network is: 0.043139

The target output is: 0.0401753

The di fference between target and actual is:0.00296368

43

For pattern :
0.3333330.444444 0.555556 -0.010056 0.111111 0.444444 0.3333330
The actual output from network is: 0.0624653

The target output is: 0.0708661

The difference between target and actuaJ is:0.00840076
For pattern :

0.3333330.5555560.333333 -0.0192748 0.222222 0.44'1444 0.333333 t
The actual output from network is: 0.0398034

The target output is: 0.0510949

The difference between target and actual is:0.0112915
For pattern :

0.444444 0.2222220.222222 -0.0120284 0.222222 0.4444440.4444440
The actual output from network is: 0.0619681

The target output is: 0.0536585

The difference between target and actual is:0.00830961
For pattern :
0.4444440.444444 0.444444 -0.02461810.3333330.3333330.3333330
The actual output from network is: 0.0599728

The target output is: 0.0334825

The difference between target and actual is:0.0264903
For pattern :

0.5555560.444444 0.4444<14 0.05204860.5555560.3333330.5555560
The actual output from network is: 0.0661583

The target output is: 0.167183

The difference between target and actual is:O.lO1025
For pattern :

0.5555560.5555560.555556 -0.0215317 0.4444440.3333330.4444440
The actual output from network is: 0.0658878

The target output is: 0.0564173

The difference between target and actual is:0.00947054
For pattern :

0.111111 0.3333330.333333 -0.08085 0.4444440.2222220.5555560
The actual output from network is: 0.0546183

44

The target output is: 0.170147

The difference between target and actual is:0.1l5529
For pattern :

0.6666670.5555560.4444440.02531060.555556 0.3333330.5555560
The actual output from network is: 0.0684791

The target output is: 0.0217391

The difference between target and actual is:0.04674
For pattern:
0.444444 0.444444 0.444444 0.01619820.4444440.3333330.444444 0
The actual output from network is: 0.0613634

The target output is: 0.346405

The difference between target and actual is:0.285042
For pattern:

0.6666670.4444440.4444440.0403170+144440.333333 0.666667 0
The actual output from network is: 0.0761588

The target output is: 0.142875

The difference between target and actual is:0.0667162
For pattern :

0.444444 0.4444440.5555560.06574330.3333330.3333330.444444 0
The actual output from network is: 0.0665221

The target output is: 0.0110497

The difference between target and actual is:0.0554724
For pattern :

0.444444 0.3333330.444444 0.052823 0.5555560.3333330.5555560
The actual output from network is: 0.0637077

The target output is: 0.1375

The difference between target and actual is:0.0737923
For pattern :

0.5555560.444444 0.444444 0.002513680.3333330.3333330.3333330
The actual output from network is: 0.0634703

The target output is: 0.106918

4S

,I
,I

Jl

The difference between target and actual is:0.0434477
For pattern :

0.2222220.2222220.333333 -0.05340040.2222220.3333330.444444 0
The actual output from network is: 0.0586475

The target output is: -0.0273556

The difference between target and actual is:0.0860031
The average error for testfile is: 0.0635255
The number of predict error less than 0.05 is: 14

The number of all test pattern is: 22

Table 3.3 IvILP Output for Test file

The following is output from the ARBF simulator

II

",I

I'

for pattern:
0.444444 0.222222

the output is :
for pattern:

0.666667 0.333333
the output is :
for pattern:

0.666667 0.555556
the output is :
for pattern:

0.333333 0.555556
the output is :
for pattern:

0.888889 0.555556
the output is :
for pattern:

0.111111 0.222222
the output is :
for pattern:

0.555556 0.333333
the output is :
for pattern:

0.555556 0.333333
the output is :
for pattern:

0.333333 0.444444
the output is :
for pattern:

0.333333 0.555556

0.222222 0.199083 0.555556 0.444444 0.666667 1
0.0708336 expected output is 0.0275229

0.444444 0.0242453 0.333333 0.111111 0.333333 1
0.0789903 expected output is 0.043755

0.444444 0.111211 0.222222 0.444444 0.444444 1
0.0782648 expected output is 0.0031348

0.555556 -0.0120284 0.444444 0.444444 0.444444 1
0.0860295 expected output is 0.297297

0.666667 0.021788 0.333333 0.444444 0.444444 0
0.0661415 expected output is 0.0317757

0.333333 -0.0434186 0.333333 0.444444 0.444444 1
0.0751913 expected output is 0.0925926

0.444444 0.123203 0.222222 0.444444 0.555556 0
0.0406358 expected output is 0.0532915

0.444444 -0.0134872 0.333333 0.444444 0.222222 1
0.0775074 expected output is 0.0401753

0.555556 -0.010056 0.111111 0.444444 0.333333 0
0.0500109 expected output is 0.0708661

0.333333 -0.0192748 0.222222 0.444444 0.333333 1

46

the output is: 0.0799577 expected output is 0.0510949
for pattern:

0.444444 0.222222 0.222222 -0.0120284 0.222222 0.444444 0.444444 0
the output is: 0.0315316 expected output is 0.0536585
for pattern:

0.444444 0.444444 0.444444 -0.0246181 0.333333 0.333333 0.333333 0
the output is: 0.0607042 expected output is 0.0348259
for pattern:

0.555556 0.444444 0.444444 0.0520486 0.555556 0.333333 0.555556 0
the output is: 0.0710698 expected output is 0.167183
for pattern:

0.555556 0.555556 0.555556 -0.0215317 0.444444 0.33333] 0.444444 0
the output is: 0.0792015 expected output is 0.0564103
for pattern:

0.111111 0.333333 0.3333]3 -0.08085 0.444444 0.222222 0.555556 0
the output is: 0.062005 expected output is 0.170147
for pattern:

0.666667 0.555556 0.444444 0.0253106 0.555556 0.333333 0.555556 0
the output is: 0.0738595 expected output is 0.0217391
for pattern:

0.444444 0.444444 0.444444 0.0161982 0.444444 0.333333 0.444444 0
the output is: 0.0718764 expected output is 0.346405
for pattern:

0.666667 0.444444 0.444444 0.040317 0.444444 0.333333 0.666667 0
the output is: 0.0625335 expected output is 0.142857
for pattern:

0.444444 0.444444 0.555556 0.0657433 0.333333 0.333333 0.444444 0
the output is: 0.0667353 expected output is 0.0110497
for pattern:

0.444444 0.333333 0.444444 0.052823 0.555556 0.333333 0.555556 0
the output is: 0.0670063 expected output is 0.1375
for pattern:

0.555556 0.444444 0.444444 0.00251368 0.333333 0.333333 0.333333 0
the output is: 0.0545737 expected output is 0.106918
for pattern:

0.222222 0.222222 0.333333 -0.0534004 0.222222 0.333333 0.444444 0
the output is: 0.0414382 expected output is -0.0273556
the average error for test fie is 0.0657163 total pats are: 22

Table 3.4 ARBF Output to Test File (above)

47

CHAPTER 4

DISCUSSION OF RESULTS

4.1 Things said before making comparison

1. If more time could have been spent on this project, and if this project could access a

database, the results from the simulators would be better than they appear in this

thesis. Though the output is also one of our concerns, OUf main concern lies in

comparison of the perfonnances of different neural network simulators in the same

conditions. If the condition is bad, it is bad for all simulators. In such a case, we may

make a comparison of their performances.

2. For the architecture of the neural networks, we only choose 8-10-1. The ma.in

concern in doing so is that the REF networks need more hidden nodes to make a

good performance but MLP networks need to have few hidden nodes to avoid

overfitting. Typically, the number of hidden nodes for a RBF network should be

about twice the number of nodes in its input layer or at least, and the number of

hidden nodes should be greater than the number of input nodes [58]. Some books

[67] say that the number of hidden nodes in RBF networks can be equal to the

number of the total training patterns. In our case, the number of hidden nodes in the

RBF networks should be greater than 8; that means at least 9. Now consider our rv1LP

network: [he total number of patterns in our training file is 100. and the number of

48

-

input nodes is 8. Assume we choose X hidden nodes for our networks, then we can

compute the number of weights for an MLP network by

Number of Weights = 8 * X + X * 1 = 9X.

The number of weights should be less than the number of total patterns to avoid

overfitting. In our case, there are 100 patterns. We get

9X<100.

By solving the above inequality, we get the largest X to be 11. This means our MLP

network can only afford at most 11 hidden nodes. As said above, our RBF networks

need at least 9 hidden nodes. In such a way, we are left only with three choices in

setting the number of hidden layer. That is 9,10,11. To make a compromise, 10 was

chosen in our project. Such a result may greatly affect the performance of RBF

networks. For this reason, the comparison we will make may be less than persuasive.

It may be that requiring the MLP and RBF networks to have the same numbers of

nodes ia an artificial restriction that should be relaxed in future work.

3. The learning rates for RBF networks were chosen through many tests. Learning rates

less or greater than the chosen rate showed no better results. More training than 500

cycles did not bring much benefit to the perfonnance of the networks. The error

tolerance for the MLP was 0.04. It hit this limit after 432 cycles and stopped.

49

-

From Table 3.1 to Table 3.4, we may get another table:

Type Architecture LIE SIE NLl NL3 NL5 NL6

MLP 8-10-1 0.285 0.00296 5 9 14 15

FRBF 8-10-1 0.205 0.004 1 8 11 11

ARBF 8-10-1 0.275 0.0126 0 7 12 16

Table 4.1. Outputs comparison (total patterns are 22)

LIE is the largest individual error found in the output from corresponding simulators. SIB

is the smallest individual error. NLl is the number of patterns from the output of a

simulator whose error is less than 0.01. NL3 is the number of patterns whose error is less

than 0.03. NL5 is the number of patterns whose error is less than 0.05. NL6 is the number

of patterns whose error is less than 0.0632. 0.0632 is the average of all three simulator

average testfile errors (see Table 3.1)

We are confused by comparing the performances of the networks through Table

3.1 and Table 4.1. MLP ranks first in SIE, NL1, NL3 and NL5, but it ranks last in LIE.

ARBF ranks first in NL6 but last in Average Error. FRBF also has some firsts and lasts.

We can tell which one is best according to an particular indicator, but that may be too

simple to judge. How we can tell which one is the best overall? We need a complex

method. So, by merging Table 3.1 and Table 4.1, we may get a rank table for these

simulators.

50

Type LIE SIB NLI NL3 NL5 NL6 AETR AETE SUM

IvILP 3 1 1 1 I 2 1 2 12

FRBF 1 2 2 2 3 3 2 1 16

ARBF 2 3 3 3 2 1 3 3 20

Table 4.2 Rank table for all simulators

AETR is the average error in training for the last cycle. AETE is the average error for the

test file.

We get the ranks by comparing the values in each indicator. For example, in LIE,

1v1LP is 0.285, FRBF is 0.205, ARBF is 0.275. MLP has the largest individual error, so it

ranks last, and FRBF, whose LIE is the smallest one, ranks first. But in NL1, MLP is 5,

FRBF is 1 and ARBF is 0; MLP ranks first in this indicator because it has predicted five

patterns with an error less than 1%.

The indicators used here have general representatives. Adding or removing some

indicators does not materially change the conclusions we can get.

4.2 Now we can discuss the results of the simulators

1. The number of data patterns (NP) in our training file islOO. The number of weights

(NW) in our neural networks is: NW=8* 10+10*1=90. Generally speaking, if NW ~

NP, overfitting will occur. That means the network can remember all possibilities of

51

the training file. It will get very good results for the training file, but when tested with

new cases, it will produce poor results. Usually, the more NP is greater than NW, the

better the results are from the test file. Some reports show that NP should be 3 times

NW [85] to get satisfying results from the test file. Some books say that NP can be

equal to NW [58] for RBF networks. Because the input data for this project was typed

in by hand, only a limited number of patterns were provided which will affect the

results of the neural networks.

2. Traditionally,.MLP neural networks need more training time than do RBF neural

networks. But the records (Table 3.1) show that the MLP in our experiments use only

432 cycles to reach below the error tolerance 0.04 while the two RBF networks in our

experiments need 500 cycles to reach an error tolerance below 0.06. The reason here

is that traditional MLP networks use the backpropagation learning method based on

the steepest gradient optimization method. The MLP network used in our experiments

used the conjugate gradient optimization method which, as we described in section

3.2.5.4, is a great improvement over backpropagation. In an experiment using the

same training file to a backpropagation neural network described by Valluru, Rao [85]

showed that 5000 cycles are needed for that network to reach an error tolerance of

0.06.

The results of this experiment will be described in my later articles.

3. The average errors for the test file are a little larger than that for the training files in

the last cycle. This show some suspicion of overtitting. Some similar experiments

[88][100] report the same results. Maybe such results are reasonable.

52

4. Both the training errors and the test errors from the networks are about 0.06, and not

much improvement was obtained from further training. This shows that neural

networks (even using the most advanced methosd) can't predict exactly the price

movements of stocks. Though the best work done in this field may remain unreleased,

the financial reports from all mutual funds and other investment institutions tell us

that not much better work is done in using neural networks to predict stock price

movements, otherwise, the profits on their reports would be much better. There is

always a great difference between the price movement in practice and that predicted.

Based on this, some researchers claim that stock prices are unpredictable.

5. From Table 4.2, we may get the conclusion that w..P with Conjugate Gradient

Optimization performs best in our experiment. Of course we can't say it will surely

perform better than RBF networks in other conditions. If you remember what we

discussed in section 4.1. you would argue that RBF networks may perform better than

MLP networks with more hidden nodes. Things may be that way. That is one of the

future works we recommend.

6. Generally, ARBF networks have performed better than FRBF networks for other

researchers [74]. But our ex.periments get the opposite conclusion. We haven't found

satisfying reasons for this result.

7. Some readers may find, by looking deep into Table 4.1, that an interesting point

appears in indicator NLl. MLP networks trained with the Conjugate Gradient method

successfully predicted five patterns with an error less than 1% whereas ARBf predict

none. That is a great improvement. After making a deep study, we think the

53

Conjugate Gradient Optimization method mainly contributed to this success.

Backpropagation method is obsolete.

54

CHAPTERS

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Compared with the blueprint we provide in Section 5.2, we only did perhaps 5% of

the possible work in this thesis. But we can learn some lessons from what we did in

this thesis.

1. Neural networks can't predict exactly the direction of some complicated

problems like stock price movements.

2. Advanced optimization methods may playa crucial role in the applications of

neural networks, so we should pay close attemion to the invention of new

optimization methods and actively use them in our projects.

3. Traditional MLP networks need much time in training using backpropagation, but

M.LP networks with advanced optimization methods can overcome this

drawback.

4. Considering the errors from the simulators. the average error is 0.0632. This error

is acceptable, so the application of neural networks may help to make a decision

on stock selection.

5. A project such as we did in this thesis needs more time and necessary equipment

(a large database) to get better results. Full training and extensive choosing of

55

data will surely bring better results, as will better design of inputs to the

simulators.

6. Some measurements should be settled upon to measure and compare the

perfonnances of different simulators. The method we provided in this thesis only

tries to reach a reasonable standard.

7. A more friendly user interface should be designed to make the application more

convenient to use.

5.2 Recommendation

Only IOO-stock and two-week data was used in training the simulators because of

time and money limit. More data should be used in future works. For comparison

purpose, we chose the same architecture for all the simulators. An MLP may need more

layers and an RBF may need more hidden neurons to perform the best. Various

architectures should be used to each kind of neural networks in future works. The inputs

to the neural network simulators were decided according to the author's experiences, a

scientific method should be used in future works.

Future works of this project may lead to the invention of the super computer investor

using neural networks

Invention of "NeuroInvestor I"

One proposed plan of future research could follow these lines:

"NeuroInvestor I" could be the product of an experiment which consists of 600

Neurolnvestors. All these NeuroInvestors are stock-selection systems using artificial

neural networks. These 600 Neurolnvestors are divided into two groups, 300 for each

56

group. Group 1 will be created using a random choice method. Group 2 will use a

carefulJy designed method.

Group 1 will randomly choose its properties from:

1. All kinds of neural networks

2. All kinds of layers

3. All kinds of neurons

4. All possible inputs (more than 100) to the neural network

5. All kinds of transfer functions

6. All kinds of learning rules

The researchers would carefully design each NeuroInvestor of Group 2:

1. Neural network architecture.

2. Layers and neurons

3. Inputs to the neural network.

4. Transfer functions and learning rules

AIJ Neurolnvestors would be trained and tested with the same carefully chosen

data. After that, each NeuroInvestor would be given $1 million (virtual) as its capital and

begin investing according to real market operations. No intervention would be given to

these Neurolnvestors during their operation. After a year's virtual operation, returns from

all Neurolnvestors would be ranked. The best Neurolnvestor would be selected. This is

the prototype of the "Neurolnvestor r'. Research and further work are needed .

57

l

Bibliography

[1] Nannan G. Fosback, "Stock Market Logic", Dearborn Financial Publishing, Inc. 1995

[2] Thomas R. DeMark, "New Market Timing Techniques", John Wiley & Sons, Inc.

1997

[3] Thomas R. DeMark, "The New Science of Technical Analysis", John Wiley & Sons,

Inc., 1994

[4] Frank Connier, "Wall Street's Shady Side", Public Affairs Press, 1962

[5] Robert M. Barnes, "Trading in Choppy Markets, Breakthrough Techniques for

Exploiting Nontrending Markets", Times Mirror Higher Education Group Inc. Company.

1997

[6] Steven B. Achelis, "Technical Analysis From A To Z', Probus Publishing. 1995

[7] Brendan Moynihan, "Trading on Exceptions", John Wiley & Sons, Inc 1997

[8] Thomas J. Dorsey, "Point and Figure Charting", John Wiley & Sons, Inc. 1995

[9] Richard J. Maturi, "Dividing the DOW', Probus Publishing Company. 1993

[10] John Kenneth Galbraith, "A Short History ofFinancial Euphoria", Viking Penguin,

a division of Penguin Books USA Inc. 1993

58

[11] Victor Sperandeo, "Trader VIC II-Principles ofProfessional Speculation", John

Wiley & Sons, Inc 1994

[12] Tushar S. Chande and Stanley Kroll, "The New Technical Trader, Boost Your Profit

by Plugging into the Latest Indicators", John Wiley & Sons, Inc 1994

[13] Ivan F. Boesky, "Merger Mania, Arbitrage: Wall Street's Best Kept Money-Making

Secret", Holt Rinehart and Winston 1985

[14] :MERGERSTAT-a division of Howlihan Lockey Howard & Zukin, "1997

MergerSTAT Review".

[15] Connie Ferdinandson, "Merger & Acquisition Sourcebook 1989 Edition", Quality

Service Company, 1989

[16] Peter Lynch & John Rothchild, "Learn to Earn", Simon & Schuster Inc. 1995

[17] J.D. Cowan, 'The Problem of Organismic Reliability", Progress in Brain Research

17, 9-63. 1963.

[18] Thomas A. Meyers, "The Technical Analysis Course, A Winning Program for

Investors & Traders", McGraw-Hill, 1994

[19] Henry R. Oppenheimer, "Common Stock Selection, An Analysis ofBenjamin

Graham's "Intelligent Investor" Approach ", UMI Research Press. 1981

[20] Benjamin Graham, David L. Dodd, Sidney Cottle, "Securities Analysis, Principles

and Tectonics", McGraw-Hill Book Company, Inc. 1962

[21] Spencer McGowan, "The Investor's Information Sourcebook", New York Institute

of Finance. 1995

59

I'

I'

.'II

[22] von der Malsburg, "Self-organization of Orietation Sensitive Cells in the Striate

Cortex", Kybemetik 14,85-100. 1973.

[23] Fred W. Frailey, "How to Pick Stocks", The Kiplinger Washington Editors, Inc.

1997

[24] Phyllis S. Pierce, "The IRWIN Investor's Handbook 1995", Irwin Professional

Publishing 1995

[25] Matthew Bishop and John Kay, "European Merger and Merger policy", Oxford

University Press. 1993

[26] Von Neumann, "Probabilistic Logics And the Synthesis of Reliable Organisms From

Unreliable Components.". In Automatic Studies (C.E. Shannon and J. McCathy. ED), 43-

98, Princeton University Press, 1956.

[27] Michael Firth, "Share Prices and Mergers", Saxon House, 1976

[28] Khian Thong Lim, "Machine Learning Algorithms and Fuzzy Neural Networks: All

Experimental Comparison", Master's Thesis, Computer Science Department, Oklahoma

State University, Stillwater OK 1996

[29] Ping Jiang, "A Penalty Method to Reduce Overfitting in Artificial Networks",

Master's Thesis, Computer Science Department, Oklahoma State University, Stillwater,

OK,1996

[30] Douglas Gerlach, "Investor's Web Guide; Tools and Strategies for Building Your

Portfolio", Lycos Press. 1997

[31] Roy C. Smith. "The Money Wars", Truman Talley Books, Dutton, 1990

60

.,
I'

II

[32] "Webster's Third New International Dictionary of the English Language

Unabridged", Meniam-Webster, 1993.

[33] W. K. Talor, "Electrical Simulation of Some Nervous System Function Activities",

In Information Theory (E.c. Cherry, ED). Vol. 3. 314-328. London Butterworth. 1956

[34] Mark F.Stein, "Moody's Handbook of Common Stocks, Winter 1988-89", Moody's

Investors Service. 1989

[35] George W. Stroke, "An Introduction to Coherent Optics and Holography",

Academic Press, 1966.

[36] Frank Rosenblatt, "Principles ofNeurodynamics; Perceptrons and the Theory of

Brain Mechanism", Spartan Books, 1962.

[37] Philip L. Carret, "The Art ofSpeculation ", John Wiley & Sons, Inc. 1997

[38] Maureen Caudill and Charles Butler, "Understanding Neural Networks: Computer

Exploration, Volume 2, Advanced Networks, MIT Press. 1992

[39] Seymour Schoen and Wendell G. Sykes, "Putting Artificial Intelligence to Work,

Evaluating & Implementing Business Applications ", John Wiley & Sons, Inc. 1987

[40] Dobrivoje Popovic, Vijay P. Bhatkar, "Methods and Toolsfor Applied Artificial

Intelligence", Marcel Dekker, Inc. 1994

[41] fiJI 1998, "International Conference on Intelligence User Interfaces", ACM Press,

1998

[42] Patrick Henry Winston, "Artificial Intelligence", Addison-Wesley Publishing

Company, 1984

61

[43] Ben Du Boulay, David Hogg, Luc Steels, "Advances in Anifidal Intelligence-I!",

North-Holland. 1987

[44] John Haugeland, "Artificial Intelligence: the Very Ideas", MIT Press, 1985

[45] Maureen Caudill and Charles Butler, "Understanding Neural Networks: Computer

Explorations, VoLume 1, Basic Networks", MIT Press. 1992

[46] Philip C. Jackson, Jr. "Introduction to Artificial Intelligence", Mason & Lipscomb

Publishers Inc. 1974

[47] Stephen J. Andriole, "Applications in Anificial Intelligence", Petrocelli Books, Inc.

1985

[48] Eric L.Grimson and Ramesh S.Patil, "AI in the 1980s and Beyond, an MIT Survey",

MIT Press, 1987

[49] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, "Design Patterns,

Elements ofReusable Objected-Oriented Software", Addison-Wesley Publishing

Company, 1995

[50] Robert Hecht-Nielson, "Neurocomputing", Addison-Wesley Publishing Company,

1990.

[51] John Mylopoulos and Michael L. Brodie, "ArtificiaL Intelligence&Database",

Morgan Kaufmann Publishers, Inc. 1989

[52] Robert J. Schalkoff, "Artificial Intelligence: An Engineering Approach ", McGraw­

Hill, Inc. 1990

62

I"'""

[53] Judith E. Dayhoff, "Neural Network Architectures, An Introduction", Van Nostrand

Reinhold 1990.

[54] James A. Freeman, David M. Skapura, "Neural Networks, Algorithms, Applications,

and Programming Techniques", Addison-Wesley Publishing Company 1992

[55] Derek Patridge and Yorich Wilks, "The Foundations ofArtificial Intelligence

A Source Book", Cambridge University Press 1990

[56] K.L. Diamantaras and S.Y.Kung, "Pn·ncipal Component Neural Networks, 11reory

and Applications", John Wiley & Sons, Inc. 1996

[57] Mohamad, H. Hassoun, "Fundamentals ofArtificial Neural Networks", MIT Press,

1995

[58] Simon Haykin, "Neural Networks, A Comprehensive Foundation ", Macmillan

College Publishing Company, 1994

[59J Joey Rogers, "Objected-Oriented Neural Networks In C++", Academic Press. 1997

[60] Timothy Budd, "An Introduction to Object-Oriented Programming", Addison­

Wesley Longman, Inc. 1997

[61J Andreas Paepcke, "Object-Oriented Programming, the CLOS Perspective ", MIT

Press. 1993

[62] Lewis J. Pinson, Richard S. Wiener, "Applications ofObject-Oriented

Programming ", Addison-Wesley Publishing Company. 1992

[63] R. Linsker, "Self-organization In A Perceptron Network", Computer 21, 105-

117,1988

63

.....

[64] J.1. Florentine, "Object Oriented Programming System", Chapman & Hall. 1991

[65] Peter Coad and Jill Nicola, "Object-Oriented Programming", Prentice Hal1.1993

[66] M.L. Minsky, "Steps Toward Artificial Intelligence", Processings of the Institute of

Radio Engineer 49, 8-30.1961.

[67] M.T. Hagan, Howard B. Demuth, Mark Beale, "Neural Network Design ", PWS

Publishing Company. 1996

[68] W. Pitts, and W.S. McCulloch, 1947. "How We Know Universals: The Perception

OfAuditory And Visual Fonns", Bulletin of Mathematical Biophysics 9,127-147.

[69] N. Wiener, 1948. "Cybernetics", New York: Wiley.

[70] D.O. Hebb, 1949. "The Organization of Behavior", New York: Wiley.

[71] W.R. Ashby, 1952. "Designfor a Brain". New York: Wiley.

[72] M.L. Minsky, 1954. "Theory OfNeural-Analog Reinforcement Systems And Irs

Application To The Brain-Model Problem ", Ph.D. Thesis, Princeton University,

Princeton, NJ.

[73] J.J. Hopfield, 1982. "Neural Networks And Physical Systems", Proceedings of the

National Academy ofSciences ofthe U.S.A 79, 2554-2558.

[74] T. Kohonen, 1982. "Self-organized Formation Of Topologically Correct Feature

Maps", Biological Cybernetics 43,59-69.

[75] S. Kirpatrick, C.D. Gellat, Jr., and M.P. Vecchi, 1983, "Optimization By Simulated

Annealing", Science 220, 671-680.

64

•

-

....

[76] V. Braitenberg, 1984. "Vehicles: Experiments in Synthetic Psychology", Cambridge,

MA: MIT Press.

[77] D.E. Rumelhart, a.E. Hinton, and RJ. Williams, 1986a, "Learning Representations

by Back-propagating Errors", Nature (London), 323,533-536.

[78] D.S. Broomhead, and D. Lowe, 1988. "'Multivariable Functional Interpolation and

Adaptive Networks", Complex Systems 2, 321-355

[79] C.A. Mead, and M. Ismail, 1989 S. "Analog VLSI Implementation ofNeural

Systems", Boston, MA: KJuwer.

[80] D.E. Rumelhart, and J.L. McClelland, 1986. "Parallel Distributed Processing:

Explorations in the Microstructure of Cognition", Cambridge, MA: MIT Press.

[81] Don R. Hush and Bill G. Home, "Progress in Supervised Neural Networks", IEEE

Signal Processing Magazine, Jan 1993,8-38.

[82] Cornelius T. Leondes, " Algorithms and Architectures", Academic Press, 1998

[83] Dean S. Barr, " Predictive neural network means and method for selecting a

portfolio ofsecurities wherein each network has been trained using data relating to a

corresponding security", United State Patent 5,761,442 in 1998

[84] Michitaka Kosaka, "Method and a system for selection oftime series data", United

States Patent, 5, 109,475 in 1992

[85] Rao Valluru " Neural Networks & Fuzzy Logic", MIS Press 1995

[86] M. Azoff, "Neural Network Time Series Forecasting ofFinancial Markets ", John

Wiley and Sons, New Yark, 1994.

65

[87] Robert Trippi "Neural Networks in Finance and Investing ", Probus Publishing,

1993

[88] E.M. Azoff, "Neural Network Time Series Forecasting ofFinancial Markets", John

Wiley & Sons, 1994

[89] Robert Trippi, Jae K. Lee, "Artificial Intelligence in Finance & Investment", Irwin

Professional Publishing, 1996

[90] Alan Lapedse and Farbe Robert, "Nonlinear Signal Processing Using Neural

Networks, Prediction and System Modelling". Los Alamos Report LA_UR-87-2662. Los

Alamos National Laboratory, 1987

[91] Brian O'Reilly, "Computers That Think Like People", Fortune, 58-61, 27 Feb 1989

[92] D.E. Rumelhart. "Generalization by Weight-Elimination with Application to

Forecasting", Advances in Neural /nfonnation Processing Systems 3,875-882.

[93] Kanad Chakraborty, "Forecasting the Behavior of Multivariate Time Series Using

Neural Networks", Neural Networks, Vol. 5,961-970, 1992.

[94] Karl Bergersonand, "A Commodity Trading Model Based on a Neural Network­

Ex.pert System Hybrid." Proc. IJNN Seattle 1991, Vol. 1,289-293. IEEE, Pi.scataway, NJ,

1991.

[95] Zaremba Thomas. "Technology in Search ofa Buck. ", Academic Press, 1990.

[96] Shih Y. Lung, "Neural Nets in Technical Analysis", Technical Analysis ofStocks

and Commodities, Vol. 9, No.2, P 62, February 1991.

66

[97] Mark B. Fishman and Dean S. Barr, " Using Neural Nets in Market Analysis",

Technical Analysis ofStocks and Commodities, Vol. 9, N04. Page 18 April 1991

[98] Jeffrey O. Katz, "Developing Neural Network Forecasters for Trading", Technical

Analysis ofStocks and Commodities, Vol. 10, No 4, P 58, April 1992

[99] M. Jurik, "The Care and Feeding of a Neural Network", Futures, Vol. XXI, No 12,

40-44, October 1992.

[100] Y. Yoon, and G. Swales. "Predicting Stock Price Perfonnance: A Neural Network

Approach", Proceedings ofthe 24th Annual Hawaii International Conference on System

Science, Hawaii, IEEE Computer Society Press, Vol. 4, 1991, pp. 156-162

[101] K. Kimoto, and M. Yoda. "Stock Market Prediction System with Modular Neural

Networks", Proceedings ofthe International Joint Conference on Neural Networks, San

Diego, IEEE Network Council. Vol. 1, 1990, pp. 1-6.

[102] K. Kamijo, and T. Tanigawa. "Stock Price Patem Recognition: A Recurrent Neural

Network Approach", Proceedings of International Joint Conference on Neural Networks,

San Diego, IEEE Neural Network Council, Vol. 1, 1990, pp. 215-221

[103] W. Jiang, and J. Lee. "Intelligent Trading ofan Emerging Market", John Wiley &

Sons 1994.

[104] Liya Wang, "The Damped Newton Method-An ANN Learning Algorithm",

Master's Thesis, Computer Science Department, Oklahoma State University, 1995

[105] Stephen T. Welstead. "Neural Network and Fuzzy Logic Applications In C/C++ ".

John Wiley & Sons. Inc.1994.

67

~I
I r
lilt

"

...

[106] M. Hestenes, "Conjugate Direction Methods in Optimization", Springer-Verlag,

1980.

[107] Meishan Cheng, "A Survey and Comparison of Conjugate Gradient Methodsfor

Optimization", Master's Thesis, Computer Science Department, Oklahoma State

University, 1993.

[108] D.S. Broomhead and D. Lowe, "Multivariable Functional Interpolation and

Adaptive Networks", Complex Systems 2,321-355.1988

[109] J.E. Moody and C.J. Darken, "Fast Learning in Networks of Locally-tuned

Processing Units", Neural Computation 1,281-29. 1989

[110] T. Poggio and F. Girosi, "Regularization Algorithms for Learning That Are

Eqivalent to Multilayer Networks", Science 247, 978-982. 1990.

68

h
II,
•l••

Ht'«•
••

I,,
•,.

APPENDIX A Training File

0.888889 0.555556 0.777778 0.11025 0.444444 0.333333 0.444444 0
0.0869565
0.444444 0.222222 0.222222 -0.0803906 0.333333 0.333333 0.333333 0
0.0447431 I •
0.444444 0.444444 0.333333 0.126176 0.555556 0.333333 0.555556 0

,,
0.228448 I
0.666667 0.333333 0.5555~5 0.334313 0.444444 0.333333 0.444444 0 t
0.0626536 I,

0.222222 0.222222 0.111111 -0.120054 0.222222 0.333333 0.222222 0
q

0.100917 I•
0.333333 0.555556 0.555556 -0.102176 0.333333 0.333333 0.333333 0 I

t0.143113 I

0.222222 0.333333 0.222222 0.0198263 0.555556 0.333333 0.555556 0 I •

0.012766 H0.222222 0.222222 0.333333 -0.0294607 0.555556 0.333333 0.555556 0
0.0145985 If

q
0.444444 0.555556 0.444444 0.246215 0.444444 0.111111 0.444444 1 II
0.210383

jl

0.555556 0.555556 0.555556 0.179637 0.444444 0.333333 0.333333 0
0.120141
0.777778 0.555556 0.666667 0.0324084 0.333333 0.333333 0.444444 0
0.000385356
0.777778 0.444444 0.333333 0.103651 0.222222 0.333333 0.444444 1 I'I

0.0816641
0.555556 0.444444 0.444444 0.0420602 0.222222 0.111111 0.333333 1 -
0.0533333
0.666667 0.555556 0.444444 0.0214079 0.222222 0.333333 0.222222 1 -
0.0125523
0.222222 0.444444 0.222222 0.144002 0.444444 0.333333 0.666667 0
0
0.444444 0.444444 0.666667 0.00934334 0.333333 0.222222 0.555556 0
0.0714286
0.111111 0.111111 0.111111 -0.045472 0.555556 0.333333 0.444444 1
0.106383
0.333333 0.333333 0.333333 0.0630935 0.111111 0.333333 0.333333 1
0
0.666667 0.666667 0.555556 0.102554 0.333333 0.333333 0.333333 0
0.180534
0.333333 0.444444 0.444444 0.12489 0.222222 0.333333 0.333333 1
0.229682
0.444444 0.333333 0.333333 -0.25835 0.444444 0.333333 0.333333 1
0.315068
0.333333 0.333333 0.333333 -0.0592513 0.333333 0.333333 0.555556 0
0.024911
0.444444 0.333333 0.444444 -0.01066 0.333333 0.222222 0.555556 0
0.0488145

69

I"""'

0.111111 0.444444 0.444444 -0.0332537 0.444444 0.333333 0.333333 1
0.027027
0.666667 0.444444 0.444444 0.0570308 0.444444 0.111111 0.444444 0
0.0896057
0.555556 0.555556 0.444444 0.0159926 0.444444 0.333333 0.444444 1
0.122449
0.333333 0.111111 0.333333 -0.0298175 0.555556 0.222222 0.444444 1
0.0612245
0.444444 0.444444 0.222222 0.0450185 0.333333 0.444444 0.333333 0
0.0666667
0.444444 0.333333 0.333333 -0.0355578 0.333333 0.444444 0.444444 a
0.156627
0.777778 0.333333 0.444444 0.0401636 0.222222 0.444444 0.333333 0
o
0.888889 0.444444 0.555556 0.119817 0.222222 0.444444 0.555556 0
0.0322581
0.777778 0.333333 0.333333 0.0270914 0.444444 0.333333 0.555556 0
0.0541176
0.666667 0.444444 0.222222 0.0979716 0.111111 0.444444 0.333333 0
0.117117
0.444444 0.444444 0.444444 0.147392 0.333333 0.444444 0.555556 1
o
0.333333 0.333333 0.444444 -0.00797985 0.444444 0.333333 0.555556 a
0.225806
0.333333 0.666667 0.333333 0.0797147 0.222222 0.444444 0.444444 a
0.00840336
0.555556 0.444444 0.555556 0.12045 0.222222 0.444444 0.333333 0
0.0867925
0.777778 0.777778 0.666667 0.121863 0.333333 0.222222 0.222222 a
0.00369004
0.777778 0.333333 0.333333 -0.00402843 0.444444 0.444444 0.555556 1
0.0793651
0.888889 0.555556 0.333333 0.202631 0.333333 0.333333 0.333333 1
0.0689655
0.888889 0.666667 0.444444 0.0817216 0.555556 0.444444 0.444444 1
0.0901099
0.666667 0.444444 0.333333 0.0366822 0.444444 0.444444 0.444444 1
0.0491803
0.444444 0.444444 0.333333 -0.287028 0.333333 0.444444 0.333333 1
0.37931
0.333333 0.555556 0.444444 -0.0203618 0.222222 0.444444 0.333333 1
0.00840336
0.444444 0.444444 0.222222 0.310005 0.444444 0.444444 0.444444 1
0.025641
0.444444 0.555556 0.444444 -0.0376695 0.222222 0.333333 0.444444 0
0.473684
0.333333 0.333333 0.222222 -0.0120284 0.333333 0.444444 0.444444 0
o. 0607735
0.333333 0.444444 0.222222 -0.0120284 0.555556 0.444444 0.555556 0
0.0562347
0.444444 0.555556 0.555556 0.131455 0.444444 0.333333 0.555556 0
0.271967
0.666667 0.888889 0.777778 0.218644 0.444444 0.333333 0.333333 0 ­
0.115385
0.333333 0.555556 0.333333 0.0248231 0.222222 0.333333 0.222222 0
0.055409
0.444444 0.333333 0.333333 -0.039905 0 0.333333 0.222222 0
0.165049
0.555556 0.555556 0.333333 0.0390815 0.444444 0.333333 0.444444 0
0.0357143

70

0.444444 0.333333 0.444444 0.0694087 0.222222 0.222222 0.333333 0
0.0218805
0.333333 0.222222 0.222222 -0.0105438 0.444444 0.333333 0.333333 0
0.167883
0.444444 0.555556 0.555556 0.0383919 0.333333 0.333333 0.666667 0
0.00330033
0.777778 0.555556 0.555556 0.216119 0.222222 0.222222 0.444444 0
0.0352941
0.333333 0.555556 0.444444 -0.0118752 0.444444 0.222222 0.444444 0
0.0786517
0.555556 0.555556 0.333333 0.0460173 0.555556 0.222222 0.444444 0
0.0134357
0.444444 0.444444 0.333333 -0.0893093 0.333333 0.222222 0.444444 0
0.0607735
0.222222 0.333333 0.333333 -0.182944 0.333333 0.222222 0.444444 0
0.0827068
0.444444 0.333333 0.444444 -0.0164103 0.555556 0.333333 0.444444 0
0.00900901
o 0.444444 0.444444 -0.209899 0.333333 0.333333 0.555556 0
o

0.444444 0.333333 0.222222 -0.0194224 0.555556 0.333333 0.666667 0
o

0.444444 0.444444 0.444444 -0.0194224 0.444444 0.333333 0.444444 0
0.125
0.444444 0.333333 0.333333 -0.0280184 0.222222 0.333333 0.333333 0
0.0635838
0.666667 0.555556 0.333333 0.0222856 0.222222 0.333333 0.333333 0
0.0524309
0.444444 0.555556 0.555556 0.0745947 0.333333 0.111111 0.444444 0
0.157552
0.666667 0.333333 0.333333 0.149527 0.444444 0.333333 0.444444 0
o
0.444444 0.333333 0.333333 0.0093451 0.444444 0.111111 0.333333 0
0.0588235
0.333333 0.444444 0.444444 -0.0873995 0.555556 0.111111 0.444444 0
0.0126582
0.222222 0.222222 0.333333 -0.0669091 0.444444 0.111111 0.555556 0
0.0332717
0.333333 0.333333 0.333333 -0.040597 0.333333 0.222222 0.333333 1
0.0444243
0.444444 0.555556 0.333333 -0.0581889 0.444444 0.111111 0.555556 0
0.023569
0.666667 0.444444 0.444444 0.0069882 0.333333 0.111111 0.333333 0
0.00502513
0.222222 0.222222 0.111111 -0.0430358 0.333333 0.222222 0.444444 1
0.152355
0.222222 0.444444 0.333333 -0.042755 0.444444 0.222222 0.555556 1
0.00584795
0.555556 0.444444 0.222222 0.0019377 0.333333 0.111111 0.333333 0
0.0531646
0.666667 0.666667 0.222222 0.0629457 0.444444 0.111111 0.333333 0
o
0.444444 0.444444 0.555556 0.000482092 0.555556 0.111111 0.666667 0
0.00291545
0.666667 0.555556 0.555556 0.108709 0.444444 0.222222 0.444444 1
0.129412
0.222222 0.555556 0.222222 0.0269264 0.333333 0.333333 0.333333 0

-0.00230947
0.555556 0.555556 0.444444 0.03731 0.555556 0.333333 0.555556 0
0.0031348

71

•II'..
••
"

jI
"•

I""'""

I ,

: -

I II
I' ~

"r
".
II'

I, ~

!. ~
, ..,
: ~

'f

:I
, ,
I,

0.666667 0.666667 0.555556 0.0982793 0.666667 0.333333 0.444444 0
0.00437956
0.888889 0.777778 0.777778 0.169725 0.333333 0.222222 0.444444 0
0
0.666667 0.555556 0.333333 -0.0117934 0.444444 0.333333 0.555556 0
0.0153483
0.555556 0.222222 0.333333 0.00713583 0.555556 D.222222 0.666667 0
0.0750988
0.555556 0.666667 0.444444 0.0992384 0.444444 0.333333 0.555556 0

0
0.444444 0.555556 0.444444 -0.066817 0.444444 0.333333 0.333333 0
0.0628931
0.222222 0.444444 0.333333 -0.0148621 0.333333 0.333333 0.444444 0
0.0684932
0.444444 0.555556 0.444444 0.0103997 0.444444 0.222222 0.222222 0
0.0104325
0.222222 0.555556 0.333333 -0.018949 0.222222 0.333333 0.444444 0
0.0455446
0.222222 0.555556 0.333333 0.0505856 0.111111 0.333333 0.333333 0
0.103797
0.222222 0.222222 0.222222 -0.0789444 0.333333 0.333333 0.444444 0

-0.00911854
0.666667 0.555556 0.444444 0.0586252 0.444444 0.333333 0.333333 0
0
0.333333 0.444444 0.444444 -0.0191384 0.444444 0.333333 0.444444 0
0.0457516
0.666667 0.555556 0.444444 0.150738 0.333333 0.333333 0.666667 0
0.00266667
0.666667 0.555556 0.666667 0.127101 0.444444 0.222222 0.555556 0
0.0146082
0.555556 0.555556 0.555556 0.13124 0.222222 0.333333 0.444444 0
0.0416667
0.111111 0.222222 0.333333 -0.0220671 0.333333 0.333333 0.333333 0
-0.00376648

72

APPENDIXB Test File

0.444444 0.222222 0.222222 0.199083 0.555556 0.444444 0.666667 1
0.0275229
0.666667 0.333333 0.444444 0.0242453 0.333333 0.111111 0.333333 1
0.043755

-0.666667 0.555556 0.444444 0.111211 0.222222 0.444444 0.444444 1 : ~0.0031348 ..
0.333333 0.555556 0.555556 -0.0120284 0.444444 0.444444 0.444444 1

,.,
0.297297
0.888889 0.555556 0.666667 0.021788 0.333333 0.444444 0.444444 0 ' "
0.0317757 :.
0.111111 0.222222 0.333333 -0.0434186 0.333333 0.444444 0.444444 1 011

0.0925926 I ~
\ It

0.555556 0.333333 0.444444 0.123203 0.222222 0.444444 0.555556 a ••
0.0532915 :!0.555556 0.333333 0.444444 -0.0134872 0.333333 0.444444 0.222222 1
0.0401753 of

"
0.333333 0.444444 0.555556 -0.010056 0.111111 0.444444 0.333333 a

"
0.0708661
0.333333 0.555556 0.333333 -0.0192748 0.222222 0.444444 0.333333 1 'f
0.0510949 :1
0.444444 0.222222 0.222222 -0.0120284 0.222222 0.444444 0.444444 0 II0.0536585
0.444444 0.444444 0.444444 -0.0246181 0.333333 0.333333 0.333333 0 'fo.
0.0334825 :I
0.555556 0.444444 0.444444 0.0520486 0.555556 0.333333 0.555556 a I ..

0.167183
0.555556 0.555556 0.555556 -0.0215317 0.444444 0.333333 0.444444 0
0.0564173
0.111111 0.333333 0.333333 -0.08085 0.444444 0.222222 0.555556 0
0.170147
0.666667 0.555556 0.444444 0.0253106 0.555556 0.333333 0.555556 a
0.0217391
0.444444 0.444444 0.444444 0.0161982 0.444444 0.333333 0.444444 a
0.346405
0.666667 0.444444 0.444444 0.040317 0.444444 0.333333 0.666667 0
0.142875
0.444444 0.444444 0.555556 0.0657433 0.333333 0.333333 0.444444 0
0.0110497
0.444444 0.333333 0.444444 0.052823 0.555556 0.333333 0.555556 0
0.1375
0.555556 0.444444 0.444444 O. 00251368 0.333333 0.333333 0.333333 0
0.106918
0.222222 0.222222 0.333333 -0.0534004 0.222222 0.333333 0.444444 0
-0.0273556

73

APPENDIXC Code for Preprocessor

II pr.h Head file for preprocessor
II Feb, 1999 By Yimin Yang. Computer Science Department
II Oklahoma State University

#define M_DAY 5
#define DAY_NUM 17
#define MAX 9

typedef struct raw
{
public:

long date;
char *name;
double closing_price;
long volume;

double target;
}rawnode;

inline rawnode* buildnode (char *narnel, double tar, long dat, long vo,
double pri) {

rawnode *node;
node=new rawnode();
node->date=dat;
node->name=new char[51;
strcpy(node->name,name1) ;
node->closing-price=pri;
node->volume=vo;

node->target=tar;
return node;

rawnode* array[20];
rawnode* index[20];

class result
{

private:
double pa,pia;
long va. iva;

double pan, pdp, prn,prg;
double van, vdv, vrn, vrg;

FILE* output;
Ilcornput com;

74

protected:
double targ;

II double target;

/***

public:
result (FILE*out=O, double tar=O) :pan(O) ,pdp(O) ,prn(O) ,prg(O),

van(O) ,vdv(O) ,vrn(O),vrg(O}{ output=out; targ=tar;}
II result (FILE*, double);

void print();
void average();

};llend of class result

class comput: public result
{

private:
double numl,num2;
double pm(int);
long vm{int);

public:
comput(){}

•I
c
••It

*
*

*

Preprocessor for Neural Networks
Feb, 1999. By Yimin Yang. Computer Science Department
Oklahoma State University

*
*
*

double pan();
double pdp();
double prn(};
double prg();
double van(};
double vdv () ;
double vrn();
double vrg () ;
double target();

};llend of class compute

~**********.*************.***************************/

II This program read raw data from file ~rawdata' and produce
Ilinputs to the neural networks, the results saved in the file
Iitraining. The raw data has the following form:
Illine 1+17*x x=1,2, ... 1800 has two fields one is stock name
II the second is the highest price in two weeks from the
II last day in the rawdata
Ilother lines have five fields each line.
II first field is the trading date
II second is the trading volume of the whole market
II third is the closing value of the market index(Dow Jones

Industies average
II fourth is the trading volume of the stocks
II fifth is the closing price of the stock that day

•• 1

#include<iomanip.h>
#include<fstream.h>

75

po

#include<stdio.h>
#include<iostream.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>

#include ·pr.h"

void result::print()
{

comput com;
pan=com.pan() ;
pdp=com.pdp() ;
prn=com. prn () ;
prg=com.prg();
van=com.van() ;
vdv=com. vdv () ;
vrn=com.vrn() ;
vrg=com.vrg() ;
targ=com.target();

cout«"\n act target is "«array[O)->target;
Ilcout«pan;
II cout«pdp;
II cout«prn«prn«prg;
II cout«endl;

1/
cout«van«setw(3) «vdv«setw{J)«vrn«setw(3) «vrg«targ«"\n";

double 1=0;
l=pan+pdp+prn+prg+van+vdv+vrn+vrg;
1=1/8;
1=1-0.2;
cout«"\n reasonable output should be: "«1;
double tar=O;
double s=O;
s=array[DAY_NUM-l)->closing-price;
tar=l*s+s;
cout«"\n reasonable target should be "«tar;

of stream outPI"training",ios: :app);
if (outp. fail ())
cerr«"OUTPUT file open error";

outp«pan«" "«pdp«" "«prn«" "«prg«" "«van«" "«vdv«" "«vrn«"
"«vrg«" "«targ'«"\n";

}llend of print()

I I comput: : comput ()
1/(
Ill/lend of comput

Iinumber of days in which the price is greater than its moving average

double comput::pan()
(

int i=O;
int nwn=O;
double nwnl=O.OOOO,num2=O.OOOO;

for(i=DAY_NUM-l;i>DAY_NUM-MAX;i--)

76

...

if(array[i]->closing-price>pm(i»
num++;

num:'=num;
num2=MAX;
return numl/num2i

II return num/MAXi
}llend of compute pan

Ilcompute simple moving average
double comput: :pm(int x)
(

double total=O.OOOO;
int i=Oi

for(i=Xii>x-M_DAY;i--)
(

total+=array[i]->closing-price;
}
return totalIM_DAY;

Ilfunction p%>dp% compute number of days that the price increase
percentage is
Ilgreater than that of index
double comput::pdp()
(

int i=O;
int num=Oi
double pcl,pc2;

for (i=DAY_NUM-li i>DAY_NUM-MAX; i--)
(

pcl=array[i]->closing-price-array[i-l]->closing-price;
pc2=index[i]->closing-price-index[i-l]->closing-price;
if(pcl/array[i-l]->closing-price>pc2/index[i-l]-

>closing-price)
num++;

}

numl=numi
num2=MAX;
return numl/nurn2;

II return num/MAX;
}//need to pass the index array

Ilber of days in which the price of current is greater than that of last
day
double comput:: prn ()
(

int i=Oi
int num=O i

for(i=DAY_NUM-l;i>DAY_NUM-MAX;i--)
(

if(array[iJ->closing-price>array[i-l]->closing-price)
num++;

}

numl=num;

77

•
• I••,

..

num2=MAX;
return numl/num2;

II return num/MAX;

Ilcomputer if the price increase of MAX days is greater than that of the
index

double comput: :prg()
(

int m=DAY_NUM-l;
int n=DAY_NUM-MAX-l;

double numl, nurn2;

nurnl=(array[m]->closing-price­
array[n]->closing-price)/array[n)->closing-price;

num2=(index[m]->closing-price­
index[n]->closing-price)/index(n)->closing-price;

return (numl-nurn2);

Ilcompute nwnber of days in which the volume is greater than its moving
average
double comput: :van()
{

int i=O;
int num=O;

for (i=DAY_NUM-l;i>DAY_NUM-MAX; i--)
(

if(array[i]->volurne>vrn(i)
num++;

}

numl=num;
nurn2=MAX;
return numl/nurn2;
/Ireturn num/MAX;

I/compute volume moving average
long comput: :vrn(int x)
(

int i=Oi
long total=O;

for(i=x;i>x-M_DAY;i--)
{

total+=array[i)->volurnei
}
return total/M_DAY;

Ilcompute nwnber of days in which the vovule increase percentage is
graeter than
double comput: :vdv()
{

int i=Oi
int num=O;
double nurn3=O;
double nurn4=O;

78

·,
: I·,

•· .••,

for(i=DAY_NUM-l;i>DAY_NUM-MAX;i--)
{

num3=(array[i}->vollli~e-array[i-1)->volume)/array[i-1J-

>volume;
num4=(index[i)->volume-index[i-1)->volume)/array[i-1)-

>volume;
if (num3>num4)

num++;
}

num1=num;
num2=MAX;
return num1/num2;
//return num/MAX;

Ilcompute number of days in which the volume of current day is graeter
than last
double comput: :vrn{)
{

int i=Oi
int num=O;

for(i=DAY_NUM-1;i>DAY_NUM-MAX;i--)
{

if(array[i]->volume>array[i-1)->volume)
num++;

}

num1=num;
num2=MAXi
return num1/num2;

II return num/MAX;
}

Ilcompute if the whole volume is greater than that of index
double comput: :vrg()
(

double num3;
double num4;
long total1;
long total2;
int i=O;

for(i=DAY_NUM-l;i>DAY_NUM-MAXii--)
(

total1+=array[i)->volume;
tota12+= index[i)->volume;

}

double m,ni
m=totall/MAX;
n=total2/MAX;

numl=(m-array[O)->volume)/array[Oj->volume;
num2=(n-index[O)->volume)/index[Oj->volume;

if (numl>0&&num1>num2)
return 1;
else
return 0;

/Iscalint target output

79

• 'Ii• •; a

..::
•
• I
• I
• I•

double comput: :target()
(

double cp;
cp=array[DAY_NUM-l)->closing-price ;
return (array[O)->target-cp)/cp;

int main ()
(

char *line;

int i=O, indexl;
long da,vo, ida;
double cp,target,icp;
char *name;
char *namel;

line=new char[80);
name=new char(30);
namel=new char(30);

I ~.,
. a
:~

1*

ifstream inp("rawdata");
oEstream outp (II training") ;

iE(inp.fail())
(
cerr«IIError opening rawdatall«endl;
exit(l) ;

}
if (outp. fail (»

cerr«"Error opening training"«endl;
exit(2} ;

} * I

while«(!inp.eof(»)

inp»name;
inp»target;
indexl=O;
for(i=O;i<DAY_NUM;i++)
(

inp»da»ido»icp»vo»cp;
II cout«da«ido«icp«vo«cp;

array[indexl)=buildnode(name,target,da,vo,cp);
index[indexl)=buildnode(name,target,da,ido,icp) ;
indexl++;

}

result re;
re.print();

}llend of while loop

}llend of main

80

....

APPENDIX D Code for FRBF Simulator

/***
Fixed Center Radial Basis Function Simulator

Feb, 1999. By Yimin Yang. Computer Science Department
Oklahoma State University

•• t

This program is written using the method described in
Haykin' book "Neural Networks, A Comprehensive Foundation"
Simon Haykin, Macmillan College Publishing Company 1994
Before training the program, the file "training" must be set
Before testing the simulator, the file "testfile" must be
set. The program is written in C++, can run in both Unix and
PC Visual C++ envirament
***/

#include <stdio.h>
#include <iostream.h>
#include <stdlib.h>
#include <wath.h>
#include <time.h>
#include<fstream.h>

double tor;
of stream out ("output") ;

class network;
class input_layer
{

public:

int nurn_inputs;
II double input~vector[10];

input_layer(int) ;
Ilinitial_centers() ;
-input_layer() ;
void put_input();
friend network;

} ;

input_layer::input_layer(int i)
{

nurn_inputs=i;
Ilinput_vector= new double(i];

)
input_layer: :-input_layer()

81

'.,

Iidelete [nurn_inputs] input_vector;

class middle_layer
(

public:
int nurrLcenters;

II double center_vector [10] [10];
input_layer *in;

middle_layer () ;
rniddle_layer(int,input_layer *);
-middle_layer() ;
double calc_gaussian(int);
double calc_distance(int);
double max_distance();
void initial_centers();
void read_centers();

void write_centers();
double calc_two-points(int, int);

void update_centers (float) ;
int shortest_center();

friend network;
} ;

middle_layer: :middle_layer (int i, input_layer *rn)
(

num_centers =i;
in=m;

II center_vector=new double[i] [nurn_inputs];

Ii center_vector=new double(i]
)

middle_layer: :-middle_layer() {
II delete in;

class output_layer
(
private:

double weights[lOOl;
double expected_value;
input_layer *in;
middle_layer *mid;

friend network;

public:

output_layer (input_layer*, middle_layer·);
-output_layer();
void initial_weights(};
double calc_out();
double calc_error();

82

void update_weights (float) ;
//void list_weights();
void write_weights();
void read_weights();
//void initial_centers();
void write_output();
void initial_centers();
//void list_errors();
//void list_outpucs();

} ;

output_layer: : output_layer (input_layer* i, middle_layer* j)
{

in=i;
mid=j;

}

output_layer::-output_layer()
{

//delete [num_centers] weights;

class network

private:

input_layer *inl;
middle_layer *ml;
output_layer *01;
int nurnin, numcen,numout, training;

public:
network() ;
-network();

void set_training(const unsigned &);
unsigned get_training_value();
void get_layer_info();

void training_centers();
double get_error();

void set_up_network();
void set_up-patterns(int);
void randomize_weights();
void update_weights (float);
//void update_momentum();
void write_weights();
void read_weights();
//void list_weights();
void write_outputs();
void update_weightsl(float);

} ;

network: :network() (
nurnin=O;
numcen=O;

83

•a..
~

'II

numout=O;
training=O;

double train[150] [50];
int row;
double center_vector [100] [50);
double input_vector[lO);

inline float squash(float input)
II squashing function
II use sigmoid -- can customize to something
II else if desired; can add a bias term too
II
{

if (input < -50)
return 0.0;

else if (input> 50)
return 1.0;

else return (float) (l/(l+exp(-(double)input))};

inline double randomweight(}
{

int num;
II random number generator
II will return a floating point
II value between -1 and 1

Ilif (init==l) II seed the generator
srand ((unsigned)time(tWLL});

num=rand() % 100;

ret~rn 2*(double(num/100.00))-1;

void output_layer::initial_centers()
{

int num=O;
/Iint flag=O;

II double unit;
Ilifstream select("training");
Ilif(select.fail())
Ilcerr«"Input file open error";
Ileise

I I {
for(int i=O; i<mid->num_centers;i++)

(

num=O;
I I flag=O;

II srand((unsigned) time(NULL));
II num=rand() %100;

for(int m=O;m<in->num_inputs;m++)
center_vector(i] [m)=train(iJ (m);

II select»unit;
II flag++;

84

i

center_vector[i] [O]=unit;
for(int m=l;m<in->num_inputs;m++}
select»center_vector[i) [m] ;

II while(flag/9!=num)
II{
II select»unit;
II flag++;
II}
Ilif(flag/9==num)
II{

II
II
II

II}
}llend of i loop

Ilend of else
II select.close();

void middle_layer::update_centers(float beta)
(

int i,x;
i=shortest_center();

for(x=O;x<in->num_inputs;x++)
{

center_vector[i] [x]+=beta*(input_vector[x]-center_vector[i] [xl);

int middle_layer: :shortest_center()
{

int i, result, m;
double x, y, shortest=lOOO.OOOO;

for(i=O;i<num_centers;i++)
(

x=O.OOOO;
y=O.OOOO;
for (m=O;m<in->num_inputs;m++)

{

double unit=input_vector[m]-center_vector[i] 1m);
X= x + unit*unit;

)

y=sqrt (x) ;
if (shortest>y)

(
shortest=y;
result=i;

return result;

double middle_layer::calc_gaussian(int i)
(

double x, d, dl, d2, m,n;

d2=calc_distance(i); IIcompute Ilx-till
d2=d2*d2;
d=max_distance() ;

dl=d*d;
II x=1/(1+d2);

m=sqrt(2*num_centers) ;
n=d/m;

85

1

II x=exp{-num_centers/dl*d2);
x=exp (-d2 Idl J ;

return x;
)

Ilthis function compute I lx-til 1~2

double middle_layer: : calc_distance {int i)
(

int m;
double x=O.OOOO;

double y=O.OOOO;
for{m=O;m<in->num_inputs;m++)
{

y={input_vector[m]-center_vector[i) [m));
x+=y*y;

}

return sqrt (xl;

Ilcompute max distance of chosen centers
double middle_layer: :max_distance{)
{

double max_dis;
double x=O.OOOO, y=O.OOOO;
int i,j;

for(i=O;i<num_centers;i++)
for(j=l;j<num_centers;j++)

(
x=calc_two-points(i,j);
if (max_dis<x)

max_dis:=x;

return max_dis;

Ilcompute Euclidean distance between the tow centers
double middle_layer: :calc_two-points{int i, int j)
(

double x=O.OOOO,y=O.OOOO,z=O.OOOO;
for{int m=O;m<in->num_inputs;m++)
{

x={center_vector[i) [m)-center_vector[j] [m);
y=x*x;

Z+=y;

}
return sqrt (z) ;

Ilread the centers from file center

void rniddle_layer::read_centers()
{

ifstrearn readcenter ("center") ;
if (readcenter.fail ())
cerr«"center file open error";
else

(
for(int i=O;i<num_centers;i++)

for(int j=O;j<in->num_inputs;j++)
{

86

\..
.~

readcenter»center_vector[i) [j);
}

}

readcenter.close();

void middle_layer: :write_centers ()
(

ofstream writecenter("center");
int m=O;
if(writecenter.fail())
cerr«"write center file open error";
else

for(int i=O;i<num_centers; i++)
{
for (int j =0; j <in->num_inputs; j ++)

{
writecenter«center_vector[i] [j)«endl;

II m++;
/I if ((m%8}==0)

II cout«"\n";
}

cout«endl;

)
writecenter.close() ;

void output_layer: :initial_weights()
(

//weights=new double[num_centers);
for(int i=O;i<mid->num_centers;i++)
weights[i)=randomweight(};

void output_layer: : update_weights (float beta}
(

double actual_out, error;
actual_out=calc_out() ;
error=expected_value-actual_out;
for(int i=O;i<mid->num_centers;i++)

(
weights[i] +=beta*error*mid->calc_gaussian (i) ;//may use sigmoid

void output_layer: :read_weights()
(

ifstream readweights ("weight") ;
if{readweights.fail())
cerr«"readweights file open error";
else

{
for(int i=O;i<mid->num_centers;i++)
readweights»~eights[i);

}

readweights.close(};

87

'.•)
•

~t

void output_layer: :write_weights()

int m=O;
ofstream wri teweights ("weight") ;
if(writeweights.fail())
cerr«"writeweights file open error";
else

(
for(int i=O;i<mid->nurn_centers;i++)

writeweights«weights(ij«endl;

}
writeweights.close(};

double output_layer: :calc_out()
(

int i;
double total=O.OOOOOO, unit. gau, result;

for (i=O;i<mid->nurn_centers; i++J
{

gau=mid->calc_gaussian{i) ;
unit=weights[ij*gau;
total+=unit;

}

I/result=(double} (l/(l+exp(-{double)total)});
Ilreturn result
return total;

void output_layer: :write_output()
(
}

network: :-network()
(

delete inl;
delete 01;

delete ml;

void network: : set_training (const unsigned & value)
{

training=value;
}

unsigned network: :get_training_value()
(

return training;
}

void network::get_layer_info()

83

•

cout « " Enter in the layer sizes separated by spaces.\n";
cout « " For a network with 3 neurons in the input layer,\n";
cout « " 2 neurons in a hidden layer, and 4 neurons in the\n";
cout « " output layer, you would enter: 3 2 4 .\n";
I/cout « " You can have up to 3 hidden layers,for five maximwn entries
:\n\n";

cin » nwnin»nwncen»nwnout;

// --
/1 size of layers:
// input_layer layer_size[OI
1/ output_layer laye~_size[nwnber_of_layers-1]

1/ middle_layers layer_size[l]
II optional: layer_size [nwnber_of_layers-3]
/1 optional: layer_size [number_of_layers-2]
/1-- ---

void network::set_up_network()
{

Ilint i,j,k;

inl=new input_layer (numin) ;
ml=new middle_layer(nwncen,inl);
ol=new output_layer(inl,ml);

}

Iitraining the center before training the weights using k-mean method
void network::training_centers()
(

ol->initial_centers();

II ifstream inpu("training");
Ilif(inpu.fail(»

II cerr«"inpu open error";
double cluster[100l [100];

for(int p=O;p<10;p++)
for(int pp=0;pp<10;pp++)

cluster[p] [pp]=O;
II double iv[10];
II int index=O;
int m=O;

int index [10] [1] ;
for(int k=0;k<10;k++)

index[k] [0]=0;
double md=O;

Ilwhile(!inpu.eof(»
int u;
for(u=O;u<row;u++)

89

,..

",....
~~

for(int i=O;i<inl->num_inputs;i++)
input_vector [i]:train[u] [i);
m=rnl->shortest_center();
for(int l=O;l<inl->num_inputs;l++)

{

cluster[rn] [1]
=c1uster[rn] [l)+input_vector[l];

}

index frn] [0] ++;

for(int r=O;r<rn1->num_centers;r++}
{

for(int n=O;n<inl->num_inputs;n++}
{

center_vector[r] [n]=cluster[r] [n]/index[r] [OJ;

void network: : randornize_weights()
(

//ol->initia1_centers() ;
ol->initial_weights() ;

void network: : update_weights (float beta)
(

rnl->update_centers(beta) ;
ol->update_weights(beta) ;

void network: :update_weightsl(float beta)
{

double ae=O;
ae=torIlOO;
for(int i=O;i<rnl->num_centers;i++}

ol->weights[il+=beta*ae;

void network: :write_weights()
(

rnl->write_centers() ;
ol->write_weights() ;

void network: :read_weights(}
{

90

··,
•
"
• 0••·,
~r

~.·~:)
•
•
!•
i••
~

ml->read_centers();
ol->read_weights() ;

void network::write_outputs()
{

out«"\n target is: "«input_vector(BJ;
out«"\n actual output from neural network is: ";

out«ol->calc_out()«endl;
}

double network: :get_error()
(

II

double x,y;
x=ol->calc_out() ;
y=ol->expected_value-x;
tor=tor+y*y;
if (y<O)

y=O-y;
return y; •·.·.• •

• I) l'

void network: :set_up-patterns(int i)
{

if(i.==l)
ol->expected_value=input_vector(8];

}

void main()
{

double error_tolerance=O.l;
double total_error=O.O;
double avg_error-per_cycle=O.O;
double error_last_cycle=O.O;
double avgerr-per-pattern=O.O; II for the latest cycle
double error_last-pattern=O.O;
float learning-parameter=O.02;
//float alpha; II momentum parameter

/Ifloat NF; II noise factor
I/float new_NF;
tor=O;

unsigned temp, startup, start_weights;
/Ilong int vectors_in_buffer;

91

long int max_cycles;
long int patterns-per_cycle=O;

long int total_cycles, total-patterns;
int i=O;

II create a network object
network rbf;
ifstream input ("training n) ;
ifstream test("testfile");

II enter the training mode; l=training on O=training off
cout « "---\n";
cout « " C++ Neural Networks \n";
cout «" RBF simulator \n";
cout « " version 1 \n";
cout « "---\n";
cout « "Please enter 1 for TRAINING on, or a for off: \n\n";
cout « "Use training to change weights according to your\n";
cout « "expected outputs. Your training.dat file should contain\n";
cout « na set of inputs and expected outputs. The number of\nn;
cout « "inputs determines the size of the first (input) layer\n";
cout « "while the number of outputs detennines the size of the\n";
cout « "last (output) layer :\n\n";

cin » temp;

row=O;
rbf.set_training(temp);

if (rbf.get_training_value() -- 1)
(

cout « "--> Training mode is "ON". weights will be saved\n";
cout « "in the file weights.dat at the end of the\n";
cout « "current set of input (training) data\n";
while(!input.eof())
(

for(int q=O;q<9;q++)
{

input»train[row] [qJ;

row++;

else
(
cout « "--> Training mode is "OFF". weights will be loaded\n";
cout « "from the file weights.dat and the current\n";
cout « "(test) data set will be used. For the test\nn;
cout « "data set, the test.dat file should contain\n";
cout « "only inputs. and no expected outputs.\n";
while(!test.eof())
(

for(int q=O;q<9;q++l
(

test»train[row] [q] ;

92

•·.·.·,• •
) ~

row++;

if {rbf.get_training_value()==ll
{

II ---
II Read in values for the error_tolerance,
II and the learning-parameter
II ---
cout « " Please enter in the error_tolerance\n";
cout « " --- between 0.001 to 100.0, try 0.1 to start --\n";
cout « • \n" ;
cout « "and the learning-parameter, beta\n";
cout « " --- between 0.01 to 1.0, try 0.5 to start -- \n\n";
cout « " separate entries by a space\n";
cout « " example: 0.1 0.5 sets defaults mentioned :\n\n";

cin » error_tolerance » learning-parameter;

cout « "Please enter the maximum cycles for the simulation\n";
cout « "A cycle is one pass through the data set.\n";
cout « "Try a value of 10 to start with\n";

cin » max_cyclesi

cout « "Do you want to read weights from weights.dat to
start?\n" ;

cout « "Type 1 to read from file, 0 to randomize starting
weights\n" ;

cin » start_weights;

II training: continue looping until the total error is less than
II the tolerance specified, or the maximum number of
II cycles is exceeded; use both the forward signal propagation
II and the backward error propagation phases. If the error
II tolerance criteria is satisfied, save the weights in a file.
II no training: just proceed through the input data set once in the
II forward signal propagation phase only. Read the starting
II weights from a file.
II in both cases report the outputs on the screen

II intialize counters
total_cycles=O; II a cycle is once through all the input data
total-patterns=O; II a pattern is one entry in the input data
Ilnew_NF=NF;

II get layer information
rbf.get_Iayer_info{);

II set up the network connections
rbf. set_up_network () ;

93

'.

II initialize the weights
if ({rbf.get_training_value()==l)&&(start_weights!=l))

{

II randomize weights for all layers; there is no
II weight matrix associated with the input layer
II weight file will be written after processing

rbf.randomize_weights();
II set up the noise factor value
Ilbackp.set_NF(new_NF) ;
}

else

rbf.read_weights() ;

main loop
if training is on, keep going through the input data

until the error is acceptable or the maximum number of

is exceeded.
if training is off, go through the input data once. report outputs
with inputs to file output.dat

if (rbf.get_training_value()==l)
{

/I
/I
/I
cycles
/I
/I
/I

startup=l;
total_error = 0;
double templ(lOO];
int total-pats=O;

rbf.training_centers();

/lifstream input (Gtraining") ;
Ilif(input.fail())
Ilcerr«"input file open error";

i=L
avgerr-per-pattern=100.0000;

total_cycles=O;
double unit_error=O.OOOOOO;
double total_error=O.OOOOOO;

while((avgerr-per-pattern>error_tolerancel&&(total_cycles<max_cycles))
{

patterns-per_cycle=O;
total_error=O.OOOO;
total-pats=O;

Ilwhile(!input.eof(»)
for(int r=O;r<row;r++)

94

far(int 1=0;1<9;1++)
input_vectar[ll=train[r) (1];

rbf.set_up-patterns(i) ;

total-patterns++;
tota1-pats++;
unit_error=rbf.get_errar();
total_error+=unit_error;

rbf.update_weights(learning-parameter);
}

total_cycles++;
rbf.update_weightsl(learning-parameter);
double pre=avgerr-per-pattern;
avgerr-per-pattern=total_error/total-pats;

II avgerr-per-pattern-=O.l;
cout«total_cycles«" new error is:

II «avgerr-per-pattern«endl;
if (pre<avgerr-per-pattern)
(
caut«"Weights are blowing up, try a small learning rate";

exit(l) ;

}
I/input.close();
rbf.write_weights();
rbf.write_outputs() ;

« lI\n tl
;

« "---->average error per cycle = II « avg_error-per_cycle « II

cout
cout
cout

1/

« "

}

I I input. close () ;
1/ input. open (U training") ;

II if(input.fail(»)
cerr«"input file open error";

weights saved in file weights.dat\n";

<-

..
•
)
•

J....
i
""I

--\n ";
cout « "---->errar last cycle = II « error_last_cycle « " <---\n";
cout « "_>error last cycle per pattern= " « avgerr-per-pattern « II <­
--\n" ;

cout « "------------>total cycles = II « total_cycles « " <---\n";
cout « "------------>total patterns = II « total-patterns « " <---\n";cout « " \n";

}llend of if training

if(rbf.get_training_value() ==0)
(

int i=l;
1/ ifscream input ("training");

Eor(int r=O;r<row-l;r++)
(

for(int m=O;m<9;m++)
input_vector[ml=train[rl [m];

out«"\n for pattern:
for(int j=0;j<8;j++)

95

" .,

out«input_vector[j)«" ";
rbf.set_up-patterns(i) ;
rbf.write_outputs();

total_error+=rbf.get_error() ;
total-pats++;

out«"\n the average error for testfile is : ";
out«total_error/total-pats;
out«"\n Total patterns is: "«total-pats;

Ilinput.close();
cout«"\n end of test, you may see result in output file";

out.close() ;

96

·'•
)
•

Appendix E

(Code for Adaptive Center Radial Basis Function
Simulator)

/***
Adaptive Center Radial Basis Function Simulator
Feb, 1999. By Yimin Yang, Computer Science Department
Oklahoma State University

•• 1

This program is written using the method desc.ribed in
Haykin's book "Neural Networks, A Comprehensive Foundation"
Simon Haykin, Macmillan College Publishing Company. 1994
Before training the program, the file "training" must be set
Before test the simulator, the file "testfile" must be set
***/

#include <stdio.h>
#include <iostream.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include<fstream.h>

class network;
ofstream results(nresult");

class input_layer
(
public:

int num_inputs;
II double input_vector (10] ;

input_layer (int) ;
Ilinitial_centers() ;
-input_layer() ;
void put_input();
friend network;

} ;

()7

•..
)
•..

-

input_layer: : input_layer! int i)
(

nurn_inputs=i;
Ilinput_vector= new double[i);

}

input_layer: :-input_layer()
{

Iidelete (num_inputs] input_vector;

class middle_layer
(

public:
int nurn_centers;

II double center_vector[10) [10);
input_layer *in;

middle_layer() ;
middle_layer(int,input_layer *);
-middle_layer!) ;
double calc_gaussianlint);
double calc_distance!int);
double max_distance!);
void initial_centers!);
void read_centers!);

void write_centers();
double calc_two-pointslint, intl;

void update_centers (float) ;
int shortest_center!);

friend network;
} ;

middle_layer: :middle_layer (int i, input_layer *m)
{

nurn_centers =i;
in=m;

II center_vector=new double[i] [num_inputs];

II center_vector=new double(i]
}

middle_layer::-middle_layer() {
II delete in;

class output_layer
(

private:
double weights[lOO);
double expected_value;
input_layer *in;
middle_layer *mid;

friend network;

public:

98

•
I··-•••I..
•

output_layer (input_layer* , middle_layer*);
-output_layer() ;
void initial_weights();
double calc_out();
double calc_error();

void update_weights (float) ;
//void list_weights();
void write_weights();
void read_weights();
//void initial_centers();
void write_output();
void initial_centers();
//void list_errors();
//void list_outputs();

} ;

output_layer: : output_layer (input_layer* i, middle_layer* j)
(

in=i;
rnid=j;

}

output_layer: :-output_layer()
(

//delete [num_centers) weights;

class network

private:

input_layer *inl;
middle_layer *ml;
output_layer *01;
int numin. numcen, numout , training;

public:
network() ;
-network () ;

void set_training(const unsigned &);
unsigned get_trainin9_value();
void get_layer_info();

void training_centers();
double get_error();

void set_up_network();
void set_up-patterns(int);
void randomize_weights();
void update_weights(float);
//void update_momentum();
void write_weights();
void read_weights();
//void list_weights();
void write_outputs();

99

• I,
I

I

••
I

l
•

} ;

network::network() (
nwnin=O;
nwncen=O;
nwnout=O;
training=O;

double train [150 J [50) ;
int row;
double center_vector[lOO) [50J;
double input_vector [lOj ;

inline float squash(float input)
II squashing function
II use sigmoid -- can customize to something
II else if desired; can add a bias term too
II
(

if (input < -50)
return 0.0;

else if (input> 50)
return 1.0;

else return (float) (l/(l+exp(-(double)input)));

inline double randomweight(int init)
(

int nwn;
II random number generator
II will return a floating point
II value between -1 and 1

if (init==l) II seed the generator
srand (unsigned)time(NULL));

num=rand() % 100;

return 2*(double(nwn/100.00))-1;

void output_layer::initial_centers()
(

int nurn=O;
II int flag=O;

II double unit;
Ilifstream select("training");
Ilif(select.fail())
Ilcerr«"Input file open error";
Ileise
/Ie

for(int i=O; i<mid->num_centers;i++)
(

num=O;
II flag=O;

100

I,
II I

I
I

~

I~

center_vector[i] [O]=unit;
for(int m=l;rn<in->num_inputs;m++)
select»center_vector[i] [rn] ;

srand((unsignedl time(NULL});
num=rand () %100;

for(int m=O;rn<in->num_inputs;m++)
center_vector[i] [m]=train[iJ em];

II select»unit;
II flag++;
II while(flag/9l=num)
II {
II select»unit;
II flag++;
II}
Ilif(flag/9==num}
/I{

II
II
II

II}
}llend of i loop

Ilend of else
II select.close();

II
/I

void middle_layer: :update_centers(float beta)
(

int i,x;
i=shortest_center() ;
for (x=O;x<in->num_inputs;x++)

(
center_vector [i) [x] +=beta * (input_vector [x]-center_vector [i] [x]) ;

}

results«"\n after update centers are: "«endl;
for(int m=O;rn<in->num_inputs;ffi++)

results«center_vector[iJ [m]«" ";

}

int middle_layer::shortest_center()
(

int i, result, m;
double x, y, shortest=1000.0000;

I

l
~

for(i=O;i<num_centers;i++)
{

x=O.oooo;
y=O.OOOO;
for(m=O;m<in->num_inputs;m++}

{
double unit=input_vector em] -center_vector [i] [m] ;
x= x + unit*unit;

}

y=sqrt (x) ;
if(shortest>y)

{

shortest=y;
result=i;

return result;

double middle_layer::calc_gaussian(int i)

101

double x, d, dI, d2,m,n;

d2:::calc_distance(i); !/compute Ilx-till
Ild2:::d2*d2;
d=max_distance() ;
dI:::d*d;
Ilx:::exp(-num_centers/dl*d2) ;

m:::2*num_centers;
m:::(double)sqrt(m) ;
n:::d/m;
I Ix:::11 (1+d2);
x:::exp (-n*d2) ;
x:::x-O.5;

results«" \n gaussian "«i«" is''<<x<<endl;
return x;

}

Ilthis function compute I lx-til 1~2

double middle_layer: : calc_distance (int i)
(

int m;
double x:::O.OOOO;

double y=O.OOOO;
for (m:::O;m<in->num_inputs;m++)
{

y:::(input_vector[m]-center_vector[iJ (m]);
x+:::y*y;

}

Ilreturn sqrt(x);
results«"\n for pattern :"«endl;
for(int n=O;n<8;n++)

results«input_vector(n]«" ";
resul ts« " \n " ;
results«"distance to center:"« " "«i« " is: • «x«endl;
return sqrt (x) ;

Ilcompute max distance of chosen centers
double middle_layer: :max_distance(}
{

double max_dis;
double x:::O.OOOO, y:::O.OOOO;
int i,j;

for(i=O;i<num_centers;i++)
for(j=l;j<num_centers;j++)

{

x=calc_two-points(i,j) ;
if (max_dis<x)
max_dis:::x;

}

results«"max distance is "«max_dis«endl;

return max_dis;

Ilcompute eculid distance between the tow centers
double middle_layer: :calc_two-points(int i, int j)

l02

-

double x=O.OOOO,y=O.OOOO,z=O.OOOO;
for(int m=O;m<in->num_inputsim++)
(

x=(center_vector[iJ [m)-center_veccor[j) [m])i
y=X*Xi

z+=y;

}

return sqrt(z)i

Ilread the centers from file center

void middle_layer::read_centers()
(

ifstrearn readcenter("center");
if (readcenter.fail())
cerr«"center file open error"i
else

(

for(int i=Oii<nurn_centersii++)
for(int j=O;j<in->nurn_inputs;j++)

{

readcenter»center_vector[i) [j];

}

readcenter.close() ;

void middle_layer: :write_centers()
{

ofstrearn writecenter("center");
int m=O;
if(writecenter.fail() l
cerr«"write center file open error";
else

(

for(int i=O;i<num_centers; i++)
(
for(int j=O;j<in->nurn_inputs;j++)

(
writecenter«center_vector[i] (j]«endl;

II m++i
Ilif((m%8)==O)

II cout«"\n";
)

cout«endl;

)

writecenter.close() ;

void output_layer: : initial_weights ()
{

Ilweights=new double [nurn_centers) ;
int w=l;

for(int i=O;i<mid->nurn_centers;i++l

103

weights(i]=randomweight(w};
results«"initial weights are: "«endl;
for lint m=O;m<mid->num_centers;m++)

results«weights[m)«" "«endl;

void output_layer::update_weightsl float beta)
(

double actual_out, error;
actual_out=calc_out();
error=expected_value-actual_out;
for(int i=O;i<mid->num_centers;i++)

(

weights [i] +=beta*error*mid->calc_gaussian (i) if/may use sigmoid
}

results«"\n after update weights, weights are: "«endl;
for(int m=O;m<mid->num_centers;m++l

results«weights[m)«" ";

void output_layer::read_weights()
{

i fstream readweights ("weight") ;
iflreadweights.fail(})
cerr«"readweights file open error";
else

(
for(int i=O;i<mid->num_centers;i++)
readweights»weights(i];

}

readweights.close(} ;

void output_layer: :write_weights(l

int m=O;
of stream wri teweights ("weight") ;
if(writeweights.fail(»)
cerr«"writeweights file open error";
else

{

for(int i=O;i<mid->num_centers;i++}

writeweights«weights[i) «endl;

}

writeweights.close() ;

double output_layer: :calc_out()
(

int i,w=O;
double total=O.OOOO, unit, gau, result;

for(i=O;i<mid->num_centers;i++)
(

gau=mid->calc_gaussian(i) ;

104

unit=weights[i)*gau;
total+=unit;

w++;
)

result=(double) (11 (l+exp(-(double) total)));
Ilreturn result;
results«"output is "«total«endl;
retu~n total +0.5;

void output_layer: :write_output()
(

ofstream writeoutput("output");
if(writeoutput.fail())
cerr«"writeoutput file open error";
else

(
for(int i=O;i<in->num_inputs;i++)
writeoutput«input_vector(i);
cout«endl;
cout«" the result is:"«endl;
cout«calc_out() ;

network: :-network()
(

delete inl;
delete 01;

delete ml;

void network: : set_training (const unsigned & value)
(
training=value;
}

unsigned network::get_training_value()
(

return training;
}

void network: :get_layer_info()
(

cout « .. Enter in the layer sizes separated by spaces.\n";
cout « .. For a network with 3 neurons in the input layer.\n";
cout « " 2 neurons in a hidden layer. and 4 neurons in the\n";
cout « " output layer, you would enter: 3 2 4 .\n";
Ilcout « " You can have up to 3 hidden layers, for five maximum entries
: \n \n" ;

cin » numin»numcen»numout;

II --
II size of layers:
II input_layer layer_size[O)

105

I
\

.......

~-

II output_layer layer_size [number_of_layers-l)
II middle_layers layer_size[l]
II optional~ laye~_size[number_of_layers-3]

II optional~ layer_size [number_of_layers-2 1
11---

void network:~set_up_network()

(
/lint i,j,k;

inl=new input_layer(numin);
ml =new middle_layer (nurncen, in.!) ;
ol=new output_layer(inl,ml);

Iitraining the center before training the weights using k-mean method
void network: :training_cente~s()

(

ol->initial_centers() ;

int u,v,h;
double x,y;
int w=l;
x=ml->max_distance() ;
h=ml->nurn_centers;
for(u=O;u<row;u++)

for(int i=O;i<inl->num_inputs;i++)
input_vector[i]=train[u) [i);
for(int j=O;j<ml->num_centers;j++)
{

y=ml->calc_distance(j) ;
if (y>x)
{

for(int g=O;g<inl->nurn_inputs;g++)
{

center_vector [ml­
>num_centers) [g)=input_vector(g);

)
rnl->num_centers++;
ol->weights[ml->nurn_centers]=randomweight(w) ;
x=y;

}

break;

v=ml->nurn_centers-h;
results«"\n after adaptive "«~vee" centers are addedu«endl;

106

•

void network: :randomize_weights{}
{

//ol->initial_centers() ;
ol->initial_weights{) ;

void network: :update_weights{ float beta)
(

ml->update_centers{beta) ;
ol->update_weights{beta) ;

void network: :write_weights{)
(

ml->write_centers{);
ol->write_weights();

void network: :read_weights{)
{

ml->read_centers{) ;
ol->read_weights() ;

void network: :write_outputs()
(

ofstream out("output");
if(out.fail(»)

cerr«"output file open error";
else
(

for(int i=O;i<inl->num_inputs;i++)
out«input_vector[i] ;

out«ol->calc_out() ;
}

out.close();

double network: :get_error()
(

double x,y;
x=ol->calc_out{);
y=ol->expected_value-x;

y=y*y; //square
y=y+O.04; //plus bias

return y;

void network: : set_up-patterns{int i)
(

107

i£:(i==1)
ol->expected_value=input_vector[8l;

void main ()
(

double error_tolerance=O.l;
double total_error=O.O;
double avg_error-per_cycle=O.O;
double error_last_cycle=O.O;
double avgerr-per-pattern=O.O; II for the latest cycle
double error_last-pattern=O.O;
float learning-parameter=O.02;
Ilfloat alpha; II momentum parameter

Ilfloat NF; II noise factor
Ilfloat new_NF;

unsigned temp, startup, start_weights;
Illong int vectors_in_buffer;
long int max_cycles;
long int patterns-per_cycle=O;

long int total_cycles, total-patterns;
int i=O;

II create a network object
network rbf;
ifstream input("training");
ifstream test("testfile")i

II enter the training mode: 1=training on O=training off
cout « "---\n";
cout « " c++ Neural Networks \n";
cout «" RBF simulator \n';
cout « " version 1 \n";
cout « "---\n";
cout « "Please enter 1 for TRAINING on, or 0 for off: \n\n"i
cout « "Use training to change weights according to your\n";
cout « "expected outputs. Your training.dat file should contain\n";
cout « "a set of inputs and expected outputs. The number of\n";
cout « "inputs determines the size of the first (input) layer\n";
cout « "while the number of outputs determines the size of the\n";
cout « "last (output) layer :\n\n";

cin » temp;

row=O;
rbf.set_training(temp) ;

108

i
~

-

if (rbf.get_training_value() -- 1)
(

cout « "--> Training mode is ·ON*. weights will be saved\n";
cout « "in the file weights.dat at the end of the\n";
cout « "current set of input (training) data\n";
while(!input.eof(»
(

for(int q=0;q<9;q++)
{

input»train [row] [q] ;

row++;

}
else

(
cout « "--> Training mode is *OFF*. weights will be loaded\n";
cout « "from the file weights.dat and the current\n";
cout « "(test) data set will be used. For the test\n";
cout « "data set. the test.dat file should contain\n";
cout « "only inputs. and no expected outputs. \n";
while(!test.eof(»
{

for(int q=0;q<8;q++)
{

test»train [row] [q] ;

row++;

if (rbf.get_training_value()==l)
{

II ---
II Read in values for the error_tolerance.
II and the learning-parameter
II ---
cout « " Please enter in the error_tolerance\n";
cout « " --- between 0.001 to 100.0. try 0.1 to start --\n";
cout « "\n";
cout « "and the learning-parameter, beta\n";
cout« --- between 0.01 to 1.0, try 0.5 to start -- \n\n";
cout« separate entries by a space\n";
cout« example: 0.1 0.5 sets defaults mentioned :\n\n";

cin » error_tolerance » learning-parameter;

cout « "Please enter the maximum cycles for the simulation\n";
cout « "A cycle is one pass through the data set.\n";
cout « "Try a value of 10 to start with\n";

cin » max_cycles;

cout « "Do you want to read weights from weights.dat to
start?\n" ;

cout « "Type 1 to read from file, 0 to randomize starting
weights\n" ;

cin » start_weights;

109

}

II training: continue looping until the total error is less than
II the tolerance specified, or the maximum number of
II cycles is exceeded; use both the forNard signal propagation
II and the backward error propagation phases. If the error
II tolerance criteria is satisfied, save the weights in a file.
II no training: just proceed through the input data set once in the
II forward signal propagation phase only. Read the starting
II weights from a file.
II in both cases report the outputs on the screen

II intialize counters
total_cycles=O; II a cycle is once through all the input data
total-patterns=O; II a pattern is one entry in the input data
Ilnew_NF=NF;

II get layer information
rbf.get_Iayer_inEo();

II set up the network connections
rbf.set_up_network() ;

II initialize the weights
if «rbf.get_training_value()==11&&(start_weights!=1»

(
II randomize weights for all layers; there is no
II weight matrix associated with the input layer
II weight file will be written after processing

rbf.randomize_weights() ;
rbf.training_centers();
II set up the noise factor value
Ilbackp.set_NF(new_NF);
}

else

rbE.read_weights() ;

main loop
if training is on, keep going through the input data

until the error is acceptable or the maximum number of

is exceeded.
if training is off, go through the input data once. report outputs
with inputs to file output.dat

II
II
II
cycles
II
II
II

startup=!;
total_error = 0;
double templ[lOOJ;

liD

int total-pats=O;

if (rbf.get_training_value()==l)
{

II rbf. training_centers () ;

Ilifstream input ("training") ;
Ilif(input.fail(l)
Ilcerr«"input file open error";

i=l;
avgerr-per -pattern=100.0000;

total_cycles=O;
double unit_error=O.OOOOOO;
double total_error=O.OOOOOO;

while((avgerr-per-pattern>error_tolerance)&&(tota1_cycles<max_cycles))
{

patterns-per_cycle=O;
total_error=O.OOOO;
tota1-pats=O;

Ilwhi1e(!input.eof())
for(int r=O;r<row;r++)

for(int 1=0;1<9;1++1
input_vector[ll=train[rl [11;

rbf.set_up-patterns(i) ;

total-patterns++;
total-pats++;
unit_error=rbf.get_error(l;
total_error+=unit_error;

rbf.update_weights(learning-parameter) ;
}
total_cyc1es++;
double pre=avgerr-per-pattern;
avgerr-per-pattern=total_error/total-pats;

cout«"new error is: "«avgerr-per-pattern«endl;
if (pre<avgerr-per-pattern)
{

cout«"Weights are blowing up. try a small learning rate";
exit(l) ;

}

Ilinput.c1ose();
I I input. open (. training") ;

II if(input.fail())
II cerr«"input file open error";

}

resu1ts.close() ;
rbf.write_weights() ;
rbf.write_outputs() ;

111

"

cout « " weights saved in file weights.dat\n";
cout « "\n";
cout « "---->average error per cycle = • « avg_error-per_cycle « " <­
-- \n" ;
cout « "---->error last cycle = " « error_last_cycle « " <---\n";
cout « "->error last cycle per pattern= " « avgerr-per-pattern « n <­
-- \n" ;

cout « "------------>total cycles = n « total_cycles « " <---\n";
cout « "------------>total patterns = " « total-patterns « " <---\n";
cout « "---\n";
}//end of if training

if (rbf.get_training_value() ==0)
{

int i=O;
/ I if stream input ("training") ;

for(int r=O;r<row;r++)
{

for(int m=O;m<8;m++)
tempi [m) =train [r) (m) ;

rbf.set_up-patterns(i) ;
rbf.write_outputs() ;

}
//input.close();
cout«"end of test. you may see result in output file";

112

APPENDIX F Code for MLP Simulator

1***
Multi-layer Perceptron Simulator Using Conjugate
Gradient method

Feb, 1999. By Yirnin Yang. Computer Science Department
Oklahoma State University.. ,

This program is written using the method described in
Welstead's book "Neural Networks and Fuzzy Logic
Applications In C/C++", Stephen T. Welstead, John Wiley &
Sons, Inc.1994
Before training the program, the file "training" must be set
Before testing the simulator, the file "testfile" must be
set. The program is written in C++, can run in both Unix and
PC Visual C++ envirament
***/

#include<iostream.h>
#include<fstream.h>
#include<math.h>
#include<time.h>
#include<stdlib.h>
#include<stdio.h>
#include<assert.h>
//#include<fcntl.h>

double train[110] [15];
int index;
const double cg_zero_check=le-8;

class conjugate{
private:

int la,lb,lc,no_of_wts;
double threshold, target, actual;
double weights[lOO];
double input_vector [20] ;
double hide_out[2o];
float error_tol;
void rand_init();
float vect_norm(double * int, int);
void gradient_of_obj_fn(double*, double*);

113

weights[lOOj;
input_vector [20] ;
hide_out [20] ;

void calc_hide(double*.double*l;
void minus (double*. double*, int, int);
void unit_vector(double*.double*,int, int};
void find_min(double*,double*. int,int,

float,float,double*,float*) ;
float obj_fn(double*);
void form_new_vector(float, double*,double *, double*,int,int);
double find_beta (double*, double*, int,int);
double dot-prod(double*, double*,int, int);
void write_weights();
Ilvoid print();

public:
Ilconjugate() ;
conjugate(int, int, int, double, float) ;
conjugate(int,int,int);

1* conjugate(int rnl,int m2, int mJ. double thresholdl, float er) {
la=ml;
Ib=rn2;
lc=m3;
target=O.O;
actual=O.O;
threshold=thresholdl;
no_of_wts=la*lb+lb*lc+l;
input_vector=new double[la+ll;
hide_out=new double [lb] ;
weights=new double [no_of_wtsl ;
error_tol=er;

}*I
-conjugate(}{
II delete
II delete
II delete
}

void submain();
void print I) ;

};llend of class
conjugate: :conjugatelint rnl,int m2, int m3, double thresholdl, float
er) {

la=ml;
lb=m2;
lc=m3;
target=O.O;
actual=O.O;
threshold=thresholdl;
no_of_wts=(la+l)*lb+lb*lc;

II input_vector=new double[lOO];
II hide_out=new double[50];
II weights=new double[lOO];

error_tol=er;
}

conjugate: :conjugate(int rl,int r2,int r3l
{

la=rl;
Ib=r2;
lc=r3;

void conjugare::submain{)

114

{
II double *gradient,*new_gradient,
~neg_new_gradient,*new_vector,*neg_gradient,*new_weights:

double gradient[100};
double new_gradient[lOO};

double neg_new_gradient[100):
Iidouble test[lOO) [10}:
Iitest=new double[lOO) (10);

double new_vector(100)i
double neg_gradient[lOO)i
double new_weights[lOO);

Iidouble *direction_vector; ~

double direction_vector(100)i

long iter=O;
double alpha, beta, the_errori
float obj_value, step_size, total_error;

rand_init() :llinitialize the weights

step_size=vect_norm(weights, l,no_of_wts);
gradient_of_obj_fn(weights,gradient) i

minus (gradient,neg_gradient,l,no_of_wts) :
unit_vector (neg_gradient, direction_vector, l,no_of_wts) ;
the_error=vect_norm(gradient,l,no_of_wts);

total_error=obj_fn(weights) ;
find_min (weights, direction_vector, 1,no_of_wts, total_error,step_siz

e,&alpha,&obj_value) ;
cout«"\nAlpha is: "«alpha«" obj value is: "«obj_value;
cout«"\n grad norm is "«the_error;
cout«" error tolerence is "«error_tol;

£orm_new_vector (alpha,weights, direction_vector,new_weights,l,no_af_wts):
far(int i=O:i<no_of_wts;i++)

weights[il=new_weights[i);
II cout«"\n Press key: ";
Ilgetch()i

while (obj_value>error_tol)
(

iter++;
gradient_of_obj_fn{weights,new_gradient) ;
minus(new_gradient,neg_new_gradient,l,no_oE_wts) ;
if (iter%no_oE_wts==O)

unit_vector(neg_new_gradient,direction_vector,l,no_oE_wts);
else
(

beta=find_beta(gradient,new_gradient,l,no_of_wts) ;
cout«"beta is : ·«beta;

form_new_vector(beta,neg_new_gradient, direction_vector, new_weights,l,
no_of_wts) ;

unit_vector(new_vector,direction_vector,l,no_of_wts) ;
}/Iend of else
for{int x=Oix<no_of_wts;x++}

gradient[i)=new_gradient[i) ;
the_error =vec t_norm (gradient, 1, no._o f_wts) ;
double d=le-6;
if (the_error>d)

115

step_size=5*{obj_value)/the_errori //5*y divided by
the slope

else
step_size=O.5*step_si ze i

total_error=obj_fn(weights);

find_rnin{weights, direction_vector, l,no_of_wts, total_error,step_size,&alp
ha, &obj_value) i

cout«"\nObj value is: "«obj_value;
cout«"\n now is cycles is: "«iter«endl;

forrn_new_vector(alpha,weights,direction_vector,new_weights,l,no_of_wts);
for(int rn=O;m<no_of_wtsirn++) //copy new weights to

weights
weights [m}=new_weights [rn) ;

write_weights{) ;

void conjugate: :write_weights()
(

ofstream out ("weights_file") ;
if{out.£ail{))

cerr«"Weights file open error";
int m=O;
for(int i=Oii<no_of_wtsii++)
{
out«weights[i]«" ";

m++;
if (m%8==O)

out«endl;

double conjugate: : find_beta (double *we,double *dir,int m,int len)
(

double denorn;
denom=dot-prod(we,we, rn,len);
if (denorn<cg_zero_check)

denorn=cg_zero_check;
return dot-prod(dir,dir,rn,len)/denorn;

double conjugate: : dot-prod (double *vl,double *v2,int start,int len)
{

int ii
double sum=O.O;
for(i=Oii<len;i++)

sum+=vl[i+start)*v2[i+startJ;
return sum;

116

-

void conjugate: : find_min (double *we,double *dir,int m,int len,float
te,float st,double *a,float*ov)
(

Ilbrute force method
const double f_zero_toler=le-8, x_zero_toler=le-4;
int i, no_of-pts=100;
float opt_value, value, opt_x, x, xinc,xmin,range;
Iidouble *v;
double v (100 1;
range=st;
do(

xmin=-range;
xinc=2*range/no_of-pt s;
x=xmin;
forrn_new_vector(x,we,dir,v,m, len) ;
opt_value=obj_fn(v) ;
opt_x=x;
for(i=l;i<no_of-pts;i++)
(

x+=xinc;
form_new_vector(x,we,dir,v,m,len) ;

II for{int h=O;h<len;h++)
Ilv[h)=we(h)+x*we(hl;
Ilv(h)=we(hl+x* dir(h);

value=obj_fn(v) ;
if (value<opt_value)
(

opt_X=x;
opt_value=value;

}

*a=opt_x;
*ov=opt_value;
range=range*O.l;
Ilrepeat until either a sizable move(x) is found, or the

func is zero
}while ((abs(*a)<x_zero_toler)

&&(opt_value>f_zero_toler)&&(range>x_zero_toler)) ;

II if (range<x_zero_toler)
II cerr«"\nfind_min cannot find min in this direction\n";
}

void conjugate: :forrn_new_vector(float a/double* w1,double* w2,double*v,
int start, int len)
{

int i;
for(i=O;i<len;i++)
(

v(il=wl(il+a*w2(i);
}

return;

float conjugate: :obj_fn(double* we)
{

int i, m;
Iidouble ·pattern;
double surn=O;

double pattern (20];

117

pattern[Oj=1;
for(i=O;i<index;i++)
{

for(m=O;m<la+1;m++)

pattern[m+1]=train[ij [mj;
calc_hide(pattern,we);
double x=(pattern[la+1j-actual);

x=x*x;
sum+=x;

sum=sum/index;
II double g=exp(-sum);

Ilfloat f=1/(1+g);
return sum;

II return 1/(1+exp{-sum));
}

void conjugate: : unit_vector (double *neg, double *dir, int m,int len)
(

double denom;
int i;
denom=vect_norrn(neg,m,1en) ;
if (denorn<cg_zero_check)

denom=cg_zero_check;
for(i=O;i<len;i++)

dir[ij=neg[ij/denom;
return;

void conjugate: :minus(double *grad, double *neg,int rn,int len)
(

int i;
for(i=O;i<len;i++)

neg[ij=-grad[ij;

float conjugate: :vect_nor.m(double *w,int i,int len)
{

int n;
double sun=O.O;
fort n=O;n<len;n++)

sun+=w[nl *w[nj;
float x=sqrt(sun);
return X;

}

void conjugate: :gradient_of_obj_fn(double *wei, double* grad)
(

int i,j,k,p;
double factor, sum;
weights[Ol=threshold;
grad[Ol=threshold;

for(i=1;i<no_of_wts+l0;i++)
grad[ij=O.O;

for(p=O;p<index;p++)
{

118

input_vector[O]=I;
for(i=l;i<la+2;i++)
input_vector[il=train[p] [i-I];
target=input_vector[la+l];
calc_hide(input_vector,wei);
k=O;
Ilinput_layer weights
Eorli=l;i<la+l;i++)

for{j=O;j<lb;j++)
{

k++;
surn=O.O;
factor=hide_out[jJ*{I.O-

hide_out[j))*input_vector[i];
surn=(target-actual)*actual*(1.0­

actual)*weights[la+j]*factor;
grad[k]+=sum;

}

Iioutput layer weights
for{j=O;j<lb;j++)
{

k++;

double x=(target-actual)*actual*(1.0­
actual) *hide_out[j] *weights[la*lb+l+j] ;

assert (x>-l&&x<l) ;
grad[k]+=x;

void conjugate;:print()
(

int i,rn,l=O;
double pat [20] ;
double wei [100] ;
double sum=O;

of stream output{"output"l;
ifstrearn read_weights ("weights_file") ;
if(read_weights.fail(»

cerr«"\nWeights read file open error\n";
for(i=O;i<la*lb+lb+l;i++)

read_weights»wei[i] ;
for{i=O;i<index;i++)
(

pat [0 J =1;
for(m=1;m<la+2;m++)

pat[m] =train[iJ [m-I];

calc_hide (pat, wei) ;
output«"\n For pattern: n";
for{m=l;m<la+l;m++)

output«pat[ml«" ";
output«" \nThe actual output from network is:

"«actual«endl;
output«"\n The target output is: "«pat[la+l1«endl;

II output«"\n The difference is: "«
double unit={pat[la+Il-actuall ;11*{pat[la+l]-actuall;

119

I
1

sum+=unit;
output«"\n The difference between target and actual

is:''<<unit;
if((pat[la+l)-actual)<0.03l

1++;
}

output«"\n The average error for testfile is: "«sum/index;
output«"\n The number of predict error less than 0.03 is:

"«l«endl;
output«"\n The number of all test pattern is: "«index;
double rate=O.OO;
rate=l/index;
output«"\n Predicting correct rate is: "«rate;

void conjugate::calc_hide(double *input_vect,double*wel
{

int m,y;
double n,nurn;

for(m=O;m<lb;m++l
{

n=O.O,num=O.O;
y=O;

for(y=O;y<la+l;y++l
Ilfor(p=O;p<la+l;p++)

n+=input_vect[y]*we[m*la+y];

hide_out[m]=l/(l+exp(-n)) ;
)
n=O.O;

for(y=O;y<lb;y++)
n+=hide_out[y)*we[la*lb+l+y) ;

actual=l/(1+exp(-n)) ;

void conjugate: :rand_init(l
{

int i;
double r;
srand(l) ;
for(i=O;i<no_of_wts+lO;i++)
{

r=2.0*(rand()%100lIl0S.0000-1.0;//randon number betwwen -1
and 1

weights[i)=r*O.5;

void main()
{

120

int 11,12,13;
double threshold;
float err;
ifstream input("training.txt");

int type;
if (input. fail ())

cerr«"\n input File open error";
cout«"Please enter training or test, for training enter 1, for

test enter O\n";
cin»type;

cout«"\n Please enter nodes for network :";
cout«"\n each layer has a space like 8 4 I\n";

cin»ll»12»l3;
if (type==O)
{

ifstream te("testfile.txt");
if(te.fail())

cerr«"\nTestfile open error\n";
whi Ie (! te . eof ())
(

for(int u=O;u<ll+I;u++)
te»train[indexl [ul;

index++;
)

conjugate test(ll,12,13);
test.print() ;
te. close () ;

else
(

cout«"\n Please enter threshold:";
cout«"\n between 0,0000001 and l\n";
cin»threshold;
cout«"\n Please enter error tolerence betwween 0.00 to 1.00\n";
cin»err;
index=O;

while(linput.eof())
(

for(int i=0;i<ll+13;i++)
input»train[index] Ii] ;

index++;

if(index==100)
break;

conjugate con(II,12,13,threshold,err);
con.submain();

input.close();
)

121

122

VITA

YIMINGYANG

Candidate for the Degree of

Master of Science

Thesis: A COMPARISON OF NEURAL NETWORKS FOR STOCK SELECTION

Major Field: Computer Science

Biographical:

Personal Data: Born in Hebei Province, P.R. China, September 28, 1965, the son of
Shiguo Yang and Jianying Ma.

Education: Received Bachelor of Arts Degree in English Literature and Language
from Hebei Teacher's University in June 1990. Received Bachelor of Science
Degree in International Politics from Renming University of China in June
1992; completed requirements for the Master of Science degree in Computer
Science at Oklahoma State University in May, 1999.

Professional Experience: Portfolio Manager, China Xinxing' Group, Beijing, 1994­
1997; China International Trust and Investment Corporation (CrnC), Beijing,
1993-1994; China Poly Group, Beijing, 1992-1993.

..-

